
Enhancing the Usability of Complex Structured Data

by Supporting Keyword Searches

by

Ziyang Liu

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2011 by the
Graduate Supervisory Committee:

Yi Chen, Chair
Kasim Candan
Hasan Davulcu
H.V. Jagadish

ARIZONA STATE UNIVERSITY

August 2011

ABSTRACT

As pointed out in the keynote speech by H. V. Jagadish in SIGMOD’07, and also

commonly agreed in the database community, the usability of structured data by casual

users is as important as the data management systems’ functionalities. A major hardness

of using structured data is the problem of easily retrieving information from them given a

user’s information needs. Learning and using a structured query language (e.g., SQL and

XQuery) is overwhelmingly burdensome for most users, as not only are these languages

sophisticated, but the users need to know the data schema. Keyword search provides us

with opportunities to conveniently access structured data and potentially significantly en-

hances the usability of structured data. However, processing keyword search on structured

data is challenging due to various types of ambiguities such as structural ambiguity (key-

word queries have no structure), keyword ambiguity (the keywords may not be accurate),

user preference ambiguity (the user may have implicit preferences that are not indicated in

the query), as well as the efficiency challenges due to large search space.

This dissertation performs an expansive study on keyword search processing tech-

niques as a gateway for users to access structured data and retrieve desired informa-

tion. The key issues addressed include: (1) Resolving structural ambiguities in keyword

queries by generating meaningful query results, which involves identifying relevant key-

word matches, identifying return information, composing query results based on relevant

matches and return information. (2) Resolving structural, keyword and user preference

ambiguities through result analysis, including snippet generation, result differentiation, re-

sult clustering, result summarization/query expansion, etc. (3) Resolving the efficiency

challenge in processing keyword search on structured data by utilizing and efficiently main-

taining materialized views. These works deliver significant technical contributions towards

building a full-fledged search engine for structured data.

i

ACKNOWLEDGEMENTS

I would like to sincerely thank those who made this dissertation possible. The first

name undoubtedly goes to my advisor Yi Chen whose supervision and support during the

past five years turned me from a college graduate with no research experience to a suc-

cessful Ph.D. student with an abundance of publications. The time and effort she spent

working with and advising me is quite remarkable. The other members of my Ph.D. com-

mittee, K. Selcuk Candan, Hasan Davulcu and H. V. Jagadish, have also generously spent

time and effort to advise on my work, and I thank them for their contribution. It is also impor-

tant to acknowledge the contribution of the co-authors of my publications, including Susan

B. Davidson, Bin He, Hui-I Hsiao, Yu Huang, Qihong Shao, Peng Sun, Yichuan Cai, Sivara-

makrishnan Natarajan, Stephen Booher, Tim Meehan, Jeffrey Walker and Robert Winkler.

It has been a great pleasure to work with these people who made important contributions

in my research projects. Finally, I’m very grateful to my parents and friends whose support

and encouragement was invaluable during my Ph.D. study.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER . 1

1 INTRODUCTION . 1

1.1 Significance and Advantages of Keyword Search on Structured Data 1

1.2 Challenges and Solutions of Keyword Search on Structured Data 4

1.3 Overview of Our Techniques . 8

Identifying Relevant Keyword Matches and Reasoning about Effectiveness . 10

Identifying Relevant Return Information . 11

Composing Results Based on Relevant Nodes 12

Generating Query-Biased Result Snippets 14

Search Result Differentiation . 15

Structure Based Result Clustering and Query Expansion 17

Value Based Result Clustering and Query Expansion 18

Efficient Result Generation Using Materialized Views and View Maintenance 19

Searching Workflow Hierarchies . 20

2 PRELIMINARIES . 23

2.1 Data Model . 23

Tree Data Model . 23

Graph Data Model . 24

Nested Graph Data Model . 25

2.2 Keyword Query . 26

3 RELATED WORK . 27

3.1 Result Definition and Generation . 27

3.2 Query Cleaning, Auto-completion and Rewriting 29

3.3 Result Analysis . 29

4 REASONING AND IDENTIFYING RELEVANT MATCHES 32

4.1 Motivation and Goal . 32

iii

Chapter Page
4.2 Axiomatic Framework for Identifying Relevant Matches 35

Assumptions . 35

Monotonicity . 36

Consistency . 38

4.3 Analyzing Existing algorithms . 41

4.4 MaxMatch: An Approach that Satisfies the Desirable Axioms 45

Definitions . 46

Semantics of Selecting Relevant Matches 47

Property Analysis . 49

Algorithm . 50

4.5 Experiments . 55

Experimental Setup . 57

Search Quality . 58

Processing Time . 61

Scalability . 62

4.6 Summary . 63

5 IDENTIFYING RETURN INFORMATION . 64

5.1 Motivation and Goal . 64

5.2 Identifying Explicit and Implicit Return Information by Keyword Match and

Data Analysis . 67

Analyzing XML Data Structure . 67

Analyzing Keyword Patterns . 69

Generating Search Results . 71

5.3 Algorithms . 73

Indexes . 73

Query Processing . 74

5.4 Experiments . 76

Experimental Setup . 78

Search Quality . 80

Processing Time . 83

iv

Chapter Page
Scalability . 84

5.5 Summary . 86

6 RANKING FRIENDLY RESULT COMPOSITION 88

6.1 Motivation and Goal . 88

6.2 Target Driven Query Result Composition 93

Atomicity and Intactness . 93

Identifying Target Entities . 94

Composing a Query Result . 98

6.3 Algorithms . 99

Building Indexes . 99

Generating Query Results . 103

6.4 Experiments . 105

Experimental Setup . 106

Quality of Query Results . 107

Processing Time . 111

Scalability . 113

6.5 Summary . 114

7 RESULT SNIPPET . 115

7.1 Motivation and Goal . 115

7.2 Identifying Significant Information in Query Results 120

Distinguishable Snippets . 120

Representative Snippets . 121

Feature Dominance . 122

Inverse Result Dominance . 123

Faithful Summary of Results . 127

Algorithm for Snippet Information List Construction 130

7.3 Generating Small and Meaningful Result Snippets 133

Problem Definition . 133

Algorithm for Instance Selection . 135

7.4 Experiment Evaluation . 142

v

Chapter Page
Experimental Setup . 142

Snippet Quality . 145

Processing Time . 152

Scalability . 155

7.5 Summary . 157

8 SEARCH RESULT DIFFERENTIATION . 158

8.1 Motivation and Goal . 158

8.2 Desiderata of DFS and the DFS Generation Problem 160

Desiderata of Differentiation Feature Sets 160

Being Small . 160

Summarizing Query Results . 161

Differentiating Query Results . 162

Problem Definition and NP-Hardness . 167

8.3 Local Optimality and Algorithms . 169

Single-Swap Optimality . 169

Multi-Swap Optimality . 174

8.4 Feature Type Oriented DFS Construction 180

Exact Computation of (Benefit, Cost) Pairs 183

Heuristic Computation of (Benefit, Cost) Pairs 186

8.5 Evaluation . 188

Environments and Setup . 188

Usefulness of DFS . 190

Quality of DFS . 192

Processing Time . 193

Scalability . 195

8.6 Summary . 196

9 DESCRIBABLE QUERY AWARE RESULT CLUSTERING 198

9.1 Motivation and Goal . 198

9.2 Clustering Search Results Using Inferred Keyword Categories 199

9.3 Clustering Search Results with a Controlled Number of Clusters 202

vi

Chapter Page
9.4 Experiments . 210

Experimental Setup . 210

Search Quality . 212

Efficiency . 216

Scalability . 217

9.5 Summary . 220

10 EFFICIENT RESULT CLUSTERING USING RESULT SNIPPETS 221

10.1 Motivation and Goal . 221

10.2 Experiments . 223

10.3 Summary . 226

11 GENERATING EXPANDED QUERIES FROM CLUSTERED RESULTS 227

11.1 Motivation and Goal . 227

11.2 Problem Definition . 230

11.3 Iterative Single-Keyword Refinement . 235

11.4 Partial Elimination Based Convergence . 241

Keyword Selection Based on Benefit/Cost 242

Keyword Selection Based on a Selected Subset of Results 244

Keyword Selection Based on a Selected Result 245

11.5 Experiments . 246

Experimental Setup . 246

Quality of Query Expansion . 248

User Study . 248

Scores of Expanded Queries Using Eq. 11.1 253

Efficiency and Scalability . 254

11.6 Summary . 256

12 EXPLOITING AND MAINTAINING MATERIALIZED VIEWS 258

12.1 Motivation and Goal . 258

12.2 Definitions . 261

12.3 Analysis . 263

12.4 Accelerating XML Keyword Search Using Materialized Views 266

vii

Chapter Page
Search Semantics . 266

Answering Queries using Materialized Views 268

Finding Optimal Answer Set . 269

12.5 Incrementally Maintaining Views . 273

Incremental View Maintenance upon Insertion 274

Incremental View Maintenance upon Deletion 279

12.6 Experiments . 281

Exploiting Materialized Views for Evaluating Queries 282

Materialized View Maintenance . 284

12.7 Summary . 286

13 SEARCHING WORKFLOW HIERARCHIES . 287

13.1 Motivation and Goal . 287

13.2 Workflow Hierarchy . 290

13.3 Search Results of WISE . 292

Identifying Minimal Workflow Hierarchies 293

Defining Query Results as Minimal Views 293

Minimal Views . 293

13.4 Algorithms . 296

Data Processing . 296

Query Processing . 297

13.5 Experiments . 303

Experimental Setup . 305

Search Quality . 307

Efficiency . 309

13.6 Summary . 311

14 Conclusions and Future Work . 312

14.1 Conclusions . 312

14.2 Future Work . 314

REFERENCES . 317

viii

LIST OF TABLES

Table Page

6.1 Data and Query Sets for Testing Result Composition 106

8.1 An Illustration of the Heuristics Method for Computing (benefit, cost) Pairs . . . 187

8.2 Data and Query Sets for Testing Result Differentiation 190

11.1 Data and Query Sets for Testing Query Expansion 247

ix

LIST OF FIGURES

Figure Page

1.1 Challenges and Solutions for Keyword Search on Structured Data 4

1.2 Interaction of Proposed Techniques . 9

1.3 Sample XML Document . 9

1.4 A Possible XQuery for Keyword Search “men, apparel, retailer” 10

1.5 Two Results of Query “men, apparel, store” (a), Their Snippets (b) and Differen-

tiation Feature Sets with Size Limit = 5 (c) . 16

1.6 XML Data about Auctions . 17

1.7 A Workflow Hierarchy Describing a Recipe . 21

2.1 Sample DTD Fragment . 25

4.1 Sample Keyword Searches . 33

4.2 D3 and D4 . 44

4.3 Part of Query Sets for Testing MaxMatch . 55

4.4 Precision of MaxMatch on Baseball Data Set 55

4.5 Recall of MaxMatch on Baseball Data Set . 56

4.6 Precision of MaxMatch on Mondial Data Set 56

4.7 Recall of MaxMatch on Mondial Data Set . 56

4.8 F-measure of All 36 Test Queries . 59

4.9 Processing Time of MaxMatch . 61

4.10 Scalability of MaxMatch . 62

5.1 Identifying Meaningful Return Information . 75

5.2 Data and Query Sets for Testing Return Information Identification 77

5.3 Precision of XSeek on WSU Data Set . 77

5.4 Precision of XSeek on Mondial Data Set . 78

5.5 Precision of XSeek on Auction Data Set . 78

5.6 Recall of XSeek on WSU Data Set . 78

5.7 Recall of XSeek on Mondial Data Set . 79

5.8 Recall of XSeek on Auction Data Set . 79

5.9 F-measure of XSeek All Test Queries . 81

x

Figure Page
5.10 Processing Time of XSeek on WSU Data Set 81

5.11 Processing Time of XSeek on Mondial Data Set 81

5.12 Processing Time of XSeek on Auction Data Set 82

5.13 Processing Time of XSeek with Increasing Document Size 83

5.14 Processing Time of XSeek with Increasing Return Nodes 85

5.15 Processing Time of XSeek with Decreasing SLCA Depth 85

6.1 Desirable Query Results of Q9 . 89

6.2 A Query Result of Q9 Returned by Subtree Result 90

6.3 Three Query Results of Q9 Returned by Pattern Match 90

6.4 Modifier Index for the XML tree in Figure 1.3. An underlined entity indicates that

the value is the key of the entity. Otherwise, the value is not a modifier of the

