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ABSTRACT  
   

 Silicon nanowires were grown epitaxially on Si (100) and (111) surfaces 

using the Vapor-Liquid-Solid (VLS) mechanism under both thermal and plasma 

enhanced growth conditions. Nanowire morphology was investigated as a 

function of temperature, time, disilane partial pressure and substrate preparation. 

Silicon nanowires synthesized in low temperature plasma typically curved 

compared to the linear nanowires grown under simple thermal conditions. The 

nanowires tended bend more with increasing disilane partial gas pressure up to 25 

x10-3 mTorr. The nanowire curvature measured geometrically is correlated with 

the shift of the main silicon peak obtained in Raman spectroscopy. A mechanistic 

hypothesis was proposed to explain the bending during plasma activated growth.  

Additional driving forces related to electrostatic and Van der Waals forces were 

also discussed. Deduced from a systematic variation of a three-step experimental 

protocol, the mechanism for bending was associated with asymmetric deposition 

rate along the outer and inner wall of nanowire. The conditions leading to 

nanowire branching were also examined using a two-step growth process. 

Branching morphologies were examined as a function of plasma powers between 

1.5 W and 3.5 W. Post-annealing thermal and plasma-assisted treatments in 

hydrogen were compared to understand the influences in the absence of an 

external silicon source (otherwise supplied by disilane). Longer and thicker 

nanowires were associated with longer annealing times due to an Ostwald-like 

ripening effect. The roles of surface diffusion, gas diffusion, etching and 

deposition rates were examined.  
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Chapter 1 

Introduction 

 

1.1 Nanotechnology Background 

 The field of nanotechnology represents an exciting and rapidly expanding 

research area that crosses the boundaries between the physical, life and 

engineering sciences.1 Much of the excitement in this area has arisen from the 

recognition that new phenomena and unprecedented integration density are 

possible with nanometer scale structures. Correspondingly, these ideas have 

driven scientists to develop methods for making nanostructures. In general, there 

are two approaches for creating small objects, which can be characterized as top-

down and bottom-up (Figure 1.1).1, 2 

In the top-down approach, small features are patterned onto bulk 

materials by combining lithography, etching and deposition to form functional 

devices as shown in Figure1.2 (a). It has been exceedingly successful in many 

venues with microelectronics being perhaps that the best example today. While 

developments continue to push the resolution limits, these improvements are 

associated with a near exponential increase in cost associated with each new level 

of manufacturing. Economic limitations and other scientific issues have motivated 

efforts worldwide to search for new strategies to meet the demands for nanoscale 

structures today and in the future.3, 4 
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Figure 1.1 General approach of Top-down and Bottom-up in Nanotechnology.1 

 

 The bottom-up approach (Figure 1.2 (b)), involves assembling functional 

electronic structures from chemically synthesized, well-defined nanoscale 

building blocks, much like the way nature uses proteins and other 

macromolecules to construct complex biological systems. This approach 

represents a powerful alternative to conventional top-down methods.1, 5 It has the 

potential to go far beyond the limits of top-down technology by defining key 

nanometer scale metrics through synthesis and subsequent assembly that does not 

involve lithography.  

 To enable this bottom-up approach, a focus on three key areas is required, 

which are at the heart of devices and integration (Figure 1.3). First, the bottom-up 

approach necessitates developing nanoscale building blocks with precisely 
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controlled and tunable chemical composition, structure, size, and morphology, 

since these characteristics determine their corresponding physical properties. 

Second, it is critical to develop and explore the limits of functional devices based 

on these building blocks. Nanoscale structures may behave in ways similar to 

current electronic and optoelectronic devices, although it is also expected that new 

and potentially revolutionary concepts might also emerge due to the increased 

quantum mechanical nature at smaller and smaller dimensions. Third and central 

to the bottom-up concept will be the development of architectures that enable 

high-density integration with predictable function, and the development of 

hierarchical assembly that organizes building blocks into these architectures.1 

 

 

Figure 1.2 (Left) Process of Top-down Nanofabrication. (a) rectangular 

nanowires (or nanoribbons) from high-quality wafers with multiple layers: active 

semiconductor (Si), sacrificial layer (SiO2) and handle wafer (Si). (b), (c) SEM 

images of silicon ribbons with thicknesses of 100 nm and widths of 1 µm 
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fabricated from commercial SOI wafers through the processes in (a). 

PR:photoresist (Right) Process of bottom-up nano-synthesis of single crystalline 

nanowires of semiconductors by the use of metal nanoparticle catalysts. (a) 

Binary metal-semiconductor phase diagram used to select a catalyst for growth of 

semiconductor nanowires. (b) Schematic illustration of the steps of catalytic 

growth of semiconductor nanowires. (c) Growth of semiconductor nanowires on 

substrates, which can withstand high temperatures (higher than the eutectic point 

of alloy of metal and semiconductor), by feeding the system with gaseous 

precursors. This synthesis is referred to as the vapor-liquid-solid (VLS) process. 

(d) Preferential growth of a vertically oriented nanowire array on a single crystal 

substrate through the VLS process. (e) Growth of horizontal nanowires in 

template channels through the VLS process. (f) Growth of nanowires in a solvent 

with high boiling point by delivering liquid precursors to catalyst.5, 6  
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Figure 1.3 Schematic outlining key challenges (open rectangular) and specific 

research areas (ellipses) required to enable the bottom-up approach to functional 

nanosystems.6  

 

 Addressing and overcoming the hurdles in these three major areas of the 

bottom-up approach could revolutionize a wide range of technologies of today. 

Moreover, it is very likely that the bottom-up approach will enable entirely new 

device concepts and functions, thereby creating technologies that have not been 

imagined. For example, it is possible to seamlessly combine chemically distinct, 

nanoscale building blocks, which could not otherwise be integrated in a top-

bottom approach.  

 

1.2. Nanowire Building Blocks 

 Individual molecules and quantum dots,7 which can be classified as zero 

dimension (0D) structures, are attractive building blocks for bottom-up assembly 

of nanoscale electronics. These 0D structures have been intensively pursued over 

the past decade since they represent the smallest building blocks with 

correspondingly high potential for integration. However, the uses of individual 

molecules or quantum dots in integrated systems have been limited due to 

challenges in establishing reliable electrical contact. Thus, it has been difficult to 

elucidate and understand the intrinsic properties of individual devices, and to 

develop and demonstrate realistic schemes for scalable interconnection and 

integration of 0D devices into functional architectures.4 
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1.2.1 Two-dimensional (2D) Superlattice Nanostructures 

 Superlattices are artificial periodic structures composed of alternating 

layers (usually of several-to-tens of nanometers in thickness) of different 

materials grown generally by molecular beam epitaxy (MBE) or molecular 

organic chemical vapor deposition (MOCVD). The electronic, optoelectronic, and 

thermal properties of nanostructures can be tuned for specific applications by 

varying material combinations and layer thicknesses. For instance, Figure 1.3 (a) 

shows a cross-section transmission electron microscopy image of the Ⅲ-

Ⅴlayers.4, 7 

 

1.2.2 One-dimensional (1D) Nanotubes and Nanowires 

 One-dimensional nanostructures have also been the focus of extensive 

investigations worldwide due to their unique physical properties and potential to 

revolutionize broad areas of nanotechnology.7 Firstly, one-dimensional 

nanostructures represent the smallest structure that can efficiently transport 

electrical carriers and, thus, are ideally suited for the critical task of directing 

charges within integrated nanoscale systems. Secondly, 1D nanostructures can 

serve functions such as for nano-scaled electronics.5 In this regard, two classes of 

materials, i.e., carbon nanotubes and semiconductor nanowires (Si or Ge 

nanowires), have shown particular promise (Figure 1.3 (b)). For example, 

germanium nanowires have been used to fabricate field effect transistors, diodes, 

and logic circuits.4, 7  
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Figure 1.4 Nanowire Building Blocks (a) III-V layers by MOCVD (b) GeSi on Si 

wafer by MBE (c) Ge nanowires by VLS.8  

 

1.2.3 Zero-dimensional (0D) Quantum Dots 

 A quantum dot is a semiconductor whose excitations are confined in all 

three spatial dimensions. As a result, they have properties that are between those 

of bulk semiconductors and those of discrete molecules.3,4 They can be thought of 

as tiny boxes with a dimension less than 100 nm space, as is shown in Figure 1.3 

(b) of an atomic force microscopy (AFM) image of SiGe nanodots on Si wafer 

and Figure 1.3 (c) Ge nanoclusters. Quantum dots represent perhaps the ultimate 

component in miniaturizing electronic circuits. The number of free electrons 

contained in these boxes can be varied from one to a few hundreds. Transport 

through a quantum dot with only one electron can be used as a single electron 

device, such as, a transistor for superior sensitivity.4, 7  
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1.3 Silicon Nanowires  

 Semiconductor nanowires typically have nanometer diameters (10-9 

meters) and lengths of up to several micrometers. These 1D components are the 

fundamental building blocks for nanoscale architectures as already discovered, 

however, our current understanding of the mechanisms and materials science 

controlling their fabrication is limited. Recent studies demonstrate that controlling 

size, morphology, and crystallographic orientation are critical in advancing the 

science of nanowire growth. Among all potential materials, silicon nanowires 

have attracted the most attention due to interesting properties that are different 

than for bulk materials.3  

 Silicon plays an important role in the semiconductor industry and current 

technologies, making it possible for integration with electronic devices. Silicon 

nanowires have unique physical and electronic properties along with the potential 

for device applications including biosensors, chemical sensors, transistors, and 

light-emitting devices. Silicon nanowires have been synthesized by a variety of 

methods including laser ablation, thermal evaporation, chemical vapor deposition 

(CVD), and plasma enhanced CVD. The most widely used method is chemical 

vapor deposition (CVD) using the vapor-liquid-solid (VLS) growth mechanism.   

  

1.3.1 Vapor-Liquid-Solid (VLS) Growth Mechanism 

 In the VLS process, liquid gold is commonly employed as a catalyst to 

enhance nanowire growth and to control the nanowire diameter. The main aspect 
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of the growth mechanism is the formation of a liquid metal alloy at the nanowire 

tip. The Au-Si binary phase diagram indicates that liquid alloy droplets will 

equilibrate with pure silicon at temperatures higher than the eutectic temperature 

363 °C and liquid compositions greater than 16.6 % silicon [Figure 1.5].2, 3 

 Silicon atoms from gaseous disilane (Si2H6) or silane (SiH4) precursors 

react at the liquid surface to leave silicon to diffuse through the bead. When the 

eutectic alloy becomes saturated, silicon precipitates at the liquid-solid interface 

producing an equilibrium solid/liquid Si/Au-Si alloy interface. There are two 

active interfaces during nanowire growth, namely, the liquid/solid interface 

between the eutectic and the nanowire and the gas/solid interface. 
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Figure 1.5 Schematic of VLS growth of Si nanowire. (a) Binary phase diagram 

for Au and Si illustrating the thermodynamics of VLS growth; (b) an AuSi liquid 

alloy droplet is first formed by absorbing silicon from the vapor phase. 

Oversaturation of silicon drives the growth of the nanowire at the liquid-solid 

interface.3 

 

(a) 

(b) 
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 Precipitation at the solid-liquid interface results in the axial growth of the 

nanowire. Silicon is supplied from the gas phase by dissociative adsorption at the 

gas-liquid interface. Nanowire thickening in the radial direction occurs more 

slowly, if at all, because gold is rarely present at the nanowire walls to catalyze 

reaction.  

The reaction at either interface can dominate the overall growth process, 

and depends on the detailed growth conditions such as gas pressure, flow rate, 

temperature, type of reactant species and gaseous byproducts. For example, in the 

abovementioned Si nanowire growth process, low temperature growth can reduce 

the rate of direct thermal dissociation of silane; hence, axial nanowire growth is 

increasingly favored. Hydrogen has also been found to mitigate radial growth by 

suppressing either the adsorption of the reactants due to “passive” terminating the 

Si surface2, 9 or by hindering the surface dissociation of silane.9 The use of H2 as 

the carrier gas also passivates the nanowire surface in a manner similar to that 

observed in thin-film growth4 and coincidentally reduces roughening along the 

nanowire. Uniform nanowires with negligible diameter variation can thus be 

achieved through careful control of the growth conditions, including the 

employment of local heaters to reduce uncontrolled decomposition of silane.9 On 

the other hand, tapered nanowires are products from simultaneous growth in both 

the axial and radial directions.  This has been observed in plasma-assisted 

chemical vapor deposition of silicon nanowires at intermediate temperatures in 

the vicinity of 500˚C.10 
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 Thus, the vapor-liquid-solid mechanism basically consists of three steps: 

first, the adsorption and cracking of the gaseous silicon precursor to provide 

atomic silicon for absorption into the droplet; second, the diffusion of the silicon 

through the droplet; and third, the condensation of silicon onto the silicon wire tip 

at the liquid-solid interface. Which of these three steps effectively controls the 

overall growth rate has been the subject of significant discussion and controversy. 

Generally, it is thought that the diffusion step cannot be rate determining, since 

liquid diffusion is simply too fast.10 Concerning the remaining two steps, Bootsma 

and Gassen2, 7, 11 favored step one, whereas Givargizov took the opposite opinion 

where condensation at the liquid silicon interface is rate determining.2, 11 

Regardless as to who is correct, it is clear that under steady state growth 

conditions the incorporation rate has to equal the condensation rate, which 

requires some kind of cooperate interaction between both processes. Thus, neither 

process is thought to be independent nor such discussions are thought to overly 

simplify the problem. A general description, therefore, has to consider both 

processes simultaneously in order for a meaningful model to be generated. 

  

1.3.2 Deposition by Epitaxial Growth mechanisms for Si Nanowire 

 Island growth on a flat silicon wafer surface plays an important part in 

silicon surface growth and it is also the basis for nanowires growth.11 For example, 

in the VLS nanowire growth, metallic nanoparticles, such as gold particles on 

silicon, behave as catalyst droplets in the presence of a silicon containing gas. 

They catalyze gas decomposition, leading to the silicon atoms precipitating at the 
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interface between the gold particle and the semiconductor surface, giving rise to a 

nanowire growth. While seed particles can be obtained by using Au colloids or 

dewetting a thin fold film, the growth of Au islands on he Si (111) 7x7 surface 

offers the unique advantage to control the interface between the Si surface and the 

Au droplet due to the ultra clean environment.  

 Typically, epitaxial growth refers to the method of depositing a 

monocrystalline film on a monocrystalline substrate while maintaining 

crystallographic alignment. An epitaxial film may be grown from gaseous or 

liquid precursors. Because the substrate acts as a seed crystal, the deposited film 

takes on the lattice structure and orientation identical to those of the substrate. If a 

film is deposited on a substrate of the same composition, the process is called 

homoepitaxy, otherwise it is called heteroepitaxy. 

 Based on thermodynamics,2, 4, 7, 11 the mechanism of epitaxial growth has 

been separated into three different growth mode categories by Bauer. The 

description relies on the relative magnitudes of the free energy, Ef , and interface 

energy, γ. For a clean surface in vacuum, the free energy is given as: 

Ef = γi – γs + γo     (1.1) 

Where γs is the substrate-vacuum interface energy, γi is the overlayer-substrate 

interface energy and, γo is the overlayer-vacuum interface energy. As indicated in 

Figure 1.6 (a), the three growth modes are: 

 Frank-van der Merwe (FM) growth, which correlates with a layer-

by-layer growth when Ef < 0 → γo + γi < γs, as shown in Figure 1.6 

(b). Adatoms attach preferentially to surface sites resulting in 
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atomically smooth, fully formed layers continuously cover the 

surface. An experimental example of this growth behavior is the 

deposition of Ag on Pt (111). 

 Volmer-Weber (VW) growth, which is observed when Ef > 0 → γo 

+ γi > γs [Figure 1.6 (c)]. In this case, adatom-adatom interactions 

are stronger than those of an adatom with the surface. This leads to 

the formation of three-dimensional clusters or islands. Growth of 

these clusters, along with coarsening, will cause rough multi-layer 

films to grow on the substrate surface. An example is the growth 

of Pb islands on graphite. 

