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ABSTRACT  
   

Emergent environmental issues, ever-shrinking petroleum reserves, and rising 

fossil fuel costs continue to spur interest in the development of sustainable biofuels from 

renewable feed-stocks. Meanwhile, however, the development and viability of biofuel 

fermentations remain limited by numerous factors such as feedback inhibition and 

inefficient and generally energy intensive product recovery processes. To circumvent 

both feedback inhibition and recovery issues, researchers have turned their attention to 

incorporating energy efficient separation techniques such as adsorption in in situ product 

recovery (ISPR) approaches. This thesis focused on the characterization of two novel 

adsorbents for the recovery of alcohol biofuels from model aqueous solutions. First, a 

hydrophobic silica aerogel was evaluated as a biofuel adsorbent through characterization 

of equilibrium behavior for conventional second generation biofuels (e.g., ethanol and n-

butanol). Longer chain and accordingly more hydrophobic alcohols (i.e., n-butanol and 2-

pentanol) were more effectively adsorbed than shorter chain alcohols (i.e., ethanol and i-

propanol), suggesting a mechanism of hydrophobic adsorption. Still, the adsorbed alcohol 

capacity at biologically relevant conditions were low relative to other ‘model’ biofuel 

adsorbents as a result of poor interfacial contact between the aqueous and sorbent. 

However, sorbent wettability and adsorption is greatly enhanced at high concentrations of 

alcohol in the aqueous. Consequently, the sorbent exhibits Type IV adsorption isotherms 

for all biofuels studied, which results from significant multilayer adsorption at elevated 

alcohol concentrations in the aqueous. Additionally, sorbent wettability significantly 

affects the dynamic binding efficiency within a packed adsorption column. Second, 

mesoporous carbons were evaluated as biofuel adsorbents through characterization of 

equilibrium and kinetic behavior. Variations in synthetic conditions enabled tuning of 

specific surface area and pore morphology of adsorbents. The adsorbed alcohol capacity 
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increased with elevated specific surface area of the adsorbents. While their adsorption 

capacity is comparable to polymeric adsorbents of similar surface area, pore morphology 

and structure of mesoporous carbons greatly influenced adsorption rates. Multiple cycles 

of adsorbent regeneration rendered no impact on adsorption equilibrium or kinetics. The 

high chemical and thermal stability of mesoporous carbons provide potential significant 

advantages over other commonly examined biofuel adsorbents. Correspondingly, 

mesoporous carbons should be further studied for biofuel ISPR applications. 
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Chapter 1 

BACKGROUND 

1.1 Second Generation Biofuels 

Interest in the production of sustainable biofuels from renewable feed-stocks is 

sparked by the continuing increase in fossil fuel prices, ever-shrinking petroleum 

reserves, and legislative as well as environmental concerns. In 2009, liquid transportation 

fuels accounted for ~29% of the total U.S. energy demand, making the transportation 

sector the second largest energy consuming sector in addition to being the fastest growing 

(EIA, 2010). This sizable energy demand (~27 quadrillion BTU) is primarily met through 

the consumption of nonrenewable and unsustainable petroleum and natural gas resources; 

the majority of which, ~70%, are derived from foreign sources. Biomass-derived fuels 

presently provide only ~10% of the total global energy requirement, and an even smaller 

percentage, ~3%, of the liquid transportation fuel demand. Despite having set mandates 

to produce 36 billion gal. of total renewable fuels annually by 2022 (EIA, 2007), total 

U.S. production (almost exclusively bioethanol) reached just over 6.5 billion gal. in 2007 

(Dineen, 2008).  Meeting these aggressive productivity targets will require the 

development of next generation biofuels, as well as novel technologies capable of 

supporting their sustainable and economical production. 

Among conventional liquid biofuels, ethanol remains the most actively pursued 

molecule as a result of its excellent physicochemical characterization and the 

technological maturity associated with its fermentative production.  Ethanol, however, is 

not an ideal fuel due to its high water solubility and low energy density (Table 1.1), 

which, as a result, diminishes its compatibility with conventional engines and the current 

fuel distribution infrastructure (Zheng et al., 2009). Alternatively, researchers have turned 

their attention to producing longer chain, so-called second generation liquid biofuels, 
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which include, for example, isopropanol, n-butanol, 2-butanol, n-pentanol, and 2-

pentanol (Keasling and Chou, 2008; Connor and Liao, 2009). Interest in second 

generation biofuels is sparked by their favorable physical and thermodynamic properties 

(e.g., higher energy density and lower water solubility relative to ethanol; Table 1.1). A 

particular interest in biologically-derived n-butanol as a liquid transportation fuel 

alternative has re-emerged due to the fact that it is a known fermentation product of many 

Clostridium sp. (Keasling and Chou, 2008; Connor and Liao, 2009), and thus benefits 

from naturally high productivities. 

Table 1.1  

Physicochemical Properties of Conventional Second Generation Biofuels 

Biofuel Ethanol i-Propanol n-Butanol 2-Pentanol 

Vapor Pressure (atm) @ 25oC 0.0312 0.0579 0.0109 0.0106 

Normal Boiling Point (oC) 78 82 117 119 

LogKo/w -0.26 0.07 0.8 1.13 

Water Solubility (g/L) @ 20oC  ∞ ∞ 77 45 

Energy Density (MJ/L) 22.7 23.9 26.8 28.4 

 

1.2 Challenges Associated with Fermentative Biofuel Production 

A critical challenge which continues to limit the development and viability of all 

biofuel fermentations results from feedback inhibition caused by product toxicity at 

relatively low concentrations (Bowles and Ellefson, 1985; Jones and Woods, 1986; 

Ingram, 1990).  For example, feedback inhibition limits maximal ethanol production to 

final titers of below about 210, 120, and 60 g/L (equivalent to 4600, 2600, and 1300 mM) 

for the ethanologenic microbes Saccharomyces cerevisiae (Walker, 1998), Zymomonas 

mobilis (Rogers et al., 1996), and Escherichia coli (Yomano et al., 1998), respectively.  
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The situation is made worse for longer chain alcohols (due to their increasingly high 

hydrophobicity, as indicated by their logKo/w values in Table 1.1).  For instance, n-butanol 

can induce feedback inhibition towards C. acetobutylicum at concentrations as high as 

~13 g/L (or 175mM) (Jones and Woods, 1986). As a result, conventional biofuel 

fermentations remain confined to dilute conditions, which constitute ineffectual feeds for 

downstream product recovery and purification processes (Straathof, 2003).   

Inefficient product separation is often found to be the second greatest contributor 

to economically-unviable and unsustainable bioprocesses (behind only feedstock costs) 

(Schugerl and Hubbuch, 2005).  Conventional ethanol and n-butanol separations from 

fermentation broths are achieved via distillation, albeit at great energy demand and 

expense.  For instance, distillative  recovery from dilute aqueous solutions can contribute 

to ~10% of ethanol’s total product cost (Galbe et al., 2007).  Meanwhile, the application 

of distillation for n-butanol recovery is made more challenging as a result of its low vapor 

pressure (~3-fold less than water at 25oC; Table 1.1) which necessitates the use of multi-

stage designs to ultimately achieve acceptable product purity (Luyben, 2008). 

Furthermore, it should be noted that distillation is an inherently ill-suited technology for 

integration with continuous bioprocesses as a result of the thermal sensitivity displayed 

by both cells and essential media components (e.g., carbohydrate substrates).  Hence, the 

application of distillation for alcohol biofuel recovery will forever be relegated to solely 

supporting batch processes and is not a viable option for continuous bioprocessing. 

1.3 In Situ Product Recovery (ISPR) 

Effects of product inhibition can, however, be mitigated through the development 

of bioreactor systems exploiting in situ product recovery (ISPR) (Schugerl, 2000; Ezeji et 

al., 2004; Kumar and Gayen, 2011). These ‘extractive fermentation’ techniques both 

produce and remove desired bioproducts simultaneously such that inhibitory 
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concentrations are never realized within the bioreactor. An illustration depicting the 

principle of ISPR can be found in Figure 1.1. Due to their considerable potential for 

improving microbial production of biofuels and biochemicals, ISPR approaches such as 

adsorption (Nielsen and Prather, 2009; Oudshoorn et al., 2009; Silvestre-Albero et al., 

2009; Nielsen et al., 2010; Saravanan et al., 2010), gas stripping (Ezeji et al., 2004; 

Inokuma et al., 2010), pervaporation (Huang et al., 2009; Ma et al., 2009), perstraction 

(Papadopoulos and Sirkar, 1993), liquid-liquid extraction (Simoni et al., 2010), and 

membrane extraction (Isono and Nakajima, 1999) have received significant  research 

interest within the last 25 years. However, experts are presently at odds regarding which 

approach is most effective and efficient. An ideal separation technique should possess 

characteristics such as high selectivity and removal rate of desired products. Additionally, 

for ISPR applications, said technique should also be innocuous to fermenting microbes as 

well as the fermentation broth, demand minimal material and/or energy resources, and 

display long term performance and stability (Garcia et al., 2011). 

 

Figure 1.1. Illustrative representation of the general ISPR principle. 

Among the aforementioned ISPR approaches, pervaporation, gas stripping, and 

adsorption tend to be the most actively investigated technologies for biofuel separations 

due to a variety of factors including their relatively low energy requirements (Ezeji et al., 
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2004; Qureshi et al., 2005; Oudshoorn et al., 2009; Kumar and Gayen, 2011). 

Pervaporation represents a combination of the processes of membrane permeation and 

evaporation. During pervaporation, a liquid feed side contacts an organic or porous 

inorganic membrane (Garcia et al., 2011). Target compounds, such as an alcohol biofuel, 

are then separated from the bulk through adsorption onto the hydrophobic membrane 

followed by diffusion through to the permeate side. Membranes that have been 

previously characterized for biofuel separations include, for example, zeolytic and 

organic polymer membranes (Garcia et al., 2011). Once through to the permeate side, the 

target molecule is evaporated and recovered through application of vacuum or passing of 

a sweep gas across the membrane. Figure 1.2 illustrates the process of pervaporation. 

However, pervaporation presently suffers from low selectivity at high flux or low flux at 

high selectivity. Furthermore, pervaporation is complicated by membrane fouling caused 

by other non-biofuel metabolites present in fermentation broths (e.g., salts and sugars) 

(Garcia et al., 2011), limiting its effective application in ISPR designs. 

 

Figure 1.2. Schematic diagram of membrane pervaporation. 



  6 

Gas stripping is a simple approach for the recovery of volatile biochemical, such 

as alcohol biofuels, wherein a ‘stripping’ gas (typically nitrogen or a mixture of 

fermentation gases; i.e., carbon dioxide and hydrogen) is bubbled through the 

fermentation broth where it then selectively absorbs desired compounds. Similar to 

pervaporation, gas stripping involves the transport of target molecules from a bulk liquid 

phase to an auxiliary gas phase; yet gas stripping is simplified as it does not employ a 

membrane to separate the two phases. The absence of the membrane provides gas 

stripping with a significant advantage over pervaporation as there is now no risk of 

clogging or fouling of the gas phase (Oudshoorn et al., 2009). After the desired products 

are removed in the stripping gas, they are subsequently collected in a condenser after 

which the auxiliary phase can then be recycled back into the fermenter for further product 

removal. Figure 1.3 depicts the process of gas stripping. However,  gas stripping also 

suffers from low selectivity for second generation biofuels, which when applied to the 

recovery of n-butanol has been shown to reach selectivities of approximately 10-14 (Ezeji 

et al., 2003), 10.3-22.1 (Ezeji et al., 2004), and 4 (Groot et al., 1989) for batch, fed-batch, 

and continuous fermentation conditions, respectively, thereby limiting its applicability in 

ISPR approaches for the recovery of biofuels. 

 

Figure 1.3. Schematic diagram of gas stripping in ISPR. 
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Adsorption significantly differs from that of pervaporation and gas stripping, 

wherein target molecules are separated from fluids through their adsorption onto a solid 

auxiliary phase, so-called solid-phase extraction (SPE). Adsorption of alcohol biofuels 

from aqueous media proceeds through the development of hydrophobic interactions (i.e., 

Van der Waals forces) between the surface of the sorbent matrix and alkyl chain of the 

alcohol (Carey and Sundberg, 2000) as these chemicals physicochemical properties 

provide no other mechanism for adsorption such as ion-exchange. After adsorption, 

thermal or pressure swing regeneration can be applied to the recovered adsorbents to 

release the adsorbate molecules through their vaporization from the adsorbent surface. 