entity. 101

6.5 Results of Q6 generated by Targeted Return, Subtree Result and Pattern Match 109

6.6 Quality Survey on Top-k Query Results . 110

6.7 Scores of Targeted Return, Subtree Result and Pattern Match 110

6.8 Processing Time of Targeted Return on Baseball Data 112

6.9 Processing Time of Targeted Return on Mondial Data 112

6.10 Processing Time of Targeted Return on Synthetic Data 112

6.11 Scalability of Targeted Return over Data Size 113

7.1 Part of a Query Result and Statistics about Value Occurrences. 116

7.2 A Snippet of the Query Result in Figure 1.5 . 118

7.3 IList of the Query Result in Figure 1.5 . 121

7.4 Query Result Fragment and Snippets of Query “Esprit, store, shirt” 125

7.5 Adjusted IList of the Query Result in Figure 1.5 128

7.6 Reduction from Set Cover . 134

7.7 Data and Query Sets for Testing Snippet Generation 144

7.8 Average Scores of Google Desktop, FD, FD-IRD, FD-IRD-Ratio, Optimal Algo-

rithm and Xoom over All Queries . 145

7.9 Precision Measurements for Snippet Generation 147

7.10 Recall Measurements for Snippet Generation 148

xi

Figure Page
7.11 F-measure of Snippet Generation . 148

7.12 Average F-measure of Snippet Generation wrt Snippet Size Limit 153

7.13 Processing Time of Snippet Generation on Retailer Data Set 153

7.14 Processing Time of Snippet Generation on Film Data Set 154

7.15 Processing Time of Snippet Generation on Auction Data Set 154

7.16 Processing Time of Snippet Generation on Wikipedia Data Set 155

7.17 Scalability Test for Snippet Generation on Size of Query Results 156

7.18 Scalability Test for Snippet Generation on Number of Words 156

8.1 Running Example of Algorithm 7 . 172

8.2 Single-Swap Optimality and Multi-Swap Optimality 175

8.3 Recurrence Relation . 179

8.4 A Possible Initialization of DFSs for the Results in Figure 1.5(a) 181

8.5 Points and Baffles . 184

8.6 Schema of the Retailer Data . 189

8.7 The Differentiation Powers of DFSs, Snippets and Result Prefixes 191

8.8 Quality of DFSs . 192

8.9 Processing Time of Generating DFSs . 194

8.10 Processing Time of DFS Generation with Respect to the Number of Results . . 195

8.11 Processing Time of DFS Generation with Respect to DFS Size Limit 195

9.1 Recurrence Relation for Generating a Certain Number of Clusters 208

9.2 Queries on SigmodRecord Data for Testing Result Clustering 213

9.3 Queries on Mondial Data for Testing Result Clustering 214

9.4 Queries on Auction Data for Testing Result Clustering 215

9.5 Precision of Clustering . 216

9.6 Recall of Clustering . 216

9.7 F-Measure of Clustering . 216

9.8 Efficiency of Clustering . 217

9.9 Processing Time of XSeek and XSeek+Cluster with Increasing Document Size 218

9.10 Processing Time of XSeek and XSeek+Cluster with Increasing Number of Re-

turn Nodes . 218

xii

Figure Page
9.11 Processing Time of XSeek+Cluster with Increasing Desired Number of Clusters 219

10.1 Test Queries for Clustering Using Snippets or ILists 224

10.2 Result Clustering Time Using Query Result, Snippets and ILists 224

10.3 Clustering Precision Using Query Results, Snippets and ILists 225

10.4 Clustering Recall Using Query Results, Snippets and ILists 225

11.1 Average Individual Query Score . 249

11.2 Percentage of Users Choosing Options (A), (B) and (C) for Individual Queries . 249

11.3 Collective Query Score for Each Set of Expanded Queries 249

11.4 Percentage of Users Choosing Options (A), (B), (C) and (D) for Each Set of

Expanded Queries . 250

11.5 Scores of Expanded Queries (Eq. 11.1) . 253

11.6 Query Expansion Time . 253

11.7 Scalability of Generating Expanded Queries over Number of Results 255

12.1 XML Trees D and D′ . 261

12.2 Proposition 7.2 . 264

12.3 Answering Query Using Views . 269

12.4 Find Answer Set for a Query . 271

12.5 XML Trees D1 and D2 . 274

12.6 View Maintenance upon Data Insertion . 276

12.7 View Maintenance upon Data Deletion . 279

12.8 Average Query Processing Time, Varying Number of Views 281

12.9 Average Query Processing Time, Varying Data Size 284

12.10Average View Maintenance Time, Varying Data Size 285

12.11Average View Maintenance Time, Varying Delta Tree Size 285

13.1 Sample Queries and Results on Workflow Hierarchies 289

13.2 Query Sets in Sample Scientific Domains for Testing WISE 304

13.3 Number of Nodes vs. Number of Dataflows among Keyword Matches in the

Query Results . 305

13.4 Precision of Workflow Search . 305

13.5 Recall of Workflow Search . 306

xiii

Figure Page
13.6 F-measure of Workflow Search . 306

13.7 Query Processing Time of Workflow Search on Biology Data 309

13.8 Query Processing Time of Workflow Search on Geography Data 309

13.9 Query Processing Time of Workflow Search on Ecology Data 310

13.10Workflow Search Processing Time Breakdown, Scalability and Number of Dataflows

Captured . 310

xiv

Chapter 1

INTRODUCTION

1.1 Significance and Advantages of Keyword Search on Structured Data

Structured/Semi-structured data is a type of data that contains meta-data in addition to

values. Meta-data may specify the tag/table/attribute/entity names in the data, as well

as the connection among data items, e.g., key-foreign key relationships, ID/IDREF, etc.

Meta-data may either be specified in a schema, or represented in the data itself. Typical

structured/semi-structured data include relational data, XML, RDF, workflow, social network,

etc., which have tree, graph or nested graph structures.

Typical ways of accessing structured data is using structured query languages, such

as SQL, XPath, XQuery, SPARQL, etc. A structured query specifies a precise information

need, and retrieves precise query results. However, in many applications structured data

are accessed by non-expert or casual users such as Web search, online shopping, workflow

retrieval, enterprise search, etc., and it is very difficult for casual users to issue a structured

query for the following reasons.

First, structured query languages are difficult for casual users to learn and use.

They are complex and it is easy to make mistakes when issuing structured queries. For

example, suppose we have a database with a retailer table, a store table, a merchandise

table and a sale table. In order to find the names and addresses of the Brooks Brothers

stores that sell both outwear and shirt, the following SQL query is needed:

SELECT store.name, store.address from retailer r, store s, clothes c1, clothes

c2, sale s1, sale s2 WHERE r.rid = s.rid AND s.sid = s1.sid AND s.sid = s2.sid

AND s1.cid = c1.cid AND s2.cid = c2.cid AND c1.category = “outwear” and

c2.category = “shirt” AND r.name = “Brooks Brothers”

As we can see, this is a very long query in contrast to the simplicity of the information

need; it is hard for many users to understand such a query and write it correctly.

Second, to issue a structured query, the user needs to understand the relevant part

of the schema, i.e., the tables and their attributes, and how they are connected. However,

1

the schemas of structured data can be complex, evolving or even unavailable. It is not un-

common for a database to have more than ten tables and some have even more (e.g., the

database of an online shopping company can have hundreds of tables), and some tables

may have many attributes (e.g., a camera may have more than 50 attributes). Understand-

ing such schemas and posting structured queries against them is extremely difficult. The

schema may also be evolving, e.g., new attributes may be added, a schema may be nor-

malized or denormalized, etc., and previous queries may no longer work. Moreover, for

semi-structured data such as XML, schemas may not be available at all, and issuing struc-

tured queries is especially difficult in this case. As a result, the usability of structured data

is very limited if structured query is the only way of accessing the data.

Another way of accessing structured data is using query forms or specialized appli-

cations. However, they are still not suitable for all users for several reasons. First, even for

a medium-size schema, the possible number of query forms are very large, and it is hard to

decide which one we should use to satisfy a user’s needs. Second, users are often unwill-

ing to do such advanced searches and prefer simple keyword queries. Third, specialized

applications are usually costly to develop and inflexible to use.

On the other hand, the success of Web search engines indicate that keyword search

is a highly attractive way to access data for casual users. With the observation of the

disadvantages of structured query languages/query forms, a natural question is whether

we can support keyword searches on structured data. The most important advantage of

supporting keyword search on structured data is the ease to issue keyword queries, which

is a critical factor for the large population of casual users. For example, for a user who wants

to find the names and addresses of the Brooks Brothers stores that sell both outwear and

shirt, it will be desirable if s/he can simply use a keyword query “Brooks Brothers, outwear,

shirt, name, address”. As we can see, keyword search frees the user from the burden of

learning the query language and understanding the data schema.

Besides the ease to use, there are several other advantages of supporting key-

word searches on structured data. First, compared with using structured query languages,

searching structured data using keywords gives users the opportunity of discovering inter-

2

esting/unexpected information. For example, a user who wants to check whether Stuart

is an employee at Brooks Brothers may issue a keyword query “Stuart, Brooks Brothers”.

In addition to returning this information, the search engine may additionally return a result

showing that Paul Stuart is a competitor of Brooks Brothers, which could be an interesting

and useful piece of information to the user. This would not be possible if the user used a

structured query, since the structured query needs to precisely specify the user’s intention

(i.e., whether Stuart is an employee at Brooks Brothers).

Second, compared to supporting keyword search on text documents, supporting

keyword search on structured data is advantageous in that structured data has richer se-

mantics than text documents, which gives us better opportunities to generate high quality

results. For example, consider the following text document fragment: “John is a an em-

ployee at Brooks Brothers.......... One of John’s colleagues, Mary, recently published a

book about clothing design.” In this fragment, terms “John” and “clothing design” are close

to each other in terms of occurrences. Thus if we post a query “John, clothing design”, this

document may be returned with high ranking score. However, the person named John and

the book about clothing design in this document are in fact not closely related. On the other

hand, if we have a structured data, the search engine will be able to determine that John

and clothing design are not closely related since the shortest path between them is long

(e.g., John ← name ← employee ← employees → employee → publications → book →

title→ clothing design), and it indicates that they belong to two different employees.

Due to these advantages of supporting keyword search on structured data, this

dissertation studies the topic of enhancing the usability of structured data by supporting

keyword searches. Although keyword search on structured data has the opportunities to

generate high quality results and is highly beneficial to the users, doing so is very chal-

lenging due to the ambiguity of keyword searches and the large search space. In the next

two subsections, we summarize the challenges involved in supporting keyword search on

structured data, and our techniques and contributions.

3

Structural Ambiguity

Efficiency

Challenges
Result Clustering

Snippet Generation

Result Aggregation

Result Comparison

Keyword Ambiguity

User Preference Ambiguity

Possible Solutions

Identifying Relevant Matches

Identifying Return Information

Composing Query Results

Query Cleaning

Query Auto-completion

Query Rewriting

Ranking

Generating Meaningful Results

Result Analysis

PVLDB 08 [93]

SIGMOD 07 [91], TODS 10 [94],

VLDB 07 [100] (demo)

ICDE 10 [90] (demo)

PVLDB 11 [96]

SIGMOD 08 [65], TODS 10 [95],

VLDB 08 [64] (demo)

VLDB 09 [99],

VLDB 10 [97] (demo)

TODS 10 [94]

Our Works

Using Materialized Views

Top-k Processing

ICDE 08 [92]

Figure 1.1: Challenges and Solutions for Keyword Search on Structured Data

1.2 Challenges and Solutions of Keyword Search on Structured Data

There are many challenges of supporting keyword search on structured data, which can

be summarized into two categories: ambiguity, and efficiency. Ambiguity can be further

divided into three types: structural ambiguity, keyword ambiguity and user preference am-

biguity. Figure 1.1 shows the detailed challenges of each category and the solution for

each type of challenges. The left box contains the four types of challenges, the middle

box contains the potential solutions and the right box contains our published works (other

state-of-the-art techniques will be reviewed in Chapter 3). Their relationships are indicated

by lines.

