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ABSTRACT

Let T be a tournament with edges colored with any number of colors. A rain-

bow triangle is a 3-colored 3-cycle. A monochromatic sink of T is a vertex which

can be reached along a monochromatic path by every other vertex of T . In 1982,

Sands, Sauer, and Woodrow asked if T has no rainbow triangles, then does T have

a monochromatic sink? I answer yes in the following five scenarios: when all 4-

cycles are monochromatic, all 4-semi-cycles are near-monochromatic, all 5-semi-

cycles are near-monochromatic, all back-paths of an ordering of the vertices are

vertex disjoint, and for any vertex in an ordering of the vertices, its back edges are

all colored the same. I provide conjectures related to these results that ask if the

result is also true for larger cycles and semi-cycles.

A ruling class is a set of vertices in T so that every other vertex of T can reach a

vertex of the ruling class along a monochromatic path. Every tournament contains

a ruling class, although the ruling class may have a trivial size of the order of T .

Sands, Sauer, and Woodrow asked (again in 1982) about the minimum size of ruling

classes in T . In particular, in a 3-colored tournament, must there be a ruling class

of size 3? I answer yes when it is required that all 2-colored cycles have an edge xy

so that y has a monochromatic path to x. I conjecture that there is a ruling class of

size 3 if there are no rainbow triangles in T .

Finally, I present the new topic of α-step-chromatic sinks along with related re-

sults. I show that for certain values of α , a tournament is not guaranteed to have an

α-step-chromatic sink. In fact, similar to the previous results in this thesis, α-step-

chromatic sinks can only be demonstrated when additional restrictions are put on

the coloring of the tournament’s edges, such as excluding rainbow triangles. How-

ever, when proving the existence of α-step-chromatic sinks, it is only necessary to

exclude special types of rainbow triangles.
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Chapter 1

INTRODUCTION

Let D = (V,E) be a directed graph (also called a digraph) with vertex set V (D)

and edge set E(D). The order of D is the cardinality of V (D), which is represented

by |V (D)|, |D|, and n in this thesis. The cardinality of E(D) is represented by

|E(D)|. An edge uv ∈ E(D) is considered to be directed from u to v and we write

u→ v. A variation of a digraph is the oriented graph, where for any two vertices

u and v of D, it is not the case that both uv ∈ E(D) and vu ∈ E(D). We define

digraphs to not contain loops, where a loop is an edge of the form vv ∈ E(D), for

some vertex v ∈V (D).

Definition 1.1. A complete oriented graph is called a tournament.

Note that since a tournament T is a complete oriented graph, for any pair of

distinct vertices u and v in T , there is exactly one edge between u and v. In the fol-

lowing sections, we introduce definitions and notation from three different sources:

Bang-Jensen and Gutin in [2], Diestel in [4], and West in [15].

1.1 Paths and Cycles

We begin with some common definitions about digraphs.

Definition 1.2. A path P = (V,E) is a digraph with at least one vertex with vertex

set V = {v0,v1, . . . ,vt−1} and edge set E(P) = {v0v1,v1v2, . . . ,vt−2vt−1}, where all

vi are distinct.

If P is a path on t vertices as described in the definition above, we may write

v0 → v1 → ··· → vt−1 to represent the path or v0v1 . . .vt−1. A path on t vertices
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has a length of t − 1 (the number of edges on the path). We have the following

definition for what it means for a path to be Hamiltonian.

Definition 1.3. A path P in a digraph D is Hamiltonian if V (P) =V (D).

It is an easy exercise to show the following. We will give one possible proof.

Theorem 1.4. Every tournament has a Hamiltonian path.

Proof. Let T be a tournament on n vertices. We argue by induction on n that T has

a Hamiltonian path. For the base case of n = 1, this is clearly true. So we assume

n > 1 and the theorem to be true for all tournaments of order less than n. Let

v ∈V (T ). By the induction hypothesis, the tournament T −{v} has a Hamiltonian

path P = v0v1 . . .vn−2. If vn−2→ v, then Pv is a Hamiltonian path. If v→ v0, then

vP is a Hamiltonian path. So we assume otherwise. Then there must exist some

i ∈ {0,1, . . . ,n−1} so that vi→ v and v→ vi+1. Replacing the edge vivi+1 with the

path vivvi+1 along P yields a Hamiltonian path in T .

Definition 1.5. If P = v0v1 . . .vs−1 is a path on s≥ 3 vertices, then the graph C :=

P+ vs−1v0 is called a cycle.

As with paths, we have two methods to write a cycle. If C is a cycle as de-

scribed in the definition above, then we may write v0 → v1 → ···vs−1 → v0 or

v0v1 . . .vs−1v0. We also may refer to a cycle on s vertices as an s-cycle. A di-

graph without any cycles is called acyclic. A 3-cycle is commonly referred to as a

triangle.

Definition 1.6. Let C = v0v1 . . .vs−1v0 be a cycle on s vertices. An edge of the type

vivi+2, for some i ∈ {0,1, . . .s−1}, is called a square edge.
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We now define a Hamiltonian cycle similarly to how we defined a Hamiltonian

path.

Definition 1.7. A cycle C in a digraph D is Hamiltonian if V (C) =V (D).

We have the following definition for a strong digraph.

Definition 1.8. A digraph is strong if for each ordered pair u,v of vertices, there is

a path from u to v.

The following is a well-known theorem attributed to Moon in [12].

Theorem 1.9 (Moon, 1966, [12]). A tournament is strong if and only if there exists

a Hamiltonian cycle.

Definition 1.10. A digraph D is transitive if uv ∈ E(D) and vz ∈ E(D) imply that

uz ∈ E(D).

Note that a tournament is acyclic if and only if it is transitive. We provide a

short proof.

Theorem 1.11. A tournament is acyclic if and only if it is transitive.

Proof. (⇒) Assume that T is an acyclic tournament. Consider two edges uv and vz

of T . If z→ u, then uvzu is a cycle, which would contradict that T is acyclic. Hence

uz ∈ E(T ) and so T is transitive.

(⇐) Assume that T is a transitive tournament. For contradiction, assume T

has a cycle and let C = v0v1 . . .vs−1v0 be a minimum cycle of T . A cycle in a

tournament has at least 3 vertices. Suppose that |C| > 3. Then either v1→ vs−1 or

vs−1→ v1. In the former case, v0v1vs−1v0 is a smaller cycle than C, contradicting

that C is minimum. In the latter case, vs−1v1Cvs−1 is a smaller cycle than C, again
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contradicting that C is miniumum. Thus C is a 3-cycle and the edges of C contradict

that T is transitive. Thus T is acyclic.

1.2 Colorings

Definition 1.12. A function f : E(D)→ {0,1, . . . ,k−1} is a k-coloring (or color-

ing) of the edges of a digraph D. A digraph D is k-colored if the edges of D have

been colored by some fixed coloring f .

A coloring is not required to be proper. Thus, there are k|E(D)| distinct k-

colorings of a digraph D. If the edge directed from a vertex u to a vertex v is

colored with c, we write u c→ v.

Definition 1.13. A digraph D is monochromatic if every edge of D is colored with

the same color.

If there exists a monochromatic path from u to v, we write u 7→ v. A monochro-

matic path colored with some color c from u to v is notated by u c7→ v.

Definition 1.14. A digraph D is a rainbow digraph if no two edges are colored with

the same color.

A common tournament referred to throughout this thesis is a rainbow triangle.

1.3 Score Sequences

For a vertex v of a digraph D, let N+(v)= {x∈V (D) : v→ x} be its out-neighborhood

and N−(v) = {x ∈V (D) : x→ v} be its in-neighborhood. Let let N+[v] = N+(v)∪

{v} be its closed out-neighborhood and N−[v] = N−(v)∪ {v} be its closed in-

neighborhood.
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Definition 1.15. The out-degree of a vertex v in a digraph D is equal to |N+(v)|

and is denoted by d+(v). The in-degree of a vertex v in a digraph D is equal to

|N−(v)| and is denoted by d−(v).

It is common to call the out-degree of a vertex its score.

Definition 1.16. A score sequence (s0,s1, . . . ,sn−1) is a listing of the scores for

each vertex of the tournament.

We choose to list the scores of a score sequence in ascending order.

Definition 1.17. Let D be a digraph on n vertices. A vertex of D with a score of

0 is called a dominated vertex. A vertex of D with a score of n− 1 is called a

dominating vertex.

Combining the definitions of a transitive tournament and dominated/dominating

vertices, we get the following fact.

Fact 1.18. If T is a transitive tournament, then T has exactly one dominating vertex

and exactly one dominated vertex.

In fact, we see that the score sequence of a transitive tournament on n vertices

is (0,1,2, . . . ,n−1).

5



1.4 Tournaments on 4 Vertices

There are four different non-isomorphic tournaments on 4 vertices. A tournament

on 4 vertices is isomorphic to a transitive tournament, a Hamiltonian tournament,

a dominating triangle tournament, or a dominated triangle tournament. Exam-

ples of these tournaments can be seen in Figures 1.1, 1.2, 1.3, and 1.4.
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Figure 1.1: Transitive Tournament
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Figure 1.2: Hamiltonian Tournament
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Figure 1.3: Dominating Triangle
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Figure 1.4: Dominated Triangle

These will be useful to refer to later in the proofs of Theorems 2.19 and 2.23.

It is worth noting that in a transitive tournament and a dominating triangle tourna-

ment, there exists a dominated vertex. Similary, in a transitive tournament and a

dominated triangle, there exists a dominating vertex.
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1.5 Serfs and Sinks

Not every digraph contains a dominated (or dominating) vertex, so we look for

vertices with similar properties within a digraph.

Definition 1.19. A vertex v in a digraph D is a serf if every other vertex can reach

v along a path of length at most two.

A serf in a digraph D is a king in the converse of D. That is, a king is a vertex

in a digraph which can reach any other vertex in the digraph along a path of length

at most 2. Many useful results have been proven true for kings; we will rephrase

them for our use in terms of serfs.

Theorem 1.20 (Chvátal and Lovász, 1972, [3]). Every tournament has a king.

The proof of the following theorem is similar to that given in [3] to prove The-

orem 1.20.

Theorem 1.21. Every tournament has a serf.

Proof. Let T be a tournament. We argue by induction on |T | that T has a serf. The

base case of |T | = 1 is clearly true. So assume |T | > 1 and assume the theorem is

true for all tournaments of order less than |T |. Let v ∈V (T ) so that d−(v)< n−2.

Let T ′ = T −{N−[v]}. Note that for all v′ ∈ V (T ′), v→ v′ in T . By the induction

hypothesis, T ′ has a serf, vm. Then v→ vm in T and for all v′ ∈N−(v), v′→ v→ vm.

Thus vm is a serf of T .

The following is a result attributed to Jacob and Meyniel. Havet and Thomassé

provided an alternate proof in [8].

Theorem 1.22 (Jacob and Meyniel, 1996, [9]). Every tournament has a king. Fur-

ther, if a tournament has no dominating vertex, then it has at least three kings.
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We prove the following theorem using the same method Chvátal and Lovász

used in the proof of Theorem 1.20.

Theorem 1.23. Every tournament has a serf. Further, if a tournament has no dom-

inated vertex, then it has at least three serfs.

Proof. Let T be a tournament on n vertices. We argue by induction on n that T

has a serf. Further, if T has no dominated vertex, then it has at least three serfs.

The base case of n = 2 is trivially true. So assume n > 2 and assume the result is

true for all tournaments with order less than n. Let v be some vertex in T . If v is

dominated, then v is a serf of T and we are done. So assume T does not have a

dominated vertex and let T ′ = T −N−[v]. By the Induction Hypothesis, T ′ has a

serf, v0. Since v0 /∈ N−[v], v→ v0. And further, for all u ∈ N−(v), u→ v→ v0.

Thus v0 is a serf of T . Now let T ′′ = T −N−[v0]. By the Induction Hypothesis,

T ′′ has a serf, v1. Similar reasoning yields that v1 is a serf of T . Since v /∈ V (T ′′),

v 6= v1. Thus reasoning similarly on the tournament T ′′′ = T −N−[v1] yields a serf,

v2, in T that is different from both v0 and v1. Thus T has at least three serfs.

This result is best possible as we give an example of a tournament without a

dominating vertex which has exactly three serfs.

Fact 1.24. For any n ≥ 4, there exists a tournament on n vertices without a domi-

nated vertex that has exactly three serfs.