Figure 1.4 illustrates how adsorption can be integrated with a fermentation for product 

recovery.  

 

Figure 1.4. Schematic diagram of adsorption in ISPR. 

Whereas gas stripping and pervaporation fall short, SPE has been shown to be a 

promising recovery technique of lower alcohols due to its typically high selectivity (for 

example, 130-630 for zeolytic adsorbents) as well as high capacity, even at feed 

concentrations as low as 1 g/L (or 13 mM) n-butanol (Oudshoorn et al., 2009), for 

example. As previously stated, pervaporation, gas stripping, and adsorption are of 
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particular interest in ISPR applications due to lower associated energy requirements. 

However, two separate studies which compared the energy efficiency of n-butanol ISPR 

by employing various candidate separation technologies (including distillation, 

extraction/perstraction, gas stripping, pervaporation, and adsorption), each concluded that 

adsorption was the most energy efficient approach, providing at least a 10% decrease in 

the energy requirement of the system (Qureshi et al., 2005; Oudshoorn et al., 2009). 

Accordingly, adsorption is often considered to possess the highest potential of all ISPR 

methods, and may play an important role in bridging the economic gap that presently 

exists between biofuels and petroleum fuels. 

1.4 Adsorption as an ISPR Approach 

As an alternative approach to conventional biofuel separation processes (e.g., 

distillation), several researchers have recently turned their attention to the use of 

adsorption as a means of selectively separating biofuel compounds from dilute aqueous 

fermentation broths (Ezeji et al., 2004; Oudshoorn et al., 2009; Garcia et al., 2011; 

Kumar and Gayen, 2011).  Numerous different classes of hydrophobic sorbents have 

previously been studied and characterized for biofuel recovery potential while the most 

actively investigated include: 1) synthetic polymer resins (Groot and Luyben, 1986; 

Nielsen et al., 1988; Nielsen and Prather, 2009; Nielsen et al., 2010), 2) inorganic 

materials (e.g., zeolites) (Milestone and Bibby, 1981; Maddox, 1982; Adnadevic et al., 

2008; Oudshoorn et al., 2009; Hashi et al., 2010; Saravanan et al., 2010), and 3) 

carbonaceous materials (e.g., activated carbons) (Groot and Luyben, 1986; Silvestre-

Albero et al., 2009; Hashi et al., 2010).  Recent progress regarding the use of materials 

from each of these three distinct classes will now be individually discussed in further 

detail. Relevant considerations and commonalities found for all biofuel adsorbents as 

well as shortcomings will be discussed in more detail in subsequent sections. 
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1.4.1 Recent work. 

1.4.1.1 Inorganic adsorbents. Inorganic materials, principally zeolites and 

zeolite-analogues, are known for their high selectivity and capacity for hydrophobic 

solutes as well as their highly-ordered pore structure and thermal stability, thus making 

them of considerable interest for alcohol biofuel adsorption. One of the earliest studies 

utilizing such materials as adsorbents for in situ product recovery, by Milestone and 

Bibby (1981), showed that Silicalite (an Al-free zeolite-analogue) can selectively adsorb 

lower alcohols including methanol, ethanol, n-propanol, n-butanol, and n-pentanol, and 

found that the loading capacity of said alcohols was improved as the length of the carbon 

chain increased. Silicalite adsorbed n-butanol to a specific loading capacity of 

approximately 100 mg/g (or 1300 mmol/kg) at model aqueous concentrations of 20 g/L 

(or 270 mM) (Milestone and Bibby, 1981). Furthermore, in the presence of model 

aqueous mixtures, Silicalite was found capable of adsorbing n-butanol selectively over 

ethanol, suggesting that Silicalite could potentially be effectively used to separate both 

compounds in an acetone-butanol-ethanol (ABE) fermentation broth (Milestone and 

Bibby, 1981). A year later, Maddox (1982) published a study on the use of Silicalite for 

the recovery of n-butanol from actual fermentation broths (as opposed to model solutions 

used by Milestone and Bibby (1981)), confirming the potential applicability of Silicalite 

for ISPR of n-butanol from fermentation broths. More recently, the adsorption of 

multicomponent mixtures representing ABE fermentation broths using various zeolites 

was investigated where it was found that competitive adsorption between adsorbates 

correlated with their hydrophobicity and that the adsorption affinity decreased from n-

butanol to acetone to ethanol (Oudshoorn et al., 2009). Additionally, zeolite CBV28014 
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was capable of adsorbing n-butanol as well as acetone at increasingly high capacities 

(similar to that of Silicalite), and more specifically possessed maximum adsorption 

capacities (as predicted by the Langmuir adsorption isotherm model) of 118 and 121 

mg/g (equivalent to 2000 and 1600 mmol/kg), respectively. Most recently, Saravanan et 

al. (2010) investigated the adsorption kinetics of n-butanol with CBV28014 through 

various methods including, for example, batch adsorption and frontal analysis in a packed 

bed. A significant finding from this study is that the batch adsorption of n-butanol is 

strongly influenced by sorbent diameter indicating that the rate of uptake was controlled 

by pore diffusion of n-butanol (Saravanan et al., 2010). As indicated above, inorganic 

adsorbents such as zeolites possess high selectivity and capacity for alcohol biofuels 

making them good candidates for n-butanol ISPR via adsorption. 

1.4.1.2 Polymeric resin adsorbents. The use of polymeric resin adsorbents as a 

means to separate and recover secondary metabolites (e.g., biofuels) from fermentation 

broths has been extensively studied.  Recent works have demonstrated that polymer 

adsorbents can provide numerous advantages over alternative sorbents including, for 

example, elevated (chemical, physical, and biological) stability and improved 

biocompatibility (Rehmann et al., 2007). In an early study, Nielsen et al. (1988) applied 

polymeric resin adsorbents for the recovery of acetone and n-butanol from ABE 

fermentations. They found that the addition of the polymeric resin Bonopore (a 

hydrophobic copolymer composed of poly(styrene-co-divinylbenzene), or pSDVB) to 

cultures enhanced cell growth and n-butanol productivity as a result of its ability to 

adsorb synthesized n-butanol at a specific loading capacity as high as 74 mg/g (or 1000 

mmol/kg) (Nielsen et al., 1988). More recently, Nielsen et al. (2009) conducted an 

extensive screening of a series of polymer-based adsorbents for n-butanol recovery as 

applied to the ABE fermentation. Upon first evaluating several adsorbents composed of 
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differing monomer substituents including, for example, pSDVB, poly(ester), and 

poly(acrylates), Nielsen et al. (2009) found that those adsorbents composed of the most 

hydrophobic monomer substituents (for example, styrene in pSDVB) demonstrated the 

highest affinities for n-butanol uptake.  Of the 20 polymer adsorbents screened in that 

study, that which displayed the highest affinity (i.e., solid-sorbent/aqueous-phase 

partitioning) for n-butanol adsorption was DowexTM OptiporeTM L-493 (a macroporous 

pSDVB) which reached specific loading capacities of up to 175 mg/g (or 2400 mmol/kg) 

at an aqueous n-butanol concentration of 20 g/L (or 270 mM) (Nielsen and Prather, 

2009). In a follow-up study, the utility of the same polymeric adsorbents was then applied 

to other second generation biofuels (e.g., ethanol, n-propanol, i-propanol, i-butanol, 2-

methyl-1-butanol, 3-methyl-1-butanol, and n-pentanol). In that work, Nielsen et al. 

(2010) presented a direct correlation between the aqueous-resin partitioning coefficient 

and specific surface area for resins composed of the same monomer substituent (e.g., all 

pSDVB copolymers). As indicted above, polymeric resin adsorbents, much like inorganic 

adsorbents, demonstrate high capacities as well as selectivities for alcohol biofuels from 

aqueous media and consequently hold considerable promise as a viable biofuel adosrbent. 

1.4.1.3 Carbonaceous adsorbents. Application of carbonaceous materials such as 

activated carbons for the removal of alcohol biofuels is of interest for a variety of reasons 

including, for example, their low material cost, exceptionally high specific surface areas, 

thermal stability, and tunable textural and chemical properties (Silvestre-Albero et al., 

2009). Groot et al. (1986) provided one of the earliest studies that implemented activated 

carbon sorbents for the selective recovery of n-butanol and i-propanol from batch 

fermentations, wherein comparisons were made against that of commercially-available 

polymeric resin adsorbents. It was found that Norit-ROW 0.8 (an activated carbon 

adsorbent) adsorbed the highest amount of n-butanol and reached a specific loading 
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capacity of ~250 mg/g (or 3400 mmol/kg) at an aqueous n-butanol concentration of ~15 

g/L (or 200 mM), over a 250% improvement of the highest adsorbing polymeric 

adsorbent investigated in that study (Groot and Luyben, 1986). More recently, Silvestre-

Alberto et al. (2009) synthesized and studied a series of activated carbons in order to 

investigate the roles that porous structure and surface functionalities have during ethanol 

adsorption. The study indicated that micropore volume (which range between 0.33-0.76 

cm3/g) significantly affected ethanol adsorption and that an optimal volume of 0.54 cm3/g 

achieved the highest specific loading capacity. This observed dependence was attributed 

to either: 1) low specific surface areas attained at low activation of the material or 2) the 

broadening of pore sizes at high activation (Silvestre-Albero et al., 2009); indicating that 

the lack of control over pore structure severely limits its adsorptive capacity for alcohol 

biofuels. In another study which again investigated ethanol adsorption by activated 

carbons (as well as zeolites for comparison), a linear correlation existing between the 

specific loading capacity and specific surface area was clearly demonstrated (similar to 

what Nielsen at al. (2009) found for polymeric adsorbents).  More specifically, it was 

found that adsorption capacity increased with increases in surface area for all materials 

(Hashi et al., 2010) and that all activated carbons showed adsorption potentials higher 

than that of any zeolite adsorbent investigated in this particular study. As seen above, 

carbonaceous materials provide exceedingly high capacities for adsorbing alcohol 

biofuels from aqueous solutions, and provide a facile means of biofuel ISPR. 

1.4.2 Issues with conventional biofuel adsorbents. As previously stated, 

several conventional biofuel adsorbents show good selectivity as well as capacity for 

alcohol biofuels and provide differing benefits for ISPR applications.  Nevertheless, 

several important issues continue to limit the application of such materials as adsorbents 

in biofuel recovery applications. For instance, high thermal stability is an essential 
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characteristic and would be a prerequisite in any industrial process wherein thermal 

swing would be used for adsorbent regeneration and biofuel recovery.  Such an approach 

was demonstrated to be effective, for example, for recovering n-butanol adsorbed on 

pSDVB resins (Nielsen and Prather, 2009).  However, pSDVB possesses a glass 

transition temperature of only 95oC and a melting point of ~250oC (depending on the 

degree of crosslinking), whereas the normal boiling point of n-butanol is 117oC (Table 

1.1).  Furthermore, polymeric adsorbents have been shown to suffer from the negative 

effects of swelling and thermal expansion which can result in, for example, particle 

fracture and other mechanical failures. Chemical inertness and stability are also essential 

features of an ideal biofuel adsorbent, ensuring that the nutrients essential to microbial 

growth (e.g., carbohydrates and salts) are not interfered and that the adsorbent material 

does not deteriorate as a function of time or reuse.  Zeolytic adsorbents, however, have 

been shown to suffer from slow hydrolysis and degradation in aqueous systems (Cook et 

al., 1982), which reduces their long term utility in aqueous environments. Taken together, 

these issues indicate that conventional biofuel adsorbents each show promise for various 

and differing reasons; however, as of today, not a single adsorbent is capable of meeting 

every requirement. Consequently, novel materials that display high thermal and chemical 

stability as well as chemical inertness need to be investigated and characterized for 

biofuel adsorption, and explored for long term usage. 