Structural Ambiguity. In structured queries, the structure of the result, i.e., the

relevant tuples or nodes as well as their connections, are precisely specified. However,

they are not specified in keyword searches. Therefore, they need to be inferred by the

search engine.

4

Specifically, we need to infer three types of information: which keyword occurrences

are relevant, what other nodes are relevant, how to connect the relevant nodes. For exam-

ple, for the SQL discussed in Section 1.1, the relevant nodes are the tuples in merchandise

table whose categories are outwear or shirt, and the tuples in the retailer table whose names

are Brooks Brothers; the return information is the name and address of the relevant stores;

and the connection of nodes is specified by the join conditions, as observed in [91, 90]. If

the user uses keyword search, she may issue a query “Brooks Brothers, name, address,

outwear, shirt”, which specifies none of the three types of information. Therefore, keyword

search engines need to infer them automatically.

It is not always possible to completely resolve structural ambiguity and return the

perfect results. In other words, there may be irrelevant results despite the effort of resolving

structural ambiguity. Therefore, it is desirable to help users analyze the results. For exam-

ple, structural ambiguity can be alleviated by ranking the query results [89, 76, 102, 60, 122,

55, 84, 48, 70, 60, 62, 21, 50, 75, 115], clustering the query results based on their struc-

tures [94], generating result snippets which summarize the structures of the results [65, 95],

etc.

Structural ambiguity is a unique challenge of keyword search on structured data.

For structured query languages, the user specifies the precise structures, thus there is no

structural ambiguity. For text search, since text documents do not have structures, this

challenges does not apply either.

Keyword Ambiguity. Keyword ambiguity is due to the imprecise keywords the user

may use. There are four types of keyword impreciseness.

Type 1: Misspelled or Unfinished Words. For example, a user searching for “Brooks

Brothers” may write “Broks Bro” as the query where “Broks” is a misspelled word and “Bro” is

unfinished. Besides, the data searched by the user may also contain misspelled words. For

this type of imprecise keywords, the search engine needs to perform query cleaning [101,

113] and query auto-completion [83, 31] before processing the query in order to avoid

generating empty results.

5

Type 2: Under-specified Words. Under-specified words either have multiple mean-

ings, or are too general. In either case, it may lead to a large number of irrelevant re-

sults. For example, “Columbia” is a multi-meaning words, which may refer to city, university,

sportswear company, etc. Thus query “Columbia” will retrieve results related to all these ob-

jects, whereas the user may be only interested in one of them. As another example, “men’s

apparel” is a very general query which may retrieve a large number of results. In this

case, the search engine should help the user refine the query to narrow down the search

scope [76, 96]. For example, for “Columbia”, the search engine may suggest queries like

“Columbia University”, “Columbia sportswear”, etc.

Type 3: Over-specified Words. Over-specified words are too specific. Their relevant

results not only include those containing these words, but also those that do not, i.e., some

relevant results will be missed if no action is taken. There are two types of over-specified

words: (1) Words with synonyms. For example, consider query “men, apparel, store”. Word

“apparel” is over-specified since it has synonyms like “clothes”. In this case, results that

contain “clothes” but not “apparel” are not retrieved, but they are potentially relevant; (2)

Queries with too specific restrictions. For example, query “Brooks Brothers clothes for men

with price 190-200 USD” may not retrieve any result due to the constraints (190-200). In this

case, the search engine needs to perform query rewriting in order to retrieve results that do

not contain the query keywords, e.g., find the synonyms of query keywords [138, 37, 106].

Type 4: Non-quantitative words. Queries containing non-quantitative words may

both miss relevant results, and retrieve irrelevant results. For example, query “expensive

clothes” is non-quantitative since it is unclear what “expensive” means. Clothes with high

prices may not have the word “expensive”, while low price clothes may have “expensive” in

their descriptions (e.g., “this clothes is as good as a much more expensive one”). In this

case, the search engine needs to perform query rewriting, e.g., map “expensive” to “price >

500USD”, to improve the search quality [138].

In summary, there are several types of approaches to address keyword ambigu-

ity, which are based on different inputs such as query and click log [37], historical query

results [138], current query results [76, 96], or just the data itself [101, 113, 83, 31].

6

Note that keyword ambiguity also applies to both structured queries and text search.

For structured queries, this problem is not so significant as users of structured queries

are usually database experts and typically are able to use the precise words. For text

search, this challenge applies and some techniques for addressing this challenge can be

reused. However, it is worth noticing the two differences. First, the query result definition

on structured data is usually different from that on text documents, which leads to different

techniques for resolving keyword ambiguity. For example, when we correct the misspelled

words in a keyword query, intuitively, we want the cleaned query to have good results [101],

thus the query cleaning method should depend on how results are defined and ranked.

Second, structured data provides more opportunities for resolving keyword ambiguity. For

example, by analyzing the distribution of attribute values in the results of a query, we can

map a possibly over-specified or non-quantitative words to an SQL predicate to improve the

search quality [138].

User Preference Ambiguity. Even if the query results are highly relevant to the

user’s search intention, it is still not the end of the story. Many keyword queries are for

information exploration purposes, where the user may not have a clear idea of what s/he

wants. Such queries are commonly seen in applications like online shopping, job hunting,

employee hiring, etc. For example, for query “men, apparel, store”, each result is a store

selling men’s apparel. Even if all results are relevant to the query, the user may need to

check multiple results to determine a few stores to visit. To help users check results quickly,

we can generate a snippet for each result [65, 95], and generate a concise comparison

table for the user selected results that highlights their key differences [99]. We can also

identify interesting aggregation attributes and group the results by these attributes to give

the user useful insights of the results. The grouping can be performed in a hierarchical

manner to form a navigation tree, typically used in faceted search [71, 29, 81, 34].

Similar as keyword ambiguity, user preference ambiguity also applies to both struc-

tured queries and text search. For structured queries, this problem is not so severe as users

of structured queries are usually database experts. Compared with text search, structured

search results provide much better opportunities for resolving user preference ambiguity.

7

For example, we can identify features from structured search results and generate a table

that compares different features in multiple results [99].

Efficiency of Result Generation. Generating results efficiently is very important

for a keyword search engine as the users are usually impatient and expect to see the results

in a few seconds. Generating keyword search results on structured data efficiently involves

several unique challenges compared with structured query and text search. Compared to

structured query, since the relevant nodes, their connections and the return information

are not specified in keyword queries, the search space of keyword queries can be much

larger. Compared to text search, the results of keyword search on structured data are

not individual documents, but rather subtrees or subgraphs of the data that need to be

dynamically identified. Given a structured data and keyword query, the number of ways to

connect nodes matching query keywords can be far bigger compared with the size of the

data. Therefore, it is more challenging to generate query results in ranked order. In fact,

even finding the top-1 result using a simple ranking function where results are ranked by

their sizes, is an NP-hard problem (i.e., the group Steiner tree problem).

In the next subsection we briefly introduce our techniques to address these chal-

lenges as shown in the right box of Figure 1.1.

1.3 Overview of Our Techniques

In this dissertation we present a set of techniques that addresses some of the challenges

above. Chapters 4 - 12 focus on the challenges in result generation and analysis on tree

and/or graph data. Chapter 13 discusses how to define search result on a non-traditional

data model: nested graphs, which have three dimensional structures. Nested graphs are

useful for modeling workflow hierarchies, which are prevalent in scientific and business

domains.

To illustrate our techniques, consider a sample query “men, apparel, store” on the

XML data in Figure 1.3. Intuitively, the user wants to find the stores that sell men’s apparels.

A possible XQuery to find such stores is shown in Figure 1.4. As we can see, this XQuery

specifies which nodes are relevant in the “for” clause (e.g., only those “store” nodes whose

8

Index Generation

Result Definition

Indexes and

Materialized

Views

Result Analysis

Relevant

Match

Identification

Return

Information

Identification

Result

Composition

Snippet

Generation

Result Clustering and

Query Refinement

Result

Differentiation

Data

Q
u
er
y
 I
n
te
rf
a
ce

Query

Results

Result Generation

Figure 1.2: Interaction of Proposed Techniques

store1
0.0.2

state

0.0.2.0

city

0.0.2.1

merchandises1
0.0.2.3

clothes1
0.0.2.3.0

fitting

men1

Texas1
0.0.2.0.0

Houston

store2
0.0.3

state

0.0.3.0

city

0.0.3.1

Texas2
0.0.3.0.0

Austin

merchandises2
0.0.3.3

retailer

0.0

category

suit1

clothes2
0.0.2.3.1

clothes3
0.0.2.3.2

clothes4
0.0.3.3.0

clothes5
0.0.3.3.1

fitting

men2

situation

formal2

situa tionfitting

women3 casual3

category

outwear3

situationfitting

men4

category

outwear4

ca tegoryfitting

women5 skirt5

name

0.0.0
product

0.0.1

Brook

Brothers

0.0.0.0

apparel

casual4

situation

casual1

name

0.0.2.2

Galleria

name

0.0.3.2

West

Village

ca tegory

outwear2

retailers

0

...

...

...
...

Figure 1.3: Sample XML Document

retailers’ product is apparel and who have men’s clothes), what is the return information in

the “return” clause (e.g., retailer name, retailer product, and the subtree of store) as well as

how the returned nodes are connected (e.g., each result contains exactly one store, rather

than multiple stores). Since the keyword query has no such information, we first need

9

for $r in doc(“retailers.xml”)//retailer[./product = “apparel”]
for $s in $r/store[.//clothes/fitting = “men”]
return <result> $r/name, $r/product, $s</result>

Figure 1.4: A Possible XQuery for Keyword Search “men, apparel, retailer”

to identify them automatically, and define the query results accordingly. After the results

are generated, we also proposed various approaches, such as generating result snippets,

generating comparison tables, clustering results, generating expanded queries, etc., to help

users analyze the results and resolve structural, keyword and user preference ambiguities.

Identifying Relevant Keyword Matches and Reasoning about Effectiveness

Each keyword may have multiple matches in the XML document, and not all of them are

necessarily relevant to the query. For query “men, apparel, store”, there are multiple

matches to keyword “store”. Both “store” nodes in Figure 1.3 are relevant to the query;

however, if a store does not sell men’s apparel, then such a “store” node is not relevant.

From the XQuery in Figure 1.4, we can clearly see that only stores that sell men’s clothes

that belong to an apparel retailer will be returned, and other store nodes are irrelevant.

In order to automatically identify relevant keyword matches, there are several differ-

ent systems that use different underlying principles and heuristics, leading to different query

results in general. A natural question is how to guide the design and to evaluate strategies

for identifying relevant matches. Due to the inherent ambiguity of search semantics, it is

hard (if not impossible) to directly assess the relevance of keyword matches and reason

about various strategies.

Interestingly, we discover that by examining query results produced by the same

approach on similar queries or on similar documents, sometimes abnormal behaviors can

be clearly observed, which exhibit the pitfalls that a good approach should avoid. From

these observations and analysis, we initiate an investigation of a formal axiomatic frame-

work to express valid changes to a query result upon a change to the user query or to

the data. After reviewing the existing strategies on identifying relevant matches using the

axiomatic framework, we find that, surprisingly, none of them satisfies all these properties.

10

We then design a novel algorithm, MaxMatch, which possesses all these properties and

efficiently identifies relevant matches. To the best of our knowledge, this is the first work

that reasons about keyword search strategies from a formal perspective, and is the first ap-

proach of identifying relevant matches that satisfies all properties in the proposed axiomatic

framework.

The analysis of existing approaches with respect to the proposed features and the

detailed techniques of MaxMatch have been published at VLDB 08 [93], and will be pre-

sented in Chapter 4.

Identifying Relevant Return Information

As discussed before, unlike a structured query where the return nodes are specified using

either a “return” clause (in XQuery) or a “select” clause (in SQL), we should effectively iden-

tify the desired return information. In other words, besides the relevant keyword matches

and the paths connecting them, some other nodes in the XML data which are not keyword

matches but are relevant to the query should also be returned.

For example, consider the keyword query “men, apparel, store”, for which a candi-

date XQuery is shown in Figure 1.4. By issuing this query, the user is likely interested in

information about the stores who sells men’s apparel, as can be observed from the “return”

clause in the XQuery. Therefore, for this keyword query, the information of the store and its

clothes, such as store’s name and location, should be output, even if they do not match the

query keywords.

