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ABSTRACT  
   

Treatment of cerebral aneurysms using non-invasive methods has 

existed for decades. Since the advent of modern endovascular techniques, 

advancements to embolic materials have largely focused on improving platinum 

coil technology. However, the recent development of Onyx®, a liquid-delivery 

precipitating polymer system, has opened the door for a new class of embolic 

materials—liquid-fill systems. These liquid-fill materials have the potential to 

provide better treatment outcomes than platinum coils. Initial clinical use of Onyx 

has proven promising, but not without substantial drawbacks, such as co-delivery 

of angiotoxic compounds and an extremely technical delivery procedure.  

This work focuses on formulation, characterization and testing of a novel 

liquid-to-solid gelling polymer system, based on poly(propylene glycol) diacrylate 

(PPODA) and pentaerythritol tetrakis(3-mercaptopropionate) (QT). The PPODA-

QT system bypasses difficulties associated with Onyx embolization, yet still 

maintains non-invasive liquid delivery—exhibiting the properties of an ideal 

embolic material for cerebral aneurysm embolization.  

To allow for material visibility during clinical delivery, an embolic material 

must be radio-opaque. The PPODA-QT system was formulated with 

commercially available contrast agents and the gelling kinetics were studied, as a 

complete understanding of the gelling process is vital for clinical use. These 

PPODA-QT formulations underwent in vitro characterization of material 

properties including cytotoxicity, swelling, and degradation behaviors. 

Formulation and characterization tests led to an optimized PPODA-QT 

formulation that was used in subsequent in vivo testing. 
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PPODA-QT formulated with the liquid contrast agent ConrayTM was used 

in the first in vivo studies. These studies employed a swine aneurysm model to 

assess initial biocompatibility and test different delivery strategies of PPODA-QT. 

Results showed good biocompatibility and a suitable delivery strategy, providing 

justification for further in vivo testing. PPODA-QT was then used in a small scale 

pilot study to gauge long-term effectiveness of the material in a clinically-relevant 

aneurysm model. Results from the pilot study showed that PPODA-QT has the 

capability to provide successful, long-term treatment of model aneurysms as well 

as facilitate aneurysm healing. 
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Chapter 1: INTRODUCTION TO CEREBRAL ANEURYSM EMBOLIZATION 

 

1.1 Cerebral Aneurysms 

An aneurysm is a “ballooning out” of an artery wall that occurs where the 

artery has been damaged or weakened. Damage to vessels can be caused by 

high blood pressure, smoking, trauma, or even genetic factors (Khurana, 

Meissner, and Meyer 2004). The hemodynamic forces of blood on the weakened 

artery wall can lead to aneurysm growth and eventual rupture. Most aneurysms 

occur within the aorta, but can happen anywhere in the arterial vasculature. An 

aneurysm is commonly thought of as a saccular bulge with a defined neck, but 

not all aneurysms have this feature. Fusiform aneurysms, for example, are 

characterized by bulging of an entire axial section of the artery, with no defined 

neck. Although these types of aneurysms can cause physiological problems, 

rupture of fusiform aneurysms is relatively rare (Lohani 2004).  

Of particular interest to endovascular neurosurgeons are intracranial 

aneurysms (cerebral aneurysms). Intracranial aneurysms are generally more 

challenging to treat than peripheral aneurysms because they can be located in 

deep or eloquent areas of the brain. Furthermore, the rupture of cerebral 

aneurysms is a devastating event, leading to subarachnoid hemorrhage and 

often resulting in death (Hop et al. 1997). It is estimated that one in every 15 

Americans will develop a cerebral aneurysm during their lives, according to the 

American Society of Interventional and Therapeutic Neuroradiology. 

 

1.2 Treatment Techniques 
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Currently, aneurysm treatment involves one of two treatment techniques. 

Surgical clipping is the more traditional method, clinically accepted by the 1960s, 

which involves placement of a metal clip across the aneurysm neck, as seen in 

Figure 1.1, in order to prevent blood from entering the aneurysm (McKissock, 

Richardson, and Walsh 1965). Because blood cannot enter the weakened 

region, the aneurysm is protected from rupture. Preventing rupture and 

subsequent blood leakage into the brain space are the main goals of all 

aneurysm treatment techniques. However, surgical clipping is a highly invasive 

procedure, and not useful for deep aneurysms that are difficult to access via 

craniotomy. 

 

 

Figure 1.1 Techniques for cerebral aneurysm treatment. (A) Surgical clipping 

involves craniotomy and placement of a metal clip across the aneurysm neck. 

Image reproduced from: http://www.brain-surgery.net.au/recentops6.html. 

(B) Endovascular coiling is considered the “gold standard” of current treatments. 

Image reproduced from: http://www.brainaneurysm.com/aneurysm-

treatment.html. 
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A less invasive treatment method is endovascular embolization. 

Embolization is as a process in which material is purposefully introduced into the 

circulation to occlude a vessel, abnormal structure, or an organ (Stedman 2000). 

In the case of aneurysm treatment, endovascular embolization involves internally 

guiding a microcatheter (via X-ray fluoroscopy) through a patient’s vessels, then 

deploying a filler material into the aneurysm. This material occludes the 

aneurysm, preventing blood flow from entering the cavity. Due to its minimally 

invasive nature, this technique is attractive to both patients and clinicians 

(Prestigiacomo 2006). Endovascular methods were not routinely used before the 

early 1990s because of limitations in endovascular technology. With the advent 

of flow-directed microcatheters, balloon catheters, and detachable coils, the use 

of endovascular techniques for aneurysm treatment blossomed (Kanaan et al. 

2005). 

 

1.3 Clinically Available Endovascular Treatments  

 

1.3.1 Coil Embolization 

Currently, endovascular coiling is considered the “gold standard” in 

cerebral aneurysm treatment (Molyneux 2002), also shown in Figure 1.1. Flexible 

platinum coils are delivered sequentially into an aneurysm through a 

microcatheter, until no further coils can be placed. Guglielmi detachable coils 

were the first type of coil system on the market, introduced in 1991 (Linfante and 

Wakhloo 2007), but several modifications have been made to coil technology 

since then. Endovascular coils such as HydroCoil® (MicroVention, Tustin, CA), 

Matrix® detachable coils (Boston Scientific, Natick, MA), and Cerecyte® coils 
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(Micrus Endovascular, San Jose, CA) incorporate hydrogels to provide a specific 

function. HydroCoils contain a hydrogel coating that expands on contact with 

blood, designed to achieve better volumetric filling than non-coated platinum coils 

(Cloft and Kallmes 2004; Arthur et al. 2005; Fanning et al. 2007; Kang et al. 

2007). An example of hydrogel-coated coils are shown in Figure 1.2. 

 

 

Figure 1.2 Hydrogel-coated coil. A bare platinum coil (left) compared to a 

hydrogel coated coil in its pre-hydrated state (middle) and post-hydrated state 

(right), showing the expanded translucent hydrogel. Reproduced with permission 

by Cloft and Kallmes (2004). Copyright (2004) American Society of 

Neuroradiology. 

 

Matrix coils have a “bioactive” hydrogel coating which is designed to 

accelerate thrombus formation and enhance fibrous deposition, with the goal of 

improving aneurysm neck occlusion (Murayama, Tateshima, et al. 2003; 

Taschner et al. 2005; Fiorella et al. 2006). Cerecyte coils also use a bioactive 

polymer, but instead of a coating, polyglycolic acid is loaded on the inside of the 
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coil, giving the coil more structural support (Bendszus and Solymosi 2006; 

Bendszus, Bartsch, and Solymosi 2007). 

The reason behind introducing these modifications is that aneurysms 

treated with coils are prone to recanalization (re-perfusion of blood flow into the 

aneurysm) due to compaction of coils into the aneurysm dome (Murayama, Nien, 

et al. 2003; van Rooij and Sluzewski 2007; Wakhloo et al. 2007). Overall, 

recanalization occurs in 15-35% of coil-treated aneurysms (Cognard et al. 1998; 

Cognard et al. 1999; Molyneux 2002; Murayama, Nien, et al. 2003; Raymond, 

Guilbert, et al. 2003; Henkes et al. 2004; Kurre and Berkefeld 2008; Ries and 

Groden 2009). However, recanalization rates are even worse after coil 

embolization of wide-necked aneurysms, with a 25-50% recanalization rate 

(Cognard et al. 1999; Hope, Byrne, and Molyneux 1999; Hayakawa et al. 2000), 

and large or giant aneurysms, with a 35-70% recanalization rate (Murayama, 

Nien, et al. 2003; Sluzewski , Menovsky, et al. 2003; van Rooij and Sluzewski 

2007). The high recanalization rate is thought to be related to insufficient 

aneurysm filling by coils. In general, coil embolization can only fill about 30% of 

the aneurysm volume (Cloft and Kallmes 2004; Fiorella et al. 2006; Piotin et al. 

2000; Slob, Sluzewski, and van Rooij 2005; Taha et al. 2006).The remainder of 

the aneurysm volume is occluded by blood that clots when it contacts the coils. 

However, it is the initial degree of occlusion that is directly related to the rate of 

recanalization, indicating that the body’s clotting response will not protect from 

recanalization if an aneurysm is not initially filled with coils to a certain degree 

(Kawanabe et al. 2001; Lanzino et al. 2005).  

While many modifications have been introduced to improve coils, these 

bioactive “advancements” have not been found to actually reduce recanalization 
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rates (Fiorella, Albuquerque, and McDougall 2006; Niimi et al. 2006; Cloft 2007; 

White and Raymond 2008). Recently, using stent-assisted coil embolization to 

treat large and wide-necked aneurysms has shown more success (Koebbe et al. 

2006; Gao et al. 2010; Liang et al. 2010), but with significant additional costs and 

introducing the risk of in-stent stenosis (Simon, Reig, et al. 2010; Wells-Roth et 

al. 2005). 

 

1.3.2 Onyx Embolization 

Another class of embolic materials, liquid embolics, is aimed at improving 

the degree of aneurysm filling during embolization. Liquid can fill aneurysms 

more completely than coils, making them an attractive alternative (Murayama et 

al. 2000; Mawad et al. 2002; Molyneux et al. 2004). Currently, there is only one 

such liquid embolic device approved for use in the United States. Onyx ® (eV3 

Neurovascular; Irvine, CA) is a liquid embolic system in which ethylene-co-vinyl 

alcohol is dissolved in an organic solvent. When delivered to an aneurysm, the 

co-polymers precipitate out of solution on contact with blood, forming a spongy 

solid cast, shown in Figure 1.3 (Murayama et al. 1998). The cast increases in 

size as more material is delivered, allowing greater aneurysm filling than 

achievable with coils. Initial studies have shown that Onyx® is more effective 

than coils in the treatment of large and giant aneurysms, with reported 

recanalization rates from 5-15% (Molyneux et al. 2004; Piske et al. 2009). 
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Figure 1.3 Precipitation of ethylene-co-vinyl alcohol (EVOH). EVOH co-polymers 

precipitate out of DMSO solvent when in contact with saline. Image reproduced 

with permission by Murayama et al. (1998). Copyright (1998) Lippincott, Williams 

& Wilkins. 

 

However, there are significant drawbacks associated with Onyx® 

embolization. First, in order to get ethylene-co-vinyl alcohol into solution, it must 

be dissolved in an organic solvent, dimethyl sulfoxide (DMSO). DMSO diffuses 

away from the solid polymer cast during delivery and is released into the 

bloodstream. DMSO is known to cause angiotoxicity and vasospasm when 

injected too quickly (Murayama et al. 1998; Raftopoulos et al. 2000; Pamuk et al. 

2005). As a result, Onyx must be delivered slowly. The delivery procedure 

requires multiple cycles of balloon inflation and deflation during injection, such 

that the organic solvent can diffuse away safely. The result is long procedure 

times (Molyneux et al. 2004; de Gast et al. 2008) as well as increased risk of 
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damaging the vessel wall during balloon cycling (Mawad et al. 2002). Recent 

studies have also reported that Onyx tends to migrate after embolization, 

increasing the chances of inadvertently occluding the parent artery (Struffert et 

al. 2008; Piske et al. 2009; Simon, Eskioglu, et al. 2010). 

 

1.3.3 Flow Diverting Devices 

 Low porosity flow diverting stents, placed endoluminally across an 

aneurysm, have recently emerged as a new technique aimed at treating large, 

giant, and wide-necked saccular aneurysms, as well as fusiform aneurysms 

(Walcott et al. 2011). These devices are deployed endovascularly, and work to 

alter hemodynamics within an aneurysm by directing blood flow through the 

device, creating flow reduction and stagnation within the aneurysm itself. Flow 

stagnation results in thrombus formation and occlusion of the aneurysm, while 

endothelialization of the flow diverting device may occur over time.  

While this new technology is in its infancy, initial reports suggest these 

devices may be able to successfully treat recanalization-prone aneurysms (Lylyk 

et al. 2009). However, aneurysm treatment with flow diverting devices may have 

some drawbacks. Initial investigations have suggested that in-stent thrombosis 

and stenosis are risks, possibly requiring patients to undergo long-term 

antiplatelet therapy (Klisch et al. 2011). Furthermore, these devices have 

resulted in delayed aneurysm rupture in some cases (Kulcsár et al. 2011), as 

well as ischemic stroke after unintentionally blocking perforating arteries with the 

flow diverting stent (van Rooij et al. 2010; Walcott et al. 2011).     

 

1.4 Developmental Materials 
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Endovascular treatment options for cerebral aneurysms have multiplied in 

the past decade, yet most advancements have been geared towards improving 

existing coil technology. Onyx is the first and only clinically available liquid 

embolic system, but with many drawbacks. The field of volume filling embolics is 

ripe for development. The availability of technologically advanced endovascular 

tools makes it more enticing than ever to develop this new class of embolic 

materials. A few investigative embolic materials have been developed recently, 

such as calcium alginate and shape memory polymers.  

 

1.4.1 Calcium Alginate 

Calcium alginate was first examined for endovascular delivery by Becker 

and Kipke (2001). Alginate is a naturally occurring copolymer with mannuronic 

and guluronic acids blocks. When active guluronic acid sites associate with a 

divalent cation, such as calcium, polymer chains cross-link to form a gel matrix 

(Becker et al. 2005). In order to deliver this material to a lesion site, a double-

lumen microcatheter has been used to bring both sodium alginate and the 

calcium chloride (CaCl2) initiator to the desired site without reacting. Once the 

materials mix in the lesion site, the Ca2+ replaces a Na+ ion on alginate, resulting 

in rapid cross-linking. The byproduct of this system is NaCl, and the formed gel is 

nonadhesive as well as stable and biocompatible (Becker et al. 2007). Figure 1.4 

shows calcium alginate in a bisected aneurysm model, showing the tissue-like 

nature of the solidified material (Soga et al. 2004). 
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Figure 1.4 Calcium alginate as an embolic agent. An in vitro aneurysm model 

filled with calcium alginate “strings”, both within (A) and removed from the 

aneurysm model (B). Image reproduced with permission by Soga et al. (2004). 

Copyright (2004) Lippincott, Williams & Wilkins. 

 

The advantages of this system include the absence of organic solvents, 

low toxicity, and the formation of a nonadhesive tissue-like gel. A downside to 

using calcium alginate for aneurysm embolization is that this material is not 

capable of a true liquid delivery because the components are extruded into the 

aneurysm in a string-like form, leaving unoccluded aneurysmal space after 

delivery. Calcium alginate may therefore behave like coils, where blood clots 

around the calcium alginate “strings” to occlude the aneurysm volume. If so, this 

system would also be prone to aneurysm recanalization, as seen with coils, 

especially since alginate is softer and thus potentially more amenable to 

compaction (Raymond, Metcalfe, et al. 2003). However, Becker et al. (2007) 

showed successful embolization after 3 months using a lateral wall aneurysm 

model in swine. Aneurysms were embolized with alginate under balloon 
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protection, resulting in initial complete occlusion and sustained occlusion at 3 

months, with moderate thrombus formation within the aneurysm. 

 

1.4.2 Shape Memory Polymers 

Shape memory polymers (SMPs) are another class injectable embolic 

materials. While not liquid embolics, these materials have many similar features: 

they can be delivered through a microcatheter and are able to fill the entire 

aneurysm volume. Shape memory polymers are chemically structured so that 

they are able to reversibly take on a different physical shape in response to some 

stimuli (Small et al. 2007). Usually these different shapes include a compact form 

and an expanded form of the polymer. In the case of endovascular embolization, 

the expanded polymer can be pre-formed to fit specific contours of an individual 

aneurysm (Ortega et al. 2007). Upon interacting with a stimulus, such as heat or 

cold, the material is compacted into a shape that can be delivered through a 

microcatheter. The process of using shape memory polymers to embolize an 

aneurysm is shown in Figure 1.5, along with samples of expanded SMPs (Ortega 

et al. 2007). 
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Figure 1.5 SMP foam for aneurysm embolization. (A) Compressed SMP foam is 

being delivered through a microcatheter. (B) After exposure to a stimulus, the 

foam expands. The porous structure of an SMP foam is shown in a primary, 

expanded shape (C) and close-up (D). Image reproduced with permission by 

Ortega et al. (2007). Copyright (2007) Springer. 

 

These materials have an obvious application to fusiform aneurysms, 

which are difficult to treat using coils or liquid embolics due to migration into the 

parent vessel. Shape memory polymers can potentially remove this limitation 

since devices are pre-formed to the aneurysm shape. Metcalfe et al. (2003) 

investigated a porous polyurethane shape memory polymer as an embolic device 
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in an animal model. In this study, neointima formation was found after a 3-week 

period, but aneurysm obliteration was inconsistent. Of the 16 aneurysms 

embolized, only 1 showed complete obliteration and 8 showed residual necks or 

residual aneurysms after 3 weeks. Furthermore, none of these in vivo aneurysms 

were embolized using an endovascular delivery, calling into question the 

feasibility of delivering SMPs non-invasively. Since this 2003 study, in vivo 

investigation of SMPs for aneurysm embolization has not been reported. 

While shape memory polymers may provide distinct benefits for 

aneurysm embolization, there are also potential limitations. For example, in order 

for the SMP to conform to the aneurysm’s shape, it must be tailored to a specific 

aneurysm. This would involve patient-specific aneurysm dimensions to create the 

material, followed by precise delivery such that the SMP and aneurysm are 

oriented correctly when the material is expanded. Not only does this mean that 

additional material processing equipment must be available in the operating 

room, but it also requires an impeccably skilled neurointerventionalist to perform 

the embolization. With a true liquid embolic, the same material can be used for 

any shaped aneurysm and still provide an exact fit, without requiring additional 

material processing or a rigorous procedure. 

 

1.5 Ideal Embolic Agent for Cerebral Aneurysm Embolization 

All of the embolic agents discussed thus far have clear limitations for use 

in aneurysm embolization. An ideal endovascular embolic material would have a 

true liquid delivery in order to occlude the entire aneurysm volume in order to 

provide robust protection from aneurysm recanalization. This would be a major 

step up from coils, which are prone to recanalization. It would also provide an 
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advantage over Onyx and developmental materials discussed here (calcium 

alginate and shape memory polymers) because all of these materials do not 

encompass true liquid delivery and therefore cannot exactly fit an aneurysm’s 

shape. Furthermore, the ideal embolic agent must be biocompatible and non-

toxic, such that it either allows or encourages neointimal tissue growth in vivo. 

Ease of delivery is also an important consideration. An ideal embolic 

agent should be delivered endovascularly in a one-time, straightforward 

procedure, in contrast to the drawn-out, technically challenging procedure 

associated with Onyx embolization. Furthermore, the less specialized equipment 

and additional processing procedures required, the easier it will be for 

neurointerventionalists to use this material in the clinic. 

The work done here aims to showcase the development, optimization, in 

vitro testing, and initial in vivo studies of a novel polymer system for cerebral 

aneurysm embolization. The polymer system studied in this work has significant 

advantages for aneurysm embolization, making it closer to the “ideal” embolic 

agent than previously investigated materials. This material uses a time-

dependent polymerization technique to cross-link into an elastic solid, rather than 

achieve solidification through polymer deposition. This type of liquid-to-solid 

transition allows the material to conform to the contours of the aneurysm, 

providing an exact fit and preventing blood re-entry. The time-dependent nature 

of solidification for straightforward delivery while in liquid form. Because of the 

true liquid delivery, balloon protection will be used to contain the material within 

the aneurysm until it cross-links to produce a mechanically sound embolic 

material. Furthermore, the material does not require the use of organic solvents 
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in formulation, because the reactive monomer components are already in liquid 

form prior to mixing. 

 

1.6 PPODA-QT Cross-Linking Polymer System 

The polymer system investigated here undergoes liquid-to-solid 

transformation through cross-linking of reactive chemical groups. The system is 

composed of two low-molecular weight monomers shown in Figure 1.6, 

poly(propylene glycol) diacrylate (PPODA, Mw~900), and pentaerythritol tetrakis 

(3-mercaptopropionate) (QT), and a basic water phase. When mixed in 

appropriate proportions, the organic monomer precursors (75% wt.) and pH-

adjusted water phase (25% wt.) create a reverse-emulsion system (Vernon et al. 

2003). The continuous phase consists of the organic monomer mixture, while the 

pH-adjusted aqueous phase is dispersed into droplets. Michael-type addition is 

initiated through diffusion of -OH groups from the high pH dispersed phase into 

the organic phase. Hydroxide ions deprotonate free thiol groups, which then 

nucleophilically attack and “add” onto acrylate-containing monomers. 
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Figure 1.6 PPODA-QT gelling system. (A) Material precursors react to form a 

cross-linked network through (B) syringe-mixing of components. 

 

Previous work has shown that the speed of cross-linking can be 

controlled in a number of ways. McLemore, Preul, and Vernon (2006) showed 

that the pH of the aqueous phase, buffer strength of the aqueous phase, and 

mixing duration all affected the speed of gel formation. In general, higher buffer 

strength, higher pH, and longer mixing are all associated with faster reaction 

times. This finding is critical to the material’s suitability as an embolic agent, 

indicating that the material gel time is tailorable. 

Initial investigations by Vernon et al. (2003) into phase-segregated 

Michael-type addition systems were valuable for gaining insight into how these 

types of materials behave. Up until then, very little work had been done in 

studying these systems, where hydrophobic monomers were mixed with a water-

based initiator to form a cross-linked network. Vernon et al. (2003) initiated 
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investigation of a suitable system for hard tissue repair, and eventually for 

endovascular aneurysm embolization. Further investigation showed that the 

PPODA-QT system had repeatable reaction kinetics and suitable viscoelastic 

properties, such as a low viscosity “deliverable” region as well as an elastic 

modulus similar to that of an artery wall, between 10kPa – 10MPa (McLemore, 

Preul, and Vernon 2006; Nemir and West 2010). The work presented here builds 

on these past studies and describes the process of making the PPODA-QT 

system more applicable to cerebral aneurysm embolization. 

 

1.6.1 Incorporation of Radio-Opacity 

Embolic agents for cerebral aneurysm embolization must contain 

radiographic properties. These materials must be radio-opaque because the 

endovascular procedure is visualized via X-ray fluoroscopy. Seeing the material 

as it is delivered is crucial for successful aneurysm embolization. Platinum coils 

are innately radio-opaque, but polymer systems are not. Therefore, a 

radiographically dense material must be added to a polymer system to confer 

radio-opacity.  

In this work, radio-opacity is added to the PPODA-QT system by 

incorporating a commercially available liquid contrast agent. Instead of using a 

high pH aqueous buffer as the initiating solution, a commercially available liquid 

contrast agent was substituted. Increasing the pH to an appropriate level allows 

the contrast agent to act as the initiating solution for Michael-type addition of 

PPODA and QT. While this technique was briefly discussed by McLemore, Preul, 

and Vernon (2006), there was no further investigation into the role of the contrast 

agent in the PPODA-QT system.    
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As this work will show, incorporation of a liquid contrast agent into the 

PPODA-QT gelling system is not a trivial matter. The choice of contrast agent is 

critical for a final polymer system formulation that has desired properties of an 

embolic material. In order to optimize the PPODA-QT system for cerebral 

aneurysm embolization, materials formulated with two different types of contrast 

agents were systematically compared. Once convinced of the suitability of a 

formulation, in vivo studies were performed using the optimized PPODA-QT 

system. 

