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ABSTRACT  

   

TaxiWorld is a Matlab simulation of a city with a fleet of taxis which 

operate within it, with the goal of transporting passengers to their destinations. 

The size of the city, as well as the number of available taxis and the frequency 

and general locations of fare appearances can all be set on a scenario-by-scenario 

basis. The taxis must attempt to service the fares as quickly as possible, by 

picking each one up and carrying it to its drop-off location. The TaxiWorld 

scenario is formally modeled using both Decentralized Partially-Observable 

Markov Decision Processes (Dec-POMDPs) and Multi-agent Markov Decision 

Processes (MMDPs). The purpose of developing formal models is to learn how to 

build and use formal Markov models, such as can be given to planners to solve for 

optimal policies in problem domains. However, finding optimal solutions for Dec-

POMDPs is NEXP-Complete, so an empirical algorithm was also developed as an 

improvement to the method already in use on the simulator, and the methods were 

compared in identical scenarios to determine which is more effective. The 

empirical method is of course not optimal - rather, it attempts to simply account 

for some of the most important factors to achieve an acceptable level of 

effectiveness while still retaining a reasonable level of computational complexity 

for online solving. 
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CHAPTER 1 

INTRODUCTION 

TaxiWorld is a high-level simulation of a city, in which passengers need 

transportation, and a small number of taxis which patrol the city and are 

responsible for meeting the passengers' needs. The number of taxis in the fleet is 

variable, and can be configured as is desired for a given scenario. Requests for 

transportation are modeled as 'fares', which appear semi-randomly within the city, 

and are then available for a taxi to pick up and deliver to the fare's drop-off 

location. In addition, each fare has a time limit; if the fare is not collected by some 

taxi within the allotted amount of time, it will disappear, resulting in lost revenue 

for the taxi company. It is therefore of paramount importance that the taxis be 

dispatched efficiently, to maximize the number of fares they are able to deliver 

and increase the amount of profit that the company can collect. The simulation 

also includes a gas station, which is located outside of the city proper. Taxis must 

on occasion go to the gas station to refuel, so that they will be able to continue to 

provide service for the fares within the city. 

Approach 

My research was principally directed towards understanding Decentralized 

Partially-Observable Markov Decision Processes (Dec-POMDPs), and finding a 

way to encode the TaxiWorld domain using this model. Since the individual taxis 

can be considered to be separate agents, each of which must make autonomous 

decisions based on local information without explicit communication with the 

other taxis, this seemed like a good domain to use for this research. In learning 
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about the structure of the simulator itself, it became clear that the behavior of the 

taxis in the simulator should actually be modeled using Multi-Agent Markov 

Decision Processes. For this reason, I developed a formalization of the TaxiWorld 

scenario using both models. 

 The second goal of my research was to develop a taxi-control algorithm 

for use within the Matlab simulation itself, to improve on the current algorithm 

being used. The Matlab simulation was actually developed prior to my own 

involvement in the project, so my principal problem was to first learn how to 

develop within the Matlab simulation environment; doing this revealed that the 

control algorithm in place fails to take into account a number of important factors 

in determining the behaviors of the fleet of taxis. To rectify this, I proceeded by 

first identifying the shortcomings of the original control strategy, and then trying 

to account for them in my improved version. Since I am more familiar with 

coding in Java than in Matlab, I found it helped to develop the taxi-assignment 

code externally in Java and call it from within the Matlab simulation; the results 

from that call are then used to generate orders for the fleet within Matlab. 

 In doing this research, I was able to learn the types of problems that are 

representable within different families of MDP models, and to use the Dec-

POMDP and MMDP frameworks to model a fairly complex scenario. Through 

the development of my empirical model, I demonstrated that although finding an 

optimal policy for a problem may be intractable, it may be possible to leverage 

domain-specific properties to generate a solution strategy that achieves an 

acceptable level of success at significantly less computational cost. Because the 



  3 

cost-to-benefit ratio of developing and using a fully optimal solution would be 

extremely large, in many cases it might be far more practical to craft a reasonably 

efficient domain-specific solution than to formalize the problem and use a full-

blown general solver to generate an optimal policy. 

Related Work 

 The problem of coordinating multiple autonomous agents in 

accomplishing a set of goals is a non-trivial planning problem, especially if events 

beyond the agents' control can cause significant changes to the environment, thus 

invalidating or rendering obsolete previously generated plans. If the current state 

of the world is also only partially observable, the problem domain can become 

even more difficult. Planning algorithms that can effectively address such 

problem domains are of interest to the Artificial Intelligence community due to 

the inherent complexity possessed by problems such as these, and because of the 

transferability of a solution to one such problem to other similar problems. 

 Markov Decision Processes, in their many forms, have been considered in 

numerous papers and publications, due to their versatility and applicability in 

many problem domains. Because of these standardized formal models, any multi-

agent planning domain may be addressed in a similar way to TaxiWorld, although 

the exogenous and stochastic goal arrivals are important factors that distinguish 

TaxiWorld from many other planning domains. Hubbe et al. [3] address the 

problem of stochastic goal arrival in a much smaller domain by sampling the 

distribution of possible future goal arrivals and choosing the action which will 

optimize the expected cost over the sampled futures.  
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 A taxi-planning domain very similar to TaxiWorld is considered by Xu 

and Huang [12], but is notably different in that they allow taxis to carry multiple 

passengers at once (up to four). They attempt to solve their domain by using a 

decentralized algorithm in which taxis generate a set of possible plans and then 

communicate with other nearby taxis to determine which plan of action is best. 

