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ABSTRACT

One of the most important issues in femtosecond free electron laser X-ray

diffraction is to reconstruct the 3D charge density of molecule from a mass of

diffraction snapshots.

In order to determine the orientation of single molecule from diffraction

patterns, we first determine the moments and products of inertia of this from

2D experiment data (diffraction patterns or EM images to obtain the elements

of the inertia tensor. If diffraction patterns from uniformly random orienta-

tions or some preferred orientations are collected, the principal axes of the

molecule can be extracted, together with the Euler angles which relate the

principal axes of the molecule to the laboratory frame axes. This is achieved

by finding the maximum and minimum values for the measured moments from

many single-molecule patterns. Simulations for GroEL protein indicates that

the calculation of the autocorrelation help eliminate the Poisson noise in Cryo-

EM images and can make correct orientation determination.

The effect of water jacket surrounding the protein molecule is studied based

on molecular dynamics simulation result. The intensities from water and in-

terference is found to suppress those from protein itself. A method is proposed

and applied to the simulation data to show the possibility for it to overcome

the water background problem.

The scattering between Bragg reflections from nanocrystals is used to aid

solution of the phase problem. We describe a method for reconstructing the

charge density of a typical molecule within a single unit cell, if sufficiently

finely-sampled diffraction data are available from many nanocrystals of differ-

ent sizes lying in the same orientations without knowledge of the distribution

of particle size or requiring atomic-resolution data.

Triple correlation of the diffraction patterns are made use of to recon-
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structed the 3D diffraction intensities from 2D data set. An analytical, linear,

and non-iterative algorithm is developed to tackle this problem with the as-

sumption that the spherical harmonics expansion of intensities is band-limited.

The algorithm is made feasible by decoupling the large nonlinear problem and

numerical implementation shows it works with ideal data but error accumula-

tion has to be overcome before applying to real world data.
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CHAPTER 1

INTRODUCTION

Most of protein structures are solved by X-ray crystallography. X-ray crystal-

lography is one of the most successful techniques ever developed for the study

of structures with atomic resolution. Every year thousands of new structures

are solved and posted to the Protein Data Bank. However, the success of the

method depends on growing crystals of sufficient size and quality. The growth

of high-quality crystals needs huge amount of investment, and even though,

many proteins yield poorly grown crystals. In July 2007, there are more than

750,000 proteins sequenced, and the structures of less than 6% (44,700) of them

are solved. However, only 460 of the proteins with determined structures are

membrane proteins, which are extremely important as 70% of today’s drugs

aim at them, but are notoriously difficult to crystallize. Revolutions in both

the experimental and theoretical approaches, such as new phasing and sorting

algorithms, are expected to make breakthroughs in this fundamental field of

nature science.

Serial Crystallography with Femtosecond X-ray Free Electron Laser (XFEL)

In conventional measurements, the necessary increase in X-ray dose to record

data from crystals that are too small or lacking sufficient order leads to ex-

tensive damage before a diffraction signal can be recorded. Coherent X-ray

Diffractive Imaging (CXDI), which uses a coherent, short and extremely bright

pulse of X-rays to obtain a diffraction pattern which is then phased to recon-

struct its charge distribution, has emerged as an promising alternative.

The idea of CXDI, as proposed by Sayre[3] in the early 1980s, is to deter-

mine the spatial distribution of electron density ρ(r) in noncrystalline sample



from its far-field coherent diffraction pattern. There are two distinctions from

conventional X-ray crystallography. Firstly, the reciprocal space data (diffrac-

tion pattern) is a continuous function for noncrystalline targets, as opposed to

discrete Bragg peaks for a crystal. This allows the application of an iterative

oversampling phasing algorithm[4, 5, 6] for phase retrieval and structure de-

termination. Secondly, The method requires an intense fully coherent X-ray

incident beam to preserve the phase information in the diffraction pattern and

overcome the lack of periodicity.

This technique only becomes feasible recently with the availability of XFEL.

XFELs are capable of producing intense X-ray pulse, which is a billion times

brighter than the third generation synchrotron light source, and its pulses du-

ration as short as a few femtoseconds (fs, 10−15s). For example, the FLASH

XFEL in Germany is the first soft XFEL, which was launched as the first hard

XFEL int the world, generates photons with wavelength of 32nm and pulse

length of 10fs. It has been updated to reach the wavelength of 6.5nm. In 2009,

the Linac Coherent Light Source (LCLS) is launched as the first hard XFEL in

the world, whose wavelength reached 1.5Å in April 2009. This facility provides

the ultimate instrument to solve the structure problem at atomic resolution.

However, the intense radiation may cause substantial damage to the biology

sample. In a preliminary simulation, it has been indicated that the spatial

resolution is limited to 10nm for organic samples an 1nm for inorganic samples

(see Fig.( 1.2)[8]. Further simulation has confirmed this result, finding that

multiple single-file protein beams will be needed for sub-nanometer resolution

on current third-generation synchrotrons where reconstruction of secondary

protein structure at a resolution of 7Å should be possible with relatively short

exposure time[9, 10].
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Figure 1.1: Peak brilliance of several X-ray light source[7]

Figure 1.2: Required X-ray dose and the radiation-damage limit is shown
as the dotted line connecting Henderson’s limit at atomic resolution and mi-
croscopy studies against mass loss at low resolutions.[10]
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Neutze[11] thus proposed a scheme to overcome the radiation-damage limit

as described in Fig.( 1.3)[12]. It makes use of the ultrashort pulse to record a

high-resolution diffraction patter before the illuminated molecule explodes as

a result of the exposure to the intense radiation. The intensity pattern formed

from the intense X-ray pulse (incident from left) scattering off the object is

recorded on a pixelated detector. The pulse also photoionizes the sample.

This leads to plasma formation and Coulomb explosion of the highly ionized

particle, so only one diffraction pattern (a single two-dimensional slice) can be

recorded from the particle. Many of these individual diffraction patterns can

be recorded from single particles in a jet (traveling from top to bottom). The

particles travel fast enough to clear the beam by the time the next pulse (and

particle) arrives. The data must be read out from the detector just as quickly.

In the next stage, the full 3D diffraction data set is assembled from noisy

diffraction patterns of identical particles in random and unknown orientations.

Patterns are classified to group patterns of like orientation, averaged within

the groups to increase signal to noise, oriented with respect to one another,

and combined into a 3D map of reciprocal space. The image is then obtained

by iterative phase retrieval. Although the high resolution signal in a single

pattern collected is not strong enough for the future reconstruction of a protein

molecule, millions of such patterns are available, and if some way can be found

to sort and merge them properly, they can provide statistically significant

signal at atomic resolution[13].

On the other hand, the application of the state-of-the-art facility and the

novel experimental scheme also poses some key challenges to the community

of diffraction physics. Firstly, the synchronized beam of protein are hydrated

in order to improve the hit rate of incident pulse to an acceptable level. There-
4



Figure 1.3: Schematic depiction of single-particle coherent diffractive imaging
with an XFEL pulse.[11]

fore, the effect of water jacket surrounding the molecule remains to be studied

to extract the signal from molecule alone. Secondly, even given the ultra high

flux of XFELs, the photons scattered per shot is still very few (1̃000/shot),

which fall onto about a million of pixels on the detector. Considering the task

of next step to reconstitute the 3D intensity distribution from each 2D snap-

shot from unknown random orientation, such weak signals invalidate the most

straightforward and widely used orientation determination method, common

line method[14]. Moreover, the data had better be collected within 20fs after

pulse arrival, at the moment after the molecule is blown up and before it has

flown apart.
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Although the serial crystallography has been accepted as the on of the

mainstream applications of XFELs and real-world experiments has been con-

ducted, which confirm the power of it[15], many of the problems emerging

from it, especially at the stage of data process, still remain unclear up to now

due to their difficulties. The aims of this thesis are to investigate several of the

issues above via theoretical and computational methods to shed some light on

them.

Coherent Diffractive Imaging

Diffractive (or lensless) imaging refers to the use of mathematical methods

and computer algorithms to solve the phase problem for scattering by a non-

periodic object. Additional information about the object, such as the sign of

the scattering potential an the approximate boundary of the object, may be

combined with the measured scattered intensity to solve for the phases of the

scattered amplitudes. By avoiding the need for a lens, the aberrations and

resolution limits introduced by lenses are thus avoided. Diffractive imaging

promises a 3D resolution limited only by radiation damage, wavelength, the

collected solid angle, and the number of photons or electrons collected.

Sayre is the first to consider the relationship between Shannon’s sampling

theorem and Bragg’s law[16]. He found the fact that the Bragg diffraction

undersamples the diffracted intensity was important and led to more specific

proposals by the same author for X-ray diffractive microscopy of nonperiodic

objects.

Since the proposal of the principle, a number of groups have been working

to bring it from words to reality. Robinson and co-workers applied it to hard

X-ray experiments on microcrystalline particles[17]. A 3D image at 40nm

6



resolution has been constructed tomographically.

A collaboration between Berkeley and Livermore laboratories and Arizona

State University produced 3D imaging at 10 × 10 × 40nm resolution of test

samples[18]. In this work, a simple zone plate was used as a monochromator,

following by a beam-defining aperture of about 10 µm in diameter, coherently

filled. A nude soft X-ray CCD camera, employing 1024 × 1024 24-µm pixels

was used. The sample is mounted in the center of a silicon nitride window

fitted to a TEM single-tilt holder, which provides automated rotation about

a single axis normal to the X-ray beam. The window is rectangular, with the

long axis normal to both the beam and the holder axis. Diffraction patterns are

recorded at 1◦ rotation increments, with a typical recording time of about 15

min per orientation. The maximum tilt angle is then limited by the thickness

of the silicon frame around the window to perhaps 80◦, resulting in a missing

wedge of data. In addition, data may be missing around the axial beamstop.

3D interpolation of data points near the sphere is needed, and careful intensity

scaling may be necessary if several exposures with different times are required

to cover the full dynamic range of the data. It is often found that missing

data points in the central region can be treated as adjustable parameters in

the phasing. Once a roughly spherical volume has been filled in reciprocal

space (perhaps with missing wedge and beam-stop region), the 3D iterations

of the phasing algorithm may be applied. The computing demands are severe,

as outlined below. The converged data will provide a 3D density map (see

Fig.( 1.4), proportional to the local charge density, if the single-scattering

approximation of X-ray diffraction theory applies and if the spatial variation

in attenuation of the beam due to the photoelectric effect can be neglected.

In the field of electron microscopy, lens aberrations limit electron imaging
7



Figure 1.4: (A) Tomographic reconstruction from a soft X-ray diffraction pat-
tern shown in (B). The object consists of gold balls (50 nm diameter) lying
along the edges of a pyramidal-shaped silicon nitride structure. This is one
image from a rotation series. From the complete series, three-dimensional sur-
faces of constant density can be constructed. (B) The volume of soft X-ray
diffraction data collected to obtain the three-dimensional reconstruction in
(A).[18]

resolution to about 1 angstrom. Resolution is reduced further by low contrast

from weak scattering or from the limitations on electron dose for radiation-

sensitive molecules. Zuo showedq that both high resolution and high contrast

can be achieved by imaging from diffraction with a nanometer-sized coherent

electron beam[19]. The coherent electron nanodiffraction is collected on a

JEOL electron microscope with a field emission gun. The phase problem is

solved by oversampling and iterative phase retrieval. Although the nominal

point resolution of the machine is 2.2Å for phase contrast imaging at the

Scherzer focus condition, this technique is able to image a double-wall carbon

nanotube at 1Å resolution, revealing the structure of two tubes of different

helicities (see Fig.( 1.5, 1.6).

Iterative Phasing Algorithm

When we record the diffraction pattern intensity scattered by an object, the

phase information is missing. Apart from normalization factors, an object of

8



Figure 1.5: Coherent nanoarea electron diffraction: (A) a schematic ray di-
agram, (B) the recorded diffraction pattern from a DWNT, and (C) the in-
tensity profile of (B) from the center along the line indicated by arrows. The
nanometer-sized parallel electron beam is formed by illuminating the con-
denser aperture (CA) with a coherent electron beam from the field emission
electron gun and focusing the beam with the use of the condenser lens (CL)
onto the front focal plane (FP) of the objective lens (OL). The size of beam is
50 nm for a 10µm aperture. The far-field diffraction pattern of (B) is digitized
with the use of imaging plates. The pixel resolution is 0.0025Å−1, which de-
fines a 400Å field of view in real space. Intensities for the center 60 pixels by 60
pixels were obtained from the Fourier transform amplitude of a low-resolution
electron image of the DWNT.[19]

density ρ(r), r being the coordinates in the object (or real) space, generates a

diffraction pattern equal to the modulus square of the Fourier transform (FT)

ρ̃(k):

I(k) = |ρ̃(k)|2

I(k) = ρ̃†(k)ρ̃(k) , (1.1)

where k represent the coordinate in the Fourier (or Reciprocal) space. The

inverse Fourier transform (IFT) of the measured intensity I provides the au-

tocorrelation ρ(−r) ∗ ρ(r) of the object:

IFT[I(k)] = ρ(−r) ∗ ρ(r) . (1.2)

The phase-retrieval problem consists of solving ρ̃ in Eq. ( 1.1) or ρ in Eq. ( 1.2),

using some extra prior knowledge. In diffraction microscopy, solving such
9



Figure 1.6: (left) A section of the reconstructed DWNT image at 1Å resolution
and (right) a structural model constructed with the use of the chiral vectors
of (35, 25) and (26, 24) that were determined from the image and diffraction
pattern. The DWNT imaged here is one of many in our catalytic chemical
vapor deposition grown samples. Yellow and red lines mark the diameters of
the inner and outer tubes, respectively. One side of walls is stronger than the
other, which is because of the illumination. The DWNT is incommensurate.
In projection, the structure has complex patterns showing both accidental co-
incidences and Moire fringes, which are highlighted by hexagons and lines.[19]

problem is performed with giga-element large-scale optimization algorithms,

described in the following section.

Since the intensity represents the FT of the autocorrelation function, and

the autocorrelation is twice as large as the object, the diffraction pattern

intensity should be sampled at least twice as finely as the amplitude to capture

all possible information on the object. Finer sampling adds a 0-padding region

around the recovered autocorrelation function

ρ(r) = 0, if r /∈ S . (1.3)

which adds no further information (Shannon theorem). Less than critical

sampling in the Fourier domain causes alias in the object space. Loosely,

it can also be understood in the way that the missing half of the data (the

phases) are compensated by requiring that half of the object values be known
10



(they are zero outside the support), so that the system of ellipsoid equations

(Eqn.( 1.4)) are solvable in principle.∣∣∣∣∣∑
r∈S

ρ(r) exp(ik · r)

∣∣∣∣∣
2

=∑
r,r′∈S

exp(ik · (r − r′))ρ(r)ρ∗(r′) = I(k) . (1.4)

Each value of I(k) in reciprocal space defines an ellipsoid (Eq. ( 1.4)) in

the multidimensional space of the unknowns ρ(r), {r ∈ S}. The intersec-

tion of these ellipsoids forms our solution. Constant phase factors, inversion

with respect to the origin (enantiomorphs), and origin shifts ρ(±r + r0)eiφ0

are undetermined and considered equivalent solutions. The presence of mul-

tiple non-equivalent solutions in two- and higher- dimensional phase retrieval

problems is rare[20]; it occurs when the density distribution of the object can

be described as the convolution of two or more non-centrosymmetric distri-

butions. Simple homometric structures for which the phase problem is not

unique [Buerger] exist in nature, but such non-uniqueness is less likely for

more complex structures.

Unfortunately this system of equations is difficult to solve, and has an

enormous number of local minima. In the early 1980s, the development of

iterative algorithms with feedback by Fienup[4], produced a remarkably suc-

cessful optimization method capable of extracting phase information. These

algorithms try to find the intersection between two sets, typically the set of all

the possible objects with a given diffraction pattern (modulus set), and the set

of all the objects that are constrained within a given area or support volume.

