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ABSTRACT

Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive

imaging modality that is capable of producing quantitative vascular �ow veloc-

ity information. The encoding of velocity information can signi�cantly increase

the imaging acquisition and reconstruction durations associated with this tech-

nique. The purpose of this work is to provide mechanisms for reducing the scan

time of a 3D phase contrast exam, so that hemodynamic velocity data may be

acquired robustly and with a high sensitivity. The methods developed in this

work focus on the reduction of scan duration and reconstruction computation

of a neurovascular PCMRA exam.

The reductions in scan duration are made through a combination of ad-

vances in imaging and velocity encoding methods. The imaging improvements

are explored using rapid 3D imaging techniques such as spiral projection imag-

ing (SPI), Fermat looped orthogonally encoded trajectories (FLORET), stack

of spirals and stack of cones trajectories. Scan durations are also shortened

through the use and development of a novel parallel imaging technique called

Pretty Easy Parallel Imaging (PEPI). Improvements in the computational ef-

�ciency of PEPI and in general MRI reconstruction are made in the area of

sample density estimation and correction of 3D trajectories. A new method of

velocity encoding is demonstrated to provide more e�cient signal to noise ra-

tio (SNR) gains than current state of the art methods. The proposed velocity

encoding achieves improved SNR through the use of high gradient moments

and by resolving phase aliasing through the use measurement geometry and

non-linear constraints.
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1 INTRODUCTION

Phase contrast magnetic resonance angiography (PCMRA) is an MR modality

that is capable of producing quantitative �ow velocity information. Multiple

images are acquired with velocity sensitivity in each of the principle (x, y

and z) directions. A 3D velocity vector can then be constructed using the

magnitude and directional information contained in these data sets. Since the

construction of a velocity vector requires multiple acquisitions (at least one

in each principle axis, three for 3D), the acquisition time of the base imaging

sequence more than triples. The long scan durations make PCMRA less viable

for clinical use. The goal of this work is to provide mechanisms for reducing

the scan time of a 3D PCMRA, so that hemodynamic velocity data may be

acquired robustly and with a high sensitivity.

The methods proposed for accomplishing this goal are applied to two areas

of the scan technique: the base imaging technique and the contrast encod-

ing technique. The proposed work starts with the combination of a rapid

3D imaging technique (1, 2) with a high gradient moment velocity encoding

strategy (3, 4). Parallel imaging acquisition and reconstruction strategies are

then explored using a novel time saving reconstruction technique (5�7). In an

additional e�ort to reduce the computational overhead, a 3D sample density

correction algorithm (8) is optimized through the combination of two existing

techniques (9, 10). The presented work is concluded with the introduction and

optimization of a novel 3D PCMRA encoding and reconstruction technique.

The application of these techniques is focused on the construction of a

scan and reconstruction technique that can provide full volume 3D neuroan-

giographic images within clinically viable scan durations. The practical re-

quirement of reducing the scan time provides the technical challenges of main-
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taining a minimum signal to noise ratio (SNR) and spatial resolution neces-

sary for providing phase contrast. This work demonstrates the relative quality

and computation time in the reconstruction of the uniformly undersampled

3D trajectories such as spiral projection imaging (SPI) (11, 12), and FLORET

(13), between the CG-SENSE (14) and proposed CG-PEPI parallel reconstruc-

tion methods. The proposed sample density correction method demonstrates

substantial time reductions in estimating the densities of 3D center-out tra-

jectories compared to the current state of the art. The proposed method is

not only shown to be one of the fastest and most accurate algorithms, it is

also completely generic, allowing any arbitrary trajectory to be density com-

pensated extemporaneously. The novel 3D phase contrast method proposed in

this work is shown to provide signi�cant gains in signal to noise ratio e�ciency

and high velocity sensitivity producing more vessel conspicuity as compared

to the current state of the art.
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2 BACKGROUND

This chapter covers some of the principles of MRI acquisition and reconstruc-

tion techniques needed to understand the proposed projects presented in the

subsequent chapters. This background information covers the scan trajectory

used in most of the preliminary work (spiral projection imaging), velocity en-

coding, and parallel imaging.

2.1 The MR Signal

This background derives the higher level signal mechanics, used in the discus-

sions about velocity encoding and k-space, starting from the interactions of

spins with an external magnetic force. The magnetic resonance (MR) signal

is characterized in many di�erent ways depending on the application or level

within the imaging system. For this work the focus will be to introduce a basic

overview of the MR imaging process used in this work by starting with what

is being measured and �nishing the discussion with how it is being measured.

The information presented here is a summary overview of the MR scanning

process. The suggested references for a more complete and detailed description

are (10, 15, 16).

2.1.1 Spin System

The MR system that is characterized through experiments, scans and exam-

inations is called a spin system. This system is used as a physical transfer

function for modulating input signals. The basic procedure for generating MR

signal is to perturb the spin system with various input stimuli and use the

measured response to reconstruct an MR image. This section introduces the

building blocks of the spin system and the conditions with which stimulating

and measuring the system response are possible.
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FIG. 2.1: The e�ects of spinning. (a) a single proton. (b) a proton rotating
about a central axis (a `spin'). (c) magnetic �ux lines surrounding a spin,
similar to a bar magnet.

2.1.1.1 Spin

The basic element of the spin system is described in terms of the mechanical

phenomena that accompanies certain atomic nuclei. Some nuclei possesses an

angular momentum about a central axis that resists the change in direction

of the axis, similar to a spinning top or gyroscope. This angular precession

about the central axis is the motivation for the term `spin'. The implicit charge

associated with the subatomic particles contained within the nucleus combine

with the spinning property to produce a dipole magnetic �eld that surrounds

the particle.

Nuclei that can be coherently in�uenced by external magnetic �elds are

those that possess a spin-1
2
quantum number. Spin-1

2
nuclei are comprised of

an odd number of protons and/or an odd number of neutrons. Examples of

spin-1
2
particles are hydrogen, sodium, and carbon-13.

Since the hydrogen proton is the most abundant spin-1
2
particle in the
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human body, it is the most common target spin system used in clinical MRI.

Figure 2.1 shows an illustration of a spin-1
2
particle (a), rotating around a

central axis (b), and causing a dipole magnetic �eld (c).

2.1.1.2 Applied Magnetic Fields

The magnetic �eld surrounding a spin can be in�uenced by an external mag-

netic �eld. The aggregate magnetic moment of a spin-1
2
population will align

with the magnetic �eld in either a parallel or antiparallel direction relative

to the externally applied magnetic �eld. These two states are referred to as

`spin-up' and `spin-down'. Most of the spin system will be balanced, contain-

ing equal numbers of spin-up and spin-down particles. Due to the Zeeman

e�ect, a small fraction of the spins will remain spin-up based on the system

temperature and strength of the applied magnetic �eld. These residual spin-

up particles constitute the excitable and measurable MR signal. For a proton

system (water) at room temperature in a 3 Tesla �eld this will correspond to

approximately 10 parts per million available for MR signal.

The dynamics of moment alignment with an external �eld take place on a

sub-second time scale. This transient period is where the MR signal is mea-

sured. Figure 2.2(a) depicts spins outside of an external magnetic �eld �nding

random orientations (due to thermal noise (17)) as they maintain a system

equilibrium at the lowest energy state. Figure 2.2(b) depicts system equilib-

rium in the presence of a magnetic �eld (B0), where the net magnetic moment

of the system is aligned with the external �eld B0. Thermal energy in the

system causes random �uctuations in spin orientation making the simpli�ed

example of Zeeman splitting (�gure 2.2(b)) look more like the illustration in

�gure 2.2(c) where the simpli�ed example is a superposition of the randomly
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a) b)

B0

c)

B0

FIG. 2.2: Spin systems with and without an applied magnetic �eld at equilib-
rium. (a) a spin system with random individual orientations yielding no net
moment. (b) a simpli�ed spin system with net moment aligned to an external
magnetic �eld (B0). (c) a spin system with net moment (grey arrow) aligned
to an external magnetic �eld (B0).

oriented moments (18). In the time between the states shown in (a) and (b),

the spins precess about the applied magnetic �eld as illustrated in �gure 2.3.

A common analogy for spin alignment during this period is the time course of a

spinning top. The top resists gravity due to its angular momentum just as the

spin resists the pull of the applied magnetic �eld acting on its own magnetic

�eld. The rotational axis of a spinning top precesses about an axis parallel to

gravity as it decays to a position orthogonal to the direction of gravity. The

alignment of a spin is opposite, in that its rotational axis becomes parallel

to the external magnetic �eld as shown in �gure 2.3. The angle between the

rotational axis and the precessional axis is reduced at an exponential decay

rate.

In summary, the rotational axis of the spin is also the axis of the dipole

magnetic �eld (�gure 2.1(c)). The alignment of the spin �eld with the applied

external �eld is caused by magnetic attraction, while the spin rotation resists
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FIG. 2.3: Spin rotation and precession about an external magnetic �eld. This
example is an analogue for a spinning top.

the change in spin orientation causing a precession of the spin �eld about the

applied �eld.

2.1.1.3 Spin Dynamics

The classical physics description of the spin dynamics in the presence of an

applied magnetic �eld is based on the aggregate magnetic �eld of a spin popu-

lation. This allows the system to be described in terms of continuously de�ned

functions.This section recapitulates the qualitative assessment of spin dynam-

ics presented in the previous subsection using the net magnetic moment of a

spin population as the basic element of spin motion.

The rate of precession of the rotational axis about the applied magnetic

�eld (B0) is a function of the �eld strength and the spin rate. The spin

rate is native to each particle. The rate is related by a constant called the

gyromagnetic ratio (γ). For a proton, γ is roughly 42.58MHz/Tesla, and the

precessional frequency (ω) is,
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ω = γB0 , (2.1)

which is known as the Larmor frequency. The precessional frequency corre-

sponds to the time varying rate of phase change. The rate of precession is

therefore the amount of phase change (measured in degrees, cycles, or radi-

ans) divided by the frequency. The relative phase relationship between spins

can cause their magnetic �elds to add coherently or incoherently, producing a

larger or smaller aggregate magnetic �eld.

The precession of a spin in time and space is characterized by the orienta-

tion of the spin �eld in three dimensions ~M and the orientation of the applied

�eld ~B. By holding the applied �eld as the frame of reference, the change in

spin orientation (d
~M
dt
) is,

d ~M

dt
= γ ~M × ~B (2.2)

where × represents the cross product operation. The cross product in equation

2.2 relates the precessional rate of change to the physical orientation of ~M

about ~B. Spin precession is the key component to the generation of the MR

signal. For this reason, MR scans are performed in the presence of a constant

high level magnetic �eld.

The decay (or relaxation) of the angle between ~M and ~B is governed by two

independent relationships. From �gure 2.3, the component of ~M that lies in

the x-y plane is referred to as the `transverse component' and the component

in the z direction is called the `longitudinal component'. The spin �elds orient

themselves to minimize the energy in the system, therefore the return of the

spins to the equilibrium state is referred to as `relaxation' (19).
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The relaxation of the transverse component is due to small changes in tem-

perature that vary within the spin system. These variations randomly change

the relative precessional-phase relationship between spins of a sample popula-

tion. The loss in aggregate magnetic �eld reduces the transverse component

of ~M by a time varying exponential decay,

Mx,y(t) = Mx,y(0)e
−t
T2 , (2.3)

where Mx,y is the time varying transverse magnetization, t is the time, and T2

is the decay constant that is dependent upon the spin environment.

The relaxation of the longitudinal component of ~M is analogous to a top

loosing its rotational momentum. The momentum is what opposes the change

in ~M orientation. As the analogous rotational momentum is lost, the spin

aligns with ~B. The longitudinal component is recovered over time and modeled

as,

Mz(t) = Mz,0(1− e
−t
T1 ) , (2.4)

whereMz is the time varying longitudinal magnetization, Mz,0 is the magneti-

zation at equilibrium and T1 is the recovery constant, which is also environment

dependent.

Equations 2.3 and 2.4 are solutions to additional terms of the Bloch equa-

tion in 2.2, where the rate of change in spin magnetization is,

d ~M

dt
= γ ~M × ~B − (Mx

~i+My
~j)

T2

− (Mz −Mz,0)~k

T1

, (2.5)

which describes the precession with the e�ects of relaxation.
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2.1.2 System Excitation and Response

As previously mentioned, the spin system is analogous to a transfer function;

information about the system is collected by perturbing the system and mea-

suring the response. The system perturbation and response are administered

and measured through radio frequency (RF) transmissions. An overview of

this procedure begins with a spin system placed in a constant high level mag-

netic �eld (B0). Before an MR scan begins the spin system is allowed enough

time to reach an equilibrium state (i.e. time >> T1 >> T2), which is in

alignment with the magnetic �eld B0. B0 remains present over the duration

of the scan. The system is then perturbed by an applied RF pulse, which

tips the spin magnetization into the longitudinal plane. Since the spin is no

longer aligned with B0, it continues to precess about B0 until equilibrium is

again reached. The precession of the spin �eld induces an RF pulse which is

measured by the scanner.

This section introduces the fundamentals of transmission and reception of

MR-RF signals that comprise an MR scanning system.

2.1.2.1 Transmission

The process of applying RF to the spin system is called `excitation'. Spins are

excited when they are forced out of B0 alignment into the precessional state.

The RF pulse accomplishes this by creating a momentary magnetic �eld that

is e�ectively stronger than B0.

The RF is applied at a frequency that is on resonance with the precessional

frequency ω (equation 2.1). The momentary �eld BRF is much smaller than

the B0, however, since the pulse is applied at resonance, the e�ective strength

is higher causing the spins to precess about BRF . BRF is orthogonal to B0
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causing the spins to tip away from the longitudinal axis (z) into the transverse

plane (x-y) (�gure 2.3).

The duration and amplitude of BRF determines how far the spins are tipped

angularly into the transverse plane. This tip angle (or �ip angle) is,

θ = γBRFT , (2.6)

where T is the RF pulse duration.

The RF wave transmission is a fundamental property of Faraday's law. An

alternating current is passed through an electrically conductive coil causing an

alternating magnetic �ux. The amplitude of the RF wave is proportional to

the applied current. The coil surface is oriented parallel to B0 and as close to

the spin system as possible.

2.1.2.2 Reception

The MR signal measured from an excited spin system is received by the same

Faraday property used in the excitation of the system. An electrically con-

ductive coil (potentially the same used in RF transmission) is placed near the

spin system, the alternating magnetic �eld generated by the precessing spins

induces an alternating current within the coil. This current is measured in

time and demodulated at the precessional frequency to produce the relative

spin frequency. The relative spin frequency can be spatially varied which yields

the information necessary to reconstruct and MR image, as discussed in the

next section.

The excitation and signal reception is repeated, generally allowing the spins

to reach equilibrium before each repetition. This is known as the repetition

time or TR. Hundreds of TRs are measured over the course of an MR scan
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using techniques to provide di�erent information about the spin system in each

iteration, as will be discussed in the next section.

2.1.3 System Modulation

The spin system can be examined through excitation and measurement of its

response. As discussed the previous sections, spins precess at a frequency pro-

portional to the magnetic �eld strength of an externally applied �eld. These

two principles are combined to gain information about the spin system under

various conditions created by changing the spatial distribution of the magnetic

�eld. This is accomplished through magnetic gradients created by electromag-

nets which are positioned on each of the three principle axes (x, y and z). These

gradients can be varied in time and amplitude to produce unique conditions

that provide information about the spatial distribution of spins.

Additionally, the materials or biological tissues that comprise the spin sys-

tem vary in longitudinal and transverse relaxation rates. The RF pulse can

also be varied in time and amplitude to produce distinctive signals based on

the relationship of these rates.

Finally, spin systems themselves may also vary in time providing additional

signals (e.g. from physiologic process) that can be manipulated through the

use of RF and magnetic �eld gradients.

The amalgamation of strategically placed time varying pulses of both RF

and magnetic gradient is known as a `pulse sequence' and is the examination

protocol for characterizing a spin system. This section covers the imaging,

relaxation contrast and physiological contrast mechanisms that are combined

to make the pulse sequence that used the body of this work.

12



2.1.3.1 Imaging Gradients

In order to measure the spatially varying spin distribution of an object the

relative intensities of spatial harmonics must be measured. The way samples

are interpreted as spatial harmonics depends on an abstraction called k-space.

As brie�y discussed in the previous sections, a spin that is placed in a

magnetic �eld will precess about this �eld. The rate at which it precesses de-

pends on the strength of the �eld as shown in equation 2.1. If additional linear

gradients G are present, the frequency of precession is spatially dependent on

position x within the object:

ω = γ(B0 +Gxx) . (2.7)

A receive coil placed next to an excited spin system does not selectively

measure the magnetic �ux of each spin independently, instead, it measures the

spin system as a whole as indicated by the following equation.

S(t) =
∑

x∈O

M(x)e−iωt (2.8)

where S is the time varying MR signal, O is the extent of the object, and M

is the spatially varying spin magnetization precessing at a frequency ω. In one

dimension, the time varying signal is the sum of all spins in x across the object

O.

By substituting the positional dependent frequency ω with equation 2.7,

the time dependent signal becomes

S(t) =
∑

x∈O

M(x)e−iγ(B0+Gxx)t . (2.9)
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If the system is viewed from the precessional frame of reference, the spatial

variation of precession frequency is all that is left. This can also be viewed

as demodulation and results in the summation of only the relative change in

frequency by dropping the `B0' term from equation 2.9. Substituting in k =

γGxt yields the identity of the discrete Fourier transform of the magnetization

pro�le M .

S(kx) =
∑

x∈O

M(x)e−ikxx (2.10)

In terms of the Fourier transform, k is the spatial harmonic and is also the

namesake of `k'-space. K-space is representative of the Fourier transform fre-

quency domain. Using both equations 2.10 and 2.9 allows mapping of sample

points in time to harmonic positions within the Fourier domain. When the

Fourier domain has been completely mapped, a Fourier transform is applied

to create the �nal image.

Another result of equation 2.9 is that the Fourier harmonics that are sam-

pled, can be modulated in time by changing the amplitude of the spatial

magnetic gradients in time Gx(t). The path, through k-space, created by

changing Gx(t) is called a trajectory and can be thought of as tracking a par-

ticle through a force vector �eld. A trajectory velocity and acceleration in

k-space are analogous to Gx and
dGx

dt
respectively.

2.1.3.2 Contrast Preparation

Spoiled Gradient Recalled Echo (SPGR) The particular class of scan sequence

used in this project is called the spoiled gradient echo or SPGR sequence.

Spoiling means that the transverse magnetization from a previous TR is ac-

tively attenuated before each successive sampling period. A `gradient echo'

14



refers to the way the signal is varied in time by the imaging gradients as previ-

ously discussed. The equations presented in this section explore the way MR

signal is a�ected by the timing characteristics of the pulse sequence and the

relaxation properties of the spin system.

In order to understand the steady state behavior of an SPGR signal, the

e�ects describing the recovery of longitudinal magnetization (T1) will be exam-

ined. Transverse relaxation (T2) can be ignored since the signal is attenuated

through spoiling. Assuming a perfectly spoiled system, the RF pulse will excite

only the recovered longitudinal magnetization. The time course of longitudinal

magnetization is, taken from the third term of equation 2.5,

dMz

dt
=
Mz,0 −Mz

T1

(2.11)

and when solved for Mz becomes equation 2.4 where Mz,0 represents the equi-

librium magnetization. A �ip angle (α) will leave a component of longitudinal

magnetization equal to cos(α) times the last available Mz(0) for each TR.

The Mz(0) of a subsequent TR is equal to Mz(TR) · cos(α) of the previous

TR. If the TR is su�ciently less than the T1, the longitudinal magnetization

will not fully recover over contiguous TRs. Eventually the system will reach a

steady state where the longitudinal magnetization will be equal across TRs. A

relative measure of signal strength at this point is longitudinal magnetization

normalize by the equilibrium magnetization at the end of each TR as follows.

Mz

Mz,0

=
1− e−TR/T1

1− cos(α) · e−TR/T1 (2.12)

In order to ensure the steady state is at the maximal achievable signal strength,

the Ernst angle, calculated by the following equation, is used.
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α = arccos(e−TR/T1) (2.13)

The basic signal mechanics presented in this section are applied temporally,

within the pulse sequence at the beginning (i.e. the �ip angle and RF spoiling),

at the end (i.e. the gradient spoiling), and implicitly based on the �ip angle

to TR relationship.

Other Contrasts The physiological based contrast mechanism used in this

work is known as `phase contrast' (20). The physiological signal contrast

is encoded in relative spin precessional phase by a preparatory gradient pulse

that is applied before the imaging sequence. This phase is induced by virtue of

the spin-particle motion through the applied magnetic gradient. Preparatory

sequences are a common mechanism used in MRI to encode various types of

contrasts (e.g. di�usion weighted imaging (21)). Physiological signals may also

be given contrast implicitly through the sequence timing just as T1 relaxation

is in an SPGR sequence (e.g. time of �ight MRA (22).

2.2 Velocity Encoding

Velocity encoding is the mechanism by which �ow contrast is encoded into the

image phase. The following section covers how velocity encoding is accom-

plished, and some of the challenges in achieving high quality velocity maps.

In the simplest case, velocity is encoded in the direction of one of the

physical gradients. Figure 2.4 is a diagram of a PCMRA pulse sequence for an

arbitrary imaging gradient. The pulses shown in red are bipolar gradient pulses

that work together to encode spin velocity as a phase in the reconstructed

image. The bipolar pulses are played out after the RF excitation (and possibly

a slice selection gradient) and before the imaging gradients, which are shown
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FIG. 2.4: A PCMRA pulse sequence diagram for an arbitrary slice
select and imaging gradient.

as a nondescript block. The velocity encoding itself will be described in terms

of the time points marked below the bipolar pulses.

The sampling trajectory in k-space is determined by the imaging gradients.

The position in k-space is called the `zeroth moment' and is determined by the

area of the time varying gradient pulse by,

k(t) = γ

∫ t

0

G(u)du (2.14)

where k is the position in k-space, G(t) is the gradient amplitude at time t,

and γ is the gyromagnetic ratio. Between points t = 0 and t = 2 the net

zeroth moment is zero. The bipolar pulse is essentially a trajectory that has

moved out, from the center of k-space, along a k-space axis and then moved

back to the center.

Spatially, the spins accrue a phase when an imaging gradient is pulsed.

Between points t = 0 and t = 1 a positive gradient lobe is played out and a

phase is accrued in each spin based on its spatial position as,

φ(t) = γ

∫ t=1

t=0

G(u)x(u)du , (2.15)
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where φ is the phase and x(t) is the location of the spin. Between points t = 1

and t = 2, all spins that have remained still (at a �xed position x) will have

accrued a net phase of zero. All spins that have moved will maintain a residual

phase. This residual phase is proportional the velocity of the spin. However,

the relative phase angle velocity encoded image alone is arbitrary, and so a

reference image with no bipolar lobes is required to estimate the base phase

angle.

The encoded velocities are represented by a phase between −π to π, for

positive and negative velocities. The proportional relationship between veloc-

ity and phase is set by the gradient strength of the bipolar lobes. The velocity

component of the spin position is

x(t) = x0 + vt . (2.16)

By combining the velocity component with equation 2.15 and �nding the net

phase of both of the bipolar lobes, the phase can then be calculated as,

φ(t) = γ

∫ t=∆t

t=0

G(u)x(u)du (2.17)

−γ
∫ t=∆t+∆t

t=∆t

G(u)x(u)du (2.18)

= γ

∫ t=∆t

t=0

G(u)[x0 + vu]du (2.19)

−γ
∫ t=∆t+∆t

t=∆t

G(u)[x0 + vu]du (2.20)

= γ[G∆tx0 +Gv∆2
t −Gx0(2∆t) (2.21)

−Gv(2∆t)
2 +Gx0∆t +Gv∆2

t ] (2.22)

= γG∆2
tv , (2.23)
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FIG. 2.5: Sagittal PCMRA maximum intensity projections. (a) high
V ENC = 100 cm

s
. (b) low V ENC = 20 cm

s
. (c) plot of laminar velocity pro�le.