 

1.6.2 Experimentation and Testing 

The two contrast agents initially investigated in this work are ConrayTM 

and OmnipaqueTM 300. Conray (Mallinckrodt, St. Louis, MO) is a high osmolar, 

an ionic contrast agent made up of (by 60% wt.) the radio-opaque salt 

iothalamate meglumine. Omnipaque, however, is a different class of contrast 

agent. Omnipaque is considered a low osmolar, nonionic contrast agent, 

composed primarily (48% wt.) of the radio-opaque molecule iohexol. The main 

difference between Conray and Omnipaque is these radio-opaque molecules. In 

Conray, iothalamate meglumine is dissociated, while iohexol does not dissociate 

in Omnipaque.  

In normal clinical application, these contrast agents are used for 

angiography. Ionic contrast agents, such as Conray, result in hypertonic solutions 

since the number of particles doubles when the ionic salt dissociates. Ionic 

contrast agents are associated with more adverse physiological effects, such as 

pain, during clinical angiographic use (Wolf, Arenson, and Cross 1989). Nonionic 

contrast agents have lower osmolality because they do not dissociate, and are 
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associated with fewer instances of physiologic discomfort as well as 

nephrotoxicity (Rudnick et al. 1995). For incorporation into PPODA-QT polymer 

system, however, it is not immediately clear how Conray and Omnipaque would 

affect the resulting gels.  

The work reported here is aimed at formulating, characterizing, and 

testing the PPODA-QT system, geared towards clinical aneurysm embolization. 

Chapter 2 investigates how formulations with Conray and Omnipaque affect the 

gelling process of the PPODA-QT system, while Chapter 3 compares in vitro 

characteristics of Conray- and Omnipaque- formulated gels in order to determine 

an optimal PPODA-QT formulation for cerebral aneurysm embolization. The last 

two chapters focus material testing in vivo. Chapter 4 is assesses initial 

biocompatibility and delivery strategies of the optimized PPODA-QT formulation, 

while Chapter 5 reports initial in vivo efficacy in a challenging animal model. 
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Chapter 2: GELLING PROCESS DIFFRERENCES IN REVERSE EMULSION, IN 

SITU GELLING POLYMERIC MATERIALS FOR INTRACRANIAL ANEUYSM 

EMBOLIZATION, FORMULATED WITH INJECTABLE CONTRAST AGENTS 

 

2.1 Introduction 

Endovascular embolization has been routinely used to treat intracranial 

aneurysms since the mid-1990s. This technique has gained popularity due to the 

non-invasiveness of the procedure compared to surgical intervention (Brilstra et 

al. 1999; Byrne, Molyneux, and Brennan 1995). The advent of microcatheters, 

flexible stents, and balloon occlusion has triggered widespread use of 

embolization for conditions that could not previously benefit from the technique 

(Higashida, Hieshima, and Halbach 1991; Linfante and Wakhloo 2007). With the 

ability to perform embolization routinely, many new types of embolic materials 

are being introduced. A variety of endovascular coils exist for treating intracranial 

aneurysms. Some include hydrogel coatings or fillings in order to trigger biologic 

activity or increase the coil packing density within an aneurysm (Murayama, 

Nien, et al. 2003; Cloft and Kallmes 2004; Arthur et al. 2005; Taschner et al. 

2005; Bendszus and Solymosi 2006; Fiorella, Albuquerque, and McDougall 

2006; Bendszus, Bartsch, and Solymosi 2007; Fanning et al. 2007; Kang et al. 

2007). Precipitation-based copolymer systems such as Onyx® (eV3, Irvine, CA), 

in which polymers precipitate out of solution and form a solid mass immediately 

on contact with blood, are also being optimized for use in both intracranial 

aneurysms and arteriovenous malformations (AVMs) (Murayama et al. 1998; 

Becker and Kipke 2001; Jahan et al. 2001; Soga et al. 2004; Song et al. 2004; 

Weber et al. 2007; Velat et al. 2008).  
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While there are now many embolic materials available for cerebral 

aneurysm occlusion, there are drawbacks and limitations to all techniques, 

providing need for the development of more desirable materials. Currently, coil 

embolization is the most common and considered an effective endovascular 

method for treating intracranial aneurysms. The International Subarachnoid 

Aneurysm Trial in 2002 showed that intracranial aneurysm treatment with coil 

embolization resulted in significantly less patient morbidity rates when compared 

to microsurgical clipping, given that the study compared aneurysms that were 

suitable for treatment by either method (Molyneux 2002). However, coil 

embolization problematically results in a higher rate of aneurysm recanalization, 

which is thought, in part, to be related to the relatively low packing density 

achievable during coil placement (Piotin 2000; Kawanabe 2001; Molyneux 2002; 

Cloft 2004, Sluzewski 2004; Lanzino 2005; Slob 2005; Fiorella 2006).  

Precipitating copolymer systems, such as Onyx ® Liquid Embolic System, 

can achieve greater aneurysm volume filling (Mawad 2002 and Molyneux 2004). 

However, the Onyx system has drawbacks as well, some of which may impose 

serious risk. Onyx (ethylene-vinyl alcohol) requires dimethyl sulfoxide (DMSO) to 

dissolve the copolymers, leading to injection of the organic solvent into the body 

during embolization. Injection of DMSO has been shown to induce vessel 

necrosis and vasospasm when injected too quickly (Murayama et al. 1998; 

Chaloupka et al. 1999; Raftopoulos et al. 2000; and Pamuk et al. 2005). In 

addition, there have been reports of electrocautery-induced ignition of Onyx 

(Schirmer, Zerris, and Malek 2006).  

In order to overcome the drawbacks of commercially available embolic 

materials, we have developed a liquid, in situ gelling polymeric material that can 
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potentially be used as an embolic agent for intracranial aneurysms. This polymer 

system is advantageous because its liquid-to-solid gelling characteristics will 

allow non-invasive endovascular delivery of the material into the aneurysm. Upon 

delivery, this material will be able to significantly increase the volume of the 

aneurysm filled with material and conform to the shape of the aneurysm, without 

simultaneously injecting organic solvents into the body. Initial in vivo injections of 

this material have shown ease of delivery and indicated no instances of “gluing” 

the catheter tip to tissue, which is another consideration when using liquid-to-

solid gelling materials (Debrun et al. 1997; Duffner et al. 2002; McLemore et al. 

2005; McLemore, Preul, and Vernon 2006).  

This Michael-type addition polymer system has been described in detail 

previously (McLemore, Preul, and Vernon 2006; Vernon et al. 2003). Briefly, two 

multi-functional hydrophobic monomers are combined through syringe mixing to 

create a homogeneous organic phase. These monomers are poly(propylene 

glycol) diacrylate (PPODA) and  pentaerythritol tetrakis(3-mercaptopropionate) 

(QT), shown in Figure 2.1. After mixing the organic monomers, a basic initiating 

solution is introduced through syringe mixing, resulting in an unstable reverse-

emulsion. The organic monomers (PPODA and QT) make up the continuous 

phase and the initiating solution is dispersed. Flux of ions across phase 

boundaries initiates the reaction through deprotonation of thiol groups located on 

QT, which then react with the acrylate groups on PPODA. The Michael-type 

addition reaction scheme is shown in Figure 2.1C. Once the initiator is 

introduced, the organic phase cross-links and eventually undergoes network 

formation in a time-dependent manner.  

 



  23 

 

Figure 2.1 Components and reaction scheme. (A) Poly(propylene glycol) 

diacrylate, also called PPODA, Mw≈900; (B) Pentaerythritol tetrakis(3-

mercaptopropionate), also called QT, Mw≈488; (C) Michael-type addition reaction 

scheme. Deprotonated thiol group of QT performs nucleophilic attack on acrylate 

group of PPODA. 

  

The rate of reaction kinetics can be adjusted by changing certain 

parameters, such as increasing the pH of the initiating solution and increasing 

the duration of mixing the initiating solution and organic components, both of 

which increase the reaction rate (McLemore, Preul, and Vernon 2006).  

Since the PPODA-QT polymer system encompasses a true liquid delivery 

of the embolic material, chemical reaction kinetics become very important. The 

speed of “solidification” has implications for how this material may be used 

clinically. For example, treating an AVM via endovascular embolization requires 

extreme care to prevent the embolic material from reaching the draining vein 

(Chun-Ho Yu and Kin-Ming Cheng 2004; Alexander and Tolbert 2006). A 

material that takes minutes to solidify has a much greater chance of entering the 
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draining vein than a material that solidifies in seconds (Lieber et al. 2005). As 

such, embolic materials that solidify almost instantly upon delivery are preferred, 

leading to almost exclusive use of NBCA and Onyx in endovascular AVM 

treatment. For aneurysm embolization, however, there can be more flexibility with 

respect to a material’s “gel time” due to the common practice of using an 

endovascular balloon to occlude the parent artery during delivery of the embolic 

agent (Moret, Pierot, and Boulin 1994; Moret et al. 1997; Murayama et al. 2000; 

Mawad et al. 2002, Molyneux et al. 2004; Gallas et al. 2005, Piske et al. 2009). 

The balloon is able to keep the embolic material contained within the aneurysm 

until it is fully filled—or in the case of the PPODA-QT system, able to cross-link. 

Therefore, using a material that undergoes true liquid delivery is much more 

feasible for treating an aneurysm (or vascularized tumor lesion, potentially) than 

for treating an AVM, as long as parent artery occlusion is performed across the 

aneurysm neck during the procedure. While it is still critically important to monitor 

and control the gel time of the PPODA-QT material, a system that requires 

minutes to gel is a viable alternative to currently available materials for aneurysm 

embolization.  

In this work, the high pH initiating solution used to start the reaction 

between PPODA and QT consists of an injectable radio-opaque contrast agent, 

which will allow the polymer to be seen during clinical injection by digital 

subtraction angiography (DSA). Two different injectable contrast agents were 

analyzed—one is a high osmolar, ionic contrast agent, while the other is a low 

osmolar, nonionic agent. Rheological and scanning electron microscopy (SEM) 

analyses were performed on each formulation to identify differences in gel 

formation attributed to using different contrast agents. Once differences were 
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identified, analysis of the results helped determine why these differences are 

seen. 

 

2.2 Materials and Methods 

 

2.2.1 Polymer System 

The polymer system consists of a liquid mixture of two organic monomers 

that cross-link to form a solid network through Michael-type addition chemistry. 

Poly(propylene glycol) diacrylate, ~Mw 900 (PPODA) and pentaerythritol 

tetrakis(3-mercaptopropionate), abbreviated QT (both purchased from Sigma, St. 

Louis MO), were combined such that an equal number of functional groups were 

available to react with each other. 

 The injectable contrast agents used in this work are ConrayTM 

(Mallinckrodt, St. Louis, MO) and OmnipaqueTM 300 (GE Healthcare, Princeton, 

NJ), composed of radio-opaque molecules shown in Figure 2.2. ConrayTM is a 

high osmolar, ionic contrast agent, the main component of which is iothalamate 

meglumine, at a concentration of 600 mg/mL (742 mM). Iothalamate meglumine 

provides radio-opaque contrast and makes up 60% wt. of Conray. When 

dissolved in water, this molecule dissociates to form the conjugate base of 

iothalamic acid and meglumine. OmnipaqueTM 300 (GE Healthcare, Princeton, 

NJ) is considered a low osmolar, nonionic contrast agent, composed primarily 

(48% by wt.) of the radio-opaque molecule iohexol. Iohexol is present in a 

concentration of 647 mg/mL (788 mM). Iohexol does not dissociate when 

dissolved in water.  
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Figure 2.2 Radio-opaque molecules of Conray and Omnipaque. (A) Iothalamate 

meglumine (Mw≈809) is the radio-opaque molecule used in Conray. When 

dissolved in Conray, iothalamate meglumine dissociates into iothalamate anions 

and meglumine cations; (B) Iohexol (Mw≈821) provides radio-opacity in 

Omnipaque. When dissolved in Omnipaque, iohexol does not dissociate. 

 

These injectable contrast agents were pH-adjusted with 5N NaOH and 

incorporated into the polymer system as the aqueous initiating component. 

ConrayTM was adjusted to pH 10.8 and OmnipaqueTM 300 was adjusted to pH 

12.2. Due to the fact that these contrast agents have very different compositions 

(iothalamate meglumine vs. iohexol), it is necessary to adjust each contrast 

agent to a different pH in order to achieve gel times that are on the same scale. 

Further explanation of why each particular pH was chosen can be found in the 

discussion section. The addition of NaOH to each contrast agent did not 

negatively affect the radio-opacity of these solutions, as the solutions (as well as 

the resulting gels) are visible under X-ray even after pH adjustment (McLemore, 

Preul, and Vernon 2006). The contrast-providing molecules in both Conray and 

Omnipaque do provide a weak buffering capacity for each solutions, so it is not 
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likely that the addition of NaOH will compromise their structural or functional 

integrity. 

To begin the reaction, each component was first weighed and aliquoted. 

Components were measured such that the final gel concentration was 75% (wt.) 

organic components and 25% (wt.) aqueous contrast agent. The organic 

components, PPODA and QT, were weighed into 3cc syringes so that they had 

an equal number of reactive groups. In these experiments, 0.488g of QT was 

syringe-mixed with 1.80g of PPODA using a luer-loc syringe coupler to attach 

component syringes. After 30 seconds of mixing the organic components, 0.763g 

of pH-adjusted contrast agent (either Conray or Omnipaque) was introduced. Mix 

times of 0.5 and 1.5 minutes were used to make gels. 

 

2.2.2 Rheological Testing 

Rheology was performed in replicates of three for each formulation 

(Conray pH 10.8 or Omnipaque pH 12.2) and mix time (0.5 or 1.5 minutes). 

Oscillatory time sweeps were performed at 22oC over the course of the reaction, 

with a constant frequency of 1 Hz and constant stress of 10 Pa. The gel time for 

each treatment group was determined by rheology, measured at the point where 

the phase angle (δ) equals 45o, indicating the sample has equal proportions of 

solid-like and liquid-like characteristics. 

Using rheology data, changes were also observed in the material 

viscosity over time on a semi-log scale. Viscosity can also be used to monitor the 

progression of the reaction, by which the material’s strength can be evaluated 

over time to identify when the reaction is complete. Examining both the viscosity 
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and phase angle profiles provided a complete picture of how each of these 

formulations progress through gelling. 

 

2.2.3 Scanning Electron Microscopy 

The pore structure of gelled polymer samples was examined using 

scanning electron microscopy (FEI XL30 EFSEM). Polymer samples were 

prepared as previously described, then cut with a razor blade in thin sections 

through the radial plane of the cross-linked gel. Samples were left to air dry, 

followed by gold sputter-coating. Imaging was done at a working distance of 

approximately 10 mm, and captured at 2000X and 5000X magnification. 

In order to compare pore structures present on Conray- and Omnipaque-

formulated materials, image analysis was done on 5000X magnification images 

of 0.5 and 1.5 minute mixed gels (n=6 images per group). A spline masking 

analysis programmed in MATLAB (The MathWorks, Inc.) was used to quantify 

pores. 

 

2.2.4 Statistical Analysis 

Statistical analysis was accomplished through multiple-comparison 

ANOVA for the gel time responses. Pore size distributions obtained from SEM 

images underwent a logarithmic transformation to obtain normalcy of the data 

prior to statistical analysis. A 2-tailed student’s t-test was used to compare gel 

times and droplet size distributions. The statistical significance threshold was 

chosen to be p<0.05. When specific data are reported, they are given as the 

average value ± standard deviation. 
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2.3 Results 

 

2.3.1 Rheological Testing 

Phase angle profiles for one replicate of Conray- and Omnipaque-

formulated gels (1.5 minute mix) are shown in Figure 2.3, highlighting 

representative curves for each formulation. The average gel time is marked on 

each curve where δ=45o, for n=3 replicates.  An ANOVA analysis indicated that 

both radio-opaque agent and mix time had a significant effect on the gel time 

(p<0.0001). 

 

 

Figure 2.3 Phase angle profiles of Conray and Omnipaque gels. Gels were mixed 

for 1.5 minutes. Conray samples (black line) mixed for 1.5 minutes had an 

average gel time of 9.8 ± 0.1 minutes (○), while 1.5 minute mixed Omnipaque 

samples (grey line) reached δ=45o in 22.2 ± 0.68 minutes (□). For each condition, 

n=3. 
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Comparing between radio-opaque agents, Figure 2.4 shows that Conray-

formulated samples reached the gel point significantly faster than Omnipaque-

formulated samples, with p<0.05 for each mix time pair. When comparing the 

0.5-minute and 1.5-minute mixed samples within a formulation group, both 

Omnipaque- and Conray-formulated samples show statistically reduced gel times 

for the 1.5-minute mixed samples (p=0.007 and p=0.003, respectively, using 2-

tailed t-tests). Overall, this data indicates that materials made with Conray at pH 

10.8 reach the gel point faster than gels formulated with Omnipaque at pH 12.2, 

and longer mixing also results in faster gelling.  

 

 

Figure 2.4 Average gel times. Gel times (min) ± standard deviation are shown for 

Conray- and Omnipque-formulated gels mixed for 0.5 minutes (dark grey) and 

1.5 minutes (white). For each condition, n=3. 
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A semi-log plot of complex viscosity vs. time is shown in Figure 2.5. 

Curves for each formulation indicate that there are distinct regions of viscosity 

change corresponding to the reaction kinetics for each formulation. Figure 2.5 

also highlights these separate regions for each 0.5 minute mix formulation, with 

clear boxes marking regions of the Conray gel viscosity profile, and grey boxes 

highlighting regions of viscosity change in Omnipaque gels. 

 

 

Figure 2.5 Viscosity profiles during the reaction process. (A) Conray gel (black 

lines) and Omnipaque gels (grey lines) mixed for 0.5 (dashed) and 1.5 (solid) 
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minutes. Average gel time ± standard deviation is shown on each profile. 

Average gel time for Conray samples are shown as circles, while average gel 

times for Omnipaque samples are squares. (B) The 0.5-minute mix profile is 

shown for both radio-opaque formulations. Regions of the viscosity profile are 

identified for Conray gels (white boxed regions) and Omnipaque gels (grey boxed 

regions). 

 

2.3.2 SEM Analysis 

SEM imaging showed that gels formulated with both Conray and 

Omnipaque contain a distribution of isolated, non-interconnected, pores due to 

dispersion of the aqueous phase (contrast agent). The droplet structures within 

gels were compared in terms of droplet size number of droplets per image. 

Figure 2.6 shows the surfaces of Conray-formulated and Omnipaque-formulated 

gels at 2000X magnification for each mix time. Qualitatively, these images show 

that increasing the material mix time results in smaller pores.  
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Figure 2.6 SEM images of Conray and Omnipaque gels. Conray-formulated (A, 

B) and Omnipaque-formulated (C, D) gels at mix times of 0.5 minutes (A, C) and 

1.5 minutes (B, D). Magnification 2000X. Uneven gel surface is due to slicing 

with a razor blade when preparing samples. 

 

Quantitative droplet analysis was done on 5000X magnification SEM 

images for 0.5 and 1.5-minute mixed gels (n=6 images per formulation). Figure 

2.7 shows visual output of the spline masking program, in which the SEM image 

of a 1.5-minute mixed Conray gel is shown at 5000X before and after masking. 
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Figure 2.7 SEM masking analysis. Conray-formulated gel mixed for 1.5 minutes, 

5000X magnification. (A) Image before masking analysis; (B) Image after 

masking analysis. 

 

From image quantification, Conray gels were found to have an average of 

42.7 ± 5.7 droplets per image when mixed for 0.5 minutes, and 147.8 ± 10.6 

droplets when mixed for 1.5 minutes (p=0.005). Omnipaque gels have an 

average of 25.3 ± 9 and 87.0 ± 31.7 droplets per image with mix times of 0.5 and 

1.5, respectively (p=0.005). Conray-formulated gels were found to have 

statistically more droplets than Omnipaque-formulated samples when mixed for 

the same amount of time (0.5 minute mix, p=0.0049; 1.5 minute mix, p=0.0082). 

For both gel formulations, more droplets are seen when the material is mixed for 

a longer amount of time.  

The average size distribution of droplets in each treatment group is 

shown in Figure 2.8. A log transformation to achieve normalcy was first applied to 

droplet size data (nm2), which were then represented as a histogram. In Figure 

2.8, the number of droplets per image is seen to increase for both contrast agent 
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formulations when longer mixing is applied to the system. Also, Omnipaque-

formulated gels display a shift towards larger sized droplets in both the 0.5 and 

1.5 minute-mixed treatments. Student’s t-tests performed on the transformed 

droplet size data show statistical differences between populations of relevant 

treatment combinations (Con0.5 vs. Con1.5 p<0.001; Omn0.5 vs. Omn1.5 

p<0.001; Con0.5 vs. Omn0.5 p=0.008; Con1.5 vs. Omn1.5 p<0.001). 

 

 

Figure 2.8 Droplet distribution from SEM analysis. Histogram showing the 

average number of droplets per treatment group (n=6) distributed into equally 

spaced categories of droplet area (nm2), after performing a log transformation of 

the droplet area. Data is shown for Omnipaque 0.5-minute mixed samples (black 

bars), Conray 0.5-minute mixed samples (white bars), Omnipaque 1.5-minute 

mixed samples (grey bars), and Conray 1.5-minute mixed samples (marble bars). 
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2.4 Discussion 

 

2.4.1 PPODA-QT Reverse Emulsion System 

Properties of PPODA-QT gelling polymer systems have been investigated 

previously and reported in a variety of publications (Vernon et al. 2003; Vernon et 

al. 2004; McLemore, Preul, and Vernon 2006; McLemore, Lee and Vernon 

2009). When a PPODA-QT mixture, making up 75% (wt.) of the total formulation, 

is further mixed with an aqueous solution making up the remaining 25% (wt.), the 

resulting solution is an unstable reverse emulsion. The continuous phase is 

made up of organic monomers (PPODA and QT), while the aqueous solution is 

dispersed. If the aqueous solution is basic, diffusion of ions across the phase 

boundary will initiate deprotonation of thiol groups on QT, which then react with 

PPODA. However, if the aqueous and organic phases separate before network 

formation is able to take place, the material will not form a fully cross-linked gel.  

There are a number of factors that have been found to increase the rate 

of reaction so that cross-linking occurs faster than phase separation (McLemore, 

Preul, and Vernon 2006). For example, increasing the pH of the dispersed phase 

introduces more –OH groups to the system. This heightens the capacity for 

reaction initiation by creating more ion flux during mixing, as well as providing a 

higher concentration of ions in the post-mixed droplets.  

Another method for achieving faster reaction kinetics is enhancing ion 

diffusion by increasing the mixing time. Increasing mix time extends the duration 

of convective ion transfer between phases, which further increases the number of 

reaction initiation sites in the organic phase. Longer mixing also works to 

forcefully maintain the dispersed phase in small droplets. Maintaining small 
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droplet sizes increases the surface area-to-volume ratio of droplets, thereby 

enhancing diffusion during mixing. Once mixing is finished, droplets are no longer 

maintained at small sizes and can merge with neighboring droplets, given that 

the viscosity of the continuous phase is low enough to allow droplet mobility.  

Reaction kinetics can also be altered through surfactant action, which 

stabilizes droplets within the emulsion by inhibiting droplet coalescence.  

McLemore, Lee, and Vernon (2009) examined how certain surfactants affect the 

gelling process of PPODA-QT systems. The authors found that large, non-ionic 

surfactants at low concentrations were able to increase reaction kinetics when 

compared to initiating solutions that did not contain surfactants. The authors 

concluded that gel times were faster due to the ability of surfactants to stabilize 

droplet sizes, resulting in enhanced ion flux across phase boundaries. 

 

2.4.2 Incorporating Different Initiating Solutions 

In previous studies, increasing the reaction kinetics of PPODA-QT 

materials has been accomplished through techniques mentioned above: 

increasing pH, increasing mix time, and adding surfactant (McLemore, Preul, and 

Vernon 2006; McLemore, Lee, and Vernon 2009). In almost all previous work, 

100-150 mM phosphate-buffered saline (PBS), pH-adjusted to basic conditions, 

was used as the aqueous initiating solution. Overall, there has been little 

discussion regarding how different initiating solutions affect the gelling process. 

Due to the clinical necessity of fluoroscopic visibility, two aqueous contrast 

agents were incorporated into PPODA-QT gels.  