 Stranski-Krastanov (SK) growth, which is an intermediate process 

characterized by both 1D layer and 3D island growth mechanisms, 

as illustrated in Figure 1.7 (d). Transition from the layer-by-layer 

to island-based growth occurs at critical layer thickness where γo + 

γi > γs. Therefore, the SK mode is accompanied by a 

crystallographic change to the bulk lattice structure of the film at a 

critical thickness. This induces an abrupt increase in free energy at 

the interface between the two crystal structures and changes the 

energy balance in favor of 3D growth. An experimental example 

for this mode is the growth of Ge on Si (100). 
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Figure 1.6 Growth modes (a) Surface energy is of three different interfaces (b) 

Frank-van der Merwe growth (c) Volmer-Weber growth and (d) Stranski-

Krastranov growth4 

 

1.3.3 Surface Diffusion 

 The migration of individual atoms across solid surfaces and their 

aggregation into clustered nuclei are among the most fundamental processes in 

surface science.11 A detailed understanding of these basic processes becomes even 

more important as we attempt to control the growth of semiconductor nanowires, 

specifically the nanowire diameters, which are governed by the catalyst 

nanocluster diameter. The fabrication of these nanostructures by the VLS 

mechanism requires an atomic-level understanding of surface diffusion of the 

catalytic seed atoms and substrate adatoms across the surface.2, 7, 11 

 Fundamental surface processes such as surface diffusion, adsorption, and 

desorption define the kinetics for clustering on surfaces, and these three are 

functions of temperature and deposition rate. Adatoms migrating on an atomically 

clean sample surface have a characteristic surface diffusion coefficient, which is 
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determined by temperature and characteristic of the diffusion, activation energy, 

as described by the equation.4, 7 
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Here, Ed is the diffusion activation energy and v is the characteristic vibrational 

energy of the surface atoms. ao, kB, and T have their regular meanings, that is, 

substrate lattice constant, Boltzmann’s constant, and substrate temperature, 

respectively. Effectively the surface diffusion coefficient increases with 

increasing temperature and decreases when the coordination of the mobile surface 

adatom increases – for example, when the adatom bonds with other atom(s) on 

surface steps or within clusters. 

 The surface diffusion length, 1 Dt  , where D in our case is the 

characteristic surface diffusion coefficient of gold adatoms on the silicon substrate, 

shows that longer diffusion distances occur with longer average diffusion times or 

with an increase in diffusion coefficient. Consider the case where a monolayer of 

gold is evaporated onto a substrate at elevated temperature. The diffusion length 

depends on the time allowed for diffusion, which, in turn, is affected by the 

deposition of successive layers of material. Thus, the rate of deposition becomes 

critical. For high deposition rates, the adatoms deposited have less time to diffuse 

on the surface before encountering other atoms and being locked into position. In 

addition, there is a high frequency of nucleation events. Hence, the short diffusion 

length before collisions causes a high density of clusters on the surface (similar 

effects occur as a result of low deposition temperatures, as this decreases the 
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diffusion coefficient). Alternatively, at low deposition rates or high substrate 

temperatures, the Au atoms have more time to diffuse over a larger area, 

effectively correlating with a lower density of clusters on the surface. 2, 7, 11 

 

1.3.4 Gibbs-Thomson Effect 

 In the 1920s, Gibbs theorized a limit to the smallest sized liquid cluster 

which could nucleate solid particles.2, 11 This led to what is now known as the 

Gibbs-Thomson effect, which is a thermodynamic phenomenon that correlates the 

curvature and surface tension with the chemical potential and vapor pressure of 

fine particles. It is an especially important topic for surface deposited objects such 

as clusters, water, and quantum dots. This effect is traditionally illustrated with a 

liquid cluster of radius r and surface tension γ. Thermodynamic arguments reveal 

that the cluster’s curved surface exerts a pressure of 2γ/r on atoms inside the 

cluster. It is worth noting, in fact, that the pressure induced by this surface tension 

in very small clusters can also have an effect on the position of the phase 

boundaries of an alloy phase diagram of alloys.3 A gas which is in equilibrium 

with the cluster will have a vapor pressure given by11 
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where PBulk is the vapor pressure above a flat liquid surface. The cluster’s 

chemical potential is then given by4, 7, 11 
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where vm is atomic volume. Hence, smaller clusters have greater chemical 

potentials and higher vapor pressures than larger clusters. This gives rise to 

ripening or coarsening phenomena in which larger clusters grow at the expense of 

smaller ones due to the greater thermodynamic stability of atoms in larger 

clusters.2, 4, 7, 11 

 Upon heating, a deposited cluster will form a liquid on a surface in the 

shape of a spherical dome with a contact angle θ that depends on the surface 

tensions of the various interfaces: vapor-liquid (VL), liquid-substrate (LS), and 

substrate-vapor (SV), as illustrated in Figure 1.7. The contact angle θ is given by 

Young’s equation: γSV = γLS + γLV cos θ. When θ = 0, the liquid completely wets 

the surface forming a continuous film, and there are no distinctive droplets. For 0 

< θ < π, the liquid partially wets the surface. The contact angle θ for the cluster 

can also be a function temperature and composition of the cluster. Such variations 

in contact angle lead to variations in nanowire growth, as will be described in 

subsequent sections.2, 4, 11 

 

 

FIGURE 1.7 Schematic of a three-phase equilibrium for wetting of a surface by 

the liquid seed droplet. γVL represents the liquid-vapor surface tension and γLS and 

γVS represent the liquid-solid and vapor-solid interfacial energies, respectively.4, 7 
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 The application of this theory to nanowire axial growth rate, as originally 

explained by Givargizov, proposes that nanowires of larger diameter grow faster 

in length than small wires. The reduction in growth rate for smaller diameter 

nanowires is the result of the increased free energy of the liquid seeds at very 

small diameters, which requires a higher partial pressure for supersaturation of the 

growth species, such as silicon. However, Givargizov’s theory dealt with Group 

IV semiconductor whiskers of diameters of up to three orders of magnitude larger 

than contemporary nanowires.4, 7 

Today’s experiments with smaller diameters tend to show different 

behavior, whereby growth rates have been observed to be slower, faster or 

constant regardless of their diameters. In fact, the growth rate appeared to depend 

on kinetic parameters, rather than strictly thermodynamic driving forces, such as 

specific rate limiting steps at the vapor-liquid or liquid-solid interfaces. Beyond 

this, one major influence of the Gibbs-Thomson effect is that it suppresses the 

melting point and eutectic temperatures for very fine particles.  The 

thermodynamic equilibrium vapor pressure of small particles as a function of their 

size, the melting point of nanoparticles decreases with nanocluster radius, and 

thereby extends the utility of liquid alloy catalysts to lower temperatures.2, 11 

 

1.3.5 Ostwald Ripening 

 The continuous attachment and release of Au atom from clusters at 

elevated temperatures and the net diffusion of adatoms from smaller Au clusters 
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across atomically clean surfaces to larger Au droplets follows a process known as 

Ostwald ripening. It is driven largely by the Gibbs-Thompson effect described 

above. The process leads to a distinct size-distribution of nanoclusters for given 

deposition parameters, i.e., substrate temperature, impinging atom flux during 

deposition, surface cleanliness, etc. Ripening can also occur subsequent to 

deposition during high temperature annealing. Essentially, Ostwald ripening is the 

coarsening of the cluster size distribution with the associated increase in mean 

cluster diameter.4, 11, 12 

 Recently, it has even been shown that for excessively clean surfaces, Au 

atoms from the liquid beads atop nanowires can diffuse down the nanowire 

sidewalls during the growth process, migrate across the substrate surface to 

neighboring larger-diameter nanowires, diffuse up the sidewall of said nanowire, 

and reabsorb into the larger metal-eutectic seeds atop the larger nanowires. This 

can effectively eliminate small-diameter nanowire growth due to the loss of 

catalytic eutectic seed, at the benefit of the larger nanowires. However, it is worth 

noting that the reported experiments, where this coarsening of the Au seeds 

during nanowire growth was demonstrated were carried out at extreme growth 

conditions: high temperatures and extremely low disilane partial pressures, and 

thus at very slow nanowire growth rates within the highly clean surfaces of an 

ultra-high vacuum. For our growth temperatures and pressures as well as those 

typically used by others, this previously observed coarsening during the total 

nanowire growth time would be negligible. Thus, while Au migration certainly 

plays a vital role during the deposition and coalescence of seeds prior to nanowire 
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growth, such migration is not expected to impact the nanowire growth in our 

investigations, appropriately high growth rates and median temperatures were 

used in all our studies to ensure this is the case.12 

 

1.3.6 Growth and Orientation of Silicon Nanowires 

 Now the Si crystal structure and the possible growth orientations for a 

nanowire will be reviewed.2 Si crystallizes in the face-centered cubic (FCC) 

diamond lattice structure. A unit cell of Si is actually two interpenetrating FCC 

lattices. The lattice constant, 'a' for Si is 0.543 nm. Figure 1.8 shows a Si unit cell, 

the diamond structure and the lattice constant. The notation {hkl} represents the 

set of all planes that are equivalent to the plane (hkl). Similarly, <hkl> denotes the 

set of all directions that are equivalent [hkl]. While the angular relations of a set 

of {hkl} planes or <hkl> directions are different relative to each other, they are 

energetically the same. The top and bottom plane of the unit cell define the {001} 

family of planes. The {111} and {110} set of planes run diagonally across the unit 

cell. The set of {100}, {111}, and {110} represent the primary planes.2, 13, 14 
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Figure 1.8: (a) Top view scanning electron micrograph of nanowires grown on a 

silicon (100) substrate. (b) Schematic top view image of <110> oriented 

nanowires on a (100) substrate of the same azimuthal orientation as in (a). (c) 

Schematic top view image of <112> oriented nanowires on a (100) substrate of 

the same azimuthal orientation as in (a). (d) Schematic top view image of <111> 

oriented nanowires on a (100) substrate of the same orientation as in (a).2 

 

 Silicon nanowires can adopt several growth directions, all at different 

angles relative to the growth substrate. It should however be noted that epitaxial, 

as well as, non epitaxial growth has been observed for Si nanowires. For instance, 

nanowires grow epitaxially on Si substrates when the native oxide layer was 

removed. On the other hand, non-epitaxial growth was observed when an 

amorphous silicon oxide was present on the substrate. Early research by Wagner 

and Ellis14 showed that nanowires with diameters greater than l00 nm and were 
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grown via a gold-mediated VLS, tended to grow in the <111> orientation. More 

recently, nanowire growth along the <112>, <110> and, in some rare cases, the 

<100> directions has been reported. Since we grow nanowires epitaxially on Si 

(111) substrates, it is relevant to examine and visualize the possible growth 

orientations relative to the substrate crystallographic orientation[Figure 1.8]. 

Looking perpendicularly at the substrate surface and parallel to the [111] direction, 

there are a total 4 equivalent <111> directions, 15 possible <112> directions and 9 

possible <110> directions. Although 16 the directions are different relative to 

each other geometrically, families of <hkl> directions are indistinguishable in 

reality, and are physically and chemically equivalent.2, 14 

 So, Si nanowires can grow along any of the possible <110>, <111> or 

<112> directions as shown in Figure 1.8. This leads to the question of what 

factors govern the choice of growth direction and what distinguishes the 

nanowires that are grown in different directions. According to other researchers, 13, 

14 the nanowire diameter is growth direction dependent. Large nanowires (d > 40 

nm) prefer to grow along the <111> orientation, and small nanowires (d < 15 nm) 

choose to grow along the <110> orientation. For intermediate diameter ranges, 

<112> is the preferred growth orientation. Arguments were made based on free 

energies of the bounding facets and that of the growth interface. Consequently, 

certain growth directions minimize the energy of the system and hence are the 

preferred growth orientations.14 

 Another related phenomenon is that of kinking. In kinking, a nanowire 

growing in a well defined crystallographic direction abruptly changes its axial 



  24 

growth direction. Earlier research attributed kinking to possible kinetic growth 

instability. More recently, Lugstein12 et al, reported that higher gas pressures force 

the nanowires to kink towards the <112> growth orientation.2, 14 

 

1.4 Plasma-Assisted Approaches in Nanostructure 

1.4.1 Introduction into Plasmas 

 The concept ‘‘plasma’’ was first proposed by Irving Langmuir who 

described it as either a partially or fully ionized gas. Macroscopically, plasmas are 

electrically neutral, while on the molecular level they contain charged particles 

like electrons, cations, and in some cases anions.15 Excited neutral species in the 

form of molecules, atoms, and radicals are also present. Compared to the ordinary 

solid, liquid, and gas phases, the species in plasma (at least part of) are in 

electronically excited states, resulting in a highly reactive environment for 

chemical reactions. Laboratory-scale plasmas for materials processing are usually 

generated by means of electromagnetic fields, most commonly by direct-current 

(DC), radio-frequency or microwave radiation, or electron cyclone resonance 

(ECR). 11, 15 

 The electron density ne and electron temperature Te are important 

parameters to characterize plasmas. Both of these parameters can vary 

significantly, resulting in the broad spectrum of plasmas from neon tubes to 

plasma in fusion reactors. ne describes the density of charged particles in the 

plasma, often referred to as the plasma density. Typical values of ne are in the 

range of 109–1013 cm-3 in low-pressure plasmas and 1016 cm-3 in atmospheric 
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plasmas. The electron density in the positive column of DC glow discharge is 

typically 1011 cm-3. Low-pressure (10-3–1 Torr) capacitively coupled discharge 

typically gives ne value in the range of 109 cm-3. Inductively coupled plasma 

(ICP) sources enable a higher electron density of 1012 cm-3. In high-density ICP 

and ECR plasma sources, an electron density of 1013 cm-3 is reached. The 

electron temperature, Te, is a quantitative reflection of the degree of thermal 

motion of the electrons. For materials-processing plasmas in laboratory scale 

equipment, the electron temperature is typically on the order of 1–10 eV.17 The 

heavy particle-like ions and neutrals have their own effective temperatures, which 

can be very different from Te due to the different mobility. In the cases of much-

lower ion temperatures, Ti, the electron temperatures are generally much greater 

and correspondingly indicate more energetically excitation. The heavy particles 

remain near room temperature. Such plasmas are known as cold plasmas or low-

temperature plasmas. There is no significant heating effect of cold plasmas, while 

the energetically excited species still impart high chemical reactivity. 15, 16 

 Thus, a unique property of cold plasmas is their high chemical reactivity 

under what would otherwise be mild conditions. This is very desirable for 

materials processing, especially for those sensitive to heat, such as organic 

materials, polymers, and biomaterials.5, 11, 12 Low-temperature plasmas have broad 

applications in film deposition, etching, and surface modifications. Plasmas with 

comparable temperature of heavy particles to that of electrons, i.e., Te, Ti, are 

known as thermal plasmas. Except the high chemical reactivity, thermal plasmas 

exhibit very intense heat that is sufficient to melt and even vaporize most 
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materials. They are often used in high-temperature materials-processing 

applications such as melting of metals, ceramics sintering and evaporation, and as 

an ionization sources in chemical analysis such as atomic emission spectroscopy 

and mass spectrometry (MS).17 

 

1.4.2 A Schematic of the Low-Pressure Cold-Plasma State 

 The most commonly encountered plasma in CVD applications is the 

capacitive or “RF diode” plasma. A simplified view of such a reactor might look 

like Figure 1.9. In this figure, ne = zi
.ni is the plasma density; typical values are 

around 108 to 1010/cm3, compared to a neutral density of 3x1015/cm3 at 100 mTorr. 

