
TaxiWorld: Developing and Evaluating Solution

Methods for Multi-Agent Planning Domains

by

Christopher White

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved June 2011 by the

Graduate Supervisory Committee:

Subbarao Kambhampati, Chair

Sandeep Gupta

Georgios Varsamopoulos

ARIZONA STATE UNIVERSITY

August 2011

 i

ABSTRACT

TaxiWorld is a Matlab simulation of a city with a fleet of taxis which

operate within it, with the goal of transporting passengers to their destinations.

The size of the city, as well as the number of available taxis and the frequency

and general locations of fare appearances can all be set on a scenario-by-scenario

basis. The taxis must attempt to service the fares as quickly as possible, by

picking each one up and carrying it to its drop-off location. The TaxiWorld

scenario is formally modeled using both Decentralized Partially-Observable

Markov Decision Processes (Dec-POMDPs) and Multi-agent Markov Decision

Processes (MMDPs). The purpose of developing formal models is to learn how to

build and use formal Markov models, such as can be given to planners to solve for

optimal policies in problem domains. However, finding optimal solutions for Dec-

POMDPs is NEXP-Complete, so an empirical algorithm was also developed as an

improvement to the method already in use on the simulator, and the methods were

compared in identical scenarios to determine which is more effective. The

empirical method is of course not optimal - rather, it attempts to simply account

for some of the most important factors to achieve an acceptable level of

effectiveness while still retaining a reasonable level of computational complexity

for online solving.

 ii

ACKNOWLEDGMENTS

I would first like to offer my gratitude to my director, Subbarao

Kambhampati, for his patience and insight as he guided me in my research, and

for providing me with necessary resources and information to which I would not

otherwise have had access. It is due to his great willingness to provide assistance

that I have been able to complete this thesis at all.

I would also like to thank J. Benton for his willingness to discuss my

project and to share his own experience with me; the discussions I had with him

were always valuable, and I am certain I would not have the level of

understanding I do without his generosity.

Finally, Joshua Ferguson, whose work with TaxiWorld predates my own,

was an extremely valuable resource as I learned how to work with the simulator.

His knowledge of the many quirks and apparent chaos within the MATLAB code

prevented me from being unnecessarily stonewalled on numerous occasions, and

it is fair to say I might still be trying to tease apart its ineffable mysteries were it

not for his help.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. iv

LIST OF FIGURES ... v

CHAPTER

1 INTRODUCTION .. 1

Related Work .. 1

Approach ... 2

2 SIMULATOR DESCRIPTION ... 5

Simulation Components ... 6

3 MDP MODEL BACKGROUND .. 9

MMDP Model ... 11

Dec-POMDP Model ... 16

4 CONTROL ALGORITHMS ... 19

Default Control Algorithm ... 19

Improved Control Algorithm .. 20

Implementation ... 22

Complexity .. 25

Optimality ... 27

5 EXPERIMENTAL SETUP ... 30

Experimental Metrics ... 30

Experimental Design .. 31

6 RESULTS .. 33

 iv

7 SUMMARY AND CONCLUSION .. 35

REFERENCES .. 37

 v

LIST OF TABLES

Table Page

1. Simulation Results for TwoTaxis Trials ... 33

2. Simulation Results for ZedCity Trials .. 34

 vi

LIST OF FIGURES

Figure Page

1. Example of the TaxiWorld Simulation ... 5

2. Families of MDP Models .. 10

3. Pseudocode for Taxi Assignment Algorithm 23

4. City Layout for the TwoTaxis Scenario ... 31

5. ZedCity Layout ... 32

 1

CHAPTER 1

INTRODUCTION

TaxiWorld is a high-level simulation of a city, in which passengers need

transportation, and a small number of taxis which patrol the city and are

responsible for meeting the passengers' needs. The number of taxis in the fleet is

variable, and can be configured as is desired for a given scenario. Requests for

transportation are modeled as 'fares', which appear semi-randomly within the city,

and are then available for a taxi to pick up and deliver to the fare's drop-off

location. In addition, each fare has a time limit; if the fare is not collected by some

taxi within the allotted amount of time, it will disappear, resulting in lost revenue

for the taxi company. It is therefore of paramount importance that the taxis be

dispatched efficiently, to maximize the number of fares they are able to deliver

and increase the amount of profit that the company can collect. The simulation

also includes a gas station, which is located outside of the city proper. Taxis must

on occasion go to the gas station to refuel, so that they will be able to continue to

provide service for the fares within the city.

Approach

My research was principally directed towards understanding Decentralized

Partially-Observable Markov Decision Processes (Dec-POMDPs), and finding a

way to encode the TaxiWorld domain using this model. Since the individual taxis

can be considered to be separate agents, each of which must make autonomous

decisions based on local information without explicit communication with the

other taxis, this seemed like a good domain to use for this research. In learning

 2

about the structure of the simulator itself, it became clear that the behavior of the

taxis in the simulator should actually be modeled using Multi-Agent Markov

Decision Processes. For this reason, I developed a formalization of the TaxiWorld

scenario using both models.

 The second goal of my research was to develop a taxi-control algorithm

for use within the Matlab simulation itself, to improve on the current algorithm

being used. The Matlab simulation was actually developed prior to my own

involvement in the project, so my principal problem was to first learn how to

develop within the Matlab simulation environment; doing this revealed that the

control algorithm in place fails to take into account a number of important factors

in determining the behaviors of the fleet of taxis. To rectify this, I proceeded by

first identifying the shortcomings of the original control strategy, and then trying

to account for them in my improved version. Since I am more familiar with

coding in Java than in Matlab, I found it helped to develop the taxi-assignment

code externally in Java and call it from within the Matlab simulation; the results

from that call are then used to generate orders for the fleet within Matlab.