In this study, NaOH was added to Conray and Omnipaque to achieve pH 

10.8 and 12.2, respectively. The rationale for adjusting these contrast agents to 
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different pH values relates to differences in their composition. As previously 

mentioned, Conray is composed mostly of the iothalamate meglumine, an 

ionizable salt. Iothalamic acid has a pKa of about 3.5, meaning that at a pH 

above 3.5, iothalamate molecules have been deprotonated and are negatively 

charged, in the form of COO- instead of COOH (Busetti et al. 2008). Therefore, at 

a pH of 10.8, there are many free -OH groups in solution. Iohexol, on the other 

hand, has a pKa of 11.35. At pH 10.8, there are not many free -OH groups 

available to react, resulting in slow reaction kinetics. At pH 12.2, where pH>pKa, 

there are more free -OH groups and the reaction can occur faster than it would at 

pH 10.8.  

While it is difficult to compare these contrast agents given their different 

“buffering” molecules, pH values that produced similar gel times (<30 min) for 

both formulations were examined. Since the actual gel times of each formulation 

can be adjusted by changing the pH, the primary goal of this work is to identify 

differences in how each formulation progresses through gelling. As discovered 

during this study, the amount of free -OH ions available to initiate Michael-type 

addition reactions is not the only factor in determining reaction kinetics. The 

observed differences in the gelling process, dependent on which contrast agent 

is used, may have implications for clinical applicability of the material, and thus 

are worth investigating. 

Both rheological and SEM analysis identified differences in the gelling 

process when using different radio-opaque agents. For example, while all 

Conray-formulated gels reached δ=45o faster than their Omnipaque-formulated 

counterparts (Figure 2.4), Omnipaque gels reached their plateau viscosity sooner 

than Conray-formulated gels (Figure 2.5). Furthermore, SEM analysis showed 
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that Conray-formulated gels have a larger number of droplets, and these droplets 

are smaller in size than corresponding Omnipaque gels (Figure 2.8). The 

observed differences in rheology profiles and droplet characteristics indicate that 

these materials have unique gelling processes. 

 

2.4.3 Interaction of Contrast Agents with Organic Phase 

The explanation for why there are differences in the gelling process 

relates to the interaction of each contrast agent with the PPODA-QT organic 

phase. While both formulations employ the same chemical reaction that leads to 

network formation, the contrast agents interact differently with the organic phase. 

Therefore, the actual molecular composition of each contrast agent plays a major 

role in the gelling process.    

Surfactants have been mentioned as a way to increase the stability of 

aqueous droplets in an emulsion. This would give rise to less droplet 

coalescence, increased ion flux across phase boundaries, as well as fewer 

observable differences in gel time and droplet size when the material is mixed for 

different amounts of time. The gel time of Conray-formulated gels shows much 

less dependence on mix time (although still statistically significantly different) 

than when compared to Omnipaque-formulated gels. Therefore, it is possible that 

iothalamate meglumine is acting as a surfactant and stabilizing small droplets, 

resulting in faster reaction kinetics.   

The “Conray-as-a-surfactant” theory also implies that droplet size dictates 

gel time, because (1) droplet sizes during mixing are identical, so all ion flux that 

occurs during mixing is identical, and (2) after mixing, smaller stabilized droplets 

have greater ion flux than unstabilized, coalescing droplets, due to their greater 
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surface area-to-volume ratio. All differences in gel time are assumed to arise 

from the rate of droplet coalescence after mixing is complete. In general, Conray- 

and Omnipaque-formulated gels follow this rule. For gels made with the same 

mix time, Conray materials gel faster, have smaller pores, and have more pores 

than Omnipaque materials.  

Table 2.1 shows average gel times and droplet sizes for Conray and 

Omnipaque materials, mixed for 0.5 and 1.5 minutes. While all Conray materials 

gel faster, the average droplet size in Conray gels mixed for 0.5 minutes is 1.28 

µm2, compared to 0.60 µm2 for 1.5-minute mixed Omnipaque samples. This 

comparison shows that while the Conray-formulated materials have a larger 

average droplet size, they still gel faster than Omnipaque-formulated samples 

(11.1 ± 0.32 min vs. 22.2 ± 0.68 min). This finding conflicts with the Conray-as-a-

surfactant theory, which implies that gel time is dependent only on droplet size.  

 

Table 2.1 Gel Time and Droplet Size Comparison 

 

 

Another mechanism to explain kinetic differences due to formulation 

involves the solubility of each initiating solution in the organic phase. A more 

soluble initiating solution would bring ions into the organic phase through 

dissolution, rather than from ion flux via droplets alone. Essentially, this works to 

scatter many initiation sites throughout the organic phase, and speed up the 
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“global” cross-linking event, in which molecules are essentially immobilized within 

the material.  

While neither radio-opaque molecule—iothalamate meglumine or 

iohexol—seem to be acting as a surfactant, they do both contain hydrophilic and 

hydrophobic regions and therefore may be somewhat soluble in the PPODA-QT 

organic phase. Examining each molecule individually, it is readily apparent that 

dissociated iothalamate and meglumine ions are much smaller than iohexol. This 

size discrepancy of the radio-opaque molecules may contribute to differences in 

the miscibility of each contrast agent within the organic phase. Since Conray 

contains smaller, more easily solvated molecules, it is likely that the Conray 

solution is more miscible with the PPODA-QT phase than iohexol-containing 

Omnipaque. Conray’s heightened miscibility means that there is a greater 

capacity for widespread ion transfer, resulting in numerous reaction initiation 

sites and a more rapid “global” cross-linking event than is possible for a less 

miscible aqueous solution. 

Furthermore, if Conray is better integrated with the PPODA-QT organic 

phase, it is more likely that Conray-formulated gels will retain their in vivo radio-

opacity better than Omnipaque-formulated gels. Since iohexol is less able to 

integrate with the organic phase, it is present only within the dispersed aqueous 

phase droplets. Over time, the contents of droplets will “wash out” into the 

bloodstream as blood contacts the polymer. If the radio-opaque molecule is only 

present within aqueous droplets, such as iohexol, then the material will lose 

radio-opacity to some degree. The integration of contrast-providing molecules 

within the organic phase in Conray-formulated gels should protect against this 

loss of radio-opacity. 



  42 

 

2.4.4 Effect of Solubility on the Gelling Process 

During the course of mechanical mixing, it is assumed that aqueous 

droplets are reduced to equal sizes, regardless of material formulation. This 

assumption reflects identical mixing conditions. Given the small droplet sizes and 

convective transfer, ion flux between droplets and the organic phase is assumed 

to be identical, unless there are differences in the number of available -OH ions. 

However, solubility differences will also alter the amount of ions that reach the 

organic phase. A greater number of ions will contact the organic phase through 

dissolution of the more soluble contrast agent, which will significantly increase 

the number of reaction initiation sites in the organic phase.  

In Omnipaque-formulated gels, there are much fewer initiation sites in the 

organic phase due to the low miscibility of Omnipaque in PPODA-QT. Therefore, 

increasing the mixing time affects gelling kinetics by creating more initiation sites 

through convective ion transfer. Even with longer mixing, the number of reaction 

initiation sites is suspected to be much less than in Conray-formulated gels.  

Since fewer reaction sites are created during mixing for Omnipaque-

formulated materials, ion flux from post-mixed droplets dominates the reaction 

kinetics. These post-mixed droplets are allowed to coalesce for a longer period of 

time because of the long 1o region of slow material viscosity increase (Figure 

2.5). During this time, the organic phase viscosity is not high enough to 

completely inhibit droplet coalescence, resulting in the presence of large 

droplets. Large coalesced droplets, paired with fewer reaction initiation sites in 

the organic phase, could lead to a reverse emulsion system where coalesced 

droplets provide “local” reaction initiation sites at phase boundaries. This 
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supports a slow, but prolonged initial viscosity increase, because local reaction 

sites may not cause the entire material viscosity to change rapidly at first.  

However, as the reaction progresses,  local reaction sites will eventually 

“link up” with other local reaction sites, resulting in rapid material viscosity 

increase caused by network formation (2o region). After network formation is 

complete, the material viscosity reaches a maximum and the gelling process is 

finished (4o region).  

Comparatively, a more soluble aqueous phase shows different viscosity 

profile behavior. As expected, the initial viscosity increase is gradual, where 

monomers are reacting and droplets are able to coalesce without being hindered 

by high continuous phase viscosities. Due to Conray’s enhanced miscibility, there 

are a greater number of reaction initiation sites in the bulk, which cause network 

formation to happen much sooner. Following network formation, there is a region 

of gradually increasing viscosity (3o region), which is missing from Omnipaque 

gels. This gradual viscosity increase may happen as a result of the rapidness of 

the “global” cross-linking event. When global cross-linking occurs, all of the end-

groups on PPODA and QT may not have yet reacted, but are immobilized in the 

cross-linked gel. After immobilization, many of the end-groups eventually react, 

but the speed of this process would be inhibited due to lack of mobility. The 

observable phenomenon here is that the rate of viscosity increase slows, 

resulting in the gradual 3o region seen in Figure 2.5.  

The lack of mobility of end groups after global network formation in 

Conray-formulated gels may also account for the fact that Conray-formulated 

gels do not reach as high of a final viscosity as Omnipaque-formulated gels. It is 
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unlikely that the same degree of cross-linking is achievable for gels that have 

immobilized unreacted end-groups, even if many of them do eventually react.    

While this theory explains the gelling behavior of PPODA-QT gels made 

with Conray at pH 10.8 and Omnipaque at pH 12.2, there still may be a 

discrepancy regarding the number of available -OH ions, which could potentially 

alter the gelling process. For example, it is possible that if the pH of Omnipaque 

is increased, then resulting PPODA-QT gels may also undergo a rapid “global” 

cross-linking event and show the same viscosity profile seen for gels made with 

Conray at pH 10.8. In order to verify that the viscosity profiles are distinct for gels 

made with each contrast agent regardless of pH, rheological analysis was 

performed on PPODA-QT gels made with Omnipaque at pH 13.0 mixed for 0.5 

minutes. The resulting viscosity profile, displayed with curves of gels made with 

Conray pH 10.8 and Omnipaque pH 12.2 (both 0.5 minute mix) are shown in 

Figure 2.9. From this figure, it is apparent that both of the Omnipaque-formulated 

gels have a similar viscosity profiles even though gels made with Omnipaque at 

pH 13.0 gel much faster (4.3 ± 0.59 min vs. 22.2 ± 0.68 min). Consequently, 

neither Omnipaque curve shows a 3o region of gradual viscosity increase, which 

is characteristic of Conray-formulated gels. 
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Figure 2.9 Viscosity profile of faster gelling Omnipaque formulation. PPODA-QT 

gels are made with Conray at pH 10.8 (black line), Omnipaque at pH 12.2 (light 

grey line), and Omnipaque at pH 13.0 (grey dashed line). Average gel time ± 

standard deviation is shown on each curve, with n=3 replicates per group. 

 

This analysis demonstrates that the manner in which gelling progresses 

in PPODA-QT gels is dominated by the composition of the initiating solution 

rather than the amount of free -OH ions present, even though the gel time itself is 

affected by the -OH concentration. 

 

2.5 Conclusion 

These results suggest that Conray is more soluble in the PPODA-QT 

organic phase, allowing for widespread reaction initiation. For this formulation, 

reaction kinetics are dominated by processes that occur as a result of enhanced 

solubility of the aqueous initiating solution in the organic phase. Due to a higher 

number of initiation sites, the “global” cross-linking event happens sooner than 
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when using Omnipaque at pH 12.2. After network formation, the reaction is 

slowed due to immobility of the reactive end groups on each polymer. At the end 

of the reaction, however, the material does reach a final viscosity no more groups 

are able to react.  

Omnipaque seems to be less soluble in the organic phase. This results in 

a “localized” reaction effect where viscosity increase is gradual until locally 

reacted sites “link up” to form a completely cross-linked gel. The “localized” 

reaction sites are dominated by ion flux from post-mixed, coalescing droplets. 

While network formation takes longer to occur in Omnipaque-formulated gels 

made with pH 12.2, the rate of reaction is much faster once cross-linking begins, 

since global cross-linking occurs after local sites have fully reacted. As a result, 

there are likely fewer unreacted end groups in Omnipaque-formulated gels, 

giving rise to their observed higher final viscosity values. 
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Chapter 3: IN VITRO DELIVERY, CYTOTOXICITY, SWELLING, AND 

DEGRADATION BEHAVIOR OF A LIQUID-TO-SOLID GELLING POLYMER 

SYSTEM FOR CEREBRAL ANEURYSM EMBOLIZATION 

 

3.1 Introduction 

Embolic materials are commonly used to occlude cerebral aneurysms by 

endovascular delivery through a microcatheter. Endovascular procedures are 

less invasive than open surgical aneurysm treatment and are therefore routinely 

applied to many types of cerebral aneurysms (Byrne, Molyneux, and Brennan 

1995; Brilstra et al. 1999; Friedman et al. 2003; Henkes et al. 2004; Cekirge et al. 

2006). There are a variety of embolic materials on the market including standard 

platinum coils, “bioactive” coils which generally contain a biocompatible polymer 

filling or coating (Murayama, Tateshima, et al. 2003; Cloft and Kallmes 2004; 

Bendszus and Solymosi 2006; Kang et al. 2007) and the precipitation-based 

copolymer material, Onyx® (eV3, Irvine, CA) (Murayama et al. 1998; Weber et al. 

2005; Velat et al. 2008). 

Platinum coil embolization is considered to be the gold standard of 

endovascular cerebral aneurysm treatment. However, coils have a tendency to 

compact in the aneurysm dome in 15-35% of treated cerebral aneurysms 

(Cognard et al. 1998; Cognard et al. 1999; Molyneux 2002; Murayama, Nien, et 

al. 2003; Raymond, Guilbert, et al. 2003; Henkes et al. 2004; Kurre and 

Berkefeld 2008; Ries and Groden 2009), which can lead to reperfusion of blood 

flow into the aneurysm and recanalization with the potential for eventual 

aneurysm rupture. Recanalization is especially common after treating wide-

necked and giant aneurysms, with recanalization rates of 25-50% (Cognard et al. 
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1999; Hayakawa et al. 2000; Hope, Byrne, and Molyneux 1999) and 35-70%, 

respectively (Murayama, Nien, et al. 2003; Sluzewski, Menovsky, et al. 2003; van 

Rooij and Sluzewski 2007). Recanalization is likely related to the relatively low 

packing density achievable during coil placement, generally ~30% of the 

aneurysm volume (Piotin et al. 2000; Cloft and Kallmes 2004; Fiorella, 

Albuquerque, and McDougall 2006). However, packing densities are even lower 

for wide-necked and giant aneurysms (Kawanabe et al. 2001; Murayama, Nien, 

et al. 2003; Sluzewski, Menovsky, et al. 2003; Slob 2005).  

The Onyx ® Liquid Embolic System can achieve higher filling 

percentages, but this system has other drawbacks, such as co-delivery of an 

angiotoxic organic solvent (dimethyl sulfoxide, DMSO) that is used to dissolve 

the copolymer prior to injection. DMSO has been has been associated with 

vessel necrosis and vasospasm when injected too quickly (Murayama et al. 

1998; Chaloupka et al. 1999; Pamuk et al. 2005). As a result, Onyx must be 

delivered slowly. The delivery procedure requires multiple cycles of endovascular 

balloon inflation during Onyx injection, then balloon deflation and re-perfusion 

such that the organic solvent can diffuse away safely. The result is an even 

longer procedure time than coiling (Molyneux et al. 2004; de Gast et al. 2008) as 

well as increased risk of damaging the vessel wall during balloon cycling (Mawad 

et al. 2002). Recent studies have also reported that Onyx tends to migrate after 

embolization, increasing the chances of inadvertently occluding the parent artery 

(Molyneux et al. 2004; Piske et al. 2009; Struffert et al. 2008; Simon, Eskioglu, et 

al. 2010). 

Calcium alginate has also been investigated as an endovascular material 

for cerebral aneurysm embolization (Raymond, Metcalfe, et al. 2003; Soga et al. 
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2004; Becker et al. 2007). Like Onyx, this material is not capable of a true liquid 

delivery because the components react at the end of the delivery catheter and 

are extruded in a strand-like form or in globular form into the aneurysm sac. It 

has been suggested that calcium alginate embolization therefore may work 

similarly to coils, where a blood clot forms around the calcium alginate “strings” to 

occlude the aneurysm volume. This system would also likely be prone to 

recanalization as is seen with coils, especially since alginate is softer and thus 

potentially more amenable to compaction than coils (Raymond, Metcalfe, et al. 

2003). However, Becker et al. (2007) showed successful embolization after 3 

months using a swine lateral wall aneurysm model. Aneurysms were embolized 

with alginate under balloon protection, resulting in initial complete occlusion and 

sustained occlusion at 3 months, with moderate thrombus formation within the 

aneurysm. In this study, two of the 8 aneurysms required multiple delivery 

attempts to achieve a complete initial fill. In these two cases, the main drawback 

observed with calcium alginate was that the liquid-to-solid gel transition was very 

rapid, and the additional amount of injected calcium alginate did not coalesce into 

the existing alginate mass, but produced material separation between the 

sequential injections, allowing blood to seep into the space (Becker et al. 2007). 

An ideal embolic material for cerebral aneurysm embolization would be 

able to fill the entire aneurysm volume through a true liquid delivery, without co-

delivery of organic solvents. Furthermore, the material should allow a 

straightforward, controlled, one-time delivery in which complete or near complete 

filling is achieved.  

To address such aims, we have developed a water-based, in situ cross-

linking polymer system for cerebral aneurysm embolization (Vernon et al. 2003; 
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McLemore, Preul, and Vernon 2006; Riley et al. 2011). The polymer system is 

composed of liquid monomers poly(propylene glycol) diacrylate and 

pentaerythritol tetrakis(3-mercaptopropionate), which undergo a cross-linking 

reaction when mixed with a basic aqueous solution. Before monomers form a 

cross-linked network, there is a window in which the viscosity is low enough to 

deliver the polymer using a non-invasive method. This material can be delivered 

as a true liquid, whereby the gelling reaction is completed once inside the 

aneurysm. This advantage allows for complete aneurysm volume filling and 

conformation to the aneurysm shape without the use of organic solvents.  

In this work, two different formulations were examined, in which the 

initiating solution is a commercially available liquid contrast agent, either 

ConrayTM or OmnipaqueTM 300. Crucial for successful delivery, embolic materials 

must be radio-opaque for visualization during clinical delivery. Incorporating 

contrast agents into the PPODA-QT system fulfills this requirement. Previous 

work has shown that incorporating ConrayTM or OmnipaqueTM 300 into the 

PPODA-QT system produces different gelling kinetics, which has implications for 

deliverability (Riley et al. 2011). This study aims to identify a number of in vitro 

characteristics of gels made with different contrast agents, which will help identify 

an optimal formulation for cerebral aneurysm embolization. The material 

properties investigated here include mock delivery into an aneurysm model to 

assess delivery feasibility, a cytotoxicity analysis, as well as characterization of 

material swelling and degradation.   

 

3.2 Materials and Methods 
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3.2.1 Polymer System Formulation 

The polymer system consists of a liquid mixture of two organic monomers 

that cross-link to form a solid network through Michael-type addition chemistry, 

described in detail previously (Vernon et al. 2003; McLemore, Preul, and Vernon 

2006; Riley et al. 2011). Poly(propylene glycol) diacrylate, ~Mw 900 (PPODA) 

and pentaerythritol tetrakis(3-mercaptopropionate), abbreviated QT (both 

purchased from Sigma, St. Louis MO), were combined with an equal number of 

functional groups.. The monomer components and reaction scheme are shown in 

Figure 3.1. Once syringe-mixed for 30 seconds to create a homogeneous phase, 

the liquid organic monomers are syringe-mixed with a basic initiating solution to 

start the reaction. In this work, commercially available injectable contrast agents 

were pH-adjusted with 5N sodium hydroxide and used as the initiating solution. 

 

 

Figure 3.1 Components and reaction scheme. (A) Poly(propylene glycol) 

diacrylate, (PPODA) Mw≈900; (B) Pentaerythritol tetrakis(3-mercaptopropionate), 
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(QT) Mw≈488; (C) Michael-type addition reaction. Deprotonated thiol 

nucleophilically attacks acrylate group. 

 

ConrayTM (Mallinckrodt, St. Louis, MO) and OmnipaqueTM 300 (GE 

Healthcare, Princeton, NJ) were the injectable contrast agents used in this work. 

ConrayTM is a high osmolar, ionic contrast agent, while OmnipaqueTM 300 (GE 

Healthcare, Princeton, NJ) is considered a low osmolar, nonionic contrast agent.  

Based on previous work (Riley et al. 2011), ConrayTM was adjusted to pH 11.0 

and OmnipaqueTM 300 was adjusted to pH 12.6 in order to achieve gelling in the 

range of 5-20 minutes, measured by rheology. These gel times are tailorable, 

where increasing the pH of the contrast agent speeds the gel time. In order to 

obtain information about how mixing duration (mixing time) affects in vitro 

properties, a wider range of gel times (5-20 minutes) was evaluated since shorter 

mixing duration results in slower gel times (McLemore, Preul, and Vernon 2006; 

Riley et al. 2011). In a clinical setting, a faster gelling formulation (~5-10 minutes) 

would be more appropriate.  

Sample preparation was done by first weighing and aliquoting each 

component. The final gel concentration was 75% (wt.) organic components and 

25% (wt.) aqueous contrast agent. For the mock delivery model, components 

were aliquoted into 1cc syringes: PPODA=1.08 g; QT=0.293 g; contrast=0.458 g. 

For cytotoxicity, swelling, and degradation experiments, components were 

aliquoted into 3cc syringes as follows: PPODA=1.80g; QT=0.488g; 

Contrast=0.763g. Prior to cytotoxicity experiments, all precursors were sterilized 

with 0.2 µm syringe filtration, then weighed, aliquoted, and mixed in a sterile 

environment.  
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Once aliquoted, air was purged from all component syringes. The 

PPODA- and QT-containing syringes were mixed for 30 seconds (pre-mix) using 

a luer-loc syringe coupler to attach syringes. After the pre-mix, the organic 

mixture was pushed into one syringe, and the empty syringe was replaced with 

the contrast-containing syringe (either Conray or Omnipaque). Mixing in the 

contrast agent marked the beginning of the “mix time”, chosen to be either 0.5 or 

1.5 minutes. All mixing was performed at ~3 syringe strokes/second. 

 

3.2.2 Rheological Testing 

Previous studies investigating rheology of PPODA-QT formulations with 

Conray and Omnipaque showed low sample-to-sample variability with respect to 

sample gel time, with standard deviations ranging from 0.1-0.3 minutes for 

Conray gels, and 0.7-2 minutes for Omnipaque formulations (Riley et al. 2011). 

In this study, only one gel time experiment was done per formulation. Rheology 

was performed by an oscillatory time sweep at 22oC with a constant frequency of 

1 Hz and constant stress of 10 Pa. Gel time was determined to be the time when 

the phase angle (δ) equals 45o, indicating that the sample has an equal 

proportion of solid-like and liquid-like properties (Vernon et al. 2000; Blakely et al. 

2010; Riley et al. 2011) 

 

3.2.3 Delivery Feasibility 

In vitro delivery of the polymer system into a glass aneurysm model was 

performed as a “proof of concept” experiment to assess feasibility of delivery. 

The experimental setup shown in Figure 3.2 was designed to mimic embolization 
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in vivo, with the added benefit of being able to visualize the material as it filled 

the glass aneurysm.  

 

 

Figure 3.2 Mock delivery into a glass aneurysm model. (A) System set-up. 

Catheters were introduced to the system through the catheter entry port and 

positioned in the 10 mm glass aneurysm. (B) Prior to polymer delivery, the 

endovascular balloon was inflated, securing the delivery catheter tip within the 

aneurysm. During delivery, the balloon prevented the polymer from flowing into 

the glass “parent artery”, containing it within the aneurysm volume. 

 

The glass aneurysm model consists of a sidewall aneurysm with a 10 mm 

diameter neck opening and a 10 mm parent vessel diameter. Before occluding 

the glass aneurysm, a balloon catheter (HyperGlideTM,Micro Therapeutics) was 
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inflated across the aneurysm neck to contain the polymer system prior to cross-

linking, displayed in Figure 3.2B. As shown here, the tip of the delivery catheter 

(RenegadeTM, Boston Scientific) was positioned inside the aneurysm before 

balloon inflation. After the balloon was properly inflated, the polymer system was 

delivered. For this experiment, the polymer system was formulated with Conray 

at pH 11.0 as described above, and delivered to the glass aneurysm immediately 

after completing a 1.5-minute mix. 