As we can see, a query keyword can specify a predicate for the search, or specify

a desired return node. For example, in the above query, “men” and “apparel” are predicates

(analogous to the “for” and “where” clauses in the XQuery in Figure 1.4) and “store” is a

return node (analogous to the return clause in the XQuery). Existing approaches fail to

effectively identify relevant return nodes, which may lead to low search quality.

In Chapter 5, we present techniques that identify meaningful return nodes for key-

word search on XML without user solicitation. To achieve this, we analyze both XML data

structure and keyword patterns. We differentiate three types of information represented in
11

XML data: entities in the real world, attributes of entities, and connection nodes. We also

categorize input keywords into two types: the ones that specify search predicates, and the

ones that indicate return information that the user is seeking. Based on data and keyword

analysis, we discuss how to generate return nodes, which can be explicitly inferred from

keywords, or dynamically constructed according to the entities in the data that are relevant

to the search. Finally, data nodes that match predicates and return nodes are output as

query results with optional expansion links. This work has been published at SIGMOD

’07 [91] and TODS ’10 [94], and has been demonstrated at VLDB ’07 [100].

To the best of our knowledge, this is the first work that addresses the problem of

automatically inferring desirable return nodes for XML keyword search. It can be combined

with any method for identifying relevant keyword matches.

Composing Results Based on Relevant Nodes

After identifying relevant matches and return information , we need to compose meaningful

query results which can be effectively ranked to bring good search experience to the users.

As can be seen from the following example, the way of composing results in XML keyword

search has crucial effects on result ranking.

Consider the running example “men, apparel, store” on the XML tree in Figure 1.3.

After identifying relevant matches (i.e., the match nodes relevant to keywords “men”, “ap-

parel”, and “store”) as well as the relevant return information (the information related to

retailer, store and clothes), there are three ways to compose query results:

(1) Each result contains one instance of store, which corresponds to the XQuery in

Figure 1.4. The fragments of two results of this query are shown in Figure 1.5(a).

(2) Each result contains one instance of retailer together with all its stores, which

corresponds to the following XQuery:

for $r in doc(“retailers.xml”)//retailer[./product = “apparel”]

return <retailer> {$r/name, $r/product

for $s in $r/store[.//clothes/fitting = “men”]

return $s} </retailer>
12

(3) Each result contains one instance of clothes, which corresponds to the following

XQuery:

for $r in doc(“retailers.xml”)//retailer[./product = “apparel”]

for $s in $r/store[.//clothes/fitting = “men”]

for $c in $s/clothes

return <result> {$r/name, $r/product} <store> {$s/state, $s/city, $s/name $c} </store> </re-

sult>

These three options return exactly the same information in the set of results; how-

ever, the results are composed based on different entities (store, retailer and clothes). Intu-

itively, (1) is the most desirable way to compose results, as the search target of this query is

likely store. Since each result has a single instance of store with all its supporting informa-

tion (i.e., all clothes), each store instance can be correctly gauged by the ranking scheme

and different stores can be meaningfully ranked. On the other hand, for option (2), since

each result has many instances of store, ranking is not performed on target instances. For

option (3), the same store may be separated into many results, and it is difficult for the user

to find the information of a specific store.

As we can see, each keyword search has a goal, which is usually the information

of a real world entity or relationship among entities, as observed in [36, 38]. We use the

term search target to refer to the information that the user is looking for in a query, and

target instance to denote each instance of the search target in the data. Each desirable

query result should have exactly one target instance along with all associated evidence,

so that ranking and top-k query processing can be based on target instances, and thus

become meaningful. Specifically, query results of an XML keyword search should be: (1)

Atomic: it should consist of a single target instance; (2) Intact: it should contain the whole

target instance as well as all its supporting information. Atomicity ensures that ranking can

be performed on target instances; and intactness ensures that the ranking score of each

target instance can be correctly gauged by the ranking function.

In Chapter 6 we propose a novel technique to automatically compose atomic and

intact query results for XML keyword searches, such that each result contains exactly one

13

search target instance along with all its evidence, as illustrated in the above examples. Un-

like the existing approaches, which are oblivious to users’ search intentions, the proposed

query result composition is driven by the user search target and hence ranking friendly. This

approach has been demonstrated at ICDE ’10 [90]. This is, to the best of our knowledge,

the first work that composes ranking-aware XML keyword search results.

Generating Query-Biased Result Snippets

So far we have summarized our techniques for resolving structural ambiguity by generating

meaningful results. However, it is very difficult, if not impossible, to generate perfect results

for every query on every data for every user. In the next few subsections we summarize our

techniques for resolving structural, keyword and user preference ambiguity from another

perspective: helping the user analyze the query results after they are generated.

Queries issued by web or scientific users, including both keyword and structured

queries, may often return a large number of results. Various ranking schemes have been

proposed to assess the relevance of query results so that users can focus on the ones

that are deemed highly relevant. However, due to the ambiguity of search semantics, it is

impossible to design a ranking scheme that always perfectly gauges query result relevance

with respect to users’ intentions. To compensate the inaccuracy of ranking functions, result

snippets are used by almost every web search engine, and are also useful for structured

search results.

As an example, consider query “men, apparel, store” on the XML data in Figure 1.3.

Two sample results of this query are shown in Figure 1.5(a). Some statistics of full query

results are presented next to the result. Their snippets are shown in Figure 1.5(b). They

capture the essence of each query result in a small tree. For example, result 1 is about

store Galleria in Houston, which mainly features outwears and shirts for men.

In Chapter 7 we address the problem of generating effective snippets for structured

search results, and comprehensively test the snippets generated by our approach in terms

of quality, efficiency and scalability. We identify that a good structured result snippet should

be an information unit of a bounded size that effectively summarizes the query result. To

14

achieve this, we first analyze the semantics of the query result. We identify the key of a

query result as well as the prominent features, based on which a snippet information list

is generated. Then we need to select as many items in the information list as possible

given an upper bound of the snippet size. We show that this problem is NP-hard. A novel

algorithm is proposed that efficiently generates result snippets with a given size bound. This

is the first work that studies how to generate result snippets for structured search results.

Additionally, good snippets can also be used for efficient result clustering. Since

efficiency of result clustering is highly important, a better solution for grouping structured

keyword query results is to use a small summary of each result, rather than the results

themselves. Therefore, it is a natural idea to use the snippets, instead of the results them-

selves, for grouping the query results in order to get better efficiency. We have conducted a

set of experiments in Chapter 10 on the quality and efficiency of result clustering using snip-

pets compared with using results. The experiments suggest that the processing time using

snippets is much faster compared with the processing time using query results. Mean-

while, using snippets do not compromise much quality of clustering. Therefore, clustering

structured search results using snippets can be good alternatives when the efficiency of

clustering is important. This work has been published at SIGMOD ’08 [65], TODS ’10 [95]

and demonstrated at VLDB ’08 [64].

Search Result Differentiation

For many queries, even if the results are highly relevant, the user would still like to investi-

gate, evaluate, compare, and synthesize multiple relevant results for information discovery

and decision making. These queries are referred to as exploration queries, in contrast to

navigational queries whose intentions are to reach a particular website. As discussed be-

fore, due to the existence of exploration queries, there exists user preference challenge in

supporting keyword search on structured data.

For example, consider a customer who issues a keyword query “men, apparel,

store”. There are many results returned, where the fragments of two results are shown in

Figure 1.5(a) and some statistics information of the results is shown next to the results. As

15

store

city

Houston

name

Galleria

merchandises

situation

casual

clothes

category

outwear

fitting

men

situation

casual

clothes

category

shirt

fitting

men

……

store

city

Houston

name

West

Village

merchandises

situation

formal

clothes

category

shirt

fitting

women

situation

formal

clothes

category

outwear

fitting

men

……

Result 1 Result 2

store

city

Houston

name

Galleria

merchandises

category

outwear

clothes

fitting

men

category

shirt

clothes

store

city

Houston

name

West

Village

merchandises

situation

formal

clothes

category

outwear

fitting

men

(a)

Snippet1 Snippet 2

(b) (c)

Feature Type DFS of Result 1

(D1)

DFS of Result 2

(D2)

store: name Galleria 100% West Village

100%

clothes:

category

outwear 52%

shirt 25%

sweater 13%

outwear 53%

suit 47%

clothes:

situation

casual 94% formal 93%

of clothes: 200

situation: casual: 94%

Others: 6%

category:outwear:52%

shirt: 25%

sweater: 13%

suit: 10%

fitting: men: 70%

women: 18%

children: 12%

of clothes: 150

situation : Others: 7%

formal: 93%

category: outwear: 53%

suit: 47%

fitting: men: 70%

women: 20%

children:10%

retailer retailer

retailer retailer

name
...

product
...

name
...

product
...

Figure 1.5: Two Results of Query “men, apparel, store” (a), Their Snippets (b) and Differ-
entiation Feature Sets with Size Limit = 5 (c)

each store sells hundreds of clothes, it is very difficult for users to manually check each

result, compare and analyze these results to decide which stores to visit.

Figure 1.5(b) shows the snippets of results in Figure 1.5(a) generated by our snippet

generation approach [65, 95]. These snippets highlight the most dominant features in the

results. However, snippets are generally not comparable. From their snippets, we know

result 2 focuses on formal clothes, but have no idea whether or not result 1 focuses on

formal or casual, since the information about the store, specifically situation, is missing in

its snippet due to space limitation. Similarly, result 1 has many shirts, but we do not have

information about whether result 2 has many shirts or not. As we can see, snippets are not

designed to help users find out the differences among multiple results.

In Chapter 8, we present the techniques for structured data search result compar-

ison and differentiation, which takes as input a set of structured results, and outputs a

16

closed auction0.3.0.0seller0.3.0.0.0 buyer0.3.0.0.1 auctioneer0.3.0.0.2Bob Mary Tom0.3.0.0.2.0 price149.24
closed auction0.3.0.5seller0.3.05.0 buyer0.3.0.5.1 auctioneerFrank Tom0.3.0.5.1.0 Louis price750.30

open auction0.4.0.9seller0.4.0.9.0 buyer0.4.0.9.1 auctioneer0.4.0.9.2Tom0.4.0.9.0.0 Peter Mark price0.9.3350.00
…closed auctions0.3.0… … open auctions0.4.020080.3 20090.4auctions… … …

Figure 1.6: XML Data about Auctions

Differentiation Feature Set (DFS) for each result to highlight their differences within a size

bound. To show the usefulness of our techniques in the real world, we develop a struc-

tured search result differentiation method named XRed, and use both real and synthetic

data to evaluate our algorithms in experiments. We identify three desiderata of generating

DFSs, propose an objective function, and prove the that it is NP-hard to satisfy the objective

function. We then design four efficient algorithms for DFS generation.

The XRed method can take the results generated by any of the existing keyword

search engines on structured data as the input and generate DFSs for result differentia-

tion. In fact, the generated DFSs can also be used to compare results of structured query

(e.g., XPath, XQuery, SQL) upon user request. Sample DFSs for the query results in Fig-

ure 1.5(a) are shown in Figure 1.5(c). Our approach has been published at VLDB ’09 [99]

and demonstrated at VLDB ’10 [97]. To the best of our knowledge this is the first study on

structured search result differentiation.

Structure Based Result Clustering and Query Expansion

We have discussed the importance of identifying return information in Section 5.1. However,

it is very challenging to automatically determine return nodes with minimal user feedback,

especially for ambiguous queries, such as query “auction, seller, buyer, Tom” on the XML

data about auctions in Figure 1.6. There are many valid interpretations of the query se-

17

mantics, such as: (i) find an auction whose buyer is Tom; (ii) find an auction whose seller

is Tom; and (iii) find an auction whose auctioneer is Tom. Though an answer to any above

query semantics could be relevant to the user, returning all such answers at the same time

is problematic. It is extremely hard or even impossible for a system to automatically de-

termine which semantics are desired by the user, and thus should be given a higher rank.

Therefore in case of query ambiguity, instead of displaying a mixture of query results with

different semantics, it is desirable to cluster query results such that the results with the

same or similar query semantics are clustered together, with a user controlled clustering

granularity.

To help users quickly find the most relevant results for ambiguous queries whose

results have multiple types, we propose in Chapter 9 a novel technique which utilizes the

return information inferences to be discussed in Chapter 5 to produce clusters with de-

scribable query semantics in a user specified granularity. Compared with existing studies

on structured data clustering, there are two salient features of our approach. First, it is

query-aware, considering both query semantics and data structure/content for clustering.