1.4.3 Salient trends among biofuel adsorbents. As can be deduced from the 

above discussion, effective biofuel adsorbents share important common attributes, 

regardless of their distinct chemical compositions.  For instance, it has been shown that 

those materials of increasingly hydrophobic nature display the strongest affinity for 

alcohol adsorption (Nielsen and Prather, 2009; Oudshoorn et al., 2009; Hashi et al., 2010; 

Nielsen et al., 2010; Saravanan et al., 2010). To exploit this principle, adsorbent 
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hydrophobicity has since been increased by, for example, selecting polymers composed 

of more hydrophobic monomer substituents (Nielsen and Prather, 2009) and by 

increasing the Si/Al ratio in zeolites (Saravanan et al., 2010).  In addition to a highly 

hydrophobic adsorbent matrix, effective biofuel adsorbents should also possess high 

specific surface areas so as to provide a greater number of hydrophobic adsorption ‘sites’ 

(Hartmann et al., 2005; Nunes et al., 2008; Nielsen and Prather, 2009; Oudshoorn et al., 

2009; Nielsen et al., 2010). With these considerations in mind, it was hypothesized that 

two additional classes of high surface area, hydrophobic materials, namely hydrophobic 

silica aerogels and mesoporous carbons, may also hold considerable promise in biofuel 

recovery applications. Additionally, as these materials are known to be relatively inert, 

they may also provide enhanced thermal and chemical stability relative to conventional 

biofuel adsorbents. Relevant considerations and recent progress regarding the use of these 

materials will now be individually discussed in further detail. 

1.5 Silica Aerogel Adsorbents 

Silica aerogels are sol-gel derived porous materials that are most widely 

recognized for possessing the lowest density of any known solid (as low as 0.01-0.02 

g/cm3) (Tabata et al., 2010).  This feature stems from remarkably high porosity (>90%) 

(Wagh et al., 2010), and their exceptionally high specific surface areas (>1000 m2/g) 

(Reynolds et al., 2001). Although typically hydrophilic in nature due to their Si-OH 

surface functionality, aerogels can be made hydrophobic by replacing surface hydroxyl 

groups with hydrolytically stable hydrocarbon moieties, including, for example, methoxy 

or ethoxy groups (Standeker et al., 2007).  The resultant materials possess surface 

functionalities of Si-OCH3 and Si-OCH2CH3, respectively, and have been found to 

display increased contact angles with sessile water droplets (~135-155 degrees) (Wagh et 

al., 2010). Consequently, silica aerogels possess characteristics that identify them as 
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potentially excellent biofuel adsorbents as they possess remarkably high surface areas 

and high hydrophobicity. To the best of our knowledge no prior studies have explored the 

use of hydrophobic aerogels as an adsorbent media for the selective recovery of second 

generation biofuels from aqueous solutions. 

1.5.1 Recent applications. Hydrophobic silica aerogels have previously been 

applied in adsorption studies that notably include, for example, oil spill cleanup 

(Reynolds et al., 2001; Reynolds et al., 2001) and the removal of toxic organic 

contaminants (such as toluene and xylene) from wastewaters (Hrubesh et al., 2001; 

Standeker et al., 2007; Gorle et al., 2009; Liu et al., 2009). In a recent study, Reynolds et 

al. (2001) showed that increasing the hydrophobicity (a desired characteristic of biofuel 

sorbents) of silica aerogels by incorporating R-CF3 moieties on the sorbent surface 

significantly improves oil uptake, increasing specific loadings from ~100 to ~16000 

mg/g. Hrubesh et al. (2001), employed a hydrophobic silica aerogel for the selective 

removal of organic contaminants, including ethanol. In that study, the aerogel adsorbent 

achieved an ethanol specific loading capacity of 460 mg/g (or 9900 mmol/kg) at an 

aqueous concentration of 1 g/L (or 22 mM).  This remains as one of the highest reported 

values of ethanol adsorption from aqueous solutions for all adsorbent materials (Hrubesh 

et al., 2001). Accordingly, we hypothesized that hydrophobic aerogels should also hold 

promise as adsorbents for other, second generation biofuels. To test this hypothesis, 

Chapter 3 of this thesis will present the first ever investigation of hydrophobic silica 

aerogels as adsorbents of second generation biofuels.  

1.6 Mesoporous Carbon Adsorbents 

The past decade has brought about important advancements in the synthesis and 

development of mesoporous carbons (MPCs) with highly controlled pore structures, 

allowing them to serve important roles in applications that include, for example, 
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hydrogen storage, catalysis, and semiconductors (Hartmann et al., 2005; Meng et al., 

2006; Zhuang et al., 2009). Mesoporous carbons are a class of carbonaceous materials 

that are known for their tunable textural and physical properties, as well as their highly-

ordered and uniform pore structures. Various pore structures have been explored and 

demonstrated including, for example, the hexagonal (P6mm) organization of cylindrical 

mesopores and body-centered cubic (BCC) (Im3m) organization of spherical mesopores 

(Meng et al., 2006). As a result of their tunable pore morphologies, MPCs in turn also 

possess tunable specific surface areas which have been reported to achieve as high as 

2580 m2/g (Zhuang et al., 2009), which is much higher than polymeric adsorbents 

previously characterized for biofuel recovery. In addition to their relevant characteristics 

that identify them as potential biofuel adsorbents (e.g., high surface area and hydrophobic 

surface chemistry), MPCs are also known to display ultrahigh thermal stability, having 

been shown to maintain physical integrity in non-oxidative environments at temperatures 

of up to 1400oC and in air at temperatures of up to 325oC (Meng et al., 2006). The 

thermally stable nature of MPCs should prove useful in adsorptive biofuel separation 

processes as adsorbents can routinely be regenerated by thermal swing desorption in 

industrial applications. Taken together, the unique and attractive physical properties of 

MPCs translate into their promising potential as effective alcohol biofuel adsorbents. 

However, to the best of our knowledge, MPCs have never before been specifically 

developed and investigated as second generation biofuel adsorbents. 

1.6.1 Recent applications. In recent years, MPC adsorbents have been 

investigated in adsorption applications including, for example, the recovery of vitamin E 

from organic solutions (Hartmann et al., 2005), the recovery of dye compounds from 

aqueous solutions (Zhuang et al., 2009), and the removal of volatile organic contaminants 

(VOCs) from aqueous solutions (Saini et al., 2010). When studying the vitamin E 
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adsorptive recovery, Hartmann et al. (2005) compared the relative efficacy of activated 

carbon and two mesoporous carbon adsorbents, ultimately finding that adsorption was 

strongly influenced by the pore volume and pore diameter for all adsorbents. Although an 

activated carbon had the highest specific surface area of the studied adsorbents, the 

mesoporous carbons were in fact capable of adsorbing more vitamin E as they possessed 

greater surface area within their mesopores as opposed to micropores (as indicated by 

their pore volumes), unlike that of the activated carbon. Consequently, a greater amount 

of surface area was accessible on the mesoporous carbon adsorbents to the bulky vitamin 

E molecules. This phenomenon was further substantiated when Zhuang et al. (2009) 

investigated the adsorption of bulky dye compounds from aqueous solutions. Again, 

adsorption of these large molecules was improved (relative to that on activated carbon) 

through the use of mesoporous carbon adsorbents which possessed greater surface area 

within mesopores, and larger pore volumes and diameters. With these considerations in 

mind, we postulated that mesoporous carbons should also hold considerable promise in 

biofuel separations as they display a particularly hydrophobic matrix and high specific 

surface area. Chapter 4 of this thesis presents the first ever characterization of 

mesoporous carbons as adsorbents for the recovery conventional and second generation 

biofuels. 

1.7 Research Objectives and Structure of Thesis 

 As discussed above, there remains a need to discover and characterize new 

materials which can facilitate the economical separation of alcohol biofuels from aqueous 

fermentation broths. With that in mind, this thesis presents a fundamental 

characterization of two materials which show promise as novel biofuel adsorbents, 

namely hydrophobic silica aerogels and highly-ordered mesoporous carbons.  
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The specific objectives related to the characterization of hydrophobic silica aerogels 

include: 

1) To study the equilibrium adsorption isotherms of alcohol biofuels with increasing 

carbon chain length (i.e., ethanol, i-propanol, n-butanol, and 2-pentanol). 

2) To investigate the n-butanol separation efficiency in a packed column design as a 

function of various relevant operating parameters. 

The specific objectives related to the characterization of highly-ordered mesoporous 

carbons include: 

1) To investigate and model the adsorption isotherms of conventional second 

generation biofuels (i.e., ethanol and n-butanol). 

2) To characterize and model the relative adsorption kinetics of n-butanol by a 

selection of mesoporous carbons and conventional polymer adsorbents. 

3) To investigate the effects that repeated sorbent regeneration has on the adsorption 

performance of mesoporous carbons. 

This thesis consists of four parts, which include individual case studies exploring the 

potential utility of silica aerogels and mesoporous carbons as alcohol biofuel adsorbents. 

Chapter 2 presents all analytical as well as experimental methods that are common 

between each case study. Chapter 3 presents a case study on the application of silica 

aerogels for alcohol biofuel adsorption. Experimental results and a detailed discussion are 

presented. Chapter 4 presents a case study on the application of mesoporous carbons for 

alcohol biofuel adsorption. Experimental results and a detailed discussion are also 

presented.  Finally, Chapter 5 provides an overall summary of the presented works, as 

well as the net impacts of the findings.  Recommendations regarding future research are 

also provided. 



  19 

Chapter 2 

ANALYTICAL AND EXPERIMENTAL METHODS 

2.1 Introduction 

Chapter 2 presents both the analytical and experimental methods commonly used 

to conduct the research that is presented in this thesis. More specific information 

regarding these methods as well as other methods as it applies to each individual case 

study is presented in their respective chapters. 

2.2 Analytical Methods 

2.2.1 High pressure liquid chromatography (HPLC). High pressure liquid 

chromatography (HPLC; 1100 series, Agilent, Santa Clara, CA) was used to examine 

aqueous concentrations of various alcohol biofuels. Separation of solutes was achieved 

on a ZORBAX Eclipse XDB-C18 column (Agilent, Santa Clara, CA) operated at a 

constant temperature of 50oC. Filtered and degassed deionized water was used as the 

mobile phase at a constant flow rate of 1.0 mL/min. Analytes were detected using a 

refractive index detector, and concentrations were determined using external standards 

(i.e., calibration curves).   

2.3 Experimental Approach 

2.3.1 Equilibrium adsorption and modeling. Analyzing adsorption equilibrium 

data of adsorbent-adsorbate pairs is a typical method for evaluating adsorbent uptake 

capability. Two of the most common methods for presenting/quantifying adsorption 

equilibria are through constructing equilibrium adsorption isotherms or the use of 

theoretical equations that model equilibrium adsorption. Equilibrium adsorption 

isotherms plot the adsorbate (e.g., biofuel) aqueous phase concentration (Caq) against the 

adsorbate solid-sorbent phase concentration (or the equilibrium specific loading capacity 

(q)) for a given (constant) temperature. The resultant behavior can be branded as one of 
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six different types under IUPAC classification of gas physical adsorption (physisorption) 

(Figure 2.1). The most common is Type I, which can be described by numerous model 

equations including, for example, Langmuir and Freundlich isotherm models (to be 

discussed in more detail later). Type II is indicative of monolayer adsorption at low 

concentrations while significant multilayer adsorption or pore condensation occurs at 

higher partial pressures (or higher concentrations for liquid phase adsorption). Type III 

isotherms occur when the adsorbate-adsorbate interactions are stronger than those of the 

adsorbent-adsorbate. Type IV and V occur with mesoporous materials that show pore 

condensation and/or significant multilayer adsorption while also displaying a hysteresis 

loop in the adsorption-desorption processes, while Type VI displays stepwise multilayer 

adsorption at higher partial pressures (or concentrations) (Keller and Staudt, 2005). For 

this thesis, isotherm temperatures of interest will be confined to 30-37oC as these 

temperatures are relevant to common biofuel fermentation culture conditions.  

 

Figure 2.1. IUPAC classification of gas physisorption isotherm types (Keller and Staudt, 

2005). 