The grey plot is representative of the actual cross-sectional �ow through a ves-
sel. The black plot is representative of a reconstructed phase-aliased version
of the �ow pro�le if the max �ow velocity is 80 cm

s
and the VENC is 20 cm

s
.

where ∆t represents a generalized time di�erence between points t = 0, 1 and

2. As previously noted, the zeroth moment, relating phase to position x0, drops

out leaving only velocity sensitivity. The `�rst moment', m1, is represented by

G∆2
t in the �nal product above. m1 is used to relate the estimated velocity to

the encoded phase.

The maximum representable velocity `VENC' is calculated using the �rst

moment and the maximally distinguishable phase, in either direction, as,

V ENC =
π

γ|m1|
(2.24)

Velocities that exceed the VENC cause phase aliasing wraps in the encoded

image. Velocities that produce a phase magnitude higher than π can not be

distinguished from velocities that produce a phase at any equivalent modulus

of 2π. Figure 2.5(c) shows a simulated cross-sectional �ow for both su�cient

(relatively high) VENC and insu�cient (relatively low) VENC. The lower

insu�cient VENC is phase aliased where the velocity exceeds the VENC.
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Typically the maximal expected velocity is lower than 100cm/s. Setting

the VENC to a high value such as this will allow the high �ow to be represented

and the slower �ow to vanish under the noise �oor. The metric that describes

this relationship is velocity to noise ratio (VNR) and is calculated as,

V NR ∝ V

V ENC
SNR . (2.25)

This relationship shows that choosing a VENC that is close the maximum

expected �ow velocity will be the most e�ective.

Figure 2.5 show a comparison between the high and low VENC encodings.

The images were scanned using a 1mm3 voxel, 240mm �eld of view (FOV),

and a VENC of 100 cm
s
and 20 cm

s
for the high and low encodings respectively.

The high VENC data set features no phase aliasing in the high �ow areas such

as the internal carotid arteries. Contrastingly, the low VENC set shows sharp

boundaries at the edges of high �ow signifying phase aliasing. However, the

low VENC image shows a lower noise �oor making smaller vessels more visible.

2.3 Parallel Imaging

Parallel imaging is a trajectory and reconstruction method that generally

works to shorten the acquisition duration. The time reductions of the scan

are accomplished by undersampling (sampling below the Nyquist rate) k-space

(5, 6, 23). Parallel reconstruction works to �ll in the undersampled areas of

k-space by using prior information or by enforcing constraints in an itera-

tive solution process. Other reconstruction strategies utilize the sparsity in a

chosen domain of the collected data (24), and some simply enforce Hermite

symmetry in the Fourier domain (25�27). The method of parallel imaging

used in this work is called sensitivity encoding or SENSE (14, 28).
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FIG. 2.6: Two 2D undersampled trajectories and corresponding aliased images.
A fully sampled image (a), when undersampled in k-space (b) and (d) produces
aliased images (c) and (e).

The undersampling of k-space is shaped by the trajectory design. Di�erent

undersampling patterns form di�erent aliasing patterns in the image domain.

Figure 2.6 is a �ow diagram of two di�erent 2D undersampling examples. A

fully sampled image is Fourier transformed into k-space, sub-sampled by ei-

ther a Cartesian trajectory or a variable density spiral trajectory and then

transformed back. This is analogous to an MR acquisition that uses one of the

example trajectories to sample k-space directly. The missing k-space informa-

tion manifests in the image as aliasing which is predictable in the Cartesian

case and less so in the spiral case. The points marked a1 and a2 in �gure

2.6(c) represent two places in the image where the nose and cerebral peduncle

overlap.

Some additional information inherent in sampled MR data is imposed by

the measuring instruments themselves, the coils. This is depicted in �gure
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FIG. 2.7: Coil combination and SENSE parallel imaging reconstructions. a)
coil weighted images. b) simple RSS coil combination. c) coil weighted and
undersampled data. d) Cartesian SENSE parallel imaging reconstruction.
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2.7(a). Two coils, placed on either end of a spin system (M) are used to

sample k-space information. The coils are most sensitive at close proximity

and loose sensitivity to signals originating further away. The coil sensitivity

(S) for each coil is represented by the greyscale ellipses S1 and S2. If the

k-space data are fully sampled, the reconstructed images made from each set

of sampled data results in the coil weighted images C1 and C2.

The reconstruction of fully sampled coil weighted data is performed by

combining each reconstructed coil image in a root sum of squares combination.

Figure 2.7(b) shows how the two coil images complement each other providing

more information where each coil is most sensitive. Since the sensitivity is

spatially dependent, the SNR is also spatially dependent. Figure 2.7(c) shows

how undersampled data would appear if reconstructed using the basic coil

combination of �gure 2.7(b).

SENSE (sensitivity encoding) (28) reconstructs the missing k-space in-

formation in undersampled acquisitions by using coil sensitivity information

which is a fundamental component of the sampled data. This extra infor-

mation can be thought of as an extra encoding layer produced by the coil

sensitivity. In the Cartesian case, the spatial aliasing can be easily determined

allowing a system of linear equations to be written for the reconstruction of

M̂ . The reconstruction of two sample points in M̂ can be generated by using

the corresponding point from each undersampled coil image and two points

from each of the coil sensitivity maps. These points are identi�ed in �gure

2.7(d) and are reconstructed using following equations.

M̂(y) = S2(y +
FOV

2
) · Ĉ1(y)− S1(y +

FOV

2
) · Ĉ2(y) (2.26)
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M̂(y +
FOV

2
) = S1(y) · Ĉ2(y)− S2(y) · Ĉ1(y) (2.27)

Two subtleties of this example are 1) the coil sensitivity maps are not aliased,

and 2) the undersampling factor of 2 (in the y direction) relates each pair of

points that are half of the �eld of view apart. Since the spatial sensitivity

is slowly varying, the sensitivity maps can be generated using an additional

low resolution acquisition or extra k-space samples in the imaging acquisition

to fully sample the low spatial frequencies. In Cartesian imaging the under-

sampling factor corresponds to the distance between points of aliasing in the

image.

In the case of a spiral trajectory, the undersampling does not occur uni-

formly in each direction. Figure 2.6(d) shows how a variable density spiral

increases in the amount of undersampling, radially, from the center of k-space.

The aliasing pattern in �gure 2.6(e) is less coherent than that created by the

undersampled Cartesian trajectory because it is distributed angularly through

the image. Reconstruction for this trajectory is not as straight forward be-

cause a system of linear relationships is not as easily created. The dotted circle

shown in the spiral trajectory of �gure 2.6(d) indicates an area of critical sam-

pling that can be built into an undersampled spiral scan. Low resolution

sensitivity maps can be generated from this k-space data without the need for

additional acquisitions. These pieces of information can be used to constrain

or condition an iterative reconstruction in order to calculate the undersampled

k-space regions (14).
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3 SPIRAL PROJECTION IMAGING PCMRA

Phase contrast magnetic resonance angiography (PCMRA) is an MR modality

that is capable of producing quantitative �ow velocity information. The veloc-

ity magnitude is encoded as a phase within a complex valued image. Multiple

complex images are acquired with velocity sensitivity in each of the principle

(x, y and z) directions (20). A velocity vector can then be constructed us-

ing the magnitude and directional information contained in these data sets.

Since the construction of a velocity vector requires multiple acquisitions (at

least one in each principle axis, three for 3D), the acquisition time of the base

imaging sequence more than triples. This increased scan time is a considerable

disadvantage especially where large �elds of view are needed (e.g. neuroan-

giography).

The work presented here is focused on the construction of a scan and

reconstruction technique that can provide full volume 3D neuroangiographic

images within clinically viable scan durations (1, 2, 6, 29). The proposed

method is a combination of a rapid 3D imaging technique with a high gradient

moment velocity encoding strategy. The practical requirement of reducing the

scan time provides the technical challenges of maintaining a minimum signal to

noise ratio (SNR) and spatial resolution necessary for providing phase contrast.

3.1 Theory

This section introduces the basic imaging and high moment encoding tech-

niques combined in this work. The �rst subsection covers the spiral projection

imaging technique which is followed by the introduction to a well known three-

point moment encoding method.
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FIG. 3.1: A spiral projection imaging trajectory diagram. A 2D plane of spiral
interleaves (a) in kx, kz space (b) is successively rotated about the kz axis (c),
until the set of spiral planes �lls a sphere in k-space (the red arrow shows the
axis of plane rotation). Data may be undersampled angularly by collecting
fewer planes (d), or radially by altering the base spiral pattern (a).

3.1.1 Spiral Projection Imaging

Spiral projection imaging (SPI) (11, 12, 30, 31) is a 3D k-space trajectory that

is generated using multiple 2D spiral sampled planes. The bene�ts of SPI

include those that are intrinsic to spiral scans such as, reduced sensitivity to

bulk motion and highly con�gurable variable density undersampling schemes.

This section introduces the basic construction and con�guration of SPI.

A single spiral projection is shown in �gure 3.1(a). In an SPI acquisition,

successive projections are collected at di�erent orientations as shown in �gure

3.1(b). By collecting the projections at even angular distances, rotated about

a single axis, 3D k-space is spherically supported by the globe shape shown in

�gure 3.1(c). This method of plane ordering has dubbed `uni-axial' since the

planes are rotated about one axis only.

Three dimensional undersampling of a uni-axial SPI sphere can be accom-

plished by lowering the number of planes collected, or by undersampling of

the spirals within each projection. The latter will be referred to as in-plane

undersampling and is accomplished here by changing the ratio of angular to ra-

dial progression, which is called variable density spiraling (32) (�gure 3.1(a)).
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Large strides in scan time reductions can be made through uniform under-

sampling strategies such as this. This is simply due to the fact that fewer

data points are collected meaning less k-space has been traversed. While

undersampling leads to aliasing, uniform variable density undersampling inco-

herently reproduces aliasing allowing the underlying image structure to show

through. The level of tolerable aliasing provides a bound on the amount of

undersampling allowed, which in turn bounds the level of scan time reduction.

Spiral trajectories, in general, are e�cient in terms of echo time and imag-

ing time. The spirals used in this work are center-out trajectories that sample

the low k-space frequencies �rst and gradually moves out to the high spatial

frequencies, maximizing the amplitude of the imaging gradients. The short

echo time is due to the lack of a prephasing gradient (as needed in Cartesian

imaging) which also reduces the moment related phase accrual acquired when

sampling central k-space after a prephasing gradient. The redundant low spa-

tial frequency sampling, provided by the multiple spirals collected in-plane

and for each plane, reduces the sensitivity to bulk motion because the motion

elements are averaged out when all trajectories are combined.

Spiral trajectories are more e�cient as the sampling duration (sampling

window) within each repetition becomes longer. Fewer spirals are needed

the longer the sampling window is, however, longer windows make the ac-

quisition more susceptible to the dephasing from o�-resonant spins. Accrued

o�-resonant phase in spiral imaging causes spatial blurring in areas of o�-

resonance (33). The most susceptible areas are identi�ed and discussed in

appendix A. This e�ect imposes an upper bound on the spiral length and

therefore the level of scan time reduction.
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3.1.1.1 Data Conditioning

Since spiral trajectories are highly oversampled in the central region of k-space.

The sample density accumulates near the center of k-space as a result of using

a constant sampling rate in time. High sampling density becomes particularly

cumbersome for the reconstruction of 3D trajectories such as Spiral Projection

Imaging (11, 12) (�gure 3.1), where each plane contributes to the density of

a sphere about the center of k-space (k0). The gridding computation time

increases linearly with the number of points and the sample density correction

(SDC) (9) computation time increases quadratically with the density of the

number of points. Computation time also increases steadily for time series re-

constructions of dynamic data which requires multiple applications of gridding

and SDC. This work presents two conditioning methods for improving recon-

struction time. The proposed methods are referred to as `separable gridding'

and `data thinning'. Each method lowers the sample density (mostly near k0)

resulting in reduced computation time of the reconstruction, particularly in

SDC.

The data thinning method reduces the number computations required in

the 3D reconstruction by throwing out points that are sub-Nyquist distances

apart, in k-space. The separable gridding method reduces the number of

points by performing a 1D sampled density correction and gridding to each

spiral arm individually. This reduces the number of points required in the 3D

reconstruction and maintains the SNR by retaining all of the sampled points.

3.1.2 Dual VENC Velocity Encoding

As mentioned in the introduction, the phase contrast technique requires mul-

tiple images each containing di�erent directional velocity sensitivity in order
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to reconstruct a complete velocity vector at each voxel. The encoded phase is

proportional to the velocity magnitude (parallel to the sensitivity direction),

but contains no absolute relativity. For this reason it is common to collect a

reference set with no velocity sensitivity, in order to achieve this phase resolu-

tion. This method is referred to as referencing (34, 35). At least one reference

is required to resolve the phase for multiple velocity encoded images. This

makes the total scan time equal to 4 times the base imaging time to acquire

3D velocity data.

In order to maintain a high velocity to noise ratio (VNR) the scan must be

designed with equation 2.25 in mind. Considering imaging techniques alone,

the VNR in equation 2.25 is improved through increases in the base image

SNR, which provides gains proportional to the square root the scan time. In

terms of velocity encoding alone, the VNR is increased as the VENC is de-

creased, which is the same as increasing the gradient strength of the velocity

encoding gradients as shown by equations 2.23 and 2.24. This provides VNR

increases directly proportional to the VENC. However, as discussed in subsec-

tion 2.2, if the �ow velocity is higher than the VENC, the phase will be aliased

resulting in an erroneous velocity estimate. Dual-VENC encoding is a scan

and reconstruction technique that address the phase aliasing concomitant in

low VENC scans in order to maximize VNR (4). These VNR gains are shown

to be more e�cient in terms of scan time, because of the direct proportionality

with VENC.

While using multiple VENC is not the only method of phase unaliasing

(36�38), it is one of the few that can accomplish unaliasing on a pixel-by-pixel

basis. This is prefereable since its avoids smoothing and is automatic requiring

no user input for seed points or segmentation.
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In a neurovasculature �ow system, the blood velocity can vary greatly (po-

tentially upwards of 100cm/s). Since the VENC level is driven by the desired

VNR, the necessary VENC will usually be lower than the maximum velocity

within the �ow system. As a consequence of equation 2.23, the encoded phase

will exceed 180◦making the measured phase indistinguishable from �ow in the

opposing direction (aliasing). In order to bene�t from low VENC acquisitions,

this phase aliasing must be resolved.

The dual-VENC (three-point) method proposed in (4), solves the phase

aliasing by collecting an additional high-VENC acquisition (which is not aliased)

which is used to unalias the low-VENC acquisition. The current method re-

quires the acquisition of seven SPI volumes, one for a baseline measurement,

three at a low VENC (20 cm
s
) in each principle direction, and three at a high

VENC (100 cm
s
) in each principle direction. The added acquisitions increase

the scan time from 4 times the base imaging technique to 7 times. This ini-

tially appears to be less scan time e�cient, however, it has been shown to be

e�ective at providing a VNR gain of 4 times.

The dual-VENC unaliasing procedure is as follows. In a typical scan where

the max �ow velocity is just under 100 cm
s
the VENC would have to be set at

least this high. In this example, a dual VENC encoded scan, with a low VENC

of 20 cm
s
, would retain a VNR increase by a factor of

V ENChigh
V ENClow

=
100

20
= 5 . (3.1)

The phase aliasing is dealt with by using the high VENC data to `unwrap'

the phase of the aliased low VENC data. Finding the number of wraps depends

on the relative VENC. The maximum number of wraps `k' that can be resolved
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are

kmax = NINT (
V ENChigh
2V ENClow

) (3.2)

where NINT represents the nearest integer function and `k' is always an

integer because the VENC represents 180◦and phase aliasing occurs �rst at

180◦and then at every successive 360◦. The number of wraps for any given

phase measurement is

k = round

(
Vhigh − Vlow
2V ENClow

)
, (3.3)

where `Vhigh/low' are the measured velocities. Applying the wraps to make the

reconstructed velocity `V' is then

V = Vlow + 2V ENClowk . (3.4)

After the low VENC set is unwrapped, the high VENC set is discarded since

its comparative SNR is low provides a negligible bene�t if V ENClow <<

V ENChigh.

3.1.2.1 Dual Low VENC

A new method to phase unalias is also pursued. The motivation for collecting

two low VENC, each within a close VENC level to the other can bene�t

not only from the increase in gradient moment, but provide better averaging

capabilities as well. The theory behind the implementation of this method is

covered in this subsection.

A high and low VENC set are still required in order to resolve the level of

phase aliasing. The relative VENC are set to the following relation:
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Vmax =
1

1
V ENClow

− 1
V ENChigh

(3.5)

where `Vmax' is the expected maximum velocity to be measured within the �ow

system.

The unaliased velocity is then the di�erence between the two measured

phases for each VENC, philow and phihigh for the low and high VENC re-

spectively. This di�erence is then multiplied by the e�ective VENC (Vmax) to

generate the velocity estimate (v̂) where

v̂ = (φlow − φhigh) ·
Vmax
π

(3.6)

The phase di�erence is somewhat counter intuitive, but φhigh is subtracted

from φlow since the low VENC set incurs the larger phase wraps of the two.

This subtraction is performed using a complex conjugate multiplication.

Since the high and low VENC are very similar in this case, the relative

contribution is nearly one to one yielding and added SNR bene�t of ∼
√

2 in

addition to the low gradient moment.

3.1.2.2 Composite Reconstruction

In order to mitigate the signal biased phase present in the low VENC set,

data from the high VENC set can be combined with low VENC data to form

a composite image (3). This composite is mostly comprised of the low VENC

measurements, and where signal loss is highest, the measurements are replaced

by a weighted average based on the level of signal loss. The composite velocity

is calculated as,

V = W1Vhigh +W2(Vlow + 2V ENClowk) (3.7)
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whereW1 andW2 are the relative matched weights based on the level of signal

loss.

3.2 Methods

The following subsections cover the experiments used to analyse each of the

proposed methods.

3.2.1 SPI Acquisition & Reconstruction

Undersampling the SPI trajectory can be performed in-plane or through-plane.

In a variable density SPI globe shown in �gure 3.1(c) the maximal under-

sampling occurs at the `equator', where the combined through-plane and in-

plane sampling is the thinnest. An undersampling factor of 4 in-plane and 4

through-plane yields a maximum undersampling factor approximately 16, at

the equator edge. Currently the in-plane and through-plane factors are made

equal, although it is unknown which direction is most e�ective at sustaining a

reduction while minimizing aliasing.

The undersample factor is currently dependent upon the sampling time.

Although it has been shown that lengthening the sampling time increases the

scan e�ciency, it also makes the scan more susceptible to �eld inhomogeneity

artifacts. Therefore the undersampling factor is set after the maximum allow-

able sampling duration is determined. The sampling duration typically used

is no longer than 7msec. This corresponds to a linear undersampled, in-plane,

spiral shown in �gure 3.1(a). This �gure shows that the spiral is critically

sampled from the center of k-space to a speci�c radius (in this case 28% of

1/resolution). Past the critical sampling radius, the sampling rate linearly

decreases (between spirals) at a rate of 4·resolution
FOV

.

After the sampling duration is determined, the undersampling factor is
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then determined by the desired resolution. If the total scan time is �xed, then

the resolution is increased at the cost of SNR and aliasing. If the resolution is

increased then the scan time is used to spread the sample density thin, reaching

further out into k-space. However, to make up for the resulting aliasing, point

spread function (PSF) is widened which has a blurring a�ect on the �nal image.

If the resolution is lowered, then the scan time can be used to �ll in more of

k-space within a smaller radius. This reduces aliasing, but may fail to capture

the signal of �ne detail such as smaller vessels.

The reconstruction of the high and low resolutions scans can be character-

ized by their respective transfer function. The magnitude transfer functions

(MTF) shown in �gure 3.2(c) and (f) are representations of the �lter applied

to each spiral plane. This weighting scheme is found using the sample density

compensation method found in references (9, 10). The high resolution MTF is

shaped like a low pass �lter, variably suppressing the contribution of aliased

high spatial frequencies in the �nal image. This variable �lter is matched with

the density of the trajectory used in 3.2(b) and so the support changes radially

from the center of acquired k-space.

The low resolution MTF, shown in �gure 3.2(f) is an all-pass �lter that

directly passes all sampled spatial frequencies because the density is within

the Nyquist limits. The collected matrix is fully supported and requires no

�ltering to lower the energy of spatial aliasing.

The generic MRI reconstruction pipeline has been automated using the

Python interpreted language as a backbone to the individual algorithms imple-

mented in C/C++, where algorithmic separability is implemented as parallel

computational procedures using the POSIX threading library. The base re-

construction method is gridding and phase array coil combination as proposed
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in references (20, 39, 40)

3.2.1.1 Data Conditioning

Separable gridding starts with 1D gridding of the samples along each indi-

vidual spiral arm in the arc length (or time) direction to maintain critical

sampling while averaging points in dense areas. The uniformly sampled arms

are then reconstructed with the original pipeline by 3D gridding and SDC.

Data thinning is accomplished by dropping samples that exceed the Nyquist

sampling rate, in arc length, along the spiral trajectory.

The noise properties of each method were determined through Monte-Carlo

simulation of multiple sets of Gaussian k-space noise data. The SPI parameters

used in the simulation were: 24cm FOV, 240 diameter matrix, 20 spiral leaves,

and 377 planes.

3.2.2 Dual VENC Velocity Encoding

3.2.2.1 Dual Low VENC

The Dual Low VENC simulations were run to ensure the method was robust

to changes in the relative phase relationship between the high and low VENC

measurements. Speci�cally, for changes due to phase bias caused by signal

averaging.

A one dimensional parabolic phase pro�le was simulated at a resolution of

4096 points, 2048 across the �ow lumen. In order to simulate signal averaging,

a low-pass k-space �lter was applied reducing the resolution to 409 points, 204

points across the lumen. The k-space matrix was left at the original length,

which e�ectively zero-padded the low resolution simulation by a factor of 10.

The simulated �ow was set to a maximum velocity of 5cm/s, 10cm/s and

20cm/s for a high and low VENC of 10cm/s and 8.89cm/s respectively. The
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high and low VENC combination was chosen to resolve up to an 80cm/s

maximum velocity (equation 3.5). The phase pro�les were combined with a

constant signal magnitude pro�le over the lumen and wall sections. All points

were reconstructed using equation 3.6.

3.3 Results & Discussion

The following subsections cover the experimental results and the viability of

each method as a component in the �nal rapid 3D PCMRA technique.

3.3.1 SPI Acquisition & Reconstruction

Figure 3.2 shows two sagittal PCMRA MIPs of (a) high acquisition resolution

(0.8mm) and (d) low acquisition resolution (1.3mm). The scans were both

6min in duration. The sample density correction kernel size was smaller for

the high res acquisition set than the low res acquisition set. The smaller

kernel size has the e�ect of blurring the resolution out to 1.3mm, while the

larger kernel size is �t to maintain the prescribed resolution of the low res

acquisition. Figure 3.2(a) shows more small vessel conspicuity than �gure (d)

even though the SNR appears is higher and the aliasing energy is lower in

(d). The low resolution scan also shows narrow vessels in some regions which

may be due to intra-voxel dephasing caused by high velocity gradients or more

signi�cant partial volume e�ect. Insu�cient suppression of the undersampled

high resolution k-space data is responsible for the di�use clouded look of the

high res image that contributes to a low SNR quality of the image and hides

many of the small vessels visible in the low res image.