 In doing this research, I was able to learn the types of problems that are

representable within different families of MDP models, and to use the Dec-

POMDP and MMDP frameworks to model a fairly complex scenario. Through

the development of my empirical model, I demonstrated that although finding an

optimal policy for a problem may be intractable, it may be possible to leverage

domain-specific properties to generate a solution strategy that achieves an

acceptable level of success at significantly less computational cost. Because the

 3

cost-to-benefit ratio of developing and using a fully optimal solution would be

extremely large, in many cases it might be far more practical to craft a reasonably

efficient domain-specific solution than to formalize the problem and use a full-

blown general solver to generate an optimal policy.

Related Work

 The problem of coordinating multiple autonomous agents in

accomplishing a set of goals is a non-trivial planning problem, especially if events

beyond the agents' control can cause significant changes to the environment, thus

invalidating or rendering obsolete previously generated plans. If the current state

of the world is also only partially observable, the problem domain can become

even more difficult. Planning algorithms that can effectively address such

problem domains are of interest to the Artificial Intelligence community due to

the inherent complexity possessed by problems such as these, and because of the

transferability of a solution to one such problem to other similar problems.

 Markov Decision Processes, in their many forms, have been considered in

numerous papers and publications, due to their versatility and applicability in

many problem domains. Because of these standardized formal models, any multi-

agent planning domain may be addressed in a similar way to TaxiWorld, although

the exogenous and stochastic goal arrivals are important factors that distinguish

TaxiWorld from many other planning domains. Hubbe et al. [3] address the

problem of stochastic goal arrival in a much smaller domain by sampling the

distribution of possible future goal arrivals and choosing the action which will

optimize the expected cost over the sampled futures.

 4

 A taxi-planning domain very similar to TaxiWorld is considered by Xu

and Huang [12], but is notably different in that they allow taxis to carry multiple

passengers at once (up to four). They attempt to solve their domain by using a

decentralized algorithm in which taxis generate a set of possible plans and then

communicate with other nearby taxis to determine which plan of action is best.

Ryan et al. [9] consider a similar domain in which unmanned aerial

vehicles (UAVs) must coordinate to achieve a set of goals. The UAVs in this

scenario coordinate by “bidding” on goals with the cost it would require them to

achieve the goal; the UAV which can offer the lowest-cost bid for a goal takes on

the assignment.

 5

CHAPTER 2

SIMULATOR DESCRIPTION

 TaxiWorld consists of a class framework which contains all of the

components that comprise the city and its inhabitants. The simulation is carried

out in "steps", which can be executed as quickly as the computer's processor can

evaluate them. Each model component that appears within the simulation has its

own "step" function, which is called by the simulator on each simulation cycle,

and determines the component's behavior for that cycle. The objective of the

simulator is to provide a test-bed for devising effective control strategies for

servicing fares using the available taxis.

Figure 1: Example of the TaxiWorld Simulation

 6

Simulation Components

Figure 1 shows what the simulator might look like while it is running.

From this image it is possible to see the layout of the city, as well as the locations

and positions of every fare, taxi, and point of interest in the scenario at any given

time, as well as the locations of the gas station and the garage. Taxis are shown in

the image as circles, containing a pie-slice-shaped, colored wedge, the point of

which aims in the direction of the taxi’s motion. If the taxi is roaming or inactive,

the wedge is shaded gray; if it is en route to pick up a fare, the wedge becomes

blue; after retrieving the fare and before dropping it off, the wedge is magenta;

when the taxi is on its way to refuel, the wedge becomes red. Fares are

represented in the simulator as small squares. They have a similar coloring

scheme to the taxis; when a fare first appears, it is green. Once a taxi is assigned

to it, the fare becomes blue, and points that represent fare drop-off locations are

shown in magenta. Points of interest are shown as red triangles on the map, and

do not change throughout the course of the simulation. The gas station and the

garage are represented respectively as a gas pump and a car inside a structure.

Each scenario is specified in its own file, which determines the size of the

city by specifying the number of rows and columns (vertical and horizontal roads)

it has. It also sets the locations and properties of all of the points of interest, as

well as the size of the fleet of taxis that is available to service the city. The

locations of any gas stations are also determined here, as well as any additional

roads (called bridges) to connect the gas station to the city proper, since the gas

station is located outside of the city proper.

 7

Points Of Interest (POIs) are responsible for generating fares which can

then be serviced by the taxi fleet. Each POI has a location within the city, as well

as a radius. Together, the location and radius determine the portion of the city in

which fares can be generated by the POI. A POI also has a frequency, which is the

probability that on any given simulation cycle it will generate a new fare. The

number of POIs within the city is scenario-specific, and the attributes of each POI

can be configured individually if desired.

Fares are the goals for the agents in TaxiWorld. They are represented by a

unique id, and have a pickup location, a drop-off location, and a time-to-live. The

pickup location is the grid coordinate where the fare initially appears when

spawned by a POI, and the drop-off location is the grid coordinate the taxi must

take the fare to in order to complete the delivery and receive payment. The time-

to-live is set when the fare is created (to a default value of 1300 simulation

cycles), and will steadily decrease as the simulation runs. When the time-to-live

reaches zero, the fare will expire, and it will no longer be possible for any Taxi to

service it.

FareList is simply an organizational entity to make all of the information

about fares in the city accessible from a single location within the program. The

Dispatcher uses the FareList to keep track of the locations and life-spans of all of

the currently-available fares, as well as to obtain the information it needs to make

intelligent decisions regarding taxi deployment.

A TaxiState is a representation of all the information pertaining to a

specific taxi. It contains the taxi's unique id, its location, its current fuel level, its

 8

current plan (the next fare it intends to collect, if there is one), the number of

passengers currently in the vehicle, and the state of the taxi (a taxi can be active,

inactive, refueling, or dead). The TaxiState can receive instructions to carry out,

such as orders to pick up a fare or to go refuel.

The Dispatcher is one of the most important components of the simulator.