11



Figure 1.7: Convex sets A:(a) general geometry, (b) the convex set for a sup-
port constraint for which x3 = 0[21]

Figure 1.8: Nonconvex sets A:(a) general geometry, (b) the nonconvex set for a
specified image energy. It also describes the Fourier magnitude constraint[21]

Constraints and Projections

A special role is played by constraints that are convex. Convex constraints are

represented by convex constraint sets. A convex set is one for which the line

joining any two points in the set is totally within the set (Fig. 1.7). An image

with a given support is an example of a convex constraint. The constraints is

characterized by certain pixels in the image being zero, and the constraints set

is therefore a hyperplane in S, which has the property of convexity. However,

the Fourier magnitude constraint set is nonconvex (Fig. 1.8)

A projector P is an operator that takes to the closest point of a set from the

current point ρ. A repetition of the same projection is equal to one projection

alone (P 2 = P ); its eigenvalues must therefore be λ = 0, 1. Another operator

used here is the reflector R = I + 2[P − I] = 2P − I, which applies the same

12



step as the projector but moves twice as far.

Widely used in phase retrieval, projection onto the support Ps involves

setting to 0 the components outside the support, while leaving the rest of the

values unchanged

Psρ(r) =


ρ(r) if r ∈ S

0 otherwise,

(1.5)

And the projector onto the magnitude constraints in reciprocal space Pm is

defined as

Pm = F−1P̃mF , (1.6)

where F and F−1 represent the forward and inverse Fourier transforms respec-

tively and

P̃mρ̃(k) = P̃m|ρ̃(k)|eiϕ(k) =
√
I(k)eiϕ(k) , (1.7)

An important property of convex sets is that the projection onto it is unique

for any point. For nonconvex sets, the projection is not necessarily unique,

although in many cases it is unique for most points. The immediate result

of that is it is always possible to reach the intersection of two convex set by

iterative projection from anywhere. On the other hand, as a result of the

nonconvexity of at least one constraint, the process may converge to a point

in the intersection, converge to a point not in the intersection, converge to a

limit cycle, or diverge, depending on the particular constraints and the starting

point (see Fig. 1.9)[21]. Convergence to a limit cycle that is not close to the

solution is often referred to as stagnation, which remains a important problem

to be overcome for any practical iteration algorithm.
13



Figure 1.9: Geometric illustrations of (a) the projection onto convex sets, and
(b) the projection onto a convex and a nonconvex set[21]

Moreover, there can be other constraints in real world such as positivity.

Any number of constraint sets can be combined into a single constraint set,

i.e.

Ps+ρr =


ρ(r) if r ∈ S & ρ(r) ≥ 0 ,

0 otherwise.

(1.8)

so that the number of constraint sets can be reduced to two (one in real space

and another in reciprocal space). However, the sets become more complex,

as do the projection operators, when sets are combined. Actually combining

convex constraints generally gives a nonconvex constraint.

Iterative Projection Algorithm

Several algorithms based on these concepts have now been proposed and sum-

marized here. The following algorithms require a starting point ρ0, which

is generated by assigning a random phase to the measured object amplitude

(modulus) in the Fourier domain |ρ̃(k)| = m(k) =
√
I(k).

The first algorithm called error reduction (ER)[5] is the simplest implement

of the projecting back and forth between two sets, it converges to the local

minimum.

ρ(n+1) = PsPmρ
(n) , (1.9)

14



Figure 1.10 shows that the step size is far from optimum, but that it guar-

antees linear convergence. A line search along this gradient direction would

considerably speed up the convergence to a local minimum.

The solvent flipping (SF) algorithm[22] is obtained by replacing the sup-

port projector Ps with its reflector Rs = 2Ps − I:

ρ(n+1) = RsPmρ
(n) , (1.10)

which multiplies the charge density ρ outside the support by −1.

The hybrid input-output (HIO) [4] (Fig. 1.10) is based on non-linear

feedback control theory and can be expressed as:

ρ(n+1)(x) =


Pmρ

(n)(x) if x ∈ S,

(I − βPm)ρ(n)(x) otherwise.

(1.11)

Since the output of HIO iteration is not necessarily a good estimate of the

solution, the algorithm is always terminated with a few cycles of ER. The

difference map (DM) is a general set of algorithms [23], which requires 4 pro-

jections (two time-consuming modulus constraint projections) (Fig. 1.10):

ρ(n+1) = {I + βPs [(1 + γs)Pm − γsI]− βPm [(1 + γm)Ps − γmI]}ρ(n) ;

the solution corresponding to the fixed point is described in the same article.

We will use in the upcoming tests what Elser suggested as the optimum, with

γs = −β−1 and γm = β−1.

The averaged successive reflections (ASR)[24] algorithm is:

ρ(n+1) = 1
2
[RsRm + I]ρ(n) . (1.12)

The Hybrid Projection Reflection (HPR)[25] algorithm is derived from a re-

laxation of the ASR:

ρ(n+1) = 1
2
[Rs (Rm + (β − 1)Pm) + I + (1− β)Pm]ρ(n) .
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Figure 1.10: Geometric representation of various algorithms using a simplified
version of the constraint: two lines intersecting. (a) Error reduction algorithm:
we start from a point on the modulus constraint by assigning a random phase
to the diffraction pattern. The projection onto the modulus constraint finds
the point on the set which is nearest to the current one. The arrows indicate
the gradients of the error metric. (b) The speed of convergence is increased by
replacing the projector on the support with the reflector. The algorithm jumps
between the modulus constraint (solid diagonal line) and its mirror image with
respect to the support constraint (dotted line). (c) Hybrid input–output. The
space perpendicular to the support set is represented by the vertical dotted
line. (d) Difference map.[27]

It is equivalent to HIO if positivity is not enforced, but it is written in a

recursive form, instead of a case-by-case form such as Eq. ( 1.11). It is also

equivalent to the DM algorithm for γs = −1, γm = β−1. Finally the relaxed

averaged alternating reflectors (RAAR) algorithm[26]:

ρ(n+1) =
[

1
2
β (RsRm + I) + (1− β)Pm

]
ρ(n) . (1.13)

For β = 1, HIO, HPR, ASR and RAAR coincide.
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Figure 1.11: The horizontal line represents a support constraint, while the two
circles represent a non-convex constraint, i.e. the modulus constraint.[27]

In conclusion, these algorithms can be grouped in two categories[27]: (1) lo-

cal minimizers such as ER, SF, steepest descent and conjugate-gradient meth-

ods, with Solvent Flip having some moderate ability to escape local minima[22]

(2) more global minimizers such as HIO, DM, ASR, HPR which use a feedback

to reach the solution. RAAR and ER+HIO fall somewhere in between the two

categories, depending on an adjustable parameter.

In order to show this important difference, a numerical example is shown

in Fig. 1.11. Here the circumference of two circles represents a non-convex

set (modulus constraint), while the support constraint is represented by a

line. The convex set represents a simplified modulus constraint in a phase-

retrieval problem. The gradient-type (ER and SF) algorithms converge to the

local minimum, while HIO and its variants follow the descent-ascent direction

indicated by the arrows.

A simple 2-D phase-retrieval problem, where only two variables (pixel val-

ues) are unknown. The solution is the atop minimum in the figures, is also used

to test the most widely used algorithms, ER and HIO The primary advantages

of iterative projection algorithms for solving inverse problems are

17



Figure 1.12: The error reduction algorithm proceeds toward the local minimum
while the HIO method generally converges to the global minimum, however
some rare starting points converge to a local minimum.[27]

1. they are computationally efficient compared to many other optimization

methods (the projection operators are fast to compute)

2. the projection operators are relatively simple to implement

3. the more advanced algorithm are quite resistant to becoming trapped in

local minima (stagnation)

Beam Stop Problem

There are several approaches made to solve the problem of data lost behind a

synchrotron beam stop, which is essential to protect a sensitive area detector.

In several HIO applications these missing values have simply been treated as

free adjustable parameters, and the algorithm was found to converge.

Here the simplest initial choice of support is the boundary of the autocor-

relation function (obtained by Fourier transform of the diffracted intensity).

The part of the diffraction pattern covered by a central beam stop from the

transform of the current estimate of the object. Low-frequency components

are treated as free parameters. Every 20 iterations the reconstructed image

is convolved with a Gaussian peak to find the new support mask. The mask

18



Figure 1.13: Image reconstruction from an experimental x-ray-diffraction pat-
tern. (a) X-ray diffraction pattern of a sample of 50nm colloidal gold particles,
recorded at a wavelength of 2 nm. (b - e) shows a sequence of images pro-
duced by the algorithm as it converges. Number of iterations: 1 (b), 20 (c),
100 (d), and 1000 (e). The reconstruction progresses from the autocorrelation
function in (b) to an image in (e) with a steady improvement of the support
boundary shown at the bottom of each frame. For comparison, a scanning
electron micrograph of the object is shown in (f). The scale bar length is 300
nm and the resolution of our reconstructed image is about 20 nm.[28]

is then obtained by applying a threshold at 20% of its maximum. The width

is set to 3 pixels in the first iteration, and reduced by 1% every 20 iterations

down to a minimum of 1.5 pixels. This estimate is rapidly improved upon by

the so called shrinkwrap algorithm[28]. This appears to be the most useful

practical algorithm at present.

There is another solution using a sample consisting of an unknown object

filling a small hole in an otherwise opaque mask[29, 30]. The use of very small

silicon nitride windows greatly reduces the intensity of the direct beam and

blooming effects. However, the detailed shape of the partially transparent

silicon wedge round the window must then be estimated and used as a sup-

port for inversion. Finally, the diffuse X-ray scattering around Bragg peaks

from a cryallite has been inverted to an image, thus avoiding the direct-beam

scattering.
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Two-wavelength inversion of multiply scattered soft X-ray intensities to

charge density[1]

For 2D soft X-ray and electron diffraction in the projection approximation,

the reconstruction of the charge density (or potential) may be understood to

be a two step process. The phase problem is solved for the far-field diffracted

intensities, and the 2D Fourier transform of the intensities and phases provides

the complex exit-wave function. However, without the assumption of single

scattering, the real-space map of charge density (or potential) cannot be ob-

tained. The parameters that define the validity domain of single-scattering

approximation include extinction distance, sample thickness, and inelastic ef-

fects which may provide an effective limit on thickness.

The presence of multiple scattering destroys the simple Fourier Transform

relationship of the first Born approximation between scattered amplitudes and

the sample charge density. It has always been considered a severe limitation to

this diffractive imaging technique[31]. However it has frequently been pointed

out that in a sense multiple scattering solves the phase problem, since it al-

lows interference between different Bragg beams in crystals and makes them

sensitive to structure factor phases. An approach to inversion with multiple

scattering which takes advantage of this effect, based on projection between

constrained sets in the manner of the HiO algorithm, was described by Spence

et al[32]. A dynamical Ptychography approach has also been described in [33].

Firstly, it is important to make sure that multiple-scattering effects can be

ignored under strong absorption, although it appears an intuitional conclusion.

This is due to the lack of general form of the distribution of multiple elastic

scattering from a 3D nonperiodic sample apart from statement about sym-
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metry. Multislice calculation at different energy is carried out on a mixture

of protein and water, whose refractive parameters are obtained from CXRO

website and the assumption that coherent scattering from the mixture is not

greatly different from that from separated regions of each is made. The re-

sult shows that both single and multiple scattering curves commence with the

correct parabolic thickness dependence, the low-angle multiple scattering a

premature roll off, not present at high angles, which will enhance high spatial

frequencies in images. The final effect is that although absorption does greatly

attenuate the effects of multiple scattering, it still must be taken into account

in order to obtain quantitative agreement for samples thicker than about half

the extinction distance of the low order scattering.

Therefore, it is necessary to study the multiple scattering effect under any

circumstance. Fortunately, it is possible to show that in soft X-ray diffraction

the multiple scattering is a function a function only of the product λt, where

λ is the wavelength while t the thickness of sample.

In the Bloch-wave representation of scalar multiple-scattering theory, the

Fourier coefficients of the dynamical wave field at depth z within the sample

can be formed into a column vector u, where

du

dz
= −2πiA(z)u(z) (1.14)

Assuming that the second-order derivative of u(z) in direction z is negligible[34],

for soft X-ray diffraction, the off-diagonal elements of A are proportional to

the set of z-dependent Fourier coefficients Ag−h(z) of the 2D charge density.

If A is independent of z for a charge density that depends only on the 2D

vector normal to the beam, the solution to Eqn.( 1.14) is

u(t) = Su0 = exp(2πiAt)u0 (1.15)
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Figure 1.14: (a) The thickness dependence of the scattered intensity at 500 eV
and q = 0.02nm−1, both curves with absorption. The continuous curve shows
the single scattering, the crosses show the multiple scattering. (b) Similar to
(a) for q = 0.05nm−1, showing more rapid oscillations. (c) Variation of phase
(in radians) with thickness at q = 0.02nm−1. Note the second jump (phase
reversal) in the continuous curve at the minimum of the single-scattering curve
in (a).[1]
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where u0 is a column vector containing Fourier coefficients of the incident

coherent beam and S is unitary in the absence of spatially varying absorption.

Now the matrix A has diagonal elements which are the excitation errors of

the computational superlattice[35]

Sq = |q|2λ/2 (1.16)

And the off-diagonal elements in S are the positive quantities Aq = reρqλ/2π,

where ρq is the complex Fourier coefficient of the effective charge density. Then

there is

S = exp(2πiA′λt) (1.17)

where A′ is independent of λ and thickness t over any range of beam energy

for which the effective number of electrons. Taking the derivation on both size

gives

dS

dλ
= (2πiA′t)S (1.18)

As S can be measured from experiment, A is allowed to be found if t is known.

From Eqn.( 1.14) and Eqn.( 1.18), the exit wave can be written in form of

Ψ(r, t, λ) = Ψ(r, tλ) (1.19)

as u(t) = u(q, t, λ) contains the Fourier coefficients of Ψ(r, t, λ). The dynami-

cal solution will be unchanged if δ(tλ) = 0 or tδλ = −λδt, therefore the small

amount of change in wavelength is equivalent to the change in thickness

∆Ψr = Ψr(λ(t+ ∆t))−Ψr(λt)

= Ψr((λ−∆λ)t)−Ψr(λ, t),∆λ = −λ
t

∆t (1.20)

The equation can be made use of by both X-ray diffraction, which is relatively

easier to change wavelength, and electron diffraction, which is easier to move
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the sample to change the thickness. Now the multislice iteration is

Ψ(r, t+ ∆t, λ) = Ψ(r, t, λ) exp(re|ρ(r)|∆tλ)⊗ P (r, λ∆t) =

Ψ(r, t, λ+ ∆λ) = Ψ(r, t, λ) exp(re|ρ(r)|t∆λ)⊗ P (r, t∆λ) (1.21)

where the Fresnel propagator P is

P (r) = exp(−iπ|r|2/λt) (1.22)

Therefore, in case of X-ray diffraction, it is possible to obtain exponential of

the charge density from the difference or division of complex images recorded

at two adjacent wavelengths by deconvoluting

Ψ(r, t, λ+ ∆λ)

Ψ(r, t, λ)
= exp(re|ρ(r)|t∆λ)⊗ P (r, t∆λ) (1.23)

Especially when ∆λ is small, the exponential can be approximated by the

first order term of expansion, which provides the direct evaluation of ρ(r) (see

Fig. 1.15).
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Figure 1.15: (a) The charge density recovered by this inversion algorithm using
diffraction-pattern intensities simulated for 500 and 450 eV. The ordinal incre-
ment is 50nm3. The thickness is 0.5 mm, at the onset of multiple-scattering
perturbations, particularly in phase at low angles. (b) The multiply scattered
image intensity at 500 eV, showing severe distortion. This is the Fourier trans-
form of the complex pattern shown in (c). (c) Diffraction pattern intensity at
500 eV used to obtain (a), showing strong multiples scattering perturbations.
[1]
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CHAPTER 2

THE MOLECULAR ALIGNMENT PROBLEM
2.1 Orientation Determination from Three Beam Diffraction Pattern

The use of single-shot X-ray laser pulses from individual molecules has been

suggested as a method for determining the structure of proteins that are dif-

ficult to crystallize[11, 12]. If this should prove technically possible, it will be

necessary to merge many single-molecule two-dimensional diffraction patterns

from molecules lying in random orientations into a single three-dimensional

data set. The subsequent destruction of the sample following the initial elastic

scattering event, however, has precluded the possibility of three-dimensional

(tomographic) imaging of unique structures. Several approaches to the re-

sulting problem of molecular orientation determination have been proposed

[14, 36, 37, 38, 9, 15, 39]. A-priori molecular alignment using experimen-

tal techniques such as liquid flow alignment, laser alignment and alignment

in electrical and magnetic fields have also been proposed and demonstrated

with varying degrees of success[40]. In this section, we suggest a means for

overcoming this limitation.