(The ion and electron densities are equal to maintain charge neutrality in the bulk 

plasma.)17 

 

 

Figure 1.9 Simplified view of a generic catacitively-excited plasma. 
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 The plasma is excited and sustained by applying a voltage typically AC or 

RF, 60 Hz to many MHz – between the two electrodes. The “capacitive” moniker 

arises from the nature of the coupling to the plasma. The plasma forms “sheaths”, 

or regions of very low electron density, next to solid surfaces. The RF voltage 

appears mostly across these sheaths as if they were the dielectric region of a 

capacitor, with the electrode and the plasma forming the two plates. 16 

 The system pressure for CVD applications is usually between about 100 

mTorr and 10 Torr. The electrodes are typically cylindrical, with the separation 

between the two electrodes kept small compared to the electrode diameter. The 

electrode “gap” is an important parameter; it varies from about 0.5 cm to 10 cm, 

generally getting smaller for higher pressure operation. Typical gaps are a few 

hundred times the mean free path, so electrons undergo many collisions but do not 

have time to transfer their energy to the neutral gas. However, practical 

limitations on chamber size generally lead to increasing ratios, and “hotter” 

plasma, at higher pressure. Thus, a gap of 5 cm, which is very easy to build, 

corresponds to about 100 times the mean free path at 100 mTorr. On the other 

hand, to achieve the same relative separation at 10 Torr one would need to 

separate the electrodes by only 0.5 mm or 500 microns, which is a very 

challenging mechanical task if the diameter is comparable to the size of a wafer. 

Typical electron temperatures are around 5 eV. Electron temperature varies 

weakly with other parameters: it is dominated by the requirement that the 

electrons provide enough ions to sustain the plasma.16, 18 
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1.4.3 Classification of Plasma-Stimulated Nano-Fabrication 

 According to the processing method, plasma-assisted nanostructure 

fabrication approaches reported so far can be classified into the following four 

categories [Figure 1.10].18 

i) PECVD (Figure 1a): Like in CVD processes, the reaction precursors 

are fed into the reactor in the form of gases. Plasma is introduced into 

the reaction zone to activate the precursors. The substrate can be 

deposited either in the plasma zone or outside the plasma region, to 

enhance or avoid some plasma effects such as ion bombardment. 

PECVD can operate in a broad range of temperature and pressure 

conditions, allowing for large freedom in preparation and property 

control. The precursors for PECVD have to be volatile, which put 

some limitations to the approach for some material systems. 

ii) Thermal Plasma Processing with Liquid and Solid Precursors (Figure 

1b): In this setup, the precursors can be liquids, solids, or solutions, 

which are injected directly into the high temperature plasma zone. 

Products are obtained after the transformation in the high-temperature 

plasma zone. This method provides large freedom of choice in starting 

materials. Nanostructures with a high degree of crystallinity are often 

obtained due to the strong heat effect. 

iii) Thermal Plasma Evaporation and Condensation (Figure 1c): In this 

case, the starting materials are evaporated by the intense heating of 
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thermal plasma. After leaving the high temperature plasma zone, the 

vapors condense into nanostructures. Reactive gases can also be 

introduced into the plasma for chemical composition tuning. 

iv) Plasma Treatment of Solid Phases (Fig. 1d): Here, the target material 

is prepared by simply exposing the solid precursor to plasmas through 

plasma–solid interaction. This configuration is simple and not 

complicated by the complexity of precursor introduction. In addition, 

the solid-phase conditions such as temperature and external bias can 

be well controlled in this configuration, which is suitable for plasma–

solid interactions. 
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Figure 1.10 Schematic illustration of four plasma-assisted material preparation 

process; a) PECVD b) thermal plasma sintering c) thermal plasma evaporation 

and condensation, and d) plasma treatment of solid phases.18 
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1.5 Statement of Problem 

 A clear understanding of the silicon nanowire growth at low temperature 

is a key factor in providing insight into the kinetic processes involved. By using rf 

plasma excitation during thermal growth a new control parameter is introduced 

during nanowire growth to enhance the nanostructure grown at low temperature. 

Low temperature disilane plasma is expected to possibly develop various silicon 

nanostructures compared to thermal growth condition. Also, a comparison of the 

influence of different disilane pressures and plasma powers on the nanowire 

growth kinetic can provide the kinetics of VLS silicon nanowire growth at low 

temperature. Another potential advantage of rf plasma excitation is that it 

activates the mobility and diffusivity of Au catalysts in order to promote the 

nanowire growth.  

 In the present research work, a low power rf plasma (operating at 13.56 

MHz) is utilized for low temperature growth of silicon nanowires. A qualitative 

and comprehensive comparison of the growth characteristics including nucleation, 

growth rates, orientations, morphologies between conventional thermal and 

plasma stimulated growth is carried out for better fundamental understanding of 

the structure and growth of nanowire. In addition, various nanostructures are 

studied based on their growth mechanism. 
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Chapter 2 

Experimental Techniques 

 

 This chapter describes the deposition reactors and experimental 

procedures involved in the growth of Si nanowires. An ultra-high vacuum thermal 

evaporation system was used for depositing Au films onto clean Si substrates.  

The gold was transformed to nanodots via thermal annealing, which caused the 

film to morphologically destabilize due to reasons of surface thermodynamics.  

Subsequent nanowire growth was done in a quartz-lamp heated, low pressure 

chemical vapor deposition system to which an rf plasma generator was connected. 

Ex-situ characterization of the samples included scanning electron microscopy 

(SEM) for imaging the nanowires, transmission electron microscopy (TEM) for 

investigating the crystallinity and directionality of the grown nanowires, and 

Raman spectroscopy for analyzing the intrinsic strain of the curved silicon 

nanowires. 
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Table 2.1 Procedure of Thermally Grown and Plasma-enhanced Si Nanowires.  

 

2.1 Wafer Preparation 

 Before describing the procedures for silicon nanowire growth, wafer 

preparation is described first. In most cases, low doped, <111> oriented substrates 

(about 1 cm on an edge) were cut from a 100 mm diameter silicon wafers. Prior to 

growth, the residual contamination of these wafers was reduced by a two-step wet 

chemical cleaning process. First, the necessary equipment was cleaned. For this 

purpose, a Teflon basket for the sample holder was placed inside a quartz bowl 

and carefully rinsed with deionized water. The quality of the epitaxial structure 

grown depended critically on the quality and cleanliness of the substrate. Silicon 
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(100) (or (111)) arsenide-doped n-type wafers (resistivity ~ 10-2 ohm-cm) were 

degreased by rinsing in acetone for 10 min followed by a methanol rinse for 10 

min. The wafers were then etched in a piranha solution (H2SO4 : H2O2 = 3:1) to 

remove organic matter from the surface and rendering a super hydrophilic native 

oxide surface. The final cleaning step involved removing the native oxide surface 

by etching the wafers in 10:1 buffered 48% HF solution for 10 min. followed by 

drying under flowing nitrogen gas. This left a clean super-hydrophobic hydrogen-

terminated surface. The substrates were immediately loaded into a high vacuum 

thermal evaporation chamber for Au film deposition. 

 

2.2 High Vacuum Thermal Evaporation System 

 The vacuum thermal evaporation deposition technique consists of heating 

a source material to evaporate it into the gas phase. The vapor condenses to form 

a thin film on the cold substrate surface, as well as, on the vacuum chamber walls. 

Usually low pressures are used, about 10-6 or 10-5 Torr, to avoid vapor borne 

contamination. At these low pressures, the mean free path of vapor atoms is on 

the same order as the dimensions of the vacuum chamber (5x102 ~ 105 cm).  

Effectively, these particles travel in straight lines from the evaporation source 

towards the substrate. This resulted in a ‘shadowing’ phenomenon with 3D 

objects, especially in those regions not directly in line of sight of the evaporation 

source. With most thermal evaporation techniques, the average energy of vapor 

atoms reaching a substrate surface is generally quite low (on the order of a kT, i.e., 
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tenths of an eV). The effect on the surface morphology of the films is often a 

porous and poorly adherent material.19 

 Substrate heating ameliorates the adhesion problem and produces gold 

surface structure appropriate for nanowire growth. The equipment available in the 

laboratory uses either resistance heating (Joule effect) or bombardment with a 

high energy electron beam, usually several keV, generated by an electron beam 

gun (electron beam heating). A schematic of the evaporator used is shown in 

Figure 2.1. Typically it consists of an evaporation source of the desired material. 

Substrates are located away at an appropriate distance facing the evaporation 

source. The substrate holder can be heated and/or electrically biased to a desired 

potential using a dc/rf power supply. The evaporated atoms undergo essentially 

collisionless line-of-sight transport to the substrate surface.19  

A quartz crystal monitor located in the molecular beam path is used to 

precisely measure the thickness of the evaporated gold films.  
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Figure 2.1 Schematic Diagram of High Vacuum Thermal Evaporator System19 

  

2.3 Chemical Vapor Deposition of Nanowires  

 Silicon nanowires were grown by the VLS, gold actuated process using a 

quartz lamp heated, low pressure chemical vapor deposition (LPCVD) reactor as 

illustrated in Figure 2.5. A base pressure of 5 mTorr was used. The entire 

chamber was enclosed in a stainless steel cabinet and that was divided into three 

parts, namely, the pumping system, the gas cabinet and a quart tube reaction 

chamber. 

  The system was vacuum pumped by a roots blower backed by a 

mechanical pump as shown in Figure 2.2. This combination provided high 

capacity and low cost pumping. Roots pumps are single stage mechanical pumps 
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and capable of high gas throughputs. They contain two counter-rotating blades 

mounted on parallel shafts which rotate synchronously in opposite directions at 

speeds of 3000-3500 rpm. No oil is used to seal the gaps and they are thus 

referred as dry pumps. They substantially reduce oil contamination normally 

associated with rotatory pumps. The exhaust gas then passes through a water 

scrubber to remove gas borne particles and water soluble/reactive molecules. 

 The gas reactant delivery system consisted of gas cylinders and mass flow 

controllers (MFCs) [Figure 2.3 and Figure 2.4]. The operational principle of 

MFCs relies on the ability of a flowing gas to transfer heat. The mass flow meter 

consists of a large main gas flow tube in parallel with a small sensor.  
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Figure 2.2 Vacuum Pumping System 
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Figure 2.3 Gas Flow Control and Delivery System 

 

Figure 2.4 Schematic of Gas Flow System 
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 A heating coil is wrapped around the sensor tube midway along its length, 

and temperature sensors (resistance thermometers) are located both upstream and 

downstream of the heated segment. When gas is not flowing, the temperatures at 

both sensors are equal. Flowing gas causes the temperature distribution in the 

sensor tube to change, as a result of the thermal transfer between a heated wall 

and the gas stream. The downstream temperature becomes greater than the 

upstream temperature since the flowing gas conducts heat away from the heated 

point. Each of the two resistance thermometers is connected to one arm of an 

unbalanced Wheatstone bridge, and the temperature differential is converted into 

a voltage signal. Calibration factors are used so that the voltage output derived 

from the sensor tube can express the gas flow in units of standard cubic 

centimeter per minute (sccm).  

The CVD system has four thermal mass flow controllers (Unit 1660) 

calibrated to nitrogen with flow capacities of 200, 500 or 5000 sccm. Hydrogen 

gas was typically flowed in the range of 250 to 3000 sccm. Silane (diluted in 

hydrogen gas) was flowed in the range of 20 to 40 sccm. 

 All the gas lines were isolated to prevent premature mixing of reactants 

until they reached the reaction chamber. The pressure inside the reactor is 

measured using two Baratron capacitance manometers with ranges of 0-10 and 0-

1000 Torr. They detect gas pressures independent of the gas species and provide 

absolute pressure measurement. They work by measuring changes in pressure that 

produce a displacement of a flexible diaphragm relative to that of a fixed plate. 
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The capacitance between the diaphragm and the fixed plate is measured and 

correlated with the diaphragm displacement and, thus, converted to pressure. 

 Sample heating was provided by 12 quartz lamps concentrically placed 

around the quartz reaction tube. The lamps were encompassed in a water-cooled 

gold-coated stainless steel shield to transmit the heat radially towards the reaction 

tube. Figure 2.5 is a schematic of the sample holder system, illustrating the 

location of the plasma glow. The Si substrates were supported by a SiC-coated 

graphite susceptor during growth. The maximum allowed sample size was 3.5 × 

3.5 cm2. The sample temperature was measured by a pre-calibrated alumel-

chromel (type K) thermocouple located on the back of the susceptor. For Si 

nanowire growth under plasma conditions, a 13.56 MHz RF power supply was 

employed, where the reaction chamber was one component of a tunable matching 

network. A stainless steel tube, attached to the backside of the sample holder, 

acted as an antenna for delivering the RF power. 

 



  42 

 

Figure 2.5 Schematic Diagram of Plasma-Enhanced Low-Pressure CVD 

 

2.4 Silicon Nanowire Synthesis Procedures 

 As we discussed in previous sections, Si nanowire synthesis is done 

sequentially in the following steps:  

1. Substrate cleaning to provide a clean oxide free surface; 

2. Gold catalyst is applied by evaporation and annealed to form 

nanodot seeds; and 

3. Growth of Si nanowires in LPCVD reactor. 

The following steps are performed for growing Si nanowires on Au deposited Si 

(100) or (111) substrates:  

1. The substrate is first dipped in 2 % HF diluted in de-ionized (DI) water for 
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10 sec to remove any surface oxides followed by 2 sec in DI water and 

blow dried with nitrogen; 

2. The substrate is then immediately loaded into the CVD chamber which is 

under positive argon flow and then evacuated to base pressure of 5 mTorr; 

3. Semiconductor research grade hydrogen is flowed at a flow rate of 3000 

sccm for outgassing and substrate temperature is increased in steps of 

100ºC per 10 minutes to 300ºC; 

4. The substrate is then annealed at 520ºC for 5 minutes to promote the 

formation of a AuSi eutectic prior to the start of nanowire growth. 

5. For growth using disilane as a source gas, a gas atmosphere of 10% Si2H6 

diluted in H2 gas was admitted at a flow rate of 200 sccm with the total 

pressure held at 0.154 Torr (or 0.256 Torr). Nanowires were grown at 

temperatures between 410 to 470ºC and in some cases the partial pressure 

of Si2H6 was adjusted to within the range of 6 x 10-3 mTorr to 25 x 10-3 

mTorr. 

6. For Si nanowire growth under plasma conditions an rf plasma (13.56 

MHz) was used. The plasma power was varied from 1.5 to 3.5 W and the 

growth times were varied between 10 seconds to 5.5 minutes. Figure 2.6 

shows the plasma glow when the disilane plasma was injected into the 

reactor.  

7. For hydrogen post-annealing under plasma conditions, a plasma power of 

2.3 W was typically used. The hydrogen total pressure was 0.154 mTorr.  
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Figure 2.6 Plasma Glow near the Susceptor and RF Antenna in LP-CVD  

 

The range of working parameters for nanowire growth used in this study is given 

in Table 2.2.  

 

 

Table 2.2 Range of Working Growth Parameters for Si Nanowire Growth in Low 

Temperature CVD System 
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2.5 Characterization Techniques 

2.5.1 Electron Microscopy 

 Electron microscopy was routinely used to analyze the morphologies of 

the nanowires grown.  The technique uses electrons to illuminate and image a 

specimen at great magnifications. Electron microscopes have much greater 

resolving power and greater magnifications than light microscopes, which is due 

to the small wavelength of the high energy electrons, its de Broglie wavelength, 

being much smaller than the visible spectrum. Two types of electron microscopes 

were routinely used in this work, namely, a Scanning Electron Microscope (SEM) 

and a Transmission Electron Microscope (TEM).17 

 

 

Figure 2.7 Analytical Resolutions versus Detection Limit20  
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Figure 2.8 Typical Analysis Depths for Techniques20 

 

2.5.1.1 Electron-Atom Interaction 

 Electron-atom interaction is what makes electron microscopy possible. 

Energetic electrons strike the sample and cause various collision reactions to take 

place as shown in Figure 2.9. At the top the diagram, various collision processes 

are shown corresponding to backscattered processes such as secondary electrons. 

Through the bottom various emissions are shown corresponding to transmitted 

processes. The sampling volumes for the different electron-atom interactions are 

illustrated in Figure 2.9b.21 
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Figure 2.9 (a) Effects produced by electron bombardment of a material and their 

use in imaging; (b) Interaction volumes for various electron-atom interactions21 

 

There are several specimen interactions pertinent to the sample 

characterization used in this study.17, 21 

• Secondary electrons: When an incident electron passes near an atom in the 

specimen, it will impart some of its energy to a lower energy electron of 

the specimen, causing its ejection with a very small kinetic energy (5 eV). 