Second, the semantics of each cluster is guaranteed to be describable, which helps users

prune irrelevant results.

We further discuss that, when the user specifies a desired number of clusters, k,

how to further split the clusters and make the number of clusters as close to k as possible.

This problem is shown to be NP-hard and we propose an efficient dynamic programming

method to address it. This is the first attempt on query-aware result clustering for keyword

search on structured data. This approach has been published at TODS ’10 [94].

Value Based Result Clustering and Query Expansion

The approach discussed previously is designed to cluster the results based on the structure

of the result, specifically, keyword roles and the paths from result root to each keyword

match. In other words, it addresses structural ambiguity. In fact, clustering can also be

used to resolve keyword ambiguity. For example, for query “auction, seller, buyer, Tom”, the

user may want to find a specific set of auctions about cars. In this case, the query is under-

18

specified, and clustering the results based on values in the results (e.g., description of each

auction) can be helpful. In this example, after the previous approach clusters the results

according to keyword context, we can further divide the clusters according to information

other than keyword context, and generate expanded queries like “auction, car”, “auction,

TV”, etc. We would like to find a generic way of generating expanded queries given a set

of clusters, where the clusters can be obtained using an existing approach. This approach

can be used to complement the structured based clustering method discussed before to

produce clusters and expanded queries with finer granularity.

Given a set of clusters of query results, the challenge is how to generate an ex-

panded query for each cluster, whose set of results is as close to the cluster as possible.

In other words, if we consider a cluster of results as the ground truth, our goal is then to

generate a query whose set of results achieve both a high precision and a high recall. This

is a difficult problem as the expanded queries should not only be selective to eliminate as

many results in other clusters as possible (maximizing the precision), but also be general

to retrieve as many results in this cluster as possible (maximizing the recall).

To tackle the challenges, in Chapter 11, we study the problem of how to generate a

set of expanded queries given a set of result clusters, which is independent of the clustering

method. We formally define the problem of generating optimal queries given the ground

truth of the query results and prove the APX-hardness of the problem. We design two

algorithms which generate meaningful expanded queries efficiently given result clusters.

This approach has been published at PVLDB ’11 [96].

Efficient Result Generation Using Materialized Views and View Maintenance

After results are defined, the next step is to generate the query results. Since the efficiency

of a search engine is highly important, we study the problem of how to speed up query

result generation on XML using materialized views and how to maintain the views.

Materialized views have been proved successful for performance optimization in

evaluating structured queries on databases [16, 110, 14, 129, 103, 143]. They have also

been widely used in web applications. Given the benefits of materialized views in structured

19

query processing, it is a natural idea to explore them in the context of XML keyword search.

We study two related problems in this dissertation: (1) How to exploit materialized views for

query evaluation? (2) How to incrementally maintain materialized views?

To address these questions, we present in Chapter 12 a general framework for

exploiting materialized views for XML keyword search. We first identify the relevant mate-

rialized views that potentially can be used to answer a user query. We prove that given a

set of relevant materialized views and a keyword query, the decision problem of finding the

minimal answer set is NP-hard.

We then design and implement an XML keyword search engine that can answer

queries using materialized views. A polynomial time approximation algorithm is proposed

that finds the optimal answer set of materialized views to evaluate the input query. We

also designed algorithms to answer the keyword query given the answer set. In order to

keep the materialized views fresh, they are incrementally maintained upon XML data inser-

tion or deletion. The realization of these functionalities depends on how query results are

defined. Our keyword search engine adopts a commonly used semantics to define query

results for XML keyword search, the SLCA semantics. Experiments show significant per-

formance improvements in the efficiency of answering queries using views and maintaining

views incrementally. Our study of exploiting materialized views for evaluating XML keyword

searches was published as a poster paper ICDE ’08 [92].

Searching Workflow Hierarchies

Besides tree-structured data (such as XML) and graph-structured data (such as relational

data) which are two types of commonly used structured data, another important type of

structured data is the nested graph. It is widely used to model workflow hierarchies, used

in scientific [17, 59, 123, 134, 22, 127] and business [20, 134] domains. As an example,

a workflow hierarchy describing the recipe of curry chicken is shown in Fig. 1.7.1 As we

can see, a workflow hierarchy is a three dimensional data structure. It can be considered

as an extension of trees: each group of sibling is no longer a set of nodes, but a graph.

1 Every node in the figure is associated with an identifier, which will be presented in Chapter 13.

20

put chicken

in pot

0.0.0

cook in

medium heat

0.0.1

discard

Solid

0.0.2

sprinkle curry

powder

0.1.0.1

stir in

flour

0.2.0

add chicken

broth

0.2.1

add green

pepper & onion

0.1.1.1

saute until

tender

0.1.1.2

prepare

pepper,

onion

0.3.0

fry pepper,

onion

0.3.1
cook brown

rice

0.3.2

combine

ingredients

0.3.3

bake

0.3.4

add coconut

milk

0.2.2

add garlic

0.1.0.2

add

tenderizer

0.1.0.0

wait 10 min

0.1.0.3 cook and

stir until

solid

0.2.3put into

skillet

0.1.1.0

slice

0.1.2

serve

0.4

tenderize

chicken

breast

0.1.0

concoct

0.1.1

preprocess

chicken

0.1

make chicken

broth

0.0

make rice pilaf

0.3

curry chicken

0

slice

0.1.2

cook chicken

0.2

serve

0.4

make chicken

broth

0.0

make rice pilaf

0.3

cook chicken

0.2

serve

0.4

Figure 1.7: A Workflow Hierarchy Describing a Recipe

A node represents a task, which can be a step in a recipe, a web service invocation, a

database query, a program run, or an experiment step, etc. A directed solid edge between

nodes represents their dependency, dataflows, or control flows (AND/OR/XOR), referred as

dataflow edges. A dotted edge connects a composite task to a group of tasks based on

which means the composite task is an abstraction of the group of tasks.

Due to the existence of two types of edges in a nested graph, existing techniques

for keyword search on general graphs [55, 72, 102, 104, 48, 50, 70, 12, 60, 62, 21, 122, 89]

cannot be applied to searching workflow hierarchies due to two reasons. First, a path

between two nodes, e.g., “tenderize chicken breast - preprocess chicken - cook chicken

- add coconut milk”, in a workflow hierarchy does not necessarily capture their dataflow.

Second, returning the smallest tree connecting the query keywords does not give a self-

contained workflow, and is not informative or meaningful. Therefore, different techniques

are needed to resolve the structural ambiguity challenge for processing keyword search on

nested graphs.

In Chapter 13, we present WISE, a Workflow Information keyword Search Engine.

21

Our approach generates informative (capturing the keyword matches and their dataflows),

self-contained (having a name/goal) and concise query results for keyword queries on work-

flow hierarchies using an efficient algorithm. To achieve this, we start with identifying the

minimal relevant workflow hierarchies, and define the concept of a view of a workflow hi-

erarchy, which can be considered as a projection of the 3D workflow hierarchy onto a 2D

plane which hides less important information. We then propose to identify the minimal view

of a minimal workflow hierarchy that satisfies the query as the result. We designed an algo-

rithm for identifying minimal views with optimal time complexity. WISE has been published

at PVLDB ’10 [98] and demonstrated at ICDE ’09 [125].

The remaining of this dissertation is organized as follows. Chapter 2 introduces

data and query models. Chapter 3 discusses related works. Our proposed techniques and

experimental evaluations are introduced in Chapters 4 - 13. We conclude the dissertation

and discuss future works in Chapter 14.

22

Chapter 2

PRELIMINARIES

2.1 Data Model

In this dissertation, we consider three types of structured data: structured data that can be

modeled as a tree (such as XML without ID/IDREF), structured data that can be modeled

as a graph (such as XML with ID/IDREF, RDF, relational database, social network data,

etc.), as well as structured data that can be modeled as a nested graph (such as workflow

hierarchies). Next, we introduce these three data models.

Tree Data Model

A tree data model is a connected, acyclic graph that consists of a set of nodes and edges.

Node u is the parent of node v if there is an edge from u to v, and inversely, v is a child of u.

u is an ancestor of v if there is a directed path from u to v, and inversely, v is a descendant

of u. Each node (except the root) has a single parent, and each node is a descendant-or-

self of the root. A node can be labeled with a set of keywords. Each node and edge may

have a weight.

A most commonly used tree-structured data is XML. An XML document (without

ID/IDREF) can be naturally modeled as a tree: the root node represents the root element.

Each element or attribute name is represented by an internal node, and each text value or

attribute value is represented by a leaf node, such as the one shown in Figure 1.3.

Labeling the tree nodes is important for performing operations on trees such as

computing the lowest common ancestor of two nodes. In this dissertation we use the Dewey

labeling scheme [133] to label tree data. Each node has a Dewey label as a unique ID.

We record the relative position of a node among its siblings, and then concatenate these

positions using dot ‘.’ starting from the root to compose the Dewey ID for the node. For

example, node with Dewey ID 0.2.3 is the 4-th child of its parent node 0.2. Dewey ID can

be used to detect the order, sibling and ancestor information of a node.

1. The start tag of a node u appears before that of node v in an XML document if and
23

only if Dewey(u) is smaller than Dewey(v) by comparing each component in order.

2. A node u is an ancestor of node v if and only if Dewey(u) is a prefix of Dewey(v).

3. A node u is a sibling of node v if and only if Dewey(u) differs from Dewey(v) only in

the last component.

We can also infer that given two nodes u and v, their lowest common ancestor (LCA)

has a Dewey ID that is equal to the longest common prefix of Dewey(u) and Dewey(v).

Graph Data Model

A graph data model consists of a set of nodes and edges. Each edge connects two nodes.

A node can be labeled with a set of keywords. Each node and edge may have a weight.

The graph data model can be used to model a lot of data types people commonly

use. For example, XML with ID/IDREF can be modeled as a graph, which augments the

XML tree model by adding referential edges from each IDREF node to the corresponding

ID node. A relational database can be modeled as a graph, where each node represents

a tuple, and there is an edge from u to v if the corresponding tuples can be joined by

key/foreign key. A social network can also be modeled as a graph, where a node represents

a user and an edge represents the relationship between two users.

Structured/semi-structured data can optionally have a schema (such as relational

schema, XML schema/DTD, etc.). For example, in the DTD of an XML document, for

each XML node, it specifies the names of its sub-elements and attributes using regular

expressions with operators * (a set of zero or more elements), + (a set of one or more

elements), ? (optional), and | (or). Figure 2.1 shows a fragment of the DTD for the XML

document in Figure 1.3. “ELEMENT retailer (name, product, store*)” indicates that a retailer

element should have exactly one child name, one child product, and zero or more child

store. “ELEMENT name (#PCDATA)” specifies that name node has a value child. We refer

to the nodes that can have siblings of the same name as *-node, as they are followed by a

“*” in the DTD, such as the retailer and store nodes.

24

<!ELEMENT retailers (retailer*)>

<!ELEMENT retailer (name, product, store*)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT product (#PCDATA)>

<!ELEMENT store (state, city, name, merchandises)>

Figure 2.1: Sample DTD Fragment

In this dissertation, we do not require a structured document to be associated with

a schema or DTD. If the schema or DTD is available, we can make use of it to infer search

semantics; however, in case the schema and DTD is absent, we are still able to intelligently

infer the semantics and produce reasonable results solely based on the data itself. Details

will be shown in the following chapters.

Nested Graph Data Model

A nested graph data model consists of a graph G and a set of abstract node specifications.

Nodes in G are called atomic nodes or leaf nodes. Each abstract node represents an

abstraction of a set of nodes, each of which is either an atomic node, or another abstract

node. For an abstract node v which abstracts a set S of nodes, each node s ∈ S is a child

of v and v is a parent of s. Descendants and ancestors can be defined accordingly. There

is a root node which is the ancestor of any other node.

This data model is useful for describing workflow hierarchies, such as the one

shown in Figure 1.7. A workflow consists of a set of tasks and their relationships/dependencies

for accomplishing a scientific or business goal (e.g., testing which two proteins are related).

Since a workflow may be large, complex and contain details that are uninteresting to most

users, people create composite tasks for workflows, each of which abstracts a set of tasks

in the workflow. This forms a three dimensional structure which corresponds to the nested

graph data model.