Proof. Let T be a tournament isomorphic to the Hamiltonian tournament on 4 ver-

tices (as previously seen in Figure 1.2). This tournament has exactly 3 serfs. To

create a tournament on n > 4 vertices with exactly 3 serfs, add n−4 vertices which

dominate all vertices of the T . Thus, for any n≥ 4, we can find a tournament on n

vertices which has exactly 3 serfs.
8



By weakening the requirement that a serf must be reached by every vertex along

a path of at most 2, we obtain the following definition.

Definition 1.25. A vertex v is a sink of a digraph D if every vertex can reach v

along a path (with no restriction on the length of the path).

A dominated vertex is both a sink and a serf of a digraph. We write the relation-

ships between sinks, serfs, and dominated vertices as the following three facts, but

will use these facts without reference throughout the thesis.

Fact 1.26. If v is a dominated vertex of a digraph D, then v is a serf of D.

Fact 1.27. If v is a serf of a digraph D, then v is a sink of D.

The third fact follows easily from the first two facts.

Fact 1.28. If v is a dominated vertex of a digraph D, then v is a sink of D.

A digraph is not guaranteed to contain a dominated or dominating vertex. A

digraph is guaranteed to contain a dominating and dominated set of vertices, though

the sets may be of a trivial size.

Definition 1.29. A set R is a dominated set of vertices in a digraph D if for all v 6∈R,

there exists a vertex u ∈ R, so that v→ u. We can similarly define a dominating set

in a digraph D to be a set of vertices R′ so that for all v 6∈ R′, there exists a vertex

u ∈ R′ so that u→ v.

We use these two definitions in the next section.

1.6 Linear Orders

It is sometimes helpful to view digraphs and tournaments as partially ordered sets.

9



Definition 1.30. A partially ordered set (or poset) is a pair (P,<), where P is a set

and < is a relation on P satisfying the following three conditions:

• Reflexivity: for all x ∈ P, x < x.

• Antisymmetry: for all x,y ∈ P, if x < y and y < x, then x = y.

• Transitivity: for all x,y,z ∈ P, if x < y and y < z, then x < z.

Two elements u and v of a set are said to be comparable if either u < v or v < u.

From a poset (P,<), we can create a digraph by taking P as the set of vertices and

directing an edge from u to v if and only if u < v. Note that this graph is acyclic

and transitive. The converse is also true and so we write this as the following fact.

Fact 1.31. A transitive, acyclic digraph D can be formed from a poset (P,<). Con-

versely, a poset (P,<) can be formed from a transitive, acyclic digraph D.

It is useful to be able to find orders on tournaments, so we introduce linear

orders.

Definition 1.32. A linear order is a partial order with the property that every pair

of elements are comparable.

Reasoning similarly as above, we can obtain a linear order from a transitive

tournament and obtain a transitive tournament from a linear order. We write this as

the following fact.

Fact 1.33. A transitive tournament T can be formed from a linear order (P,<) so

that uv ∈ E(T ) when u < v. Conversely, a linear order (P,<) can be formed from a

transitive tournament T so that u < v when uv ∈ E(T ).

10



As we will see later in the thesis, it is sometimes necessary to create a transitive

tournament from an acyclic digraph. The following theorem called the Order Ex-

tension Principle allows us to do this. First, we must establish one more definition.

Definition 1.34. If (P,<) is a poset, a linear extension of P is a relation <∗ on P

so that (P,<∗) is a linear order and u < v implies u <∗ v.

We now give the Order Extension Principle, which was first published by Mar-

czewski in 1930.

Theorem 1.35 (Marczewski, 1930, [10]). Every finite poset (P,<) has a linear

extension.

We then combine Fact 1.33 and Theorem 1.35 to obtain the following fact.

Fact 1.36. If D is an acyclic, transitive digraph, then there exists a transitive tour-

nament T so that if uv ∈ E(D), then uv ∈ E(T ).

In [1], Alon, Brightwell, Kierstead, Kostochka, and Winkler introduced the def-

inition of a p-majority tournament.

Definition 1.37. Let <1,<2, . . . ,<2p−1 be 2p−1 linear orders on a set of n vertices.

A p-majority tournament is one which an edge uv exists if v < u in at least p of the

linear orders.

A p-majority tournament is said to be realized by these 2p− 1 orders. The

following theorem appeared in [1].

Theorem 1.38 (Alon, Brightwell, Kierstead, Kostochka, and Winkler, 2006, [1]).

Every 2-majority tournament has a dominating set of size at most three. Moreover,

if T does not have a dominating set of size one, then it has a dominating set of size

three that induces a directed cycle.
11



It is easy then to find a dominated set of size at most three in a 2-majority

tournament. Consider a 2-majority tournament T . Reverse the orientation of every

edge in T to obtain T ′. The new tournament T ′ is still a 2-majority tournament. By

Theorem 1.38, T ′ has a dominating set of size at most 3. This dominating set of

vertices is then a dominated set of vertices in T . We pose this result as the following

theorem.

Theorem 1.39. Every 2-majority tournament has a dominated set of size at most

three.

This theorem will be used in Chapter 3.

1.7 Modular Counting

It is assumed when performing addition or subtraction on colors from the set {0,1, . . . ,k−

1}, it is done modulo k. It is assumed when performing addition or subtraction on

the indices of the vertices of a cycle {0,1, . . . ,s−1}, it is done modulo s. Calcula-

tions will be made without reference to these facts throughout the thesis.

1.8 Organization

In Chapter 2, we introduce the definition of a monochromatic sink. We also in-

troduce the first of two questions posed by Sands, Sauer, and Woodrow in [13],

which asks about the existence of monochromatic sinks in k-colored tournaments

without rainbow triangles. We present work from Shen (in [14]), Galeana-Sánchez

(in [5] and [6]), and Rojas-Monroy (in [6]) which frames the progress made on

answering the question from Sands, Sauer, and Woodrow. We use their results as

inspiration and direction towards our new results. Additionally, we introduce the

notion of nearly transitive tournaments and continue to prove results related to the

the question posed by Sands, Sauer, and Woodrow. We will find the existence of
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monochromatic sinks in k-colored nearly transitive tournaments. Melcher and Reid

introduced the concept of upset tournaments (a type of nearly transitive tourna-

ment) in [11] and we prove a slightly stronger result than their main result. We

additionally provide a result about the existence of monochromatic sinks in a k-

colored nearly transitive tournament with some restrictions on the coloring of its

back-edges.

In Chapter 3, we introduce the notion of ruling classes and introduce the second

question asked by Sands, Sauer, and Woodrow in [13]. We begin by presenting a

small result by Galeana-Sánchez and Rojas-Monroy from [7]. With this being the

extent of work published towards answering this problem, we then give results (and

a corresponding proof method) as to the existence of ruling classes in k-colored

tournaments. We end with a conjecture that would allow us to make conclusions

about the size of ruling classes in tournaments similar to those in Chapter 2.

The primary focus of this thesis is that of monochromatic paths and monochro-

matic sinks. In Chapter 4, we introduce the notion of α-step-chromatic sinks and

provide initial results and proofs pertaining to the question introduced in Chapter 2.
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Chapter 2

MONOCHROMATIC SINKS

In Chapter 1, we presented some results about the existence of serfs in tournaments

and the various relations between serfs, dominated vertices, and sinks. In this chap-

ter, we look for vertices in colored digraphs that essentially serve as sinks of the

digraph. That is, we look for a vertex in a digraph that can be reached by any other

vertex of the digraph along a monochromatic path.

Definition 2.1. A vertex in a digraph D is a monochromatic sink if every other

vertex in D can reach it along a monochromatic path.

The purpose of this chapter is to find monochromatic sinks in k-colored tour-

naments with various color restrictions. The work done in this chapter is inspired

by a question posed by Sands, Sauer, and Woodrow (Question 2.6) and subsequent

work done by Shen as well as Galeana-Sánchez and Rojas-Monroy.

Definition 2.2. Let T be a colored tournament on n vertices. A dominated rainbow

triangle on 3≤ i≤ n vertices is a subtournament of T containing a rainbow triangle

and i− 3 vertices, all of which dominate the vertices of the rainbow triangle. We

denote a dominated rainbow triangle on i vertices by T ∗i . A dominated rainbow

triangle on all n vertices will be denoted T ∗.

Figure 2.1 is an example of a 3-colored T ∗5 . Note that the T ∗5 in Figure 2.1 does

not have a monochromatic sink. In fact, there does not exist a monochromatic sink

in any k-colored tournament that is a T ∗.

Fact 2.3. A colored tournament that is a T ∗ does not have a monochromatic sink.
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Figure 2.1: An example of a T ∗5 .

Clearly, then, if a colored tournament has a monochromatic sink, it is not a T ∗.

However, must a colored tournament that is not a T ∗ have a monochromatic sink?

The answer is no, and many tournaments can be created to show this. For example,

the tournament given later in Figure 2.2 has no monochromatic sink, yet is not a

T ∗. In the next section, we present a question posed by Sands, Sauer, and Woodrow

with stronger conditions.

2.1 Monochromatic Reachability Question

We can view a path as a finite sequence of distinct vertices v0v1v2 . . . of a digraph D

so that there is a directed edge from vi to vi+1, for each i. If this sequence is infinite,

then the path is said to be an infinite outward path. Throughout this thesis, we

always view paths as finite sequences, but the definition of an infinite outward path

is useful for the following theorem proven by Sands, Sauer, and Woodrow in [13].

Theorem 2.4 (Sands, Sauer, and Woodrow, 1982, [13]). Let D be a digraph whose

edges are colored with two colors such that D contains no monochromatic infinite

15



outward path. Then there is an independent set S of vertices of D such that, for

every vertex x not in S, there is a monochromatic path from x to a vertex of S.

In a 2-colored tournament, this independent set is of size one and thus this single

vertex is a monochromatic sink.

Theorem 2.5 (Sands, Sauer, and Woodrow, 1982, [13]). If T is a 2-colored tourna-

ment, then T has a monochromatic sink.

We will give a proof of Theorem 2.5 in the next section. In a 3-colored tourna-

ment, we may no longer use Theorem 2.5 to find a monochromatic sink and in fact,

we can find a very basic tournament which has no monochromatic sink. Consider a

rainbow triangle. This is a tournament on 3 vertices which has no monochromatic

sink. In general, for any n,k ≥ 3, the k-colored tournament T ∗ is a tournament

on n vertices without a monochromatic sink. Naturally, then, Sands, Sauer, and

Woodrow posed the following question.

Question 2.6 (Sands, Sauer, and Woodrow, 1982, [13]). If T is a k-colored tourna-

ment without rainbow triangles, does T contain a monochromatic sink?

Shen showed in [14] that the answer is no when k ≥ 5. Figure 2.2 gives a

tournament on five vertices without rainbow cycles and without a monochromatic

sink. A tournament on n ≥ 6 vertices without rainbow triangles and without a

monochromatic sink can be created by adding n− 5 vertices one at a time and

directing all edges to all prior vertices (with edges colored any color).

Similar to Shen’s example when k = 4, Galeana-Sánchez and Rojas-Monroy

provided in [6] a tournament on six vertices without rainbow cycles and without

a monochromatic sink (see Figure 2.3). A tournament on n ≥ 7 vertices can be

created from Figure 2.3 similarly to how Shen’s tournament was extended.
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Figure 2.2: k-Colored Tournament With No Monochromatic Sink When k ≥ 5.
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Figure 2.3: k-Colored Tournament With No Monochromatic Sink When k ≥ 4.

We then rephrase the question to reflect the work done since the original posing

of the question.

Question 2.7. If T is a 3-colored tournament without rainbow triangles, does T

contain a monochromatic sink?
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Question 2.7 still remains open. Question 2.6 can be answered with additional

restrictions put on the coloring of the edges and we will present these results in this

chapter.

2.2 Minimum Counter Example

Within a proof of Shen’s in [14], a structure for a minimum counter example to

Question 2.6 is obtained. We provide a lemma, with proof, so we may use this

substructure throughout the thesis. First, we must introduce some terminology.

Definition 2.8. A cycle C = v0v1 . . .vs−1v0 is a dominating cycle in a digraph D if

for all i ∈ {0,1, . . . ,s− 1}, vi is a monochromatic sink in D− vi+1, but there is no

monochromatic path from vi+1 to vi in D.

Throughout the thesis, we consider Hamiltonian dominating cycles.

Definition 2.9. A property P is a hereditary property of a colored digraph D if the

digraph D−S has the property P for all S⊂V (D).

It is worth noting that a particular hereditary property is dependant not only

on the number of vertices in the digraph, but also on the coloring of the digraph.

A common hereditary property that is considered in this thesis is that a k-colored

digraph has no rainbow triangles. Below is the proof based on the proof given by

Shen in [14], however it has been generalized to consider any hereditary property

P , and not just the property that a tournament does not have rainbow triangles.