Consider the arrangement shown in Fig. 2.1. A beam-splitter and reflecting

crystals direct three orthogonal beams onto a non-periodic target particle (only

two beams are shown for clarity) producing three far-field diffraction patterns

prior to destruction of the target. (Thermal vibration prevents overlap of these

patterns.) We assume that all three two-dimensional patterns are read out

after each X-ray pulse, whereupon a new, identical target such as a biomolecule

is inserted in a new orientation. If the phase problem can be solved these

patterns can provide three orthogonal projections of the target charge density.

We now consider the problem of defining an internal (”body”, or principal
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Figure 2.1: Scheme for tomographic femtosecond diffraction, drawn for only
two beams for simplicity (Three orthogonal beams are proposed in the text).
Beamsplitter X1 is set to the dynamical 3-beam diffraction condition. Crystals
X2 and X3 operate at the 2-beam dynamical condition. KB1 and KB2 are
Kirkpatrick-Baez focussing mirrors for target at B, with area detectors CCD1
and CCD2.[37]

axes) coordinate system for the target, and of finding the orientation of this

with respect to the laboratory frame for the case where the structure of the

target is unknown. If this process can be repeated for each particle, the relative

orientations of successive particles will also be determined.

The use of principal axes in crystallography has been suggested recently

[41]. We propose using the experimental data to determine directly the prin-

cipal axes of the molecule which provide a natural means of specifying its ori-

entation relative to the laboratory frame defined by the incident probe beams.

We assume that multiple scattering can be neglected, i.e., the first Born ap-

proximation is valid, so that the patterns have inversion symmetry and the

target density is a real function.

In order to expose the principle of the method, we first assume that the

phase problem can be solved, by, for example, iterative methods . (We will
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Figure 2.2: Two-beam beamsplitter with sample shown at P lying on the exit
face of the beamsplitter. The source S is focused onto two area detectors D1
and D2 containing central beam-dump holes. The two vertical arrows show
the direction of the Poynting vector. Three such orthogonal diffracted beams,
rather than the two shown, are proposed in the text. [37]

relax this assumption later.) Then, at high energy, each beam delivers a

projection in real space, along the direction of the corresponding beam, of the

scattering strength per unit volume within the particle. The projections will

be referred to different (randomly positioned) origins, and both enantiomorphs

(related by inversion symmetry) will be present with equal likelihood. However

once a particular enantiomorph is chosen for one projection, the resulting two-

dimensional envelope will constrain the choice of enantiomorph for the other

two projections.

Consider the moments of the mass density ρ(r) for the target[42]. The

zeroth moment delivers the total mass, the first moment delivers the center

of mass vector, and the second moment delivers the moment of inertia tensor.
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By diagonalizing this, the principal axes of the target may be found and hence

its orientation relative to the lab frame. Taking the center of mass position as

the origin, the inertia tensor is

I =

∫∫∫
ρ(r)

(
r2E− rr

)
dr , (2.1)

where E is the unit tensor and rr is the outer product of the position vec-

tor with itself. As with any symmetric tensor, I has only six independent

elements, real eigenvalues, and orthogonal eigenvectors corresponding to dif-

ferent eigenvalues.

We now interpret ρ(r) as the electronic density of the target, whose pro-

jections in three orthogonal directions are provided by the phased data, and

which define the x, y, and z directions specified by unit vectors ei in the lab

reference frame. The six independent elements of the ”inertia” tensor then

have the form

Izz =

∫∫
ρz(x, y)(x2 + y2) dxdy

Ixy =

∫∫
ρz(x, y)xy dxdy (2.2)

and similarly for Ixx, Iyy, Iyz and Ixz. Here ρα is the projected density along

the α-direction. Two of these six tensor elements can be computed from each

of the three projections, e.g. Izz and Ixy from the projection along the z-axis.

Hence the inertia tensor of the target is fully specified by computing moments

and products of inertia from the three projections. While our “inertia” tensor

(based solely on electron density) may differ from one based on true mass

(including nuclear masses), it need only provide a consistent set of body axes

fixed to the molecule to be useful for our purposes. Being symmetric, this

tensor may be diagonalized in the usual fashion by constructing the eigenvalue
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equations

I ·B = bB (2.3)

for the three eigenvalues b and corresponding eigenvectors B, solving the sec-

ular equation for the eigenvalues, inserting these into the eigenvalue equation,

and solving that set of equations for the eigenvectors. These eigenvectors de-

fine a new orthogonal coordinate system e′j in which the three unit vectors

lie along the principal axes of the inertia tensor (the principal axis or “body

axis” reference frame). Barring degeneracy among the eigenvalues, the three

eigenvectors are unique to within a sign, and therefore offer a natural means

of specifying the orientation of the target relative to the incident beam di-

rections (lab frame). With the unit vectors ei of the lab frame and e′j both

known, the angles between the principal axes of the target and the lab frame

can immediately be computed. Thus the orientation of the target has not only

been defined by introducing the principal axes of the inertia tensor, but also

specified (within polarity) relative to the lab coordinates.

To summarize, the procedure to establish the orientation of the particle is

as follows: (i) Record three diffraction patterns, one for each of the three inci-

dent beam directions. (ii) Invert the diffraction patterns using phase retrieval

techniques to yield three real-space projections of the scattering strength. (iii)

Compute the first moment of each projection to obtain the center of mass

position for that projection. (iv) Compute the second order moments of each

projection (products of inertia) about the center of mass to obtain one diago-

nal and one off-diagonal tensor element. (v) Diagonalize the resulting tensor

to obtain the eigenvectors of the tensor. (vi) Compute the orientation of each

beam relative to the eigenvectors of the target in order to determine the angles
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between laboratory and body (principal axes) coordinates. (vii) If this process

is repeated for many successive identical targets in random orientations, their

relative orientations can be found, and hence a complete three-dimensional to-

mographic image can be assembled by standard tomographic techniques such

as filtered backprojection.

We now show that the principal axes may be found without the need to

solve the phase problem by working with the autocorrelation of the sample

density

A(r) =

∫
dr′ρ(r + r′)ρ(r′) . (2.4)

A typical product of inertia is

IAxy =

∫
dr xyA(r) =

∫
dr′ρ(r′)

[∫
drxyρ(r + r′)

]
=

∫
dr′ρ(r′)

[
Iρxy + x′y′M

]
= 2MIρxy (2.5)

where M =
∫
drρ(r), and we have used the parallel axis theorem to calculate

the product of inertia for the shifted coordinates. The principal axes of the au-

tocorrelation function are the same as the principal axes of the corresponding

density.

In the high energy projection approximation, the Fourier Transform of each

diffraction pattern (intensity) provides a projection of the three-dimensional

autocorrelation function of the density, and the analysis simply requires chang-

ing ρ(r) to A(r) in Eqn. 2.2.

Alternatively, the moment of inertia can be calculated from the second

derivative of the Fourier transform denoted by a tilde,

IAxy =

∫
dr3A(r)xy = lim

q→0

∫
dr3A(r)xye−iq·r = − lim

q→0

∂

∂qx

∂

∂qy
I(q) (2.6)
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where I(q) = ρ̃(q)ρ̃(−q) is the scattering intensity in reciprocal space. So

that

IAxy = −[ρ̃(q)
∂

∂qx

∂

∂qy
ρ̃(−q)− ∂

∂qx
ρ̃(q)

∂

∂qy
ρ̃(−q)− ∂

∂qx
ρ̃(−q)

∂

∂qy
ρ̃(q)+ρ̃(−q)

∂

∂qx

∂

∂qy
ρ̃(q)]|q=0

(2.7)

Due to the inversion symmetry of ρ̃(q) at q = 0, the first derivative of it at

any direction at q = 0 is zero, therefore the second and the third terms vanish.

So that the equation above can be written as

IAxy = −2ρ̃(0)
∂

∂qx

∂

∂qy
ρ̃(q)|q=0 = 2ρ̃(0) lim

r→0

∫
dr3ρ(r)xye−iq·r = 2MIρxy (2.8)

as before. Replacing Ã(qx, qy, 0), corresponding to the high-energy limit, with

the correct Ewald sphere diffraction pattern, for an incident wave vector k

along z, shows

∂qx∂qyÃ
(
qx, qy,

√
k2 − q2

x − q2
y − k

)∣∣∣
qx=qy=0

=

∂qx∂qyÃ(qx, qy, 0)
∣∣∣
qx=qy=0

(2.9)

so that the moments of the Fourier transform of the diffracted data give the

same principal axes.

The orientation relationship between the two molecule can be determined

with the principle axes of auto-correlation function:

R1 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (2.10)

However, the other 3 matrixes can also indicate the same principle axes while
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not change the handedness of the coordinates:

R2 =


−a11 −a12 a13

−a21 −a22 a23

−a31 −a32 a33

 ,R3 =


−a11 a12 −a13

−a21 a22 −a23

−a31 a32 −a33

 ,R4 =


a11 −a12 −a13

a21 −a22 −a23

a31 −a32 −a33


(2.11)

The correct one is among the 4 matrixes. However, if we want to move a point

on the diffraction pattern to a point in its proper position 3D reciprocal space,

we do the operation
x

y

z

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33




x′

y′

0

 (2.12)

But if using another matrix, i.e.
X

Y

Z

 =


−a11 a12 −a13

−a21 a22 −a23

−a31 a32 −a33




x′

y′

0

 (2.13)

Then obviously 
X

Y

Z

 6= −


x

y

z

 (2.14)

hence the Fried’s law cannot be applied. It really matters whether proper

matrix is chosen when filling the reciprocal space if the object doesn’t have

the reflection symmetry.

Now consider the intensity of the diffraction I(r) in reciprocal space. When

the molecule is rotated according to the matrix R, the operator PR is applied

on it so that PRI(r) = I(R−1r) = I(r′). The diffraction patterns, which are
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the only experiment result available, can be regarded the slices of reciprocal

space going through the origin if the wave length is not too long. The equation

of the slices, namely the diffraction patterns, obtained from x,y,z detectors are

I(x=0), I(y=0), I(z=0) for all the orientations.

Therefore, in order to find the common line from the diffraction patterns

of different orientation, i.e. two different patterns on z detector, take the first

one as reference, then z = 0, and the other rotated, z′ = 0. Then we have the

equation:

z = 0

z′ = (R1
−1r)z = a13x+ a23y + a33z = 0

 a13x+ a23y = 0 (2.15)

which is the common line equation in the first(reference) diffraction pattern.

The common line equation in the second(rotated) diffraction pattern is just

z′ = 0

z = (R1r
′)z = a31x

′ + a32y
′ + a33z

′ = 0

 a31x
′ + a32y

′ = 0 (2.16)

Substituting R1 with R2, R3 and R4 gives all the 4 possible pairs of common

lines in the two diffraction patterns: a13x+ a23y = 0

a31x
′ + a32y

′ = 0

 a13x+ a23y = 0

−a31x
′ − a32y

′ = 0

 −a13x− a23y = 0

−a31x
′ + a32y

′ = 0

 −a13x− a23y = 0

a31x
′ − a32y

′ = 0

(2.17)

Although the first two pairs and second two pairs indicate the same common

lines, at least there will be 2-fold ambiguity instead of 4. The next step is do

the same thing on the diffraction patterns obtained by y or z detector and it

can be shown that only one of the rotation matrix is consistent, which is the

correct one.
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Figure 2.3: This figure shows the three orthogonal projections of the GroEL
charge density (upper) and the corresponding projections of the autocorrela-
tion function (lower). The bar indicates 10 nm.

Numerically, once we get the matrix(eigenvector of moment of inertia),

make all the 4 rotation matrixes with the correct handedness. It is not neces-

sary to find the common line of the 2 diffraction patterns. Since its possible

position can be predicted by rotation matrix, just compare the similarity of

the pairs of lines and choose the pair with higher similarity. The correspond-

ing rotation matrix should be the correct one. This method has been verified

with several sample problems and gives the correct one for all of them.

We have investigated this procedure using detailed numerical simulations

based on data in the Protein Data base for GroEL protein (PDB entry 1SVT)

in order to evaluate errors. The three-dimensional density was synthesized

from tabulated atomic coordinates. Fig. 2.3 shows the projected densities

and corresponding projected autocorrelation functions using the principal axes

obtained from Eqn. 2.2. A second density was then generated in a random

orientation 2 with respect to the first, as shown in Fig. 2.4. For each of these
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Figure 2.4: This figure shows the projections of GroEL density (upper) and
autocorrelation function (lower) in a second random orientation.

orientations the principal axes were determined using both the densities and

the autocorrelation functions, giving similar results. When autocorrelation

functions were used for the two orientations to determine the principal axes,

a rotation matrix needed to rotate the principal axes of the first orientation

shown in Fig. 2.4 into the second orientation of Fig. 2.4 we call R.

However as a result of the inversion symmetry in the diffraction patterns

and autocorrelation functions (not present in the density), there are three

other distinct choices for the rotation matrices whose elements differ from R

by alternative choices of the signs of the eigenvectors. Only one of these is

correct. The correct rotation matrix may be obtained by applying all these

rotation matrices to the diffraction patterns in an attempt to predict the locus

along lines of intensity common to two different orientations. (Any two planes

in reciprocal space passing through the origin must intersect along a common

line). In this way only one rotation matrix will be found to give consistent

results. Numerical trials have found this procedure to be reliable with several
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different test objects. The use of common lines of intensity here differs from

that described elsewhere [14], where it is shown that a complete orientation

determination cannot be made from these alone.

We have also considered the case where the beams from the beamsplitter

are not orthogonal. Reciprocal vectors can be defined in the usual way, so that

each pattern lies in the plane of two of these vectors. Taking the direction of

the beam x′ and the 2D Cartesian coordinates on the detector x′, y′ gives a new

3D Cartesian coordinates with respect to the laboratory one (x, y, z). They

are related by the matrix R′ij so that r′ = R′r. Generally, if the direction

of the three beams are z′, z′′, z′′′, the Fourier transformation of the diffraction

patterns are actually: 
F1 =

∫
A(x, y, z)dz′

F2 =
∫
A(x, y, z)dz′′

F3 =
∫
A(x, y, z)dz′′′

(2.18)

where A(x, y, z) is the auto correlation function.

Calculating the matrix element of the moment of inertia as usual yields a

linear combination of these matrix elements:∫
A(x, y, z)x′y′d3r′ =

∫
A(x, y, z)(R′11x+R′12y +R′13z)(R′21x+R′22y +R′32z)d3r

= R′11R
′
21Ixx +R′12R

′
22Iyy +R′13R

′
32Izz+

(R′11R
′
22 +R′21R

′
12)Ixy + (R′11R

′
32 +R′21R

′
13)Ixz + (R′12R

′
32 +R′13R

′
32)Iyz

(2.19)

Do the same thing for
∫
A(x, y, z)(x′2 + y′2)d3r′ and there will be 2 equations

for this coordinator system. Thus we have 6 linear equations in total for 6 Iij

that we are interested in. Therefore, the products of inertia may be simply

evaluated in terms of these reciprocal vectors, and finally transformed into the

required lab frame moments.
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2.2 Orientation Determination from the Single Beam Diffraction Pattern

and its Application to Cryo-EM

In the previous section, we have suggested a method which makes use of diffrac-

tion patterns projected simultaneously from one molecule by a single pulse,

divided by a beamsplitter, and arriving from three different directions.

In this section a more modification of this method, in which just one beam

is needed, is proposed to meet the common experiment setup. In addition

to X ray diffraction, it is found especially suitable when applied to Cryo-

EM. The routine of Cryo-EM consists of averaging, classification, and then

3D reconstruction. The most common-used 3D reconstruction methods[43]

are random-conical the common line method. However, the most important

difficulty in molecular biology is specimen damage, which generally prevents

sufficient data for a 3D reconstruction to be obtained from a single object.