25

2.2 Keyword Query

In this dissertation, we consider the user input as a set of keywords, each of which may

match name and/or value nodes in the XML tree. Since we use an unordered model, query

(men, apparel) and query (apparel, men) have the same effect. If a keyword k is contained

in the label of u, we say that u is a match to k.

In this dissertation we consider AND semantics (i.e., conjunctive queries) for key-

word queries, i.e., each result of a keyword query should contain all keywords in the query.

Chapters 4 - 6 discuss result definition and generation for keyword search on tree data.

They take tree data and keyword query as input, and generate tree-structured query re-

sults. Chapters 7 - 11 discuss result analysis for tree-structured results, which are returned

by most existing keyword search systems on tree/graph data. Chapter 12 discusses effi-

cient result generation on trees. Chapter 13 discusses result definition and generation on

nested graphs.

26

Chapter 3

RELATED WORK

This chapter briefly discusses the literature on keyword searches on structured data. Sec-

tion 3.1 discusses works on query result definition and generation (i.e., resolving structural

ambiguity and efficiency challenges), Section 3.2 discusses works on query cleaning, auto-

completion and rewriting (i.e., resolving keyword ambiguity), and Section 3.3 discusses

works on query result analysis (i.e., resolving structural, keyword and user preference am-

biguities).

3.1 Result Definition and Generation

Since keyword search has no structures, it is important to resolve the structural ambiguity

and find the meaningful structures for keyword queries. To do so, we can either infer the

structures based on the data/schema and define query results accordingly, or make use of

query forms.

Result Definition on XML. For keyword search on XML trees, it is observed that

descendant nodes provide more specific information than ancestor nodes, thus many ap-

proaches are based on lowest common ancestors (LCA) for identifying relevant matches

and composing query results. There are a number of variants of selecting particular LCA

nodes as the roots of results, e.g., smallest lowest common ancestor (SLCA) [144, 91, 93,

61], efficient lowest common ancestor (ELCA) [56, 145], meaningful lowest common an-

cestor [86], compact valuable lowest common ancestor (CVLCA) [82], etc. XReal [18] is

an XML search engine that computes the root nodes of the results and the relevant nodes

using the statistics of the XML data. An algorithm for computing top-k results using rank-

ing functions for SLCA and ELCA is developed [33]. The ranking factors adopted in [33]

include node weight, node depth, and the score of a result can be any monotonic function

that aggregates the node scores. Compared to the our MaxMatch method, none of these

approaches satisfies all properties in our proposed axiomatic framework and may exhibit

counter intuitive behaviors, as to be discussed in details in Chapter 4.

27

Result Definition on Graph. For keyword search on graphs, most approaches

[55, 72, 102, 104, 48, 50, 70, 12, 60, 62, 21, 122, 89] adopt the minimal tree semantics. A

minimal tree is a tree containing all keywords in the query, such that the removal of any node

will make it no longer a tree containing all keywords. Since finding minimal trees is NP-hard

(in particular, the minimal tree with the smallest tree size is actually the group Steiner tree),

these approaches focus on different techniques to efficiently generate ranked results, in the

presence of schema or the absence of the schema. Certain approaches allow a minimal

tree to omit some keywords if a connected component of the data graph does not contain

all keywords [102].

Query Forms. As discussed in Chapter 1, query forms is another way to resolve

structural ambiguity and help casual users access structured data. They are often used as

an advanced search feature, which are suitable for the users who want to retrieve precise

results without the need to learn structured queries or the data schema. Since the possible

number of query forms for a database can be very large, existing approaches selects the

most promising query forms, either by analyzing the data and schema, or by asking the

user to issue a keyword query and returning the relevant forms. [40] generates a set of

query forms dynamically given a keyword query, each of which is an unfinished SQL query,

to help users better express their needs. A set of form templates is pre-defined according

to the schema, and upon receiving a keyword query, certain forms relevant to the query

are selected and returned, which can be considered as processing keyword search on text

documents. [67, 68] generate a set of promising query forms based solely on the data

and schema. They identify the desirableness of a query form by analyzing the relationship

between schema nodes as well as statistics in the data.

Answering Queries Using Materialized Views. There is a lot of work on evalu-

ating queries using materialized views for XPath, XQuery and their subsets [16, 110, 14,

129, 103, 143]. Most of the work focuses on queries with child/descendant axes, wild-

cards, XPath predicates, equality and inequality comparisons, nested FLWR blocks and

joins. [129] studies the strategy of selecting multiple materialized views for rewriting XPath

queries. Materialized view maintenance for XPath/XQuery and their subsets has also been

28

studied [120, 121]. However, due to the completely different result definition, answering

keyword queries on structured data using materialized views as well as maintaining the

views require novel techniques.

3.2 Query Cleaning, Auto-completion and Rewriting

As discussed before, the keywords submitted by the user may be imperfect, thus query

cleaning, auto-completion and rewriting are helpful for resolving keyword ambiguity.

[113] studies methods for query cleaning, which corrects misspelled keywords and

groups adjacent keywords that are semantically related for better efficiency. [101] proposes

an improved query cleaning approach by using a noisy channel model, which guarantees

that the cleaned query has non-empty results. [83] studies keyword query auto-completion

using a trie-based approach. [31] also proposes a trie-based auto-completion approach

for keyword search which tolerates errors in user’s input. [138] studies query rewriting,

which maps each keyword to a predicate or an ORDER BY clause based on analyzing the

results retrieved by similar queries. [37] is another query rewriting approach which, given

a keyword, generates its synonyms, hypernyms and hyponyms based on the click logs of

Web search engines. There are also works that generate new queries based on popular

words in the original query result [142, 28, 26, 130, 76, 119], considering factors like term

frequency, inverse document frequency, ranking of the results in which they appear, etc. In

particular, [76, 130] exploit relational databases instead of text documents, and [130] only

considers term frequency but has the advantage of generating expanded queries without

evaluating the original one. [132] additionally considers the proximity to the original query

keywords when selecting words from results or corpus to compose new queries. Compared

to these approaches, our query refinement methods to be presented in Chapter 11 is based

on clustered query results, thus it provides a better categorization of the query results for

ambiguous queries.

3.3 Result Analysis

Result analysis techniques, including result ranking, clustering, snippets, differentiation,

aggregation, etc., help users quickly understand and analyze the results, hence gain useful

29

insights from the results. Using these techniques, the user will be able to quickly understand

the structure of a result, the keyword semantics in a result, as well as the comparison of

the results and the meaningful aggregation of the results. Therefore, these techniques help

resolve all three types of ambiguities: structural ambiguity, keyword ambiguity and user

preference ambiguity.

Ranking. There are much research on effective ranking schemes for keyword

search on structured data. There are two commonly adopted ranking factors: IR-style

ranking and proximity-based ranking. IR-style ranking uses factors like term frequency (TF)

and inverse document frequency (IDF), which are adapted from the traditional metrics in IR,

to measure the weight of a keyword in a document. The relevance of a result is measured

by an aggregation of the weight of each keyword in the result [89, 76, 84, 102, 60, 122].

Proximity-based ranking measures proximity of keywords in a result based on the obser-

vation that a shorter path between two nodes indicates a closer relationship than a longer

path does [55, 84, 48, 70, 60, 62, 21, 50, 75, 115, 122].

Clustering. A number of approaches have been proposed for clustering XML doc-

uments. Most of the approaches utilize tree edit distances or its variances as the simi-

larity measure [11, 87, 47, 45, 107, 140, 139, 78, 128] and others adopt a vector space

model [52, 137, 136]. [11] uses the frequent substructures set to measure the similarity be-

tween documents. [87, 47, 45] propose different methods to summarize the graph. Based

on the summarization they calculate the similarity between XML documents, which is more

efficient compared with using the document trees. However, they do not consider data val-

ues, thus are inapplicable for clustering search results. [140, 139] measure the similarity

between different XML documents by leveraging the schemata of documents. [128] pro-

poses to incorporate ontology (i.e. WordNet) into the XML clustering. [131] performs an

empirical study and verified that query-specific clustering increases the effectiveness of in-

formation retrieval compared with static clustering. Note that existing approaches focus on

clustering XML documents (which can be search results) in a way independent of the user

query.

XBridge [85] performs query-dependent query result clustering on XML based on

30

the path from the XML root to each result root. Compared to this approach, our clustering

method to be discussed in Chapter 9 has a finer granularity as our approach additionally

considers the information within each result. However, [85] is able to rank the clusters

and return the promising clusters without actually generating all query results. A software

company, Vivisimo1, provides applications for enterprises and governments which clusters

search results on text documents, which addresses the keyword ambiguity issue for text

search. However, the techniques used in Vivisimo is proprietary.

Snippet, Differentiation and Aggregation. As discussed in Chapter 1, user pref-

erence ambiguity can be tackled by result snippets, result differentiation and result aggre-

gation. Our proposed methods for result snippets and differentiation are presented in Chap-

ters 7 and 8. For result aggregation, [147] proposes to find minimal sets of tuples when the

user searches a relational table, such that they contain all the query keywords, and share

all or most of the values of a set of user specified attributes. [51] automatically identifies

group-by attributes and values of search results to maximize the average score of the se-

lected results. There are also a number of faceted search approaches [71, 29, 81, 34] that

generate navigation trees for structured query results, in which each level has one or more

facets (attributes). Navigation trees are generated with the goal of minimizing the user’s

navigation cost to find relevant results, where the navigation cost is estimated through a

variety of sources such as query log, result entropy, etc.

1http://vivisimo.com

31

Chapter 4

REASONING AND IDENTIFYING RELEVANT MATCHES

4.1 Motivation and Goal

As discussed in Chapter 1, structural ambiguity of keyword search is caused by the lack of

structures in a keyword search. A structured query, such as XQuery, specifies the precise

structure of the result, i.e., what are the relevant nodes that should be selected (in the “for”

and “where” clauses); what are the nodes that should be returned (in the “return” clause);

how should the nodes be connected (how the XQuery should be structured, e.g., which

node is the result root, how many nodes of each type are contained in a result, etc.). To

resolve structural ambiguity, this information needs to be automatically inferred for keyword

searches on structured data. In this chapter, we work on the problem of identifying relevant

keyword matches (analogous to inferring “for” and “where” clauses for keyword searches).

Chapters 5 and 6 discusses inferring return information and node connection, respectively.

For a keyword search, each keyword may have multiple matches in the XML doc-

ument, and not all of them are necessarily relevant to the query. Consider query “Galleria,

city” on the XML data in Figure 1.3 for example. There are multiple matches to keyword

“city”, but only the one with ID 0.0.2.1 is relevant to the query. Many different approaches

have been proposed for identifying relevant keyword matches on XML using various con-

cepts of Lowest Common Ancestor (LCA), including [144, 86, 56, 82, 43]. For example,

a match is considered to be irrelevant in XKSEarch [144] if it is a descendant-or-self of a

smallest LCA (SLCA) node, which is an XML tree node that contains all keywords in its

subtree and none of its descendants does.

Different systems use different underlying principles and heuristics, leading to dif-

ferent query results in general. How to guide the design and to evaluate XML keyword

search strategies are becoming critical research problems. However, due to the inherent

ambiguity of search semantics, it is hard (if not impossible) to directly assess the relevance

of query results and reason about various strategies.

Interestingly, we discover that by examining query results produced by the same

32

Q1 Galleria, state
Q2 Brooks Brothers, Galleria, state
Q3 Brooks Brothers, Galleria, West Village, city
Q4 store, Texas
Q5 store, Texas, Galleria
Q6 Brooks Brothers
Q7 Galleria, Texas
Q8 Texas, apparel, retailer
Q9 men, apparel, store

Figure 4.1: Sample Keyword Searches

XML keyword search strategy on similar queries or on similar documents, sometimes ab-

normal behaviors can be clearly observed, which exhibit the pitfalls that a good search

strategy should avoid. Let us start with some examples.

Example 4.1 Consider XML tree D1 that consists of the nodes in solid lines in Figure 1.3

(i.e., all nodes except the subtree rooted at city (0.0.3.1), where each node is associated

with a unique ID (to be discussed later; some node IDs are omitted), and the keyword

searches listed in Figure 4.1.

