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ABSTRACT

Multi-task learning (MTL) aims to improve the generalization performance (of the resulting

classifiers) by learning multiple related tasks simultaneously. Specifically, MTL exploits the intrinsic

task relatedness, based on which the informative domain knowledge from each task can be shared

across multiple tasks and thus facilitate the individual task learning. It is particularly desirable to

share the domain knowledge (among the tasks) when there are a number of related tasks but only

limited training data is available for each task.

Modeling the relationship of multiple tasks is critical to the generalization performance of

the MTL algorithms. In this dissertation, I propose a series of MTL approaches which assume that

multiple tasks are intrinsically related via a shared low-dimensional feature space. The proposed

MTL approaches are developed to deal with different scenarios and settings; they are respectively

formulated as mathematical optimization problems of minimizing the empirical loss regularized by

different structures. For all proposed MTL formulations, I develop the associated optimization algo-

rithms to find their globally optimal solution efficiently. I also conduct theoretical analysis for certain

MTL approaches by deriving the globally optimal solution recovery condition and the performance

bound. To demonstrate the practical performance, I apply the proposed MTL approaches on dif-

ferent real-world applications: (1) Automated annotation of the Drosophila gene expression pattern

images; (2) Categorization of the Yahoo web pages. Our experimental results demonstrate the

efficiency and effectiveness of the proposed algorithms.
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Chapter 1

INTRODUCTION

In many real-world pattern classification problems [1, 2], the tasks can often be divided into several

(sub)tasks. For example, the problem of landmine detection [3] consists of the tasks of classifying

the objects (represented by the radar images) from different landmine fields into either the landmine

category or the clutter category; the problem of Drosophila gene expression pattern images annota-

tion consists of the tasks of assigning the controlled vocabulary (CV) terms to the gene expression

images groups. Traditionally multiple tasks are solved or learned via the single-task learning (STL)

scheme; in STL, the learning (training) processes of multiple tasks are separate (one task is learned

at a time), and the learned predictive model for each task is applied independently for generalization

on the unseen data, as illustrated in the left plot of Figure 1.1. Commonly used STL algorithms

include support vector machine, ridge regression, and logistical regression.

Figure 1.1: Illustration of the single task learning model (left) and the multi-task learning model
(right).

In reality, the tasks are often related via certain underlying relationship. For example, the

tasks of classifying the objects (using the radar images) from geographically different landmine

fields are related, as the landmine is represented by some common low-level features on the radar

images; the tasks of assigning the CV terms to gene expression images groups are related, as

the images from the same group share certain anatomical and developmental structures. Simply

learning the tasks separately may lead to suboptimal generalization performance. Therefore it is

desirable to incorporate the underlying relation (among the tasks) into the algorithms for learning

multiple (related) tasks. This corresponds to a general learning scheme called multi-task learning

(MTL) [4].

MTL aims to improve the generalization performance of the classifiers by learning from

multiple related tasks. It can be achieved by learning the tasks simultaneously and meanwhile
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exploiting the intrinsic relatedness among the tasks. Specifically, in MTL the learning process for

all tasks are inter-related via the modeled task relatedness, and the learned predictive model for

each task is then applied for generalization independently, as depicted in the right plot of Figure 1.1.

Based on the MTL scheme, the informative domain knowledge of each task is allowed to be shared

across the tasks, thus facilitating individual task learning. It is particularly desirable to share such

knowledge across the tasks when there are a number of related tasks but only limited training data

is available for each task.

This chapter is organized as follows; in Section 1.1, I discuss several representative al-

gorithms for multi-task learning; in Section 1.2 I give a brief comparison among different learning

methods; in Section 1.3 I present two applications of the proposed MTL algorithms; in Section 1.4 I

summarize the main contributions of this dissertation and this chapter concludes in Section 1.5.

1.1 Previous Work

Modeling the relationship of multiple tasks is crucial in multi-task learning; all of the involved tasks

are learnt simultaneously to improve the generalization performance of the resulting classifiers. In

the literature, many approaches have been proposed to model the task relatedness from different

perspectives, including sharing hidden units of neural networks among similar tasks [4,5], employing

a common prior in hierarchical Bayesian models [6–9], learning multiple tasks with regularization and

kernel methods [10,11], sharing parameters of Gaussian process [9,12,13], incorporating clustering

for multi-task learning [14,15], and learning a shared feature mapping over the predictor space [16].

Sharing Hidden Nodes in Neural Network

Neural network has been well studied for learning multiple related tasks for improved generalization

performance. Specifically, in [4, 5], the neural network based inductive bias learning models are

considered for multi-task learning. Note that the inductive bias specifies a hypothesis for a learner

(a learning algorithm) so that the hypothesis is large enough to contain an optimal solution to the

learning problems of interest, yet small enough to guarantee reliable generalization performance

over a pre-specified training set.

In [4], a neural network model is proposed for learning multiple related tasks, in which a

set of hidden units are shared among multiple tasks for improved generalization, as illustrated in

Figure 1.2. Specifically, in Figure 1.2 multiple tasks are fully connected to a shared hidden layer

and they can select the useful hidden units by controlling the weights connecting to those hidden
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units. In essence the improved generalization performance (on each task) is achieved by using the

training signals from other related tasks as the inductive bias, which facilitates the neural network

model to select an optimal hypothesis for generalization.

Figure 1.2: Multi-task backpropagation of four tasks: share a set of hidden nodes among multiple
related tasks.

In [5], a similar neural network based bias learning model is proposed to automatically

choose an optimal hypothesis space (from a family of hypothesis spaces) under the multi-task

learning setting; moreover, a general concept of extended VC dimension is introduced and it is

subsequently used to derive a generalization error bound to theoretically evaluate the performance

of proposed bias learning model. The derived error bound demonstrates that learning multiple tasks

simultaneously can potentially produce better generalization performance than learning a single

task.

Constraining a Common Prior in Hierarchical Bayesian Models

Hierarchical Bayesian (HB) models have adaptive structures for modeling both the independence

as well as the relatedness among multiple tasks. In HB models, the bottom layer of their hierarchies

consist of a set of models with task-specific parameters, which are specialized for each task respec-

tively; on the other hand, to capture the relatedness among the tasks, a commonly used approach is

to correlate multiple tasks by constraining a common prior over the task-specific parameters of the

bottom layer.

In tradition the common prior in a HB model is specified in parametric settings, that is, the

HB model has a presumed parametric form while the model parameters are unknown. However,

a parametric distribution may be too restrictive for modeling the common prior distribution, as the

presumed parametric model may not reflect the reality of the learning scenarios. It is thus preferable
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to learn the functional form of the common prior from the training data directly, instead of specify-

ing the functional form beforehand. In [6] and [7], different nonparametric HB based frameworks are

proposed to unify the collaborative filtering (CF) and the content-based filtering; the proposed frame-

works can automatically learn the common priors over the model parameters from multiple tasks (in

the form of all user profiles). In [8], a probabilistic multi-task learning framework is proposed in which

learning multiple tasks are treated as learning a Bayesian prior over the task space; specifically, the

proposed framework identifies the latent independent components shared among the tasks, and

then employ the identified components to capture the task relatedness. In [9], a novel HB based ap-

proach is proposed for learning the parameters of Gaussian processes under the multi-task learning

setting; moreover insightful analysis is presented for the multi-task Gaussian process by exploiting

the equivalence between the parametric linear model and the nonparametric Gaussian process.

Learning Multiple Tasks with Regularization and Kernel Methods

Regularization and Kernel methods are commonly used for modeling the task relatedness. In [10],

a regularization framework is proposed for multi-task learning which enforces the individual task

model close to the average of all task models. Specifically, the proposed framework considers the

t-th task as a linear regression function as

ft(x) = wT
t x = (w0 + vt)

Tx ≈ y, (1.1)

where vt denotes the task-specific component (it is small when the tasks are similar) and w0 denotes

the average of all task models. By employing the hinge-loss function, the proposed regularized MTL

formulation can be expressed as

min
w0,vt,ξit

T∑
t=1

m∑
i=1

ξit +
λ1
T

T∑
t=1

∥vt∥2 + λ2∥w0∥2

subject to yit(w0 + vt) · xit ≥ 1− ξit, ξit ≥ 0, i ∈ Nm, t ∈ NT . (1.2)

For an arbitrary nonlinear feature map Φ : X × {1, · · · , T} → H, where H is a separable Hilbert

space (the feature space), the kernel associated to Φ is denoted as

G ((x, t), (z, s)) = ⟨Φ(x, t),Φ(z, s)⟩ . (1.3)

Using the standard techniques, [10] extends the proposed MTL formulation to the non-linear setting

as

max
βi

N∑
i=1

βi −
1

2

N∑
i=1

N∑
j=1

βiyiβjyjG ((xi, ti), (xj , tj))

subject to 0 ≤ βj ≤ C, i = 1, · · · , N. (1.4)
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Based on the MTL framework in [10], a family of multi-task kernel functions are developed in [11]

to model the relations among multiple tasks (in the non-linear setting); moreover an interesting

theoretical analysis is presented to show that learning multiple tasks with such family of kernels can

be equivalently cast as single task learning problems.

Sharing Parameters of the Gaussian Process among Multiple Tasks

There is also an emerging interest in learning the kernel of the Gaussian Process under multi-

task learning setting for both the regression and the classification. In [12] an efficient method is

proposed to learn the parameters (of a shared covariance function) for the Gaussian process (GP).

The proposed method adopts the multi-task informative vector machine (IVM) to greedily select

the most informative examples from the separate tasks and hence alleviate the computation cost.

Subsequently in [13], a novel approach is proposed to learn covariance matrices from multi-task data

(input-dependent features and a free-form covariance matrix) via an EM-algorithm. One limitation

in the proposed approach lies in that its generalization to new data could only be achieved by an

ad-hoc form of kernel extrapolation.

Incorporating Clustering for Multi-Task Learning

Many MTL algorithms assume that the learning tasks are equally weighted/related (as depicted in the

left plot of Figure 1.3). Learning the tasks simultaneously via modeling their relatedness generally

improves the overall generalization. In reality, however, a group of tasks may be correlated, while

some other tasks may be unrelated to such a group (as depicted in the right plot of Figure 1.3).

Simply learning all tasks simultaneously (under the a single presumed MTL setting) may lead to

sub-optimal performance.

In [14], a task clustering (TC) algorithm is proposed for discovering the clustering structure

of multiple learning tasks. The TC algorithm estimates the mutual relatedness between tasks (via

measuring the averaged generalization accuracy of the tasks using the knowledge borrowed from

other tasks), and then builds up an entire hierarchy of previous tasks. When a new learning task

arrives, the TC algorithm identifies the most related task cluster in the hierarchy and then apply the

knowledge (a type of distance metric) from that cluster for learning the new task.

In [15], a convex formulation is proposed for clustered multi-task learning. The proposed

formulation encodes the (unknown) task cluster information into a novel penalty norm. Formally, the
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Figure 1.3: The illustration of the relationship among multiple tasks: all tasks are equally weighted
(left plot); a group of tasks are correlated while some other tasks are irrelevant to such a group (right
plot).

penalty norm is denoted as

Ω̂(W ) = εmΩmean + εbΩbetween + εwΩwithin, (1.5)

where Ωmean measures how large the weight vectors are, Ωbetween quantifies how close to each

other the different clusters are, Ωwithin quantifies the compactness of the clusters, εm, εb and εw

correspond to the respective coefficients of the aforementioned terms. Therefore the proposed MTL

formulation can be expressed as

min
W
L{Xt,Yt}(W ) + Ω̂(W ), (1.6)

where L{Xt,Yt}(W ) denotes the empirical loss over the training data {Xt, Yt}. The proposed for-

mulation in Eq. (1.6) is not convex; subsequently in [15], it is converted into a convex relaxation and

an efficient algorithm is developed to find the globally optimum of the convex relaxation.

Learning a Shared Feature Mapping over the Predictor Space

Recently, there is a growing interest in learning a shared feature mapping from multiple related

tasks [16]. Such a feature mapping generally corresponds to a low-rank structure shared among

multiple tasks (represented by the weight vectors of the tasks).

In [16], an alternating structure optimization (ASO) formulation is proposed for learning a

shared predictive structure from multiple related tasks, as depicted in Figure 1.4. In ASO, each of

the task corresponds to a linear predictive functions fℓ(x) = uTℓ x, where uℓ is the weight vector
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Figure 1.4: Illustration of multi-task learning using a shared feature representation: the predictive
classifier of each task consists of a task-specific feature mapping and a feature mapping of the
shared structure.

for the ℓ-th task consisting of a task-specific component and a shared-among-tasks component.

Specifically, uℓ can be expressed as

uℓ = wℓ +ΘT vℓ, ΘΘT = I, Θ ∈ Rh×d, h < d, (1.7)

where uℓ, wℓ, and vℓ respectively represent the weight vectors for the full feature space, the high-

dimensional feature space, and the shared low-dimensional feature space, and Θ represents the

structure parameter for extracting the low-dimensional feature mapping. Note that ASO requires

d > h, where h specifies the dimensionality of the extracted low-rank structure. Mathematically,

ASO can be formulated as

min
{uℓ,vℓ},Θ

m∑
ℓ=1

(
1

nℓ

nℓ∑
i=1

L(uTℓ x
ℓ
i , y

ℓ
i ) + α∥uℓ −ΘT vℓ∥2

)
subject to ΘΘT = Ih×h. (1.8)

The ASO formulation in Eq. (3.5) is non-convex; in [16] an alternating optimization algorithm is

proposed to compute a local optimum of ASO.

1.2 Relation to other Learning Methods

Multi-task learning is a special case of transfer Learning [17] and it also subsumes multi-label learn-

ing [18] and multi-class learning [2] as special cases. We summarize the main difference of these

methods below.

Transfer Learning

Transfer Learning subsumes multi-task learning as a special case. Transfer learning explicitly de-

fines the source domain and the target domain; it aims at achieving better generalization perfor-

mance in the target domain by transferring the domain knowledge learned from the source domain
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to target domain. Note that in transfer learning the feature space and the distribution of the sam-

ples from the source domain may be different from those from the target domain. When the source

domain and the target domain coincide, transfer learning is equivalent to multi-task learning.

Multi-Task Learning

Multi-task learning subsumes multi-label learning as a special case. It aims at improving the overall

generalization performance by learning multiple tasks simultaneously. The key component in multi-

task is the modeling of the task relatedness. In multiple task learning, each task generally has

different training samples. When all tasks share the same set of training data and features, multi-

task learning is equivalent to multi-label learning.

Multi-Label Learning

Multi-label learning deals with the learning scenario where each sample is associated with multiple

labels. Specifically, in multi-label learning, all labels share the same set of training data and features.

When each sample is associated with a single label, multi-label learning is equivalent to multi-class

learning.

1.3 Applications

Multi-task learning has been applied successfully in many application domains such as bioinfor-

matics [19], image analysis [3, 20], web search ranking [21], and computer vision [22–24]. In this

dissertation, we focus on two real-world applications, i.e., automated annotation of the Drosophila

gene expression pattern images and categorization of the Yahoo web pages.

Automated Annotation of the Drosophila Gene Expression Pattern Images

The Drosophila gene expression pattern images capture the spatial and temporal dynamics of gene

expression and hence facilitate the explication of the gene functions, interactions, and networks

during Drosophila embryogenesis [25, 26]. To provide text-based pattern searching, the gene ex-

pression pattern images are annotated (according to their stage ranges) manually using a structured

controlled vocabulary (CV) in small groups based on the genes and the developmental stages as

shown in Figure 1.5. However, with a rapidly increasing number of gene expression pattern images,

it is desirable to design computational approaches to automate the CV annotation process.
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We preprocess the Drosophila gene expression pattern images (of the standard size 128×

320) from the FlyExpress database following the procedures in [27]. The Drosophila images are

from 16 specific stages, which are then grouped into 6 stage ranges (1 ∼ 3, 4 ∼ 6, 7 ∼ 8, 9 ∼

10, 11 ∼ 12, 13 ∼ 16). We manually annotate the image groups (based on the genes and the

developmental stages) using the structured CV terms. Each image group is then represented as a

feature vector based on the bag-of-words and the soft-assignment sparse coding schemes. Note

that the SIFT (scale-invariant feature transform) features [28] are extracted from the images with the

patch size set at 16×16 and the number of visual words in sparse coding set at 2000. The first stage

range only contains 2 CV terms and we do not include it for our empirical study. For other stage

ranges, we consider the top 10 and 20 CV terms that appear most frequently in the image groups

and treat the annotation of each CV term as one task.

Stage range Gene Images Group CV terms
4 ∼ 6 Mkp3 cellular blastoderm

clypeolabrum anlage in statu nascendi
dorsal ectoderm anlage in statu nascendi
endoderm anlage in statu nascendi
foregut anlage in statu nascendi
gap
subset
ventral ectoderm anlage in statu nascendi

7 ∼ 8 dap amnioserosa anlage
ventral ectoderm primordium P2

9 ∼ 10 W inclusive hindgut primordium
mesectoderm primordium
procephalic ectoderm primordium
trunk mesoderm primordium
ventral ectoderm primordium

11 ∼ 12 Ama atrium primordium
brain primordium
clypeo-labral primordium
dorsal epidermis primordium
gnathal primordium
head epidermis primordium P1
hindgut proper primordium
midline primordium
ventral epidermis primordium
ventral nerve cord primordium

13 ∼ 16 CG32048 atrium
embryonic brain
embryonic central nervous system
embryonic dorsal epidermis
embryonic epipharynx
embryonic head epidermis
embryonic large intestine
embryonic ventral epidermis
ventral midline
ventral nerve cord

Figure 1.5: Sample image groups (from 5 different stage ranges) and their associated controlled vocabulary
(CV) terms.
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Categorization of the Yahoo Web Pages

The Yahoo directory [29] consists of a set of top-level categories such as Arts & Humanities and

Business & Economy, as illustrated in the right plot of Figure 1.6. Each top-level category is fur-

ther divided into a set of second-level sub-categories, where each second-level sub-category corre-

sponds to a topic (one top-level category). For example, Social Science top-level category (the right

plot of Figure 1.6) consists of 30 second-level categories (topics).

We apply the multi-task learning algorithms for the categorization of Yahoo webpages.

Specifically we apply the multi-task learning algorithms on the webpages from the same top-category;

since the webpages from different second-level categories (belonging to the same top-level cate-

gory) share some commonality, the determination of the webpages for one second-level category

is modeled as one task and hence the determination of the webpages fro multiple second-level

categories are modeled as multiple related tasks. Note that we preprocess the Yahoo web pages

by removing the topics with a small number (less than 100) of web pages; we also extract the TF-

IDF (Term Frequency-Inverse Document Frequency) features from the web pages and the obtained

feature vectors are normalized to unit length.

Figure 1.6: Illustration of the Yahoo Webpages: the right plot represents 16 top-level categories; the
left plot represents the 30 second-level categories from the Social Science top-level category.
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1.4 Main Contributions

In this dissertation, I consider the learning scenario where multiple tasks are intrinsically related via

a shared low-dimensional feature mapping.

I develop a series of MTL approaches which follow the strand of inducing a low-dimensional

feature space via certain low-rank constraints. Specifically, the proposed MTL approaches are for-

mulated as mathematical programming problems in a generic form of minimizing the (nonnegative)

linear combination of empirical loss (over the training data) with different structured regularizations

(arising from different problem settings). The employed structured regularizations include: (1) the

trace norm constraint (for selecting a set of shared basis factors); (2) the combination of the orthonor-

mal constraint (for inducing a shared low-rank feature mapping) and the ℓ2-norm (for selecting an

dependent feature mapping for each task); (3) the combination of the trace norm constraint (for

inducing a shared low-rank feature mapping) and the sparse regularization (for selecting discrim-

inative feature for each task) (4) the combination of the trace norm regularization (for inducing a

shared low-rank feature mapping) and the group sparse regularization (for identifying the irrelevant

tasks); (5) the sparse trace norm regularization (for inducing a simultaneously spare and low-rank

mapping).

The proposed MTL formulations can be solved via many existing solvers, which may not

scale to large scale data sets. I propose to apply two types of algorithms, i.e., the alternating opti-

mization based algorithms and the gradient based algorithms, to find their globally optimal solution

efficiently. Moreover, I develop efficient algorithms for solving the key components involved in the

optimization algorithms. I also conduct theoretical analysis for certain MTL approaches such as

deriving the global solution recovery condition and the performance bound.

To demonstrate the practical performance, I also apply the proposed MTL approaches on

different real-world applications: (1) Automated annotation of the Drosophila gene expression pat-

tern images; (2) Categorization of the Yahoo web pages. Our experimental results demonstrate the

efficiency and effectiveness of the proposed algorithms.

1.5 Summary of the Remaining Chapters

[Chapter 2 - Factor Selection and Coefficient Estimation in Multivariate Linear Regression] In this

chapter, I consider the factor estimation and selection (FES) for multiple related regression functions.

I first formulate FES as a multivariate linear regression problem subject to a trace norm constraint.
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I then propose to employe the gradient based scheme for solving the FES formulation and also de-

velop an efficient algorithm for the key component of the employed gradient scheme. I finally present

experimental results to demonstrate the efficiency and effectiveness of the proposed algorithms.

[Chapter 3 - Learning a Shared Low-Rank Structure from Multiple Tasks] In this chapter, I consider

the problem of learning a shared low-dimensional feature mapping from multiple tasks. I first present

an improved ASO formulation (iASO), which correlates multiple tasks via a low-rank structure. I then

convert iASO, a non-convex formulation, into a relaxed convex one (rASO). The theoretical anal-

ysis shows that rASO finds a globally optimal solution to its non-convex counterpart iASO under

certain conditions. I also propose efficient algorithms, namely gradient based algorithms and alter-

nating based algorithms, to compute the optimal solution to rASO. Finally I report the experiments to

demonstrate the effectiveness and efficiency of the proposed algorithms and confirm our theoretical

analysis.

[Chapter 4 - Learning Incoherent Sparse and Low-rank Patterns from Multiple Tasks] In this chapter,

I consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. I

first propose a linear multi-task learning formulation, in which the sparse and low-rank patterns are

induced by a sparse regularization term and a low-rank constraint, respectively. I then propose to

employ the projected gradient scheme to efficiently solve the proposed formulation; I also develop

efficient algorithms for solving the key components of the projected gradient based algorithms. In

addition I discuss the rates of convergence of the proposed projected gradient based algorithms in

details. Experimental results on a collection of real-world data sets demonstrate the effectiveness of

the proposed multi-task learning formulation and the efficiency of the proposed projected gradient

algorithms.

[Chapter 5 - Integrating Low-Rank and Group-Sparse Structures for Robust Multi-Task Learning]

In this chapter, I consider the scenarios where a group of tasks are related while the other tasks

are irrelevant to such a group. I first propose a robust multi-task learning (RMTL) algorithm which

learns multiple tasks simultaneously as well as identifies the irrelevant tasks. I then develop efficient

optimization algorithms to solve the proposed RMTL formulation. I also theoretically analyze the

effectiveness of the RMTL algorithm, i.e., derive a theoretical bound for characterizing the learning

performance of RMTL. Our experimental results on benchmark data sets demonstrate the effective-

ness and efficiency of the proposed algorithm.

[Chapter 6 - Learning Multiple Tasks via Sparse Trace Norm Regularization] In this chapter, I con-

sider the problem of estimating multiple predictive functions from a dictionary of basis functions in
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the nonparametric regression setting. I first formulate the function estimation problem as a convex

program regularized by the trace norm and the ℓ1-norm simultaneously. I then develop efficient

optimization algorithms to solve the convex program. In addition, I theoretically establish a perfor-

mance bound for the proposed function estimation scheme. The simulation studies demonstrate the

effectiveness and efficiency of the proposed algorithms.

[Chapter 7 - Conclusion and Future Directions] In this chapter, I provide a summary of the disserta-

tion and discuss several future research directions.

Notations Denote Nn = {1, · · · , n}. Denote by Sd+ the subset of positive semidefinite matrices.

For any symmetric matrix M , denote its trace by tr(M), and its inverse by M−1. For any pair

of matrices A and B, denote A ≼ B if and only if B − A is positive semidefinite. For any matrix

A = [a1, · · · , am] ∈ Rd×m, let ai ∈ Rd be the i-th column inA; let aij be the entry in the i-th row and

j-th column in A; denote by ∥A∥0 the number of nonzero entries in A; let ∥A∥1 =
∑d

i=1

∑m
j=1 |aij |;

denote by ∥A∥F =
√∑d

i=1

∑m
j=1 a

2
ij the Frobenius norm; let {σi(A)}ri=1 be the set of singular

values of A in non-increasing order, where r = rank(A); denote by ∥A∥2 = σ1(A) and ∥A∥∗ =∑r
i=1 σi(A) the operator norm and trace norm ofA, respectively; let ∥A∥∞ = maxi,j |aij |; denote by

∥ai∥2 the ℓ2-norm of ai; let ∥A∥∞,2 = ∥aj∥2, where j = argmaxi ∥ai∥2; let ∥A∥1,2 =
∑m

i=1 ∥ai∥2;

Denote by Ih×h the identity matrix of size h by h. For any smooth function f(·), denote its gradient

at the point C by ∇f(C).
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Chapter 2

Factor Selection and Coefficient Estimation in Multivariate Linear Regression

2.1 Introduction

Multivariate linear regression (MLR) has been used widely for modeling the predictive relationship of

the observations and multiple related responses in many applications of machine learning and data

mining [30–32]. The coefficient matrix in MLR can be computed using the classical least squares

estimator, where each response is regressed against the observations separately. It is known that

such an estimator performs sub-optimally without utilizing the correlation among the multiple re-

sponses [31]. Linear factor regression is proposed to overcome such a problem; the main idea is to

regress the responses against the factors, i.e., a small set of transformed observations. However,

in linear factor regression, the factor selection is performed in a separate step via hypothesis test or

cross-validation, independent from the subsequent coefficient matrix estimation.

Recently, Yuan [33] proposed a novel linear factor regression model, named factor esti-

mation and selection method (FES), to select the factors and estimate the coefficient matrix si-

multaneously. The FES algorithm is formulated as an MLR problem subject to a trace norm con-

straint [34,35], which enforces a low-rank constraint on the coefficient matrix in MLR. The low-rank

property is important in that it promotes sparsity in the factor space, thus FES estimates the coef-

ficient matrix based on the shrinking factor space, and it performs factors selection and coefficient

matrix estimation simultaneously.

Solving the FES formulation is, however, challenging in practice, due to the non-smoothness

of the trace norm constraint. Fazel [36] and Srebro [37] formulated the optimization problems involv-

ing trace norm components as semidefinite programs (SDP) [38]. In [33, 39], the FES formulation

was reformulated as second-order cone programs (SOCP). Both SDP and SOCP can be solved via

interior point methods [40], in which the second order information, i.e., Hessian matrix, is required

for the computation. Note that many off-the-shelf optimization solvers such as SeDuMi [41] and

SDPT3 [42] can be used for solving SDP and SOCP, which can only handle several hundreds of op-

timization variables. However, in many real applications such as image deblurring, the optimization

problems could be of large scale and involve dense data matrices, thus the use of the sophisticated

interior points methods is often precluded.

First-order methods, such as (sub)gradient methods [38,43] and Nesterove’s first-order op-

timal method [44, 45], are practical options for large-scale optimization problems; they only require

14



to evaluate the function value and the (sub)gradient at each iteration. Cai [46] proposed a first-

order algorithm to approximate a matrix with the minimum trace norm subject to a set of convex

constraints. Lu [39] further reformulated the FES formulation as a penalized least squares formu-

lation and then applied Nesterov’s first-order optimal method. However, such a reformulation leads

to a non-smooth (non-differentiable) objective function and hence a special smooth approximation

scheme is required [47].

We propose to apply the gradient scheme (first-order) for solving the FES formulation in the

form of a constrained MLR problem. This consideration clearly leads to an easy-to-solve smooth

objective function during the optimization process. The general step of the gradient scheme involves

a nontrivial Euclidean projection procedure, in which the feasible solution point is updated from an

auxiliary one constructed from previous iterations. We show that such a projection procedure can

be formulated as a simple singular optimization problem, which can be solved efficiently via many

existing algorithms [48]. We present a simple gradient method with the proposed efficient Euclidean

projection for solving the FES formulation. It can be shown that such a simple method converges

slowly at the rate of O ( 1k ). We accelerate the gradient method based on an algorithm developed

by Nesterov [44, 45] for minimizing a smooth convex function. It can be shown that the accelerated

gradient method converges at the optimal rate of O( 1
k2 ) among first-order methods, and meanwhile

keeps the simplicity of the gradient method. We conduct simulation on synthetic and real-world data

sets. Experimental results demonstrate the efficiency and effectiveness of the proposed algorithms.

2.2 Factor Estimation and Selection

We are given n observations (samples) with p explanatory variables (feature dimensions) X =

[x1, · · · , xn]T ∈ Rn×p and q responses (labels) Y = [y1, · · · , yn]T ∈ Rn×q, which are assumed to

be related. MLR models the predictive relationship between the observations and multiple responses

via the classical least squares estimator:

min
W∈Rp×q

∥XW − Y ∥2F , (2.1)

where W denotes the coefficient matrix. The computation of W in Eq. (2.1) is equivalent to regress-

ing each response against the observations separately, which may perform sub-optimally without

utilizing the correlation among multiple responses.

Linear factor regression models are used to overcome this problem, in which the responses

are regressed against a selected set of factors, i.e., a small number of linearly transformed obser-
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vations. Mathematically, the linear factor regression models can be expressed as:

min
r∈R,Γ∈Rp×r,Ω∈Rr×q

∥XΓΩ− Y ∥2F , (2.2)

where r ≤ min(p, q) specifies the number of factors, and XΓ ∈ Rn×r denotes the factors, and

Ω ∈ Rr×q denotes the factor loadings. In practice, the value of r is determined first in a separate

step through either hypothesis testing or cross-validation. Then Γ is constructed and Ω can be

estimated via the least squares estimator. Many popular methods could be formulated in the form of

linear factor regressions. These methods differ in how the factors are constructed.

Recently, Yuan [33] proposed the factor estimation and selection (FES) method to deter-

mine the number of factors r, the factor matrix Γ, and the factor loading matrix Ω simultaneously.

Let W = UwΣwV
T
w be the full SVD [49] of W , where Uw ∈ Rp×p and Vw ∈ Rq×q are orthogonal,

and Σw ∈ Rp×q is diagonal consisting of singular values. By choosing Γ = Uw and Ω = ΣwV
T
w in

Eq. (2.2), and bounding the sum of singular values of Ω from above using a pre-specified nonnega-

tive constant m, FES can be expressed as a constrained least squares problem as:

min
W∈Rp×q

∥XW − Y ∥2F

subject to ∥W∥∗ ≤ m. (2.3)

Note that ∥Ω∥∗ = ∥W∥∗ since Uw is orthogonal. The trace norm constraint in Eq. (2.3) encourages

sparsity in the singular values of W and hence results in automatic selection and estimation in

the factor spaces. Therefore, the FES method conducts factors selection and coefficient matrix

estimation simultaneously in MLR.

Equivalent Simplification

The FES formulation in Eq. (2.3) depends on the sample size, which may incur intensive computation

when dealing with large-scale data sets. Eq. (2.3) can be equivalently simplified as a sample-size-

independent optimization problem. Note that the simplification procedure is also employed in [39].

Let X = UxΣxV
T
x be the SVD of X, where r = rank(X), Ux ∈ Rn×r is columnwise

orthonormal, Vx ∈ Rp×p is orthogonal, and Σx ∈ Rr×p is diagonal consisting of non-zero singular

values. We have

∥XW − Y ∥2F = tr
(
WTVxΣ

T
xΣxV

T
x W − 2Y TUxΣxV

T
x W + Y TY

)
= ∥ΣxV

T
x W − UT

x Y ∥2F − ∥UT
x Y ∥2F + ∥Y ∥2F .
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Therefore, minimizing ∥XW − Y ∥2F in Eq. (2.3) is equivalent to minimizing ∥ΣxV
T
x W − UT

x Y ∥2F .

Denote Z = V T
x W ∈ Rp×q, Λ = Σx ∈ Rr×p, and H = UT

x Y ∈ Rr×q. Noticing ∥W∥∗ = ∥Z∥∗, we

can equivalently rewrite the problem in Eq. (2.3) as:

min
Z∈Rp×q

∥ΛZ −H∥2F

subject to ∥Z∥∗ ≤ m. (2.4)

Since Λ ∈ Rr×p is diagonal and the number of non-zero entries is smaller than min(n, p), from a

computational point of view, the formulation in Eq. (2.4) needs less storage space and is easier to

solve compared to the one in Eq. (2.3). Moreover, the optimal solution to Eq. (2.3) can be easily

recovered from the one to Eq. (2.4) by applying an orthogonal transformation.

2.3 Gradient Scheme with Efficient Projection

In this section, we propose to apply the gradient scheme [44, 45] with efficient Euclidean projection

to solve the constrained optimization problem in Eq. (2.4). For notational simplicity, we denote the

optimization problem in Eq. (2.4) as

min
Z

f(Z)

subject to Z ∈ Q, (2.5)

where Q = {Z | ∥Z∥∗ ≤ m,Z ∈ Rp×q} is a convex set, and f(Z) = ∥ΛZ −H∥2F is convex and

continuously differentiable with Lipschitz continuous gradient L defined as [44,45]:

∥∇f(Zx)−∇f(Zy)∥F ≤ L∥Zx − Zy∥F ,∀Zx, Zy ∈ Q. (2.6)

To solve the constrained optimization problem in Eq. (2.5), the gradient scheme iteratively updates

the feasible solution point Z via the general step denoted as:

Z = S − 1

γ
gS,γ , (2.7)

where gS,γ and 1
γ are the gradient mapping and the step size respectively, and S can be either a

feasible solution point obtained in the last iteration or an auxiliary searching point (not necessarily

feasible) constructed from pervious iterations.