Alternatively, adsorption equilibria can be modeled and predicted by numerous 

theoretical models, and quite compactly be presented as a group of associated parameters. 
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Two of the most common equilibrium adsorption isotherm models include the Langmuir 

and Freundlich equations, which are given as Equations 2.1 and 2.2: 

qeq, L=
qeq,max*kL*Caq

1+kL*Caq
         (2.1) 

qeq,	F= kF*Caq
(1 n⁄ )          (2.2) 

wherein qeq,L and qeq,F are the loading capacities as predicted by the Langmuir and 

Freundlich equations, respectively, kL and kF are the adsorption constants of the Langmuir 

and Freundlich equations, respectively, qeq,max is the monolayer adsorption or maximum 

loading capacity, and n is the Freundlich exponent. Although both equations model Type 

I adsorption behavior, Langmuir was theoretically derived based on the assumption of 

monolayer adsorption while Freundlich is entirely empirical. For this thesis, equilibrium 

adsorption data were fit to both models and parameters were estimated via nonlinear least 

squares regression of the experimental equilibrium data to Equations 2.1 and 2.2 using 

MATLAB® and the intrinsic function nlinfit. 

Equilibrium adsorption experiments were set-up by preparing aqueous alcohol 

solutions in sterile deionized water at initial concentrations relevant to biofuel 

fermentations. Solutions were then analyzed via HPLC in order to quantitatively 

determine the initial concentration of biofuel in solution. Adsorbents were then added to 

the solutions and allowed to equilibrate. After equilibration, the supernatant was removed 

for HPLC analysis, as described in Section 2.1.1. The specific loading capacity was then 

determined by the following material balance relationship: 

q=
Caq,o∗Vaq-Caq∗Vaq

m
         (2.3) 

where Caq,o is the initial concentration of alcohol in the aqueous phase, Vaq is the volume 

of the aqueous phase, and m is the mass of adsorbent. Again, experimental data were 

subsequently fit to both the Langmuir and Freundlich isotherm models (Equations 2.1 
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and 2.2). More specific information regarding the set-up of these experiments as it 

applies to each case study are discussed in further detail in their corresponding chapters. 

2.3.2 Dynamic adsorption and modeling. The rate at which adsorption 

equilibrium is approached (i.e., the adsorption kinetics) is of paramount interest in the 

design of biofuel production processes.  For example, to effectively serve in ISPR 

applications, biofuel molecules must be adsorbed from the culture medium at rates equal 

to or greater than their rate of biosynthesis so as to ensure that titers cannot accumulate 

above relevant inhibitory thresholds. A commonly used method to investigate adsorption 

kinetics is to analyze the specific loading capacity as a function of time, and model the 

experimental data with an appropriate equation (much like that of equilibrium adsorption 

studies). These experiments can be easily set-up as a set of parallel batch adsorption 

experiments that equilibrate for different amounts of time. If it is assumed that the 

adsorption process follows pseudo-first order kinetics, then it would be possible to 

approximate biofuel uptake by the following relationship:  

dq
dt

=k1*qeq-k1*qt        (2.4) 

where k1 is the pseudo-first order kinetic constant, qeq is the equilibrium specific loading 

capacity, and qt is the specific loading capacity at time t.  Data can be fit to this equation, 

which would allow predictions to be made about k1, wherein high values are desired as 

that indicates fast uptake of solutes. 

As specific loading capacities vary between adsorbent-adsorbate pairs, a common 

method for facilitating comparisons between different materials is through 

implementation of a normalized scale represented as the fractional saturation (FS), which 

can calculated as: 

FS= qt qeq⁄          (2.5) 
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FS values range between 0 and 1, representing no adsorption (the initial condition) and 

full saturation (the final, equilibrium condition), respectively.  

 Adsorption kinetics are also characterized through the use of frontal analysis in 

packed adsorption columns. Packed bed adsorption is one of the most widely used 

methods in industrial applications for the continuous adsorption of biochemical species 

from liquid media. Important to these processes is the overall dynamics of the system as 

it determines the efficiency of the separation, rather than just material-specific 

equilibrium considerations. The separation efficiency of a packed column is known to be 

correlated with the dynamic binding capacity of the target solute in the feed solution, and 

is commonly interpreted by frontal analysis, or breakthrough curves (Yuan and Sun, 

2009; Yuan et al., 2010). Breakthrough curves plot concentration of the target solute in 

the column effluent normalized by the feed concentration as a function of time (or 

volume of feed supplied). Figure 2.2 illustrates a typical column breakthrough curve.  

 

Figure 2.2. Sample breakthrough curve. 

Breakthrough curves are useful in that they can be utilized to calculate the dynamic 

binding capacity as this value is correlated to the area above the curve. If the column is 

properly designed, the dynamic binding capacity should approach that of the equilibrium 

loading capacity. However, if significant mass-transfer limitations exist within the 
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adsorption process, the overall separation efficiency will subsequently suffer as the 

system would then be controlled by kinetic and not equilibrium processes. More specific 

data regarding the set-up of these experiments as it applies to each case study are 

discussed in further detail in corresponding chapters. 
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Chapter 3 

SILICA AEROGEL ADSORBENTS 

3.1 Introduction 

 As mentioned in Chapter 1, implementation of silica aerogels in selective solid-

phase extraction could potentially result in the facile separation and recovery of second 

generation biofuels. This chapter characterizes a commercially available, hydrophobic 

silica aerogel (Cabot Nanogel TLD302, see Table 3.1 for relevant physical properties) for 

the liquid phase adsorption of various second generation biofuels, which includes 

determining the correct isotherm type. As discussed later in this chapter, TLD302 

displays an interesting adsorption isotherm that is common among all studied biofuel 

adsorbates, and an investigation of the possible causes for said isotherm type is presented 

and discussed in detail. Additionally, this chapter presents the results of applying 

TLD302 in a continuous n-butanol recovery set-up involving a packed bed adsorption 

column (a commonly used method for the adsorption of solutes in industrial 

applications).  

Table 3.1  

Physical Characteristics of Cabot Nanogel TLD302. 

Adsorbent TLD302 

Porositya 95% air 

Pore diametera (nm) 20-40 

Particle diametera (mm) 1.7-2.35 

Specific surface areaa (m2/g) ~750 

Contact angle (degrees) 141.6 ± 2.09 

Compositiona Silica gel, trimethylsilated 

 a- As indicated by supplier 
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3.2 Experimental 

3.2.1 Equilibrium adsorption. Equilibrium adsorption experiments were 

performed in sterile, 17 mL glass Hungate tubes (Bellco Glass, Vineland, NJ) containing 

15 mL of aqueous alcohol solution and 250 mg of TLD302. Under these conditions, the 

entire tube contents were occupied by either solution or aerogel (meaning no headspace 

volume was present) to promote maximal contact between TLD302 and the aqueous 

phase.  Sealed Hungate tubes were used to facilitate evacuation of the headspace gas by 

‘bleeding off’ (through a needle) as the aerogel-containing tubes were filed with aqueous 

solution using a needle and syringe.  Alcohol solutions were prepared using sterile 

deionized water at initial concentrations representing the titers that are typical of alcohol 

fermentations. Equilibrated samples were recovered from the tubes after shaking at 150 

rpm for 48 h at 30oC. A temperature of 30oC was selected due to its relevance to many 

common biofuel fermentation conditions. Alcohol concentrations were measured before 

and after equilibration in order to determine the specific loading capacity on TLD302 as 

previously described in Section 2.3.1. The results of these experiments are discussed in 

detail in Section 3.3.1. 

3.2.2 Frontal analysis in a packed bed. Packed bed adsorption column 

experiments were performed using a glass column (61 cm long x 2.5 cm diameter; 

Chemglass, Vineland, NJ) filled with 20 g of TLD302. This corresponded to a packed 

bed height of 50 cm, or 82% of the total column height. Model aqueous n-butanol 

solutions were prepared in filtered deionized water at an initial concentration of either 10 

or 55 g/L (equivalent to 135 and 740 mM). The column was oriented vertically and a 

continuous upward flow was provided by a constant flow pump (LabAlliance Series 1, 

State College, PA) at rates ranging between 1-10 mL/min. An upward flow was required 

to attain packed column conditions given the extremely low density of hydrophobic 
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TLD302 which, regardless of orientation, will float at or near the top of the column, 

thereby producing an inversely fluidized bed condition if downward flow was applied (an 

undesired condition for this study). Samples (5 mL) of the column effluent were collected 

at varying frequency utilizing an Advantec fraction collector (SF-2120, Dublin, CA), and 

subsequently analyzed by HPLC as previously described in Section 2.2.1. All 

experiments were performed until complete breakthrough was attained in the column, 

indicating that equilibrium saturation conditions had been attained in the column. The 

column was then thoroughly rinsed with deionized water before being recharged with 

fresh TLD302 and the protocol repeated for different conditions of interest. The results of 

these experiments are described in Section 3.3.2. 

3.3 Results and Discussion 

3.3.1 Isotherm determination. In addition to the individual adsorption of 

naturally-occurring alcohol biofuels ethanol and n-butanol, i-propanol and 2-pentanol 

were also explored in order to more carefully examine the influence of carbon chain 

length (i.e., 2 through 5).  The equilibrium adsorption of ethanol, i-propanol, n-butanol, 

and 2-pentanol by TLD302 across a concentration regime that is relevant to biofuel 

fermentations are compared in Figure 3.1 together with their respective Freundlich 

isotherm model predictions. The resultant ‘best-fit’ model parameter estimates are 

summarized in Table 3.2. 
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Figure 3.1 Experimental and Freundlich model predictions of ethanol (square),                

i-propanol (circle), n-butanol (triangle), and 2-pentanol (inverted triangle) adsorption 

equilibria with TLD302. 

Table 3.2 

Freundlich Adsorption Isotherm Model ‘Best-Fit’ Parameter Estimates. 

Alcohol kF (mmol/kg) n 

Ethanol 16 ± 9 1.98 ± 0.25 

i-Propanol 37 ± 17 2.28 ± 0.32 

n-Butanol 70 ± 17 2.39 ± 0.25 

2-Pentanol 92 ± 48 2.61 ± 0.61 

 

As expected, both the Freundlich adsorption constant and exponent were found to be 

positively correlated with the alkyl chain length for each alcohol (i.e., the Freundlich 

adsorption constant increases as the carbon chain length increases). These same trends 

have been reported before for hydrophobic polymeric adsorbents that were studied for 

their ability to adsorb a similar collection of 2-5 carbon biofuel alcohols (Nielsen et al., 
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2010). When the adsorption behavior is typified by the Freundlich equilibrium isotherm it 

is possible to estimate the Gibb’s free energy change of adsorption (∆�) as (Huang et al., 

2007): 

∆G=-RTn         (3.1) 

where R is the universal gas constant, and T is the temperature of system. The resultant 

predictions of Gibb’s free energy change are compared for each target alcohol in Figure 

3.2 wherein a clear negative trend is observed as a function of carbon chain length. These 

predictions support the hypothesis that more hydrophobic adsorbates are more readily 

adsorbed by hydrophobic adsorbents such as TLD302 due to the formation of strong 

surface interactions (e.g., van der Waals forces), and are again consistent with prior 

works utilizing hydrophobic polymer adsorbents (Nielsen et al., 2010).  Furthermore, the 

predicted values of the Gibb’s free energy change of adsorption are consistent with the 

proposed mechanism of physical adsorption (physisorption) as physisorption interactions, 

such as Van der Waals forces, are typically lower than ~20 kJ/mol (Kuo et al., 2008). 

 

Figure 3.2. Predicted Gibb’s free energies of adsorption for alcohols with TLD302 as a 

function alcohol carbon chain length. 
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 Despite its high specific surface area and hydrophobic surface chemistry, the 

observed equilibrium adsorption behavior (Figure 3.1) in fact suggests that TLD302 is 

not a particularly effective adsorbent under concentrations of direct importance to alcohol 

biofuel fermentations. This is in contrast, for example, to previously characterized 

adsorbents such as the hydrophobic, macroporous polymer adsorbent Dowex™ 

Optipore™ L-493 which, at an aqueous phase concentration of n-butanol of 10 g/L (or 

135 mM), can reach a specific loading capacity of 300 mg/g (or 4060 mmol/kg) (Nielsen 

et al., 2010). TLD302, on the other hand, only manages about 10% of that performance, 

reaching a specific loading capacity of 40 mg/g (or 540 mmol/kg). However, for the sake 

of complete characterization of TLD302, the adsorption isotherms were further extended 

to alcohol concentrations that are well beyond those of biological relevance.  Under such 

concentrations, it should be noted that the prospects of ISPR would no longer be valid as 

the equilibrated aqueous alcohol concentrations remain well above their respective 

inhibitory thresholds. Figure 3.3 compares the adsorption behavior for each of the 

alcohols of interest on TLD302. Note that in order to maintain a single liquid phase, 

different aqueous concentrations were used for each alcohol. In all cases, it was found 

that the equilibrium adsorption followed isotherms that are typified by Type IV behavior, 

suggesting the occurrence of either 1) significant multilayer adsorption, or 2) penetration 

into the pores (followed by adsorption) (Keller and Staudt, 2005).   
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Figure 3.3. Experimental data of ethanol (A), i-propanol (B), n-butanol (C), and 2-

pentanol (D) adsorption equilibria with TLD302. ‘Breach point’ indicated by a vertical 

dotted-line. 