It keeps track of all the fare locations and life-spans, and can send orders to the

taxis based on the current conditions in the city and any changes that occur. It also

has access to the FareList, which allows it to track changes to fare conditions and

coordinate the taxi fleet's efforts in collecting them. The control algorithm I

implemented is run from within the dispatcher’s step event, since it is the only

component that not only has access to necessary information, but the ability to

send out orders to all of the taxis as well.

 9

CHAPTER 3

MDP MODEL BACKGROUND

Markovian models are useful for modeling problem domains in a discrete

form such that it can be given to a solver, which can use the formal domain

description to calculate an optimal policy for use in the domain. There are many

different types of Markovian models that can be used, depending on the scenario

under consideration; this thesis is primarily concerned with scenarios with

multiple decision-making agents, and partial or full observability (this determines

whether or not the agents have full knowledge of the current state). Several

models are discussed here in order to demonstrate the differences between them,

and to provide necessary background for understanding the choice of models for

use with TaxiWorld. Figure 2 shows the relationships between the models under

consideration.

MDPs are useful for situations where there is a single agent in a

completely observable world. An MDP model can be used to generate a plan of

action for a domain by considering all possible state configurations and solving

for the best action to perform in each one. Such a mapping from valid state

configurations to actions is called a “policy”, and if there is no other policy that

does a better job of maximizing the agent’s goals, it is called an “optimal policy.”

The agent can choose what action to do by looking at the current state and simply

taking the action that the policy specifies. The state configuration serves as the

“Markovian signal” – that is to say, it allows the agent, given a policy, to discern

what action to do next without any knowledge of previous actions.

 10

Figure 2: Families of MDP Models

 Multi-agent MDPs (MMDPs) differ from MDPs in that there are multiple

agents to perform actions, which means that a policy needs to specify an action

for every agent (a “joint action”) for each state. It is possible to reduce an MMDP

to an MDP with a single agent by treating every possible combination of agent

actions as singular joint actions, performed by one agent. This abstraction makes

and MMDP practically identical to an MDP, except that it has a number of agent

actions that is exponential in the number of agents from the original MMDP

formulation.

 Partially-Observable MDPs (POMDPs) can be used to solve for optimal

policies when the world is not completely observable by maintaining a belief state

about the condition of the world. This belief state effectively summarizes the

action and observation histories, and serves as a Markovian signal to allow the

agent to act in an optimal way. A POMDP policy is then a mapping of belief

states to actions (instead of a mapping of states to actions).

 Dec-POMDPs have the additional complexity over POMDPs in that there

are multiple agents, each of which has the ability to make decisions on its own.

Thus agents are required to take into account not just the environment, but the

 11

actions of the other agents in determining their own next move. An important

distinction between Dec-POMDPs and MDPs or POMDPs is that agents in Dec-

POMDPs have no Markovian signal (Oliehoek, “Decentralized POMDPs” 5).

Any individual agent can only account for its own actions and observations,

whereas the transition and observation functions are specified in terms of joint

actions. The partially-observable nature of the problem also means that it is

impossible to use the single agent “puppeteer” reduction from before, because no

agent will necessarily know everything that other agents know. Because there is

no known way to account for the influence of other agents, a Dec-POMDP policy

must necessarily map full-length action histories to actions (Oliehoek, “Decision

Making for Cooperative Agents” 32).

 Finite-horizon Dec-POMDPs are known to be NEXP-Complete (and

infinite-horizon Dec-POMDPs, like POMDPs, are undecidable) (Bernstein 3),

which makes fully optimal planning algorithms utterly intractable for use in an

online setting. Optimal plans for such scenarios are therefore normally computed

ahead of time (offline) and executed as the simulation runs. General algorithms

for solving Dec-POMDPs generally exhibit poor scalability, but special classes of

Dec-POMDPs sometimes have a lower complexity that a more specialized

algorithm can take advantage of to obtain more efficient solutions (Seuken and

Zilberstein 40).

MMDP Model

 An MMDP can be modeled as a tuple <S, A, T, R, h>, where

S is the finite set of possible environmental states.

 12

A is the set of possible joint actions.

T is the transition function,

R is the reward function, and

h is the horizon for the problem. This is, roughly speaking, the number of time-

steps a solver has to find a solution, or the life-span of a specific instance

of a problem.

Before developing a formal TaxiWorld representation, a few definitions

are needed:

D = the set of taxis, {t1, … tn}.

L = the set of all possible map positions, where each l in L is represented as (x, y),

where x and y are the horizontal and vertical coordinates of the position

within the city, and x and y are both nonnegative real numbers.

n = the number of taxis in the fleet.

p = the number of POIS in the scenario.

F = a set of fares with the maximum number of fares that can be in the city at a

given time for the scenario. This can be calculated for a given scenario if

the number of POIs is known. Since each POI can generate at most one

fare each simulation cycle, and each fare has a lifespan of at most 1300

cycles, the maximum number of fares that can be on the map at once is (p

· 1300).

f = the set of possible values for the amount of fuel a taxi can have in its tank. In

the Matlab simulation, fuel level is simply modeled as a real number in the

range (0, 10), but in order to represent TaxiWorld as a discrete model, it is

 13

necessary to represent the possible values as a discrete set of Boolean

values rather than as a real number.

If we assume that the taxis are able to communicate instantly with each

other with no cost penalty, we can formalize TaxiWorld as an MMDP as follows:

S = {D × L × f × F × L}. In each state, each taxi can be in any valid location

within the city with any amount of fuel in the tank, and each fare can be

also be in any valid location within the city.