The computation of gS,γ and γ in Eq. (4.9) are closely related to the Euclidean projection

problem. In the following subsections, we first introduce some basic concepts of gradient mapping

and appropriate step size, and then propose an efficient Euclidean projection algorithm associated

with the optimization problem in Eq. (2.5).
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Gradient Mapping

Gradient mapping [44,45] plays a central role in constrained (convex) optimization. Given the smooth

convex function f(Z) and the closed and bounded convex setQ, we define the function fS,γ(Z) as:

fS,γ(Z) = f(S) + ⟨∇f(Z), Z − S⟩+ γ

2
∥Z − S∥2F , (2.8)

where γ > 0, Z ∈ Q, and ⟨C1, C2⟩ = tr
(
CT

1 C2

)
. Note that S is not necessarily from Q. Since

fS,γ(Z) is smooth and strictly convex, its minimizer over Q is unique and can be denoted as:

ZS,γ = argmin
Z∈Q

fS,γ(Z). (2.9)

The gradient mapping associated with f(Z) on Q is then defined as:

gS,γ = γ (S − ZS,γ) . (2.10)

For a fixed S, we say that γ is appropriate (hence the global convergence can be guaranteed) if it

satisfies

f(ZS,γ) ≤ fS,γ(ZS,γ),

where fS,γ(Z) is defined in Eq. (2.8) and ZS,γ is computed from Eq. (2.9). In practice, the appro-

priate γ can be determined using the sophisticated inexact line search algorithms, such as Armijo-

Goldstein conditions [43]. Note that it can be shown [44] that any γ ≥ L is appropriate, where L is

the Lipschitz continuous gradient defined in Eq. (2.6). Moreover, for any appropriate γ, the following

inequality holds [44,45]

f(Z) ≥ f(ZS,γ) + ⟨gS,γ , Z − S⟩+
1

2γ
∥gS,γ∥2F . (2.11)

for all Z ∈ Q. Note that Eq. (2.11) is important for the global convergence analysis of constrained

optimization problems.

Efficient Euclidean Projection

It can be verified that the optimal ZS,γ to Eq. (2.9) can be obtained by solving the following optimiza-

tion problem:

min
Z∈Q

∥∥∥Z − (S − 1
γ∇f(S)

)∥∥∥2
F
. (2.12)

Therefore, the computation of the gradient mapping and the step size can be cast as the Euclidean

projection problem in Eq. (2.12). We propose an efficient algorithm to solve the following general
18



Euclidean projection problem:

min
Z∈Rp×q

1

2
∥Z − Ŝ∥2F

subject to ∥Z∥∗ ≤ m, (2.13)

where m is a pre-specified non-negative constant, and 1
2 is added to the objective function for easy

calculation.

The efficient projection algorithm is devised based on the subgradients [44] of the La-

grangian function associated with the optimization problem in Eq. (2.13). Recall that for any non-

smooth convex function f : Rp×q → R, the subgradient, ∂f(Z̃), of f(Z) at the point Z̃ ∈ Rp×q is a

compact convex set given by{
G ∈ Rp×q : f(Z) ≥ f(Z̃) + tr

(
GT (Z − Z̃)

)
,∀Z ∈ Rp×q

}
.

Let Z̃ = Pz̃Σz̃Q
T
z̃ be the thin SVD of Z̃, where Pz̃ ∈ Rp×r and Qz̃ ∈ Rq×r are columnwise orthonor-

mal, and Σz̃ ∈ Rr×r is diagonal consisting of the non-zero singular values. The subgradients of

∥Z∥∗ at the point Z̃ is given by

∂∥Z̃∥∗ =
{
Pz̃Q

T
z̃ +D : D ∈ Rp×q, PT

z̃ D = 0, Dz̃Q
T
z̃ = 0, ∥D∥2 ≤ 1

}
. (2.14)

The main result of this subsection is summarized in the following the theorem.

Theorem 2.3.1. For any Ŝ ∈ Rp×q, denote its full SVD by Ŝ = PŝΣŝQ
T
ŝ , where Pŝ ∈ Rp×p and

QT
ŝ ∈ Rq×q are orthogonal, and Σŝ ∈ Rp×q is diagonal consisting of the singular values. Then the

optimal Z∗ to Eq. (2.13) satisfies Z∗ = PŝΣz∗QT
ŝ , where Σz∗ ∈ Rp×q is diagonal with the singular

values of Z∗ on its main diagonal.

Proof. Since the point 0 is strictly feasible for the problem in Eq. (2.13), Slater’s condition is satisfied

and strong duality holds [38]. Define the Lagrangian function L(Z, λ) associated with Eq. (2.13) as:

L(Z, λ) =
1

2
∥Z − Ŝ∥2F + λ (∥Z∥∗ −m) ,

where λ ≥ 0 is the Lagrangian multiplier (the dual variable). Let Z∗ and λ∗ be optimal to Eq. (2.13).

It follows that

Z∗ = argmin
Z

L(Z, λ∗), (2.15)

where L(Z, λ∗) is non-smooth due to the trace norm component. It is known that Z∗ is optimal to

Eq. (2.15) if and only if 0 is a subgradient of L(Z, λ∗) at the point Z∗, that is,

0 ∈ ∂L(Z∗, λ∗) = Z∗ − Ŝ + λ∗∂∥Z∗∥∗. (2.16)
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Let Z∗ = Pz∗Σz∗QT
z∗ be the thin SVD of Z∗, where Pz∗ ∈ Rp×r and Qz∗ ∈ Rq×r are columnwise

orthonormal, Σz∗ ∈ Rr×r is diagonal with positive singular values. Let P⊥
z∗ ∈ Rp×(p−r) and Q⊥

z∗ ∈

Rq×(q−r) be the null space of Pz∗ and Qz∗ , respectively. It follows from Eq. (2.14) that there exists

a point Dz∗ = P⊥
z∗Σd

(
Q⊥

z∗

)T ∈ Rp×q such that

Pz∗QT
z∗ +Dz∗ ∈ ∂∥Z∗∥∗

satisfies Eq. (2.16). Note that Σd ∈ R(p−r)×(q−r) is diagonal consisting of the singular values of

Dz∗ . It follows that

Ŝ = Z∗ + λ∗
(
Pz∗QT

z∗ +Dz∗
)

= Pz∗Σz∗QT
z∗ + λ∗

(
Pz∗QT

z∗ + P⊥
z∗Σd

(
Q⊥

z∗

)T)
= Pz∗(Σz∗ + λ∗I)QT

z∗ + P⊥
z∗ (λ∗ΣW )

(
Q⊥

z∗

)T
corresponding to an SVD decomposition of Ŝ. This completes the proof of this theorem.

One immediate consequence of Theorem 2.3.1 is that the Euclidean projection problem in

Eq. (2.13) can be reformulated as a simple singular value optimization problem. We conclude this

section with the following lemma.

Lemma 2.3.1. Let Σŝ ∈ Rp×q and Σz∗ ∈ Rp×q be defined as in Theorem 2.3.1, and assume

rank(Ŝ) = r and Σŝ = diag(σ1, · · · , σr, 0). Then Σz∗ = diag(τ1, · · · , τr, 0), where {τi}ri=1 can be

computed by solving

min
τi

r∑
i=1

(τi − σi)2

subject to
r∑

i=1

τi ≤ m, 0 ≤ τi. (2.17)

The problem in Eq. (2.17) can be efficiently solved via a similar algorithm as the one in [48]

proposed for solving Euclidean projection onto the simplex.

2.4 Algorithms of the Gradient Methods

We propose to solve the optimization problem in Eq. (2.5) using two gradient methods with the

efficient projection procedure from the last section, and analyze the rate of convergence.

Projected Gradient Method

We first propose a simple projected gradient method to solve the optimization problem in Eq. (2.5).

LetZi be the feasible solution obtained in the i-th iteration. The projected gradient method minimizes
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1: Input: Z0 ∈ Rp×q, γ0 ∈ R, and max-iter.
2: Output: Z ∈ Rp×q.
3: for i = 0, 1, · · · ,max-iter do
4: Compute ∇f(Zi) = ΛTΛZi − ΛTH .
5: while (true)
6: Compute A = Zi −∇f(Zi)/γi.
7: Compute thin SVD of A as A = UaΣaV

T
a .

8: Compute Σẑ using Eq. (2.17) and Ẑ = UaΣẑV
T
a .

9: if f(Ẑ) ≤ fZi,γi(Ẑ) then exit the loop.
10: else update γi = γi × 2.
11: end-if
12: end-while
13: Update Zi+1 = Ẑ and γi+1 = γi.
14: if stopping criteria satisfied then exit the loop.
15: end-for
16: Set Z = Zi+1.

Algorithm 1: FES via Projected Gradient Method

the objective function by iteratively updating the feasible solution via the general step as:

Zi+1 = PQ (G (Zi)) ,

where G(Zi) = Zi − 1
γ∇f(Zi) denotes a gradient step on the feasible solution Zi, and PQ denotes

the Euclidean projection defined in Eq. (2.13); meanwhile it determines the appropriate step size 1
γ

(via linear search) by ensuring

f(Zi+1) ≤ fZi,γ(Zi+1),

where fZi,γ is defined in Eq. (2.8). The pseudo-code of the projected gradient method is presented

in Algorithm 1, and its convergence rate analysis is summarized in the following theorem (a similar

proof can be found in [44]).

Theorem 2.4.1. Let Z∗ be the global minimizer to Eq. (2.5). Denote the number of iteration by k.

Algorithm 1 converges at the rate of O(1/k), that is, for all k ≥ 1, we have

f(Zk)− f(Z∗) ≤ γ̂

2k
∥Z0 − Z∗∥2F .

where γ̂ = max{γ0, 2L}, and γ0 and Z0 are the pre-specified initial values for γi and Zi in Algo-

rithm 1 respectively, and L is the Lipschitz continuous gradient in Eq. (2.6).

Accelerated Gradient Method

The proposed projected gradient method from the last subsection is simple to implement, but con-

verges slowly. We accelerate the gradient method by using an algorithm developed by Nesterov [45],

which is shown to be an optimal first-order method for minimizing a smooth convex function [44].
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1: Input: Z0 ∈ Rp×q, γ0 ∈ R, and max-iter.
2: Output: Z ∈ Rp×q.
3: Set Z1 = Z0, t−1 = 0, t0 = 1 and γ1 = γ0.
4: for i = 1, 2, · · · ,max-iter do
5: Compute αi = (ti−2 − 1)/ti−1.
6: Compute Si = (1 + αi)Zi − αiZi−1 and ∇f(Si).
7: while (true)
8: Compute A = Si −∇f(Si)/γi.
9: Compute thin SVD of A as A = UaΣaV

T
a .

10: Compute Σẑ using Eq. (2.17) and Ẑ = UaΣẑV
T
a .

11: if f(Ẑ) ≤ fSi,γi(Ẑ) then exit the loop
12: else update γi = γi × 2.
13: end-if
14: end-while
15: Update Zi+1 = Ẑ and γi+1 = γi.
16: if stopping criteria satisfied then exit the loop.

17: Update ti = 1
2 (1 +

√
1 + 4t2i−1).

18: end-for
19: Set Z = Zi+1.

Algorithm 2: FES via Accelerated Gradient Method

Nesterov’s method utilizes two sequences: (feasible) solution sequence {Zi} and search-

ing point sequence {Si}; in the i-th iteration, it computes the searching point as:

Si = (1 + αi)Zi − αiZi−1,

where the parameter αi > 0 can be appropriately determined from the algorithm; similar to the

projected gradient method, it then updates the feasible solution via the general step as:

Zi+1 = PQ (G(Si)) ,

and meanwhile determines the step size by ensuring

f(Zi+1) ≤ fSi,γ(Zi+1).

Note that the searching point Si may not be feasible for the optimization problem, which can be seen

as a forecast of the next feasible solution point and hence leads to the faster convergence rate. The

pseudo-code of the accelerated gradient method is presented in Algorithm 2, and its convergence

rate analysis is summarized in the following theorem (the detailed proof can be found in [44]):

Theorem 2.4.2. Let Z∗ be the global minimizer to Eq. (2.5). Denote the number of iteration by k.

Algorithm 2 converges at the rate of O(1/k2), that is, for all k ≥ 1, we have

f(Zk)− f(Z∗) ≤ 2γ̂

k2
∥Z0 − Z∗∥2F , (2.18)

where γ̂ = max(γ0, 2L), and γ0 andZ0 are the pre-specified initial values for γi andZi in Algorithm 2

respectively, and L is the Lipschitz continuous gradient in Eq. (2.6).
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2.5 Experimental Results

In this section, we empirically investigate the performance of the proposed projected gradient method

(PG) and the accelerated gradient method (AG) (with efficient Euclidean projection) on a collection

of synthetic and real-world data sets. We also compare the FES algorithm with other representative

ones in terms of classification accuracy.

Efficiency Comparison

We compare the methods PG and AG with SM in [39] on solving the FES formulation in terms

of computation time (in seconds), iteration number, and optimized objective value. Note that SM

applies Nesterov’s optimal smooth method for solving the dual of the FES formulation (in the form of

a max-min optimization problem) and obtains an approximate solution; moreover, it can only handle

the cases where the sample size is larger than the feature dimension. We generate the synthetic

data sets using the similar scheme as in [39]. SM terminates once its duality gap is less than 10−8,

and PG and AG terminate once they attain an objective value equal to or smaller than that of SM.

Table 2.1: Comparison of SM, AG, and PG in terms of iterations, computation time in seconds, and
objective value of ∥ΛZ − H∥2F on synthetical data (sample size n, feature dimension p, and label
number q). “-" stands for “not available" since SM cannot handle the the cases of n < p; for these
cases, we terminate AG and PG once the change of the objective value is smaller than 10−8.

Data Set Iteration Number Computation Time Objective Value
(n, p, q) SM AG PG SM AG PG SM AG PG

(100, 20, 10) 33823 2700 3282 174.1 3.5 4.6 1.4743138673 1.4743138673 1.4743138673
(200, 40, 20) 41942 4405 5334 405.9 18.1 22.8 1.6604408368 1.6604408368 1.6604408368
(300, 60, 30) 39193 10116 13072 516.1 83.5 113.6 1.5695795380 1.5695795380 1.5695795380
(400, 80, 40) 36810 7712 9500 662.3 113.6 141.3 1.5957001358 1.5957001358 1.5957001358
(40, 500, 50) - 367 1335 - 15.7 39.6 - 132.19246110 132.19245439

(100, 1000, 50) - 338 2633 - 22.9 117.6 - 354.76303593 354.76283256
(150, 1500, 50) - 532 3402 - 59.6 240.8 - 538.33683255 538.33674089
(200, 2000, 50) - 480 5087 - 83.9 534.3 - 721.24953544 721.24909047

From the experimental results in Table 2.1, we can observe that AG and PG outperform

SM substantially, where AG has the smallest iteration number and computation time among the

three competing methods. Note that SM pre-computes the Lipschitz constant in the implementation,

which affects the practical step size of the optimization scheme; in constrast PG and AG applies line

search to compute an appropriate step size in each of the iterations.

Sensitivity Study

We conduct sensitivity study on the methods PG and AG using USPS data (sample size 3000,

feature dimension 256, and label number 10). PG and AG terminate once the stopping criterion is
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satisfied, i.e., the change of the objective value in two successive iterations is smaller than 10−8.

From the plot (a) in Figure 3.1, we can observe that AG converges much faster than PG, and the

convergence curves are consistent with the respective theoretical convergence rate order of AG

(O( 1
k2 )) and PG (O( 1k )). From the plot (b) in Figure 3.1, we can observe that AG requires less

computation time than PG when using the same stopping criterion.
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Figure 2.1: Sensitivity study on PG and AG: (a) objective value with respect to iterations; (b) compu-
tation time in seconds with respect to the stopping criterion (the difference of objective value in two
successive steps); the index on x-axis denotes the exponent of the stopping criterion, i.e., 10−x.

Performance Evaluation

We compare the FES algorithm with least squares (LS), principal component regression (PCR),

and ridge regression (RR) in terms of classification accuracy on (sampled) real-world data sets1,

including Satimage (sample size 6435, feature dimension 36, label number 6), PIE (1500×124×10),

USPS (3000×256×10), Soybean (562×35×15) and Letter (20000×26×26). We set the training ratio

at 40%, and employed 1-NN as the classifier. The parameters in FES, PCR and RR are determined

via cross-validation. The classification accuracy averaged over 10 random repetitions as well as the

standard deviation is presented in Table 2.2.

Table 2.2: Classification accuracy (in percentage) comparison of four competing algorithms on real-
word data sets.

Dataset LS PCR RR FES
Satimage 84.28± 0.37 83.04± 0.53 84.43± 0.37 85.77± 0.31

PIE 96.02± 0.60 96.87± 1.06 96.04± 0.56 98.18± 0.53
USPS 87.58± 0.48 89.48± 0.75 90.99± 0.77 91.14± 0.54

Soybean 90.92± 1.16 90.74± 1.97 90.98± 1.56 91.87± 1.02
Letter 93.08± 0.84 92.84± 1.18 94.29± 0.84 94.27± 0.86

From Table 2.2, we can observe that FES outperforms other competing algorithms on

Satimage, PIE, USPS and Soybean; FES and RR perform competitively on Letter. This demon-

1http://archive.ics.uci.edu/ml/
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strates the effectiveness of FES in capturing the correlation among multiple responses via the trace

norm constraint and hence improving the classification accuracy.

2.6 Summary

We propose gradient projection methods for solving the factor selection and estimation (FES) formu-

lation in the form of a multivariate linear regression problem subject to a trace norm constraint. We

show that the nontrivial Euclidean projection (based on trace norm) in the gradient scheme can be

reformulated as a simple singular value optimization problem, and hence can be solved efficiently.

We present a simple gradient method for solving the FES formulation, and then accelerate it using

Nesterov’s first-order optimal algorithm. We empirically demonstrate the efficiency of the proposed

gradient methods in comparison with the SM method in [39], and conduct sensitivity study on them.

The FES formulation can be suitably extended to the case where each response corresponds to a

unique set of observations. We plan to apply FES to multi-task problems, in which different tasks

are provided with different sets of training data.
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Chapter 3

Learning A Shared Low-Rank Structure from Multiple Tasks

3.1 Introduction

Recently, there has been a growing interest in studying multi-task learning in the context of feature

learning (selection). Jebara [50] considered the problem of feature selection with SVM across the

tasks. Obozinski [51] presented a work of multi-task joint covariate selection based on a general-

ization of 1-norm regularization. Argyriou [52] proposed to learn a common sparse representation

from multiple tasks, which can be solved via an alternating optimization algorithm. One following

work in [53] proposed the convex multi-task feature learning formulation and showed that the alter-

nating optimization algorithm converges to a global optimum of the proposed formulation. Note that

the MTL formulation in [53] is essentially equivalent to the approach of employing the trace norm

as a regularization for multi-task learning [54–56]. Ando and Zhang [16] proposed the alternating

structure optimization (ASO) to learn shared predictive structures from multiple related tasks. In

ASO, a separate linear classifier is trained for each task and dimension reduction is applied on the

classifier space, computing low-dimensional structures with the highest predictive power. However,

this framework is non-convex and the alternating structure optimization procedure is not guaranteed

to find a global optimum as pointed out in [16,53].

We consider the problem of learning a shared structure from multiple related tasks following

the approach in [16]. We present an improved ASO formulation (called iASO) using a new regu-

larizer. The improved formulation is non-convex; we show that it can be converted into a relaxed

convex formulation (called rASO). In addition, we present a theoretical condition, under which rASO

finds a globally optimal solution to its nonconvex counterpart iASO. rASO can be equivalently re-

formulated as a semidefinite program (SDP) and solved via many off-the-shelf optimization solvers.

However, SDP is not scalable to large data sets due to its positive semidefinite constraints.

We propose to employ the accelerated projected gradient (APG) algorithm to solve rASO.

APG belongs to the category of the first-order methods and its global convergence rate is optimal

among all first-order methods [45, 57]. We show that the subproblem in each iteration of APG

can be solved efficiently. We further show that the computational cost of APG mainly depends on

the feature dimensionality. We also develop the convex alternating structure optimization (CASO)

algorithm to solve rASO. CASO is similar in spirit to the block coordinate descent method [58].

In CASO, the optimization variables are optimized via two alternating computation procedures; we
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develop efficient algorithms for the procedures in CASO and show that the algorithm converges to

a global optimum of rASO. We show that the computational cost in CASO mainly depends on the

sample size of the training data. We have conducted experiments on the yahoo web pages data

sets [29] and the Drosophila gene expression pattern images1 data sets. The experimental results

demonstrate the effectiveness of the proposed MTL formulation and the efficiency of the proposed

optimization algorithms. Results also confirm our theoretical analysis, i.e., rASO finds a globally

optimal solution to its non-convex counterpart iASO under certain conditions.

The chapter is organized as follows: in Section 3.2 we present the improved MTL formula-

tion iASO; in Section 3.3 we show how to convert the non-convex iASO into the convex relaxation

rASO; in Sections 3.4 and 3.5, we detail the APG algorithm and the CASO algorithm respectively

for solving rASO; in Section 3.6 we present a theoretical condition under which a globally optimal

solution to iASO can be obtained via rASO; we report the experimental results in Section 3.8 and

this chapter concludes in Section 4.8.

3.2 Multi-Task Learning Framework

Assume that we are given m supervised (binary-class) learning tasks. Each of the learning tasks is

associated with a set of training data

{(xℓ1, yℓ1), · · · , (xℓnℓ
, yℓnℓ

)} ⊂ Rd × {−1, 1}, ℓ ∈ Nm, (3.1)

and a linear predictor fℓ

fℓ(x) = uTℓ x, ℓ ∈ Nm, (3.2)

where uℓ is the weight vector for the ℓth task.

The alternating structure optimization (ASO) algorithm learns predictive functional struc-

tures from multiple related tasks. Specifically, it learns all m predictors {f1, f2, · · · , fm} simultane-

ously by exploiting a shared feature space in a simple linear form of low-dimensional feature map Θ

across the m tasks. Formally, the predictor fℓ can be expressed as:

fℓ(x) = uTℓ x = wT
ℓ x+ vTℓ Θx, (3.3)

where the structure parameter Θ takes the form of an h× d matrix with orthonormal rows as

ΘΘT = Ih×h, (3.4)

1http://www.flyexpress.net/
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and uℓ, wℓ, and vℓ are the weight vectors for the full feature space, the high-dimensional feature

space, and the shared low-dimensional feature space, respectively. Note that since h specifies

the shared low-dimensional feature space of the m tasks, in general we have h ≤ min(m, d).

Mathematically, ASO can be formulated as the following optimization problem:

min
{uℓ,vℓ},Θ

m∑
ℓ=1

(
1

nℓ

nℓ∑
i=1

L(uTℓ x
ℓ
i , y

ℓ
i ) + α∥wℓ∥2

)
subject to ΘΘT = Ih×h, (3.5)

where L is a convex loss function, ∥wℓ∥2 is the regularization term (wℓ = uℓ −ΘT vℓ) controlling the

task relatedness among m tasks, and α is the pre-specified non-negative parameter.

The optimization problem in Eq. (3.5) is non-convex due to its orthonormal constraint and

the regularization term in terms of uℓ, vℓ, and Θ. We present an improved ASO formulation (called

iASO) given by:

(F0) min
{uℓ,vℓ},Θ

m∑
ℓ=1

(
1

nℓ

nℓ∑
i=1

L(uTℓ x
ℓ
i , y

ℓ
i ) + gℓ(uℓ, vℓ,Θ)

)
,

subject to ΘΘT = Ih×h, (3.6)

where gℓ(uℓ, vℓ,Θ) is the regularization function defined as:

gℓ(uℓ, vℓ,Θ) = α∥wℓ∥2 + β∥uℓ∥2

= α∥uℓ −ΘT vℓ∥2 + β∥uℓ∥2. (3.7)

The regularization function in Eq. (3.7) controls the task relatedness (via the first component) as

well as the complexity of the predictor functions (via the second component) as commonly used in

traditional regularized risk minimization formulation for supervised learning. Note that α and β are

pre-specified coefficients, indicating the importance of the corresponding regularization component.

For simplicity, we use the same α and β parameters for all tasks. However, the discussion below

can be easily extended to the case where α and β are different for different tasks.

The iASO formulation (F0 in Eq. (3.6)) subsumes several multi-task learning algorithms as

special cases: it reduces to the ASO algorithm in Eq. (3.5) by setting β = 0 in Eq. (3.7); and it

reduces to m independent quadratic programs (QP) by setting α = 0. It is worth noting that F0 is

non-convex. In the next section, we convert F0 into a (relaxed) convex formulation, which admits a

globally optimal solution.
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3.3 A Convex Multi-Task Learning Formulation

In this section, we consider a convex relaxation of the non-convex problem F0 (iASO) in Eq. (3.6).

The optimal {v∗ℓ }mℓ=1 to Eq. (3.6) can be expressed in the form of a function on Θ and {uℓ}mℓ=1. It

can be verified that

v∗ℓ = Θuℓ = argmin
vℓ

gℓ(uℓ, vℓ,Θ), ℓ ∈ Nm. (3.8)

Let U = [u1, · · · , um] ∈ Rd×m and V = [v1, · · · , vm] ∈ Rh×m. From Eq. (3.8), the optimal V ∗ to

Eq. (3.6) is given by V ∗ = ΘU . Therefore we denote

G0(U,Θ) = min
V

m∑
ℓ=1

gℓ(uℓ, vℓ,Θ)

=

m∑
ℓ=1

α
(
∥uℓ −ΘTΘuℓ∥2

)
+ β∥uℓ∥2

= α tr
(
UT

(
(1 + η)I −ΘTΘ

)
U
)
, (3.9)

where the parameter η is defined as

η =
β

α
> 0. (3.10)

Moreover, it can be verified that the following equality holds

(1 + η)I −ΘTΘ = η (1 + η)
(
ηI +ΘTΘ

)−1
. (3.11)

We can then reformulate G0(U,Θ) in Eq. (3.9) into an equivalent form given by

G1(U,Θ) = α η (1 + η) tr
(
UT

(
ηI +ΘTΘ

)−1
U
)
. (3.12)

Since the loss term in Eq. (3.6) is independent of the optimization variables {vℓ}mℓ=1, F0 can be

equivalently transformed into the following optimization problem F1 with optimization variables Θ

and U :

(F1) min
{uℓ},Θ

m∑
ℓ=1

(
1

nℓ

nℓ∑
i=1

L(uTℓ x
ℓ
i , y

ℓ
i )

)
+G1(U,Θ)

subject to ΘΘT = Ih×h. (3.13)

where G1(U,Θ) is defined in Eq. (3.12).

Convex Relaxation

The orthonormality constraints in Eq. (3.13) is non-convex, so is the optimization problem F1. We

propose to convert F1 into a convex formulation by relaxing its feasible domain into a convex set.
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Let the setMe be defined as:

Me =
{
Me |Me = ΘTΘ, ΘΘT = I, Θ ∈ Rh×d

}
. (3.14)

It has been shown in [59] that the convex hull [60] ofMe can be precisely expressed as the convex

setMc given by

Mc =
{
Mc | tr(Mc) = h, Mc ≼ I, Mc ∈ Sd+

}
, (3.15)

and each element inMe is referred to as an extreme point ofMc. SinceMc consists of all convex

combinations of the elements inMe,Mc is the smallest convex set that containsMe, andMe ⊆

Mc.

To convert the non-convex problem F1 into a convex formulation, we replace ΘTΘ with M

in Eq. (3.13), and naturally relax its feasible domain into a convex set based on the relationship

betweenMe andMc presented above; this results in an optimization problem F2 (called rASO) as:

(F2) min
{uℓ},M

m∑
ℓ=1

(
1

nℓ

nℓ∑
i=1

L(uTℓ x
ℓ
i , y

ℓ
i )

)
+G2(U,M)

subject to tr(M) = h, M ≼ I, M ∈ Sd+, (3.16)

where G2(U,M) is defined as:

G2(U,M) = α η (1 + η) tr
(
UT (ηI +M)

−1
U
)
. (3.17)

It follows from [61, Theorem 3.1] that the regularization term G2(U,M) is jointly convex in U and

M and the optimization problem F2 is convex. Note that F2 is a convex relaxation of F1 as the

optimal M to F2 is not guaranteed to occur at the extreme points ofMc. The optimal Θ to F1 can

be approximated using the first h eigenvectors (corresponding to the largest h eigenvalues) of the

optimal M computed from F2.

The SDP Formulation

The optimization problem F2 can be readily reformulated into an equivalent semi-definite program

(SDP) [60]. We add slack variables {tℓ}mℓ=1 and enforce

uTℓ (ηI +M)−1uℓ ≤ tℓ, ∀ℓ ∈ Nm. (3.18)
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It follows from the Schur complement Lemma [62] that we can rewrite F2 as:

(F3) min
{uℓ,tℓ},M

m∑
ℓ=1

(
1

nℓ

nℓ∑
i=1

L(uTℓ x
ℓ
i , y

ℓ
i )

)
+ αη(1 + η)

m∑
ℓ=1

tℓ

subject to

 ηI +M uℓ

uTℓ tℓ

 ≽ 0, ∀ℓ ∈ Nm,

tr(M) = h, M ≼ I, M ∈ Sd+. (3.19)

Given that the loss function L is convex, the optimization problem F3 is convex. However, it is not

scalable to large scale data sets due to its positive semidefinite constraints. If L is the SVM hinge

loss, F3 is an SDP. Note that many off-the-shelf optimization solvers such as SeDuMi2 can be used

for solving SDP, which can only handle several hundreds of optimization variables.

3.4 Accelerated Projected Gradient Algorithm

In this section, we propose to apply the accelerated projected gradient (APG) algorithm [45] for

solving an equivalent counterpart of F3 in Eq. (3.19), i.e., F2 in Eq. (3.16); we also develop efficient

algorithms for solving the key sub-problems involved in each iteration of the APG algorithm. We

present a concrete example to illustrate the APG algorithm for solving rASO in Eq. (15) with the

Hinge loss function in the supplementary file.

The Main Algorithm

For notational simplicity, we denote the convex optimization problem in Eq. (3.16) as

min
Z

f(Z) + g(Z)

subject to Z ∈ C, (3.20)

where Z symbolically represents the optimization variables UZ and MZ as

Z =

 UZ

MZ

 , UZ ∈ Rd×m, MZ ∈ Rd×d,

C is a closed and convex domain set defined as

C =
{
Z | UZ ∈ Rd×m, tr(MZ) = h,MZ ≼ I,MZ ∈ Sd+

}
,

f(Z) and g(Z) respectively denote the smooth and non-smooth components of the objective func-

tion in Eq. (3.16). Note that in the following presentation we assume that the smooth function f(Z)

2http://sedumi.ie.lehigh.edu/
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has a Lipschitz continuous gradient Lf [63] as:

∥∇f(Zx)−∇f(Zy)∥F ≤ Lf∥Zx − Zy∥F (3.21)

for any pair of Zx, Zy ∈ C. Since the regularization term in Eq. (3.16) is smooth, the component

g(Z) in Eq. (3.20) vanishes if the loss function L is smooth.

Given a non-negative parameter γ, we define a construction as

fγ(Z, S) = f(S) + ⟨∇f(S), Z − S⟩+ γ

2
∥Z − S∥2F .

Moreover, we define

Fγ(Z, S) = fγ(Z, S) + g(Z).

It can be easily verified that Fγ(Z, S) is strictly convex with respect to Z. For any given S and γ, the

unique minimizer Ẑ to Fγ(Z, S) can be obtained via

Ẑ = argmin
Z∈C

Fγ(Z, S)

= argmin
Z∈C

(
γ

2

∥∥∥∥Z − (S − 1

γ
∇f(S)

)∥∥∥∥2
F

+ g(Z)

)
. (3.22)

Denote the objective function in Eq. (3.20) by F (Z) as

F (Z) = f(Z) + g(Z).

If the non-negative parameter γ satisfies the inequality

F (Ẑ) ≤ Fγ(Ẑ, S), (3.23)

we say that γ is appropriate [57] for Ẑ, where Ẑ is the minimizer obtained via Eq. (3.22).

To solve the optimization problem in Eq. (3.20), the APG algorithm constructs a solution

point sequence {Zk} and a searching point sequence {Sk}, where each Zk is updated from Sk

via Eq. (3.22). The pseudo-code of the APG algorithm is presented in Algorithm 8. Using standard

techniques in [45,57], we can show that Algorithm 8 attains the convergence rate ofO(1/k2), where

k denotes the number of iterations. Note that the APG algorithm belongs to the category of the

first-order methods and its convergence rate is optimal among all first-order methods [57].

Efficient Algorithms

The APG algorithm requires to solve the constrained optimization problem in Eq. (3.22) in each of its

iterations. In Eq. (3.22), the objective function consists of a smooth component and a non-smooth

component (if the employed loss function is non-smooth); we propose efficient algorithms for solving

this composite optimization problem.
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1: Input: Z0, γ0 ∈ R, and max-iter.
2: Output: Z.
3: Set Z1 = Z0, t−1 = 0, and t0 = 1.
4: for i = 1, 2, · · · ,max-iter do
5: Compute αi = (ti−2 − 1)/ti−1.
6: Compute S = (1 + αi)Zi − αiZi−1.
7: while (true)
8: Compute Ẑ via Eq. (3.22).
9: if F (Ẑ) ≤ Fγ(Ẑ, S) then exit the loop

10: else update γi = γi × 2.
11: end-if
12: end-while
13: Update Zi+1 = Ẑ and γi+1 = γi.
14: if stopping criteria satisfied then exit the loop.

15: Update ti = 1
2 (1 +

√
1 + 4t2i−1).

16: end-for
17: Set Z = Zi+1.

Algorithm 3: Accelerated Projected Gradient Algorithm for Multi-Task Learning

Smooth Loss Function

If the loss function L in Eq. (3.16) is smooth, the non-smooth component g(Z) in the symbolical

form of Eq. (3.20) vanishes. We can express f(Z) and g(Z) as

f(Z) =
m∑
ℓ=1

nℓ∑
i=1

1

nℓ
L(uTzℓx

ℓ
i , y

ℓ
i ) + c tr

(
UT
Z (ηI +MZ)

−1
UZ

)
g(Z) = 0, (3.24)

where UZ = [uz1, · · · , uzm] and c = αη(1+η). Note that the commonly used smooth loss functions

include Least Squares Loss, Logistic Regress Loss, and Huber’s Robust Loss.

In the setting of employing the smooth loss functions in Eq. (3.16), the optimization problem

in Eq. (3.22) can be correspondingly expressed as

min
UZ ,MZ

∥∥∥UZ − ÛS

∥∥∥2
F
+
∥∥∥MZ − M̂S

∥∥∥2
F

subject to tr(MZ) = h, MZ ≼ I, MZ ∈ Sd+, (3.25)

where ÛS = US − 1
γ∇USf(S) and M̂S =MS − 1

γ∇MSf(S). Note that S symbolically represents

S =

 US

MS

 , US ∈ Rd×m, MS ∈ Rd×d,

∇US
f(S) and ∇MS

f(S) denote the derivative of f(S) with respect to US and MS , respectively. It

can be verified that the optimal UZ andMZ to Eq. (3.25) can be obtained by solving two optimization

problems independently as below.
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Computation of UZ The optimal UZ to Eq. (3.25) can be obtained by solving

min
UZ

∥∥∥UZ − ÛS

∥∥∥2
F
. (3.26)

Obviously the optimal UZ to Eq. (3.26) is given by ÛS .