Lemma 2.10. Let T be a minimum k-colored tournament with hereditary property

P so that there is no monochromatic sink. Then T has a Hamiltonian dominating

cycle.
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Proof. Let T be a minimum tournament with hereditary property P so that there is

no monochromatic sink. Then for each v ∈ V (T ), there exists some vertex f (v) ∈

V (T ) so that x 7→ f (v) for all x ∈V (T )\{v}. Since T has no monochromatic sink,

v 67→ f (v), and therefore f (v)→ v. Note also that for any two distinct vertices

u,v ∈ V (T ), f (u) 6= f (v), for otherwise f (u) is a monochromatic sinks in T , a

contradiction. So we can assume that f is a bijection and that v 67→ f (v) for all

v ∈V (T ). By the relabeling f (vi) = vi+1, V (T ) is partitioned into cycles

v1v2 . . .vs1v1, vs1+1vs1+2 . . .vs2vs1+1, ... .

If there is more than one cycle, then consider the tournament with vertex set {v1,v2, . . . ,vs1}.

Call this tournament T ′. This is a smaller tournament than T , so there exists a

monochromatic sink vi in T ′. In particular, since vi+1 ∈ V (T ′), this implies that

vi+1 7→ vi, which is a contradiction. Thus there is only one cycle and this cycle is a

dominating cycle.

Observe the following proof of Theorem 2.5 which utilizes Lemma 2.10.

Proof. Let T be a 2-colored tournament. We consider the 2-coloring of the tourna-

ment to be its hereditary property. We will argue on |T | that T has a monochromatic

sink. For the base case when |T |= 2, this is trivially true. So assume |T |> 2 and as-

sume T has no monochromatic sink. By the Induction Hypothesis, this tournament

must be a minimum counter example and so by Lemma 2.10, T has a Hamiltonian

dominating cycle, C = v0v1 . . .vn−1v0. If C is monochromatic, then every vertex of

C is a monochromatic sink of T . So assume there exist consecutive edges along C

that are colored differently. Without loss of generality, say v0
0→ v1

1→ v2. Since C

is a dominating cycle, either v2
07→ v0 or v2

17→ v0. In the former case, v2
07→ v1, a
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contradiction. In the latter case, v1
17→ v0, a contradiction. Thus both cases lead to a

contradiction and we conclude that T must have a monochromatic sink.

The property that a tournament has no rainbow triangles (or dominated rainbow

triangles) is a hereditary property and as a result, we will be able to use Lemma

2.10 for many of the proofs throughout this thesis in the same fashion that it was

used in the previous proof.

2.3 Near-Monochromatic Cycles

We begin this section by defining a slight variation of a monochromatic digraph.

Definition 2.11. A digraph D is near-monochromatic if all edges of D are colored

the same with the possible exception of one edge.

Certainly, a monochromatic digraph is also a near-monochromatic digraph. The

converse statement is not necessarily true. If a digraph is not near-monochromatic

(or not monochromatic), we use the term non-near-monochromatic (or non-monochromatic)

to describe this property.

Definition 2.12. For some color c, a digraph with ` edges is said to be near-

monochromatic with c if at least `−1 of the edges are colored with c.

Galeana-Sánchez proved the following theorem.

Theorem 2.13 (Galeana-Sánchez, 1996, [5]). Let T be a k-colored tournament. If

every 3-cycle is monochromatic, then T has a monochromatic sink.

Note that the requirement that a 3-cycle is monochromatic prevents the graph

from containing a rainbow triangle. Galeana-Sánchez proved Theorem 2.13 by

showing that in a k-colored tournament T where all 3-cycles are monochromatic,
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it is the case that all 4-cycles are near-monochromatic. Then, using the following

theorem, T must have a monochromatic sink.

Theorem 2.14 (Galeana-Sánchez, 1996, [5]). Let T be a k-colored tournament so

that every 3- and 4-cycle is near-monochromatic. Then T has a monochromatic

sink.

Similar to the coloring restriction on 3-cycles in Theorem 2.13, the near-monochromatic

coloring of 3-cycles in Theorem 2.14 prevents the tournament from containing a

rainbow triangle. In Theorem 2.19, we prove a result similar to that of Theorem

2.13. We will show that a k-colored tournament that is not a T ∗ has a monochro-

matic sink when all 4-cycles are monochromatic. We must first, however, prove

some initial results. We begin with the following fact.

Fact 2.15. If D is a digraph with a near-monochromatic Hamiltonian cycle, then D

has a monochromatic sink.

The previous fact is easy to see when considering a monochromatic Hamiltonian

path (if the cycle is not monochromatic, there is exactly one monochromatic Hamil-

tonian path) along the near-monochromatic Hamiltonian cycle. The last vertex of

the path is the monochromatic sink of the digraph. We next establish two lemmas,

Lemma 2.16 and Lemma 2.17, to be used in the proof of Theorem 2.18. Lemma

2.16 will also be used repeatedly in the proof of Theorem 2.19. Theorem 2.18 will

be used to prove Theorem 2.19 in a similar fashion to how Galeana-Sánchez used

Theorem 2.14 to prove Theorem 2.13.

Lemma 2.16. Let T be a k-colored tournament on n vertices where all 4- and 5-

cycles are near-monochromatic. Suppose for two edges xy and yz, there exists a
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monochromatic path P of length at least two from z to x. Then either y 7→ x or

z 7→ y.

Proof. Let T be a k-colored tournament as described in the hypothesis. For colors

α,β ∈ {0,1, . . . ,k−1}, let x α→ y and y
β→ z. Note that this allows α to equal β . If

P is colored with either α or β , then either z α7→ y or y
β7→ x, respectively. In either

case, we are done, so we assume that P is colored with a color different than α and

β , say with γ . Note that the path P has length at least 3, since otherwise it would

create a non-near-monochromatic 4-cycle, a contradiction. In fact, we can reason

similarly that P has length at least 4. Also, we can assume y 6∈ V (P), as otherwise

z 7→ y and we are done. Let P = u0u1 . . .ut , where u0 = z,ut = x, and t > 3. If

u2→ y, then yzu1u2y is a 4-cycle with z
γ→ u1 and u1

γ→ u2, so then u2
γ→ y. Then

z 7→ y. Assume that y→ u2. If u3→ y, then similar reasoning finds that z 7→ y. Then

we may assume that y→ u3. If for all i ∈ {2, . . . , t− 2}, y→ ui, then yut−2ut−1xy

is a 4-cycle and therefore y
γ→ ut−2. But then y

γ7→ x. So assume otherwise. Let

i ∈ {2, . . . , t − 2} be minimum so that ui → y. Then uiyui−2ui−1ui is a 4-colored

cycle with ui−2
γ→ ui−1 and ui−1

γ→ ui. Thus either ui
γ→ y or y

γ→ ui−2 (or both). If

ui
γ→ y, then since P is colored with γ , zPuiy is a monochromatic path from z to y.

Hence z
γ7→ y. If y

γ→ ui−2, then yui−2Px is a monochromatic path from y to x. So in

all cases, we have that either y 7→ x or z 7→ y, as desired.

The following lemma will be used as the base case for Theorem 2.18.

Lemma 2.17. Let T be a k-colored tournament on 5 vertices that is not a T ∗ so that

all 4- and 5-cycles are near-monochromatic. Then, T has a monochromatic sink.

Proof. Let T be a k-colored tournament on 5 vertices. By Theorem 1.4, T has a

Hamiltonian path, P. Let P = v0v1v2v3v4. If v4→ v0, then v0v1v2v3v4v0 is a 5-cycle
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and by Fact 2.15, T has a monochromatic sink. So assume v0→ v4. If v1v2v3v4 is

monochromatic, then v4 is a monochromatic sink of T . So assume otherwise.

First assume v4 → v1. Since v1v2v3v4 is not monochromatic, three edges of

the 4-cycle v1v2v3v4v1 must be colored the same and the other must be colored

differently. Without loss of generality, let three of the edges be colored with 0 and

the other colored with 1. We have already established that it cannot be that v4v1 is

the edge colored with 1, so we have three cases.

Case 1: v3v4 is colored with 1. If v0 → v3, then v3 is a monochromatic sink

of T . So assume otherwise. That is, assume v3→ v0. If the 4-cycle v0v1v2v3v0 is

monochromatic, then v0 is a monochromatic sink of T . So assume otherwise. Then

v0v1v2v3v0 is near-monochromatic, with three of its edges colored 0 and one other

edge colored 1. If v3
0→ v0, then v0 is a monochromatic sink of T and if v0

0→ v1,

then v3 is a monochromatic sink of T . In either case, we find a monochromatic sink

of T .

Case 2: v2v3 is colored with 1. If v0→ v2, then v2 is a monochromatic sink of

T . So assume otherwise, that v2→ v0. Then v2v0v4v1v2 is a 4-cycle and so at least

one of v2v0 or v0v4 is colored with 0. If v2
0→ v0, then v0 is a monochromatic sink

of T . If v0
0→ v4, then v2 is a monochromatic sink of T .

Case 3: v1v2 is colored with 1. Then v1 is a monochromatic sink of T .

In all three cases, we found a monochromatic sink of T . So we then assume that

v1 → v4. If v2 7→ v4, the v4 is a monochromatic sink of T . So assume otherwise,

that v4 → v2 and the edges v2v3 and v3v4 are colored differently. Without loss of

generality, let v2
0→ v3 and v3

1→ v4. If v3 → v0, then v3v0v1v4v2v3 is a 5-cycle.

But then this cycle is near-monochromatic and therefore all vertices along the cycle

can reach at least one vertex on the cycle along a monochromatic path, and this

vertex is a monochromatic sink. So assume v0→ v3. If v3→ v1, then v3v1v4v2v3
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is a 4-cycle. If it is monochromatic, then v4 is a monochromatic sink. So exactly

three edges of the 4-cycle are colored the same and one is colored differently. If

the color 0 is shared on three edges, then in all three cases (v1
0→ v4

0→ v2
0→ v3,

v4
0→ v2

0→ v3
0→ v1, or v2

0→ v3
0→ v1

0→ v4) there is a monochromatic sink (v3,v1 or

v4, respectively). Then the edges v3v1,v1v4, and v4v2 are colored the same (not

with 0). If v2 → v0, then v2v0v3v1v4v2 is a 5-cycle and by Fact 2.15, T has a

monochromatic sink. So we may assume v0 → v2. Since v3v1,v1v4, and v4v2 are

all colored with the same color, v2 is a monochromatic sink of T . So assume that

v1→ v3. Assume v2→ v0. Then v2v0v1v3v4v2 is a 5-cycle and by Fact 2.15, T has

a monochromatic sink. So assume v0→ v2. If v4
c→ v2, where c ∈ {2,3, . . . ,k−1},

then T is a T ∗, a contradiction. If v4
0→ v2, then v3 is a monochromatic sink of T .

So it must be that v4
1→ v2 and therefore v2 is a monochromatic sink of T .

Theorem 2.18. Let T be a k-colored tournament on n≥ 5 vertices that is not a T ∗

so that all 4- and 5-cycles are near-monochromatic. Then, T has a monochromatic

sink.

Proof. Let T be a k-colored tournament on n ≥ 5 vertices as described in the hy-

pothesis. We argue by induction on |T | that T has a monochromatic sink. For the

base case when |T | = 5, Lemma 2.17 gives that T has a monochromatic sink. So

let |T | > 4 and assume T does not have a monochromatic sink. Then by the In-

duction Hypothesis, T is a minimum counter example to the result. By Lemma

2.10, there is a Hamiltonian dominating cycle, C. Let C = v0v1 . . .vn−1v0. If C is

monochromatic, then every vertex is a monochromatic sink of T . So assume oth-

erwise. Then there exists i ∈ {0,1, . . . ,n− 1} so that vivi+1 is colored differently

than vi+1vi+2. Without loss of generality, let v0
0→ v1

1→ v2. Since C is a dominating

cycle, v3 7→ v0 along some path P = u0u1 . . .ut , where v3 = u0 and v0 = ut . We then
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have three cases: either v2
0→ v3, v2

1→ v3, or v2
c→ v3, where c ∈ {2,3, . . . ,k−1}.

Case 1: Assume v2
0→ v3. We then have three subcases: either v3

07→ v0, v3
17→ v0,

or v3
c7→ v0, where c ∈ {2,3, . . . ,k−1}, along P.

Case 1a: Assume v3
07→ v0 along P. Then v2v3Pv0v1 is a monochromatic path

from v2 to v1, a contradiction.