3.3.1.1 Data Conditioning

Figure 3.3(a) shows the densities for each method along a line orthogonal to

the axis of plane rotation for the simulated fully sampled SPI sets. Both

36



a. d.

b. c. e. f.

FIG. 3.2: The e�ects of MTF modulation for two di�erent trajectory con�gu-
rations. (a) a reconstructed PCMRA from a high resolution scan with a high
level of undersampling (scan resolution of 0.8mm3 with a reconstructed reso-
lution of ∼ 1.3mm3). (b) the relative k-space coverage for the high resolution
scan. (c) a cross section of the MTF for high resolution reconstruction (low
pass �lter). (d) a reconstructed PCMRA from a low resolution data acquisition
(scan resolution of 1.3mm3). (e) the k-space coverage for the low resolution
scan (relative to the high resolution scan in in (b)). (f) the MTF for the low
resolution reconstruction.
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density, respectively.
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FIG. 3.4: Properties of 1D spiral arm gridding in SPI. (a) a Monte-Carlo sim-
ulation (20,000 points, 643 image volume with FOV = 24cm, 20 interleaves,
101 planes) showing the standard deviation of noise reproduced across the fre-
quency domain given an input noise of σk = 1, 000. In image space, 1D grid
noise is 0.06% greater than the original reconstruction and thinning noise is
0.5% greater. (b) the reconstruction times for each method were based on the
compute time of the SDC. The compute time scales with the square of the
sample density, and number of iterations.

the original sampling and separable gridding provide smooth MTFs which

minimize banding in the reconstructed image.

Figure 3.4(a) shows the results of a Monte-Carlo simulation. Separable

gridding reproduces noise to a level similar to the original reconstruction pro-

cess. Image space noise is increased by 0.06% with respect to the original

scheme (Figure 3.4(a)). Thinning increases the noise level by 0.5% and changes

the spectral noise pro�le. Figure 3.4(b) shows that for 1 iteration, 3D SDC

has shortest compute time with separable gridding, followed by data thinning,

which are both over 3 times faster than direct 3D SDC. The added compu-

tation of 1D gridding is ≈ 30sec on a single core of an Intel Quad Core Duo

3GHz, however, the method is scalable on a multi-CPU system. The sample

density generated by thinning causes discontinuities in sample density (Figure

3.3(a)) wherever the sample distance is not evenly divisible by the Nyquist

distance. This appears as concentric rings in the spiral plane shown in �gure
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3.3(c).

The artifact imparted by each of the proposed methods was determined

to be unreasonably conspicuous to be used in the PCMRA reconstruction.

While the tradeo� in reconstruction time is high, the relative SNR di�erence

is negligible. The data thinning method produces banding which appears as

radially distributed interference. The separable gridding method produces an

apodization in the �nal image that has yet to be determined. For these reasons

the direct SDC method was used for the �nal reconstruction.

3.3.2 Dual VENC Velocity Encoding

The signal loss has an added a�ect on the velocity encoded phase. In areas

where the spatial change in velocity is signi�cant, relative to the resolution,

the resulting measured phase will be biased by the signal lost to this high

velocity gradient. This gradient moment induced dephasing lowers the signal

in the immediate vicinity of of the high �ow gradient, which corrupts the

phase measurement by unevenly averaging velocities within the intra-voxel

distribution. The corresponding signal loss associate with these areas can

be mapped, as shown in �gure 3.5, by taking the di�erence, in magnitude,

between the encoded image and the reference image (non-encoded).

As shown in �gure 3.5, the losses due to dephasing are mitigated in the

high VENC image. This is due to the low moments used for higher VENC

imaging. Figure 3.5 also shows how these corrupted areas mostly occur in

vessels of high �ow which are adequately characterized in the high VENC

data. The unbiased information in these regions are used to correct the areas

that cannot be unaliased using equation 3.3. The new unaliased velocity is a

composite of the high and low VENC data using the method proposed in (3).
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High Loss

Low Loss

a. b.

FIG. 3.5: Signal loss maximum intensity projections for low VENC (a) and
high VENC (b) acquisitions. The high losses are colorized as red and low
losses are colorized as blue as shown in the spectrum on the right. The VENC
levels used are 20 cm

s
and 100 cm

s
for (a) and (b) respectively.

3.3.2.1 Composite Reconstruction

Figure 3.6 shows the added a�ect of using the signal loss information to make

a composite image. The high velocity gradients usually occur at the vessel

boundaries causing a discretized vessel edge due to erroneous unaliasing or

signal bias, shown in �gure 3.6(a). These edges are corrected at the cost of

VNR by preferentially weighting the high VENC data in these areas (�gure

3.6(b)).

3.3.2.2 Dual Low VENC

The drawback of this method is the sensitivity to signal biased phase present

in each of the measurements. The simulation shows that the method is highly

sensitive, even in high resolution cases that are well beyond practical bounds.

It can be seen from equation 3.5 that a small change in either of the VENC

result in a relatively large change in Vmax. This sensitivity is translated to

the reconstruction of φlow and φhigh. Additionally it is hypothesised that the
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FIG. 3.6: Sagittal maximum intensity projections of dual-VENC reconstruc-
tion (a) compared to composite dual-VENC reconstruction (b).

42



500 1000 1500 2000 2500 3000 3500 4000
−1

0

1

2

3

4

5

6
Reconstructed Velocity Profile

500 1000 1500 2000 2500 3000 3500 4000

0

2

4

6

8

10

12
Reconstructed Velocity Profile

500 1000 1500 2000 2500 3000 3500 4000
−5

0

5

10

15

20

Reconstructed Velocity Profile
Reconstructed Velocity Profile Reconstructed Velocity Profile Reconstructed Velocity Profile

a) b) c)points points points

ve
lo

ci
ty

 (
cm

/s
)

ve
lo

ci
ty

 (
cm

/s
)

ve
lo

ci
ty

 (
cm

/s
)

FIG. 3.7: 1D simulation pro�les of the dual-low-VENC method. The parabolic
pro�le apex is 5cm/s, 10cm/s, and 20cm/s for (a), (b) and (c) respectively.

method is mores sensitive to bias than noise, because of the high bias correla-

tion between the two measurements. Unlike the composite method presented

in subsection 3.1.2.2, this dual low VENC method cannot be as easily cor-

rected using signal loss information. These de�ciencies were the motivation

for continuing on with the dual-VENC method introduced in (3, 4).

3.4 Conclusion

Spiral projection imaging is demonstrated to be a suitable basis for rapid 3D

PCMRA. The variable density and high uniformity of undersampling minimize

coherent aliasing and allow large strides in scan time reduction.

MTF �ltering through modulation of the sample density calculation al-

lows for more e�cient data acquisition. It has been demonstrated that high

resolution k-space data can be acquired and �ltered to produce low spatial

aliasing and higher small vessel conspicuity. The SDC method is also highly

con�gurable allowing full advantage to be taken of lower resolution, less un-

dersampled data.

The dual-VENC method was shown to be robust to incoherent spatial

aliasing. The addition of signal based composite imaging proved to be an
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important component in the e�cacy of phase unaliasing in the presence of

high signal bias. The phase unaliasing errors increase as the VENC level is

lowered. The increased signal loss at low VENC is mitigated as the resolution

increases, despite the associated increase in incoherent spatial aliasing. This

relationship becomes trivial with compositing since the high VENC data set

produces negligible losses from either of these factors.
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4 PRETTY EASY PARALLEL IMAGING

Parallel image reconstruction methods synthesize data to replace undersam-

pled or non-sampled gaps in k-space. The SENSE parallel imaging algorithm

presented in (14, 28) is generalized for the reconstruction of non-cartesian k-

space trajectories through the use of a gridding/de-gridding step within the

iteration loop. In an e�ort to reduce the number of computations in each it-

eration, a method of masking k-space, called PEPI (5, 7, 41), was introduced

as a replacement for the gridding/de-gridding step. This work demonstrates

the relative quality and computation time in the reconstruction of a uniformly

undersampled 3D trajectory, FLORET (13), between the CG-SENSE and CG-

PEPI methods at two di�erent levels of undersampling.

4.1 Theory

Pretty easy parallel imaging (PEPI) was introduced as a 2D parallel imag-

ing reconstruction method in (23), as a simple alternative to the complicated

parallel imaging techniques available As introduced, the focus of the PEPI

technique is to simplify the gridding and degridding operations involved in the

data consistency segment of the iterative SENSE reconstruction (14). Previous

methods (7) have been proposed to replace these operations with a multipli-

cation through the introduction of a masking technique. PEPI introduces

additional theory to the mask generation technique which considers the sam-

pling density of newly generated points along with points sampled along the

imaging trajectory by making use of the extensible sample density correction

algorithm proposed in (8, 9, 42).

Computationally, the gridding and degridding require O(2 · 4
3
π(Lk/2)3 ·R3

m ·

N) number of operations, where Lk is the diameter of the convolution kernel,

Rm is the oversampling factor, and N is the number of trajectory points. The
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FIG. 4.1: PEPI reconstruction �ow diagrams. (a) the Fast Fourier Transform
based PEPI. (b) the convolution based PEPI.

factor of 2 corresponds to the grid and degrid pair. In contrast a multiplication

requires O(R3
m · 43π(M/2)3) whereM is the diameter of a cubic matrix. For 3D

SPI data set undersampled by a factor of 3, the number of grid points within

a sphere contained within a cubic matrix de�ned byM is approximately equal

to the number of sampled trajectory points N . This leaves reduction factors

in reconstruction time (for the data consistency segment) dependent on the

size of the grid kernel Lk.

PEPI is an iterative reconstruction algorithm that focusses on two princi-

ples: 1) data consistency and 2) coil consistency. The reconstruction pipeline

in �gure 4.1(a) shows a coil consistency segment that is multiplication based

using the speed of the FFT to e�ectively compute the convolution. Coil con-

sistency is enforced by the process highlighted on the top half of the �ow

diagram. Starting with the `Original Data' gridded and transformed (for each

coil) into image space, the data are then multiplied by the conjugate coil sen-

sitivity maps (`b1 Map Conjugate') to remove coil phase from the individual

images. The coil images are then summed to produce a single image volume

that is free of the coil sensitivity pro�le. The coil maps (`b1 Map') are then

multiplied by the single coil combined image to reproduce individual coil im-
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age volumes. This process has the e�ect of convolving, in k-space, the coil

support with the sampled k-space data, which extends data from the sampled

areas into non-sampled areas of k-space.

Data consistency is enforced by the process highlighted in the bottom half

of �gure 4.1(a). The new reproduced coils for the current iteration are Fourier

transformed in to k-space. The new extended data from the non-sampled re-

gions are kept by masking out the convolved data from the original sample

locations. Figure 4.2 shows the sampled spiral trajectory (a) and the trajec-

tory complement (b). The trajectory complement is used as the mask. After

the original sampled locations are cleared, the originally sampled data are rein-

serted into those locations. This process continues iteratively until the process

ceases to extend new, signi�cant, data into non-sampled regions (usually in

about ten iterations).

4.1.1 Convolution Based PEPI

The reconstruction pipeline in �gure 4.1(b) shows a convolution based coil

consistency segment that computes both data consistency and coil consistency

in the k-space domain directly. The coil sensitivity pro�les are converted into

k-space convolution kernels that are small enough to maintain computational

e�ciency without the need for FFTs. The advantage of staying in k-space, and

not transforming back and forth between domains, is the removal of Gibbs

ringing from the iterative system. Ringing is mitigated in the FFT-PEPI

method by increasing the grid size by a sampling factor Rm. Convolution-

PEPI requires no such increase e�ectively removing Rm and adding a Cartesian

convolution kernel to the computational complexity.

The coil sensitivity based convolution kernel starts with the same procedure
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as the b1 map generation outlined in (28). Image modulus is removed from

the coil sensitivity and the sensitivity pro�le is smoothed to minimize the

spectral extent required to characterize the pro�le in the k-space domain. The

smoothing of the pro�le is key to minimizing the kernel size, and thus, the

number of computations required in the convolution.

Additionally, the convolution is speed up by only choosing the principle

kernel components. This has a unique advantage in 3D, since the level of

coil support can be di�erent in each direction, the kernels can be made more

compact in directions with lower support by applying this prior knowledge

(43).

The current methods of generating the coil sensitivity based convolution

kernels fail to produce sizes that are computationally competitive with the

FFT-PEPI method variant. However, the convolution based PEPI method is

capable of achieving the same reduction factors as the FFT-PEPI counterpart

with a relatively large kernel extent. Kernel generation methods such as those

presented in (44) provide compact spectral support and may potentially be

adaptable to this method in the future. Since the current state of this method

variant does not provide gains in reduction factors over the FFT based method,

despite its potential advantages, it was not further explored in this work.

4.1.2 Mask Generation

The novel contribution of PEPI to this type of reconstruction technique is

in the generation of the trajectory complement. The complement is created

through the use of an iterative convolution style sampling density compensa-

tion technique (9, 10). The points of interest are not only the sampled locations

but the non-sampled locations that fall on the grid (the data to be synthesized
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a b

c

FIG. 4.2: The procedure for generating the MTF mask used in PEPI recon-
struction. (a) a sample density corrected SPI cross section. (b) the cross
section complement. (c) a close up of the density corrected SPI sample trajec-
tory and cartesian spaced PEPI synthesized data. The complement is density
corrected by considering sampled points on the trajectory (a) as well as points
that will be synthesized during iterative PEPI reconstruction, which lie o� of
the trajectory (c).
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in each PEPI iteration). The sampling density correction is calculated with

both sets since the �nal reconstructed set will contain both.

Figure 4.2(a) shows an example of a non-Cartesian 2D cross section of a

gridded 3D trajectory. The data consistency mask is essentially the comple-

ment of this gridded trajectory. However, the complement is generated by

�rst evaluating the sample density of both the trajectory and, prospectively,

the new data points to be synthesized by the parallel reconstruction process,

together. The synthesized points are those that fall on the Cartesian grid be-

tween the trajectories covered by the acquisition sequence as depicted in �gure

4.2(c). After the relative density of the combined set have been determined,

the Cartesian points are gridded separately, forming the mask in 4.2(b).

4.1.3 Conjugate Gradient PEPI

Some of the di�culties in tuning the iterative PEPI method is in �nding

the relative scale between each set. The sampling density correction used

to generate the initial condition, gridded originally sampled data, and the

mask. This scales each data volume by an amount based on its relative level

of undersampling. For this reason, and for the reductions in reconstruction

time, the conjugate gradient (CG) minimization technique implemented in

(7, 14), for non-Cartesian SENSE, was extended to PEPI.

The CG technique sends image residuals through the system over each

iteration. For this reason the mask generation method is slightly altered to

produce a complement of the non-CG mask. This is done after the combined

sample density is determined. The weighted trajectory points are gridded as

opposed to the Cartesian points, providing a mask that looks similar to 4.2(a).

An overview of the CG-PEPI method is compared to the CG-SENSE
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method in �gure 4.3. The boxes shaded in red and blue correspond to the

portion of the algorithm that is di�erent between the two SENSE and PEPI

methods respectively. The diagram shows that the PEPI method requires only

a multiplication in the data consistency portion of the loop where the SENSE

method employs a relatively expensive grid and degrid step. The diagram

also shows the initial preparation required for each method. For SENSE the

sampled data can be used directly. For PEPI the sampled data must �rst be

gridded, transformed, and deapodized. This loop may also be applied to the

convolution based PEPI, however, additional FFTs must be applied before and

after the CG logic.

4.2 Methods

This section covers the experiments performed for the FFT based PEPI method,

the CG-PEPI method and the comparison between CG-PEPI and CG-SENSE.

4.2.1 FFT Based PEPI

The FFT based PEPI method was performed using an SPI based imaging

technique (5, 11, 41). The central k-space was critically sampled in order to

generate the coil sensitivity map. Undersampling was performed angularly

by omitting planes. This produces undersampling in the axial plane where

most of the coil variation exists for the 8-channel head coil used. The scan

parameters used were as follows: FOV 24cm, 240 diameter matrix, 384 planes

(fully sampled), 75 spiral arms, TE/TR = 0.6/9.9ms, total scan time of 5

minutes (fully sampled). The fully sampled set was scanned on a GE 3 Tesla

Signa Excite System with a standard 8-channel head coil. Sub-sampling of the

full set was performed by removing planes creating reduction factors of 4, 8

and 12 corresponding to 96, 48 and 32 planes respectively.
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The reconstruction was performed using C coded algorithms with the

POSIX threading library, on an 8-CPU 3GHz Linux platform.

4.2.2 CG-PEPI Simulations

The reduction factor limits of the FFT-based CG-PEPI method were deter-

mined through simulation of 3D coil sensitivity weighed data.

The base simulation 3D image data consisted of a 3D Cartesian SPGR

scan of a GE resolution phantom. The scan produced a 1mm resolution image

volume, that was thresholded, providing sharp, high resolution spatial tran-

sitions with little noise. A quadrature head coil was used to collect the data

providing a single channel reconstructed data. The thresholding was also used

to remove any residual coil weighting from the synthesized image.

A ball phantom was scanned using a combined head and neck coil array

to acquire coil sensitivities without underlying image contrast. These coil

sensitivities were applied to the synthesized base image before data simulation.

A spherical crop, the size of the FOV, was applied to the base image before

simulation to ensure the image was fully contained within the FOV.

Each coil-image combination was used to synthesize data for various levels

of Cartesian undersampling using the direct Fourier transform. The three

dimensional Cartesian trajectories uniformly undersampled in the following

patters: 1) in x by a factor of 2, 2) in x by a factor of 2 and in z by a factor

of 1.5, and 3) in x and z by a factor of 2. Each set contained a supplemental

critically sampled region in the center of k-space to simulate the central region

of center-out trajectories. The radius of the centrally critically sampled region

is on tenth of the extent of k-space in each principle direction. The simulated

trajectories were created for a reconstruction matrix of 128 points in diameter.

53



4.2.3 CG-PEPI and CG-SENSE

The implemented 3D CG-PEPI and CG-SENSE methods were compared using

a 3D spiral sampling technique called FLORET (45). A fully sampled, 4 times

and 9 times undersampled neuro-imaging acquisitions were collected in-vivo

using a standard 8-channel head coil. Each trajectory was created for an FOV

of 24cm, 14.2msec sampling window and 240 diameter matrix. The R = 4 set

has a little over twice the number of sample points as the R = 9 set. Scans

were performed on a GE Signa Excite 3Tesla scanner.

Reconstruction benchmarks were performed using algorithms coded in C

and the POSIX threading library on a 12-CPU 2.6GHz Linux platform.

4.3 Results and Discussion

This section discusses the e�cacy of the PEPI parallel imagining method

through in-vivo and simulated experimental results. The �nal subsection com-

pares the PEPI method to a 3D implementation of the widely used SENSE

method proposed in (14).

4.3.1 FFT Based PEPI

Figure 4.4 shows an array of axial cross sections of 3D PEPI reconstructions.

The SPI imaging method was reconstructed using a basic root sum of squares

coil combination (top row) which is compared to the PEPI reconstruction

(bottom row). The RMS error shows the relative di�erence between each

cross section and a cross section of the fully sampled set labeled as truth. The

PEPI reconstruction signi�cantly reduces the level of aliasing with negligible

losses in resolution.

The reduction in aliasing is most noticeable in the sagittal cross sections

shown in �gure 4.5. The sagittal images show a signi�cant improvement in the
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cerebellar regions were the aliasing appears to be the most disruptive. Since

the images fall outside of the FOV, signal pileup occurs at the edges of the

FOV towards the base of the head. This pileup makes it di�cult to compare

the relative full volume aliasing reductions as it skews the error between the

fully sampled reconstruction.
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4.3.2 CG-PEPI Simulations

Figure 4.6 shows axial and sagittal cross sections of the simulated sets us-

ing CG-PEPI reconstructions. Reconstructions at 1 iteration are shown for

images (b), (c) and (d). Reconstructions that provided the minimum error

where chosen at the corresponding iteration in images (e), (f) and (g). The

high spatial frequency content generated by the sharp edges of the synthesized

base image pushed the reconstruction to the limits. Here the weakness of the

method are exploited for observation. The 1st iteration provides a sense of

how much aliasing is initially present. In each simulation, undersampling by

a factor of two in x provides a replicate image circularly shifted by half the

FOV in the axial cross sections shown to the right of each pair. Undersam-

pling in z provides more replications as shown in the sagittal cross section on

the left of each pair. While the reconstruction method is mostly successfully

at synthesizing k-space data for gaps in k-space that are spaced by integer

pixel amounts, fractional pixel amounts are reconstructed less e�ectively. The

middle set, where Rz = 1.5, shows reclaimed edge detail from the smoothed

appearance of the initial iteration. However, the residual aliasing energy is

still high. This is thought to be a consequence of the resolution of the data

consistency mask. While increasing the grid sampling (Rm) can potentially

alleviate this issue, it signi�cantly contributes to the number of reconstruction

computations. It is expected that for non-Cartesian trajectories, such as 3D

spirals, the reconstruction is more e�cacious in areas of k-space where the

trajectory spacing is closer to integer distances. For variable density spiral,

this is hypothesized to result in aliasing reductions grouped in bands of equal

radial distances.
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4.3.3 CG-PEPI and CG-SENSE

The columns in �gure 4.7 represent (from left to right) fully sampled coil com-

bined, SENSE, PEPI and RSS coil combined reconstructions for undersample

factors of 4 (top row) and 9 (bottom row). CG-PEPI shows a moderate reduc-

tion in the level of reconstructed aliasing while CG-SENSE yields the largest

reductions. Figure 4.7(e) shows a few variable density spiral-cones of the FLO-

RET trajectory around the kx axis. The FLORET trajectory is comprised of

spirals such as these coiled around kx, ky, and kz with varying densities to

supporting a sphere in k-space. The uniform undersampling of the FLORET

trajectory is thought to impede the some of the possible aliasing reductions

provided by PEPI because there are fewer opportunities for integer spacing

between trajectories.

The time per iteration for PEPI is 10 seconds for both R = 4 and R = 9

(each requiring 5 iterations). The time per SENSE iteration is 50 seconds for

R = 4 and 10 seconds for R = 9 (each requiring 15 iterations). The prep time

for PEPI is about 10 minutes for R = 4 versus 2 minutes for SENSE.

60



k z

k x e

Fully Sampled

R=4 R=9

a
b

c
d

g
h

f
k y

F
IG

.
4.
7:

P
ar
al
le
l
re
co
n
st
ru
ct
io
n
of

F
L
O
R
E
T
d
at
a
at

u
n
d
er
sa
m
p
le
fa
ct
or
s
of

4
an
d
9.

(a
)
a
fu
ll
y
sa
m
p
le
d
F
L
O
R
E
T

d
at
a
se
t
re
co
n
st
ru
ct
ed

u
si
n
g
R
M
S
co
il
co
m
b
in
at
io
n
.
T
h
e
re
m
ai
n
in
g
to
p
ro
w
is
F
L
O
R
E
T
u
n
d
er
sa
m
p
le
d
w
it
h
R

=
4;
th
e

b
ot
to
m

ro
w
is
u
n
d
er
sa
m
p
le
d
w
it
h
R

=
9.