As can be seen in Figure 3.3, a so-called ‘breach point’ (i.e., the point or region 

along the isotherm where a significantly increased rate of change in specific loading 

capacity is observed as a function of increasing equilibrium alcohol concentration) occurs 

at a characteristic aqueous concentration for each alcohol, leading to significantly 

enhanced equilibrium loadings at subsequently higher concentrations.  It should be noted 

that the more hydrophobic the alcohol (i.e., the longer its carbon chain length) the lower 

the concentration at which the ‘breach point’ occurs and that all of the ‘breach point’ 

loading capacities are similar in magnitude for each alcohol, regardless of their carbon 

chain length (i.e., between 1100-1400 mmol/kg). A set of experiments investigating the 

potential reasons for the observed Type IV adsorption isotherm are discussed and 

presented in the following section. 
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3.3.1.1 Investigation of type IV isotherm. In addition to distinct changes in 

isotherm behavior at elevated aqueous concentrations, notable qualitative changes to 

TLD302 were also observed during alcohol adsorption experiments.  For example, at 

concentrations below the ‘breach point’, all particles remained opaque and suspended 

near the top of the aqueous phase. At lower concentrations particles were also found to 

coalesce together, forming larger, stable agglomerates. As increasing concentrations 

approached the ‘breach point’ for each alcohol, however, said agglomerates began to 

destabilize, returning the mixture to a slurry of individually-dispersed particles. Finally, 

at equilibrated concentrations above each characteristic ‘breach point’, all particles 

became translucent and sank to the bottom of the sample tube. At the same time, the 

formation of a gaseous head space within each sealed sample tube was also observed. 

These qualitative observations signify a number of important physiological changes are 

occurring as a function of position along the equilibrium isotherm. For instance, at 

increased biofuel loadings the mean particle density increases.  This density change is 

predominantly attributed to the displacement of air from the pores of TLD302.  The 

released air is also responsible for forming the aforementioned head space in the sample 

tube.  In fact, at very high alcohol concentrations (for example, 750 mM n-butanol and 

above) small bubbles could even be seen escaping from individual TLD302 particles as 

the sample equilibrated. Air displacement from TLD302 suggests that high concentration 

aqueous alcohol solutions more extensively enter its pores in a process called ‘pore 

intrusion’. More specifically, ‘pore intrusion’ is referred to here as the complete 

displacement of air from within the pores, thereby allowing for complete coverage of the 

sorbent surface.  Furthermore, our observations suggest that this phenomenon, together 

with the equilibrium performance of the adsorbent, displays a strong concentration 

dependence. These observations led us to postulate that greater specific loadings are 
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possible at higher alcohol concentrations after the occurrence of ‘pore intrusion’ which 

enables a monolayer of adsorbate to form over the entire sorbent surface, followed then 

by the significant accumulation of adsorption multilayers.  This hypothesis and its 

controlling mechanisms were subsequently examined to provide further mechanistic 

insight.   

Solutions were first examined with respect to both surface tension and contact 

angle with TLD302 to understand the effects of alcohol concentration on fluid properties 

and interfacial interactions. The results are shown together in Figure 3.4, where it is first 

seen that increasing alcohol concentration led to a corresponding decrease in surface 

tension for all samples (Figure 3.4A). It should be noted that the observed trend for i-

propanol also agrees well with that of prior works  (Vazquez et al., 1995). Declining 

surface tensions are clearly more sensitive to increasing concentrations for solutes with 

longer alkyl chains.  For example, as seen in Figure 3.4A, only a small increase in 

concentration brings about a significant decrease in surface tension for 2-pentanol with its 

five carbons versus ethanol with only two. A direct correlation was found to exist 

between the characteristic concentration at which each ‘breach point’ occurred 

(approximately 5200, 2400, 520, and 260 mM for ethanol, i-propanol, n-butanol, and 2-

pentanol, respectively, as in Figure 3.3) and the measured solution surface tension at that 

condition (between about 31-36 mN/m for each alcohol, as in Figure 3.4A). In addition to 

impacting surface tension, concentration also simultaneously and significantly affected 

the characteristic wetting behavior of alcohol solutions on TLD302. More specifically, in 

Figure 3.4B it can be seen that contact angles decreased at high concentrations, 

corresponding to a transition from non-wetting to wetting (<90 degrees) surface 

conditions over the concentration regimes explored. As with surface tension, it was 

likewise found that this wetting behavior was most sensitive for longer chain alcohols 
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and that the surface wetting of TLD302 at the characteristic ‘breach point’ for each 

alcohol similarly corresponded to a common minimum contact angle, namely ~125 

degrees. These observed relationships suggest that ‘pore intrusion’ into TLD302 is 

greatly influenced by the surface tension of the solution and wettability of the sorbent. 

Meaning, more specifically, that surface tension and contact angle must be reduced to 

below characteristic thresholds before ‘pore intrusion’ can occur (i.e., total displacement 

of air from within the sorbent matrix and complete surface coverage), thereby then 

subsequently enabling  multilayer adsorption to occur. 

 

Figure 3.4. (A) Surface tension and (B) sessile droplet contact angle with TLD302 as a 

function of ethanol (open square, filled squarea), i-propanol (open circle, filled circlea), n-

butanol (open triangle), and 2-pentanol (open inverted triangle) concentration in aqueous 

solution. a- (Vazquez et al., 1995). 

In addition to affecting ‘pore intrusion’, surface tension and sorbent wettability 

appear to play roles in the formation and stability of particle agglomerates. Particle 

agglomeration has been extensively studied in applications such as gas fluidized bed 

systems, for example, which incorporate cohesive particles, such as aerogels (McDougall 
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et al., 2005; Weber et al., 2006; Weber et al., 2008). Multiple mechanisms have been 

implicated as causing particle agglomeration including, for example, strong interparticle 

(e.g., Van der Waals) forces (Chaouki et al., 1985) and the presence of binder agents that 

can act as material bridges (Weber et al., 2008). It has also been found that particle 

agglomeration can likewise be disrupted through multiple different mechanisms 

including, for example, application of external mechanical stresses (e.g., increased drag 

or shear forces), and mass transport of binder substances away from the surface of 

aggregates which effectively destroy material bridges (Weber et al., 2008). We postulate 

that a similar mechanism (i.e., mass transport of binder substances) is occurring with 

TLD302 alcohol adsorption and increasingly high aqueous alcohol concentrations. As a 

result of the hydrophobic surface chemistry of TLD302, large agglomerates form upon 

mixing with aqueous solutions to minimize entropic losses associated with interactions 

occurring between water molecules and the aerogel surface (i.e., Van der Waals forces). 

In addition, these aggregates are further stabilized by air bridges formed between 

TLD302 particles.  Agglomerate formation reduces the ability of the aqueous solution to 

displace the air present at the surface of the adsorbent. However, as the aqueous phase 

alcohol concentration increases, the liquid phase can better contact the solid surface, 

successfully displace the air, and consequently break down the aerogel agglomerates. 

Taken together, these results suggest that as the alcohol solution becomes 

increasingly hydrophobic (due to either increasing concentrations or by incorporation of 

longer chain, more hydrophobic alcohols) adsorption by TLD302 is enhanced through 

multiple, simultaneously occurring mechanisms.  First, with decreased surface tension 

solutions readily destabilize the air bridges formed between individual TLD302 particles, 

disrupting agglomeration and promoting greater solution-particle contact. Second, 

improved surface wetting facilitates solution migration into pores whereby air is 
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subsequently displaced to greatly enhance interfacial contact.  As the contact between the 

aqueous and solid-sorbent phases enhances, the interfacial area wherein alcohols are 

adsorbed increases, allowing for complete surface coverage and subsequent multilayer 

adsorption. Correspondingly, the Type IV adsorption isotherm behavior observed herein 

results from more extensive liquid phase penetration within the pores and resultant 

surface coverage, followed then by multilayer adsorption. 

3.3.2 Frontal analysis in packed bed adsorption. A packed column containing 

20 g TLD302 was developed as previously described to evaluate its separation efficiency 

as a function of a number of relevant operating parameters. The separation efficiency of a 

packed column is known to be correlated with the dynamic binding capacity of the target 

solute in the feed solution, and is commonly interpreted by frontal analysis, or 

breakthrough curves (Yuan and Sun, 2009; Yuan et al., 2010). A feed solution initially 

containing 10 g/L n-butanol (or 135 mM) was first studied to examine separation 

efficiency and behavior at a maximal concentration that is relevant to fermentation 

conditions in addition to being below the characteristic ‘breach point’ of this alcohol at 

breakthrough (Figure 3.3C). Flow rates of 2.5, 5 and 10 mL/min (equivalent to superficial 

velocities (u) of 0.5, 1.0, and 2.0 cm/min) were each investigated to determine their effect 

on the column efficiency, and the resultant breakthrough curves are shown in Figure 3.5. 

As can be seen, flow rate imposes a significant influence on column breakthrough, as 

well as efficiency. The breakthrough point was found to be delayed by lowering the flow 

rate, indicating that a higher dynamic binding capacity was realized before breakthrough 

occurred. Upon breakthrough, no obvious difference in overall dynamic binding capacity 

is observed at the two lowest superficial velocities (0.5 and 1.0 cm/min) because, under 

these conditions, equilibrium conditions are readily attained and control the adsorption. 

Meanwhile, at a superficial velocity of 2.0 cm/min, the efficiency of the column 



  37 

diminishes as the dynamic adsorption capacity is no longer controlled by full 

equilibration, but rather by the adsorption kinetics.  

 

Figure 3.5. n-Butanol packed column breakthrough curves with TLD302 at volumetric 

flow rates of 2.5 (inverted triangle), 5 (circle), and 10 mL/min (triangle) with inlet 

concentration of 10 g/L. 

The height equivalent to a theoretical plate (HETP) is a common parameter used 

for interpreting the overall chromatographic efficiency of a packed column. In general, 

steeper slopes of the breakthrough curve correlate with lower HETP values, and thus 

higher efficiency. In the present study, the lowest superficial velocity (0.5 cm/min) 

corresponds to the steepest breakthrough curve, indicating that HETP increases with 

increasing the superficial velocity in the TLD302 column. HETP can be described by van 

Deemter equation (van Deemter et al., 1956): 

HETP= A
u

+ B+Cu                                           (3.2) 

where A, B, and C are empirical parameters which capture the unique effects of mass 

transfer resistance associated with the particular experimental system of interest. Mass 

transfer resistance in TLD302 columns is predominantly controlled by slow rates of 
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diffusion into the pores which, as discussed above, is largely influenced by the presence 

of air within the aerogel which prevents facile ‘pore intrusion’ (Trzpit et al., 2009), and 

subsequent adsorption. The rapid and complete breakthrough at a superficial velocity of 

2.0 cm/min is not an appropriate operating condition as it can be inferred that the HETP 

is higher than the packed column height. As seen in Figure 3.5, the dynamic binding 

capacity did not reach the static equilibrium loading capacity before full breakthrough, 

wherein the equilibrium area (left of the breakthrough curves) was achieved by both 0.5 

and 1 cm/min. That is, the actual packed column height used did not satisfy a single 

theoretical plate (or equilibrium stage) at high flow rates, because inadequate time was 

provided for n-butanol to diffuse within the sorbent matrix of TLD302.  

Next, frontal analysis was performed on the same TLD302 packed columns, 

however, now employing an n-butanol solution of a higher initial concentration (55 mg/L 

or 740 mM). As seen in Figure 3.3C, breakthrough at such a high initial n-butanol 

concentration will correspond to equilibrated TLD302 particles that exist above the 

characteristic ‘breach point’ of this alcohol (Figure 3.3). As seen in Figure 3.6, 

breakthrough occurs for each flow rate at similar total volumes (between 125-165 mL) of 

applied solution as did when a lower concentration feedstock was used (Figure 3.5). 