Ryan et al. [9] consider a similar domain in which unmanned aerial 

vehicles (UAVs) must coordinate to achieve a set of goals. The UAVs in this 

scenario coordinate by “bidding” on goals with the cost it would require them to 

achieve the goal; the UAV which can offer the lowest-cost bid for a goal takes on 

the assignment.  
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CHAPTER 2 

SIMULATOR DESCRIPTION 

 TaxiWorld consists of a class framework which contains all of the 

components that comprise the city and its inhabitants. The simulation is carried 

out in "steps", which can be executed as quickly as the computer's processor can 

evaluate them. Each model component that appears within the simulation has its 

own "step" function, which is called by the simulator on each simulation cycle, 

and determines the component's behavior for that cycle. The objective of the 

simulator is to provide a test-bed for devising effective control strategies for 

servicing fares using the available taxis. 

 

Figure 1: Example of the TaxiWorld Simulation 
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Simulation Components 

Figure 1 shows what the simulator might look like while it is running. 

From this image it is possible to see the layout of the city, as well as the locations 

and positions of every fare, taxi, and point of interest in the scenario at any given 

time, as well as the locations of the gas station and the garage. Taxis are shown in 

the image as circles, containing a pie-slice-shaped, colored wedge, the point of 

which aims in the direction of the taxi’s motion. If the taxi is roaming or inactive, 

the wedge is shaded gray; if it is en route to pick up a fare, the wedge becomes 

blue; after retrieving the fare and before dropping it off, the wedge is magenta; 

when the taxi is on its way to refuel, the wedge becomes red. Fares are 

represented in the simulator as small squares. They have a similar coloring 

scheme to the taxis; when a fare first appears, it is green. Once a taxi is assigned 

to it, the fare becomes blue, and points that represent fare drop-off locations are 

shown in magenta. Points of interest are shown as red triangles on the map, and 

do not change throughout the course of the simulation. The gas station and the 

garage are represented respectively as a gas pump and a car inside a structure. 

Each scenario is specified in its own file, which determines the size of the 

city by specifying the number of rows and columns (vertical and horizontal roads) 

it has. It also sets the locations and properties of all of the points of interest, as 

well as the size of the fleet of taxis that is available to service the city. The 

locations of any gas stations are also determined here, as well as any additional 

roads (called bridges) to connect the gas station to the city proper, since the gas 

station is located outside of the city proper. 
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Points Of Interest (POIs) are responsible for generating fares which can 

then be serviced by the taxi fleet. Each POI has a location within the city, as well 

as a radius. Together, the location and radius determine the portion of the city in 

which fares can be generated by the POI. A POI also has a frequency, which is the 

probability that on any given simulation cycle it will generate a new fare. The 

number of POIs within the city is scenario-specific, and the attributes of each POI 

can be configured individually if desired. 

Fares are the goals for the agents in TaxiWorld. They are represented by a 

unique id, and have a pickup location, a drop-off location, and a time-to-live. The 

pickup location is the grid coordinate where the fare initially appears when 

spawned by a POI, and the drop-off location is the grid coordinate the taxi must 

take the fare to in order to complete the delivery and receive payment. The time-

to-live is set when the fare is created (to a default value of 1300 simulation 

cycles), and will steadily decrease as the simulation runs. When the time-to-live 

reaches zero, the fare will expire, and it will no longer be possible for any Taxi to 

service it. 

FareList is simply an organizational entity to make all of the information 

about fares in the city accessible from a single location within the program. The 

Dispatcher uses the FareList to keep track of the locations and life-spans of all of 

the currently-available fares, as well as to obtain the information it needs to make 

intelligent decisions regarding taxi deployment. 

A TaxiState is a representation of all the information pertaining to a 

specific taxi. It contains the taxi's unique id, its location, its current fuel level, its 
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current plan (the next fare it intends to collect, if there is one), the number of 

passengers currently in the vehicle, and the state of the taxi (a taxi can be active, 

inactive, refueling, or dead). The TaxiState can receive instructions to carry out, 

such as orders to pick up a fare or to go refuel. 

The Dispatcher is one of the most important components of the simulator. 

It keeps track of all the fare locations and life-spans, and can send orders to the 

taxis based on the current conditions in the city and any changes that occur. It also 

has access to the FareList, which allows it to track changes to fare conditions and 

coordinate the taxi fleet's efforts in collecting them. The control algorithm I 

implemented is run from within the dispatcher’s step event, since it is the only 

component that not only has access to necessary information, but the ability to 

send out orders to all of the taxis as well. 
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CHAPTER 3 

MDP MODEL BACKGROUND 

Markovian models are useful for modeling problem domains in a discrete 

form such that it can be given to a solver, which can use the formal domain 

description to calculate an optimal policy for use in the domain. There are many 

different types of Markovian models that can be used, depending on the scenario 

under consideration; this thesis is primarily concerned with scenarios with 

multiple decision-making agents, and partial or full observability (this determines 

whether or not the agents have full knowledge of the current state). Several 

models are discussed here in order to demonstrate the differences between them, 

and to provide necessary background for understanding the choice of models for 

use with TaxiWorld. Figure 2 shows the relationships between the models under 

consideration. 

MDPs are useful for situations where there is a single agent in a 

completely observable world. An MDP model can be used to generate a plan of 

action for a domain by considering all possible state configurations and solving 

for the best action to perform in each one. Such a mapping from valid state 

configurations to actions is called a “policy”, and if there is no other policy that 

does a better job of maximizing the agent’s goals, it is called an “optimal policy.” 