Production of secondary electrons is very topographically sensitive in 

nature. Due to their low energy, only secondary electrons very near the 

surface (<50 nm) can escape the sample and be collected for imaging.  

• Backscattered electrons: When an incident electron collides with an atom 

in the specimen, and then is backscattered with efficiencies dependent on 

the atomic number of the scattering atoms. The production of these 

electrons varies directly with the specimen’s average atomic number and 
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appears brighter for heavier atoms. 

• X-rays: Caused by the de-energization of the specimen atom after a 

secondary electron is produced. X-rays emitted from the atom will have a 

characteristic energy which is unique to the element from which it 

originates. 

 

 

Figure 2.10 Schematic Bulk Specimen Interactions21 

 

2.5.2 Scanning Electron Microscopy (SEM) 

 The scanning electron microscope (SEM) is a type of electron microscope 

capable of producing high resolution images of a sample surface. Due to the 

manner in which the image is created, SEM images have a characteristic three-

dimensional appearance, because of a large depth of field. They are useful for 

judging the surface structure of the sample. SEM produces images by probing the 
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sample with an electron beam with an energy ranging from a few hundred eV to 

40 keV. The electron beam is generated by an electron gun of three main types: 

Tungsten hairpin, LaB6 and Field Emission Gun (FEG). The latter produces an 

electron beam with a significant brightness and small beam size. A filament 

(electron gun) used in scanning electron microscope generates a beam of electrons 

in a vacuum created inside the chamber where the samples are kept for analysis. 

That beam is collimated using electromagnetic condenser lenses, focused by an 

objective lens, and scanned across the surface of the sample by electromagnetic 

detection coils. The primary imaging method collects the secondary electrons that 

are released by the sample. The secondary electrons are detected by a scintillation 

detector that produces flashes of light from the impinging electrons. These light 

flashes are then amplified by a photomultiplier tube and counted. By correlating 

the sample scan position with the resultant signal, a black and white image is 

constructed similar to what would be seen through an optical microscope. The 

surface topography looks natural due to contrasting illumination and shadowing.  

The general SEM instrument itself is very versatile, having many other 

imaging modes available to it. For instance, specimen current imaging uses the 

variation in electrical current to produce an image that is induced in the specimen 

by the illuminating electron beam. It can often be used to show subsurface defects. 

Another example is backscattered imaging, which uses high-energy electrons that 

emerge nearly 180 degrees from the incident beam. The backscatter electron yield 

is a function of the average atomic number of each point on the sample, and thus 

can give compositional information. Scanning electron microscopes are often 
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coupled with X-ray analyzers, e.g., energy dispersive X-ray spectrometer (EDS or 

EDX). When energetic electrons impact a sample, X-rays are generated that are 

characteristic of the elements present in the sample. These X-rays are collected by 

a detector, from which an image is constructed. Many other imaging modes are 

available that provide specialized information. A full detail of the SEM can be 

found elsewhere18. The tool model used is a Hitachi 4340 field emission SEM. 

  

2.5.3 Transmission Electron Microscopy (TEM) 

 Transmission electron microscopy (TEM) is an imaging technique 

whereby a beam of electrons is focused onto a specimen causing an enlarged 

version to appear on a fluorescent screen or layer of photographic film, or to be 

detected by a CCD camera. The beam has enough energy for the electrons to 

transmit through the entire sample. This beam is greatly magnified by a series of 

electromagnetic lenses and observed in two ways. One is by electron diffraction 

and the other by direct electron imaging. Electron diffraction patterns are used to 

determine the crystallographic structure of the material. On the other hand, the 

microstructure, e.g. the grain size, and lattice defects are studied by use of the 

image mode. With scanning transmission electron microscopy (STEM), the 

electron beam is raster-scanned across the material.  

 Two working modes are used, namely, scanning TEM and diffraction 

modes. In the former, the electron beam is scanned over a defined area of the 

sample. At each point, the generated signal is simultaneously recorded by selected 

detectors, and an image is built. 
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In addition to various imaging modes, electron bombardment also 

produces a variety of electron and X-ray signals that may be used for 

compositional analysis. A 200 KeV TEM [JOEL 2010F] instrument was used in 

our project. A photograph of the facility is given below. A Phillips 2000 High 

Resolution Transmission Electron Microscope (HRTEM) of 300 KeV is also used 

for lattice imaging of the Si nanostructures.17, 20 

 

2.5.4 Raman Spectroscopy 

2.5.4.1 Raman Scattering 

 The basic features of Raman scattering from vibrational excitations in 

nano-structures are similar to those of the bulk and independent of the 

dimensionality of the system. This concerns the experimental techniques, the kind 

of selection rules, resonance phenomena and other properties. For this reason, 

discussion will be confined in this section mainly to a short summary of the 

technique’s general properties.  More detailed descriptions can be in several 

reviews dealing with bulk systems.17, 22 We will point out adaptations applied for 

analyzing lower dimensional systems.  

 The main difference between Raman scattering from bulk samples and 

lower dimensional small-scale systems is that the latter have electronic states and 

vibration properties different from the bulk. While these differences do not cause 

any principal limitations, the small numbers of atoms present in the lower 

dimensional systems turn out to be the main experimental obstacle. As a result, 

the scattering intensities are low and the experiment needs to be carefully 
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designed. Besides standard optical measures such as high aperture, optimized 

collecting optics for the scattered light between the sample preparation chamber 

and the monochromator, it turns out that the main advantage comes from the 

exploitation of cross sectional resonance enhancements (Resonance Raman 

Scattering). For this reason, previous knowledge about the electronic band 

structure is extremely helpful and quite often the choice of photon energies is the 

decisive parameter for a successful experiment. Vice versa, the experiment, which 

first of all is supposed to determine vibrational properties, also allows information 

to be obtained about the electronic states by using different laser lines for 

excitation. 

 

2.5.4.2 Experimental configurations of Raman Instruments 

 Different configurations allow for measurements on different spatial 

resolutions, that is, macro-, micro- and nano-Raman spectroscopy. Common to all 

resolution scales is the laser illumination and the spectrometer. By directing the 

laser light into different, parallel existing optical arrangements, the different 

spatial resolutions can be selected. The illumination source common for all set-

ups is a yttrium aluminum garnet (YAG) laser with a very low beam divergence 

(0.5 mrad) emitting. It is further enhanced by expanding the beam and by 

applying spatial filtering. 23 

 The spectrometer common to all three resolution configurations is a triple 

monochromator that can be operated in a single line scanning mode (added 

dispersion) and in a multichannel mode as a spectrograph. The scanning mode 
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provides higher contrast and resolution. In the multichannel mode, the first two 

monochromators operate in a subtractive mode, selecting the desired spectral 

region, which is subsequently analyzed by the spectrograph equipped with low 

noise, liquid-nitrogen cooled CCD (charge coupled detector).  

 The macro-Raman configuration is the standard Raman set-up used when 

experiments need long working distances. It allows only for small numerical 

apertures (NA = 0.1-0.2) as is often the case with in-situ measurements in 

ultrahigh vacuum chambers, cryostats or gas cells. The resolution is thus low 

around 10 − 100 μm. A micro-Raman configuration is based on a confocal 

microscope design that uses an objective lens with a very large numerical aperture 

(NA = 0.95) and a pinhole in the intermediate focal plane. The spatial resolution 

of this microscope is below 1 μm. In nano-Raman, where the optical near field is 

exploited, sampling resolutions below 100 nm are achieved. Independent of the 

desired resolution, it turns out to be extremely important in all measurements on 

nanostructures, to have nano-positioning capabilities (nanometric stages) for the 

sample, in order to be able to increase the optical signal.17, 23 
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Figure 2.11 Schematic of Custom-built Raman System.23 

 

Figure 2.11 shows schematically a custom-built Raman instrument used in this 

study. The characterization is performed by five operation processes as described 

following;  

(1) The band pass filter sends the incident polarized light at 90o towards the 

microscope and removes the wavelength of the incident light from the 

light going straight through the cube. 

(2) The laser cut-off filter removes all energies higher than 532 nm while 

allowing detection and measurement as low as 100 cm-1 

(3) Alignment of the solid state YAG laser with 532 nm wavelength and 100 

mW maximum output power from coherent.  

(4) Three grating, computerized turret provides large spectral range and 

dispersion 

(5) Ultra long working distance Mitutoyo objective with effortless manual 



  55 

sample height adjustment providing <5 μm resolution. (typically ~1 μm) 

 

2.5.4.3 Raman Study of Silicon Nanowires 

 Raman spectroscopy is a nondestructive technique used to study the 

molecular/crystal structures of solids and bonding via their vibrational properties. 

For solids, examination of line shapes of Raman spectra give useful information 

of crystallinity, amorphicity, and dimensions of nanoscale silicon. Raman 

scattering of crystalline silicon in various forms, such as bulk, nanoparticles, and 

nanowires, has been investigated extensively.22, 24 

 Raman spectroscopy of amorphous and nanocrystalline R-Si:H films was 

also investigated. It was found that the second-order acoustic bands 2LA 

(longitudinal acoustic) and 2TA (transverse acoustic) do not seem to be 

influenced by confinement effects and are similar to those in the bulk. The 

second-order optic bands are broadened and shifted in comparison to those in the 

bulk. It has been known that, in addition to the first-order Raman scattering, 

higher order Raman scattering may also give important information of vibrational 

properties of nanocrystalline silicon and, therefore, attracted much attention from 

scientists in the past few years.24-26 

 Restricted to the Raman selections rule25, only the transverse optical (TO) 

phonon mode is Raman active during the first order scattering process for silicon 

nanowires. The investigation of the temperature dependence of high-order Raman 

spectra, by considering the participation of other phonons in the scattering process, 

will help us to acquire information of vibrational properties and phonon related 
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interaction of silicon nanowires which cannot be obtained merely from the first-

order Raman spectra.27-29 Moreover, silicon is a semiconductor that has an 

indirect band gap with low light emission efficiency. So far, porous silicon and 

silicon nanocrystallities were found to have efficient photoluminescence covering 

almost the whole range from infrared to ultraviolet region. During the electron 

transition process for the materials with an indirect band gap, the participation of 

single phonon or multiphonon is inevitable. The study of electron-phonon and 

photon-phonon processes in the temperature-dependent Raman spectra is 

therefore useful for further investigation of the light emission of silicon 

nanowires.25 
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Chapter 3 

Enhanced Nanowire Growth at Low Temperatures 

 

3.1 Motivation of Research on Low Temperature Growth of Silicon Nanowires  

 In most processes that fabricate silicon nanowires, the growth 

temperatures have been greater than 900-1000˚C. For chemical vapor deposition 

(CVD), the growth temperatures could be lower than 900-1000˚C, but the 

crystalline quality of the silicon nanowires is often poor. Also, the aggregation of 

gold at elevated temperatures is a major problem when trying to control the 

diameter of Si nanowires. At one time, it was believed that the good crystalline 

silicon nanowires could not be achieved.30, 31 

 We have been performing research on the low-temperature decomposition 

of disilane to grow Si nanowires. The synthesis from disilane has been reported at 

temperatures above 500˚C,32 however, these studies yielded diameters that were 

generally large and uncontrolled due to the agglomeration of the Au catalyst. To 

reduce wire diameters and increase their uniformity, more controllable lower 

temperature growth processes needed to be developed.33-37 

 We have conducted a study of the growth conditions aimed at optimizing 

and enhancing the Si structures produced at low temperatures. Our initial study 

began with finding an appropriate low temperature to characterize the 

nanostructures grown by both solely thermal and combined thermal and disilane 

plasma activation. For the purposes of this dissertation, a reference to disilane 

plasma activation implies that the plasma is imposed on top of the same 
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deposition conditions as used for thermal activation. This was then followed by 

identifying and standardizing the preparation of the silicon nanowires prior to the 

deposition anneals. This included not only working out the cleaning and 

depositing films of the gold catalyst, but in identifying a consistent preannealling 

procedure for converting the gold film into distinctive arrays of gold nanodots, or 

seeds, under which the nanowires would grow.38  That preparatory work is 

reported in this chapter. 

 

3.2 Nanowire Nucleation at Low Temperature 

 From the Au–Si phase diagram (Figure 1.5), it is apparent that the growth 

temperature must exceed the eutectic temperature of 365˚C for the VLS growth. 

We were interested in examining the deposition behavior both above and below 

this temperature so as to elucidate reaction behavior and to target an appropriate 

temperature for future studies.33 Thus, we studied nanowire growth between 340 

and 410˚C. Syntheses by thermal CVD were performed on Si (111) oriented 

substrates. The plasma power was set at a constant 2.3 watts. The Au nanodots 

were formed by thermally depositing 2 nm Au films, followed by preannealing at 

520˚C for 5 minutes. Disilane flow was set at 6.825 sccm and the partial pressure 

of disilane was 14.9 mTorr. The deposition time was 5 minutes.  

 In both cases, early stages of pregrowth (before nanowire elongation) 

nucleation of crystalline Si in the form of nanobuds were progressively apparent. 

Figure 3.1 shows the morphologies of deposited nanowires by both thermal (a, c, 

e) and plasma (b. d. f) deposition at 340˚C (a, b), 380˚C (c, d) and 410˚C (e, f), 
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respectively. At 340˚C, some Si nanowires barely nucleated and failed to grow 

from the 2 nm Au seeds under thermal only conditions.33, 35 However, plasma 

stimulation revealed some formation and growth of wires with small diameters 

(149 nm) and short lengths (0.48 µm). This is because of the likely present of 

solid alloy, rather than liquid allow, which allowed only slow decomposition rates 

of disilane gas and the diffusion rate of Si (across the vapor/solid (or liquid) 

interface of the alloy catalyst) that were insufficient to support nanowire growth. 

 

 

Figure 3.1 FE-SEM images of synthesized Si nanowires at various low growth 

temperatures: (a, b) 340˚C, (c, d) 380˚C (e, f) 410˚C by thermal (top) and plasma 

(bottom) growth, respectively. All growth processes are after preannealing at 

520˚C for 5 minutes. 

 



  60 

 At a higher temperature 380˚C, nanowires started to grow as shown in 

Figure 3.1 (c, d).33, 35 For thermally grown nanowires (Figure 3.1 c), the 

nanowires were generally short (0.243 µm), thin (<50 nm) and sparsely dispersed. 

On the other hand, worm-like shapes were observed for plasma grown wires as 

seen in Figure 3.1 d. The dimensions were 1.07 µm in length and 408 nm in 

diameter. For thermally grown nanowires at 410˚C (Figure 3.1.e), axial growth 

(elongation) took place favorably yielding dense and straight nanowires of high 

aspect ratios and with uniform diameters (32 nm) along their lengths (1.57 µm). 

Under plasma enhanced conditions at 410˚C, the nanowires grew longer (1.92 

µm) and thicker (421 nm) compared to nanowires grown thermally. It was 

observed that the catalyst gradually disappeared during growth, resulting in 

strongly tapered shapes.31, 35, 39 The nanowires were much broader at their bases 

than for thermally grown nanowires indicating that lateral, or radial, growth was 

substantial. 26 

 Figure 3.2 describes the measured diameter and length of nanowires 

grown by both thermal CVD and disilane plasma CVD. Thermally grown Si 

nanowires obtained by using Au and disilane were usually only very slightly 

tapered. This indicated that radial growth was very slow compared to axial growth. 

Compared to the thermal growth condition, greater increases of both diameter and 

length were seen in nanowires grown in a disilane plasma. In other words, the 

increased nanowire growth rate due to the plasma was markedly greater than for 

thermally grown nanowires,40 that is, 10 times faster for axial growth and 1.2 

times faster for radial growth.  



  61 

 For pure thermal activation, disilane physically absorbs onto the eutectic 

Au-Si surface and then decomposed through subsequent hydrogen dissociation. 