Im
ag
es

(b
)
an
d
(f
)
w
er
e
re
co
n
st
ru
ct
ed

u
si
n
g
C
G
-S
E
N
S
E
,
(c
)
an
d
(g
)
w
it
h

C
G
-P
E
P
I,
an
d
(d
)
an
d
(h
)
w
it
h
ou
t
p
ar
al
le
l
im

ag
in
g.

A
sa
m
p
le
F
L
O
R
E
T
is
sh
ow

n
in

(e
).

61



4.4 Conclusion

CG-SENSE is practical, on multi-CPU platforms, and is the chosen method at

this junction for the continued exploration of rapid 3D PCMRA. PEPI has tra-

jectory independent, short, iteration time but may require extended prep time,

which is mostly spent on the calculation of sampling density. The increased

prep time and reduced iteration time potentially makes PEPI well suited for

dynamic reconstruction applications (2D dynamic PEPI, APPENDIX B).
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5 SAMPLE DENSITY CORRECTION

The reconstruction of non-Cartesian MRI trajectories requires estimation of

the non-uniform densities in sampled k-space prior to gridding or direct Fourier

transform reconstruction. Accurate density estimations are essential to faithful

image reconstruction. Problems that may hinder this estimation are those

that cause trajectories to cross non-uniformly or inconsistently. For some

trajectories, such as rosette (46) and lissajous (47), this is by design. For

retrospective correction techniques, such as motion compensation (11, 48),

gradient delay correction (49), and dynamic imaging (50), the trajectories

may be repositioned or temporally windowed such that the samples overlap

in an non-predetermined way. Density estimations that fail to take this into

account inherently incur error due to these e�ects.

Sample density calculations are often speci�c to a trajectory, exploiting

prior knowledge in order to minimize computation time. Previous work done

by Johnson et al. (9) presented a method that was shown to be faster and more

accurate, without any loss of generality, than several other methods, some of

which were trajectory speci�c (51�57). However, densely sampled areas of

k-space may still require a considerable computation time using Johnson's

method. Highly localized density is common in center-out trajectories such as

spiral or radial acquisitions. High central density can be further compounded

in 3D methods, where trajectories are not restricted to a single plane. Center-

out 3D trajectories emanate in all directions, appreciably oversampling the

center of k-space (12).

This chapter presents a method which combines the optimal kernel design

speci�ed in (9) with the iterative method presented in (58), yielding optimal

error suppression with a high computational e�ciency (8, 59). The method
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proposed in this work is compared to Johnson's implementation for both ac-

curacy and execution time, as well as two analytical methods. The methods

presented here also demonstrate the �exibility of the algorithm due to its

trajectory non-speci�city, the signi�cance of which is discussed for trajectory

design and compatibility with trajectory corrective techniques.

5.1 Theory

The proposed sample density estimation method is introduced in terms of its

application in gridding reconstruction, followed by descriptions of the con-

stituent methods previously proposed in (58) and (9). The design considera-

tions for the proposed method are discussed in the �nal section.

5.1.1 Gridding Reconstruction

Sample density estimates are commonly employed in the gridding reconstruc-

tion process as detailed in references (58) and (55). An Eq. representing the

gridding process can be de�ned as

MX = ((M · S ·W )⊗K) ·Xr)⊗−1 K . (5.1)

K-space dataM are sampled at trajectory points S and multiplied by a weight-

ing function (or a sample density compensation function (DCF)) W . Sample

points are convolved (⊗) onto the reconstruction grid Xr by the gridding

convolution kernel K. Deapodization is performed in the spatial domain and

is equivalent to the deconvolution (⊗−1) of the gridded points with the grid

kernel K. The resulting data are denoted by MX.

The weighting function W averages data that are oversampled to various

degrees throughout sampled k-space. Samples within areas of high density are

multiplied by lower weighting values while samples from areas of low density
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receive higher weight. The balanced weighting function ideally provides a

modulation transfer function (MTF) that is unity across sampled k-space.

5.1.2 Iterative Sample Density Estimation

As succinctly described in (32) the ideal weighting function is the solution to

S · (W ⊗ C) = S. The iterative method for conditioning W , detailed in (58),

is

Wi+1 =
Wi

Wi ⊗ C
. (5.2)

C is a convolution kernel that attenuates sharp transitions across the MTF.

Analogously, the spatial pro�le of C (i.e. the Fourier transform of C) modu-

lates the point spread function (PSF). For each iteration i, the current weight-

ing estimates Wi are conditioned through division by the modulated weights

(i.e. Wi ⊗ C).

The convolution in the denominator of Eq. 5.2 is a non-uniform convolution.

As Pipe has shown for 2D trajectories (58), this convolution can be evaluated

directly or through a two stage gridding process as in,

W ⊗ Cdirect ≈ (((W ⊗ Cgrid) ·X)⊗ Cgrid) · S . (5.3)

The two stage method, shown on the right hand side of Eq. 5.3, involves an

intermediate grid step using a temporary grid X (not to be confused with the

reconstruction grid Xr). As depicted in Fig. 5.1, the weighting function is

convolved twice, once onto the intermediate grid, and from there, back onto

the sample locations S.

The convolution kernels used in each method are labeled as Cdirect for the

`direct method' (i.e. the left hand side of Eq. 5.3) and Cgrid for the `grid
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Cgrid Cgrid

Step 1: Grid Step 2: De-Grid
W0 W−1

1

W−1
1 = I0 ⊗ Cgrid

Grid Method

W0

W−1
1

Cdirect

Direct Method

W ⊗ Cdirect

X X

I0 = (W0 ⊗ Cgrid) · X

FIG. 5.1: An illustration of how Eq. 5.3 is executed on the �rst iteration.
I represents an intermediate step, X the grid, W the weighting function,
and Cgrid the convolution kernel used in the grid method. For each iteration,
the weighting function is gridded using the convolution kernel and de-gridded
using the same kernel. In the �rst iteration W0 = 1. The de-gridded points
of W−1

1 are a measure of the density. The relative weights are determined by
W1 = 1/W−1

1 .

method' (i.e. the right hand side of Eq. 5.3). Since the grid method uses two

convolutions, the grid kernel is designed to have the same net e�ect as the

direct kernel (58); in the spatial domain this design requires

cgrid =
√
cdirect . (5.4)

Eq. 5.4 shows that the grid kernel can be designed in the spatial domain using

the Fourier convolution theorem, where cgrid and cdirect are the spatial domain

transforms of each respective kernel.

5.1.3 Direct Method Design

The direct method, as implemented by Johnson (9), employs both an optimal

convolution kernel design for conditioning the PSF and a method for reducing

the computational load of the non-uniform convolution.

66



5.1.3.1 Optimal Convolution Kernel

The optimal conditioning pro�le is constructed by convolving the region of

the signal source with the region over which error is to be minimized. Both

regions can be represented by the �eld of view (FOV), de�ned in this work as

ψ(~r) =





1, |~r| ≤ ζ/2

0, |~r| > ζ/2 .
(5.5)

In this case, ψ represents a parameterized spherical FOV bounded by a

diameter ζ in terms of the spatial radius ~r. ψ is both the region of signal

source and the region over which error should be minimized, therefore

Cdirect = F{ψ ⊗ ψ} (5.6)

where F{·} represents the Fourier transform.

5.1.3.2 Computational Optimization

As detailed in (9), the number of operations required to evaluate the non-

uniform convolution of Eq. 5.2 was signi�cantly reduced by presorting the

trajectory coordinates into compartments of equal size and space. The bound-

aries of each compartment are spaced by the diameter of the convolution ker-

nel. This ensures that the search for neighboring trajectory points during the

convolution is con�ned to the immediate and adjacent compartments only.

Consequently, the number of points that fall within a compartment is trajec-

tory dependent. The number of operations within a given region of k-space is

O(N2), where N is the number of points within the immediate and adjacent

compartments.
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5.1.4 Grid Method Design

This section covers the design considerations used in implementing the grid

method. The theory for an ideal grid kernel is discussed as an introduction to

the design parameters, then the limitations are covered in terms of a practical

implementation.

5.1.4.1 Ideal Grid Kernel

An optimal grid method kernel (Cgrid), of full spectral support, is designed for

a spherical FOV by generating Cdirect, outlined in the previous section, and

then applying Eq. 5.4. Figure 5.2(a) shows a plotted radius of the 3D kernel,

Cgrid. A radius of the corresponding spatial pro�le (cgrid) is plotted in Fig.

5.2(b). The width of the spatial pro�le is twice the diameter of the FOV as a

consequence of Eq. 5.6 (i.e. 2ζ).

The minimum grid resolution necessary to support an FOV of ζ is 1/ζ.

Resolutions higher than the minimum are denoted by a grid oversample factor

R. For example, in order to adequately support the spatial pro�le of the ideal

Cgrid kernel, the intermediate grid (X) must have a minimum resolution equal

to 1/(R · ζ) where R = 2.

Figure 5.3 illustrates that when the grid kernel is sampled by the grid in

the frequency domain, replicates are generated in the spatial domain. If the

grid is oversampled by a factor of R, then the center to center spacing between

the spatial pro�le and the replicated pro�les is R · ζ. In the case shown in Fig.

5.3(a), the kernel is fully supported and is therefore spatially bound between

|~r| = ζ. This example also shows that an R = 2 causes no aliasing overlap

between the conditioning pro�le and the replicate pro�le.
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a) b)

FIG. 5.2: The spatial and frequency domain pro�les of the proposed kernel.
The radius of the spherically symmetric kernel is plotted in the frequency
domain (a) and the spatial domain (b). The full spectral support (solid) is
compared to a truncated spectral support (dashed).

5.1.4.2 Approximate Grid Kernel

Realistically, the Cgrid kernel cannot be fully supported. The number of oper-

ations for a gridding convolution is proportional to O(L3
C · R3 ·N), where LC

is the kernel diameter and N is the total number of trajectory points. It

is, therefore, advantageous to minimize the kernel size in order to reduce the

computational time of each convolution.

Truncating Cgrid to leave only the main-lobe (Fig. 5.2(a), Cgrid, 0 Side-

lobes) causes ringing in the spatial domain that extends past |~r| = ζ (Fig.

5.2(b), cgrid, 0 Side-lobes). Figure 5.2(b) shows how most of the energy of

the spatial pro�le is still contained within a 1ζ radius. The corresponding

example illustrated in Fig. 5.3(b) shows that ringing which extends outside of

the boundary will alias back into the conditioning pro�le. Figure 5.3(c) and

(d) show the e�ect that these aliasing ripples have on the reconstructed image

at two di�erent levels of convergence for R = 1. Since the ringing diminishes

with |~r|, the amount of aliasing error is decreased with increasing R.

The convolution kernel may be designed analytically, as shown by Johnson,
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a)

c)

2ζ0 1ζ−1ζ
x

Spatial Domain
Full Kernel, R=2

b)

d)

x
2ζ0 1ζ−1ζ

Spatial Domain
Truncated Kernel, R=2

R=1
Iteration 1

R=1
Iteration 10

FIG. 5.3: Fully supported sampling of the ideal kernel (a) and aliasing of the
truncated kernel (b). The fully supported kernel provides a spatial pro�le
that is not aliased for R ≥ 2 (a). The truncated kernel pro�le produces a
spatial pro�le with Gibbs ringing (b). The ringing is not spatially bounded
and will therefore alias into the conditioning pro�le, as indicated by the arrow.
A cross section of a 3D reconstruction for insu�cient oversampling (R = 1,
Cgrid, 0 Side-lobes) after the �rst iteration (c), and tenth iteration (d). The
reconstruction grid of Eq. 5.1 was oversampled by a factor of 4.
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using continuous functions for Eq. 5.5 and 5.6, and then evaluated for each grid

point during the convolution of Eq. 5.2. The kernel implemented in this work

was generated numerically, starting with a discrete φ and using the FFT to

evaluate the Fourier transform. A kernel table containting a presampled radius

of 10,000 points was used to reduce the computation time of the convolution

operations in both the grid and direct method implementations used in this

work.

5.2 Simulations

Simulated data were used to characterize the grid method for the purposes

of determining the optimal grid oversample factor and for benchmark com-

parisons. The grid method is compared to the direct method in convergence

rate, computation time, and accuracy. The grid method is also compared

to two analytical methods in terms of accuracy. Options for various initial

conditions are presented followed by the parallelization strategy used in the

implementation of the grid method which is covered in the �nal section.

5.2.1 Data

5.2.1.1 Trajectories

Three 3D k-space trajectories were used to characterize any trajectory depen-

dence of the proposed sample density estimation method. Since the

proposed method is generic and makes no assumptions about the underlying

trajectory, it was applied with no speci�c or additional parameter adjustments

for each trajectory. Each sample point of the whole trajectory is evaluated for

each iteration of Eq. 5.2 without regard to symmetry or redundancy within the

trajectory. Initial conditions that take advantage of symmetry (58) within the

trajectory will be covered in a later section to show how they may be calcu-
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FIG. 5.4: Simulation elements. (a-i) component and fully assembled views of
the SPI, FLORET, and SoC trajectories. (j-l) mid level slices of the images
volumes used for each simulation.
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lated and used to increase the rate of convergence. The following trajectories

used in each simulation were designed to support a 1003 grid matrix.

The spiral projection imaging (SPI) method is a hybrid of spiral and pro-

jection trajectories (11). Fully sampled Archimedean spirals are spaced at even

angular distances on a 2D plane (or projection) as shown in Fig. 5.4(a). Mul-

tiple spiral planes are collected at even angular distances rotated about the kz

axis to sample 3D k-space (Fig. 5.4(b) and (c)). For this simulation, each 2D

projection is comprised of 11 spiral interleaves, each containing 1,370 sample

points. 157 projections were used to fully sample in the radial direction.

The FLORET trajectory consists of 3 hubs, oriented along the primary

axis, each containing multiple variable density spiral cones (Fig. 5.4(d)), ro-

tated by the golden angle (45). 3D k-space is fully sampled when 3 orthogonal

hubs are combined. Each of the 3 hubs were designed with 575 spiral cones

with each spiral containing 1,262 sample points.

The 3D stack of cones (SoC) trajectory used here was generated with the

code supplied by Gurney et al. from reference (60). Figure 5.4(h) shows a

stack of fully sampled spiral cones. Each cone contains a variable number of

spirals to evenly support the area of each cone. The total number of cones used

was 159 which supported a total of 1,498 spiral trajectories. Each trajectory

contained about 1,242 sample points.

5.2.1.2 Images

Three image volumes (Fig. 5.4(j-l)) were used to characterize the impact of

sampled data on the reconstruction error. Two of the image volumes used

were brain simulations, of T1 and T2 contrast, from the McGill University,

Brain Imaging Centre, http://www.bic.mni.mcgill.ca. The third is a T1
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weighted knee image from the ISMRM 2010 Reconstruction Challenge, `Piece

of the Puzzle' contest, http://www.ismrm.org/mri_unbound. In order to

ensure the error measured in each simulation was on the same relative scale,

the image energy of each volume was normalized to a value of 1003.

5.2.2 Optimal Grid Oversample Factor

The optimal oversampling factor was determined empirically by minimizing

the error of the density estimates and the computational time. Error in the

density estimates was calculated indirectly through the RMS di�erence be-

tween truth and the reconstructed images. The full volume RMSE was calcu-

lated for each reconstruction. Gridding reconstruction (61) was used instead

of the direct Fourier transform to minimize the simulation time.

The error convergence was characterized for R ranging between 1 to 4 in in-

crements of 0.1, over 100 iterations, for the 9 image-trajectory combinations.

The resulting data were analyzed for R dependent convergence rate and �-

nal accuracy. The results were also compared for inter-image and trajectory

variation.

5.2.3 Direct Method Comparison

The proposed grid method was compared to Johnson's implementation of the

direct method for both computation time and accuracy. This section covers

the design parameters speci�c to Johnson's implementation, the convergence

comparisons between the two methods, and the parameters used for the timing

benchmarks.

The number of compartments used in the direct method are based o� of

the level of kernel truncation (i.e. kernel diameter). The kernel diameter,

for a 0 side-lobed kernel used in the direct method, is approximately 1.43/ζ.
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Therefore, the number of compartments used for a 1003 supported matrix is

b100/1.43c3 = 328, 509. The 1 side-lobe kernel has a diameter of about 2.5/ζ

yielding 64, 000 compartments.

The convergence and �nal accuracy were characterized by acquiring the re-

construction error for each of 100 iterations for 4 parameter variations (2 each)

using gridding reconstruction. Both the grid and direct method were run for

each of the 9 image-trajectory combinations. The trade-o� between time and

accuracy was evaluated for each method by performing a more computationally

demanding setting for higher accuracy, and a less demanding setting, yielding

lower accuracy. The grid method was performed with oversample factors of

R = 2.1 and 3, using the truncated kernel (Cgrid) of 0 side-lobes (Fig. 5.2(a)).

The direct method was performed using a kernel (Cdirect) with 0 side-lobes and

with 1 side-lobe.

The total computation time depends on the rate of convergence (the num-

ber of iterations required) and the time per iteration. As previously discussed,

the computional time of the direct method depends on the variation of sample

density across k-space, where compartments may contain di�erent numbers of

samples. The grid method is linearly dependent on the number of samples

used in the whole trajectory, independent of local variations in density. The

computational dependence of the two methods was di�erentiated by measur-

ing the time per iteration on a series of SPI trajectories of variable density

with the same total number of trajectory points. The grid method was timed

using R = 2.1, for single and parallel execution, and R = 3 The direct method

was timed using kernels of 0 and 1 side-lobes.

The variable density SPI trajectories were generated for a 100 matrix, with

157 projections, using 11, 21, 31, 41, and 51 spiral interleaves per projection.
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The maximum slew rate was varied to maintain a relatively equal number of

sample points between each set. Benchmarks were made on an 8-core, 3.2 GHz

Intel CPU. The average durations over 25 successive executions of each method

were measured. To get a sense of the relative central density of each trajectory,

the sample density (as determined using the grid method) was reported for a

trajectory point positioned at k0.

5.2.4 Analytical DCF Comparison

The proposed method was compared to analytical density compensation func-

tions for the SPI and SoC trajectories. The T1 weighted brain simulation was

used to compare gridding reconstructions for each method. The analytical

density estimation presented by Gurney et al. (60) was used to calculate the

weighting for the SoC trajectory.

For SPI, the density of the spiral and projection aspects were respectively

calculated by employing the 2D spiral compensation presented in (51) and the

density compensation of a 2D projection imaging trajectory for the combined

expression,

WSPI = (~ks · ~gs) ·
√
k2
x + k2

y (5.7)

where ~ks and ~gs are the corresponding k-space and gradient waveforms for a 2D

spiral as shown in Fig. 5.4(a). The magnitude of the kx, ky vector represents

the 2D radial density as shown in Fig. 5.4(b).

5.2.5 Initial Conditions

The proposed method takes an initial condition which is by default W0 =

S. This default initial assumption is that all sample locations have equal

density. However, the convergence of the algorithm can be shortened if some
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prior knowledge of the density is supplied. This information can be obtained

analytically or by taking advantage of symmetry within the trajectory. The

following simulations explore several options for initial conditions to the grid

method, using the T1 weighted brain images as the basis.

The initial condition can be generated by the proposed method itself using

an oversample factor that shortens its execution time. This will be referred

to as `cascaded operation'. In the �rst stage, the grid method was run with

R = 1.5 for 15 iterations, second with R = 2 for 15 iterations and R = 2.1 for

the remaining iterations. The average iteration time was measured for each

stage of the cascade.

The SPI trajectory is an illustrative example of symmetry as it contains

the same 2D spiral trajectory in each projection. The grid method was run

on a single 2D spiral for 10 iterations with R = 1.5. The densities determined

for the 2D spirals were then multiplied by the radial density in the kx, ky

plane. The result was used as an initial condition for the grid method with

R = 2.1 for the remaining iterations. This method will be referred to as single

projection preconditioning. The average iteration time was measured for the

2D spiral stage.

An analytical approximation was also used as an initial condition for each

trajectory. Since each of the trajectories tested is a center-out trajectory, a

rough approximation of the density is that of a 3D projection trajectory, where

the weighting is proportional to the radius squared (50). This approximation,

de�ned asWPR = |k|2, was used with subsequent iterations of the grid method

performed with R = 2.1. Additionally, the analytical density compensation

functions presented in the previous section were used as initial conditions for

the SPI and SoC trajectories with subsequent iterations performed using R =
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2.1. The average iteration time for each con�guration was measured. The

convergence error was compared against the calculated average reconstruction

time at each time point.

5.2.6 Parallel Computation

The proposed sample density estimation algorithm was split into parallel pro-

cedures for both the gridding and degridding operations separately. This

implementation of the gridding process was designed for an 8-CPU platform.

The 3D grid is split into equal sized octants which overlap by an amount

equal to the radius of the convolution kernel, similar to the concepts proposed

in (62). The trajectory coordinates are then presorted once, at the beginning

of the method, so that trajectory points can be gridded to their respective oc-

tant, concurrently, with the neighboring octant gridding processes. Splitting

the grid through the origin, in this way, is particularly well suited for center

out trajectories, since the largest sample density (in the center of k-space) is

evenly divided across processes. The individual octants are then added to the

full 3D grid (an operation that is also split into multiple processes).

The degridding operation is more easily parallelized since the convolution

of each trajectory point is independent of neighboring points. The coordinate

points are evenly divided by the number of desired parallel processes. The

convolution at each point requires only read access to the 3D grid allowing

multiple simultaneous convolutions.

5.3 Results

The simulation results are presented for the determination of the optimal grid

oversample factor (R), benchmark comparisons between the grid and direct

methods, comparisons between the grid an analytical methods, and of the
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e�cacy of various initial conditions.

5.3.1 Grid Oversample Factor

This section reviews the accuracy of the grid method at the tested levels of R

followed by an assessment of how the accuracy of the grid method is a�ected

by di�erent image and trajectory combinations.

5.3.1.1 Accuracy and Convergence Properties

A few representative examples of how the oversample factor a�ects the con-

vergence were generated using the SPI trajectory and T1 brain image com-

bination. Figure 5.5(a) shows that the algorithm converges on solutions at

increasing levels of accuracy for increasing values of R. The relative di�erence

in error between the �nal solutions for each of the chosen R is about an order

of magnitude. However, for oversample factors of R = 1.5 and 2.1, the algo-

rithm converges to a solution with similar accuracy in the �rst 15 iterations.

This is particularly useful (as will be seen in the Initial Conditions section)

since the computation time is dependent on R3, as presented in the theory.

5.3.1.2 Trajectory and Image Variation

Figure 5.5(a) shows the �nal level of error for each of the 9 trajectory-image

combinations after 100 iterations for various levels of oversampling. As can

be seen in the plot, the accuracy of the �nal solution is most a�ected by the

chosen level of oversampling. The �nal solution for each level of R has the

same relative error for each of the 9 combinations (i.e. each plot has the same

relative shape). This shows that the DCF produced by the proposed method,

is minimally impacted by the input trajectory and, in turn, has a minimal

impact on the reconstruction (i.e. the MTF) of the sampled data.

The plot also shows that there is a local minima of reconstruction error
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a) b)

FIG. 5.5: Error convergence at various levels of oversampling. (a) insu�cient
R causes the algorithm to converge on a solution that is less than optimal. (b)
the �nal error after 100 iterations is plotted for various oversampling factors
R.

at R = 2.1. This local minima is maintained across image and trajectory

variations, making it a good choice for achieving near maximal accuracy with

the lowest number of operations. The next most e�ective oversample factor

occurs at R = 2.6 and continues to improve in accuracy as R is increased, with

diminishing returns.