The agent can choose what action to do by looking at the current state and simply 

taking the action that the policy specifies. The state configuration serves as the 

“Markovian signal” – that is to say, it allows the agent, given a policy, to discern 

what action to do next without any knowledge of previous actions. 
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Figure 2: Families of MDP Models 

 

 Multi-agent MDPs (MMDPs) differ from MDPs in that there are multiple 

agents to perform actions, which means that a policy needs to specify an action 

for every agent (a “joint action”) for each state. It is possible to reduce an MMDP 

to an MDP with a single agent by treating every possible combination of agent 

actions as singular joint actions, performed by one agent. This abstraction makes 

and MMDP practically identical to an MDP, except that it has a number of agent 

actions that is exponential in the number of agents from the original MMDP 

formulation. 

 Partially-Observable MDPs (POMDPs) can be used to solve for optimal 

policies when the world is not completely observable by maintaining a belief state 

about the condition of the world. This belief state effectively summarizes the 

action and observation histories, and serves as a Markovian signal to allow the 

agent to act in an optimal way. A POMDP policy is then a mapping of belief 

states to actions (instead of a mapping of states to actions). 

 Dec-POMDPs have the additional complexity over POMDPs in that there 

are multiple agents, each of which has the ability to make decisions on its own. 

Thus agents are required to take into account not just the environment, but the 
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actions of the other agents in determining their own next move. An important 

distinction between Dec-POMDPs and MDPs or POMDPs is that agents in Dec-

POMDPs have no Markovian signal (Oliehoek, “Decentralized POMDPs” 5). 

Any individual agent can only account for its own actions and observations, 

whereas the transition and observation functions are specified in terms of joint 

actions. The partially-observable nature of the problem also means that it is 

impossible to use the single agent “puppeteer” reduction from before, because no 

agent will necessarily know everything that other agents know. Because there is 

no known way to account for the influence of other agents, a Dec-POMDP policy 

must necessarily map full-length action histories to actions (Oliehoek, “Decision 

Making for Cooperative Agents” 32). 

 Finite-horizon Dec-POMDPs are known to be NEXP-Complete (and 

infinite-horizon Dec-POMDPs, like POMDPs, are undecidable) (Bernstein 3), 

which makes fully optimal planning algorithms utterly intractable for use in an 

online setting. Optimal plans for such scenarios are therefore normally computed 

ahead of time (offline) and executed as the simulation runs. General algorithms 

for solving Dec-POMDPs generally exhibit poor scalability, but special classes of 

Dec-POMDPs sometimes have a lower complexity that a more specialized 

algorithm can take advantage of to obtain more efficient solutions (Seuken and 

Zilberstein 40). 

MMDP Model 

 An MMDP can be modeled as a tuple <S, A, T, R, h>, where 

S is the finite set of possible environmental states. 
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A is the set of possible joint actions. 

T is the transition function, 

R is the reward function, and 

h is the horizon for the problem. This is, roughly speaking, the number of time-

steps a solver has to find a solution, or the life-span of a specific instance 

of a problem. 

Before developing a formal TaxiWorld representation, a few definitions 

are needed: 

D = the set of taxis, {t1, … tn}. 

L = the set of all possible map positions, where each l in L is represented as (x, y), 

where x and y are the horizontal and vertical coordinates of the position 

within the city, and x and y are both nonnegative real numbers. 

n = the number of taxis in the fleet. 

p = the number of POIS in the scenario. 

F = a set of fares with the maximum number of fares that can be in the city at a 

given time for the scenario. This can be calculated for a given scenario if 

the number of POIs is known. Since each POI can generate at most one 

fare each simulation cycle, and each fare has a lifespan of at most 1300 

cycles, the maximum number of fares that can be on the map at once is (p 

· 1300). 

f = the set of possible values for the amount of fuel a taxi can have in its tank. In 

the Matlab simulation, fuel level is simply modeled as a real number in the 

range (0, 10), but in order to represent TaxiWorld as a discrete model, it is 
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necessary to represent the possible values as a discrete set of Boolean 

values rather than as a real number. 

If we assume that the taxis are able to communicate instantly with each 

other with no cost penalty, we can formalize TaxiWorld as an MMDP as follows: 

S = {D × L × f × F × L}. In each state, each taxi can be in any valid location 

within the city with any amount of fuel in the tank, and each fare can be 

also be in any valid location within the city.  

It is clear from this that the number of possible states |S| is difficult to even 

conceive: consider, for example, a very simple TaxiWorld scenario with only two 

taxis, 100 possible map locations (far less than in any standard scenario), and a 

single point of interest, which has only 10 map locations within its radius of 

influence. For simplicity, we will assume that a taxi has only 10 possible fuel 

levels, but we will leave the fare time-to-live at its default value of 1300 time-

steps. Even for such a comparatively small instance of TaxiWorld, the state space 

is quite large: each taxi can be in any of the 100 possible locations, and at any fuel 

level. This gives us 100·100·10·10, or 10
6
 states before we even look at the fare 

distribution. Now, how many possible fare arrangements can there be? When the 

first fare is created, it can be in any of the 10 map locations near to the POI, for 10 

possibilities. Once two fares are on the map, there can be 10·10 possible fare 

arrangements (since multiple fares can exist in the same space). Similarly for 

three or more fares; x fares can be arranged in 10
x
 possible ways. Since each fare 

has a lifespan of 1300, and the POI could theoretically generate a fare every 

single step for 1300 steps, we must consider the possibility of up to 1300 
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simultaneously-existing fares. Thus, accounting for every possible number of 

fares in every possible arrangement, there are 10
1300

 + 10
1299

 + … + 10
1
, or 

1.11·10
1300 

possible
 
fare arrangements in this simplified scenario. Considering 

both fare arrangements with taxi arrangements gives us a final state space with a 

cardinality of 10
6
 · 1.11·10

1300
 = 1.11·10

1306
. This means that an optimal MMDP 

policy would have to specify the best action for every one of these states.   