Case 1b: Assume v3
17→ v0 along P. Since all 4- and 5-cycles are near-monochromatic,

we have that t > 2. If u1→ v1, then u1v1v2v3u1 is a 4-cycle. Therefore u1
1→ v1 and

thus v3
17→ v2, a contradiction. So v1→ u1. Similarly, we reason that v1→ u2. Sup-

pose for all i ∈ {1,2, . . . , t−2}, v1→ ui. Then v1ut−2ut−1v0v1 is a 4-cycle. There-

fore v1
1→ ut−2 and thus v1

17→ v0, a contradiction. So choose i ∈ {3,4, . . . , t−2} to

be minimum so that ui→ v1. Then v1ui−2ui−1uiv1 is a 4-cycle where ui−2
1→ ui−1

and ui−1
1→ ui. Then either v1

1→ ui−2 or ui
1→ v1. If v1

1→ ui−2, then v1
17→ v0, a

contradiction. If ui
1→ v1, then v3

17→ v2, a contradiction.

Case 1c: Assume v3
c7→ v0, where c ∈ {2,3, . . . ,k− 1}, along P. Without loss

of generality, let v3
27→ v0. We reason similarly as in Case 1b to find that t > 2 and

both v1 → u1 and v1 → u2. Suppose for all i ∈ {1,2, . . . , t − 2}, v1 → ui. Then

v1ut−2ut−1v0v1 is a 4-cycle. Therefore v1
2→ ut−2 and thus v1

27→ v0, a contradiction.

So choose i ∈ {3,4, . . . , t−2} to be minimum so that ui→ v1. Then v1ui−2ui−1uiv1

is a 4-cycle where ui−2
2→ ui−1 and ui−1

2→ ui. Then either v1
2→ ui−2 or ui

2→ v1.

If v1
2→ ui−2, then v1

27→ v0, a contradiction. So then ui
2→ v1. But then by Lemma

2.16, we arrive at a contradiction.

In all three subcases, we arrive at a contradiction. So assume Case 1 not to be

true.

Case 2: Assume v2
1→ v3. We again have three subcases: v3

07→ v0, v3
17→ v0, or

v3
c7→ v0, where c ∈ {2,3, . . . ,k−1}, along P.
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Case 2a: Assume v3
07→ v0 along P. By Lemma 2.16, we have that either v3 7→ v2

or v2 7→ v1. In either case, we have a contradiction.

Case 2b: Assume v3
17→ v0 along P. Then v1v2v3Pv0 is a monochromatic path

from v1 to v0, a contradiction.

Case 2c: Assume v3
c7→ v0, where c ∈ {2,3, . . . ,k− 1}, along P. If u2 → v2,

then u2v2v3u1u2 is a 4-cycle which is either non-near-monochromatic or gives a

monochromatic path from v3 to v2. In either case, we arrive at a contradiction. So

v2→ u2. If u3→ v2, we arrive at a similar contradiction, so assume v2→ u3. If for

all i ∈ {4,5, . . . , t−1}, v2→ ui, then v2ut−1v0v1v2 is a 4-cycle that is colored with

at least 3 colors, a contradiction. So choose i ∈ {4,5, . . . , t−1} to be minimum so

that ui → v2. Then v2ui−2ui−1uiv2 is a 4-cycle with ui−2
c→ ui−1 and ui−1

c→ ui.

Therefore v2
c→ ui−2 or ui

c→ v2 (or both). If ui
c→ v2, then v3

c7→ v2, which is a

contradiction. So then assume v2
c→ ui−2. Then by Lemma 2.16, either v2 7→ v1 or

v1 7→ v0. In either case, we have a contradiction.

In all three subcases, we arrive at contradictions. So assume Case 2 not to be

true.

Case 3: Assume v2
c→ v3, where c∈ {2,3, . . . ,k−1}. Without loss of generality,

let v2
2→ v3. We then have four cases: v3

07→ v0, v3
17→ v0, v3

2→ v0, or v3
c′→ v2, where

c′ ∈ {3,4, . . . ,k−1}.

Case 3a: Assume v3
07→ v0 along P. Then by Lemma 2.16, either v3 7→ v2 or

v2 7→ v1. In either case, we have a contradiction.

Case 3b: Assume v3
17→ v0 along P. If v2→ ut−1, then v0v1v2ut−1v0 is a 4-cycle

and so v2
1→ ut−1. But then v1

17→ v0, a contradiction. So ut−1→ v2. Similarly, we

reason that ut−2→ v2. If for all i∈ {1,2, . . . , t−3}, ui→ v2, then v3u1u2v2v3 is a 4-

cycle with v3
1→ u1

1→ u2. Since v2
2→ v3 and all 4-cycles are near-monochromatic,
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u2
1→ v2. Then v3u1u2v2 is a monochromatic path from v3 to v2, a contradiction.

Then choose a maximum i ∈ {1,2, . . . , t−3} so that v2→ ui. Then v2uiui+1ui+2v2

is a 4-cycle with ui
1→ ui+1

1→ ui+2. Then either ui+2
1→ v2 or v2

1→ ui (or both).

If v2
1→ ui, then v1v2uiPv0 is a monochromatic path from v1 to v0. If ui+2

1→ v2,

then v3Pui+1v2 is a monochromatic path from v3 to v2. In either case, we have a

contradiction.

Case 3c: Assume v3
27→ v0 along P. Then by Lemma 2.16, either v2 7→ v1 or

v1 7→ v0, both contradictions.

Case 3d: Assume v3
c′→ v2, where c′ ∈ {3,4, . . . ,k−1}. Without loss of gener-

ality, let P be colored with 3. Then both ut−1 → v2 and ut−2 → v2, as otherwise,

there would be a 3-colored 4- or 5-cycle. If for all i ∈ {1,2,3, . . . , t− 1}, ui→ v2,

then v2v3u1u2v2 is a 4-cycle with v3
3→ u1

3→ u2. Since v2
2→ v3 and the 4-cycle

is near-monochromatic, u2
3→ v2. But then v3

37→ v2, a contradiction. Then choose

a maximum i ∈ {1,2, . . . , t− 3} so that v2→ ui. Then v2uiui+1ui+2v2 is a 4-cycle

with ui
3→ ui+1

3→ ui+2. Then either ui+2
3→ v2 or v2

3→ ui (or both). If v2
3→ ui,

then by Lemma 2.16, either v2 7→ v1 or v1 7→ v0 (or both). In either case, we have a

contradiction. If ui+2
3→ v2, then v3Pui+2v2 is a monochromatic path from v3 to v2,

a contradiction.

In all 4 subcases we arrive at contradictions. Thus in all 3 cases, we arrive at

contradictions and so we must conclude that T has a monochromatic sink.

Theorems 2.14 and 2.18 are independent of each other. One does not imply

the other. In Figure 2.4 , we see that Theorem 2.14 does not imply Theorem

2.18. In particular, all 3- and 4-cycles of the tournament in Figure 2.4 are near-

monochromatic, yet the 5-cycle v0v4v3v2v1v0 is not near-monochromatic. In Figure

2.5, we see that Theorem 2.18 does not imply Theorem 2.14. In particular, all 4- and
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5-cycles of the tournament in Figure 2.5 are near-monochromatic, yet the 3-cycle

v1v4v3 is not near-monochromatic.
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Figure 2.4: Thm. 2.14 6⇒ Thm. 2.18
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Figure 2.5: Thm. 2.18 6⇒ Thm. 2.14

We now give Theorem 2.19.

Theorem 2.19. Let T be a k-colored tournament on n≥ 5 vertices that is not a T ∗

so that all 4-cycles of T are monochromatic. Then T has a monochromatic sink.

Proof. Let T be a k-colored tournament as described in the hypothesis. We argue

by induction on the number of non-near-monochromatic 5-cycles in T that T has

a monochromatic sink. For the base case, consider when there are zero non-near-

monochromatic 5-cycles. Thus every 5-cycle of T is near-monochromatic and so

by Result 2.18, T has a monochromatic sink. So assume there are ` > 0 non-

near-monochromatic 5-cycles and assume a tournament with less than ` non-near-

monochromatic 5-cycles has a monochromatic sink. Let C = v0v1v2v3v4v0 be a

5-cycle of T that is non-near-monochromatic. First assume there are no square

edges of C. Then for each i ∈ {0,1,2,3,4}, let Ci = vivi−2vi−1vi+2vi be a 4-cycle
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of T . Each Ci is monochromatic. For each i ∈ {0,1,2,3,4}, E(Ci)∩E(Ci+1) =

{vivi−2}, where addition is done modulo 4. Thus each Ci is colored the same and

since E(C)⊂
⋃4

i=0 E(Ci), C is monochromatic, contradicting that C was non-near-

monochromatic.

Assume, then, that C has at least two square edges. Without loss of generality,

we let v0v2 ∈ E(T ) be a square edge of C. Additionally, let i ∈ {1,2,3,4} so that

vivi+2 ∈ E(T ). Then C′ = v0v2v3v4v0 and C′′ = vivi+2vi+3vi+4vi are 4-cycles. They

are both monochromatic. Without loss of generality, C′ is colored with 0 and v0v1

is colored with 1. Since |E(C′)∩E(C′′)| ≥ 1, C′′ is also colored with 0. Since v0v1

or v1v2 (or both) is an edge of C′′, we then have that C is near-monochromatic, a

contradiction.

Finally, then, assume v0v2 is the only square edge. Again, let C′ = v0v2v3v4v0

be colored with 0 and v0v1 be colored with 1. The remaining edges of T [C] are then

v3v1, v4v2, v0v3, and v1v4. We will show that there is a monochromatic path colored

0 from v0 to v1. We will then recolor the edge v0v1 with 0. Then, we will show that

the recoloring did not create any non-monochromatic 4-cycles or any non-near-

monochromatic 5-cycles. Additionally, we will show that the recoloring did not

create a T ∗. By recoloring any 5-cycle that is not near-monochromatic, we may then

apply Theorem 2.18 to the recolored tournament to obtain a monochromatic sink

in T . Any monochromatic path that follows a recolored edge xy in the recolored

tournament will instead follow the monochromatic path colored from x to y in T .

The 4-cycles v1v4v2v3v1 and v0v3v1v4v0 each have an edge colored 0. Therefore,

all edges of the two 4-cycles are colored 0. Then v0
0→ v3

0→ v1 is a monochromatic

path colored 0 from v0 to v1. Obtain the tournament T ′ from T by recoloring v0v1

with 0. It is necessary to show that the recoloring did not create a T ∗, any non-

monochromatic 4-cycles, or any non-near-monochromatic 5-cycles.
29



First assume that the recoloring of v0v1 has created a non-monochromatic 4-

cycle. This cycle must be colored 1 since v0v1 was originally colored 1. So there

are vertices x and y so that v0v1xyv0 is a 4-cycle where v0
0→ v1 and v1

1→ x 1→ y 1→ v0.

First assume x= v2. Consider the edge between y and v1. If y→ v1, then yv1v4v2y is

a 4-cycle in T colored with more than one color, a contradiction. So assume v1→ y.

But then v1yv0v3v1 is a 4-cycle colored with more than 1 color, a contradiction. So

assume x 6= v2. If y→ v3, then yv3v1xy is a 4-cycle colored with more than 1 color,

a contradiction. So then v3→ y. But then v3yv0v2v3 is a 4-cycle colored with more

than 1 color, a contradiction. So, in any case, we arrive at a contradiction. The

recoloring of v0v1 does not create a non-monochromatic 4-cycle.

Next, we show that T is not a T ∗. It is enough to show a rainbow triangle was

not created. Assume for contradiction that there exists x ∈ V (T ) so that v0v1xv1 is

a rainbow triangle in the recolored tournament. Let α,β ∈ {0,1, . . . ,k−1} so that

v1
α→ x

β→ v0. Note that α 6= β and α,β 6= 0. Then v0v3v1xv0 is a 4-cycle colored

with more than 1 color, a contradiction. Thus a rainbow triangle was not created by

the recoloring of v0v1 and therefore T is not a T ∗.

