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ABSTRACT  

   

The wood-framing trade has not sufficiently been investigated to 

understand the work task sequencing and coordination among crew members. A 

new mental framework for a performing crew was developed and tested through 

four case studies. This framework ensured similar team performance as the one 

provided by task micro-scheduling in planning software. It also allowed 

evaluation of the effect of individual coordination within the crew on the crew‟s 

productivity.  

Using design information, a list of micro-activities/tasks and their 

predecessors was automatically generated for each piece of lumber in the four 

wood frames. The task precedence was generated by applying elementary 

geometrical and technological reasoning to each frame. Then, the duration of each 

task was determined based on observations from videotaped activities. 

Primavera's (P6) resource leveling rules were used to calculate the sequencing of 

tasks and the minimum duration of the whole activity for various crew sizes. The 

results showed quick convergence towards the minimum production time and 

allowed to use information from Building Information Models (BIM) to 

automatically establish the optimal crew sizes for frames.  

Late Start (LS) leveling priority rule gave the shortest duration in every 

case. However, the logic of LS tasks rule is too complex to be conveyed to the 

framing crew. Therefore, the new mental framework of a well performing framer 

was developed and tested to ensure high coordination. This mental framework, 
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based on five simple rules, can be easily taught to the crew and ensures a crew 

productivity congruent with the one provided by the LS logic. 

The case studies indicate that once the worst framer in the crew surpasses 

the limit of 11% deviation from applying the said five rules, every additional 

percent of deviation reduces the productivity of the whole crew by about 4%. 
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leaders and role models in my life. 
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Chapter 1 

INTRODUCTION 

1.1 Statement of Purpose 

 

Maximizing the performance of a wood-framing construction team at the 

job site depends to some extent on the performance of individuals. This research 

endeavor aims to produce a better understanding of effective and adaptive team 

behavior in the field of wood-framing construction. The deliverable product aims 

to fit individual skill with team task for structuring adaptive teams. Two 

characteristics shared by effective teams are a nonverbal communication of a final 

product in the form of a mental model and an unspoken sequence of procedures. 

Clear-cut teamwork has potential to improve all three areas of performance: 

productivity, safety, and quality.  

In the taxonomy of sciences, this study can be placed on the border 

between stochastic and rule-based modeling. The broader impact of this study will 

be the production of team-skills taxonomy within the different trades. Integration 

of team skills to improve work practices and situation awareness is the main 

research goal. The useful final product aims to provide training insights for 

structuring adaptive teams that are better matched with the type of work required 

in their respective trade. 

1.2 Statement of Objective 

 

Unlike employees at a manufacturing plant, construction field workers 

have few repetitive tasks. There is mounting evidence (Salas, Cooke and Rosen, 

2008) from the cognitive engineering sciences that group work requires a 
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different skill-set than individual performance. However, it is arguable that 

similarities in mental models acquired during individual work are crucial for 

achieving a high performance team. For example, the Australia national rugby 

team has had a touring segment known as the Kangaroos. The 1982 Kangaroos 

were the first touring team to go unbeaten in twenty-two games despite having no 

individual superstars (Wikipedia, 2011). In fact, it appears that the players had 

nothing but a compact set of skills: pace, guile, teamwork, and fitness. For this 

research, it is assumed that clear-cut teamwork has the potential to improve a 

crew‟s performance. The specific question this research is aiming to answer is: 

how do we fit individuals to a specific wood-framing construction team to ensure 

a high level of performance?  

There are several reasons why this question has not been answered earlier. 

Wood-framing is a dynamic activity, in which both the object of the work (the 

goal) and the location are changing many times a day. Capturing the performance 

of such dynamic teams is a challenging investigation. Consequently, the body of 

knowledge on team formation and development in the construction industry is 

deficient. The study requires a cross-disciplinary approach ranging from 

construction objects and methods modeling to productivity measurement through 

motion study, and team cognition modeling. Each of the disciplines required 

further development to allow the completion of this particular study. 
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1.3 Major Productivity, Safety and Quality Issues in Wood-Framing 

Construction 

Wood framing construction can be classified into the following areas: 

tools and materials, rough carpentry, exterior finish, and interior finish. For tools 

and materials, there are the following main categories: wood and lumber, 

engineered panels (rated plywood and panels, nonstructural panels), engineered 

lumber products (LVL, PSL and LSL, wood I-joists, glue-laminated lumber), 

fasteners (nails, screws, anchors, etc.), hand tools (boring and cutting tools, 

fastening, layout tools), portable power tools (saws, drills, drivers, fastening 

tools), and stationary power tools (circular saw blades, radial arms and miter 

saws, table saws). The breakdown for rough carpentry includes: building layout, 

concrete forms, floors, exterior walls, interior rough work, scaffoldings, roof 

framing, stairs, insulation and ventilation. Breakdown for exterior finish carpentry 

includes: roofing, windows, exterior doors, sidings, decks, porches and fences. 

Interior finish carpentry classification includes drywall construction, wall 

paneling, ceiling finish, interior doors and door frames, interior trim, stair finish, 

finish floors, cabinets and countertops. The tasks that compose these building 

products come in their execution with various demands that need to be 

accomplished to get finally the products that will constitute parts of the residential 

or commercial building. 

 The major productivity issues that interfere with the work associated with 

individual tasks or assemblies that enter these products are: weather variability, 

lack of experience, inadequate materials, numerous position changes, ineffective 
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communication, inadequate planning and scheduling of the work, lack of 

coordination between framers and poorly designed tools. Research shows that 

labor effectiveness is a combined measure of factors such as motivation, training 

(rules and behaviors), perceived feedback, physical limitations and cognitive 

measures of the performed tasks (skills, capabilities and interpersonal relations).  

 The analysis of accidents in wood-framing (Mitropoulos and Guillama, 

2010) revealed most factors that determine the difficulty of framing tasks, like 

working on platform constraints, ergonomic postures constraints (bending, 

extending the body, etc.), material/load handling requirements, tool use/accuracy 

requirements and difficulties due to external forces (e.g. wind-important in roof 

tasks, coordination between framers when lifting walls). The majority of accidents 

are classified in this industry under the following categories: falls (falls from 

ladders), trip/slips, nail gun punctures, stepped on, foreign body (splinter/eye 

debris), hit by/against, and strains. There are certain safety interventions that can 

reduce the task difficulties and the frequency of incidents while at the same time 

improving the productivity of the whole activity. 

 Currently, the wood-framing industry is focused on streamlining the 

construction process, resulting in too little time and attention spent on the details 

that sometimes are critical in obtaining a finished product consistent with quality 

construction goals and standards. There are likely additional costs associated with 

this initiative, although in the long term, cost savings arising from improved 

framing practice may offset the additional installation labor and third-party 

inspections costs. 
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Framing is one of those products in which once a minimal required quality 

is achieved, better quality adds no value to the final product (residential or a 

commercial buildings). The minimal quality is ensured through quality checks 

performed by the framers or foremen, as described below. The lumber is checked 

before the work starts. Framers usually have 24 hours to send back wrong 

material, which they call “cull” lumber. Cull lumber is replaced with new, straight 

material. The concrete slabs may have high and low spots that affect the quality of 

framing. Foremen state that when they have issues with the concrete at bearing 

wall locations, they call the tract superintendent and have the concrete company 

send a crew to fix the slab. As soon as they start framing on the slab, they take full 

responsibility for it. A comprehensive list of quality checks for wall framing and 

roof framing, as discussed with foremen on the jobsite, can be found in Appendix 

A.  

 Even though the quality issues are not considered throughout the current 

study, it is important to understand that these checks can have serious 

implications in the outputs of the work and the effectiveness of the wood-framing 

crews if they are carried out during the actual construction time. 

1.4 Intellectual Merit and Broader Impact 

 

 The results of the research provide an objective measurement of the 

individual‟s contribution to the success of a team, thus allowing a broader 

integration of people in construction, regardless of gender or stature. The research 

is: 
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 providing new capabilities for analysis of framing operations through an 

innovative methodology and analysis; 

 describing with accuracy the team mental model and procedures to the 

final outcome to achieve high-performance teams; 

 through an accurate team mental model, fitting individual skill with team 

task for structuring adaptive teams. 

Capturing and creating an accurate mental model of performing crews in 

construction trades enable the systematic development of effective, stable and 

resilient production systems. This aspect has a significant impact on how the 

industry selects and trains field personnel and organizes the work to be more 

productive, based on the output sought. At the same time, activities developed 

based on these research results will be less prone to errors and to accidents. 

Therefore, the main goal of this research is to generate significant social and 

economic benefits to the industry and to have an impact over other disciplines, 

relinquishing a new body of knowledge about modeling coordination and 

interaction in crews (construction teams). 

1.5 Problem Statement 

 

 The literature review presented in the next chapter reveals that the 

effectiveness of a wood-framing crew depends on the performance of each 

individual and on “the way” they work together. The researcher is assuming also 

that two “silent” characteristics are shared by effective teams:  

(1)  shared mental model (SMM) of the final product (or “what needs to be 

built?”- a specific frame, in this case) and  
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(2)  the sequence of tasks performed by each crew member (or “how is the 

frame going to be built?”) 

The broader aim of this research is to fit individual skill with team task for 

structuring effective construction crews in each known trade. Table 1 was 

compiled with the intent of identifying the major construction trades in which this 

study may have applicability. 

 

Table 1. Construction Trades and Code Identification 

 

TRADE/Description of work Code 

Brick masons, block masons, and stonemasons Br 

Carpet, floor, and tile installers and finishers Cr 

Cement masons, concrete and terrazzo finishers Cn 

Construction equipment operators Op 

Drywall installers  Dr 

Electricians  El 

Glaziers Gl 

Insulation workers  In 

Ironworkers  Ir 

Painters and paperhangers  Pa 

Plasterers and stucco masons  Pl 

Plumbers, pipelayers, pipefitters, steamfitters Pm 

Roofers  Rf 

Sheet metal workers  Sh 

Tile setters and marble setters Ti 

 

However, this particular research focuses only on wood framing. Relevant to this 

wood-framing processes study, there are two research questions to answer: 

1. How do teams or crews solve problems together? In other words how do 

they become aware of a particular situation as a group, how do they share 

information/situations and make decisions as a unit? 
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2. What roles does individual performance play in the performance of the 

whole crew? 
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Chapter 2 

A REVIEW OF LITERATURE CRITICAL TO RESEARCH 

2.1 Long-Range Productivity Studies - Team Factors, Team Situation 

Awareness and Crew Resource Management (CRM) 

Garay and Guillermo (2006) showed how poor comprehension of 

Situational Awareness (SA), lack of CRM knowledge transferred into skills, and a 

poor understanding of Human Factors (HF) concepts can rapidly change a 

situation from normal to highly dangerous without team members becoming 

aware of the change. Their paper shows how such a risky situation can be easily 

avoided and managed safely just by applying some well established rules. 

  Cooke, Salas, Cannon-Bowers and Stout (2000) describe how 

multioperator tasks often require complex cognitive processing at the team level. 

Team knowledge is many-sided and comprised of generic knowledge in the form 

of team mental models and more specific, team situation models. The authors‟ 

methodological review paper and recent efforts to measure team knowledge is 

reviewed in the context of mapping specific methods onto features of targeted 

team knowledge.  

Gorman, Cooke and Winner (2006) emphasize that decentralized 

command and control settings like those found in the military are “prevalent with 

complexity and change.” These settings typically involve dozens, if not hundreds 

to thousands, of heterogeneous players coordinating in a distributed fashion 

within a dynamically networked battlefield that is burdened with sensor data, 

intelligence reports, communications, and plans emanating from many different 
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perspectives. Considering the concept of team situation awareness (TSA) in this 

setting, the researcher attempted to answer these questions: 

 What does it mean for a team to be aware of a situation or, more 

importantly, of a critical change in a situation?  

 Is it sufficient or necessary for all individuals on the team to be 

independently aware of a situation?  

 Or is there some more holistic awareness of a situation that emerges as 

team members interact?  

The researchers re-examine the concept of team situation awareness in 

decentralized systems beyond an individual-oriented knowledge-based construct 

by considering it a team interaction-based phenomenon. A theoretical framework 

for a process-based measure called “coordinated awareness of situations by 

teams” (CAST) is outlined in this work. The paper presents a theoretical basis for 

measuring TSA in decentralized command and control environments using the 

basic components of CAST measurements. New issues are addressed with 

implications concerning team cognition, TSA theory, measurement, training, and 

design. 

 Zsambok, Klein, Kyne and Klinger‟s research (1992) describes the 

Advanced Team Decision Making (ATDM) model along with an application of a 

case study in military teams. Based on their observations of numerous tactical and 

strategic decision making teams, they derived three key components of advanced 

team decision making: team self identity, team conceptual level, and team self 

monitoring. The model contains ten key behaviors critical to team development in 
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these components. As a result of their observations, the researchers identified the 

critical behaviors among hundreds of teams‟ behaviors which distinguished the 

high performance teams from less productive ones. Therefore, they developed an 

ATDM model based on these critical behaviors. 

2.2 Cognitive Engineering Studies – Shared Mental Models and Team 

Interaction 

 

Shared Mental Models (SMM) 
 

 Waller, Gupta and Giambatista (2004) associate control crews as highly 

trained teams responsible for monitoring complex systems, performing routine 

procedures, and quickly responding to non-routine situations. Previous literature 

cited in their paper suggests that higher performing control crews engage in 

adaptive behavior during high-workload or crisis situations. Other work suggests 

that higher-performing crews use periods of lower workloads to prepare for future 

problems. To understand which behaviors performed during which situations 

better differentiate lower from higher performing crews, the authors conducted a 

study of 14 nuclear power plant control room crews and examined adaptive 

behaviors and shared mental model development in the crews as they faced 

monitoring, routine, and non-routine situations. 

 One of the findings of this study was that lower performers engaged in 

more information collection across workload conditions than did the higher 

performers. The findings suggest that for control crews in dynamic environments, 

the occurrence of a non-routine problem might be an important boundary 

condition. This situation affects the influence of information collection on crew 
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performance. A second important finding was the ability of higher performers to 

collect information and develop shared mental models during non-routine 

situations. This might be indicative of a crew‟s multi-tasking ability in general. 

 The results suggest that few differences in adaptive behaviors exist 

between higher and lower performing crews during monitoring or routine 

situations. During non-routine situations, information collection, shared mental 

model development activities, and inner-crew processes used during model 

development, differ significantly between lower and higher performing control 

crews in a non-routine situation.  

 Cooke and Durso (2008), reporting work done by Klinger and colleagues, 

presented an interesting study bringing out the effects of interventions on the 

performance of a large-scale emergency team in a nuclear power plant. The 

exercise of successive drills revealed that performance improves over a number of 

drills when staff size decreases. Also, they suggested that one cannot 

underestimate the value of skilled observers and their abilities to help an 

organization diagnose and repair its own weaknesses (decision-making experts). 

Langan-Fox, Anglim and Wilson (2004) present us with a number of 

difficulties regarding the concept of team mental models, specifically: 

incompleteness, multiplicity, and inconsistency. Not the least of these difficulties 

is the problem of “capturing” (measuring) mental models, and still more difficult, 

capturing a team mental model, an extension of the earlier term. Their research 

paper tries to describe an analytic procedure to analyze team mental models.  
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 Mohammed, Klimoski and Rentsch‟s (2000) research searches to promote 

the advancement of empirical research on team mental models by: 

 highlighting the conceptual work that must precede the selection of any 

measurement tool  

 delimitating measurement standards for group-level cognitions 

 evaluating a set of techniques for measuring team mental models 

Because team mental models are extremely complex variables, multiple measures 

are required for a thorough assessment. The authors suggest that researchers 

should be aware of conclusions that rest on the use of a single method. Therefore, 

it is unlikely that team-related outcomes can be predicted effectively except by 

combining the strengths of different techniques. Furthermore, across the different 

techniques, it would be worthwhile to conduct studies in which both global and 

aggregated measurement techniques are used to compare the resulting team 

mental models for similarities and differences. 

Carley and Palmquist (1992) describe how in making decisions or talking 

to others, people use mental models of the world to evaluate choices and frame 

discussions. Their study describes a methodology for representing mental models 

as maps, extracting these maps from texts, and analyzing and comparing these 

maps. The methodology employs a set of computer-based tools to analyze written 

and spoken texts. These tools support textual comparison both in terms of what 

concepts are present and in terms of what structures of information are present. 

The methodology supports both qualitative and quantitative comparisons of the 

resulting representations. This approach is illustrated using data drawn from a 
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larger study of students learning to write, in which it is possible to compare 

mental models of the students with those of the instructor. 

Nemire (2008) suggested that mental models are internal representations 

of the external world thought to influence perception and decision-making. An 

inappropriate mental model of a “roller coaster” was hypothesized to have caused 

the injury of one person and the death of another in a roller coaster incident. A 

study was conducted to learn about existing internal representations of roller 

coasters. Participants were asked to draw a roller coaster. Despite the existence of 

several types of roller coasters, 98% of the study participants drew a roller coaster 

representing the oldest and most prevalent type of coaster. The results of the study 

demonstrate that the internal representations were incomplete and penurious with 

respect to this injury incident; this shows the importance of educating product 

users about more appropriate mental models that may help prevent injury or 

death. Finally, it is suggested that training can correct deficiencies in mental 

models, and therefore enhance performance by providing more complete and 

accurate details and processes for the system being represented.  

2.3 Safety Studies 

 

Mental Workload 

The research of Rubio, Diaz, Martin and Puente (2004) evaluates several 

psychometric properties (intrusiveness, sensitivity, diagnosticity, and validity) of 

three multidimensional subjective workload assessment instruments: the NASA 

Task Load Index (TLX), the Subjective Workload Assessment Technique 

(SWAT) and the Workload Profile (WP). The analysis of mental workload in a 
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certain job leads to a number of practical implications for the training plans, the 

selection process, and task designing and redesigning. A major goal of work 

psychology is the analysis of task demands in order to design jobs that bring about 

a lower mental workload. This in turn is leading to lower stress levels and 

accident rates and to a decrease in the likelihood of errors as well, hence, the 

importance of mental workload evaluation. 

This research attempted to analyze and compare the characteristics of 

three measures of subjective mental workload: NASA-TLX, SWAT and WP.  

Subjects accepted willingly the three instruments although there were 

some problems concerning comprehension of the dimensions in the WP. As for 

the SWAT, the ranking task prior to the performance of the experimental tasks 

proved wearisome. To sum up, some basic recommendations can be given 

concerning the evaluation of mental workload in applied settings, depending on 

the goals: 

 If the goal is a comparison between the mental workload of two or more 

tasks with different objective levels of difficulty, then the assessor should 

choose the Workload Profile. 

 If the goal is to predict the performance of a particular individual in a task, 

then NASA-TLX is recommended. 

 If what is needed is an analysis of cognitive demands or attention 

resources demanded by a particular task, then the best choice would be 

WP or, as an alternative, SWAT. 
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Workload Measures 

1. The NASA Task Load Index (Hart and Staveland, 1988) uses six 

dimensions to assess mental workload: mental demand, physical demand, 

temporal demand, performance, effort, and frustration. Table 2 shows the 

definitions of NASA-TLX dimensions. 

 

Table 2. Rating Scale Definitions and Endpoints from the NASA Task Load 

Index 

 

 
 

2. The Subjective Workload Assessment Technique –SWAT (Reid and 

Nygren, 1988) is a subjective rating technique that uses three levels: (1) low, (2) 

medium, and (3) high, for each of the three dimensions of time: load, mental 

effort load and psychological stress load, which is used to assess workload. Table 

3 shows the SWAT rating scale dimensions. 
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Table 3. Subjective Workload Assessment Technique (SWAT) Rating Scale 

dimensions 

 

 
 

3. Workload Profile (WP). Tsang and Velazquez (1996) have introduced 

and evaluated a new multidimensional instrument to assess subjective mental 

workload, based on the multiple resource model of Wickens (1987). Their 

instrument, Workload Profile, tries to combine the advantages of secondary task 

performance based procedures (high diagnosticity) and subjective techniques 

(high subject acceptability and low implementation requirements and 

intrusiveness). As Tsang and Velazquez recognizes, the Workload Profile 

technique needs more detailed and extensive research about its properties. The 

Workload Profile asks the participants to provide the proportion of attentional 

resources used after they had experienced all of the tasks to be rated. The tasks to 

be rated are listed in a random order down the column and the eight workload 

dimensions are listed across the page (Table 4). The workload dimensions used in 
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this technique can be defined by the resource dimensions hypothesized in the 

multiple resource model of Wickens (1987): perceptual/central processing, 

response selection and execution, spatial, processing, verbal processing, visual 

processing, auditory processing, manual output, and speech output. Participants 

have available to them the definition of each dimension at the time of the rating. 

In each cell on the rating sheet, participants provide a number between zero and 

one to represent the proportion of resources used in a particular dimension for a 

task. A rating of “zero” means that the task placed no demand on the dimension 

being rated; a rating of “one” means that the task required maximum attention. 

The ratings on the individual dimensions are later summed for each task to 

provide an overall workload rating. 

 

Table 4. Workload Profile Rating Sheet 

 

 
 

 There is also valuable research performed on emergency response teams 

for various industries (naturalistic decision making in a wide variety of task 

domains and settings, including firefighting, aviation, market research, command 
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and control, software troubleshooting, etc.). In this sense, Klinger and Klein 

(1999) demonstrated how application of a team training model can be the key to 

the increased efficiency of an emergency response team in the nuclear power 

plants. Their premise was that applying skills in the areas of macro-ergonomics 

and cognitive engineering would be effective, even in the absence of domain 

knowledge. They also showed an interesting curvilinear effect of increasing staff 

size on workload based on the ratio of real work to the time spent in managing 

information flow. To boost team performance and improve its functioning, it was 

necessary to downsize the personnel working for the organization responding to 

an emergency case. There were numerous changes made relevant to team 

functioning in addition to the decrease in team size. Decreasing size in the 

original (poorly designed) system would have likely hurt performance. 

2.4 Coordination and Strategy Formation in Organizations 

 

Mintzberg (1978) broadens the definition of strategy from a preconceived 

intentional plan to a “pattern in a stream of decisions.” Both “intended” and 

“realized” strategies can be studied within a complex dynamic surrounding and 

bureaucratic impetus by using this expanded definition. An intended strategy is 

precise and made in advance. A realized strategy is conceived over time. It is a 

“pattern in a stream of decisions” (p. 935). Accepting both types of strategic 

formation enables researchers to consider both prior and evolved approaches. 

Exploratory research was conducted to detect the development and 

breakdown (change) of patterns over time. Four steps were followed: “collection 

of basic data, inference of strategies and periods of change, intensive analysis of 
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periods of change, and theoretical analysis” (p. 936). In the first step, interviews 

were conducted and newspaper reports, product catalogs, and meeting minutes 

were analyzed in chronological order. Patterns during periods of change were then 

marked as incremental, piecemeal, global, continuity, limbo, or flux. The data 

were then more intensively scrutinized. The last step identified when a decision 

was “proactive or reactive” (p. 936). Two case studies, Volkswagenwerk and 

Vietnam, were reported using the codification for patterns in strategic decision-

making. 

 Organizational strategies form around the interchange of three forces: 

environment, bureaucracy, and leadership. “A strategy is not a fixed plan, nor 

does it change systematically at pre-arranged times solely at the will of 

management” (p. 947). Most of the studies depicted two main patterns based on 

life cycle and waves of change brought on by force interplay. Most bursts of 

change were followed by a stage of stability.  

 The researchers take “intended” and “realized” strategies one-step further 

by combining them in three ways. The conceptual framework of strategy types 

best communicates “deliberate” versus “emergent” strategies (p. 945) (Figure 1): 

 



21 

 
 

Figure 1. Types of strategies 

 

Deliberate strategies are “intended strategies that get realized” (p. 945).  Intended 

strategies that do not get carried out are unrealized strategies. Emergent strategies 

get realized even thought they were never proposed at the onset. 

 In summary, Mintzberg expresses that strategies are molded by the 

interface of three forces: environment, bureaucracy, and leadership. They are 

either intended or realized. Patterns in the chronological flow of decision-making 

can be codified as incremental, piecemeal, global, continuity, limbo and flux. 