A = {A1 × A2 … × An}, where Ai is the set of possible actions for taxi i: {aN, aS, aE, 

aW, aP, aD} – each taxi can move in each of the cardinal directions, and can 

pick up or drop off a fare, provided the correct conditions are met. 

R = +1 for each time any taxi drops off a fare (any taxi performs action aD). If this 

scenario is reduced to an MDP (treated as if there is a single “puppeteer” 

agent), then there will be 2
n
 actions which represent a 'drop-off' action for 

at least one taxi, so the reward function will need to specify the 

appropriate reward for each. 

h – For testing the control algorithms, I chose a horizon of 50,000 steps. 

T – The transition function must be able to account for all possible state changes 

due to actions by the taxis. It must also account for the stochastic 

appearance of fares that can happen in any simulation cycle.  

There are a couple of ways to attempt to define such a transition function. 

The first possible approach is to define T: S × A → S, so that the function takes as 

input a current state and a joint action (a move for every taxi in that time-step), 

and returns the resulting state. However, the problem with this approach is that it 

creates an incredibly large branching factor which is time-consuming for a 
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planner to evaluate: for each state, each taxi can take any of up to six actions. This 

means that for each state, there would need to be a transition defined to every 

state that could result in the next step due to fare appearances, and for every one 

of these there would need to be transitions defined for each of the possible 

combinations of movements of the entire taxi fleet. The number of possible next 

states is quite large. Looking again at our simplified TaxiWorld domain from 

before, we can see that between the two taxis, there are 36 possible joint actions 

they might take. The single POI may also generate a fare at any of its 10 in-range 

locations. It is also possible that a fare will expire in the next step, but since this 

occurs deterministically, it will not affect the branching factor of the transition 

function. This means that we can have up to 36 · 10 = 360 possible next states for 

any given current state. 

One method that can slim down the branching factor is to break apart the 

taxi moves and evaluate them separately, instead of evaluating them all at once. In 

the actual simulator, each taxi is technically (at a very low level) updated 

sequentially, and it is possible to do a similar thing with the states in this model. 

With this approach, you can define T: S × A → S, so you are only mapping single 

taxi actions, which decreases the branching factor (the number of possible next 

states) by a significant factor. Each simulation cycle can be represented in the 

Dec-POMDP as a sequence of n evaluation steps, and the POIs can be evaluated 

to see if they generate fares after the last taxi is planned at each cycle. This 

approach lowers the computational complexity for the planner at each step and 

can help to streamline the solving process. 
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DEC-POMDP Model 

 If the taxi drivers are assumed to be independent decision-making entities 

who work to service the city's fares in a decentralized way without implicit 

communication or knowledge of each other’s actions, then the domain can be 

modeled as a Dec-POMDP, which is similar to an MMDP, but has the additional 

complications that the domain is not fully observable, and agents cannot perform 

a joint belief update. 

 A Dec-POMDP can be represented as a tuple, <D, S, A, T, R, O, O, h, I>, 

where S, A, T, R, and h carry the same meaning as they do for an MMDP, and the 

additional symbols carry the following meanings: 

D is the set of agents {1, … n}. 

O is the finite set of joint observations. 

O is the observation probability function.  

I is the initial state distribution at stage t = 0, and I is in the power set of S. 

TaxiWorld could thus be represented as a Dec-POMDP as follows:  

D = {t1, … tn} – simply the set of taxis. 

S = {D × L × f × F × L}. In each state, each taxi can be in any valid location 

within the city with any amount of fuel in the tank, and each fare can be 

also be in any valid location within the city. The state representation can 

actually be identical to the MMDP version. 

A = {A1 × A2 … × An}, where Ai is the set of possible actions for taxi i: {aN, aS, aE, 

aW, aP, aD} – each taxi can move in each of the cardinal directions, and can 

pick up or drop off a fare, provided the correct conditions are met. 
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R = +1 for each time any taxi drops off a fare (performs action aD). 

O is the set of all fare and taxi locations, as well as the taxi’s own fuel level. 

O is the observation probability function. TaxiWorld actually does not have noisy 

observations, so the state of the city is observed with probability 1. 

h – For testing the control algorithms, I chose h = 50,000 steps. 

I – The initial state in TaxiWorld is simply the city with all of its POIs, and the 

taxis, which all start in the garage. 

T – The transition function for the Dec-POMDP can be handled in the same way 

as for the MMDP, as it is still handling the same interactions. 

 Although the TaxiWorld scenario can be considered in the light of 

assumptions that allow it to be modeled as either an MMDP or a Dec-POMDP, 

the actual simulator is constructed under the reasonable assumption that there is a 

central dispatcher who can communicate with the taxis and coordinate their 

efforts, meaning that the domain as it is simulated (and as it is treated by the 

default planner in place in the simulator) is actually most accurately modeled as 

an MMDP. 