Finally, we show that no additional non-near-monochromatic 5-cycles were cre-

ated. Assume there exist x,y,z ∈ V (T ) so that the recoloring of v0v1 from 1 to 0

creates a non-near-monochromatic 5-cycle C′ = v0v1xyzv0 that was originally near-

monochromatic when v0v1 was colored with 1. We have two cases, v1v2 ∈ E(C′) or

v1v2 6∈ E(C′). First assume v1v2 ∈ E(C′). That is, x = v2. Since v0
0→ v2, the 4-cycle

v0v2yzv0 is colored with 0. But then C′ is a near-monochromatic 5-cycle, which we

assumed was not the case. So assume v1v2 6∈ E(C′). If both v1
1
6→ x and x

1
6→ y,

then, since C′ was near-monochromatic when v0
1→ v1, we have that v1x,xy,yz, and

zv0 are all colored the same, which contradicts that we assumed C′ to be non-near-

monochromatic after recoloring v0v1 with 0. We arrive at a similar contradiction
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if we assume that both y
1
6→ z and z

1
6→ v0. Thus we may say that the following is

a fact: at least one of v1x or xy is colored with 1 and at least one of yz or zv0 is

colored with 1. Consider the edge between y and v3. If y→ v3, then yv3v1xy is

a non-monochromatic 4-cycle, a contradiction. So v3→ y. But then v3yzv0v3 is a

non-monochromatic 4-cycle, a contradiction .

There are now less than ` non-near-monochromatic 5-cycles after the recoloring

of the edge v0v1. By the Induction Hypothesis, the recolored tournament has a

monochromatic sink. If the edge v0v1 is used along a monochromatic path to the

monochromatic sink in the recolored tournament, then the monochromatic path will

instead use the path v0v3v1 in T . Therefore, T has a monochromatic sink.

It is then natural to make the following conjecture.

Conjecture 2.20. Let T be a k-colored tournament that is not a T ∗. If there exists

` ∈ {3,4, . . . ,n} so that all `-cycles are monochromatic, then T has a monochro-

matic sink.

One of the difficulties, it seems, with answering this conjecture in the same

manner that Theorem 2.19 was proven is that the proof of a base case, if we are

to argue on the number of vertices, becomes quite complicated once the order of

the tournament gets large. Further, in the proof of Theorem 2.19, it was necessary

to use Theorem 2.18. If the same proof method were to be used for higher values

of ` in the previous conjecture, then it would be necessary to prove results similar

to Theorem 2.18 where the color restrictions were put on cycles larger than 4- and

5-cycles.

2.4 Semi-Cycles

Shen showed the following theorem in [14].
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Theorem 2.21 (Shen, 1986, [14]). If T is a k-colored tournament so that any sub-

tournament of order 3 is near-monochromatic, then T has a monochromatic sink.

We generalize the definition of the subtournaments of order 3 from Shen’s result

to include larger subgraphs.

Definition 2.22. If C is a digraph that is either a cycle or has an edge xy so that

C− xy+ yx is a cycle, then C is called a semi-cycle.

A cycle is then a semi-cycle. A semi-cycle on s vertices is sometimes called

an s-semi-cycle. The method for denoting semi-cycle varies. If an s-semi-cycle

is just an s-cycle, then we denote the semi-cycle the same way we would a cycle.

However, for an s-semi-cycle on vertices {v0,v1, . . . ,vs−1} consisting of the path

v0v1 . . .vs−1 and the edge v0vs−1, we write SC(v0v1 . . .vs−2;vs−1). For example, in

Figure 2.4, SC(v3v0;v2) is a 3-semi-cycle.

Theorems 2.23 and 2.24 are similar to Theorem 2.21, but instead of requiring

all 3-semi-cycles to be near-monochromatic (as Shen did in Theorem 2.21), we

require all 4-semi-cycles to be near-monochromatic (in Theorem 2.23) and all 5-

semi-cycles to be near-monochromatic (in Theorem 2.24).

It is important to note that Theorem 2.19 is not proven by the following theorem.

In Theorem 2.23, the fact that the coloring on semi-cycles - specifically, the semi-

cycles which are not also cycles - is restricted puts additional requirements on the

coloring that is not covered by the hypothesis of Theorem 2.19.

Theorem 2.23. Let T be a k-colored tournament on n ≥ 4 vertices so that all 4-

semi-cycles are near-monochromatic. Then T has a monochromatic sink.

Proof. Let T be a k-colored tournament as described in the hypothesis. We argue

by induction on |T | that T has a monochromatic sink. For the base case, let |T |= 4.
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Recall that T is isomorphic to one of the four tournaments listed in Section 1.4.

If T is transitive or a dominating triangle, then T is has a dominated vertex and

this vertex is a monochromatic sink. If T is Hamiltonian, then by Fact 2.15, T

has a monochromatic sink. So assume T is a dominated triangle. Let v1v2v3v1 be

the triangle and let v0 dominate every vertex of the triangle. Assume first that the

triangle is a rainbow triangle. Any two edges from v0 to the triangle must be colored

the same as they create a 4-semi-cycle with two (differently colored) edges of the

triangle. Thus all edges from v0 are colored the same. Since the triangle is rainbow,

there exist two edges not colored the same as the edges from v0, say v1v2 and v2v3.

Then SC(v0v1v2;v3) is 3-colored, a contradiction. Then we assume the triangle is

not rainbow and so at least two edges of the triangle are colored the same, say again

v1v2 and v2v3. Then v3 is a monochromatic sink of T .

So assume |T | > 4 and assume that T has no monochromatic sink. By the In-

duction Hypothesis, T is a minimum counter example to the theorem. By Lemma

2.10, T has a dominating Hamiltonian cycle. Let C = v0v1 . . .vn−1v0 be the Hamil-

tonian dominating cycle. If C is monochromatic, then every vertex along C is a

monochromatic sink of T , a contradiction. So there must exist i ∈ {0,1, . . . ,n−1}

so that vivi+1 and vi+1vi+2 are colored differently. Without loss of generality, say

v0
0→ v1 and v1

1→ v2. Since C is a dominating cycle, there is a monochromatic path,

P = u0u1 . . .ut , from u0 = v2 to ut = v0. If P is colored with 0, then v2Pv0v1 is a

monochromatic path from v2 to v1, a contradiction. Similarly, if P is colored with

1, then v1v2Pv0 is a monochromatic path from v1 to v0, a contradiction. So assume,

without loss of generality, that P is colored with 2. First consider when |P| > 1.

Then v2u1u2v1v2 is a cycle on 4 vertices or SC(v2u1u2;v1) is a semi-cycle on 4

vertices. In both cases, either u2
2→ v1 or v1

2→ u2. If u2
2→ v1, then v2u1u2v1 is a

monochromatic path from v2 to v1, a contradiction. So v1
2→ u2. But then v1u2Puv0

33



is a monochromatic path from v1 to v0, a contradiction. Now consider when |P|= 1.

That is, v2
2→ v0. If v3→ v0, then v0v1v2v3v0 is a 4-cycle and so either v1

17→ v0 or

v2
07→ v1, a contradiction. So assume v0→ v3. Note that since SC(v0v1v2;v3) is a 4-

semi-cycle, and is therefore near-monochromatic, either v2
0→ v3 or v2

1→ v3. First

assume v3 → v1. Then v1v2v0v3v1 is a 4-cycle with edges v1
1→ v2 and v2

2→ v0.

Then either v0
2→ v3

2→ v1 (in which case, v2
27→ v1) or v0

1→ v3
1→ v1 (in which case,

v3
17→ v2). In both cases, we arrive at a contradiction. So then assume v1→ v3. Since

v2
2→ v0,v0

0→ v1, either v2
0→ v3 or v2

1→ v3, and SC(v2v0v1;v3) is a 4-semi-cycle,

then we conclude that v1
0→ v3. But then SC(v1v2v0;v3) is non-near-monochromatic

since v1
1→ v2,v2

2→ v0, and v1
0→ v3, a contradiction. Thus there is no tournament

whose 4-semi-cycles are near-monochromatic without a monochromatic sink.

This result can also be shown when all 5-semi-cycles are near-monochromatic.

Theorem 2.24. Let T be a k-colored tournament on n ≥ 5 vertices so that all 5-

semi-cycles are near-monochromatic. Then T has a monochromatic sink.

Proof. Let T be a k-colored tournament on n≥ 5 vertices so that all 5-semi-cycles

are near-monochromatic. We will argue by induction on |T | that T has a monochro-

matic sink. For the base case, consider when |T | = 5. We have three cases: either

T has a dominating vertex, a dominated vertex, or neither a dominating nor a dom-

inated vertex.

Case 1: Assume T has a dominated vertex. Then this vertex is a monochromatic

sink of T .

Case 2: Assume T has a dominating vertex, v0, and no dominated vertex. The

remaining four vertices induce a tournament of one of the four forms in Section 1.4.

Let T4 be the tournament on 4 vertices with vertices where V (T4) = {v1,v2,v3,v4}.

Since T4 is assumed not to have a dominated vertex, it must be of the Hamiltonian
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form or a dominated triangle form. First assume T4 is Hamiltonian. Let C :=

v1v2v3v4v1 be a 4-cycle in T4. If there exists i ∈ {1,2,3,4} so that vivi+1,vi+1vi+2,

and vi+2vi+3 are all colored the same, then vi+3 is a monochromatic sink of T . So

assume that is not the case. Since SC(v0v1v2v3;v4) must be near-monochromatic,

let at least 4 of its edges be colored, without loss of generality, with 0. Then exactly

one of the edges v1v2, v2v3, or v3v4 is not colored with 0. Say, without loss of

generality, it is colored with 1. Let vivi+1, where i∈ {1,2,3} be this edge colored 1.

Then the edges of SC(v0vivi+1vi+2;vi+3) are colored 0 with the exception of vivi+1,

which is colored with 1. Thus vi+1vi+2vi+3vi is a monochromatic path (colored with

0), which contradicts our earlier assumption.

So then assume T4 is a dominated triangle. Without loss of generality, let

v0 → v1 and let v2 → v3 → v4 → v2. Additionally, let both v0 and v1 dominate

v2,v3, and v4. If there exists i ∈ {2,3,4} so that vivi+1vi+2 is a monochromatic

path, then vi+2 is a monochromatic sink of T . So assume the triangle v2v3v4v2

is rainbow. Say v2
0→ v3,v3

1→ v4, and v4
2→ v2. We then look at three different

5-semi-cycles: SC(v0v1v2v3;v4), SC(v0v1v3v4;v2), and SC(v0v1v4v2;v3). Exactly

one edge of SC(v0v1v2v3;v4) is colored differently than the rest with the two colors

on SC(v0v1v2v3;v4) being 0 and 1. Exactly one edge of SC(v0v1v3v4;v2) is colored

differently than the rest with the two colors on SC(v0v1v3v4;v2) being 1 and 2. Ex-

actly one edge of SC(v0v1v4v2;v3) is colored differently than the rest with the two

colors on SC(v0v1v4v3;v3) being 0 and 2. Also note that two edges are shared be-

tween any pair of the 5-semi-cycles. Therefore, if 4 edges of SC(v0v1v2v3;v4) are

colored with 0, then this contradicts that no edges of SC(v0v1v3v4;v2) are colored

with 0. Also, if 4 edges of SC(v0v1v2v3;v4) are colored with 1, then this contradicts

that no edges of SC(v0v1v4v2;v3) are colored with 1. In either case, we have arrived

at a contradiction.
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Case 3: Assume T does not have either a dominating nor a dominated vertex.

Let T4 be obtained by removing any vertex of T , say v0. If T4 is transitive, then let

v1 be the dominating vertex in T4 and v4 be the dominated vertex in T4. Without loss

of generality, let v2→ v3. Since T has neither a dominating vertex nor a dominated

vertex, we have that v4 → v0 and v0 → v1. Then v0v1v2v3v4v0 is a 5-cycle and

by Fact 2.15, T has a monochromatic sink. So assume T4 is Hamiltonian. Let

v1v2v3v4v1 be a 4-cycle of T . There then exists i ∈ {1,2,3,4} so that vi → v0

and v0 → vi+1. Then v0vi+1vi+2vi+3viv0 is a 5-cycle and by Fact 2.15, T has a

monochromatic sink. So assume T4 is a dominating triangle. Let v1→ v2→ v3→

v1 where vi → v4, for all i ∈ {1,2,3}. Since v4 is not dominated in T , v4 → v0.

Since v0 is not dominated in T , there exists i ∈ {1,2,3} so that v0 → vi. Then

v0vivi+1vi+2v4v0 is a 5-cycle and by Fact 2.15, T has a monochromatic sink. Finally

assume that T4 is a dominated triangle. Let v2→ v3→ v4→ v2 where v1→ vi, for

all i∈ {2,3,4}. Since v1 is not dominating in T , v0→ v1. Since v0 is not dominating

in T , there exists i ∈ {2,3,4} so that vi→ v0. Then v1v0vivi+1vi+2v1 is a 5-cycle of

T and by Fact 2.15, T has a monochromatic sink.

Next assume |T | > 5 and assume that T does not have a monochromatic sink.