Computation of MZ The optimal MZ to Eq. (3.25) can be obtained by solving

min
MZ

∥∥∥MZ − M̂S

∥∥∥2
F

subject to tr(MZ) = h, MZ ≼ I, MZ ∈ Sd+, (3.27)

where M̂S is symmetric but may not be positive semi-definite (PSD). The optimal MZ to Eq. (3.27)

can be computed via solving a simple convex projection problem, as summarized in Theorem 3.4.1.

Before presenting Theorem 3.4.1, we present a lemma, which is important for the analysis in Theo-

rem 3.4.1.

Lemma 3.4.1. Given an arbitrary diagonal matrix E = diag(e1, · · · , ed) ∈ Rd×d, let the optimization

problem A be defined as

min
T

∥T − E∥2F

subject to tr(T ) = h, 0 ≼ T ≼ I,

and let the optimization problem B be defined as

min
Ê

∥Ê − E∥2F

subject to tr(Ê) = h, Ê = diag(ê1, · · · , êd), 0 ≤ êi ≤ 1.

Denote the optimal objective value of problem A by OA, and the optimal objective value of problem

B by OB . Then

OA = OB .

Proof. Since any feasible solution point of problem B must be feasible for problem A, we have

OA ≤ OB . Let T ∗ be the optimal solution to problem A, and diag(T ∗) be the diagonal matrix

obtained by setting the off-diagonal entries of T ∗ as zeros. It follows that

OA = ∥T ∗ − E∥2F ≥ ∥diag(T ∗)− E∥2F .

It can be easily verified that

tr(diag(T ∗)) = h, 0 ≼ diag(T ∗) ≼ I, (3.28)
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and diag(T ∗) is feasible in problem B. Therefore

∥diag(T ∗)− E∥2F ≥ OB , OA ≥ OB .

This completes the proof of this lemma.

We now show how to compute the optimal MZ to Eq. (3.27).

Theorem 3.4.1. Given an arbitrary symmetric matrix M̂S ∈ Rd×d in Eq. (3.27), let M̂S = P Σ̂PT

be its eigendecomposition, where P ∈ Rd×d is orthogonal, and Σ̂ = diag(σ̂1, · · · , σ̂d) ∈ Rd×d is

diagonal with the eigenvalues on its main diagonal. Let Σ∗ = diag(σ∗
1 , · · · , σ∗

d) ∈ Rd×d, where

{σ∗
i }di=1 is the optimal solution to the following optimization problem:

min
{σi}

d∑
i=1

(σi − σ̂i)2

subject to
d∑

i=1

σi = h, 0 ≤ σi ≤ 1, i = 1, · · · , d. (3.29)

Then the global minimizer to Eq. (3.27) is given by M∗ = PΣ∗PT .

Proof. For arbitrary MZ feasible in Eq. (3.27), we denote its eigendecomposition by MZ = QΛQT ,

where Q ∈ Rd×d is orthogonal, Λ = diag(λ1, · · · , λd) ∈ Rd×d is diagonal with the eigenvalues on

its main diagonal. Since the orthogonal transformation does not change the Euclidean distance, the

optimization problem in Eq. (3.27) is equivalent to

min
Λ,Q

∥∥∥PTQΛQTP − Σ̂
∥∥∥2
F

subject to tr(Λ) = h, Λ = diag(λ1, · · · , λd), 0 ≤ λi ≤ 1

QTQ = QQT = Id, (3.30)

where Λ and Q are two separate optimization variables. From Lemma 3.4.1, we have that Eq. (3.29)

and Eq. (3.30) admit the same optimal objective value. It can be easily verified that the solution pair

{Λ = Σ∗, Q = P} is feasible in Eq. (3.30) and attain the optimal objective value. Since the problem

in Eq. (3.30) is strictly convex, M∗ = PΣ∗PT is the unique global minimizer to Eq. (3.27). This

completes the proof.

Non-Smooth Loss Function

If the loss function L in Eq. (3.16) is non-smooth, the smooth component f(Z) in Eq. (3.20) can be

expressed as

f(Z) = c tr
(
UT
Z (ηI +MZ)

−1
UZ

)
, (3.31)
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where c = αη(1 + η); the non-smooth component g(Z) can be expressed as

g(Z) =
m∑
ℓ=1

nℓ∑
i=1

1

nℓ
L(uz

T
ℓ x

ℓ
i , y

ℓ
i ), (3.32)

where UZ = [uz1, · · · , uzm]. Since g(Z) is independent of the variable MZ in Eq. (3.32), for clear

specification, we denote g(Z) by g(UZ) in the following presentation. Note that the commonly used

non-smooth loss function includes SVM Hinge Loss.

In the setting of employing non-smooth loss functions, the optimization problem in Eq. (3.22)

can be correspondingly expressed as

min
UZ ,MZ

∥∥∥UZ − ÛS

∥∥∥2
F
+
∥∥∥MZ − M̂S

∥∥∥2
F
+ γ̂g(UZ)

subject to tr(MZ) = h, MZ ≼ I, MZ ∈ Sd+, (3.33)

where ÛS = US − 1
γ∇USf(S), M̂S = MS − 1

γ∇MSf(S), and γ̂ = 2
γ . The optimization problem in

Eq. (3.33) is non-smooth convex with two decoupled optimization variables UZ and MZ . Similarly,

the optimal UZ and MZ to Eq. (3.33) can be obtained by solving two convex optimization problems

independently.

Computation of UZ The optimal UZ to Eq. (3.33) can be obtained by solving

min
UZ

∥∥∥UZ − ÛS

∥∥∥2
F
+ γ̂g(UZ). (3.34)

The optimization problem in Eq. (3.34) can be solved using different approaches depending on

the specific structures of the non-smooth component g(UZ). When SVM Hinge Loss is employed,

Eq. (3.34) can be reformulated as a set of QP problems and solved via many sophisticated opti-

mization solvers.

Computation of MZ The optimal MZ to Eq. (3.33) can be obtained by solving

min
MZ

∥∥∥MZ − M̂S

∥∥∥2
F

subject to tr(MZ) = h, MZ ≼ I, MZ ∈ Sd+. (3.35)

Similar to the case with the smooth loss function, the optimal MZ to Eq. (3.35) can be obtained by

solving a simple convex optimization problem following the results in Theorem 3.4.1.

Discussion

We discuss the main computational cost of the APG algorithm for solving Eq. (3.16) in the setting of

using the smooth loss functions and the non-smooth loss functions, respectively.
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Using the smooth loss functions The main computational procedures in each iteration of the APG

algorithm include the computation of Eq. (3.26) and Eq. (3.27). The optimal solution to Eq. (3.26)

can be trivially obtained; the optimal solution to Eq. (3.27) can be obtained via computing eigen-

decomposition of a symmetric matrix of size d × d and solving a simple convex optimization in

Eq. (3.29) as presented in Theorem 3.4.1.

Using the non-smooth loss functions The main computational procedures in each iteration of

the APG algorithm include the computation of Eq. (3.34) and Eq. (3.35). The optimal solution to

Eq. (3.34) can be obtained via solving a set of QP problems; each QP problem admits a sparse

hessian matrix (an identity matrix of size d × d). The optimal solution to Eq. (3.35) can be similarly

obtained via computing eigen-decomposition of a symmetric matrix of size d×d and solving a simple

convex optimization in Eq. (3.29).

Clearly the computation complexity of the APG algorithm for solving Eq. (3.16) is primarily

dependent on the feature dimensionality in the data. It could be advantageous to apply APG for

the setting of using smooth convex loss functions, because the optimization of UZ is trivial and the

computation of QP problems can be avoided (compared to the setting of using non-smooth convex

loss functions).

3.5 Convex Alternating Structure Optimization Algorithm

In this section, we propose a convex alternating structure optimization (called CASO) algorithm to

solve the optimization problem F2 in Eq. (3.16). In essence, CASO is similar to the block coordinate

descent (BCD) method [58], in which the optimization variables are optimized alternatively with the

rest of the optimization variables fixed. The pseudo-codes of the CASO algorithm are presented

in Algorithm 4, and the detailed computational procedures are presented below. We present a

concrete example to illustrate the CASO algorithm for solving rASO in Eq. (15) with the Hinge loss

function in the supplementary file.

Computation of U for a Given M

For a fixed M , the optimal U can be computed by solving the following problem:

min
{uℓ}

m∑
ℓ=1

(
1

nℓ

nℓ∑
i=1

L(uTℓ x
ℓ
i , y

ℓ
i ) + ĝ(uℓ)

)
, (3.36)

where the regularization term ĝ(uℓ) is given by

ĝ(uℓ) = αη (1 + η) tr
(
uTℓ (ηI +M)

−1
uℓ

)
, ℓ ∈ Nm.
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1: Input: {(xℓi , yℓi )}, i ∈ Nnℓ
, ℓ ∈ Nm, h ∈ N.

2: Output: U , V , and Θ.
3: Parameter: α and β.
4: Initialize M subject to the constraints in Eq. (3.16).
5: repeat
6: Update U via Eq. (3.36).
7: Compute the SVD of U as U = P1ΣP

T
2 .

8: Compute {γ∗i }
q
i=1 via Eq. (3.39).

9: Update M as M = P1diag(γ∗1 , · · · , γ∗q )PT
1 .

10: until convergence criterion is satisfied.
11: Construct Θ using the top h eigenvectors of M .
12: Construct V as V = ΘU .
13: Return U , V and Θ.

Algorithm 4: CASO for Multi-Task Learning

Given any convex loss function L, the objective function in Eq. (3.36) is strictly convex, and hence the

corresponding optimization problem admits a unique minimizer. Note that the number of optimization

variables in Eq. (3.36) depends on the sample size and the feature dimensionality simultaneously,

and the hessian matrix is not sparse in general. Instead of solving Eq. (3.36) directly, we propose to

solve its equivalent dual form, in which the number of optimization variables is independent of the

dimensionality. In Section 4.6, we present an example on the conversion of Eq. (3.36) (with hinge

loss) to its dual form.

Computation of M for a Given U

For a fixed U , the optimal M can be computed by solving the following problem:

min
M

tr
(
UT (ηI +M)

−1
U
)

subject to tr(M) = h,M ≼ I,M ∈ Sd+. (3.37)

This problem can be recast into an SDP problem, which is computationally expensive to solve. We

propose an efficient approach to solve the optimization problem in Eq. (3.37); its optimal solution

can be obtained via solving a simple eigenvalue optimization problem.

Efficient Computation of Eq. (3.37) For any U ∈ Rd×m in Eq. (3.37), let U = P1ΣP
T
2 be its

SVD [62], where P1 ∈ Rd×d, P2 ∈ Rm×m are orthogonal, and Σ ∈ Rd×m has q nonzero singular

values on its main diagonal (q ≤ m ≤ d). We denote

Σ =
[
diag(σ1, σ2, · · · , σm); 0(d−m)×m

]
∈ Rd×m,

σ1 ≥ σ2 ≥ · · · ≥ σq > 0 = σq+1 = · · · = σm. (3.38)
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Note that since the value of h controls the size of the shared low-dimensional structure, we focus on

the setting of h ≤ q ≤ m ≤ d. We show that the optimal M to Eq. (3.37) can be obtained via solving

the following convex optimization problem [60]:

min
{γi}q

i=1

q∑
i=1

σ2
i

η + γi

subject to
q∑

i=1

γi = h, 0 ≤ γi ≤ 1. (3.39)

We summarize an important property of the optimal solution to Eq. (3.39) in the following lemma.

Lemma 3.5.1. The optimal {γ∗i }
q
i=1 to Eq. (3.39) satisfy γ∗1 ≥ γ∗2 · · · ≥ γ∗q .

Proof. Prove by contradiction. For any σi > σi+1, we assume γ∗i < γ∗i+1. We can construct another

feasible solution by switching the positions of γ∗i and γ∗i+1, and attain a smaller objective value in

Eq. (3.39), leading to a contradiction. This completes the proof of this lemma.

Note that the optimization problem in Eq. (3.39) can be solved via many existing algorithms

such as the projected gradient descent method [60]. An immediate and obvious consequence from

the results of Lemma 3.5.1 is

1

η + γ∗1
≤ 1

η + γ∗2
≤ · · · ≤ 1

η + γ∗q
. (3.40)

Before presenting the efficient approach for solving Eq. (3.37), we first present the following lemma,

which will be useful for our following analysis.

Lemma 3.5.2. For any matrix Z ∈ Sd+, let Z = ÛΣ̂zÛ
T be its SVD, where Û ∈ Rd×d is orthogonal,

Σ̂z = diag(σ̂1, · · · , σ̂d), and σ̂1 ≥ · · · ≥ σ̂d ≥ 0. Let {Zi}di=1 be the diagonal entries of Z, and

Π = {π1, · · · , πp} ⊆ Nd be any integer subset with p (p ≤ d) distinct elements. Then
∑p

i=1 Zπi ≤∑p
j=1 σ̂j .

Proof. Denote the i-th row-vector of Û ∈ Rd×d by Ûi = [ûi1, · · · , ûid]. For any integer subset

Π = {π1, · · · , πp}, we have

0 ≤
p∑

k=1

û2πkj
≤ 1,

d∑
j=1

û2πkj
= 1, ∀j ∈ Nd, ∀k ∈ Np.

The i-th diagonal entry of Z can be expressed as Zi =
∑d

j=1 σ̂j û
2
ij . It follows that

p∑
i=1

Zπi =
d∑

j=1

(
σ̂j û

2
π1j + · · ·+ σ̂j û

2
πpj

)

=

d∑
j=1

p∑
k=1

(
σ̂j û

2
πkj

)
=

d∑
j=1

(
σ̂j

p∑
k=1

û2πkj

)
≤

p∑
j=1

σ̂j ,
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where the last equality (the maximum) above is attained when the set {û2π1j
, · · · , û2πpj

} (∀j ∈ Nd)

has only one non-zero element of value one or p = d. This completes the proof of this lemma.

We summarize the main result of the efficient approach for solving Eq. (3.37) in the following

theorem.

Theorem 3.5.1. Let {λ∗i }
q
i=1 be optimal to Eq. (3.39), and denote Λ∗ = diag(λ∗1, · · · , λ∗q , 0) ∈ Rd×d.

Let P1 ∈ Rd×d be orthogonal consisting of the left singular vectors of U . Then M∗ = P1Λ
∗PT

1 is an

optimal solution to Eq. (3.37). Moreover, the problem in Eq. (3.39) attains the same optimal objective

value as the one in Eq. (3.37).

Proof. For any feasible M in Eq. (3.37), let M = QΛQT be its SVD, where Q ∈ Rd×d is orthogonal,

Λ = diag(λ1, · · · , λd), and λ1 ≥ · · · ≥ λd ≥ 0. The problem in Eq. (3.37) can be rewritten as:

min
Q,Λ

tr
(
(ηI + Λ)

−1
QTP1ΣΣ

TPT
1 Q
)

subject to QQT = QTQ = I, Λ = diag(λ1, · · · , λd),
d∑

i=1

λi = h, 1 ≥ λ1 ≥ · · · ≥ λd ≥ 0, (3.41)

where Σ is defined in Eq. (3.38). Note that the reformulated problem in Eq. (3.41) is equivalent to

the one in Eq. (3.37) and has two separate optimization variables Q and Λ.

We show that the optimization variable Q can be factored out from Eq. (3.41), and the

optimal Q∗ can be obtained analytically. Let D = QTP1ΣΣ
TPT

1 Q and denote its diagonal entries

by {Di}di=1. It follows from Eq. (3.38) that D is a positive semidefinite matrix with non-zero singular

values {σ2
i }

q
i=1. Given any feasible Λ in Eq. (3.41), we have

min
QTQ=QQT=I

tr
(
(ηI + Λ)

−1
QTP1ΣΣ

TPT
1 Q
)

= min
D∈Sd+:D∼ΣΣT

d∑
i=1

Di

η + λi
, (3.42)

where D ∼ ΣΣT indicates that the eigenvalues of D are given by the diagonal elements of ΣΣT ,

and the equality above means that these two problems attain the same optimal objective value.

Following the non-decreasing order of 1/(η + λi) (i ∈ Nq) in Eq. (3.40) and
∑p

i=1Dπi ≤
∑p

j=1 σ
2
j

for any integer subset {πi}pi=1 (Lemma 3.5.2), we can verify that the optimal objective value to

Eq. (3.42) is given by

min
D∈Sd+:D∼ΣΣT

d∑
i=1

Di

η + λi
=

q∑
i=1

σ2
i

η + λi
+

d∑
i=q+1

0

η + λi

=

q∑
i=1

σ2
i

η + λi
, (3.43)
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where this optimum can be attained when QTP1 = I [62] and D = ΣΣT . It follows from Eq. (3.43)

that the optimal {λ∗i }di=1 to Eq. (3.39) satisfy λ∗q+1 = · · · = λ∗d = 0.

In summary, the optimal objective value to Eq. (3.41) or equivalently Eq. (3.37) can be

obtained via solving Eq. (3.43) subject to the constraints on {λi} or equivalently Eq. (3.39). Since

Eq. (3.42) is minimized when Q = P1, we conclude that M∗ = P1Λ
∗PT

1 is optimal to Eq. (3.37).

This completes the proof.

Note that the optimization problem (not strictly convex) in Eq. (3.37) may have multiple

global minimizers yet with the same objective value, while the formulation in Eq. (3.39) can find one

of those global minimizers.

Discussion

The alternating optimization procedure employed in Algorithm 4 (CASO) is widely used for for solving

many optimization problems efficiently. However, such a procedure does not generally guarantee

the global convergence. We summarize the global convergence property of CASO algorithm in

the following theorem. We omit the detailed proof for Theorem 3.5.2, as the proof follows similar

arguments in [53,61].

Theorem 3.5.2. Algorithm 4 converges to the global minimizer of the optimization problem F2 in

Eq. (3.16).

The CASO algorithm computes the optimal solution to Eq. (3.16) by iteratively solving the

dual form of Eq. (3.36) and Eq. (3.37). For the dual form of Eq. (3.36), the number of optimization

variables depends on the sample size; for Eq. (3.37), the optimal solution can be obtained via

computing the economic SVD of a matrix of size d ×m (in general d ≫ m) and solving an simple

singular value projection problem in Eq. (3.39). Therefore, the computation complexity of the CASO

algorithm for solving Eq. (3.16) mainly depends on the sample size of the data.

3.6 Computation of an Optimal Solution to iASO

Recall that rASO in Eq. (3.16) is a convex relaxation of iASO in Eq. (3.6). In this section, we present

a theoretical condition under which a globally optimal solution to iASO can be obtained via rASO.

We first present a lemma, which is the key building block of the subsequent analysis.
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Lemma 3.6.1. Let {σi}mi=1 be defined in Eq. (3.38) and {γ∗i }
q
i=1 be optimal to Eq. (3.39). For any

h ∈ Nq, if σh/σh+1 ≥ 1 + 1/η, then γ∗1 = · · · = γ∗h = 1 and γ∗h+1 = · · · = γ∗q = 0.

Proof. Prove by contradiction. Assume that γ∗1 = · · · = γ∗h = 1 and γ∗h+1 = · · · = γ∗q = 0 do not

hold. Since
∑q

i=1 γ
∗
i = h and γ∗i is non-increasing with i (Lemma 3.5.1), the assumption leads to

γ∗h ̸= 1 and hence 0 < γ∗h+1 ≤ γ∗h < 1. We can construct another feasible solution {ζ∗i }mi=1 such

that
∑m

i=1 σ
2
i /(η + γ∗i ) >

∑m
i=1 σ

2
i /(η + ζ∗i ), thus reaching a contradiction.

Let γ∗a be the element in {γ∗i }
q
i=1 with the smallest index a ∈ Nh, satisfying γ∗a ̸= 1. Let

γ∗b be the element in {γ∗i }
q
i=1 with the largest index b ∈ Nq, satisfying γ∗b ̸= 0. Note that it can be

verified that a ≤ h and h + 1 ≤ b. For any 0 < δ < min(1 − γ∗a, γ∗b ), we can construct a feasible

solution {ζ∗i }mi=1 to Eq. (3.39) as:

ζ∗i =


γ∗i i ∈ Nq, i ̸= a, i ̸= b

γ∗a + δ i = a

γ∗b − δ i = b

such that 1 ≥ ζ∗1 ≥ · · · > ζ∗a > · · · ≥ ζ∗h > · · · > ζ∗b > 0 = · · · = 0. Moreover, we have(
σ2
a

η + γ∗a
+

σ2
b

η + γ∗b

)
−
(

σ2
a

η + ζ∗a
+

σ2
b

η + ζ∗b

)
= δ

(
σ2
a

(η + γ∗a)(η + γ∗a + δ)
− σ2

b

(η + γ∗b )(η + γ∗b − δ)

)
≥ σ2

h+1δ

(
(1 + 1/η)2

(η + γ∗a)(η + γ∗a + δ)
− 1

(η + γ∗b )(η + γ∗b − δ)

)
> σ2

h+1δ

(
(1 + 1/η)2

(η + 1)(η + 1)
− 1

η2

)
= 0,

where the first inequality follows from σh/σh+1 ≥ 1 + 1/η, σa ≥ σh ≥ (1 + 1/η)σh+1, and σh+1 ≥

σb; the second (strict) inequality follows from 1 > γ∗a, γ
∗
b > 0, and 1 ≥ γ∗a + δ, γ∗b − δ ≥ 0. Therefore∑m

i=1 σ
2
i /(η + γ∗i ) >

∑m
i=1 σ

2
i /(η + ζ∗i ). This completes the proof.

We summarize the main result of this section in the following theorem.

Theorem 3.6.1. Let the problems F1 and F2 be defined in Eqs. (3.13) and (3.16), respectively, and

let (U∗,M∗) be the optimal solution to F2. Let P1 ∈ Rd×d be orthogonal consisting of the left singular

vectors of U∗, and {σi}qi=1 be the corresponding non-zero singular values of U∗ in non-increasing

order. Let Θ∗ consist of the first h column-vectors of P1 corresponding to the largest h singular

values. If σh/σh+1 ≥ 1 + 1/η, then the optimal solution to F1 is given by (U∗,Θ∗).
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Proof. Since (U∗,M∗) is optimal to F2, it follows from Theorem 3.5.1 that M∗ can be expressed

as M∗ = P1ΛP
T
1 , where Λ = diag(λ1, · · · , λd) ∈ Rd×d can be computed via Eq. (3.39). Given

σh/σh+1 ≥ 1 + 1/η, we can verify that λi = 1 if i ∈ Nh, and 0 otherwise (Lemma 3.6.1); therefore

M∗ = Θ∗TΘ∗, where Θ∗ ∈ Rd×h corresponds to the first h column-vectors of P1. Moreover, given

a fixed U ∈ Rd×m in F1 and F2 respectively, we have

min
ΘTΘ∈Me,ΘΘT=I

G1(U,Θ) ≥ min
M∈Mc

G2(U,M), (3.44)

where G1(U,Θ) and G2(U.M) are defined in Eqs. (3.12) and (3.17) respectively, andMe andMc

are defined in Eqs. (3.14) and (3.15) respectively. The equality in Eq. (3.44) is attained when the

optimal M to the right side of Eq. (3.44) is an extreme point of the set Mc, i.e., belong to the set

Me. For a given U∗, if σh/σh+1 ≥ 1 + 1/η is satisfied, Θ∗ minimizes G1(U
∗,Θ) and the equality

in Eq. (3.44) can be attained. Hence, (U∗,Θ∗) is the optimal solution to F1. This completes the

proof.

3.7 Example: Multi-Task Learning with Hinge Loss Function

In this section, we present a concrete example to illustrate the APG algorithm and the CASO algo-

rithm for solving rASO in Eq. (3.16). We employ the Hinge Loss function for the rASO formulation:

min
{uℓ},M

m∑
ℓ=1

(
nℓ∑
i=1

L(uTℓ x
ℓ
i , y

ℓ
i ) + c uTℓ (ηI +M)−1uℓ

)
subject to tr(M) = h, M ≼ I, M ∈ Sd+, (3.45)

where the loss function L is given by

L
(
uTℓ x

ℓ
i , y

ℓ
i

)
= max

(
1− yℓi

(
uTℓ x

ℓ
i + bℓ

)
, 0
)
,

and the parameter c is given by c = αη (1 + η). Note that the optimization problem in Eq. (3.45) is

non-smooth convex due to the non-smooth Hinge Loss function.

The APG Algorithm for Solving Eq. (3.45)

We employ the APG algorithm in Section 3.4 to solve Eq. (3.45). We present the computational

procedures of solving the key subproblem in the APG algorithm and also present the detailed APG

algorithm for solving Eq. (3.45).

Solving the Key Subproblem

To solve general non-smooth optimization problems, the APG algorithm solves a key subproblem in

Eq. (3.33) in each of its iterations. For Eq. (3.45), the associated key subproblem can be expressed
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as

min
UZ ,MZ

∥∥∥UZ − ÛS

∥∥∥2
F
+
∥∥∥MZ − M̂S

∥∥∥2
F
+ γ̂

m∑
ℓ=1

nℓ∑
i=1

ξℓi

subject to ξℓi ≥ 0, ξℓi ≥ 1− yℓi (uTℓ xℓi + bℓ),

tr(MZ) = h, MZ ≼ I, MZ ∈ Sd+, (3.46)

where γ̂ = 2
γ . In Eq. (3.46), the optimization variables UZ and MZ are decoupled and the optimal

solution can be obtained independently via solving two optimization problems as below.

Computation of UZ The optimal UZ to Eq. (3.46) can be computed via solving

min
UZ

∥∥∥UZ − ÛS

∥∥∥2
F
+ γ̂

m∑
ℓ=1

n∑
i=1

ξi

subject to ξℓi ≥ 0, ξℓi ≥ 1− yℓi (uTℓ xℓi + bℓ). (3.47)

Let UZ = [u1 · · ·um] and ÛS = [û1 · · · ûm]. Each of the vector uℓ can be obtained by solving a QP

problem as

min
uℓ

∥uℓ − ûℓ∥2F + γ̂
n∑

i=1

ξi

subject to ξℓi ≥ 0, ξℓi ≥ 1− yℓi (uTℓ xℓi + bℓ).

Computation of MZ The optimal MZ to Eq. (3.46) can be computed via solving

min
MZ

∥∥∥MZ − M̂S

∥∥∥2
F

subject to tr(MZ) = h, MZ ≼ I, MZ ∈ Sd+. (3.48)

The optimal MZ can be obtained via two steps:

• Step 1 Compute the eigendecomposition of the symmetric M̂S as M̂S = P Σ̂PT , where

P ∈ Rd×d is orthogonal, Σ̂ = diag(σ1, · · · , σd) ∈ Rd×d is diagonal with the eigenvalues on its

main diagonal.

• Step 2 Solve the optimization problem

min
{σi}

d∑
i=1

(σi − σ̂i)2

subject to
d∑

i=1

σi = h, 0 ≤ σi ≤ 1.

and denote its optimal solution by {σ∗
i }.

The optimal MZ to Eq. (3.48) is given by MZ = PΣ∗PT , where Σ∗ = diag(σ∗
1 , · · · , σ∗

d) ∈ Rd×d.
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1: Input: UZ0 ∈ Rd×m, MZ0 ∈ Rd×d, L0 ∈ R, max-iter.
2: Output: UZ ∈ Rd×m, MZ ∈ Rd×d.
3: Set UZ1 = UZ0, MZ1 =MZ0, t−1 = 0, and t0 = 1.
4: for i = 1, 2, · · · ,max-iter do
5: Compute αi = (ti−2 − 1)/ti−1.
6: Compute USi = (1 + αi)UZi − αiUZi−1.
7: Compute MSi = (1 + αi)MZi − αiMZi−1.
8: while (true)
9: Compute ÛZ via Eq. (3.47).

10: Compute M̂Z via Eq. (3.48).
11: if Eq. (3.49) holds then exit the loop
12: else update Li = Li × 2.
13: end-if
14: end-while
15: Update UZi+1 = ÛZ , MZi+1 = M̂Z , Li+1 = Li.
16: if stopping criteria satisfied then exit the loop.

17: Update ti = 1
2 (1 +

√
1 + 4t2i−1).

18: end-for
19: Set UZ = UZi+1 and MZ =MZi+1.

Algorithm 5: Solve Eq. (3.45) via the APG Algorithm

The Main Algorithm

The pseudo-codes of the APG algorithm for solving Eq. (3.45) is presented in Algorithm 5. Algo-

rithm 5 solves Eq. (3.46) in each of its iteration, where γ̂ is set as 2/Li, where the value of Li is

determined via the line search scheme. Note that the line search condition in line 10 of Algorithm 5

can be expressed as

f(Ẑ) ≤ f(Si) + ⟨Ẑ − Si,∇Sif(Si)⟩+
Li

2
∥Ẑ − Si∥2F , (3.49)

where the function f(·) is defined in Eq. (3.31), the composite variables Ẑ and Si can be expressed

as

Ẑ =

 ÛZ

M̂Z

 , Si =

 USi

MSi

 ,
and the derivative ∇Sif(Si) can be expressed as

∇Sif(Si) =

 2c (ηI +MSi)
−1
USi

−c (ηI +MSi)
−1
USiU

T
Si

(ηI +MSi)
−1

 .
The CASO Algorithm for Solving Eq. (3.45)

We employ the CASO algorithm in Section 3.5 to solve Eq. (3.45). Similarly, we present the detailed

pseudo-codes of CASO in Algorithm 6 and discuss its main computational procedures.
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Optimization of U Given a fixed M , we can optimize the variable U as

min
{uℓ,bℓ}

m∑
ℓ=1

(
nℓ∑
i=1

ξℓi + c uTℓ (ηI +M)
−1
uℓ

)
subject to ξℓi ≥ 0, ξℓi ≥ 1− yℓi (uTℓ xℓi + bℓ).

Since all pairs of the variables {uℓ, bℓ} (ℓ ∈ Nm) in the problem above are decoupled, we can

optimize each of the pairs by solving a QP problem in the form of

min
u,b

∑n
i=1 ξi + c uT (ηI +M)−1u

subject to ξi ≥ 0, ξi ≥ 1− yi(uTxi + b). (3.50)

The problem in Eq. (3.50) is a linearly constrained quadratic program; the hessian matrix of the

objective function is generally dense and the number of optimization variables is dependent on both

the dimensionality and the sample size. We convert Eq. (3.50) into its equivalent dual form, in which

the number of optimization variables only depends on the sample size.

By augmenting the objective function of Eq. (3.50) with the constraints, we have the asso-

ciated Lagrange function as

L =

n∑
i=1

ξi + c uT (ηI +M)−1u−
n∑

i=1

αiξi

−
n∑

i=1

βi
(
ξi − 1 + yi(u

Txi + b)
)
,

where αi, βi ≥ 0 denote the dual variables. Taking derivatives with respective to the primal variables

ξi, u, b and setting them equal to zero, we have

∂L

∂ξi
= 1− αi − βi = 0, (3.51)

∂L

∂u
= 2c (ηI +M)−1u−

n∑
i=1

βiyixi = 0, (3.52)

∂L

∂b
= −

n∑
i=1

βiyi = 0. (3.53)

By substituting Eqs. (3.51), (3.52), (3.53) into Eq. (3.50), we have the dual optimization problem as

min
u,b

βT e− 1

2
βT diag(y) Ker diag(y) β

subject to 0 ≼ β ≼ 1, βT y = 0, (3.54)

where Ker = 1
2cX

T (ηI +M)X ∈ Rn×n.

Optimization of M Given a fixed U , we can optimize the variable M as

min
M

tr
(
UT (ηI +M)

−1
U
)

subject to tr(M) = h, M ≼ I, M ∈ Sd+. (3.55)
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The optimal M can be obtained via two steps:

• Step 1 Compute the SVD of U as U = P1ΣP
T
2 , where P1 ∈ Rd×d and P2 ∈ Rm×m are

orthogonal, and Σ = diag(σ1, σ2, · · · , σq, 0, · · · , 0) ∈ Rd×m has q non-zero singular values

on its main diagonal.

• Step 2 Solve the optimization problem as

min
{γi}q

i=1

∑q
i=1

σ2
i

η+γi

subject to
∑q

i=1 γi = h, 0 ≤ γi ≤ 1. (3.56)

and denote its optimal solution by {γ∗i }.

The optimal M to Eq. (3.55) is given by M = P1Λ
∗PT

2 , where Λ∗ = diag(λ∗1, · · · , λ∗q , 0, · · · , 0) ∈

Rd×m.

1: Input: {(xℓi , yℓi )}, i ∈ Nnℓ
, ℓ ∈ Nm, h ∈ N.

2: Output: U , V , and M .
3: Parameter: α and β.
4: Initialize M subject to the constraints in Eq. (3.45).
5: repeat
6: Update U via Eq. (3.54).
7: Compute the SVD U = P1ΣP

T
2 .

8: Compute {γ∗i }
q
i=1 via Eq. (3.56).

9: Update M as M = P1diag(γ∗1 , · · · , γ∗q )PT
1 .

10: until convergence criterion is satisfied.
11: Construct Θ using the top h eigenvectors of M .
12: Construct V as V = ΘU .
13: Return U , V and Θ.

Algorithm 6: Solve Eq. (3.45) via the CASO Algorithm

3.8 Experiments

In this section, we evaluate the proposed rASO (convex) formulation in Eq. (3.16) by a comparison

with other representative MTL formulations using the yahoo web pages data sets and the Drosophila

gene expression pattern images data sets; we also conduct numerical studies on the APG algorithm

and the CASO algorithm for solving Eq. (3.16).

We use the Yahoo web pages data sets [29] in our first experiment. The Yahoo data sets

consist of 11 top-level categories, where each top-level category corresponds to one data set. Each

top-level category is further divided into a set of second-level sub-categories, where each second-

level sub-category corresponds to a topic included in one data set (one top-level category). We
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preprocess the data sets by removing the topics with a small number (less than 100) of web pages.

We extract the TF-IDF (Term Frequency-Inverse Document Frequency) features from the web pages

and the obtained feature vectors are normalized to unit length. The statistics of the processed data

sets are summarized in Table 4.1.

Table 3.1: Statistics of eleven Yahoo web page data sets.

Data Set Sample Size Dimension Tasks

Arts 7441 17973 19
Business 9968 16621 17
Computers 12317 25259 23
Education 11817 20782 14
Entertainment 12619 27435 14
Health 9202 18430 14
Recreation 12797 25095 18
Reference 7929 26397 15
Science 6345 24002 22
Social 11914 32492 21
Science 14507 29189 21

Table 3.2: Performance comparison of the competing algorithms on six Yahoo data sets. In ASO
and rASO, the shared feature dimensionality h is set as ⌊(m− 1)/5⌋ × 5.