Interestingly, upon initial breakthrough at the higher feed concentration, for each flow 

rate it was observed that the effluent was merely ~80% of the feed concentration, which 

corresponds to approximately 620 mM (just beyond the ‘breach point’, Figure 3.3C).  

This sub-maximal effluent concentration was maintained for an additional ~200 to 1200 

min (or a total of ~1000 mL of solution) before full breakthrough finally occurred, as 

seen in Figure 3.6.  
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Figure 3.6. n-Butanol packed column breakthrough curves with TLD302 at volumetric 

flow rates of 1 (inverted triangle), 2.5 (circle), and 6 mL/min (triangle) with inlet 

concentration of 55 g/L. ‘Start of pore intrusion’ indicated by vertical-dotted line with 

open symbols. ‘End of pore intrusion’ indicated by vertical-dotted line with closed 

symbols. 

Such non-ideal performance of the packed columns resulted from the 

discontinuous (Type IV) equilibrium behavior of the TLD302 adsorbents and was 

typified by the apparent segregation of the particles into two distinct yet dynamically 

interconnected subgroups.  More specifically, this included particles equilibrated to 

specific loadings that existed: 1) below the ‘breach point’ of the adsorption isotherm, and 

2) above the ‘breach point’ (see Figure 3.3).  At the beginning of column breakthrough 

experiments, all TLD302 particulates were suspended towards the top of the column and 

were opaque in appearance. However, as the n-butanol containing feed continued to be 

passed up through the column, those TLD302 particles existing at the bottom of the 

packed bed (i.e., closest to the entrance of the column) were quickly subjected to ‘pore 

intrusion’, after which their density increased (due to air evacuation) and they settled 
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towards the bottom of the column. As the first identifiable aerogel particles visibly 

experienced pore intrusion (i.e., changed appearance from opaque to translucent and sank 

to the bottom of the column), the time (or volume of effluent) was noted as the ‘start of 

pore intrusion’, as seen in Figure 3.6. As was demonstrated in Figure 3.3, as particles 

undergo ‘pore intrusion’ they quickly become more effective n-butanol adsorbents (as a 

result of significant multilayer adsorption), thus rendering the bottom section of the 

column more efficient than the upper section.  As the n-butanol concentration profile 

advances further up through the column, more and more particles (located further up the 

column) undergo ‘pore intrusion’, transitioning across the ‘breach point’ equilibrium to 

also become more effective n-butanol adsorbents. Finally, once all particles had 

experienced ‘pore intrusion’, the time (or volume of effluent) was accordingly noted as 

the ‘end of pore intrusion’ as seen in Figure 3.6, and corresponds to full breakthrough of 

the column. 

The column efficiencies, however, did not show any difference between the 

superficial velocities of 0.2 and 1.2 cm/min, which differs from the expected outcome 

that was observed when a lower feedstock concentration was applied (Figure 3.5). That 

is, the points at which breakthrough occurred are the same for all three flow rates studied 

(specifically, ~125 mL for 0.2 and 0.5 cm/min and 160 for 1.2 cm/min). Similar column 

efficiencies were caused by the increased feedstock concentration, which made the 

internal mass-transfer resistance no longer important at such an exceedingly high 

concentration gradient (Fick’s law) wherein only large differences in applied flow rates 

may potentially affect the column efficiency. 

Taken together, these packed column results further confirm the concentration 

dependence of the ‘pore intrusion' phenomenon. Additionally, these findings demonstrate 

that ‘pore intrusion’ does not instantaneously occur at elevated concentrations, but rather 
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that a kinetic limitation exists which can impact dynamic processes such as packed beds. 

This is demonstrated by the observed delay to breakthrough seen in Figure 3.6, and arises 

from mass-transfer limitations associated with capillary flow such as interfacial friction 

(Sokhan and Quirke, 2004). Furthermore, as the porous structure of silica aerogels are 

exceedingly random, properties such as surface roughness (Cottin-Bizonne et al., 2003) 

and wettability (Sokhan et al., 2001) also play a role on, and in this case potentially 

inhibit, intraparticle diffusion of adsorbates and removal of air from the pores. Moreover, 

the point at which ‘pore intrusion’ was observed to affect every TLD302 particle (i.e., all 

particles were fully saturated) in Figure 3.6 matches that of full breakthrough.  This result 

produces a mass-transfer region in the breakthrough curve that is dominated by solid-

phase diffusion (i.e., diffusion within the pores of TLD302), as is clearly indicated in 

Figure 3.6 (the region between the dotted-lines for the flow rate of 1 mL/min). This 

further confirms that adsorption within the pores of TLD302 is controlled by ‘pore 

intrusion’ and multilayer adsorption. 

3.4 Conclusion 

With demonstrated significantly lower specific loading capacity as compared to 

conventional biofuel adsorbents, the silica aerogel, Cabot Nanogel TLD302, does not 

possess much potential as a material that can be effectively incorporated in in situ product 

recovery methods for the separation and purification of lower alcohols via solid-phase 

extraction. The observed loading capacities were found to be limited at biologically-

relevant titers by the inability of the aqueous phase to displace air at the sorbent surface 

and within the pores, and, therefore, limiting the availability of adsorption ‘sites’ present 

at the sorbent surface. However, it was found that at increasingly high concentrations of 

alcohol in the aqueous phase improved adsorption capacities for all four alcohols 

investigated as well as producing the observed Type IV adsorption isotherm. The Type 
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IV adsorption isotherm is a result of improved sorbent wettability at high aqueous alcohol 

concentrations as the aqueous becomes increasingly hydrophobic in character due to the 

increasing alcohol content. Accordingly, the application of TLD302 in continuous packed 

column adsorption of n-butanol displayed rather low dynamic binding capacities in 

addition to another distinctive phenomenon at elevated n-butanol concentrations in the 

feed (i.e., above that of the ‘breach point’). It was observed that complete breakthrough 

was delayed as a result of mass-transfer limitations associated with pore penetration and 

subsequent adsorption.  
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Chapter 4 

MESOPOROUS CARBON ADSORBENTS 

4.1 Introduction 

 As mentioned in Chapter 1, implementation of mesoporous carbons in selective 

solid-phase extraction could potentially result in the facile separation and recovery of 

second generation biofuels. This chapter presents the synthesis and characterization of 

four mesoporous carbons. The mesoporous carbons were subsequently characterized for 

both the equilibrium and dynamic adsorption of two conventional biofuels (i.e., ethanol 

and n-butanol). Dynamic experiments are particularly of interest with regards to 

mesoporous carbons as they possess tunable physical and textural properties such as pore 

geometry. Investigating a selection of mesoporous carbons with various pore 

morphologies may yield important information about how to enhance the adsorption rate, 

which, as previously discussed in Chapter 1, is extremely vital to ISPR in bioprocesses. 

Results of these experiments are presented and discussed. Additionally, this chapter 

explores the thermal and chemical stability of the studied mesoporous carbons by 

investigating the adsorption performance as well as physical integrity as a function of 

adsorbent regeneration. Finally, in addition to the four mesoporous carbons studied here, 

a conventional biofuel adsorbent, DowexTM OptiporeTM L-493, was included in order to 

facilitate comparisons. 

4.2 Experimental 

4.2.1 Mesoporous carbon synthesis. The studied mesoporous carbons were 

synthesized in a collaborating laboratory at Arizona State University (Dr. Bryan D. Vogt, 

PI and Mingzhi Dai, Ph.D. candidate). Four different mesoporous carbons were 

synthesized and follow the naming protocol from previous work (Song et al., 2010).  A 

hexagonal organization (P6mm) of cylindrical mesopores was obtained by dissolving 
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resol and Pluronic P123 at molar composition of phenol/ formaldehyde/ NaOH/ F127 = 

1: 2: 0.1: 0.012 in ethanol; followed by evaporation of ethanol and producing a polymer 

film (which was subsequently milled into a fine powder) labeled FDU-15-800 (Meng et 

al., 2006).  A body centered cubic (BCC) organization (Im3m) of spherical mesopores 

was achieved by dissolving resol and Pluronic F127 at molar composition of phenol/ 

formaldehyde/ NaOH/ F127 = 1: 2: 0.1: 0.006 in ethanol; followed by evaporation of 

ethanol producing a polymer film (which, again, was subsequently milled into a fine 

powder) labeled FDU-16-800 (Meng et al., 2006). The phenolic resin in these polymeric 

powders (FDU-15-800 and FDU-16-800) was then thermally cross-linked at 120 ºC for 

24 h.  Carbonization was performed in tubular furnace under nitrogen atmosphere with a 

flow rate of 140 cm3/min at 800 ºC for 2 h with heating rates of 1 ºC/min below 600 ºC, 

and 5 ºC/min above 600 ºC   In order to increase the surface area of mesoporous carbons, 

silica through the condensation of TEOS was included in the synthesis solution and 

followed the procedures listed above.  The silica was subsequently removed in 1 M 

NaOH after carbonization, which produced two different materials labeled as CS-68-800 

(Precursor solution: 0.208 g TEOS, 0.1 g resol, and 0.1 g Pluronic F127) and CS-81-800 

(Precursor solution: 0.416 g TEOS, 0.1 g resol, and 0.14 g Pluronic F127).   

4.2.1.1 Mesoporous carbon characterization. After the mesoporous carbons 

were synthesized, their full characterization was investigated and the procedures are 

described here. X-ray diffraction (XRD) in /2 geometry with Cu K source 

(PANalytical X’Pert PRO) was used to verify the ordered mesostructures of the four 

carbons. A parallel plate collimator was used along with an incident beam optical module 

providing an X-ray beam with very low divergence. The angle of incidence, , was 

varied from 0.25 to 1.5 degrees.  In order to visualize the mesopores, transmission 

electron microscopy (TEM) was performed on the carbon powders using a JEOL 2010F 
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microscope operating at 200 kV.  Nitrogen adsorption/desorption isotherms were 

measured with a Tristar II 3020 Micromeritics instrument at 77 K. Before the 

measurement, the samples were degassed at 300 ºC for at least 1h. Specific surface areas 

were subsequently estimated by means of the Brunauer–Emmett–Teller (BET) method in 

a relative pressure range of P/P0 = 0.05–0.25. The pore size distribution (PSD) and pore 

volume were calculated from the adsorption branch of the isotherm by using the Barrett–

Joyner–Halenda model. 

4.2.2 Equilibrium adsorption. Equilibrium adsorption experiments were 

performed in sterile, 2 mL glass HPLC vials containing 1 mL of aqueous n-alcohol 

solution and 20 mg of carbon powder. Solutions were prepared in sterile deionized water 

at initial concentrations ranging from 1-120 g/L (or 22-2600 mM) for ethanol and from 1-

70 g/L (or 13-944 mM) for n-butanol. Samples were equilibrated for 24 h at 37oC while 

being agitated at 250 rpm. A temperature of 37oC was selected due to its relevance with 

respect to many important biofuel fermentations. Upon equilibration, the supernatant was 

removed for HPLC analysis via pipetting through plastic pipet tips packed with DMCS 

treated glass wool (to eliminate carryover of MPCs). Analysis of these experiments was 

conducted as previously described in Section 2.3.1. 

4.2.3 Dynamic adsorption. Dynamic adsorption experiments were performed 

for n-butanol using the same experimental setup described in Section 4.2.2; however, in 

this case a fixed initial concentration of 10 g/L (equivalent to 135 mM) was used. 

Experiments were initiated by addition of 1 mL n-butanol solution to 20 mg of MPC.  For 

each MPC of interest, 9 batch adsorption experiments (each representing 9 distinct time 

points at which to take a sample) were prepared and performed in parallel.  This was 

done to facilitate analysis with minimal disruption due to sampling time while also 

eliminating complexities due to volume loss. Samples were well-mixed on a Vortex 
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Genie 2.0 (Scientific Industries; Bohemia, New York) at 250 rpm for up to 24 h.  

Aqueous samples were taken periodically (as described above), at time intervals ranging 

between 15 seconds to several hours.  Preliminary experiments indicated that the 

adsorption process was unaffected by changes in the mixing rate (data not shown), which 

suggests that the mass transport limitation associated with transfer through the bulk 

solution to the adsorbent surface was not the rate limiting step, allowing emphasis to be 

placed on solid-phase diffusion. Again, the specific loading capacity was determined as a 

function of time for each adsorbent according to a material balance (Equation 2.3). 