From this discussion, it should be clear that while these models are quite 

powerful in their ability to capture representations for a wide variety of scenarios, 

their complexity renders them unwieldy for use in online settings in all but the 

simplest of problem domains. Although improving on the default TaxiWorld taxi-

control algorithm is a stated goal of this thesis, the simulator is intended to be run 

in near-real time; it would be impractical to attempt to implement a fully-optimal 

planner to do this, especially since TaxiWorld can support any city configuration 
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desired; the MDP policy would have to be re-computed for every new instance of 

the problem. Instead, I have implemented an online algorithm which attempts to 

be a closer approximation to the optimal policy than the default simulator control 

mechanism. 
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CHAPTER 4 

CONTROL ALGORITHMS 

 The simulator already has a control algorithm in place to provide the taxis 

with direction. However, control is implemented in a fairly naïve way, and is 

therefore quite sub-optimal. Before considering any improvements that might be 

made to the control strategy, it will be useful to take a look at how control is 

currently implemented in the simulator. 

Default Control Algorithm 

 The default control algorithm matches taxis to fares in a very 

straightforward way. Any time a taxi becomes available (e.g. when it enters the 

city proper at the beginning of the simulation, or after it drops off a fare), it is 

immediately assigned to the closest available fare. If multiple taxis become 

available at once, they will be assigned to fares in numerical order according to 

the taxi id numbers. Once a taxi is assigned to a fare, it will remain assigned to 

that fare until it either picks up the fare, or the fare expires and is no longer 

available to be retrieved by the taxi fleet. The taxi will then be assigned to the 

next available fare, if one exists. 

 There are multiple shortcomings with the control scheme as it stands. The 

default assignment strategy has a tendency to assign taxis to fares haphazardly, 

thereby losing a lot of time to inefficiency. For example, the numerically-ordered 

assignment means that the choice of which taxi collects a fare is determined by 

taxi id number, rather than by which taxi is in a better position to serve that 

particular fare. In addition, the inflexibility of the planner means that once a taxi 
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is assigned to a fare—however sub-optimally—it can never be reassigned to a 

different fare unless it is no longer able to retrieve the fare (this will happen if the 

fare disappears due to exceeding its time limit). In a dynamic city where the 

distribution of fares is subject to constant change, a myopic approach like this is 

in no way acceptable. 

 Another consideration that is ignored is fare lifespan. Taxis are assigned to 

fares based on location, with no concern for when fares might be expiring. While 

it might be useful to attempt to prioritize fares based on lifespan (to target near-

expired fares first and then come back for longer-lived ones), a perhaps more 

cogent threat to efficiency is the possibility of assigning a taxi to a fare it doesn't 

have time to reach before expiration. Such an assignment would result in a perfect 

waste of time while the taxi proceeds towards the fare, and then is eventually 

forced to find a new one. Since the taxis have a set speed at which they travel, and 

the time-to-live of each fare as well as its position relative to the taxi is known, it 

should be possible to calculate whether or not it is possible for a given taxi to 

reach its assigned fare in time. 

Improved Control Algorithm 

 Initially, there were a number of possibilities under consideration for 

developing the improved control scheme. One of the most immediately obvious 

improvements was to make the assignment from taxis to fares in a more 

intelligent way, so fixing that was a first order of business. Another important 

change to make was to fix the unchangeable nature of fare assignments. In a city 

with constantly-changing conditions, the fleet's orders need to be flexible, so that 
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taxis won't be doomed to pursue a sub-optimal course of action simply because 

the control system can't issue a change of plans. Another possibility, which would 

mostly be useful in situations where there are a lot of available fares, would be 

fare culling. If a fare is determined to be too far away, or there are enough nearby 

fares, it might make sense to simply ignore the distant fare until it expires. 

Finally, some consideration was given to the possibility of looking ahead to future 

actions – trying to determine (for a taxi that is already handling a fare) what 

would be a good plan to pursue once the current fare is dropped off. 

 The first two considerations are the principal ones that have been directly 

addressed. I formulated a more intelligent way of assigning taxis to fares, in order 

to minimize the average travel distance from any taxi to its fare. In this way, I can 

avoid the situation where, if multiple taxis are available when a fare appears, they 

are sub-optimally assigned based on id precedence. Instead, each available taxi is 

considered for the fare, and the one most able to service it is chosen for the job. 

Fare culling was not implemented directly, but seems to be an emergent behavior 

due to the way taxis are assigned to fares. If a fare is too far away, there will 

simply always be other available fares that are nearer to the taxis, and the far fare 

will never be assigned. 

 Since the appearance of fares can have a significant impact on the 

optimality of the current plan, it seemed that it would be necessary to evaluate and 

reassign taxis to more optimal fares from time to time, even while a taxi was on 

the way to pick up a fare (reassignment can only be done while en route to a fare, 

of course; once a taxi actually picks up a fare it should not change its plans until it 



  22 

reaches the drop-off point, so as not to take the passenger on a longer ride than 

necessary). It was thus necessary to determine when would be the most effective 

times to reevaluate the taxi assignments. Of course this reevaluation could be 

performed in every step, but this could become very expensive computationally. 

Since the taxi assignments depend at present only on the set of available fares, the 

natural approach is to perform the reassignment every time the list of fares 

changes, to wit: upon the appearance of a new fare, after a fare expiration due to 

elapsed time or after a fare is dropped off. 

 I also found that my algorithm seemed to have a propensity for stranding 

taxis in the city without fuel. The default algorithm does have a way of sending 

taxis to the gas station when needed; I was relying on this mechanism while 

simply overriding the fare assignments, but my changes were apparently 

preventing the refueling code from properly working. To overcome this, I added a 

check when performing reassignments to see if the taxi had less than 1 unit of fuel 

remaining (out of a maximum 10), in which case it would be ordered to refuel 

immediately before attempting to service any more fares. 