Data Arts Business Computers Education Entertainment Health

SVM 33.93± 1.07 44.43± 0.56 30.09± 1.10 39.00± 2.42 46.88± 0.47 56.14± 2.58
Macro ASO 37.93± 1.57 44.64± 0.40 28.33± 0.67 36.93± 1.98 47.46± 0.37 57.63± 0.74

F1 rASO 37.35± 0.60 45.79± 0.69 33.35± 0.84 41.28± 0.90 49.66± 0.97 61.16± 1.70
cMTFL 37.06± 0.75 40.90± 1.66 32.50± 0.90 40.17± 0.55 50.94± 1.06 58.66± 2.22

SVM 43.99± 1.23 77.51± 0.51 55.36± 0.63 48.03± 1.56 55.69± 2.45 61.40± 4.76
Micro ASO 43.96± 0.03 78.08± 0.25 54.43± 0.40 46.97± 0.37 57.71± 0.33 65.90± 0.39

F1 rASO 47.69± 0.47 77.44± 0.94 54.54± 1.07 49.50± 0.57 57.90± 1.38 68.19± 1.01
cMTFL 46.31± 0.32 69.00± 1.01 49.38± 4.22 48.56± 0.40 58.25± 0.76 66.83± 1.72

Table 3.3: Performance comparison of competing algorithms on five Yahoo data sets. Explanation
can be found in Table 3.2.

Data Set Recreation Reference Science Social Society

SVM 43.01± 1.44 39.37± 1.15 41.80± 1.45 35.87± 0.79 30.68± 0.94
Macro ASO 43.63± 1.29 37.46± 0.27 39.26± 0.82 35.29± 0.67 29.42± 0.30

F1 rASO 47.12± 0.73 42.11± 0.60 45.46± 0.50 39.30± 1.28 34.84± 1.05
cMTFL 46.13± 0.58 43.25± 0.81 42.52± 0.59 38.94± 1.88 33.79± 1.43

SVM 49.15± 2.32 55.11± 3.16 49.27± 4.64 63.05± 2.45 40.07± 3.42
Micro ASO 50.68± 0.18 57.72± 0.51 49.05± 0.57 62.77± 3.59 46.13± 2.33

F1 rASO 53.34± 0.90 59.39± 0.39 53.32± 0.45 66.04± 0.62 49.27± 0.55
cMTFL 52.52± 0.92 58.49± 0.51 50.60± 0.76 65.60± 0.63 46.46± 0.87

In our experiments, we treat one topic (the second-level sub-category) in the Yahoo web

page data sets as one task, and apply the proposed rASO formulation to categorize the multi-topic
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web pages. We conduct all experiments using the rASO formulation with Hinge Loss, i.e., Eq. (3.45).

The quadratic programs (QPs) in our experiments are solved via MOSEK3.

Evaluation of rASO

We evaluate the performance of the rASO formulation and study the sensitivity of its parameters. In

the following experiments, rASO is solved using CASO.

Performance Comparison We compare rASO with SVM (the independent SVM for multi-task

learning), ASO (the alternating structure optimization) [16], and cMTFL (the convex multi-task feature

learning) [53] for Yahoo web pages categorization tasks. Note that cMTFL is essentially equivalent

to the approach of employing the trace norm as a regularization for multi-task learning [54–56]. We

employ Macro F1 and Micro F1 [64] as the performance measures. The parameters in the compet-

ing algorithms (the penalty parameter C in SVM, the regularization parameters in ASO, rASO and

cMTFL) are determined via 3-fold cross-validation. In ASO, rASO and cMTFL, we stop the iterative

computational procedure if the relative change of the objective values in two successive iterations is

smaller than 10−5. We randomly choose 1500 data points from each Yahoo web pages data set as

the training data, and the remaining are used as the test data.

We report the averaged Macro F1 and Micro F1 (over 5 random repetitions) and the as-

sociated standard deviation in Tables 3.2 and 3.3. We can observe that rASO is competitive in

comparison with other competing algorithms on all of the 11 Yahoo data sets. We can also observe

that rASO outperforms ASO (in this supervised setting) on 9 data sets (except on the Arts data

and the Business data) in terms of both Macro F1 and Micro F1; this superiority may be due to the

employment of the different regularizer in Eq. (3.7), the flexibility of balancing the two regularization

components, and the guaranteed global optimal solution in rASO. The relatively low performance

of SVM may be due to its ignorance of the relationship among the multiple learning tasks.

Sensitivity Study We study the effect of the parameter η on the performance of rASO, where

η = β/α is defined in Eq. (3.10), α and β are used to trade off two regularization components in

Eq. (3.7). We fix α at 1, vary β in the range of [10−4, 10−2, 100, 102, 104], and record the obtained

Macro/Micro F1, respectively. The Arts data is used for this experiment.

The experimental results are presented in Figure 3.1. We can observe that if the value of η

is smaller, rASO achieves relatively low performance in terms of Macro F1 and Micro F1; if η is set

3http://www.mosek.com/
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Figure 3.1: Sensitivity study of the parameter η in rASO: we study the relationship between the
parameter η and the corresponding Micro F1 and Micro F1 obtained in rASO.

to some value close to 1, rASO can achieve the best performance. We observe a similar trend in

other data sets. Since the value of η is equal to the ratio of β to α, our empirical observation (setting

η ≈ 1 leading to good performance) demonstrates that adding the second regularization component

of Eq. (3.7) in appropriate amount (corresponding to the parameter β) can improve the performance.

Evaluation of APG and CASO

We evaluate the APG algorithm and the CASO algorithm in terms of the (global) convergence and

the computation time (in seconds) by solving Eq. (3.45). For illustration, we set α = 1, β = 1, h = 1

in Eq. (3.45) and use the Arts data for the following experiments; for other parameters settings, we

have similar observations. Note that APG and CASO are terminated if the change of the objective

values in two successive iterations is smaller than 10−5 or the iteration number is larger than 5000.
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Figure 3.2: Convergence of APG (left plot) and CASO (right plot) for solving Eq. (3.45): we study
the relationship between the objective value and the required iterations for attaining such a value.

Convergence Comparison We construct a subset for this experiment by randomly choosing 4000

samples from the Art data and selecting the first 3 topics (tasks); for illustration, we also reduce

the feature dimensionality to 100 via PCA. We apply the APG algorithm and the CASO algorithm

separately for solving Eq. (3.45) on the constructed subset and record the obtained objective value

in each of the iterations.
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The experimental results are presented in Figure 3.2. From Figure 3.2, we can observe that

APG requires about 72 iterations for convergence and its convergence curve is consistent with the

theoretical convergence analysis of the APG algorithm [45,57]. We can also observe that CASO con-

verges very fast in practice; CASO converges within 3 iterations in this experiment (when the value of

β is smaller than the value of α, CASO require a larger number of iterations for convergence). Note

that in this experiment, the total computation time for APG and CASO are 121 seconds and 1653

seconds, respectively; although CASO requires much less number of iterations for convergence, the

computation cost in each iteration of CASO is much higher than that of APG.

Table 3.4: Computation time (in seconds) comparison for APG and CASO. We fix the dimension at
100 and vary the sample size in the set {1000, 2000, 3000, 4000}.

Sample Size TimeAPG TimeCASO TimeAPG : TimeCASO

1000 32.63 16.42 1.9867
2000 68.63 165.66 0.4143
3000 102.97 604.85 0.1702
4000 120.80 1653.85 0.0730

Computation Time Comparison We construct 4 subsets by randomly choosing {1000, 2000, 3000, 4000}

samples from the Arts data respectively, and use the first 3 topics (tasks) for this experiment. For

simple illustration, we reduce the feature dimensionality in the subsets to 100 via PCA. We apply

APG and CASO on the constructed subsets and record the respective computation time in seconds.

The experimental results are presented in Table 3.4. We can observe that the computation time

for APG and CASO increase with the increase of the sample size. We can also observe that by

using a fixed feature dimensionality, when the sample size is relatively smaller, for example 1000,

APG requires more computation time (for convergence) compared to CASO; when the sample size

is relatively larger, for example 2000, 3000, 4000, APG requires less computation time compared to

CASO.

Table 3.5: Computation time (in seconds) comparison for APG and CASO. We fix the sample size
at 2000 and vary the dimension in the set {100, 200, 300, 400}.

Dimension TimeAPG TimeCASO TimeAPG : TimeCASO

100 72.23 162.11 0.4456
200 509.86 177.78 2.8679
300 1264.87 184.59 6.8523
400 1555.53 195.70 7.9485

One the other hand, we construct another 4 subsets by randomly choosing 2000 samples

from the Arts data and then reduce the feature dimensionality to {100, 200, 300, 400} via PCA; we

use the first 3 topics (tasks) for our experiment. We apply APG and CASO on the constructed
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subsets and record the respective computation time. The experimental results are presented in

Table 3.5. We can observe that the computation time for APG and CASO increase with the increase

of the feature dimensionality. We can also observe that by using a fixed sample size, when the

feature dimensionality is relatively smaller, for example 100, APG requires less computation time

compared to CASO; when the feature dimensionality is relatively larger, for example 200, 300, 400,

APG requires more computation time compared to CASO.

Table 3.6: Comparison of the optimal objective values for Eq. (3.6) and Eq. (3.16) with different η.
We fix α = 1 and vary the value of β in the range [103, 102, 101, 100, 10−1, 10−2, 10−3].

η = β/α 1000 100 10 1 0.1 0.01 0.001

1 + 1/η 1.001 1.01 1.1 2 11 101 1001
σh/σh+1 1.23 1.25 1.34 1.75 3.07 13.79 89.49
OBJF0 52.78 52.65 51.37 40.73 22.15 5.95 0.69
OBJF2 52.78 52.65 51.37 40.71 20.73 4.11 0.41

Empirical Comparison of F0 and F2

We compare F0 in Eq. (3.6) and F2 in Eq. (3.16) in terms of the obtained optimal objective values.

Recall that in Eq. (3.10), we have η = β/α. We vary the value of η by fixing α = 1 and varying β

in the range [103, 102, 101, 100, 10−1, 10−2, 10−3], and compute the optimal objective values of F0

and F2, respectively. We randomly sample 500 data points from Arts data for this experiment. Both

F0 and F2 are solved via the alternating optimization algorithm, i.e., optimizing one variable with the

other variables fixed.

The experimental results are presented in Table 3.6. We can observe that OBJF2 is always

no larger than OBJF0 ; this is because F2 is a relaxed version of F2 and has a larger domain set

compared to F0. We also observe that if σh/σh+1 > 1 + 1/η (the second row of Table 3.6), OBJF0

is equal to OBJF2
and the optimal solution to F0 can be recovered from F2; in general the condition

σh/σh+1 > 1 + 1/η is satisfied when the value of β is relatively larger than the value of α. All of the

observations are consistent with our theoretical analysis in Theorem 3.6.1.

Automated Annotation of the Gene Expression Pattern Images

In our second experiment, we apply the proposed rASO formulation for the automated annotation

of the Drosophila gene expression pattern images from the FlyExpress4 database. We use SVM

(the independent SVM for multi-task learning), ASO (the alternating structure optimization) [16],

4http://www.flyexpress.net/
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Table 3.7: Performance Comparison on competing algorithms for the gene expression pattern im-
ages annotation (10 CV terms) in terms of Macro F1 (top section) and Micro F1 (bottom section). In
the second row, n, d, and m denotes sample size, dimension, and task numbers, respectively. In
ASO and rASO, the shared feature dimensionality h is set as ⌊(m− 1)/5⌋ × 5.

Stage Range 4 ∼ 6 7 ∼ 8 9 ∼ 10 11 ∼ 12 13 ∼ 16
(n, d, m) (925, 2000, 10) (797, 2000, 10) (919, 2000, 10) (1622, 2000, 10) (2228, 2000, 20)

SVM 40.88± 0.49 46.73± 0.51 50.28± 0.65 59.82± 0.83 59.62± 0.94
Macro ASO 43.29± 0.46 48.82± 0.62 51.55± 0.90 62.15± 0.16 60.11± 0.32

F1 rASO 44.54± 0.79 50.59± 0.23 54.16± 0.75 63.43± 0.79 60.90± 0.77
cMTFL 42.21± 0.69 48.17± 0.65 52.22± 0.35 62.17± 1.03 60.12± 0.27
SVM 42.05± 0.61 60.09± 0.78 60.57± 0.75 67.08± 0.99 65.95± 0.80

Micro ASO 45.89± 0.33 61.15± 0.57 63.01± 0.52 67.91± 0.51 66.53± 0.25
F1 rASO 47.34± 0.18 62.77± 0.61 64.37± 0.19 70.61± 1.21 67.13± 1.01

cMTFL 46.07± 0.92 60.35± 0.31 63.22± 0.67 68.43± 0.25 67.35± 0.59

Table 3.8: Performance Comparison on competing algorithms for the gene expression pattern im-
ages annotation (20 CV terms).

Stage Range 4 ∼ 6 7 ∼ 8 9 ∼ 10 11 ∼ 12 13 ∼ 16
(n, d, m) (1023, 2000, 20) (827, 2000, 20) (1015, 2000, 20) (1940, 2000, 20) (2476, 2000, 20)

SVM 29.47± 0.46 28.85± 0.62 30.03± 1.68 41.63± 0.58 40.80± 0.66
Macro ASO 30.33± 0.91 30.01± 0.67 32.22± 0.79 41.77± 1.43 40.98± 0.76

F1 rASO 31.01± 0.75 32.27± 0.91 35.01± 1.12 45.12± 0.21 43.81± 0.46
cMTFL 30.66± 0.24 30.84± 0.39 34.13± 0.87 44.73± 0.49 43.13± 0.65
SVM 39.24± 0.82 55.40± 0.15 55.75± 0.70 58.33± 0.53 53.61± 0.36

Micro ASO 41.11± 0.32 57.72± 0.51 53.29± 0.21 61.77± 1.09 53.45± 0.92
F1 rASO 41.21± 1.24 59.34± 0.39 59.81± 0.33 63.25± 0.71 54.93± 0.78

cMTFL 40.79± 0.31 58.39± 1.11 58.12± 0.84 61.22± 0.21 54.60± 0.62

and cMTL (the convex Multi-task feature learning) [53] as baseline algorithms. Note that in the

following experiments, Hinge Loss is employed as the loss function for all of the competing algo-

rithms.Similarly, we preprocess the Drosophila gene expression pattern images (of the standard

size 128× 320) from the FlyExpress database following the procedures in [27]. The Drosophila im-

ages are from 16 specific stages, which are then grouped into 6 stage ranges (1 ∼ 3, 4 ∼ 6, 7 ∼ 8,

9 ∼ 10, 11 ∼ 12, 13 ∼ 16). We manually annotate the image groups (based on the genes and the

developmental stages) using the structured CV terms. Each image group is then represented as a

feature vector based on the bag-of-words and the soft-assignment sparse coding schemes. Note

that the SIFT (scale-invariant feature transform) features [28] are extracted from the images with the

patch size set at 16 × 16 and the number of visual words in sparse coding set at 2000. The first

stage range only contains 2 CV terms and we do not report the performance for this stage range.

For other stage ranges, we consider the top 10 and 20 CV terms that appear most frequently in

the image groups and treat the annotation of each CV term as one task. We generate 10 subsets

for this experiment, and randomly partition each subset into training and test sets using the ratio
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1 : 9. Note that the parameters in the competing algorithms are tuned via 5-fold cross-validation as

in Section 4.7.

We report the averaged Macro F1 and Micro F1 over 10 random repetitions in Table 3.7 (for

10 CV terms) and Table 3.8 (for 20 CV terms), respectively. We can observe that rASO performs the

best or competitively compared to other representative algorithms on all subsets. This observation

demonstrates the effectiveness of the proposed rASO formulation for the images annotation tasks

in multi-task learning setting; it also implies the effectiveness of the proposed regularizer in Eq. (3.7)

for capturing the relationship of different CV terms of the gene expression pattern images. We can

also observe that rASO outperforms ASO in all subsets, which further provides strong support for

our rationale of improving the ASO formulation using the regularizer in Eq. (3.7).

3.9 Summary

We present a multi-task learning formulation (iASO) for learning a shared feature representation

from multiple related tasks. Since iASO is non-convex, we convert it into a relaxed convex formula-

tion (rASO). In addition, we present a theoretical condition, under which rASO can find a globally

optimal solution to iASO. We propose two algorithms including the APG algorithm and the CASO

algorithm to find the globally optimal solution to rASO; we also develop efficient algorithms for solv-

ing the key subproblems involved in APG and CASO. Our analysis shows that the computational

cost in APG mainly depends on the feature dimensionality, while the computational cost in CASO

mainly depends on the sample size. We have conducted experiments on the yahoo web pages

data sets and the Drosophila gene expression pattern images data sets. The experimental results

demonstrate the effectiveness and efficiency of the proposed algorithms and confirm our theoretical

analysis.
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Chapter 4

Learning Incoherent Sparse and Low-rank Patterns from Multiple Tasks

4.1 Introduction

In many real-world applications, the underlying predictive classifiers may lie in a hypothesis space

of some low-rank structure [16], in which the multiple learning tasks can be coupled using a set of

shared factors, i.e., the basis of a low-rank subspace [65]. For example, in natural scene catego-

rization problems, images of different labels may share similar background of a low-rank structure;

in collaborative filtering or recommendation system, only a few factors contribute to an individual’s

tastes. On the other hand, multiple learning tasks may exhibit sufficient differences and meanwhile

the discriminative features for each task can be sparse. Thus learning an independent predictive

classifier for each task and identifying the task-relevant discriminative features simultaneously may

lead to improved performance and easily interpretable models.

We consider the problem of learning incoherent sparse and low-rank patterns from multiple

related tasks. We propose a linear multi-task learning formulation, in which the model parameter can

be decomposed as a sparse component and a low-rank component. Specifically, we employ a car-

dinality regularization term to enforce the sparsity in the model parameter, identifying the essential

discriminative feature for effective classification; meanwhile, we use a rank constraint to encourage

the low-rank structure, capturing the underlying relationship among the tasks for improved general-

ization performance. The proposed multi-task learning formulation is non-convex and leads to an

NP-hard optimization problem. We convert this formulation into its tightest convex surrogate, which

can be routinely solved via semi-definite programming. It is, however, not scalable to large scale

data sets in practice. We propose to employ the general projected gradient scheme to solve the con-

vex surrogate; however, in the optimization formulation, the objective function is non-differentiable

and the feasible domain is non-trivial. We present the procedures for computing the projected gra-

dient and ensuring the global convergence of the projected gradient scheme. The computation of

projected gradient involves a constrained optimization problem; we show that the optimal solution

to such a problem can be obtained via solving an unconstrained optimization subproblem and an

Euclidean projection subproblem separately. We also present two algorithms based on the pro-

jected gradient scheme and analyze their rates of convergence in details. In addition, we present an

example of the proposed multi-task learning formulation using the least squares loss and illustrate

the use of the presented projected gradient based algorithms in this case. We conduct extensive
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experiments on a collection of real-world data sets. Our results demonstrate the effectiveness of

the proposed multi-task learning formulation and also demonstrate the efficiency of the projected

gradient algorithms.

The remainder of this chapter is organized as follows: in Section 5.2 we propose the linear

multi-task learning formulation; in Section 4.3 we present the general projected gradient scheme

for solving the proposed multi-task learning formulation; in Section 4.4 we present efficient compu-

tational algorithms for solving the optimization problems involved in the iterative procedure of the

projected gradient scheme; in Section 6.3 we present two algorithms based on the projected gradi-

ent scheme and analyze their rates of convergence in details; in Section 4.6 we present a concrete

example on the use of the projected gradient based algorithms for the proposed multi-task learning

formulation using the least squares loss; we report the experimental results in Section 4.7 and this

chapter concludes in Section 4.8.

4.2 Multi-Task Learning Framework

Assume that we are given m supervised (binary) learning tasks, where each of the learning tasks

is associated with a predictor fℓ and a set of training data as {(xℓi , yℓi )}
nℓ
i=1 ⊂ Rd × {−1,+1} (ℓ =

1, · · · ,m). We focus on linear predictors as fℓ(xℓ) = zTℓ x
ℓ, where zℓ ∈ Rd is the weight vector for

the ℓth learning task.

We assume that the m tasks are related using an incoherent rank-sparsity structure, that is,

the transformation matrix can be decomposed as a sparse component and a low-rank component.

Denote the transformation matrix by Z = [z1, · · · , zm] ∈ Rd×m; Z is the summation of a sparse

matrix P = [p1, · · · , pm] ∈ Rd×m and a low-rank matrix Q = [q1, · · · , qm] ∈ Rd×m given by

Z = P +Q, (4.1)

as illustrated in Figure 4.1. The ℓ0-norm (cardinality) [38], i.e., the number of non-zero entries, is

commonly used to control the sparsity structure in the matrix; similarity, matrix rank [49] is used to

encourage the low-rank structure. We propose a multi-task learning formulation with a cardinality

regularization and a rank constraint given by

min
Z,P,Q∈Rd×m

m∑
ℓ=1

nℓ∑
i=1

L
(
zTℓ x

ℓ
i , y

ℓ
i

)
+ γ∥P∥0

subject to Z = P +Q, rank(Q) ≤ τ, (4.2)

where L(·) denotes a smooth convex loss function, γ provides a trade-off between the sparse reg-

ularization term and the general loss component, and τ explicitly specifies the upper bound of the
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Figure 4.1: Illustration of the transformation matrix Z in Eq. (4.1), where P denotes the sparse
component with the zero-value entries represented by white blocks, and Q denotes the low-rank
component.

matrix rank. Both γ and τ are non-negative and determined via cross-validation in our empirical

studies.

The optimization problem in Eq. (4.2) is non-convex due to the non-convexity of the com-

ponents ∥P∥0 and rank(Q); in general solving such an optimization problem is NP-hard and no

efficient solution is known. We consider a computationally tractable alternative by employing re-

cently well-studied convex relaxation techniques [38].

Define the function f : C → R, where C ⊆ Rd×m. The convex envelope [38] of f on C

is defined as the largest convex function g such that g(Ẑ) ≤ f(Ẑ) for all Ẑ ∈ C. The ℓ1-norm has

been known as the convex envelope of the ℓ0-norm as [38]:

∥P∥1 ≤ ∥P∥0, ∀P ∈ C = {P | ∥P∥∞ ≤ 1}. (4.3)

Similarly, trace norm (nuclear norm) has been shown as the convex envelop of the rank function

as [66]:

∥Q∥∗ ≤ rank(Q), ∀Q ∈ C = {Q | ∥Q∥2 ≤ 1}. (4.4)

Note that both the ℓ1-norm and the trace-norm functions are convex but non-smooth, and they have

been shown to be effective surrogates of the ℓ0-norm and the matrix rank functions, respectively.

Based on the heuristic approximations in Eq. (4.3) and Eq. (4.4), we can replace the ℓ0-

norm with the ℓ1-norm, and replace the rank function with the trace norm function in Eq. (4.2),

respectively. Therefore, we can reformulate the multi-task learning formulation as:

min
Z,P,Q∈Rd×m

m∑
ℓ=1

nℓ∑
i=1

L
(
zTℓ x

ℓ
i , y

ℓ
i

)
+ γ∥P∥1

subject to Z = P +Q, ∥Q∥∗ ≤ τ. (4.5)
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The optimization problem in Eq. (4.5) is the tightest convex relaxation of Eq. (4.2). Such a problem

can be reformulated as a semi-definite program (SDP) [67], and solved using many off-the-shelf

optimization solvers such as SeDuMi [41]; however, SDP is computationally expensive and can only

handle several hundreds of optimization variables.

Related Work The formulation in Eq. (4.5) resembles the Alternating Structure Optimization algo-

rithm (ASO) for multi-task learning proposed in [16]. However, they differ in several key aspects: (1)

In ASO, the tasks are coupled using a shared low-dimensional structure induced by an orthonormal

constraint, and the formulation in ASO is non-convex and its convex counterpart cannot be easily

obtained. Our formulation encourages the low-rank structure via a trace norm constraint and the

resulting formulation is convex. (2) In ASO, in addition to a low-dimensional feature map shared

by all tasks, the classifier for each task computes an independent high-dimensional feature map

specific to each individual task, which is in general dense and does not lead to interpretable fea-

tures. In our formulation, the classifier for each task constructs a sparse high-dimensional feature

map for discriminative feature identification. (3) The alternating algorithm in ASO can only find a

local solution with no known convergence rate. The proposed algorithm for solving the formulation

in Eq. (4.5) finds a globally optimal solution and achieves the optimal convergence rate among all

first-order methods. Note that recent works in [68–70] consider the problem of decomposing a given

matrix into its underlying sparse component and low-rank component in a different setting: they

study the theoretical condition under which such two components can be exactly recovered via con-

vex optimization, i.e., the condition of guaranteeing to recover the sparse and low-rank components

by minimizing a weighted combination of the trace norm and the ℓ1-norm.

4.3 Projected Gradient Scheme

In this section, we propose to apply the general projected gradient scheme [38] to solve the con-

strained optimization problem in Eq. (4.5). Note that the projected gradient scheme belongs to the

category of the first-order methods and has demonstrated good scalability in many optimization

problems [38,57].

The objective function in Eq. (4.5) is non-smooth and the feasible domain is non-trivial. For

simplicity, we denote Eq. (4.5) as

min
T

f(T ) + g(T )

subject to T ∈M, (4.6)
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where the functions f(T ) and g(T ) are defined respectively as

f(T ) =

m∑
ℓ=1

nℓ∑
i=1

L
(
(pℓ + qℓ)

Txℓi , y
ℓ
i

)
, g(T ) = γ∥P∥1,

and the setM is defined as

M =

T
∣∣∣∣∣∣∣T =

 P

Q

 , P ∈ Rd×m, ∥Q∥∗ ≤ τ, Q ∈ Rd×m

 .

Note that f(T ) is a smooth convex function with a Lipschitz constant Lf [63] as:

∥∇f(Tx)−∇f(Ty)∥F ≤ Lf∥Tx − Ty∥F , ∀Tx, Ty ∈M, (4.7)

g(T ) is a non-smooth convex function, andM is a compact and convex set [63]. It is known that the

smallest Lipschitz constant L̂f in Eq. (4.7), i.e, L̂f = minLf , is called the best Lipschitz constant

for the function f(T ); moreover, for any L ≥ L̂f , the following inequality holds [45]:

f(Tx) ≤ f(Ty) + ⟨Tx − Ty,∇f(Ty)⟩+
L

2
∥Tx − Ty∥2, (4.8)

where Tx, Ty ∈M.

The projected gradient scheme computes the global minimizer of Eq. (4.6) via an iterative

refining procedure. That is, given Tk as the intermediate solution of the kth iteration, we refine Tk as

Tk+1 = Tk − tkPk, ∀k, (4.9)

where Pk and tk denote the appropriate projected gradient direction and the step size, respectively.

The appropriate choice of Pk and tk is key to the global convergence of the projected gradient

scheme. The computation of Eq. (4.9) depends on Pk and tk; in the following subsections, we

will present a procedure for estimating appropriate Pk and tk, and defer the discussion of detailed

projected gradient based algorithms to Section 6.3. Note that since the determination of Pk is

associated with Tk and tk, we denote Pk by P1/tk(Tk), and the reason will become clear from the

following discussion.

Projected Gradient Computation

For any L > 0, we consider the construction associated with the smooth component f(T ) of the

objective function in Eq. (4.6) as

fL(S, T ) = f(S) + ⟨T − S,∇f(S)⟩+ L

2
∥T − S∥2F ,
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where S, T ∈ Rd×m. It can be verified that fL(S, T ) is strongly convex with respect to the variable

T . Moreover, we denote

GL(S, T ) = fL(S, T ) + g(T ), (4.10)

where g(T ) is the non-smooth component of the objective function in Eq. (4.6). From the convexity

of g(T ), GL(S, T ) is strongly convex with respect to T . Since

GL(S, T ) = f(S)− 1

2L
∥∇f(S)∥2F +

L

2

∥∥∥∥T − (S − 1

L
∇f(S)

)∥∥∥∥2
F

+ g(T ),

the global minimizer of GL(S, T ) with respect to T can be computed as

TL,S = argmin
T∈M

GL(S, T )

= argmin
T∈M

(
L

2

∥∥∥∥T − (S − 1

L
∇f(S)

)∥∥∥∥2
F

+ g(T )

)
. (4.11)

Therefore we can obtain the projected gradient of f at S via

PL(S) = L(S − TL,S). (4.12)

It is obvious that 1/L can be seen as the step size associated with the projected gradient PL(S) by

rewritting Eq. (4.12) as

TL,S = S − 1

L
PL(S). (4.13)

Note that if the inequality f(TL,S) ≤ fL(S, TL,S) is satisfied, PL(S) is called the L-projected gradi-

ent [57] of f at S.

Step Size Estimation

From Eq. (4.12), the step size associated with PL(S) is given by 1/L. Denote the objective function

in Eq. (4.6) as

F (T ) = f(T ) + g(T ). (4.14)

Theoretically, any step size 1/L of the value L larger than the best Lipschitz constant L̂f guarantees

the global convergence in the projected gradient based algorithms [57]. It follows from Eq. (4.8) that

F (TL,S) ≤ GL(S, TL,S), ∀L ≥ Lf . (4.15)

In practice we can estimate an appropriate L (hence the appropriate step size 1/L) by ensuring the

inequality in Eq. (4.15). By applying an appropriate step size and the associated projected gradient

in Eq. (4.9), we can verify an important inequality [57,71], as summarized in the following lemma.
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Lemma 4.3.1. Let Lf be the Lipschitz continuous gradient associated with the function f(T ) as

defined in Eq. (4.7). Let S ∈ Rd×m, and TL,S be the minimizer to GL(S, T ) as defined in Eq. (4.11).

Then if L ≥ Lf , the following inequality holds

F (T )− F (TL,S) ≥ ⟨T − S,PL(S)⟩+
1

2L
∥PL(S)∥2F (4.16)

for any T ∈M.

Proof. Following from the convexity of f(·) and g(·), we have

f(T ) ≥ f(S) + ⟨T − S,∇f(S)⟩ (4.17)

g(T ) ≥ g(TL,S) + ⟨T − TL,S , ∂g(TL,S)⟩ , (4.18)

where ∂g(TL,S) denotes the subgradient [45] of g(·) at TL,S . It is well known that T̂ minimizes

GL(S, T ) (with respect to the variable T ) if and only if 0 is a subgradient of GL(S, T ) at T̂ , that is,

0 ∈ L (TL,S − S) +∇f(S) + ∂g(TL,S). (4.19)

From Eqs. (4.10), (6.2), (4.17) and (4.18), we have

F (T )−GL(S, TL,S) = (f(T ) + g(T ))− (fL(S, TL,S) + g(TL,S))

≥ ⟨T − TL,S ,∇f(S) + ∂g(TL,S)⟩ −
L

2
∥S − TL,S∥2F

= −L ⟨T − TL,S , TL,S − S⟩ −
L

2
∥S − TL,S∥2F

= ⟨T − S,PL(S)⟩+
1

2L
∥PL(S)∥2F ,

where the second equality follows from Eq. (4.19), and the third equality follows from Eq. (4.12).

This completes the proof of this lemma.

By replacing S with T in Eq. (4.16), we have

F (T )− F (TL,T ) ≥
1

2L
∥PL(T )∥2F . (4.20)

Note that the inequality in Eq. (4.16) characterizes the relationship of the objective values in Eq. (4.6)

using T and its refined version via the procedure in Eq. (4.9).

4.4 Efficient Computation

The projected gradient scheme requires to solve Eq. (4.11) at each iterative step. In Eq. (4.11),

the objective function is non-smooth and the feasible domain set is non-trivial; we show that its
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optimal solution can be obtained by solving an unconstrained optimization problem and an Euclidean

projection problem separately.

Denote T and S in Eq. (4.11) respectively as

T =

 TP

TQ

 , S =

 SP

SQ

 .

Therefore the optimization problem in Eq. (4.11) can be expressed as

min
TP ,TQ

L

2

∥∥∥∥∥∥∥
 TP

TQ

−
 ŜP

ŜQ


∥∥∥∥∥∥∥
2

F

+ γ∥TP ∥1

subject to ∥TQ∥∗ ≤ τ, (4.21)

where ŜP and ŜQ can be computed respectively as

ŜP = SP −
1

L
∇P f(S), ŜQ = SQ −

1

L
∇Qf(S).

Note that ∇P f(S) and ∇Qf(S) denote the derivative of the smooth component f(S) with respect

to the variables P and Q, respectively. We can further rewrite Eq. (4.21) as

min
TP ,TQ

β∥TP − ŜP ∥2F + β∥TQ − ŜQ∥2F + γ∥TP ∥1

subject to ∥TQ∥∗ ≤ τ, (4.22)

where β = L/2. Since TP and TQ are decoupled in Eq. (4.22), they can be optimized separately as

presented in the following subsections.

Computation of TP

The optimal TP to Eq. (4.22) can be obtained by solving the following optimization problem:

min
TP

β∥TP − ŜP ∥2F + γ∥TP ∥1.

It is obvious that each entry of the optimal matrix TP can be obtained by solving an optimization

problem as

min
t̂∈R

β∥t̂− ŝ∥2 + γ|t̂|. (4.23)

Note that ŝ denotes an entry in ŜP , corresponding to t̂ in TP from the same location. It is known [72]

that the optimal t̂ to Eq. (4.23) admits an analytical solution; for completeness, we present its proof

in Lemma 4.4.1.
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Lemma 4.4.1. The minimizer of Eq. (4.23) can be expressed as

t̂∗ =


ŝ− γ

2β ŝ > γ
2β

0 − γ
2β ≤ ŝ ≤

γ
2β

ŝ+ γ
2β ŝ < − γ

2β

. (4.24)

Proof. Denote by h(t̂) the objective function in Eq. (4.23), and by t̂∗ the minimizer of h(t̂). The

subdifferential of h(t̂) can be expressed as

∂h(t̂) = 2β(t̂− ŝ) + γsgn(t̂),

where the function sgn(·) is given by

sgn(t̂) =


{1} t̂ > 0

[−1, 1] t̂ = 0

{−1} t̂ < 0

.

It is known that t̂∗ minimizes h(t̂) if and only if 0 is a subgradient of h(t̂) at the point t̂∗, that is,

0 ∈ 2β(t̂∗ − ŝ) + γsgn(t̂∗).

Since the equation above is satisfied with t̂∗ defined in Eq. (4.24), we complete the proof of this

lemma.

Computation of TQ

The optimal TQ to Eq. (4.22) can be obtained by solving the optimization problem:

min
TQ

1

2
∥TQ − ŜQ∥2F

subject to ∥TQ∥∗ ≤ τ, (4.25)

where the constant 1/2 is added into the objective function for convenient presentation. In the

following theorem, we show that the optimal TQ to Eq. (4.25) can be obtained via solving a simple

convex optimization problem.