 

3.2.4 Cytotoxicity 

The cytotoxic effects of pH-adjusted Conray and Omnipaque, both alone 

and within the PPODA-QT polymer system, were examined through direct and 

indirect cytotoxicity testing using a cell proliferation assay. 3T3 fibroblast cells 

were seeded in 24-well plates at 5000 cells/well for 1 day prior to exposure to 

experimental materials. Cells were cultured in Dulbecco’s Modified Essential 

Medium (DMEM), supplemented with 5% calf serum, 1% L-glutamine, and 1% 

penicillin/streptomycin. Cells were maintained in a 37oC incubator with 5% CO2. 

Material precursors (PPODA, QT, and contrast agents) were sterilized in a 

biosafety cabinet by passing each precursor through a sterile 2-µm syringe filter 

before use.  

A direct cytotoxicity experiment was performed to determine the effect of 

each pH-adjusted contrast agent on cell proliferation. For each experimental 

group (n=4), 50 µL of contrast was added to 1 mL of cell culture media. 

Treatment groups included non-pH adjusted Conray and Omnipaque (at pH 7.4), 

as well as Conray at pH 11.0 and Omnipaque at pH 12.6, which are the pH levels 

used to make PPODA-QT gels. After 3 days in direct contact, cells were assayed 
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using the Promega CellTiter 96® Cell Proliferation Assay performed according to 

manufacturer instructions, followed by reading the absorbance at 490 nm using a 

FLOstar Omega microplate reader (BMG Labtech; Offenburg, Germany). 

Positive control wells (n=4) contained cells and culture media only, while 

negative control wells (n=4) contained only media (no cells). The amount of 50 

µL was chosen such that the amount of contrast directly contacting cells would 

be slightly greater than would be available from indirect gel exposure, as 

described in the subsequent section. Therefore, the direct contrast exposure 

experiment represents a “worst-case-scenario” challenge for cells when exposed 

to contrast agents.  

In order to assess the effect of gel eluates on growing cells, an indirect 

assay was performed. Gels were made aseptically with either Conray or 

Omnipaque and mixed for either 0.5 or 1.5 minutes, as described previously. 

Once mixed, 0.5 mL of the mixed material was injected into 8-µm Transwell® 

inserts and allowed to react for 10 minutes (Conray gels) or 30 minutes 

(Omnipaque gels). For each experimental group (n=4) gel-containing inserts 

were then placed in the cell-seeded 24-well plate, such that the cell culture media 

contacted the inserts’ 8-µm pores. Positive and negative control wells (n=4 each) 

were included as previously mentioned. After 3 days of incubation with gel-

containing inserts, the proliferation assay was performed. 

For both the direct and indirect cytotoxicity experiment, a standard curve 

was created to determine number of cells in each well after the proliferation 

assay. Cell proliferation was represented as percent of cell viability resulting after 

the treatment, with all values scaled to the 100% viability of positive control wells. 
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3.2.5 Swelling 

The swelling ratio was determined for Conray- and Omnipaque-

formulated gels mixed for 0.5 and 1.5 minutes. The swelling ratio (u), shown 

below, is an adaptation of the swelling ratio (q) described by Vernon et al. (2004). 

In this work, the swelling ratio (u) represents the percent of the sample’s weight 

increase over time when compared to the sample’s original weight after 

formulation. 

 

𝑢 = �
𝑊𝑠 −  𝑊𝑖

𝑊𝑖
� × 100% 

 

Gels were prepared with Conray and Omnipaque and allowed to solidify 

in the syringe for ~60 minutes before removal. All gels had a diameter of 8 mm 

(inner diameter of 3cc syringe). Samples were cut into lengths of ~7.5 mm and 

randomly divided into n=3 samples per group. Samples were placed in a 15 mL 

vials filled with 5 mL of 150 mM phosphate buffered saline (PBS), replaced every 

2 weeks.  

Time points of 1 day, 1 month, 4 months, 8 months, and 10 months were 

examined. Each time point contained two sets of samples, one placed at 37oC to 

simulate body temperature and the other at 50oC to represent accelerated 

swelling conditions. At each time point, a sample’s weight was measured 

gravimetrically. A total of 40 sets of n=3 samples were prepared: 

 

2 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝐴𝑔𝑒𝑛𝑡𝑠 ×
2 𝑀𝑖𝑥 𝑇𝑖𝑚𝑒𝑠 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝐴𝑔𝑒𝑛𝑡
×

5 𝑇𝑖𝑚𝑒 𝑃𝑡𝑠.
𝑀𝑖𝑥 𝑇𝑖𝑚𝑒

×
2 𝑇𝑒𝑚𝑝𝑠.
𝑇𝑖𝑚𝑒 𝑃𝑡𝑠.

= 40 𝑆𝑒𝑡𝑠 
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Each sample was weighed before placement in PBS to determine its 

initial weight, Wi at time t=0. At each subsequent time point, the sample weight, 

Ws, was measured and recorded. 

 

3.2.6 Degradation 

The same samples used for swelling determination were also used for 

examining degradation characteristics. Young’s modulus has been shown to be 

directly correlated with cross-link density in the PPODA-QT system (Birdno and 

Vernon 2004). Calculating the Young’s modulus at different times allowed us to 

track the progression of material hydrolysis. After measuring the weight at each 

designated time point, samples underwent compression testing using a Sintech 

1/S load frame with a speed of 20 mm/min. Results from 50oC samples 

represented accelerated degradation conditions. 

The Young’s modulus for each sample was calculated from compression 

data as the slope within the linear region of the resulting stress vs. strain curve. 

Strain and stress were calculated as follows: 

 

𝑆𝑡𝑟𝑎𝑖𝑛 =
ℎ0 −  ℎ
ℎ0

 

 

𝑆𝑡𝑟𝑒𝑠𝑠 (𝑀𝑃𝑎) =
𝐹 × ℎ
𝐴0 × ℎ0

 

 

Where h0 was the initial sample height (mm) and h (mm) was the 

compressed height at a given applied load. In the strain equation, F was the 

applied load (N) and A0 (mm2) was the sample’s compressed surface area. 
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3.2.7 Statistical Analysis 

A one-way analysis of variance (ANOVA) was used in cytotoxicity, 

swelling, and degradation experiments. One-way ANOVA was chosen over a 

two-way ANOVA because our previous research has shown that gels formulated 

with Omnipaque and Conray have different modes of reaction kinetics (Riley et 

al. 2011). As a result, each contrast agent and mix time combination acts more 

like an independent formulation as opposed to a consistent formulation where the 

level of a variable is changed. A significance level of α = 0.05 was used.   

For direct the cytotoxicity experiment, one-way ANOVA was used to 

determine if pH level of each contrast agent affected resulting cell viability. In the 

indirect experiment, a one-way ANOVA was used to determine cell viability 

differences between each gel formulation (contrast agent at prescribed mix time). 

A post-hoc Tukey’s multiple comparison test was performed to identify individual 

differences, using a 95% confidence interval to determine significant differences. 

For the swelling experiment, swelling ratios of each formulation were compared 

at different time points using one-way ANOVA. This statistical analysis implies 

that a gel made with a specific contrast agent at a given mix time held at a 

prescribed temperature can be considered a unique formulation. Similarly, 

Young’s moduli results from the degradation study were compared for different 

formulations at a time point using the one-way ANOVA.  

For comparison of one treatment group over time (for both swelling and 

degradation), we also used one-way ANOVA. Had the same samples been 

measured at each time point, repeated-measures ANOVA would have been 

appropriate. However, because different samples were measured at different 
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time points within a unique treatment group (samples destroyed by compression 

testing at each time point), one-way ANOVA was used.   

 

3.3 Results 

 

3.3.1 Rheological Testing 

Results from rheology showed that at pH 11, Conray gels have a gel time 

(δ=45o) of 6.6 minutes with a 0.5 minute mix time, and 6.0 minutes with a 1.5 

minute mix time. Onmipaque gels have gelling times of 18.8 minutes when mixed 

for 0.5 minutes, and 13.6 minutes when mixed for 1.5 minutes. 

 

3.3.2 Delivery Feasibility 

This “proof-of-concept” experiment was done using the polymer system 

formulated with Conray at pH 11.0 and mixed for 1.5 minutes. This formulation 

represents the most challenging delivery case because it has the fastest gel time 

of all formulations, and thus was more likely to present delivery issues. The 

material was delivered to the aneurysm immediately after completing the 1.5-

minute mix. The panel of images in Figure 3.3 shows delivery of the material over 

time. The procedure was free of complications and allowed for a one-time, 

continuous delivery resulting in complete filling of the model aneurysm in ~1 

minute. 
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Figure 3.3 Delivery feasibility experiment. PPODA-QT gel formulated Conray at 

pH 11.0, and mixed for 1.5 minutes was delivered to the model aneurysm.  Filling 

progresses in time from panels A-F, where no filling has occurred in A, and F is 

completely filled. 

 

3.3.3 Cytotoxicity 

Figure 3.4A shows the percent cell viability for each treatment group 

when 50 µL of contrast agent was added to the experimental wells. Results are 

reported as a percentage of the positive control cells, which were taken to 

represent 100% viability. Along with percent viability, representative images of 

each treatment group are shown at 20X magnification. 

Both Conray formulations significantly hindered cell proliferation 

compared to the positive control, resulting in only 5.1% ± 2.1% viability when 

Conray at pH 7.4 was added, while the pH 11.0 Conray solution resulted in 2.2% 

± 1.8% viability. Omnipaque at pH 12.6 also hindered cell growth, showing 1.1% 

± 2.1% viability. When Omnipaque at pH 7.4 was added, the result was 73% ± 

23% viability, statistically lower than the positive control yet significantly greater 
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than all other treatment groups, by Tukey’s comparison with a 95% confidence 

interval. The corresponding 20X image shows that these cells have retained 

normal morphology, while cells exposed to other treatments are not growing 

normally.  

Percent viability data for indirect gel exposure is displayed in Figure 3.4B, 

along with 20X magnification images of cells from each treatment group. This 

figure shows that while they still have significantly less proliferation than the 

control group, gel formulations made with Conray using a 1.5 minute mix (72% ± 

14% viability) and a 0.5 minute mix (69% ± 6.0% viability) resulted in significantly 

greater cell viability than gels formulated with Omnipaque. Omnipaque gels 

mixed for 1.5 minutes produced 19% ± 15% cell viability, and the 0.5 minute mix 

formulation resulted in 1.1% ± 1.4% viability. Both Conray gel formulations show 

resulting cell morphology similar to that of the positive control cells, while 

Omnipaque gel formulations are rounded and have few attachments. 
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Figure 3.4 Cytotoxicity assays. Cytotoxicity assays were performed using a 

proliferation assay on 3T3 fibroblast cells after 3-day incubation with the 

treatment. The positive control group corresponds with 100% cell viability. 
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Assays included: (A) Direct exposure to 50 µL of a contrast agent, at physiologic 

pH (7.4) or adjusted to the pH level used in making PPODA-QT gels; and (B) 

indirect exposure to PPODA-QT gels made with high-pH contrast agents. 

Components were mixed, then injected into cell culture inserts with 8 µm pores. 

The mixture was allowed to solidify and then placed in contact with the media of 

growing 3T3 cells. Corresponding 20X images taken after the 3-day incubation 

are shown below each treatment group. 

 

3.3.4 Swelling 

The swelling ratio was calculated for gels made with Conray and 

Omnipaque, mixed for 0.5 minutes or 1.5 minutes. Swelling ratios were examined 

at two different temperatures, 37oC representing physiologic conditions, and 

50oC representing accelerated swelling conditions. Swelling ratio was calculated 

as the percent increase in the polymer’s weight over time, when exposed to 150 

mM PBS. This polymer system takes up water over time, resulting in weight gain 

and swelling of the sample. Results of the swelling experiment are shown in 

Figure 3.5. 

 



  65 

 

Figure 3.5 Swelling results. Swelling ratio represents the percent increase in 

weight of a polymer sample as a result of water uptake over time in Conray-

formulated gels (black lines) and Omnipaque-formulated gels (grey lines). Solid 

lines represent samples maintained under 37oC conditions, while dotted lines 

represent samples kept at 50oC. Formulations with different mix times are 

distinguished by data point markers, where (o) represents a mix time of 0.5 

minutes, and (х) represents a mix time of 1.5 minutes. 

 

At one month, all polymer samples at both temperatures show similar 

levels of swelling, with Conray formulations clustered around ~35% weight 

increase, and Omnipaque formulations near ~25% weight increase. There are 

statistical differences between some treatment groups, but in general, Conray 

gels have a statistically higher swelling ratio than Omnipaque gels at 1 month.  

At 4 months, the differentiation between groups is more striking. All 

Conray-formulated gels have statistically higher swelling ratios (~50%) than all 

Omnipaque-formulated gels (~35%), regardless of mix time and temperature. 
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Furthermore, there were no statistical differences between formulations within 

the Omnipaque group, indicating that temperature and mix time do not affect the 

swelling ratio of Omnipaque gels at 4 months. Gels formulated with Conray, 

however, showed statistically higher swelling ratios for formulations at 50oC. The 

1.5 minute mix formulation at 50oC had statistically different swelling ratios than 

all other Conray formulations except the 0.5 minute mix formulation at 50oC.  

The 8-month swelling data highlights greater differences within the 

Conray-formulated gels, which show statistical differences in swelling between 

temperatures, but not mix times. Conray gels (both 0.5 and 1.5 minute mixes) 

kept at 50oC show statistically greater weight increases (~90%) than their 37oC 

counterparts (~54%). Similar to the 4-month data, Omnipaque gels at 8 months 

do not show statistical differences in swelling between formulations, maintaining 

a weight increase of ~35%. These statistical trends were maintained throughout 

the remainder of the experiment, showing that swelling of Conray gels is highly 

dependent on temperature, while different temperatures did not affect the 

swelling of Omnipaque gels. 

 

3.3.5 Degradation 

Degradation was monitored by testing the compressive strength of gel 

samples over time, when exposed to 150 mM PBS, both at 37oC and 50oC. At 

each time point, the Young’s modulus was calculated from compression data. 

Young’s modulus has been shown to be related to cross-link density of these 

gels, so tracking the Young’s modulus over time serves as a proxy for monitoring 

hydrolytic degradation of the PPODA-QT polymer system.  
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Degradation data is shown in Figure 3.6. Results from samples held at 

37oC are shown in plot A, while 50oC results are displayed in plot B. At 37oC, the 

Young’s moduli of Omnipaque gels are not statistically different from each other 

at all time points, at ~2.4 MPa. Conray gels at 37oC show a greater difference in 

Young’s modulus with mix time, where gels made with a 0.5 minute mix gels 

maintain an average Young’s modulus of 2.3 MPa over time, showing no 

statistically significant differences over the 10-month span. The 37oC 1.5-minute 

mixed Conray gels shown no statistical differences in Young’s modulus before 10 

months, with an average value of 2.0 MPa, which significantly drops to 1.4 MPa 

at 10 months. All samples at 37oC show no statistical differences in Young’s 

modulus at each time point until 8 and 10 months, when the Young’s modulus of 

the 1.5-minute mixed Conray gels becomes significantly lower than that of the 

Omnipaque gels.  

Degradation of the 50oC samples is shown in Figure 3.6B. Between 

treatment groups, No statistical differences in Young’s modulus were observed at 

each time point until 8 months, when the Conray-formulated gels showed a 

significant drop in Young’s modulus (to ~0.50 MPa) compared to Omnipaque 

gels (~1.9 MPa), which was sustained at 10 months. This figure shows that under 

accelerated conditions, Conray-formulated gels tend to degrade faster than 

Omnipaque-formulated gels. Furthermore, mixing time does not appear to play a 

large part in degradation kinetics within each contrast-agent formulation. 
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Figure 3.6 Degradation results. The Young’s modulus for each formulation is 

shown over time, when samples were kept at (A) 37oC, and (B) 50oC. Conray-

formulated gels are shown in black and Omnipaque-formulated gels are shown in 

grey. Formulations with different mix times are distinguished by data point 

markers, where (o) represents a mix time of 0.5 minutes, and (х) represents a 

mix time of 1.5 minutes. 

 

3.4 Discussion 

Due to the highly hydrophobic nature of the organic phase, the PPODA-

QT gelling system forms a reverse emulsion when an aqueous initiating phase is 

introduced. At 75% of the material composition, the hydrophobic PPODA and QT 

monomers make up the continuous phase, while the high-pH aqueous solution is 

dispersed into droplets (Vernon et al. 2003; McLemore, Preul, and Vernon 2006; 

Riley et al. 2011). Diffusion of -OH groups from the aqueous droplets into the 

organic phase initiates the addition reaction between PPODA and QT, eventually 

leading to network formation and resulting in solidification of the material. When 

different contrast agents are incorporated, it has been shown that the gelling 

process is dependent on the contrast agent used. The underlying chemical 
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reactions do not change, but composition of the contrast agent results in 

differences in the large-scale gelling kinetics between formulations.  

It was previously found that Conray-formulated gels exhibit rapid, wide-

spread global cross-linking, in which network formation allows the entire material 

to take on solid characteristics rapidly, even though chemical cross-linking 

between PPODA and QT is not fully complete. Unreacted monomers are 

essentially immobilized in the network and eventually react with other nearby 

monomers, evidenced by a long period of slow viscosity increase after the 

network formation event (Riley et al. 2011).  

In contrast, Omnipaque-formulated gels seem to first cross-link in local 

satellite regions, followed by a network formation event only when these regions 

grow large enough to connect with other locally cross-linked regions. This results 

in a long period of very low viscosity, in which local regions become highly cross-

linked, followed by a sharp increase to the material’s final viscosity when the 

local regions “link-up” (Riley et al. 2011). 

Differences in large-scale gelling kinetics indicate that PPODA-QT gels 

made with either Conray or Omnipaque may also show differences in in vitro 

behavior. This study was focused on identifying certain in vitro characteristics of 

each gel formulation that have practical implications treating cerebral aneurysms. 

Specifically, investigation of delivery feasibility, cytotoxicity, swelling, and 

degradation characteristics of PPODA-QT gels formulated with either Conray or 

Omnipaque were performed. 

 

3.4.1 Delivery Feasibility 
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Endovascular delivery is the cornerstone of this polymer system’s 

applicability in cerebral aneurysm treatment. The material must be deliverable 

through a microcatheter in order to be useful. Therefore, a mock embolization 

experiment was performed using a glass aneurysm model. The delivery catheter 

was typical of those used in embolization procedures, employing a balloon 

catheter for parent vessel protection as would be done in vivo when using a liquid 

embolic material. From rheology, it was found that the formulation made with 

Conray (pH 11) mixed for 1.5-minutes would be the most challenging case 

because it reached the gel time faster than all other formulations, potentially 

being too viscous to deliver through a small catheter. During the experiment, the 

gel was delivered by hand (no syringe pump) immediately after the 1.5-minute 

mix, resulting in smooth delivery through the microcatheter, even with the 6-

minute gel time. The experimental aneurysm was filled in ~1 minute.  

Since the Conray formulation was easily delivered to the model 

aneurysm, the Omnipaque formulation would also be assumed to be easily 

deliverable. Subsequent mock deliveries using the Omnipaque gel formulation 

have proven smooth delivery as well. 

 

3.4.2 Cytotoxicity: Implications for In Vivo Use 

The effect of the PPODA-QT gelling system on locally growing cells is an 

important consideration when determining a more optimal formulation to use in 

vivo. Cytotoxicity experiments performed in this study represent more challenging 

conditions than would be present in vivo, due to incubating cells with the contrast 

agent or gel formulation for 3 days without replacing the cell culture media. 

However, this study did highlight important differences between formulations. 
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The direct exposure study involved placing Conray and Omnipaque, either pH 

7.4 or adjusted to the level used in gels, directly into contact with growing 3T3 

cells. Conray at pH 7.4 and 11.0 was shown to be highly detrimental to cell 

proliferation. Omnipaque, however, was only severely toxic at pH 12.6, while the 

pH 7.4 case showed relatively low cell cytotoxicity. These results do not mean 

that commercially available Conray and Omnipaque are unsafe. These results 

simply set a baseline of how 3T3 cells respond to Conray and Omnipaque for the 

purposes of this specific “worst-case-scenario” experiment. 

Given the cytotoxic nature of Conray alone, one might expect that in the 

gel exposure study, the Conay-formulated gel would be at least as toxic as the 

Omnipaque-formulated gel. However, this was not observed—Conray gel 

formulations showed significantly less cytotoxicity than Omnipaque gels. This 

outcome can be attributed to the differences in large-scale gelling kinetics 

between the Conray- and Omnipaque-formulated gels. The rapid global network 

formation occurring in Conray gels works to immobilize unreacted monomers as 

well as the aqueous Conray phase. Therefore, most potentially toxic constitutions 

are initially trapped in the network and cause only limited cytotoxicity over the 3-

day exposure period. Omnipaque-formulated gels do not undergo rapid, global 

network formation, so potentially toxic components are not immediately trapped 

within the gel. While local cross-linking should be occurring uniformly, it is 

possible that some regions, including regions in contact with the inserts, may not 

have completely cross-linked. These regions would not necessarily be 

immobilized when network formation occurs, leading to an influx of high-pH 

Omnipaque into cell culture media during the 3-day exposure period and 

resulting in extensive cytotoxicity. 
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The initial cytotoxicity results obtained from these experiments are a 

worst-case estimate of a potential in vivo response. However, it is possible that 

limiting the initial cytotoxicity is key to producing an effective aneurysm treatment. 

The goal of all aneurysm embolization is not only to fully occlude the aneurysm 

volume, but also to facilitate neointimal tissue growth over the embolic material. 

This physiologic “barrier” will better protect the aneurysm from blood reperfusion 

and thus further reduce the aneurysm’s risk of future rupture compared to cases 

in which neointimal tissue growth is absent (Abrahams et al. 2001; Metcalfe et al. 

2003; Murayama, Tateshima, et al. 2003). Therefore, a PPODA-QT gel 

formulation that shows better initial biocompatibility may also be better-equipped 

to facilitate desired neointimal tissue growth. 

 

3.4.3 Swelling: Implications for In Vivo Use 

Conray gels show greater swelling than Omnipaque formulations, and 

greater sensitivity to temperature. At 37oC, the swelling of Conray gels increased 

by ~58% after 10 months, but increased by ~120% under 50oC conditions. In 

vivo, of course, the temperature will be consistent at 37oC, but the 50oC case 

shows that Conray gels have the capability of swelling more than Omnipaque 

gels, which did not show much difference in swelling at either temperature, 

swelling by only 30%-40% after 10 months.  

The differences seen here can be explained by the gelling kinetics as 

well. The rapid global network formation event associated with Conray-

formulated gels results in immobilization of components before completely cross-

linked. While many monomers do cross-link after network formation occurs, there 

are some that do not. Omnipaque-formulated gels undergo extensive local cross-
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linking initially, so when the local sites link up to form the network, there are 

fewer unreacted functional groups. The degree of cross-linking in Omnipaque 

gels is higher than in Conray gels, which, as expected, leads to greater swelling 

and more temperature dependence in Conray-formulated gels. 

In general, swelling is an undesirable characteristic of an embolic material 

for aneurysm treatment. A saccular aneurysm results from the “ballooning out” a 

weakened arterial region. Placement of a material into that weakened region, 

followed by uncontrollable or unexpected swelling, will cause a pressure increase 

on the aneurysm wall and may lead to aneurysm rupture. Therefore, 

characterizing the swelling properties of embolic materials is necessary. It is not 

known how much swelling is considered too much for an aneurysm, because it is 

likely to vary aneurysm-to-aneurysm.  

Swelling was calculated as the percent increase in polymer weight over 

time. Polymer samples in 150 mM PBS took up water over time, increasing their 

mass. This weight gain can be directly equated to an increase in volume using 

the density of water. The increase in polymer volume over time can be related to 

a change in polymer dimension as well. Assuming that the polymer system is 

delivered to a perfectly spherical aneurysm, thus taking on a perfectly spherical 

shape, the expected volume increase can be used to estimate the diameter 

change in the swelled state. For Conray-formulated gels at 37oC, the final 

swelling increased by ~58%. A 58% increase in spherical volume results in a 

17% increase in the polymer radius. For a commonly sized 7 mm-diameter 

aneurysm, the new polymer diameter would be 8.15 mm in the swelled state 

occurring over 10 months. Omnipaque-formulated gels increased in volume by 

~35% at 37oC, which would result in a 10.5% increase in sphere radius. For a 7 
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mm aneurysm, this volume increase results in a new polymer diameter of 7.74 

mm. The difference in new diameter between a swelled Conray gel (8.15 mm) 

and a swelled Omnipaque gel (7.74 mm) in a 7-mm aneurysm is only 0.41 mm. 