It is clear from this that the number of possible states |S| is difficult to even

conceive: consider, for example, a very simple TaxiWorld scenario with only two

taxis, 100 possible map locations (far less than in any standard scenario), and a

single point of interest, which has only 10 map locations within its radius of

influence. For simplicity, we will assume that a taxi has only 10 possible fuel

levels, but we will leave the fare time-to-live at its default value of 1300 time-

steps. Even for such a comparatively small instance of TaxiWorld, the state space

is quite large: each taxi can be in any of the 100 possible locations, and at any fuel

level. This gives us 100·100·10·10, or 10
6
 states before we even look at the fare

distribution. Now, how many possible fare arrangements can there be? When the

first fare is created, it can be in any of the 10 map locations near to the POI, for 10

possibilities. Once two fares are on the map, there can be 10·10 possible fare

arrangements (since multiple fares can exist in the same space). Similarly for

three or more fares; x fares can be arranged in 10
x
 possible ways. Since each fare

has a lifespan of 1300, and the POI could theoretically generate a fare every

single step for 1300 steps, we must consider the possibility of up to 1300

 14

simultaneously-existing fares. Thus, accounting for every possible number of

fares in every possible arrangement, there are 10
1300

 + 10
1299

 + … + 10
1
, or

1.11·10
1300

possible

fare arrangements in this simplified scenario. Considering

both fare arrangements with taxi arrangements gives us a final state space with a

cardinality of 10
6
 · 1.11·10

1300
 = 1.11·10

1306
. This means that an optimal MMDP

policy would have to specify the best action for every one of these states.

A = {A1 × A2 … × An}, where Ai is the set of possible actions for taxi i: {aN, aS, aE,

aW, aP, aD} – each taxi can move in each of the cardinal directions, and can

pick up or drop off a fare, provided the correct conditions are met.

R = +1 for each time any taxi drops off a fare (any taxi performs action aD). If this

scenario is reduced to an MDP (treated as if there is a single “puppeteer”

agent), then there will be 2
n
 actions which represent a 'drop-off' action for

at least one taxi, so the reward function will need to specify the

appropriate reward for each.

h – For testing the control algorithms, I chose a horizon of 50,000 steps.

T – The transition function must be able to account for all possible state changes

due to actions by the taxis. It must also account for the stochastic

appearance of fares that can happen in any simulation cycle.

There are a couple of ways to attempt to define such a transition function.

The first possible approach is to define T: S × A → S, so that the function takes as

input a current state and a joint action (a move for every taxi in that time-step),

and returns the resulting state. However, the problem with this approach is that it

creates an incredibly large branching factor which is time-consuming for a

 15

planner to evaluate: for each state, each taxi can take any of up to six actions. This

means that for each state, there would need to be a transition defined to every

state that could result in the next step due to fare appearances, and for every one

of these there would need to be transitions defined for each of the possible

combinations of movements of the entire taxi fleet. The number of possible next

states is quite large. Looking again at our simplified TaxiWorld domain from

before, we can see that between the two taxis, there are 36 possible joint actions

they might take. The single POI may also generate a fare at any of its 10 in-range

locations. It is also possible that a fare will expire in the next step, but since this

occurs deterministically, it will not affect the branching factor of the transition

function. This means that we can have up to 36 · 10 = 360 possible next states for

any given current state.

One method that can slim down the branching factor is to break apart the

taxi moves and evaluate them separately, instead of evaluating them all at once. In

the actual simulator, each taxi is technically (at a very low level) updated

sequentially, and it is possible to do a similar thing with the states in this model.

With this approach, you can define T: S × A → S, so you are only mapping single

taxi actions, which decreases the branching factor (the number of possible next

states) by a significant factor. Each simulation cycle can be represented in the

Dec-POMDP as a sequence of n evaluation steps, and the POIs can be evaluated

to see if they generate fares after the last taxi is planned at each cycle. This

approach lowers the computational complexity for the planner at each step and

can help to streamline the solving process.

 16

DEC-POMDP Model

 If the taxi drivers are assumed to be independent decision-making entities

who work to service the city's fares in a decentralized way without implicit

communication or knowledge of each other’s actions, then the domain can be

modeled as a Dec-POMDP, which is similar to an MMDP, but has the additional

complications that the domain is not fully observable, and agents cannot perform

a joint belief update.

 A Dec-POMDP can be represented as a tuple, <D, S, A, T, R, O, O, h, I>,

where S, A, T, R, and h carry the same meaning as they do for an MMDP, and the

additional symbols carry the following meanings:

D is the set of agents {1, … n}.

O is the finite set of joint observations.

O is the observation probability function.

I is the initial state distribution at stage t = 0, and I is in the power set of S.

TaxiWorld could thus be represented as a Dec-POMDP as follows:

D = {t1, … tn} – simply the set of taxis.

S = {D × L × f × F × L}. In each state, each taxi can be in any valid location

within the city with any amount of fuel in the tank, and each fare can be

also be in any valid location within the city. The state representation can

actually be identical to the MMDP version.

A = {A1 × A2 … × An}, where Ai is the set of possible actions for taxi i: {aN, aS, aE,

aW, aP, aD} – each taxi can move in each of the cardinal directions, and can

pick up or drop off a fare, provided the correct conditions are met.

 17

R = +1 for each time any taxi drops off a fare (performs action aD).

O is the set of all fare and taxi locations, as well as the taxi’s own fuel level.

O is the observation probability function. TaxiWorld actually does not have noisy

observations, so the state of the city is observed with probability 1.

h – For testing the control algorithms, I chose h = 50,000 steps.

I – The initial state in TaxiWorld is simply the city with all of its POIs, and the

taxis, which all start in the garage.

T – The transition function for the Dec-POMDP can be handled in the same way

as for the MMDP, as it is still handling the same interactions.

 Although the TaxiWorld scenario can be considered in the light of

assumptions that allow it to be modeled as either an MMDP or a Dec-POMDP,

the actual simulator is constructed under the reasonable assumption that there is a

central dispatcher who can communicate with the taxis and coordinate their

efforts, meaning that the domain as it is simulated (and as it is treated by the

default planner in place in the simulator) is actually most accurately modeled as

an MMDP.