Theorem 4.4.1. Let ŜQ = UΣSV
T ∈ Rd×m be the SVD of ŜQ, where q = rank(ŜQ), U ∈ Rd×q,

V ∈ Rm×q, and ΣS = diag(ς1, · · · , ςq) ∈ Rq×q. Let {σi}qi=1 be the minimizers of the problem:

min
{σi}q

i=1

∑q
i=1 (σi − ςi)

2

subject to
∑q

i=1 σi ≤ τ, σi ≥ 0. (4.26)
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Denote Σ = diag(σ1, · · · , σq) ∈ Rq×q. Then the optimal solution to Eq. (4.25) is given by

T ∗
Q = UΣV T .

Proof. Assume that the optimal T ∗
Q to Eq. (4.25) shares the same left and right singular vectors as

ŜQ. Then the problem in Eq. (4.25) is reduced to the problem in Eq. (4.26). Thus, all that remains is

to show that T ∗
Q shares the same left and right singular vectors as ŜQ.

Denote the Lagrangian function [38] associated with Eq. (4.25) as

H(TQ, λ) =
1

2
∥TQ − ŜQ∥2F + λ(∥TQ∥∗ − τ).

Since 0 is strictly feasible in Eq. (4.25), i.e., ∥0∥∗ < τ , the Slater’s condition [38] is satisfied and

strong duality holds in Eq. (4.25). Let λ∗ ≥ 0 be the optimal dual variable [38] in Eq. (4.25). There-

fore,

T ∗
Q = argmin

TQ

H(TQ, λ
∗)

= argmin
TQ

1

2
∥TQ − ŜQ∥2F + λ∗∥TQ∥∗.

Let T ∗
Q = UTΣTV

T
T ∈ Rd×m be the SVD of T ∗

Q and r = rank(T ∗
Q), where UT ∈ Rd×r and UT ∈

Rm×r are columnwise orthonormal, and ΣT ∈ Rr×r is diagonal consisting of non-zero singular

values on the main diagonal. It is known [73] that the subdifferentials of ∥TQ∥∗ at T ∗
Q can be

expressed as

∂∥T ∗
Q∥∗ =

{
UTV

T
T +D : D ∈ Rd×m, UT

T D = 0, DVT = 0, ∥D∥2 ≤ 1
}
. (4.27)

On the other hand, we can verify that T ∗
Q is optimal to Eq.(4.25) if and only if 0 is a subgradient of

H(TQ, λ
∗) at T ∗

Q, that is,

0 ∈ ∂H(T ∗
Q, λ

∗) = T ∗
Q − ŜQ + λ∗∂∥T ∗

Q∥∗. (4.28)

Let U⊥
T ∈ Rd×(d−m) and V ⊥

T ∈ Rm×(m−r) be the null space [49] of UT and VT , respectively. It

follows from Eq. (4.27) that there exists a point DT = U⊥
T Σd

(
V ⊥
T

)T
such that UTV

T
T + DT ∈

∂∥T ∗
Q∥∗ satisfies Eq. (4.28), and Σd ∈ R(d−m)×(m−r) is diagonal consisting of the singular values

of DT on the main diagonal. It follows that

ŜQ = T ∗
Q + λ∗

(
UTV

T
T +DT

)
= UTΣTV

T
T + λ∗UTV

T
T + λ∗U⊥

T Σd

(
V ⊥
T

)T
= UT (ΣT + λ∗I)VT + U⊥

T (λ∗Σd)
(
V ⊥
T

)T
corresponds to the SVD of ŜQ. This completes the proof of this theorem.
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Note that the optimization problem in Eq. (4.26) is convex, and can be solved via an algo-

rithm similar to the one in [74] proposed for solving the Euclidean projection onto the ℓ1 ball.

4.5 Algorithms and Convergence

We present two algorithms based on the projected gradient scheme in Section 4.3 for solving the

constrained convex optimization problem in Eq. (4.6), and analyze their rates of convergence using

techniques in [45,57].

Projected Gradient Algorithm

We first present a simple projected gradient algorithm. Let Tk be the feasible solution point in the

k-th iteration; the projected gradient algorithm refines Tk by recycling the following two steps: find a

candidate T̂ for the subsequent feasible solution point Tk+1 via

T̂ = TL,Tk
= argmin

T∈M
GL(Tk, T ),

and meanwhile ensure the step size 1
L satisfying the condition

F (T̂ ) ≤ GL(Tk, T̂ ).

Note that both Tk and T̂ are feasible in Eq. (4.6). It follows from Eq. (4.20) that the solution sequence

generated in the projected gradient algorithm leads to a non-increasing objective value in Eq. (4.6),

that is,

F (Tk−1) ≥ F (Tk), ∀k. (4.29)

The pseudo-code of the projected gradient algorithm is presented in Algorithm 7, and its conver-

gence rate analysis is summarized in Theorem 4.5.1. Note that the stopping criterion in line 11 of

1: Input: T0, L0 ∈ R, and max-iter.
2: Output: T .
3: for i = 0, 1, · · · ,max-iter do
4: while (true)
5: Compute T̂ = TLi,Ti via Eq. (4.11).
6: if F (T̂ ) ≤ GLi(Ti, T̂ ) then exit the loop.
7: else update Li = Li × 2.
8: end-if
9: end-while

10: Update Ti+1 = T̂ and Li+1 = Li.
11: if the stopping criterion is satisfied then exit the loop.
12: end-for
13: Set T = Ti+1.

Algorithm 7: Projected Gradient Method
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Algorithm 7 can be set as: the change of objective values in two successive steps are smaller than

some pre-specified value (e.g., 10−5).

Theorem 4.5.1. Let T ∗ be the global minimizer of Eq. (4.6); let L̂f be the best Lipschitz continuous

gradient defined in Eq.(4.7). Denote by k the index of iteration, and by Tk the solution point in the

kth iteration of Algorithm 7. Then we have

F (Tk)− F (T ∗) ≤ L̂

2k
∥T0 − T ∗∥2F ,

where L̂ = max{L0, 2L̂f}, and L0 and T0 are the initial values of Lk and Tk in Algorithm 7, respec-

tively.

Proof. It follows from Eq. (4.12) we have

Ti+1 = TLi,Ti = Ti −
1

Li
PLi(Ti).

Moreover, from Eq. (4.16), we have

−εi+1 ≥ ⟨T ∗ − Ti,PLi(Ti)⟩+
1

2Li
∥PLi(Ti)∥2F

=
Li

2

(
−∥Ti∥2F + ∥Ti+1∥2F + 2⟨T ∗, Ti − Ti+1⟩

)
, (4.30)

where εi+1 = F (Ti+1) − F (T ∗). Moving Li/2 to the left side in Eq. (4.30) and summing such a

reformulation from i = 0 to i = k, we have

k∑
i=0

2

Li
εi+1 ≤ ∥T0∥2F − ∥Tk+1∥2F + 2⟨T ∗, Tk+1 − T0⟩

= ∥T0 − T ∗∥2F − ∥Tk+1 − T ∗∥2F

≤ ∥T0 − T ∗∥2F .

Since Li ≥ Li−1 from line 7 in algorithm 7, and εi ≤ εi−1 from Eq. (4.29) for all i, we have

εk+1 ≤
Lk

2(k + 1)
∥T0 − T ∗∥2F .

Moreover, it can be verified that L0 ≤ Lk ≤ 2L̂f for all k. This completes the proof of this theorem.

Accelerated Projected Gradient Algorithm

The proposed projected gradient method Section 4.5 is simple to implement but converges slowly.

We improve the projected gradient method using a scheme developed by Nesterov [45], which has

been applied for solving various sparse learning formulations [75].
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1: Input: T0, L0 ∈ R, and max-iter.
2: Output: T .
3: Set T1 = T0, t−1 = 0, and t0 = 1.
4: for i = 1, 2, · · · ,max-iter do
5: Compute αi = (ti−2 − 1)/ti−1.
6: Compute S = (1 + αi)Ti − αiTi−1.
7: while (true)
8: Compute T̂ = TLi,S via Eq. (4.11).
9: if F (T̂ ) ≤ GLi(S, T̂ ) then exit the loop

10: else update Li = Li × 2.
11: end-if
12: end-while
13: Update Ti+1 = T̂ and Li+1 = Li.
14: if the stopping criterion is satisfied then exit the loop.

15: Update ti = 1
2 (1 +

√
1 + 4t2i−1).

16: end-for
17: Set T = Ti+1.

Algorithm 8: Accelerated Projected Gradient Method

We utilize two sequences of variables in the accelerated projected gradient algorithm: (fea-

sible) solution sequence {Tk} and searching point sequence {Sk}. In the i-th iteration, we construct

the searching point as

Sk = (1 + αk)Tk − αkTk−1, (4.31)

where the parameter αk > 0 is appropriately specified as shown in Algorithm 8. Similar to the

projected gradient method, we refine the feasible solution point Tk+1 via the general step as:

T̂ = TL,Sk
= argmin

T∈M
GL(Sk, T ),

and meanwhile determine the step size by ensuring

F (T̂ ) ≤ GL(Sk, T̂ ).

The searching point Sk may not be feasible in Eq. (4.6), which can be seen as a forecast of the

next feasible solution point and hence leads to the faster convergence rate in Algorithm 8. The

pseudo-code of the accelerated projected gradient algorithm is presented in Algorithm 8, and its

convergence rate analysis is summarized in the following theorem.

Theorem 4.5.2. Let T ∗ be the global minimizer of Eq. (4.6); let L̂f be the best Lipschitz continuous

gradient defined in Eq.(4.7). Denote by k the index of iteration, and by Tk the solution point in the

kth iteration of Algorithm 8. Then we have

F (Tk+1)− F (T ∗) ≤ 2L̂

k2
∥T0 − T ∗∥2F ,

where L̂ = max{L0, 2L̂f}, where L0 and T0 are the initial values of Lk and Tk in Algorithm 8.
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Proof. Denote εi = F (Ti)− F (T ∗). Setting T = Ti, S = Si, and L = Li in Eq. (4.16), we have

ϵi − ϵi+1 ≥ ⟨Ti − Si,PLi(Si)⟩+
1

2Li
∥PLi(Si)∥2F , (4.32)

where the left side of the inequality above follows from

Ti+1 = TLi,Si = argmin
T∈M

GLi(Si, Ti).

Similarly, setting T = T ∗, S = Si, and L = Li in Eq. (4.16), we have

−ϵi+1 ≥ ⟨T ∗ − Si,PLi(Si)⟩+
1

2Li
∥PLi(Si)∥2F . (4.33)

Multiplying Eq. (4.32) by ti−1 − 1 and summing it with Eq. (4.33), we have

(ti−1 − 1) εi − ti−1εi+1 ≥ ⟨(ti−1 − 1)(Ti − Si) + T ∗ − Si,PLi(Si)⟩+
ti−1

2Li
∥PLi(Si)∥2F . (4.34)

Moreover, multiplying Eq. (4.34) by ti−1, we have

t2i−2εi − t2i−1εi+1 ≥
1

2Li
∥ti−1PLi(Si)∥2F + ⟨ti−1PLi(Si), (ti−1 − 1)(Ti − Si) + T ∗ − Si⟩. (4.35)

where the left side is obtained via the equation

t2i−1 − ti−1 = t2i−2

from the line 15 in Algorithm 8. On the other hand, it follows from Eq. (4.12) we have

PLi(Si) = Li (Si − TLi,Si) = Li (Si − Ti+1) . (4.36)

From Eq. (4.31) and the line 5 in Algorithm 8, we have

ti−1Si = ti−1Ti + (ti−2 − 1)(Ti − Ti−1). (4.37)

Denote

Ci−2 = ti−2Ti − (ti−2 − 1)Ti−1 − T ∗. (4.38)

From Eqs. (4.36), (4.37) and (5.26), we can verify that

ti−1PLi(Si) = ti−1Li(Si − Ti+1) = Li(Ci−2 − Ci−1). (4.39)

Moreover, we have

(ti−1 − 1)(Ti − Si) + T ∗ − Si

= (ti−1 − 1)Ti + T ∗ − ti−1Si

= −ti−2Ti + (ti−2 − 1)Ti−1 + T ∗ = −Ci−2. (4.40)
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Substituting Eqs. (4.39) and (4.40) into Eq. (4.35), we obtain

∥Ci−1∥2F − ∥Ci−2∥2F ≤ 2

Li

(
t2i−2εi − t2i−1εi+1

)
≤ 2

Li−1
t2i−2εi −

2

Li
t2i−1εi+1. (4.41)

Summing Eq. (4.41) from i = 1 to i = k, we have

∥Ck−1∥2F − ∥C−1∥2F ≤
2

L0
t2−1ε1 −

2

Lk
t2k−1εk+1.

Therefore, we have

2

Lk
t2k−1εk+1 ≤ ∥C−1∥2F − ∥Ck−1∥2F +

2

L0
t2−1ε1

≤ ∥C−1∥2F +
2

L0
t2−1ε1 = ∥T0 − T ∗∥2, (4.42)

where the equality follows from t−1 = 0 in Algorithm 8. From line 15 in Algorithm 8, we have

2ti = 1 +
√

1 + 4t2i−1 ≥ 2ti−1 + 1. (4.43)

Summing Eq. (4.43) from i = 1 to i = k, we have

tk ≥
1

2
(k + 1), ∀k. (4.44)

Substituting Eq. (4.44) into Eq. (4.42), we complete the proof.

The proof of Theorem 4.5.2 uses standard techniques in [45, 57] yet with simplification in

several aspects for easy understanding. Note that the convergence rate achieved by Algorithm 8 is

optimal among the first-order methods [45,57].

4.6 Example: Learning Sparse and Low-Rank Patterns with Least Squares Loss

In this section, we present a concrete example of learning the sparse and low-rank patterns from

multiple tasks, i.e., the MTL formulation in Eq. (4.5) using the least squares loss function; we also

illustrate the use of the projected gradient algorithm (PG) and the accelerated projected gradient

algorithm (AG) in this case. Mathematically, the specific MTL formulation can be expressed as

min
P,Q

∥(P +Q)TX − Y ∥2F + γ∥P∥1

subject to ∥Q∥∗ ≤ τ, (4.45)

where X = [x1, x2, · · · , xn] ∈ Rd×n, and Y = [y1, y2, · · · , yn] ∈ Rm×n. For simplicity in Eq. (4.45)

we assume that all of the m tasks share the same set of training data, and the derivation below can

be easily extended to the case where each learning task has a different set of training data.
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Efficient Computation for the Key Component

The computation of Eq. (4.11) is involved in each iteration of the projected gradient scheme. For

the specifical MTL formulation in Eq. (4.45), given the intermediate solution pair {Pi, Qi} in the i-th

iteration, the subsequent solution pair {Pi+1, Qi+1} can be obtained via

min
P̂ ,Q̂

Li

2

∥∥∥P̂ − P̃i

∥∥∥2
F
+
Li

2

∥∥∥Q̂− Q̃i

∥∥∥2
F
+ γ∥P̂∥1

subject to ∥Q̂∥∗ ≤ τ, (4.46)

where Li specifies the step size of the i-th iteration. The optimal P̂ and Q̂ to Eq. (4.46) can be

obtained via solving two separate problems as below.

Computation of P̂ The optimal P̂ can be obtained via solving

min
P̂

Li

2

∥∥∥P̂ − P̃i

∥∥∥2
F
+ γ∥P̂∥1. (4.47)

Based on the results in Section 4.4, the optimization problem in Eq. (4.47) can be further de-

composed into entry-wise subproblems in the form of Eq. (4.23), which admits an analytical so-

lution (Lemma 4.4.1).

Computation of Q̂ The optimal Q̂ can be obtained via solving

min
Q̂

∥∥∥Q̂− Q̃i

∥∥∥2
F

subject to ∥Q̂∥∗ ≤ τ. (4.48)

Based on the results in Section 4.4, the optimal solution to Eq. (4.48) can be obtained via the

following two steps:

• Compute the SVD of Q̃i = UQiΣQiV
T
Qi

, where rank(Q̃i) = q, UQi ∈ Rd×q, VQi ∈ Rm×q, and

ΣQi = diag(ς̂1, · · · ς̂q) ∈ Rq×q.

• Compute the optimal solution {σ∗
i }

q
i=1 to the following problem

min
{σi}q

i=1

∑q
i=1 (σi − ς̂i)

2

subject to
∑q

i=1 σi ≤ τ, σi ≥ 0.

The optimal Q̂ can be constructed as Q̂ = UQiΣQV
T
Qi

, where ΣQ = diag(σ∗
1 , · · ·σ∗

q ).
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Estimation of the Lipschitz Constant

An appropriate step size 1/L in Eq. (4.13) is important for the global convergence of the pro-

jected gradient based algorithms and its value can be estimated via many sophisticated line search

schemes [38] in general. In Algorithm 7 (line 6 ∼ 7) and Algorithm 8 (line 9 ∼ 10), the value of L

is updated until the inequality in Eq. (4.15) is satisfied; however, this updating procedure may incur

overhead cost in the computation.

Denote the smooth component of the objective function in Eq. (4.45) by

f(P,Q) = ∥(P +Q)TX − Y ∥2F . (4.49)

It can be verified that any Lipschitz constant Lf of the function f(P,Q) can satisfy Eq. (4.15). Note

that the gradient of f(P,Q) with respect to P and Q can be expressed as

∇P f(P,Q) = ∇Qf(P,Q) = 2
(
XXT (P +Q)−XY T

)
.

To avoid the computational cost of estimating the lipschitz constant for f(P,Q), we directly estimate

its best value (the smallest lipschitz constant), as summarized in the following lemma.

Lemma 4.6.1. Given X ∈ Rd×n and Y ∈ Rm×n, the best Lipschitz constant L̂f of the function

f(P,Q) in Eq. (4.49) is no larger than 2 σ2
X , where σX denotes the largest singular value of X.

Proof. For arbitrary Px, Py, Q ∈ Rd×m, we have

L̂P =
∥∇Pxf(Px, Q)−∇Pyf(Py, Q)∥F

∥Px − Py∥F
=
∥2XXT (Px − Py)∥F
∥Px − Py∥F

≤ 2 σ2
X∥(Px − Py)∥F
∥Px − Py∥F

= 2 σ2
X . (4.50)

Similarly, for arbitrary P,Qx, Qy ∈ Rd×m, we have

L̂Q =
∥∇Qxf(P,Qx)−∇Qyf(P,Qy)∥F

∥Qx −Qy∥F
≤ 2 σ2

X . (4.51)

Therefore it follows from Eq. (4.7) that

L̂f ≤ max
(
L̂P , L̂Q

)
= 2 σ2

X . (4.52)

This completes the proof.
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1: Input: P0, Q0, L = 2 σ2
X , and max-iter.

2: Output: P,Q.
3: for i = 0, 1, · · · ,max-iter do
4: Set Li = L, SPi = Pi, SQi = Qi.
5: Compute P̃i = SPi −∇P f(P,Q)

∣∣
P=SPi

,Q=SQi
,

6: Q̃i = SQi −∇Qf(P,Q)
∣∣
P=SPi

,Q=SQi
.

7: Compute P̂ via Eq. (4.47) and Q̂ via Eq. (4.48).
8: Set Pi+1 = P̂ , Qi+1 = Q̂.
9: if the stopping criterion is satisfied then exit the loop.

10: end-for
11: Set P = Pi+1, Q = Qi+1.

Algorithm 9: Projected Gradient Algorithm (PG) for Solving Eq. (4.45)

1: Input: P0, Q0, L = 2 σ2
X , and max-iter.

2: Output: P,Q.
3: Set P1 = P0, Q1 = Q0, t−1 = 0, and t0 = 1.
4: for i = 1, 2, · · · ,max-iter do
5: Compute αi = (ti−2 − 1)/ti−1.
6: Set Li = L, SPi

= (1 + αi)Pi − αiPi−1, SQi = (1 + αi)Qi − αiQi−1.
7: Compute P̃i = SPi −∇P f(P,Q)

∣∣
P=SPi

,Q=SQi
,

8: Q̃i = SQi −∇Qf(P,Q)
∣∣
P=SPi

,Q=SQi
.

9: Compute P̂ via Eq. (4.47), and Q̂ via Eq. (4.48).
10: Set Pi+1 = P̂ , Qi+1 = Q̂.
11: if the stopping criterion is satisfied then exit the loop.

12: Update ti = 1
2 (1 +

√
1 + 4t2i−1).

13: end-for
14: Set P = Pi+1, Q = Qi+1.

Algorithm 10: Accelerated Projected Gradient Algorithm (AG) for Solving Eq. (4.45)

Main Algorithms

The pseudo-codes of the PG and AG algorithms for solving Eq. (4.45) are presented in Algorithm 9

and Algorithm 10 respectively. The main difference between PG and AG lies in the construction

of SPi and SQi : in line 4 of Algorithm 9, SPi and SQi are set as the pair of feasible points from

the previous iteration; in line 6 of Algorithm 10, SPi and SQi are set as the a linear combination of

the feasible points from the previous and the current iterations, which are not necessary feasible in

Eq. (4.45). The different construction leads to significant different rates of convergence, i.e., O( 1k )

in Algorithm 9 and O( 1
k2 ) in Algorithm 10.

4.7 Empirical Evaluations

In this section, we evaluate the proposed multi-task learning formulation in comparison with other

representative ones; we also conduct numerical studies on the projected gradient based algorithms.
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Table 4.1: Statistics of the benchmark data sets.

Data Set Sample Size Dimension Label Type

Face 1400 19800 30 image
Scene 2407 294 6 image
Yeast 2417 103 14 gene
MediaMill1 8000 120 80 multimedia
MediaMill2 8000 120 100 multimedia
References 7929 26397 15 text
Science 6345 24002 22 text

We employ six benchmark data sets in our experiments. One of them is AR Face Data [76]:

we use its subset consisting of 1400 face images corresponding to 100 persons. The other three are

LIBSVM multi-label data sets1: for Scene and Yeast, we use the entire data sets; for MediaMill, we

generate several subsets by randomly sampling 8000 data points with different numbers of labels.

References and Science are Yahoo webpages data sets [77]: we preprocess the data sets following

the same procedures in [78]. All of the benchmark data sets are normalized and their statistics are

summarized in Table 4.1. Note that in our multi-task learning setting, each task corresponds to a

label and we employ the least squares loss function for the following empirical studies.
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Figure 4.2: Extracted sparse (first and third plots) and low-rank (second and fourth plots) structures
on AR face images with different sparse regularization and rank constraint parameters in Eq. (4.5):
for the first two plots, we set γ = 11, τ = 0.08; for the last two plots, we set γ = 14, τ = 0.15.

Demonstration of Extracted Structures

We apply the proposed multi-task learning algorithm on the face images and then demonstrate the

extracted sparse and low-rank structures. We use a subset of AR Face Data for this experiment.

The original size of these images is 165× 120; we reduce the size to 82× 60.

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multilabel/
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We convert the face recognition problem into the multi-task learning setting, where one

task corresponds to learning a linear classifier, i.e., fℓ(x) = (pℓ + qℓ)
Tx, for recognizing the faces

of one person. By solving Eq. (4.5), we obtained pℓ (sparse structure) and qℓ (low-rank structure);

we reshape pℓ and qℓ and plot them in Figure 5.1. We only plot p1 and q1 for demonstration. The

first two plots in Figure 5.1 are obtained by setting γ = 11, τ = 0.08 in Eq. (4.5): we obtain a sparse

structure of 15.07% nonzero entries and a low-rank structure of rank 3; similarly, the last two plots

are obtained by setting γ = 14, τ = 0.15, we obtain a sparse structure of 5.35% nonzero entries

and a low-rank structure of rank 7. We observe that the sparse structure identifies the important

detailed facial marks, and the low-rank structure preserves the rough shape of the human face; we

also observe that a large sparse regularization parameter leads to high sparsity (lower percentage

of the non-zero entries) and a large rank constraint leads to structures of high rank.

Performance Evaluation

We compare the proposed multi-task learning formulation with other representative ones in terms

of average Area Under the Curve (AUC), Macro F1, and Micro F1 [79]. The reported experimental

results are averaged over five random repetitions of the data sets into training and test sets of the

ratio 1 : 9. In this experiment, we stop the iterative procedure of the algorithms if the change of the

objective values in two consecutive iterations is smaller than 10−5 or the iteration numbers larger

than 105. The experimental setup is summarized as follows:

1. MixedNorm: The proposed multi-task learning formulation with the least squares loss. The trace-

norm constraint parameter is tuned in {10−2× i}10i=1 ∪{10−1× i}10i=2 ∪{2× i}
p
i=1, where p = xk/2y

and k is the label number; the one-norm regularization parameter is tuned in {10−3×i}10i=1∪{10−2×

i}10i=2 ∪ {10−1 × i}10i=2 ∪ {2× i}10i=1 ∪ {40× i}20i=1.

2. OneNorm: The formulation of the least squares loss with the one-norm regularization. The one-

norm regularization parameter is tuned in {10−3 × i}10i=1 ∪ {10−2 × i}10i=2 ∪ {10−1 × i}10i=2 ∪ {2 ×

i}10i=1 ∪ {40× i}20i=1.

3. TraceNorm: The formulation of the least squares loss with the trace-norm constraint. The trace-

norm constraint parameter is tuned in {10−2× i}10i=1 ∪{10−1× i}10i=2 ∪{2× i}
p
i=1, where p = xk/2y

and k denotes the label number.

4. ASO: The alternating structure optimization algorithm [16]. The regularization parameter is tuned

in {10−3 × i}10i=1 ∪ {10−2 × i}10i=2 ∪ {10−1 × 2}10i=1 ∪ {2× i}10i=1 ∪ {40× i}20i=1; the dimensionality of

the shared subspace is tuned in {2× i}pi=1, where p = xk/2y and k denotes the label number.
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5. IndSVM: Independent support vector machines. The regularization parameter is tuned in {10−i}3i=1∪

{2× i}50i=1 ∪ {200× i}20i=1.

6. RidgeReg: Ridge regression. The regularization parameter is tuned in {10−3 × i}10i=1 ∪ {10−2 ×

i}10i=2 ∪ {10−1 × 2}10i=1 ∪ {2× i}10i=1 ∪ {40× i}20i=1.

The averaged performance (with standard deviation) of the competing algorithms are pre-

sented in Table 4.2 and Table 4.3. We have the following observations: (1) MixedNorm achieves the

best performance among the competing algorithms on all benchmark data sets in this experiment,

which gives strong support for our rationale of improving the generalization performance by learning

the sparse and low-rank patterns simultaneously from multiple tasks; (2) TraceNorm outperforms

OneNorm on Scene and Yeast data sets, which implies that the shared low-rank structure may be

important for image and gene classification tasks; meanwhile, OneNorm outperforms TraceNorm on

MediaMill and yahoo webpage data sets, which implies that sparse discriminative features may be

important for multimedia learning problems; (3) the multi-task learning algorithms in our experiments

outperform SVM and RidgeReg, which verifies the effect of improved generalization performance via

multi-task learning.

Sensitivity Study

We conduct sensitivity studies on the proposed multi-task learning formulation, and study how the

training ratio and the task number affect its generalization performance.

Effect of the training ratio We use Scene data for this experiment. We vary the training ratio in

the set {0.1× i}9i=1 and record the obtained generalization performance for each training ratio. The

experimental results are depicted in Figure 4.3. We can observe that (1) for all of the compared

algorithms, the resulting generalization performance improves with the increase of the training ratio;

(2) MixedNorm outperforms other competing algorithms in all cases in this experiment; (3) when the

training ratio is small (e.g., smaller than 0.5), multi-task learning algorithms can significantly improve

the generalization performance compared to IndSVM and RidgeReg; on the other hand, when the

training ratio is large, all competing algorithms achieve comparable performance. This is consistent

with previous observations that multi-task learning is most effective when the training size is small.

Effect of the task number We use MediaMill data for this experiment. We generate 5 data sets by

randomly sampling 8000 data points with the task number set at 20, 40, 60, 80, 100, respectively; for

each data set, we set the training and test ratio at 1 : 9 and record the average generalization per-
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Table 4.2: Average performance (with standard derivation) comparison of six competing algorithms
on three data sets in terms of average AUC (top section), Macro F1 (middle section), and Micro F1
(bottom section). All parameters of the six methods are tuned via cross-validation, and the reported
performance is averaged over five random repetitions.

Data Scene Yeast References
(n, d, m) (2407, 294, 6) (2417, 103, 14) (7929, 26397, 15)

MixedNorm 91.602± 0.374 79.871± 0.438 77.526± 0.285
OneNorm 87.846± 0.193 65.602± 0.842 75.444± 0.074

Average TraceNorm 90.205± 0.374 76.877± 0.127 71.259± 0.129
AUC ASO 86.258± 0.981 64.519± 0.633 75.960± 0.104

IndSVM 84.056± 0.010 64.601± 0.056 73.882± 0.244
RidgeReg 85.209± 0.246 65.491± 1.160 74.781± 0.556

MixedNorm 60.602± 1.383 55.624± 0.621 37.135± 0.229
OneNorm 55.061± 0.801 42.023± 0.120 36.579± 0.157

Macro TraceNorm 57.692± 0.480 52.400± 0.623 35.562± 0.278
F1 ASO 56.819± 0.214 45.599± 0.081 34.462± 0.315

IndSVM 54.253± 0.078 38.507± 0.576 31.207± 0.416
RidgeReg 53.281± 0.949 42.315± 0.625 32.724± 0.190

MixedNorm 64.392± 0.876 56.495± 0.190 59.408± 0.344
OneNorm 59.951± 0.072 47.558± 1.695 58.798± 0.166

Micro TraceNorm 61.172± 0.838 54.172± 0.879 57.497± 0.130
F1 ASO 59.015± 0.124 45.952± 0.011 55.406± 0.198

IndSVM 57.450± 0.322 52.094± 0.297 54.875± 0.185
RidgeReg 56.012± 0.144 46.743± 0.625 53.713± 0.213

Table 4.3: Average performance (with standard derivation) comparison of six competing algorithms
on three data sets in terms of average AUC (top section), Macro F1 (middle section), and Micro F1
(bottom section). All parameters of the six methods are tuned via cross-validation, and the reported
performance is averaged over five random repetitions.

Data Science MediaMill1 MediaMill2
(n, d, m) (6345, 24002, 22) (8000, 120, 80) (8000, 120, 100)

MixedNorm 75.746± 1.423 72.571± 0.363 65.932± 0.321
OneNorm 74.456± 1.076 70.453± 0.762 64.219± 0.566

Average TraceNorm 71.478± 0.293 69.469± 0.425 60.882± 1.239
AUC ASO 75.535± 1.591 71.067± 0.315 65.444± 0.424

IndSVM 70.220± 0.065 67.088± 0.231 57.437± 0.594
RidgeReg 69.177± 0.863 66.284± 0.482 56.605± 0.709

MixedNorm 38.281± 0.011 9.706± 0.229 7.981± 0.011
OneNorm 37.981± 0.200 8.579± 0.157 6.447± 0.133

Macro TraceNorm 36.447± 0.055 8.562± 0.027 6.765± 0.039
F1 ASO 36.278± 0.183 8.023± 0.196 6.150± 0.023

IndSVM 35.175± 0.177 6.207± 0.410 5.175± 0.177
RidgeReg 35.066± 0.196 7.724± 0.190 5.066± 0.096

MixedNorm 52.619± 0.042 61.426± 0.062 60.117± 0.019
OneNorm 52.733± 0.394 60.594± 0.026 59.221± 0.39

Micro TraceNorm 49.124± 0.409 59.090± 0.117 58.317± 1.01
F1 ASO 49.616± 0.406 59.415± 0.005 59.079± 1.72

IndSVM 48.574± 0.265 57.825± 0.272 56.525± 0.317
RidgeReg 47.454± 0.255 57.752± 0.210 56.982± 0.455
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Figure 4.3: Performance comparison of six multi-task learning algorithms with different training ratios
in terms of average AUC (left plot), Macro F1 (middle plot), and Micro F1 (right plot). The index on
x-axis corresponds to the training ratio varying from 0.1 to 0.9.

formance of the multi-task learning algorithms over 5 random repetitions. The experimental results

are depicted in Figure 4.4. We can observe that (1) for all of the compared algorithms, the achieved

performance decreases with the increase of the task numbers; (2) MixedNorm outperforms or per-

form competitively compared to other algorithms with different task numbers; (3) all of the specific

multi-task learning algorithms outperform IndSVM and RidgeReg. Note that the learning problem

becomes more difficult as the number of the tasks increases, leading to decreased performance for

both multi-task and single-task learning algorithms. We only present the performance comparison

in terms of Macro/Micro F1; we observe a similar trend in terms of average AUC in the experiments.
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Figure 4.4: Performance comparison of the six competing multi-task learning algorithms with differ-
ent numbers of tasks in terms of Macro F1 (top plot) and Micro F1 (bottom plot).

Comparison of PG and AG

We empirically compare the projected gradient algorithm (PG) in Algorithm 7 and the accelerated

projected gradient algorithm (AG) in Algorithm 8 using Scene data. We present the comparison

results of setting γ = 1, τ = 2 and γ = 6, τ = 4 in Eq. (4.5); for other parameter settings, we

observe similar trends in our experiments.
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Figure 4.5: Convergence rate comparison between PG and AG: the relationship between the objec-
tive value of Eq. (4.5) and the iteration number (achieved via PG and AG, respectively). For the left
plot, we set γ = 1, τ = 2; for the right plot, we set γ = 6, τ = 4.

Comparison on convergence rate We apply PG and AG for solving Eq. (4.5) respectively, and

compare the relationship between the obtained objective values and the required iteration numbers.

The experimental setup is as follows: we terminate the PG algorithm when the change of objective

values in two successive steps is smaller than 10−5 and record the obtained objective value; we then

use such a value as the stopping criterion in AG, that is, we stop AG when AG attains an objective

value equal to or smaller than the one attained by PG. The experimental results are presented in

Figure 4.5. We can observe that AG converges much faster than PG, and their respective conver-

gence speeds are consistent with the theoretical convergence analysis in Section 6.3, that is, PG

converges at the rate of O(1/k) and AG at the rate of O(1/k2), respectively.
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Figure 4.6: Comparison of PG and AG in terms of the computation time in seconds (left column)
and iteration number (right column) with different stopping criteria. The x-axis indexes the stopping
criterion from 10−1 to 10−10. Note that we stop PG or AG when the change of the objective value in
Eq. (4.5) is smaller than the value of the stopping criterion. For the first row, we set γ = 1, τ = 2; for
the second row, we set γ = 6, τ = 4.
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Comparison on computation cost We compare PG and AG in terms of computation time (in sec-

onds) and iteration numbers (for attaining convergence) by using different stopping criteria {10−i}10i=1.