While this comparison does not address the issue of how much swelling is too 

much or quantify the osmotic pressure in the gel leading to the swelling, it does 

provide a way to compare the potential effects of swelling between these 

PPODA-QT formulations. However, the opposite effect of gel shrinkage would be 

detrimental for aneurysm embolization because a shrinking embolic material 

would facilitate aneurysm recanalization. 

In this experiment, in vitro conditions provided a “worst-case-scenario” for 

testing swelling properties. Gel samples were submerged in 150 mM PBS such 

that water penetration occurred over the entire surface area of the samples. In 

vivo, only the portion of gel exposed at the aneurysm neck would be in contact 

with blood in the parent vessel—a much smaller surface area for aqueous 

penetration. It is conceivable that while swelling will occur to some degree in 

vivo, it may require a longer time period to achieve the swelling ratios found in 

this study. 

 

3.4.4 Degradation: Implications for In Vivo Use 

The degradation experiment performed in this work is correlated to the 

swelling experiment, in that at each time point the same samples were first 

measured to collect swelling data, then compressed for mechanical strength 

analysis. Therefore, one would expect to see similar trends between the swelling 

and degradation results for each gel formulation. At 37oC, the degradation results 

are difficult to distinguish, with Conray and Omnipaque formulations showing 
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similar Young’s moduli. At 10 months the gap widens somewhat, where the 

Conry 1.5-minute mix formulation shows lower mechanical strength. Eventually, 

because Conray gels have a lower starting cross-link density than Omnipaque 

gels, they would be expected to degrade faster. The 50oC condition provides 

proof of this hypothesis, since this state represents accelerated degradation 

conditions. In this case, faster degradation of the Conray-formulated samples is 

observed, clearly distinguishable by 8 months. 

Embolic agents are designed to be non-degradable in order to provide 

long term structural support within the aneurysm. Problems arise when a void is 

left in a treated aneurysm volume, as commonly happens when coils compact. 

The PPODA-QT formulations discussed here can be considered non-degradable, 

in the sense that they do not undergo rapid degradation in the manner of 

hydrogels designed specifically for fast degradation. Degradation occurring within 

the PPODA-QT system at 37oC is slow, on the order of many months or even 

years. Even in the 50oC case, when the Conray-formulated gels show a drop in 

Young’s modulus from ~2.25 MPa to ~0.1 MPa over the 10-month study period, 

the gel itself remains intact in its original shape, albeit visibly swelled.  

The degradation analysis performed here provides sound evidence that 

long periods of time are required to weaken PPODA-QT gels through hydrolysis. 

Even when significantly weakened over the course of the experiment, gels 

maintained their shape. Furthermore, as previously mentioned, these in vitro 

experiments provide “worst-case-scenario” conditions that lead to more 

pronounced and more rapid mechanical degradation than would actually be seen 

in vivo. 
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3.5 Conclusion 

In this study, pertinent in vitro behavior of PPODA-QT gels formulated 

with Conray and Omnipaque was examined, as related to their potential use in 

cerebral aneurysm treatment. Delivery feasibility, cytotoxicity, swelling, and 

degradation behavior of different gel formulations were examined. Conray-

formulated gels showed better initial biocompatibility, while also responding with 

greater long-term swelling and more rapid degradation when compared to 

Omnipaque gel formulations. Initially, biocompatibility may play a vital role in 

successful in vivo treatment, where a less cytotoxic formulation may be more 

capable of facilitating neointimal cell growth over the material. Swelling and 

degradation are longer-term considerations, since these responses are 

significant after months rather than days.  

In general, these cytotoxicity, swelling, and degradation experiments can 

be considered “challenge” situations because the observed responses were 

more pronounced that they would likely be in vivo. Overall, the benefits and 

drawbacks of both formulations must be weighed in order to determine an 

optimal formulation. Initial cytotoxicity data may be more important than the 

longer-term swelling and degradation behavior, since those responses will be 

much less pronounced in vivo, especially if neointimal tissue growth occurs. The 

new tissue layer would prevent direct fluid penetration, further delaying the 

effects of both polymer swelling and degradation. For these reasons, Conray-

formulated gels may be better-equipped to encourage in vivo neointimal tissue 

growth, which would help minimize potential concerns of excessive swelling and 

degradation of the polymer system. 
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Chapter 4: IN VIVO ANEURYSM EMBOLIZATON IN A SWINE LATERAL WALL 

ANEURYSM MODEL: ONE MONTH BIOCOMPATIBILITY AND DELIVERY 

STRATEGY ANALYSIS  

 

4.1 Introduction 

Treatment of cerebral aneurysms was revolutionized in the early 1990s, 

when improvements in embolic devices, namely endovascular coils, allowed 

endovascular embolization to become mainstream. Less invasive than surgical 

intervention, endovascular treatment is routine and preferred for many types of 

cerebral aneurysms (Byrne, Molyneux, and Brennan 1995; Brilstra et al. 1999; 

Friedman et al. 2003; Henkes et al. 2004; Cekierge et al. 2006). Many types of 

embolic materials are now on the market, including a variety of endovascular 

coils (Murayama, Tateshima, et al. 2003; Cloft and Kallmes 2004; Soga et al. 

2004; Bendszus, Bartsch, and Solymosi 2007; Kang et al. 2007). There is only 

one liquid delivery system approved for aneurysms, Onyx® (eV3, Irvine, CA), 

which is a precipitation-based system employing ethylene vinyl alcohol 

copolymer (EVOH) and dimethyl sulfoxide (DMSO). 

However, these materials are not ideal. Coil embolization is considered 

the most effective endovascular aneurysm treatment, yet coils tend to compact 

over time and have a significant rate of recanalization, especially after treating 

giant aneurysms (35-70% recanalization rate) and wide-necked aneurysms (25-

50% recanalization rate) (Cognard et al. 1999; Hope, Byrne, and Molyneux 1999; 

Hayakawa et al. 2000; Murayama, Nien, et al. 2003; Sluzewski, Menovsky, et al. 

2003; van Rooij and Slizewski 2007; Youn et al. 2010). This phenomenon is 

likely related to the low packing density achievable during coil placement (Piotin 
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et al. 2000; Kawanabe et al. 2001; Sluzewski et al. 2004; Slob, Sluzewski, and 

van Rooij 2005). Advancements to traditional coil technology have included a 

hydrogel filling or coating, designed to swell and therefore occlude more of the 

aneurysm space than bare coils. However, coated coils have not actually 

translated into consistent improvements, over bare coils (Niimi et al. 2006; Cloft 

2007; White and Raymond 2008). 

In principle, greater aneurysm volume filling can be achieved by liquid 

systems. Initial clinical experience with Onyx has shown an improvement in 

recanalization rates over coils for large and giant aneurysms (Molyneux et al. 

2004; Piske et al. 2009). However, Onyx has significant drawbacks that make it 

less appealing. Onyx involves co-delivery of DMSO, which is used to dissolve the 

EVOH copolymer. When delivered too quickly, DMSO has been shown to induce 

vessel necrosis and cause vasospasm (Murayama et al. 1998; Chaloupka et al. 

1999; Pamuk et al. 2005). As a result of co-formulation with DMSO, EVOH liquid 

must be delivered very slowly and in stages, making for a challenging delivery 

technique (Molyneux et al. 2004; Struffert et al. 2008).  

An ideal embolic material for endovascular delivery would be able to 

achieve complete or near-complete aneurysm volume filling initially, which 

cannot be done with coils. Furthermore, an ideal embolic agent would not 

necessitate formulation with organic solvents, given their potential angiotoxicity. 

Another critical aspect of an ideal embolic agent is that it can be administered in 

a straightforward manner, requiring only a short, one-time delivery technique. To 

date, there are no such materials on the market for cerebral aneurysm 

embolization. 
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In the quest for a better embolic material, we have developed a water-

based, in situ gelling polymer system based on poly(propylene glycol) diacrylate 

(PPODA) and pentaerythritol tetrakis(3-mercaptopropionate) (QT). The PPODA-

QT material possesses advantages in liquid-to-solid gelling characteristics that 

allow for endovascular delivery with a similar degree of aneurysm volume filling 

as EVOH, but without using a partner system such as an organic solvent. As a 

result, delivery technique associated with PPODA-QT is more straightforward, 

without requiring the material to be delivered over prolonged stages.  

The terms “delivery technique” and “delivery strategy” have very specific 

definitions in the context of this work. Delivery technique refers to the manner in 

which a liquid embolic is delivered through a catheter to the aneurysm, relating to 

its inherent material properties or characteristics. Delivery strategy refers to a 

method of aneurysm embolization, regardless of embolic agent used.  

This work reports the first in vivo investigation of PPODA-QT in 

experimental aneurysm models. The aims of this study were to (1) determine the 

initial biocompatibility behavior of PPODA-QT in a large (i.e. human gauge) 

animal aneurysm model, and (2) identify a delivery strategy suitable for PPODA-

QT in order to maximize the potential benefits of the material. Delivery strategies 

examined were: complete (100%) aneurysm filling with PPODA-QT, sub-

complete (80-90%) aneurysm filling with PPODA-QT, and a combination 

treatment involving placement of a framing coil followed by PPODA-QT 

embolization. 

 

4.2 Materials and Methods 
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4.2.1 PPODA-QT Formulation 

Formulation of PPODA-QT involves two multi-functional hydrophobic 

monomers poly(propylene glycol) diacrylate (PPODA) and  pentaerythritol 

tetrakis(3-mercaptopropionate) (QT), shown in Figure 4.1. These monomers are 

mixed in equimolar ratios of reactive groups. A basic initiating solution is 

introduced to begin Michael-type addition between PPODA and QT (Figure 

4.1C). As described by Riley et al. (2011), radio-opacity can be incorporated into 

the polymer system through the use of a liquid contrast agent, which can replace 

the basic initiating solution by simply increasing the pH of the contrast agent. The 

optimized formulation of this polymer system was used in the experiments 

reported here. 

 

 

Figure 4.1 Components and reaction scheme. (A) Poly(propylene glycol) 

diacrylate, also called PPODA; (B) Pentaerythritol tetrakis(3-

mercaptopropionate), also called QT; (C) Michael-type addition reaction. 

Deprotonated thiol group of QT nucleophilically attacks acrylate group of 

PPODA. 
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Poly(propylene glycol) diacrylate, Mw ~900 (PPODA), and pentaerythritol 

tetrakis(3-mercaptopropionate) (QT) were purchased from Sigma (St. Louis MO). 

The liquid contrast agent used in this work was iothalamate meglumine 

(ConrayTM, Mallinckrodt, St. Louis, MO), a high osmolar, ionic contrast agent. 

Conray was adjusted to pH ~11.0 with 5N sodium hydroxide (NaOH), based on 

parameters investigated in previous work (Riley et al. 2011). The addition of 

NaOH did not negatively affect radio-opacity of the solution or the resulting gels.  

To begin the reaction, each component was weighed and aliquoted in a 

sterile environment after filtration through 0.2 µm syringe filters. Components 

were measured and aliquoted into 1cc syringes such that final concentrations 

were 75% (wt.) organic components and 25% (wt.) aqueous contrast agent. For 

these experiments, 0.293g of QT was syringe-mixed with 1.08g of PPODA using 

a luer-loc syringe coupler to attach component syringes. After 30 seconds of 

mixing, 0.458g of Conray at pH 11 was introduced. Conray was mixed in with the 

organic components for 2 minutes.  

The gel time of PPODA-QT was determined using parallel plate rheology 

on a Physica MCR 101 rheometer (Anton Paar, Graz, Austria). A total of n=3 

samples were mixed as described above, and then placed on the rheometer. An 

oscillation time sweep was performed at 25oC with a constant stress of 10 Pa 

and constant frequency of 1 Hz. The gel time was taken to be the time at which 

the phase angle, δ, reached 45o. A phase angle of 90o represents a purely 

viscous liquid, while 0o is considered an elastic solid. Therefore, a phase angle of 

45o represents the point at which the polymer material has an equal proportion of 
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solid-like and liquid-like properties, and is commonly used to define the gel point. 

The average and standard deviation of gel time for n=3 samples was calculated. 

 

4.2.2 Surgical and Endovascular Procedures 

The animal studies reported in this work were approved by the 

Institutional Animal Care and Use Committee at Barrow Neurological Institute 

and are in line with guidelines as set forth by the USDA, NIH, and AAALAC. 

Aneurysms were surgically created in the right common carotid artery of adult 

Yorkshire swine (~130 pounds) as previously described (Becker et al. 2007). A 

lateral wall carotid artery aneurysm was created by making a 10 cm incision on 

the right side of the animal’s neck to access the right common carotid artery and 

external jugular vein (EJV). A 2 cm section of the EJV was removed and sewn 

over a 5 mm opening made in the common carotid artery in order to form the 

aneurysm sac. Resulting aneurysms were oval shaped with neck diameters of 5-

6 mm, heights of 5-8 mm, and largest width dimensions of 7-12 mm. Animals 

were intubated and anesthetized with and maintained on 2% isoflurane plus 

oxygen during the procedure. Animals were given 3000 IU IV bolus of heparin 

immediately after conclusion of aneurysm construction and prior to embolization, 

with heparin maintenance of 500 IU IV every 30 minutes during the embolization-

angiographic procedure. Post-operative aspirin was given orally at a dose of 

81.25 mg/day. 

Experimental aneurysms were embolized immediately after creation via a 

standard endovascular access procedure through the right femoral artery. 

Catheters were housed in an 8-French guide catheter for introduction into the 

vasculature. Embolization procedures were performed by first directing the filling 
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catheter (RenegadeTM Hi-Flo, Boston Scientific) to the aneurysm and placing the 

tip inside the aneurysm sac. Next, the 30-mm balloon catheter (HyperGlideTM, 

eV3) was inflated across the aneurysm neck. Upon delivery of PPODA-QT, the 

inflated balloon prevented the polymer from flowing into the parent vessel until 

solidification occurred. Procedures involving a 3D coil (CASHMERETM 14, Micrus 

Endovascular) were done by depositing the coil prior to inflating the endovascular 

balloon, followed by balloon inflation during delivery of PPODA-QT to fill the 

remaining aneurysm volume. 

Control procedures, either coil embolization alone or no-treatment 

controls, were not performed due to published reports on outcomes of such 

treatments and our own experience. (Becker et al. 2007). Given the exploratory 

and small nature of this study, it was decided that these controls would not 

provide enough significant new information to justify the animal sacrifice. 

Furthermore, our study goals were not aimed at comparing effectiveness results 

to other treatments. 

 

4.2.3 Study Outline 

Three different PPODA-QT delivery strategies were investigated in this 

study, designed to have 3 surviving animals per treatment group, with a one-

month end point. Group 1: complete aneurysm filling with PPODA-QT; Group 2: 

sub-complete—80% to 90%—aneurysm filling with PPODA-QT; and, Group 3: 

placement of a 3D platinum coil followed by filling the remaining aneurysm 

volume with PPODA-QT. In all groups, aneurysm filling was achieved through 

visualization of PPODA-QT under digital subtraction angiography (DSA). For 

Group 2 aneurysms, the road-mapped aneurysm image was physically traced on 
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the viewing screen. Filling was performed such that 80-90% of the outlined 

angiogram (2D-image) was filled with the polymer.  

In all treatment groups, material leftover in the syringe (non-injected 

material) was monitored to gauge its degree of solidification. While PPODA-QT 

has been found to react more quickly at body temperature (McLemore, Preul, 

and Vernon 2006), monitoring was done at room temperature to ensure the 

polymer was suitably solidified upon deflation of the endovascular balloon. For 

each procedure, the balloon was inflated for ~15 minutes, during which time the 

polymer was mixed, delivered, and underwent solidification.  

Due to the goals of this study being determination of biocompatibility and 

a proper delivery mode, the gel time of PPODA-QT was purposefully set at a 

longer time than would be allowed for clinical use. The gel time of PPODA-QT is 

tailorable, meaning it can be further optimized to achieve shorter gel times, which 

would be more suitable in a clinical setting. However, because this was the first 

in vivo study using PPODA-QT and the goals of this study required successful 

material introduction, a procedure time of 15 minutes allowed enough flexibility in 

the delivery window during this first-time-use investigation. 

 

4.2.4 Analysis 

Outcomes from this study include each group’s animal survival rate, the 

degree of aneurysm occlusion immediately after the procedure and at one month 

post-embolization, as well as the thickness of neointimal tissue growth at the 

polymer-vessel interface. In each treatment group, experiments were performed 

such that 3 animals survived to the one month time point. Survival rate was 



  85 

calculated as the number of animals surviving divided by the total number of 

animals that underwent treatment.  

The degree of aneurysm occlusion was determined using the Raymond-

Roy classification system (Roy, Milot, and Raymond 2001). Class 1 indicates 

total obliteration, including the aneurysm neck. Class 2 means a residual neck is 

present, but there is no opacification of the aneurysm sac. Class 3 indicates that 

a residual aneurysm is present due to opacification of the aneurysm sac. The 

Raymond-Roy scale was used to classify angiograms at 30-minutes post-

embolization and at the end of the one month survival time. In Group 2, the 

degree of occlusion was further quantified to determine the percentage of 2D 

aneurysm space filled by the polymer. A spline area calculation program was 

developed in MATLAB to calculate percent aneurysm filling.  

Explanted aneurysms were macroscopically observed for the presence of 

new tissue growth in the ostium of PPODA-QT filled aneurysms, followed by 

histological verification. Prior to histology, Group 1 and 2 samples were fixed in 

10% formaldehyde and sent to the Medical College of Georgia (Augusta, GA) for 

paraffin embedding, sectioning, and staining. Samples were stained with 

hematoxilin and eosin (H&E) and Masson’s trichrome. Group 3 samples were 

fixed in 70% ethanol and sent to TAACH Pathology (Phoenix, AZ) for plastic 

embedding, sectioning, and proprietary staining. Explanted Group 3 samples 

were processed differently from Group 1 and Group 2 due to presence of the 

platinum coils, which required a different sectioning protocol. The thickness of 

neointimal tissue over the aneurysm neck was measured from histology images 

at 10X magnification. Two slides per treatment group underwent neointimal 
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tissue thickness measurements, with n=5 measurements per slide. Statistical 

analysis (one-way ANOVA) was performed between treatment groups. 

 

4.3 Results 

 

4.3.1 PPODA-QT Formulation 

Previous studies with PPODA-QT have shown that the gel time kinetics 

are reproducible and have low sample-to-sample variability (Riley et al. 2011). In 

the current study, rheological analysis for gels formulated with Conray at pH 11.0 

and mixed for 2 minutes resulted in gel times of 10.2 ± 0.5 minutes. 

 

4.3.2 Overall Study Results 

Results from the one month studies are summarized in Table 4.1. The 

important outcomes of this study include the animal survival rate, degree of 

occlusion at 30 minutes and at one month post-embolization, as well as the 

presence of neointimal tissue in the ostium. From Table 4.1, the most obvious 

concerns arise from the Group 1 survival rate of 60%. This was directly related to 

the delivery strategy, where the target of 100% aneurysm filling resulted in 2/5 

aneurysm model failures. Further explanation of this outcome can be found in the 

discussion. 

 

Table 4.1 One Month Study Results 
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* 2 animals died in Group 1 due to aneurysm model failure 5-7 days after the 

embolization procedure. 

ǂ Another animal was initially included in this group, but died due to excessive 

clotting complications the same day of embolization. This response was 

anomalous to the study and therefore the animal was removed from the study 

group.  

 

Groups 2 and 3 resulted in 100% animal survival and complete 

angiographic occlusion at one month. Representative angiographic images from 

each treatment group are shown in Figure 4.2. These images show angiograms 

before embolization, immediately after the procedure, and at one month post-

embolization. Images of aneurysm neck regions from explanted samples are 

shown for representative groups in Figure 4.3, confirming the presence of 

neointimal tissue growth in all groups. However, more pronounced tissue 

coverage is visible in Groups 1 and 2 than in Group 3. Material in the parent 

vessel was seen only in Group 3. 
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Figure 4.2 Angiographic images of experimental aneurysms. Images show 

aneurysms before embolization (first column), immediately after embolization 

(second column), and one month post-embolization (third column), for each 

treatment group. 

 

 

Figure 4.3 Explanted aneurysms from each treatment group. The luminal side of 

the aneurysm neck/vessel interface has been exposed by cutting axially along 
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the opposite side of the vessel wall. Neointimal tissue growth over the aneurysm 

neck orifice can be seen in each image. Group 1 (A) and Group 2 (B) samples 

showed more complete tissue over growth than observed in Group 3 aneurysms 

(C) by macroscopic observation. 

 

Initial filling percentages for aneurysms in Group 2 are displayed in Table 

4.2. Given the sub-complete (<100%) occlusion in Group 2 aneurysms, yet their 

complete angiographic occlusion at one month, PPODA-QT showed positive 

progressive occlusion behavior without resulting in parent artery occlusion in any 

Group 2 sample. 

 

Table 4.2 Aneurysm Volume Filling Percent in Group 2 Animals 

 

 

4.3.3 Neointimal Tissue Growth Analysis 

Figures 4.4 and 4.5 show histological images from a representative 

Group 2 sample stained with Masson’s Trichrome and H&E, respectively. These 

images highlight NI tissue growth in the aneurysm neck region. 
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Figure 4.4 Histology image of a Group 2 aneurysm. Tissue was stained with 

Masson’s Trichrome and viewed at 8X (A) and 50X (B) magnification. (A) Cross-

sectional slice of the aneurysm has been reconstructed from a series of images 

at 8X magnification. The tissue “flaps” at the top of (A) make up the original 

parent vessel, bisected for macroscopic observation. (B) NI tissue growth in the 

ostium at 50X magnification. At the PPODA-QT interface (bottom insert), a thin 

layer of blood (arrow) transitions into a dense collagen layer. Tissue closer to the 

parent vessel interface (top insert) has much less collagen, but contains fibrous 

neointimal tissue (arrowheads). 
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Figure 4.5 Neoendothelial layer over a Group 2 aneurysm. Sample is stained 

with H&E, at 20X and 200X magnification. The neoendothelial cell layer is 

present at the luminal interface (arrowhead). The internal elastic lamina of the 

parent vessel is also visible (arrow), as well as the region of initial NI tissue 

growth from the parent vessel over the neck region (*).  

 

Neointimal tissue thickness measurements for each treatment group are 

shown in Figure 4.6. This graph shows similar thicknesses across all treatment 

groups, with Group 1 displaying the most variability in measurements, as a result 

of one replicate that showed significantly more tissue growth than others. Group 

average measurements are as follows: Group 1) 1.55 ± 0.88 mm; Group 2) 1.43 

± 0.51 mm; Group 3) 0.44 ± 0.38 mm.  
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Figure 4.6 Neointimal  tissue thickness measurements. A total of n=10 

measurements were taken per aneurysm with 3 aneurysms per treatment group, 

except for Group 3. One aneurysm sample in Group 3 did not show any 

measurable NI tissue thickness. Average group measurements are: Group 1) 

1.55 ± 0.88 mm; Group 2) 1.43 ± 0.51 mm; Group 3), 0.44 ± 0.39 mm. Statistical 

testing found that NI tissue thickness measurement in Groups 1 and 2 were not 

significantly different (p=0.53), but showed significantly thicker NI tissue growth 

than Group 3 (p<0.001).  

 

Only two of the 3 explanted aneurysm replicate samples in Group 3 

showed NI tissue growth over the ostium that could be measured. One sample 

showed little if any NI tissue over the ostium, which is shown in Figure 4.7. In 

fact, during tissue processing the coil ejected itself through the still patent 

aneurysmal ostium. This sample was recorded as not showing NI tissue 
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overgrowth. Statistical testing found that Group 1 and 2 were not significantly 

different from each other (p=0.53), but both groups showed significantly more NI 

tissue growth than Group 3 (p<0.001). A marked difference was noted in Group 3 

in that there remained spaces and channels within the aneurysm with tenuous 

adhesions attached to the coil strands. 

 

 

Figure 4.7 Explanted Group 3 aneurysm with no measurable NI tissue in the 

ostium. This sample also displays a considerable amount of PPODA-QT in the 

parent vessel, likely hindering NI tissue growth in the ostial region. 