From this discussion, it should be clear that while these models are quite

powerful in their ability to capture representations for a wide variety of scenarios,

their complexity renders them unwieldy for use in online settings in all but the

simplest of problem domains. Although improving on the default TaxiWorld taxi-

control algorithm is a stated goal of this thesis, the simulator is intended to be run

in near-real time; it would be impractical to attempt to implement a fully-optimal

planner to do this, especially since TaxiWorld can support any city configuration

 18

desired; the MDP policy would have to be re-computed for every new instance of

the problem. Instead, I have implemented an online algorithm which attempts to

be a closer approximation to the optimal policy than the default simulator control

mechanism.

 19

CHAPTER 4

CONTROL ALGORITHMS

 The simulator already has a control algorithm in place to provide the taxis

with direction. However, control is implemented in a fairly naïve way, and is

therefore quite sub-optimal. Before considering any improvements that might be

made to the control strategy, it will be useful to take a look at how control is

currently implemented in the simulator.

Default Control Algorithm

 The default control algorithm matches taxis to fares in a very

straightforward way. Any time a taxi becomes available (e.g. when it enters the

city proper at the beginning of the simulation, or after it drops off a fare), it is

immediately assigned to the closest available fare. If multiple taxis become

available at once, they will be assigned to fares in numerical order according to

the taxi id numbers. Once a taxi is assigned to a fare, it will remain assigned to

that fare until it either picks up the fare, or the fare expires and is no longer

available to be retrieved by the taxi fleet. The taxi will then be assigned to the

next available fare, if one exists.

 There are multiple shortcomings with the control scheme as it stands. The

default assignment strategy has a tendency to assign taxis to fares haphazardly,

thereby losing a lot of time to inefficiency. For example, the numerically-ordered

assignment means that the choice of which taxi collects a fare is determined by

taxi id number, rather than by which taxi is in a better position to serve that

particular fare. In addition, the inflexibility of the planner means that once a taxi

 20

is assigned to a fare—however sub-optimally—it can never be reassigned to a

different fare unless it is no longer able to retrieve the fare (this will happen if the

fare disappears due to exceeding its time limit). In a dynamic city where the

distribution of fares is subject to constant change, a myopic approach like this is

in no way acceptable.

 Another consideration that is ignored is fare lifespan. Taxis are assigned to

fares based on location, with no concern for when fares might be expiring. While

it might be useful to attempt to prioritize fares based on lifespan (to target near-

expired fares first and then come back for longer-lived ones), a perhaps more

cogent threat to efficiency is the possibility of assigning a taxi to a fare it doesn't

have time to reach before expiration. Such an assignment would result in a perfect

waste of time while the taxi proceeds towards the fare, and then is eventually

forced to find a new one. Since the taxis have a set speed at which they travel, and

the time-to-live of each fare as well as its position relative to the taxi is known, it

should be possible to calculate whether or not it is possible for a given taxi to

reach its assigned fare in time.

Improved Control Algorithm

 Initially, there were a number of possibilities under consideration for

developing the improved control scheme. One of the most immediately obvious

improvements was to make the assignment from taxis to fares in a more

intelligent way, so fixing that was a first order of business. Another important

change to make was to fix the unchangeable nature of fare assignments. In a city

with constantly-changing conditions, the fleet's orders need to be flexible, so that

 21

taxis won't be doomed to pursue a sub-optimal course of action simply because

the control system can't issue a change of plans. Another possibility, which would

mostly be useful in situations where there are a lot of available fares, would be

fare culling. If a fare is determined to be too far away, or there are enough nearby

fares, it might make sense to simply ignore the distant fare until it expires.

Finally, some consideration was given to the possibility of looking ahead to future

actions – trying to determine (for a taxi that is already handling a fare) what

would be a good plan to pursue once the current fare is dropped off.

 The first two considerations are the principal ones that have been directly

addressed. I formulated a more intelligent way of assigning taxis to fares, in order

to minimize the average travel distance from any taxi to its fare. In this way, I can

avoid the situation where, if multiple taxis are available when a fare appears, they

are sub-optimally assigned based on id precedence. Instead, each available taxi is

considered for the fare, and the one most able to service it is chosen for the job.

Fare culling was not implemented directly, but seems to be an emergent behavior

due to the way taxis are assigned to fares. If a fare is too far away, there will

simply always be other available fares that are nearer to the taxis, and the far fare

will never be assigned.

 Since the appearance of fares can have a significant impact on the

optimality of the current plan, it seemed that it would be necessary to evaluate and

reassign taxis to more optimal fares from time to time, even while a taxi was on

the way to pick up a fare (reassignment can only be done while en route to a fare,

of course; once a taxi actually picks up a fare it should not change its plans until it

 22

reaches the drop-off point, so as not to take the passenger on a longer ride than

necessary). It was thus necessary to determine when would be the most effective

times to reevaluate the taxi assignments. Of course this reevaluation could be

performed in every step, but this could become very expensive computationally.

Since the taxi assignments depend at present only on the set of available fares, the

natural approach is to perform the reassignment every time the list of fares

changes, to wit: upon the appearance of a new fare, after a fare expiration due to

elapsed time or after a fare is dropped off.

 I also found that my algorithm seemed to have a propensity for stranding

taxis in the city without fuel. The default algorithm does have a way of sending

taxis to the gas station when needed; I was relying on this mechanism while

simply overriding the fare assignments, but my changes were apparently

preventing the refueling code from properly working. To overcome this, I added a

check when performing reassignments to see if the taxi had less than 1 unit of fuel

remaining (out of a maximum 10), in which case it would be ordered to refuel

immediately before attempting to service any more fares.

Implementation

Before going into the details of how the assignment is made, it is

necessary to review the data structures in use. Taxis and fares are both modeled as

tuples of elements which includes an id, x and y coordinates, and an assignment.