4.2.4 Sorbent regeneration. Thermal regeneration of adsorbents was performed 

in this experiment in order to investigate the thermal as well as chemical stability of 

mesoporous carbons. Sorbent regeneration is a vital process as sorbents are routinely 

regenerated in numerous industrial applications. It is imperative that adsorbents can 

withstand such treatment and resist various negative effects of regeneration including 

mechanical failures such as particle fracture. Throughout the course of this study, 

mesoporous carbon sorbents were routinely regenerated (up to 10 times). Regeneration 

was achieved utilizing a two-step protocol that consisted of: 1) drying adsorbents at 

110oC for 24 h, and 2) heating at 170oC for an additional 24 h to further release any 

adsorbed species. It should be noted that this is not an ideal protocol for sorbent 

regeneration; however, it was implemented to ensure that sorbents were completely 

regenerated so as to be used in subsequent equilibrium and dynamic adsorption 

experiments. 

4.3 Results and Discussion 

4.3.1 Adsorbent characterization. The relevant physical characteristics 

measured for each of mesoporous carbon are summarized in Table 4.1.  These materials 

possess surface areas between ~500 m2/g and ~1300 m2/g, which are consistent with prior 
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reports found in literature (Zhuang et al., 2009). The surface area for CS materials (i.e., 

CS-68-800 and CS-81-800) is significantly larger than that of FDU materials (i.e., FDU-

15-800 and FDU-16-800) due to the presence of a highly microporous network that is 

generated by the removal of silica that is included in the synthesis of these materials.   

Table 4.1  

Summary of Adsorbents Investigated. 

Adsorbent ABET (m2/g) Vp (cm3/g) dp (nm) Mesostructure 

FDU-15-800 538 0.028 5.0 P6mm (cylindrical) 

FDU-16-800 671 0.14 5.8 Im3m (spherical) 

CS-68-800 1287 1.39 8.2 Im3m (spherical) 

CS-81-800 1307 1.26 7.2 Im3m (spherical) 

L-493 >1100a 1.16a 4.6a not available 

a- As reported by the manufacturer 

 

The pore size distribution, as determined by B.E.T. N2 sorption, is relatively fine for each 

material with the average pore size presented in Table 4.1. The diameter for CS-68-800 is 

the largest due to a decreased contraction of the resol during carbonization as the 

aforementioned presence of co-continuous silica reinforces the sorbent matrix. However, 

further increasing the silica concentration (CS-81-800) actually leads to a decrease in the 

average pore size presumably due to the volume contraction associated with the 

condensation of the TEOS precursor.   To better visualize the well-defined structure of 

these materials, Figure 4.1 shows TEM micrographs of the studied mesoporous carbons. 

Ordered monodisperse pores are distinctly visible in the micrographs except for the CS-

81-800 (Figure 4.1D).  This decrease in the visible order could be a result of the high 

initial silica included in the sorbent matrix that was subsequently removed, and, 
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correspondingly, deteriorated the matrix organization.  For a control and reference, 

hydrophobic, macroporous, polymeric (pSDVB) adsorbent Dowex™ Optipore™ L-493 

(hereafter referred to as L-493), with physical characteristics listed in Table 4.1, is used 

as this adsorbent has been well characterized for biofuel separation (Nielsen and Prather, 

2009; Nielsen et al., 2010). 

 

Figure 4.1. TEM images of (A) FDU-15-800, (B) FDU-16-800, (C) CS-68-800, and (D) 

CS-81-800. 

4.3.2 Equilibrium adsorption. Upon comparison with other commonly 

employed adsorption models (e.g., Langmuir isotherm, Equation 2.1), the Freundlich 

isotherm model (Equation 2.2) most adequately captures the qualitative behavior of 

biofuel adsorption by all MPCs studied as a function of concentration (results not shown).  

Therefore, all equilibrium adsorption data were fit to the Freundlich isotherm model, 

whose predictions are compared with data in Figure 4.2.  
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Figure 4.2. Experimental and Freundlich model predictions of ethanol (closed symbols) 

and n-butanol (open symbols) adsorption equilibria with (A) FDU-15-800, (B) FDU-16-

800, (C) CS-68-800, and (D) CS-81-800. 

Meanwhile, the corresponding parameter estimates are provided in Table 4.2.  

Table 4.2  

Freundlich Adsorption Model ‘Best-Fit’ Parameter Estimates. 

 Ethanol n-Butanol 

Adsorbent kF (mmol/kg) n kF (mmol/kg) n 

FDU-15-800 115 ± 32 2.41 ± 0.23 371 ± 86 3.65 ± 0.49 

FDU-16-800 158 ± 28 2.53 ± 0.16 708 ± 66 4.61 ± 0.34 

CS-68-800 62.9 ± 9.4 1.82 ± 0.07 245 ± 59 1.92 ± 0.14 

CS-81-800 69.7 ± 10 1.88 ± 0.07 446 ± 95 2.39 ± 0.19 

L-493 23 ± 12 a 1.25 ± 0.29 a 446 ± 115 a 2.22 ± 0.26 a 

a-(Nielsen et al., 2010) 
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As is consistent with prior studies which have similarly explored the use of hydrophobic 

adsorbents for biofuel recovery (Nielsen et al., 2010), the adsorption potential (i.e., the 

magnitude of the adsorbent-aqueous phase partitioning ratio) was observed to increase as 

the alcohol carbon chain length increased from ethanol (2C) to n-butanol (4C). For 

example, at an aqueous phase concentration of 27 mM (approximately 1 g/L ethanol or 2 

g/L n-butanol) the adsorbent-aqueous phase partitioning ratio (defined as qe/Caq) of CS-

81-800 increased from 13 (mmol/kg)/(mM) for ethanol to 61 (mmol/kg)/(mM) for n-

butanol, an improvement of ~470%. As n-butanol is greater than 11-times more 

hydrophobic than ethanol (as predicted by its higher logKO/W value, Table 1.1) its 

adsorption benefits significantly from larger specific adsorption driving forces (i.e., Van 

der Waals forces). To verify this statement, the change in Gibb’s free energy of 

adsorption (∆G) was calculated by Equation 3.1, as previously described in Section 3.3.1. 

The results of which are summarized in Table 4.3. As expected, the attained values are 

indicative of physisorption as no value is greater than 20 kJ/mol (Kuo et al., 2008) and 

the free energy change is greater for n-butanol than ethanol for each sorbent, respectively.  

Table 4.3  

Predicted Gibb’s Free Energies of Adsorption for Ethanol and n-Butanol with Each of 

the Studied Adsorbents. 

Adsorbent ∆G (kJ/mol) 

Ethanol 

∆G (kJ/mol) 

n-Butanol 

FDU-15-800 -6.2 -9.4 

FDU-16-800 -6.5 -11.9 

CS-68-800 -4.7 -5.0 

CS-81-800 -4.8 -6.2 

L-493 -3.2 -5.7 
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The relative magnitudes of kF and n were also found to be positively correlated with 

alcohol carbon chain length, a finding which is also consistent with prior studies using 

polymeric adsorbents such as L-493 (Nielsen and Prather, 2009; Nielsen et al., 2010), 

whose previously-reported Freundlich isotherm parameters are also listed in Table 4.2. 

Overall the results presented here demonstrate that the extent of n-butanol by MPCs is 

substantially greater than that which can be achieved with ethanol, a finding which 

supports the hypothesis that alcohol biofuels are adsorbed by MPCs according to 

hydrophobic interactions as well as the growing conclusion that alcohol biofuel 

molecules of increasing carbon chain length (so-called second generation biofuels) show 

the greatest potential for adsorptive recovery (Ezeji et al., 2004; Ezeji et al., 2004; 

Nielsen and Prather, 2009; Nielsen et al., 2010).  It can also be seen from the n-butanol 

isotherm results of Figure 4.3 that MPC adsorbents can match the adsorption 

performance of L-493, provided that they are synthesized to possess a comparable 

specific surface area (Table 4.1). Thus the observed similarities between the adsorption 

isotherms (as well as the kF values of Table 4.2) of both CS-68-800 and CS-81-800 and 

L-493 can be attributed to their similar specific surface areas (Table 4.1).  Although the 

presently-synthesized MPC adsorbents provide no substantial benefits with respect to 

their achievable extent of biofuel adsorption (relative to L-493), prior works have 

demonstrated, for example, that MPCs can be synthesized with specific surface areas 

reaching up to 2580 m2/g, (~200% greater than CS-81-800) (Zhuang et al., 2009).  This 

significant potential results from the tunable pore morphology of MPCs which should be 

further exploited for the synthesis of the next generation of hydrophobic biofuel 

adsorbents. 
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Figure 4.3 Experimental and Freundlich model predictions of n-butanol adsorption 

equilibria with FDU-15-800 (square), FDU-16-800 (circle), CS-68-800 (triangle), and 

CS-81-800 (inverted triangle). Freundlich model prediction of n-butanol adsorption 

equilibria with Dowex™ Optipore™ L-493 (solid line). 

A comparison of Freundlich model parameters, also, indicates noteworthy trends 

between individual MPC adsorbents. The Freundlich exponent was found to be close in 

value between each class of MPCs studied (namely between FDU-15-800 and FDU-16-

800, and also between CS-68-800 and CS-81-800). Additionally, the relative magnitudes 

of the Freundlich exponent for both FDU-15-800 and FDU-16-800 (which is an indicator 

of how sensitive the equilibrium loading capacity is to the equilibrium aqueous phase 

concentration) are greater than those found for both CS-68-800 and CS-81-800.  The high 

value of kF for FDU-15-800 and FDU-16-800 results from the high nonlinearity of their 

adsorption isotherms and is manifested as a sharp bend in the isotherm, which indicates 

the presence of a pseudo-maximum equilibrium loading capacity (similar to that of the 

Langmuir adsorption model maximum loading capacity The ‘reduced’ specific surface 

area of both FDU-15-800 and FDU-16-800, as compared to CS-68-800 and CS-81 (Table 
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and, as a consequence, the adsorbents saturate at lower concentrations of alcohol in the 

aqueous phase. To illustrate this effect, for example, increasing the aqueous n-butanol 

concentration from 67 to 270 mM (equivalent to 5 to 20 g/L) increases the specific 

loading capacity of FDU-16-800 by ~35% while the specific loading capacity of CS-68-

800 increases by ~106% over the same range of equilibrated concentrations. This 

indicates that the presence of micropores, which significantly increases the specific 

surface area of MPC adsorbents, improves the equilibrium adsorption by increasing the 

maximal amount of alcohol that can be adsorbed onto the sorbent surface.    

4.3.3 Adsorption kinetics. As n-butanol displayed the greatest extent of 

recovery via hydrophobic adsorption on MPCs, a series of dynamic adsorption 

experiments were subsequently performed to characterize the kinetics of its adsorption.  

The results of the dynamic experiments for each of the synthesized MPCs are compared 

in Figure 4.4, whereas the resultant ‘best-fit’ estimates of the kinetic constants are listed 

in Table 4.4.  

 

Figure 4.4. Experimental and model predictions of n-butanol adsorption dynamics with 

FDU-15-800 (square), FDU-16-800 (circle), CS-68-800 (triangle), and CS-81-800 

(inverted triangle). 
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As can be seen, the dynamic adsorption associated with each carbon powder is well-

described by the proposed, pseudo-first order adsorption model (Equation 2.4). 

Furthermore, as is illustrated in Figure 4.4, the observed specific rates of adsorption are 

comparable for each of the synthesized carbon powders, corresponding to the estimated 

kinetic constants that differ by less than an order of magnitude and are all greater than 0.9 

min-1 (Table 4.4).  These important findings are in stark contrast to the specific n-butanol 

adsorption rates displayed by L-493, a commercially-available, hydrophobic polymer 

adsorbent which, as discussed above, is a promising adsorbent (as it possesses a high 

equilibrium affinity for n-butanol adsorption) that has been the focus of previous studies 

on n-butanol recovery (Nielsen and Prather, 2009; Nielsen et al., 2010).  

Table 4.4  

Pseudo-First Order Kinetic Model ‘Best-Fit’ Parameter Estimates. 