 

4.4 Discussion 

 

4.4.1 PPODA-QT System for Aneurysm Embolization 

PPODA-QT is a novel liquid-to-solid gelling material with ideal properties 

for cerebral aneurysm embolization. PPODA-QT transitions from a liquid into a 

solid by cross-linking of PPODA and QT monomers, catalyzed in the presence of 

free -OH groups. In formulating the gel, sufficient -OH levels can be incorporated 

by increasing the pH of an aqueous buffer. After mixing all components together, 

PPODA and QT begin to react, and developing first into growing polymer chains, 

and then into  a solid network over time. The speed of reaction can be increased 
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or decreased by changing the pH of the aqueous solution, with higher pH leading 

to faster gel times. The aqueous solution used for PPODA-QT formulation was 

the contrast agent Conray. Once the pH of Conray was increased to an 

appropriate level, it was mixed in with PPODA and QT to form the gel. This 

Conray-formulated system provided fluoroscopic visibility of the gel in vivo.  

PPODA-QT can be delivered through a single catheter once all 

components are mixed together. In-depth characterization of PPODA-QT has 

shown that there is a delivery window available in which PPODA-QT can be 

administered as a liquid. The duration of the delivery window is dependent on the 

material gel time, and is therefore also tailorable. As the chemical reaction 

progresses, the PPODA-QT gel becomes an elastic solid, showing substantial 

cross-linking and high viscoelastic strength (Vernon et al. 2003; McLemore, 

Preul, and Vernon 2006; Riley et al. 2011), capable of withstanding the forces of 

blood flow. 

 

4.4.2 PPODA-QT Delivery Technique vs. Other Liquid Embolics 

The PPODA-QT system is different than any other liquid embolic that has 

been used clinically. This study was not designed to take particular aim at Onyx, 

but because EVOH is the only available liquid embolic system currently available 

in the United States, it naturally assumes a role for comparative relevance. We 

also compare the delivery technique of PPODA-QT to delivery of the calcium 

alginate gelling system, which has been investigated previously for aneurysm 

embolization and used in a small number of patients (Becker and Kipke 2001; 

Raymond, Metcalfe, et al. 2003; Soga et al. 2004; Becker et al. 2007). 
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4.4.2.1 EVOH-DMSO Delivery Technique Comparison 

 In contrast to the EVOH-DMSO system, PPODA-QT is a self-contained 

gelling system. The solidification reaction used in PPODA-QT is “self-reactive” in 

that the catalyst (free -OH groups) is formulated into the gelling system. With 

Onyx, EVOH solidifies only when DMSO is allowed to diffuse away. In this 

respect, Onyx uses polymer deposition to achieve formation of a solid material, 

while PPODA-QT chemically cross-links into a solid over time, once components 

are mixed. 

Delivery of EVOH is performed very slowly in staged fashions, so that 

DMSO can diffuse away and Onyx can cure. EVOH-DMSO is injected for a 

period of time while the endovascular balloon is inflated, followed by periods of 

balloon deflation and reperfusion. This process is repeated until a sufficient 

amount of EVOH is delivered to occlude the aneurysm. While this technique 

does promote safe delivery of the copolymer, it results in a technically 

challenging procedure and prolonged procedure times, with an average of about 

95 minutes, as reported in the CAMEO trial (Molyneux et al. 2004; Struffert et al. 

2008). 

 

4.4.2.2 Calcium Alginate Delivery Technique Comparison 

Similarly to the EVOH-DMSO system, calcium alginate is a precipitation-

based system, composed of a naturally occurring copolymer (alginate) that 

cross-links to form a gel matrix in the presence of divalent ions, such as calcium. 

This gelling system was first investigated for endovascular delivery by Becker 

and Kipke (2001). In order for the material to gel in situ, the liquid alginate 

precursor must be co-delivered with an ionic solution. Aqueous calcium chloride 
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(CaCl2) was employed for this purpose. Co-delivery of alginate and CaCl2 was 

accomplished by using a double-lumen catheter so that components did not react 

prior to leaving the delivery catheter. Once mixed, however, Ca2+ integrated into 

the alginate, resulting in rapid cross-linking (Becker et al. 2005; Becker et al. 

2007). While the advantages of this system include low material toxicity and 

formation of a “tissue-like” gel, it has inherent delivery challenges as well.  

From our experience with calcium alginate, although biocompatibility 

aspects were favorable, the rapid cross-linking of this material is problematic for 

delivery purposes. Because cross-linking happens so rapidly, filling the aneurysm 

was the result of a “one-shot” injection. Although in most instances the 

experimental aneurysms were filled well, problems with incremental alginate 

delivery occurred upon the delivery of additional gel to an existing gel mass. The 

new alginate gel mass did not adhere to the already-delivered and cured gel. 

This outcome proved troublesome because blood was able to perfuse the spaces 

between alginate pieces, resulting in dislodgement of the alginate pieces 

(unpublished data).  

The PPODA-QT system, as already discussed, does not require or even 

permit incremental delivery. Because the gelling process of PPODA-QT is self-

contained, the aneurysm can be filled while the material is still in liquid form, 

which is impossible with calcium alginate and EVOH. As long as it is within the 

delivery window, PPODA-QT can be injected through a small catheter 

continuously, with the parent vessel under balloon protection as the liquid fills the 

aneurysm volume.  

In this study, PPODA-QT delivery was completed in 1-2 minutes in all 

animals. Because PPODA-QT has proven to have reproducible gelling kinetics 
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(Riley et al 2011), it solidifies in a predictable time frame. Furthermore, this time 

frame can be tailored to the needs of the procedure by adjusting the pH of the 

aqueous component. The uncomplicated delivery technique associated with 

PPODA-QT, as well as the absence of organic solvent delivery, may enhance 

clinical acceptance of this liquid embolic material. 

 

4.4.3 Study Goals and Controls 

 With these properties indicating an improvement in delivery technique 

over currently available liquid embolics, we aimed to evaluate initial 

biocompatibility as well as direct the future delivery strategy of PPODA-QT 

through this small scale study. This study was designed to assess two specific 

outcomes. The first study question was: does PPODA-QT show good initial 

biocompatibility in an in vivo aneurysm model? The second study question was: 

given its straightforward delivery technique, are there specific strategies for 

PPODA-QT delivery that stand out as potentially better or worse for future clinical 

use?  

One important note regarding study goals is that this first-time in vivo 

study was not meant to evaluate efficacy of the PPODA-QT compared to other 

treatment methods. There are not enough study subjects to make statistically 

valid comparisons to other studies, and we believe the swine animal model itself 

is not preferable for testing long term efficacy, although it is acceptable for short 

term survival studies in which material handling characteristics are evaluated at 

human gauge. We do report outcomes, such as occlusion scores and NI tissue 

thickness measurements between treatment groups, but these are tools for 

comparing between delivery strategies within this particular study.  
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Along these same lines, control groups were not deemed necessary. 

Previous studies, including our experience, have shown outcomes from 

untreated experimental lateral wall aneurysms, as well as coiled experimental 

aneurysms in swine, providing the necessary control information without having 

to use additional animals. These previously published reports and our experience 

indicate that experimental lateral wall aneurysms in swine are unstable when left 

untreated, being prone to either spontaneous thrombosis or rupture (Guglielmi et 

al. 1994; Byrne et al. 1997; Becker et al. 2007). Conversely, coiled aneurysms in 

the swine model have previously shown variable to moderate neointimal tissue 

coverage over time frames similar to our one-month study (Byrne et al. 1997; 

Murayama, Tateshima, et al. 2003). 

 

4.4.4 PPODA-QT Containment within Model Aneurysms 

 One of the main concerns neurointerventionalists have with using any 

liquid embolic material is the possibility of material escaping out of the aneurysm 

and blocking arteries downstream, without the ability to retrieve the material once 

it escapes. This is a valid concern due to the serious and potentially fatal 

consequences of such an event. However, the Onyx Liquid Embolic System has 

been used clinically since the early 2000s. Reported rates from large-scale 

clinical studies indicate that Onyx has comparable complication rates to 

endovascular coiling when comparing similar aneurysm populations (Molyneux et 

al. 2004).   

In our study, we report no instances of liquid PPODA-QT escaping past 

balloon protection before material solidification. The lateral wall aneurysm model 

used in this study is not representative of the tortuous vessel geometry that can 
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be associated with pathological aneurysms, but successful containment of 

PPODA-QT shown in this study may at least satisfy initial safety concerns. 

 

4.4.5 Initial In Vivo Biocompatibility 

Biocompatibility of PPODA-QT gels could have been analyzed using any 

in vivo model, but due to the parallel interest in assessing different delivery 

strategies with near human gauge, the lateral wall carotid artery aneurysm model 

in swine was used. Previous studies with PPODA-QT in a swine AVM model 

have shown good biocompatibility (McLemore, Preul, and Vernon 2006), so this 

study served to reconfirm positive biocompatibility outcomes in a swine 

aneurysm model. 

One month after embolization, macroscopic observation and histology 

analysis showed that PPODA-QT had no untoward effects on local tissue in the 

aneurysm region (Figure 4.4 and Figure 4.5). The swine model also allowed 

assessment of biocompatibility in terms of neointimal tissue response. Because 

swine are known for their aggressive clotting cascade and adept aneurysm 

healing after almost any embolic treatment, we were able to estimate potential 

toxicity of the PPODA-QT system by its affect on NI tissue growth. Groups 1 and 

2, in which PPODA-QT alone was delivered to aneurysms, showed a similar level 

of NI tissue thickness (Figure 4.6) as achieved with other embolic agents in the 

swine aneurysm model (>1000 µm) (Bouzeghrane et al. 2010). These results 

indicate that PPODA-QT does not hinder NI tissue growth in the neck region and 

therefore displays good biocompatibility at one month post-embolization. 

 

4.4.6 Delivery Strategy Analysis 
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4.4.6.1 Group 1: Complete Fill 

Complete obliteration of an aneurysm is the overarching goal in 

embolization treatment. One of the benchmarks used to assess an embolic 

material is its ability to completely prevent blood flow into the aneurysm 

immediately after delivery. This benchmark is monitored for all embolic agents, 

especially emerging therapies (Gallas et al. 2005; Cloft 2006; Bendszus, Bartsch, 

and Solymosi 2007; Geyik et al. 2007; Piske et al. 2009). Therefore, one of the 

delivery strategies used for PPODA-QT in this study was 100% aneurysm 

volume filling by the polymer. 

Group 1 (n=5) consisted of experimental aneurysms that were completely 

(100%) filled with PPODA-QT. The delivery technique involved continuous 

injection (1-2 min.) with an endovascular balloon inflated across the aneurysm 

neck until the aneurysm was completely filled. Once PPODA-QT was considered 

gelled, the balloon was deflated. Initial angiography in all Group 1 aneurysms 

showed total occlusion. While histology results of surviving animals showed 

excellent biocompatibility and considerable NI tissue growth, the main concern 

with this group was the low survival rate. 

In order to compare outcomes and histology results between all treatment 

groups in this study, 3 animals in each group were required to survive to the one 

month time point. However, during the study, two animals in Group 1 died 

prematurely, within 5-7 days of the embolization procedure. Two additional 

animals were placed in this group, which survived to one month, making the total 

number of animals in this group 5 instead of 3.     
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Autopsy of the two non-surviving animals showed that the aneurysm 

model had failed, but PPODA-QT was still in place within the aneurysm. This 

means that the material did not dislodge from the aneurysm and flow upstream 

and therefore permit blood flow to rupture the unfilled aneurysm. Instead, there is 

evidence that these two aneurysms failed as a result of overfilling aneurysms 

with PPODA-QT, rather than blood re-perfusion. If blood re-perfusion caused 

experimental aneurysms to rupture, the initially sub-completely filled aneurysms 

of Group 2 would have also showed rupture problems, but this was not the case.  

Overfilling experimental aneurysms is a likely cause of the observed 

aneurysm model failure in two of 5 Group 1 animals. Simply overstretching the 

surgically created aneurysm during PPODA-QT filling could have caused failure. 

During delivery, the endovascular balloon is inflated across the aneurysm neck to 

prevent PPODA-QT from escaping before it solidifies. Blood inside the aneurysm 

can escape around the balloon, but the more viscous polymer cannot. When 

attempting to fill the aneurysm to 100% capacity, there is a likelihood of 

stretching the surgically created aneurysm sac, which is a portion of the 

compliant external jugular vein, such that the stretched aneurysm volume is 

greater than the volume originally meant to be occluded. Because the 

endovascular balloon is physically keeping PPODA-QT within the aneurysm, the 

material is allowed to solidify even though the aneurysm walls are in an over-

stretched state. The perpetually stretched state of the surgically created 

aneurysm walls may result in tearing of the tissue. This would result in what looks 

like a ruptured aneurysm, because the “aneurysm” walls did in fact tear.  

If this sequence of events caused animal death in these two cases, the 

overstretching problem may be limited to experimentally created aneurysms. The 
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external jugular vein is more compliant than normal carotid arteries, and would 

likely be much more compliant than a pathological aneurysm. A pathological 

aneurysm is less likely to stretch, due to disruption of its internal elastic lamina 

(Meng et al. 2007), so complete angiographic occlusion would be seen before 

any stretching is allowed to occur.  

However, one concern with pathological aneurysms is that they may be 

very weak. It has been suggested that the intra-aneurysmal pressure (IAP) 

during delivery may be high enough to actually rupture the aneurysm. This is a 

concern when delivering any embolic device under balloon occlusion. Murayama 

et al. (2000) analyzed IAP during Onyx delivery in a swine model with balloon 

occlusion over the aneurysm neck and found a spike in IAP when 100% filling 

was attempted. However, they did indicate that sub-total occlusion of the 

aneurysm volume (80-90% filling) resulted in alleviation of high IAP during filling, 

even with the balloon in place. 

Another potential concern is the swelling behavior associated with 

PPODA-QT gels. In previous studies (described in Chapter 3) we have reported 

that PPODA-QT shows moderate in vitro swelling behavior at 37oC. Over the first 

7 days in a physiologically simulated environment (150 mM phosphate-buffered 

saline, PBS), PPODA-QT gels tend to swell by ~15% in volume. For a theoretical 

7-mm aneurysm that is perfectly spherical, this 15% volume increase actually 

results in a spherical diameter increase of 0.33 mm (increasing from 7.0 to7.33 

mm). It is unlikely that a 15% increase in PPODA-QT volume alone is enough to 

rupture an experimental aneurysm, especially one made of the compliant 

external jugular vein. Furthermore, this volume increase occurring over 7 days 

was measured under benchtop conditions, which are likely overestimates of 
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swelling that would occur in vivo. However, if the aneurysm is initially completely 

filled such that the aneurysm is stretched, subsequent gel swelling of 15% could 

cause rupture. Results from this experimental group highlight the potential safety 

concerns of filling aneurysms to 100% capacity with any material that may swell 

or expand. 

 

4.4.6.2 Group 2: Sub-complete Fill 

Previous studies with Onyx have shown that initially occluding 100% of 

the aneurysm volume may not be necessary to achieve complete aneurysm 

healing. A number of clinical reports have indicated that progressive volume 

occlusion of an aneurysm can be achieved with Onyx over time (Molyneux et al. 

2004; Piske et al. 2009). In our experience with calcium alginate in swine an 

canine models, sub-100% filling of the aneurysms resulted in excellent 

aneurysmal ostium healing. Taking this into consideration, this study also 

assessed the effect of sub-complete aneurysm volume filling with PPODA-QT, in 

order to determine if progressive aneurysm occlusion was possible. Of course, 

the swine model is known for its aggressive clotting cascade and robust healing 

after experimental aneurysm embolization (Dai, Ding, et al., “Histopathologic,” 

2005; Kadirvel et al. 2007; Raymond et al. 2007), but this model afforded proof-

of-concept information regarding whether progressive occlusion was possible or 

not. 

Group 2 aneurysms were filled with PPODA-QT such that 80-90% of the 

aneurysm volume was filled when visualized by DSA. All aneurysms in this group 

were completely obliterated by one month, and showed complete neointimal 

tissue growth over the aneurysm ostial regions. Results from this group indicate 
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that progressive occlusion of an aneurysm is achievable with PPODA-QT, even 

when some residual contrast filling of the aneurysm was seen immediately post-

embolization. Along with NI tissue thickness measurements, these aneurysms 

showed successful healing.  

Histology indicated that initially, blood does clot in response to contact 

with PPODA-QT (also seen in surviving Group 1 aneurysms), but this clot is mild 

and replaced by a fibrous capsule at the polymer interface by one month. Closer 

to the parent vessel, neointimal tissue becomes more organized and presents a 

neoendothelial cell layer at the parent vessel interface. While a mild clotting 

response is observed in response to the polymer, the clot was not problematic, 

did not propagate in the vessel, and tissue reorganization apparently worked to 

seal off the aneurysm from the vascular system resulting in a favorable healing 

surface at one month. 

Overall, the lack of undesirable outcomes resulting from Group 2 

aneurysms indicates that sub-complete occlusion with PPODA-QT may be a 

suitable delivery strategy for cerebral aneurysms. Given the size and nature of 

this study, no definite conclusions can be drawn, but results reported here at 

least suggest that initial sub-complete occlusion is worth exploring for future 

delivery of PPODA-QT. 

 

4.4.6.3 Group 3: Coil and Polymer Fill 

The final treatment group studied was a combination treatment including 

a single 3-dimensional platinum coil, followed by filling the remaining aneurysm 

volume with PPODA-QT. Initial studies with Onyx and coil combination 

treatments have indicated generally positive occlusion results, but not 



  105 

necessarily reduction in the occurrence of Onyx migration (Murayama et al. 

2000; Cekirge et al. 2006). Other investigational liquid embolics have employed 

this delivery scheme because the material itself is not adhesive or lacks flow-

resistance (viscoelastic strength)—such agents may perform better with a coil 

scaffold to anchor the material so it does not wash out of the aneurysm (Becker 

et al. 2007; Takao et al. 2009). While PPODA-QT gels show suitable viscoelastic 

strength to be used in aneurysm embolization, we wanted to examine the framing 

coil plus PPODA-QT combination treatment in order to determine if this delivery 

strategy is advantageous. 

Group 3 consisted of first placing a 3D framing coil into an experimental 

aneurysm, followed by attempting to completely fill the remaining space with 

PPODA-QT. Estimation of volume of PPODA-QT added to the aneurysm was 

difficult because of the radio-opacity differences between the coil and gel. 

Platinum coils are more radiographically dense than the PPODA-QT, which 

made PPODA-QT visibility difficult during delivery, a phenomena commonly 

when using a combination of coils and liquid embolics (Murauama et al. 2000; 

Takao et al. 2009). Furthermore, addition of PPODA-QT after coil placement may 

have resulted in adherence to the coil and less PPODA-QT penetration into the 

remaining aneurysm space, reducing the occurrence of aneurysm stretching. As 

a result, we believe the volume of PPODA-QT instilled was over-estimated during 

the procedure, and overfilling was not occurring.  

Although this delivery strategy resulted in 100% animal survival, 2 of 3 

aneurysms in Group 3 showed PPODA-QT present in the parent vessel upon 

sample explantation. This occurrence may be attributed to the coil acting as a 

“scaffold” for the polymer upon delivery. Takao et al. (2009) described the 
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scaffolding action of coils when delivering a thermo-gelling liquid polymer to an 

aneurysm, in which the thermo-gelling polymer adhered to coils first, allowing a 

faster and easier delivery. Upon contacting the coil, PPODA-QT may have stuck 

onto the metal, as alluded to previously. In the ostium, polymer adherence to 

coils could lead to PPODA-QT displacement into the parent vessel.  

In this study, while PPODA-QT migration was observed when used in 

conjunction with a coil, there were no instances of material migration when 

PPODA-QT was used alone. Migration into the parent vessel is one of the most 

common problems with Onyx embolization, occurring both alone and when used 

with a framing coil (Murayama et al. 2000; Struffert et al. 2008; Piske et al. 2009; 

Simon, Eskioglu, et al. 2010). Although the small animal numbers prevent firm 

conclusions, the absence of PPODA-QT migration when used alone has positive 

implications for using this material clinically in the future. 

 

4.5 Conclusion 

The experiments performed in this study were aimed at determining initial 

biocompatibility of PPODA-QT in an appropriate large animal aneurysm model, 

as well as experimenting with different delivery strategies in hopes of providing 

insight for future use of the polymer. These one-month studies indicated that 

PPODA-QT has favorable biocompatibility, given its ability to facilitate NI tissue 

overgrowth in a swine aneurysm model.  

Analysis of different delivery strategies provided valuable insight 

regarding potential concerns with using PPODA-QT, yet also unveiled a delivery 

strategy suitable for the polymer system. Filling experimental aneurysms to 100% 

capacity proved detrimental, given the propensity for aneurysm model stretching, 
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which resulted in failure of the experimental aneurysm in two of 5 cases, likely 

due to over-stressed aneurysm walls. Placement of a framing coil followed by 

aneurysm volume filling with PPODA-QT may counter the over-stretching 

problem, but resulted in the presence of excess PPODA-QT in the parent vessel 

in two of 3 samples. Sub-complete filling, to 80-90% of the aneurysm volume, 

resulted in the best filling strategy. Sub-completely filled aneurysms showed 

progressive occlusion, resulting in complete obliteration one month after 

embolization. It is possible that sub-complete filling of an aneurysm after 3D coil 

placement would minimize excess PPODA-QT in the parent vessel, yet still allow 

for progressive occlusion, but requires discriminatory visibility of materials during 

the procedure. 

This study successfully examined biocompatibility and delivery strategy 

when using PPODA-QT to embolize experimental aneurysms. However, this 

study did not assess long-term efficacy. In order to evaluate the initial 

effectiveness of PPODA-QT, a more clinically appropriate animal model must be 

employed, such as a canine aneurysm model (Raymond, Metcalfe, et al. 2003, 

Bouzeghrane et al. 2011). Furthermore, survival duration should be longer in 

order to capture data on healing and recanalization (Sluzewski, van Rooij, et al. 

2003). These initial studies indicate that PPODA-QT holds potential material 

advantages in a clinical realm where few similar materials have been 

successfully investigated, let alone employed for patient benefit. 
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Chapter 5: IN VIVO ANEURYSM EMBOLIZATION IN A CANINE LATERAL 

WALL ANEURYSM MODEL: A 6-MONTH PILOT STUDY 

 

5.1 Introduction 

The use of liquid embolics for cerebral aneurysm embolization has 

recently gained clinical acknowledgement. A liquid embolic material can be 

delivered through a microcatheter endovascularly, providing a non-invasive 

treatment option. Endovascular delivery of platinum coils is considered the “gold 

standard” of non-invasive cerebral aneurysm treatment, but coils tend to compact 

inside the aneurysm dome resulting in re-perfusion of the aneurysm in roughly 

15%-35% of cases (Cognard et al. 1998; Cognard et al. 1999; Molyneux 2002; 

Murayama, Nien, et al. 2003; Raymond, Guilbert, et al. 2003; Henkes et al. 2004; 

Kurre and Berkefeld 2008; Ries and Groden 2009).  

Liquid embolics have the advantage of achieving greater aneurysm 

volume filling than coils, because a liquid can conform to the contours of an 

aneurysm and the degree of filling is not limited by spatial and physical 

hinderances as it is with coils (Murayama et al. 2000; Mawad et al. 2002; 

Tamatani et al. 2002; Molyneux et al. 2004). Liquid embolics may be particularly 

useful for large/giant aneurysms as well as wide-necked aneurysms, which have 

recanalization rates after coil embolization between 35-70% and 25-50%, 

respectively (Cognard et al. 1999; Hope, Byrne, and Molyneux 1999; Hayakawa 

et al. 2000; Murayama, Nien, et al. 2003; Sluzewski, Menovsky, et al. 2003; van 

Rooij and Sluzewski 2007; Youn et al. 2010).  

During delivery, a liquid embolic requires the use of balloon protection 

across the aneurysm neck in order to prevent the material from flowing out of the 
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aneurysm. After delivery, the material must transition from a liquid to solid in 

order to occlude the aneurysm and prevent further blood flow into the defect.    

The only clinically available liquid embolic on the market is Onyx® (eV3, 

Irvine, CA), a precipitating copolymer system consisting of ethylene-co-vinyl 

alcohol (EVOH) and the organic solvent dimethyl sulfoxide (DMSO). The 

copolymers are dissolved in DMSO so that the system can be used 

endovascularly. Injection of DMSO has been linked to angiotoxicity and 

vasospasm when delivered too quickly, a serious drawback to using this material 

(Murayama et al. 1998; Chaloupka et al. 1999; Raftopoluos et al. 2000; Jahan et 

al. 2001; Pamuk et al. 2005).  

While initial studies with Onyx have shown reduced recanalization rates 

for large, giant, and wide-necked aneurysms, there have been recent reports of 

uncontrolled migration of EVOH into the parent vessel, heightening the risk of 

parent artery occlusion (Molyneux et al. 2004; Struffert et al. 2008; Piske et al. 