The actual assignment code was implemented in a method called

assignTaxis that is called from within the Matlab simulation. Before calling this

method, each taxi is considered to see if it is currently available to be assigned (it

 23

is not currently dropping off a fare or low on fuel). Two lists are then constructed:

the first (‘taxis’) contains the name and location of any taxi that is eligible for

assignment, and the other (‘fares’) contains the names and locations of all

currently available fares. The assignTaxis method is then called with these two

lists as inputs; assignTaxis returns a single list containing the generated

assignments. The assignTaxis method works as follows:

 First, a “preference list” is constructed for each taxi, consisting of all of

the available fares ordered by distance from that taxi. This is done simply by

looping through the fares, calculating the distance to the current taxi in question,

and ordering them appropriately within the taxi's preference list.

 24

 Next, the algorithm loops through the list of taxis in order, and attempts to

assign each taxi to its most-preferred fare. If a taxi's most-preferred fare is

available, a tentative assignment is made. If the fare is already assigned to another

taxi, then the current taxi and the fare’s assigned taxi are determined to be “in

conflict” over the fare, and both taxis must be evaluated to see which actually is in

a better position to service that fare, taking other taxi and fare positions into

account. The conflict resolution method is called, taking as its input the two

conflicting taxis. It determines the best joint assignment for the involved taxis,

and makes the assignments on its own. Once all taxis have been assigned to fares,

the taxi list is returned to the caller (at this point, each taxi in the taxi list will have

its “assignment” attribute assigned to the fare it is supposed to pursue).

 The resolveConflict method is a little more complicated. It takes as its

input the two taxis that are in conflict over a fare. It looks at the preferences for

each taxi, and if any of the preferences are assigned to some taxi that is not

already under consideration, that taxi is also added to the list. The new taxi’s

preferences must then be analyzed as well to see if one of them is assigned to yet

another taxi. This is continued until no more taxis can be added.

 Next, the algorithm generates every possible valid joint assignment using

the taxis under consideration and their preference lists. Each joint assignment is

evaluated to find the average distance each taxi would have to travel under that

assignment. The joint assignment with the lowest average travel distance is

chosen, and taxi assignments are made accordingly. This ends the conflict

resolution method.

 25

Complexity

 The initial step of generating the taxi preferences lists is accomplished in

O(|T| · |F|) time, where T is the set of taxis and F is the set of fares. Next comes

the assignment/conflict resolution phase. Conflict resolution takes O(|F|) to gather

the necessary entities to consider (by looping through the fares under contention

to build the lists, O(|T × F|) to generate all possible joint assignments, and then

O(|T × F|) to evaluate and find the cheapest joint matching. Conflict resolution

can be performed as many as |T| - 1 times in the course of running the assignment

algorithm. Once the assignment phase is over, the resulting best joint assignment

is returned to the caller. Thus the entire algorithm is accomplished in O(|T| · |F| +

|T|(|T × F| + |T × F|)) or O(|T|(|T × F|)) time.

 There are a couple of improvements that could be made to improve the

efficiency of this algorithm. First, it would make sense to actively consider only

the first two or three preferences for each taxi during conflict resolution. In this

way it is possible to diminish the possibility that other taxis are drawn into the

conflict resolution phase. This would also limit the exponential blowup in the

number of possible joint assignments that are generated during this process.

 Once fare resolution is performed, it would also be possible to prune the

fare preferences list of any taxi that was assigned to a fare that was not its most-

preferred. Since all more-preferred fares have already been considered and

determined to result in sub-optimal joint assignments, they can be removed from

the taxis preference list altogether. Scrubbing the suboptimal fares from the taxi's

preference list in this way will also make it possible to continue doing conflict

 26

resolution with only the top two or three preferences, since the preferences will no

longer contain fares that are ultimately sub-optimal for any taxi.

 A small example will help to clarify the verbal description above:

Consider the image to the right. In this scenario, there are two taxis

(with ids '1' and '2') and two fares (with ids 'a' and 'b'). When the

algorithm is called, it will first figure out the preferences list for each

taxi. In this case, taxi '1' and taxi '2' are both closer to fare 'b'. Thus,

the preference lists will appear as follows:

Taxi '1' preferences: [b][a]

Taxi '2' preferences: [b][a]

 Next, it will attempt to assign each taxi to its most-preferred fare. Taxi '1'

will be evaluated first, and assigned to fare 'b'. When taxi '2' is considered, it will

start a conflict with taxi '1' over fare 'b', since taxi '2' also prefers 'b' over 'a'. Thus

the two taxis will have to enter the “conflict resolution” phase. In this phase, all

possible assignments of taxis to their preferred fares will be generated and

evaluated for the average travel time they incur. The possible joint assignments

generated are as follows:

Joint Assignment 1: {('1', 'a'), ('2', 'b')}

Average distance: (('1' to 'a' distance) + ('2' to 'b' distance)) / 2 = (4+5)/2 = 4.5

Joint Assignment 2: {('1', 'b'), ('2', 'a')}

Average cost: (3 + 8)/2 = 5.5

 In this case, joint assignment 1 has the more optimal average travel cost,

and the conflict is resolved by assigning taxi '1' to fare 'a' and taxi '2' to fare 'b'. □

 27

Optimality

For the example given above, the assignment generated by my algorithm

is optimal, and better than the one that would be generated by the default

algorithm in this situation (it would have paired ‘1’ with ‘b’ and ‘2’ with ‘a’). The

assignment is optimal because there is no other assignment that can result in the

collection of both available fares in less time. Furthermore, this will hold true

regardless of the drop-off points for the fares, since the average time required for

the drop-offs will be constant regardless of the initial fare assignment.