Organizations become proactive or reactive and strategies are unrealized, 

deliberately realized, or unintentionally realized (emergent). 

Mintzberg (1980) provides five part lists for organizations, mechanisms of 

coordination, structural configurations, decision-making systems and contingency 

factors. 

5 parts of an organization: 

1. Operating Core: employees who create the product or service 

2. Strategic Apex: general managers and personal staff 

3. Middle Line: middle management 
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4. Technostructure: houses analysts who do the standardizing 

5. Support Staff: employees who provide indirect support 

5 mechanisms of coordination: 

1. Direct Supervision: one person gives orders (for instance the manager) 

2. Standardization of Work Processes: standards to guide work being done 

(for instance work orders) 

3. Standardization of Outputs: performance measures to guide work being 

done 

4. Standardization of Skills: employees are trained prior to beginning work 

(for instance: training) 

5. Manual Adjustment: employees coordinate their own work (for instance:  

informal communication) 

5 structural configurations: 

1. Simple Structure: Not elaborate so the organization can change quickly 

(simple and dynamic) 

2. Machine Bureaucracy: routine, formalized workflow (simple and stable) ( 

for instance: Mass production firms) 

3. Professional Bureaucracy: “standardized by a coordinating mechanism 

that allows for decentralization” (p. 333) (complex and stable) (for 

instance: School systems) 

4. Divisionalized Form: “superimposition of one structure on others” (p. 335) 

(for instance: Central headquarters overseeing divisions) 
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5. Adhocracy: “little formalization of behavior” (p. 337) (complex and 

dynamic) 

5 types of decentralization: (design of the decision making system) 

1. Vertical and Horizontal Centralization: power is at the top (strategic apex) 

2. Limited Horizontal Decentralization: power flows outside the authoritative 

line 

3. Horizontal and Vertical Decentralization: power flows down the 

authoritative line then out at the bottom (operators) 

4. Limited Vertical Decentralization: power is delegated down the 

authoritative line 

5. Selective Vertical and Horizontal Decentralization: power is diffused 

throughout the organization 

5 contingency factors: (have an effect on structure) 

1. Age 

2. Size 

3. Technical System 

4. Environment: dynamic, market influences, hostile 

5. Power: focus of… 

On page 330 Mintzberg presents a chart showing the interface of these sets 

of five.  Both the simple and professional bureaucracy structures are exemplified 

in this journal summary. Simple structures tend to be coordinated through direct 

supervision and have a centralized decision making system. They usually are 

young, small, have little technical systems, dynamic environments, and the focus 
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of power is with upper management. Professional bureaucracy structures are 

coordinated through a standardization of skills and have power diffused 

throughout the organization. They are young, vary in size, have low regulation but 

could have a high complexity of technical systems. Their environment is highly 

complex and dynamic with the focus of power on the experts. 

 Mintzberg and Waters (1985) place deliberate and emergent strategies 

along the two ends of a continuum. In between, they identify eight additional 

strategies (typology), each defined below. 

1. Planned: „surprise-free‟ (p. 259) 

2. Entrepreneurial: One person (owner) imposes vision 

3. Ideological: Collective strong identity with a vision (shared) 

4. Umbrella: Leaders have partial control (cannot set vision deliberately but 

set boundaries) 

5. Process: Leaders control the process of strategy making not the content 

6. Unconnected: Strategies are emergent from the organization at large. They 

may or may not fall within an umbrella. 

7. Consensus: Natural convergence of themes by a mutual adjustment among 

groups 

8. Imposed: Strategy is forced from the outside (environmental influences 

Ex. client) 

These eight strategy formations can be investigated based on the “function of the 

structure and context of organization” (p. 269). Furthermore, “will (strategies) 

tend to be more deliberate in tightly coupled, centrally controlled organizations 
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and more emergent in decentralized, loosely coupled ones?” (p. 269). What about 

„strategic learning‟? How do managers learn from their experiences? How do they 

realize strategies? How do they track strategies? Emergent implies learning. 

Pattern recognition over time is a form of self-awareness that paves the way for 

future research and understanding of organizational strategies. 

2.5 Teamwork in Organizations 

 

Salas, Burke, and Cannon-Bowers (2000) assessed the nature of 

teamworking and reviewed the different efforts made in the management 

literature to define it. They found that decision-making is one of the core skills in 

teamworking. Another element that Delbridge, Lowe, and Oliver (2000) plus 

Glover (2002) concluded is that clearly defined team roles are important. This is 

the highest importance human relation skill, as described by Partington and Harris 

(1999). The authors researched the implementation of teamworking in the car 

industry. In addition to measuring the success of implementing teamwork in the 

industry, they found evidence for teamwork training. They emphasize that 

successful teamworking is not as easy as just putting people together and 

expecting them to function. 

A popular perspective from Findlay, McKinlay, Marks, and Thompson 

(2000), is to look at a company or an industry at large and assess the impacts of 

teamworking on the environment as a whole. Bacon and Blyton (2000) looked at 

the iron and steel industry and investigated how teamworking had changed the 

way work was conducted. They concluded that workers‟ positive experience and 

company performance increase were dependent on management objectives for 
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improving teamwork. Glassop (2002) researched the success of implementing 

teamworking in an Australian industry. She found that the introduction of 

teamwork in the workplace can be successful depending on the type of work. Not 

all jobs are compatible with teamwork. Indeed, as with any implementation of 

work and organization design, teamwork is more appropriate to some settings 

than others (Mueller, Procter, and Buchanan, 2000). 

Other writers argue that “it is entirely possible to force a team-based form 

of work design onto a process with a non-compatible characteristic.” However, 

work designs should reflect the features of the production process (Sprigg, 

Jackson, and Parker, 2000). They did similar research on employees in wire mills 

and looked at the success of teamwork implementation. Coradetti (1994) supports 

this group of researchers, claiming that teamworking is not a fast fix and 

organizations must give it a chance in relation to time and resources. 

The success of teamworking in the workplace is also explored by Clark, 

Amundson, and Cardy (2002). They interviewed members of cross-functional 

teams in large multi-site companies. The purpose was to report on the progress of 

this new element (teamworking) within the work organization. These authors 

focused on learning outcomes for both the organization and the employees 

themselves.  

Grint (1991) researched the positive impact of implementing better 

teamworking through nursing teams when communication became more effective. 

He concluded that teamwork could provide better primary care. In this 

connection, decision-making was one of the successes found when implementing 
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teamwork. Howard (1997) also confirms the benefits of teamwork and the 

increased use of teamwork in the health service industry. He states that many 

hospitals are modifying their whole organizational structure to embrace teams. 

De Jong, Bouhuys, and Barnhoorn (1999) conducted research on the 

effectiveness of management teams. The aim was to find a positive link between 

extraversion and conscientiousness to self-efficacy for participating in teams and 

the attraction to teamwork. Another perspective on team composition is taken by 

Chrispeels, Castillo, and Brown (2000). They looked at the makeup of school 

leadership teams. The team composition had different members of the groups: 

students, parents, and staff. The study also looked at the impact of team member 

training in-group processes. Hollenbeck, Ilgen, LePine, Colquitt, and Hedlund 

(1998) investigated the importance of feedback to a team for ensuring team 

performance. A similar study was conducted on a university hospital by Hyrkas, 

and Appelqvist-Schmidlechner (2003). They found that supervision improved the 

decision making in the teams. 

Knights and McCabe (2000) wanted to explore the impact of teamwork 

for employees in the automobile industry. The authors argue that because there is 

no single form of teamworking, there is no single experience of what 

teamworking means to an employee. One interesting finding was that some 

employees, while being committed to teamworking, were actually aware that it 

required a psychological change. Leonard, Scholl, and Kowalski (1999) tried to 

find the correlation between the four most used schemes for measuring the 
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cognitive styles of decision-making. They found that even though there was a lot 

of overlap, there were a few strong inter-relationships between themes. 

2.5.1 Gender and Teamwork 

 

Another perspective of research on teamwork is the element of gender 

difference in teams. LePine, Hollenbeck, Ilgen, Colquitt, and Aleksander Ellis 

(2002) looked at how the gender composition of a group influenced team 

decision-making. Performing traditionally masculine tasks, they found that the 

team decisions grew more and more aggressive as the percentage of male team 

members increased. Men and women have different problem solving preferences 

that will influence the team decision-making process (Glover, 2002). Sommerville 

and Dalziel (1998) explored the linkage between team role preferences and the 

kind of study selected by students to see if there is a difference between male and 

female students. They also assessed that the majority of males were implementers 

(25%) or coordinators (23%), whereas the majority of women were team workers 

(45%). Also, the majority of business and occupational therapy students were 

team workers (24% males and 50% females). 
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Chapter 3 

RESEARCH METHODOLOGY 

The research methodology developed for this dissertation is summarized in Figure 

2 below. This chapter details the research method and presents the reasoning 

behind it. 

 
 

Figure 2. Methodology path for this research 

 

START

Literature review Videotape of Frame 1

Formalization of actors, artifacts and 

actions

Micro-scheduling and resource 

leveling (P6)

Activity duration and precedence

Validation of rules on additional case 

studies

Development of simplified rules and 

comparison with best case scenario

Selection of best case scenario

Extrapolation and generalization
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3.1 Qualitative and Quantitative Research Data of This Study 

 

 As stated in section 1.5, the assumptions made at the beginning of this 

research are that the members of the effective teams share a mental model of the 

final product (how the frame will look) and a silent understanding of the sequence 

of tasks to be performed by each team member. To confirm these assumption, the 

researcher started by examining videotaped activities of two or more framers 

constructing residential interior and exterior walls. The walls were either bearing 

or non-bearing to the general structure to be built. The observation of the actors 

(framers), artifacts (studs, plates, nails, etc.), actions, and movements were 

identified and recorded. The data obtained was implemented in a planning and 

scheduling software (P6) and further analyzed. The results were then compared to 

the initial observations. Differences observed were quantified and recorded, 

analyzed, thus creating a new understanding of the observed activities. This new 

understanding was captured in a set of rules that were further analyzed and their 

result compared to the best case scenario given by the scheduling software. The 

case study approach is the most appropriate because we have little formalized 

knowledge on how the work practices and team processes increase task 

performance and accident awareness. Field studies enable the investigation of the 

phenomenon in its real-life context. The use of multiple videotaped cases enables 

analysis and generalization through identification of more universal principles 

regarding how effective teams structure and coordinate their work. The 

comparison with other performing teams identifies differences and makes 

possible the validation of this research. 
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The case studies also allowed the extrapolation of the conclusions to a 

form that can be used to select the most appropriate person for a team. As a 

qualitative research methodology, the study is to be grounded in several bodies of 

knowledge from psychology to cognitive engineering and validated with 

empirical studies. The research is capturing and formalizing the elements of work 

design and production engaged practices. The performance of task collaboration 

is seen in this research as part of the work plan execution. A preliminary model 

(Figure 3) was adopted from Lehto (1993) to illustrate team interaction and their 

behaviors. According to Lehto, the levels of interactions considered as behaviors 

are judgment, knowledge, rule, and skill based. Connections between these levels 

appear to be fundamental to achieving effectiveness in teams. The relationships 

between levels refine the model and confirm accuracy of the team mental model. 

The team mental model is defined as the representation of the decision-making 

process in the mind of each team member. 

 
 

Figure 3. Mental model and levels of performance (adapted Lehto, 1993) 
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3.1.1 Use of Planning and Scheduling Software 

 To evaluate the performance of any given crew, actual measured times 

have to be compared with minimal possible achievable time. This minimal 

achievable time can be only obtained using optimized activity networks as 

implemented in planning and scheduling programs. 

 The use of planning and scheduling (P&S) software has been common 

practice in construction for about three decades (Liberatore, Johnson and Smith, 

2001).  As the use of P&S software has concentrated on solving problems at the 

whole project level, the level of detail about the activities is normally lower (i.e. 

more detailed) than the equivalent of level five in the Construction Specification 

Institute (CSI) Work Breakdown Structure (WBS)  (CSI Master Format, 2010). 

From the point of view of task distribution and execution at the crew level, CSI 

level five is a “macro” level. The detailed application of P&S principles in a 

project is called micro-scheduling in this paper. 

 Whereas crew sizes and task sequencing are usually done at the foreman‟s 

level, P&S principles can be used to determine the most effective size of a crew 

and the best way of distributing the work among crew members. However, the 

purpose of the research presented here is to develop communicable collaboration 

principles that can be implemented by any crew rather than to have the 

construction crews distribute the work by running P&S software. P&S software 

was used only to find the optimal size of the crew, minimal time and to serve as a 

comparison with the performance of the well-organized crews. Well-organized 

crews probably use the same collaboration principles intuitively, but it was too 
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difficult to capture those principles (Mitropoulos and Cupido, 2009). The study 

presented here applies to framers involved in the production of interior wall wood 

frames in residential and non-residential buildings.  

 Research in P&S has focused on optimization at the higher (activity) level 

of operations. Newer algorithms, such as The Sequence Step Algorithm 

(Srisuwanrat, 2009), deal with minimizing the duration of repetitive projects with 

probabilistic activity durations, while achieving continuous resource utilization. 

This has applicability at the activity level in the macro-scheduling of construction 

projects. Other authors (Kastor and Sirakoulis, 2009) were concerned with 

PERT/CPM (Programme Evaluation Review Technique/Critical Path Method) 

network techniques that are based on the assumption that all needed resources will 

be available. The scarcity of resources is usually a reason for project delays. 

Project Management software packages were studied to see how resource 

conflicts are resolved by using resource leveling. Their work evaluates the 

effectiveness of resource leveling tools of three popular packages by comparing 

the results when leveling two real construction projects as case studies. There are 

also misconceptions identified by other researchers about project scheduling and 

time management related to resource constraints (Herroelen and Leus, 2005). The 

misconceptions relate to the role of the critical path, the critical sequence (critical 

chain), active schedules, and the insertion of buffers in the baseline schedule as a 

protective mechanism against schedule distortions during project execution. The 

possible errors revealed by their research are illustrated using example schedules 

developed for an illustrative project. 
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 Shortcomings in existing methods, for the identification of critical tasks in 

resource-constrained projects in situations involving more than one unit of 

renewable resource are highlighted through examples of research done by Rivera 

and Duran (2004). The concepts of critical set and critical cloud are proposed in 

their paper as an extension to the concept of critical task. The researchers allow a 

consistent and unified treatment of criticality in projects with resource constraints, 

and provide an unambiguous procedure to establish the critical sequence and its 

constituents. An algorithm to determine “critical sets” and “critical clouds” is 

proposed and applied to a sample project. 

 Although these algorithms are useful for optimizing whole projects, field 

personnel and crafts people need simpler principles to optimize the productivity 

of their crews. The study presented in this paper uses resource constraining 

algorithms and priorities from P & S programs to determine if simpler task 

priority principles (i.e. what should be done next if there is an available choice of 

tasks) can be derived from those algorithms. The research considers the limitation 

of resources (number of framers) and the pool of available tasks required to be 

accomplished for completing wood frames for interior and exterior walls. The 

process of assigning tasks to the resources (framers), their descriptions, and 

codifying of the tasks is shown in the next section. To put it simply, the problem 

statement can be reduced to the following question: how does one decide who 

does what and when, in an effective crew? 

 This study also has focused on the suitability of commercial project 

management programs like Primavera (P6) for micro-scheduling the framers‟ 
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tasks when building wall frames, as well as the effectiveness of these software 

packages to enhance the optimum team composition and task allotment (i.e. who 

does what and when). Specifically at this stage, in the methodology the following 

two goals were sought: 

1. Test the influence of various resource leveling principles on the total 

productivity of the framing crew. 

2. Test the feasibility of task automation sequencing and determine the needs 

to transfer this information into a “mental model” easily understood by the 

framers. 

3.2 Data Collection and Analysis 

 The building of a wood frame structure was videotaped and analyzed 

frame-by-frame. The structure was built by two framers. The specific tasks 

performed (such as handling, marking, and cutting) and the duration of each task 

(in seconds) was recorded. The tasks were then generalized to allow application 

of general principles to instances of specific elements or assemblies. For instance, 

the task “cutting” can be applied to any of the studs in the frame. Cutting is 

preceded either by both measuring and marking or by aligning with another 

element.   

 However, task precedence is only one of the three types of constraints 

taken into account. The constraints to the tasks are: 1) Precedence constraints; 2) 

Resource availability constraints for specific tasks; 3) Resource continuity 

constraints for specific tasks. Although precedence constraints specify the 

technological order of work, resource availability and continuity constraints 
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control the utilization of resources in the framing activity. To obtain a practical 

and efficient schedule, the three types of constraints presented above must be 

accounted for in micro-project scheduling.  

 In practice, a precedent network was created for all of the framers‟ tasks. 

Because the support of the P&S programs is geared towards macro-scheduling, 

the time was altered by considering each second as one day in the schedule. Each 

individual task was then assigned the resource of one framer and the duration was 

measured from the recording. The precedence network was then run on the P&S 

program, with each of the available resource leveling options. This battery of 

calculations was performed with increasing resource limits until the total duration 

of the activity (building the frame) stabilized at an absolute minimum value (i.e. 

adding more framers would not reduce the total time of building the frame). The 

results were recorded and analyzed.  

The types of times framers are executing are categorized as follows: 

 Productive time (physical work that contributes to the execution of tasks) 

 Non-productive time (fixing errors, moving around for tools or studs) 

 Counter-productive time (making the actual errors) 

In the assigning of time to all framers, in all frames, the following times were not 

accounted: 

 Cleaning 

 Walking (traveling between task executions) 

 Manipulation of tools (outside of close vicinity) 

 Staying idle (looking around, sitting, etc.) 
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3.3 Developing a Notation Method for Elements and Tasks 

 The wood frame shown in Figure 4 was built by two framers (case study 

one). Figure 4 shows the as-built of the frame with all the elements in place, 

including nails. 

 

 

Figure 4. Interior wall – a wood frame built on-site by framers 

 

 A generic notation was developed for the implementation of the tasks for 

micro-level scheduling. Each element was identified by a two-digit code (01, 

02…. 19) and each nail was identified by the code of the element it connects. 

Seven types of tasks were identified, as described below. The names were 

selected so they can be identified by their initial only. 

 Handle (element XX or stud XX). 

 Tape measure (element XX or stud XX). 

 In-field measure (or In-situ measure of element XX). 

 Mark XX_YY(ZZ) (mark element YY or ZZ on element XX). 

 Cut (element XX or stud XX). 
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 Place (element XX or stud XX). 

 Nail (side and toe nailing) XX_YY (nail element XX to element YY – the 

head of the nail is in element XX). 

 Therefore, all actions assigned to the available studs represent all tasks 

available for execution. For example, the available tasks pertaining to element 6 

for one labor resource are as follows: H 06, T 06, C 06, P 06, M 06 05, M 06 10, 

M 06 13, M 06 14, M 06 15, M 06 34, M 06 78, N 06 02, N 06 34, N 06 05, N 06 

78, N 06 10, N 06 14, N 06 15 and N 06 19. Note that elements 3 and 4, as well as 

7 and 8 form two sub-assemblies; therefore, they are considered in the related 

tasks together after nailing them as pairs. These tasks were entered in Primavera 

P6 software for the purpose of scheduling and resource leveling. The duration of 

each task was recorded and introduced in both programs. A total of 120 tasks 

were identified, including both the tasks of starting and finishing the frame (lifting 

and placing in a determined location). Except for lifting, each task (such as C 06) 

requires that one resource (one framer) and only one be assigned to it. 

3.3.1 Assignment of Actions and Primavera P6 Implementation – 

Determination of Tasks (from Elements to Tasks) 

 The duration of each task, such as lumber handling, measuring and 

marking, cutting, placing, and nailing was measured directly from the video-taped 

activity for each instance. In other words, if C 15 took 3 seconds and C 18 took 2 

seconds, each was introduced with their own duration. 

 Task precedence was determined using elementary geometrical and logical 

reasoning. Specifically, the rules used consisted of the following precedence chain 
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for any element: Handle, Measure and Mark, Cut, Nail, or Place. Note that Nail 

and Place are both successors of Cut. There are some situations when two 

elements are nailed together even if they are not yet in their final place. An 

example is E 03 and E 04 that are nailed together to form element 34. The 

possibility of generating other subassemblies (i.e. other than E 34 and E 78) is not 

considered in this study but it is mentioned later. The study focused on improving 

the efficiency of the current construction method only.  

 Practically (emphasized later in the validation chapter) all studs follow the 

general sequence of HTMCP. The exception is made by precut elements 

that do not have to be measured and cut; these studs were usually cut near the 

location of the jobsite and transported by one of the framers within the crew or by 

a helper (usually a novice framer) outside of the crew. 

 Furthermore, any nail that is covered by an element (such as N 11 03 

covered by 12), will precede the placement of the covering element. For example, 

in the notation introduced here: N 11 03  P 12. Using these rules, the 

precedence table can be created semi-automatically. An excerpt of the precedence 

table is reproduced in Table 5. For a full list of the precedence table see Appendix 

D, table D1. 
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Table 5. Predecessors for Elements 11 and 12, Frame 1 

 

Element TASKS Predecessors 

E 11 H 11 S 

 T 11 H 11 

 C 11 T 11 

 M 04 11 H 04 

 M 08 11 H 08 

 P 11 C 11, M 04 11, M 08 11 

E 12 H 12 S 

 T 12 H 12 

 C 12 T 12 

 P 12 C 12, P 11, N 11 34 

 

 Note that the placing of element 11 and element 12 (i.e. P 11 and P 12) 

have respectively different types of precedent tasks. As stated before, these 

precedents have been determined from geometric and technological conditions. 

Special rules were considered and were incorporated for the two existing 

subassemblies, specifically pertaining to elements 3, 4 and 7, 8 (shown in Table 

6): 

 

Table 6. Predecessors Rules for Element 3-4 and 7-8, Frame 1 

 

Element TASKS Predecessors Rules 

E 34 M 01 34 H 01 

 M 06 34 H 06 

 P 34 N 03 04, M 01 34, M 06 34 

E 78 M 09 78 H 09 

 M 06 78 H 06 

 P 78 N 07 08, M 09 78, M 06 78 
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3.3.2 Constraints and Priority Rules Optimization  

 When constraining and leveling resources, Primavera P6 uses priority, 

rule-based algorithms to generate workable schedules. The priorities come into 

play when two or more activities/tasks compete for the same resource, at the same 

time. P6 allows the user to select the preferred priority from a list of 

predetermined options. Some of these priority options are Activity ID, Activity 

Priority, Early Finish (EF), Early Start (ES), Free Float (FF), Late Finish (LF), 

Late Start (LS), Total Float (TF), etc. There are other classified priority rules such 

as Original Duration, by Department, by Phase, by Planned Finished or Planned 

Start, remaining Duration, and by Responsibility. These additional priorities were 

deemed irrelevant for the purpose of micro-scheduling and thus not taken into 

account when priorities were run for results. The reason for ignoring these options 

was to not alter the final results when strictly applying priority rules or leveling 

orders. However, it is recommended that future research investigates these 

leveling possibilities applied individually to priority rules or leveling orders. 

3.3.2.1 Special Case-Subassemblies 

 As mentioned before, the possibility of generating other subassemblies 

(i.e. of Frame 1, other than E 34 and E 78) was not considered in this study. This 

is because the study is focusing on improving the efficiency of the current 

construction method only. However, there are cases in which (as described in the 

later chapters for other frames) the subassemblies are playing an important role in 

the division of the work between the framers or they require a considerable 

amount of total tasks for one framer to execute. These cases are treated in a 
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separate manner, but are sufficiently described in the data analysis and the other 

analyzed case studies.  

 

Table 7: Subassemblies in the First Frame - Case Study 1 

 

Case 

study/Frame 

1/ Frame one 

Subassemblies E 3 + E 4= E 34 

E 7 + E 8= E 78 

Total 2 

 

As seen in Table 7 above, a total of 2 subassemblies were identified in the Frame 

1- case study one respectively. 

All other frames are presented as additional case studies in the next chapter, with 

the respective subassemblies considered in the process of on-site construction. 