5.3.2 Direct Method Comparison

5.3.2.1 Accuracy

The convergence rate for each image-trajectory combination was similar across

trajectories for both the direct and grid methods. To summarize the results for

each method, the reconstruction error was averaged over each image-trajectory

combination, shown in Fig. 5.6(a). The plot shows that the direct method

has a higher per-iteration convergence rate, however, each method and their

parameter variants all converge to solutions of comparable error.
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FIG. 5.6: The direct and grid method comparisons. (a) the average RMSE of
the 9 image-trajectory combinations is plotted against the iteration number
for each method. (b) per iteration computation time. The SPI trajectories
containing 11, 21, 31, 41, and 51 spiral interleaves per projection have rela-
tive central densities of 1, 1.8, 2.6, 3.1, and 3.6 respectively. Each trajectory
contains approximately the same total number of points.

5.3.2.2 Execution Time

The timing benchmarks in Fig. 5.6(b) are grouped in terms of the relative

central density of each test trajectory. The per-iteration time for the direct

method signi�cantly increases with the central density and kernel size. The

0 side-lobe kernel con�guration takes about 12 to over 85 times longer than

the parallel grid method from the low to high density trajectories respectively.

The 1 side-lobe kernel con�guration requires a computation time that is 2.8

times longer than the 0 side-lobe con�guration for the high density trajectory,

and 1.5 times longer for the low density trajectory.

The per-iteration time of each of the tested grid methods is constant across

trajectories. The parallelization reduces the computational time by a factor of

about 2.6 (compared using R = 2.1). The time reduction between R = 3 and

2.1 is about a factor of 2.7.
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5.3.3 Analytical DCF Comparison

The plot in Fig. 5.7(a) shows that grid method converges to a solution with

similar accuracy to the analytical DCF used for the SPI trajectory. The grid

method is also shown to converge on a solution with one tenth of the error

produced by the analytical DCF for the SoC trajectory. As seen in the recon-

structed images in Fig. 5.7(b), the error is mostly below the visual threshold

in each set except for a slight shading of the ventricles and basilar pons, in the

SoC reconstruction using the analytical DCF.
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5.3.4 Initial Conditions

The error convergence of the grid method (R = 2.1, parallel execution), with

T1 brain data, and each of the three trajectories were computed for various

initial conditions. Figure 5.8 shows the reconstruction error versus the total

computational time needed to achieve that error. The computational time was

calculated based on the measured average iteration time and the number of

iterations used to obtain each level of error.

Setting the initial condition to the analytical solutions that were speci�cally

designed for SoC and SPI provided the shortest convergence time. In the SoC

case, the �rst few iterations produce the most signi�cant reduction in error,

providing an optimal solution in less than 10 seconds. In the SPI case, the �rst

iteration produces a slight reduction of error (compared to the `SPI, Analytical

DCF' in Fig. 5.7(a)) and converges on a solution, equivalent to the original level

of error, and similar to that of the grid method without initial conditioning.

The next most signi�cant time reduction is SPI speci�c, and is achieved

by using the symmetry of the trajectory. The plot re�ects how the pre-

conditioning of a single 2D spiral takes about a tenth of a second per iter-

ation. A distinct drop in reconstruction error is visible in the �rst second of

the convergence, indicating the relative time spent on pre-conditioning. The

resulting DCF for a single spiral was then duplicated for the 157 projections

and multiplied by the radial density in the kx, ky plane.

The rough approximate analytical solution (WPR) and cascaded operation

both consistently make modest reductions in convergence time for each tra-

jectory.
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FIG. 5.8: The error convergence rate of various initial conditions for each
trajectory using the grid method.
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5.4 Discussion

The proposed method is shown to produce accurate density estimations across

various image and trajectory combinations. The method provides more con-

sistent results as compared to analytical methods and is shown to be less

computationally demanding than previous implementations. The e�cacy of

initial conditions are shown to be related to the level of information they pro-

vide. These points are discussed in the same order they appear in the results

section.

5.4.1 Grid Oversample Factor

Aliasing causes poor conditioning at low R, that builds (in error) over multiple

iterations. Figures 5.3(c) and (d) show the reconstructed result of poor

conditioning due to insu�cient oversampling. As shown in these images the

replicate FOVs overlap one another and contaminate the region of interest.

Analogously, within the density estimation algorithm, this aliasing error occurs

in the conditioning pro�le (|r| ≤ ζ) of cgrid, distributing error across the PSF.

Over each iteration (of Eq. 5.2), the aliasing error is thought to coherently or

incoherently compound, and in this case, create large side-lobes in the PSF

within a ζ radius. Figure 5.5(b) shows that each trajectory-image combination

converges to a local minima at R = 2.1. It is thought that, at this oversample

factor, the aliasing lobes incoherently add in such a way that is benign to the

iterative conditioning.

The kernel size, shape, and grid oversample factor can be designed to mini-

mize aliasing error and computational time of the �nal gridding reconstruction

stage (Eq. 5.1) . In work by Beatty et al. (61), the authors derived a rela-

tionship between a parameterized kernel model, the grid oversample factor,
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and resulting aliasing error. In that work, the kernel shape is variable and the

spatial pro�le is accounted for when the gridded data are deapodized in the

deconvolution step. In this work, the shape of the spatial pro�le is speci�cally

designed to condition the PSF and is �xed by the shape of the FOV. This

requirement signi�cantly limits the potential for further reduction of the ker-

nel size without placing more energy outside of the conditioning region (i.e.

|~r| > ζ), or changing the shape of the conditioning pro�le. For this reason,

the level of aliasing error was minimized through the optimization of R, rather

than the optimization of kernel shape.

A less obvious bene�t of dividing the convolution of Eq. 5.2 into two con-

volutions is the reduction in kernel size due to the square root operation per-

formed in Eq. 5.4. As shown in Fig. 5.2(a), the radius of the main lobe of

Cgrid is about 30% smaller than it is in Cdirect. This provides an intrinsically

compact kernel.

As discussed in (9), the minimum level of oversampling for the ideal con-

ditioning pro�le is R = 2. The truncated kernel used here requires a relatively

small increase in oversampling (i.e. R = 2.1) to achieve near optimal accu-

racy, as corroborated through the comparison to the direct method. Since the

direct method is void of aliasing (which is inherent in the grid method), the

comparison provides a measure of the level of relative aliasing error. Both

methods use truncated kernels and will therefore also incur conditioning error

due to their respective divergence from the ideal pro�le.

5.4.2 Direct Method Comparison

The direct method has a higher convergence rate, per iteration, than the grid

method. Figure 5.6(a), shows that direct method converges in about 30% fewer
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iterations on average over the 9 trajectory-image combinations. However, the

execution time is highly dependent on the sample density as shown in Fig.

5.6(b), taking as much as 85 times longer than the grid method for the 0 side-

lobe con�guration and the high density SPI trajectory. The computational

dependence on compartment size and sample density is also complex. As

noted in the results, the execution time for the 0 side-lobe con�guration, which

utilizes more compartments, approaches the time required by the 1 side-lobe

con�guration, as the trajectory density is increased.

5.4.3 Analytical DCF Comparison

As shown by the two examples of analytical density estimations, the optimal-

ity is comparatively unpredictable. The analytical weighting function for

SPI (Eq. 5.7) produces a solution with a comparable level of error to the grid

method, and the weighting for SoC produces a solution with ten times the

error. The common trait of the two analytical solutions is the residual image

contrast shown in the error distributions below each reconstructed image in

Fig. 5.7(b). This error is indicative of error in the sample density estimations

in the low spatial frequencies, toward the center of the MTF. For center-out

trajectories, such as those used here, the center of k-space is where density

changes rapidly and is therefore di�cult to analytically determine. The pro-

posed method doesn't make any assumptions about the density and is therefore

robust in these cases.

5.4.4 Initial Conditions & Convergence

Analytical solutions may not be easily calculated, nor work as e�ectively, if

the underlying trajectory is corrected for motion, gradient delays, or warped

to compensate for 1st order �eld inhomogeneity. In these situations, analytical
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solutions may still potentially be used as an initial condition to the proposed

sampled density estimation method.

The benchmarks for execution time show a time reduction between R = 3

and 2.1 is about a factor of 2.7; theoretically it is closer to 2.9 (i.e. 33/2.13),

however this shows that the implementation used has low level of unaccounted

overhead. This concept is also the motivation for the cascaded operation.

While the algorithm doesn't converge to the optimal accuracy when using an

insu�cient oversample factor, the algorithm e�ectively converges at the same

rate for a smaller number of iterations, at a reduced iteration time. This

con�guration may be applied with no a priori knowledge of the trajectory and

provides a modest reduction in overall execution time.

5.5 Conclusion

The proposed method was shown to signi�cantly reduce the number of compu-

tations necessary to estimate the sample density of arbitrary 3D trajectories as

compared to the method proposed in (9). The time reductions come at no cost

to generality or accuracy. The method is robust in areas of trajectory overlap,

where analytical methods tend to be inaccurate. No assumptions are made

about the underlying trajectory and therefore the method may be applied af-

ter trajectory corrective techniques such as motion correction, system delays,

or temporal �ltering used in dynamic imaging. The method is also simple and

can be e�ectively parallelized for processing on the latest multi-core computer

platforms in a straightforward manner.

5.6 Code Release

A C implementation of the proposed method is available online at the ISMRM

MRI-Unbound website: http://ismrm.org/mri_unbound. Wrappers (or gate-
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way functions) for both AVS (Advanced Visual Systems, Waltham, MA) and

MATLAB-MEX (The MathWorks Inc., Natick, MA) are also provided.
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6 MULTI-DIRECTIONAL HIGH MOMENT ENCODING

Phase contrast MRI is a motion encoding technique that is used to provide

quantitative velocity information of imaged spins. A component of the velocity

is encoded through the use of a bipolar gradient pulse. The pulse encodes a

phase in the image proportional to the gradient �rst moment and the compo-

nent of the velocity oriented in the direction of the gradient. Three orthogonal

components are typically measured to characterize the velocity in three dimen-

sions. Each velocity sensitive acquisition is subtracted by a velocity insensitive

acquisition (a reference set) to remove any baseline phase. The scan time rel-

ative to a non-velocity sensitive scan increases by a factor of the number of

velocity sensitive directions plus the reference scan.

Improvements in the signal quality of this data are made by collecting more

signal averages or higher moment encoding. Averages are collected sequentially

or more e�ciently by using a superposition technique such as Hadamard en-

coding or by encoding multiple directions (34). High moment encoded phase

contrast methods must solve a phase aliasing problem produced when encoding

a relatively high velocity. Solving phase aliasing on a per pixel basis typically

requires the use of additional velocity encoded data. As MRI scan techniques

have become increasingly more e�cient at acquiring data these high moment

techniques have become more viable (3, 4, 36). Speed improvements in data

acquisition methods such as parallel imaging (14, 23) and compressed sensing

(24) enable the acquisition of more encoding directions. Additionally, other

methods use neighboring pixel information and a priori knowledge of �ow

to overcome other measurement related incosistencies such as partial volume

(63�65), which is increasingly problematic as resolution is decreased.

This work analyzes a method of acquiring and reconstructing high moment
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encoded data to improve the SNR of phase contrast scans. Phase aliasing is

estimated by using the correlated velocity information inherent in the measure-

ments of nonorthogonal directions. The e�ect of the number of measurement

directions is explored with reference to the level of phase aliasing.

6.1 Theory

In phase contrast MR, velocity sensitivity is achieved by encoding the change

in gradient �rst moment ∆m1 with a pair of bipolar gradient pulses (16). Spins

that are moving during the application of the bipolar pulses are encoded with

a phase (φ) proportional to the gyromagnetic ratio (γ), the applied gradient

moment and the spin velocity (v).

φ = γ∆m1v (6.1)

Velocity encoding in any arbitrary direction requires at least two points of

reference in order to remove any baseline phase on a per pixel basis. This

is typically achieved by acquiring a non (or zero) moment encoded set as a

reference to the baseline phase.

Since the velocity is encoded as a phase, the range of values that are ex-

pressed fall between −π and π. This limit is commonly de�ned in terms of the

maximum expressible velocity magnitude (V ENC).

V ENC =
π

γ|∆m1 |
(6.2)

Velocity magnitudes that exceed the V ENC will result in ambiguous phase

measurements or `phase aliased' measurements. Phase aliased values are o�set

by an integer multiple of 2π. This corresponds to a velocity measurement that

is o�set by an integer multiple of 2V ENC. Each multiple of 2π or 2V ENC
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is referred to as a `phase wrap' or `wrap'.

The motivation for lowering the V ENC is described in the following equa-

tion from the work of Lee et al. (4). The noise (σv) in the velocity estimate is

proportional to the V ENC which is inversely proportional to the gradient mo-

ment (equation 6.2). As opposed to signal averaging which increases the SNR

with the square root of scan time, lowering the V ENC makes a proportional

increase in SNR.

σv ≈
√

2

π

V ENC

SNRMag

(6.3)

6.1.1 Unaliasing Phase

Lee et al. (4) have shown that phase aliasing can be unwrapped by using ad-

ditional velocity measurements collected at high V ENC where v < |V ENC|.

For example, a spin moving along the `x' direction with a velocity |vx| >

V ENC1 has a measured velocity ṽx,1. The measured velocity is unaliased us-

ing an additional measurement where |vx| < V ENC2. The estimated velocity

v̂x is

v̂x = ṽx,1 + 2V ENC1k (6.4)

and

k = N.I.

(
ṽx,2 − ṽx,1
2V ENC1

)
(6.5)

where k (the number of wraps) is the factor of 2V ENC that vx is aliased by and

N.I. is a function that returns the nearest integer wrap. Since the SNR of the

velocity estimate is inversely proportional to the V ENC, the acquisition using
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V ENC2 has a much lower SNR than the acquisition of V ENC1. The overall

gain in SNR is driven by choosing a V ENC1 to be several times lower than

V ENC2. The unaliased V ENC1 is used as the �nal data set. The V ENC2

set maybe combined in a weighted average with the unaliased V ENC1 set for

a slight gain in SNR. This is called the `three-point' method.

6.1.2 Proposed Method

In the proposed method, all velocity sensitive directions maintain the same

low V ENC. Measurement directions are oriented as orthogonal as possible.

Figure 6.1 shows an example of measurement orientations for six directions

representing the vertices of an icosahedron. The measurement vectors ui mea-

sure the component of the spin velocity parallel to each measurement direc-

tion. Since the vectors ui are not completely orthogonal, each measurement

contains some shared information with its neighbors. This information is used

to unwrap phase aliased measurements as follows.

In the absence of phase aliasing, the measured velocity components (ṽi)

are projections of the true velocity vector ~V where ~V = [Vx, Vy, Vz].

ṽi = ~V · ui + η (6.6)

η is the random noise in the measurement and ui is the unit vector in the

measurement direction (ie. [ui,x, ui,y, ui,z]).

If the measurement vector has the possibility of being phase aliased, the

velocity estimate (v̂i) is an integer number of wraps from the measured velocity,

that is

v̂i = ṽi + 2V ENCki, i = 0, 1, 2...N. (6.7)
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Where ki is the number of aliasing wraps for each ofN measurement directions.

The velocity estimates in each direction (v̂i) are also the projections of the

estimated velocity vector (~Vest) onto the measurement direction (ui), similar

to equation 6.6.

v̂ = ~Vest · ui (6.8)

If ~̂v is a vector containing the correct velocity estimates for all N directions

and u is the matrix containing all direction vectors, then the true velocity

vector ~V is estimated by multiplying ~̂v with u+, the Moore-Penrose pseudo

inverse of u.

~Vest = u+ · ~̂v (6.9)

The estimates are back projected onto the three primary axes.

The solution vector ~k (ie. [k1, k2...kN ]) is determined by forcing consistency

between the estimated solutions v̂1 to v̂N . The solutions are consistent if the

projected estimate of velocity ~Vest equals the measurement plus any additional

aliasing wraps. From equations 6.8 and 6.7, the correct solution

~Vest · ui = ṽi + 2V ENCki . (6.10)

6.1.2.1 Velocity Encoding in 2D

For illustrative purposes a 2D example of the solution space for two measure-

ment directions is shown in �gure 6.2. Figures 6.2(a, b) show how the solution

space moves relative to the measured velocity ṽ. When the correct velocity

estimate v̂ has a magnitude larger than V ENC, phase aliasing occurs which

pushes the correct answer to another position in the solution space (�gure

6.2(b)).
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FIG. 6.1: Orientations for six velocity sensitive directions that make the ver-
tices of a regular icosahedron. The white vertices represent the measured
directions and the black are the complements. Other measurement con�gura-
tions are determined by a charge repulsion algorithm (66).

The dotted lines in �gures 6.2 and 6.3 represent the solution at integer

multiples of phase aliasing in each measurement direction. Solutions with the

lowest consistency error reside in positions where there are more solution-line

intersections. If all solution lines intersect at a given point then equation 6.10

is satis�ed. Solutions where only a few lines intersect will not balance the

left hand side and right hand side of equation 6.10 to various degrees. The

di�erence between the right and left hand side is a measure of the ~̂v consistency.

The consistency error (E) is a measure of the RMS proximity to the solution

intersections in units of displacement per unit time. The solution vector ~k is

found by minimizing the consistency error calculated using equation 6.11.

E =
N∑

i=1

(~Vest · ui − (ṽi + 2V ENCki))
2 (6.11)

Figure 6.3(a) shows a 2D example using three measurement directions po-

sitioned at equal angular distances. The greyed dot represents a solution of
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high consistency error with a solution vector, ~k = [1, 2, 0] The black dots rep-

resent two solutions with the same consistency error. Both the correct solution

(~k = [0, 0, 0]) and a neighboring solution (~k = [1, 0, 1]) are located at points

where all solution lines intersect.

In the 2D case, a unique solution is not found until four measurements are

collected. Figure 6.3(b) shows neighboring solutions that all have a consistency

error greater than zero and equal to each other along concentric rings. The

minimum error found within the �rst phase aliasing wrap (the inner circle) is

greater than the minimum error found if a second aliasing wrap were added to

the search (the outer circle). Adding phase wraps to the search allows more

degrees of freedom to be �tted which increases the noise sensitivity.

The maximum velocity that can be estimated depends on the number of

wraps allowed in the search space. The limit on the maximum speed, de�ned

in equation 6.12, can be adjusted through V ENC or the number of allowable

wraps which trade SNR or noise sensitivity respectively.

|V | ≤ (2|k|+ 1) · V ENC (6.12)

6.1.2.2 Velocity Encoding in 3D

The 3D solution space works similarly to the 2D solution space. Instead of

consistency error aligned in concentric level curves about the solution (2D),

errors of the same solution geometry fall into concentric spheres. Figure 6.4

shows the minimum consistency error found within a given radius (in terms of

velocity over V ENC ratio) in the solution space. If |ki| is less than or equal to

1, then the error threshold is relatively high for all velocity to V ENC ratios

less than ∼ 1.1 as opposed to velocity to V ENC ratios between 1.1 and 3.
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FIG. 6.2: A 2D example of the solution spaces for two measurement directions.
(a) the magnitude of ṽ and v̂ is 1, with ~k = [0, 0]. (b) the magnitude of v̂ is
2, however, the measured ṽ magnitude is ∼ 0.8 in the opposite direction, with
~k = [1, 1]. For (a) and (b) the solution space is |k| ≤ 1. Each possible solution
is represented by a black dot. The correct solution is circled. A 2V ENC
displacement in velocity is represented by dark grey arrows for positive k and
light grey for negative k wraps.
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FIG. 6.3: A 2D example of the solution space for 3 and 4 measurement di-
rections allowing for 2 wraps (ie. |ki| ≤ 2). (a) solutions of high consistency
error (grey dot) are found further away from intersecting phase lines. If the
number of measurement directions is inadequate there are multiple solutions
found where all phase lines intersect (ie. the black dots). (b) solutions with
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grey) circle marks the 2 wrap boundary.
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FIG. 6.4: Error sensitivity in terms of consistency error for 6 directions using
1, 2 and 3 wraps (ie. |k| ≤ 1, |k| ≤ 2 and |k| ≤ 3 respectively). The input
velocity and output error are normalized by V ENC. The input velocity noise
is zero. The maximum velocity that can be estimated is determined by the
number of allowable wraps as indicated by the arrows.

Similarly for 2 and 3 wraps where |ki| ≤ 2, 3, there are velocities at which the

reconstruction is more sensitive to noise.

The relative bene�ts and disadvantages of 6, 7, 8 and 9 measurement direc-

tions are explored in this work. The minimum number of measurement direc-

tions required to have a unique solution (barring any priori knowledge about

the measured velocity) in 3D is six. The orientations of the measurement di-

rections are found in the same way as they are for di�usion tensor scans. In

order to maximize the orthogonality of the measurement information the mea-

surement directions are oriented using a charge repulsion algorithm suggested

in (66) for N = 7, 8, 9. For six directions the most homogeneous distribution

corresponds to the vertices of a regular icosahedron.

For 2D and 3D, in the presence of noise, the solutions along concentric

boundaries do not stay consistent. The error sensitivity thresholds in �g-
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ure 6.4 hold relative to each other in the presence of noise and are used to

determine the more sensitive velocity to V ENC ratios. Measurement noise

translates to a shifting of the solution lines in the direction of the measurement

(perpendicular to the solution line). The consistency error of each solution is

therefore correlated to the error in all other solutions. Characterizing the noise

properties of this system is relegated to simulation due to the complexity.

6.2 Experiments

The following work characterizes the proposed method in terms of noise sen-

sitivity, sensitivity to signal loss (i.e. signal biased phase), and signal to noise

ratio. The method characteristics are analyzed with respect to the current

state of the art, dual-VENC method proposed in (3, 4). Each of the following

sections focusses on these characteristics through the speci�c areas of design

and limitation which are the noise sensitivity, voxel shape (signal bias sensi-

tivity), gradient moment directional con�guration (SNR), and reconstruction

(combined limitations).

6.2.1 Noise Sensitivity

The work presented in this section explores the noise sensitivity characteristics

of the proposed method through Monte-Carlo computer simulations (67). The

simulations are single point based and do not include signal weighted averaging

e�ects or dephasing. The speci�c methods and parameters are presented �rst,

followed by an analysis of the results.

6.2.1.1 Methods

The system response to noise was characterized through the use of Monte-

Carlo simulations. Individual pixel simulations were solved using equation 6.11

by brute force to eliminate any potential error attributed to a minimization
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technique. The input noise was added to each simulated measurement as

phase noise (35). This way, the correlated noise in each velocity measurement

is consistent with using the same reference (zero moment encoded set). Each

pixel simulation is also created with a random input velocity direction.

The velocity noise sensitivity was measured by �nding the ratio of the

number of incorrectly unwrapped pixels to the number of correctly unwrapped

pixels. The number of trials used for each input level of velocity noise (σv)

changed linearly from 107 to 105 over a range of σv/V ENC from 0 to 0.05 in

increments of 0.001. A line of best �t was used to project the lower bound

of the fraction of incorrectly unwrapped pixels. Then the range of σv/V ENC

was re�ned to the limits of each method where their fraction of incorrectly

unwrapped pixels lie between 10−3 and 10−6. The Monte-Carlo simulation

was then re-run over the new range with the same sliding scale of trials for

each point.

The simulations were performed with the proposed method for an N =

6, 7, 8, 9 and a |ki| ≤ 1 and the three-point method proposed in (4). The most

noise sensitive velocities were used for each simulation as determined by the

data shown in �gure 6.4 and similar data for N = 7, 8, 9 (data not shown).