We stop PG and AG if the stopping criterion is satisfied, that is, the change of the objective values in

two successive steps is smaller than 10−i. The experimental results are presented in Table 4.4 and

Figure 4.6. We can observe from these results that (1) PG and AG require higher computation costs

(more computation time and larger numbers of iterations) for a smaller value of the stopping criterion

(higher accuracy in the optimal solution); (2) in general, AG requires lower computation costs than

PG in this experiment; such an efficiency improvement is more significant when a smaller value is

used in the stopping criterion.

Table 4.4: Comparison of PG and AG in terms of computation time (in seconds) and iteration number
using different stopping criteria.

γ = 1, τ = 2 γ = 6, τ = 4
stopping iteration time iteration time
criteria PG AG PG AG PG AG PG AG
10−1 2 2 0.6 0.4 3 3 0.5 0.4
10−2 4 4 0.6 0.4 5 4 0.6 0.5
10−3 17 15 0.6 0.5 722 110 8.4 1.6
10−4 9957 537 116.1 6.5 1420 144 16.2 1.9
10−5 19103 683 223.7 8.3 1525 144 17.3 1.9
10−6 21664 683 253.0 8.3 1525 259 17.4 3.1
10−7 31448 1199 367.9 14.3 1527 271 18.3 3.3
10−8 44245 1491 521.3 18.4 1570 287 19.7 3.5
10−9 58280 1965 690.5 23.0 2062 365 23.1 4.2
10−10 73134 3072 885.4 35.9 2587 365 29.1 4.4

Automated Annotation of the Gene Expression Pattern Images

We apply the proposed multi-task learning formulation for the automated annotation of the Drosophila

gene expression pattern images from the FlyExpress2 database.

We preprocess the Drosophila gene expression pattern images (of the standard size 128×

320) from the FlyExpress database following the procedures in [27]. The Drosophila images are from

16 specific stages, which are then grouped into 6 stage ranges (1 ∼ 3, 4 ∼ 6, 7 ∼ 8, 9 ∼ 10, 11 ∼ 12,

13 ∼ 16). We manually annotate the image groups (based on the genes and the developmental

stages) using the structured CV terms. Each image group is then represented as a feature vector

based on the bag-of-words and the soft-assignment sparse coding. Note that the SIFT (scale-

invariant feature transform) features [28] are extracted from the images with the patch size set at

16 × 16 and the number of visual words in sparse coding set at 2000. The first stage range only

2http://www.flyexpress.net/
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Table 4.5: Performance comparison of six competing algorithms for the gene expression pattern
images annotation (10 CV terms) in terms of average AUC (top section), Macro F1 (middle section),
and Micro F1 (bottom section). All parameters of the six methods are tuned via cross-validation, and
the reported performance is averaged over five random repetitions. Note that n, d, and m denote
the sample size, dimensionality, and term (task) number, respectively.

Stage Range 4 ∼ 6 7 ∼ 8 9 ∼ 10 11 ∼ 12 13 ∼ 16
(n, d, m) (925, 2000, 10) (797, 2000, 10) (919, 2000, 10) (1622, 2000, 10) (2228, 2000, 10)

MixedNorm 75.44± 0.87 75.55± 0.42 77.18± 0.50 83.82± 0.93 85.54± 0.25
OneNorm 74.98± 0.12 73.80± 0.55 75.80± 0.24 82.78± 0.27 84.77± 0.20

Avg. AUC TraceNorm 73.04± 0.79 74.06± 0.46 76.71± 0.72 81.77± 1.10 83.64± 0.27
ASO 72.01± 0.36 73.56± 0.97 75.89± 0.24 82.97± 0.15 83.06± 0.80

IndSVM 71.00± 0.53 72.13± 0.70 73.58± 0.48 79.01± 0.58 82.06± 1.04
RidgeReg 72.46± 0.15 72.51± 0.82 73.10± 0.38 80.83± 0.67 82.02± 0.15

MixedNorm 43.71± 0.32 48.31± 0.56 53.11± 0.56 61.11± 0.58 61.81± 0.40
OneNorm 42.24± 0.14 47.40± 0.23 51.04± 0.10 59.36± 0.60 61.02± 0.10

Mac. F1 TraceNorm 41.38± 0.36 46.51± 0.67 51.13± 0.95 61.05± 0.78 60.15± 0.45
ASO 42.13± 0.63 47.83± 1.55 51.18± 0.41 61.01± 0.55 60.58± 0.19

IndSVM 40.88± 0.49 46.73± 0.51 50.28± 0.65 59.82± 0.83 59.62± 0.94
RidgeReg 41.65± 0.45 46.91± 0.94 50.69± 0.77 59.46± 0.95 60.59± 0.79

MixedNorm 46.98± 0.90 62.73± 0.93 63.46± 0.07 69.31± 0.37 67.13± 0.41
OneNorm 44.55± 0.38 60.02± 0.56 61.78± 0.10 68.54± 0.17 66.30± 0.55

Mic. F1 TraceNorm 43.88± 0.73 61.29± 0.78 61.33± 1.04 68.68± 0.27 66.37± 0.26
ASO 44.77± 0.49 60.47± 0.23 62.26± 0.23 68.60± 0.61 66.25± 0.18

IndSVM 42.05± 0.61 60.09± 0.78 60.57± 0.75 67.08± 0.99 65.95± 0.80
RidgeReg 43.63± 0.41 59.95± 0.75 60.59± 0.66 66.87± 0.11 65.67± 1.10

contains 2 CV terms and we do not report the performance for this stage range. For other stage

ranges, we consider the top 10 and 20 CV terms that appears the most frequently in the image

groups and treat the annotation of each CV term as one task. We generate 10 subsets for this

experiment, and randomly partition each subset into training and test sets using the ratio 1 : 9. Note

that the parameters in the competing algorithms are tuned as the experimental setting in Section 4.7.

We report the averaged AUC (Avg. AUC), Macro F1 (Mac. F1), and Micro F1 (Mic. F1)

over 10 random repetitions in Table 4.5 (for 10 CV terms) and Table 4.6 (for 20 CV terms), respec-

tively. We can observe that MixedNorm achieves the best performance among the six algorithms

on all subsets. In particular, MixedNorm outperforms the multi-task learning algorithms: OneNorm,

TraceNorm, and ASO; MixedNorm also outperforms the single-task learning algorithms: IndSVM

and RidgeReg. The experimental results demonstrate the effectiveness of learning the sparse and

low-rank patterns from multiple tasks for improved generalization performance.

4.8 Summary

We consider the problem of learning sparse and low-rank patterns from multiple related tasks. We

propose a multi-task learning formulation in which the sparse and low-rank patterns are induced

respectively by a cardinality regularization term and a low-rank constraint. The proposed formula-
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Table 4.6: Performance comparison of six competing algorithms for the gene expression pattern
images annotation (20 CV terms).

Stage Range 4 ∼ 6 7 ∼ 8 9 ∼ 10 11 ∼ 12 13 ∼ 16
(n, d, m) (1023, 2000, 20) (827, 2000, 20) (1015, 2000, 20) (1940, 2000, 20) (2476, 2000, 20)

MixedNorm 76.27± 0.53 72.03± 0.63 73.97± 1.10 82.27± 0.42 82.16± 0.16
OneNorm 75.13± 0.03 70.95± 0.14 72.49± 1.00 81.73± 0.36 81.03± 0.08

Avg. AUC TraceNorm 74.69± 0.39 69.43± 0.46 71.59± 0.79 81.53± 0.16 80.88± 1.10
ASO 74.86± 0.33 70.15± 0.31 71.37± 0.99 81.45± 0.26 80.79± 0.23

IndSVM 73.82± 0.78 69.74± 0.19 70.84± 0.85 80.86± 0.56 79.94± 0.19
RidgeReg 74.66± 1.44 70.77± 0.62 69.36± 1.44 80.40± 0.43 78.29± 0.42

MixedNorm 31.90± 0.11 31.13± 0.68 32.28± 1.13 43.48± 0.39 43.44± 0.60
OneNorm 30.48± 0.12 30.07± 0.56 30.50± 1.13 41.89± 0.24 42.64± 0.47

Mac. F1 TraceNorm 29.22± 0.31 30.24± 0.78 31.28± 0.54 42.07± 0.67 41.11± 0.52
ASO 30.51± 0.94 29.37± 0.56 31.46± 1.33 42.34± 1.08 41.55± 0.67

IndSVM 29.47± 0.46 28.85± 0.62 30.03± 1.68 41.63± 0.58 40.80± 0.66
RidgeReg 28.92± 1.24 28.76± 0.95 29.94± 1.84 41.51± 0.39 40.84± 0.40

MixedNorm 42.50± 0.63 57.04± 0.13 57.37± 0.71 61.97± 0.51 56.75± 0.40
OneNorm 40.80± 0.48 56.55± 0.22 56.82± 0.04 60.59± 0.32 55.87± 0.11

Mic. F1 TraceNorm 41.26± 1.16 56.47± 0.27 55.37± 0.38 59.27± 0.93 54.08± 0.51
ASO 40.80± 0.53 56.88± 0.13 55.65± 0.33 59.74± 0.18 54.83± 0.67

IndSVM 39.24± 0.82 55.40± 0.15 55.75± 1.70 58.33± 0.53 53.61± 0.36
RidgeReg 38.46± 0.41 56.08± 0.46 54.23± 0.85 59.13± 0.67 53.75± 0.31

tion is non-convex; we convert it into its tightest convex surrogate and then propose to apply the

general projected gradient scheme to solve such a convex surrogate. We present the procedures

for computing the projected gradient and ensuring the global convergence of the projected gradient

scheme. Moreover, we show that the projected gradient can be obtained via solving two simple con-

vex subproblems. We also present two detailed projected gradient based algorithms and analyze

their rates of convergence. Additionally, we illustrate the use of the presented projected gradient

algorithms for the proposed multi-task learning formulation using the least squares loss. Our ex-

periments demonstrate the effectiveness of the proposed multi-task learning formulation and the

efficiency of the proposed projected gradient algorithms.
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Chapter 5

Integrating Low-Rank and Group-Sparse Structures for Robust Multi-Task Learning

5.1 Introduction

In many real-world applications involving multiple tasks, it is usually the case that a group of tasks

are related while some other tasks are irrelevant to such a group. Simply pooling all tasks together

and learning them simultaneously under a presumed structure may degrade the overall learning

performance. It is thus desirable to identify irrelevant (outlier) tasks in the development of the multi-

task learning algorithms. Learning multiple tasks under this setting is usually referred to as robust

multi-task learning [80].

Recently robust multi-task learning has received increasing attention in the areas of data

mining and machine learning. In [3, 14, 15], the task clustering (TC) approach is proposed for dis-

covering the common structures in multiple learning tasks. The main idea behind the TC algorithms

is to cluster similar tasks into different groups and constrain the tasks from the same group to share

the same model representation or parameters. In [80, 81], multivariate student t-processes and

their generalization are proposed for distinguishing good tasks from noisy or outlier tasks. The

t-processes-based MTL algorithms model the relationship of multiple tasks using a task covari-

ance matrix and they are robust by nature as t-process is implicitly an infinite Gaussian mixture.

In [82, 83], the block-sparse structures (ℓ1,∞-norm or ℓ2,1-nrom) are employed to extract essential

features shared across the tasks and hence improve the robustness of the learning algorithms.

In this chapter, we propose a robust multi-task learning (RMTL) algorithm which learns

multiple tasks simultaneously as well as identifies the irrelevant (outlier) tasks. Specifically, our pro-

posed RMTL algorithm captures the relationship of multiple related tasks using a low-rank structure

and meanwhile identifies the outlier tasks using a group-sparse structure. The proposed RMTL al-

gorithm is formulated as a non-smooth convex (unconstrained) optimization problem in which the

least squares loss is regularized by a nonnegative linear combination of the trace norm and the

ℓ1,2-norm. The optimization problems involving the trace norm and the ℓ1,2-norm can be routinely

reformulated as semi-definite programs or second-order cone programs, both of which, however, are

not scalable to large-scale data. We propose to adopt the accelerated proximal method (APM) for

solving the proposed RMTL formulation efficiently. One key component in applying APM for solving

RMTL is the computation of the associated proximal operator, which is a non-smooth optimization

problem involving two optimization variables. The associated proximal operator can be shown to
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admit an analytic solution. We also conduct theoretical analysis on the performance bound of the

composite regularization in RMTL. We first present key properties of the optimal solution to RMTL

(Lemma 6.4.4). We then present an assumption associated with the prescribed training samples

and the geometric structures of the matrices of interest; based on this assumption, we derive a

performance bound for the combined regularization for multi-task regression (Theorem 6.4.1). We

conduct simulations on benchmark data sets to demonstrate the effectiveness and efficiency of the

proposed algorithm.

5.2 Robust MTL Framework

Assume that we are given m (regression) learning tasks. Each task is associated with a set of

training data

{(xi1, yi1), · · · , (xini
, yini

)} ⊂ Rd × R, i ∈ Nm, (5.1)

and a linear predictive function fi as

fi(x
i
j) = wT

i x
i
j ≈ yij , xij ∈ Rd, yij ∈ R, (5.2)

where i and j index the task and the training sample respectively, wi is the weight vector, ni and d

denote the training sample size and the feature dimensionality respectively.

We consider the multi-task learning setting where multiple tasks are divided into two groups,

i.e., the related tasks group and the irrelevant (outlier) tasks group. We consider a composite struc-

ture which couples the related tasks using a low-rank structure and identifies the outlier tasks using

a group-sparse structure. Denote the transformation matrix of the m tasks by W = [w1, · · · , wm] ∈

Rd×m. Specifically, W is given by the direct summation of a low-rank matrix L = [l1, · · · , lm] ∈

Rd×m (of a smaller set of basis factors), and a group-sparse (column-sparse) matrix S = [s1, · · · , sm] ∈

Rd×m (of zero-vectors in the columns). The weight vector of the i-th task can be expressed as

wi = li + si, li ∈ Rd, si ∈ Rd, i ∈ Nm, (5.3)

where li and si are from the aforementioned low-rank structure and the group-sparse structure,

respectively.

We propose a robust multi-task learning formulation (RMTL) to learn multiple tasks simul-

taneously as well as identify the irrelevant outlier tasks. Mathematically, RMTL is formulated as

min
L,S

L
(
(li + si)

Txij , y
i
j

)
+ α∥L∥∗ + β∥S∥1,2, (5.4)

83



where the trace norm regularization term encourages the desirable low-rank structure in the matrix

L (for coupling the related tasks), and the ℓ1,2-norm regularization term induces the desirable group-

sparse structure in the matrix S (for identifying the outlier tasks), α and β are non-negative trade-off

parameters, and L(·, ·) represents the commonly used least squares loss function. Note that the

empirical evaluation of the (averaged) least square loss of the m tasks over the prescribed training

data can be expressed as

L
(
(li + si)

Txij , y
i
j

)
=

m∑
i=1

ni∑
j=1

1

mni

(
(li + si)

Txij − yij
)2
. (5.5)

Our motivation behind the proposed RMTL formulation in Eq. (5.4) is as follows: if the i-th task is

from the related tasks group, si is expected to be a zero-vector and hence wi obeys the specified

low-rank structure constraint; on the other hand, if the i-th task is from the outlier tasks group, si is

expected to be non-zero and wi is equal to a direct sum of li and the non-zero si.

The RMTL formulation in Eq. (5.4) is an unconstrained convex optimization problem with

a non-smooth objective function. Such a problem is difficult to solve directly due to the non-

smoothness in the trace norm and the ℓ1,2-norm regularization terms.

The proposed RMTL formulation in Eq. (5.4) subsumes several representative algorithms

as special cases. As β → +∞, RMTL is degenerated into

min
L

m∑
i=1

ni∑
j=1

1

mni

(
lTi x

i
j − yij

)2
+ α∥L∥∗. (5.6)

The formulation in Eq. (5.6) is essentially the least squares regression with trace norm regularization,

in which multiple learning tasks are coupled via a low-rank structure. On the other hand, as α→∞,

RMTL is degenerated into

min
S

m∑
i=1

ni∑
j=1

1

mni

(
sTi x

i
j − yij

)2
+ β∥S∥1,2. (5.7)

The formulation in Eq. (5.7) is essentially a variant of the ridge regression with the smooth term∑m
i=1 ∥si∥2 replaced by the non-smooth term

∑m
i=1 ∥si∥. In such a formulation, the multiple tasks

are decoupled and each task can be learned (optimized) via

min
si

1

mni

ni∑
j=1

(
sTi x

i
j − yij

)2
+ β∥si∥2.

Note that similar low-rank and group-sparse structures are studied from a different perspective in [84,

85], which focus on decomposing a given data matrix into a unique sum of a low-rank structure and

a column-sparse structure and providing a theoretical guarantee for existence and uniqueness of

the decomposition.
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5.3 Accelerated Proximal Method

In this section, we consider to solve the RMTL formulation in Eq. (5.4) using the accelerated prox-

imal method (APM) [45, 57, 71]. APM has attracted extensive attentions in the machine learning

and data mining communities [75, 86–90] due to its optimal convergence rate among all first-order

techniques and its ability of dealing with large-scale non-smooth optimization problems. Note that

in this chapter, we focus on discussing the key ingredient of APM, i.e, the proximal operator and its

efficient computation; the detailed description of APM can be found in [45,57,71].

Proximal Operator

For the optimization problem in Eq. (5.4), we symbolically denote its variables by

Z =

 L

S

 , L ∈ Rd×m, S ∈ Rd×m,

and denote the smooth and non-smooth components of its objective function respectively by

f(Z) = L
(
(li + si)

Txij , y
i
j

)
, g(Z) = α∥L∥∗ + β∥S∥1,2. (5.8)

To solve Eq. (5.4), APM maintains two sequences of variables: a feasible solution sequence {Zk}

and a searching point sequence {Ẑk}. The general scheme of APM can be described as below: at

the k-th iteration of APM, the solution point Zk+1 can be computed via

Zk+1 = argmin
Z

γk
2

∥∥∥∥Z − (Ẑk −
1

γk
∇f(Ẑk)

)∥∥∥∥2
F

+ g(Z), (5.9)

where Ẑk denotes a searching point constructed from a linear combination of Zk and Zk−1 from

previous iterations, and ∇f(Ẑk) denotes the derivative of the smooth component f(·) in Eq. (5.8)

at Ẑk, γk specifies the step size which can be appropriately determined by iteratively increasing its

value until the inequality

f(Zk+1) ≤ f(Ẑk) + ⟨∇f(Ẑk), Zk+1 − Ẑk⟩+
γk
2
∥Zk+1 − Ẑk∥2F , (5.10)

is satisfied. The procedure in Eq. (6.7) is commonly referred to as the proximal operator [91]. The

efficient computation of the proximal operator is critical for the practical convergence of APM, as it

is involved in each iteration of the APM algorithm.
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Proximal Operator Computation

For the optimization problem in Eq. (5.4), its proximal operator can be expressed as an optimization

problem of the general form

min
Lz,Sz

∥Lz − Lẑ∥2F + ∥Sz − Sẑ∥2F + α̂∥Lz∥∗ + β̂∥Sz∥1,2, (5.11)

where α̂ = 2α
γk

and β̂ = 2β
γk

. It can be easily verified that the optimization of Lz and Sz in Eq. (5.11)

are decoupled. Moreover, the optimal solution to Eq. (5.11) admits an analytic form as presented

below.

Computation of Lz The optimal Lz to Eq. (5.11) can be obtained by solving the following optimiza-

tion problem:

min
Lz

∥Lz − Lẑ∥2F + α̂∥Lz∥∗. (5.12)

The computation procedure above is equal to the matrix shrinkage operator discussed in [92,93]. In

essence it applies soft-thresholding to the non-zero singular values [94] of Lẑ as summarized in the

following theorem.

Theorem 5.3.1. Given an arbitrary Lẑ in Eq. (5.12), let rank(Lẑ) = r and denote the singular value

decomposition (SVD) of Lẑ in the reduced form as

Lẑ = UẑΣẑV
T
ẑ , Σẑ = diag ({σi}ri=1)

where, Uẑ ∈ Rd×r and Vẑ ∈ Rm×r consist of orthonormal columns, Σẑ ∈ Rr×r is diagonal, and

{σi}ri=1 represent the non-zero singular values. Then the optimal L∗
z to Eq. (5.12) is given by

L∗
z = Uẑ diag

({
σi −

1

2
α̂

}
+

)
V T
ẑ ,

where {e}+ = max(e, 0).

The dominating cost in solving Eq. (5.12) lies in the compact SVD operation on the matrix

Lẑ ∈ Rd×m (m≪ d in general MTL settings).

Computation of Sz The optimal Sz to Eq. (5.11) can be obtained by solving the following optimiza-

tion problem:

min
Sz

∥Sz − Sẑ∥2F + β̂∥Sz∥1,2. (5.13)
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It can be easily verified that in Eq. (5.13) the column vectors of Sz can be optimized separately.

Specifically, each vector of the optimal Sz to Eq. (5.13) can be obtained via solving a subproblem in

the form

min
s
∥s− ŝ∥22 + β̂∥s∥2. (5.14)

It can be verified that the optimization problem above admits an analytic solution [86] as summarized

in the following lemma.

Lemma 5.3.1. Let s∗ be the optimal solution to the optimization problem in Eq. (5.14). Then s∗ is

given by

s∗ =

 ŝ
(
1− β̂

2∥ŝ∥2

)
∥ŝ∥2 > β̂

2

0 0 ≤ ∥ŝ∥2 ≤ β̂
2

.

Proof. Denote the objective function in Eq. (5.14) by z(s) as

z(s) = ∥s− ŝ∥22 + β̂∥s∥2. (5.15)

It is known [63] that s∗ minimizes z(s) if and only if 0 is a subgradient of the functional z(s) at the

point s∗, i.e.,

0 ∈ ∂z(s∗) = 2(s∗ − ŝ) + β̂∂∥s∗∥2, (5.16)

where ∂∥s∗∥2 denotes the subdifferential of ∥s∥2 at s∗. Moreover, we can verify [73] that

∂∥s∥2 =

{
v ∈ Rd : v =

s

∥s∥2
if s ̸= 0; ∥v∥2≤ 1 if s = 0

}
,∀s ∈ Rd.

If s∗ ̸= 0, it follows from Eq. (5.16) that

2 (s∗ − ŝ) + β̂
s∗

∥s∗∥
= 0. (5.17)

By rearranging Eq. (5.17) into the equality s∗(2 + β̂/∥s∗∥2) = 2ŝ and taking the Euclidean norm for

both sides, we have

∥s∗∥2 = ∥ŝ∥2 −
β̂

2
, ∥ŝ∥2 >

β̂

2
.

It follows that

s∗ = ŝ

(
1− β̂

2∥ŝ∥2

)
, z(s∗) = β̂∥ŝ∥2 −

β̂2

4
. (5.18)

If s∗ = 0, we have

s∗ = 0, z(s∗) = ∥ŝ∥22. (5.19)

Since z(s) is strictly convex with respect to the variable s, the problem in Eq. (5.14) admits a unique

minimizer. From Eqs. (5.18) and (5.19), we have β̂∥ŝ∥2− β̂2

4 −∥ŝ∥
2
2 ≤ 0. We complete the proof.
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The computation cost of solving Eq. (5.13) is relatively small compared to the cost of solving

Eq. (5.12).

Main Algorithm

The pseudo-codes of the APM algorithm are presented in Algorithm 11. It is well known [45,57,71]

that Algorithm 11 globally converges at the rate of O( 1
k2 ), which is optimal among all first-order

methods. In Algorithm 11, k denotes the iteration index, (Lk, Sk) denotes the feasible solution pair,

(L̃k, S̃k) denotes the searching point pair, and the stopping criterion can be set as: the change of

the objective value of RMTL in two successive iterations is smaller than some pre-specified positive

value ϵ.

1: Input: L0 ∈ Rd×m, S0 ∈ Rd×m, γ0 ∈ R, k̂ ∈ R.
2: Output: Lk ∈ Rd×m, Sk ∈ Rd×m.
3: Set L1 = L0, S1 = S0, t−1 = 0, and t0 = 1.
4: for k = 1, 2, · · · , k̂ do
5: Compute αk = tk−2−1

tk−1
.

6: Compute (L̃k, S̃k) as
7: L̃k = (1 + αk)Lk − αkLk−1,
8: S̃k = (1 + αk)Sk − αiSk−1.
9: while (true)

10: Compute (Lk, Sk) via Eqs. (6.7) and (5.11).
11: if Eq. (5.10) is satisfied then exit the while loop
12: else update γk as γk ← γk × 2.
13: end-if
14: end-while
15: if stopping criterion satisfied then exit the loop.

16: Update tk = 1
2 (1 +

√
1 + 4t2k−1).

17: end-for
Algorithm 11: Accelerated Proximal Method for RMTL

5.4 Theoretical Analysis

In this section, we derive a performance bound for the proposed RMTL formulation in Eq. (5.4). This

performance bound can be used to theoretically evaluate how well the integration of the low-rank

structure and the group-sparse structure can estimate the multiple tasks (the ground truth of the

linear predictive functions). Note that in the following analysis, for simplicity we assume that the

training sample sizes for all tasks are the same; the derivation below can be easily extended to the

setting where the training sample size for each task is different.
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Assume that the linear predictive function associated with the i-th task satisfies

yij = fi(x
i
j) + δij = wT

i x
i
j + δij , i ∈ Nm, j ∈ Nn, (5.20)

where {(xij , yij)} are the training data pairs of the i-th task, and δij ∼ N (0, σ2
δ ) is a stochastic noise

variable. For the i-th task, denote its training data matrix Xi and its label vector yi respectively by

Xi = [xi1, · · · , xin] ∈ Rd×n, yi = [yi1, · · · , yin]T ∈ Rn, i ∈ Nm. (5.21)

Denote the empirical evaluation of the i-th task fi over the training data {xij} and the associated

noise vector δi respectively by

f̂i = [fi(x
i
1), · · · , fi(xin)]T ∈ Rn, δi = [δi1, · · · , δin]T ∈ Rn. (5.22)

It follows that Eq. (6.1) can be expressed in a compact form as

yi = f̂i + δi, i ∈ Nm. (5.23)

Moreover, the optimization problem in Eq. (5.4) can be rewritten as

(L̂z, Ŝz) = argmin
L,S

1

mn

m∑
i=1

∥XT
i (li + si)− yi∥22 + α∥L∥∗ + β∥S∥1,2, (5.24)

where L̂z = [l̂1, · · · , l̂m] and Ŝz = [ŝ1, · · · , ŝm] are the optimal solution pair obtained via solving

Eq. (5.24).

Basic Properties of the Optimal Solution

We present some basic properties of the optimal solution pair defined in Eq. (5.24); these properties

are important building blocks for our following theoretical analysis. We first define two operators,

namely Q and its complement Q⊥, on an arbitrary matrix pair (of the same size), based on Lemma

3.4 in [94].

Lemma 5.4.1. Given any L and L̂ of the same size d×m, let rank(L) = r ≤ min(d,m) and denote

the SVD of L as

L = U

 Σ 0

0 0

V T ,

where U ∈ Rd×d and V ∈ Rm×m are orthogonal, and Σ ∈ Rr×r is diagonal consisting of the

non-zero singular values on its main diagonal. Let

UT (L̂− L)V =

 M11 M12

M21 M22

 ,
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where M11 ∈ Rr×r, M12 ∈ Rr×(m−r), M21 ∈ R(d−r)×r, and M22 ∈ R(d−r)×(m−r). Define Q and

Q⊥ on L̂− L as

Q(L̂− L) = U

 M11 M12

M21 0

V T ,Q⊥(L̂− L) = U

 0 0

0 M22

V T .

Then rank(Q(L̂− L)) ≤ 2r, LQT
⊥(L̂− L) = LTQ⊥(L̂− L) = 0.

The results in Lemma 6.4.1 imply a condition under which the trace norm on a matrix pair

is additive. From Lemma 6.4.1 we can verify

∥L+Q⊥(L̂− L)∥∗ = ∥L∥∗ + ∥Q⊥(L̂− L)∥∗, (5.25)

for arbitrary L and L̂ of the same size. As a direct consequence of Lemma 6.4.1, we derive a bound

on the trace norm of the matrices of interest as summarized below.

Corollary 5.4.1. For an arbitrary matrix pair L̂ and L, the following inequality holds

∥L̂− L∥∗ + ∥L∥∗ − ∥L̂∥∗ ≤ 2∥Q(L̂− L)∥∗.

Proof. From Lemma 6.4.1, we have

L̂− L = Q(L̂− L) +Q⊥(L̂− L)

for any matrix pair L and L̂. It follows that

∥L̂∥∗ = ∥L+Q(L̂− L) +Q⊥(L̂− L)∥∗

≥ ∥L+Q⊥(L̂− L)∥∗ − ∥Q(L̂− L)∥∗

= ∥L∥∗ + ∥Q⊥(L̂− L)∥∗ − ∥Q(L̂− L)∥∗,

where the inequality above follows from the triangle inequality and the last equality above follows

from Eq. (6.33). Moreover,

∥L̂− L∥∗ + ∥L∥∗ − ∥L̂∥∗

≤ ∥L̂− L∥∗ + ∥L∥∗ −
(
∥L∥∗ + ∥Q⊥(L̂− L)∥∗ − ∥Q(L̂− L)∥∗

)
≤ 2∥Q(L̂− L)∥∗.

We complete the proof of this corollary.
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Analogous to the bound on the trace norm derived in Corollary 6.4.1, we derive a bound

on the ℓ1,2-norm of the matrices of interest. Denote by C(S) the set of indices corresponding to the

non-zero columns of the matrix S as

C(S) = {i : si ̸= 0, i ∈ Nm} , (5.26)

and by C⊥(S) the associated complement (the set of indices corresponding to the zero columns).

Denote by ŜC(S) the matrix of the same columns as Ŝ on the index set C(S) and of zero columns on

the index set C⊥(S), i.e., ŜC(S) = [s̃1, · · · , s̃m], where s̃i = ŝi if i ∈ C(S) and s̃i = 0 if i ∈ C⊥(S).

The bound on the ℓ1,2-norm is summarized below.

Lemma 5.4.2. Given a matrix pair S and Ŝ of the same size, the following inequality holds

∥Ŝ − S∥1,2 + ∥S∥1,2 − ∥Ŝ∥1,2 ≤ 2∥(Ŝ − S)C(S)∥1,2. (5.27)

Proof. From the definition of C(S) in Eq. (5.26), we have

SC⊥(S) = 0, ∥(Ŝ − S)C⊥(S)∥1,2 = ∥ŜC⊥(S)∥1,2.

It follows that

∥(Ŝ − S)C⊥(S)∥1,2 + ∥S∥1,2 − ∥Ŝ∥1,2

= ∥ŜC⊥(S)∥1,2 + ∥S∥1,2 − ∥Ŝ∥1,2

= ∥SC(S)∥1,2 − ∥ŜC(S)∥1,2

≤ ∥(S − Ŝ)C(S)∥1,2

= ∥(Ŝ − S)C(S)∥1,2.

By substituting the equation above into the left side of Eq. (5.27), we complete the proof of this

lemma.

We now present some important properties of the optimal solution in Eq. (5.24) as summa-

rized in the following lemma.

Lemma 5.4.3. Consider the optimization problem in Eq. (5.24) for m ≥ 2 and n, d ≥ 1. Let Xi and

yi be defined in Eq. (5.21), and f̂i and δi be defined in Eq. (5.22). Assume that all diagonal elements

of the matrix XiX
T
i are equal to 1 (features are normalized). Take the regularization parameters α

and β as
α√
m
,β ≥ λ, λ =

2σδ
nm

√
d+ t, (5.28)
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where t > 0 is a universal constant. Then with probability of at least 1−m exp
(
−1

2

(
t− d log

(
1 + t

d

)))
,

for a global minimizer L̂z, Ŝz in Eq. (5.24) and any L, S ∈ Rd×m, we have

1

nm

m∑
i=1

∥XT
i (l̂i + ŝi)− f̂i∥22 ≤

1

nm

m∑
i=1

∥XT
i (li + si)− f̂i∥22

+ α∥Q(L̂z − L)∥+ β∥(Ŝz − S)C(S)∥1,2, (5.29)

where l̂i and ŝi (li and si) are the i-th columns of L̂z and Ŝz (L and S), respectively.

Proof. From the definition of (L̂z, Ŝz) in Eq. (5.24), we have

1

nm

m∑
i=1

∥XT
i (l̂i + ŝi)− yi∥22 ≤

1

nm

m∑
i=1

∥XT
i (li + si)− yi∥22

α∥L∥∗ + β∥S∥1,2 − α∥L̂z∥∗ − β∥Ŝz∥1,2.

By substituting Eq. (5.23) into the inequality above and rearranging all terms, we have

1

nm

m∑
i=1

∥XT
i (l̂i+ŝi)−f̂i∥22 ≤

1

nm

m∑
i=1

∥XT
i (li+si)−f̂i∥22+α(∥L∥∗−∥L̂z∥∗)+β(∥S∥1,2−∥Ŝz∥1,2)

+
2

nm

m∑
i=1

⟨l̂i − li, Xiδi⟩+
2

nm

m∑
i=1

⟨ŝi − si, Xiδi⟩. (5.30)

Next we compute upper bounds for the terms 2
nm

∑m
i=1⟨l̂i− li, Xiδi⟩ and 2

nm

∑m
i=1⟨ŝi− si, Xiδi⟩ in

Eq. (5.30), respectively. Define a set of random events {Ai} as

Ai =

{
2

nm
∥Xiδi∥2 ≤ λ

}
, ∀i ∈ Nm.

For each Ai, define a set of random variables {vij} as

vij =
1

σδ

n∑
k=1

xijkδik, j ∈ Nd,

where xijk denotes the (j, k)-th entry of the data matrixXi. Since all diagonal elements of the matrix

XiX
T
i are equal to 1, it can be shown that {vi1, vi2, · · · , vid} are i.i.d. Gaussian variables obeying

N (0, 1) (Lemma 1 in the Appendix). We can also verify that
∑d

j=1 v
2
ij is a chi-squared random

variable with d degrees of freedom. Moreover taking λ as in Eq. (6.37), we have

Pr

(
2

nm
∥Xiδi∥2 > λ

)
= Pr

 d∑
j=1

(
n∑

k=1

xijkδik

)2

≥ λ2n2m2

4


= Pr

 d∑
j=1

v2ij ≥ d+ t

 ≤ exp

(
−1

2
µ2
d(t)

)
,
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where µd(t) =
√
t− d log

(
1 + t

d

)
(t > 0), and the last inequality above follows from a concentra-

tion inequality (Lemma 6.4.3 in the Appendix). Let A =
∩m

i=1Ai. Denote by Ac
i the complement of

each event Ai. It follows that

Pr (A) ≥ 1− Pr

(
m∪
i=1

Ac
i

)
≥ 1−m exp

(
−1

2
µ2
d(t)

)
.