In order to deal with this kind of difficulty, Kam[44] and Provencher[45] de-

signed their own sophisticated schemes using the data of statistical uniformity.

Although they both overcome the dose problem, their strict requirement of

uniformity can seldom be fulfilled. The method in this paper, originated from

X-ray diffraction, is found robust under noise, while depends much less on the

uniformity.

Method

Principle Moment of Inertia extracted from Diffraction Patterns

The method is based on a determination of the principle axes of the electronic

”mass” distribution ρ(r) of the molecule from its autocorrelation functionA(r).

Although its general principle has something in common with the three beam

scheme, which has been described in detail in the previous section, it is briefly
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restated her to make this section self-contained.

The definition of the auto correlation is:

A(r) =

∫
ρ(r + r′)ρ(r) (2.20)

A typical product of inertia is

IAxy =

∫
dr′x′y′

∫
ρ(r + r′)ρ(r)dr =

∫
dr′x′y′ρ(r + r′)

∫
drρ(r)dr (2.21)

The second term can be evaluated as∫
dr′x′y′ρ(r + r′) =

∫
dt(tx−x)(ty−y)ρ(t) =

∫
dttxtyρ(t)+xy

∫
dtρ(t) = Iρxy+xyM

(2.22)

where M is the total density and the origin is at the center of mass. Then

IAxy =

∫
drρ(r)[Iρxy + xyM ] = MIρxy +M

∫
drxyρ(r) = 2MIρxy (2.23)

In addition, A(r) provides the moments and products of inertia needed to

define the inertia tensor of the molecular density, and the eigenvectors of the

inertia tensor supply the euler angles which relate the principal axes of the

molecule to the laboratory frame coordinates (x,y,z) in which the diffraction

patterns are recorded. In the short wave length approximation, where curva-

ture of the Ewald sphere is neglected, the diffraction pattern is a planar slice in

reciprocal space, and the Fourier transformation of the diffraction pattern in-

tensities gives us the two-dimensional auto-correlation function A(x, y). This

is a projection, taken normal to z, of the three-dimensional autocorrelation

A(x, y, z) of the charge density ρ(r). Then the 2 x 2 inertia tensor Q of the
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two-dimensional auto-correlation function A(x, y) has elements:

Qxx =

∫
A(x, y)y2dxdy =

∫
A(x, y, z)y2dxdydz (2.24)

Qyy =

∫
A(x, y)x2dxdy =

∫
A(x, y, z)x2dxdydz (2.25)

Qxy = Qyx

∫
A(x, y)xydxdy =

∫
A(x, y, z)xydxdydz = Ixy = Iyx (2.26)

The moments of inertia of the three-dimensional autocorrelation function A(x,y,z),

provide the elements of the 3x3 inertia tensor I, such as

Izz =

∫
A(x, y, z)(x2 + y2)dxdydz = Qxx +Qyy (2.27)

Hence three entries Izz, Ixy and Iyx in the 3x3 symmetric tensor I (which

contains only 6 distinct elements) can be obtained from quantities measur-

able from the Fourier transforms of the diffraction pattern intensity of each

molecule. Because each molecule lies in a different orientation, these quantities

will be different for each molecule. The matrix I can be diagonalized using

P = R−1IR, where R is a rotation matrix (different for each molecule) whose

entries are direction cosines of Euler angles, which give the rotation between

the laboratory frame (x,y,z) and the principle axes system of the molecule, in

which I is diagonal. Here P is a diagonal matrix of eigenvalues containing the

principle moments of inertia p1 ≥ p2 ≥ p3. This follows using I = RPR−1,

since Izz = R2
31p1 +R2

32p2 +R2
33p3, where the coefficients are the components

of the last row of matrix R. Then, since R2
31 + R2

32 + R2
33 = 1, it can be

shown that p1 ≥ Izz ≥ p3. Since an equivalent ellipsoid exists for any ob-

ject, with the same principle moments of inertia, and since the maximum and

minimum moments of an ellipsoid run along principle axes, we may find the

principle axes of the molecule by searching for maximum and minimum val-
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ues of Izz = Qxx +Qyy amongst the diffraction patterns from many randomly

oriented molecules.

Firstly, suppose a very large number of diffraction patterns or Cryo-EM

images from uniformly random orientations are collected, from each of these,

we can calculate its autocorrelation and then the trace of the 2X2 inertia

tensor Q for each molecule. From Equ.(3.18) it can be shown that Izz is a

maximum when the lab frame coordinate z runs along the shortest principle

axis of the molecule, which will occur by chance. Then Izz = p1. Similarly,

Izz is minimized when the beam runs along the longest axis. Therefore the

maximum and minimum of these traces of Q are just p1 and p3 respectively

p1 = max{Qxx +Qyy} (2.28)

p3 = min{Qxx +Qyy} (2.29)

The next step is to find the value of p2. If all the diffraction patterns occur

with equal frequency from all possible orientations, we can take the average of

all the Qxx + Qyy and this will be equal to the integral of Izz with respect to

the Euler angles.We therefore want to write down matrix I explicitly in terms

of the 3 Euler angles. We choose an orientation in which the three principal

axes of a molecule coincide with the x,y,z axes in the laboratory coordinator

frame, and define these Euler angles as (0,0,0). Then the matrix I at (α, β, γ)

is:

I(α, β, γ) = RPR−1 (2.30)

in which R is Euler rotation matrix
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cosα cos β cos γ − sinα sin γ, − cosα cos β sin γ − sinα cos γ, cosα sin β

sinα cos β cos γ + cosα sin γ, − sinα cos β sin γ + cosα cos γ, sinα sin β

− sin β cos γ, sin β sin γ, cos β

,

and P =


p1

p2

p3

.

This yields

Izz = sin2 β cos2 γ · p1 + sin2 β sin2 γ · p2 + cos2 β · p3 (2.31)

The average of Izz is the integral with respect to Euler angle:

Izz =
1

8π2

∫ π

−π
dα

∫ π

0

sin βdβ

∫ π

−π
dγ · Izz =

1

3
(p1 + p2 + p3) (2.32)

Since p1, p3 and Izz are known, p2 can be found from this expression. Note

that this is the only place where sttistical uniformity is required. Such unifor-

mity of single molecule diffraction can be replaced by the powder diffraction

data without texture, if available.

Even without uniformly random orientation, the extraction of these princi-

ple values is still possible from a set of orientation-preferred images. Because

large areas contact are energetically preferred[46], the most probable orien-

tation of a molecule is its largest and second largest principle axes lying on

the horizontal plane while the least one vertical. The eigenvalues of the cor-

responding Q are actually
∫
A(x, y, z)x2dxdydz,

∫
A(x, y, z)y2dxdydz of the

unrotated object. Once the orientation that the largest and smallest principle

axes on the horizontal plane is found, either by chance, which is not impos-

sible, or by tilting the sample, the last moment
∫
A(x, y, z)z2dxdydz can also

be determined. With this model, and giving that the moment of inertia is not
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sensitive under noise (shown in the next section), the three principle values

can also be calculated even without random distributed data.

Orientation determination of individual molecules

It remains to determine the orientation of the individual molecules, and hence

of their diffraction patterns, from this determination of the eigenvalues of

the inertia tensor. We have I = RPR−1, in which P and some of I are now

known, and we wish to find the rotation R for a particular molecule (given one

of its diffraction patterns, which supplied the entries in I ). There are three

independent elements in the inertia matrix Q of the two-dimensional auto-

correlation Qxx, Qyy, Qxy. Using the fact that Ixx+Iyy+Izz = p1+p2+p3 = p,

we then have:

Qxx = p
2
− Ixx = p

2
−R2

11p1 +R2
12p2 +R2

13p3

Qyy = p
2
− Iyy = p

2
−R2

21p1 +R2
22p2 +R2

23p3

Qxy = Ixy = R11R21p1 +R12R22p2 +R13R23p3

(2.33)

in which Rij is the matrix element of R and due to the orthogonality of R,

only 3 of 6 elements are independent, corresponding to the 3 Euler angles.

The equations can be solved since we have 3 of them for 3 unknown variables.

Practical algorithm

The nonlinear equations above are not only difficult to solve numerically but

also sensitive to errors due to noise or error during measurement. A method

needs to be found to transform the equations to a linear problem. This can

be done if the remaining two elements in I can be found.

Note that from one diffraction pattern we have 4 of the 6 independent

moments of inertia matrix elements. The other two can be solved from the

scalar equations with the known eigenvalues, so that only 2 of 3 are needed
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since the third can be determined from the trace. The secular equation is of

the form:

∣∣∣∣∣∣∣∣∣∣
X c a

c Y b

a b Z

∣∣∣∣∣∣∣∣∣∣
= 0 (2.34)

,in which a, b are unknown elements, c = Qxy and X, Y, Z are constants,

dependent on the specific eigenvalues. After some algebra this equation can

be written as:

Y1a
2 − 2cab+X1b

2 = D1

Y2a
2 − 2cab+X2b

2 = D2

(2.35)

where the subscripts indicate the different corresponding eigenvalues pi. These

lead to a quadratic equation about b2 and can be solved analytically. Once the

moment of inertia matrix is found, the rotation matrix can be easily obtained

by calculating its eigenvectors.

It often occurs for some proteins (such as GroEL) that two of the principal

values are almost identical. Then only one principal axis can be found and

the other two lie in the plane normal to that axis. The current method is not

able to deal with this difficulty, however, it is able to reduce the orientation

problem from 3 parameters to just 1 parameter, which is accessible to the

newly developed GTM method[36] and related fiber-diffraction techniques (for

an application of iterative phasing to fiber diffraction, see[38]).

Result and Discussion

The method above suffers some ambiguities. If R′1j = −R1j and R′2j = −R2j

the equations are still satisfied for R′. However, on looking into the form of R,

we find that this ambiguity occurs when α′ = α+π, β′ = β, γ′ = γ. Considering
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also the inversion symmetry of auto-correlation functions, we can choose any of

them, and that would not affect the reconstruction of the 3D auto-correlation

function. Another ambiguity is α′ = α, β′ = π − β, γ′ = π − γ and this

leads to a different orientation which is not consistent with the Friedel’s law.

This ambiguity corresponds to the 2 possible solutions (a,b) and (-a,-b) for

Eqn.(5.25).

In the previous section, we showed that the moments of inertia we calcu-

lated using a curved Ewald Sphere (in the the long wave length case) gives

the same result as a flat Ewald sphere. This proof remains applicable here, so

that we can ignore curvature of Ewald sphere.

In order to apply this method experimentally, the influence of noise must

be taken into account. We should not expect to get diffraction patterns as

good as in these simulations. The most important source of error is from

insufficient photons at the detector in order to prevent the radiation damage,

and this kind of error can be described as Poisson noise[14].

The other problem with X ray diffraction is the beam stop. All the de-

tectors used in the synchrotrons have a hole in the center so that the central

beam would not damage the detector. However, without the central data the

autocorrelation calculated from the diffraction pattern would be zero. In order

to fix it, the shrinkwrap[28] method can be applied to reconstruct this part

of data, with an additional 10% percent of error introduced. Therefore, Cryo

EM, with the central beam diverged to the whole image, is more favorable to

this method.

Now first consider the case when noisy real space image is available, and

the noise is mainly Poisson noise. Define the relative error of the noisy image,

its corresponding autocorrelation and Q tensor to be:
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Figure 2.5: This figure shows the dependence of the relative error of Cryo-EM
images with Poisson noise. The x-axis is the relative intensity of the original
image and the y-axis is the error of the noisy image from Eqn.(2.36). The
increase of dose help reduce the Poisson noise of the image, while the other
indirect measurement of electrical potential project suffer much fewer noise.

errimg =

∑
all pixels

|Imgnoisy−Imgnoise−free|∑
all pixels

|Imgnoise−free|

errA =

∑
all pixels

|Anoisy−Anoise−free|∑
all pixels

|Anoise−free|

errQ =

∑
all elements

|Qnoisy−Qnoise−free|∑
all elements

|Qnoise−free|

(2.36)

The change of these errors with the intensity of initial image is plotted and

it shows that during the calculation of autocorrelation error is greatly reduced.

This result is not hard to predict since each pixel in autocorrelation depends

on the pixels of the whole original image, and the error is cancelled during

the accumulation. Actually this is the primary reason to transform potential

projection to autocorrelation.

In the end the algorithm is tested for a specific case. As shown in Fig.(2.5),

we have studied a GroEL protein molecule, lying in all possible orientations
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Figure 2.6: (a) The simulated noisy charge density projection of GroEL in
grey scale (the size of the molecule ' 50Åand orientation specified by Euler
angles (45,60,80) degrees; (b) The difference between (a) and original value,
the relative error is about 20%; (c) The autocorrelation calculated from (a);
(d) The difference between (c) and autocorrelation calculated and true value,
the relative error is of the order 1%

within a 70nm×70nm cell. For several different set of Euler angles, it is found

that the first column of the pre-assigned rotation matrices and reconstructed

rotation matrix agree quite well with an error of 1 degrees, which is predictable

from the low error of the Q tensor. This indicates that the axis with a distinct

eigenvalue is readily obtained. The agreement of the other two columns is poor,

since the other two eigenvalues of GroEL are almost identical. However, there

is only one undetermined Euler angle now, and such problem can be easily

solved by those methods using the detail of the image, such as GTM[36].
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2.3 Generative Topology Mapping method used for Orientation

Determination

As the orientation of single molecule is hard to be pre-assigned when its snap-

shot is taken, it is essential to retrieve such information from a set of diffraction

patterns (DP) taken from unknown orientations to enable the merging of inten-

sities. Generative topographic mapping (GTM) has been used in data mining

to reveal such intrinsic latent variables from the distribution of the observable

data. In this case, the latent variables are the Euler angles that determine

the orientation, and the data are experimental DP, which is a vector whose

components come from every pixel of the DP. In the application here, com-

pared with the straightforward method such as common line, the statistical

method GTM is used to benefit the sorting of diffraction pattern from two of

its properties:

1. making full use of flux

2. robustness under noise

GTM help figure out the mapping relationship from latent space to data space,

as shown in Fig. 2.7, which make it possible to map the experimental data back

to orientation.

GTM helps figure out the mapping relationship from latent space to data

space, thus makes it possible to map the experimental data back to orienta-

tion. In numerical calculation, however, both of the two spaces are discrete,

therefore we are dealing with the data points in them. Ideally, point in L space

corresponds to point in the n × n dimensional D space. The GTM method

works provided that the mapping function y = (x;W), where W is a set of
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Figure 2.7: The non-linear function y(x;W) defines a manifold S embedded in
data space given by the image of the latent-variable space under the mapping
x to y.[47]

mapping parameters, is smooth and continuous, so that the projected points

y = (xi;W) will necessarily have a topographic ordering in the sense that any

two points xA and xB that are close in L space will map to points yA and yB,

which are close in data space.

In order to take account of the noise, the point in D space can expand to a

sphere of continuous density, as shown in Fig.2.8. We choose the distribution

of t, for given x and W, to be a radially symmetric gaussian centered on

y=(x;W) having variance β−1 so that

p(t|W, β) = (
β

2π
)D/2 exp{−β

2
‖y(x;W)− t‖2} (2.37)

This function describes the probability of certain DP is related with some

orientation if the correct mapping (W,β) is known. Fig.2.9 is the schematic

diagram for such mapping where there is just one latent variable, the angle of

an object that can rotate along one axis (not necessarily the same direction of

incident beam), and the data space is reduce to the intensities on three pixels

for the sake of visualization, which can be regarded as the projection of the

manifold to the 3D subspace. The distribution of sampling in latent space is

known as uniform, and the measurement distributes inside the density sphere.
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Figure 2.8: We consider a prior distribution p(x) consisting of a superposition
of delta functions, located at the nodes of a regular grid in latent space. Each
node xi is mapped to a corresponding point y(xi;W ) in data space, and forms
the center of a corresponding Gaussian distribution.[47]

Figure 2.9: The mapping from latent variable orientation to the scattering
intensities on 3 pixels. Note that the point diffuses into density sphere, and
the compactness of latent space is preserved in the data space

The GTM method works only when the prior distribution p(x) of x in

L space is known. But in our experiment the DP is obtained with pulse of

XFEL, p(x) can be regarded as a sum of delta function, , then the distribution

in D space is then obtained analytically by

p(x) =
1

K

K∑
i=1

δ(x− xi), (2.38)

then the distribution in D space is then obtained by

p(t|W, β) =

∫
p(t|x,W, β)p(x)dx =

1

K

K∑
i=1

p(t|xi,W, β) (2.39)
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Apparently, only y(xi) close to t contributes to the probability. From that we

can define a log likehood function

L(W, β) = ln
N∏
n=1

p(tn|W, β) =
N∑
n=1

ln
1

K

K∑
i=1

p(tn|xi,W, β). (2.40)

If the mapping parameters W are correct so that the manifold in D space

go through the center of the swarm of data points, we can image that every

term in the above summation reaches its maximum and the likehood function

reaches its maximum. Therefore, we can determine W and β by maximizing

L.