By the Induction Hypothesis, T is a minimum counter example to the theorem. By

Lemma 2.10, T has a Hamiltonian dominating cycle, C = v0v1 . . .vn−1v0. If C is

monochromatic, then every vertex of T is a monochromatic sink of T and we are

done. So assume there are consecutive edges along C colored differently. Without

loss of generality, say v0v1 and v1v2 are these edges and v0
0→ v1

1→ v2. If v4→ v0,

then either v2
07→ v1 or v1

17→ v0, contradicting that C is a dominating cycle. So

v0 → v4. Let P = u0u1 . . .ut be the monochromatic path from u0 = v4 to ut = v0.

Note that t > 1 since v0→ v4. Now SC(v0v1v2v3;v4) has edges v0
0→ v1 and v1

1→ v2.

So then either v2
1→ v3

1→ v4 or v2
0→ v3

0→ v4. First assume v2
1→ v3

1→ v4. Then
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SC(v2v3v4u1;u2) has two edges of P as well as v2
1→ v3

1→ v4. Thus since both

edges of P are colored the same, both are colored with 1. But then v1v2v3v4Pv0

is a monochromatic path from v1 to v0, a contradiction. So instead assume v2
0→

v3
0→ v4. Then similar reasoning yields that v2v3v4Pv0v1 is a monochromatic path

colored 0 from v2 to v1, a contradiction. Thus we conclude that T must have a

monochromatic sink.

It is worth noting that the Theorems 2.21 and 2.23 do not imply one another as

well as Theorems 2.23 and 2.24 do not imply one another. Figure 2.6 is a tourna-

ment on 4 vertices where all 3-semi-cycles are near-monochromatic, however the

same can not be said for all its 4-semi-cycles. In particular, the 4-cycle v0v3v2v1v0

is 3-colored. Figure 2.7 is a tournament on 4 vertices where all 4-semi-cycles are

near-monochromatic, but the same is not true for all its 3-semi-cycles. In particular,

the 3-cycle v0v3v2v0 is 3-colored. Let NM mean near-monochromatic.
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Figure 2.7: NM 4-semi-cycles.

We see similar results for 4- and 5-semi-cycles in Figures 2.8 and 2.9. Figure

2.8 is a tournament on 5 vertices where all 4-semi-cycles are near-monochromatic,

however the same can not be said for all its 5-semi cycles. In particular, the 5-cycle

v0v1v2v3v4v0 is non-near-monochromatic. Figure 2.9 is a tournament on 5 vertices
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where all 5-semi-cycles are near-monochromatic, but the same is not true for all its

4-semi-cycles. In particular, SC(v1v2v3;v4) is non-near-monochromatic.
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Shen’s result, along with Theorems 2.23 and 2.24, gives us the following theo-

rem.

Theorem 2.25. Let T be a k-colored tournament of order n. If there exists ` ∈

{3,4,5} so that every `-semi-cycle of T is near-monochromatic, then T has a

monochromatic sink.

A natural conjecture to pose then is the following.

Conjecture 2.26. Let T be a k-colored tournament of order n. If there exists ` ∈

{3,4, . . . ,n} so that every `-semi-cycle of T is near-monochromatic, then T has a

monochromatic sink.

Similar to Conjecture 2.20, the main difficulty with answering this conjecture

seems to be proving the base case for tournaments with large orders, assuming
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of course we are arguing on the number of vertices in the tournament, as we did

in the proofs of Theorem 2.23 and 2.24. The induction step proves to be a simple

argument, as it follows similar to the proof of Theorem 2.24. We make the following

conjecture to be used in a proof for Conjecture 2.26.

Conjecture 2.27. Let T be a k-colored tournament of order n. If all n-semi-cycles

of T are near-monochromatic, then T has a monochromatic sink.

If this conjecture is true, then we can answer Conjecture 2.26.

Theorem 2.28. Let T be a k-colored tournament of order n. If there exists ` ∈

{3,4, . . . ,n} so that every `-semi-cycle of T is near-monochromatic and Conjecture

2.27 is true for n = `, then T has a monochromatic sink.

Proof. Fix `≥ 3. Let T be a k-colored tournament of order n. Assume all `-semi-

cycles of T are near-monochromatic. We will argue by induction on n that T has

a monochromatic sink. For the base case of n = `, T has a monochromatic sink

(since Conjecture 2.27 is assumed to be true). So we assume n > ` and assume

that T has no monochromatic sink. By the induction hypothesis, T is a minimum

counter example to the theorem. By Lemma 2.10, T has a Hamiltonian dominat-

ing cycle, C = v0v1 . . .vn−1v0. If C is monochromatic, then every vertex of T is

a monochromatic sink of T and we are done. So assume there are consecutive

edges along C colored differently. Without loss of generality, say v0v1 and v1v2

are these edges and v0
0→ v1

1→ v2. If v`−1 → v0, then either v2
07→ v1 or v1

17→ v0,

contradicting that C is a dominating cycle. So v0→ v`−1. Let P = u0u1 . . .ut be the

monochromatic path from u0 = v`−1 to ut = v0. Note that t > 1 since v0→ v`−1.

Now SC(v0v1 . . .v`−2;v`−1) has edges v0
0→ v1 and v1

1→ v2. So then either v2
1→

v3
1→ ··· 1→ v`−1 or v2

0→ v3
0→ ··· 0→ v`−1. First assume v2

1→ v3
1→ ··· 1→ v`−1.
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Then SC(v2v3 . . .v`−1u1;u2) has two edges of P as well as v2
1→ v3

1→ ··· 1→ v`−1.

Thus since both edges of P are colored the same, both are colored with 1. But then

v1v2 . . .v`−1Pv0 is a monochromatic path from v1 to v0, a contradiction. So instead

assume v2
0→ v3

0→·· · 0→ v`−1. Then similar reasoning yields that v2v3 . . .v`−1Pv0v1

is a monochromatic path colored 0 from v2 to v1, a contradiction. Thus we conclude

that T must have a monochromatic sink.

At this point, it is necessary only to show that Conjecture 2.27 is true.

2.5 Nearly Transitive Tournaments

The term nearly transitive tournament was used by Melcher and Reid in [11] to

describe a tournament which is transitive after changing the orientation of a small

number of edges. We will prove two results regarding these nearly transitive tour-

naments.

Definition 2.29. Let the vertices of T be ordered (vn−1,vn−2, . . . ,v1,v0). We call

T an upset tournament if the reversal of the edges along a path from v0 to vn−1

results in a transitive tournament where vn−1 is the dominating vertex and v0 is the

dominated vertex.

Melcher and Reid showed the following result regarding upset tournaments.

Theorem 2.30 (Melcher and Reid, 2010, [11]). Let T be a k-colored tournament

without rainbow triangles so that every strong component is either a single vertex

or an upset tournament. Then T has a monochromatic sink.

We will prove a slightly stronger statement in Theorem 2.33, but must first

establish two definitions.
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Definition 2.31. If (vn−1,vn−2, . . . ,v1,v0) is an ordering of vertices of a digraph D,

call an edge viv j a back-edge if i < j.

Definition 2.32. If (vn−1,vn−2, . . . ,v1,v0) is an ordering of vertices of a digraph D,

a back-path is a path of D composed entirely of back-edges.

We can now prove a slightly stronger result than that of Theorem 2.30. In ad-

dition, this proof is slightly smaller than that of Theorem 2.30 and is self-contained

(that is, no additional lemmas are required for its proof).

Theorem 2.33. Let T be a k-colored tournament without rainbow triangles with an

ordering (vn−1,vn−2, . . . ,v1,v0) of its vertices so that any two maximal back-paths

are vertex disjoint. Then T has a monochromatic sink.

Proof. Let T be a k-colored tournament as described in the hypothesis. We argue

by induction on |T | that T has a monochromatic sink. If |T | = 1, then the result

is trivially true. So assume the result is true when the order of the tournament is

less than |T | and assume |T | > 1. If P and Q are any two maximal back-paths,

V (P)∩V (Q) = /0. Thus for any v ∈ V (T ), there is at most one back-edge directed

away from v and at most one back-edge directed into v. If d+(v0) = 0, then v0 is

a monochromatic sink. So assume there exists i > 0 so that v0→ vi. Without loss

of generality, v0
0→ vi. If vi 7→ v0, then v0 is a monochromatic sink of T and we

are done. So assume vi 67→ v0. If there exists j > 0 so that v j
07→ v0, then apply the

induction hypothesis to T −{v j} to get a monochromatic sink vm. If m = 0, then

v j 7→ v0 and therefore v0 is a monochromatic sink of T . If m > 0, then v0
07→ vm and

thus v j
07→ vm. Therefore vm is a monochromatic sink of T . So assume for all j > 0,

v j
0
67→ v0. If there exists i′ < i so that vi

1→ vi′ , then either vi
1→ vi′

1→ v0, in which

case v0 is a monochromatic sink of T , or vi
1→ vi′

`→ v0
0→ vi (for ` ≥ 2), which
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contradicts that T has no rainbow triangles. If there exists i′ < i so that vi
`→ vi′ , for

some `≥ 2, then either vi
`→ vi′

`→ v0, in which case v0 is a monochromatic sink of

T , or vi
`→ vi′

`′→ v0
0→ vi, where `′ 6∈ {0,2}, which contradicts that T has no rainbow

triangles. Thus, we assume vi
0→ vi′ for all 0< i′< i. Apply the induction hypothesis

to T −{v0} to get a monochromatic sink vm′ . If m′ ≤ i, then v0
0→ vi

0→ vm′ and so

vm′ is a monochromatic sink of T . So assume m′ > i. If vi
07→ vm′ , then v0

07→ vm′

and so vm′ is a monochromatic sink of T . So assume that vi
0
67→ vm′ . Without loss

of generality, say vi
17→ vm′ . Since vi

0→ v′i for all 0 < i′ < i, this implies that there

exists i′′ > i so that vi
1→ vi′′ . Since vi 67→ v0, this implies that vi′′

1
6→ v0. To avoid a

rainbow triangle, vi′′
`
6→ v0, where ` > 1. Therefore, vi′′

0→ v0. But this has already

been assumed to not be the case. Thus m′ ≤ i and therefore vm′ is a monochromatic

sink of T .

We additionally prove the following result which restricts the colors on the

back-edges.

Theorem 2.34. Let T be a k-colored tournament without rainbow triangles with an

ordering (vn−1,vn−2, . . . ,v1,v0) of its vertices so that any back-edge of a vertex is

colored the same as the other back-edges at that vertex. Then T has a monochro-

matic sink.

Proof. Let T be a k-colored tournament as described in the hypothesis. We argue

by induction on |T | that T has a monochromatic sink. The base case of |T | = 1 is

trivially true. So assume the result is true when the order of the tournament is less

than |T | and assume |T | > 1. If d+(v0) = 0, then v0 is a monochromatic sink. So

assume d+(v0) > 0. Without loss of generality, let 0 be the only color appearing

on the back-edges of v0. If there exists i ∈ {1, . . . ,n− 1} so that vi
07→ v0, then we
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apply the induction hypothesis to T −{vi} to get a monochromatic sink, vm. But

then vi
07→ v0

07→ vm and so vm is a monochromatic sink of T . Assume then for all

i ∈ {1, . . . ,n−1}, vi
0
67→ v0. Let j be minimum so that v j 67→ v0. If there is no such j,

then v0 is a monochromatic sink of T . So assume j exists. Then v0
0→ v j. Apply the

induction hypothesis to T −{v0} to get a monochromatic sink vm′ . If m′ = j, then

v0→ vm′ and so we are done. So there exists a monochromatic path P = u0u1 . . .us

from v j = u0 to vm′ = us. If v j
07→ vm′ , we are done as then v0

0→ v j
07→ vm′ . So

assume without loss of generality that the path is colored 1. We claim that for any

i ∈ {0,1, . . . ,s}, v0
0→ ui. We prove this claim with induction on |P|. For the base

case when |P| = 1, if vm′
`→ v0, where ` > 1, then v0v jvm′v0 is a rainbow triangle,

and therefore v0
0→ vm′,vm′

0→ v0, or vm′
1→ v0. It has been assumed that vm′

0
6→ v0.

Also, if vm′
1→ v0, then v j

17→ v0, which was also assumed not to be the case. Thus

we conclude that v0
0→ vm′ . Now assume the claim is true for paths of length less

than |P| and assume |P|> 1. Consider us ∈V (P). If us
`→ v0, for some ` > 1, then

v0us−1usv0 is a rainbow triangle and therefore v0
0→ us,us

0→ v0, or us
1→ v0. As seen

earlier, it has been assumed that us
0
6→ v0. Also, if us

1→ v0, then v j
17→ v0, which was

also assumed not to be the case. Thus we conclude that v0
0→ us. Since us = vm′ ,

we conclude that v0→ vm′ and so vm′ is a monochromatic sink of T .
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Chapter 3

RULING CLASSES

In Chapter 2, the goal was to find a monochromatic sink in a k-colored tournament

with various restrictions on the coloring of its edges. In this chapter, we look at

tournaments that may not necessarily have a monochromatic sink, but instead relax

the definition of a monochromatic sink. We will look for a set of vertices in a

tournament so that for every vertex in the tournament, it is either in the set or has a

monochromatic path to a vertex in the set. We call a set of vertices that possess this

property a ruling class.