However, this algorithm is not guaranteed to be optimal in all situations. It

will be optimal in situations such as the above, where the number of taxis is not

exceeded by the number of fares, but in the highly-variable scenarios within the

simulator, situations will arise for which my algorithm will produce sub-optimal

results. Consider the image at right, where the eventual

drop-off locations of the fares are shown in black. My

algorithm would assign taxi ‘1’ to fare ‘a’ and taxi ‘2’

to fare ‘b’. Taxi ‘2’ will be assigned to fare ‘c’ after

dropping off fare ‘b’, and taxi ‘2’ will have to travel 11 steps to complete its

assignments, while taxi ‘1’ will be done after 3 blocks and have nothing to do for

the rest of the time. An optimal assignment would be to send ‘2’ to ‘c’ while ‘1’

takes care of ‘a’ and then ‘b’; each taxi would have to travel for 7 steps, which

means the optimal assignment will drop off the fares significantly quicker than

my algorithm, although the average distance traveled by the taxis will still be the

same.

 28

The problem of assigning taxis to fares is related to the bipartite matching

problem as explained in [4]; it would be possible to use bipartite matching

algorithms to generate these assignments, by constructing two graphs that

correspond to the set of taxis and the set of fares. Every taxi should be given an

edge to each fare, with the weight of the edge equal to the inverse of the distance

between the taxi and the fare. It would then be possible to use any bipartite

matching algorithm to find a maximum matching, which would correspond to a

valid assignment of taxis to fares. The assignments generated in this manner

would still not be completely optimal however, since the matching will be

optimized for the first set of assignments; it does not account for the fact that

some taxis must service multiple fares if there are more fares than taxis.

Another important factor that makes my algorithm sub-optimal is that no

attempt is made to account for the expected appearance of new fares. If the fare

appearance distributions are known ahead of time (or if they can be approximated

during simulation), then it would be possible to anticipate the possible arrival of

fares and issue the taxis orders to move to a location that does not yet have a fare

present if it is a known that a fare is likely to appear soon. Anticipatory actions

such as this would be especially useful in situations where no fares are available,

in order to minimize wait time when a fare does appear, but there is currently no

mechanism in place to accommodate such strategies.

A fairly uncommon situation that would cause my algorithm to perform

sub-optimally is if a taxi is assigned to a fare that is set to expire before the taxi is

able to reach it. In such cases, the taxi will be wasting time until the fare expires

 29

or it is otherwise reassigned. An optimal strategy should be able to gauge the

ability of a taxi to reach a fare before expiration and avoid making hopeless

assignments, and my algorithm does not evaluate this. In practice however, such

situations would be rare since taxis are assigned to the overall shortest-path

pairings; it is unlikely that a taxi would be paired with a fare that is beyond its

reach unless no other fares were present.

 30

CHAPTER 5

EXPERIMENTAL SETUP

Experimental Metrics

 In order to compare the two control algorithms to see if indeed the new

one is an improvement over the original, it was necessary to come up with

compelling metrics by which the two could be compared. The most important

metric is naturally the number of fares that the taxi fleet is able to service in a

given amount of time. However this only gives part of the picture, so the number

of fares that are allowed to expire should also be recorded, since this allows us to

calculate the “success ratio” of the taxi fleet (fares serviced / fares expired); a

single number that can potentially be used to compare even between different city

scenarios. Also recorded is the average fare wait time; how long on average a fare

has to wait after appearing until it gets picked up. This metric will presumably

mean less in high-fare-density scenarios, since a taxi should be able to find a

nearby fare without too much difficulty most of the time, but in low-fare-density

scenarios (in particular, scenarios where any reasonable algorithm is likely to be

able to pick up most or all of the fares), the average fare wait time could provide

an important indicator of an algorithm's efficiency compared to others.

 One other metric that was considered is “Taxi Utilization”, or the

proportion of the time each taxi spends actively trying to service fares, as opposed

to roaming or refueling. While I did implement this metric in the simulator, I

ultimately decided against using it, as it seemed a poor indicator of actual

performance. Especially in low-fare-density environments, it could be misleading:

 31

a highly efficient algorithm that quickly handles the available fares and then starts

roaming while waiting for more fares to appear would have a lower taxi

utilization than a less efficient algorithm which took more time to service the

fares it had.

Experimental Design

 Once the chosen metrics were implemented in the simulator, it was

necessary to come up with appropriate testing scenarios in which to evaluate the

algorithms. I performed testing primarily in two scenarios. The first test scenario,

which we will call TwoTaxis, consists of an 8-by-8 city grid with a single point of

interest to generate fares, and two taxis to make passenger deliveries. The second

scenario, called ZedCity, is a much larger 16-by-16 grid, with ten POIs to provide

fares and a 5-taxi fleet to service them.

 In order to ensure a more or less fair comparison of the performance

between the algorithms tested, the “random” fare arrivals were rigged so that

every algorithm would be confronted with the exact same set of fare appearances;

 32

the differences in performance are thus entirely resultant from the control

algorithm itself, rather than being an artifact of different randomly-produced runs

of fares.

 Since the simulation itself can be run for an indefinite amount of time, it

was necessary to come up with an appropriate evaluation window – a suitable

amount of simulation time to get a fair representation of the efficacy of each

algorithm. Each taxi can run for somewhere near 21,000 simulation cycles before

needing to refuel, and it seemed like a good idea to include refueling trips in the

test cases, so a time of 50,000 simulation cycles was chosen for each test run. This

is enough time that each taxi in the fleet has to make two trips to the gas station,

and allows for some buffer time besides. I used the dispatcher to collect all of the

data necessary to evaluate these metrics, due to the fact that it has access to nearly

all of the information in the simulation at any time.

 33

CHAPTER 6

RESULTS

I discovered during testing that my reassignment method sometimes

caused a taxi to forget to refuel. The default taxi AI has a mechanism to know

when it must refuel, and I had not modified that aspect of the AI, but apparently

my new code was interfering with it, causing taxis to occasionally strand

themselves within the city. I accordingly added code to force the taxis to go to the

gas station once their fuel fell below a certain level. For comparison, I ran the

scenarios both with and without the modified refueling code. Each scenario was

evaluated by each algorithm on three different fare-frequency settings to achieve a

more comprehensive comparison. In the tables, the algorithms are represented by

'D' for the default control, 'I' for my improved variant, and 'F' for my algorithm

with the modified fuel-aware code.