However, faster and more efficient growth rate under plasma conditions could be 

explained in terms of the effect of the plasma on forming disilane radicals in the 

gas phase. These radicals increased the net conversion of gaseous disilane to Si 

atoms on the liquid Au-Si catalyst surface. Also, these radicals strongly adsorb 

onto the surface, thus, promoting faster incorporation of Si into the droplet and 

accelerating nucleation times and growth at the silicon nanowire tip.10  



  62 

 

Figure 3.2 Average diameter and length of silicon nanowires grown after 5 

minutes as a function of the growth temperature.  
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3.3 Effect of Preannealing Treatment on Silicon Nanowire Growth 

 The effect of the morphologies of the Au thin films on the resultant silicon 

nanowire morphologies and dimensions were also studied as a function of the 

conditions for annealing the gold films and their subsequent conversion to a 

nanodot array.13  When a 2 nm-thick Au film was deposited onto a Si (111) wafer 

and heated to 520˚C for 5 min, the Au layer partially broke up by “de-wetting”, 

and forming Au-Si nano droplets on an otherwise smooth, but thinner, Au nano 

layer. In fact, the Au-Si phase diagram has the eutectic point at 363˚C (18.6 at. % 

of Au), and upon solidification of Au-Si droplets under the eutectic temperature, 

phase separation occurred between Au and Si.4, 10, 41  

 The droplets coarsened by a ripening process via surface diffusion to 

create larger hemispherical clusters.41 The distribution of Au nanodots is shown in 

Figure 3.3 (a1). The characteristics of their sizes, shape and distribution are also 

shown to be very un-uniform. The sizes of Au nanodots vary between 0.1 µm up 

to 1.1 µm.  Each nanodot was typically separated from one another by 3.5 µm to 

5.6 µm in distance. Figure 3.3 (b1) and (c1) shows FE-SEM plan-view and cross-

sectional view images of thermally grown Si nanowires after preannealing 

treatment at 520˚C for 5 minutes. The images confirm that thermally grown Si 

nanowires are much thinner and shorter compared to the plasma grown nanowires. 

However, under plasma growth conditions, the irregular and un-uniformed 

distribution of Au nanodots results in a random distribution of Si nanowires as 

shown in Figure 3.3 (d1) and (e1). Because the Si growth rate is faster under 

plasma conditions, Si nanowires are randomly grown.30, 42 However, thermally 
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grown Si nanowires have much slower growth rates compared to the plasma 

condition. Thus, thin and short Si nanowire can be grown uniformly along the 

entire substrate as Au diffuses to the surface gradually.40 

 To solve the random distribution under plasma growth condition, we 

controlled the preannealing condition as follows. Gold thin films were annealed at 

a higher temperature, 590˚C and for a longer time, 9 minutes. This higher 

preannealing temperature and longer time brought about a more distinct 

coalescence of Au nanodots, presumably without an intermediate residual surface 

layer of gold on the silicon substrate. In fact, the higher preannealing temperature 

and longer time allowed more diffusion of Au nanodots to take place, leading to 

larger diameter clusters.38 Thus, these modest changes compared to the conditions 

at 520˚C and for 5 minutes produced more reproducible results.  

 With this new preannealing treatment at 590˚C for 9 minutes, the 

distribution of Au nanodots is shown in Figure 3.3 (a2). The size of nanodots is 

between 0.14 µm and 0.32 µm, which indicate that the size range of nanodots is 

smaller than by the previous preannealing treatment. The gold nanodots are 

separated by 1.5 µm to 3.2 µm in distance.  

 With these well-distributed Au nanodots, Si nanowires can grow more 

uniformly on the entire substrate by either thermal or disilane plasma growth 

conditions. Figure 3.3 (b1) and (c1) show in plan and cross-sectional views FE-

SEM images of Si nanowires that were thermally grown. Significant changes in 

morphologies are shown for the Si nanowires by plasma-enhanced condition in 

Figure 3.3 (d1) and (e1). Unlike the randomly distributed nanowires for the pre- 
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520˚C for 5 minute preannealing treatment, the new pre-annealing treatment 

contributes to enhanced uniformity.  

 A comparison was also done on the effect of different substrate 

orientations and resistivivities on nanowire growth.  For this, the substrate pre-

annealing treatment at 590˚C for 5 minutes was used.  Nanowires were grown 

simultaneously on side-by-side substrates corresponding to the following 

orientation and resistivity combinations: Si(100) (0.001~0.003 Ωcm), Si(100) (5 

Ωcm), and Si(111) (0.001~0.003 Ωcm). This allowed for a qualitative 

examination of to be made directly. 
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 The FE-SEM micrographs shown in Figure 3.4 show the results of 

nanowires grown on the different substrates and for two different preanneal 

conditions.  Nanowire growth on Si (111) substrates receiving a 5 minute 

preanneal treatment at 520˚C exhibited a dense forest of nanowires that were 

localized into domains.  These domains were separated by what was otherwise 

clear areas of silicon substrate [Figure 3.4(a)].  Moreover, “tree-like” formations 

grew at the center of these domains, with nanowires branching first laterally and 

then turning upward.  Some of the nanowires still had gold beads at their tips, but 

most did not.  All of the nanowires were significantly tapered indicating that 

radial growth was significant in addition to the axial growth at the individual 

tips.10 

 Nanowires grown on the substrates receiving the 590˚C preanneal 

treatment were more uniformly distributed, without the clustering into domains 

[Figure 3.4 (b, c, d)].  The nanowires were thicker and longer and partially 

collapsed into mattes similar to that to be discussed in Chapter 5.  Regardless of 

wafer orientation and intrinsic substrate resistivities, FE-SEM images showed 

uniform coverage. A comparison between the different substrates indicated a 

couple of significant differences.18, 33  Growth on the Si (111) low resistivity 

substrate produced thick and well tapered nanowires, and some branching at 

critical lengths.  Growth on the Si (100) low resistivity substrate produced much 

finer nanowires with a, more-or-less, even mix of vertically oriented nanowires 

versus curved nanowires.  On the other hand, growth on the Si (100) high 
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resistivity substrate exhibited thick nanowires, almost all of which are 

significantly curved.  This influence on curvature is the subject discussed in 

Chapter 4.4. 
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Figure 3.4 FE-SEM images of Si nanowires grown at 410˚C on substrates 

thermally pre-treated in hydrogen at (a) 520˚C for 5 min on Si (111) 0.001~0.003 
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Ωcm wafer, and grown on substrates similarly treated at 590˚C for 9min, (b) on Si 

(111) 0.001~0.003 Ωcm, (c) on Si (100) with 0.001~0.003 Ωcm, and (d) on Si 

(111) 5 Ωcm. 

 

3.4 Conclusion 

 A series of preliminary studies were conducted to determine the standard 

experimental conditions to be used throughout the later studies described in this 

dissertation.  Nanowire growth in disilane plasmas was studied as a function of 

temperature, spanning from below, to just above, the eutectic temperature for the 

Si-Au system (363˚C).37 In addition, a series of experiments were conducted on 

gold-coated silicon substrates with (111) and (100) orientations and having 

received either 520 or 590˚C thermal treatments in hydrogen in preparation for the 

deposition runs.40 

 Below the eutectic temperature, nanowire growth was not sufficient to 

produce anything worthy of study.  However, the morphological variations for 

nanowires grown at 410˚C were complex and sensitive to the plasma power.  This 

temperature was selected as the target temperature for nanowire growth for most 

of the rest of the work reported here.38, 40 

 With respect to the substrate preparation, thermal preanneals at 590˚C for 

9 minutes generally led to more uniform distribution of nanowires subsequently 

grown at 410˚C by plasma-enhanced CVD. This was associated with the 

redistribution of gold on the silicon substrates.32 Nanowires grown under these 
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conditions were also found to have high aspect ratios that were thicker and longer. 

Consequently, the 590˚C 9 minute preanneal treatment was adopted as a standard 

treatment of substrates.   
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Chapter 4  

Comparative Study of Nanowire Morphology  

Between Thermal and Plasma-assisted CVD 

  

 In Chapter 3, we first carried out some preliminary experiments for the 

purpose of identifying the important preparatory procedures for nanowire growth 

by thermally and plasma-stimulated CVD at low temperatures. After selecting an 

appropriate target temperature of 410˚C to grow Si nanowires, we also selected a 

procedure for pre-annealing (at 590˚C for 9 minutes) the gold-coated substrates. 

This optimized the distribution of gold beads on the substrate that would later 

catalyze the nanowire growth via the vapor-liquid-solid (VLS) mechanism.   

In this chapter, a more detailed comparative study is described on the 

nanowire morphologies after growth by simple thermal and by plasma-assisted 

activation of the gas phase reactions. Unlike the straight shapes of thermally 

grown Si nanowire, curved nanowires are common when grown in a disilane 

plasma at low temperatures. This is unlike at higher temperatures above about 

500˚C where the nanowires are typically straight regardless of whether they were 

by either process.10  Thus, the focus will be on the nanostructural characteristics 

and differences as characterized by the nanowire growth direction, diameter, 

length, and surface morphology. The effect of disilane partial gas pressure is also 

examined towards the end of the chapter. Bending tends to be more pronounced 

with an increase in disilane partial pressure.  
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The characteristic of bending nanowires is studied in terms of their 

bending curvatures and geometrically calculated strains. Raman Spectroscopy is 

used as an experimental method for characterizing bending nanocrystallinity due 

to the measured curvature by geometrical method.  

 

4.1 Effect of Wafer Orientation on Silicon Nanowire Orientations under Thermal 

Growth Conditions 

 Electron (SEM) micrographs are shown in Figure 4.1 of epitaxial <111> 

and <110> oriented nanowires thermally grown on Si(100) and Si(111) substrates. 

When grown on Si (100) substrates and when seen in plan-view, (Figure 4.1a and 

Figure 4.1b), the orthographic projections of <111> nanowires are oriented at 90º 

angles with respect to one another. These are coplanar with the four fixed <111> 

directions of the silicon substrate.2 Epitaxial <110> oriented nanowires are also 

shown in plan-view projection in these same figures.  They are oriented at 45º 

angles to the <111> nanowires and to the edges of the micrographs. When viewed 

from the side, Figure 4.1c, the azimuth angles formed between each set of 

nanowires and the substrate surface are shown, in good agreement with the 

crystallographic directions of the substrate.43  

The orthographic projections of <111> and <110> nanowires are seen to 

form rectangular networks as illustrated in Figure 4.1b on a Si (100) substrate.  

Under this condition, the nanowire diameters are between 22-32 nm and 28-49 

nm ranges for <111> and <110> nanowires, respectively. Also, the average length 

is approximately 909.67 nm.  
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 A similar comparison is given of nanowires grown by thermal CVD onto 

Si (111) substrates in the sequence of micrographs given in Figure 4.1.d, 4.1.e and 

4.1f.  Here, the equivalent [111] and [110] directions correspond to the trigonal 

symmetry of the substrate, whose projections form 120˚ angles in the plane of the 

micrograph.  A fourth direction is pointed directly out of the page, normal to the 

substrate surface. When viewed from the side, the <111> oriented nanowires.43 

These latter nanowires are seen as bright spots on the plan-view image due to the 

gold beads at the tips.  

Figure 4.1.f is a side view SEM image showing azimuthal angles of the 

nanowires thermally grown on Si (111). It shows make an angle of 19.4º with the 

substrate, while the fourth [111] direction is perpendicular. The diameter range is 

26-52 nm and 1.67 µm in length is observed.49  
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Figure 4.1 a, b) Plan view SEM images c) Cross-sectional view of Si nanowires 

grown on Si (100) substrate d, e) Plan view SEM images f) Cross-sectional view 
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of Si nanowires frown on Si (111) substrate at 410ºC, 154 mTorr growth pressure, 

and 5 min growth time 

 

4.2 Influence of RF Plasma on Si Nanowires Growth at Low Temperature 

 Plasma-enhanced synthesis is shown to significantly alter the nucleation 

rate and activation energy for vapor-liquid-solid (VLS) silicon nanowire growth 

compared to thermal growth,10 providing new control over nanowire 

morphologies and new insight into the rate-limiting mechanisms of VLS growth. 

Low power RF plasma excitation can be used not only to pre-ionize the gas 

making it more reactive, but also to accelerate surface mobility on condensed 

phase surfaces.40 

 Unlike thermally grown VLS, plasma-stimulated Si nanowires 

dramatically increase growth in the lateral directions. Regardless of the wafer 

orientation, Si nanowires grow thicker and longer than for thermal only conditions. 

They often develop a taper, being thickest at the base where it is exposed longest 

to the depositing gases. The increased growth rate under plasma conditions can be 

understood in terms of the effect it has on forming silane radicals.44 These radicals 

in turn increase the net rate of hydrogen dissociation from Si atoms adsorbed on 

the liquid AuSi catalyst surface.44, 45 

 The effect of plasma enhancement on nanowire nucleation and growth is 

even more dramatic at low temperatures where thermal processes are slower. 

Figure 4.2 shows FE-SEM images of a, b) plan and c) cross-sectional view of Si 

nanowires grown on Si (100) substrates, and d, e) plan and f) cross-sectional view 
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of Si nanowire grown on Si (100) substrates at 410ºC, 154 mTorr growth pressure, 

and 5 min growth time. From all FE-SEM images, it confirms that some 

nanowires grow linearly and the others are bent. The mechanism of bending 

nanowires is discussed in Chapter 5. 
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Figure 4.2 Plasma enhanced growth at 410ºC, 154 mTorr growth pressure, and 5 

min growth time; a, b) plan view SEM images c) cross-sectional view of Si 

nanowire grown on Si (100) substrate d, e) plan view SEM images f) Cross-

sectional view of Si nanowire grown on Si (100) substrate  
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4.3 Comparison of Thermal Growth and Plasma Growth of Silicon Nanostructure 

 Based upon the results illustrated in Figures 4.1 and 4.2, Figure 4.3 

directly compares the nanostructural differences of surface morphology of Si 

nanowires grown by simple thermal activation and then assisted by plasma-

stimulation. The structural differences of the nanowires are considered in terms of 

their orientations relative to the wafer, growth directions, diameters, lengths, and 

distributions over the surface.10 

 Compared to thermally grown nanowires, plasma stimulates the 

nanowires’ properties to become thicker, longer, and to more densely cover the 

substrate surfaces.10, 40 This trend is seen for growth on both Si (100) and (111) 

substrates.40 Another significant difference is that nanowires are often bent when 

grown by the combination of disilane plasma, whereas the nanowires are linearly 

when grown thermally. It is interesting to note here that nanowires grown in 

disilane plasmas at higher temperatures are typically straight as is also typical in 

“silane”-hydrogen plasmas.40, 42 
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Figure 4.3 Comparisons of Thermal Growth and Plasma Growth of Si 

Nanostructure Grown on Si (100) Wafer (Top) and Si (111) Wafer (Bottom) 
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4.4 Influence of Disilane Partial Pressure on Silicon Nanowire Growth 

 The effect of disilane partial pressure on the morphology of silicon 

nanowire growth in plasmas is described in this section. A series of experiments 

of nanowires grown on substrates with 2 nm Au films were conducted using three 

disilane partial pressures within the range of 6x10-3 mTorr to 25x10-3 mTorr.  The 

plasma power was fixed at 2.3 W.  Figures 4.4 and 4.5 present collages of 

micrographs corresponding to nanowires grown on Si(100) and Si(111), 

respectively, as a function of both disilane partial pressure and total pressure.  The 

differences in pressure are due to the hydrogen carrier gas. 

 For Si nanowires grown on (100) Si wafers in 6x10-3 mTorr disilane , 

shown in Figure 4.4, the nanowire morphology is typically thin, linear and  

densely distributed. The majority of nanowires are grown grow straight, with only 

a few nanowires gently bent.  A similar morphology is seen for nanowires grown 

on Si (111), although a larger fraction of the nanowires appear to be bent than for 

those on Si (100). For nanostructure grown on Si (100), the nanowires were on 

average 110 nm in diameter and 2.84 µm in length, most of which grew in the 

<111> direction. The growth orientations of nanowires relative to the Si<110> 

substrate orientation could not be as easily identified. The growth orientations of 

the bent nanowire could not be identified, neither. More bent nanowires were seen 

in growth on Si (111) wafers compared to the (100) wafer. The diameters and 

lengths of nanowires grown under this condition were 190 nm and 2.83 µm, 
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respectively. For nanowires grown on both substrates, nanowires grown in the 

<110> growth direction were not identified. 