The velocities for N = 6 at |k| ≤ 1, 2, 3 were |V | = 2, 4.5, 4.5 respectively.

The velocities for N = 7, 8, 9 for |k| ≤ 1 were |V | = 2.5. The high to low

V ENC ratio used in the three-point method was V ENC2/V ENC1 = 4. An

additionalN = 6 was run with a relative V ENC of 1.275 to determine whether

the noise threshold could be regained if the output SNR were matched to the

three-point method. Also an additional three-point method was run with a

relative V ENC of 0.785 to match the SNR of the N = 6 method at a V ENC

of 1 to characterize the drop in noise threshold. The sensitivity of multiple
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wraps was also determined for N = 6 at |k| ≤ 1, 2, 3.

The output SNR was measured by �nding the normalized RMS error

(σout/
σv

V ENC
) of the di�erence between the truth and the correctly unwrapped

velocity estimate. The relative SNR e�ciency is then the quotient of the SNR

over the square root of the relative acquisition time for each method. The num-

ber of Monte-Carlo at each input noise level was 105. Input noise (σv/V ENC)

was varied from 0 to 0.1 in increments of 0.01. Simulations were performed

with the proposed method for an N = 6, 7, 8, 9 and the three-point method

with a high to low V ENC ratio V ENC2/V ENC1 = 4.

For comparison against direct averaging a two-NEX method with a single

reference point was also simulated. The V ENC for this method is the same as

the high V ENC used in the three-point method which is V ENC2 = 4, since

each of these methods require at least one measurement in each direction that

is not phase aliased.

6.2.1.2 Results & Discussion

The input noise sensitivity for each method is plotted in �gure 6.5. To obtain

a pixel error rate no greater than one in one million the N = 6 set requires

a input noise (σθ) of no greater than 6.3◦. The threshold at the same error

rate for the three-point method is 9.36◦. Matching the SNR of the three-point

method for N = 6 and relative V ENC of 1.275, the error threshold is 8.1◦.

To match the SNR of the N = 6 with the three-point method using a relative

V ENC of 0.785, the error threshold is 7.2◦.

The thresholds for N = 7 and 9 are both about 1◦ lower than the thresholds

for even numbers of directions N = 6 and 8 respectively.

For N = 6, each additional increase in the number of wraps lowers the
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FIG. 6.5: The error sensitivity thresholds of 7 di�erent measurement direction
con�gurations versus input noise. The sensitivity is measured in fractions of
incorrectly reconstructed pixels. The input velocity noise is normalized by
V ENC.

error threshold bound by a half of a degree per wrap (data not shown).

The increase in SNR e�ciency of the proposed method at N = 6 is about

30% higher than the three-point method, as shown in table 6.1. Between

N = 6 and N = 7, 8, 9 the relative SNR e�ciency drops by an additional 4%

for each added measurement.

Both the proposed and three-point methods exhibit a hard noise sensitivity

Table 6.1: The normalized and e�ective SNR (time-normalized) using the
relative acquisition time for each method.

Method
Relative Relative Relative

SNR Time SNReff
2 NEX 1.00 7 1.00

3 point 2.81 7 2.81

6 dir 3.60 7 3.60

7 dir 3.69 8 3.45

8 dir 3.75 9 3.31

9 dir 3.83 10 3.21
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threshold, beyond which, each method will precipitously increase in producing

erroneous results. However, this region of noise sensitivity lies in an image

SNR that is relatively low for all the methods shown in �gure 6.5. The N = 7

method requires a high relative image SNR of at least 11 and the N = 8

method requires a low SNR of at least 4.

The N = 6 method is the most time e�cient method, of those simulated,

in terms of output SNR. This is true for any number of wraps since output

SNR is una�ected by the number of wraps in the search space. The three-point

method with a V ENC2/V ENC1 = 4 allows for 2 wraps to be detected. The

input noise sensitivity of the N = 6, |k| ≤ 2 method is increased compared the

aforementioned three-point point method by about 3.5◦. For these parameters

the minimum required image SNR increases by 3.5 over that of the three-point

method.

If the output SNR of both the three-point and N = 6 methods are set

equal, the N = 6 method will have increased noise sensitivity by at least 1◦

(for a wrap of 1). However, this will also reduce the relative moment required

by the N = 6 method which is expected to increase reconstruction robustness

in pixels with signal biased phase.

The SNR e�ciency diminishes as the number of measurements increase. At

eight measurements the SNR e�ciency is still ∼ 14% higher than the three-

point method and lowers the noise insensitivity by about 3.2◦. Measurements

made with N = 7, 9 show a higher noise sensitivity which is expected to be

related to the orientation of the measurement vectors. Increasing SNR may

be better (in terms of lowering noise sensitivity) if a second reference set were

collected instead of adding another direction to N = 6 or 8.

The brute force reconstruction time for N = 6 and |k| ≤ 1 takes 7 minutes
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and a |k| ≤ 2 takes 138 minutes for a volume of 5123 pixels on an 8-core

Intel Xeon 3.2GHz Mac Pro. The algorithm reconstructs on a per pixel basis

which allows straightforward parallelization of pixel volumes. Additionally

a smoothness criteria between neighboring ~k could be used to speed up the

reconstruction (by limiting the search space) and �lter out noise.

6.2.2 Optimal Voxel Shape

This section explores the optimization of the voxel shape in terms of minimiz-

ing phase bias through the modi�cation of the modulation transfer function

(MTF). The MTF has �xed limits based on the underlying scan trajectory.

This is means that the resolution cannot be extended beyond the k-space ex-

tent collected by the scan. In this case, k-space is spherically supported in 3D,

which means the base MTF is as well. The point spread function (PSF) (or

voxel shape) resulting from a spherical MTF is a radially symmetric sync-like

function, where a voxel value is the weighted combination of the spin den-

sity within the immediate vicinity and neighboring voxels that fall within the

side-lobes of the sinc pulse. The a�ect of such a PSF is manifested as Gibbs

ringing around image structures with sharp transitions. However, additional

windowing and tapering (i.e. low pass �ltering) can be applied to the MTF

to change the level of ringing. This is of particular interest in phase contrast

where the encoded velocity gradients cause signal loss in some voxels while

others straddle the boundary between �ow lumen and wall, encapsulating vol-

umes of di�ering signal levels and phase distributions (68). This section begins

by �rst identifying some physical limitations and then proceeds to corroborate

these observations with computer simulations of various MTF and �ow pro�le

combinations.
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FIG. 6.6: Intra-voxel phase induced signal loss. (a) a 90◦ linear phase distri-
bution across a voxel will cause 10% signal loss. (b) a 360◦ distribution causes
complete signal loss. (c) a 450◦ distribution causes a point of coherence, which
regains 20% of the signal, however, the average is now centered around zero,
causing a misleading estimate of velocity.

A fundamental limitation to recovering the average phase encapsulated

by a voxel is the level of signal available to adequately preserve the phase.

Intra-voxel phase distributions inherently lower the voxel signal due to phase

cancellation. A linearly distributed phase across a voxel will loose signal (S)

according to (16),

S =

∣∣∣∣sinc
(

∆θ

2

)∣∣∣∣ , (6.13)

where ∆θ is the relative minimum and maximum phase di�erence.

Figure 6.6 shows three distributions of linearly varying phase of 90◦, 360◦,

and 450◦each centered around an example average phase of 180◦. While the

signal loss in the 90◦distribution is only 10%, the remaining signal in the

360◦distribution is zero because all of the phase vectors cancel. An additional

90◦of phase will again increase the signal however, the average phase will then

be centered around zero yielding a type of phase aliasing that is unaccounted

for by the previously described unaliasing method. This e�ectively makes the

intra-voxel phase distribution limit less than 360◦.
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FIG. 6.7: Intra-voxel phase distribution model and limits. (a) a parabolic
model of a laminar �ow distribution. (b) level curves relating maximum ve-
locity to VENC ratio and resolution to the maximum phase contained in the
edge voxel.

In 1D, this limit can be easily calculated for a parabolic �ow model (�gure

6.7(a)),

θ = π
Vmax
V ENC

(1− r2) , (6.14)

where Vmax is the velocity at the parabolic apex, N is the number of divisions

across the lumen diameter,

N = 2rmax/∆r , (6.15)

rmax is the radius of the pro�le, and ∆r is the physical resolution. Combining

equations 6.14 and 6.15 yields the maximum phase distribution,

∆θmax =
Vmax

V ENC

(1− (1− 2/N)2)
, (6.16)

which occurs at the edges of the �ow lumen.

Setting equation 6.16 to a speci�c phase allows level curves to be drawn
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FIG. 6.8: Additive and subtractive signal biased phase. (a) a concave down
segment, with respect to the sign of the velocity, causes an increase in estimated
speed. (b) a concave up pro�le causes a decrease in estimated speed.

for various Vmax/V ENC ratio and resolution combinations, as shown in �gure

6.7(b). While this model is only 1 dimensional it yields an approximate limit on

the Vmax/V ENC ratio, and provides some intuition into the sensitivity of the

relationship between the ratio and resolution. As the resolution increases the

maximum intra-voxel distribution decreases rapidly, but not until a resolution

of 4 divisions over the lumen diameter is reached.

Signal bias occurs when partial volumes of di�ering signal and phase distri-

butions are contained within a single voxel. Figure 6.8(a) shows an intra-voxel

distribution similar to what would be found near the apex of a parabolic �ow

distribution. If the voxel is further subdivided (∆r) it is apparent that within

division ∆r,1 and ∆r,2 the phase distributions (∆θ,1, ∆θ,2) are not equal. In

this case ∆θ,2 has a smaller distribution and according to equation 6.13, will

loose less signal than ∆θ,1. The average phase within this voxel is a signal

weighted average based on the shape of the PSF and the spatial signal loss,
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FIG. 6.9: A 2D cross-section of a 3D laminar �ow model (a) and corresponding
MTF �lters (b) used in simulation. The pro�le of interest is a 1D cross-
section that spans the center of the 2D �ow pro�le in y. The 1D pro�le of the
spherically symmetric window functions is set to one of three levels.

therefore, the average phase within ∆r,2 will impart a larger contribution to

the voxel average than the average phase within ∆r,1. Since the average phase

in ∆r,2 is higher than ∆r,1, the absolute average phase (|θ|) for this voxel will

be in�ated, in comparison to the phase that the voxel is centered upon.

An example of a voxel encompassing �ow lumen and wall partial volumes is

shown in �gure 6.8(b). This is similar to the �rst example except that the wall

signal is based on the acquisition parameters and not on �ow velocity. The

encoded velocity in the wall volume is zero and therefore causes a negative

bias in the estimated absolute phase (|θ|).

6.2.2.1 Methods

In order to observe the combined e�ects of signal weighting and voxel shape, a

3D simulation was used to aid in identifying these characteristics. This section

covers the design parameters used in this simulation.

The simulation is that of laminar (parabolic) �ow through a 3D tube ori-

ented parallel to the direction of �ow along the z axis. Figure 6.9 shows a 2D

cross section of the 3D simulation volume. The �ow is a radially symmetric
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parabola using equation 6.14 where r =
√

(x2 + y2).

The parabolic phase pro�le is combined with a constant signal pro�le across

the �ow lumen and a constant signal pro�le across the wall volume that is a

variable percentage of the lumen signal. This is done at a sampling factor 10

times the chosen diameter of the lumen onto an isometric 3D data volume. The

complex data volume is then fourier transformed (via FFT) into k-space and

the MTF is �ltered by a spherically symmetric linear taper as shown in �gure

6.9(b). The �lter was set to three levels 100◦, 50◦and 0◦which corresponds

to no additional �lter, only the symmetric rectangle window that corresponds

to the acquisition MTF. A linear phase is added across the kx direction to

provide sub pixel shifts in the image. Since the MTF created by the acquisition

trajectory is spherically symmetric the 3D volume is shifted only along the x

axis to simulate partial volume e�ects. The matrix is then zero padded before

fourier transforming back.

A 1D pro�le, shown in red in �gure 6.9(a), of a mid level slice is searched

for the maximum signal bias. The original k-space simulation is kept so that

linear phases corresponding to one tenth of a pixel shift are successively added

and subsequent pro�les searched for the max of the maximum biases. This

search is used for each parameter con�guration, such as Vmax/V ENC ratio,

resolution, relative wall signal, and �lter.

6.2.2.2 Results & Discussion

The potential for minimizing bias by changing the voxel shape, through low

pass �ltering, is limited to a short range in resolution, velocity to VENC ratio,

and speci�c relative wall signal. The plot in �gure 6.10(a) shows that for

resolutions between 5 and 7, and a velocity to VENC ratio of 2, the bias may
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FIG. 6.10: The bias e�ects of voxel shape in terms of resolution and low pass
�ltering. (a) and (b) show max bias using �ltered and non-�ltered simulations
with a wall signal set to 20% of the �ow signal. (c) and (d) show �ltered and
non-�ltered simulations with a wall signal set to 50%. Each plot contains bias
curves at three di�erent levels of Vmax/V ENC ratios indicated as v/V . The
data used in these sets were zero-padded by a factor of 2 in all 3 directions.
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be moderately mitigated as compared to the non-�ltered case (�gure 6.10(b)).

Filtering is shown to increase bias at the advantage of reducing the amount

of Gibbs ringing (69). However, �ltering also signi�cantly raises the bias for

resolutions below 5 pixels for a velocity to VENC ratio of 2.

The pro�les in �gures 6.10(c) and (d) have an elevated relative wall signal

compared to (a) and (b). An increase in wall signal appears to increase bias

in low resolutions (< 6 divisions per diameter) and decreases bias in high

resolutions (> 8 divisions per diameter). This is an expected result considering

the mechanics illustrated in �gure 6.8. low res At low resolution the ringing

is higher, due to reduced spatial frequencies and higher signal losses (which

works to square the high and low edges of the pro�le). If the wall signal is

lowered, then the bias due to partial volume is lower. The edges of the pro�le

are not as sharp as a result, which also leads to less ringing. The less wall

signal there is, the lower the amount of signal bias due to partial volume,

and Gibbs ringing becomes the dominant biasing factor. As the wall signal is

increased the ringing is decreased and the signal bias is increased. high res At

high resolution the pro�le retains its shape. There is less signal loss because

the edge voxels do not span large phase distributions. There is less signal bias

because the edge voxels do not cover as much partial volume. These factors

allow the pro�le to remain smooth, which reduces ringing.

For high spatial resolutions, �ltering does not appear to be advantageous.

The average max bias for a non-�ltered, 20% relative wall signal, is shown as

〈Max(θbias)〉 in �gures 6.10 (b). Translating this measurement to �gure 6.10(a)

shows that although �ltering equalizes the maximum bias between neighboring

resolutions (between 10 to 14), it increases the average maximum bias to the

max maximum bias.
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a) b)

FIG. 6.11: 3D simulated pro�le cross sections. (a) a 1D cross section of a 3D
phase pro�le both �ltered and analytically calculated (truth). (b) 1D cross
sections of the corresponding magnitude pro�les. The edge pixels span a 360◦

phase distribution. The pro�le is shifted by a sub-pixel amount causing higher
levels of bias on the lower left and upper right corners of the parabolic pro�le.
The areas of high bias in (a) are demarcated by corresponding areas of high
signal loss shown in (b). The data used in these sets were zero-padded by a
factor of 4 in all 3 directions.

The signal mechanics presented in �gures 6.6, 6.7 and 6.8, are exempli�ed

in simulation using the limits presented in �gure 6.7.

Figure 6.11 shows a pro�le with traits characteristic of the signal bias as

seen in-vivo. For a relative wall signal of 20% and a resolution of 2 divisions

across the lumen diameter, the signal loss, partial volume, and Gibbs ringing

transforms the parabolic pro�le to a lower resolution square pro�le. The pro�le

was zero-padded, in 3D, to a factor of 4 to accentuate these features.

The pro�les show how signal bias and Gibbs ringing positively in�uence

each other. At the base of the pro�le, the signal bias subtracts from the phase

value bringing the value closer to the phase value of the wall. While the limit

of this e�ect would result in an estimated edge voxel value equal to the wall

value (i.e. zero), the edge voxel has a phase of −50◦. The extra subtracted

phase is due to ringing. Similarly for the top of the pro�le, the limit of the
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FIG. 6.12: Level curves of maximum bias in the 3D simulated pro�les. The
Vmax/V ENC resolution is 1/10 versus integer numbers of divisions per lumen
diameter. The stair stepped patter is due to the integer pixel resolution used
to minimize the search. The relative wall signal is 20% of the lumen signal.

bias on the edge pixel would be the value of its neighboring pixel (closer to the

apex), however it extends higher because Gibbs ringing is additive to o�set

the negative lobe at the lower edge. The shift in the pro�le pronounces this

a�ect in both the top right and bottom left edges. This is because the shift

focusses the signal drop to be partially volumed with either high average phase

distributions or low average phase distributions respectively.

The signal loss pro�le (�gure 6.11(b)) shows that there is high loss across

the simulated �ow region. The highest losses are concomitant with the largest

phase biases, which appear at the edges.

Figure 6.12 shows the relationship between the velocity to VENC ratio

and the resolution in terms of maximum signal bias using a non-�ltered MTF.

This shows that velocity unaliasing techniques that extend past one wrap (i.e.

|k| > 1) must be robust toward potentially high levels of bias if the resolution is

relatively low. This further advocates the idea of signal loss based replacement

strategies (3), for techniques a that operate in the low resolution high velocity
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FIG. 6.13: An illustration of moment addition in balanced and semi-balanced
cases. (a) a single referenced velocity measurement (two measurements re-
quired). (b) two moment balanced measurements (two measurements re-
quired). (c) partially balanced measurements (three measurements required).

regime. The bias cusps shown in the pro�le of �gure 6.11 also indicates that

full replacement may be necessary in areas of high bias such as these.

6.2.3 SNR Optimized Moment Balancing

This section provides background on the basic theory of moment balancing in

phase encoded imaging and how this e�ect bene�ts the proposed 6-direction

encoding scheme. Methods for the optimization of moment balancing in the

proposed 6-direction scheme are discussed and explored in the following sub-

sections.

Moment balancing is a method of e�ectively extending the gradient area of

the bipolar encoding preparatory pulses by making two separate measurements

of opposing polarity (34, 70). Figure 6.13(a) graphically depicts the moment

di�erence (∆M) between a velocity encoded measurement and a reference mea-

surement. This is the basic moment encoding technique which requires at least

two measurements, resulting in a noise reduction by a factor of
√

2 due to the

signal averaging of the two measurements (4, 35). This will be referred to as
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a `referenced measurement'. Figure 6.13(b) shows the e�ective di�erence in

moment if two measurements are made with opposing bipolar gradient areas.

In this case, where the moments are directly opposing each other, a reference

measurement is not necessary, however if on is provided, then its noise contri-

bution cancels when the two referenced phases are subtracted from one another

(70). The total moment is extended by a factor of two, with signal averaging

the VNR is twice that of the single referenced measurement. Figure 6.13(c)

is a hybrid of the two aforementioned cases and more closely exempli�es the

proposed method. The black arrows represent partially balanced moments. A

reference measurement is necessary to resolve the encoded phase for each mea-

surement, but the correlated noise is partially canceled by an amount relative

to the cosine of the angle θ. If the measurement direction indicated by the

grey arrow was used instead of its re�ected counterpart, there would be little

to no cancelation of the noise in the reference measurement used by both.

In the proposed method, the angular distance between each measurement

direction is maximized in order to maximize the level of independent informa-

tion provided by each measurement. A relative quanti�cation of independence

can be determined by �nding the condition number of the measurement direc-

tion matrix u (66). As detailed by Hasan et al., the optimal condition number

can be determined through the minimization of force on bound charged par-

ticles. If the measurement directions ui are considered charged, the relative

energy E to be minimized can be calculated as,

E =
2N∑

i=1

2N∑

f>i

1

||ui − uj||
(6.17)

where N is the number of measurement directions. Since the u matrix is �xed,
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the moments must be balanced for each principle direction, simultaneously.

Moment balancing in the proposed method is analogous to providing the

solution directions with the most measurement coverage. Similar to the ideas

presented in (34), there are areas of the measurement geometry that are less

supported, meaning the e�ective VENC in that direction is the highest. In this

case there are two aspects to optimize: 1) ensure the solution direction is well

covered by the measurements and 2) ensure the solution direction is centered

on the maximum amount of reference noise cancellation (�gure 6.13(c)).

6.2.3.1 Methods

This section covers the algorithms used to optimize measurement coverage and

moment balancing as well as the experiments used for validation.

Similar to equation 6.17, the distance between the solution vectors and the

measurement vectors must be minimized while maintaining the relationship

encoded in u by minimizing the net moment in each of the principle axes. The

net moment vector ~ΣM on each of the principle axes is the row-wise summation

of u calculated as,

~ΣM =
N∑

i=1

~ui . (6.18)

The minimization of the net moment can be calculated in a number ways

to optimize di�erent aspects of the solution. Here we explore the minimization

of the root (MRSS) sum of squares of the net x, y and z moments,

MRSS =
√

Σ2
M,x + Σ2

M,y + Σ2
M,z , (6.19)

where ΣM,{x,y,z} are the net x, y and z moments, and the max absolute net

gradient moment (Max(|ΣM |)). Each moment con�guration is added to the
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energy minimization of equation 6.17 as an additional cost function make the

solution,

Min

(
2N∑

i=1

2N∑

f>i

1

||ui − uj||
+ α ·MRSS

)
, (6.20)

or,

Min

(
2N∑

i=1

2N∑

f>i

1

||ui − uj||
+ α ·Max(|ΣM |)

)
, (6.21)

where α determines the amount of `�exing' a measurement is allowed, which

will be discussed later. Forcing the net moment to zero ensures that the

gradient area in each direction on the solution axis is balanced, automating

the trade-o� between projected moment and reference noise cancellation.

As previously discussed, the u measurement matrix has �xed angular dis-

tances between each measurement. The component that is not �xed is the

measurement sign. The sign of each measurement must be set to maximize

the moment balancing and the ability to adequately cover each solution direc-

tion. For 6 directions, the number of sign combinations is 64 (26). Starting

the minimization of equation 6.20 or 6.21 with a particular sign pattern will

allow the optimal con�guration to emerge in fewer iterations.

Table 6.2 shows two solutions (one for each equation 6.20 and 6.21) and an

unbalanced moment encoding matrix. The unbalanced moment set is chosen to

group all the measurements in one direction (as shown in �gure 6.14(a)). The

moments are hand selected by choosing vertices of an icosahedron directly

(66). In this case the net moment is perfectly balanced in x and becomes

increasingly unbalanced for y and z. The net moment resulting from equation

6.21 is fairly balanced between each principle axis. The cost function forces
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Table 6.2: Measurement direction matrices (u) and moment sums for each
principle direction. Each row represents an ordered triplet corresponding to
the measurement direction. The x, y and z components also represent the
relative gradient moments used in each of the physical gradient directions.

Unbalanced1,2 ∼Balanced Min(RSS)
x y z x y z x y z
0 1/α θ/α 0.641 −0.393 −0.659 0.916 −0.019 −0.400

1/α θ/α 0 −0.406 0.881 0.241 0.194 0.694 −0.693
θ/α 0 1/α −0.587 −0.643 −0.490 −0.595 −0.761 −0.256

0 −1/α θ/α −0.207 0.146 0.967 0.437 −0.891 −0.121
−1/α θ/α 0 0.318 0.795 −0.516 −0.797 0.212 −0.565
−θ/α 0 1/α 0.966 0.007 −0.257 −0.030 0.313 0.949

Relative moment sum for x, y, and z columns (|
∑
γ∆M | ).