 The table below summarizes the results of running each algorithm on the

TwoTaxis scenario.

POI rate .003 .005 .01

Control D I F D I F D I F

Serviced 70 77 74 106 117 117 149 119 155

Dropped 9 2 6 20 8 8 114 141 107

Avg Time 513.8 416.0 447.3 616.2 440.9 440.2 898.4 932.3 820.5

Table 1: Results for Default, Improved, and Fuel-aware algorithms in the TwoTaxis trials

 In the scenario runs with the POI spawn rate set at .003 and .005, the

improved algorithm performed better than the default algorithm, and the fuel-

aware algorithm also did quite well. The fuel-aware method also did better on the

 34

.01 setting, though this time the improved algorithm actually did worse, due to the

stranding of one of the taxis after it ran out of fuel. It is also clear from this graph

that the improved algorithm does significantly better regarding the average wait

time, due to its effective prioritizing of the available fares.

 The results for the ZedCity trials are likewise shown in the table below:

POI rate .0005 .001 .002

Control D I F D I F D I F

Serviced 80 85 85 161 176 170 252 246 255

Dropped 13 7 7 33 19 24 125 133 124

Avg Time 593.7 469.4 469.4 717.1 519.9 546.2 859.6 819.8 794.4

Table 2: Results for the Default, Improved, and Fuel-aware algorithms in the ZedCity trials

 In the ZedCity results there is a similar pattern of improvement over the

default algorithm by the improved versions. There is also a similar trend in

average fare wait times here as there was in the TwoTaxis scenario, with the

improved algorithms showing significant improvement over the default algorithm.

 From these results it is clear that in each of the scenarios considered, my

modified algorithm outperformed the default on all fronts, achieving a higher

success ratio with a shorter average wait time, reflecting the positive effect of the

more efficient assignment algorithm. Of note is the fact that in scenarios where ‘I’

did not end up stranding a taxi, it seems to have done better than ‘F’. It is possible

that this is could be caused by my modification being over-zealous in sending

taxis to the gas station, depriving them of small amounts of fare-servicing time on

each refueling cycle. This indicates that even the timing of refueling can be

subject to improvement, and can have a noticeable effect on results.

 35

CHAPTER 7

SUMMARY AND CONCLUSION

 TaxiWorld provides an excellent example of a multi-agent planning

domain; such domains are of great interest to the planning community, and good

solving methods for such problems would find application in many different

arenas. MDPs, in their various forms, provide powerful representational abilities

which can be used to capture very complex domains in a form which can be fed to

a solver to generate optimal policies; multiple such representations were

considered for use with TaxiWorld, but it was determined that an empirical

approach would be better suited to improve on the shortcomings of the default

control mechanism in use on the simulator. After identifying several

shortcomings, I presented a new approach that could improve on the default, and

ran a number of simulation trials demonstrating that the new control scheme is in

fact an improvement over the old one. Naturally, even this improved algorithm

will still have shortcomings; possible future improvements were discussed as

well, though an empirical approach will necessarily be only an approximation of

the fully-optimal policy generated by an MDP solver.

In doing this research, I was able to learn the types of problems that are

representable within different families of MDP models, and to use the Dec-

POMDP and MMDP frameworks to model a fairly complex scenario. Through

the development of my empirical model, I demonstrated that although finding an

optimal policy for a problem may be intractable, it may be possible to leverage

domain-specific properties to generate a solution strategy that achieves an

 36

acceptable level of success at significantly less computational cost. Because the

cost-to-benefit ratio of developing and using a fully optimal solution (or even a

theta-approximate one) would be extremely large, in many cases it might be far

more practical to craft a reasonably efficient domain-specific solution than to

formalize the problem and use a full-blown general solver to generate an optimal

policy.

 37

REFERENCES

1. Bernstein, D., Zilberstein, S., and Immerman, N. “The Complexity of

Decentralized Control of Markov Decision Processes”. 16th Conference

on Uncertainty in Artificial Intelligence. 2000.

2. Hansen, et al. “Dynamic Programming for Partially Observable Stochastic

Games”. American Association for Artificial Intelligence. 2004.

3. Hubbe, A., Ruml, W., Yoon, S., Benton, J., and Do, M. 2008. “On-line

Anticipatory Planning”. Workshop on a Reality Check for Planning and

Scheduling under Uncertainty, ICAPS 2008. 2008.

4. Karp, R. et al. “An Optimal Algorithm for On-line Bipartite Matching”.

Association for Computing Machinery. 1990.

5. Lemons, Sofia. “Continual Online Planning”. Twenty-Fourth AAAI

Conference on Artificial Intelligence. 2010.

6. Oliehoek, Frans. “Decentralized POMDPs”. 2011.

7. ---. “Decision Making for Cooperative Agents”. 2010.

8. “Formal Meta-framework to Evaluate System Readiness Under Critical

Decision Making”. Impact Lab, Arizona State University. 2010.

9. Ryan, A., Tisdale, J., Godwin, M., Coatta, D., Nguyen, D., Spry, S.,

Sengupta, R., and Hedrick, J. K. “Decentralized Control of Unmanned

Aerial Vehicle Collaborative Sensing Missions”. Proceedings of the

American Controls Conference. 2007.

10. Seuken, S. and Zilberstein, S. “Formal models and algorithms for

decentralized decision making under uncertainty”. Journal of Autonomous

Agents and Multi-agent Systems. 2008.

11. Szer, et al. “MAA*: A Heuristic Search Algorithm for Solving

Decentralized POMDPs”. Proceedings of the Twenty-First Conference on

Uncertainty in Artificial Intelligence (UAI). 2005.

12. Xu, Jin, and Huang, Zhe. “An Intelligent Model for Urban Deman-

responsive Transport System Control”. Journal of Software, Vol. 4. 2009.