Implementation 

Before going into the details of how the assignment is made, it is 

necessary to review the data structures in use. Taxis and fares are both modeled as 

tuples of elements which includes an id, x and y coordinates, and an assignment. 

The actual assignment code was implemented in a method called 

assignTaxis that is called from within the Matlab simulation. Before calling this 

method, each taxi is considered to see if it is currently available to be assigned (it 
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is not currently dropping off a fare or low on fuel). Two lists are then constructed: 

the first (‘taxis’) contains the name and location of any taxi that is eligible for 

assignment, and the other (‘fares’) contains the names and locations of all 

currently available fares. The assignTaxis method is then called with these two 

lists as inputs; assignTaxis returns a single list containing the generated 

assignments. The assignTaxis method works as follows: 

 First, a “preference list” is constructed for each taxi, consisting of all of 

the available fares ordered by distance from that taxi. This is done simply by 

looping through the fares, calculating the distance to the current taxi in question, 

and ordering them appropriately within the taxi's preference list. 
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 Next, the algorithm loops through the list of taxis in order, and attempts to 

assign each taxi to its most-preferred fare. If a taxi's most-preferred fare is 

available, a tentative assignment is made. If the fare is already assigned to another 

taxi, then the current taxi and the fare’s assigned taxi are determined to be “in 

conflict” over the fare, and both taxis must be evaluated to see which actually is in 

a better position to service that fare, taking other taxi and fare positions into 

account. The conflict resolution method is called, taking as its input the two 

conflicting taxis. It determines the best joint assignment for the involved taxis, 

and makes the assignments on its own. Once all taxis have been assigned to fares, 

the taxi list is returned to the caller (at this point, each taxi in the taxi list will have 

its “assignment” attribute assigned to the fare it is supposed to pursue). 

 The resolveConflict method is a little more complicated. It takes as its 

input the two taxis that are in conflict over a fare. It looks at the preferences for 

each taxi, and if any of the preferences are assigned to some taxi that is not 

already under consideration, that taxi is also added to the list. The new taxi’s 

preferences must then be analyzed as well to see if one of them is assigned to yet 

another taxi. This is continued until no more taxis can be added. 

 Next, the algorithm generates every possible valid joint assignment using 

the taxis under consideration and their preference lists. Each joint assignment is 

evaluated to find the average distance each taxi would have to travel under that 

assignment. The joint assignment with the lowest average travel distance is 

chosen, and taxi assignments are made accordingly. This ends the conflict 

resolution method. 
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Complexity 

 The initial step of generating the taxi preferences lists is accomplished in 

O(|T| · |F|) time, where T is the set of taxis and F is the set of fares. Next comes 

the assignment/conflict resolution phase. Conflict resolution takes O(|F|) to gather 

the necessary entities to consider (by looping through the fares under contention 

to build the lists, O(|T × F|) to generate all possible joint assignments, and then 

O(|T × F|) to evaluate and find the cheapest joint matching. Conflict resolution 

can be performed as many as |T| - 1 times in the course of running the assignment 

algorithm. Once the assignment phase is over, the resulting best joint assignment 

is returned to the caller. Thus the entire algorithm is accomplished in O(|T| · |F| + 

|T|(|T × F| + |T × F|)) or O(|T|(|T × F|)) time. 

 There are a couple of improvements that could be made to improve the 

efficiency of this algorithm. First, it would make sense to actively consider only 

the first two or three preferences for each taxi during conflict resolution. In this 

way it is possible to diminish the possibility that other taxis are drawn into the 

conflict resolution phase. This would also limit the exponential blowup in the 

number of possible joint assignments that are generated during this process. 

 Once fare resolution is performed, it would also be possible to prune the 

fare preferences list of any taxi that was assigned to a fare that was not its most-

preferred. Since all more-preferred fares have already been considered and 

determined to result in sub-optimal joint assignments, they can be removed from 

the taxis preference list altogether. Scrubbing the suboptimal fares from the taxi's 

preference list in this way will also make it possible to continue doing conflict 
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resolution with only the top two or three preferences, since the preferences will no 

longer contain fares that are ultimately sub-optimal for any taxi. 

 A small example will help to clarify the verbal description above: 

Consider the image to the right. In this scenario, there are two taxis 

(with ids '1' and '2') and two fares (with ids 'a' and 'b'). When the 

algorithm is called, it will first figure out the preferences list for each 

taxi. In this case, taxi '1' and taxi '2' are both closer to fare 'b'. Thus, 

the preference lists will appear as follows: 

Taxi '1' preferences: [b][a] 

Taxi '2' preferences: [b][a] 

 Next, it will attempt to assign each taxi to its most-preferred fare. Taxi '1' 

will be evaluated first, and assigned to fare 'b'. When taxi '2' is considered, it will 

start a conflict with taxi '1' over fare 'b', since taxi '2' also prefers 'b' over 'a'. Thus 

the two taxis will have to enter the “conflict resolution” phase. In this phase, all 

possible assignments of taxis to their preferred fares will be generated and 

evaluated for the average travel time they incur. The possible joint assignments 

generated are as follows: 

Joint Assignment 1: {('1', 'a'), ('2', 'b')} 

Average distance: (('1' to 'a' distance) + ('2' to 'b' distance)) / 2 = (4+5)/2 = 4.5 

Joint Assignment 2: {('1', 'b'), ('2', 'a')} 

Average cost: (3 + 8)/2 = 5.5 

 In this case, joint assignment 1 has the more optimal average travel cost, 

and the conflict is resolved by assigning taxi '1' to fare 'a' and taxi '2' to fare 'b'. □ 
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Optimality 

For the example given above, the assignment generated by my algorithm 

is optimal, and better than the one that would be generated by the default 

algorithm in this situation (it would have paired ‘1’ with ‘b’ and ‘2’ with ‘a’). The 

assignment is optimal because there is no other assignment that can result in the 

collection of both available fares in less time. Furthermore, this will hold true 

regardless of the drop-off points for the fares, since the average time required for 

the drop-offs will be constant regardless of the initial fare assignment. 