The way we do that is EM algorithm. We can choose y=(x;W) to be

given by a linear model so that the component of y can be written as

yi = Wi1φ1(x) +Wi2φ2(x) + . . .+WiMφM(x), (2.41)

in matrix form

y = Wφ(x) (2.42)

The base function φi is generally choose to be radially symmetric gaussian

whose centers are distributed on a uniform grid in L space with a common

width parameter assigned at the beginning. Such parameters and the number

of sample points in L space should be able to make the manifold smooth

enough while keep the precision.

Now we can start the training iterations from a initial set of parameters

Wold, βold. Apparently, there is no direct mapping relationship between the

sample point in L space and experiment point in D space. But we can obtain
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the contribution, or responsibility of every sample point to a single data point

Rin(Wold, βold) = p(xi|tn,Wold, βold)

=
p(tn|xi,Wold, βold)
K∑
i′=1

p(tn|xi,Wold, βold)

. (2.43)

Also only those can be mapped very close to tn can make primary contribution

to it.

Now the expectation of the log likelihood is

〈L(W, β)〉 =
N∑
n=1

K∑
i=1

Rin(Wold, βold) ln[p(tn|xi,W, β)]. (2.44)

Maximizing Eq.2.44 with respect to W, we obtain

N∑
n=1

K∑
i=1

Rin(Wold, βold)[Wnewφ(xi)− tn]φT (xi) = 0. (2.45)

This can conveniently be written in matrix notation in the form

ΦTGoldΦWT
new = ΦTRoldT (2.46)

where Φ is a K ×M matrix with elements Φij = φj(xi), T is a N ×D matrix

with elements tnk, R is a K×M matrix with elements Rin, and G is a K×K

diagonal matrix with elements

Gii =
N∑
n=1

Rin(W, β) (2.47)

Here the M , N , K, and D are the number of basic functions, the number of

data points (t1, ..., tN), the number of latent space sampling points, and the

number of dimensions of data space, respectively.

Now the Wnew can be solved with standard matrix techniques, based on

singular value decomposition to allow for possible ill conditioning. Note that

Φ is constant and only need to be evaluated once at the start.
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This training process of the data set should be repeated until the likelihood

function stop increasing. Meanwhile the Wnew will also be changed a very little

bit. Then we can regard the mapping with this W are most close to the true

one.

With the above mapping relationship, taking any DP, its orientation, which

is represented as x, can be estimated by summarizing the posterior by its mean,

given by

〈x|tn,W, β〉 =
K∑
i=1

Rinxi (2.48)

A more straightforward way is to calculate the distance of this DP in D space

with those generated from sample points in L space had we know the mapping

relationship. Finding out which sample point can give the DP closest to the

actual one. If the sample points are dense enough, the error between the two

methods is actually equivalent.

The GTM algorithm is purposed by Bishop et al [47] and successfully

applied to diffraction pattern classification by Fung et al [36].

2.4 Expansion-Maximization-Compression method

Loh et al[48] proposed the Expansion-Maximization-Compression (EMC) al-

gorithm for reconstructing a particle’s 3D diffraction intensity from very many

diffraction patterns, when the orientation in each pattern is not determined.

The algorithm consists of a maximization step (M) of a logarithm likelihood

function, a expansion step (E) and a compression (C) steps that map the 3D

intensity model to a redundant tomographic representation and back again.

The working process of the method is concluded as follow.

Firstly, define Wij = W (Rj ·qi) as the average photon number of model at

detector pixel i when the particle has orientation j, W (q) the time-integrated
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scattered intensity at spatial frequency q when the particle is in some reference

orientation, and Kij the measurement of photon number at detector pixel i

when the particle has orientation j.

The algorithm is based on expectation maximization (EM), which recon-

struct a model from statistical data that is incomplete by maximizing a log-

likelihood function Q(W ′), then updating the model from W → W ′. It is

necessary to determine the form of the likelihood function at first. The loga-

rithm likelihood function for the photon number W ′
ij is the logarithm of the

Poisson distribution:

Qijk(W
′) = Kik logW ′

ij −W ′
ij. (2.49)

where Kik is the photon count at pixel i in measurement k. Therefore the log-

likelihood function for a single diffraction pattern with independent Poisson

distribution on each pixel can be written as the summation of Qijk(W
′)

Qjk(W
′) =

Mpix∑
i=1

Qijk(W
′). (2.50)

Then define the the conditional probability of each diffraction pattern

Rjk(W ) =

Mpix∏
i=1

WKik
ij exp (−Wij). (2.51)

Now any prior distribution of the orientation j can be written as

Pjk(W ) =
wjRjk(W )∑
j wjRjk(W )

. (2.52)

given the normalized weights of orientations wj. Then it is possible to write

down the total log-likelihood function of the whole set of diffraction patterns

Q(W ′) =

Mdata∑
k=1

Mrot∑
j=1

Pjk(W )Qjk(W
′)

=

Mpix∑
i=1

Mrot∑
j=1

(Aij logW ′
ij −BjW

′
ij) (2.53)
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where

Aij =

Mdata∑
k=1

Pjk(W )Kik

Bj =

Mdata∑
k=1

Pjk(W ).

The EMC iterations can be started from random 3D intensities. In the

E-step, the initial or previously calculated 3D intensities W on the grid are

expanded into a tomographic model Wij of diffraction patterns for the calcu-

lation of log-likehood function by rotation and interpolation.

W ′
ij =

∑
p

f(p−Rj · qi)W (p). (2.54)

Although the Wijs are redundant, they are treated as independent variables

by the next step.

In the M-step, the data is classified and their aggregation into tomographic

model is improved by maximizing the log-likehood function. Such function is

very easy to maximize noting that each term of the summation (2.53) is of the

form a logW − bW where a and b are positive constants and all these terms

are independent. The global maximum can be obtained when each term is

maximized, which updates the Wij into W ′
ij

W ′
ij = Aij/Bj (2.55)

In the C-step, the redundant Wijs are “condensed/compressed” back into

the intensities on the regular 3D grid. In this process, it is necessary to define

the interpolation weights f(q) that vanish for large |q| and is normalized

1 =
∑
p

f(p− q) (2.56)
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Then the 3D intensities are given by

W (p) =

∑Mpix

i=1

∑Mrot

j=1 f(p−Rj · qi)Wij∑Mpix

i=1

∑Mrot

j=1 f(p−Rj · qi)
. (2.57)

The progress of iterations are monitored by the update magnitudes:

∆W 2 = 〈|W ′(p)−W (p)|2〉p. (2.58)

The vanishing of ∆W is used as the stopping criterion for the merging stages,

and the reconstructed intensities can b used in further phasing stage.
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CHAPTER 3

HYDRATION EFFECT ON CXDI IMAGE RETRIEVAL
3.1 Introduction

In order to solve the structure of proteins that are hard to crystallize, new ex-

perimental methods called femtosecond X-ray single molecule diffraction have

been proposed to do the crystallography of single molecules[11, 15, 40]. Since

most of the conventional methods in X-ray crystallography dealing with crys-

tal samples are not applicable here. Therefore, new algorithms concerning

the sorting[14, 39, 38] and phasing[27] of single molecule diffraction patterns

(DPs) have been proposed and tested to ensure their effectiveness and robust-

ness under all kinds of error and noise. Some of them have been proved to be

feasible when applied to simplified sample objects[18].

The next step toward the application of these methods on real world pro-

tein is to add the water background, since the experiment requires that the

single molecule sample should be dissolved and wrapped in the water so that

aggregation can be avoided. The single molecule sample can be ejected one by

one to scatter the incident x-ray and increase the hit rate. The nozzles made

at ASU[49, 50], which have been used at the LCLS (Linac Coherent Light

Source), are able to generate droplets or liquid stream with the dimensions as

small as 1 micron.

In recent work[51], simulation is carried out on a satellite tobacco necrosis

virus (STNV), whose capsid structure has been solved by x-ray crystallography

(Protein Data Bank ID: 2BUK): object size 17 nm, icosahedral symmetry.

Realistic water shells around the virus using the Tip3P model of liquid water

with average thicknesses of 0.5, 1.5, and 2.5 nm is added. It is found that the

limiting orientational (angular) resolution is weakly inuenced by water layer



or Poisson noise. The effects of the random water layer or Poisson noise on the

relative error are of comparable magnitude for q below the water peak value.

For q above the water peak value the effect of WL is dominant and leads to a

large relative error. However, the water layer here is too thin to be realistic.

Compared with the radius of a typical protein molecule (around 10nm),

the amount of water is so significant that it can be easily expected that the DP

of the current experimental setup cannot be simply that of the single molecule

alone. It is calculated in the next section that generally it is impossible to

separate the DP into the water part and protein part due to the coupling term.

A method to overcome the difficulty is also suggested and tested against all

kinds of possible experimental errors.

3.2 Water window

The water window is the soft x-ray energy range between the carbon and the

oxygen K edges, where water has a much lower x-ray attenuation coefficient

than carbon-containing cells. The contrast between water and protein is there-

fore magnified, and the technique has been widely used in the microscopy of

cells.

Theory

Firstly, it should be noted that the effect of exponential decay is a dynam-

ics effect. The macroscopic refractive index is related with the microscopic

structure factor by

n = 1− nareλ
2

2π
(f1 + if2) (3.1)

where f1 and f2 are the real and imaginary part of the structure factor respec-

tively. f1 and f2 are energy-dependent and have been tabulated by Henke et

al[52] for all the elements. When the atom is much smaller than the X-ray
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wavelength, as is the case in the soft X-ray region, the scattering amplitude

of each electron can be added coherently for all the ks , where the f1 and f2

table is applicable and independent of k.

Start from Schrodinger equation, neglecting the spin and doing the scalar

scattering theory

∇2ψ + i4πk0 · ∇ψ = −4π2(f1 + if2)ψ (3.2)

and separate the z-component from the xy-component

∂2ψ

∂z2
+ i4πk0z

∂ψ

∂z
+∇2

xyψ + i4πk0xy · ∇xyψ = −4π2(f1 + if2)ψ (3.3)

If the high-energy approximation that the Laplacian derivative along the bean

direction is negligible can be used here, the equation becomes

∂ψ

∂z
= (∇̄2 + V̄ )ψ (3.4)

where

∇̄2 ≡ i

4πk0z

(∇2
xy + i4πkxy · ∇xy) (3.5)

V̄ ≡ iπ

k0z

(f1 + if2)

Therefore, the geometry of the problem (∇̄2) is separated from the electron

interaction (V̄ ) and can be treated respectively.

For a very thin slice of material, it is reasonable to set ∇̄2 = 0, which

implies no lateral scattering, and the equation is solved by direct integral

along the slice of thickness ∆z

ψ(x, y) = e
∫ ∆z
0 V̄ dz = e

iπ
k0z

f1∆z
e
− π
k0z

f1∆z
(3.6)

which is of the same form as the exponential decay in classical electrodynamics,

where the media is assumed uniform so that the assumption ∇̄2 = 0 also
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establishes due to the translational symmetry on the transverse xy-plane. On

the other hand, it is not guaranteed that the index of the exponential is small

enough to be approximated by its first order

Then, for the vacuum, we solve

∂ψ

∂z
= ∇̄2ψ (3.7)

Note that the second term in 3.5 vanishes if the beam is incident along the

z-axis. Doing Fourier transformation on x, y components and transforming

back leads to the solution that

ψ(x, y,∆z) = e∆z∇̄2

ψ(x, y, 0) = F−1[e−iπλ∆zq2

]⊗ ψ(x, y, 0) (3.8)

If the scattering object is divided into N slices of thickness ∆z, then we have

ψ(x, y,∆z) = e∆z∇̄2

eV̄
N∆z · · · e∆z∇̄2

eV̄
2∆ze∆z∇̄2

eV̄
1∆zψ(x, y, 0) (3.9)

which is the form of the Cowley-Moodie multislice method[53] in real space.

Thibault et al[31] claimed that this method uses the small angle approximation

and developed an actually equivalent propagation method. However, it is

reasonable to apply this assumption for even soft X-ray scattering if the slice

is thin enough. The transverse scattering is already included in 3.8.

Additionally, it is worth mentioning that for materials with a real potential,

for its first term in the Born expansion, the optical theorem give the total cross

section as zero, which surely cannot be true. This also indicates that the first

Born approximation is not suitable to the absorption problem. If we consider

up to the second Born approximation

ψ(2)(r) =
µ

4π

∫
e−ik|r−r

′|

|r− r′|
V (r′)ψ(1)(r′)dr′ (3.10)

=
µ2

16π2

∫
dr′
∫
dr′′

e−ik|r−r
′|

|r− r′|
e−ik|r

′−r′′|

|r′ − r′′|
V (r′)V (r′′)
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Here ψ(1) cannot be written as

µ

4π

eik0R

R

∫
V (r′)eiq·r

′
dr′ =

µ

4π

eik0R

R
Ṽ (q) (3.11)

which is the Fourier transformation of the potential and quite widely used

when single scattering approximation is used. However, this form implies that

R = |r′| is very large compared with the dimensions of the scattering field

|r′′|, and this approximation fails in the integral of Eqn.(3.10) as it has to

be evaluated everywhere in |r′|. The result is that the second term of Born

series Eqn.(3.10) is no longer real given the real potential V and the total cross

section is nonzero in the optical theorem.

Simulation

The multislice method is implemented to see the effect of multiple scattering

and difference in attenuation coefficients of water and protein on the exit

wave. The PSI molecule (1JB0) is chosen as the sample and it is immersed in

a water droplet with varying size. The refractive indices were obtained from

CXRO library (δwater = 0.0022, δprotein = 0.0019, βwater = 0.000157, βprotein =

0.00128);

The simulation shows that the exit wave is quite different from the projec-

tion of charge density. Although the contrast is enhanced due to the difference

in attenuation factors of water and protein.

Some kind of inversion algorithm needs to be developed to convert the exit

wave back to the original structure.
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exit wave intensity charge density

exit wave intensity charge density

Figure 3.1: This figure shows the exit wave intensity calculated from multiple
slice method (slice thickness is 5Å) and charge density projection of protein
PSI in water droplet of radius 56Å(a) and 94Å(b).

3.3 Calculating the diffraction pattern of the protein molecule within water

jacket

When the protein molecule is immersed in water, it is well known that its

structure changes. In simulation, this can be done by putting such a molecule

inside a spherical container and the molecular dynamics software (in this paper

VMD/NAMD[54]) is used to fill the sphere with water molecules and find the

position of every atom in the sphere when the system is stable (see Fig. 3.2

for example). However, due to the limitation of computational ability, it is

impossible to get the position of each atom in a droplet with practical size,
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i.e. 1000Åin radius. Therefore, some structural properties of water are used

to make the calculation feasible while realistic.

z

x y

Figure 3.2: This figure shows the atom model of protein 1UBQ inside water
droplet as the result of molecular dynamics simulation. The inner blue atoms
are protein and the outer red ones are water.

In the calculation of the spherical droplet, it is divided into 3 regions.

• The core of the droplet is as small as possible to contain the protein

molecule. The rest of the volume is filled with water by molecule simu-

lation.