 

 

 

 

Figure 4.4 Influence of Disilane Pressure (as a Function of Total Pressure, and 

Disilane Partial Pressure Ratio to Hydrogen, and Disilane Partial Pressure) on 

Silicon Nanowire Growth on Si (100) Substrate. The plasma power was 2.3 W. 
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Figure 4.5 Influence of Disilane Pressure (as a Function of Total Pressure, and 

Disilane Partial Pressure Ratio to Hydrogen, and Disilane Partial Pressure) on 

Silicon Nanowire Growth on Si (111) Substrate. The plasma power was 2.3 W. 

 

 Silicon nanostructure at the higher disilane partial pressure of 15x10-3 

mTor, is also shown in Figure 4.4 for nanowires grown on Si (100) wafer and 

Figure 4.5 for nanowires grown on Si (111) wafer. Compared to their growth at 

lower disilane partial pressure, 15x10-3 mTorr, more bending was observed for 

both substrates. The density of straight nanowires was less reduced, and the 

density of bent nanowires was greater compared to those grown at lower pressures. 

Also, the average diameters (120 nm for Si (100) and 270 nm grown on Si (111) 
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wafers) and lengths (2.88 µm for Si (100) and 3.28 µm grown on Si (111) wafers) 

all increased relative to the lower pressure.  

 At the highest disilane partial gas pressure, 15x10-3 mTorr, all nanowires 

grown on both Si (100) and (111) substrates were severely bent and appeared as if 

they collapsed into a dense matte. There was also very significant tapering.  The 

diameters were also the largest observed for this series being 230 nm for 

nanowires grown on Si (100) wafer and 290 nm on Si (111) wafer. These 

nanowires were also longest being 5.1 µm and 5.36 µm for nanowires grown on 

Si (100) and Si (111) substrates.    

 By increasing the disilane partial pressure, the nanowire morphology 

shows obvious dimensional changes, which are plotted in Figure 4.6. They are 

longer and thicker nanowires. Their density of coverage density also increases 

with partial pressure. It is not surprising that the greater concentration of disilane 

that comes with increasing partial pressure increases the rate of deposition and, 

therefore, results an overall increase in all of the nanowire dimensions and 

densities.46, 47 

 It is interesting to note though, that while the lengths of nanowires grown 

on Si (111) and Si (100) are basically the same, regardless of pressure, their 

diameters are quite different.  Generally, those grown on Si (111) are much 

thicker in diameter.  The presumption here is that gold beads were typically larger 

when formed on the Si (111) substrates. 
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Figure 4.6 Comparisons of Nanowires Diameter and Length Dependent on the 

Gas Pressure Influence 
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4.5 Characteristic of Bending Nanowire 

4.5.1 Bending Morphology of Si Nanowires  

 The curvature of Si nanowires grown under different disilane gas 

pressures is illustrated in the micrographs of Figure 4.7 corresponding to those 

grown on Si (100) and (111) wafer orientations. For PSi2H6 of 6x10-3 mTorr, more 

than 70% of the nanowires remained straight, whereas only 4 or 5 nanowires 

within the field of view were bent for either Si (100) and (111) substrates. At the 

higher disilane partial pressure of 15x10-3 mTorr, [Figure 4.7 (b)], fewer straight 

wires were seen, where only 2 or 3 linear nanowires were observed in the 

micrograph. For the highest disilane partial pressure of 25x10-3 mTorr growth 

condition as seen in Figure 4.7 (c), all nanowires were curved regardless of Si 

wafer orientation. Their curvatures for those grown on Si (111) appear more bent 

than nanowires on Si (100) substrate, which is related to their greater thickness.  

This latter point is a discussed in a later chapter. 
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Figure 4.7 Bending Structures of Si Nanowires on Different Si Wafer Orientation 

under Plasma Growth Conditions with Different Gas Pressure 
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4.5.2 Geometrical Approach for Understanding Bending Nanostructures 

 With the common observation of bent, or curved, morphologies seen in 

Figure 4.7, bending structures of nanowires grown under different disilane partial 

pressure was characterized quantitatively by measuring the geometrical curvature. 

This was done using the procedure described by the Damon A. Smith research 

group.48, 49 They assumed that a nanowire is semicircular. Thus, geometrically the 

radius of curvature, R, and the angle of curvature, α, can be related to the buckling 

cord length, L, as described in the inset of Figure 4.8. The bending curvatures (k) 

could then be estimated based on the measured radius of curvature (R) according 

to the equation )(/1)( radiusRcurvaturek  . Figure 4.8 plots the average 

curvatures observed as a function of nanowires grown under the different disilane 

partial pressures in the previous sections. For the Si nanowires grown at a disilane 

partial pressure of 6x10-3 mTorr, the radii of curvatures were large, thus implying 

relatively small curvatures of 1.46 µm-1 and 1.76 µm-1 for Si (100) and (111) 

substrates, respectively. At 15x10-3 mTorr disilane partial pressure, the curvatures 

were 2.31 µm-1 for Si (100) and 3.04 µm-1 for Si (111) substrates. The greatest 

curvatures were observed for nanowires grown at the highest disilane partial 

pressure of 25x10-3 mTorr, being 2.81 µm-1 and 3.13 µm-1 for Si (100) and (111) 

substrates, respectively. 

 In combining all of these observations of curvatures, the trends in 

nanowire growth in disilane plasmas indicate that the faster nanowires grow, the 

more likely they are to curve and with greater curvatures (smaller radii of 

curvatures). Coincident with this is that the nanowires are generally thicker. A 
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comparison between nanowires grown on Si (100) and Si (111) substrates 

indicates that the nanowires of the latter are generally thicker and more curved.  

Considering the controlling growth variables, then it can be expected that more 

curved nanowires would grow under conditions of higher plasma powers, high 

disilane partial pressures and on Si (111) substrates 

 

 

 

Figure 4.8 Calculated curvatures for Si bending nanowires grown on Si (100) and 

(111) substrates with varying gas pressures.  
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4.5.3 Experimental Approach for Measuring Bending Strain of Si Nanowires 

 One means of characterizing the materials effects due to bending is 

provided by Raman spectroscopy. Such measurements were performed using a 

YAG laser (532 nm) and at low excitation powers (5 mW).  Low powers were 

used to avoid heating the nanowires, which can cause asymmetric broadening and 

a downshift of the Raman peaks. Figure 4.9 shows the Raman spectra of a bare Si 

(111) wafer, Si nanowires thermally grown at 410˚C, and plasma-enhanced grown 

Si nanowires (grown 15x10-3 mTorr and 25x10-3 mTorr disilane partial gas 

pressures).  

 In Figure 4.9, the blue-colored peak at 520.48 cm-1 corresponds to 

transverse optic (TO)/ longitudinal optic (LO) mode of a bare Si (111) substrate. 

The Raman peaks for Si nanowires grown by thermal and plasma CVD conditions 

are all down-shifted. For thermally grown Si nanowires, shown as black in Figure 

4.9, the peak is only slightly shifted to 517.92 cm-1. On the other hand, the peak 

shift is much greater (to 496.22 cm-1) for plasma grown nanowires at 15x10-3 

mTorr disilane partial gas pressure as plotted in red. For nanowires grown at even 

higher disilane partial pressure to 25x10-3 mTorr, the main peak shift is even 

larger to 493.62 cm-1 as shown in Raman green. 
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Figure 4.9 Raman Spectrum of the Bare Si (111) Wafer, Si nanowires thermally 

grown at 410˚C with 15x10-3 mTorr disilane partial gas pressure, Si nanowires at 

410˚C by plasma-enhanced growth with 15x10-3 mTorr, and 25x10-3 mTorr 

disilane partial gas pressure. 

 

Another appropriate characteristic for comparison is the full peak width at 

half maximum (FWHM) of the main Raman peaks for all samples. Generally, the 

intensity becomes broader with increasing disilane partial pressure for Si 

nanowires growth under plasma condition compared to a bare Si (111) wafer and 

thermally grown Si nanowires. Table 4.1 gives the details of the peak positions 

and peak widths.  
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The reason for the shifts and increasing widths of the main Raman peaks 

can be associated with the disorder and size effect that accompanies phonon 

confinement.50 There has been significant research on the Raman spectroscopy of 

solid silicon as it is affected by the degree of crystallinity and particle/grain size.  

The main Raman band at 521 cm-1 corresponds to pure crystalline silicon in bulk 

form, and is also relatively narrow.  At the other extreme of amorphous silicon, 

the main band appears at 480 cm-1 and is quite broad.51, 52 Thus, in applying this 

to the Raman spectrum of curved nanowires, it can be conclude that the silicon in 

the nanowires themselves are nanocrystalline and highly disordered.  The degree 

to which this happens clearly can be associated with the curvature and, in turn, the 

growth conditions. TEM studies report in Chapter 6 clearly confirm these 

observations, where it is that smaller nanocrystalline domains are a characteristic 

of the convex side of the nanowire, where it must grow fastest compared to the 

concave side. Therefore, the wires showing the greatest curvature and thickness 

would be expected to exhibit the highly disordered smaller nanocrystalline and, 

thereby, the greatest Raman peak shift and width. Thus, we can confirm that the 

nanowires grown at low temperature plasma conditions and under 25x10-3 mTorr 

disilane partial pressure will exhibit the greatest curvature.  
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Table 4.1 Summary of Measured Raman Spectrum Data 

 

4.6 Conclusion 

 To characterize Si nanowires grown at low temperature, syntheses were 

performed by thermal and plasma enhanced CVD methods. Morphological 

differences of the nanowires were studied and compared in terms of their diameter, 

length, growth directions, density, and distribution. Under plasma-enhanced 

conditions, nanowires grew thicker, longer, and denser than thermally grown 

nanowires. Moreover, the nanowires tended to grow in a bent configuration, 

whereas nanowires grow linearly when thermally grown.  

 The characteristic of nanowires growing in bent, or curved, configurations 

was studied as a function of growth conditions, namely, disilane partial gas 

pressure under low temperature plasma conditions. As increase disilane partial 

pressure, more nanowires with greater curvatures (smaller radii of curvatures) 

were observed. The associated bending morphology was measured by both 
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geometrical measurement and Raman spectroscopy. In general, the greater the 

curvature was associated with the highly disordered smaller nanocrystallines.  

This was correlated with the growth conditions.  In effect, the faster the growth 

rate under plasma-enhanced growth conditions, the nanowires were more curved 

and more strained.  This correlated with higher disilane partial pressures and 

growth on Si (111), as opposed to growth on Si (100) at low disilane pressures. 

The mechanism for nanowires bending is discussed in Chapter 5. 
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Figure 4.10 Correlations of Geometrically Measured Curvature and Raman 

Spectrum in Bending Nanowires Grown under Different Disilane Partial 

Pressures.  
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Chapter 5 

Bending Mechanism of Si Nanowires Grown at Low Temperature 

 

 Based on the vapor-liquid-solid (VLS) mechanism, Si nanowires grow 

linearly underneath catalyzed Au nanodots that float on the top of the nanowire 

tip. Such morphologies are mostly seen for thermally grown Si nanowires at high 

temperature11 and at low temperatures under conditions as discussed in Section 

4.1. Plasma-enhanced Si nanowires at high temperature10 also exhibit linear 

morphologies, although, as discussed in Section 4.2, bending is routinely 

observed for plasma-enhanced CVD at low temperatures (410°C) using disilane as 

a silicon source. To understand the bending mechanism, a three-step growth 

protocol was selectively performed to elucidate different aspects of the process. 

This involved manipulating the exposure time to a disilane plasma and examining 

the resulting wire morphology. A hypothesis was proposed and examined to 

explain the bending mechanism.  

 

5.1 General Approach for Strain-Induced Bending Mechanism 

 In general, bulk silicon is brittle at relatively low temperatures due to its 

high energy for nucleating dislocations and its high Peierls stress for activating 

dislocation motion. Only at an appreciable fraction of its melting point can 

dislocations be activated and silicon can exhibit some level of ductility. The 

temperature necessary for triggering plasticity in bulk Si under stress is at least 
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400˚C.53 For very fine silicon particles, the defect-free structure normally found is 

very resistant to fracture, requiring a high critical resolved shear stress to initiate 

dislocation motion. The fracture and deformation character are often significantly 

different from their bulk. In this study, we discovered that Si nanowires are bent 

during growth under low temperature plasma-stimulated conditions. Unlike VLS 

mechanism under purely thermal conditions, Si nanowires appear to naturally 

grow as curves in plasma for certain conditions.54  

 Compared to conventional VLS, a schematic of plasma grown Si 

nanowires is shown in Figure 5.1 (a). Bending can be explained by a differential 

growth rate, where growth is faster on one side of the nanowire compared to the 

diametrically opposite position.  The driving force, however, is unclear. One 

explanation might be associated with a lateral stress acting on the nanowire tip 

and perhaps between nanowires.55 Both electrostatic or Van der Waals forces 

might reasonably be suspected.56-58 With respect to electrostatic forces that might 

arise in a plasma, the Debye length in a glow discharge should be at least on the 

order of 100 µm or greater, and the nanowires are located well within the high-

field space of the discharge. Consequently, a significant electrostatic attractive 

force is exerted on the nanowires. The electrostatic attractive force (F) in Figure 

5.1 (b) produces a tensile stress where the growth rate is faster, and 

correspondingly, a compressive stress is applied where the growth rate is 

slower.56, 58 



  98 

 

 

 

 

 

 

Figure 5.1 Different Growth Mechanism for Si Nanowires (a) Conventional VLS 

Growth Mechanism (b) Stress-Induced Bent Growth Mechanism  
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5.2 Disilane Plasma Effect on Si Bending Nanostructure 

 In the previous chapter, we confirmed that nanowire bending occured only 

under plasma-stimulated conditions at low temperature, and especially when 

disilane was involved as the silicon source.  The effect was experimentally 

investigated using a three-step growth process as shown in Figure 5.2. After a 

preanneal treatment at 590˚C, the Si nanowires were thermally grown at 470˚C. 

Next, the nanowires were exposed to a hydrogen plasma for 5 minutes at 410˚C, 

followed with exposure to a disilane plasma at 410˚C. Both hydrogen and disilane 

plasmas were generated by 2.3 W rf power. The time of exposure in the latter step 

was varied between 10, 40, and 150 seconds as shown. The resulting growth 

morphologies are shown in Figure 5.2 (b), (c), and (d), respectively.  

 Thermally grown Si nanostructures at 470˚C, after only the hydrogen 

plasma treatment (step 2), are shown in Figure 5.3 (a) plan view and (e) cross-

sectional view. The nanowires appear straight and very fine as is characteristic of 

thermally grown wires. On the other hand, the sequence of exposure to hydrogen 

plasma with disilane reveals a rather rapid and dramatic change. After a 10 second 

exposure (Figure 5.3 (b) and (f)), a thickening and more obvious curving is 

beginning to appear at the tips. Lengthening is apparent, indicating that the VLS 

mechanism is still acting even in the absence of an external silicon source. 
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Figure 5.2 Experimental Approaches for Bending Nanostructure 

 

After 40 seconds plasma anneal, more distinct bending is observed [Figure 5.3 (c) 

plan view and (g) cross-sectional view]. Nanowire bending starts more from the 

middle of the nanowires in this case compared to the shorter times. This behavior 

can be explained by the irregularity of the individual nanowires as well as van der 

Waals attraction between nanowires. According to the typical formation 

mechanism of Si nanowires reported57, if the shape of nanowires is irregular, the 

centre of gravity of each individual nanowire is not aligned with those of other 

nanowires.58 
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 For longer, 150 second, exposures to a disilane plasma, the longer 

nanowires appear to be significantly bent, curving in a semicircle and back 

towards the substrate. Eventually this leads to entanglement and matting of 

nanowires as their lengths become too long as shown in Figure 5.3 (d) and (h). 

The density of the Si nanowires is also quite high. 
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5.3 Kinetic Approach for Bending Mechanism 

 Based on the experimental results just described, an hypothesis of the 

bending mechanism can be formulated based upon differential growth kinetics at 

different surface locations dependent on the degree of exposure to the plasma. 