Under the event A, we derive a bound on the term 2
nm

∑m
i=1⟨l̂i − li, Xiδi⟩ as

2

nm

m∑
i=1

⟨l̂i − li, Xiδi⟩ ≤
2

nm

m∑
i=1

∥l̂i − li∥2∥Xiδi∥2

≤ λ
m∑
i=1

∥l̂i − li∥2 ≤ α∥L̂z − L∥∗, (5.31)

where the first inequality above follows from Cauchy-Schwarz inequality and the second inequality

follows from

m∑
i=1

∥l̂i − li∥2 ≤

√√√√m

m∑
i=1

∥l̂i − li∥22

=
√
m∥L̂z − L∥F ≤

√
m∥L̂z − L∥∗.

Similarly under A, we also derive a bound on the term 2
nm

∑m
i=1⟨ŝi − si, Xifi⟩ as

2

nm

m∑
i=1

⟨ŝi − si, Xiδi⟩ ≤
2

nm

m∑
i=1

∥ŝi − si∥2∥Xiδi∥2

≤ β∥Ŝz − S∥1,2. (5.32)

Moreover we bound the right side of Eq.( 5.30) using the results from Eqs. (5.31) and (5.32). It

follows that

1

nm

m∑
i=1

∥XT
i (l̂i + ŝi)− f̂i∥22 ≤

1

nm

m∑
i=1

∥XT
i (li + si)− f̂i∥22+

α(∥L̂z − L∥∗ + ∥L∥∗ − ∥L̂z∥∗) + β(∥Ŝz − S∥1,2 + ∥S∥1,2 − ∥Ŝz∥1,2).

Finally by applying Corollary 6.4.1 and Lemma 5.4.2 together with the inequality above, we complete

the proof.

Performance Bound

We present a performance bound of the proposed RMTL formulation in Eq. (5.24). This bound

measures how well the multi-task learning scheme (via the integration of the low-rank structure and

the ℓ1,2-norm structure) can estimate the linear predictive functions in Eq. (6.1).
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We begin with some notations. Let X ∈ Rmd×mn be a block-diagonal matrix with its i-th

block formed by the matrixXi ∈ Rd×n (i ∈ Nm). Define a diagonalization operatorD on an arbitrary

Ω = [ω1, ω2, · · · , ωm] ∈ Rd×m: D(Ω) ∈ Rmd×m is a block diagonal matrix with its i-th block formed

by the column vector ωi ∈ Rd. Let F = [f̂1, · · · , f̂m], where f̂i is defined in Eq. (5.22). Therefore

we can rewrite Eq. (5.29) in a compact form as

1

T
∥XTD(L̂z + Ŝz)−D(F)∥2F ≤

1

T
∥XTD(L+ S)−D(F)∥2F

+ α∥Q(L̂z − L)∥∗ + β∥(Ŝz − S)C(S)∥1,2, (5.33)

where T = nm. We next introduce our assumption over a restricted set. The assumption is associ-

ated with training data X and the geometric structure of the matrices of interest.

Assumption 5.4.1. For a matrix pair ΓL and ΓS of size d by m, let s ≤ min(d,m) and q ≤ m. We

assume that there exist constants κ1(s) and κ2(q) such that

κ1(s) , min
ΓL,ΓS∈R(s,q)

∥XD(ΓL + ΓS)∥F√
T∥Q(ΓL)∥∗

> 0, (5.34)

κ2(q) , min
ΓL,ΓS∈R(s,q)

∥XD(ΓL + ΓS)∥F√
T∥(ΓS)C(S)∥1,2

> 0, (5.35)

where the restricted set R(s, q) is defined as

R(s, q) =
{
ΓL,ΓS ∈ Rd×m |ΓL ̸= 0, ΓS ̸= 0, rank(Q(ΓL)) ≤ s, |C(ΓS)| ≤ q

}
,

and C(·) is defined in Eq. (5.26), and |Ĉ| denotes the number of elements in the set Ĉ.

The assumption in Eqs. (6.40) and (5.35) can be implied by several sufficient conditions as

in [95]. Due to the space constraint, the details are omitted. Note that similar assumptions are used

in [96] for deriving a certain performance bound for a different multi-task learning formulation.

We present the performance bound of the RMTL formulation in the following theorem.

Theorem 5.4.1. Consider the optimization problem in Eq. (5.24) for m ≥ 2 and n, d ≥ 1. Take

the regularization parameters α and β as in Eq. (6.37). Then with probability of at least 1 −

m exp
(
− 1

2

(
t− d log

(
1 + t

d

)))
, for a global minimizer L̂z, Ŝz in Eq. (5.24), we have

1

T
∥XD(L̂z + Ŝz)−D(F)∥2F ≤ (1 + ϵ) inf

L,S

1

T
∥XD(L+ S)−D(F)∥2F + E(ϵ)

(
α2

κ21(2r)
+

β2

κ22(c)

)
,

(5.36)

where inf is taken over all L, S ∈ Rd×m with rank(L) ≤ r and |C(S)| ≤ c, and E(ϵ) > 0 is a constant

depending only on ϵ.
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Proof. Denote ΓL = L̂z − L and ΓS = Ŝz − S. It follows from Eq. (5.33) that

1

T
∥XTD(L̂z+Ŝz)−D(F)∥2F ≤

1

T
∥XTD(L+S)−D(F)∥2F+α∥Q(ΓL)∥∗+β∥(ΓS)C(S)∥1,2. (5.37)

GivenQ(ΓL) ≤ 2r (from Lemma 6.4.1) and |C(S)| ≤ c, we derive upper bounds on α∥Q(ΓL)∥∗ and

β∥(ΓS)C(S))∥1,2 over the restrict set R(2r, c) based on Assumptions 6.4.1, respectively. It follows

from Eq. (6.40) in Assumption 6.4.1 that

2α∥Q(ΓL)∥∗ ≤ 2α

κ1(2r)
√
T
∥XD(ΓL + ΓS)∥F

≤ 2α

κ1(2r)
√
T

(
∥XD(L̂z + Ŝz)−D(F)∥F + ∥XD(L+ S)−D(F)∥F

)
≤ α2τ

κ21(2r)
+

1

τT
∥XD(L̂z + Ŝz)−D(F)∥2F +

α2τ

κ21(2r)
+

1

τT
∥XD(L+ S)−D(F)∥2F , (5.38)

where the last inequality above follows from 2ab ≤ a2τ + b2 1
τ for τ > 0. Similarly, we have

2β∥(ΓS)C(S)∥1,2 ≤ β2τ

κ22(c)
+

1

τT
∥XD(L̂z + Ŝz)−D(F)∥2F +

β2τ

κ22(c)
+

1

τT
∥XD(L+ S)−D(F)∥2F . (5.39)

Substituting Eqs. (6.43) and (6.44) into Eq. (5.37) and setting τ = 2 + 4
ϵ , we obtain

1

T
∥XD(L̂z + Ŝz)−D(F)∥2F

≤ τ + 2

τ − 2
∥XD(L+ S)−D(F)∥2F +

2τ2

τ − 2

(
α2

κ21(2r)
+

β2

κ22(c)

)
= (1 + ϵ)∥XD(L+ S)−D(F)∥2F + E(ϵ)

(
α2

κ21(2r)
+

β2

κ22(c)

)
,

where E(ϵ) = ϵ( 12 + 1
ϵ )

2. This completes the proof.

The performance bound described in Eq. (6.41) can be refined by choosing specific values

for the regularization parameters α and β: it can be verified that the component α2

κ2
1(2r)

+ β2

κ2
2(c)

is

minimized if α and β are chosen to be proportional to κ21(2r) and κ22(c), respectively.

5.5 Experiments

In this section, we evaluate the proposed RMTL formulation in Eq. (5.4) in comparison with other

representative algorithms for multi-task learning; we also conduct numerical studies on the APM

algorithm in comparison with the commonly used proximal method (PM) [45, 57] for solving RMTL.

All algorithms are implemented in Matlab. Note that for numerical accuracy consideration, we solve

the RMLT formulation with its objective function multiplied by nm, where m and n correspond to the

task number and the sum of the sample sizes for all tasks, respectively.
95



0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

Index of the singular values in L

Sin
gu

lar
 va

lue

Index of the tasks in S

W
eig

ht 
ve

cto
rs

5 10 15 20 25 30

10

20

30

40

50

60

Figure 5.1: Demonstration of the extracted low-rank and group structures: the left plot shows the
singular values of the low-rank component L (the last 18 singular values are zero); the right plot
demonstrates the structure of the group-sparse component S (the first 20 columns are zero-vectors).
In the right plot the grey area corresponds to the pixels of zero-value.

Demonstration of Extracted Structures

We apply the RMTL algorithm on a synthetic data set and then demonstrate the extracted low-rank

and group-sparse structures. The synthetic data is constructed as follows: set the task number

m = 30, the size of the training samples for each task ni = 50, and the feature dimensionality

of the training samples d = 60; generate the entries of the training data Xi ∈ Rd×ni (for the i-th

task) randomly from the distribution N (0, 25); generate the entries in the low-rank component L

(of size d ×m) randomly from N (0, 16) and then set its smallest 20 singular values at 0; generate

the entries in the group-sparse component S (of size d ×m) randomly from N (0, 20) and then set

its first 20 columns as zero-vectors; construct the response (target) vector of each task as yi =

XT
i (L + S) + δi ∈ Rni (i ∈ Nm), where each entry in the vector δi is randomly generated from

N (0, 1). Under this experimental setting, we construct 20 related tasks as well as 10 outlier tasks,

where each task is associated with 50 training samples of feature dimensionality 60.

In Figure 5.1, we present the low-rank component L and the group-sparse component S

obtained by solving RMTL with α = 50 and β = 10. From the left plot of Figure 5.1, we can observe

that the matrix L (of size 60× 50) has 12 non-zero singular values; this result is consistent with our

problem setting of using a low-rank structure to capture the tasks relationship. From the right plot

of Figure 5.1, we can observe that the first 20 columns (corresponding to the related tasks) in S are

zero vectors, while the last 10 columns (corresponding to the outlier tasks) are non-zero vectors.

The results in Figure 5.1 empirically demonstrate the effectiveness of RMTL.
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Table 5.1: Performance comparison of the six competing algorithms in terms of the normalized MSE
(nMSE) and the averaged MSE (aMSE) with standard deviation using the School data. All parame-
ters of the six methods are determined via cross-validation and the reported regression performance
is averaged over 15 random repetitions. Note that a smaller value of nMSE and aMSE represents
better regression performance.

Measure training ratio Ridge Lasso TraceNorm Sparse-LowRank CMTL Robust MTL

10% 1.039 ± 0.004 1.026 ± 0.013 0.936 ± 0.037 0.918 ± 0.026 0.941 ± 0.002 0.913 ± 0.004
nMSE 20% 0.877 ± 0.004 0.875 ± 0.019 0.821 ± 0.003 0.813 ± 0.013 0.833 ± 0.004 0.806 ± 0.010

30% 0.817 ± 0.009 0.814 ± 0.009 0.787 ± 0.001 0.766 ± 0.009 0.792 ± 0.005 0.760 ± 0.003

10% 0.271 ± 0.002 0.268 ± 0.004 0.250 ± 0.010 0.242 ± 0.008 0.255 ± 0.003 0.233 ± 0.002
aMSE 20% 0.230 ± 0.000 0.229 ± 0.005 0.216 ± 0.002 0.211 ± 0.004 0.213 ± 0.007 0.202 ± 0.003

30% 0.216 ± 0.002 0.214 ± 0.001 0.209 ± 0.001 0.201 ± 0.002 0.192 ± 0.010 0.182 ± 0.001

Performance Evaluation of RMTL

We evaluate the RMTL algorithm on multi-task regression problems in comparison with other rep-

resentative algorithms including ridge regression (Ridge), least squares with ℓ1-norm regulariza-

tion (Lasso), least squares with trace norm regularization (TraceNorm), least squares with low-rank

and sparse structures regularization (Sparse-LowRank) [88], and convex multi-task feature learn-

ing (CMTL) [53]. The normalized mean squared error (nMSE) and the averaged mean squared

error (aMSE) are employed as the regression performance measures as used in previous stud-

ies [53, 81]. Note that nMSE is defined as the mean squared error (MSE) divided by the variance

of the target vector; aMSE is defined as MSE divided by the squared norm of the target vector. We

adopt APM to solve RMTL and terminate APM when the relative change of the objective values in

two successive iterations is smaller than 10−5. We use the School data1 and the SARCOS data2 for

the experiments.

The School data consists of the exam scores of 15362 students from 139 secondary schools;

each student is described by 27 attributes such as gender and ethnic group. The exam score pre-

diction of the students can be cast into a multi-task regression (learning) problem: we are given 139

tasks (schools), where each task has a different number of samples (students) and each sample has

27 features (attributes). We randomly select 10%, 20%, and 30% of the samples (from each task)

to form the training set and use the rest of the samples as the test set. The experimental results

averaged over 15 random repetitions are presented in Table 5.1. From the presented results, we

have the following observations: (1) RMTL outperforms all other competing algorithms in terms of

nMSE and aMSE; (2) the multi-task learning algorithms (TraceNorm, Sparse-LowRank, CMTL, and

RMTL) outperform the single-task learning algorithms (Ridge and Lasso) in terms of both nMSE and

1http://www.cs.ucl.ac.uk/staff/A.Argyriou/code/
2http://www.gaussianprocess.org/gpml/data/
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Table 5.2: Performance comparison of the six competing algorithms in terms of nMSE and aMSE
with standard deviation using the SARCOS data.The experimental setting is similar to the one de-
scribed in Table 5.1.

Measure training size Ridge Lasso TraceNorm Sparse-LowRank CMTL Robust MTL

50 0.245 ± 0.026 0.234 ± 0.018 0.226 ± 0.007 0.213 ± 0.003 0.219 ± 0.002 0.212 ± 0.004
nMSE 100 0.182 ± 0.014 0.162 ± 0.003 0.153 ± 0.002 0.149 ± 0.002 0.157 ± 0.004 0.146 ± 0.014

150 0.150 ± 0.005 0.147 ± 0.003 0.132 ± 0.005 0.124 ± 0.001 0.130 ± 0.003 0.125 ± 0.002

50 0.133 ± 0.014 0.123 ± 0.008 0.112 ± 0.006 0.107 ± 0.003 0.116 ± 0.001 0.098 ± 0.003
aMSE 100 0.105 ± 0.009 0.091 ± 0.002 0.081 ± 0.003 0.079 ± 0.005 0.085 ± 0.001 0.074 ± 0.008

150 0.085 ± 0.005 0.082 ± 0.001 0.077 ± 0.002 0.066 ± 0.006 0.076 ± 0.003 0.067 ± 0.001

aMSE; (3) the performance of CMTL is similar to that of TraceNorm; this result may be due to the

use of similar penalty terms in CMTL and TraceNorm.

The SARCOS data is collected for an inverse dynamics prediction problem for a seven

degrees-of-freedom anthropomorphic robot arm. This data consists of 48933 observations corre-

sponding to 7 joint torques; each of the observations is described by 21 features including 7 joint

positions, 7 joint velocities, and 7 joint accelerations. Our goal is to construct mappings from each

observation to 7 joint torques. We randomly select 50, 100, 150 observations to form 3 training sets

and accordingly randomly select 5000 observations to form 3 test sets. The experimental results

averaged over 15 random repetitions are presented in Table 5.2. From the experimental results, we

have the following observations: (1) RMTL performs better than or compares competitively to all

other competing algorithms in terms of both nMSE and aMSE; (2) the multi-task learning algorithms

(TraceNorm, Sparse-LowRank, CMTL, and RMTL) outperform the single-task learning algorithms

(Ridge and Lasso) in terms of both nMSE and aMSE. We also observe that Sparse-LowRank has a

similar performance to RMTL. In Sparse-LowRank, incoherent low-rank and (ℓ1-norm based) sparse

structures [88] are used to capture the task relatedness as well as identify discriminative features

for each task. These results imply that allowing each task to independently select discriminative

features may improve the robustness of the algorithm.

Sensitivity Studies on RMTL

We conduct a sensitivity study on the proposed RMTL formulation. In particular, we study how the

regularization parameters and the training sample size affect the regression performance of RMTL

in terms of nMSE and aMSE, respectively.

Effect of the Regularization Parameters For this experiment, we randomly select 10% of the

School data as the training set and use the rest of the data as the test set. By fixing β = 100 as well

as varying the value of α in α-value set, i.e., [50 : 50 : 500], we study how the parameter α affects
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the regression performance of RMTL. Similarly, by fixing α = 150 as well as varying the value of β

in β-value set of [20 : 5 : 115], we study how the parameter β affects the regression performance of

RMTL. In Figure 5.2, we present the regression performance (averaged over 15 random repetitions)

of RMTL in terms of nMSE (1st and 3rd plots) and aMSE (2nd and 4th plots) for each pair of (α, β).

From Figure 5.2, we can observe that both nMSE and aMSE change with different settings of (α, β);

we can also observe that the best performance of RMTL for a fixed α (or a fixed β) is obtained by

setting β in the middle of β-value set (or setting the value of α in the middle of α-value set).
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Figure 5.2: Sensitivity study on RMTL: study the effect of the parameters α and β in terms of nMSE
(1st and 3rd plots) and aMSE (2nd and 4th plots), respectively. For the first two plots, we set β = 100
and vary α in the α-value set [50 : 50 : 500]; for the last two plots, we set β = 150 and vary β in the
β-value set [20 : 5 : 115].

Effect of the Training Ratio For this experiment, we randomly select {10%, 20%, · · · , 80%} of the

School data as the training set and use the rest of the data as the test set. We study how the the

training sample size (in terms of the training ratio) affects the regression performance of RMTL. Note

that the regularization parameters α and β are determined via double cross-validation. The experi-

mental results are presented in Figure 5.3. We can observe that by increasing the training ratio, both

the nMSE and aMSE decrease; this result is consist with our expectation that more training data will

lead to more accurate predictive model and hence better generalization performance.

1 2 3 4 5 6
0.7

0.75

0.8

0.85

0.9

0.95

Index of the training ratio

N
or

m
al

iz
ed

 M
SE

1 2 3 4 5 6
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Index of the training ratio

Av
er

ag
ed

 M
SE

Figure 5.3: Sensitivity study on RMTL: study the effect of the training ratio in terms of nMSE (left
plot) and aMSE (right plot), respectively. The regularization parameters are determined via double
cross-validation. The i-th coordinate on the x-axis corresponds to the training ratio i× 10%.
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Numerical Studies on APM
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Figure 5.4: Computation cost comparison of APM and PM in terms of the iteration number (left plot)
and the computation time in seconds (right plot) for solving RMTL. The i-th coordinate on the x-axis
corresponds to the stopping criterion 10−i.

We conduct numerical studies on APM in comparison with PM for solving RMTL in terms of

the computation time (in seconds) and the iteration number. We randomly select 10% of the School

data for the following experiments. The experimental setting is described as follows: we stop PM

when the change of the objective value in two successive iterations is smaller than 10−i and record

the attained objective value; such a value is then used as the stopping criterion in APM, that is, we

stop APM when the attained objective value in APM is equal to or smaller than the one previously

obtained from PM; we vary the stopping criterion of PM in the set {10−i}6i=1 and record the required

computation time and iteration number for both PM and APM. From the experimental results pre-

sented in Figure 5.4, we have the following observations: (1) APM requires less computation time

and iteration number than PM for attaining the same objective value; (2) both APM and PM require

more computation time and a larger iteration number if the stopping criterion is set as a smaller

value (higher accuracy).

5.6 Summary

In this chapter, we propose a robust multi-task learning (RMTL) algorithm which learns multiple tasks

simultaneously as well as identifies the outlier tasks. The proposed RMTL algorithm captures the

task relationships using a low-rank structure, and simultaneously identifies the outlier tasks using a

group-sparse structure. RMTL is formulated as a non-smooth convex (unconstrained) optimization

problem in which the least square loss is regularized by a combination of the trace norm regulariza-

tion and the ℓ1,2-norm regularization. We propose to adopt the accelerated proximal method (APM)

for solving this optimization problem and develop efficient algorithms for computing the associated

proximal operator. We also conduct a theoretical analysis on the proposed RMTL formulation. In
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particular, we derive a key property of the optimal solution to RMTL; based on the key property, we

establish a theoretical performance bound to characterize the learning performance of RMTL. Our

experimental results on benchmark data sets demonstrate the effectiveness and efficiency of the

proposed algorithms.

Appendix

Lemma 1. Let δ1, δ2, · · · , δn be a random sample of size n from the Gaussian distribution N (0, σ).

Let x1, x2, · · · , xn satisfy x21 + x22 + · · ·+ x2n = 1. Denote a random variable v as

v =
1

σ

n∑
i=1

xiδi.

Then v obeys the Gaussian distribution N (0, 1).

Proof. Since {δi} are mutually independent, the mean of the random variable v can be computed

as

E(v) = E

(
1

σ

n∑
i=1

xiδi

)
=

1

σ

n∑
i=1

xiE (δi) = 0.

Similarly, the variance of v can be computed

E (v − E(v))2 = E

(
1

σ2

n∑
i=1

x2i δ
2
i

)
=

1

σ2

n∑
i=1

x2iE
(
δ2i
)
= 1,

where the first equality follows from E (δiδj) = 0 (i ̸= j). Using the fact that the sum of Gaussian

random variables is Gaussian distributed, we complete the proof of this lemma.

Lemma 2. Let X 2
p be a chi-squared random variable with p degrees of freedom. Then

Pr
(
X 2

p ≥ p+ π
)
≤ exp

(
−1

2

(
π − p log

(
1 +

π

p

)))
, π > 0.

Proof. From Theorem 4.1 in [97], we approximate the chi-square distribution using a normal distri-

bution as

Pr
(
X 2

p ≥ q
)
≤ Pr (N0,1 ≥ zp(q)) , q > p,

where N0,1 ∼ N (0, 1) and zp(q) =

√
q − p− p log

(
q
p

)
. It is known that for x ∼ N (0, 1), the

inequality Pr (x ≥ t) ≤ exp(− t2

2 ) holds. Therefore we have

Pr
(
X 2

p ≥ q
)
≤ exp

(
−1

2
z2p(q)

)
.

By substituting q = p+π (π > 0) into the inequality above, we complete the proof of this lemma.
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Chapter 6

Learning Multiple Tasks via Sparse Trace Norm Regularization

6.1 Introduction

We study the problem of estimating multiple predictive functions from noisy observations. Such

a problem has received broad attention in many areas of statistics and machine learning [96, 98–

100]. This line of work can be roughly divided into two categories: parametric estimation and non-

parametric estimation; a common and important theme for both categories is the appropriate as-

sumption of the structure in the model parameters (parametric setting) or the coefficients of the

dictionary (nonparametric setting).

There has been an enormous amount of literature on effective function estimation based

on different sparsity constraints, including the estimation of the sparse linear regression via ℓ1-

norm penalty [95, 98, 101, 102], and the estimation of the linear regression functions using group

lasso estimator [96, 99]. More recently, trace norm regularization has become a popular tool for

approximating a set of linear models and the associated low-rank matrices in the high-dimensional

setting [100, 103]; the trace norm is the tightest convex surrogate [66] for the (non-convex) rank

function under certain conditions, encouraging the sparsity in the singular values of the matrix of

interest. One limitation of the use of trace norm regularization is that the resulting model is dense

in general. However, in many real-world applications [104], the underlying structure of multiple

predictive functions may be sparse as well as low-rank; the sparsity leads to explicitly interpretable

prediction models and the low-rank implies essential subspace structure information. Similarly, the

ℓ1-norm is the tightest convex surrogate for the non-convex cardinality function [60], encouraging the

sparsity in the entries of the matrix. This motivates us to explore the use of the combination of the

trace norm and the ℓ1-norm as a composite regularization (called sparse trace norm regularization)

to induce the desirable sparse low-rank structure.

Trace norm regularization (minimization) has been investigated extensively in recent years.

Efficient algorithms have been developed for solving convex programs with trace norm regular-

ization [66, 105]; sufficient conditions for exact recovery from trace norm minimization have been

established in [94]; consistency of trace norm minimization has been studied in [106]; trace norm

minimization has been applied for matrix completion [107] and collaborative filtering [108,109]. Sim-

ilarly, ℓ1-norm regularization has been well studied in the literature, just to mention a few, from

the efficient algorithms for convex optimization [105, 110, 111], theoretical guarantee of the perfor-

mance [102,112], and model selection consistency [113].
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In this chapter, we focus on estimating multiple predictive functions simultaneously from a

finite dictionary of basis functions in the nonparametric regression setting. Our function estimation

scheme assumes that each predictive function can be approximated using a linear combination of

those basis functions. By assuming that the coefficient matrix of the basis functions admits a sparse

low-rank structure, we formulate the function estimation problem as a convex formulation, in which

the combination of the trace norm and the ℓ1-norm is employed as a composite regularization to

induce a sparse low-rank structure in the coefficient matrix. The simultaneous sparse and low-

rank structure is different from the incoherent sparse and low-rank structures studied in [69, 114].

We propose to solve the function estimation problem using the accelerated gradient method and

the alternating direction method of multipliers; we also develop efficient algorithms to solve the key

components involved in both methods. We conduct theoretical analysis on the proposed convex

formulation: we first present some basic properties of the optimal solution to the convex formula-

tion (Lemma 6.4.4); we then present an assumption associated with the geometric nature of the

basis functions over the prescribed observations; based on such an assumption, we derive a perfor-

mance bound for the combined regularization for function estimation (Theorem 6.4.1). We conduct

simulations on benchmark data to demonstrate the effectiveness and efficiency of the proposed

algorithms.

6.2 Problem Formulation

Let {(x1, y1), · · · , (xn, yn)} ⊂ Rd×Rk be a set of prescribed sample pairs (fixed design) associated

with k unknown functions {f1, · · · , fk} as

yij = fj(xi) + wij , i ∈ Nn, j ∈ Nk, (6.1)

where fj : Rd → R is an unknown regression function, yij denotes the j-th entry of the response

vector yi ∈ Rk, and wij ∼ N (0, σ2
w) is a stochastic noise variable. Let X = [x1, · · · , xn]T ∈ Rn×d,

Y = [y1, · · · , yn]T ∈ Rn×k, and W = (wij)i,j ∈ Rn×k. Denoting

F = (fj(xi))i,j ∈ Rn×k, i ∈ Nn, j ∈ Nk, (6.2)

we can rewrite Eq. (6.1) in a compact form as Y = F +W . Let {g1, · · · , gh} be a set of h pre-

specified basis functions as gi : Rd → R, and let Θ = [θ1, · · · , θk] ∈ Rh×k be the coefficient matrix.

We define

ĝj(x) =
h∑

i=1

θijgi(x), j ∈ Nk, (6.3)

where θij denotes the i-th entry in the vector θj . Note that in practice the basis functions {gi} can be

estimators from different methods, or different values of the tuning parameters of the same method.
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We consider the problem of estimating the unknown functions {f1, · · · , fk} using the com-

posite functions {ĝ1, · · · , ĝk} defined in Eq. (6.3), respectively. Denote

GX = (gj(xi))i,j ∈ Rn×h, i ∈ Nn, j ∈ Nh, (6.4)

and define the empirical error as

Ŝ(Θ)=
1

nk

n∑
i=1

k∑
j=1

(ĝj(xi)− yij)2=
1

N
∥GXΘ− Y ∥2F , (6.5)

where N = n × k. Our goal is to estimate the model parameter Θ of a sparse low-rank structure

from the given n sample pairs {(xi, yi)}ni=1. Such a structure induces the sparsity and the low rank

simultaneously in a single matrix of interest.

Given that the functions {f1, · · · , fk} are coupled via Θ in some coherent sparse and low-

rank structure, we propose to estimate Θ as

Θ̂ = argmin
Θ

(
Ŝ(Θ) + α∥Θ∥∗ + β∥Θ∥1

)
, (6.6)

where α and β are regularization parameters (estimated via cross-validation), and the linear com-

bination of ∥Θ∥∗ and ∥Θ∥1 is used to induce the sparse low-rank structure in Θ. The optimization

problem in Eq. (6.6) is non-smooth convex and hence admits a globally optimal solution; it can be

solved using many sophisticated optimization techniques [42,66]; in Section 6.3, we propose to ap-

ply the accelerated gradient method [45] and the alternating direction method of multipliers [115] to

solve the optimization problem in Eq. (6.6).

6.3 Optimization Algorithms

In this section, we consider to apply the accelerated gradient (AG) algorithm [45, 71, 116] and the

alternating direction method of multipliers (ADMM) [115], respectively, to solve the (non-smooth and

convex) optimization problem in Eq. (6.6). We also develop efficient algorithms to solve the key

components involved in both AG and ADMM.

Accelerated Gradient Algorithm

The AG algorithm has attracted extensive attention in the machine learning community due to its

optimal convergence rate among all first order techniques and its ability of dealing with large scale

data. The general scheme in AG for solving Eq. (6.6) can be described as below: at the k-th iteration,

the intermediate (feasible) solution Θk can be obtained via

Θk = argmin
Θ

(
γk
2

∥∥∥∥Θ−(Φk −
1

γk
∇Ŝ(Φk)

)∥∥∥∥2
F

+ α∥Θ∥∗ + β∥Θ∥1

)
, (6.7)
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where Φk denotes a searching point constructed on the intermediate solutions from previous iter-

ations, ∇Ŝ(Φk) denotes the derivative of the loss function in Eq. (6.5) at Φk, and γk specifies the

step size which can be determined by iterative increment until the condition

Ŝ(Θk) ≤ Ŝ(Φk) + ⟨∇f(Φk),Θk − Φk⟩+
γk
2
∥Θk − Φk∥2F

is satisfied. The operation in Eq. (6.7) is commonly referred to as proximal operator [91], and its

efficient computation is critical for the practical convergence of the AG-type algorithm. Next we

present an efficient alternating optimization procedure to solve Eq. (6.7) with a given γk.

Dual Formulation

The problem in Eq. (6.7) is not easy to solve directly; next we show that this problem can be efficiently

solved in its dual form. By reformulating ∥Θ∥∗ and ∥Θ|1 into the equivalent dual forms, we convert

Eq. (6.7) into a max-min formulation as

max
L,S

min
Θ

∥Θ− Φ̂∥2F + α̂⟨L,Θ⟩+ β̂⟨S,Θ⟩

subject to ∥L∥2 ≤ 1, ∥S∥∞ ≤ 1, (6.8)

where Φ̂ = Φk − ∇Ŝ(Φk)/γk, α̂ = 2α/γk, and β̂ = 2β/γk. It can be verified that in Eq. (6.8) the

Slater condition is satisfied and strong duality holds [60]. Also the optimal Θ can be expressed as a

function of L and S given by

Θ = Φ̂− 1

2
(α̂L+ β̂S). (6.9)

By substituting Eq. (6.9) into Eq. (6.8), we obtain the dual form of Eq. (6.7) as

min
L,S

∥α̂L+ β̂S − 2Φ̂∥2F

subject to ∥L∥2 ≤ 1, ∥S∥∞ ≤ 1. (6.10)

Alternating Optimization

The optimization problem in Eq. (6.10) is smooth convex and it has two optimization variables. For

such type of problems, coordinate descent (CD) method is routinely used to compute its globally

optimal solution [117]. To solve Eq. (6.10), the CD method alternatively optimizes one of the two

variables with the other variable fixed. Our analysis below shows that the variables L and S in

Eq. (6.10) can be optimized efficiently. Note that the convergence rate of the CD method is not

known, however, it converges very fast in practice (less than 10 iterations in our experiments).

105



Optimization of L For a given S, the variable L can be optimized via solving the following problem:

min
L

∥L− L̂∥2F

subject to ∥L∥2 ≤ 1, (6.11)

where L̂ = (2Φ̂− β̂S)/α̂. The optimization on L above can be interpreted as computing an optimal

projection of a given matrix over a unit spectral norm ball. Our analysis shows that the optimal

solution to Eq. (6.11) can be expressed in an analytic form as summarized in the following theorem.

Theorem 6.3.1. For arbitrary L̂ ∈ Rh×k in Eq. (6.11), denote its SVD by L̂ = UΣV T , where

r = rank(L̂), U ∈ Rh×r, V ∈ Rk×r, and Σ = diag (σ1, · · · , σr) ∈ Rr×r. Let σ̂∗
i = min (σi, 1) , i =

1, · · · , r. Then the optimal solution to Eq. (6.11) is given by

L∗ = U Σ̂V T , Σ̂ = diag (σ̂∗
1 , · · · , σ̂∗

r ) . (6.12)

Proof. Assume the existence of a set of left and right singular vector pairs shared by the optimal L∗

to Eq. (6.11) and the given L̂ for their non-zero singular values. Under such an assumption, it can

be verified that the singular values of L∗ can be obtained via

min
{σ̂i}

(σ̂i − σi)2

subject to 0 ≤ σ̂i ≤ 1, i = 1, · · · , r,

to which the optimal solution is given by σ̂∗
i = min(σi, 1) (∀i); hence the expression of L∗ coincides

with Eq. (6.12). Therefore, all that remains is to show that our assumption (on the left and right

singular vector pairs of L∗ and L̂) holds.

Denote the Lagrangian associated with the problem in Eq. (6.11) as h(L, λ) = ∥L− L̂∥2F +

λ (∥L∥2 − 1), where λ denotes the dual variable. Since 0 is strictly feasible in Eq. (6.11), namely,

∥0∥2 < 1, strong duality holds for Eq. (6.11). Let λ∗ be the optimal dual variable to Eq. (6.11).

Therefore we have L∗ = argminL h(L, λ
∗). It is well known that L∗ minimizes h(L, λ∗) if and only

if 0 is a subgradient of h(L, λ∗) at L∗, i.e.,

0 ∈ 2(L∗ − L̂) + λ∗∂∥L∗∥2. (6.13)

For any matrix Z, the subdifferential of ∥Z∥2 is given by [73]

∂∥Z∥2 = conv
{
uzv

T
z : ∥uz∥ = ∥vz∥ = 1, Zvz = ∥Z∥2uz

}
,

where conv{c} denotes the convex hull of the set c. Specifically, any element of ∂∥Z∥2 has the form∑
i

αiuziv
T
zi, αi ≥ 0,

∑
i

αi = 1,

106



where uzi and vzi are any left and right singular vectors of Z corresponding to its largest singular

value (the top singular values may share a common value). From Eq. (6.13) and the definition of

∂∥Z∥2, there exist {α̂i} such that α̂i > 0,
∑

i α̂i = 1,
∑

i α̂iuliv
T
li ∈ ∂∥L∗∥2, and

L̂ = L∗ +
λ∗

2

∑
i

α̂iuliv
T
li , (6.14)

where uli and vTli correspond to any left and right singular vectors of L∗ corresponding to its largest

singular value. Since λ∗, α̂i > 0, Eq. (6.14) verifies the existence of a set of left and right singular

vector pairs shared by L∗ and L̂. This completes the proof.