• A thin inner water shell surrounding the core with the thickness 8Å. The

position water atoms in this shell is also found by molecule dynamics

simulation

• The outer water jacket surrounding the thin water shell, the thickness

of which goes up to the radius of the droplet.
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The scattering intensity of hydrated protein (Region I) can easily be cal-

culated since all the positions of atoms in this region are known. That of the

water jacket (Region II & III) can be evaluated directly from the experimen-

tal results, which gives the first peak (at around 2π
2.8
Å−1) [55]corresponding to

the nearest neighborhood distance between oxygen atoms in addition to the

central peak. The radial distribution function derived from the intensity spec-

trum also indicates that the water can be regarded as homogeneous from the

position 8Åaway, which is the reason that the thickness of Region II is chosen.

Therefore, the interference term within this range of resolution between

region I and the outer water is

Iinter(k) = Re[
∑
I

∑
II,III

fIfII,IIIe
ik(rI−rII,III)] (3.12)

Since the water in region III is uniform when interacting with protein atoms,

the summation in region III can be reduced to an integral and can be evaluated

analytically. For the spherical droplet, this term is∑
I

∑
III

fIfIIIe
ik(rI−rIII) =

∑
I

fIe
ikrI
∑
III

fIIIe
−ikrIII (3.13)

and in which

FIII =
∑
III

fIIIe
−ikrIII = ρfO

∫
III

e−ikrIIIdrIII = ρfOS (3.14)

where S is the shape factor, and for a sphere droplet

S =
∫ R
r

∫
Ω

∞∑
l=0

r2 · il(2l + 1)jl(kr)Pl(cos γ)drdΩ

= 4π
∫ R
r
r2 sin kr

kr
dr = 4π

k3 [(sin kR− kR cos kR)− (sin kr − kr cos kr)]

(3.15)

in which r is the inner radius of region III and R is the outer one. ρ is the

density of water (calculated to be 0.033atoms
A3 from its density). FIII oscillates

and goes to zero with the envelop of 2πρ(R−r)
k2

2π
100
A−1.
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In the end, in order to calculate the intensity from pure water, the only cal-

culation needed is to convert the reduced intensity H(k) from literature[56] to

the real intensity of a specific droplet. Note that for the bulk sample used in a

conventional experiment, at the low resolution where the short range structure

can be ignored, the water background can be considered to be of inverse sym-

metry. Apparently the scattering amplitude is real, and the following equation

can be used:

Iwater = |
√
N(H(k) + 1)fo(k)⊗ S(k)|2 (3.16)

In the equation above N is the number of water molecules in the droplet,

while S(k) is the shape factor determined by the size of a droplet and can be

evaluated from Eq.(3.15) since the experimental spectrum is measured from

bulk water where S(k) = δ(k).

In the sample calculation, 4PFK, which is a medium molecule containing

˜2300 atom for the sake of molecule dynamics simulation speed, the intensity

of DP in region I and the interference term between I-II and I-III are plotted

in Fig.(3.3) along a line going through the center of the pattern and the range

of resolution that we are interested in (from 20Åto 6Å).

It is found that the intensity of the cross term is significant compared with

that of protein diffraction. Consequently, the DP obtained from experiment

cannot be simply separated into water intensity and protein intensity at any

resolution. The thinner water jacket will help reduce the interference, however,

even when the thickness is 10Å, the effect of water is still not negligible.

Compared with the spherical droplet, the only difference of the water

stream is the change of shape factor S. According to experimental setup,

the water stream illuminated by the incident beam can be regarded as a cylin-
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Figure 3.3: This figure shows the comparison of intensity between diffraction
intensity of protein alone and interference term between protein and outer
water jacket (droplet radius 10000Å). Note that the first term is negligible
compared with the interference term. The x-axis is the radius in reciprocal
space, corresponding to resolution from 25Åto 6Å

der, the length L of which is the segment in the beam spot. Therefore S can

also be evaluated analytically

S =

∫ L/2

−L/2
eikzzdz

∫
D

eik·rd2r =
sinπ Lkz
πkz

· R
2

J1(πRkr)

kr
(3.17)

.

3.4 Making use of the cross term

Since the cross term is so strong that the protein term is suppressed, the con-

ventional method of solving protein structure by phasing the intensity scat-

tered by protein is no longer valid with the presence of the water jacket and

the cross term it introduces. However, the cross term of the water jacket itself

can serve as an important source of structural information.

The DP of protein inside the water jacket can be written as

I = F [ρwater + δρ] ·F [ρwater + δρ]∗ (3.18)
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and Fourier transformation of both side yields

A = (ρwater(r) + δρ(r))⊗ (ρwater(−r) + δρ(−r))

= Awater + ρwater ⊗ [δρ(r) + δρ(−r)] + δρ(r)⊗ δρ(−r)
(3.19)

,where we assume again that the water is inversely symmetrical so that ρwater(r) =

ρwater(−r) can be used. Note that here δρ is not the charge density of protein,

instead, δρ = ρmol−ρwater is the fluctuation of the protein charge density with

respect to the water background. Considering the protein molecule itself is

composed of light atoms whose Z number is close to that of the water, this

term should be much smaller than ρmol.

The left hand side of Eqn.(3.19) can be obtained by experiments, the first

term on the right hand side is from the preliminary knowledge of the shape

and size of water, while the last term can be neglected if δρ is much less than

ρwater(r). Then δρ(r)+ δρ(−r) can be calculated from experimental results by

deconvolution. And if the molecule is not centered and small enough it can be

separated from its space inverse copy and thus the water serves as the reference

to solve the phase problem. Fortunately, both the above requirements of the

δρ are consistent to the real experiment. The intermediate results of each step

is shown in Fig.(3.4).

Numerical calculation shows that if only the charge density projection is

less than 1/20 of the water background it can be successfully reconstructed

and the smaller the ratio the better. This requirement should not be difficult

to satisfy considering the fact that the size of the water jacket is of the order

of micron, while that of the molecule is less than 100nm, and that δρ itself is

a small term.
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(a)Charge density of object (b)Total charge density

(c)Autocorrelation (d)Autocorrelation Autocorrelaitonwater

(f)Reconstruction result(e)Diffraction amplitude of reconstructed image

Figure 3.4: This figures shows the process of water background deconvolu-
tion: (a) is the charge density projection of the original object (b) is the
charge density projection of the object in the water stream. The width of the
streamm is 300nm and the object is circled as it can barely be seen. (c) The
autocorrelation of the protein-stream mixture. (d) The difference between the
autocorrelation of the protein-stream mixture and that of pure water stream
A− Awater. (e) The intermediate step of deconvolution, which is actually the
Fourier transformation of object with its inversion.(f) The enlarged area of
reconstruction result, showing two inverse symmetrical object.68



3.5 Effect of errors and noise

The validity of the algorithm under ideal circumstance is far from enough,

it is largely determined by its performance on the experimental data which

contain all possible errors and noise. In this section several major source of

errors are simulated for the upcoming experiment of virus MSII in LCLS to

test the robustness of the deconvolution method above.

For the CCD cameras used at present, most of them have a beam stop to

block the strong transmission beam, thereby avoid its damage to the detecto.

Thus the low resolution data is missing. The other important error source

is the poisson noise of the detector pixels which count the number of x-ray

photons scattered to them, which is related to the number of photons of each

incident pulse. Finally, the success of the method heavily depends on the a

prior knowledge of the shape of the water background, which is not always

available.

The evaluation of these effects to the final result of reconstruction is con-

ducted under the combination of all the above factors. If not specified, the

parameters are chosen to match the LCLS experiment: The photon energy

is 8keV, the resolution at the edge of DP is set to 6Å, the CCD camera is a

1024×1024 array with the beam stop 8 pixels in radius. The flux of photons

is 1012/pulse and Poisson noise is applied to the photon amount collected by

each pixel of the detector. The water background is a cylinder whose diameter

is 300nm. The sample used is the virus whose PDB entry is 1Z8Y.

Firstly, it is found that given the correct estimate of the water background,

the quality of the reconstructed image is relatively insensitive to the size of

the beam stop (see Fig.(3.5)). Thus satisfactory images are expected to be
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obtained with the CCD detector used in LCLS. The missing of low resolution

data is once an important issue in diffractive imaging. Some special algorithms

used to interpolate[18] or reconstruct such information iteratively[28]. Some-

times low resolution optical image is used to complement this part. With the

water background deconvolution method, all the above trouble can be avoided

and the result follows directly from the original data. (I think some equations

would make the argument above more solid, but still don’t have any idea)

(a) (b)

(c) (d)

Figure 3.5: This figure shows the effect of beam stop: result with beam stop
radius 5(a), 10(b), 20(c) and 50(d) pixels respectively for a. The quality of
reconstruction is not sensitive to the beam stop size.

The success of the method is closely related to the estimate of the water

background. In Fig.(3.6), the estimated value is changed a little bit from the

correct size of the water background and the same process of deconvolution

is conducted. Apparently the method collapses when the error is increased

to some extent. The numerical experiment shows that the threshold value is
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0.15%, which requires very accurate method of the size of the water stream.

Although practically impossible currently, it is still possible to search for that

value by going through the small portion of parameter space, which is not

difficult to estimate, including the true value, with fine enough intervals. When

the feature of the isolated object appears in the reconstructed image, the

reconstruction can be regarded successful and the background parameter used

is therefore the true value, and therefore the estimate problem is solved in

expense of computational time.

(a) (b)

Figure 3.6: This figure shows the reconstructed image with 0.1% error of the
estimated water background width (a) and 0.3% error (b). The quality of
reconstruction is sensitive to the estimated water background, which should
be less than 0.2% within the real size.

Additionally, there is also restriction on the size of the water stream. As

stated above, If the stream size too small, the protein term cannot be regarded

as perturbation and algorithm fails. On the other hand, if the stream size is

too big, which might be more often in the experiment, the performance of the

method is also harmed. This is because in that case the increase of water noise,

with the increase of water signal, overwhelms the subtle difference between
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protein-water and pure water. Fortunately, numerical calculation shows that

for the current simulation configuration, the stream diameter can be safely

increased to 1 micron, which can be practically produced with ASU nozzle.

The incident photon flux is also an important factor that determines the

quality of the result. For Poisson noise, more photons lead to higher signal-

noise ratio. Without controlling the noise under some certain level, as men-

tioned above, the signal from the perturbation cannot be distinguished. The

simulation result that the image quality reconstructed from a 1011photons/pulse

DP badly degenerates indicates the necessity of the ultra high brightness of

LCLS.

In the successful reconstruction, it is found that the noise and the pertur-

bation signal are of the same order, which indicate the method is noise-robust

to some extent. It is a natural result that the noise distributes all over the

image, while the perturbation concentrates on a small portion of the image.

3.6 Conclusion

Immersing the protein single molecule in water and injecting them for diffrac-

tion has been proved to be one of the most feasible plan to do single molecule

diffraction, and the experiment preparation is almost ready for the LCLS in

the coming year. However, processing the DP of water-sheltered protein re-

quires new method since the scattering intensity of protein alone cannot be

directly separated from the whole pattern.

The following process is proposed to overcome the difficulty of water:

1. Do the Fourier transformation of the experimental(simulated) DP to get

the autocorrelation of the whole system
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2. Make a estimation of the water background, and calculate the autocor-

relation of such background with the same experimental parameters

3. Deconvolute the difference of the above result with the assumed water

background. If two isolated objects with inverse symmetry appear, the

reconstruction is successful, or change the assumed background a little

bit and repeat the process.

This method is tested numerically and found to work properly under the

combination of all kinds of simulated errors and noise during real world ex-

periment. Therefore, it is a suitable candidate algorithm to process the exper-

imental data in the near future.
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CHAPTER 4

PHASING NANO-CRYSTALS DIFFRACTION PATTERNS
4.1 Introduction

It has been appreciated for many years that if scattering could be obtained

at points between Bragg reflections, the additional information so provided

would greatly assist solution of the phase problem. For protein crystals, vari-

ations in water content can be used to vary the cell dimensions, offering the

possibility of obtaining this information. Since they contain acentric alpha-

helices, protein crystals are invariably non- centrosymmetric, however they

may contain projections which are centric, such as those along 2, 4 or 6-fold

axes, in which case the structure factors on the corresponding plane in recip-

rocal space will be real, with an ambiguity of sign only. Thus it was pointed

out at an early stage[16] that on these planes, for adjacent structure factors to

have opposite signs, the continuous Fourier Transform of the unit cell density

(which modulates all scattering) must have a zero crossing between Bragg re-

flections. This could be identified if intensity were detectable at the half-order

positions, thus solving the phase problem for centrosymmetric crystals and

projections. Bragg ”sampling” of intensities is consistent with the Shannon

sampling theorem requirement for reconstruction of the autocorrelation of the

molecular density; half-orders with reconstruction of the molecular density.

The modern field of diffractive imaging, whose methods we will use, has de-

veloped, from these and other considerations, iterative algorithms which are

capable of solving the phase problem for non-periodic objects under certain

conditions[27]. For X-ray diffraction at higher energies well away from ab-

sorption edges, the occurance of a real charge density of known sign greatly

facilitates these iterative methods. It is immediately clear then that one ap-



proach to phasing nanocrystal data would be to treat the entire nanocrystal

as a single non-periodic object, and phase it as such. For a large protein, how-

ever, the computational demands of this approach be very great and, if the

surfaces were not of interest, the resulting identical molecular densities would

need to be summed to reduce noise. We describe a more efficient approach

below.

In both electron and X-ray diffraction, nano-crystallography has developed

rapidly in recent years. For a crystallite consisting of a few unit cells, the sharp

Bragg reflections are convoluted with a shape-transform function, which there-

fore provides the required inter-Bragg scattering needed to assist in solving the

phase problem. This paper develops that idea, in the light of recent results

from the Linac Coherent Light Source, in which femtosecond X-ray snapshots

where obtained from protein nanocrystals of Photosystem 1 containing a dozen

or more unit cells on a side[57]. These show strong inter-Bragg interference

fringes. Elementary theory [58] shows that, as for a finite grating, the number

of unit cells N between crystal facets along direction g is just equal to (n+2)

where n is the number of subsidiary maxima between Braggs along direction g.

Thus the dimensions of the nanocrystal can be found by counting fringes along

various directions in reciprocal space. In this paper we present simulations for

X-ray diffraction from a protein nanocrystal, and demonstrate solution of the

phase problem for the general non-centrosymmetric (acentric) case by using

the inter-Bragg scattering. In simple terms we show that a finite grating solves

the phase problem.
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4.2 X-ray scattering from a nanocrystal

In an earlier paper, we give the exact expression for diffraction from a finite

crystal of parallelepiped form, illuminated by plane-polarized monochromatic

incident radiation, with wavevector ki (|ki| = 1/λ) and negligible beam di-

vergence. Then the diffracted photon flux I (counts/time) at ∆k = ki − ko

produced by the n-th parallelepiped crystallite, consisting of N(n) = N1 x N2

x N3 unit cells, is given in the kinematic theory as

In(∆k, α, β, γ,Ni) = I0|F (∆k)|2r2
eP (∆k)

sin2)(N1Ψ1

sin2 Ψ1

sin2(N2Ψ2)

sin2 Ψ2

sin2(N3Ψ3)

sin2 Ψ3

∆Ω

(4.1)

where F (∆k) is continuous scattering from one unit cell, which we take here to

contain one molecule. I0 is the incident photon flux density (counts/time/area),

r2
e the electron cross section, and ∆Ω is the solid angle subtended by a detector

pixel at the sample. Here

Ψ1 = 2πa sin θ cosα/λ

Ψ2 = 2πb sin θ cos β/λ (4.2)

Ψ3 = 2πc sin θ cos γ/λ

where θ is half the scattering angle, and α, β, and γ define the crystal orien-

tation as the angles which the scattering vector ∆k makes with the directions

of the real-space unit cell vectors a, a and c. ∆k is defined by the position

of the detector pixel and X-ray wavelength, and defines a point in reciprocal

space where the Ewald sphere intersects the shape transform.

To simplify simulations, we take the incident X-ray wavevector ki to lie

parallel to the c axis of a cubic crystallite, and use a high X-ray energy ap-
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proximation, in which kz = 0, so that the Ewald sphere is approximately

planar, resulting in two-dimensional diffraction. Then the third term in 4.1 is

unity, and, if polarization effects are neglected, we may write 4.1 as

In(∆k, N (n)) = c|F (∆k)|2Sn(∆k, N (n))∆Ω (4.3)

where S(∆k, N (n)) is the interference term in Eqn. 4.1 and c is a constant.