The data analysis and development of the set of rules is presented in Chapter 5. 
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Chapter 4 

CASE STUDIES OF FRAMING PROCESSES 

4.1 Description of Frames and their Complexity 

In the following sections, the four frames with their exact composition 

(studs composition) are illustrated and described. The case studies were selected 

randomly as videotaped on the job-site, even though an increase complexity is 

perceived in each case. Studs used are lumber, usually 2x4s, but 2x6s are used 

when 6-inch insulation is desired in the exterior walls. Studs are spaced 16” on-

center in all case studies, but the measure is dependent on the geometrical 

arrangement of that particular wall (interior or exterior). 

Top and bottom members of the walls are “top” and “sole” plates and they 

usually consist of doubled 2-inch stock. Headers or lintels are running usually at 

right angles to the studs. They form the top of the window, door and other wall 

openings, such as fireplaces. Headers must be strong enough to support the load 

above the opening. The depth of the header depends on the width of the opening. 

As the width of the opening increases, so must the strength of the header. There 

are a multitude of headers; some of them have spacers sandwiched in between. 

Glulam beams are often used for headers and sometimes parallel strand lumber 

makes excellent headers for doors and windows.  

Jack-studs or trimmers are shortened studs that line the sides of an 

opening. They extend from the bottom plate up to the top of the opening. Cripple 

studs are shorter members above and below an opening, which can extend from 

the top or the bottom plates to the opening. 
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All the studs were assigned unique numbers to delineate them in the frame 

structure. Usually the notation came to each stud from the witnessed sequence of 

attachment in the frame based on the video observation. The numerical value has 

also the role of assigning all the related tasks performed to them based on the 

witnessed actions, until the final position is tightened in the frame for each 

individual stud. 

4.2 Case Study One – Frame 1  

Frame one is described in Figure 3, chapter 3, and it provides a basis for 

the methodology. It is an interior wall that has a singular opening (a door) and the 

header for the door consists of two trimmed regular studs, one on the top of the 

other (quite unusual, as declared by interviewed experts). In this particular frame, 

there are a total of 19 studs, 3 cripple studs and 3 fire-blocks. This frame is an 

actual interior-partitioning wall for a residential first floor structure. Initially, 

element 9 was wrongly attached to the structure (i.e. the cutting of element 9 the 

second time was added to the time of the N 09 78 task). This performed nailing 

came out longer because of the reattachment of stud 9 to assembly 78 after being 

re-cut (shortened). 

4.3 Case Study Two – Frame 2 

As stated previously, the frames in discussion consist of plates (sole and 

top plate), studs (king, jack and cripple studs) and headers (above door and/or 

window opening) with or without a sill. Frame two is an interior wall while 

frames three and four are exterior walls. The following frames were erected by 
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two framers with or without a helper and were named after the color of their 

protective hat (for video identification purposes).  

 
 

Figure 5: Frame two - interior wall with one door 

 

For this frame, a numeric value was assigned to each element (01, 02…28) based 

on the sequence of their erection. A total of 28 elements were identified in frame 

two. All the elements in discussion were then assigned most of the seven different 

actions - Handle, Tape/In-situ measure, Measure and Mark, Cut, Place and Nail. 

For instance, all the tasks associated with Element 23 in Frame one are as follows: 

H 23, T 23, C 23, M 23 16, P 23, N 16 23 and N 23 29.  

4.4 Case Study Three – Frame 3 

Frame three identified a total of 37 elements. (Figure 6) 
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Figure 6: Frame three - exterior wall with one door and one window opening 

 

 

 
 

Figure 7: Frame four - exterior wall with one door and one window opening 
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4.5 Case Study Four – Frame 4 

 Frame four is identifiable through a total of 59 elements and presents an 

increased complexity (Figure 7). Certain Elements (e.g. E 18 in Frame four) do 

not have task handle (H). This is because E 17 and E 18 are marked on a single 

piece of lumber and then cut to form E 17 and E 18. The time for handling this 

lumber is allocated to E 17 (H 17) for convenience and E 18 does not have 

Handling (H 18).  Task precedence was determined using elementary geometrical 

and logical reasoning (Maghiar et. al., 2010). For every element, the precedence 

chain was Handle, Measure and Mark, Cut, Place, or Nail. In situations in which 

two elements are cut from the single lumber, the predecessors are as in Table 8. 

Note E 41 does not have H 41 hence the predecessor for T 41 is H 40.  

 

Table 8: Frame Four: Predecessors for E 40 and 41 

 

Element Task Predecessor 

E 40 H 40 S 

 T 40 H 40 

 C 40 T 40 

 P 40 C 40 

E 41 T 41 H 40 

 C 41 T 41 

 M 01 41 H 01 

 M 44 41 H 44 

 P 41 M 44 41, M 01 41, C 41 

 

Also, any nail that is covered by an element (just as N 16 05 covered by E 

25), will precede the placement of the covering element as shown in Table 9. 
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Table 9: Frame Two: Predecessor for E 25 

 

Element Task Predecessor 

E 25 H 25 S 

 T 25 H 25 

 C 25 T 25 

 P 25 C 25, N 16 07, N 16 05, N 16 08, N 16 09, N 16 10, N 16 

11, N 16 12, N 16 13, N 16 21, N 16 22, N 16 30, N 16 24, 

N 16 23, N 16 31 

 

Task Duration:  

Each task is assigned a fixed duration derived from the video-tape. For 

instance, in Frame two, H 16 took 13seconds(s); P 16 took 5s and each was 

assigned those respective durations.  Some tasks were repeated due to errors and 

the duration for those was added to their initially assigned duration. An example 

from Frame two is task M 02 10 = 10s (2s + 8s).  Here marking E10 on E02 took 

2s. However, the step was repeated due to alignment error requiring an additional 

8s to fix the problem; the total duration summing up to 10s. Two additional tasks 

“a and b” (shown in Figure 5) were identified as error elements that were a part of 

the process, but did not add to the final frame. However their duration was 

considered and added to the prior task to account for the labor and time spent on 

those elements. In other words, the time in seconds associated with element a – H 

0a, T 0a, C 0a and N 0a 15 14 were added to H 15, T 15, C 15 and N 14 15 

respectively.  

This type of duration assignment was deemed necessary to be able to 

calculate the influence of activity sequencing on the crew productivity. In other 

words, the “optimal duration” was calculated for the “as built” frame rather than 
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the “as designed” frame. This approach allows separating the error made in the 

performance of a unique and singular task from the influence of the decision 

about the task sequencing. In terms of the assumption made at the beginning of 

this research, this approach separates the “what needs to be built” from the “how 

to build it”. 

Subassemblies:  

As seen in Table 10, a total of 4, 7 and 9 subassemblies were identified in 

each of the three Frames respectively. In Frame two, Elements 14 and 15, 19 and 

20 and 17, 18 and 32 form subassemblies 30, 31 and 29 respectively. They are 

recognized as subassemblies because they are nailed to form pairs even prior to 

placing them in position, for example, H 19, T 19, C 19, H 20, N 19 20, P 31, N 

16 31, N 26 31, N 28 31. Once E 19 is nailed to E 20 (N 19 20) they form the 

subassembly named E 31. In subassembly E 29, E 32 is a particle board 

sandwiched between E 17 and E 18. It should be noted that different materials 

require different measure and mark techniques (thread versus measuring tape). 

However, material difference (lumber vs. particle board) is not considered part of 

this study.   
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Table 10: Subassemblies in the Last Three Frames 

 

Case 

study/Frame 

2 / Frame two 3 / Frame three 4 / Frame four 

Subassemblies E 17+18+32= 

29 

E 14+15= 30 

E 19+20= 31 

E 02+01= 33 

E 25+26+27= 38 

E 28+29+30= 39 

E 32+33+34= 40 

E 05+06= 56 

E 04+03= 43 

E 07+08= 78 

E 02+31= 41 

E 17+18= 60 

E 27+28= 61 

E 09+10= 62 

E 15+16= 63 

E12+E13= 64 

E 06+05= 65 

E 29+30+31+32+33= 

66 

E 01+ 02 = 67 

E 03+04 = 68 

Total 4 7 9 

 

As mentioned in the methodology, task precedence was determined using 

elementary geometrical and logical reasoning. For example, in Frame two 

precedence for P 25 are C 25, N 16 07, N 16 05, N 16 08, N 16 09, N 16 10, N 16 

11, N 16 12, N 16 13, N 16 21, N 16 22, N 16 30, N 16 24, N 16 23 and N 16 31. 

Here E 25 cannot be placed in its final position unless it is cut to the desired 

length. Also, P 25 covers certain nails (e.g. N 16 12) and requires that this nailing 

operation precede P 25. Also, for M XX_YY the predecessor is H XX or P XX 

(Place if XX is a sub-assembly without a task H XX).  E.g. in Frame four, for M 

63 44 the predecessor is P 63; for M 62 44 the predecessor is H 62 where both 62 

and 63 are sub-assemblies.  

To complete the loop, the successor for all Nailing tasks (N 01 03, N 01 

04……) was Lift. However, some subassemblies such as N 17 18 32 and N 15 14 

(Frame two) have H 29 and H 30 as their respective successors while N 29 30 has 

P 31 as the successor depending on how they were handled. Each task was then 
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assigned resources as observed in the videotape. The task sequence was adjusted 

to eliminate existing idle times to the best possible extent. 
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Chapter 5 

DATA ANALYSIS 

5.1 Videotaping of Framing Crews 

 Video recordings were used for detailed observations because in terms of 

data capture it has the most obvious advantages: the audio and the dynamic 

images can at any time supplement the researcher notes and verbal or written 

observations. It also captures the nonverbal communication between the framers 

which proved to be essential later in the case studies. Nonverbal communication 

and individual awareness of others‟ work is not captured in any other forms of 

note-taking and direct observations. The analysis of the video frames is tedious 

and time-consuming, but it is always possible to revisit the frames and get the 

most accurate description of one‟s work through detailed tasks, without having 

the fear that something was skipped. Therefore, the researcher is not aware of any 

limitations to this methodology, but it did raise issues like confidentiality, which 

were overcome through direct approval from foremen and superintendents of the 

participating companies. There was also a “waited around” long enough 

timeframe for the crews to become accustomed to the video camera. Therefore, 

cameras being there for a sufficient amount of time, the framers resumed the 

“normal activity.” 

 Further data were gathered from repetitive videos of the same process 

(wood framing- interior walls) and a critical path of the activities was obtained 

and carefully analyzed. A couple of superintendent experts were assigned to 

analyze the videos. Their opinions for specific procedures, methods, techniques, 
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and tasks sequences were documented. Productive time, non-productive time and 

errors during the work process were analyzed relative to the overall activity. Idle 

time was carefully assessed to see if there is a connection with the decision-

making process of team participants. Individual tasks and tandem tasks were 

considered for analysis. Therefore, the mental model revealed from the video 

analysis was superimposed with two quality issues: 

1. How good is the model in reflecting the exact product formation in the 

minds of the participants 

2. How well do the participants understand the model (reflected through the 

decisions to engage in the next available tasks and awareness of what 

others are doing) 

 To assess the two quality issues above, the duration of the actual activity 

was compared with the time that would have been obtained when all the team 

members have followed the best mental model at every step. 

 Therefore, all networks are analyzed as Ideal (Computer Optimized), 

Team (Rule-based Optimization) and Executed (Real-Life) plans. The computer 

optimized networks were further varied by changing the total number of available 

framers to study the influence of the crew size on productivity.  

5.2 Cognitive Processes of the Construction Wood-Framing Work 

 Investigating more about the Cognitive Task Analysis (CTA) methods and 

having a practitioner’s guide to cognitive task analysis as a main resource 

(Crandall, Klein and Hoffman, 2006), implementation in the study for so called 

Team CTA Technique was considered the best option. The incorporation of the 
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study as one of the CTA analysis methods in the context of wood-framing 

environment was possible mainly due to videotaping the activity and performing 

video-analysis pertaining to cognitive processes. 

 According to Team CTA Technique, cognitive processes that are relevant 

from the video-analysis of framing teams include:  

 control of attention (how teams engage in information management),  

 shared situation awareness (how members have the same interpretation of 

ongoing events) 

 shared mental models (how members have the same understanding of the 

dynamics of key processes and how well they are able to follow the rules 

of work) 

 applications of strategies and heuristics to make decisions, solve problems 

(errors, conflict in work) and plan 

 implementation of metacognition (how the team is able to monitor itself 

and determine when it is running into difficulties) 

Based on these and other considerations, a couple of measures were developed. 

One measured individuals in each team from the construction productivity 

perspective, the other measured the team as a whole in each case study in order to 

establish later how individuals fit in the team (from cognitive engineering 

perspective). These measures are detailed more in the validation of results chapter 

of this document. To describe the video analysis pertaining to the methodology of 

the research, I use this opportunity to expand it further. 
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As delineated in the previous chapter, the building of wood frame structures was 

videotaped and analyzed in detail. The structures were built usually by two 

framers or by two framers helped by a novice framer. The specific tasks 

performed (such as handling, marking, and cutting) and the duration of each task 

(in seconds) were recorded. The tasks were then generalized to allow application 

of the general principles to instances of specific elements or assemblies. For 

instance, the task “cutting” can be applied to any of the studs in the frame. Cutting 

is preceded by both measuring and marking or by aligning (with another element). 

All these tasks were implemented in the Planning and Scheduling software for 

further analysis. 

The following two types of constraints were imposed on each task to obtain a 

practical and efficient schedule: 

 Predecessors: Task precedence was determined using elementary 

geometrical and logical reasoning.  

 Resource allocation: Based on the observation from the videos, framers 

were assigned to each task. In case of an error, the framer who made the 

final rectification was assigned the task.   

5.3 Minimum Possible Duration Using P6 and Resource Leveling 

 Using Primavera Project Management (P6), the total production time was 

computed for a matrix of scenarios. The matrix of scenarios contains the 

maximum number of available framers (resource limitation – starting from one 

and going up to fifteen framers for this software) and each of the resource leveling 

principles deemed applicable, as mentioned in the previous section. Table 11 
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presents the results of one resource-leveling principle (the most efficient one - 

Late Start), in P6 program. The productivity of the framers in a crew was 

calculated as the fraction of the standard time obtained with only one framer 

available. For instance, referring to Table 11, the productivity of the 3 framers 

crew was calculated as follows: Total duration of building the frame was 136s. 

Total labor-seconds for the 3 framers were 136s x 3 = 408s. The total labor 

seconds when resources were fully employed (i.e. one framer) was 384s. The 

difference, 408s – 384s = 24s, is deemed to be idle time distributed among the 

crew members. Productivity of the crew was calculated as 1 – 24s / 384s = 94%. 

It is worth noting that when using the resource leveling principle presented in 

Table 11, the total time stabilizes at 76s with a crew of 6 framers. Increasing the 

crew size above this limit will only reduce the productivity, but will not decrease 

the total production time. The CPM column shows the critical path obtained from 

running the respective resources through P6. In the case of the 3 framers, the 

critical path obtained after leveling pertained to tasks of element 6 and assembly 

78. The duration column shows the percentage of the duration obtained after 

resource leveling relative to the absolute total duration when one resource (one 

framer) is used (384 s). Whereas the calculations do not take into account the 

synergies of the crew, they provide a consistent base for comparing the resource-

leveling principles with one another. The points of interest are discussed below.  
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Table 11. Duration and Productivity in P6 

 

Nr Priority rule 

Total 

duration 

Resources 

units 

Nr. 

People CPM 

Equiv. 

Time 

Prod. 

Frame Duration 

         

1 

LS-Late 

Start 384 100% 1 E19 384 100% 100% 

  198 200% 2 E19 396 97% 52% 

  136 300% 3 E6+E78 408 94% 35% 

  104 400% 4 E6+E78 416 92% 27% 

  86 500% 5 E6+E78 430 89% 22% 

  76 600% 6 E6+E78 456 84% 20% 

  76 700% 7 E6+E78 532 72% 20% 

  76 800% 8 E6+E78 608 63% 20% 

  76 900% 9 E6+E78 684 56% 20% 

  76 1000% 10 E6+E78 760 51% 20% 

  76 1100% 11 E6+E78 836 46% 20% 

  76 1200% 12 E6+E78 912 42% 20% 

 

 The results of the calculations are incorporated in Figure 8. This figure 

superimposes all the leveling principle results ran on the software, increasing 

resources one-by-one. It is evident that the greatest benefit is obtained when 

moving from a one to two framer crew. A crew of three framers still has some 

benefits (i.e. project crushing). Increasing the crew to more than three framers 

offers no significant benefits. This conclusion, specific to the frame presented in 

Figure 4, was consistent for all leveling principles, in P6. As mentioned above, 

there were eight different priority rules applied to resource-leveling in P6. The 

results for the productivity and total duration are presented in Figures 8 and 9, 

respectively. These results show that the productivity of two to three person crews 

(i.e. total duration of the framing) depends significantly upon the resource-

leveling principle. The other productivity and duration comparison charts (for 
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different leveling priority rules in P6) of all other three case studies presented in 

the previous chapter are provided in Appendix B. 

 
 

Figure 8. Productivity comparison for different leveling priority rules in P6 
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Figure 9. Duration comparison for different leveling priority rules in P6 
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one can notice that productivity varies between 77% when the EF priority rule 

was applied and 94% when the LS priority rule was applied. This means that, 
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will influence the total productivity of the crew. A wrong decision will generate 
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1. Test the influence of various resource leveling principles on the total 

productivity of the framing crew 

2. Test the feasibility of automation of task sequencing and determine the 

needs for the framer and his foreman to easily organize the work to make a 

more productive and safe environment for the crew 

This section presents the conclusions and discussion for each goal: 

1. Resource leveling principles play a significant role on crew productivity. 

For a team of three framers, the Late Start leveling priority resulted in a 

22% productivity increase compared to Early Finish leveling priority for 

the first frame analyzed. This means that, when presented with a choice of 

tasks, the framers should choose the one with the earliest late start. 

However, because the principle of the earliest late start is only applicable 

to computer programs, an easier to explain method had to be developed. 

The next chapter presents an easily understood small set of rules that 

makes the whole crew more efficient. The application of these rules was 

represented through a flowchart.  

2. The application of the micro-scheduling of tasks to various trades is 

universal. However, there are two conditions that must be satisfied when 

using the scheduling software. These two conditions refer to a clear 

description of the work (good definition of the tasks) and a geometrical 

reasoning, along with a technological reasoning assigned for relationships 

between tasks. Each of these topics requires further research. Identifying 

the task before the activity is performed requires a definition of task 
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taxonomies for various construction methods. A detailed task taxonomy 

based on a specific construction trade would be a first step in this 

direction. And the methodology of the study is implementable at a larger 

scale not just relative to construction trades. The optimization of the 

wood-framing tasks can be applied to any activities that can be described 

through a fair taxonomic work breakdown.  

5.3.1 Extreme Cases 

The following is the detail of the framers‟ activities in the two extreme cases, 

frame one. 

 Case 1: EARLY FINISH rule  

Framer 1 can execute the following first eight tasks: H 05H 12H17H 

04H 13T 09H 01T 15 

Framer 2 can execute the following first eight tasks: H 09H 03H15H 

02H 11T 03T 13M 05 16 

Framer 3 can execute the following first eight tasks: H 14H 05H16T 

14H 07T 03T 09H 01 

A more organized and logical sequence was obtained when the late start rule was 

applied for the activity (all tasks) in P6.  

 Case 2: LATE START rule 

Framer 1 can execute the following first eight tasks: H 06T 06C 06P 

09H 04H 03T 03C 03 

Framer 2 can execute the following first eight tasks: H 07T 07C 07P 

07P 08N 07 08H 01H 03 
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Framer 3 can execute the following first eight tasks: H 08H 09T 09C 

09M 09 78M 06 78P 78N 09 78 

In this case, one can notice that P 09 is executed by framer 1, while the other tasks 

related to the element 9 are performed by framer 3 which implies frequent 

coordination issues (framer 3 was start working on handling the element 8). Even 

the more ”logical” sequence would be impossible to explain and implement in 

day-to-day operations. Hence, the research focused on developing and testing a 

simplified set of rules that is implementable yet gives total times that are 

comparable (close to) the minimal possible achievable time. 

5.4 Simplification of Results – Training of Wood Framers 

 For the framing activity presented, the tasks were completely identified 

and defined by watching the video-capture of the real activity. Most of the 

precedence rules were generated automatically, using elementary formulas in 

Excel. Corrections were made manually to accommodate for exceptions. This 

algorithm provided a good validation to the idea that full automation of micro-

scheduling is possible and worth pursuing. 

The whole methodology is raising in essence two questions: 

 How good (fitted) the common team plan is for the optimum 

performance? 

 How well does the team execute the common plan? 

 Partly, these questions are answered in these two chapters: data analysis 

and validation of results. These mental models for achieving high-efficiencies are 
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based on the geometrical complexities of the on-site built wood-frames and their 

perception of the “look ahead” workable micro-schedule of their entire activity.  

 Figure 10 depicts the process of developing the rule-set that may be used 

to train framers for increased crew productivity. A detailed description of a 

general flowchart that follows five consecutive rules of work which allow a crew 

to deploy a high-performance framing process is portrayed in the data analysis 

chapter. The process of developing the rules and the flowcharts representing their 

application followed three steps: 

1. Asking experts in the field to superimpose their opinion with the 

development of the rules that go into the flowchart 

2. Watching the video captures and transcribing the flowchart procedures 

until final flow was acceptable 

3. Reading the operations‟ “script” and continuously searching for patterns 

 
 

Figure 10. Procedure for development of the flowchart 
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5.5 Description of Rules and Flowchart 

A precedence network was created for scheduling tasks in each frame. The 

network was then run on Primavera (P6) to calculate the total production time 

with each of the leveling options (Maghiar et. al., 2010). For this project, the 

results obtained from the Late Start leveling option for two framers was analyzed 

to maintain consistency with the actual execution. Therefore, the minimum 

possible duration using P6 was obtained in each case study. 

A flowchart is a diagram that produces the sequence of operations/steps to 

be followed. The flowchart in consideration is a valid attempt to understand and 

reflect the mental model of framers with an emphasis on productivity, safety and 

quality. Comparison of task sequence, constraints and errors (observed on site) for 

each frames were analyzed to derive finally at the five rules and their sequence in 

the flowchart.  

In the process of flowchart development the three steps mentioned in the 

previous section were continuously recalled. Initially, all the video observations in 

the case studies revealed the fact that framers are working around some types of 

enclosures like windows, doors or the whole frames. This fact was believed to be 

the first rule: work on [“jig-core”] first. Then, one experienced framer would take 

tasks as many as possible to work on, the so-called “complicated elements” by 

considering making sub-assemblies or by using tools repetitively on multiple 

elements. On the other hand, other framers‟ behaviors suggested preference to 

work more on the “similar elements”, the ones that have similar and repetitive 

tasks to execute. That would represent the third rule as was considered later in the 
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process of developing the final flowchart. For tasks with unreleased constraints 

that were not executed for certain elements in the frame, the consideration of 

leaving into a “mental stack” for later execution was taken into account. The 

“mental stack” procedure was then followed as a valid rule because of the 

remaining tasks unexecuted for the elements that were started, but not finished. 

One question was addressed immediately: How many steps ahead does one think? 

Later observations showed a relative inconsistent pattern of one framer 

undertaking tasks for work to unfinished elements worked by the other framer to a 

certain point in time (taking tasks from others‟ pool of tasks). Another 

inconsistent pattern discovered was in the way the framers would select the walk 

in order to “pick up” the next available task or element to work from his current 

position (location where the actual task was just executed by the framer). This 

was considered later a rule in which the selection of the minimal walk is in the 

mind of all framers. Another question aroused to assess how far one framer would 

move from another in order to be safe and productive and to not impede others‟ 

safety and productivity. 

To reiterate, the following seven rules were initially believed to construct 

the flowchart: 

1. Jig-core first 

2. Complicated Element, by working on subassemblies or by working on 

element with greater number of tasks 

3. Work on similar elements together  

4. Mental stack procedure 
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5. Stay with element 

6.  Select minimal walk 

7.  Move away from any other framer  

In the process of refining, going from the very first study to the last one, it 

was believed that a rule pertaining to the safety of executing any task one would 

select was necessary to be implemented in the flowchart. Because rule 7 (as 

mentioned above) was discovered implicit as an automatic derivation of rule 6, it 

was eliminated later. All pertaining tasks to elements making up the “jig-cores” 

(windows, doors or the whole frames) are practically executed when a framer 

would work on the complicated elements and/or similar elements (rule 2 and 3, in 

the initial consideration). As a result, the need to eliminate rule 1 became obvious. 