Adsorbent k1 (min-1) 

FDU-15-800 1.8 ± 0.43 

FDU-16-800 0.9 ± 0.12 

CS-68-800 4.5 ± 0.29 

CS-81-800 7.5 ± 0.12 

L-493 0.05 ± 0.02 

Whereas previous characterizations have shown that the equilibrium behavior of L-493 is 

both qualitatively and quantitatively analogous to that of each of the carbon powders 

studied here (i.e., the adsorption isotherm behavior and Freundlich model parameters are 

similar, as compared in Table 4.2), more significant differences are instead observed with 

respect to the adsorption kinetics. For instance, as can be seen in Figure 4.5, all four 

MPCs were found to adsorb n-butanol more rapidly than L-493, with n-butanol adsorbed 

at specific rates approximately 16-times faster by FDU-16-800 (the slowest adsorbing of 
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all MPCs studied) than it can be by L-493. From these pseudo-first order kinetic 

constants it can be predicted, for example, that despite being the slowest adsorbing MPC, 

FDU-16-800 could reach 99% of its equilibrium specific loading after just 6 min whereas 

L-493 would require 116 min (nearly 13-times longer) to reach the same extent of 

equilibration.  

 

Figure 4.5. Experimental and model predictions of n-butanol adsorption dynamics with 

FDU-16-800 (circle) and Dowex™ Optipore™ L-493 (square). 

Whereas each of the MPCs studied demonstrated high specific rates of n-butanol 
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provides an improved mechanistic understanding of the observed behavior. As was 

presented in Table 4.1, the MPCs examined in this study were of two distinct 

mesostructures. For instance, despite close similarities in the synthesis protocol used for 

both FDU-15-800 and FDU-16-800, the two materials differ greatly with regards to their 

pore geometries and mesostructures. More specifically, FDU-15-800 was synthesized 

with a hexagonally organized network of cylindrical mesopores whereas FDU-16-800 

possesses body-centered cubic (BCC) organized spherical mesopores. As the estimated 
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0 15 30 45 60
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
na

l S
at

ur
at

io
n 

(F
S)

Time (min)



  56 

be two-fold different (1.8 versus 0.9 min-1, respectively) it is proposed that the 

incorporation of cylindrical mesopores (in comparison to spherical mesopores) more 

readily facilitates the intraparticle transport of n-butanol, improving rates of adsorption 

and recovery. Meanwhile, whereas each of FDU-16-800, CS-68-800, and CS-81-800 

possess the same BCC spherical mesopore structure, both CS-68-800 and CS-81-800 

were specifically synthesized so as to be far more perforated by the inclusion of 

micropores. Not only did this lead to an approximate doubling of surface area and 

corresponding increase in adsorption equilibria, but this increase in microporosity was 

also found to have an even more profound effect on adsorption kinetics than even did 

differences in pore geometry. This led, for example, CS-68-800 and CS-81-800 to have 

pseudo-first order kinetic constants that were 5.2- to 8.7-times greater (4.5 and 7.5 min-1, 

respectively) than that of FDU-16-800 (0.9 min-1). There are two potential reasons for the 

improved kinetics: 1) the highly microporous structure exemplified by CS-68-800 and 

CS-81-800 might provide a greater number of ‘paths’ for fluids to enter and leave the 

adsorbent matrix, and 2) the inclusion of silica during carbonization decreases contraction 

and produces wider mesopores, which ultimately decreases transport resistance. 

However, as the pore size decreases from CS-68-800 to CS-81-800 and, still, the kinetic 

constants do not increase with pore size, we postulate that the former is responsible for 

the improved kinetics in CS materials. An important consequence of this behavior is that 

the intraparticle surfaces of the powder are more rapidly wetted by the aqueous medium, 

a prerequisite for n-butanol adsorption across the solid-liquid interface. In contrast, L-493 

is a macroporous, poly(styrene-co-divinylbenzene) resin  whose random pore structure 

produces a more tortuous path for intraparticle diffusion (as compared to the highly 

ordered pore structure of the studied mesoporous carbons) of n-butanol before it can 

access the surface ‘sites’ for adsorption within the adsorbent matrix. The increased 
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tortuosity would inversely correlate with a decreased effective diffusion coefficient or 

pseudo-first order kinetic constant (as it was modeled in the present study), a prediction 

that is consistent with the observed findings.   

Taken together, these results suggest that although the geometry of the 

mesopores accounts for a marginal influence on the rate of n-butanol uptake, the 

adsorption kinetics are instead more significantly impacted by the microporous structure.  

Thus, the next generation of carbonaceous biofuel adsorbents should seek to further 

exploit this feature to enable even greater rates of biofuel adsorption.  However, it must 

also be ensured that the mechanical integrity of the materials should not be compromised 

as a result; else their utility in actual biofuel processing applications will be diminished. 

4.3.4 Sorbent regeneration. Throughout this study we have utilized both virgin 

and regenerated MPCs for all of the presented adsorption characterization experiments, 

with no distinguishable differences observed in any case.  The use of regenerated 

adsorbents provides a more accurate representation of an industrial application wherein 

multiple cycles of adsorption/desorption would be performed on the same adsorbents to 

minimize capital costs associated with expensive materials. To further confirm that the 

MPC adsorbents did not suffer from any loss of mechanical integrity or adsorption 

performance as a result of regeneration and reuse, the nitrogen adsorption/desorption 

isotherms of both virgin and regenerated samples of CS-81-800 are compared in Figure 

4.6. As one can, the isotherm for that of regenerated material remains indistinguishable 

from that of fresh material, indicating that there were no changes in the porous structure 

or pore volume.  Therefore, it can be concluded that the MPC adsorbents are stable and 

do not suffer from any loss of performance or integrity resulting from regeneration and 

reuse.  
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Figure 4.6. B.E.T. N2 adsorption (closed symbols) and desorption (open symbols) 

isotherms for CS-81-800 in pristine condition (square) and after multiple separation and 

regeneration cycles (circle). 

Although the adsorbent polymer L-493 was not routinely regenerated and reused 

within this study, prior works have demonstrated its thermal regeneration in support of 

repeated n-butanol adsorption cycles (Nielsen and Prather, 2009). It should be noted, 

however, that although pSDVB melts at ~250oC and has a glass transition temperature of 

~95oC, the reported upper operating temperature limit for L-493 is reported as 110oC (per 

manufacturer instructions).  In contrast, MPC adsorbents remain stable in a non-oxidative 

environment at temperatures well beyond 1400oC (Meng et al., 2006), making them ideal 

for use with thermal cycling in support of biofuel recovery and purification. 

4.4 Conclusion 

With demonstrated high specific loading capacities and rapid adsorption kinetics, 

highly-ordered mesoporous carbons possess great potential as biofuel adsorbents. The 

adsorption kinetics of lower alcohol biofuels upon mesoporous carbons was enhanced 

through incorporation of highly-ordered and uniform pore structure, and was greatly 
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traditional biofuel adsorbents, MPCs possess ultrahigh thermal and chemical stability, 

greatly promoting their facile regeneration and reuse.  No loss of adsorption performance 

was observed as a result of material regeneration throughout the duration of this study, a 

promising feature for future industrial applications. 
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Chapter 5 

CONCLUSION 

5.1 Summary 

 Although hydrophobic adsorption holds considerable promise as a viable ISPR 

approach for the separation and recovery of alcohol biofuels, conventional sorbents do 

not adequately possess the complement of desired biofuel adsorbent attributes such as 

high selectivity and capacity, and elevated stability (chemically, thermally, and 

physically). Thus, new materials must be developed and characterized for biofuel 

adsorption so as to improve biofuel production efficacy and place biofuels competitively 

at the economic forefront alongside petroleum based energy resources. This thesis has 

presented a preliminary characterization of two novel adsorbent materials, namely 

hydrophobic silica aerogels and highly-ordered mesoporous carbons, as separation media 

for the recovery of alcohol biofuels from model aqueous solutions. 

 A hydrophobic silica aerogel (Cabot Nanogel TLD302) was characterized with 

regards to its biofuel adsorption equilibrium and kinetics. Despite having several 

desirable attributes of a biofuel adsorbent (e.g., high surface area and hydrophobic 

surface chemistry), TLD302 was found to display inadequate equilibrium adsorption 

capacities for alcohol biofuels, relative to previously-characterized biofuel adsorbents. 

The observed loading capacities were specifically found to be limited at lower aqueous 

alcohol concentrations as a result of exclusion of aqueous phase from the pores of 

TLD302 and poor interfacial contact between the liquid and solid phases. At increasingly 

high alcohol concentrations, however, ‘pore intrusion’ (i.e., the aqueous more readily 

enters the porous sorbent matrix and completely displaces air from the surface of the 

sorbent) occurred. This process allowed a monolayer of adsorbate (i.e., alcohol biofuel) 
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to form on the sorbent surface which was subsequently followed by rapid multilayer 

adsorption resulting in a unique Type IV adsorption isotherm. 

  Surfactant templated mesoporous carbons were also evaluated as alcohol biofuel 

adsorbents through characterization of their equilibrium and kinetic adsorption behavior.  

Variations in synthetic conditions enabled tuning of specific surface area as well as pore 

morphology (hexagonally packed cylindrical or BCC spherical pores).  It was found that 

the adsorbed alcohol capacity increased with increases in the specific surface area of 

adsorbents, regardless of pore morphology.  Adsorption capacity was found to be 

equivalent to that of commercially-available, hydrophobic polymer adsorbents of 

comparable specific surface areas. Adsorption rates, on the other hand, were greatly 

influenced by pore morphology and structure, leading to enhancements of up to 1-2 

orders of magnitude relative to conventional adsorbents. Mesoporous carbons were 

routinely regenerated thermally throughout the study and demonstrated no impact on 

either equilibrium or kinetic behavior. 

5.2 Recommendations for Future Work 

 Based on the presented experimental findings, the following recommendations 

are suggested for future work on the discovery and characterization of novel biofuel 

adsorbents: 

1. Conduct a more thorough investigation of the ‘pore intrusion’ phenomenon by 

incorporating aerogels of differing surface functionality to find if this 

phenomenon is unique to TLD302 or a common process of highly hydrophobic 

sorbents. Additionally, utilizing an aerogel of lower hydrophobic character may 

allow ‘pore intrusion’ to occur at low enough aqueous alcohol concentrations so 

that ‘pore intrusion’ can occur at biologically-relevant titers yielding a high 

capacity, biofuel adsorbent. 
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2. Investigate the potential pressure (or temperature) dependence of ‘pore intrusion’ 

as increases in pressure may force air out of the sorbent matrix thereby allowing 

‘pore intrusion’ to occur at lower aqueous alcohol concentrations and enhance 

biofuel adsorption. 

3. Synthesize mesoporous carbons of greater surface area than studied here, and 

characterize biofuel adsorption potential as greater surface area generally 

correlates to higher adsorption capacities. 

4. Fully characterize the thermal, physical, and chemical stability of increasingly 

high surface area mesoporous carbons to verify without any doubt that these 

materials a durable for long-term ISPR usage.  

5. Perform a more detailed study of the equilibrium and kinetic behavior of 

mesoporous carbons as a function of regeneration as more regeneration cycles 

would be desired in industrial applications. 

6. Study the efficiency of thermal recovery of biofuels from mesoporous carbons as 

a function of regeneration temperature and time so that operating conditions can 

be optimized for ISPR applications.  

7. Incorporate mesoporous carbons in continuous recovery applications such as 

packed column adsorption as continuous production and separation is the desired 

operation type in industrial applications. 

8. Conduct equilibrium and dynamic adsorption studies of mesoporous carbons in 

actual fermentation broths as it may differ from the reported ‘model’ adsorption 

behavior. 

9. Investigate competitive adsorption of solutes by mesoporous carbons in 

applications such as ABE fermentation as MPCs may provide enhanced 

selectivity of n-butanol over acetone and ethanol, in addition to water. 
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10. Investigate both equilibrium and dynamic adsorption behavior of magnetized 

mesoporous carbons (e.g., cobalt containing MPCs) for biofuels to facilitate 

effective MPC separation from aqueous environment. 

11. Investigate the effect temperature has on equilibrium adsorption of biofuels by 

mesoporous carbons as the equilibrium behavior may be further improved as a 

function of temperature. 
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