Figure 5.4 presents a schematic describing this model. The starting points for all 

experiments just before the application of the plasma were the thermally grown Si 

nanowires on Si (111) wafer.  The nanowires had either of two dominant growth 

directions relative to the substrate, namely, <111> and <110>.  

 When exposed to the disilane plasma stage at 410˚C, the surfaces of the 

nanowires grown in the <110> direction are unevenly exposed to disilane plasma 

on all sides, unlike Si nanowire starting in the <111> growth direction. In other 

words, the outer surface of a <110> nanowire is more exposed to the disilane 

plasma relative to inner surface facing the substrate surface [Figure 5.4 (a)]. 

Because an <110> nanowire is unequally influenced by plasma on all sides, the 

diffusion of gold along the same surfaces are uneven due to a difference in the 

line-of-sight bombardment by the plasma electrons. This means gold surface 

diffusion at outer side is more accelerated and more heavily distributed [Figure 

5.4 (b)]. In turn, a faster deposition reaction occurs at the outer wall rather than 

inner wall [Figure 5.4 (c)]. Thus, a differential growth deposition rate between 

outer and inner walls induces curving. 
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Figure 5.4 Schematic of a hypothesis for a differential deposition kinetic 

mechanism for explaining curved nanowire growth in a hydrogen-disilane plasma. 
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5.4 Conclusion 

 For low temperature growth conditions, Si nanowires grown in a 

hydrogen-disilane plasma tended to curve during growth near the Au bead at the 

nanowire tip. A three-step growth process was used to elucidate some of the 

growth details.  Nanowires exposed longer to disilane plasmas at 410˚C, tended to 

be more bent.  

 To explain the process, a hypothesis was formulated whereby the 

nanowires curved due to differential growth rates at diametrically opposite sides 

of the nanowires.  At those surfaces more openly exposed to the plasma, the 

growth rate tended to be faster than the surfaces that were more in the shadow of 

the nanowire.  It was also hypothesized that the surfaces where the growth rates 

were greatest also possessed more surface gold that had diffused out from the 

gold bead tip due to greater stimulation of surface mobility due to plasma particle 

bombardment.   

 A secondary hypothesis was discussed that raised the prospect of 

electrostatics and Van der Waals forces acting on the nanowire tips to accelerate 

bending during growth.57, 58 When nanowires are exposed to a hydrogen-disilane 

plasma, the Au beads become more negative charged than the plasma itself and 

quite possibly more negative than the silicon substrate [as shown in Figure 5.5 

(a)].  A repulsive force arises between adjacent Au beads [Figure 5.5 (b)]. Once 

bend begins, nanowire tip is increasingly attracted to substrate surface [Figure 5.5 

(c)]. 
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Figure 5.5 Hypothesis (a, b, & c) and Kinetic Approach (d) for Bending 

Mechanism  
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Chapter 6 

Effect of Disilane Plasma on Nanowire Branching 

 

6.1 Introduction to Branching Nanostructures  

 Controlling the branching of silicon nanowires as they grow presents an 

opportunity to construct in-situ networks of silicon devices that already have 

inter-connections in place. The higher complexity of such structures increases the 

potential for new applications by increasing the number of connection points and 

providing parallel connectivity to functional elements.59 For this project, a survey 

of the experimental conditions leading to branching was undertaken, with the 

purpose of directing new studies that world focus on identifying a mechanism that 

could selectively trigger and suppress branching.60 

 The observation of homo- and hetero-branching and multibranching 

nanowire structures has been demonstrated by various methods, introducing the 

possibility of fabricating hierarchical nanostructures of increased complexity and 

functionality.59, 61 Up to now, most strategies for inducing branching involve a 

second seeding step to place metal catalyst particles on to the primary nanowire 

‘‘trunk’’. Generally, this involves removing the initial structure from the growth 

reactor in order to deposit the secondary catalyst before returning to the reactor.59-

63 In this chapter, we present an alternative approach where branching is done in 

situ, facilitated by the interaction of the plasma with the liquid Au–Si alloy. In 

effect, the plasma influences surface migration of the alloy during disilane plasma 
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growth. The result is the fabrication of densely branched Si nanowires. A modest 

degree of control is demonstrated in branching from primary to secondary 

nanowire without the need for ex situ seeding.  

 The conditions for branching and systematic trends in branch morphology 

are described here for the low temperature growth of silicon nanowires under 

thermal and RF plasma activation. Silicon nanowire branching is thought to be 

facilitated by the surface migration of liquid Au-Si alloy catalyst from the 

nanowire tips.62 

 

6.2 Branching Nanowire Morphologies 

 Gold films, 2 nm thick were thermally evaporated onto hydrogen 

terminated Si (111) substrates in a thermal evaporator. The primary silicon 

nanowires were thermally grown in a low pressure chemical vapor deposition 

(LP-CVD) system by the catalytic vapor-liquid-solid (VLS) technique using 

9.267% disilane (Si2H6) diluted in hydrogen (H2) at 470oC. The secondary and 

tertiary silicon nanowires were synthesized by disilane plasma-stimulated 

chemical vapor deposition (PE-CVD) at 410oC, using RF plasma powers of 1.5 W, 

2.6 W, and 3.5 W at a frequency of 13.56 MHz. 

 In our method, the primary nanowire trunks have grown first under large 

diameter growth conditions and at relatively high temperatures. Without breaking 

vacuum, the growth conditions were then changed within the same run to a low 

temperature so as to favor the growth of smaller diameter nanowires off the walls 

of the primary nanowires. It is assumed that the gold diffused from the tips along 
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the trunk sidewalls due to plasma enhanced mobility. This then facilitated 

branching. 

 Figures 6.1 (a) and (b) show typical FE-SEM plan and cross-sectional 

views of the branching grown under a 1.5 W plasma. The primary nanowire 

grows from bottom-to-top almost linearly. Secondary branching grows with six to 

eight long thin arms sprouting from the top of the primary nanowire in all 

directions. These branches typically curved slightly downward as they grew. The 

primary nanowire’s length is 6.13 µm and the diameter is 189 nm. The branches 

are typically 1.3 µm in length and 121 nm in diameter. 
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Figure 6.1 FE-SEM images of branching nanowires (a) plan view, and (b) cross-

sectional views grown under a plasma power of 1.5 W; (c) plan view, and (d) 

cross-sectional views grown under a plasma power of 2.6 W; (e) plan view, and 

(f) cross-sectional views grown under a plasma power of 3.5 W 
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Many branches exhibit a metal bead at their tips indicative of VLS growth. At a 

larger plasma power of 2.6 W, the primary nanowire itself curves down toward the 

substrate as it grows [Figure 6.1 (c) and (d)]. The nanowire has a 136 µm 

diameter and 0.7 µm length. Compared to the 1.5 W, the branching diameters are 

thicker and the lengths are shorter. Unlike, the branching structures at 1.5 W, the 

catalyst at the tips for the 2.5 W nanowires are mostly invisible. FE-SEM images 

in Figure 6.1 suggest that the gold from the Au-Si bead migrates possibly over the 

nanowire surface, distributing as an invisible layer. At the highest plasma power 

of 3.5 W, the primary nanowire trunk bends even more as shown in Figure 6.1 (e) 

and (f). The branches tend to be thicker (154 nm diameter) and shorter (0.2 µm 

length) than either prior experiment.  

 In Figure 6.2, the diameters and length of the nanowire branches are 

plotted as a function of plasma power. The trend clearly shows that increasing 

plasma power produces shorter but thicker nanowires. The highest power shows 

branching to produce only stubs, whereas the long and slender branches are seen 

at the lowest power. Increasing the plasma power also affects the density of 

branches. Effectively, it decreases from 62 counts of branching nanowires under 

1.5 W plasma power to 7 counts per 447 µm2 (that was the field of view) under 

3.5 W plasma power [Figure 6.3].  
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Figure 6.2 Branch Diameters and Lengths with Plasma Power 

 

Figure 6.3 Density of Branches as a function of Plasma Power 
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6.3 Influence of Au Diffusion on Nanowire Branching  

 The branching of nanowires during growth can be explained by the gold 

catalyst diffusing along the silicon surface. For the growth step at 470oC 

[RegionⅠof the temperature profile in Figure 6.4], the gold catalyst remains at 

the tip of the nanowires. This is shown in micrographs at the bottom of Figure 6.4 

including (a) a plan view of the nanowire morphology and (c) a cross-sectional 

view. When the disilane source has been stopped after the thermal growth step, 

the temperature is cooled corresponding to RegionⅡ. At this point, different 

processes can happen: (i) the nanowires continue to grow by decomposing 

residual disilane, and growth also occurs by coarsening processes, incorporating 

residual excess Si present in the catalyst; (ii) gold from the catalyst begins 

diffusing over the surface of the nanowires; and, (iii) gold forms critical single-

clusters at the same surfaces. The average coverage of gold is assumed to 

approximate one monolayer, however, it is thought that gold clusters form as the 

temperature decreases further.45, 62, 64-66 

 Assuming this to be the case, it has the potential to nucleate nanowire that 

branches outward, consistent with what was observed only at the lower 

temperatures. Thus, when there is source of gold alloy, the model assumes that 

gold migrates down the nanowire sidewalls and recrystallizes into smaller seed 

crystals at the lowest temperatures.  

 Subsequently, branching is initiated when disilane is again introduced 

under plasma conditions at 410oC [Region Ⅲ in Figure 6.4]. The effect of disilane 
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plasma at low temperature drives the structural changes that are now familiar, 

namely, increased branching, thickening diameter, lengthening diameters, and 

accelerating gold diffusion.  
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Figure 6.4 Thermal sequence and microstructure evolution leading to branching. 
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6.4 Size Effects on Branching Nanowires Induced by Different Plasma Power 

 The crystallinity of the branching nanowires was studied by Raman 

spectroscopy using 532 nm primary laser radiation. Figure 6.5 shows the Raman 

spectrum of a Si (111) wafer without Si nanowires, with Si nanowires thermally 

grown at 470oC, and with silicon nanowires grown under different plasma powers 

(1.5 W, 2.6 W, and 3.5 W). There is a very strong match in the primary peaks for 

bulk Si (111) wafer and thermally grown nanowires, which are predominantly 

straight. The primary peak for bulk Si (111) centers on the 519.73 cm-1 phonon 

band. The same peak for thermally grown Si nanowires is only slightly shifted to 

518.86 cm-1 which is presumably due to a small size effect due to the narrow 

cylindrical radius.29, 38, 67 

 All plasma grown samples exhibited downshifted resonances relative to 

bulk Si (111) and thermally grown Si nanowires, as shown in Figure 6.5. The peak 

positions for 1.5 W, 2.6 W, and 3.5 W appeared at 501.51 cm-1, 495.47 cm-1, and 

489.34 cm-1, respectively. This trend agrees with the behavior shown in Figure 4.9 

that correlated curvature with nanosize crystallinity. The peaks also show the 

asymmetric broadening in intensity. It is attributed to the different domain size 

distributions in branching nanostructure. As discussed in Chapter 4.5.3, the 

branch’s peak position tends to downshift more when the branch structure 

becomes more amorphous-like nanostructure. A more detailed study of the the 

size distribution of nanocrystallines is described in next sectionon TEM 

characterization.   
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Figure 6.5 Comparison of Raman Spectra of a bare silicon (111) wafer without Si 

nanowires, 470oC thermally grown Si nanowires, and branching silicon nanowires 

grown at different plasma powers (1.5 W, 2.6 W, and 3.5 W). 
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Figure 6.6 Shifting Raman peak positions of branching nanowires after growth 

under different plasma powers. 
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6.5 TEM Studies of Curved Nanowires and Branches 

 The structures of the primary nanowires and its branches were examined 

by transmission electron microscopy. Figure 6.7 shows a high-resolution (HR) 

composite image of a representative branching nanowire. It shows a low 

magnification image (a), and a high magnification image of a primary nanowire 

(b), and the junctions leading to a branching nanowire (c). In all cases, the 

polycrystalline nature of the nanowire is evident. Lattice imaging in various 

locations correspond to interplanar lattice spacing of 0.192 nm, 0.23 nm, 0.29 nm, 

0.31 nm, and 0.38 nm for Si (220), (211), (111), and (110), respectively.36 This 

confirms that the structure of both the primary nanowire and the branching 

nanowires are essentially polycrystalline.  

 It should also be emphasized that the branching occurs after the two-step 

growth process and supports the proposed mechanism. This is the migration of Au 

along the nanowire surface leads to the formation of small Au-Si particles on the 

sidewalls of the nanowires.45, 64 These particles are distributed over the surface of 

the Si nanowires during intermediate cooling stage between the initial thermal and 

the plasma growth steps. However, Au-Si particles remain catalytically inactive 

due to insufficient supply of the Si source. Under the subsequent step of disilane 

plasma growth, branching occurs form these secondary gold seeds on the 

sidewalls of the primary nanowire.  
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Figure 6.7 High-Resolution TEM Image of Branching Nanowires (a) Inset shows 

a low magnification image (b) High magnification of branching nanowires, and 

(c) the junction between the primary nanowire and a branching nanowire.  
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 The curved nanostructure resulting from the two-step growth process is 

shown in Figure 6.8. As we discussed in Chapter 4.6, bending is mainly related to 

the strain in nanowire during its growth.37, 68, 69 The diameter of the nanowire in 

Figure 6.8 varies along its length. In effect, it is thickest (112.74 nm) where the 

curvature is also greatest and thinnest (88.13 nm) near the gold tip where it is also 

relative straight. This is explained further by the structural analysis presented in 

Figure 6.9. 

 

 

Figure 6.8 Dark-Field High-Resolution TEM (HRTEM) image of bending 

nanowire with gold on the tip. (Each number indicates the diameter at that 
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location.) 

 

 

 

Figure 6.9 (a) HRTEM image of the high curvature region of the nanowire shown 

in Figure 6.8, (b) an even higher magnification image of middle region 

corresponding to the blue box in (a), (c) a power spectrum (fast Fourier transform, 
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FFT) of the blue dash box region in (b), (d) HRTEM image at bottom region of 

bending nanowire marked in orange box, (e) an FFT of the orange dash box 

region in (e), and (f) HRTEM image of top region of bending nanowire in red box 

of (a) 

 

 Figure 6.9 is a high resolution image of the nanowire in Figure 6.8. It 

provides a number of clues as to how the nanowire grew in the vicinity of the area 

of greatest curvature. A general characteristic of the bending nanowires is that 

they are thicker in diameter where they also have the greatest curvature. A 

detailed look at the top (convex) side of the nanowire the silicon is relatively, 

disordered and poorly crystalline. On the concave side, the silicon is still 

polycrystalline but comprises larger grains of well-defined lattice planes. These 

two sides represent the areas of greatest tensile and compressive strains, 

characteristic of plastic deformation in a wire while being bent.48-50, 70 

 At the axial center of the nanowire, Figure 6.9 (b) shows a twin plane, 

perpendicular to the axis, and the accommodating strain distortions that bridges 

the convex side that possesses the extra material and the concave side that has a 

relative deficiency of material. The power spectrum FFT (Figure 6.9 (c)) shows 

the growth direction along the [1-11], particularly in blue dash box. The twin 

boundary is marked by the blue arrow in Figure 6.9(b). Figure 6.9 (d) is shown 

the interplanar spacing of 0.31nm, corresponding to the Si (111) plane. The long 

periodic lattices/planes are observed at the region where the less intrinsic strain 

exists, which the less bending is occurred.  
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 These observations indicate that the nanowire curved during growth due to 

relative differences in growth rates. On the outside of the curve, growth was more 

rapid than at the inside surface. The low crystallinity of the outside is believed to 

be due to the greater deposition rate and relatively little time for the crystal 

structure to reorganize and conform to the surrounding material. At the other side, 

the relatively slow growth rate allows more time for a stable microstructure to 

form. Here, crystallinity is better defined. Where the nanowire is thickest 

corresponds to where the greatest differential growth rate would occur, and hence, 

the greatest curvature.  