However, this algorithm is not guaranteed to be optimal in all situations. It 

will be optimal in situations such as the above, where the number of taxis is not 

exceeded by the number of fares, but in the highly-variable scenarios within the 

simulator, situations will arise for which my algorithm will produce sub-optimal 

results. Consider the image at right, where the eventual 

drop-off locations of the fares are shown in black. My 

algorithm would assign taxi ‘1’ to fare ‘a’ and taxi ‘2’ 

to fare ‘b’. Taxi ‘2’ will be assigned to fare ‘c’ after 

dropping off fare ‘b’, and taxi ‘2’ will have to travel 11 steps to complete its 

assignments, while taxi ‘1’ will be done after 3 blocks and have nothing to do for 

the rest of the time. An optimal assignment would be to send ‘2’ to ‘c’ while ‘1’ 

takes care of ‘a’ and then ‘b’; each taxi would have to travel for 7 steps, which 

means the optimal assignment will drop off the fares significantly quicker than 

my algorithm, although the average distance traveled by the taxis will still be the 

same. 
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The problem of assigning taxis to fares is related to the bipartite matching 

problem as explained in [4]; it would be possible to use bipartite matching 

algorithms to generate these assignments, by constructing two graphs that 

correspond to the set of taxis and the set of fares. Every taxi should be given an 

edge to each fare, with the weight of the edge equal to the inverse of the distance 

between the taxi and the fare. It would then be possible to use any bipartite 

matching algorithm to find a maximum matching, which would correspond to a 

valid assignment of taxis to fares. The assignments generated in this manner 

would still not be completely optimal however, since the matching will be 

optimized for the first set of assignments; it does not account for the fact that 

some taxis must service multiple fares if there are more fares than taxis. 

Another important factor that makes my algorithm sub-optimal is that no 

attempt is made to account for the expected appearance of new fares. If the fare 

appearance distributions are known ahead of time (or if they can be approximated 

during simulation), then it would be possible to anticipate the possible arrival of 

fares and issue the taxis orders to move to a location that does not yet have a fare 

present if it is a known that a fare is likely to appear soon. Anticipatory actions 

such as this would be especially useful in situations where no fares are available, 

in order to minimize wait time when a fare does appear, but there is currently no 

mechanism in place to accommodate such strategies. 

A fairly uncommon situation that would cause my algorithm to perform 

sub-optimally is if a taxi is assigned to a fare that is set to expire before the taxi is 

able to reach it. In such cases, the taxi will be wasting time until the fare expires 
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or it is otherwise reassigned. An optimal strategy should be able to gauge the 

ability of a taxi to reach a fare before expiration and avoid making hopeless 

assignments, and my algorithm does not evaluate this. In practice however, such 

situations would be rare since taxis are assigned to the overall shortest-path 

pairings; it is unlikely that a taxi would be paired with a fare that is beyond its 

reach unless no other fares were present.  
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CHAPTER 5 

EXPERIMENTAL SETUP 

Experimental Metrics 

 In order to compare the two control algorithms to see if indeed the new 

one is an improvement over the original, it was necessary to come up with 

compelling metrics by which the two could be compared. The most important 

metric is naturally the number of fares that the taxi fleet is able to service in a 

given amount of time. However this only gives part of the picture, so the number 

of fares that are allowed to expire should also be recorded, since this allows us to 

calculate the “success ratio” of the taxi fleet (fares serviced / fares expired); a 

single number that can potentially be used to compare even between different city 

scenarios. Also recorded is the average fare wait time; how long on average a fare 

has to wait after appearing until it gets picked up. This metric will presumably 

mean less in high-fare-density scenarios, since a taxi should be able to find a 

nearby fare without too much difficulty most of the time, but in low-fare-density 

scenarios (in particular, scenarios where any reasonable algorithm is likely to be 

able to pick up most or all of the fares), the average fare wait time could provide 

an important indicator of an algorithm's efficiency compared to others. 

 One other metric that was considered is “Taxi Utilization”, or the 

proportion of the time each taxi spends actively trying to service fares, as opposed 

to roaming or refueling. While I did implement this metric in the simulator, I 

ultimately decided against using it, as it seemed a poor indicator of actual 

performance. Especially in low-fare-density environments, it could be misleading: 
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a highly efficient algorithm that quickly handles the available fares and then starts 

roaming while waiting for more fares to appear would have a lower taxi 

utilization than a less efficient algorithm which took more time to service the 

fares it had. 

Experimental Design 

 Once the chosen metrics were implemented in the simulator, it was 

necessary to come up with appropriate testing scenarios in which to evaluate the 

algorithms. I performed testing primarily in two scenarios. The first test scenario, 

which we will call TwoTaxis, consists of an 8-by-8 city grid with a single point of 

interest to generate fares, and two taxis to make passenger deliveries. The second 

scenario, called ZedCity, is a much larger 16-by-16 grid, with ten POIs to provide 

fares and a 5-taxi fleet to service them. 