[Q1, D1]:Processing query Q1 (Galleria, state) which searches for the state of Gal-

leria on D1, a reasonable result contains matches in the subtree rooted at the store1, but not

the match node state (0.0.3.0) of store West Village. Such a query result will be produced

by many existing XML keyword search systems [144, 56, 86, 43, 82].

[Q2, D1]: To search for the state of Galleria for retailer Brooks Brothers, the user

would issue Q2 (Brooks Brothers, Galleria, state), containing one more keyword Brooks

Brothers than Q1.1 A query result as produced by [144, 56, 43] includes all matches in the

subtree rooted at retailer (0.0). Thus node state (0.0.3.0) is now included, which is unlikely

to be justifiable. A reasonable result should still exclude this state node since it is not related

to keyword Galleria.

Example 4.2 [Q3, D1]: Consider Q3 (Brooks Brothers, Galleria, West Village, city) on XML

tree D1, searching for the city of both Galleria and West Village. A reasonable query result

1Suppose query segmentation has been performed and Brooks Brothers is considered as a single keyword.

33

should include the matches to Brooks Brothers, Houston and West Village as well as the

city node with ID 0.0.2.1, as produced by many existing XML keyword search systems [144,

56, 86, 43, 91].

[Q3, D2]: Suppose the city information of store West Village is now inserted to the

XML tree D1 as represented by the dotted line, which results in an XML tree D2. Now D2

has the city information for both stores, as requested by Q3.

An empty result, as produced by [86, 82, 43], is unlikely to be desirable. When

AND semantics is considered, a keyword search is a positive query. A search strategy that

outputs one query result for Q3 but outputs nothing when a new data node is inserted is

abnormal. A more reasonable query result for Q3 on D2 should additionally include the city

node with ID 0.0.3.1 compared to the result on D1.

From these examples we can observe that there should be some correlation of the

query results generated by a desirable XML keyword search engine of two similar queries

on the same document or the same query on two similar documents. Since abnormal

behaviors can be more easily identified when checking query pairs or document pairs than

considering a single query on a single document, we attempt to assess the quality of XML

keyword search engines from a new angle: capturing desirable changes to a query result

upon a change to the query or data in a general framework.

Indeed, the approach that formalizes broad intuitions as a collection of simple ax-

ioms and evaluates various solutions based on the axioms has been successfully used

in many areas, such as mathematical economics [111],2 clustering [73], discrete location

theory [57], and collaborative filtering [112].

In light of the success of an axiomatic approach in those areas, we initiate an inves-

tigation of a formal axiomatic framework to express valid changes to a query result upon an

addition to the user query or to the data.3 This is, nevertheless, very challenging. As we can

see, when a new keyword is added to a query or when a new data node is inserted, some

2A striking case is the axioms on social choice functions [15], which can not be simultaneously satisfied by
any solution, proposed by Kenneth Arrow, a co-recipient of the 1972 Nobel Prize in Economics.

3 The desirable behaviors of an algorithm are symmetric for deletions, whose details are omitted.

34

keyword matches should become relevant and be added to the query result, such as Brooks

Brothers (0.0.0.0) for [Q2, D1] and city (0.0.3.1) for [Q3, D2]; but not all the matches, such

as state (0.0.3.0) for [Q2, D1]. Similarly, some keyword matches should become irrelevant

and be removed from the query result, but not all the matches.

After analyzing valid changes to query results, independently of any particular al-

gorithm, we find that the properties that an XML keyword search algorithm should possess

are very simple and intuitive: data monotonicity, query monotonicity, data consistency and

query consistency. An algorithm that shows the abnormal behaviors illustrated in the above

examples violates at least one of the properties, as will be analyzed later in this chapter.4

After reviewing the existing strategies on XML keyword search, we find that, sur-

prisingly, none of them satisfies all these properties. We then design a novel XML keyword

search engine, MaxMatch, which possesses all these properties and efficiently processes

user queries.

4.2 Axiomatic Framework for Identifying Relevant Matches

Assumptions

We first introduce an assumption of query results before we proceed to discuss the proper-

ties.

Assumption: Processing query Q on XML data D will return a set of query results,

denoted as R(Q,D). Each query result is a tree defined by a pair r = (t,M), where t is

the root, M is a subset of matches in the tree, consisting of all the matches in the tree that

are considered as relevant to Q. Every keyword in Q has at least one match in M . A query

result is a tree consisting of the paths in D that connect t to each match in M (as well as its

value child, if any). The number of query results, |R(Q,D)|, is the number of (t,M) pairs.

Note that one query result should not be subsumed by another, therefore the root

nodes t in R(Q,D) should not have ancestor-descendant relationship.

Example 4.3 Consider Q2 (Brooks Brothers, Galleria, West Village, city) on D1 in Fig-
4However, the proposed properties may not be complete, i.e. a system that satisfies these properties is not

necessary a perfect system.

35

ure 1.3, which searches for the city of Galleria and West Village which are stores of Brooks

Brothers. There is only one correct query result, where t= retailer, M = { Brooks Brothers,

Houston, West Village, city (0.0.2.1) }. The query result is a tree consisting of the paths

from retailer to each node in M , including their value children.

In this section we reason about identifying relevant matches to generate a query

result. Instead of directly assessing the relevance of match nodes, we propose an axiomatic

framework that characterizes the valid connection between the original query results and

the new query results generated by the same algorithm when an update is performed on the

query and/or the data. Specifically, property monotonicity captures reasonable changes to

the number of query results (i.e. |R(Q,D)|); and consistency captures reasonable changes

to the content of the set of query results (i.e. M sets in R(Q,D)).

Note that our approach is independent of any particular algorithm, therefore in this

section we present some meaningful query results to illustrate the proposed properties,

without considering how to design an algorithm that generates those results.

Monotonicity

Monotonicity describes the desirable change to the number of query results with respect to

data updates and query updates.

Data Monotonicity. If we add a new node to the data, then the data content be-

comes richer, therefore the number of query results should be (non-strictly) monotonically

increasing. Analogous to keyword search on text documents, adding a word to a document

that is not originally a query result may qualify the document as a new query result. Sim-

ilarly, for keyword search on XML trees, adding a node to the data may enable an XML

subtree that is not originally a query result to be a new query result. Let us look at an

example before defining data monotonicity formally.

Example 4.4 Adding a new data node may increase the number of query results. Consider

query “store, city” on XML data D1 shown in Figure 1.3, which searches for the city of a

store. Ideally, there should be one query result, rooted at store (0.0.2) with the matches
36

in its subtree, and the paths connecting them. Now consider an insertion of a city node

(0.0.3.1) and its value Austin to D1, which results in XML tree D2. Ideally, we should have

one more query result: a tree rooted at store (0.0.3).

The number of query results may also stay the same after a data insertion. Consider

Q3 (Brooks Brothers, Galleria, West Village, city), on D1 and D2, respectively. For each

document there should be a single query result tree, rooted at retailer, as this subtree

contains at least one relevant match to each keyword. Though the set of relevant matches

in the subtree rooted at the retailer node are different for D1 and D2
5, the number of query

result is one for both XML documents. On the other hand, if R(Q3, D2) has an empty set of

query results as discussed in Example 4.2, it violates data monotonicity. This is undesirable

as the cities of both Galleria and West Village are indeed present in D2.

Definition 4.1 (Data Monotonicity) An algorithm satisfies data monotonicity if for a query

Q and two XML documents D and D′, D′ = D ∪ {n}, where n is an XML node, n /∈ D,

the number of query results on document D′ is no less than that on D, i.e., |R(Q,D)| ≤

|R(Q,D′)|.

Query Monotonicity. If we add a keyword to the query, then the query becomes

more restrictive, and the number of query results should be (non-strictly) monotonically

decreasing. Analogous to keyword search on text documents, adding a keyword to the

query can disqualify a document that is originally a query result to be a result of the new

query. Similarly, for XML keyword search, adding a new keyword can disqualify a query

result of the original query if it is far away from any match to the new keyword.

Example 4.5 Adding a new keyword may decrease the number of query results. For ex-

ample, there are two query results when processing Q4 on the XML data D2, rooted at

store (0.0.2) and store (0.0.3) respectively. Now suppose we add one more keyword Galle-

ria to the query, which results in Q5 in Figure 4.1, searching for the store named Galleria.

The query result rooted at node store (0.0.2) is still a relevant query result, However, the

5We discuss the desirable changes of relevant matches in consistency property.

37

one rooted at store (0.0.3) becomes invalid, as it does not contain any match to Galleria

in its subtree. To satisfy the AND semantics of the query, one would think of replacing the

query result rooted at store (0.0.3) with the one rooted at retailer which contains at least

one match to each keyword in its subtree. However, since match node Galleria belongs to

a different store than match nodes store (0.0.3) and Texas (0.0.3.0.0), they are unlikely to

be meaningfully related to define a relevant query result. Therefore, the number of query

results of Q5 is reduced to one.

The number of query results may stay the same after a query insertion. Consider

Q1 and Q2 on D1, where Q2 contains one more keyword Brooks Brothers than Q1. The

query result R(Q1, D1) would be store (0.0.2) along with the match nodes in the subtree;

the query result R(Q2, D1) would be retailer along with the relevant match nodes. Though

the returned information of processing Q1 and Q2 is different, both queries have the same

number of query result: one.

Definition 4.2 (Query Monotonicity) An algorithm satisfies query monotonicity if for two

queries Q and Q′ and an XML document D, Q′ = Q ∪ {k}, where k is a keyword, k /∈ Q,

the number of query results of Q′ is no more than that of Q, i.e., |R(Q,D)| ≥ |R(Q′, D)|.

Consistency

Monotonicity describes how the number of query results should change upon an update to

the data or query. Consistency describes how the content of query results should change

upon an update to the data or query. Intuitively, the delta of two sets of query results can

be defined as the biggest subtrees that are in one set of query results but not in the other,

named as delta result trees.

Example 4.6 Consider R(Q3, D1) and R(Q3, D2). The subtree rooted at city (0.0.3.1)

is the biggest subtree that is in R(Q3, D2) but not in R(Q3, D1), i.e., a delta result tree.

Indeed, every node in this subtree is in R(Q3, D2), and none of them is in R(Q3, D1). On

the other hand, the subtree rooted at its parent node store (0.0.3) is not a delta result tree,

as some nodes, e.g. store (0.0.3), state (0.0.3.0) are in R(Q3, D1).

38

Now we formally define a delta result tree in XML keyword search as the subtree

that newly becomes part of the set of query results upon an insertion to the data or query.

Note that a delta result tree could be a query result itself, or could be part of a query result.

Definition 4.3 (Delta Result Tree (δ)) Let R be a set of query results of processing query

Q on data D, and R′ be the set of updated query results after an insertion to Q or D. A

subtree rooted at a node n in a query result tree r′ ∈ R′ is a delta result tree if desc-or-

self(n, r′) ∩ R = ∅ and desc-or-self(parent(n, r′), r′) ∩ R ̸= ∅, where parent(n, r′) and

desc-or-self(n, r′) denotes the parent, and the set of descendant-or-self nodes of node n

in a tree r′, respectively. The set of all delta result trees is denoted as δ(R,R′).

Data Consistency. After a data insertion, each additional subtree that becomes

(part of) a query result should contain the newly inserted node. Analogous to keyword

search on text documents, after we add a new word to the data, if there is a document that

becomes a new query result, then this document must contain the newly inserted word.

Similarly, for keyword search on XML trees, after we add a new node to the XML data, if

there exists a delta result tree in the new query result, then this delta result tree should

contain the newly inserted node to be qualified (because otherwise, this sub-tree should

not be part of the new query result in order to be consistent with the original query result).

Let us look an example before defining data consistency formally.

Example 4.7 Consider query “store, city” on XML data D1 shown in Figure 1.3, which

searches for the city of a store. There is one query result, consisting of store (0.0.2) and the

matches in its subtree. Now consider D2 obtained after an insertion of a city (0.0.3.1) node

along with its value Austin to D1. This insertion qualifies a new query result for query “store,

city”, consisting of store (0.0.3) and the matches in its subtree. This new query result is a

delta result tree, as it is the biggest subtree that is in the new result but not in the original

result. It is valid with respect to data consistency since the delta result tree contains the

newly inserted match node city (0.0.3.1).