Definition 3.1. Let R be a set of vertices in a digraph D. The set R is called a ruling

class of D if for every vertex v in D, either v ∈ R or v has a monochromatic path to

some vertex of R.

Very little work has been done towards finding ruling classes in k-colored tour-

naments. We will present a question posed by Sands, Sauer, and Woodrow in [13]

about the existence of ruling classes in k-colored tournament and a small result of

Galeana-Sánchez’s. After which, we will provide a theorem that partially answers

the question asked by Sands, Sauer, and Woodrow and a conjecture that would give

the size of a ruling class in a 3-colored tournament without rainbow triangles. In

the next chapter, we will again relax the definition of a monochromatic sink by

allowing color changes along the path to a vertex of the tournament.

3.1 Ruling Class Question

Consider the 3-colored tournament T =(V,E) given by Sands, Sauer, and Woodrow

in [13] where V (T ) = {v0,v1, . . . ,v8} and E(T ) contains the following colored
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edges (as seen in Figure 3.1):

v0v1,v3v4, and v6v7 colored with 0,

v1v2,v4v5 and v7v8 colored with 1,

v2v0,v5v3 and v8v6 colored with 2,

viv j colored with 0 for all i ∈ {0,1,2} and j ∈ {3,4,5},

viv j colored with 1 for all i ∈ {3,4,5} and j ∈ {6,7,8}, and

viv j colored with 2 for all i ∈ {6,7,8} and j ∈ {0,1,2}.
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Figure 3.1: 3-colored tournament with ruling class of size 3.

This is a tournament on 9 vertices and has a minimum ruling class of size 3. A

similar tournament could be created on n > 9 vertices by adding n−9 vertices to T

that dominate the original 9 vertices of T . This tournament led Sands, Sauer, and

Woodrow to ask the following question:
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Question 3.2 (Sands, Sauer, and Woodrow, 1982, [13]). For any integer k, is there

a (least) positive integer f (k) so that every k-colored tournament has a ruling class

of size f (k)? In particular, is f (3) = 3?

In Figure 3.1, we see that f (3)≥ 3. It remains to show f (3)≤ 3.

3.2 Previous Work

Other than the tournament given in Figure 3.1 that shows f (3)≥ 3, only one other

result has been published which attempts to answer Question 3.2. In [7], Galeana-

Sánchez and Rojas-Monroy restrict each vertex to be incident with edges of at most

2 different colors. They showed that in a k-colored tournament, where k ≥ 4, this

color restriction ensures that the tournament has a monochromatic sink.

Theorem 3.3 (Galeana-Sánchez and Rojas-Monroy, 2005, [7]). If T is a k-colored

tournament, where k ≥ 4, so that every vertex is incident with edges of at most 2

colors, then T has a monochromatic sink.

In a 3-colored tournament, this color restriction yields the following theorem.

Theorem 3.4 (Galeana-Sánchez and Rojas-Monroy, 2005, [7]). Let T be a 3-

colored tournament so that every vertex is incident with edges of at most 2 colors.

Then T has a ruling class of size 3.

We have now seen the extent of work published which attempts to answer Ques-

tion 3.2.

3.3 Ruling Classes in 3-Colored Tournaments

In Theorem 3.7, we give a result that comes close to answering Question 3.2. Ad-

ditionally, the proof provides a method that differs from the main method used in

Chapter 2, which was to look at a minimum counter example and work within the
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Hamiltonian dominating cycle that is guaranteed to exist. We also give a conjecture

which would give a partial answer to Question 2.6. Many terms and theorems used

in this section are from Section 1.6. We first need to give one more definition and a

fact to be used in the proof of Theorem 3.7.

Definition 3.5. Let D be an acyclic digraph. The transitive closure of D is the

digraph D′ = D∪{uv : uv 6∈ E(D) and u has a path to v in D}.

The following is a fact similar to the 2-colored cycle restriction in the hypothesis

of Theorem 3.7, but instead handles monochromatic cycles.

Fact 3.6. If C is a monochromatic cycle, then for every edge uv ∈ E(C), v 7→ u.

This is obvious from the fact that the cycle is monochromatic and therefore ev-

ery vertex along the cycle can reach every other vertex by following the monochro-

matic path along C. We now give the main result of this section.

Theorem 3.7. Let T be a 3-colored tournament so that if C is a 2-colored cycle,

then there exists an edge uv ∈ E(C) so that v 7→ u. Then T has a ruling class of size

3.

Proof. Let T be a 3-colored tournament as described in the hypothesis. We first

give a quick outline to this proof. We will create three transitive tournaments from

the edges of T . If an edge uv of T does not appear in at least 2 of the 3 transitive

tournaments, this is because v 7→ u in T . From these three transitive tournaments,

we can obtain 3 linear orders of the vertices, which will yield a 2-majority tourna-

ment T ′′. We can then conclude that if uv ∈ E(T ′′), then uv ∈ E(T ) or v 7→ u in T .

Thus the dominated set of size 3 in T ′′ obtained by Theorem 1.39 is then a ruling

class of size 3 in T . We now begin the proof.
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Let T ′ = T −{uv : v 7→ u}. Note that any cycle of T ′ is 3-colored. For each

i ∈ {0,1,2}, let Ti = T ′−{uv : u i→ v}. Note that each Ti is acyclic and is colored

with at most 2 colors. Let T ′i be the transitive tournament guaranteed by Fact 1.36

after taking the transitive closure of each Ti. For each Ti, Fact 1.33 guarantees the

existence of a linear order <i so that if uv ∈ E(Ti), then u <i v. Let T ′′ be the 2-

majority tournament realized by these three linear orders. Each edge of T ′′ is an

edge of T or represents a monochromatic path in T . By Theorem 1.39, T ′′ has a

dominated set R of size at most 3. Thus R is a ruling class in T .

Not only does Theorem 3.7 make some progress in answering if f (3) ≤ 3 in

Question 3.2, but it provides an opportunity to show if there exists a ruling class

of size 3 in a 3-colored tournament without rainbow triangles (a tournament of the

type described in Sands, Sauer, and Woodrow’s first question - Question 2.6). It is

with great confidence that we make the following conjecture.

Conjecture 3.8. Let T be a 3-colored tournament without rainbow triangles so that

T has a 2-colored Hamiltonian cycle C. Then there exists uv ∈ E(C) so that v 7→ u.

Namely, this says that every 2-colored cycle C in a colored tournament without

rainbow cycles has an edge uv so that v 7→ u. This is particularly useful in that if

Conjecture 3.8 is true, then in a 3-colored tournament without rainbow triangles,

the hypothesis for Theorem 3.7 is satisfied. Therefore, the tournament would have

a ruling class of size 3.

Theorem 3.9. Let T be a k-colored tournament with no rainbow cycles. If Conjec-

ture 3.8 is true, then T has a ruling class of size 3.
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Chapter 4

STEP-CHROMATIC SINKS

Up to this point in the thesis, we have concerned ourselves entirely with reachability

along monochromatic paths. What if we allow for color changes along the path?

Specifically, since we color the edges of a digraph with numbers, what if we allowed

for color changes between consecutive edges along a path, but not by too much? As

we did in Chapter 3, we relax the definition of a monochromatic sink. We will

instead look for a vertex that can be reached by any other vertex in the tournament

along a path with a special coloring: for any two consecutive edges along the path,

the colors on the edges differ by at most some constant. The definition below allows

us to work with paths of this type.

Definition 4.1. For α ∈N, a path P in a k-colored digraph is an α-step-chromatic

path if for any two consecutive edges along P, vivi+1 and vi+1vi+2, if vi
c→ vi+1

for some c ∈ {0,1, . . . ,k−1}, then vi+1
c′→ vi+2 for some c′ ∈ {c,c+1, . . . ,c+α}.

(Recall that arithmetic done within a set of colors is done modulo k.)

We can quickly establish the following fact about α-step-chromatic paths.

Fact 4.2. If P is an α-step-chromatic path in a digraph D, then P is also a β -step-

chromatic path in D, for any integer β ≥ α .

In this chapter, we will seek the existence of α-step-chromatic sinks, which will

be defined in the next section. Additionally, in the next section, we give some the-

orems that give a guide as to what needs to be proven regarding α-step-chromatic

sinks. In Section 4.2, we will give a lemma similar to Lemma 2.10, which was used
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to prove all of the major theorems in Chapter 2. In the final section, we provide

results regarding the existence of α-step-chromatic sinks in k-colored tournaments.

4.1 Step-Chromatic Sinks

We extend the notion of an α-step-chromatic path to the reachability definitions

from earlier.

Definition 4.3. For α ∈ N, an α-step-chromatic sink is a vertex in a digraph D so

that every other vertex in D can reach it along an α-step-chromatic path.

Note that a monochromatic sink is a 0-step-chromatic sink. Call a 1-step-

chromatic sink a step-chromatic sink. We initially establish that some type of

subtournament must be restricted to find a step-chromatic sink.

Theorem 4.4. For any n,k ≥ 3, there is a k-colored tournament T so that T does

not have a step-chromatic sink.

Proof. Let T = (V,E) be a tournament with V (T ) = {x,y,z}. Let x 1→ y 3→ z 2→ x.

There is no step-chromatic sink in this tournament. If we wish to create a tourna-

ment on more than three vertices without a step-chromatic sink, add vertices one at

a time while directing all edges to all existing vertices. (The added edges may be

any color.)

Specifically, the tournament in the last result is a T ∗, as we have seen earlier in

the thesis. The existence of a rainbow triangle in a T ∗ prevents the existence of any

type of monochromatic sink and so, similarly, the existence of rainbow triangles in

a colored tournament could possibly prevent the existence of an α-step-chromatic

sink. If we consider k-colored tournaments which do not have rainbow cycles, we

find quickly that there is not necessarily a step-chromatic sink.
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Theorem 4.5. For any n,k≥ 5, there is a k-colored tournament T without rainbow

triangles that does not have a step-chromatic sink.

Proof. The 5-colored tournament on five vertices given in Figure 4.5, which was

obtained from Shen’s tournament (Figure 2.2) by replacing color i with color 5−

i, has no rainbow triangles and no step-chromatic sinks. If we wish to create a

tournament on n≥ 6 vertices, then add vertices one at a time, directing all new edges

to all existing vertices. Color these new edges with any color. This tournament still

has no step-chromatic sink.
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Figure 4.1: Tournament for Theorem 4.5.

By Theorem 2.4, a 2-colored tournament has a step-chromatic sink (since it has

a monochromatic sink). We are left to answer whether a 3- or 4-colored tournament

without rainbow triangles has a step-chromatic sink.

Question 4.6. If T is a k-colored tournament without rainbow triangles, where

k ∈ {3,4}, does T have a step-chromatic sink?
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Because we are allowing color changes along our α-step-chromatic paths to find

α-step-chromatic sinks, it makes sense then to not exclude all rainbow triangles, as

we do in Chapter 2. In both Theorems 4.4 and 4.5, it isn’t merely the existence

of rainbow triangles that prevent an α-step-chromatic sink from existing. The ex-

istence a rainbow triangle with a particularly bad coloring prevents the existence

of an α-step-chromatic sink. We give a definition for a triangle (not necessarily

rainbow) with a particulary good coloring.

Definition 4.7. Let ` ≥ 0. Let C = xyzx be a triangle in a digraph with x
c0→ y

c1→

z
c2→ x. If there exist distinct i, j ∈ {0,1,2} so that (ci− ci−1),(c j− c j−1)≤ `, then

C is a Type-` triangle.

That is, there exist two 2-paths along C, say xyz and yzx so that the colors

increase by at most ` along each path. For example, in a k-colored tournament, the

rainbow triangle x 0→ y 1→ z 2→ x is a Type-1 triangle, but the the rainbow triangle

x 2→ y 1→ z 0→ x is not a Type-1 triangle. A monochromatic triangle is a Type-0

triangle. We see then in Theorems 4.4 and 4.5 that the tournaments contain triangles

that are not Type-1. So we have two goals in this chapter. One, find the existence

of α-step-chromatic sinks in k-colored tournaments without rainbow triangles and

two, find the existence of `-step-chromatic sinks in k-colored tournaments with only

triangles of Type-`.