 
 In order to ensure a more or less fair comparison of the performance 

between the algorithms tested, the “random” fare arrivals were rigged so that 

every algorithm would be confronted with the exact same set of fare appearances; 
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the differences in performance are thus entirely resultant from the control 

algorithm itself, rather than being an artifact of different randomly-produced runs 

of fares. 

 Since the simulation itself can be run for an indefinite amount of time, it 

was necessary to come up with an appropriate evaluation window – a suitable 

amount of simulation time to get a fair representation of the efficacy of each 

algorithm. Each taxi can run for somewhere near 21,000 simulation cycles before 

needing to refuel, and it seemed like a good idea to include refueling trips in the 

test cases, so a time of 50,000 simulation cycles was chosen for each test run. This 

is enough time that each taxi in the fleet has to make two trips to the gas station, 

and allows for some buffer time besides. I used the dispatcher to collect all of the 

data necessary to evaluate these metrics, due to the fact that it has access to nearly 

all of the information in the simulation at any time. 
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CHAPTER 6 

RESULTS 

I discovered during testing that my reassignment method sometimes 

caused a taxi to forget to refuel. The default taxi AI has a mechanism to know 

when it must refuel, and I had not modified that aspect of the AI, but apparently 

my new code was interfering with it, causing taxis to occasionally strand 

themselves within the city. I accordingly added code to force the taxis to go to the 

gas station once their fuel fell below a certain level. For comparison, I ran the 

scenarios both with and without the modified refueling code. Each scenario was 

evaluated by each algorithm on three different fare-frequency settings to achieve a 

more comprehensive comparison. In the tables, the algorithms are represented by 

'D' for the default control, 'I' for my improved variant, and 'F' for my algorithm 

with the modified fuel-aware code. 

 The table below summarizes the results of running each algorithm on the 

TwoTaxis scenario. 

POI rate .003 .005 .01 

Control D I F D I F D I F 

Serviced 70 77 74 106 117 117 149 119 155 

Dropped 9 2 6 20 8 8 114 141 107 

Avg Time 513.8 416.0 447.3 616.2 440.9 440.2 898.4 932.3 820.5 

Table 1: Results for Default, Improved, and Fuel-aware algorithms in the TwoTaxis trials 

 

 In the scenario runs with the POI spawn rate set at .003 and .005, the 

improved algorithm performed better than the default algorithm, and the fuel-

aware algorithm also did quite well. The fuel-aware method also did better on the 
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.01 setting, though this time the improved algorithm actually did worse, due to the 

stranding of one of the taxis after it ran out of fuel. It is also clear from this graph 

that the improved algorithm does significantly better regarding the average wait 

time, due to its effective prioritizing of the available fares. 

 The results for the ZedCity trials are likewise shown in the table below: 

POI rate .0005 .001 .002 

Control D I F D I F D I F 

Serviced 80 85 85 161 176 170 252 246 255 

Dropped 13 7 7 33 19 24 125 133 124 

Avg Time 593.7 469.4 469.4 717.1 519.9 546.2 859.6 819.8 794.4 

Table 2: Results for the Default, Improved, and Fuel-aware algorithms in the ZedCity trials 

 

 In the ZedCity results there is a similar pattern of improvement over the 

default algorithm by the improved versions. There is also a similar trend in 

average fare wait times here as there was in the TwoTaxis scenario, with the 

improved algorithms showing significant improvement over the default algorithm.  

  From these results it is clear that in each of the scenarios considered, my 

modified algorithm outperformed the default on all fronts, achieving a higher 

success ratio with a shorter average wait time, reflecting the positive effect of the 

more efficient assignment algorithm. Of note is the fact that in scenarios where ‘I’ 

did not end up stranding a taxi, it seems to have done better than ‘F’. It is possible 

that this is could be caused by my modification being over-zealous in sending 

taxis to the gas station, depriving them of small amounts of fare-servicing time on 

each refueling cycle. This indicates that even the timing of refueling can be 

subject to improvement, and can have a noticeable effect on results. 
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CHAPTER 7 

SUMMARY AND CONCLUSION 

 TaxiWorld provides an excellent example of a multi-agent planning 

domain; such domains are of great interest to the planning community, and good 

solving methods for such problems would find application in many different 

arenas. MDPs, in their various forms, provide powerful representational abilities 

which can be used to capture very complex domains in a form which can be fed to 

a solver to generate optimal policies; multiple such representations were 

considered for use with TaxiWorld, but it was determined that an empirical 

approach would be better suited to improve on the shortcomings of the default 

control mechanism in use on the simulator. After identifying several 

shortcomings, I presented a new approach that could improve on the default, and 

ran a number of simulation trials demonstrating that the new control scheme is in 

fact an improvement over the old one. Naturally, even this improved algorithm 

will still have shortcomings; possible future improvements were discussed as 

well, though an empirical approach will necessarily be only an approximation of 

the fully-optimal policy generated by an MDP solver. 

In doing this research, I was able to learn the types of problems that are 

representable within different families of MDP models, and to use the Dec-

POMDP and MMDP frameworks to model a fairly complex scenario. Through 

the development of my empirical model, I demonstrated that although finding an 

optimal policy for a problem may be intractable, it may be possible to leverage 

domain-specific properties to generate a solution strategy that achieves an 
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acceptable level of success at significantly less computational cost. Because the 

cost-to-benefit ratio of developing and using a fully optimal solution (or even a 

theta-approximate one) would be extremely large, in many cases it might be far 

more practical to craft a reasonably efficient domain-specific solution than to 

formalize the problem and use a full-blown general solver to generate an optimal 

policy. 
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