Optimization of S For a given L, the variable S can be optimized via solving the following problem:

min
S

∥S − Ŝ∥2F

subject to ∥S∥∞ ≤ 1, (6.15)

where Ŝ = (2Φ̂− α̂L)/β̂. Similarly, the optimization on S can be interpreted as computing a projec-

tion of a given matrix over an infinity norm ball. It also admits an analytic solution as summarized in

the following theorem.

Lemma 6.3.1. For any matrix Ŝ, the optimal solution to Eq. (6.15) is given by

S∗ = sgn(Ŝ) ◦min(|Ŝ|, 1), (6.16)

where ◦ denotes the component-wise multiplication operator, and 1 denotes the matrix with entries

1 of appropriate size.

Alternating Direction Method of Multipliers

The ADMM algorithm [115] is suitable for dealing with non-smooth (convex) optimizations problems,

as it blends the decomposability of dual ascent with the superior convergence of the method of

multipliers. We present two implementations of the ADMM algorithm for solving Eq. (6.6). The

key difference lies in the use of different numbers of auxiliary variables to separate the smooth

components from the non-smooth components of the objective function in Eq. (6.6).

The First Implementation: ADMM1

By adding an auxiliary variable Ψ, we reformulate Eq. (6.6) as

min
Θ,Ψ

Ŝ(Θ) + α∥Ψ∥∗ + β∥Θ∥1

subject to Θ = Ψ. (6.17)
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The augmented Lagrangian of Eq. (6.17) can be expressed as

L1
ρ(Θ,Ψ,Γ) = Ŝ(Θ) + α∥Ψ∥∗ + β∥Θ∥1 + ⟨Θ−Ψ,Γ⟩+ ρ

2
∥Θ−Ψ∥2F . (6.18)

To solve Eq. (6.17), ADMM1 consists of the following iterations:

Θk+1 = argmin
Θ
L1
ρ(Θ,Ψk,Γk), (6.19)

Ψk+1 = argmin
Ψ
L1
ρ(Θk+1,Ψ,Γk), (6.20)

Γk+1 = Γk + ρ (Θk+1 −Ψk+1) , (6.21)

where Θk, Ψk, and Γk denote the intermediate solutions of ADMM1 at the k-th iteration, and ρ is a

pre-specified constant.

Specifically, if we employ the least squares loss, i.e., Ŝ(Θ) = ∥GXΘ − Y ∥2F /N , the opti-

mization problems in Eqs. (6.19) and (6.21) can be efficiently solved as below.

Update on Θ The optimal Θk+1 to Eq. (6.19) can be obtained via

Θk+1 = argmin
Θ

(
1

N
∥GXΘ− Y ∥2F + β∥Θ∥1 + ⟨Θ,Γk⟩+

ρ

2
∥Θ−Ψk∥2F

)
, (6.22)

which can be efficiently solved via the gradient-type methods [71,116].

Update on Ψ The optimal Ψk+1 to Eq. (6.20) can be obtained via

Ψk+1 = argmin
Ψ

(
α∥Ψ∥∗ − ⟨Ψ,Γk⟩+

ρ

2
∥Θk+1 −Ψ∥2F

)
.

The optimization problem above admits an analytical solution [94]. Assume rank (Θk+1 + Γk/ρ) =

r. Let Θk+1 + Γk/ρ = UrΣrV
T
r be the singular value decomposition of Θk+1 + Γk/ρ, where Ur

and Vr consist of respectively r orthonormal columns, and Σr = diag {(σ1, σ2, · · · , σr)}. Then the

optimal Ψk+1 is given by

Ψk+1 = UrΣ̂V
T
r , Σ̂ = diag

{(
σi −

α

ρ

)
+

}
, (6.23)

where (x)+ = x if x > 0 and (x)+ = 0 otherwise.

The Second Implementation: ADMM2

By adding two auxiliary variables Ψ1 and Ψ2, we reformulate Eq. (6.6) as

min
Θ,Ψ1,Ψ2

Ŝ(Θ) + α∥Ψ1∥∗ + β∥Ψ2∥1

subject to Θ = Ψ1, Θ = Ψ2. (6.24)
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Similarly, the augmented Lagrangian of Eq. (6.24) can be expressed as

L2
ρ1,ρ2

(Θ,Ψ1,Ψ2,Γ1,Γ2)

= Ŝ(Θ) + α∥Ψ1∥∗ + β∥Ψ2∥1 + ⟨Θ−Ψ1,Γ1⟩+ ⟨Θ−Ψ2,Γ2⟩+
ρ1
2
∥Θ−Ψ1∥2F +

ρ2
2
∥Θ−Ψ2∥2F .

To solve Eq. (6.24), ADMM2 consists of the following iterations:

Θk+1 = argmin
Θ
L2
ρ1,ρ2

(Θ,Ψ1
k,Ψ

2
k,Γ

1
k,Γ

2
k), (6.25)(

Ψ1
k+1,Ψ

2
k+1

)
= arg min

Ψ1,Ψ2
L2
ρ1,ρ2

(Θk+1,Ψ
1,Ψ2,Γ1

k,Γ
2
k), (6.26)

Γ1
k+1 = Γ1

k + ρ1
(
Θk+1 −Ψ1

k+1

)
, (6.27)

Γ2
k+1 = Γ2

k + ρ2
(
Θk+1 −Ψ2

k+1

)
, (6.28)

where Θk, Ψ1
k, Ψ2

k, Γ1
k, and Γ2

k denote the intermediate solutions at the k-th iteration of the ADMM2

method.

Specifically, if we employ Ŝ(Θ) = ∥GXΘ − Y ∥2F /N as the loss function in Eq. (6.24), the

optimization problems in Eqs. (6.25), (6.26), (6.27), and (6.28) can be efficiently solved as below.

Update on Θ The optimal Θk+1 to Eq. (6.25) can be obtained via

Θk+1 = argmin
Θ

(
1

N
∥GXΘ− Y ∥2F + ⟨Θ,Γ1

k + Γ2
k⟩+

ρ1
2
∥Θ−Ψ1

k∥2F +
ρ2
2
∥Θ−Ψ2

k∥2F
)
.

Note that the optimal Θk+1 can be obtained via solving a systems of linear equations.

Update on Ψ1 and Ψ2 The optimal Ψ1
k+1 and Ψ1

k+1 to Eq. (6.26) can be obtained via

Ψ1
k+1 = argmin

Ψ1

(
α∥Ψ1∥∗ − ⟨Ψ1,Γ1

k⟩+
ρ1
2
∥Θk+1 −Ψ1∥2F

)
, (6.29)

Ψ2
k+1 = argmin

Ψ2

(
β∥Ψ2∥1 − ⟨Ψ2,Γ2

k⟩+
ρ2
2
∥Θk+1 −Ψ2∥2F

)
. (6.30)

It can be verified that Eq. (6.29) admits an analytical solution. Assume rank
(
Θk+1 + Γ1

k/ρ1
)
= r.

Let Θk+1 + Γ1
k/ρ1 = UrΣrV

T
r be the singular value decomposition of Θk+1 + Γ1

k/ρ1, where Ur

and Vr consist of respectively r orthonormal columns, and Σr = diag {(σ1, σ2, · · · , σr)}. Then the

optimal Ψ1
k+1 is given by

Ψ1
k+1 = UrΣ̂V

T
r , Σ̂ = diag

{(
σi −

α

ρ1

)
+

}
, (6.31)

where (x)+ = x if x > 0 and (x)+ = 0 otherwise. Moreover, it can also be verified that Eq. (6.30)

admits an analytical solution. Let ψ, θ, and γ be the entries of Ψ2
k+1, Θk+1, and Γ2

k at the same
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coordinates. The optimal ψ is given by

ψ =


θ + 1

ρ2
(γ − β) θ + 1

ρ2
γ > 1

ρ2
β

0 − 1
ρ2
β ≤ θ + 1

ρ2
γ ≤ 1

ρ2
β

θ + 1
ρ2

(γ + β) θ + 1
ρ2
γ < − 1

ρ2
β

. (6.32)

6.4 Theoretical Analysis

In this section, we present a performance bound for the function estimation scheme in Eq. (6.3).

Such a performance bound measures how well the estimation scheme can approximate the regres-

sion functions {fj} in Eq. (6.2) via the sparse low-rank coefficient Θ.

Basic Properties of the Optimal Solution

We first define two operators, namely S0 and S1, on an arbitrary matrix pair (of the same size) based

on Lemma 3.4 in [94], as summarized in the following lemma.

Lemma 6.4.1. Given any Θ and ∆ of size h× k, let rank(Θ) = r and denote the SVD of Θ as

Θ = U

 Σ 0

0 0

V T ,

where U ∈ Rh×h and V ∈ Rk×k are orthogonal, and Σ ∈ Rr×r is diagonal consisting of the

non-zero singular values on its main diagonal. Let

∆̂ = UT∆V =

 ∆̂11 ∆̂12

∆̂21 ∆̂22

 ,
where ∆̂11 ∈ Rr×r, ∆̂12 ∈ Rr×(k−r), ∆̂21 ∈ R(h−r)×r, and ∆̂22 ∈ R(h−r)×(k−r). Define S0 and S1

as

S0(Θ,∆) = U

 ∆̂11 ∆̂12

∆̂21 0

V T , S1(Θ,∆) = U

 0 0

0 ∆̂22

V T .

Then the following conditions hold: rank (S0(Θ,∆)) ≤ 2r, ΘS1(Θ,∆)T = 0, ΘTS1(Θ,∆) = 0.

The result presented in Lemma 6.4.1 implies a condition under which the trace norm on a

matrix pair is additive. From Lemma 6.4.1 we can easily verify that

∥Θ+ S1(Θ,∆)∥∗ = ∥Θ∥∗ + ∥S1(Θ,∆)∥∗, (6.33)
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for arbitrary Θ and ∆ of the same size. To avoid clutter notation, we denote S0(Θ,∆) by S0(∆), and

S1(Θ,∆) by S1(∆) throughout this chapter, as the appropriate Θ can be easily determined from the

context.

As a consequence of Lemma 6.4.1, we derive a bound on the trace norm of the matrices of

interest as summarized below.

Corollary 6.4.1. Given an arbitrary matrix pair Θ̂ and Θ, let ∆ = Θ̂−Θ. Then

∥Θ̂−Θ∥∗ + ∥Θ∥∗ − ∥Θ̂∥∗ ≤ 2∥S0(∆)∥∗.

Proof. From Lemma 6.4.1 we have ∆ = S0(∆) + S1(∆) for the matrix pair Θ and ∆. Moreover,

∥Θ̂∥∗ = ∥Θ+ S0(∆) + S1(∆)∥∗ ≥ ∥Θ+ S1(∆)∥∗ − ∥S0(∆)∥∗

= ∥Θ∥∗ + ∥S1(∆)∥∗ − ∥S0(∆)∥∗, (6.34)

where the inequality above follows from the triangle inequality and the last equality above follows

from Eq. (6.33). Using the result in Eq. (6.34), we have

∥Θ̂−Θ∥∗ + ∥Θ∥∗ − ∥Θ̂∥∗ ≤ ∥∆∥∗ + ∥Θ∥∗ − ∥Θ∥∗ − ∥S1(∆)∥∗ + ∥S0(∆)∥∗

≤ 2∥S0(∆)∥∗.

We complete the proof of this corollary.

Analogous to the bound on the trace norm in Corollary 6.4.1, we also derive a bound on

the ℓ1-norm of the matrices of interest in the following lemma. For arbitrary matrices Θ and ∆, we

denote by J(Θ) = {(i, j)} the coordinate set (the location set of nonzero entries) of Θ, and by

J(Θ)⊥ the associated complement (the location set of zero entries); we denote by ∆J(Θ) the matrix

of the same entries as ∆ on the set J(Θ) and of zero entries on the set J(Θ)⊥. We now present

a result associated with J(Θ) and J(Θ)⊥ in the following lemma. Note that a similar result for the

vector case is presented in [95].

Lemma 6.4.2. Given a matrix pair Θ̂ and Θ of the same size, the inequality below always holds

∥Θ̂−Θ∥1 + ∥Θ∥1 − ∥Θ̂∥1 ≤ 2∥Θ̂J(Θ) −ΘJ(Θ)∥1. (6.35)

Proof. It can be verified that the inequality

∥ΘJ(Θ)∥1 − ∥Θ̂J(Θ)∥1 ≤ ∥(Θ̂−Θ)J(Θ)∥1
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and the equalities

ΘJ(Θ)⊥ = 0, ∥(Θ̂−Θ)J(Θ)⊥∥1 − ∥Θ̂J(Θ)∥1 = 0

hold. Therefore we can derive

∥Θ̂−Θ∥1 + ∥Θ∥1 − ∥Θ̂∥1

= ∥(Θ̂−Θ)J(Θ)∥1 + ∥(Θ̂−Θ)J(Θ)⊥∥1 + ∥ΘJ(Θ)∥1 + ∥ΘJ(Θ)⊥∥1 − ∥Θ̂J(Θ)∥1 − ∥Θ̂J(Θ)⊥∥1

≤ 2∥(Θ̂−Θ)J(Θ)∥1.

This completes the proof of this lemma.

We present a concentration inequality, which is important for our following analysis.

Lemma 6.4.3. Let σX(l) be the maximum singular value of the matrix GX ∈ Rn×h; let W ∈ Rn×k

be the matrix of i.i.d entries as wij ∼ N (0, σ2
w). Let λ = 2σX(l)σw

√
n
(
1 +

√
k/n+ t

)
/N. Then

Pr
(
∥WTGX∥2/N ≤ λ/2

)
≥ 1− exp

(
−nt2/2

)
.

Proof. It is known [118] that a Gaussian matrix Ŵ ∈ Rn×k with n ≥ k and ŵij ∼ N (0, 1/n) satisfies

Pr
(
∥Ŵ∥2 > 1 +

√
k/n+ t

)
≤ exp

(
−nt2/2

)
, (6.36)

where t is a universal constant. From the definition of the largest singular value, there exist a

vector b ∈ Rh of length 1, i.e., ∥b∥2 = 1, such that ∥WTGX∥2 = ∥WTGXb∥2 ≤ ∥W∥2∥GXb∥2 ≤

σX(l)∥W∥2. Since wij/ (σw
√
n) ∼ N (0, 1/n), we have

Pr
(∥∥WTGX

∥∥
2
/N > λ/2

)
≤ Pr

(
σX(l) ∥W∥2 /N > λ/2

)
.

Applying the result in Eq. (6.36) into the inequality above, we complete the proof of this lemma.

We present some basic properties of the optimal solution defined in Eq. (6.6); these prop-

erties are important building blocks of our following theoretical analysis.

Lemma 6.4.4. Consider the optimization problem in Eq. (6.6) for h, k ≥ 2 and n ≥ 1. Given n sam-

ple pairs as X = [x1, · · · , xn]T ∈ Rn×d and Y = [y1, · · · , yn]T ∈ Rn×k. Let F and GX be defined

in Eq. (6.2) and Eq. (6.4), respectively; let σX(l) be the largest singular values of GX . Assume that

W ∈ Rn×k has independent and identically distributed (i.i.d.) entries as wij ∼ N (0, σ2
w). Take

α+ β =
2σX(l)σw

√
n

N

(
1 +

√
k

n
+ t

)
, (6.37)
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where N = n× k and t is a universal constant. Then with probability of at least 1− exp
(
−nt2/2

)
,

for the minimizer Θ̂ in Eq. (6.6) and any Θ ∈ Rh×k, we have

1

N
∥GXΘ̂−F∥2F ≤

1

N
∥GXΘ−F∥2F + 2α∥S0(Θ̂−Θ)∥∗ + 2β∥(Θ̂−Θ)J(Θ)∥1, (6.38)

where S0 is an operator defined in Lemma 6.4.1 of the supplemental material.

Proof. From the definition of Θ̂ in Eq. (6.6), we have

Ŝ(Θ̂) + α∥Θ̂∥∗ + β∥Θ̂∥1 ≤ Ŝ(Θ) + α∥Θ∥∗ + β∥Θ∥1.

By substituting Y = F +W and Eq. (6.5) into the previous inequality, we have

1

N
∥GXΘ̂−F∥2F

≤ 1

N
∥GXΘ−F∥2F +

2

N
⟨W,GX(Θ̂−Θ)⟩+ α

(
∥Θ∥∗ − ∥Θ̂∥∗

)
+ β

(
∥Θ∥1 − ∥Θ̂∥1

)
.

Define the random event

A =

{
1

N
∥GTXW∥2 ≤

α+ β

2

}
. (6.39)

Taking α + β as the value in Eq. (6.37), it follows from Lemma 6.4.3 of the supplemental materia

that A holds with probability of at least 1− exp
(
−nt2

2

)
. Therefore, we have

⟨W,GX(Θ̂−Θ)⟩ = α+ β

α+ β
⟨W,GX(Θ̂−Θ)⟩

≤ α

α+ β
∥GTXW∥2∥Θ̂−Θ∥∗ +

β

α+ β
∥GTXW∥∞∥Θ̂−Θ∥1

≤ N

2

(
α∥Θ̂−Θ∥∗ + β∥Θ̂−Θ∥1

)
,

where the second inequality follows from ∥GTXW∥2 ≥ ∥GTXW∥∞. Therefore, under A, we have

1

N
∥GXΘ̂−F∥2F

≤ 1

N
∥GXΘ−F∥2F + α∥Θ̂−Θ∥∗ + β∥Θ̂−Θ∥1 + α

(
∥Θ∥∗ − ∥Θ̂∥∗

)
+ β

(
∥Θ∥1 − ∥Θ̂∥1

)
.

From Corollary 6.4.1 and Lemma 6.4.2 of the supplemental material, we complete the proof.

Main Assumption

We introduce a key assumption on the dictionary of basis functions GX . Based on such an as-

sumption, we derive a performance bound for the sparse trace norm regularization formulation in

Eq. (6.6).
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Assumption 6.4.1. For a matrix pair Θ and ∆ of size h × k, let s ≤ min(h, k) and q ≤ h × k. We

assume that there exist constants κ1(s) and κ2(q) such that

κ1(s) , min
∆∈R(s,q)

∥GX∆∥F√
N∥S0(∆)∥∗

> 0, κ2(q) , min
∆∈R(s,q)

∥GX∆∥F√
N∥∆J(Θ)∥1

> 0, (6.40)

where the restricted set R(s, q) is defined as

R(s, q) =
{
∆ ∈ Rh×k,Θ ∈ Rh×k |∆ ̸= 0, rank(S0(∆)) ≤ s, |J(Θ)| ≤ q

}
,

and |J(Θ)| denotes the number of nonzero entries in the matrix Θ.

Our assumption on κ1(s) in Eq. (6.40) is closely related to but less restrictive than the RSC

condition used in [100]; its denominator is only a part of the one in RSC and in a different matrix

norm as well. Our assumption on κ2(q) is similar to the RE condition used in [95] except that its

denominator is in a different matrix norm; our assumption can also be implied by sufficient conditions

similar to the ones in [95].

Performance Bound

We derive a performance bound for the sparse trace norm structure obtained by solving Eq. (6.6).

This bound measures how well the optimal Θ̂ can be used to approximate F by evaluating the

averaged estimation error, i.e., ∥GXΘ̂−F∥2F /N .

Theorem 6.4.1. Consider the optimization problem in Eq. (6.6) for h, k ≥ 2 and n ≥ 1. Given n

sample pairs as X = [x1, · · · , xn]T ∈ Rn×d and Y = [y1, · · · , yn]T ∈ Rn×k, let F and GX be

defined in Eqs. (6.2) and (6.4), respectively; let σX(l) be the largest singular value of GX . Assume

that W ∈ Rn×k has i.i.d. entries as wij ∼ N (0, σ2
w). Take α + β as the value in Eq. (6.37). Then

with probability of at least 1− exp
(
−nt2/2

)
, for the minimizer Θ̂ in Eq. (6.6), we have

1

N
∥GXΘ̂−F∥2F ≤ (1 + ϵ) inf

Θ

{
1

N
∥GXΘ−F∥2F

}
+ E(ϵ)

(
α2

κ21(2r)
+

β2

κ22(c)

)
, (6.41)

where inf is taken over all Θ ∈ Rh×k with rank(Θ) ≤ r and |J(Θ)| ≤ c, and E(ϵ) > 0 is a constant

depending only on ϵ.

Proof. Denote ∆ = Θ̂−Θ in Eq. (6.38). We have

1

N
∥GXΘ̂−F∥2F ≤

1

N
∥GXΘ−F∥2F + 2α∥S0(∆)∥∗ + 2β∥∆J(Θ)∥1. (6.42)

Given S0(∆) ≤ 2r (from Lemma 6.4.1 of the supplemental material) and |J(Θ)| ≤ c, we derive

upper bounds on the components 2α∥S0(∆)∥∗ and 2β∥∆J(Θ)∥1 over the restrict setR(2r, c) based
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on Assumptions 6.4.1, respectively. It follows that

2α∥S0(∆)∥∗ ≤ 2α

κ1(2r)
√
N
∥GX(Θ̂−Θ)∥F ≤

2α

κ1(2r)
√
N

(
∥GXΘ̂−F∥F + ∥GXΘ−F∥F

)
≤ α2τ

κ21(2r)
+

1

Nτ
∥GXΘ̂−F∥2F +

α2τ

κ21(2r)
+

1

Nτ
∥GXΘ−F∥2F , (6.43)

where the last inequality above follows from 2ab ≤ a2τ + b2/τ for τ > 0. Similarly, we have

2β∥∆J(Θ)∥1 ≤ β2τ

κ22(c)
+

1

Nτ
∥GXΘ̂−F∥2F +

β2τ

κ22(c)
+

1

Nτ
∥GXΘ−F∥2F . (6.44)

Substituting Eqs. (6.43) and (6.44) into Eq. (6.42), we have

1

N
∥GXΘ̂−F∥2F ≤ τ + 2

(τ − 2)N
∥GXΘ−F∥2F +

2τ2

τ − 2

(
α2

κ21(2r)
+

β2

κ22(c)

)
.

Setting τ = 2 + 4/ϵ and E(ϵ) = 2(ϵ+ 2)2/ϵ in the inequality above, we complete the proof.

By choosing specific values for α and β, we can refine the performance bound described

in Eq. (6.41). It follows from Eq. (6.37) we have

min
α,β,α+β=γ

(
α2

κ21(2r)
+

β2

κ22(c)

)
=

γ2

κ21(2r) + κ22(c)
, γ =

2σX(l)σw
√
n

N

(
1 +

√
k

n
+ t

)
, (6.45)

where the equality of the first equation is achieved by setting α and β proportional to κ21(2r) and

κ22(q), i.e., α = γκ21(2r)/
(
κ21(2r) + κ22(c)

)
and β = γκ22(c)/

(
κ21(2r) + κ22(c)

)
. Thus the perfor-

mance bound in Eq. (6.41) can be refined as

1

N
∥GXΘ̂−F∥2F ≤ (1 + ϵ) inf

Θ

{
1

N
∥GXΘ−F∥2F

}
+

4E(ϵ)σ2
X(l)σ

2
wn

N2 (κ21(2r) + κ22(c))

(
1 +

√
k

n
+ t

)2

.

Note that the performance bound above is independent of the value of α and β, and it is tighter than

the one described in Eq. (6.41).

6.5 Experiments

In this section, we evaluate the effectiveness of the sparse trace norm regularization formulation

in Eq. (6.6) on benchmark data sets; we also conduct numerical studies on the convergence of

AG and two ADMM implementations including ADMM1 and ADMM2 for solving Eq. (6.6) and the

convergence of the alternating optimization algorithm for solve Eq. (6.10). Note that we use the

least square loss for the following experiments.

Performance Evaluation

We apply the sparse trace norm regularization formulation (S.TraceNorm) on multi-label classifica-

tion problems, in comparison with the trace norm regularization formulation (TraceNorm) and the
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Table 6.1: Averaged performance (with standard derivation) comparison in terms of AUC, Macro
F1, and Micro F1. Note that n, d, and m denote the sample size, dimensionality, and label number,
respectively.

Data Set Business Arts Health Scene
(n, d, m) (9968, 16621, 17) (7441, 17973, 19) (9109, 18430, 14) (2407, 294, 6)

S.TraceNorm 85.42± 0.31 76.31± 0.15 86.18± 0.56 91.54± 0.18
AUC TraceNorm 83.43± 0.41 75.90± 0.27 85.24± 0.42 90.33± 0.24

OneNorm 81.95± 0.26 70.47± 0.18 83.60± 0.32 88.42± 0.31
S.TraceNorm 48.83± 0.13 32.83± 0.25 60.05± 0.36 51.65± 0.33

Macro F1 TraceNorm 47.24± 0.15 31.90± 0.31 58.91± 0.24 50.59± 0.08
OneNorm 46.28± 0.25 31.03± 0.46 58.01± 0.18 46.57± 1.10

S.TraceNorm 78.26± 0.71 42.91± 0.27 67.22± 0.47 52.83± 0.35
Micro F1 TraceNorm 78.84± 0.11 42.08± 0.11 66.92± 0.42 52.06± 0.49

OneNorm 78.16± 0.17 40.64± 0.52 66.37± 0.19 47.32± 0.13

ℓ1-norm regularization formulation (OneNorm). AUC, Macro F1, and Micro F1 are used as the clas-

sification performance measures. Four benchmark data sets, including Business, Arts, and Health

from Yahoo webpage data sets [77] and Scene from LIBSVM multi-label data sets1, are employed

in this experiment. The reported experimental results are averaged over 10 random repetitions

of the data sets into training and test sets of the ratio 1 : 9. We use the AG method to solve

the S.TraceNorm formulation, and stop the iterative procedure of AG if the change of the objec-

tive values in two successive iterations is smaller than 10−8 or the iteration numbers larger than

105. The regularization parameters α and β are determined via double cross-validation from the set

{10−2 × i}10i=1 ∪ {10−1 × i}10i=2 ∪ {2× i}10i=1.

We present the averaged performance of the competing algorithms in Table 6.1. The main

observations are summarized as follows: (1) S.TraceNorm achieves the best performance on all

benchmark data sets (except on Business data) in this experiment; this result demonstrates the

effectiveness of the induced sparse low-rank structure for multi-label classification tasks; (2) Tra-

ceNorm outperforms OneNorm on all benchmark data sets; this result demonstrates the effective-

ness of modeling a shared low-rank structure for high-dimensional text and image data analysis.

Numerical Study

We study the practical convergence of AG and ADMM2 by solving Eq. (6.6) on Scene data. In

our experiments, we observe that ADMM1 is much slower than ADMM2 and we thus only focus on

ADMM2. Note that in AG, we set α = 1, β = 1; in ADMM2, we set α = 1, β = 1, ρ1 = ρ2 = 10. For

other parameter settings, we observe similar trends.

1http://www.csie.ntu.edu.tw/~cjlin
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Figure 6.1: Convergence comparison of AG and ADMM2 for solving Eq. (6.6) (left plot); convergence
plot of AG for solving Eq. (6.6) (middle plot); and the alternating optimization algorithm for solving
the dual formulation of the proximal operator in Eq. (6.10) (right plot).

In the first experiment, we compare AG and ADMM2 in term of the practical convergence.

We stop ADMM2 when the change of the objective values in two successive iterations smaller than

10−4; the attained objective value in ADMM2 is used as the stopping criterion for AG, that is, we

stop AG if the attained objective value in AG is equal to or smaller than that objective value attained

in ADMM2. The convergence curves of ADMM2 and AG are presented in the left plot of Figure 6.1.

Clearly, we can observe that AG converges much faster than ADMM2. In the second experiment,

we study the convergence of AG. We stop AG when the change of the objective values in two

successive iterations smaller than 10−8. The convergence curves is presented in the middle plot of

Figure 6.1. We observe that AG converges very fast, and its convergence speed is consistent with

the theoretical convergence analysis in [45].

We also conduct numerical study on the alternating optimization algorithm (in Section 6.3)

for solving the dual formulation of the proximal operator in Eq. (6.10). Similarly, the alternating opti-

mization algorithm is stopped when the change of the objective values in two successive iterations

smaller than 10−8. For illustration, in Eq. (6.10) we randomly generate the matrix Φ̂ of size 10000 by

5000 from N (0, 1); we then apply the alternating optimization algorithm to solve Eq. (6.10) and plot

its convergence curve in the right plot of Figure 6.1. Our experimental results show that the alternat-

ing optimization algorithm generally converges within 10 iterations and our results demonstrate the

practical efficiency of this algorithm.

6.6 Summary

We study the problem of estimating multiple predictive functions simultaneously in the nonparamet-

ric regression setting. In our estimation scheme, each predictive function is estimated using a linear

combination of a dictionary of pre-specified basis functions. By assuming that the coefficient ma-

trix admits a sparse low-rank structure, we formulate the function estimation problem as a convex
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program with the trace norm and the ℓ1-norm regularization. We propose to employ AG and ADMM

algorithms to solve the function estimation problem and also develop efficient algorithms for the key

components involved in AG and ADMM. We derive a key property of the optimal solution to the con-

vex program; moreover, based on an assumption associated with the basis functions, we establish a

performance bound of the proposed function estimation scheme using the composite regularization.

Our simulation studies demonstrate the effectiveness and the efficiency of the proposed formula-

tion.
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Chapter 7

Conclusion and Future Directions

In this chapter, I summarize the main contributions of this dissertation and discuss some of the future

research directions.

7.1 Summary

In this dissertation, I consider the problems of learning multiple tasks simultaneously as well as

modeling the task relationship via a shared low-rank structure. The proposed MTL approaches are

formulated as the optimization problems of a common generic form, i.e., minimizing the empirical

loss over the pre-specified training data with different structured regularizations.

In the first approach - Factor Selection and Coefficient Estimation in Multivariate Linear

Regression, I consider to extract a small set of basis factors for capturing the relatedness of multiple

related regression functions. This approach is formulated as a multivariate linear regression problem

subject to a trace norm constraint.

In the second approach - Learning a Shared Structure from Multiple Tasks, I consider to

learn a shared low-dimensional feature mapping from multiple tasks. This approach is formulated as

a regularized formulation called iASO, in which the low-rank structure is induced via an orthonormal

constraint. Subsequently, iASO is converted into a convex relaxation called rASO, for which a

globally optimal solution can be guaranteed. I also derive an interesting theoretical condition based

on which rASO can find a globally optimal solution for iASO.

In the third approach - Learning Incoherent Sparse and Low-rank Patterns from Multiple

Tasks, I consider to learn incoherent sparse and low-rank patterns from multiple tasks. This ap-

proach is formulated as a linear multi-task learning algorithm in which the sparse and low-rank

patterns are induced by a sparse regularization term and a low-rank constraint, respectively.

In the fourth approach - Integrating Low-Rank and Group-Sparse Structures for Robust

Multi-Task Learning, I consider the scenarios where multiple tasks can be divided into a related-task

group and an irrelevant-task group. This leads to a robust multi-task learning (RMTL) formulation

which learns multiple tasks simultaneously as well as identifies the irrelevant tasks. I also derive a

theoretical bound for characterizing the learning performance of RMTL.

In the fifth approach - Learning Multiple Tasks via Sparse Trace Norm Regularization, I

consider the problem of estimating multiple predictive functions from a dictionary of basis functions in
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the nonparametric regression setting. This approach is formulated as a convex program regularized

by the trace norm and the ℓ1-norm simultaneously. Similarly I theoretically establish a performance

bound for the proposed function estimation scheme.

For all of the proposed MTL formulations, I develop efficient algorithms for solving the key

components involved in the optimization algorithms. I also conduct theoretical analysis for certain

MTL approaches such as deriving the globally optimal solution recovery condition and the per-

formance bound. The proposed MTL approaches are applied on two real-world applications for

effectiveness demonstration: (1) Automated annotation of the Drosophila gene expression pattern

images; (2) Categorization of the Yahoo web pages. Our experimental results demonstrate the

efficiency and effectiveness of the proposed algorithms.

7.2 Future Directions

Design of New Low-Rank Regularizations/Constraints In this dissertation, the proposed MTL

approaches employ either the trace norm constraint (regularization) or the orthonormal constraint

to induce a shared low-dimensional feature mapping (for capturing the task relatedness). There-

fore when solving the proposed MTL formulations, single value decomposition (SVD) is in general

involved. It is known that SVD leads to expensive computations and may not be practical for the real-

world applications involving large scale data sets. One future research direction is to develop new

constraints which induce the shared low-dimensional feature mapping while avoiding the expensive

SVD computation in the resulting mathematical formulations.

Detection of Complex Cluster Structures in Multiple Tasks In this dissertation, I consider a ro-

bust multi-task learning formulation which divides multiple tasks into two groups, i.e., the group of

related tasks and the group of irrelevant tasks. However, in reality, the multiple tasks may consist

of complex task-groups, for example, a structure of multiple clusters. One future direction is to sys-

tematically integrate the clustering algorithms into the MTL models so that the clustering structures

among multiple tasks can be automatically detected.

More Efficient Optimization Algorithms In this dissertation, I mainly focus on employing the

gradient-type algorithms to solve the proposed MTL formulations. The gradient-type algorithms

avoid the computation of second-order information such as the Hessian matrix and they can be

applied for the real-world applications involving large scale data sets. In our empirical study, we

observe that this type of algorithms converge very fast when the desirable precision (the change of
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the objective values in two successive iterations) is moderate. However, if the desirable precision is

high, the gradient-type algorithms converge slowly. One future direction is to develop optimization

algorithms which can efficiently attain high precision in the desirable solution for the proposed MTL

formulations.

Learning Negative Task Relatedness Existing MTL algorithms focus on learning multiple tasks

simultaneously by modeling the task relatedness or differentiating the related tasks from irrelevant

tasks. In essence, the task relationships can be categorized into positive correlation, negative corre-

lation, and task unrelatedness. Clearly ignoring the existence of negative correlation among multiple

tasks will affect the generalization performance. One future direction is to develop multi-task learning

algorithms in which all three types of tasks relationship are differentiated and utilized appropriately.

Learning Multiple Clustering Problems Currently the approaches of learning multiple tasks via

modeling task relatedness has been widely applied for supervised learning settings and the supe-

rior performance has been demonstrated both empirically and theoretically compared to learning

multiple tasks separately (in supervised learning as well). One future direction is to apply the idea

of learning multiple tasks for clustering problems, in which multiple clustering problems are solved

simultaneously with their underlying relatedness appropriately modeled.
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