 

6.6 Conclusion  

 The conditions for branching and branching morphology are described for 

the low temperature growth of silicon nanowires under thermal and RF plasma 

activation. Using a two-step growth process, the primary nanowire trunks were 

first made under large diameter growth conditions and at a relatively high 

temperature (470oC). Secondary and tertiary nanowire branching are observed and 

isolated for varying thermal and plasma power sequences.  

 Field emission SEM (FE-SEM) studies where used to determine the 

density, size and shapes of the branching nanostructures. The trend clearly shows 

that increasing plasma power produces shorter but thicker nanowires. In addition, 

increasing the plasma power also affects the density of branches, which decreases 

at higher plasma powers.  

 The nanocrystallinity of the branches was investigated by Raman 
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Spectroscopy and high-resolution TEM studies. From both characterizations, 

greater structural disorder in the form nanocrystallinity and even amorphous atom 

packing was observed for nanowires grown at higher plasma powers. The primary 

peak shift was shown in nanowires grown by higher plasma power supply. 

Branching structure was clearly shown in HR-TEM image, as well as, the curved 

nanostructure. In curved nanowire, the more curvature with thicker diameter was 

observed at the convex side relative to the concave side due to the highly 

disordered nanocrystallinity. Also, it was shown that the crystallinity also varied 

from very poor at the convex side to a more ordered and arranged polycrystalline 

structure at the concave side because of the differential growth rate (faster at 

convex and slower at concave). This observation explains previous observations 

reported in Chapter 5 concerning the bending mechanism.  
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Chapter 7 

Post-annealing Effect on Si Nanowire Morphologies after Thermal Hydrogen and 

Plasma Hydrogen Treatments 

 

7.1 Introduction 

 The effect of post-annealing treatment on Si nanowire structures was 

investigated by a two-step anneal process. For the first step, Si nanowires were 

thermally grown on Si (111) wafers at 470oC as seen in Figure 7.1(a). Next, the 

temperature was decreased to 410oC while in a pure hydrogen without disilane. 

The total gas pressure was maintained at 154 mTorr. Thermal post-annealing in 

hydrogen was conducted for between 5 and 15 minutes. A second series of 

experiments were conducted in a 2.3 W RF hydrogen plasma at different powers 

for the same range of times. The changes in nanowire morphologies were 

compared. The results confirm our previous observations that the phenomenon of 

curving nanowires is caused by the combination of plasma excitation and disilane, 

and not by either alone.  
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7.2 Nanowire Morphologies after Post-annealing Treatment 

 As previously mentioned, thermally grown Si nanowires at 470oC show 

[111] and [110] growth orientations [Figure 7.1 (a)].2 Figure 4.7 (b) and (c) show 

the nanowire growth habits after thermal annealing in hydrogen for 5 and 15 

minutes, respectively. In general, the nanowires lengthen and thicken. From an 

initial 2.8 µm length for thermally grown wires at 470oC, the Si nanowires grow 

to 4.4 µm for the 5 minute anneal and 4.7 µm for the 15 minute anneal. Without 

the presence of disilane as a Si source, the nanowires grow gradually during 

thermal hydrogen post-annealing by a coarsening process.71, 72 In addition to axial 

growth, the nanowires thicken in their diameters as shown in Figure 7.2 (b). The 

diameters were 33 nm for the 5 minute anneal and (c) 47 nm for the 15minute 

anneal. This compares 16 nm diameter for the unannealled wires in Figure 7.2 (a).  

 Compared to the hydrogen thermal post-anneal, the nanowires after the 

plasma treatment were longer and thicker, but less dense, as shown in Figure 7.1 

(d) for the 5 minutes and 15 minutes (e). The lengths were 5.21 µm and 5.24 µm, 

respectively, and the diameters increased to 64 nm and 109 nm as shown in 

Figure 7.2 (d) and (e). 
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Figure 7.2 FE-SEM plan view images of post-annealing effect on Si nanowires (a) 

thermally as-grown Si nanowires at 470oC, (b) after post-annealing in hydrogen 
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thermal treatment for the 5 minutes (c) 15 minutes; (d) after post-annealing in 

hydrogen plasma for the 5 minutes (d) 15 minutes 

    

7.3 Density of Nanowires after Hydrogen Post-Annealing 

 In the previous section, it was shown that hydrogen post-annealing altered 

the morphologies of Si nanowires in both diameter and length. Post-annealing in 

hydrogen plasma produced even greater changes. The question that arises is what 

the source of silicon that feeds the growth of the nanowires in the post treatments 

is. To address this, analysis of the net volume changes of the silicon nanowires 

was done. 

 Figure 7.3 illustrates the density of nanowires grown at 470oC by both 

thermal and plasma post-annealing treatments. Initially, without any post-

treatment, 614 nanowires were counted in a 6 µm x 6 µm area. After 5 and 15 

minutes thermal post-anneal, the number of nanowires decreased to 101 counts 

and 69 counts, respectively, [Figure 7.3 (b) and (c)]. Similar decreases were 

observed for the plasma treated material. 
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Figure 7.3 Density of Nanowires (a) Thermally Grown at 470oC without Post-

annealing (b) Thermal Hydrogen Post-annealing for 5 minutes (c) 15 minutes and 
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Post-annealing by Hydrogen Plasma for (d) 5 minutes (e) 15 minutes (yellow dots 

were used to locate nanowire tips to assist in the nanowire counting.)  

 

Figure 7.3 (d) and (e) shows that the density reduces to 85 counts for 5 minutes 

and 67 counts for 15 minutes after annealed by hydrogen plasma.  

 Figure 7.4 plots the average length, diameter, and density as a function of 

post-anneal time. Compared to the number density (614 per 36 µm2 area) of Si 

nanowire at the beginning of each post-anneal treatment, the densities decreased 

as a function post-anneal time. Correspondingly, the larger nanowires grew at the 

expense of smaller nanowires. In effect, some of the narrow nanowires served as 

the source of silicon for the thickening nanowires.  

 This same effect was also observed with the plasma annealed samples, 

except the morphological changes were more pronounced. That is to say, the 

plasma annealed nanowires were thicker and somewhat longer than for the 

thermal annealed samples. It is interesting to note, however, that the biggest 

differences are seen in the nanowire diameters. The number density and lengths of 

the thermal and plasma treated samples were very similar to one another. 
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Figure 7.4 Comparison of Si nanowires by thermal hydrogen post-annealing and 

plasma hydrogen post-annealing in terms of their length (top), diameter (middle), 

and density (bottom) 

 

7.4 Growth Mechanism of Si Nanowire Growth by Post-anneal Process 

 The nanostructural changes discussed above can be explained by Ostwald 

ripening.71-73 Ostwald ripening is driven by the greater stability of larger diameter 

nanowires in comparison to thin wires and associated fractional contributions of 

area and curvature of the nanowire surfaces. In effect, a system will drive itself to 

reduce its overall surface energy, relative to its volume, by reducing its surface 

area and curvature. Thermal and plasma treatments serve to accelerate the 

mobility of silicon species on the nanowire surfaces and in the gas phase towards 

that end. 

 Figure 7.5 schematically presents a hypothesis of what is thought to be 

occurring during the post-anneal treatments, and which explain the observations 

of why thicker nanowires get thicker and thinner nanowires become much thinner. 

Thre are three processes envisaged including (1) surface diffusion, (2) gas 

diffusion, and (3) etching and deposition.73, 74 

As discussed earlier about gold diffusion’s role in nanowire branching in 

chapter 6.3, gold migrates along the Si nanowire’s sidewalls, especially after the 

gas bearing silicon source was stopped.45, 66, 75 As post-annealing time is increased, 

more gold is allowed to diffuse along the sidewalls by either thermally or plasma-



  135 

stimulated hydrogen. Because hydrogen plasma more actively stimulates surface 

mobility than simple thermal activation more dramatic shifts in mass should be 

expected for the plasma treated cases.4 The same effect should also be seen on the 

mobility of silicon. 

During hydrogen post-anneal process, and even when disilane gas is not 

present, it is expected that the gas phase will form relatively small concentrations 

of silicon bearing species in the form of SiH, SiH2, and SiH3 (g)). It is expected 

that gas phase mobilities in both thermal and plasma-enhanced hydrogen. 

However, the effect of the plasma particles bombarding the silicon surfaces, it is 

expected that more of the silicon gas species will be generated.74  With such 

greater concentrations, it is expected that the coarsening is faster in the plasma 

than for the simple thermal anneal.71, 72, 76 

Another contributing factor to coarsening relates to the various degrees of 

unequal rates of etching and deposition rate for the thermal and plasma-stimulated 

processes. With respect to etching, hydrogen molecules and radicals bombarded 

Si nanowire and Si substrate surfaces to remove a silicon.74, 77 These form various 

silanes SinH2n+2 and in turn re-dissociate and deposit Si atoms. In a hydrogen 

plasma post-anneal treatment, these actions are much faster than in the thermal 

post-anneal. This would explain why the coarsening processes are so different 

between the two types of treatments.  



  136 

 

 

 

 

Figure 7.5 Hypothesis Approach of Si Nanowire Growth Mechanism by Post-

annealing Based on Three Processes; (1) Surface Diffusion, (2) Gas Diffusion, 

and (3) Etching and Deposition  
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7.5 Conclusion 

 Growth of Si nanowires by a two-step experimental treatment (initially 

thermal disilane growth at 470oC followed by a hydrogen post-annealing 

treatment at 410oC without disilane) was characterized in this chapter. One result 

was that nanowires continued to grow longer and thicker in both treatments 

despite the fact that an external source of silicon had been stopped. As the anneal 

time increased, longer and thicker nanowires grew. However, the number 

densities of nanowires decreased. This can be explained by a Ostwald Ripening 

Effect, where thicker nanowires grow at the expense of thinner nanowires. The 

mechanism of coarsening was hypothesized to involve two parallel contributions, 

namely, by surface diffusion and by gas diffusion. The latter involves the 

combination of etching and deposition. In a hydrogen plasma, the surface 

diffusion rate is much faster than for simple thermal annealing.  Similarly, the 

rates of gas-solid reactions (etching and re-deposition) are also accelerated in 

plasma.  The net effect is that nanowire coarsening and elongation will be more 

pronounced for plasma treated nanowires than for simply thermally treated 

nanowires. 



  138 

 

 

 

 

 

 

Table 7.1 Summarized Comparison of Hypothesis Growth Mechanism by 

Hydrogen Thermal and Plasma Post-annealing 
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CHAPTER 8 

Conclusions 

 

 Silicon nanowires were grown epitaxially on Si (100) and (111) surfaces 

under both thermal and plasma enhanced growth conditions using the Vapor-

Liquid-solid (VLS) mechanism. Nanowire growth in disilane plasmas was studied 

as a function of temperature, time, disilane partial pressure and substrate 

preparation. Below the eutectic temperature Si-Au system (363˚C), VLS growth 

was insufficient to produce any nanowires. However, the morphological 

variations for nanowires grown at 410˚C were complex and sensitive to the 

plasma power. In addition, under the substrate preparation by thermal preanneal 

treatment at 590˚C for 9 minutes, it generally led to more uniform distribution of 

nanowires subsequently grown at 410˚C by plasma-enhanced CVD. This was 

associated with the redistribution of gold on the silicon substrates. Nanowires 

grown under these conditions were also found to have high aspect ratios that were 

thicker and longer.  

 Silicon nanowires synthesized by low temperature plasma conditions grew 

thicker, longer, and denser than thermally grown nanowires. Moreover, the 

nanowires tended to grow in a bent configuration compared to the linear 

nanowires grown under thermal conditions. The nanowires tended to bend more 

with increasing disilane partial pressure up to 25 x 10-3 mTorr. At higher disilane 

partial pressures, more nanowires with greater curvatures (smaller radii of 
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curvatures) were observed. The nanowire curvature measured geometrically is 

correlated with the shift of the main silicon peak obtained in Raman spectroscopy 

(nominally the 519 cm-1 band for bulk silicon). The greater curvatures were 

associated with the greater the greater downshifts.  This was attributed to the 

polycrystalline nature of the nanowires when they grew in a curved morphology.  

Whereas straight nanowires that obtained from thermal CVD or high temperature 

plasma CVD where single crystals, and where main Raman band were essentially 

that of bulk silicon, the curved nanowires exhibited shifts own to below 489 cm-1.  

This was attributed to the size effect due the nanocrystalline structure of the 

curved nanowires on the phonon behavior that Raman spectroscopy detects.  

 A hypothesis was formulated whereby the nanowires curved due to 

differential growth rates at diametrically opposite sides of the nanowires.  The 

growth rate of those surfaces that were more exposed to the plasma tended to be 

faster than the surfaces that were more in the shadow of the nanowire.  It was also 

hypothesized that the surfaces where the growth rates were greatest also 

possessed more surface gold that had diffused out from the gold bead tip due to 

greater stimulation of surface mobility due to plasma particle bombardment.  A 

secondary hypothesis was discussed that raised the prospect of electrostatics and 

Van der Waals forces acting on the nanowire tips to accelerate bending during 

growth.  Deduced from a systematic variation of a three-step experimental 

protocol, the mechanism for bending was associated with asymmetric deposition 

rate along the outer and inner wall of nanowire.  

 The conditions for branching and branching morphology are described for 
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the low temperature growth of silicon nanowires under thermal and RF plasma 

activation. Using a two-step growth process, the primary nanowire trunks were 

first made under large diameter growth conditions and at a relatively high 

temperature (470oC). Secondary and tertiary nanowire branching are observed and 

isolated for varying thermal and plasma power sequences. The trend clearly 

shows that increasing plasma power produces shorter but thicker nanowires. In 

addition, increasing the plasma power (up to 3.5 W) also affects the density of 

branches, which decreases at higher plasma powers. From both Raman 

Spectroscopy and high-resolution TEM characterizations, highly disordered 

smaller nanocrystalline was observed for nanowires grown at higher plasma 

powers.  

 Post-annealing thermal and plasma-assisted treatments in hydrogen were 

compared to understand the influences in the absence of an external silicon source 

(otherwise supplied by disilane). Longer and thicker nanowires were associated 

with longer annealing times due to an Ostwald-like ripening effect. The 

mechanism of coarsening was hypothesized to involve two parallel contributions, 

namely, by surface diffusion and by gas diffusion. The latter involves the 

combination of etching and deposition. In hydrogen plasmas, the surface diffusion 

rate is much faster than for simple thermal annealing. Similarly, the rates of gas-

solid reactions (etching and re-deposition) are also accelerated in plasma. The net 

effect is that nanowire coarsening and elongation will be more pronounced for 

plasma treated nanowires than for simply thermally treated nanowires. 

 Using growth methods that combine thermal with plasma-stimulated 
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growth conditions, we have observed significant nanostructural modification and 

variation in terms of nanowires’ diameter, length, density, and distribution, as 

compared to simple thermally grown nanowires. The bending of nanowires during 

growth was commonly observed, which presents the opportunity to controllably 

produce curved or even semi-circular nanowires that might find utility in the 

construction of electronic nanodevices. This study identified plasma conditions 

under which curved nanowires would form.  Basically, nanowire curving was 

observed when grown under the combination of high growth rates associated with 

the use of disilane with low temperature rf plasmas. The temperatures were not so 

low, however, as to render the gold-silicon alloy catalyst as solid, and it appeared 

necessary to maintain a liquid alloy above the Si-Au eutectic temperature of 

365˚C.   

Post-growth annealing treatments were found to be useful in making 

relatively minor adjustments in the nanowire morphology.  Under such conditions, 

nanowires were observed to coarsen and elongate via a ripening process that 

consumed thinner nanowires in order that thicker nanowires would grow.  

Finally, the measurement of nanocrystallinity in curved nanowires was 

examined systematically as a function of the nanowire curvature. Where straight 

nanowires exhibited little or no strain, and were single crystalline, the bent 

nanowires were characteristically highly polycrystalline, if not amorphous. High 

resolution imaging correlated the curvature with the nanowire thickness, i.e., the 

curvature was greatest where the nanowire was thickest.  This supported the 

model that curvature was caused by differential growth rates across the nanowire, 
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which was significantly enhanced under plasma conditions.  The growth rate was 

greatest for nanowire surfaces directly exposed to the plasma and slowest where 

the surfaces were in shadows of the plasma. 
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