2009). In some instances, the cause of migration has been attributed to 

continued delivery of EVOH after injection has ceased (the “toothpaste effect”), 

resulting in delivering more material than intended (Molyneux et al. 2004).  

The Onyx delivery procedure requires the material to be delivered in 

stages, where EVOH is injected for a short period of time with the balloon 

inflated, followed by balloon deflation so DMSO can diffuse away. Onyx delivery 

is resumed when deemed safe and the EVOH mass has sufficiently solidified, 

and the process is repeated until a sufficient amount of EVOH is delivered 

(Mawad et al. 2002; Molyneux et al. 2004). This delivery technique is not only 

extremely technical (Song et al. 2004; Simon, Eskioglu, et al. 2010), but it is also 

associated with very long procedure times, with a reported average procedure 



  110 

time of 95 minutes (Molyneux et al. 2004), potentially increasing the patient’s 

exposure to radiation. Furthermore, oscillating balloon inflation and deflation may 

also increase the risk of local vascular damage.  

We have developed a liquid-to-solid gelling polymer system made of 

polypropylene (glycol diacrylate) and pentaerythritol tetrakis(3-

mercaptopropionate) (PPODA-QT) for cerebral aneurysm embolization as an 

alternative to currently available treatments. The PPODA-QT material is 

composed of liquid monomer precursors that undergo chemical cross-linking in a 

basic, aqueous environment. When the precursors are mixed with aqueous 

initiating solution, the monomers have been shown to form a cross-linked gel 

over time in a predictable and controllable manner (Riley et al. 2011).  

This system can be delivered endovascularly as a true liquid and has the 

additional benefit of incorporating a water-based initiator instead of being 

formulated with organic solvents. The gel time of the material is tailorable and 

able to solidify in a few minutes, affording shorter procedure times than either 

Onyx or coils. Furthermore the delivery procedure has proven to be 

straightforward, requiring only a one-time delivery of the PPODA-QT, followed by 

a short wait time for solidification, then catheter removal. 

Previous work with PPODA-QT has resulted in identification of an optimal 

formulation for use in initial applications. The optimal formulation was used in a 

small in vivo pilot study to compare delivery techniques in surgically created 

lateral wall aneurysms in swine. Results from this previous investigation showed 

that PPODA-QT was biocompatible, resulted in complete angiographic occlusion 

after one month, and was able to produce robust neointimal tissue growth over 

aneurysm necks in swine. Analysis of different delivery strategies also provided 
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valuable information. Overfilling of experimental aneurysms was detrimental, 

resulting in overstressing the surgically created sac and leading to aneurysm 

model failure. Furthermore, we found that placing a single “framing” platinum coil 

followed by PPODA-QT embolization was promising, but was associated with 

increased instance of material in the parent vessel (discussed in Chapter 4).  

These initial findings have encouraged further investigation of PPODA-QT 

as an embolic material. Because swine are known for robust healing after 

aneurysm embolization (Raymond, Metcalfe, et al. 2003; Dai, Ding, et al., 

“Histopathologic,” 2005; Kadirvel et al. 2007; Raymond et al. 2007), the work 

presented here investigates embolization of experimental lateral wall aneurysms 

created in canines. In response to coil embolization, canines have a similar 

healing response as seen in coiled human aneurysms (Bouzeghrane et al. 2010). 

Therefore, the canine model is more clinically relevant for investigating the 

potential efficacy of an embolic material. 

 

5.2 Materials and Methods 

 

5.2.1 Study Outline 

This long-term pilot study evaluated surgically created sidewall 

aneurysms in canines, embolized with either sub-complete filling of PPODA-QT 

(PPODA-QT group, n=3) or with one three-dimensional (3D) coil followed by sub-

complete filling of the remaining volume with PPODA-QT (Coil+PPODA-QT 

group, n=3). The embolization procedure was performed by first housing the 

filling and balloon catheters in an 8 French guide catheter. The tip of the filling 

catheter (RenegadeTM Hi-Flo, Boston Scientific) was placed in the aneurysm. The 
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balloon catheter (30 mm, HyperGlideTM, eV3) was inflated across the aneurysm 

neck immediately before delivery of PPODA-QT. For animals that received a 3D 

framing coil (CashmereTM 14, Micrus Endovascular), the balloon was not inflated 

during coil placement, but was inflated before PPODA-QT delivery.  

Aneurysm embolization was monitored by fluoroscopic visualization of 

PPODA-QT during delivery. Embolization was performed such that the aneurysm 

volume was filled to a target of 85% to 95% by fluoroscopic visualization, leaving 

a small unfilled region at the aneurysm neck. A target filling degree of 100% was 

not chosen because previous work has shown that this may lead to overfilling 

and stretching of the surgically created aneurysm, resulting in failure of the 

aneurysm model (reported in Chapter 4). 

The control cases of aneurysm embolization with platinum coils alone, or 

surgically created aneurysms with no treatment, were not included in this study. 

Previous studies have reported results of these specific cases in canine lateral 

wall aneurysms. Therefore, repeating these control cases for this small pilot 

study (only n=6 animals) was deemed repetitive and would provide little, if any, 

new insight. The discussion section addresses PPODA-QT treatment versus to 

the “gold standard” of coil embolization using the results of this work compared to 

published studies. 

 

5.2.2 PPODA-QT Formulation 

PPODA-QT was formulated using two multi-functional hydrophobic 

monomers, poly(propylene glycol) diacrylate (PPODA) and pentaerythritol 

tetrakis(3-mercaptopropionate) (QT) (both from Sigma, St. Loius, MO). These 

monomers, along with their reaction scheme, are shown in Figure 5.1.  
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Figure 5.1 Components and reaction scheme of PPODA-QT. (A) Poly(propylene 

glycol) diacrylate, also called PPODA, Mw≈900, n~13; (B) Pentaerythritol 

tetrakis(3-mercaptopropionate), also called QT, Mw≈488; (C) Michael-type 

addition reaction scheme. Deprotonated thiol group of QT performs nucleophilic 

attack on acrylate group of PPODA. 

 

When reactive groups are mixed in equimolar ratios in the presence of a 

basic initiating solution, the monomers undergo Michael-type addition and form a 

cross-linked network (Vernon et al. 2003). Radio-opacity was incorporated into 

the PPODA-QT system by using a liquid contrast agent as the basic initiating 

solution, adjusted appropriately with 5N sodium hydroxide to provide the basic 

conditions required for the chemical reaction. For this study, the liquid contrast 

agent ConrayTM (Mallinckrodt, St. Louis, MO) adjusted to pH 11.0 was 

incorporated into the PPODA-QT system. Previous studies with ConrayTM have 
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shown potentially beneficial biocompatibility behavior of PPODA-QT gels when 

formulated with this contrast agent (reported in Chapter 3). The optimized 

formulation of the polymer system investigated previously (Riley et al. 2011) and 

used for this work is composed of PPODA and QT, with ConrayTM adjusted to pH 

11.0, as described below. 

PPODA, QT, and pH-adjusted ConrayTM were each weighed and 

aliquoted in a sterile environment after sterile filtration through 0.2 µm syringe 

filters. Components were aliquoted into 1cc syringes such that the final 

composition was 75% (wt.) organic components (PPODA and QT) and 25% (wt.) 

ConrayTM. For these experiments, 0.293g of QT was syringe-mixed with 1.08g of 

PPODA using a luer-loc syringe coupler to attach component syringes. PPODA 

and QT were pre-mixed for 30 seconds, followed by introduction of 0.458g of 

ConrayTM at pH 11.0. This final composition (deemed PPODA-QT) was mixed for 

2 minutes.  

The gel time was analyzed using parallel plate rheology. Samples (n=3) 

were mixed as described above, then placed on a Physica MCR 101 rheometer 

(Anton Paar, Graz, Austria) at 25oC. An oscillation time sweep was performed 

with a constant stress of 10 Pa and constant frequency of 1 Hz. Gel time is the 

time at which the phase angle, δ, reaches 45o. A phase angle of 90o represents a 

viscous liquid, while 0o is considered an elastic solid. Therefore, a phase angle of 

45o represents the point at which the PPODA-QT material has an equal 

proportion of solid-like and liquid-like properties. This convention is commonly 

used to define the gel point. 

 

5.2.3 Surgical and Endovascular Procedures 
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The animal studies done here were approved by the Institutional Animal 

Care and Use Committee at Barrow Neurological Institute prior to the study. 

Lateral wall aneurysms were surgically created in the right common carotid artery 

of canines as previously described (German and Black 1954; Guglielmi et al. 

1994; Becker et al. 2007). Animals were intubated then anesthetized with and 

maintained on 2% isoflurane and oxygen during the procedure. A lateral wall 

carotid artery aneurysm was created by making a 10 cm incision on the right side 

of the animal’s neck to access the right common carotid artery and external 

jugular vein (EJV). A 2 cm section of the EJV was removed and sewn over a 5 

mm opening made in the common carotid artery in order to form the aneurysm 

sac. Experimental aneurysms were embolized immediately after creation via 

standard endovascular access procedure through the right femoral artery. Prior 

to embolization, animals were given a bolus IV injection of 3000 IU heparin, 

followed by maintenance of 500 IU by IV every 30 minutes during the procedure, 

to control clotting. Post-operatively, animals were given aspirin orally at a dose of 

81.25 mg/day.  

Aneurysm dimensions (neck length, maximum width, and dome height) 

were recorded at the time of aneurysm creation. The dome-to-neck ratio and 

volume were calculated for each aneurysm. The dome-to-neck ratio was the 

measured dome height divided by the neck length. Aneurysm volumes were 

calculated as reported previously (Dimmick et al. 2009), using the equation for an 

ellipse, given below. The measured maximum width is W, and the measured 

dome height is H: 

𝐴𝑛𝑒𝑢𝑟𝑦𝑠𝑚 𝑉𝑜𝑙𝑢𝑚𝑒 =  
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5.2.4 Analysis 

 

5.2.4.1 Angiography 

Aneurysm occlusion in vivo was monitored by fluoroscopic angiography at 

various time points. Angiography was performed immediately after embolization 

to assess initial aneurysm volume filling, as well as at 3 months and 6 months 

after embolization.  Angiographic images were processed with MATLAB image 

analysis tools to calculate the degree of 2-dimensional angiographic filling at 

each time point. Along with image analysis calculations, occlusion was also 

analyzed using classification by the Raymond-Roy scale (Roy, Milot, and 

Raymond 2001). This system uses features of angiograms to classify occlusion: 

class 1 indicates total obliteration, including the aneurysm neck; class 2 means a 

residual neck is present, but there is no opacification of the aneurysm sac; and 

class 3 indicates that a residual aneurysm is present due to opacification of the 

aneurysm sac. 

 

5.2.4.2 Explanted Aneurysms 

Explanted aneurysms were observed for neointimal (NI) tissue growth 

over the aneurysm neck region (ostium). Images of neck regions were 

macroscopically analyzed to calculate the percent of the ostium covered by 

visible tissue. Given the contrasting colors of PPODA-QT (white, opaque), and NI 

tissue (pink) the degree of tissue coverage in the aneurysm neck region after 6 

months was estimated using MATLAB image analysis tools. 
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5.2.4.3 Histology 

Histological processing and analysis was performed for PPODA-QT filled 

aneurysms. Samples were fixed in 10% formaldehyde and sent to the Medical 

College of Georgia (Augusta, GA) for paraffin embedding, sectioning, and 

staining with hematoxylin and eosin (H&E). Samples were sectioned in three 

distinct regions: the proximal, middle, and distal regions of the aneurysm, where 

blood flows into the proximal side and out of the distal end of the aneurysm. For 

each PPODA-QT treated aneurysm, one slide from each region was analyzed at 

25X magnification for tissue thickness, with 7 measurements per slide. One-way 

ANOVA was used to determine differences in tissue thickness between each 

aneurysm neck region and between samples. Post-hoc Tukey’s multiple 

comparison test with a 95% confidence interval was used to identify differences 

between samples when appropriate. 

 

5.3 Results 

 

5.3.1 PPODA-QT Formulation 

Previous studies with this formulation of PPODA-QT have shown that the 

gelling kinetics are reproducible and have low sample-to-sample variability (Riley 

2011). Rheological analysis reconfirmed these findings, with gel times of 10.2 ± 

0.5 minutes (n=3). The phase angle profiles for PPODA-QT replicates are shown 

in Figure 5.2. 
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Figure 5.2 Rheology measurements. Phase angle (δ) profile of PPODA-QT over 

time at 25oC, each solid line represents one replicate. Gel time is considered the 

time when the phase angle reaches 45o (dashed line). Average gel time for 

PPODA-QT (n=3) is 10.2 ± 0.5 minutes. 

 

5.3.2 Surgical and Endovascular Procedures 

Lateral wall aneurysms were created in the right common carotid arteries 

of 6 canines. The dimensions of created aneurysms are shown in Table 5.1.  

 

Table 5.1 Dimensions of Surgically Created Aneurysms 
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Aneurysm volumes were calculated using the formula for an ellipse, using 

the dome height and maximum width dimensions. Dome-to-neck ratio is a 

measurement of the aneurysm’s dome height divided by the neck dimension. 

Using a t-test, calculated aneurysm volumes between the PPODA-QT group and 

the Coil+PPODA-QT group were not found to be significantly different (p=0.83). 

Similarly, the dome-to-neck ratio of each group was also not significantly different 

(p=0.29). 

 

5.3.3 Angiography 

Angiography was performed immediately after embolization, and at 3 and 

months post embolization in order to determine degree of occlusion. X-ray 

fluoroscopy was also performed to verify visibility of PPODA-QT within the 

aneurysm. Figure 5.3 shows non-subtracted fluoroscopic images of embolized 

aneurysms at 6 months post embolization. In all PPODA-QT group aneurysms, 

the material is visible at 6 months, indicating that the contrast agent is present 

within the material. It is more difficult to see the polymer material in the 

Coil+PPODA-QT group due to the radiograpically denser framing coil, which 

obscures polymer visibility. 
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Figure 5.3 Fluoroscopic visibility at 6 months. (A) Radio-opaque PPODA-QT is 

clearly visible in the PPODA-QT group 6 months post-embolization, but is 

obscured in the Coil+ PPODA-QT group (B) due to the presence of the 

radiographically denser coil. 

 

At each time point, angiograms provided a means of calculating and 

scoring occlusion. Table 5.2 shows the results of the 2D MATLAB analysis, as 

well as Raymond-Roy classification scores. All model aneurysms showed initial 

scores of incomplete obliteration, given that the filling technique was not meant to 

completely occlude the entire aneurysm immediately after delivery. Over time, all 

but one aneurysm in the PPODA-QT group achieved 100% occlusion, while all of 

the Coil+PPODA-QT aneurysms were 100% occluded at 6 months. A Raymond-

Roy classification of 3 (indicating dome recanalization) was given to one sample 

(replicate #1) in the PPODA-QT group at 3 and 6 months. Angiograms for this 

sample are shown in Figure 5.4, where reperfusion of blood flow can be seen 

around the periphery of the aneurysm. 
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Table 5.2 Angiographic Filling Percentages and Raymond-Roy Scores: Initially, 3 

Months, and 6 Months Post-Embolization. 
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Figure 5.4 Recanalized aneurysm in the PPODA-QT group. Angiography was 

performed (A) before embolization and (B) immediately after embolization. (C) At 

3 months post embolization, angiography showed slight recanalization due to 

blood flow along the outer edge of the aneurysm (arrow). (D) Recanalization was 

visible at 6 months as well. The location of aneurysm recanalization looks 

different in images C and D because of C-arm positioning. 

 

5.3.4 Explanted Aneurysms 

Experimental aneurysms were explanted at 6 months, and analyzed for 

neointimal tissue coverage in the ostium. The explanted samples are shown in 

Figure 5.5. From this figure, PPODA-QT samples show a smooth interface 

surface at the ostium, where NI tissue can easily be identified. While tissue 

coverage is not complete in all replicates, evidenced by NI tissue coverage 

calculations shown in Figure 5.6, PPODA-QT does seem to provide a suitable 

surface for overgrowth when delivered alone. The Coil+PPODA-QT group shows 

rougher neck regions due to PPODA-QT protruding into the parent vessel 
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(replicate #1 and #2). However, replicate #3 in the Coil+PPODA-QT group 

provided a smooth surface for tissue growth. 

 

 

Figure 5.5 Explanted aneurysm samples. PPODA-QT filled aneurysm samples 

(A-C) all showed a smooth surface in the ostium. Coil+PPODA-QT -filled 

aneurysms (D-F) showed excess PPODA-QT protruding into the parent vessel in 

two samples resulting in rough surfaces (D, E), while one sample displayed no 

PPODA-QT protrusion and a smooth surface (F). 
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Figure 5.6 Percent of NI tissue coverage in the ostium. Average tissue coverage 

values between PPODA-QT group and Coil+PPODA-QT group are not 

statistically significant, with 80% ± 16% and 63% ± 31%, respectively. When 

shown individually, replicates in the PPODA-QT group (A-C) show consistently 

higher NI tissue coverage values, while there is greater sample-to-sample 

variability in the Coil+PPODA-QT group (D-F). A-F correspond to the same 

aneurysm samples shown in Figure 5.5. 

 

Neointimal tissue coverage calculations, shown above in Figure 5.6, 

indicate that both the PPODA-QT and Coil+PPODA-QT groups have, on 

average, similar tissue coverage with 80 ± 16% for the PPODA-QT group and 62 

± 30% for the Coil+PPODA-QT group (p=0.399). While the averages are not 

statistically different, the PPODA-QT group shows consistently higher NI tissue 

coverage values than the Coil+PPODA-QT group, given the lower sample-to-

sample variability in the PPODA-QT group. Furthermore, both replicates in the 

Coil+PPODA-QT group (#1 and #2) with a rough surface had the two lowest 
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calculated NI tissue coverage percentages overall, 63% and 31%, respectively. 

The next lowest value (64%) was found in replicate #1 of the PPODA-QT group. 

 

5.3.5 Histology 

Histological analysis and tissue thickness measurements were performed 

on PPODA-QT filled aneurysms only. Tissue thickness measurements were 

confounded for samples in the Coil+PPODA-QT group with non-smooth neck 

regions, and thus not able to provide suitable comparison between the two 

groups.  

Histology images of a representative PPODA-QT sample (replicate #2) in 

the aneurysm neck region stained with H&E are shown in Figure 5.7. Robust NI 

tissue growth in this image is characterized by a clear neoendothelial layer of 

cells over the new tissue with organized tissue nearer to the parent-vessel 

interface and more amorphous tissue at the PPODA-QT interface. 
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Figure 5.7 Histology images of PPODA-QT filled aneurysms. H&E staining of 

replicate #2 from the PPODA-QT group at 100X (A) and 400X magnifications (B-

D). (A) The region of neointimal tissue growth is shown interfacing with both the 

parent vessel and the PPODA-QT embolic material. (B) Near the surgical site, a 

single layer of neoendothelial cells has formed over new tissue. (C) In the center 

of the aneurysm near the parent vessel interface, NI tissue is dense and well-

aligned. (D) At the interface of NI tissue and PPODA-QT, NI tissue is more 

amorphous and less dense. 

 

Tissue thickness was measured using 3 histology slides at 25X 

magnification per sample, with 7 measurements per slide. Histology slides were 

taken within the ostium region at the proximal end, in the middle, and at the distal 

end. The average tissue thickness in each replicate of the PPODA-QT group is 

shown in Figure 5.8A. The lowest average tissue thickness was found in replicate 
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#1 at 123 µm ± 191µm, which is statistically different than average tissue 

thickness in replicate #2 (520 µm ± 314 µm) and replicate #3 (566 µm ± 373 µm), 

found by Tukey’s comparison following a one-way ANOVA. Average tissue 

thickness of replicates #2 and #3 are not statistically different.  

Comparison of NI tissue thickness in individual regions of each sample 

(proximal, middle, and distal) is shown in Figure 5.8B. In this representation, the 

proximal regions have the smallest tissue thicknesses, which are not statistically 

different between replicates, and the middle and distal regions are the thickest. A 

statistical difference in tissue thickness was found between replicate #1 and #3 in 

the middle region. For NI tissue in the distal region, replicates #2 and #3 were 

both found to be statistically thicker than replicate #1. 

 

 

Figure 5.8 Neointimal tissue thickness measurements. Tissue thickness 

measurements were taken for replicates in the PPODA-QT group. Three slides 

per group were analyzed, with 7 measurements per slide. Each slide was taken 

from a distinct region of the aneurysm ostium along the vessel: the proximal 

(blood inflow), middle, and distal (blood outflow) regions. (A) Average NI tissue 

thickness measurements show that replicate #1 has the lowest tissue thickness, 

statistically significantly lower than the other two replicates. (B) Tissue thickness 
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measurements separated by aneurysm region. Thickness in the proximal region 

(white bars) is not significantly different among replicates. Thickness in the 

middle region (black bars) is significantly different only between replicates #1 and 

#3. Distal tissue thickness, however, is significantly lower in replicate #1 than in 

the other two replicates. All statistical comparisons were done using one-way 

ANOVA followed by post-hoc Tukey’s multiple comparison tests with a 95% 

confidence interval. 

 

5.4 Discussion 

 

5.4.1 Pilot Study Limitations 

This study was designed as a long-term (6-month) pilot study to 

investigate the potential effectiveness of using PPODA-QT as an embolic agent 

in experimental aneurysms. The study design included two experimental groups: 

PPODA-QT used alone, as well as PPODA-QT delivered after placement of a 3D 

framing coil. Because this study was designed to be a small “proof of concept” 

investigation in a rigorous animal model, experimental controls were not 

included. Previous studies have reported the use of platinum coils alone (positive 

control) or without embolization at all (negative control) in the canine lateral wall 

aneurysm model (Mawad et al. 1995; Macdonald et al. 1998; Kallmes et al. 

1999). Although including controls would have allowed more in depth statistical 

comparison, this pilot study had so few subjects to begin with (n=6), that 

statistical comparison would not have provided conclusive information regarding 

efficacy. Therefore, the results of this study are qualitative in nature, yet 

statistical comparisons are included within study groups where appropriate.     
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The canine lateral wall aneurysm model was chosen because it is 

considered more rigorous than the swine lateral wall model, due to the fact that 

canines undergo aneurysm healing post-coil embolization in a similar manner to 

human aneurysms (Raymond, Metcalfe, et al. 2003; Bouzeghrane et al. 2010). 

The 6-month study also reflects a clinically relevant time frame, since in humans 

most aneurysm recanalization occurs within the first 6 months after embolization 

(Sluzewski, van Rooij, et al. 2003). While the surgically created aneurysms in this 

study are not considered to be large in size, in which the largest dimension must 

measure >12 cm in diameter by Chyatte’s classification (Chyatte 2003), they are 

all considered to be wide-necked. Wide-necked aneurysms have been 

characterized by a neck opening diameter >4 mm or a D/N ratio <1.5 (Piske et al. 

2009 Youn et al. 2010), which all aneurysms in this study achieve. Therefore, 

these experimentally created aneurysms provide a clinically relevant 

embolization model to assess feasibility of using PPODA-QT for cerebral 

aneurysms. 

 

5.4.2 Treatment Groups 

 

5.4.2.1 Coil+PPODA-QT Group 

The Coil+PPODA-QT treatment group showed promising angiographic 

results initially, as well as at 3 and 6 months post-embolization. None of the 

experimental aneurysms showed recanalization at any time point, with 

corresponding volume filling percentages at 100% and Raymond-Roy scores of 1 

at both 3 and 6 months.  
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While the 3D framing coil was always seen easily during fluoroscopy, 

PPODA-QT was more difficult to identify when used in conjunction with the coil, 

due to the difference in radio-opacity between the coil and PPODA-QT. Visibility 

issues with liquid embolics used in combined treatments with coils have been 

reported previously (Murayama et al. 2000; Takao et al. 2009). Poor monitoring 

of PPODA-QT during delivery as a result of visibility obstruction from the coil was 

a significant problem. Upon explanation, 2 out of 3 aneurysms in the 

Coil+PPODA-QT group showed PPODA-QT protrusion into the parent vessel, yet 

this was not observed angiographically during delivery.  

The delivery technique of sub-complete initial filling (<100%) was done 

specifically to prevent the occurrence of PPODA-QT in the parent vessel. 

Previous studies in swine indicated that attempting complete filling after 3D coil 

placement was associated with excess PPODA-QT in the parent vessel (reported 

in Chapter 4). However, results reported here show that deliberate sub-complete 

filling did not prevent PPODA-QT protrusion either.  