Therefore, the final 5 remaining rules were placed into the flowchart and logical 

connections for programming and automation were carefully depicted after 

reading again the operations‟ “script” and all discovered patterns in framers‟ 

behavior were analyzed. A final flow in the external flowchart was achieved 

through numerous iterations on all four studies and the mental stack procedure 

was developed as the internal flowchart (see final version in Figure 11 and 12). 

To assert consistency while allocating the five rules, they were clearly 

defined as follows.  

Rule 1: Complicated Elements - Any element that requires two or more 

measures and marks, tape measures or in-situ measurements is considered a 

complicated element for the purpose of this study. Emphasis was laid on measure 

and mark as it dictates the dependency of other elements. The formula created for 
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determining if one element is complicated based on the number of tasks needed to 

be performed on the respective element is provided below: 

CE XX = Max [0, ∑ (M XX_YY) -2]      [1] 

Note that once explained the concept, people have an innate ability to 

identify complicated elements without having to perform the calculation. The 

formula has its use mainly for automation of the activity sequencing and for 

maintaining consistency in the validation of the results. 

For instance, in the second Frame, E16 is complicated as it has more than 

two measures and marks; M 16 03, M 16 04, M 16 05, M 16 06, M 16 07, M 16 

08, M 16 09, M 16 10, M 16 11, M 16 12, M 16 13 are all actions performed on E 

16 and act as constraints on E 03, 04, 05…13 because P 03, P 04…..P 13 cannot 

be performed due to the precedence rule. Also, it was noted that error on a 

complicated element would have adverse impact on the overall productivity and 

quality of the frame. For instance, in Frame two, an error in placing E 33 resulted 

to an error in placing the entire dependent tasks on the whole frame (such as E 03, 

04….13) and required multiple handling; thereby, affecting the overall 

productivity and quality of the whole teamwork.  

 Rule 2: Safety - A task is considered safe if a framer continues to work on 

his current element/ element‟s as long as possible and is at considerable distance 

from the other framers. A framer is also considered safe if he can avoid tool 

related hazard and keep the protective equipments (hard hats; boots, etc.) on 

through the course of the operation. In this research, no safety hazards were 

encountered. It was believed that this rule was essential purely from a safety 
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perspective and did not have a direct relation to productivity and quality of the 

Frame.  

Rule 3: Similar Elements - Two or more elements are considered similar if 

they are of the same length and can be interchanged. For e.g. in Frame two, E 08 

≈ E 09 as they are of the same length and interchanging the position of the two 

studs will have no adverse affect on the overall outcome of the Frame. In addition, 

complicated elements are viewed similar if A ⊆ B (Element A≈B if A can be a 

part of B) and has a maximum of one cut difference. For e.g. E 33 ≈ E 16 as E 33 

can be a part of E 16 and E 16 is only one cut different from E 33. The rule was 

taken into account as it was believed that performing a similar task on similar 

elements will help reduce errors and improve productivity. For instance in Frame 

two, it‟s easy and effective to work on E 23 and 24 simultaneously as they have 

the same length and need the measure, mark and cut.  

Rule 4: Minimal walk - Minimal walk refers to the shortest travel distance 

needed to perform (Place) the next task from a framers‟ current position.  It was 

assumed that this will help reduce the unproductive travel time. This research 

doesn‟t include travel distance needed to bring the material (lumber) or tools 

(nails, saw-cut machine or the nail-gun machine) to the job execution area.  

Rule 5: Stay with the Element: This rule defines the need to execute all 

possible tasks on the current element and make a conscientious effort to return to 

the element and execute the remaining tasks at the earliest possible opportunity 

(when all previous constraints in place are released). This rule was intended to 

reduce the burden of requiring framers to remember the task while improving 
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productivity and quality. If framer one is assigned E XX, he/she is expected to 

perform all the tasks associated with it. However, it was believed that if a task is 

related to two or more framers (hindered work - specifically N XX_YY), it is not 

considered the responsibility of the framer who initiated the work on that task (E 

XX or E YY). 

Are these five rules sufficient and necessary? To test the necessity and 

sufficiency of these rules, they were embedded in a flowchart and each individual 

frame was run through the flowchart. Multiple iterations were performed to 

understand the position of these rules in the flowchart and until a smooth flow of 

the entire executed work in each study was achieved. 

Furthermore, the total production time for the sequence obtained from the 

five step (five-rule) framework was compared to the total calculated minimum 

possible time (Late Start leveling principle) obtained using P6. The results of the 

five rules were then compared to the ideal time as calculated in P6 (late start). 

Table 12 shows the results of this comparison for each frame and the percentage 

of deviation. Based on these results the researcher concluded that the five rule 

approach is a good approach to calculate the ideal execution time. 
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Table 12: Comparison of the Production Times with Ideal Case 

 

Duration-two framers    

(1 helper) 

Frame 

One 

Frame 

Two 

Frame 

Three 

Frame 

Four 

Five-rule Framework 
200 

seconds 

504 

seconds 

418 

seconds 

472 

seconds 

P6-LS priority rule 

optimization 

198 

seconds 

514 

seconds 

399 

seconds 

466 

seconds 

Deviations 1.0% 1.9% 4.7% 1.3% 

 

 If one of the rule is taken out from the flowchart (e.g. the complicated 

elements - rule 1, as defined above), the whole logic of the flowchart collapses. It 

will become technologically impossible to acquire and execute some of the tasks 

that are essential for all frames. Therefore, the flowchart (internal and external, 

see Figure 11 and Figure 12) was deemed to be the most condensed version and 

possible to implement on site, without creating haphazard situations for framers 

and with the minimum contained and functional number of rules. So, the five 

rules became self-sufficient for all frames.  

 Though P6 optimizations are ideal (for robotic implementation) for all 

frames, the sequence when analyzed thoroughly was not easy to comprehend for 

direct implementation for framers on the jobsite. However, the production time 

obtained from the five-rule framework exposed the researcher to a valid model of 

crew coordination that is more efficient than the actual coordination witnessed on 

the jobsite.  
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5.5.1 Element and Task Focused Work 

 Understanding the mental model from the perspective of one framer 

involves addressing the following questions:  

 What exactly are we building as a team? 

 How are we building it (from planning principle point-of-view)? For 

example: why preassemble certain elements together? How to make 

decisions in regard to the assembly of certain studs, etc. 

Executing the mental model that transfers one framer‟s work into a section of the 

finalized wood-frame involves understanding precisely two facts: 

 What are we building  and when (a time-sequence procedure that assures 

quality control of the work) 

 How are we building, which requires a particular skill specific to the task 

and knowing in advance what one should do next, that assures productive 

and safe work for oneself and others in the team 

 The framers should focus on the distinction of their mental framework 

procedure to assure workflow. Based on the video observations, consultations 

with construction experts and the results of the developed methodology for this 

study, it is concluded that framers either focus on completing the actual tasks by 

using mainly a tool-based focus or by using an element (stud) based focus. The 

element based focus is basically an assigned-to-element “mental pool” of tasks 

that need to be performed efficiently until a final position of the stud in the frame 

is secured.  
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5.5.2 Craftsmanship versus Automation of Task Execution 

When analyzing the tasks and their elements to check on the possibility for 

automation and integration into an existing modeling software tool, there are two 

possible directions the research can take: 

 Industrial setting (for automation, where all tasks should be performed in 

an organized, planned and executed manner that assures maximization of 

production)  manufacturing environment. In this environment the rule 5 

“stay with the element” would probably be replaced by “stay with the 

tool”. This setting is setting is characteristic of the prefabrication plants. 

 Craftsman setting (to keep the actual framers and use their skills and 

provide an effective mental model to assure maximum efficiency, but 

accounting for safety and quality of the work produced)  jobsite, artisan 

setting. This setting, where the craftsman “stays with the element”, 

reduces the need to plan ahead too far and gives pride of accomplishment 

for craftsman. The research focuses on the craftsman setting only. 

5.5.3 Crew Size Determination and Optimum Performance  

An algorithm to create an automated way of generating the optimum 

number of the framers for a crew that performs construction of a frame with a 

determined geometry (with a certain complexity) is presented in the following 

chapters. Also, implementation into a Building Information Modeling (BIM) tool 

is correlated with the crew sizing for various frames and a procedure to extract the 

BIM information in order to determine the exact number of the framers in a 

particular crew is explained further in chapter 7. 
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5.5.4 Assigning Rules to Elements 

Based on the definitions of rules in the methodology, the following two 

steps were performed prior to running the tasks in the flowchart: 

 Step 1: Identification of elements as Complicated or Simple (Rule 1)  

 Step 2: Grouping elements based on similarity as seen in Table 13 below 

(Rule 3) 

 

Table 13: Rules Applied to Frame Two 

 

 

5.5.5 Development of the Mental Model for Wood Framers 

When developing the flowchart representing the way the five rules apply, 

it was noticed that the flowchart tends to separate into two areas: an outer 

flowchart and an inner flowchart.  

The outer flowchart represents an efficient flow of work to build the 

frames and appears to be an accurate and descriptive mental model of a framer‟s 

work that would lead to a final product (a wall in the actual building). The actions 

in the outer flowchart are readily observable. The inner flowchart represents the 

deeper thought process of the craftsman, including elements that are in his 

Rules based on 

definitions 

Elements – e.g. Frame two 

Complicated Elements  E 16, E 33 (E 02 + E 01) 

Similar Elements  E 16 ≈ E 33 (E 02 + 01) 

E 17 ≈ E32 ≈ E 18 

E 30 ≈ E 31 ( E 15 ≈ E 19 and E 14 ≈ E 20) 

E 23 ≈ E 24 

E 03,04,05,06,07,08,09,10,11,12,13,21 and 22 are 

similar 
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memory. The results in the inner flowchart can only be guessed, but the results of 

the decisions (and hence deviations) are observable. 

5.5.5.1 Cognitive Task Analysis - Measurement and Evaluation 

According to Crandall et. al. (2006), CTA analysis may show that more 

experienced commanders can make faster and better decisions. So, the designers 

of the system may try to compare decision speed (quantitative) and ratings of 

decision quality (quantitative/qualitative) with and without the new system. 

Authors also suggest that CTA studies can capture expert-novice differences, and 

trainers can convert these differences into measures, called “progress markers.” 

CTA data can also demonstrate what kinds of errors people make and the findings 

may be able to suggest context-specific measures of performance. 

This is exactly the case of the framers in each case study. Discovering the 

mistakes and errors in each individual case, the trainers can have a more specific 

basis for their observations and measurements. In this sense, they can noticeably 

improve the performance through: 

 Better decision making  

 Better planning 

 Better adaptability 

 Better coordination 

 Better situation awareness 
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5.5.5.2 The Five Rules Framework 

 The creation of the rules and their refinement produced a craftsman model 

of a five rules framework for the erection of a frame. The assignment of 

productivity rules to task execution is considered later in the validation of the 

results chapter. The matching of the individual framer‟s coordination skills with 

team tasks is performed in order to see how they superimpose their coordination 

in execution with the developed model (inner and outer flowchart).  

5.5.5.3 Mental Model Flowcharts and Shared Work Entailments 

The creation of the flowcharts to better comprise the framers‟ work is 

completely described in the next sections. The synthesizing of the field work 

produced by framers was tried repetitively to account for a naturalistic decision-

making processes based of the flowchart rules ranking and deployment. Experts in 

the field agreed with the idea that development of expertise in wood-framing 

work comes as a collection of the production rules. Their opinion reflected the 

complexity of the “shared team tasks” concept in making a crew efficient from all 

points of view. There is an imperious need to address further the concept of 

applying team task to the work of individuals in a team, in any construction trade; 

therefore, a series of studies can be developed following this work and the 

pertaining methodology.    

5.5.6 Outer Flowchart 

     The outer flowchart (Figure 11) helps answer the two key questions below: 

 Which Element should I (framer) first pick to execute or work on?  
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 What should I work on next so that my work will not hinder the other 

team members?  

The outer flowchart is comprised of four rules: 

1. Is the Element in consideration “Most Complicated”? This question helps 

identify the element that needs to be picked to be added in the framer‟s 

mind list. If there are no complicated elements, the framer is faced with 

varied options to select the next possible element and task. In this 

situation, on what basis would the framer decide which element to 

execute? 

2. Minimal Walk: This rule helps the framer decide the next Element to pick 

once all the complicated elements are added to the framer‟s mental list.  

3. Once an element is decided, the question, “Are there other elements 

similar to this element?” helps add similar tasks from similar elements 

4. The question, “Are there more tasks for these elements?” allows one to 

add the next predecessor task associated with this element one at a time to 

ensure that no task is missed 

All these “external” rules actually helped the framer to bring about more work 

and to execute the work in a timely fashion. 

The outer flowchart represents an actual awareness of others‟ actions to one 

framer, so it can be considered the influence from “outside” of one framer‟s 

activity.    
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Figure 11: Outer flowchart 
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5.5.7 Inner Flowchart 

The Mental Stack Procedure (MSP) requires multiple decision points as 

seen in Figure 12.  This is referred to as the inner flowchart.  This inner flowchart 

reflects the actual execution of the task from the MS pool of the framer created in 

the outer flowchart. It demands the need for the framer to skim through the mental 

stack and perform a task as soon as the following three constraints are released:  

1. Predecessor: are all its predecessors complete? 

2. Safety: is it safe to perform the task? 

3. Minimal walk: Is it at a minimal walking distance from his/her current 

position? 

The internal rules are actually preventing the work to be executed to a series of 

“filters”, like predecessors complete, safety rule being satisfied, minimal walk for 

the next task to be executed. The inner flowchart is perceived in the framer‟s 

mind as the actual awareness of his/her own actions and it happens at the level of 

each individual. 

Once all three conditions are satisfied, the task can be executed and 

exhausted from the pool. Having that said, if a task satisfying the above three 

conditions is not performed, does not necessary mean it is a violation of the rule. 

A framer‟s decision to execute the task varies based on site conditions and the 

complexity of that individual frame. However, this research did not focus on how 

these internal sequence violations could be addressed. Therefore, it is a possible 

scope for further research. The case of violations in all frames is treated separately 

in the process of flowchart validation for all case studies.  
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Figure 12: Inner flowchart 
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Chapter 6 

VALIDATION OF RESULTS 

 This chapter focuses on the validation of the five rules framework model 

for framing. The five rules framework is a team level mental model developed to 

serve in crafting the process flow at micro level (tasks) for all wood framing 

operations. The validating data were collected and analyzed from all four different 

residential project sites to authenticate the functioning of the model. 

 Validation of the flowcharts for a wood framing operation was done using 

the principle of consistency and repeatability in the data collection. This 

framework model was also created to lay the foundation for better understanding 

the congruence between individual and team level mental model of any of the 

construction trades and to maximize their performance to enhance team 

productivity, quality and safety. In the validation, an attempt is made to illustrate 

how the cognitive-based flowchart can be implemented in the field of light wood-

framing to enhance jobsite productivity. The results of this research also validate 

the idea that full automation of micro-scheduling is possible and will provide a 

further avenue to test the feasibility of this study on different construction trades. 

6.1 Validation of Outer Flowchart – All Case Studies 

As seen in Figure 11, the outer flowchart starts with the main task pool 

(MT pool). This task pool comprises of all the tasks needed to erect the Frame. 

For instance, in Frame two the MT pool is comprised of 149 tasks (see appendix 

C, Table C10). The first step is to pull a task from the MT pool. For instance, if H 

01 is pulled from the MT pool, it is run through the first decision point - Rule 1: Is 
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it the most complicated element? Since element 01 is not the most complicated 

element (element 16 is), it is reverted back to the MT pool. This rejection of 

elements continues until the most complicated element (16) is selected. It is worth 

noting that this iteration is a computational approach rather that a human 

approach. The human equivalent of this iteration is “scan for the most 

complicated element”. Now that element 16 was selected, H16 is pulled from the 

MT pool and run through Rule 1: Is element 16 the most complicated element? 

Since it is the most complicated element, it is passed through the next decision 

point, Rule 3: Are there similar elements to element 16? From the Table 13, it is 

known that E 33 ≈ E 16. Since E 33 = E 02 + E 01, H 02 and H 01 are added to 

the framers mental stack (Figure 13- phase 1). The list of elements then addressed 

the next decision point, Rule 5: Can you continue to add more tasks associated 

with these current elements to the mental stack of the framer? If yes, it forms a 

loop with Rule 3. Now P 16, P 02 and P 01 are added to the mental stack (Table 

14 - Phase 2) and the process is repeated until all the tasks (H 16, H 02, H 01,P 

16, P 02, P 01,N 01 02, M 33 03, M 16 03, M 33 04, M 16 04, M 33 06, M 16 06, 

M 33 07, M 16 07, M 33 05, M 16 05, M 33 08, M 16 08, M 33 09, M 16 09, M 

33 10, M 16 10, M 33 11, M 16 11, M 33 12, M 16 12, M 33 13, M 16 13, M 33 

22, M 16 22, M 33 14, M 16 24, M 16 23) associated with these elements become 

added (from Handle to Nail) to the framer‟s mind list one at a time. This leads us 

to the next step, the “Mental Stack Procedure” (MSP). A detailed description of 

the MSP, referred to as the “Inner flowchart” (presented in the previous chapter) 

in Figure 12, is offered in the next section.  It is worth noting again that this 
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detailed representation in Figure 13 is the programming equivalent of:”I will on 

the sole and top plates “(elements 01, 02 and 16)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Frame two: mental stack for framer one in round one of outer 

flowchart 

 

6.2 Validation of Inner Flowchart – All Case Studies 

 The two loops that are constantly running in the minds of effective framers 

are the MT loop (from outer flowchart, testing rules 1, 3, 4 and 5) and the MS 

loop (from inner flowchart, testing rules 2, 4 and the predecessors‟ constraints). 

The inner flowchart is actually an internal part of the outer flowchart and to 

validate the flowchart, an example is taken from Frame two; first time a framer 

skims through the list, he should perform H 16, H 02 and H 01 respectively. 
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However, in the actual execution H 01 was performed first. This was interpreted 

as a violation of sequence. Also, H 01 should have been followed by P 01, as all 

the constraints for P 01 were released. Note that in the Table 14, phase 1, P 01 

marked with carets (^) is representing as violation. All the other tasks in the first 

phase: P 16, P 02, N 01 02, M 33 03, M 16 03, M 33 04, M 33 13......M 16 23 

were marked with asterisks (*) meaning that those tasks cannot be performed as 

the predecessor constraint is not released. This resulted in the need for a second 

phase. As seen in the Table 14, phase 2, H 01 was removed from the mental stack 

and H 02 was executed. Note H 16 is still an internal sequence violation. Also, 

having executed H 02, the framer should have executed P 02 (all constraints 

released) and removed from the list. As P 02 was not executed even though all 

constraints were released, it is considered a violation of sequence. In the third 

phase, H 02 was removed and H 16, M 33 05, M 16 05, M 33 08, M 16 08, M 33 

09, M 16 09, M 33 10, M 16 10, M 33 11.....M 33 14 were performed. Note that P 

16 was not executed as it is deemed to be unsafe. If placed in its final position, it 

would be a source of hinderance and would result in injuries due to tripping and 

falling. When scanned the fourth time, M 33 03, M 16 03, M 33 04, M 16 04, M 

33 06, M 16 06, M 33 07 and M 16 07 were all performed and removed from the 

MS pool. In phase 5, P 01 was performed but N 01 02 cannot be performed due to 

predecessor constraint (its predecessor are P 01 and P 02). However, it was 

released of the other two constraints – being safe to perform and was at a minimal 

walk. In phase 6, once P 02 was performed, N 01 02 was not executed,  hence it is 

considered a violation. 
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 The process (a certain number of phases) was repeated until all possible 

tasks were performed and  removed from the mental stack created in the outer 

flowchart. Note that each task was analyzed and assigned a code from the legend 

to understand the constraints it faced. As seen in Table 14, after passing through 

the list seven times, four unexecuted tasks still remain in the MS pool. As 

mentioned earlier, P 16 cannot be performed due to safety reasons. M 16 23 and 

M 16 24 had predecessor constraints. However, N 01 02 satisfied all three 

constraints but was not executed. Hence it was considered an actual violation. 
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Table 14: Frame Two: Mental Stack for Framer One in Round One of Inner 

Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The list of actual task execution sequence for this frame is given in appendix C. In 

appendix D, detailed tables show for each case study the list of tasks with their 

predecessors, duration assignment and notes for the first case study (reasons 

provided to explain the deviations from average duration of the task type).  

LEGEND 

$___$  Is not min. walk 

*___*  Predecessor not complete                      

#___#  Is not safe 

^___^  Is a Violation 

~___~  Is a Task from other  

 framer‟s pool 

   ____  Executed task    

 

 
^H 16^ 
^H 02^ 
  H 01 
*P 16* 
*P 02* 
^P 01^ 
*N 01 02* 
*M 33 03* 
*M 16 03* 
*M 33 04* 
*M 16 04* 
*M 33 06* 
*M 16 06* 
*M 33 07* 
*M 16 07* 
*M 33 05* 
*M 16 05* 
*M 33 08* 
*M 16 08* 
*M 33 09* 
*M 16 09* 
*M 33 10* 
*M 16 10* 
*M 33 11* 
*M 16 11* 
*M 33 12* 
*M 16 12* 
*M 33 13* 
*M 16 13* 
*M 33 22* 
*M 16 22* 
*M 33 14* 
*M 16 14* 
*M 16 24* 
*M 16 23* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
^H 16^ 
  H 02 
*P 16* 
^P 02^ 
^P 01^ 
*N 01 02* 
*M 33 03* 
*M 16 03* 
*M 33 04* 
*M 16 04* 
*M 33 06* 
*M 16 06* 
*M 33 07* 
*M 16 07* 
*M 33 05* 
*M 16 05* 
*M 33 08* 
*M 16 08* 
*M 33 09* 
*M 16 09* 
*M 33 10* 
*M 16 10* 
*M 33 11* 
*M 16 11* 
*M 33 12* 
*M 16 12* 
*M 33 13* 
*M 16 13* 
*M 33 22* 
*M 16 22* 
*M 33 14* 
*M 16 14* 
*M 16 24* 
*M 16 23* 

 

 

 
  H 16 
#P 16# 
^P 02^ 
^P 01^ 
*N 01 02* 
^M 33 03^ 
^M 16 03^ 
^M 33 04^ 
^M 16 04^ 
^M 33 06^ 
^M 16 06^ 
^M 33 07^ 
^M 16 07^ 
  M 33 05 
  M 16 05 
  M 33 08 
  M 16 08 
  M 33 09 
  M 16 09 
  M 33 10 
  M 16 10 
  M 33 11 
  M 16 11 
  M 33 12 
  M 16 12 
  M 33 13 
  M 16 13 
  M 33 22 
  M 16 22 
  M 33 14 
  M 16 14 
*M 16 24* 
*M 16 23* 

 
 

 

 
#P 16# 
^P 02^ 
^P 01^ 
*N 01 02* 
  M 33 03 
  M 16 03 
  M 33 04 
  M 16 04 
  M 33 06 
  M 16 06 
  M 33 07 
  M 16 07 
*M 16 23* 
*M 16 24* 

 

 

 

 
#P 16# 
^P 02^ 
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Returning to Table 14, we are now focusing on the final mental phase (phase 7). 