0 1.701 2.753 0.724 0.7931 0.603 0.124 0.450 1.087
1 θ = 1 +

√
5/2

2 α =
√

1 + (1 +
√

5/2)2

Unbalanced ~Balanced Min(RSS)

a) b) c)

FIG. 6.14: Moment balanced measurement vector con�gurations. (a) the un-
balanced con�guration uses two physical gradients per projection. (b) the
nearly balanced gradient moments has an equal net moment in each principle
direction. (c) the minimum root sum of squared moments provides asymmetric
moments in each principle direction.
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the maximum moment down causing each of the net moments to balance.

The choice of α was empirically determined to be 0.1 and corresponds to a

maximum deviation of 1◦ from the original u matrix. The resulting moments

from minimizing equation 6.20 are not equally balanced, however, they are

signi�cantly lower than those of the unbalanced set.

The moment sets calculated in table 6.2 were used in phantom experiments

to determine optimality and demonstrate the characteristics of each method.

A �ow phantom and pump combination were used to simulate laminar

�ow conditions for each acquisition. The phantom used in these experiments

consisted of a polymide tube 10cm in length, 10mm in diameter and approx-

imately a 0.1mm thick wall. The pump used was a Compu-Flow 1000 MR,

from Shelly Medical Imaging Technologies, London, Ontario. A 60% glycerine

and water mix (by volume) was pumped through the phantom at a rate of

5mL/s to create a parabolic �ow peak velocity of approximately 35cm/s. The

�ow direction was aligned with the main magnetic �eld (B0), which is in the

direction of the z axis gradient moment. The scanning platform used was a

3Tesla General Electric Signa Excite Twin Speed MR scanner. The phase noise

was measured in each experiemnt at the same position within the glycerine

bath area (71).

Acquisitions of each of the gradient moment con�gurations and the dual-

VENC method were scanned using a VENC of 20cm/s, 40cm/s, 60cm/s and

80cm/s. Image reconstructions for the dual-VENC set were conducted using a

high-VENC 80cm/s acquisition. The proposed 6-direction method was recon-

structed three ways: 1) using no phase unaliasing algorithm, 2) using phase

unaliasing, and 3) velocity thresholded phase unaliasing with Vmax = 35cm/s.

The imaging scan used was a basic 3D stack of spirals with slab selective RF.
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Each TR acquired a single Archimedean spiral (72). The same spiral was col-

lected 7 times, one for each moment encoded direction including a reference

set, before moving to the next spiral trajectory. The scan parameters were

as follows: 12 z-phase encodes, 33 spiral interleaves per plane, TR = 16ms,

TE = 5.5ms, and a �ip angle of 15◦. The receive gain and linear shim were held

constant over all acquisitions. The receive coil used was a standard quadrature

head coil.

6.2.3.2 Results & Discussion

The following section covers the results of the proposed phantom experiments

and provides a small discussion about each of the �ndings.

Noise measurements from the �ow phantom experiments are plotted in

�gure 6.15. Plots from sub-�gures 6.15(a) to (d) show the noise measured in

each solution direction (x, y and z). The 6-direction plots include the average

noise of the 3-direction-referenced acquisitions as a black �t line to serve as

a reference for the relative noise produced in the dual-VENC method. In

comparison of the three moment con�gurations, the unbalanced shows the

largest distribution of noise in each solution while the semi-balanced method

produces the lowest average distribution.

The relative noise distributions within each solution also corresponds to the

relative net moment. As seen from table 6.2 the x, y, and z net moments for

the unbalanced con�guration are 0, 1.7 and 2.7. The x net moment is exactly

balanced and results in roughly a factor of 2 reduction of noise as compared

to the average 3-direction referenced set. The z moment of 2.7 produces the

highest amount of noise which is a little more than twice the noise in the x

solution. The y moment is almost half of the z moment and produces a noise
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3-dir x x y y z z in-plane res 
(mm)

z res (mm)

speed

avg. xyz noise

6-dir, mtx0

speed

6-dir, mtx1

speed

3-dir, #2

speed

6-dir, orig.

speed

6-dir, orig. 
scaled

speed

80 4.327 80 4.033 80 4.072 80 4.144 0.791187 1.0

60 2.496 60 3.043 60 2.577 60 2.7053333333

40 1.807 40 1.996 40 1.767 40 1.8566666667

20 1.129 20 1.233 20 1.107 20 1.1563333333

80 3.090 60 1.989 40 1.412 20 0.854

80 4.144

60 2.7053333333

40 1.8566666667

20 1.1563333333

80 1.988 80 2.145 80 2.218

60 1.532 60 1.468 60 1.466 gsum1 0.724

40 1.075 40 1.113 40 0.960 gsum2 0.793

20 0.727 20 0.676 20 0.727 gsum3 0.604

80 1.431 60 0.999 40 0.730 20 0.497 RSS 1.232

80 1.854 80 2.201 80 2.596

60 1.348 60 1.541 60 1.873 gsum1 0.125

40 1.107 40 1.207 40 1.288 gsum2 -0.451

20 0.584 20 0.637 20 0.755 gsum3 -1.087

80 1.154 60 0.826 40 0.589 20 0.392 RSS 1.183

80 3.747 80 3.693 80 3.841 80 3.7603333333

60 2.679 60 2.688 60 2.778 60 2.715

40 1.809 40 1.805 40 1.773 40 1.7956666667

20 1.189 20 1.070 20 1.209 20 1.156

80 1.610 60 1.160 40 0.812 20 0.476

80 1.887 80 2.860 80 4.076 80 2.941

60 1.508 60 2.176 60 3.149 60 2.2776666667

40 0.956 40 1.515 40 2.074 40 1.515

20 0.566 20 0.901 20 1.27 20 0.9123333333

80 60 40 20

1
80 1.887 80 2.86 80 4.076

60 1.508 60 2.176 60 3.149 gsum1 0

40 0.956 40 1.515 40 2.074 gsum2 1.701

20 0.566 20 0.901 20 1.27 gsum3 2.752

80 2.574 60 2.122 40 1.320 20 0.837

80 60 40 20

3.09 1.989 1.412 0.854

2.574 2.122 1.32 0.837

1.431 0.999 0.73 0.497

1.154 0.826 0.589 0.392
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FIG. 6.15: Measured noise produced in various moment balancing strategies.
(a) the output noise for a 3-direction Dual-VENC acquisition at several VENC
levels. (b) unbalanced, minimum gradient, 6-direction acquisition. (c) nearly
balanced even moment distribution across the 3 principle axes. (d) minimum
RSS moment balancing. (e) noise measured in the speed image.
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that is also roughly half the noise in the z solution.

The semi-balanced moment con�guration shows the best overall perfor-

mance with noise reductions of about 2 compared to the referenced measure-

ments, in each solution. This is particularly interesting as a comparison to

the dual-VENC method. Assuming the high-VENC is much larger than the

low-VENC in the dual-VENC setup, the high-VENC will contribute a negli-

gible amount of signal to the solution, the dual-VENC solution will produce

the same level of noise as the referenced set plotted in �gure 6.15(a). This

assumption is appropriate for a high �ow distribution where the high to low

VENC ratio is high enough to unalias phase. The achievable gain in VNR

made by the proposed method, in comparison, is as high as a factor of 2. The

gain is also limited to a factor of 2. In event that the VENC is greater than

the maximum �ow velocity (i.e. there is no phase aliasing), the measurement

vectors can be placed in perfectly moment balanced pairs on each solution axis

(�gure 6.13(b)). As shown in (70), this results in maximal cancellation of the

reference noise and maximal moment addition.

The `�exing' of the measurement directions as a result of choosing an α

greater than zero in equations 6.20 and 6.21, appears to be inconsequential

in the improvement of SNR. As �gure 6.15(b) shows the x solution achieved

a maximal noise reduction without the need for changing the relative phase

angles between measurements. Comparing the net moments between the un-

balanced and semi-balanced methods it can be deduced that the level of noise

in each solution a�ects the level of noise in all solutions. It is hypothesized that

the unbalanced method sacri�ces the potential noise reducing contribution of

the y and z solutions to perfectly balance x, resulting in the maximum noise

reduction. While the semi-balanced con�guration o�ers relatively high net
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moments, they are almost equal, producing higher distributed noise reduction

characteristics.

Measuring the noise in the speed images yielded some insight as to the

de�nition of optimality. As shown in 6.15(e) the unbalanced method makes

a marginal reduction in maximum solution noise but is hindered by the high

level of noise in the y and z solutions. The RSS net moment solution is shown

to have slightly lower noise than the semi-balanced method. Since the speed

noise is more Rician due to the square operation in its calculation, its di�cult

to determine by these means whether the RSS set is higher in quality.

Mid level slices of the reconstructed �ow phantom experiments are shown

in �gure 6.16. The Dual VENC reconstruction was omitted between VENC

of 80cm/s to 40cm/s since they were equivalent to the single direction refer-

enced reconstruction. The relative noise level between the single referenced

direction and the proposed method is visibly apparent. This �gure displays

only the semi-balanced moment con�guration of the proposed method, so the

relative noise level is between the two methods is a factor of 2. As quanti�ed

in �gure 6.15(c), the velocity noise to VENC ratio (as measured by the pro-

posed method) is about 0.05. The noise sensitivity threshold estimated in the

previous section (�gure 6.5) shows that this level of noise should result in un-

wrapping errors of roughly 1 in every 1,000 pixels for any of the chosen VENC.

This corresponds to roughly 10 erroneously unwrapped pixels over the shown

1002 image. The unaliased reconstructions in the second to last row of �gure

6.16 show 1 to 2 incorrectly reconstructed pixels in the 60cm/s and 80cm/s

images respectively. The 20cm/s reconstruction shows 11. This suggests that

the estimated noise threshold is accurate and that it may be further improved

upon by thresholding out solutions that exceed a maximum speed (as shown
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FIG. 6.16: Flow phantom experiments comparing dual-VENC and 6-direction
reconstructions.
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in the bottom row).

The aliased reconstructions shown in the far right column of �gure 6.16

give some indication of the level of redundancy in the 6-direction method.

Compared to the aliased single direction referenced set on the top right, the

6-direction aliased set contains an average of the aliased directions (more par-

allel to the �ow direction) and more orthogonal projections of neighboring

measurements. This is more noticeable in the 1D cross section of the una-

liased reconstructions shown in �gure 6.17. The velocity pro�les match more

closely in areas of low dephasing, and become more disparate in areas of high

dephasing next to the lumen edge.

The sensitivity of the dual VENC method is independent in all three direc-

tions while the reconstruction of all three directions in the proposed method

are interdependent. This means that unwrap errors are caused in all solu-

tion directions. This is another reason why it is potentially more valuable to

distribute the net moment evenly.

The SNR gain a�orded through moment balancing allows the proposed

6-direction method to be acquired at half the gradient moment compared to

the dual-VENC method. As shown in the previous section, this can provide a

signi�cant reduction in the amount of phase bias (�gures 6.12 and 6.7(b)).

6.2.4 Constraints & Reconstruction

The previous sections have outlined the limitations of the proposed method

using the 6 direction moment con�guration. These limits have been demon-

strated using computer simulations and �ow phantom experiments. The work

presented in this section unites these concepts with real world limitations on

SNR and resolution using the rapid 3D SPI MR imaging technique. A neuro-
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FIG. 6.17: A 1D cross section of �ow for both 6-direction and dual-VENC
acquisitions at a 20cm/s VENC.

angiography exam will be the application used to demonstrate these real world

limitations. This section examines the error sensitivity in the proposed un-

aliasing algorithm and proposes constraints and reconstruction methods to

reduce the error in the �nal reconstructed image.

As shown in the previous sections, the signal bias phase can easily exceed

the phase noise in a high moment velocity encoded measurement.

As previously discussed, the bias can either add or subtract from the true

average intra-voxel phase distribution. Figure 6.18(a) is a digram of the so-

lution space for a 2D signal biased example. In 2D, four measurements are

required to resolve the phase aliasing. In this example the bias subtracts from

the average phase causing an underestimation of the velocity magnitude. The

correct solution lies at the point indicated by the red arrow (the example ve-

locity vector). Other solutions are indicated by a solid triangle shaded blue

for high error solutions and red for lower error solutions. As the bias increases
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FIG. 6.18: The sources of phase bias sensitivity in 2D low moment encod-
ing. (a) the measurement bias in one direction forces solutions �rst at the
boundaries of the solution space (red) and �nally to a solution of the oppo-
site direction (blue). (b) increasing the VENC of one of the measurements
increases stability by removing one of the red solutions and one of the blue
solutions.

129



the measurement that is parallel to the velocity vector will experience high

signal loss and will start to become underestimated. By following the blue

and magenta solution lines it can be seen that the underestimated velocity

causes the solution error to increase near the correct solution, and decrease

near other possible solutions. The �rst solutions to become more consistent

than the correct solution are shaded in red, which correspond to solutions that

are roughly twice the velocity magnitude of the correct solution. These areas

become comparable between losses of 25% to 50% phase bias. After a 50%

bias in phase (magenta line), which, in this case, corresponds to a 180◦phase

di�erence, the most consistent solution becomes the blue triangle on the lower

left, causing the estimated velocity magnitude to be half of the original in the

opposite direction. The low angular distance between the neighboring mea-

surements increases the threshold that the bias must overcome to make the

solution in the opposing direction (the lower blue triangle) more consistent .

The solution space is limited by the maximum number phase aliasing wraps

that are expected to occur. This solution space can be further constrained by

choosing a maximum velocity Vmax outside of which solutions are ignored.

The circle, centered at the origin (zero velocity), has a radius of 4 times the

VENC level. This radius bisects the low consistency error solutions marked

in red. A slight decrease in the radius will block out the red shaded solutions

completely, making system robust to higher levels of bias. In this case, since

only one wrap is allowed (|k| ≤ 1), the highest isotropic maximum speed

would be 3 ·V ENC. This would omit solutions that might occur in directions

that angularly bisect the measurement directions (where the e�ective moment

is lowest). Thresholding makes the algorithm more robust to both bias and

noise for the same reason. The maximum level of tolerable bias is lower in
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practice due to the addition of thermal noise.

In 3D using 6 directions, the sensitivity of a corresponding case, where

the high magnitude velocity vector is parallel to one of the measurement di-

rections, is higher between each measurement because the angle between is

larger. This lowers the level correlated information. However, there are more

neighboring measurements which increases the average level of information.

This is analogous to moment balanced presented in the previous section. This

is advantageous in 3D since the signal bias is stronger in measurements that

are closer to being parallel with the velocity vector.

As a result of equation 6.13, and the intra-voxel signal distribution (due the

level of partial volume), the neighboring measurements will not be biased by an

amount equal to the cosine of the angle between. Assuming a laminar model

and 3D spherical MTF, the relative levels of bias for each measurement can be

approximated using the plot in �gure 6.12. The e�ective VENC of neighboring

measurements are proportional to the cosine of the angle between. The bias

sensitivity is dependent on the measurement geometry, the solution velocity

threshold, velocity to VENC ratio, and resolution.

Proportional biasing between measurements is only true in a few cases, such

as the one for the 2D setup (�gure 6.18) where the measurement direction is ex-

actly parallel with the �ow, the neighboring measurements are symmetrically

distributed around the velocity vector, and the model, PSF and wall signal

are of that speci�ed for the data in �gure 6.12. The Vmax of a parabolic �ow

pro�le can be approximated using equation 6.14. The Vmax to VENC ratio

can then be used to estimate the bias in the parallel and neighboring measure-

ment directions using the level curves plotted in �gure 6.12. The solution to

the 2D problem is then consistent under all of these parameter assumptions, if
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the resolution is low enough to maintain the phase bias relationship between

a parallel Vmax/V ENC = 4 and an angled Vmax/V ENC = 4/cos(θ) ≈ 2.82.

This type of mutual bias coherence is more likely to occur if the measurements

are symmetric about the measured velocity vector (and in the more linear

Vmax/V ENC to resolution regime) since it increases the probability that the

maximum bias between each measurement is approximately proportional (�g-

ure 6.12).

In the dual-VENC method, assuming the high-VENC set is high enough

that the level of bias is negligible, the bias in the low-VENC set must exceed

180◦before an unaliasing error occurs. As shown in �gure 6.12 this varies based

on the velocity to VENC ratio and resolution. This relatively high threshold

makes the dual-VENC method robust to bias, because the solution (i.e. high-

VENC pro�le) is e�ectively known.

Since the proposed unaliasing method relies on correlated information to

resolve aliasing wraps (as opposed to the known solution provided by a high-

VENC set) the trade-o� is an increased sensitivity to measurement errors,

such as bias or noise. The relatively increased SNR of the proposed method

can be traded for a reduced error sensitivity my either reducing the gradient

moment in all directions, as previously suggested, or by reducing the moment

of individual measurement directions. Figure 6.18(b) shows how the solution

space is reduced by making one moment lower (shown as an increased VENC)

than the rest. One of the red and blue solutions has been removed because

the only valid solutions now must lie on the solution line parallel to the y axis.

Measurements that are corrupted by bias continue to be inconsistent with

phase estimates of neighboring pixels, even in the event that they are correctly

unaliased. This is because the bias itself is not estimated and corrected. Bias
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a) b)

c) d)

FIG. 6.19: Axial PCMRA reconstructions showing signal loss and consistency
error speci�city. (a) a reconstruction of the basilar artery that contains rough
edges where the solution is suboptimal. (b) a thresholded reconstruction show-
ing improvement at the basilar lumen edges. (c) a signal loss map. (d) a
solution consistency error map.
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estimation (as depicted in �gures 6.8 and 6.11) requires knowledge of the

neighboring voxel averages (to determine bias sign) and intra-voxel distribution

(to calculated the bias magnitude). The latter is made more di�cult by the

spatially variable PSF that straddles the biased pixels.

The spatial location and relative level of bias, within the biased voxels,

are highly resolved by the proposed unaliasing method. In low noise cases,

the consistency error calculated in 6.11 is mostly a�ected by bias. While the

a�ected measurements within u are not resolved by this information alone, the

spatial position and relative bias information are contributed to by all of the

measurements. Accurate relativity between the consistency error and level of

bias depends on correct phase aliasing resolution.

The additions to the dual-VENC method proposed in (3) were created to

address highly biased voxels in the low-VENC data by a weighted replacement

with the high-VENC only in areas of high bias. In this algorithm the areas,

level of bias, and subsequently the weights, are determined by the level of

signal loss for each voxel. A similar method of replacement can be employed

in the reconstruction of the proposed method. However, unlike the dual-VENC

method, the proposed method does not contain a high-VENC set to be used

as a replacement. The biased areas as previously discussed (�gure 6.11) are

a combination of pro�le squaring (caused by signal loss) and Gibbs ringing

(caused by the squaring). This e�ectively means the PSF changes spatially

across the pro�le narrowing in the areas of high signal loss.

A narrowing of the PSF is analogous to widening of the MTF. This is

explained by the following logic. As previously discussed, the biased regions

of the �ow lumen lie at the edges of the lumen where the sharpest spatial

transitions occur. Biasing makes the edge sharper by elevating the relative
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PSFavg.
PSFbias PSFlow−pass

⊗ ≈
FIG. 6.20: An approximate relationship between the corrupted PSF in phase
biased areas and the average image PSF.

contribution of elements (through the intrinsic signal weighted averaging) of

low signal loss over the elements of high loss. The areas of lower signal loss by

de�nition contain more slowly varying velocity distributions and therefore are

mostly comprised of low spatial frequiencies. Elevating their relative contri-

bution (in the signal weighted average) e�ectively stretches or pushes the low

spatial frequency signal out into higher spatial frequency areas, thus widening

the MTF. The frquency domain support provided by the acquisition trajectory

essentially �lters out the high spatial frequencies required to fully restore the

PSF in these areas. Additionally, these areas are presumed to be more e�ected

by spatial aliasing due to undersampling since their spectral (k-space) pro�les

are wider.

In order to estimate the level of bias in these areas, the individual recon-

structed velocity images (v̂) are low pass �ltered as real valued images. As

shown in �gure 6.20 the level of �ltering must create a PSF (PSFlow−pass) of

the correct width so that when convolved with the PSF of the biased region

(PSFbias) results in the average image PSF (PSFavg.). This is an approximate

correction to the PSF in highly biased areas, and blurs the PSF in the rest of

the image.

As seen in �gure 6.19(c) and (d), the consistency error has a higher speci-
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�city than the signal loss for the biased pixels shown as a sharp edge around

the basilar artery in Fig. �gCONSTcsseMaps(a). To increase the speci�city of

the relative signal loss, the consistency error is multiplied by each measure-

ment of loss (Sc). The areas of bias in the unaliased velocity images v̂ are then

corrected by weighted replacement of the blurred velocity images where the

unaliased weighting factor (W1) is,

W1 =





1− 1
β
Sc, 1− 1

β
Sc > 0

0, else
, (6.22)

where β is a selectivity factor, and the blurred imaged weighting is,

W2 = 1−W1. (6.23)

The selectivity is controlled by varying β where the minimum value is

equal to Max(Sc). Each velocity image v̂ is then combined with its blurred

counterpart v̂b to make a composite v̂c via,

v̂c = v̂ ·W1 + v̂b ·W2. (6.24)

Since the signal loss is relative to the level of bias, the measurements with low

loss receive little or not replacement while the measurements with high loss

receive high or complete replacement.

6.2.4.1 Methods

Since the level of sensitivity to bias depends on numerous conditions including

relative resolution and SNR, the robustness of the proposed method was tested

on a neuroangiograhic acquisition. This section covers the parameters used in

the acquisition and reconstruction of the 6-direction method.

136



SPI was used as the underlying imaging technique. The base spiral planes

consisted of 33 fully sampled achimedean interleaves. The number of planes

rotated around the kz axis was 125 for a matrix diameter of 240 points. This

corresponds to a radial undersampling factor of 3 in the kx, y plane. The

sampling period (ADC) within each TR was 7.3ms. The �ip angle was 15◦with

TR = 17ms and TE = 2.8ms for a total scan time of 8 minutes and 30 seconds.

A VENC of 40cm/s was used for the proposed method and a VENC of 80cm/s

was used in a subsequent 3-direction referenced scan.

A 3D conjugate gradient SENSE reconstruction was used to reconstruct

each measurement set and the reference set. The number of SENSE iterations

used was 3 per set. The lowpass �lter used to generate the blurred replacement

set was applied in the spectral domain of the real valued velocity image. The

�lter was a spherically symmetric linear taper extending from a k-space radius

of zero to kmax, e�ectively reducing the resolution by 2. The β parameter used

in replacement selectivity was set to Max(Sc).

Three di�erent reconstruction were performed for a comparison of the con-

straints. The unaliasing algorithm was performed without thresholding, with

a threshold of |Vmax| = 70cm/s, and combined thresholding and signal based

replacement. The noise outside of the head was masked by an ellipsoidal shape

before the maximum intensity projection was made for each set in the axial,

coronal, and sagittal directions.

6.2.4.2 Results & Discussion

This section examines the e�cacy of the proposed reconstruction and con-

straints.

Figure 6.21 shows the maximum intensity projections (MIPs) for each of
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FIG. 6.21: Axial, coronal, and sagittal maximum intensity projections demon-
strating each constraint in the proposed reconstruction process.
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the reconstruction methods. The sub�gures (a), (d) and (e) show the results of

the unaliasing algorithm without the proposed constraints. These images show

unwrapping errors and bias errors mostly located at the vessel walls similar to

the error shown in �gure 6.19(a), around the basilar artery. The sagittal MIPs

show the carotid syphons and basilar are obfuscated by noise originating in

the sinus and ear canal regions.