4.3 Phasing from shape-transform

We consider the case of femtosecond diffraction from a stream of nanocrystals,

in which one diffraction pattern is read out each time one X-ray pulse hits one

nanocrystal, and the process is repeated at the repetition rate of the X-ray

laser (perhaps at 60 Hz). Our essential strategy is to divide the recorded

intensity In(∆k, Ni) by the known interference function Sn(∆k, Ni) (which

depends only on the number of unit cells), to obtain the modulus squared

|F (∆k)|2 of the Fourier Transform of the molecular density ρ(r). The phase

problem for the continuous function |F (∆k)|2 may then be solved by iterative

methods[28], to yield a density map for one unit cell.

The femtosecond diffraction method produces millions of diffraction pat-

terns from randomly oriented crystals covering a range of sizes, so that the

results may be sorted into various size classes. We consider a set of 2D diffrac-

tion patterns from nanocrystals differing only in size N = N1 × N2. Then

the problem of division by zero when inverting Eqn. 4.1 may be addressed

by summing the required ratio In/Sn over n, so that the denominator passes

through zero at different values of ∆k in each term. We form

c|F (∆k)|2 =
∑
n

In(∆k, N (n))

Sn(∆k, N (n)) + ε
(4.4)
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Alternatively we may obtain the same result by summing Eqn. 4.2 over crystal

sizes, giving

∑
n

In(∆k, N (n)) =
∑
n

c|F (∆k)|2Sn(∆k, N (n))∆Ω (4.5)

= c|F (∆k)|2
∑
n

Sn(∆k, N (n))∆Ω

so that

c|F (∆k)|2 =

∑
n

In(∆k, N (n))∑
n

Sn(∆k, N (n)) + ε
(4.6)

If information is available from , for example, dynamic light scattering, on the

distribution of nanocrystal sizes, we may consider the approximation

c|F (∆k)|2 =

∑
n

In(∆k, N (n))∑
n

Fn(N (n))Sn(∆k, N (n)) + ε
(4.7)

where Fn(N (n)) is the particle size distribution. This avoids the need to de-

termine individual values of N1, N2, and N3.

4.4 Simulations and phasing
Two dimensions

We commence with simple non-statistical two-dimensional examples to clarify

the method. Fig. 4.1 shows the density of a simple protein, Alpha-Conotoxin

PNIB from Conos Pennaceus (1AKG in the PDB, orthorhombic, a = 14.60Å, b =

26.10Å, c = 29.20Å, P212121) , projected along the c axis. We have taken

one molecules per unit cell, giving symmetry P1 for generality. Fig. 4.2

shows |F (∆k)|2, the Fourier modulus squared for the molecule. (This func-

tion is equal to the structure factors at the lattice sites). Fig. 4.3 shows

the interference function Sn(∆k) for a nanocrystal of 6 unit cells on a side

(N(1)=216 molecules). The calculation samples the shape transform at 7
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Figure 4.1: This figure shows the density projection of a simple protein, Alpha-
Conotoxin PNIB from Conos Pennaceus 1AKG in the PDB, orthorhombic, a
= 14.60Å, b= 26.10Å, c = 29.20Å, P212121 , projected along the c axis. The
resolution is 1Å.

Figure 4.2: This figure shows |F (∆k)|2, the Fourier modulus squared for the
molecule in logarithm scale. (This function is equal to the structure factors at
the lattice sites).
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points within each sinc function subsidiary maximum. Fig. 4.4 shows the sim-

ulated diffracted intensity |In(∆k, N), extending to 2 Angstroms resolution,

with the effects of Poisson noise added. Fig. 4.5 shows the recovered molecular

transform |F (∆k)|2 based on Eqn. 4.7, using just two nanocrystals in the sum

for N=6 and N=8.

Figure 4.3: This figure shows the interference function Sn(∆k) for a nanocrys-
tal of 6 unit cells on a side (N (1)=216 molecules). The calculation samples the
shape transform at 7 points within each sinc function subsidiary maximum.

Three dimensions[2]

The restricting assumption of a flat Ewald sphere (and consequent resolution

limit) may be eliminated by working directly with Eqn. 4.1 and Eqn. 4.7 in

a statistical approximation, or with Eqn. 4.6, in which a particular interfer-

ence function is modelled for each particle. The second approach requires a

value of N3, which might be extracted from high-order reflections, where the

sphere cuts through the shape transform at a high angle. The results will

80



Figure 4.4: This figure shows the summation of diffraction patterns from dif-
ferent size of nanocrystals, as in the denumerator of Eqn. 4.7

Figure 4.5: This figure shows the reconstructed single molecule diffracted in-
tensity, extending to 2A, resolution, in logarithmic display. It is almost iden-
tical to the original one
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duplicate those obtained in two dimensions. A more practical approach can

be based on Eqn. 4.7, which uses independent measurements of the particle

size distribution F (N (n)). Then the sum in Eqn. 4.7 must be interpreted as

follows. The diffraction patterns are first indexed[58] in order to determine

their relative orientation. We then add shape transforms from different crys-

tals together with the same Miller index, at each of the pixels which finely

sample the shape transform. The result produces a three-dimensional diffrac-

tion volume including diffuse scattering between Bragg reflections. This is

divided by the denominator in Eqn. 4.7. Fig. 4.6 shows 3D simulations. The

accuracy of these is measured using a real-space R-factor, which measures the

difference between the original model charge density, and that recovered by

the algorithm.

Figure 4.6: (a) Sum of many patterns (Eqn. 4.7) ; crystal size N=20, δ = 2,
on zone axis [001]. (b) The recovered molecular transform.
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CHAPTER 5

EXTRACTION OF SPHERICAL HARMONICS EXPANSION

COEFFICIENTS FROM TRIPLE CORRELATION
5.1 Introduction

This chapter deals with the following problem. Given the hard X-ray snapshot

scattering from many randomly oriented, identical molecules in solution, re-

construct a charge-density map for one of them. This problem differs from the

problem addressed by the conventional small-angle X-ray scattering (SAXS)

method in that , for brief X-ray pulses, the molecules do not rotate during

the exposure, and are thus frozen in time. (The method we will discuss would

work equally well for molecules frozen in space, such at those in vitreous ice

irradiated with continuous X-rays). We assume that there is no interference

between X-rays scattered by different molecules. The resulting diffraction pat-

tern will show two-dimensional fluctuations in intensity, unlike the isotropic ,

one-dimensional patterns produced by conventional SAXS data. This indicates

that they contain more information, and it can thus be expected that the inver-

sion to a real-space image from these two-dimensional snapshot patterns will

be easier than inversion from one-dimensional SAXS patterns. Conventional

SAXS analysis relies on modelling and use of a-priori information - by contrast

we are concerned here with ab-initio methods. Iterative phasing may therefore

be used in the steps in which a density map is obtained from the angular au-

tocorrelation functions. In 1978 [59] , Z. Kam derived a remarkable result. He

found that the sum of the angular autocorrelation functions from many such

snapshot SAXS patterns (each containing contribuitons from many identical

molecules in solution) would converge to that of a single molecule, added to a

conventional SAXS background. In recent work [60] we have demonstrated the



practical application of this result for experimental soft X-ray scattering from

a set of gold nanorods lying on their side on a transparent membrane. In this

chapter, we discuss the extension of these methods to the more important case

of proteins in solution, with the aim of obtaining a three-dimensional density

map

The idea of using single molecule diffraction has been proposed as a method

to solve the structure of macromolecule that are difficult to crystallize with has

been proposed by[15, 40]. Essential parts of the whole experiment setup, such

as the nozzle to feed the sample[50, 49] and the free electron laser X-ray light

source (LCLS), of the whole experiment setup have already been launched.

Experiments on nanocrystals at the LCLS has been considered successful and

promising[57], and the experiments on single particles at atomic resolution

will soon be carried out at this state-of-the-art facility. Although the new

generation light source provides quite an effective weapon to attack structure

problems which are formidable with conventional crystallography methods,

the need for new data analysis algorithms arises at the same time.

Two of the most imminent challenges in data analysis are Poisson statistical

noise and missing information about the orientation for the diffraction pattern

from each X-ray pulse. In the analysis of nanocrystal data[61], the intensity

is quite concentrated so that the noise is not significant and the crystallinity

helps align the molecules and makes automatic indexing, and hence orientation

determination possible.

However, even with the enormous flux of photons, the ability of single

molecules to scatter photon is still so weak that the number of photons de-

tected at high angles are quite limited. Consequently, the low signal-noise ratio

makes it hard to classify the diffraction patterns of the same orientation pre-
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cisely. And without the noise-free diffraction pattern, the conventional sorting

method such as common line cannot work correctly, which make the whole 3D

reconstruction fail.

In order to overcome the difficulties discussed above and make full use of the

information contained in the millions of diffraction patterns collected, several

sophisticated statistical algorithms[36, 48] have been proposed and tested on

simulated data. The fact that all these algorithms make use of statistics to

approach the most probable scattering intensity, which is regarded as the true

intensity, indicates that the non-iterative analytical algorithm described in this

chapter should also be based on the statistics of the noisy data to ensure the

precision when exploiting the data.

Although only SAXS is left after simply averaging the diffraction over the

spatial correlation, which is the product of intensity at different positions with

the same relative coordinates averaged over many randomly oriented patterns,

includes much more information,which is needed for reconstruction. Kam[44]

used double correlation to process the electron micrograph of a macromolecule

but cannot apply it to diffraction patterns. Kakarala[62] developed a sys-

tematic algorithm to recover a spherical function from its triple correlation.

However, due to the fundamentally different nature of the practice, in X-ray

diffraction the measurement is conducted in a spherical cap passing through

the origin, instead of a set of homocentric spherical surfaces.

The most recent progress is that of Saldin et al[38]., who has successfully

used cross correlation and triple correlation to reconstruct the diffracted in-

tensity from a single particle from the diffraction patterns of many random

particles that were randomly spatially distributed and in random orientation,

and phase it. However, this gives a 2D projection instead of a 3D structure,
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which people are most interested in. In this chapter, an entirely new algorithm

is introduced to deal with the simplest single particle 3D problem.

5.2 General theory

Firstly, it would be convenient to expand the scattering intensity in reciprocal

space in term of spherical harmonics

Iω=0(q) =
∑
`m

I`m(q)Y`m(q̂) (5.1)

so that it is convenient to rotate it to any orientation explicitly with Wigner

D-function

Iω(q) =
∑
`mm′

I`m(q)D`
mm′(ω)Y`m′(q̂) (5.2)

It is natural to take the incident beam as z in spherical coordinates, then what

we measure is a slice with φ from 0 to 2π, and θ depends on the radius q

θ(q) =
π

2
− sin−1(

qλ

2
) (5.3)

Now the diffraction pattern recorded at pixel i is

Iω(qi, θi, φi) =
∑
`mm′

I`m(qi)D
`
mm′(ω)Y`m′(θ(qi), φi) (5.4)

If the radial coefficients Ilm for each qi can be obtained, it is expected that

the intensity distribution is available and good enough for further phasing.

Note that in theory the ` in the summation can be taken to inf, however, in

the detecter array used in LCLS experiments, the upper limit of ` for non-

vanishing Ilm is determined by the granularity of pixels and can be estimated

to be

`max(qi) = 2πi (5.5)

The other property of the problem is that according to Frediel’s law, the

intensity is inversely symmetrical. This fact indicates that Ilm = 0 when ` is

odd and provides the redundancy to deal with real world data.
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Cross correlation and triple correlation

The spatial correlation can also be evaluated with the spherical harmonics

expansion. The simplest case is the cross correlation

〈Iω(q, θ, φ)Iω(q′, θ′, φ′)〉ω = (5.6)

〈
∑
`mm′′

I`m(q)D`
mm′′(ω)Y`m′′(θ(q), φ)

∑
`′m′m′′′

I`′m′(q
′)D`′

m′m′′′(ω)Y`′m′(θ(q
′), φ′)〉

where the < ... > stands for
∫
SO(3)

· · · dω, indicating the average over the ω

of uniformly random orientation, which is the most important prerequisite

for this method. As only the D-functions are included in the averaging, the

orthogonality

〈D`1
m′1m1

(ω)D`2
m′2m2

(ω)〉 = C00
`1m1`2m2C

00
`1m′1`2m2′ (5.7)

helps remove most of the cross terms in the multiplication and in the end we

have

〈Iω(q, θ, φ)Iω(q′, θ′φ′)〉ω

=
∑
`

∑
mm′

C00
`m`′m′I`m(q)I`′m′(q

′)
∑
mm′

C00
`m`′m′Y`m(θ(q), φ)Y`′m′(θ(q

′), φ′)

=
∑
`

{I`(q)⊗ I`(q′)}00{Y`(i)⊗ Y`(i′)}00 (5.8)

where the direct product is a concise way to write the coupling of two spinors

by Clebsch-Gordan coefficients, and Y`(i) is used to simplify the writing of

Y`(θ(qi), φi) from here on.

The quantities {Y`(i1)⊗Y`(i2)}`m are the bipolar spherical harmonics. The

` = m = 0 term are the bipolar scalar harmonics which are proportional to

the Legendre polynomials

{Y`(i1)⊗ Y`(i2)}00 =
∑
`m

C00
`m`−mY`m(i1)Y`−m(i2) = (−1)`

√
2`+ 1

4π
P`(i1 · i2)(5.9)
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where i1 · i2 indicates the angle between the directions given by θ(qi1), φi1 and

θ(qi2), φi2 .

For triple correlation, the orthogonality becomes

〈D`1
m′1m1

(ω)D`2
m′2m2

(ω)D`3
m′3m3

(ω)〉 = C00
`3m3`3−m3

C00
`3m′3`3−m′3

C`3−m3
`1m1`2m2C

`3−m′3
`1m′1`2m2′(5.10)

so that we also have the triple correlation in terms of tripolar harmonics ex-

pansion

〈Iω(q1)Iω(q2)Iω(q3)〉 (5.11)

=
∑
`1`2`3

{{I`1(q1)⊗ I`2(q2)}`3 ⊗ I`3(q3)}00{{Y`1(i1)⊗ Y`2(i2)}`3 ⊗ Y`3(i3)}00

(5.12)

The expansions of both cross correlation and triple correlation make sense as

any function depending on two or three vector direction can be expanded in

terms of bipolar harmonics or tripolar harmonics, and after angular averaging

only the terms with ` = 0 survive. In the following section it will be shown

that these two kinds of correlations are sufficient for reconstruction.

Correlation under noise

Before moving on to the reconstruction algorithm, it would be necessary to

evaluate whether triple correlation can be regarded as reliable data under

noise, which is extremely important as all the following steps, from intensity

reconstruction to phasing, depend on the precise measurement of this value.

If the real intensity I ′ is written as the sum of the true value I and the

random noise δI (which can be much higher than I), the triple correlation

88



becomes

〈[Iω(q1) + δIω(q1)][Iω(q2) + δIω(q2)][Iω(q3) + δIω(q3)]〉

= T (q1,q2,q3) + 〈Iω(q1)Iω(q2)δIω(q3)〉+ 〈Iω(q1)δIω(q2)δIω(q3)〉

+ 〈Iω(q1)δIω(q2)Iω(q3)〉+ 〈δIω(q1)Iω(q2)Iω(q3)〉+ 〈δIω(q1)Iω(q2)δIω(q3)〉

+ 〈δIω(q1)δIω(q2)Iω(q3)〉+ 〈δIω(q1)δIω(q2)δIω(q3)〉 (5.13)

If the expectation of the noise E[δI] = 0, the expected triple correlation

can be firstly simplified by dropping terms that contain first order noise δI.

Furthermore, note that δIω(qi) and δIω(qj) are independent if i 6= j, which

leads to

E[δIω(qi)δI
ω(qj)] = E[δIω(qi)]E[δIω(qj)] = 0 (5.14)

Similarly,

E[δIω(qi)δI
ω(qj)δI

ω(qk)] = 0 (5.15)

Substitute Equ.(5.14) and Equ.(5.15) into the expectation of Equ.(5.13), to

obtain the relationship between the triple correlation of noisy data and that

of ideal data:

E[〈I ′ω(q1)I ′ω(q2)I ′ω(q3)〉] = E[〈Iω(q1)Iω(q2)Iω(q3)〉] (5.16)

This conclusion should be applicable to all kinds of error distribution whose

expectation is zero, like Gaussian or Poisson distribution, the most possible

random error during the measurement of number of photons. Consequently,

the triple correlation can be used as ideal data in the following process.