This phase contains a list of the tasks that cannot be executed. This list (kept in 

the memory of the framer) is placed in what we call “the mental stack”. This stage 

is represented as backlog, as “stage one” in Figure 14. Once a mental stage is 

added to the mental stack the inner flowchart leads back to the MT pool in the 

outer flowchart. A new set of elements is now pulled from the MT pool in this 

case; E 03, E 04……E 21 and E 22 and the entire list of task is added to the 

Mental Stack procedure, one task at a time. In the Mental Stack Procedure, these 

new set of elements (and all their tasks) are added below the backlog tasks from 

round one. For convenience, each time a new set of elements is extracted from the 

MT pool, it is named as Stage 1, Stage 2, Stage 3, etc. as seen in Figure 14 and 

Figure 15. Note that after executing H 03 (Figure 14, Stage two) the framer 

executed P 03 rather than H 04, H 05, etc. The framer‟s decision to place P 03 

was justified as being a minimal walk when compared to performing H 04. The 

process presented in the flowchart is repeated until all the tasks from the pool are 

removed. The best case scenario is believed to be when a framer removes all tasks 

from his mental stack (by executing- inner flowchart) before adding any new 

elements and its related tasks (called as Stage two) in the mental stack from the 

MT pool. 
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Figure 14: Start of round two 

 

       

 

 

 

 

 

 

 

         

 

 

 

 

 

 

Figure 15: Backlog at the end of round four 

 

 In certain cases, framer one performs tasks assigned to framer two. For 

example, as seen in Figure 15, framer one executed N 33 30 and N 16 30 that 

were pulled from the other framer‟s list of task. This was also perceived as a 
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violation due to its possible impact on quality of the product, in this case, the 

frame itself. It was deemed that switching between elements (i.e. taking activities 

from the mental stack of another framer) induces a split in the responsibility for 

the quality of the product and hence has the potential of reducing it. An alternate 

view that this is a sign of double quality control, is acknowledged here. However, 

based on the assumption of sufficiency of minimal quality, a decision was made to 

select the first interpretation. The process presented in the flowcharts was 

repeated for the second framer to identify his violations (details can be found in 

the appendix C). At the end of round one, framer two had one violation - P 29. To 

identify their violations at the end of each round, this process was repeated for 

each framer in the other three studies as well. 

 These rounds and phases were manually “filtered” through this process 

until all the tasks pertaining to each framer in all four frames were executed and 

the new optimized time was recorded. Therefore the work would have performed 

by going logically through the flowcharts and reflecting the five-rule framework 

assignments to each and every task attributed to the framers. The processes were 

tested independently by two people and produced identical results, thus proving 

that this approach is consistent and replicable. 

 Once the five-rule framework sequence was completed for all the four 

frames, the total production time obtained using this framework was compared to 

the actual execution time incurred from the video observations. Table 15 

illustrates the comparison of the production time in actual execution, five-rule 
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framework and P6-LS priority rule optimization. Figure 16 is a graphical 

representation of these two production times for all frames in the study. 

 Note that while the initial development of the five rules was carried out on 

Frame one using ideal execution times, the validation of flowchart for Frame one 

was performed with the total actual execution times as witnessed on site. The P6 

(LS) optimization showed in the methodology chapter was performed with the 

times provided in the table of predecessors and durations within the appendix D, 

along with notes explaining reasons for time tasks deviations as occurred on site.  

 

Table 15: Comparison of the Production Times 

 

Duration-two framers    

(1 helper) 

Frame 

One 

Frame 

Two 

Frame 

Three 

Frame 

Four 

Actual Execution 
544 

seconds 

620 

seconds 

460 

seconds 

480 

seconds 

Five-rule Framework 
480 

seconds 

504 

seconds 

418 

seconds 

472 

seconds 
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Figure 16. Graphical representation of the production time comparison for all 

frames 

 

Comparing the actual execution with the five-rule framework, one can notice that 

the five-rule framework model gave better total production time in all four Frames 

when compared to the actual execution. This indicates there is definitely a scope 

for actual productivity improvement based on the sequence opted. All four frames 

were tested for the inner and outer flowchart and the conclusion was that they 

reflect the human comprehensible and achievable sequence of work with tendency 

to maximize performance. 

6.3 Consideration of the Framers’ Coordination Assignment Within Crew 

 In the process of assigning tasks to the framers, when the focus was to 

validate the flowcharts, the actual five rules pertaining to the execution were 

assigned to the tasks in the process of performance and coordination. These tasks 

come along with the “external” and “internal” process of a framer‟s mental model 

that lead him/her to the execution of that particular task. Table 16 is an excerpt of 
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the assignments for frame 2 conducted by the first framer who is assumed to have 

more experience than the second framer. The rules which are processed through 

the flowchart contribute to the execution of the tasks, according to Table 16. For 

instance, task H 16 (row 3 in Table 16) was selected based on Rules 1 and 3 

(outer flowchart) and Rules 2 and 4 (inner flowchart).  

 

Table 16. Assignments of Rules from Flowcharts to All Tasks 

 

Task 

ID 
Duration Predecessors 

5 RULES 

(Outer 

flowchart) 

5 RULES 

(Inner 

flowchart) 
H 01 1 S 5 2,4 

H 02 2 S 3 2,4 

H 16 13 S 1,3 2,4 

M 33 05 1 H 02 5,3 2,4 

M 16 05 1 H 16 3 2,4 

M 33 08 1 H 02 5,3 2,4 

M 16 08 1 H 16 3 2,4 

 

 It is acknowledged that an experienced framer (“expert”) subconsciously 

has this knowledge and any violations of not following the checking points (the 

rules in the flowcharts) can potentially lead to a hazardous situation (safety issues) 

or a to rework situation (quality and productivity issues toward the future 

execution of the tasks associated with the next studs forwardly in the process). 

This does not mean that the experienced framers do not make errors or cause 

safety hazards. The actions witnessed in all the videotaped activities (in the case 

studies) revealed errors made by the more experienced framers which led to a 

direct impact on productivity or quality of work performed by them and overall 

by the crew. This problem is addressed later in this chapter. 
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 The next step was to establish a rate of compliance (in regard to the 

procedures-rules followed in the flowchart as one would perform work) for every 

framer within the crew. This analytical process is a quantitative measurement and 

it is meant to assess the performance and coordination match in relation with 

team‟s tasks (building frames of certain complexity). Matching individuals‟ 

coordination and performance with team tasks was sought as the main product to 

be delivered in this research. 

 To quantify the rules in the flowcharts and their assignments to the 

performed tasks, they were counted in the process of validation carried out in all 

studies. The purpose to develop a system to qualify a framer for following the 

procedures (rules) in the developed flowchart was mainly to determine the 

coordination for framers that further will enable them to achieve performance 

relative to their own crews. Basically, a framer coordination profile is attained and 

it is representing a tool to better understand how he/she integrates within a crew. 

For each individual framer in every crew, a rate of compliance was established 

based on all rounds performed by them until all tasks were depleted from the MT 

pool. Details for the determining the procedural deviation of the framers can be 

followed for Frame 2, provided as an example in appendix E along with the other 

results for all case studies. The calculation considerations are explained further. 

 From the initial phase to the end phase in each round, the unperformed 

tasks that were not executed either due the rule of safety or because the 

predecessors were not complete, were called “legitimate skips.” These were 

accounted separately from the tasks performed during the whole round. Also, if a 
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task was not executed during the round even if it could have been, it was 

considered an “ignored task”. Ignored tasks were accounted separately in the 

calculation of the compliance rate. 

 In this quantification, an in-situ ideal number of rules followed by each 

framer was calculated as the difference between the total assigned rules in the 

ideal case (a round where all the tasks from the beginning are executed entirely 

until the end) and the number of rules assigned for tasks considered legitimate 

skips. Then, the compliance per each round was calculated as percentage: 

[%]
ideal_situIn

tasks_Ignored
Compliance

 
  -1                [2] 

   

This compliance (per round) -as percentage- did not take into account the so-

called productivity extolments, meaning tasks at the end of the rounds that were 

not performed because of the minimal walk rule (number 4) or incomplete 

predecessors that were not satisfied. The safety and quality extolments were the 

only ones allowed to be considered legitimate skips for obvious reasons. In some 

cases, because all the tasks per round were executed (MS depleted), the 

compliance was calculated as 100%. An analysis was conducted for each framer 

and each round and an average compliance rate (in percentages) was calculated 

for each individual framer (Table 17). Details of the calculations are shown in 

Appendix E, Table E1 to Table E13.  

 In Table 17, Framer 1 is always the “lead framer”-considered to be the 

expert. This assertion is based on the fact that it is the expert who will start with 

the most complicated element (Rule 1). 
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Table 17. Percent Compliance Relative to the 5-Rule Framework 

 

FRAME Framer 
Percent Compliance 

P(%) 

Frame 1 
Framer 1 (Red shirt) 92 

Framer 2 (Gray shirt) 86 

Frame 2 
Framer 1 (Red shirt) 83 

Framer 2 (Gray shirt) 90 

Frame 3 
Framer 1 (White shirt) 89 

Framer 2 (Blue shirt) 87 

Frame 4 
Framer 1 (Red shirt) 88 

Framer 2 (Blue shirt) 95 

 

Framer 2 is the “support framer”, a novice doing more work on similar elements. 

The selection was made based on the video observations. 

6.4 Matching Coordination with Team Tasks 

 

 The actual compliance rate of procedures (P) for individual framers 

represents their general ability (based on their skills) to follow the rules in the 

flowcharts and in the execution of the work overall. In order to realize how well 

the framers are following the five-rule framework, an average procedural 

deviation was calculated in percentages for each frame, as being: 

[%]
compliance_.Frcompliance_.Fr

Dev_ocedPr_Avg
2

21
1

         

[3] 

 Based on the results obtained, the four frames are organized from the one with 

the least average of procedural deviations to the one with the highest average 

percentage of procedural deviations per team. The full results are depicted in 

Table 18.  

The procedural deviation of the worst framer is also calculated as a function of: 

%)]compliance_.Fr(%)compliance_.Fr[(MinDev_ocedPr 211         [4] 
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To be able to compare these results with the productivity decrease as procedural 

deviations are encountered in each frame, a percentage of productivity declines 

(five rules versus actual execution) are calculated based on the actual execution 

time and the five-rule framework time obtained in every case:  

](%))
Time_Framework_rule

Time_Execution_Actual
(ABS[Decline_oductivityPr 1

5
        [5] 

 

Table 18. Procedural deviations and general productivity per frame 

 

 
 

The discussion and interpretations of these results is provided in the first and 

second section of the conclusions chapter. 

6.4.1 Coordination Requirements for Performance Maximization 

 The graphical representations of productivity decline (in percentages) 

relative to the Procedural Deviation of the Worst Framer – PDWF (in 

percentages), for every frame, are portrayed in Figure 17. 

Framer/

Frame

Compliance 

Framer 1 

[%]

Compliance 

Framer 2 

[%]

Procedural 

Deviation of 

Worst 

Framer [%] 

Actual 

Execution 

Time 

(sec.)

5-rule 

Time 

(sec.)

Average 

procedural 

deviation 

[%]

Productivity 

Decline [%]

Frame 4 88 95 12 480 472 8.5 2

Frame 1 92 86 14 544 480 11 13

Frame 3 89 87 13 460 418 12 10

Frame 2 83 90 17 620 504 13.5 23
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Figure 17. Productivity decrease as function of procedural deviations of the worst 

framer 

 

 The graphical results convey that the requirement for performance 

maximization is almost linear in nature and is contingent upon the coordination 

dependencies of framer that abided by the 5-rule framework the least amount of 

time (in the respective crew). The linear regression trendline was added to the 

graphical representation and the equation showing the linear dependency between 

variables. This equation is: 

     y = 3.9721*x – 0.4359          [6] 

 R-squared value (R
2
 = 0.9475, being close to 1) establishes the dependency of the 

two variables.  

The hypothesis that the average procedural deviation will be a predictor of team‟s 

coordination is presented in Figure 18. The equation is:  

    y = 3.8738*x – 0.3156          [7] 
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R-squared value is R
2
 = 0.8529 

 

 
 

Figure 18. Productivity decrease as function of team average procedural 

deviations 

 

This fact indicates a higher confidence in the statement that the effectiveness of a 

crew is influence by the performance of the weakest crew member rather than the 

average performance of the crew members. It can be concluded that equation [6] 

represents the influence of individual‟s mental framework on the performance of 

the crew. Having a slope of about 4 and an intercept of about 11 %, the 

conclusion can be stated as: “once the worst framer in the crew surpasses the limit 

of 11% deviation from applying the said five rules, every additional percent of 

deviation reduces the productivity of the whole crew by 4%.” 
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Chapter 7 

IMPLEMENTATION IN BIM (BUILDING INFORMATION MODELING) 

7.1 BIM and Crew Sizing for Wood Framing Work  

 BIM is an integrated process that allows architects, civil engineers and 

contractors to look at a project digitally, on the computer screen, before it is even 

built. The reason to implement the productivity results obtained in the 

methodology of this research is that through more efficient team coordination, 

accurate micro-scheduling, and clash-free installation, BIM-driven jobs typically 

can be built much quicker than jobs delivered using paper based drawings. In 

regard to trades, it allows for better collaboration and sequencing and eliminates 

the need to stack trades, which negatively affects every subcontractor‟s 

productivity. This can be the case for light wood-framing trade in the commercial 

and residential construction. 

 One key factor in the productivity of any construction crew is the way the 

foreman assigns and organizes the work of each team (for a literature review 

relevant to this point, see Day et.al. 2007, and Styhre and Josephson, 2007).To 

make a clearer distinction between the two terms - crew and team - a “crew” is a 

group managed by a foreman and a “team” is the sub-group that is given specific 

tasks within a crew. For instance, a crew of framers can have five members and 

may be split up by the foreman into a team of two and a team of three framers. 

Experienced foremen know instinctively how to size the teams to ensure 

maximum productivity based on frame complexity. Unfortunately, with the aging 

of the construction workforce, this skill of the foremen is rapidly vanishing.  
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 The purpose of the implementation in BIM was to check whether 

information from BIM models can be used to automatically determine the most 

effective crew size for construction operations, thus replacing to some extent the 

vanishing skill of experienced foremen. The whole research study dealt with the 

wood-framing processes; therefore, selection for implementation was wood 

framing as a test case. This decision was motivated by two factors:  

(1) most BIM programs (such as Autodesk Revit or ArchiCAD) already have the 

capability to automatically design and represent all the elementary components 

(studs and plates) of wall frames; and  

(2) access to jobsites where wood framing was taking place for observations and 

reality comparison is easily obtained and it was already carried out. 

 Determining the exact size of a team based on the information available in 

BIM software can be done quite simply. Most of the BIM software can represent 

each component of the wall frames down to the level of studs and plates. 

Automatic routines are available to complete such representation if the designer 

has not yet completed the design to this level of detail. For the purpose of this 

determination, the information about the parts and elements was considered 

available. With this in mind, the following four goals were set: 

1. Evaluate the possibility of automatically creating tasks and task 

sequencing from BIM models 

2. Seek the influence of the resource leveling criteria in P6 on team 

productivity for further consideration to implementation in BIM 

3. Test the possibility of team sizing without using P6 optimization algorithm 
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4. Recommend an implementation procedure for team and crew sizing using 

BIM    

 Although the determining of crew sizing based on frame complexity and 

productivity levels was considered as a “spin-off” research of crew performance 

skill-set modeling, it has implications in the use of cutting-edge technology tools, 

such as BIM software, in today‟s construction industry.  

 Initially, a productivity loss dependency matrix was created based on the 

total number of tasks and the number of framers in the team. The productivity loss 

was calculated using the best-case scenario (LS resource leveling). The duration 

for each frame in the LS resource leveling was taken into account as the 

calculation was performed increasing the numbers of framers to each crew in 

every single frame. The matrix and the three-dimensional graph representing the 

matrix are depicted in Figure 19 below. One framer represents the baseline as, 

theoretically, there is no loss of productivity owed to coordination. To ease the 

reading of the three-dimensional graph, the single framer was omitted. The 

productivity loss dependency matrix allows us to automatically determine the 

maximum size of a team based on the size of the accepted loss of theoretical 

productivity. For instance, if a 2% loss of theoretical productivity is accepted by a 

foreman or superintendent, then the maximum number of team members is as 

follows: Frame 1 – 1 framer, Frame 2 – 2 framers, Frames 3 and 4 – 3 framers.  
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Framers 

Frames 

Fr. 1 Fr. 2 Fr. 3 Fr. 4 

119 

Tasks 

149 

Tasks 

203 

Tasks 

343 

Tasks 

1 Framer 0% 0% 0% 0% 

2 Framers 3% 2% 1% 1% 

3 Framers 6% 3% 2% 2% 

4 Framers 8% 5% 3% 3% 

5 Framers 11% 12% 7% 4% 
 

Figure 19. Matrix of different productivity levels and framer availability (with 

known number of tasks) 

 

 It is assumed that real-case productivity will be proportional to the 

calculated productivities; but at this stage, there is no empirical proof of this 

statement for teams consisting of more than three framers. The largest teams 

observed had three members: two framers and a helper. This observation is 

leading us to believe that the total accepted loss of theoretical productivity is 

about 2%. Using 2% as a guiding number, the method described above can easily 

be implemented to size the teams for framing. The guiding principle presented in 

Table 19 is that the number of team members is a step function of the total 

number of tasks required to build the frame. The critical number of tasks is 200, 

since below 200 tasks, the step function shows one or two framers, whereas above 

200, the maximum team size is 3 framers. A close approximation of the total 

number of tasks can be obtained by multiplying the number of components by 

four (each component has Handling, Measuring, Cutting and Placing), adding two 

more tasks for each point where two components meet (for Marking and Nailing), 
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and then subtracting twice the number of full-length studs, for they have no 

Measuring and Cutting (equation [8]): 

224 *)studs_Zprecut(*)sintpo_Ycontact(*)Xstuds(tasks_T          [8] 

where T_tasks is total number of tasks for a given frame, X represents the number 

of studs comprising the frame, Y is number of contact points given in the actual 

geometry of the frame and Z represents the numbers of studs that are brought 

precut to the jobsite.  

For instance, Frame 1 has a total of 19 components and 32 points where 

components meet (11 vertical components induce 22 points and 5 horizontal 

components induce 10 more points). Six (6) of these components are full-length 

studs. The simplified calculation for the total number of tasks in frame 1 is: 19 * 4 

+ 32 * 2 – 6 * 2 = 128 tasks (compared to the 119 tasks that were observed in the 

video recording). The difference between the calculated total number of tasks and 

the total tasks observed in the video recording is coming from the fact that 

typically framers are handling multiple elements together (up to about four) in the 

beginning of the work and therefore there is no additional handling for each 

individual stud in the proximity of the work area. Based on this formula, the team 

can be sized as shown in Table 19. 

 

Table 19. Team Sizing as a Function for Number of Tasks 

 

Number of tasks ≤120 ≤200 >200 

Maximum Team 

Size 
1 2 3 
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7.2 Extraction of BIM Related Information to Determine the Number of 

Framers in Crews 

 All data required for formula [8] is easily obtainable from the BIM model 

and, thus, it is possible to determine the size of the team for any particular frame.  

The actual number of studs is extracted from Autodesk Revit Structure software 

with MWF (Metal Wood Framer) “add-in” feature which automatically generates 

the stud arrangements (spacing and location of all studs).  

In light-gauge steel framing, MWF is a plug-in that adds the ability to create 

framing based on specialized parametric relationships that can affect the 

connections and types of members. For further details see 

http://www.strucsoftsolutions.com/mwf.asp (June 14, 2011).  

The main features that MWF automatically generates are: 

 Extra studding around openings based on user defined preferences 

 Internal and external sheathing, bracing and extra studs 

 Kickers and Equipments backing members  

 Automatically assigns panel numbering and shape labeling 

 Fire stop assemblies schedule, etc. 

An example of generated non-bearing wall panel for a residential project is given 

in the Figure 20, with all annotations and dimensions of studs and headers 

provided for the users. 
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Figure 20. Automatically generated panel for a stick frame residential 

construction 

 

The process of generating the frame and obtaining the total number of studs from 

a generated frame is illustrated in Figure 21 and Figure 22, below. Currently, 

MWF provides the breakdown of the studs (king studs, jack studs, headers, sole 

and bottom plates, cripple studs, etc.), which are then counted to obtain the total 

number of studs per frame. 
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Figure 21. Generated frame in Autodesk Revit Structure with MWF plug-in  

 

 
 

Figure 22. Frame in Revit Structure with MWF generating total number of studs 
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 However, further research is needed to determine the exact number of 

contact points based on the geometry of each frame and for automatically getting 

the number of pre-cut studs from the geometry of the frame.   

 Real (on the jobsite) productivity data will need to be compared to the 

theoretical values used, but it is possible to use the scenario of the full-day 

activity for one crew. The exact sequencing of the framing activity can be 

obtained by using the two flowcharts presented earlier. 

7.3 Conclusions for Crew Sizing Determination and Implementation in BIM 

 To recapitulate, in the previous chapters, the activities performed when 

building four different frames were video recorded and extensively analyzed. A 

formalization of the activities allowed for most of the precedence rules to be 

generated semi-automatically, using elementary formulas in Microsoft Excel 

(described in the methodology chapter). Corrections were made manually to 

accommodate for exceptions. This study validated the idea that full automation of 

micro-scheduling is possible and applicable to other construction trades. 

 The goals of the spin-off research presented in this chapter and the 

conclusions are reiterated below: 

1. Since BIM can represent each component of each element (in this case 

studs and plates for light wood frames), it is possible to assign a series of 

tasks to the production and assembling of each component. Most of the 

geometrical constraints can be determined using simple geometrical 

reasoning. Microsoft Excel was successfully used to create the list of all 

the tasks and their precedents. However, the automation of the decisions 
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regarding subassemblies needs further research and is later discussed in 

the last chapter.    

2. Late Start was consistently found to be the most effective criteria for 

micro-scheduling. However, the results can be used only as a theoretical 

base for decision-making as the sequence of operations on the critical path 

appears haphazard to the framers. The developed five-rule flowchart 

indicates that a certain task sequencing based on simpler, more natural 

criteria, provides similar efficiencies to the Late Start resource leveling 

criteria. The five-rule flowchart provides a good basis for determination 

beforehand of a crew or team sizing and the possibility to use selectively 

the crew performance for the purpose of assigning the actual labor to 

framing panels in existing BIM tools (not yet developed). 

3. Calculating the maximum size of the teams without going through the 

entire process of P6 optimization is possible. Experienced foremen are 

most likely using a similar approach in a natural way, albeit 

subconsciously. They assign smaller teams (one or two framers) to simpler 

frames (i.e. fewer components and, hence, fewer tasks) and teams of three 

framers to build more complex frames. The minimum number of tasks for 

a team of three framers was determined to be around 200. 

4. With relatively simple programming, BIM information can be used for 

team and crew sizing. The size of the teams can be determined based on 

the geometrical description of the frames. An approach similar to the one 

presented in this chapter is probably suitable for crew sizing as well. 
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However, the aggregation of the teams into crews allocated for various 

frames with different degrees of complexity needs further research. 
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Chapter 8 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

 As stated in section 1.6, the purpose of this research was to answer the 

following two questions: 

1. How do teams or crews solve problems together? In other words, how do 

they become aware of a particular situation as a group, how do they share 

information/situations and make decisions as a unit? 

2. What role does individual performance play in the performance of the 

whole crew?  

The subsequent sections answer these questions in an explicit manner, explain the 

limitations of the research and then provide recommendations for further research.  

8.1 How Wood-Framing Teams or Crews Solve Problems Together 

 During normal framing operations, the decision of who performs what 

task on which element and when (i.e. the micro-scheduling of the team‟s activity), 

is done in a distributed manner (i.e. each framer is participating in the process 

without conscientiously coordinating with the other team members). This 

behavior can be obtained if each framer adheres to a set of five rules. Those five 

rules, in the order of their ranking, are as follows:  

1. Complicated Elements 

2. Safety 

3. Similar Elements 

4. Minimal walk 

5. Stay with the Element 
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These rules have been tested against the results of best case scenario provided by 

Primavera P6 and were found to be necessary and sufficient. The maximum 

deviation between the five rules and P6 case was found to be 4.7 %. 

While the framers may or may not be able to articulate these rules, their actions 

indicate that they mostly abide by them. The framers working on each of the four 

frames studied and analyzed as part of this research were successfully able to flow 

through the defined rules and flowcharts. This is validated by the following 

findings: 

 The total production time obtained using the five-rule framework model is 

congruent with the minimum possible duration obtained using scheduling 

software (P6, using late-start leveling). 

 The five-rule framework model helps create a sequence of tasks that is 

simple, realistic and easy to implement on site.  

The five-rule framework can be converted into an algorithm that can be used for 

micro-scheduling (sequencing) to improve productivity and coordination of the 

entire crew.  