Comparing these �gures to the sub�gures (b), (f) and (g) shows that the

thresholding e�ectively reduces the number of unwrap errors at the edges,

clearing most of the discrete erroneously high velocity estimations. The noise

is also not as over-�t, which lowers the relative intensity through the MIP.

The remaining discontinuities at the vessel edges are due to bias and are more

easily visible at the edges of the left and right cerebral arteries in the axial

MIP.

In comparing both sets to the sub�gures (c), (h) and (i) show that most of

the remaining biased edges are returned to their true resolution. The noise is

also further mitigated in the sinuses and ear canal because of the consistency

error based replacement. As shown in �gure 6.19(c) and (d) the signal loss is

low in signal void areas such as the sinuses. However, the consistency error in

these regions is high targeting the solutions for areas of blurred replacement.

Since the real valued velocity map is blurred, the zero mean noise will be

averaged. The low signal loss in these areas does not produce full replacement,

but the e�ect is visible.

For a closer comparison of reconstruction, a 1D cross section of the basilar

artery was plotted for the thresholded and composite reconstructions in �gure

6.22. The biased measurements on the left side of the pro�le are most destruc-

tive, with peaks that are over and under estimated by approximately 20cm/s
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FIG. 6.22: Measured velocity pro�les of the basilar artery for constrained
reconstruction compared to an 80cm/s VENC referenced reconstruction.

as compared to the 80cm/s reference set. This level of bias corresponds to a

90◦phase o�set. This distribution roughly falls into the a Vmax/V ENC ratio

of 1.6, which, according to the simulations (�gure 6.12), estimates the number

of divisions per diameter is about 3-4. The mostly parabolic portion of the

pro�le in �gure 6.22 is roughly 10-12 points wide at a zero-padding factor of

2, making the resolution 5-6 divisions per diameter. Since the basilar is in

close proximity the sinus cavity, the blurring due to �eld inhomogeneity is

assumed to be relatively high. This blurring can be seen in the MIPs around

the carotid and basilar up to the Circle of Willis. It is assumed that this type

of blurring is having an e�ect on the pro�le in a way that is unaccounted for

by the simulation.

As previously shown in simulation, the maximum noise level tolerated by

the unaliasing algorithm is about 9◦. In-vivo, for this set of parameters, the

tolerable bias for phase unwrapping appears to be at least 90◦as mentioned
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before. While this is only half of the dual-VENC tolerance (i.e. 180◦), it is

signi�cantly higher than the predicted noise threshold. This reinforces the

idea that the inconsistency in bias across measurements is relatively high.

Between the threshold reconstructed and composite reconstructed pro�les

(�gure 6.22) it can be seen that the replacement is highly speci�c. Most of the

replacement works directly on the biased estimates while the velocity estimates

in for the stationary tissue remain mostly untouched. This indicates that the

resolution is in tact. Since the replacement sets are blurred, the replaced

values will regain some of the signal lost to dephasing, making these estimates

relatively lower in SNR, which is a similar problem in the dual-VENC, high-

VENC replacement method.

6.2.5 Dual VENC Method Comparison

This section compares the proposed method and dual-VENC method each

using signal loss replacement reconstruction. The two methods are compared

using the same gradient moment since the moment level will induce the same

amount of bias in each. Both are compared to a conventional 3 direction

referenced set that uses half the gradient moment. Each con�guration is also

compared to a deblurred set which is used to emphasize the e�ects of signal

bias and resolution.

6.2.5.1 Methods

The weighting functions for both replacement methods were determined empir-

ically using the linear relationship shown in equation 6.22, where Sc represents

the combined consistency error and signal loss in the proposed method, and

represents only the signal loss in the dual-VENC method. The β parameter

is empirically determined for each set by �nding the lowest beta necessary to
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force the heavily biased velocity estimates out of the reconstructed images.

Each set was collected with the SPI imaging technique using 33 spiral

interleaves, 125 projections (for a radial undersampling factor of R = 3), 240

diameter matrix, 18ms TR, 10◦ �ip angle, 3.8ms TE, and 7.3ms sampling

window for a total scan time of 8min and 50sec. All scans were performed on

a GE 3Tesla Signa Excite scanner using a standard 8-channel head coil.

Radial undersampling alone was used to compensate for the minimal vari-

ance in z-axis coil sensitivity. A 3D CG-SENSE parallel reconstruction tech-

nique was used to reconstruct each measurement volume before PCMRA spe-

ci�c reconstruction was applied.

The dual-VENC method was prescribed with a high and low VENC of

80cm/s and 40cm/s respectively. The proposed 6 direction method used a

40cm/s VENC. The 80cm/s VENC was reconstructed separately as a conven-

tional 3 direction referenced set to be used for additional comparisons.

The previously described semi-balanced gradient moment con�guration

was used in the proposed method.

Two extra SPGR sequences were collected at the same time as the two

velocity encoded sets. The extra sequences maintained the same trajectories,

TR and �ip angle as the velocity encoded sets. A TE of 2.8ms and 1.8ms were

used in conjunction with the reference scan (TE = 3.8ms) of each velocity

encoded set, to generate o�-resonance (B0) maps. The base images were �rst

reconstructed using SENSE, then blurred using a low-pass k-space �lter, and

were then interpolated using signal weighted average of the change in phase

between the reference and TE = 2.8ms and the TE = 2.8ms and the TE =

1.8ms sets. Spiral deblurring was performed using the method proposed in

(33).
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6.2.5.2 Results & Discussion

Figure 6.23 shows the resulting maximum intensity projections for each method.

The top row of axial images and two columns of coronal (left) and sagittal

right (right) correspond, in order, with the conventional 80cm/s 3 direction

referenced set, the dual-VENC set, and the proposed method set. The ves-

sel conspicuity increase with each method, with the proposed method o�ering

the highest. This is mostly due to the increased VNR created by moment

balancing.

The signal based replacement appears to increase the noise, in the dual-

VENC reconstruction, and blurs the proposed method reconstruction. Both

of which are expected to non-uniformly lower the vessel conspicuity in each

reconstruction. This e�ect is mitigated as the speci�city of the signal based

replacement is increased. The measure of consistency error produced in the

proposed method reconstruction provides an advantage in the level of speci-

�city as previously shown (�gures 6.19 and 6.22 ). The dual-VENC signal

based replacement has only the signal loss maps which are lower in spatial res-

olution. This speci�city produces a limit to the amount of VNR gain created

through gradient moment increases.

The signal bias produces an arti�cial increase the resolution that makes

the true vessel diameter di�cult to resolve. The conventional high-VENC and

dual-VENC sets produce sharper edge transitions than the proposed method

possibly indicating that the proposed method is loosing resolution. According

the simulation results shown in �gure 6.12, an approximate vessel granularity

of 6 divisions will produce around 25◦ of bias at a Vmax/V ENC of 0.8. This is

roughly 10cm/s for a �ow of 80cm/s at an 80cm/s VENC, which potentially
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FIG. 6.23: Maximum intensity projections in the axial, coronal, and sagittal
planes. MIPs (a), (d) and (e) correspond to the conventional 80cm/s set, (b),
(f) and (g) to the dual-VENC set, and (c), (h) and (i) to the proposed method.
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FIG. 6.24: Maximum intensity projections in the axial, coronal, and sagittal
planes of deblurred data sets. MIPs (a), (d) and (e) correspond to the con-
ventional 80cm/s set, (b), (f) and (g) to the dual-VENC set, and (c), (h) and
(i) to the proposed method.

145



a) b) c)

FIG. 6.25: Blurred and deblurred basilar artery cross sections. (a) a 6-direction
reconstruction with blurred replacement. (b) a deblurred 6-direction recon-
struction with blurred replacement. (c) a deblurred 80cm/s VENC referenced
reconstruction.
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FIG. 6.26: A 1D cross section of the basilar artery �ow lumen.
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means that even the high-VENC set, which is used in replacement of low-

VENC data, is also arti�cially narrowing the reconstructed vessel diameter.

According to �gure 6.15(e), the RSS moment con�guration may provide

an additional moderate gain in vessel conspicuity over the used semi-balanced

method. This comes at the cost of an even noise distribution, but may provide

a 20% increase in VNR as shown in-vitro.

Blurring plays a signi�cant role in the vessels closest to the sinuses (i.e.

internal carotid arteries, basilar artery, and anterior cerebral arteries). The

most noticeable area is where the anterior cerebral arteries meet the circle of

Willis as shown in the sagittal MIPs of �gure 6.23. This segment of the vessel

appears to be almost missing in the �gure 6.23(i).

The reconstruction of the deblurred MIPs are shown in �gure 6.24. The

diameter of the anterior cerebral arteries is reduced and the estimated speed

is increased. The connection between the artery and the circle of Willis is also

more clearly represented.

Cross sections of the basilar artery, similar to those shown in �gures 6.19,

6.22 and 6.11, are shown in �gures 6.25 and 6.26. As shown in �gure 6.26,

the pro�les of the reconstructed 6-direction method are smooth due to signal

weighted replacement. The deblurred pro�le has a diameter that is consistent

with that of the 80cm/s VENC referenced reconstruction. The 80cm/s VENC

reconstruction shows the characteristic squaring of the �ow lumen resulting

from a high Vmax/V ENC to resolution ratio as shown in 6.11. Using the 6-

direction method with deblurring reconstruction as a basis, the actual vessel

diameter is roughly 15 points wide which corresponds to 7 voxels at the scanned

resolution. Using the estimated bias in �gure 6.12 the approximate bias at the

lumen wall is 25◦ which corresponds to a deviation of roughly 10cm/s. This
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indicates that a VENC of 80cm/s is insu�cient for adequately reconstructing

the �ow pro�le at this position within the subject. The squared edges are

also noticeable in the anterior cerebral arteries in �gures 6.24(e) and (g) of

the dual-VENC reconstructed sets. Since the high-VENC replacement set

is also corrupted by inadequate resolution for this VENC, the signal based

replacement maintains the rigid lumen edge in the �nal reconstruction.

6.3 Summary Discussion

This section summarizes the main points from each individual experiment

presented in the previous section.

6.3.1 Noise Sensitivity

The proposed method provides a base improvement in SNR e�ciency over the

previously proposed dual-VENC (three-point) method proposed in (4), which

is determined through measurement averaging. The measurement direction

geometry is shown to be a signi�cant factor in the e�cacy of phase unaliasing.

Using a charge repulsion technique to �nd the most even distribution of mea-

surements is suboptimal for odd numbers of measurements, and optimal for

even numbers. Noise sensitivity is shown to be only 3◦more sensitive in phase

noise compared to the dual-VENC method. Noise sensitivity is also shown to

be inversely proportional to the VENC, allowing sensitivity to be traded for

gradient moment.

6.3.2 Optimal Voxel Shape

The optimal voxel shape is shown to be the point spread function that produces

the highest resolution supported by the acquired data. The work in this section

demonstrates through 3D simulation that the application of a �lter to the MTF

in k-space will, in most situations, increase the level of signal bias. Using
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a parabolic �ow model, the level of bias is shown to increase rapidly at low

resolutions (< 6 divisions over the lumen diameter) and with moderate velocity

to VENC ratios (> 1.5).

6.3.3 SNR Optimized Moment Balancing

The relative orientation of the measurement geometry to the solution geometry

can produce signi�cant gains in SNR due to gradient moment balancing. The

theoretical limit of SNR gain, over a typical referenced velocity measurement,

for 6 directions is shown to be a factor of 2. Through in-vitro experiments using

a �ow phantom, proper gradient moment balancing is achieved providing the

near maximum gain in SNR of 2. In comparison to the dual-VENC method

(assuming V ENClow << V ENChigh), which provides the same SNR as the

typical referenced measurement in the absence of phase aliasing, the 6-direction

method is potentially twice as SNR e�cient.

6.3.4 Constraints & Reconstruction

The proposed method is shown to be robust in-vivo using the current state of

the art in rapid 3D imaging sequences, with the proposed solution thresholding

constraint and the signal based weighted replacement bias corrupted data.

The method is shown to be robust to in-vivo biases of at least 90◦. Signal

based replacement is shown to have high spatial speci�city, which maintains

resolution and SNR.

6.3.5 Dual VENC Method Comparison

The proposed method is shown to provide higher vessel conspictuity and VNR

for the same gradient moment as compared to the dual-VENC method. This

is advantageous, in two signi�cat ways: 1) the signal loss induced phase bias

is minimized due to lower gradient moments and 2) the method is more time
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e�cient in terms of VNR to acquisiton duration.

6.3.6 Conclusion

The proposed method is shown to produce an SNR improvement of 2 for the

6-direction con�guration, over referenced methods such as the dual-VENC

method, in-vitro. This makes the proposed method twice as SNR e�cient

in 3D as dual-VENC. The method is also robust to moment encoding related

errors such as phase bias and phase aliasing, in the face of practical limitations

such as spatial resolution, �eld inhomogeneity, and noise. The improvements

in SNR are demonstratable in-vivo, resulting in higher vessel conspicuity and

VNR. The added VNR allows the proposed method to be acquired using lower

gradient moments (compared to dual-VENC) which reduces the number of

reconstructed voxels a�ected by signal biased phase.
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7 DISCUSSION

The purpose of this work was to develop a rapid 3D PCMRA acquisition and

reconstruction technique. Conceptually, the requirement for achieving this

goal is to improve vessel conspicuity through the increase the velocity to noise

ratio. The means for achieving this goal were explored through two di�erent

avenues that constitute the relationship shown in equation 2.25. The �rst

being image SNR, which is a function the imaging technique. The second, is

the applied moment, which is a function of the gradient area.

Initially (chapter 3), the imaging aspects were explored by making use

of the intrinsic SNR advantages provided by both 3D and spiral techniques

through spiral projection imaging (11, 12). Existing velocity encoding tech-

niques (3, 4) where explored within this framework resulting in a PCMRA

technique that is robust to spatial aliasing at low reduction factors (via uni-

formly distributed undersampling, sample density correction and high-moment

dual-VENC encoding), and signal biased phase (via composite high-VENC re-

placement). This motivated the exploration of parallel imaging reconstruction

(14, 73) as a means of reducing aliasing at higher reduction factors as discussed

in chapter 4. While reducing the acquisition time of an imaging technique is

an imperative, reductions in the reconstruction time are also advantageous as

they are more portable across platforms of varying cost and performance. The

work presented in chapter 5 covered a method which provided a signi�cant re-

duction in the computation of 3D sampling density (8, 34, 42). Finally, a new

technique for resolving phase aliasing was explored as a method for allowing

further increases in the applied gradient moment (chapter 6).

Spiral projection imaging has been shown to be a �tting imaging trajectory

for this work. Its highly con�gurable nature provides a multifaceted platform
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for evaluating new parallel imaging techniques (for various coil geometries)

and undersampling patterns that produce incoherent spatial aliasing making

it robust without parallel imaging at modest reduction factors. The high SNR

e�ciency also provides an advantage to phase contrast techniques reducing

the level of required gradient moment.

The PEPI technique has been demonstrated to provide modest reduction

factors at reduced reconstruction durations as compared to SENSE, for 3D

imaging techniques. Currently, the PEPI technique falls short of SENSE in

maximum achievable reduction factor. SENSE has therefore been used as

the platform from which phase contrast methods have been continued to be

explored.

The proposed sample density estimation method is shown to provide a

signi�cant enhancement to the reconstruction performance of both RSS coil

combined and parallel imaging reconstruction methods. The time savings

make the proposed method viable for practical 3D reconstruction which, in

turn, allows the convergence of more accurate solutions. This method has also

demonstrated stability over multiple image and trajectory combinations. This

stability was shown to be consistent where analytical solution fail.

The most novel contribution of this work is in the proposed method for solv-

ing phase aliasing in low moment phase contrast acquisitions. This method

extends the SNR e�ciency beyond previously proposed methods by fully utiliz-

ing the SNR potential all of the measurements made (compared using the time

footprint of the dual-VENC method). This is accomplished by employing high

gradient moments in every velocity sensitive acquisition and gradient moment

balancing. Phase aliasing is solved by minimizing the error of a non-linear sys-

tem, which is conditioned through measurement geometry and a mixed integer
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solution space. Symmetric measurement geometries are shown to be the most

robust due to the fact that they provide the most independent information.
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8 FUTURE WORK

Since the inception of this project, new imaging methods have emerged which

o�er advantageous proprieties where spiral projection imaging is limited. Specif-

ically, in the ability to prescribe anisotropic �elds of view and e�ciency as mea-

sured by k-space undersampling uniformity. These methods include FLORET

(45) and stack of spirals. While stack of spiral is not new per se, it provides

the ability to minimize the �eld of view orthogonal to the spiral axis allow-

ing for greatly reduced scan times. A basic implementation of this method

was employed in the in-vitro experiments used in assessing moment balancing

e�cacy in chapter 6. The FLORET method was used in the characteriza-

tion of the PEPI parallel imaging method in chapter 4. Adding the proposed

phase contrast technique, which is compatible with both of these base imaging

techniques, would further improve state of 3D rapid PCMRA, through the

aforementioned advantages.

For the proposed multi-point phase contrast techniques as well as exist-

ing phase contrast techniques, the amount of data acquired is relatively large.

This presents a challenge for 3D reconstruction techniques in general, and is

particularly so for parallel imaging reconstruction because of the associated

long computation times. PEPI provides a simple, computationally less ex-

pensive reconstruction that currently needs �ne tuning in the construction

of coil sensitivity maps. These needs may be addressed by looking to meth-

ods that intrinsically solve for coil sensitivity maps such as GRAPPA (44) or

ESpirit(74, 75). Additionally, stopping criteria would make the reconstruction

more robust by allowing a variable number of iterations to be automatically

determined, taking full advantage of the image SNR (76).

The proposed phase unaliasing method is a category of non-linear systems
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known as mixed-integer non-linear programming (MINLP). Minimization tech-

niques are available for these applications such BONMIN (77, 78). The im-

plementation of this framework may provide a conduit for additional problem

constraints or objective functions that can be simultaneously solved with the

unaliasing problem in a practical time window.
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9 SUMMARY CONCLUSIONS

The methods proposed in this work have demonstrated the viability of rapid

3D phase contrast magnetic resonance angiography in practical use. This has

been achieved through the combination of e�cient 3D imaging techniques,

parallel imaging reconstruction, and novel phase contrast measurement and

reconstruction methods. These areas have been addressed speci�cally with

new imaging and reconstruction techniques called spiral projection imaging

(SPI), sample density correction (SDC), pretty easy parallel imaging (PEPI)

and multi-directional high moment encoding.

The most signi�cant contributions are in the investigation of new high-

moment phase contrast method that enables the use of larger gradient areas

by resolving phase aliasing errors and reduces the need for large gradient areas

through moment balancing. The method has been shown in-vitro to provide up

to twice the SNR e�ciency as compared to a well known dual-VENC technique

(3, 4). In-vivo the method produces higher vessel conspicuity at an equivalent

moment to the dual-VENC technique allowing lower moments to be used to

avoid artifacts caused by phase bias errors.

A sample density correction technique which was comprised of two previ-

ously proposed methods has been shown to provide signi�cant reconstruction

time reductions for 3D non-Cartesian trajectories. The time reductions im-

prove reconstruction accuracy by allowing full solution convergence within

practical time windows. This work has also resulted in the public release of

code for edi�cation and utilization in the scienti�c community (chapter 5).

The pretty easy parallel imaging (PEPI) technique has been pursued, char-

acterized and evaluated with respect to the well known SENSE parallel imaging

technique. The successful and ine�ective areas have been discovered and doc-
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umented and an insight necessary to advance the method has been proposed.
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APPENDIX A

SPATIAL OFF-RESONANCE
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Spatial o� resonance occurs at the air-water interfaces, where the spatially

varying magnetic �ux rapidly changes density to accomidate marials of di�er-

ing magnetic permeability. To measure the level of o� resonance, two SPGR

scans are taken at di�erent echo times and phase subtracted from one another.

The change in phase is related to the frequency of spin precession. The pixel

by pixel phase di�erence provides a map of the spatial change in the frequency

of precession (B0 inhomogeneity). The di�erent echo times provide more or

less phase accrual in these areas within the low spatial frequencies providing

a low resolution map of the changes in magnetic �eld amplitude.

A.1 O�-Resonance Vs. Head Position

A general level of dephasing was assessed through the creation of a B0 in-

homogeneity map. This map provides a spatial distribution of the level of

o�-resonance. The areas and level of o�-resonance can then be interpreted

as corresponding areas of blurring in a spiral based imaging technique and a

relative level of impact.

The inhomogeneity maps were generated for di�erent head positions using

two spoiled gradient echo sequence with the common parameters: 643 ma-

trix size, 4mm3 voxel size, 25.6cm FOV, fat saturation pulse, TR of 13.2ms,

128kHz receive bandwidth, and �ip angle of 10◦, TE1 = 0.9ms, and TE2 =

0.712ms. The two acquisitions used for each head position di�ered in TE by

0.188ms allowing for just over 5kHz o�-resonance to be resolved.

Figure A.1 shows the level of o�-resonance at various head positions. These

maps indicate that the highest levels of blurring in spiral reconstruction will

be concentrated in the sinuses and potentially near the left and right side of

the head depending on the relative orientation.
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FIG. A.1: Spatial o� resonance at air tissue interfaces for various head posi-
tions. Row (a), centered head position. Row (b), axial rotation in (X,Y) of
16.6◦, Shift of 44mm (X) and −37mm (Y). Row (d), sagittal rotation in (Y,Z)
of 14.0◦, Shift of −36mm (Y) and 37mm (Z). Row (c), sagittal rotation in
(Y,Z) of −7.5◦, Shift of 17mm (Y) and −7mm (Z).
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APPENDIX B

DYNAMIC 2D PEPI RECONSTRUCTION
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The PEPI parallel imaging technique was used in the reconstruction of

a dynamic, synthesized x-ray angiographic time series, as and entry in the

ISMRM 2010 Data Reconstruction Challenge held in Stockholm Sweden during

the 18th Annual Scienti�c Meeting and Exhibition. The entry was awarded

�rst place in the `Need For Speed' contest. This section brie�y describes the

methods used in the reconstructed entry.

B.1 ISMRM 2010 Data Reconstruction Challenge

The Need For Speed contest was focused on the reconstruction of a dynamic

2D, time resolved, neuro-angiograph of an arteriovenous malformation. The

supplied simulated MR data was based o� of an x-ray angiograph of 31 time

points and 512x512 image resolution. Synthetic 8-channel coil information

was supplied for parallel imaging reconstruction. The resulting data were

signi�cantly undersampled with only 200 trajectories and 2000 points each,

covering k-space.

A 2D variable density spiral trajectory was chosen as the base imaging

method. The spirals were designed with linearly varying undersampling start-

ing with critical sampling at the center of k-space and increasing towards the

edge of sampled k-space. Each spiral was rotated by the golden angle. After

13 TRs the approximate undersampling factor at the edges of k-space was 15.

A 2D PEPI (14, 23, 34) and RMS coil reconstruction were produced to

show the aliasing reductions provided by PEPI. Figure B.1(b) and (c) show

the swirling undersampled areas of k-space result in swirling aliasing artifact

in the coil combined image. PEPI was shown to signi�cantly reduce these

swirling patterns in each of the reconstructed time points within a moderate

reconstruction time of approximately 16 minutes.
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Contest materials and data are available online at: http://www.ismrm.

org/mri_unbound/simulated.htm
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