4.2 Minimum Counter Example

In Chapter 2, the Hamiltonian dominating cycle that existed in many of the counter

examples to the theorems provided the information necessary to prove the theorems.

This chapter is similar in that a form of a dominating cycle exists in counter exam-

ples to the theorems and this cycle gives us the information needed for the proof.
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So we must establish a similar definition to a dominating cycle when considering

α-step-chromatic paths and sinks.

Definition 4.8. For some integer α ≥ 0, a cycle C = v0v1 . . .vs−1v0 in a digraph D is

an α-step-dominating cycle if for all i ∈ {0,1, . . . ,s−1}, vi is an α-step-chromatic

sink in D− vi−1, but there is no α-step-chromatic path from vi−1 to vi in D.

Similar to Lemma 2.2, we give the structure of a minimum k-colored tourna-

ment without an α-step-chromatic sink.

Lemma 4.9. Let α ≥ 0. Let T be a minimum tournament with hereditary property

P so that there is no α-step-chromatic sink. Then T has a Hamiltonian α-step-

dominating cycle.

Proof. Let α ≥ 1. Let T be a minimum tournament with hereditary property P

so that there is no α-step-chromatic sink. Then for each v ∈ V (T ), there exists

some vertex f (v) ∈ V (T ) so that x has an α-step-chromatic path to f (v) for all

x ∈ V (T )\{v}. Since T has no α-step-chromatic sink, v has no α-step-chromatic

path to f (v). Thus f (v)→ v. Note also that for any two distinct vertices u,v∈V (T ),

f (u) 6= f (v), for otherwise f (u) and f (v) are both α-step-chromatic sinks in T , a

contradiction. So we can assume that f is a bijection and that v does not have an

α-step-chromatic path to f (v) for all v ∈ V (T ). By the relabeling f (vi) = vi+1,

V (T ) is partitioned into cycles

v1v2 . . .vs1v1, vs1+1vs1+2 . . .vs2vs1+1, ... .

If there is more than one cycle, then consider the tournament with vertex set {v1,v2, . . . ,vs1}.

Call this tournament T ′. This is a smaller tournament than T , so there exists an α-

step-chromatic sink vi in T ′. In particular, since vi+1 ∈V (T ′), this implies that vi+1
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has an α-step-chromatic path to vi, which is a contradiction. Thus there is only one

cycle and this cycle is an α-step-dominating cycle.

4.3 Results

We can now give the results regarding the existence of α-step-chromatic sinks in

k-colored tournaments. The first theorem, Theorem 4.10, shows the existence of α-

step-chromatic sinks in k-colored tournaments whose triangles are all of Type-α .

Theorem 4.10. Let α ≥ 0. If T is a k-colored tournament on n vertices so that

every triangle is a Type-α triangle, then T has an α-step-chromatic sink.

Proof. Let α ∈ N. Let T be a k-colored tournament on n vertices so that any tri-

angle is a Type-α triangle. We will argue by induction on n that T has an α-

step-chromatic sink. The base case of n = 1 is trivial. Assume then that n > 1

and assume that T does not have an α-step-chromatic sink. By the induction hy-

pothesis, T is then a minimum counter example to the Theorem. By Lemma 4.9,

T has a Hamiltonian α-step-chromatic dominating cycle C = v0v1 . . .vn−1. Let

P = u0u1 . . .ut be a minimum α-step-chromatic path from v2 = u0 to v0 = ut . Let

i ∈ {1,2, . . . , t} be minimum so that ui→ v1. Then v1→ ui−1. There exist colors

a,b,c ∈ {0,1, . . . ,k− 1} so that v1
a→ ui−1,ui−1

b→ ui, and ui
c→ v1. Since every

triangle is a Type-α triangle, either b−a≤ α or c−b≤ α . In the former case, we

then have that v1ui−1Pv0 is an α-step-chromatic path from v1 to v0, a contradiction.

In the latter case, we have that v2Puiv1 is an α-step-chromatic path from v2 to v1, a

contradiction. So in either case we arrive at a contradiction and can conclude that

T must have an α-step-chromatic sink.

Recall, from Chapter 2, Galeana-Sánchez’s result (Theorem 2.13) that a k-

colored tournament with monochromatic triangles has a monochromatic sink. Also
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recall that a Type-0 triangle is a monochromatic triangle and a 0-step-chromatic

path is a monochromatic path. Using Theorem 4.10, we find the same result, which

we will pose as the following corollary.

Corollary 4.11. Let T be a k-colored tournament so that any triangle is a Type-0

triangle. Then T has a monochromatic sink.

Theorem 4.10 requires every triangle in the tournament to be colored in a par-

ticular manner. If, much like in Chapter 2, we don’t allow rainbow triangles at all

in the tournament (but put no restriction on the coloring of the other triangles), then

we can find an α-step-chromatic sink when α is big enough.

Theorem 4.12. If T is a k-colored tournament without rainbow triangles, then there

exists a bk/2c-step-chromatic sink.

Proof. Let T be a k-colored tournament on n vertices without rainbow cycles. We

argue by induction on n that T has a bk/2c-step-chromatic sink. The base case

when n = 1 is trivial. So assume n > 1 and that T does not have a bk/2c-step-

chromatic sink. By the induction hypothesis, T is then a minimum counter example

to the theorem. By Lemma 4.9, T has a bk/2c-step-dominating Hamiltonian cycle,

C = v0v1 . . .vn−1v0. There exists i ∈ {0,1, . . . ,n−1} so that vi
j→ vi+1 and vi+1

j′→

vi+2, for some j′ ∈ { j + bk/2c+ 1, j + bk/2c+ 2, . . . , j− 1}. Otherwise, every

vertex can reach every other vertex along a bk/2c-step-chromatic path, namely the

Hamiltonian cycle, and this was assumed not to be the case. Then, without loss of

generality, say v0
0→ v1 and v1

j→ v2, where j∈{bk/2c+1,bk/2c+2, . . . ,k−1}. Let

P = u0u1 . . .ut be a minimum bk/2c-step-chromatic path from v2 = u0 to v0 = ut .

Let i ∈ {1,2, . . . , t} be minimum so that ui → v1. Then v1 → ui−1. There exist

colors a,b,c ∈ {0,1, . . . ,k−1} so that v1
a→ ui−1,ui−1

b→ ui, and ui
c→ v1. Since T
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has no rainbow triangles, at least one of the following cases is true: a = b,b = c,

or a = c. If a = b, then v1ui−1Pv0 is a bk/2c-step-chromatic path from v1 to v0,

a contradiction. If b = c, then v2Puiv1 is a bk/2c-step-chromatic path from v2 to

v1, a contradiction. Therefore, a = c. If a ∈ {b,b+1, . . . ,b+ bk/2c}, then v2Puiv1

is a bk/2c-step-chromatic path from v2 to v1, a contradiction. So then a ∈ {b+

bk/2c+1,b+ bk/2c+2, . . . ,b−1}. But then v1ui−1Pv0 is a bk/2c-step-chromatic

path from v1 to v0, a contradiction. In all cases, we arrive at a contradiction, thus

it must be the case that there is no minimum k-colored tournament on n vertices

without rainbow cycles that does not have a bk/2c-step-chromatic sink. Thus the

result is true.

Thus, we see that when k = 3, there is a step-chromatic sink, which answers the

question if a 3-colored tournament without rainbow triangles has a step-chromatic

sink (which was part of Question 4.6).

Theorem 4.13. If T is a 3-colored tournament without rainbow triangles, then T

has a step-chromatic sink.

We find that Theorem 4.12 guarantees the existence of a 2-step-chromatic sink

in a 4-colored tournament without rainbow triangles, but we are still left with the

following question (the remaining half of Question 4.6 not answered by Theorem

4.11).

Question 4.14. If T is a 4-colored tournament without rainbow triangles, must T

have a step-chromatic sink?
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Chapter 5

CONCLUSION

In this thesis, we provided two questions posed by Sands, Sauer, and Woodrow in

[13] and the subsequent work done towards answering the questions. We provided

our work towards answering the questions, which primarily built off of previous

work done by Shen (in [14]), Galeana-Sánchez (in [5], [6], and [7]), Rojas-Monroy

(in [6] and [7]), and Melcher and Reid (in [11]). Additionally, we introduced

a proof method towards answering the second question (Question 3.2) asked by

Sands, Sauer, and Woodrow. Finally, we introduced the concept of step-chromatic

sinks and provided initial results about their existence in colored tournaments.

In Chapter 2, we presented three different types of results pertaining to the first

question posed by Sands, Sauer, and Woodrow. First, we built off the results of

Galeana-Sánchez and Rojas-Monroy. They had shown that that if all 3- and 4-cycles

are near-monochromatic in a k-colored tournament, then there exists a monochro-

matic sink. We showed that if all 4- and 5-cycles are near-monochromatic in a

k-colored tournament (that is not a T ∗), then there exists a monochromatic sink.

We showed that our result is independent of Galeana-Sánchez and Rojas-Monroy’s

result. Galeana-Sánchez also showed that if all 3-cycles are monochromatic in a k-

colored tournament, then there exists a monochromatic sink. We showed that if all

4-cycles are monochromatic in a k-colored tournament that is not a T ∗, there exists

a monochromatic sink. This last result led to Conjecture 2.20, but the Conjecture

seems difficult to prove given the rather lengthy arguments given in Theorem 2.13

and Theorem 2.19 when the cycles were of small size (3- and 4- cycles respec-

tively).
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Next in Chapter 2, we presented Shen’s result that k-colored tournaments with

near-monochromatic 3-semi-cycles have monochromatic sinks. We were able to

show that the result is true if all 4-semi-cycles are near-monochromatic as well

the result is true if all 5-semi-cycles are near-monochromatic. We showed that

none of these results imply the other, so it is worth exploring whether it is true

in tournaments whose `-semi-cycles are near-monochromatic, for values of ` > 5.

Naturally, then, we conjecture that in a k-colored tournament whose `-semi-cycles

are near-monochromatic, for some ` ∈ {3,4, . . . ,n}, there exists a monochromatic

sink (Conjecture 2.26). Much like our concerns with proving Conjecture 2.20 to

be true, proving the base case true is difficult when arguing by induction on the

number of vertices. However, if the base case were to be true, then Conjecture 2.26

can be proven, and we showed this in Theorem 2.28. We are then left to prove that

the base case is true and this is stated in Conjecture 2.27.

We also presented a result from Melcher and Reid that monochromatic sinks in

nearly transitive tournaments. We slightly improved their result in Theorem 2.33

and presented a new result in Theorem 2.34.

In Chapter 3, we presented results towards answering the second question asked

by Sands, Sauer, and Woodrow. Very little work has been done towards answering

this question and we present this work (attributed to Galeana-Sánchez and Rojas-

Monroy). We then show that there is a ruling class of size 3 in a 3-colored tour-

nament with a small requirement on the 2-colored cycles in the tournament. There

are two important things we can take from this result. The proof method we use,

which includes the use of p-majority tournaments, is a new method which finally

makes some progress on Sands, Sauer, and Woodrow’s second question. In Chapter

2, we were able to use a dominating Hamiltonian cycle as a basis for our proofs.

We don’t have this luxury in Chapter 3. Thus, this new method that we have in-
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troduced finally gives us some structure to work with and gives hope of answering

the question. Additionally, if we now consider k-colored tournaments without rain-

bow triangles, we conjecture that we can find a ruling class of size 3. The result

is certainly less desireable as what is being sought after in all of Chapter 2 (which

is just a single monochromatic sink), but it would be a result on the reachability

of the tournament which doesn’t put any additional restrictions on the coloring of

the tournament other than “no rainbow triangles”. In order to show this, it is only

necessary to prove that if a 3-colored tournament without rainbow cycles has a 2-

colored Hamiltonian cycle C, then there exists uv ∈ E(C) so that v 7→ u. We pose

this as Conjecture 3.8.

Finally, we end the thesis with a new topic, α-step-chromatic sinks. We pro-

vide initial results towards the existence of α-step-chromatic sinks in a k-colored

tournament. The results are proven using the main strategy from Chapter 2, but in

this chapter, we instead use dominating step-chromatic Hamiltonian cycles within

the proofs.

Throughout this thesis, two main proof methods are used to prove the results,

dominating cycles (in Chapters 2 and 4) and p-majority tournaments (in Chapter

3). This is quite representative of the work already done towards answering these

two questions. It would be useful to find another method to prove these results

as this new method, much like our p-majority tournament method, could open up

possibilities to prove stronger statements than what we have presented and proven

in this thesis.
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