The congruence of the five-rule framework model with the calculated minimum 

possible execution times, and the fact that in each case-study the framers followed 

these rules with relatively few faults, indicates that the problem solving capability 

of the crew is embedded in the capacity of each individual to understand and act 

upon the five-rule framework model.  
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8.2 The Role of Individual Performances in Team Coordination and 

Performance 

 The answer to the second research question “What role does individual 

performance play in the performance of the whole crew?” is that the team 

members should comply as much as possible with the five-rule model in order to 

achieve greater performance. In other words, for each team member, the 

procedural deviations from following the model are desired to be at the minimum 

levels. The average procedural deviation plays some role on the total productivity 

of the team (R
2
 = 0.8529), but a more significant role is played by the procedural 

deviations of the worst framer (PDWF). This research has not encountered a case 

study with less than 12% PDWF; therefore this fact should be further investigated 

by undertaking additional studies. However, it can be inferred that any extra 

percent of PDWF above 11% (see Table 18) affects productivity of the entire 

team by a factor of 4. For instance, an increase of PDWF from 11% to 14% will 

decrease the productivity of the respective team by 12%.   

 This conclusion gives legitimacy to the practice of replacing only the 

worst performer in the team; it also provides a means for improving the 

productivity of the whole team by training the crew on the five rules. While it 

appears to be sufficient to train only the worst performer on the five rules, it 

makes more sense to train the whole team, thus eliminating the errors of the next 

to worst framer at the same time. 

 It is worth noting that the framer with the most procedural errors is not 

always the “expert” framer, nor is it the “novice”. More research is needed to 
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determine how swapping team members in a crew affect the performance of each 

team.  

 Sharing information/situations and making decisions as a unit (team) is 

reflected in the mental model of each individual framer and his/her capability to 

withstand ignoring rules from the framework. Based on the actual video 

observations and follow-up discussions with the foremen, it is concluded that in 

each case scenario the framers were not aware of following a “code” of 

procedures concisely (a certain task sequence). Matching the amount of time 

spent to synchronize the coordination levels between the framers can lead the 

team to make decisions as a unit for the benefit of the final product (the frame). 

Also, it is worth noting that in real life any and all five rules can be ignored in the 

flowcharts at any time by the framers. Potential reasons that the framers 

sometimes ignore the rules, even when constraints are released, have not been 

identified through this study and are in need of additional research. It is 

acknowledged in this research that there is a distinction between an ignored rule 

in the flowchart and an ignored task.  

 Each case study set-up was revealed a network of particular tasks and 

procedures to be followed by the team; the difficult question was how to compare 

the results of different teams knowing that each of them is following a different 

instance of the decision network. The answer, provided in the data analysis 

chapter, was to compare the total execution time with the time obtained through 

an optimum flowchart regulated by an effective “internal” mental model of 

individual framers. The role that individual performance plays in group 
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performance and coordination rests with the degree of the mental model accuracy 

in the mind of the framer, the task procedure to be executed and a well understood 

distribution of the work between the crew members. These considerations are 

essential to coordination between individuals. The interaction between the crew 

members in this trade is essential for the decisive moments when redistribution of 

the tasks occurs and is necessary. This is based on one‟s awareness of others‟ 

work. Moreover, the individual roles in each crew are specific to the trade 

analyzed (in this research, wood-framing) because of the specificity of the 

framers‟ actions in their interactions with tools, equipment and materials. 

 Through the optimization process followed in the development of the 

flowchart, the roles of the individual are considered only in the critical decisive 

moments, when the framer is switching the performance of the inner flowchart 

tasks in opposition to adding tasks from the main pool (in the outer flowchart). 

This characteristic establishes how one‟s coordination skills compete with the 

team task and the capacity of the framer‟s mind to achieve an accurate mental 

model of the frame. 

8.3 Implications in Productivity of the Framing Operations 

 As stated in the methodology chapter, in certain situations rework time 

was added to the tasks performed and executed erroneously; the error durations 

subtracted from the actual execution task time interferes in the P6 resource 

leveling optimization. If the errors would have been treated separately as different 

tasks (reworked tasks) with their own duration, it is very probable they would lead 

to a dissimilar total duration as bottom line in the P6 optimization process. 
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Understanding the full-range of factors leading to errors improves the productivity 

of operations and causes elimination of the tasks that are categorized as rework.   

 Productivity of framing operations will potentially be increased by using 

BIM in the pre-planning of the micro-operations. At this stage the possibility to 

automatically calculate the optimal team size for a frame was proven. More 

research is needed for the optimization of the crew assignments and the parting of 

the frame in subassemblies.   

8.4 Limitations of This Study and Recommendations for Further Research 

 This research study has some limitations that are listed below. Some of 

them were succinctly mentioned in the previous chapters. 

 In the current study, a task, when not performed in its sequence, got 

carried as a backlog (in multiple rounds) until the framer returned and 

executed it. This provoked a question that needs further research: “How 

long can a framer carry his backlog (remember the task in his mind) of 

tasks to be performed?” 

 This research did not take into account the impact of material and shape 

differences on framer‟s individual productivity; the time needed to 

perform a task on different material (lumber vs. particle board) did not 

present an explicit difference. Material may play an important role for 

other construction trades and should be considered during future research 

(different types of actions in the task description and numerical 

assignment). 
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 The case studies documented, analyzed and tested for the feasibility of the 

five-rule framework model are limited to wood-framing for now. 

Expanding the scope of this research by implementing this five-rule 

framework model on other construction trades will further validate its 

applicability in improving jobsite team productivity through coordination 

and will provide further possibilities for automation.  

It is worth noting that the P6 optimization process was not really necessary for 

developing the compliance rate calculations for each individual framer. The 

optimization process approach was helpful though to establish the minimum 

possible time to perform the tasks on the respective frames and validation of the 

five-rule framework. 

 To obtain a high level of coordination and performance in larger framing 

teams future research will have to focus on how individual mental models merge 

into a unique top-performance team mental model. The following should be 

considered for studies involving larger teams:   

 Flexibility – acknowledged by cost of mistakes, or procedural deviations 

of following the flowchart in relation to productivity, safety and quality of 

work. 

 Accommodation – for skill variation of the work coordination within 

individual members of the team. 

 Network capability - to accommodate perturbations, through metrics 

capable of correcting the errors during backlog work. 
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 Further research is needed to determine the exact number of contact points 

based on the geometry of each given frame. As mentioned in the previous chapter, 

the possibility of getting the number of pre-cut studs from the geometry of the 

frame and the crew size may be addressed for further development of the step 

function.   

 The need for further research regarding automation of the decisions 

concerning subassemblies was exposed by this study. There is a certain influence 

on the productivity and quality of the frame when a lead framer is taking care of 

the subassemblies (usually headers for window and door openings, jack studs for 

doors, top and sole plates, etc.). This influence can be measured in quantitative 

terms and can be traced back to the cognitive abilities of the lead framer. 

A framer‟s decision to execute a task varies based on site conditions 

(external to the work setting) and the complexity of that individual frame (internal 

to the work setting). However, this research did not focus on how these internal 

sequence violations are addressed in the team environment and team interaction, 

thus it is a potential for further research. It is concluded that the number of 

choices framers make in following the right work sequence (in their mental 

model) is not proportional to the complexity of the frame on which they are 

working. 

 There has not been enough research in planning the task sequencing 

(micro-scheduling), crew size and work distribution among various trades and 

their impact on crew productivity. The study presented here focuses mainly on 

improving productivity and coordination of the framing operations through a 
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framework model that ranks five rules in the minds of the framers. The five-rule 

framework is a team level mental model developed to aid in designing the process 

flow at the micro level for wood framing walls in buildings. The data collected 

and analyzed from four different residential project sites was enough to 

substantiate the validation of the working model. The results of this research help 

the progress of confirming the possibility of full automation of micro-scheduling 

while improving productivity and coordination on the job-site. They also provide 

further research opportunity to prove its applicability among other trades‟ 

activities. However, the coordination dependency acknowledged in Figure 17 was 

drawn on the four data point basis (from all four case studies). In order to 

establish a stronger dependency relationship between PDWF and the Productivity 

Decline, additional data points may be considered (additional case studies).  

 As stated in section 1.4., the results of this research allow a broader 

integration of people in construction, regardless of gender or stature, through:  

 Providing new capabilities for analysis of framing operations through an 

innovative methodology and analysis. 

 Describing with accuracy the team mental model and procedures to the 

final outcome to achieve highly coordinated and high-performance teams. 

 Fitting coordination skills with team task for structuring adaptive teams 

through an accurate team mental model. 

Finally, it is concluded that following the flowchart as closely as possible means a 

better understanding of the mental model of the final product in the minds of the 

individuals, thus more chances to achieve better coordination and a high-
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performing crew. The common team plan deployed for achieving optimum 

performance consists of individuals with high rate of compliance and low average 

procedural deviations per team. In the selection of framing crews, this fact allows 

a superintendent or foreman to realize how well the team executes the common 

plan and to intervene with specific training or to match individual coordination 

skills between framers to achieve a high-performance team. 
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APPENDIX A  

QUALITY CHECK LISTS 
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A1. Quality check lists 

The quality lists are provided for reference and pertain mainly to the 

framing of residential or commercial buildings. 

Wall framing (quality checks): walls located per "approved" drawings; check 

walls for straightness, plumb, and square; correct size lumber for studs and 

headers; Check sheathing size, manufacturer's installation instructions, and 

nailing schedule per code; Check critical dimensions; no room studded without 

installing large fixtures or appliances that will not fit through door openings later; 

Check window and door openings; check dimensions, plumb, square (Note: 

Rough framing for window and door openings will require a thorough review 

with vendors to determine allowances for products chosen for installation - items 

such as floor covering, door and window trim will affect the allowances for 

framing measurements); Check all warped studs removed or straightened; pull 

string along wall lines to determine straightness; Check plate splices located over 

studs; Check trimmer studs and header joints tight; Check garage door jamb and 

brick mold installed properly; Check framing and drywall installation per fire 

code in areas surrounding fireplace masonry (coordination of this activity with 

framer and masonry contractors prior to enclosure); Check that walls have 

adequate temporary bracing to maintain straightness and plumb prior to setting 

truss package. 

Roof framing (quality checks): 

(Note: Roof framing may be "stick frame" or "truss package". The main 

difference is that "stick frame" roofs will be built piece by piece on site; a roof 
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erected with a "truss package" will be cut and assembled at the factory and 

delivered to the site) 

Check trusses erected according to engineered design and installation instructions 

accompanying package: 

1. Nailing schedule per applicable building code 

2. Framing anchors installed per applicable building code  

3. Catwalk installed at center of attic 

4. Wind brace installed at gable ends 

5. Attic vents installed at gable ends or ridge 

6. All gable and firewall trusses have studs installed per sheathing or drywall 

layout 

7. Lookouts installed at peak of gable and 4' o.c. for sheathing layout 

8. Fascia and Barge boards installed straight and secure 

9. Vent blocks installed at exterior walls between roof rafters 

Check stick framing installed per "approved" drawings according to applicable 

building code: 

1. Rafters correct size, straight, crown-up 

2. Ridge board correct size, straight, without sag 

3. Rafters properly connected to wall plates 

4. Collar ties correct size, spacing, height 

5. Vent blocks installed at exterior walls between rafters 

6. Attic vents installed at gable ends or ridge 

7. Fascia and Barge boards installed straight and secure 
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8. Lookouts and rake supports installed per layout 

Check for proper clearance around chimney; Check attic access properly sized 

and located; Check that ceiling backing is in place before sheathing is installed; 

Check location and backing for skylights. 
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APPENDIX B 

PRODUCTIVITY AND DURATION COMPARISON CHARTS  
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Table B1. Duration and Productivity in P6 (Late Start priority rule) – Case Study 

Two 

 

 

 

 

 

 
 

Figure B1. Productivity comparison for different leveling priority rules in P6 – 

case study two 
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25 16- Lift 1012 103% 291%

514 200% 2 Same 1028 102% 148%

348 300% 3 Same 1044 100% 100%

265 400% 4 Same 1060 98% 76%

231 500% 5 Same 1155 90% 66%

231 600% 6 Same 1386 75% 66%

231 700% 7 Same 1617 65% 66%
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Figure B2. Duration comparison for different leveling priority rules in P6 – case 

study two 

 

 

 

Table B2. Duration and Productivity in P6 (Late Start Priority Rule) – Case Study 

Three 
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Duration
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Time
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frame Duration

1 LS 789 100% 1
S- H 34- T 34- C 34- N 32 34 33- P 40- N 38 

40- P 36-N 02 36- P 37- N 37 02- Lift 789 100% 100%

399 200% 2 same 798 99% 51%

269 300% 3 same 807 98% 34%

204 400% 4 same 816 97% 26%

169 500% 5 same 845 93% 21%

169 600% 6 same 1014 78% 21%
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Figure B3. Productivity comparison for different leveling priority rules in P6 – 

case study three 
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Figure B4. Duration comparison for different leveling priority rules in P6 – case 

study three 
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Table B3. Duration and Productivity in P6 (Late Start Priority Rule) – Case Study 

Four 

 

 
 

 

 

No. 
Priority    

Rule 

Total   

Duration

Resource   

units

No. of   

People
CPM

Equiv.   

Time

Prod.    

Frame
Duration

1 Late Start 923 100% 1

S, H 17, T 17, C 17, N 17 18, H 

60, P 60, N 65 60, P 46, N 03 

46, P 49, N 49 03, Lift 923 100% 100%

466 200% 2 same 932 99% 50%

314 300% 3 same 942 98% 34%

238 400% 4 same 952 97% 26%

192 500% 5 same 960 96% 21%

162 600% 6 same 972 95% 18%

140 700% 7 same 980 94% 15%

124 800% 8 same 992 93% 13%

111 900% 9 same 999 92% 12%

101 1000% 10 same 1010 91% 11%

93 1100% 11 same 1023 90% 10%

86 1200% 12 same 1032 89% 9%

80 1300% 13 same 1040 89% 9%

75 1400% 14 same 1050 88% 8%

73 1500% 15 same 1095 84% 8%

73 1600% 16 same 1168 79% 8%
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Figure B5. Productivity comparison for different leveling priority rules in P6 – 

case study four 
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Figure B6. Duration comparison for different leveling priority rules in P6 – case 

study four 

 

 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

D
u

ra
ti

o
n

  P
er

ce
n

ta
ge

Number of framers

Activity leveling 
priority 

EF

ES

FF

LF

LS

TF

Activity ID



136 

APPENDIX C  

FLOWCHART VALIDATION FOR FRAME TWO  
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FRAME TWO: INNER FLOWCHART 

 

Table C1. Frame Two, Framer 1: Mental Stack in Round 1  

 
^H 16^ 

^H 02^ 

  H 01 

*P 16* 

*P 02* 

^P 01^ 

*N 01 02* 

*M 33 03* 

*M 16 03* 

*M 33 04* 

*M 16 04* 

*M 33 06* 

*M 16 06* 

*M 33 07* 

*M 16 07* 

*M 33 05* 

*M 16 05* 

*M 33 08* 

*M 16 08* 

*M 33 09* 

*M 16 09* 

*M 33 10* 

*M 16 10* 

*M 33 11* 

*M 16 11* 

*M 33 12* 

*M 16 12* 

*M 33 13* 

*M 16 13* 

*M 33 22* 

*M 16 22* 

*M 33 14* 

*M 16 14* 

*M 16 24* 

*M 16 23* 

^H 16^ 

  H 02 

*P 16* 

^P 02^ 

^P 01^ 

*N 01 02* 

*M 33 03* 

*M 16 03* 

*M 33 04* 

*M 16 04* 

*M 33 06* 

*M 16 06* 

*M 33 07* 

*M 16 07* 

*M 33 05* 

*M 16 05* 

*M 33 08* 

*M 16 08* 

*M 33 09* 

*M 16 09* 

*M 33 10* 

*M 16 10* 

*M 33 11* 

*M 16 11* 

*M 33 12* 

*M 16 12* 

*M 33 13* 

*M 16 13* 

*M 33 22* 

*M 16 22* 

*M 33 14* 

*M 16 14* 

*M 16 24* 

*M 16 23* 

  H 16 

#P 16# 

^P 02^ 

^P 01^ 

*N 01 02* 

^M 33 03^ 

^M 16 03^ 

^M 33 04^ 

^M 16 04^ 

^M 33 06^ 

^M 16 06^ 

^M 33 07^ 

^M 16 07^ 

  M 33 05 

  M 16 05 

  M 33 08 

  M 16 08 

  M 33 09 

  M 16 09 

  M 33 10 

  M 16 10 

  M 33 11 

  M 16 11 

  M 33 12 

  M 16 12 

  M 33 13 

  M 16 13 

  M 33 22 

  M 16 22 

  M 33 14 

  M 16 14 

*M 16 24* 

*M 16 23* 

#P 16# 

^P 02^ 

^P 01^ 

*N 01 02* 

  M 33 03 

  M 16 03 

  M 33 04 

  M 16 04 

  M 33 06 

  M 16 06 

  M 33 07 

  M 16 07 

*M 16 23* 

*M 16 24* 

#P 16# 

^P 02^ 

  P 01 

*N 01 02* 

*M 16 23* 

*M 16 24* 

#P 16# 

  P 02 

^N 01 02^ 

*M 16 23* 

*M 16 24* 

#P 16# 

^N 01 02^ 

*M 16 23* 

*M 16 24* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEGEND 

$___$  Is not min. walk 

*___*  Predecessor not complete                       

^___^  Is a Violation 

~___~  Is a Task from other framer‟s pool 

 #___#  Is not safe 

  ____   Executed task 
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Table C2. Frame Two, Framer 1: Mental Stack in Round 2 (continued) 

 
#P 16# 

^N 01 02^ 
*M 16 23* 

*M 16 24* 

======= 

  H 03 

$H 04$ 

$H 06$ 

$H 07$ 
$H 05$ 

$H 08$ 

$H 09$ 

$H 10$ 

$T 08$ 

$T 09$ 

$T 10$ 

$H 11$ 
$H 12$ 

$H 13$ 

$H 22$ 

$H 21$ 

  P 03 

*P 04* 

*P 06* 

*P 07* 
*P 05* 

*P 08* 

*P 09* 

*P 10* 

*P 11* 

*P 12* 

*P 13* 
*P 22* 

*P 21* 

^N 33 03^ 

*N 16 03* 

*N 33 04* 

*N 16 04* 

*N 33 06* 

*N 16 06* 
*N 33 07* 

*N 16 07* 

*N 33 05* 

*N 16 05* 

*N 33 08* 

*N 16 08* 

*N 33 09* 
*N 16 09* 

*N 33 10* 

*N 16 10* 

*N 33 11* 

*N 16 11* 

*N 33 12* 

*N 16 12* 

*N 33 13* 
*N 16 13* 

*N 33 22* 

*N 16 22* 

*N 33 21* 

*N 16 21* 

#P 16# 

^N 01 02^ 
*M 16 23* 

*M 16 24* 

====== 

H 04 

$H 06$ 

$H 07$ 

$H 05$ 
$H 08$ 

$H 09$ 

$H 10$ 

$T 08$ 

$T 09$ 

$T 10$ 

$H 11$ 

$H 12$ 
$H 13$ 

$H 22$ 

$H 21$ 

P 04 

*P 06* 

*P 07* 

*P 05* 

*P 08* 
*P 09* 

*P 10* 

*P 11* 

*P 12* 

*P 13* 

*P 22* 

*P 21* 
^N 33 03^ 

*N 16 03* 

^N 33 04^ 

*N 16 04* 

*N 33 06* 

*N 16 06* 

*N 33 07* 

*N 16 07* 
*N 33 05* 

*N 16 05* 

*N 33 08* 

*N 16 08* 

*N 33 09* 

*N 16 09* 

*N 33 10* 
*N 16 10* 

*N 33 11* 

*N 16 11* 

*N 33 12* 

*N 16 12* 

*N 33 13* 

*N 16 13* 

*N 33 22* 
*N 16 22* 

*N 33 21* 

*N 16 21* 
 

#P 16# 

^N 01 02^ 
*M 16 23* 

*M 16 24* 

======= 

^H 06^ 

^H 07^ 

H 05 

$H 08$ 
$H 09$ 

$H 10$ 

$T 08$ 

$T 09$ 

$T 10$ 

$H 11$ 

$H 12$ 

$H 13$ 
$H 22$ 

$H 21$ 

*P 06* 

*P 07* 

P 05 

*P 08* 

*P 09* 

*P 10* 
*P 11* 

*P 12* 

*P 13* 

*P 22* 

*P 21* 

^N 33 03^ 

*N 16 03* 
^N 33 04^ 

*N 16 04* 

*N 33 06* 

*N 16 06* 

*N 33 07* 

*N 16 07* 

^N 33 05^ 

*N 16 05* 
*N 33 08* 

*N 16 08* 

*N 33 09* 

*N 16 09* 

*N 33 10* 

*N 16 10* 

*N 33 11* 
*N 16 11* 

*N 33 12* 

*N 16 12* 

*N 33 13* 

*N 16 13* 

*N 33 22* 

*N 16 22* 

*N 33 21* 
*N 16 21* 

#P 16# 

^N 01 02^ 
*M 16 23* 

*M 16 24* 

======== 

H 06 

^H 07^ 

$H 08$ 

$H 09$ 
$H 10$ 

$T 08$ 

$T 09$ 

$T 10$ 

$H 11$ 

$H 12$ 

$H 13$ 

$H 22$ 
$H 21$ 

P 06 

*P 07* 

*P 08* 

*P 09* 

*P 10* 

*P 11* 

*P 12* 
*P 13* 

*P 22* 

*P 21* 

^N 33 03^ 

*N 16 03* 

^N 33 04^ 

*N 16 04* 
^N 33 06^ 

*N 16 06* 

*N 33 07* 

*N 16 07* 

^N 33 05^ 

*N 16 05* 

*N 33 08* 

*N 16 08* 
*N 33 09* 

*N 16 09* 

*N 33 10* 

*N 16 10* 

*N 33 11* 

*N 16 11* 

*N 33 12* 
*N 16 12* 

*N 33 13* 

*N 16 13* 

*N 33 22* 

*N 16 22* 

*N 33 21* 

*N 16 21* 

#P 16# 

^N 01 02^ 
*M 16 23* 

*M 16 24* 

======== 

H 07 

$H 08$ 

$H 09$ 

$H 10$ 
$T 08$ 

$T 09$ 

$T 10$ 

$H 11$ 

$H 12$ 

$H 13$ 

$H 22$ 

$H 21$ 
P 07 

*P 08* 

*P 09* 

*P 10* 

*P 11* 

*P 12* 

*P 13* 

*P 22* 
*P 21* 

^N 33 03^ 

*N 16 03* 

^N 33 04^ 

*N 16 04* 

^N 33 06^ 

*N 16 06* 
^N 33 07^ 

*N 16 07* 

^N 33 05^ 

*N 16 05* 

*N 33 08* 

*N 16 08* 

*N 33 09* 

*N 16 09* 
*N 33 10* 

*N 16 10* 

*N 33 11* 

*N 16 11* 

*N 33 12* 

*N 16 12* 

*N 33 13* 
*N 16 13* 

*N 33 22* 

*N 16 22* 

*N 33 21* 

*N 16 21* 

#P 16# 

^N 01 02^ 
*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 
^T 09^ 

^T 10^ 

$H 11$ 

$H 12$ 

$H 13$ 

$H 22$ 

$H 21$ 

^P 08^ 
P 09 

P 10 

*P 11* 

*P 12* 

*P 13* 

*P 22* 

*P 21* 

^N 33 03^ 
*N 16 03* 

^N 33 04^ 

*N 16 04* 

^N 33 06^ 

*N 16 06* 

^N 33 07^ 

*N 16 07* 
^N 33 05^ 

*N 16 05* 

*N 33 08* 

*N 16 08* 

^N 33 09^ 

*N 16 09* 

^N 33 10^ 

*N 16 10* 
*N 33 11* 

*N 16 11* 

*N 33 12* 

*N 16 12* 

*N 33 13* 

*N 16 13* 

*N 33 22* 
*N 16 22* 

*N 33 21* 

*N 16 21* 

#P 16# 

^N 01 02^ 
*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 
^T 09^ 

^ T 10^ 

  H 11 

$H 12$ 

$H 13$ 

$H 22$ 

$H 21$ 

^P 08^ 
  P 11 

*P 12* 

*P 13* 

*P 22* 

*P 21* 

^N 33 03^ 

*N 16 03* 

^N 33 04^ 
*N 16 04* 

^N 33 06^ 

*N 16 06* 

^N 33 07^ 

*N 16 07* 

^N 33 05^ 

*N 16 05* 
*N 33 08* 

*N 16 08* 

^N 33 09^ 

*N 16 09* 

^N 33 10^ 

*N 16 10* 

^N 33 11^ 

*N 16 11* 
*N 33 12* 

*N 16 12* 

*N 33 13* 

*N 16 13* 

*N 33 22* 

*N 16 22* 

*N 33 21* 
*N 16 21* 

#P 16# 

^N 01 02^ 
*M 16 23* 

*M 16 24* 

======= 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 
^T 09^ 

^T 10^ 

 H 12 

$H 13$ 

$H 22$ 

$H 21$ 

^P 08^ 

 P 12 
*P 13* 

*P 22* 

*P 21* 

^N 33 03^ 

*N 16 03* 

^N 33 04^ 

*N 16 04* 

^N 33 06^ 
*N 16 06* 

^N 33 07^ 

*N 16 07* 

^N 33 05^ 

*N 16 05* 

*N 33 08* 

*N 16 08* 
^N 33 09^ 

*N 16 09* 

^N 33 10^ 

*N 16 10* 

^N 33 11^ 

*N 16 11* 

*N 33 12* 

*N 16 12* 
*N 33 13* 

*N 16 13* 

*N 33 22* 

*N 16 22* 

*N 33 21* 

*N 16 21* 
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Table C2. Frame Two, Framer 1: Mental Stack in Round 2 (continued) 