Moreover, now in this sense the meaning of the average of ”many” diffrac-

tion pattern is changed. Not only do enough patterns from different orienta-

tions need to be collected to cover every possible orientation, but that kind of

covering also needs to be done many times to approach the expectation.
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Uniqueness of spatial correlation

In would be useful to check the uniqueness before attempting to do the recon-

struction, or the effort might be pointless. Obviously the cross correlation of

intensity is unique, as it is the 3D Fourier transformation of the ”intensity” of

intensity, which lacks the phase information to correctly determine the original

function.

The ambiguity of cross correlation will emerge in the next section when

trying to get I`m from it, although it is still useful. This fact necessitates

the use of triple correlation. The uniqueness of triple correlation up to a 3D

rotation has been proved in [62]

5.3 Reconstruction

The triple correlation is a function of a 3-tuple of vectors. In the general case,

for a set of N ×N patterns without inverse symmetry, the independent triple

correlation is N6

6
due to the invariance on the interchange of the order of qs.

Thus it seems that triple correlation provides a sufficient number of equations

to obtain the value of I(q) on each pixel (N
3

2
of them). However, solving or

doing optimization on so many nonlinear equations is impractical, the problem

must be reduced and linearized to make it analytically possible.
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Triple correlation in terms of tripolar harmonics expansion

In Equ.(5.18) the ` = 0 component of 3-folded direct product can be simplified

as

{{I`1(q1)⊗ I`2(q2)}`3 ⊗ I`3(q3)}00

= (−1)`1+`2+`3
∑

m1m2m3

 `1 `2 `3

m1 m2 m3

 I`1m1(q1)I`2m2(q2)I`3m3(q3)

(5.17)

and the tripolar harmonics component bears the same form. Therefore, Equ.(5.18)

can be regarded as a linear equation with (`max1 + 1)(`max2 + 1)(`max3 + 1) vari-

ables, where `maxi depends on qi. Larger qi requires larger ` to achieve the

desired resolution. For any set of q1, q2, q3, it is possible to make all kinds

of combination of ω1, ω2, ω3 to produce enough linear equations to solve each

{{I`1(q1)⊗ I`2(q2)}`3 ⊗ I`3(q3)}00. However, there are still too many equations

considering that `max may reach more than 1000.

The orthogonality of tripolar harmonics[63] can be made use of to readily

obtain the corresponding coefficients if all the triple correlations among the 3

spherical surface q1, q2 and q3 are known. Unfortunately, this is impossible as

we can only measure a spherical cap in the experiment. On the other hand,

the fact that on the spherical cap we have the data of all the φ from 0 to 2π

for certain q and θ(q) indicates that the orthogonality of an the exponential

function can be exploited.

Fourier transformation of triple correlation on φis

Writing out the explicit form of the tripolar harmonics, and setting I`1`2`3(q1, q2, q3) =

{{I`1(qi1)⊗ I`2(qi2)}`3⊗ I`3(qi3)}00, which is of interest here, we have the triple
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correlation

T (q1,q2,q3) =
∑
`1`2`3

I`1`2`3(q1, q2, q3)(−1)l1+l2+l3

√
`1 + 1

4π

`2 + 1

4π

`3 + 1

4π
·

∑
m1m2m3

√
(`1 −m1)!

(`1 +m1)!

(`2 −m2)!

(`2 +m2)!

(`3 −m3)!

(`3 +m3)!

 `1 `2 `3

m1 m2 m3

 ·
Pm1
`1

(cos θq1)Pm2
`2

(cos θq2)Pm3
`3

(cos θq3)ei(m1φ1+m2φ2+m3φ3) (5.18)

The exponential function indicates the triple correlation is also a Fourier ex-

pansion, and it is fairly easy and fast to do the discrete Fourier transformation

on φi. The result is equivalent to set all the φs in spherical harmonics to zero:

T̃ (m1,m2,m3) =
∑

`1≥|m1|,`2≥|m2|,`3≥|m3|

I`1`2`3(q1, q2, q3)

 `1 `2 `3

m1 m2 m3

 ·
Y`1m1(cos θq1 , 0)Y`2m2(cos θq2 , 0)Y`3m3(cos θq3 , 0) (5.19)

where the sign (−1)`1+`2+`3 disappears as all the `s are even. In the linear

equation above, the T̃ is from experiment, the coefficients of I`1`2`3 are only

dependent on `,m and experimental conditions such as wave length, therefore,

if there are enough number of T̃ (m1,m2,m3)s, the tripolar coefficients can be

determined from experiment.

However, it should be noted that only a few of the T̃ (m1,m2,m3)s are

independent considering that the Wigner 3j coefficients are non-vanishing only

when m1+m2+m3 = 0. This corresponds to the fact that the triple correlation

itself only depends on the two angles between the vectors q1,q2, and q3 as it

is invariant to rotation. Moreover, the symmetry of Wigner coefficients and
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spherical harmonics `1 `2 `3

m1 m2 m3

 = (−1)`1+`2+`3

 `1 `2 `3

−m1 −m2 −m3


Y`m(cos θ, 0) = (−1)mY`−m(cos θ, 0) (5.20)

imply that T̃ (m1,m2,m3) = T̃ (−m1,−m2,−m3), which halves the available

equations again. The number is further reduced by the constraint that those

T̃ (m1,m2,m3)s whose |m1 + m2| = |m3| ≥ lmax3 must be zero. Finally, the

number of independent T̃ (m1,m2,m3)s increases as (2lmax1 + 1)(2lmax2 + 1)/2

while that of tripolar coefficient increase as (lmax1 +1)(lmax2 +1)(lmax3 +1), which

is an order higher and makes the direct solving of all of them impossible.

Fortunately, not all the I`1`2`3s are independent. Firstly, there is the tri-

angle constraint

|`1 − `2| ≤ `3 ≤ `1 + `2 (5.21)

Those coefficients whose subscripts fail to satisfy it are simply zeros. In addi-

tion, if some of the qs in the triple correlation are chosen to be the same, from

Eqn(2.31) and symmetry property of 3jm symbols, the permutation of their

corresponding `s leads to identical value up to a factor of −1:

I`1`2`3 = I`2`1`3 = I`1`3`2 = I`3`2`1

= (−1)`1+`2+`3I`2`3`1 = (−1)`1+`2+`3I`3`1`2 (5.22)

The actual number of independent, unknown I`1`2`3s depends on the specific

number of both `max1 , `max2 , `max3 and m1,m2,m3 and has to be calculated at

runtime. These two properties indicate that there should also be much less

unknown than (lmax1 + 1)(lmax2 + 1)(lmax3 + 1). Consequently, it is still possible

to build more equations than unknown when `max is small (' 10), and a least
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square optimization routine can be applied to evaluate the I`1`2`3s of interest

at proper precision. This numerical calculation has been implemented and

confirmed the expected result.

There is another advantage for using triple correlation worth mentioning.

The rotational invariance of the triple correlation can be used to deal with

fragmented data. q1,q2,q3 used in averaging in Eqn(5.18) can be rotated

together along the z axis to avoid bad pixels without affecting the final result.

It is not difficult to conclude that the omission of up to 2π
3

of the circle can be

tolerated.

From tripolar coefficients to spherical harmonics coefficients

In the previous subsection the radial components of the diffraction intensity

were separated from the angular components in the triple correlation. How-

ever, the I of different `, m and q are still coupled by the Clebsch-Gordan

coefficients.

To solve this problem, note that firstly, all the I00(q) come directly from

{{I0(qi)⊗ I0(qi)}0 ⊗ I0(qi)}00 = I3
00(qi) (5.23)

Then the cross correlation of ` = 2, B2(q, q′) can be calculated from the

following relationships

{{I2(q)⊗ I2(q)}0 ⊗ I0(q′)}00 = B2(q, q)I00(q′)

{{I2(q)⊗ I0(q)}2 ⊗ I2(q′)}00 = I00(q)B2(q, q′)

{{I0(q)⊗ I2(q)}2 ⊗ I2(q′)}00 = I00(q)B2(q, q′) (5.24)

If the correct I2s of some of the q1s and q2s are already solved (see the next

subsection), the rest can only be calculated by solving the following linear
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equations for different q3s

{{I2(q1)⊗ I2(q2)}2 ⊗ I2(q3)}00 (5.25)

Similarly, I4 comes from

{{I2(q1)⊗ I2(q2)}4 ⊗ I4(q3)}00 (5.26)

and I6 from

{{I2(q1)⊗ I4(q2)}6 ⊗ I6(q3)}00

{{I4(q1)⊗ I4(q2)}6 ⊗ I6(q3)}00 (5.27)

I8 from

{{I2(q1)⊗ I6(q2)}8 ⊗ I8(q3)}00

{{I4(q1)⊗ I4(q2)}8 ⊗ I6(q3)}00

{{I4(q1)⊗ I6(q2)}8 ⊗ I8(q3)}00

{{I6(q1)⊗ I6(q2)}8 ⊗ I8(q3)}00 (5.28)

Generally, there are 2`+1 unknown variables for I`(q3). On the other hand, the

number of equations formed by different combinations of the triple correlation,

in which two of I` are know with lower ` is much higher than this number.

Firstly, to solve for I`+2, there are `2/4 pairs of I`1⊗I`2 to be utilized, however,

in order that `1 + `2 ≥ `3, only `
4
( `

2
+ 1) pair of them are nonzero. And there

are also another n2 pairs, where n is the number of sampling along radial

direction, of different q1 and q2 which increase the number to `
4
( `

2
+ 1)n2. All

the spherical harmonics coefficients at the qs where the tripolar coefficients

are solvable from triple correlation can be calculated in this way.
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The I2 as starting point from cross correlation

For certain `, choosing 2`+ 1 different qs, a 2`+ 1 dimension square matrix I

can be composed with each row the I` of certain q

Ii,j = I`j(qi) (5.29)

so that

B = I IT (5.30)

The elements Bqq′ is just {{I`(q)⊗I`(q′)}00. As B is a real symmetrical matrix,

I can be solved analytically as a eigenvalue problem up to an unitary matrix

R.

B = I IT = IR(IR)T (5.31)

The origin of this kind of ambiguity is that the initial orientation of the object

when ω = 0 is not specified. The R matrix is the 2` + 1 dimensional repre-

sentation of this arbitrary rotation. From the definition of triple correlation,

{{I`1(q1) ⊗ I`2(q2)}`3 ⊗ I`3(q3)}00 is invariant if the Rs of I`1(q1), I`2(q2) and

I`3(q3) are different representations for the same SO(3) group element.

It is now clear that for each I, R can be chosen freely when solving

Equ.(5.30). However, these I values cannot be used together in a single spher-

ical harmonics expansion as they come from the different orientation of the

same method, and to which orientation it belongs to is unpredictable unless

the whole structure is known. Actually, this fact corresponds to the ambiguity

of cross correlation that has already been discussed in Sec.(5.2). However, it is

still very useful as it provides a starting point for the recursive method using

triple correlation to reduce the third order equations to linear equations. In

the recursive process the orientation assigned by cross correlation is fixed as
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triple correlation is unique up to a 3D rotation and this degree of freedom has

been used up when choosing the eigenvalues as the solution of I.

5.4 Bootstrapping

Although the previous method can only be applied to the low frequency band

limited qs, it provides the data to push ahead the calculation on those qs where

tripolar coefficients are not solvable.

The general idea is to make use of Eqn(5.19), separating the summation

into two parts with respect to the ` of interest, and substituting m3 = −m1−

m2 make it an linear equations in I`3m

T̃ (m1,m2) =
∑

`1≥|m1|,`2≥|m2|,`max3 ≥`3>`

I`1`2`3(q1, q2, q3)

 `1 `2 `3

m1 m2 m3

 ·
Y`1m1(cos θq1 , 0)Y`2m2(cos θq2 , 0)Y`3m3(cos θq3 , 0) +

∑
`1≥|m1|,`2≥|m2|,`≥`3≥|m1+m2|

I`1`2`3(q1, q2, q3)

 `1 `2 `3

m1 m2 m3

 ·
Y`1m1(cos θq1 , 0)Y`2m2(cos θq2 , 0)Y`3m3(cos θq3 , 0) (5.32)

If the first term on the right hand side is available and we call T̃ (m1,m2)partial,

and choose the proper m1,m2 that |m1 + m2| = `, so that only the `3 = ` is

left in the summation, then expanding I`1`2`3 gives

T̃ (m1,m2)− T̃partial =

∑
`≥m≥−`

∑
`1≥|m1|,`2≥|m2|

 ∑
`1≥m′1≥−`1,`2≥m′2≥−`2

 `1 `2 `

m′1 m′2 m

 I`1m′1(q1)I`2m′2(q2)


 `1 `2 `

m1 m2 m3

Y`1m1(cos θq1 , 0)Y`2m2(cos θq2 , 0)Y`3,m3(cos θq3 , 0)I`m(q3)

(5.33)
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which is a linear equation in I`m(q3). Had all the I`m(q1) and I`m(q2) been

solved, I`max3 m(q3) could be solved at first as there is no T̃partial at this moment.

If `max3 is not much larger than `max1 or `max2 , enough equations can be collected

from all the T̃ (m1,m2), (|m1 +m2| = `max3 , `max3 −1) from all the possible q1, q2

pairs. The exact number of equation also depends on these parameters and

is up to runtime determination, but there is almost always enough of them

compared with the 2 × ` + 1 unknowns in practical simulation. Once all the

I`max3 m(q3)s are available, we can move on to do the same thing for I`max3 −2,m(q3)

until we reach I2m(q3), and in this process, all the higher order I`m(q3) than

the current one are used to calculate T̃partial. After all the spherical harmonics

coefficients are solved for q3, they can be used as q1 or q2 when taking the step

up to the next qi.

The whole algorithm can be concluded as a bootstrap process. It starts

from some solved coefficients to solve the highest order ` for the next point

along the radius, then uses the result for the next lower ` until all of them are

calculated. That point is then marked as solved and used to repeat the same

process for next point.

Obviously, in practical computation, when error is taken into account,

the problem of error accumulation becomes significant as each step depends

on the previous result and serves as the reference for the future calculations.

Numerical simulation is conducted for data generated from a set of preassigned

spherical harmonics expansions, and it is found that if preassigned data is used

as the solved part of each I`m(qi) the algorithm works effectively. However,

if the calculated value is used, and if the slightly different data is substituted

back for further calculation provided that the error at the beginning is small,

the error accumulates very fast and error is seen above 10% after less than 100
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m2

m1

m1 +m2 = l3

m1 +m2 = l3 + 1

m1 +m2 = lmax
3

lmax
1

lmax
2

Figure 5.1: This figure shows the bootstraping method in m space. Each dot
is an independent T (m1,m2). Those within the green zone have been used
to calculate spherical harmonics coefficients for higher order ` + 3, and those
along the dashed lines are used to form the equations for the current `3. Then
the dashed lines move down for two units to the next set of unused dots.
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iterations, which is far from enough for real world problem.

The fast exponential error accumulation indicates that the decoupling con-

ducted in the previous subsection is too aggressive. The current computer is

capable of doing least linear fitting at much larger scale than 2`+1 we encoun-

tered at low resolution (thus small `). Combining a bunching of different `s at

the same qi in the bootstraping stage reduces the number of iterations signif-

icantly, and numerical calculation shows that the error increases much slower

and it is possible to propagate from the qis calculated from cross correlation

to at least 20 more outer qis, therefore make it a practical algorithm.

5.5 Conclusion

The method above can be applied to the data with high signal-noise ratio

and highly incomplete (due to beam stop, gap or dead zone in the detector,

or streak from water buffer) and yield the 3D intensity in reciprocal space

without explicit sorting. The only requirement is the diffraction patterns be

taken from uniformly random orientation.

The bootstrapping algorithm is linear, analytical and determinant in the-

ory. The correctness is verified with numerical calculation with error-free data.
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