In the replicates showing PPODA-QT in the parent vessel, animals did 

not experience parent artery occlusion (PAO) during the 6-month study window. 

However, the excess PPODA-QT did seem to hinder tissue coverage, since 

these two replicates also had the lowest percent area of tissue overgrowth in the 

neck region (63% and 31%). The one replicate in the Coil+ PPODA-QT group 

that had a smooth neck region displayed 91% tissue coverage in the ostium. The 

inability to monitor PPODA-QT when used in conjunction with a coil severely 

limits the clinical applicability of the Coil+ PPODA-QT treatment method. 

 

5.4.2.2 PPODA-QT Group 
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Experimental aneurysms treated with PPODA-QT alone underwent filling 

such that <100% of the aneurysm volume was initially occluded. While this 

delivery method may seem contrary to the goal of treatment (complete aneurysm 

obliteration), this study showed that it may actually be safer than aiming for 100% 

volume filling initially. In previous work with the carotid artery aneurysm model in 

swine, when the goal was to initially fill the aneurysm volume to 100% capacity, 

2/5 animals died within a week due to failure of the aneurysm model. Attempting 

a 100% fill of the volume actually resulted in overfilling with PPODA-QT beyond 

the aneurysm’s initial volume. When PPODA-QT solidified, the aneurysm was 

maintained in an overstressed state, eventually causing it to fail (discussed in 

Chapter 4).  

In the current canine study, all aneurysms were initially filled to 85%-95% 

of their 2D angiographic volume and there were no instances of aneurysm model 

failure. The limited number of animals in both studies means that no definite 

conclusions can be drawn, but the trend of higher model success when sub-

complete filling (85%-95%) is performed may influence how PPODA-QT is 

delivered in the future in a clinical setting. 

The hesitation with using a sub-complete delivery technique with PPODA-

QT is the assumption that an aneurysm may be more prone to recanalization if it 

is only occluded to 85% of its angiographic volume rather than 100%. In this 

study, one of the PPODA-QT -filled aneurysms did show recanalization at 3 

months, but it was not the aneurysm that had the lowest initial filling percentage. 

The recanalized aneurysm (replicate #1) was filled to 93% of its angiographic 

volume, while the two successfully treated aneurysms (100% occluded at 3 and 6 

months), were initially filled to 86% and 95%. As a result, recanalization was not 
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correlated with lower filling percentages in the 85%-95% range. Furthermore, 

these results show that initial sub-complete aneurysm filling in the 85%-95% 

range can allow for complete healing over time, given that 2/3 aneurysms were 

100% angiographically occluded after 3 months. 

Explantation of PPODA-QT embolized aneurysms showed that when 

PPODA-QT is delivered alone, no excess material was found in parent vessels 

and all aneurysm neck regions were smooth. In contrast to the Coil+PPODA-QT 

group, PPODA-QT delivered without the coil was easily monitored during 

delivery. While there is a correlation between rough surface and lower 

percentage of NI tissue coverage in the neck region, replicate #1 in the PPODA-

QT group shows that a smooth surface does not necessarily guarantee robust 

tissue coverage. Even with a smooth surface for tissue overgrowth, the 

recanalized aneurysm showed the next lowest degree of tissue coverage, at 64% 

of the aneurysm neck area. The other two replicates in this group had NI tissue 

coverage percentages of 82% and 95%.  

Histological analysis of the PPODA-QT group aneurysms allowed NI 

tissue thickness measurements at different spatial locations through the 

aneurysm neck region (Figure 5.8). The recanalized aneurysm, replicate #1, 

showed the lowest average tissue thickness over the whole aneurysm. While the 

proximal and middle region thicknesses were not statistically different than both 

of the other samples, the distal region NI tissue thickness was significantly lower 

in replicate #1 than in the other samples. Based on these results, aneurysm 

recanalization may be correlated with lower overall average NI tissue thickness 

as well as thinner NI tissue in the distal region. Again, with such a small study 

group, definitive conclusions cannot be drawn about the relationship between 
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tissue thickness and recanalization in all lateral wall model aneurysms, but these 

results may provide rational for investigating tissue thickness in different 

aneurysmal regions in future aneurysm embolization studies.  

The relationship between calculated NI tissue coverage in the neck region 

(Figure 5.6) and tissue thickness measurements (Figure 5.8) between PPODA-

QT and the parent vessel should be addressed. From the tissue coverage 

calculations (area percent of ostium covered by tissue), one might expect that 

there should be no tissue thickness in areas that were deemed “uncovered” by 

this analysis. However, using macroscopic visualization of the neck region 

means that regions with very thin tissue coverage will not be distinguished from 

uncovered PPODA-QT, as evidenced by thin NI tissue in the proximal region of 

all PPODA-QT aneurysms, which was omitted from NI tissue coverage 

calculations. Therefore, these calculations represent the percent of ostium area 

visibly covered by NI tissue. As such, this calculation is more of a gross 

observational tool than a strict quantitative representation of tissue coverage. 

Tissue thickness measurements, on the other hand, do represent discretely 

measured quantities of microscopically visualized NI tissue, and are quantitative 

in nature. 

While the results presented here do not explain why recanalization 

occurred in replicate #1 and not in the other PPODA-QT group samples, 

angiographic findings were successfully correlated with histologic findings. In the 

PPODA-QT group, aneurysms that showed complete angiographic obliteration 

(no recanalization) at 6 months, and are thus considered “successfully treated”, 

showed a greater percentage of NI tissue coverage in the neck region and 

greater average NI tissue thickness. On the contrary, the aneurysm that showed 
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angiographic recanalization had the lowest NI tissue coverage and lowest 

average NI tissue thickness values in the PPODA-QT group. Being able to 

correlate angiographic findings with histological analyses has been considered a 

major limitation of animal model studies when testing efficacy of coil embolization 

(Bouzeghrane et al. 2010). In studies where both outcomes are discussed, there 

are often contradicting indicators between angiographic occlusion and 

histological findings, where angiography generally overestimates the degree of 

aneurysm healing (Macdonald et al. 1998). In this small scale study with PPODA-

QT, angiographic results were correlated with histology findings without implying 

contradictory conclusions. 

 

5.4.3 PPODA-QT vs. Platinum Coil Embolization 

Due to the small scale of this study, control animal groups were not 

performed alongside treatment groups. In order to make qualitative comparisons 

between PPODA-QT as an embolic material and currently available aneurysm 

treatments, previously published studies were examined. Only studies in which 

canine carotid artery lateral wall aneurysms were embolized with platinum coils 

will be discussed in terms of positive controls.  

It is necessary to mention the negative controls as well. A negative 

control for this aneurysm model would be a lateral wall aneurysm that is 

surgically created in the carotid artery of a canine, but does not undergo 

embolization of any kind. The patency of the aneurysm would be evaluated over 

time, in order to ensure that the surgically created aneurysm does not undergo 

spontaneous thrombosis and render itself “healed”. If this does occur, the animal 

model is not appropriate to assess efficacy of the embolic material because the 
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aneurysm will heal whether or not the treatment is administered, as is common 

with swine aneurysm models (Guglielmi et al. 1994, Byrne et al. 1997). Negative 

control outcomes for surgically created carotid artery lateral wall aneurysms in 

canines have been reported previously. In general, this aneurysm model 

undergoes spontaneous thrombosis less than 10% of the time, meaning that the 

model is fairly robust and appropriate for assessing endovascular treatment 

methods (Kallmes et al. 1999). 

A few studies have been published documenting the outcomes of coil 

embolization in the canine lateral wall carotid artery aneurysm model. Even 

though PPODA-QT and platinum coils occlude aneurysms in different ways, 

important outcomes can still be compared. Many coil embolization studies report 

the nature of the thrombus within the aneurysm dome, indicating whether it has 

been reorganized into tissue or if a residual clot is still present, etc. These 

outcomes are not applicable to PPODA-QT treatment because there is no clot 

formation in the aneurysm dome—it is occluded with the polymer. However, 

angiographic recanalization can be compared. Mawad et al. (1995) showed that 

of 10 coiled lateral wall aneurysms in canines, 4 (40%) showed recanalization at 

6 months. Macdonald et al. (1998) reported 1 in 5 (20%) lateral wall aneurysms 

were incompletely occluded 2 months after platinum coil embolization in the 

canine model. Results from the current investigation show that 1 in 3 (33.3%) 

PPODA-QT embolized aneurysms recanalized by 3 months. Even though our 

study numbers are low, PPODA-QT embolization seems to fall within the 

recanalization rate range of experimental aneurysms embolized with platinum 

coils, when considering the same animal/aneurysm model.  
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NI tissue thickness is not often reported for coiled aneurysms. This is 

likely because it is almost impossible to remove coils prior to sectioning without 

disrupting the neointimal tissue layer, since newly formed tissue adheres strongly 

to coils (Mawad et al. 1995; Macdonald et al. 1998). Coils can be removed after 

sectioning, but this process is tedious and not commonly performed (Dai, Ding, et 

al., “Modified histologic,” 2005). Most reported results qualitatively describe 

tissue coverage, but generally not thickness. Macdonald et al. (1998) reported 

that of the 5 experimental aneurysms treated, 3 showed some amount of NI 

tissue coverage in the neck region, but that it was not flush with the parent vessel 

walls. The other 2 coiled aneurysms showed no NI tissue coverage at all. In the 

present study with PPODA-QT embolization (PPODA-QT group only), all 3 

aneurysms showed some degree of NI tissue coverage, with 1 aneurysm 

(replicate #1) displaying significantly less coverage than others. While less 

quantitative in nature than angiography findings, the PPODA-QT treatment 

showed visible NI tissue coverage in all replicates, yet NI tissue coverage over 

coils tends to be more variable in this animal model.  

Overall, quantitative NI tissue coverage and thickness comparisons may 

provide insight into potential effectiveness of an embolic aneurysm treatment. 

However, scarcity of published reports containing these measurements after coil 

embolization will limit their usefulness for comparison across different treatment 

types. Within a treatment group, however, as in the PPODA-QT group of this 

study, these comparisons may provide another way, besides angiography, to 

characterize successful treatments versus recanalized aneurysms. 

 

5.5 Conclusion 
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This study reports results of the first long-term in vivo study using the 

novel liquid-to-solid gelling polymeric material, PPODA-QT for embolization of 

experimental aneurysms. The canine, lateral wall aneurysm model used here 

represents a clinically applicable model for initial testing of the efficacy of 

PPODA-QT in wide-necked aneurysms. This study evaluated the response of 

two different treatment methods: PPODA-QT delivered alone (n=3), as well as 

PPODA-QT delivered after placement of one 3D framing coil into the aneurysm 

(n=3). Findings from the Coil+PPODA-QT group indicate that this treatment 

method is prone to PPODA-QT protrusion into the parent artery, due to difficulty 

in monitoring PPODA-QT delivery in the presence of a radiographically denser 

coil. While PPODA-QT in the parent vessel did not lead to PAO over the 6-month 

study duration, it did result in a rougher surface in the ostium, which was 

correlated with less NI tissue coverage. 

Aneurysms in the PPODA-QT group displayed no instances of protruding 

PPODA-QT in the parent vessel, and ostium surfaces were smooth. 

Recanalization was seen in 1 of 3 aneurysms via angiography at 3 and 6 months. 

Histotogy results showed that the recanalized aneurysm had the lowest 

calculated NI tissue coverage area as well as the lowest average NI tissue 

thickness of all samples in the treatment group. Furthermore, NI tissue was found 

to be significantly thinner in the distal ostium region of the recanalized aneurysm 

when compared to the two completely occluded aneurysms. The recanalization 

rate found in this study compares well with other studies reporting results of 

coiled lateral wall carotid artery aneurysms in canines. Only larger scale animal 

studies will be able to determine if PPODA-QT is significantly more 

advantageous than coil embolization. NI tissue coverage compared favorably to 
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published studies, although quantitative reports of NI tissue coverage and 

thickness are lacking.  

Overall, this study indicates that using PPODA-QT alone as an embolic 

material for aneurysm treatment is promising. Future work with PPODA-QT 

should encompass a greater number of PPODA-QT embolized animals, as well 

as a sufficient number of coiled aneurysms as controls. Due to the lack coiled 

experimental aneurysm studies that report NI tissue coverage and thickness 

measurements in published literature, it would be beneficial to perform such 

control experiments in parallel so that these embolic materials can be properly 

compared. Furthermore, these analyses may allow for greater success when 

attempting to correlate of angiographic results with histology findings post-coil 

embolization, as was shown for PPODA-QT filled aneurysms in this study.
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Chapter 6: CONCLUSIONS AND FUTURE WORK 

 

6.1 Polymer System Development for Cerebral Aneurysm Embolization 

The work presented in this thesis reports the development of a liquid-to-

solid gelling polymer system for cerebral aneurysm embolization. The polymer 

system is based on the hydrophobic liquid monomers, poly(propylene glycol) 

diacrylate (PPODA) and pentaerythritol tetrakis(3-mercaptopropionate) (QT), 

which undergo a chemical reaction resulting in cross-linking of monomers and 

formation of an elastic gel. This work focuses on developing the PPODA-QT 

system from a clinical standpoint, in order to adapt the system for application in 

cerebral aneurysms.  

 

6.2 Formulation: PPODA-QT Gels Made with Different Contrast Agents 

The PPODA-QT system was first formulated with different liquid contrast 

agents in order to provide the polymer with radio-opacity required of an embolic 

material, as these materials must be visible under X-ray during delivery. The 

objective of these formulation experiments was to identify if different types of 

commercially available contrast agents (ConrayTM and OmnipaqueTM 300 were 

examined) affect the gelling process of PPODA-QT in different ways. Complete 

knowledge of gelling kinetics is imperative, especially when the material under 

investigation will be delivered into the brain. In such a vital area, insufficient 

understanding of the material could have devastating consequences. 

Results from the formulation experiments indicated that different types of 

contrast agents alter the gelling process of PPODA-QT gels. Formulating 

PPODA-QT with Conray, an ionic contrast agent, resulted in gels that underwent 
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gellation at an earlier time, yet exhibited in a long post-gellation phase where 

cross-linking continued to occur, as evidenced by the slowly increasing polymer 

viscosity after the material had gelled. These characteristics indicate that Conray-

formulated gels undergo early, wide-spread network formation, in which 

components become immobilized in the gel network even though the gel is not 

fully cross-linked. After global network formation, reactive monomers that are 

near each other in proximity can still cross-link, but this occurs slowly. 

Gels formulated with Omnipaque showed very different gelling kinetics. 

Omnipaqie-formulated gels had a long initial period of low viscosity, followed by 

rapid network formation in which all cross-linking was completed. This gelling 

profile suggests that Omnipaque-formulated gels begin to react by localized 

cross-linking in discrete areas, which allows the overall solution viscosity to 

remain low. Eventually, locally cross-linked regions become large enough to 

“link-up” with other cross-linked regions, resulting in global network formation. 

The material viscosity does not increase further after network formation in 

Omnipaque-formulated gels, because local sites are already densely cross-linked 

by the time network formation occurs. 

Sample-to-sample variability in gel time is of great clinical importance 

because gelling behavior must be predictable. Therefore, a formulation with 

lower sample-to-sample variability in the gel time is more favorable for clinical 

use. Conray-formulated gels showed lower variability in gel time, while 

Omnipaque-formulated gels had much higher sample-to-sample variability. This 

difference can be attributed to gelling kinetics between formulations, where early 

network formation in Conray-formulated gel is not dependent on reactions in local 

regions—it is a wide-spread event. Further cross-linking occurs after the gel is 
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already formed. The gel time of Omnipaque-formulated materials, however, is 

first dependent on cross-linking in small regions, which may be subject to more 

variability due to mixing conditions, etc. Only after localized regions react can the 

entire gel undergo network formation. The gelling sequence exhibited by 

Omnipaque-formulated gels is therefore more prone to gel time variability than 

Conray-formulated gels.   

 

6.3 Characterization: In Vitro Behavior of PPODA-QT Formulated Gels          

After identifying differences in gelling kinetics based on incorporation of 

Conray or Omnipaque, the next step was to determine how these different 

formulations translated into material behaviors. Specifically of interest were 

material behaviors that would be important in an aneurysm, such as toxicity of 

the material, swelling properties, and degradation characteristics. These clinically 

relevant properties were examined under benchtop conditions to gain initial 

information as to how PPODA-QT gels may behave in vivo.  

Cytotoxicity, or the affect of each gel formulation on cultured cells, was 

examined as a proxy for biocompatibility. Results showed that Conray-formulated 

gels were more biocompatible than Omnipaqie-formulated gels, due to a 

significantly higher percentage of living cells after exposure to gels over a three-

day period.  

Swelling and degradation were also investigated in a simulated 

physiologic environment. Conray gels were found to swell more than Omnipaque 

gels at 37oC over a 10 month period. Maximal swelling in Conray-formulated gels 

resulted in a ~60% volume increase, while Omnipaque-formulated gels showed a 

~35% volume increase. These volume increases actually translate into only 
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moderate differences in geometric diameter increases. In general, the long term 

swelling behavior of both gels at 37oC does not suggest significant problems for 

aneurysm embolization, but characterizing this behavior is valuable. Degradation 

was also monitored, and both gels showed very little degradation at 37oC until 8 

months, after which Conray-formulated gels exhibited a measurable decline in 

compressive strength. 

In vitro swelling and degradation experiments represented “worst-case-

scenario” conditions. In both experiments, the entire surface area of gels was 

exposed to aqueous penetration. In an aneurysm, however, the only gel surface 

that would be subject to as much aqueous penetration would be in the aneurysm 

neck region immediately after the PPODA-QT gel is delivered, where blood in the 

parent vessel contacts the material. As a result, in vitro swelling and degradation 

results presented here are likely exaggerations of material behavior in vivo.  

Cytotoxicity experiments also represented a challenging test case, given 

that cells were exposed to formulated gels without the media being flushed from 

cell surfaces, as would likely happen in vivo. However, given that good 

biocompatibility is essential for aneurysm healing, such that neointimal tissue can 

grow over the gel surface once delivered, more weight was given to in vitro 

cytotoxicity results than swelling or degradation experiments. From these results, 

as well as previous experiments indicating less variability in gel times, PPODA-

QT gels formulated with Conray at pH 11.0 were used for subsequent in vivo 

testing. 

 

6.4 Testing: Biocompatibility and Delivery Strategy  
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Initial in vivo studies used a swine lateral wall aneurysm model to assess 

biocompatibility of PPODA-QT formulated with Conray in a live animal model 

over the course of one month. This study also examined different delivery 

strategies for administration of PPODA-QT into an aneurysm model. This small 

scale in vivo study was not designed to assess efficacy of the PPODA-QT 

material, but did provide valuable information regarding how the material 

behaves in vivo, and with different delivery strategies. This study showed that 

PPODA-QT did not result in any local toxicity to nearby tissue in the aneurysm 

model, and provided a suitable substrate for neointimal tissue overgrowth, as a 

robust tissue layer was observed over aneurysm necks one month after 

embolization. 

The delivery strategy analysis allowed for comparison between different 

administration methods. Delivery strategies examined were: completely filling the 

aneurysm with PPODA-QT to 100% capacity, sub-complete filling of the 

aneurysm (80-90% capacity) with PPODA-QT, as well as placement of a 

“framing” platinum coil followed by complete filling PPODA-QT. Results from 

these experiments indicated that sub-completely filling experimental aneurysms 

with PPODA-QT was the most suitable delivery strategy, with progressive 

occlusion of the aneurysm volume to reach 100% by the end of the one month 

time frame. Complete (100%) filling resulted in instances of overstretching and 

rupturing of the model aneurysm. Placement of a coil followed by complete 

embolization with PPODA-QT did not result rupture, but did show two out of three 

instances of excess polymer found in the parent vessel upon explantation, which 

is a clinically undesirable outcome.  
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6.5 Testing: Pilot Study to Gauge Effectiveness 

 Further in vivo testing was performed to gauge long-term effectiveness of 

PPODA-QT in a more clinically relevant animal model. The canine lateral wall 

aneurysm model was used, because canines have reportedly shown a more 

human-like healing response aneurysm treatment. Model aneurysms in swine 

tend to heal over regardless of embolization material due to an aggressive 

clotting response. However, model aneurysms in canines do not show such 

amenable healing, and are therefore more representative of human aneurysms. 

This pilot study was designed to examine sub-complete PPODA-QT 

delivery as well as coil placement followed by sub-complete delivery of PPODA-

QT, because these delivery methods proved the most promising in the one 

month swine model study. While swine studies showed that attempting complete 

filling with PPODA-QT after coil placement resulted in excess polymer in the 

parent vessel, it was hypothesized that intentional sub-complete filling after coil 

placement may eliminate this problem.   

Because of the small nature of the pilot study (n=3 animals per group), 

control groups, such as model aneurysms that were only embolized with coils or 

model aneurysms that were not embolized at all, were not included. Outcomes 

from these control cases in the canine model have been reported previously in 

the literature, and including them in the small pilot study would not provide 

sufficient new information to justify the use of these additional animals.  

The results from the 6 month pilot study indicated that even though sub-

complete filling was performed, aneurysms in the Coil+PPODA-QT group still 

exhibited excess PPODA-QT in the parent vessel. Due to the difficulty in seeing 
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PPODA-QT while the radiographically denser coil is in place means that 

monitoring polymer delivery is hindered. This difficulty suggests that delivering 

PPODA-QT after coil placement may have limited clinical applicability. 

However, PPODA-QT delivered by itself, to 85-95% of the aneurysm 

volume, resulted in progressive occlusion and complete aneurysm obliteration 

after 6 months, in two of three aneurysms. The two successfully healed 

aneurysms displayed near-complete neointimal tissue coverage in the neck 

region, as well as robust tissue thickness. One aneurysm in this group showed 

recanalization by 3 months, which was sustained, but not worsened, at 6 months 

post-embolization. This aneurysm also showed the lowest percent of tissue 

coverage over the aneurysm neck, and the lowest average tissue thickness 

measurements, correlating angiographic recanalization with poorer histology 

outcomes. Even though one of three aneurysms recanalized in the PPODA-QT 

group, this study reflects a recanalization rate within the range reported of coiled 

lateral wall aneurysms in canines. While this study alone does not fully answer 

efficacy questions, it does provide justification for further investigation of PPODA-

QT as a treatment for cerebral aneurysms.  

 

6.6 Future Work  

The work presented here reflects efforts to develop a liquid-to-solid 

gelling polymer system optimized for cerebral aneurysm embolization. The 

results of this work suggest that PPODA-QT may be a clinically viable alternative 

to currently available treatments, and further investigation of this material is 

warranted. In order to adequately compare the PPODA-QT system with current 

treatment techniques, a larger scale pre-clinical animal study must be performed. 
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The animal model again must be rigorous, showing aneurysm healing similar to 

humans. The canine Y-type bifurcation aneurysm model may be even more 

clinically stringent than the lateral wall model, because it displays an anatomical 

situation representative of difficult-to-treat aneurysms in humans (Raymond et al. 

2002; Raymond et al. 2008). 

Such a study should compare PPODA-QT embolization with current 

treatments, namely standard coil embolization as well as Onyx embolizatin. The 

main outcomes to be measured should be relevant to clinical effectiveness and 

safety. Angiographic occlusion and recanalization rates should be assessed, as 

well as neointimal tissue coverage and thickness measurements, which are 

currently not tabulated on a regular basis for coiled and Onyx-treated aneurysms 

in animal models.  

This larger pre-clinical study could also monitor other outcomes that are 

not related to effectiveness, but do carry important implications. For example, 

procedure time, ease of use, and material cost analysis could be reported. Long 

procedure times are undesirable for patients and hospitals. Monitoring this 

outcome could suggest a more alluring treatment option if procedural safety and 

efficacy results are comparable. Ease of use could be assessed by interviewing 

the neurointerventionalist after the procedure, which would give qualitative 

information about potential clinical acceptance. Finally, a cost comparison could 

be made similar to that done by Simon, Reig, et al. (2010), where the total cost of 

all consumables were tallied. This type of comparison would not address costs 

such as hospital stay or inpatient recovery time, which are applicable to human 

patients, but may also elucidate a more cost-effective treatment option if safety 

and efficacy outcomes are similar. 
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Overall, PPODA-QT has proven to be worthy of further investigation as a 

treatment option for cerebral aneurysms. The future study outlined here 

represents one way to showcase the benefits or uncover the drawbacks of using 

PPODA-QT in this manner. In any case, further preclinical studies with PPODA-

QT should be undertaken because this system may provide a better treatment 

option for people with cerebral aneurysms. 
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