 
#P 16# 
^N 01 02^ 

*M 16 23* 

*M 16 24* 

^H 08^ 

^H 09^ 

^H 10^ 
^T 08 ^ 

^T 09^ 

^T 10^ 
  H 13 

$H 22$ 

$H 21$ 
^P 08^ 

  P 13 

*P 22* 

*P 21* 

  N 33 03 

*N 16 03* 
  N 33 04 

*N 16 04* 

  N 33 06 
*N 16 06* 

^N 33 07^ 

*N 16 07* 
^N 33 05^ 

*N 16 05* 

*N 33 08* 
*N 16 08* 

^N 33 09^ 

*N 16 09* 
^N 33 10^ 

*N 16 10* 

^N 33 11^ 
*N 16 11* 

*N 33 12* 
*N 16 12* 

*N 33 13* 

*N 16 13* 
*N 33 22* 

*N 16 22* 

*N 33 21* 
*N 16 21* 

#P 16# 
  N 01 02 

*M 16 23* 

*M 16 24* 

^H 08^ 

^H 09^ 

^H 10^ 
^T 08 ^ 

^T 09^ 

^T 10^ 
$H 22$ 

$H 21$ 

^P 08^ 
*P 22* 

*P 21* 

*N 16 03* 

*N 16 04* 

*N 16 06* 

^N 33 07^ 
*N 16 07* 

  N 33 05 

*N 16 05* 
*N 33 08* 

*N 16 08* 

^N 33 09^ 
*N 16 09* 

^N 33 10^ 

*N 16 10* 
^N 33 11^ 

*N 16 11* 

*N 33 12* 
*N 16 12* 

*N 33 13* 

*N 16 13* 
*N 33 22* 

*N 16 22* 
*N 33 21* 

*N 16 21* 

#P 16# 
*M 16 23* 

*M 16 24* 

====== 
^H 08^ 

^H 09^ 

^H 10^ 
^T 08 ^ 

^T 09^ 

^T 10^ 
$H 22$ 

$H 21$ 

^P 08^ 
*P 22* 

*P 21* 

*N 16 03* 
*N 16 04* 

*N 16 06* 

  N 33 07 
*N 16 07* 

*N 16 05* 

  N 33 08 
*N 16 08* 

  N 33 09 
*N 16 09* 

  N 33 10 

*N 16 10* 
  N 33 11 

*N 16 11* 

  N 33 12 
*N 16 12* 

  N 33 13 

*N 16 13* 
*N 33 22* 

*N 16 22* 

*N 33 21* 
*N 16 21* 

     P 16 
*M 16 23* 

*M 16 24* 

======= 
^H 08^ 

^H 09^ 

^H 10^ 
^T 08 ^ 

^T 09^ 

^T 10^ 
$H 22$ 

$H 21$ 

^P 08^ 
*P 22* 

*P 21* 

  N 16 03 
^N 16 04^ 

^N 16 06^ 

^N 16 07^ 
^N 16 05^ 

^N 16 08^ 

^N 16 09^ 
^N 16 10^ 

^N 16 11^ 
^N 16 12^ 

  N 16 13 

*N 33 22* 
*N 16 22* 

*N 33 21* 

*N 16 21* 

*M 16 23* 
*M 16 24* 

======== 

^H 08^ 
^H 09^ 

^H 10^ 

^T 08 ^ 
^T 09^ 

^T 10^ 

$H 22$ 
$H 21$ 

^P 08^ 

*P 22* 
*P 21* 

^N 16 04^ 

^N 16 06^ 
^N 16 07^ 

^N 16 05^ 

^N 16 08^ 
^N 16 09^ 

^N 16 10^ 

^N 16 11^ 
  N 16 12 

*N 33 22* 
*N 16 22* 

*N 33 21* 

*N 16 21* 

*M 16 23* 
*M 16 24* 

======= 

^H 08^ 
^H 09^ 

^H 10^ 

^T 08 ^ 
^T 09^ 

^T 10^ 

$H 22$ 
$H 21$ 

^P 08^ 

*P 22* 
*P 21* 

^N 16 04^ 

^N 16 06^ 
^N 16 07^ 

^N 16 05^ 

^N 16 08^ 
^N 16 09^ 

^N 16 10^ 

  N 16 11 
*N 33 22* 

*N 16 22* 
*N 33 21* 

*N 16 21* 

*M 16 23* 
*M 16 24* 

======= 

^H 08^ 
^H 09^ 

^H 10^ 

^T 08 ^ 
^T 09^ 

^T 10^ 

$H 22$ 
$H 21$ 

^P 08^ 

*P 22* 
*P 21* 

^N 16 04^ 

^N 16 06^ 
^N 16 07^ 

^N 16 05^ 

^N 16 08^ 
^N 16 09^ 

  N 16 10 

*N 33 22* 
*N 16 22* 

*N 33 21* 
*N 16 21* 

*M 16 23* 
*M 16 24* 

======= 

^H 08^ 
^H 09^ 

^H 10^ 

^T 08 ^ 
^T 09^ 

^T 10^ 

$H 22$ 
$H 21$ 

^P 08^ 

*P 22* 
*P 21* 

^N 16 04^ 

^N 16 06^ 
^N 16 07^ 

^N 16 05^ 

^N 16 08^ 
  N 16 09 

*N 33 22* 

*N 16 22* 
*N 33 21* 

*N 16 21* 
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Table C2. Frame Two, Framer 1: Mental Stack in Round 2 (continued) 

 
*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 

^T 09^ 

^T 10^ 

$H 22$ 

$H 21$ 

^P 08^ 

*P 22* 

*P 21* 

^N 16 04^ 

^N 16 06^ 

^N 16 07^ 

^N 16 05^ 

  N 16 08 

*N 33 22* 

*N 16 22* 

*N 33 21* 

*N 16 21* 

*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 

^T 09^ 

^T 10^ 

$H 22$ 

$H 21$ 

^P 08^ 

*P 22* 

*P 21* 

^N 16 04^ 

^N 16 06^ 

^N 16 07^ 

  N 16 05 

*N 33 22* 

*N 16 22* 

*N 33 21* 

*N 16 21* 

*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 

^T 09^ 

^T 10^ 

$H 22$ 

$H 21$ 

^P 08^ 

*P 22* 

*P 21* 

^N 16 04^ 

^N 16 06^ 

  N 16 07 

*N 33 22* 

*N 16 22* 

*N 33 21* 

*N 16 21* 

*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 

^T 09^ 

^T 10^ 

$H 22$ 

$H 21$ 

^P 08^ 

*P 22* 

*P 21* 

^N 16 04^ 

  N 16 06 

*N 33 22* 

*N 16 22* 

*N 33 21* 

*N 16 21* 

*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 

^T 09^ 

^T 10^ 

$H 22$ 

$H 21$ 

^P 08^ 

*P 22* 

*P 21* 

  N 16 04 

*N 33 22* 

*N 16 22* 

*N 33 21* 

*N 16 21* 

*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 

^T 09^ 

^T 10^ 

$H 22$ 

  H 21 

^P 08^ 

*P 22* 

  P 21 

*N 33 22* 

*N 16 22* 

  N 33 21 

  N 16 21 

*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 

^T 09^ 

^T 10^ 

  H 22 

^P 08^ 

  P 22 

*N 33 22* 

  N 16 22 

 

*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 

^T 09^ 

^T 10^ 

^P 08^ 

  N 33 22 

 

*M 16 23* 

*M 16 24* 

======== 

^H 08^ 

^H 09^ 

^H 10^ 

^T 08 ^ 

^T 09^ 

^T 10^ 

^P 08^ 

 

 

 

 

 

Table C3. Frame Two, Framer 1: Mental Stack in Round 3  

 
*M 16 23* 

*M 16 24* 

======== 
^H 08^ 

^H 09^ 

^H 10^ 
^T 08 ^ 

^T 09^ 

^T 10^ 
^P 08^ 

  N 33 22 

~N 33 30~ 
~N 16 30~ 

  H 25 

  T 25 
  C 25 

  P 25 

^N 25 16^ 

*M 16 23* 

*M 16 24* 

======== 
^H 08^ 

^H 09^ 

^H 10^ 
^T 08 ^ 

^T 09^ 

^T 10^ 
^P 08^ 

======= 

^N 25 16^ 

 

 

 

 

 

 

 

 

 

 



141 

Table C4. Frame Two, Framer 1: Mental Stack in Round 4 

 
*M 16 23* 
*M 16 24* 

======== 

^H 08^ 
^H 09^ 

^H 10^ 

^T 08 ^ 
^T 09^ 

^T 10^ 

^P 08^ 

  N 33 22 

 ^N 25 16^ 

======== 
   H 27 

   T 27 

   C 27 

   P 27 

   N 27 16 

*M 16 23* 
*M 16 24* 

======== 

^H 08^ 
^H 09^ 

^H 10^ 

^T 08 ^ 
^T 09^ 

^T 10^ 

^P 08^ 
======= 

^N 25 16^ 

======= 

 

Table C5. Frame Two, Framer 2: Mental Stack in Round 1  

 
  H  17 

^H 18^ 
  H 32 

  I 32 

  C 32 
*N 17 32 18* 

*H 29* 

*P 29* 

  H 18 

  N 17 32 18 
  H 29 

*P 29* 

*P 29* 

 

Table C6. Frame Two, Framer 2: Mental Stack in Round 2  

 
*P 29* 

======== 

~H 08~ 

~H 09~ 

~H 10~ 

~T 08~ 

~T 09~ 

~T 10~ 
~P 08~ 

  H 15 

$H 19$ 

  T 15 

*T 19* 

^C 15^ 

*C 19* 

*H 14* 
*H 20* 

*N 15 14* 

*N 19 20* 

*H 30* 

*P 30* 

*P 31* 

*N 30 29* 
*N 31 29* 

*N 33 30* 

*N 28 31* 

*N  16 30* 

*N 16 31* 

*P 29* 

======== 

  H 19 

  T 19 

  C 15 

  C 19 

  H 14 

$H 20$ 
  N 15 14 

*N 19 20* 

  H 30 

  P 30 

*P 31* 

*N 30 29* 

*N 31 29* 

^N 33 30^ 
*N 28 31* 

*N  16 30* 

*N 16 31* 

*P 29* 

======= 

  H 20 

  N 19 20 

  P 31 

*N 30 29* 

*N 31 29* 

^N 33 30^ 
*N 28 31* 

*N  16 30* 

*N 16 31* 

  P 29 

======== 

  N 30 29 

  N 31 29 

^N 33 30^ 

*N 28 31* 

*N  16 30* 

  N 16 31 

 

========= 

 ^N 33 30^ 

*N 28 31* 

*N 16 30* 
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Table C7. Frame Two, Framer 2: Mental Stack in Round 3  

 
 

======== 

^N 33 30^ 

*N 28 31* 

*N 16 30* 

======== 

   H 28 

   T 28 

   C 28 

  ^P 28^ 

    

 

======== 

^N 33 30^ 

*N 28 31* 

*N 16 30* 

======= 

   ^P 28^ 

 

 

Table C8. Frame Two, Framer 2: Mental Stack in Round 4 

 
 

======== 

^N 33 30^ 

*N 28 31* 

*N 16 30* 

======== 

   ^P 28^ 

======== 

  H 23 

  H 24 

  T 23 

  T 24 

  C 23 

  C 24 

~M 16 23~ 

~M 16 24~ 

  P 23 

$P 24$ 

  N 16 23 

*N 16 24* 

*N 29 24* 

^N 23 29^ 

 

======== 

^N 33 30^ 

*N 28 31* 

*N 16 30* 

======== 

   ^P 28^ 

======== 

   P 24 

  N 16 24 

  N 29 24 

  N 23 29 

 

======== 

^N 33 30^ 

*N 28 31* 

*N 16 30* 

======== 

   ^P 28^ 

======== 

 

 

 

Table C9. Frame Two, Framer 2: Mental Stack in Round 4 

 
 

======== 

^N 33 30^ 

*N 28 31* 

*N 16 30* 

======== 

   ^P 28^ 

======== 

======== 

  H 26 

  P 26 

  N 26 31 

*N 28 26* 

~N 25 16~ 

 

======== 

^N 33 30^ 

*N 28 31* 

*N 16 30* 

======== 

   P 28 

======== 

======== 

   N 28 26 

~N 25 16~ 

 

======== 

^N 33 30^ 

  N 28 31 

*N 16 30* 

======== 

======== 

======== 

  ~N 25 16~ 

 

======== 

^N 33 30^ 

*N 16 30* 

======== 

======== 

======== 
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Table C10. List of Actual Task Execution Sequence for Frame 2 (c‟ed next page) 

 
Expert -Framer 1 (red shirt) Novice - Framer 2  

(gray shirt) 

Task ID Duration (sec.)  Task ID Duration (sec.) 

H 1 1 H 17 1 

H 2 2 H 32 1 

H 16 13 I 32 5 

M 02 05 1 C 32 14 

M 16 05 1 H 18 8 

M 02 08 1 N 17_32_18 14 

M 16 08 1 H 29 5 

M 02 09 1 N 01 03 3 

M 16 09 1 N 01 04 4 

M 02 10 10 H 08 7 

M 16_10 1 H 09 7 

M 02_11 1 H 10 5 

M 16_11 1 T 08 3 

M 02_12 2 T 09 2 

M 16_12 1 T 10 2 

M 02_13 11 P 08 6 

M 16_13 1 P 09 8 

M 02_22 1 N 01 06 4 

M 16_22 1 N 01 02 3 

M 02_14 2 H 15 1 

M 16_14 5 T 15 14 

M 01_03 1 H 19 1 

M 16_03 1 T 19 17 

M 01_04 1 C 15 11 

M 16_04 1 C 19 9 

M 01_06 2 H 14 1 

M 16_06 1 N 15_14 117 

M 02_07 5 H 30 10 

M 16_07 1 P 30 2 

P 01 2 H 20 1 

P 02 11 N 19_20 66 

H 03 3 P 31 3 

P 03 3 P 29 11 

H 04 3 H 28 6 

P 04  2 T 28 5 

H 05 7 C 28 2 

P 05 2 H 23 1 

N 02 05 10 H 24 1 

H 06 4 T 23 5 

P 06 2 T 24 4 

H 07 6 C 23 3 

P 07 2 C 24 4 

P 10 1 M 16_23 11 

H 11 2 M 16_24 5 

P 11 1 P 23 9 

H 12 3 N 16_23 2 

P 12 1 P 24 12 

H 13 6 N 16_24 2 

P 13 2 N 29_24 2 

N 02 07 17 N 23_29 3 

N 02_08 8 P 25 22 

N 02_09 11 N 25_16 19 

N 02_10 10 H 26 2 
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Expert -Framer 1 (red shirt) Novice - Framer 2  

(gray shirt) 

N 02_11 10 P 26 2 

N 02_12 7 N 26_31 18 

N 02_13 11 P 28 6 

P 16 9 N 28 _26 1 

N 16 03 1 N 28 31 3 

N 16 13 4 LIFT  15 

N 16 12 2   

N 16 11 2   

N 16 10 2   

N 16 09 2   

N 16 08 1   

N 16 05 2   

N 16 07 2   

N 16 06 2   

N 16 04 3   

N 02_30 42   

N 16_30 20   

P 29 11   

 N 30_29 6   

N 31_29 14   

N 16_31 6   

H 21 2   

P 21 11   

N 02_21 4   

N 16_21 4   

H 22 6   

P 22 7   

N 16_22 3   

N 02_22 4   

H 25  20   

T 25 19   

C 25 28   

P 25 22   

N 25_16 19   

H 27 1   

T 27 12   

C 27 4   

P 27 9   

N 27_16 8   

LIFT  15   
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APPENDIX D 

TABLES OF TASKS, PREDECESSORS AND DURATIONS  
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Table D1. List of Tasks, Predecessors and Durations for Frame 1(c‟ed next 

pages) 

 

 

TASK ID Predecessors Duration Notes:

C 01 T 01 3

C 03 T 03 3

C 06 T 06 5 longer manipulation of sawcut

C 07 T 07 3

C 09 T 09 3

C 11 T 11 3

C 12 T 12 3

C 13 T 13 3

C 14 T 14 3

C 15 T 15 3

C 16 I 16 3

C 17 I 17 3

C 18 I 18 3

H 01 S 5 more manipulation

H 02 S 3

H 03 S 2

H 04 S 3

H 05 S 2

H 06 S 7

Complicated element; matching 

markings w/studs

H 07 S 3

H 08 S 6 brought from a distant location

H 09 S 1 short element

H 10 S 5 brought from a distant location

H 11 S 3

H 12 S 2

H 13 S 3

H 14 S 1 very close to the framer

H 15 S 2

H 16 S 2

H 17 S 2

H 18 S 2

H 19 S 5 brought from a distant location

I 16 H 16 3

I 17 H 17 3

I 18 H 18 3

M 01 05 H 01 2

M 01 10 H 01 3

M 01 34 H 01 2

FRAME 1
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TASK ID Predecessors Duration Notes:

M 02 16 H 02 3

M 04 11 H 04 3

M 04 18 H 04 3

M 05 16 H 05 2

M 05 17 H 05 2

M 06 05 H 06 2

M 06 10 H 06 3

M 06 13 H 06 2

M 06 14 H 06 2

M 06 15 H 06 2

M 06 34 H 06 2

M 06 78 H 06 2

M 08 11 H 08 3

M 09 78 H 09 2

M 10 17 H 10 3

M 10 18 H 10 3

M 12 15 H 12 2

N 01 02 P 01, P 02 3

N 01 05 P 01, P 05 2

N 01 10 P 01, P 10 2

N 01 34 P 01, P 34 3

N 02 16 P 02, P 16 2

N 03 04 P 03, P 04 5 more nails w/nailgun

N 05 16 P 05, P 16 2

N 05 17 P 05, P 17 2

N 06 02 P 06, P 02 4

N 06 05 P 06, P 05 3

N 06 10 P 06, P 10 3

N 06 14 P 06, P 14 2

N 06 15 P 06, P 15 3

N 06 19 P 06, P 19 2 edge of the frame: less nails

N 06 34 P 06, P 34 3

N 06 78 P 06, P 78 4 require precision

N 07 08 P 07, P 08 4

extra time for making the 

subassembly

N 09 19 P 09, P 19 2 edge of the frame: less nails

N 09 78 P 09, P 78 47 rework times incorporated

N 10 17 P 10, P 17 2

N 10 18 P 10, P 18 2
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TASK ID Predecessors Duration Notes:

N 11 34 P 11, P 34 2

N 12 11 P 12, P 11 6 more nails than usual w/nailgun

N 12 15 P 12, P 15 3

N 13 78 P 13, P 78 4

N 14 34 P 14, P 34 4

N 15 12 P 15, P 12 3

N 18 34 P 18, P 34 3

N 19 78 P 19, P 78 8

long element; assures enclosure 

by multiple nailings

N 34 18 P 34, P 18 2

N 78 11 P 78, P 11 2

N 78 12 P 78, P 12 2

P 01 C 01 2

P 02 H 02 2

P 03 C 03 2

P 04 H 04 3

P 05 H 05, M 01 05, M 06 05 2

P 06 C 06 5

matching w/vertical studs for 

enclosure

P 07 C 07 2

P 08 H 08 2

P 09 C 09 3

P 10 H 10, M 01 10, M 06 10 5 more manipulation

P 11 C 11, M 04 11, M 08 11 2

P 12 C 12, P 11, N 11 34 3

P 13 C 06, P 12, P 78, M 06 13 2

P 14 C 14, P 12, P 34, M 06 14 2

P 15 C 15, M 06 15, M 12 15 2

P 16 C 16, M 02 16, M 05 16 2

P 17 C 17, M 05 17, M 10 17, N 05 16 2

P 18 C 18, M 10 18, M 04 18, N 10 17 4 more manipulation

P 19 H 19 2

P 34 N 03 04, M 01 34, M 06 34 2

P 78 N 07 08, M 09 78, M 06 78 2

T 01 H 01 3

T 03 H 03 2
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TASK ID Predecessors Duration Notes:

T 06 H 06 3

T 07 H 07 2

T 09 H 09 3

T 11 H 11 2

T 12 H 12 2

T 13 H 13 1

T 14 H 14 2

T 15 H 15 3
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Table D2. List of Tasks, Predecessors and Durations for Frame 3 (continued in 

the next pages) 

 

 

 

TASK ID Predecessors Duration(s)

 C 01 T 01, M 01 27 3

C 02 T 02 2

C 04 T 04, M 01 04 1

C 05 T 05 1

C 09 T 09 3

C 10 T 10 1

C 11 I 11 1

C 12 T 12 2

C 13 I 13 1

C 14 I 14 1

C 15 T 15 2

C 21 T 21 4

C 22 I 22 1

C 23 I 23 1

C 24 I 24 1

C 26 T 26 2

C 27 T 27 3

C 29 T 29 2

C 30 T 30 2

C 31 T 31 2

C 32 T 32 4

C 33 T 33 4

C 34 T 34 11

C 37 T 37 2

H 01 S 2

H 02 S 5

H 03 S 1

H 04 S 1

H 05 S 1

H 06 S 1

H 07 S 1

H 08 S 2

H 09 S 2

FRAME 3
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TASK ID Predecessors Duration(s)

H 10 S 1

H 11 S 1

H 12 S 1

H 15 S 1

H 16 S 1

H 17 S 1

H 18 S 1

H 19 S 3

H 20 S 1

H 21 S 1

H 22 S 1

H 24 S 1

H 25 S 2

H 26 S 1

H 27 S 1

H 28 S 2

H 29 S 1

H 30 S 1

H 31 S 6

H 32 S 2

H 33 S 3

H 34 S 3

H 35 S 4

H 36 S 1

H 37 S 4

I 11 H 11, C 10 4

I 13 C 10 8

I 14 C 10 6

I 22 C 21,H 22 2

I 23 C 21 2

I 24 H 24 2

M 01 03 H 01 6

M 01 04 H 01 1

M 01 05 H 01 6
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TASK ID Predecessors Duration(s)

M 01 06 H 01 2

M 01 13 H 01 1

M 01 14 H 01 1

M 01 17 H 01 1

M 01 18 H 01 1

M 01 19 H 01 1

M 01 20 H 01 1

M 01 25 H 01 4

M 01 26 H 01 4

M 01 27 H 01 2

M 01 36 H 01 4

M 02 03 H 02 1

M 02 06 H 02 2

M 02 17 H 02 1

M 02 18 H 02 1

M 02 19 H 02 1

M 02 20 H 02 1

M 02 21 H 02 4

M 02 22 H 02 1

M 02 23 H 02 1

M 02 24 H 02 1

M 09 28 H 09 4

M 09 29 H 09 3

M 09 30 H 09 2

M 12 13 H 12 1

M 12 14 H 12 1

M 31 28 H 31 5

M 56 10 P 56 4

M 56 12 P 56 7

M 56 15 P 56 7

N 01 13 P 01, P 13 2

N 01 14 P 01, P 14 2

N 01 16 P 01, P 16 1

N 01 17 P 01, P 17 2
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TASK ID Predecessors Duration(s)

N 01 18 P 01, P 18 1

N 01 19 P 01, P 19 1

N 01 20 P 01, P 20 1

N 01 36 P 01, P 36 2

N 01 38 P 01, P 38 2

N 01 43 P 01, P 43 6

N 01 56 P 01, P 56 3

N 02 16 P 02, P 16 1

N 02 17 P 02, P 17 1

N 02 18 P 02, P 18 1

N 02 19 P 02, P 19 1

N 02 20 P 02, P 20 1

N 02 21 P 02, P 21 5

N 02 22 P 02, P 22 2

N 02 23 P 02, P 23 2

N 02 24 P 02, P 24 3

N 02 31 P 02, P 31 2

N 02 36 P 02, P 36 3

N 02 38 P 02, P 38 6

N 02 40 P 02, P 40 20

N 02 43 P 02, P 43 1

N 02 56 P 02, P 56 14

N 04 03 H 03, C 04 10

N 05 06 H 06, C 05 9

N 07 08 H 07, H 08 5

N 09 39 P 09, P 39 16

N 10 56 P 10, P 56 9

N 11 43 P 11, P 43 1

N 12 10 P 10, P 12 1

N 12 11 P 11, P 12 2

N 12 13 P 12, P 13 3

N 12 14 P 12, P 14 5

N 15 12 P 15 1
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TASK ID Predecessors Duration(s)

N 21 78 P 21 16

N 25 26 27 N 26 25, C 27 6

N 26 25 C 26, H 25 8

N 29 28 C 29, H 28 7

N 30 29 28 N 29 28, C 30 2

N 31 39 P 39, P 31 5

N 31 40 P 31, P 40 56

N 32 34 33 C 32, C 34, C 33 10

N 35 39 P 35 2

N 36 38 P 36 9

N 37 02 P 37 19

N 37 31 P 37 4

N 38 40 P 40 5

N 39 40 P 40 4

N 43 12 P 43, P 12 1

N 43 78 P 43 3

N 56 12 P 56, P 12 2

N 56 78 P 78 8

N 78 22 P 78, P 22 1

N 78 23 P 78, P 23 1

N 78 24 P 78, P 24 1

P 01 C 01 3

P 02 C 02 2

P 09 C 09 5

P 10 M 56 10, C 10 3

P 11 C 11 2

P 12 C 12, M 56 12 1

P 13 C 13, M 01 13, M 12 13 1

P 14 C 14, M 01 14, M 12 14 2

P 15 C 15, N 12 10, N 12 14, N 12 13, N 12 11, M 56 15 3

P 16 H 16 1

P 17 M 02 17, M 01 17, H 17 2

P 18 H 18, M 01 18, M 02 18 2

P 19 H 19, M 01 19, M 02 19 2
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TASK ID Predecessors Duration(s)

P 20 H 20, M 01 20, M 02 20 2

P 21 C 21, M 02 21, P 56, P 78 1

P 22 M 02 22, C 22, P 43, P 78 3

P 23 M 02 23, C 23 2

P 24 M 02 24, C 24 3

P 31 C 31 2

P 35 H 35, N 39 40 3

P 36 H 36, M 01 36, N 38 40 1

P 37
C 37, N 31 39, N 31 40, N 02 40, N 02 38, N 02 36, N 02 

20, N 02 19, N 02 56, N 02 21, N 02 24, N 02 31 3

P 38 N 25 26 27, M 01 27, M 01 26, M 01 25 4

P 39 N 30 29 28, M 09 30, M 09 29, M 09 28, M 31 28 4

P 40 N 32 34 33, P 39, P 38 16

P 43 N 04 03, M 01 03, M 02 03 1

P 56 N 05 06, M 01 06, M 01 05, M 02 06 2

P 78 N 07 08, P 43, P 56 4

T 01 H 01 9

T 02 H 02 13

T 04 H 04 6

T 05 H 05 5

T 09 H 09 5

T 10 H 10 4

T 12 H 12 7

T 15 H 15 7

T 21 H 21 4

T 26 H 26 2

T 27 H 27 2

T 29 H 29 2

T 30 H 30 3

T 31 H 31 7

T 32 H 32 10

T 33 H 33 19

T 34 H 34 45

T 37 H 37 8
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Table D3. List of Tasks, Predecessors and Durations for Frame 4 (continued in 

the next pages) 

 

 

 

TASK ID Predecessors Duration (s)

C 02 T 02 2

C 03 T 03 3

C 04 T 04 3

C 05 T 05 4

C 07 T 07 2

C 09 T 09 1

C 15 T 15 2

C 17 T 17 13

C 18 T 18 5

C 27 T 27 5

C 28 T 28 1

C 36 I 36 1

C 38 T 38 4

C 39 T 39 4

C 40 T 40 1

C 41 T 41 2

C 42 T 40 1

C 43 T 43 2

C 44 T 44 1

C 45 T 45 2

C 47 T 47 19

C 48 T 48 18

C 50 T 50 2

C 51 T 51 2

C 52 T 52 2

C 53 T 53 3

C 54 T 54 2

C 55 T 55 2

C 56 T 56 2

C 57 T 57 1

C 58 T 58 1

C 59 T 59 2

C 62 H 62 6

FRAME 4
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TASK ID Predecessors Duration (s)

C 63 T 63 3

H 01 S 2

H 02 S 2

H 03 S 4

H 04 S 2

H 05 S 1

H 06 S 1

H 07 S 1

H 08 S 2

H 09 S 1

H 10 S 1

H 11 S 1

H 12 S 1

H 13 S 1

H 14 S 1

H 15 S 1

H 16 S 1

H 17 S 3

H 19 S 1

H 20 S 2

H 21 S 1

H 22 S 1

H 23 S 1

H 24 S 1

H 25 S 1

H 26 S 1

H 27 S 1

H 29 S 1

H 30 S 1

H 31 S 2

H 32 S 2

H 33 S 2

H 34 S 3
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TASK ID Predecessors Duration (s)

H 35 S 2

H 36 S 1

H 37 S 5

H 38 S 2

H 39 S 2

H 40 S 3

H 43 S 2

H 44 S 1

H 46 S 3

H 47 S 3

H 49 S 7

H 50 S 2

H 51 S 2

H 56 S 1

H 60 N 17 18 2

H 61 N 27 28 2

H 62 N 09 10 1

I 36 H 36 1

M 01 05 H 01 3

M 01 06 H 01 1

M 01 07 H 01 2

M 01 08 H 01 1

M 01 09 H 01 1

M 01 10 H 01 1

M 01 11 H 01 1

M 01 12 H 01 2

M 01 13 H 01 1

M 01 14 H 01 1

M 01 19 H 01 2

M 01 20 H 01 2

M 01 29 H 01 1

M 01 33 H 01 1

M 01 34 H 01 1

M 01 41 H 01 1

M 01 42 H 01 2



159 

 

 

 

 

TASK ID Predecessors Duration (s)

M 01 46 H 02 1

M 02 15 H 02 2

M 02 16 H 02 1

M 02 21 H 02 1

M 02 22 H 02 1

M 02 23 H 02 1

M 02 24 H 02 2

M 02 25 H 02 6

M 02 26 H 02 2

M 02 35 H 02 1

M 03 06 H 03 1

M 03 08 H 03 1

M 03 11 H 03 1

M 03 12 H 03 1

M 03 13 H 03 1

M 03 14 H 03 1

M 03 19 H 03 1

M 03 20 H 03 1

M 03 21 H 03 1

M 03 22 H 03 1

M 03 29 H 03 1

M 03 33 H 03 1

M 03 34 H 03 1

M 03 35 H 03 1

M 03 36 H 03 1

M 03 37 H 03 1

M 03 46 H 03 1

M 04 24 H 04 1

M 04 25 H 04 1

M 21 51 H 21 2

M 21 52 H 21 1

M 21 53 H 21 1

M 21 54 H 21 2
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TASK ID Predecessors Duration (s)

M 21 55 H 21 1

M 22 51 H 22 1

M 22 52 H 22 1

M 22 53 H 22 1

M 22 54 H 22 2

M 22 55 H 22 1

M 25 56 H 25 2

M 25 57 H 25 1

M 25 58 H 25 1

M 25 59 H 25 1

M 26 56 H 26 1

M 26 57 H 26 1

M 26 58 H 26 1

M 26 59 H 26 2

M 44 41 H 44 3

M 44 42 H 44 4

M 61 38 H 61 5

M 61 39 H 61 3

M 62 44 H 62 2

M 62 45 H 62 3

M 63 44 P 63 2

M 63 45 P 63 2

N 01 11 P 01, P 11 1

N 01 14 P 01, P 14 2

N 01 19 P 01, P 19 1

N 01 20 P 01, P 20 2

N 01 34 P 01, P 34 2

N 01 40 P 01, P 40 1

N 01 41 P 01, P 41 1

N 01 46 P 01, P 46 1

N 01 62 P 01, P 62 1

N 01 64 P 01, P 64 4

N 01 65 P 01, P 65 4

N 01 66 P 01, P 66 3
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TASK ID Predecessors Duration (s)

N 01 87 P 01, P 87 3

N 02 01 P 02, P 01 1

N 02 21 P 02, P 21 1

N 02 22 P 02, P 22 1

N 02 23 P 02, P 23 1

N 02 24 P 02, P 24 1

N 02 25 P 02, P 25 1

N 02 26 P 02, P 26 1

N 02 35 P 02, P 35 1

N 02 42 P 02, P 42 1

N 02 43 P 02, P 43 1

N 02 63 P 02, P 63 2

N 03 11 P 03, P 11 1

N 03 14 P 03, P 14 2

N 03 20 P 03, P 20 1

N 03 21 P 03, P 21 2

N 03 22 P 03, P 22 1

N 03 34 P 03, P 34 1

N 03 35 P 03, P 35 1

N 03 36 P 03, P 36 1

N 03 37 P 03, P 37 1

N 03 38 P 03, P 38 1

N 03 39 P 03, P 39 1

N 03 46 P 03, P 46 1

N 03 60 P 03, P 60 2

N 03 64 P 03, P 64 2

N 03 65 P 03, P 65 1

N 03 66 L 03, P 66 3

N 03 87 P 03, P 87 1

N 04 03 P 04, P 03 4

N 04 23 P 04, P 23 2

N 04 24 P 04, P 24 1

N 04 25 P 04, P 25 1

N 04 26 P 04, P 26 1

N 05 06 H 06, C 05 8
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TASK ID Predecessors Duration (s)

N 07 08 H 08, C 07 8

N 09 10 H 10, C 09 10

N 13 12 H 12, H 13 6

N 15 16 H 16, C 15 9

N 17 18 C 17, C 18 13

N 19 87 P 19 9

N 21 51 P 21, P 51 2

N 21 52 P 21, P 52 1

N 21 53 P 21, P 53 2

N 21 54 P 21, P 54 1

N 21 55 P 21, P 55 1

N 22 51 P 22, P 51 2

N 22 52 P 22, P 52 2

N 22 53 P 22, P 53 3

N 22 54 P 22, P 54 2

N 22 55 P 22, P 55 1

N 25 56 P 25, P 56 1

N 25 57 P 25, P 57 1

N 25 58 P 25, P 58 1

N 25 59 P 25, P 59 1

N 26 56 P 26, P 56 1

N 26 57 P 26, P 57 1

N 26 58 P 26, P 58 1

N 26 59 P 26, P 59 1

N 27 28 C 27, C 28 13

N 29 30 H 29, H 30 1

N 29 31 H 29, H 31 3

N 29 32 H 29, H 32 3

N 33 30 H 30, H 33 4

N 33 31 H 31, H 33 4

N 33 32 H 32, H 33 4

N 34 61 P 34, P 61 4

N 34 62 P 34 8

N 35 61 P 35, P 61 3
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TASK ID Predecessors Duration (s)

N 35 63 P 35 11

N 36 34 P 36, P 34 3

N 37 35 P 37, P 35 3

N 38 61 P 38, P 61 3

N 39 61 P 39, P 61 2

N 40 62 P 40 3

N 43 63 P 43 3

N 44 40 P 40, P 44 1

N 44 41 P 41, P 44 2

N 44 42 P 42, P 44 2

N 44 43 P 43, P 44 3

N 45 44 P 45 6

N 46 65 P 46 6

N 47 87 P 47, P 87 8

N 48 65 P 48, P 65 7

N 49 03 P 49 14

N 49 04 P 49 6

N 50 03 P 50 5

N 61 63 P 61 12

N 62 44 P 62, P 44 1

N 62 61 P 61 21

N 63 44 P 63, P 44 1

N 65 60 P 65, P 60 2

N 87 60 P 87, P 60 3

P 01 H 01 1

P 02 C 02 4

P 03 C 03 10

P 04 C 04 2

P 11 H 11, M 01 11, M 03 11 1

P 14 H 14, M 01 14, M 03 14 3

P 19 H 19, M 01 19, M 03 19, N 87 60 2

P 20 H 20, M 01 20, M 03 20 3

P 21 H 21, M 02 21, M 03 21 2

P 22 H 22, M 02 22, M 03 22 1
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TASK ID Predecessors Duration (s)

P 23 H 23, M 02 23 2

P 24 H 24, M 02 24, M 04 24 1

P 25 H 25, M 02 25, M 04 25 1

P 26 H 26, M 02 26 2

P 34 H 34, M 01 34, M 03 34, N 62 44 2

P 35 H 35, M 02 35, M 03 35, N 63 44 1

P 36 C 36, M 03 36 6

P 37 H 37, M 03 37 2

P 38 M 61 38, C 38 1

P 39 M 61 39, C 39 1

P 40 C 40, P 62 1

P 41 M 44 41, M 01 41, C 41 3

P 42 C 42, M 02 42, M 44 42 2

P 43 C 43, P 63 2

P 44 C 44, M 62 44, M 63 44 2

P 45
C 45, M 62 45, M 63 45, N 44 40, N 44 41, N 44 

42, N 44 43

7

P 46 H 46, M 01 46, M 03 46, N 65 60 2

P 47 C 47, N 07 08 4

P 48 C 48, N 05 06 8

P 49

N 04 26, N 04 25, N 04 24, N 04 23, N 03 22, N 

03 21, N 03 35, N 03 37, N 03 38, N 03 39, N 03 

36, N 03 11, N 03 34, N 03 64, N 03 14, N 03 66, 

N 03 46, N 03 60, H 49

1

P 50 C 50, N 03 20, N 03 87, N 03 60 3

P 51 C 51, M 21 51, M 22 51 1

P 52 C 52, M 21 52, M 22 52 1

P 53 C 53, M 21 53, M 22 53 1

P 54 C 54, M 21 54, M 22 54 2

P 55 M 21 55, M 22 55, C 55 4

P 56 C 56, M 25 56, M 26 56 2

P 57 C 57, M 25 57, M 26 57 1

P 58 C 58, M 25 58, M 26 58 1

P 59 C 59, M 25 59, M 26 59 2

P 60 H 60, P 87, P 65 5

P 61 H 61, P 62, P 63 5

P 62 M 01 09, M 01 10, C 62 1

P 63 M 02 15, M 02 16, C 63 1
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TASK ID Predecessors Duration (s)

P 64 N 13 12, M 01 13, M 03 13, M 01 12, M 03 12 1

P 65 N 05 06, M 01 05, M 01 06, M 03 06 1

P 66
N 33 30, N 33 31, N 33 32, N 29 31, N 29 32, N 

29 30, M 01 29, M 03 29, M 01 33, M 03 33

5

P 87 N 07 08, M 01 07, M 01 08, M 03 08 1

T 02 H 02 8

T 03 H 03 5

T 04 H 04 6

T 05 H 05 5

T 07 H 07 5

T 09 H 09 3

T 15 H 15 5

T 17 H 17 8

T 18 H 17 7

T 27 H 27 3

T 28 H 27 6

T 38 H 38 4

T 39 H 39 2

T 40 H 40 1

T 41 H 40 3

T 42 H 40 2

T 43 H 43 2

T 44 H 44 3

T 45 H 44 2

T 47 H 47 13

T 48 H 47 10

T 50 H 50 11

T 51 H 51 4

T 52 H 51 3

T 53 H 51 4

T 54 H 51 3

T 55 H 51 3

T 56 H 56 3

T 57 H 56 2
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TASK ID Predecessors Duration (s)

T 58 H 56 2

T 59 H 56 2

T 63 N 15 16 1
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APPENDIX E  

RESULTS OF CALCULATIONS FOR DETERMINING PROCEDURAL 

DEVIATIONS OF EACH FRAMER  
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Table E1. Frame 2, Round 1, Framer 1 - Computation of Compliance Rate 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal RULE 1 1

RULE 2 35

RULE 3 30

RULE 4 35

RULE 5 15

Totals: 116

Legitimate_Skips RULE 1 0

(in situ conditions) RULE 2 3

RULE 3 3

RULE 4 3

RULE 5 1

Totals: 10

In-Situ Ideal 106

Ignored Rules RULE 1 0

RULE 2 1

RULE 3 0

RULE 4 1

RULE 5 1

Totals: 3

Compliance 97%
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Table E2. Frame 2, Round 2, Framer 1 - Computation of Compliance Rate 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal RULE 1 0

RULE 2 14

RULE 3 11

RULE 4 14

RULE 5 3

Totals: 42

Legitimate_Skips RULE 1 0

(in situ conditions) RULE 2 0

RULE 3 0

RULE 4 0

RULE 5 0

Totals: 0

In-Situ Ideal 42

Ignored Rules RULE 1 0

RULE 2 7

RULE 3 4

RULE 4 7

RULE 5 3

Totals: 21

Compliance 50%
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Table E3. Frame 2, Round 3, Framer 1 - Computation of Compliance Rate 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal RULE 1 0

RULE 2 7

RULE 3 0

RULE 4 7

RULE 5 4

Totals: 18

Legitimate_Skips RULE 1 0

(in situ conditions) RULE 2 0

RULE 3 0

RULE 4 0

RULE 5 0

Totals: 0

In-Situ Ideal 18

Ignored Rules RULE 1 0

RULE 2 1

RULE 3 0

RULE 4 1

RULE 5 1

Totals: 3

Compliance 83%
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Table E4. Frame 2, Round 4, Framer 1 - Computation of Compliance Rate 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal RULE 1 0

RULE 2 5

RULE 3 0

RULE 4 5

RULE 5 4

Totals: 14

Legitimate_Skips RULE 1 0

(in situ conditions) RULE 2 0

RULE 3 0

RULE 4 0

RULE 5 0

Totals: 0

In-Situ Ideal 14

Ignored Rules RULE 1 0

RULE 2 0

RULE 3 0

RULE 4 0

RULE 5 0

Totals:

Compliance 100%
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Table E5. Frame 2, Round 1, Framer 2 - Computation of Compliance Rate 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal RULE 1 0

RULE 2 8

RULE 3 3

RULE 4 8

RULE 5 5

Totals: 24

Legitimate_Skips RULE 1 0

(in situ conditions) RULE 2 0

RULE 3 0

RULE 4 0

RULE 5 0

Totals: 0

In-Situ Ideal 24

Ignored Rules RULE 1 0

RULE 2 1

RULE 3 0

RULE 4 1

RULE 5 1

Totals: 3

Compliance 88%
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Table E6. Frame 2, Round 2, Framer 2 - Computation of Compliance Rate 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal RULE 1 0

RULE 2 26

RULE 3 24

RULE 4 26

RULE 5 10

Totals: 86

Legitimate_Skips RULE 1 0

(in situ conditions) RULE 2 2

RULE 3 1

RULE 4 2

RULE 5 2

Totals: 7

In-Situ Ideal 79

Ignored Rules RULE 1 0

RULE 2 1

RULE 3 1

RULE 4 1

RULE 5 0

Totals:

Compliance 96%
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Table E7. Frame 2, Round 3, Framer 2 - Computation of Compliance Rate 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal RULE 1 0

RULE 2 4

RULE 3 0

RULE 4 4

RULE 5 3

Totals: 11

Legitimate_Skips RULE 1 0

(in situ conditions) RULE 2 0

RULE 3 0

RULE 4 0

RULE 5 0

Totals: 0

In-Situ Ideal 11

Ignored Rules RULE 1 0

RULE 2 1

RULE 3 0

RULE 4 1

RULE 5 1

Totals: 3

Compliance 73%
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Table E8. Frame 2, Round 4, Framer 2 - Computation of Compliance Rate 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal RULE 1 0

RULE 2 14

RULE 3 10

RULE 4 14

RULE 5 9

Totals: 47

Legitimate_Skips RULE 1 0

(in situ conditions) RULE 2 0

RULE 3 0

RULE 4 0

RULE 5 0

Totals: 0

In-Situ Ideal 47

Ignored Rules RULE 1 0

RULE 2 0

RULE 3 0

RULE 4 0

RULE 5 0

Totals: 0

Compliance 100%
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Table E9. Frame 2, Round 5, Framer 2 - Computation of Compliance Rate 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal RULE 1 0

RULE 2 5

RULE 3 0

RULE 4 5

RULE 5 4

Totals: 14

Legitimate_Skips RULE 1 0

(in situ conditions) RULE 2 0

RULE 3 0

RULE 4 0

RULE 5 0

Totals: 0

In-Situ Ideal 14

Ignored Rules RULE 1 0

RULE 2 0

RULE 3 0

RULE 4 0

RULE 5 0

Totals: 0

Compliance 100%
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Table E10. Frame 2, Multiple Rounds Results, Average Compliance Rate for 

Framers 

 

 
 

 

 

Table E11. Frame 1, Multiple Rounds Results, Average Compliance Rate for 

Framers 

 

 
 

 

 

 

In-Situ Ideal Ignored Rules Percent Compliance

Round1 106 3 97%

Round2 42 21 50%

Round3 18 3 83%

Round4 14 0 100%

Avg. Compliance Framer 1 83%

Round1 24 3 88%

Round2 79 3 96%

Round3 11 3 73%

Round4 47 0 100%

Round5 14 0 100%

Avg. Compliance Framer 2 90%

F

R

M

R

 

2

F
R

M

R
 

1

In-Situ Ideal Ignored Rules Percent Compliance

Round1 37 7 81%

Round2 12 0 100%

Round3 6 0 100%

Round4 71 0 100%

Round5 47 10 79%

Avg. Compliance Framer 1 92%

Round1 35 0 100%

Round2 72 14 81%

Round3 10 0 100%

Round4 26 0 100%

Round5 19 10 47%

Round6 13 3 77%

Round7 62 0 100%

Avg. Compliance Framer 1 86%

F

R

M

R

 

2

F

R

M

R

 

1
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Table E12. Frame 3, Multiple Rounds Results, Average Compliance Rate for 

Framers 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In-Situ Ideal Ignored Rules Percent Compliance

Round1 98 55 44%

Round2 21 0 100%

Round3 56 0 100%

Round4 45 0 100%

Round5 14 0 100%

Avg. Compliance Framer 1 89%

Round1 13 3 77%

Round2 63 0 100%

Round3 53 14 74%

Round4 19 10 47%

Round5 14 0 100%

Round6 74 0 100%

Round7 76 0 100%

Round8 32 0 100%

Avg. Compliance Framer 2 87%
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F
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Table E13. Frame 4, Multiple Rounds Results, Average Compliance Rate for 

Framers 

 

 

In-Situ Ideal Ignored Rules Percent Compliance

Round1 123 2 98%

Round2 28 9 68%

Round3 59 13 78%

Round4 26 13 50%

Round5 20 0 100%

Round6 25 0 100%

Round7 80 0 100%

Round8 48 0 100%

Round9 51 0 100%

Avg. Compliance Framer 1 88%

Round1 19 3 84%

Round2 23 0 100%

Round3 55 0 100%

Round4 24 3 88%

Round5 43 0 100%

Round6 16 3 81%

Round7 86 0 100%

Round8 30 0 100%

Round9 85 16 81%

Round10 98 0 100%

Avg. Compliance Framer 2 95%
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