Consider Q1 “Galleria, city” on D1 and D2, searching for the city of Galleria. Al-

though the newly inserted node city (0.0.3.1) is a match of Q1, the query result should not
39

change. Intuitively, this match refers to the city of a store other than Galleria, and therefore

is irrelevant. In this case, there does not exist a delta result tree, and data consistency holds

trivially.

It is easy to verify that the changes to the query results in the above examples also

satisfy data monotonicity.

Definition 4.4 (Data Consistency) An algorithm satisfies data consistency if for query Q

and two XML documents D and D′, D′ = D ∪ {n}, where n is an XML node, n /∈ D, if

δ(R(Q,D), R(Q,D′)) is not empty, then every delta result tree contains n (so there can

only be one delta result tree).

Query Consistency. If we add a new keyword to the query, then each additional

subtree that becomes (part of) a query result should contain at least one match to this

keyword. Analogous to keyword search on text documents, after we add a new keyword

to the query, if a document remains to be a query result, then it must contain a match to

the new keyword. Similarly, for keyword search on XML trees, after we add a new keyword

to the query, if there exists a delta result tree in the new query result, then this delta result

tree must contain at least one match to the new keyword (because otherwise, this sub-tree

should not be part of the new query result in order to be consistent with the original query

result).

Example 4.8 Consider again Q4 on XML data D2 in Figure 1.3. We have two query results:

store (0.0.2) and the matches in its subtree; store (0.0.3) and the matches in its subtrees. If

we add one more keyword Galleria to the Q4, which results in Q5, then store (0.0.3) should

no longer be a query result, which satisfies query monotonicity. On the other hand, the

query result related to store (0.0.2) should add the subtree rooted at city (0.0.2.1), which is

a delta result tree. This is valid with respect to query consistency since this subtree contains

a node matching the new keyword Galleria.

Now consider Q1 and Q2 on D1, where Q2 has one new keyword Brooks Broth-

ers compared with Q1. Compared with R(Q1, D1), R(Q2, D1) should additionally contain

40

the subtree rooted at name (0.0.0). This is valid with respect to query consistency since

the delta result tree rooted at name (0.0.0) contains a match to the new keyword Brooks

Brothers. On the other hand, if R(Q2, D1) also contains store (0.0.3), then there is another

delta result tree compared to R(Q1, D1), rooted at store (0.0.3). However, since this delta

result tree does not contain any match to the new keyword Brooks Brothers, this violates

query consistency. This query result is indeed undesirable as state (0.0.3.0) is irrelevant

with store Galleria.

Definition 4.5 (Query Consistency) An algorithm satisfies query consistency if for two

queries Q and Q′ and an XML document D, Q′ = Q∪ {k}, where k is a keyword, k /∈ Q, if

δ(R(Q,D), R(Q′, D)) is not empty, then every delta result tree contains at least one match

to k.

Monotonicity and consistency properties with respect to data and queries are non-

trivial, non-redundant, and satisfiable. They are not trivial, as to the best of our knowledge,

there is no existing XML keyword algorithm that satisfies all of them. They are not redundant

since we can find algorithms that satisfy one property but fail another. Detailed analysis will

be discussed in Section 4.3. Furthermore, we show that these properties are satisfiable by

proposing a keyword search semantics that satisfies all of them in Section 4.4.

4.3 Analyzing Existing algorithms

Several approaches have been proposed for identifying relevant matches for XML keyword

search, including XKSearch [144], XRank [56], XSEarch [43], Compact Valuable LCA [82]

and Schema-free XQuery [86]. In this section, we review and analyze these approaches in

terms of monotonicity and consistency with respect to data and query.

XKSearch [144]. XKSearch proposes a concept of Smallest Lowest Common An-

cestor (SLCA). For a query Q on data D, an XML node is an SLCA if it contains matches to

all keywords in Q in its subtree, and none of its descendants does. For each SLCA, all its

descendant matches are considered as relevant to Q.

41

However, not all such matches are necessarily relevant. For example, consider Q2

(Brooks Brothers, Galleria, state) on D1, where the SLCA node is retailer. Although node

state (0.0.3.0) is a match in the subtree rooted at the SCLA node, it is irrelevant to the query

as it is not the state of Galleria. This undesirable behavior can be detected by analyzing

consistency on XKSearch.

XKSearch does not satisfy query consistency. Consider Q1 and Q2 on D1. As we

can see, the subtree rooted at store (0.0.3) is a delta result tree in δ(R(Q1, D1), R(Q2, D1)).

However, it does not contain matches to the new keyword Brooks Brothers, and therefore

violates query consistency.

XRank [56]. According to the definition in XRank, an XML node is the root of

a query result if it contains at least one occurrence of each keyword in its subtree, after

excluding the occurrences of the keywords in its descendants that already contain all the

keywords. All descendant matches of such nodes are considered relevant.

XRank does not satisfy query consistency. For Q1 and Q2 on D1, XRank produces

the same result as XKSearch.

The following approaches, XSEarch, Compact Valuable LCA, and schema-free

XQuery, use a group of matches containing one match to each keyword, referred as pat-

tern match, to identify relevant matches. For a query Q on data D, these approaches find

qualified pattern matches according to their specific metrics. A match that is in a quali-

fied pattern match is considered as a relevant match. For example, consider Q2 on D1 in

Figure 1.3, there are two pattern matches, {Brooks Brothers, Galleria, state (0.0.2.0)}, and

{Brooks Brothers, Galleria, state (0.0.3.0)}. Suppose the first pattern match is considered to

be qualified, but not the second. Then all the matches in the first pattern match are relevant.

XSEarch [43]. XSEarch defines more expressive search terms than keywords.

There are three types of search terms. A node n satisfies term l : k if n.name = l and

n has a descendant leaf node whose value contains k; a node n satisfies term l : if n’s

name contains l; a node n satisfies term : k if it has a child leaf node whose value contains

k. Each word in a search term can be considered as a user input keyword. A node that

42

satisfies a search term is a match.

To identify relevant matches, XSEarch defines interconnection relationship among

two matches, and uses two semantics, namely all-pair semantics and star semantics, to

identify relevant pattern matches. Two matches n and n′ are interconnected if the shortest

path between n and n′ (through LCA(n, n′)) does not have two distinct nodes with the same

name, except n and n′. All-pair semantics considers a pattern match P to query Q on

data D as qualified if any two nodes in P are interconnected. Star semantics considers

a pattern match P as qualified if there is a node in P such that every other node in P is

interconnected with it. As we can see, for a query containing two search terms, all-pairs

and star semantics are equivalent.

XSEarch may fail to identify relevant matches even though they exist. Consider

query (:Galleria, :West Village) on D1. The nodes that satisfy the search terms are name

(0.0.2.2) and name (0.0.3.2), composing a pattern match. However, this pattern match

is not qualified since the two match nodes are not interconnected: there are two distinct

nodes (0.0.2, 0.0.3) with the same name store on the shortest path connecting them. Thus

XSEarch gives an empty result for this query. This is unlikely to be desirable as the user

may be interested in finding the relationship among two persons whose names are specified

in the query. Such a behavior can be captured by analyzing query monotonicity.

XSEarch, both all-pair semantics and star semantics, do not satisfy query mono-

tonicity. For query (:Galleria, :West Village) on D1, XSEarch has an empty query result, as

discussed above. Now consider query (store:Galleria, store:West Village), which has one

more keyword than the previous query. There is one qualified pattern match: {store (0.0.2)

: Galleria, store (0.0.3) : West Village}, which constitutes a query result. After increasing a

keyword store, the number of query results produced by XSEarch increases, thus it violates

query monotonicity.

Besides, XSEarch star semantics does not satisfy query consistency. Consider

query (:Galleria, state:) (corresponding to Q1) on D1. state (0.0.3.0) is not considered as

a relevant match, as it is not interconnected with node Galleria that matches term :Galle-

ria. Now if we add one more search term to form a new query (:Brooks Brothers, :Galleria,

43

team

players

player

name

Gasol

manager

Wallace

team

players

player

name

Gasol

manager

Wallace

name

(a) D3 (b) D4

Figure 4.2: D3 and D4

state:) (corresponding to Q2), then state (0.0.3.0) is considered as relevant. This is because

there is a qualified pattern match {name (0.0.0), Galleria, state (0.0.3.0)}, where name

(0.0.0) is interconnected with the other two nodes. Note that the relevant matches identi-

fied by XSEarch for this query is the same as those identified by XKSearch and XRank.

As discussed, such behavior is undesirable and XSEarch star semantics violates query

consistency.

Compact Valuable LCA (CVLCA) [82]. This approach proposes the concept of

Compact Valuable LCA. For a keyword query Q on data D, a node u is considered a

valuable LCA (VLCA) if there is a pattern match P that satisfies XSEarch all-pair semantics,

and u is the LCA of the nodes in P . A node u is a CVLCA if it is a VLCA of pattern match P ,

and dominates every node in P . u dominates a node v in P if for any other pattern match

P ′ that contains v, the LCA of nodes in P ′ is an ancestor-or-self of that of P .

CVLCA does not satisfy data monotonicity. Consider query (Wallace, Gasol) on D3

in Figure 4.2. Pattern match (Wallace, Gasol) is qualified as the two nodes are intercon-

nected. Now we insert a name node between nodes manager and Wallace, resulting in

the XML tree D4. Nodes Wallace and Gasol are no longer interconnected, thus the query

result on D4 is empty. Since the insertion to data results in fewer query results, this violates

data monotonicity. Such a behavior is indeed counter intuitive. If Wallace and Gasol are

considered to be relevant to each other in D3, adding the description that Wallace is a name

in D4 should not disqualify its relevance.

44

MLCA [86]. The concept of Meaningfully Lowest Common Ancestor (MLCA) is

proposed as part of Schema-free XQuery which allows users to query XML with arbi-

trary knowledge of the underlying schema. MLCA can be used to identify qualified pattern

matches and thus relevant matches in XML keyword search. Two XML nodes n1 and n2

that match keywords k1 and k2 are meaningfully related if there does not exist n′
1 ad n′

2

that match k1 and k2, such that LCA(n1, n2) is an ancestor of LCA(n′
1, n′

2). For a keyword

search Q on data D, a pattern match P is qualified if every two nodes in P are meaningfully

related. If P qualifies, the LCA of all nodes in P is defined as an MLCA of Q on D, and the

matches in a qualified pattern match are relevant.

MLCA does not satisfy data monotonicity. Consider Q3 on D1 and D2. There is

one query result produced by MLCA on D1, which is rooted at retailer. The query result

R(Q3, D2) produced by MLCA is empty, since we are not able to find a pattern match, such

that every pair of nodes in it are meaningfully related. No matter which city match we choose

in a pattern match, it is not related to at least one another node. For instance, if we choose

city (0.0.2.1), it is not related to West Village. This is because they have an LCA node

retailer. However, city (0.0.3.1) has a lower LCA with West Village, which is store (0.0.3).

Similarly, we cannot choose the other city match to compose a qualified pattern match.

Therefore MLCA violates data monotonicity since the number of query results decreases

when we add a new node to the data. Such a behavior is not desirable. Q3 is likely to

search the city of both Galleria and West Village of retailer Brooks Brothers. Since this

information is present in the data, the query result should not be empty.

In summary, none of the existing approaches for identifying relevant matches in

XML keyword search satisfies all four properties.

4.4 MaxMatch: An Approach that Satisfies the Desirable Axioms

In this section, we show that the properties proposed in Section 4.2 are satisfiable by pre-

senting MaxMatch, an effective and efficient XML keyword search technique. We first intro-

duce the semantics of MaxMatch for identifying relevant matches, then propose an efficient

algorithm to achieve it.

45

Definitions

Recall that a query result tree is define by a pair, r = (t,M), where t is the root, M is the set

of matches in the tree that are considered as relevant to Q, and every keyword in Q has at

least one match in M . We adopt a commonly used approach in the literature [86, 144, 61],

namely SLCA, to identify t, as reviewed in this section. MaxMatch addresses the challenge

of identifying relevant matches M within t.

The intuition of SLCA is that only the matches in a smallest subtree in the XML data

that contains matches to every keyword in a query are possibly relevant. A tree rooted at

node n1 is smaller than the one rooted at node n2 if n1 is a descendant of n2. Let us look

at an example.

Example 4.9 For Q1 (Galleria, state), node state (0.0.2.0) and Galleria are relevant matches

since they refer to the same store. Indeed they are in the subtree rooted at store (0.0.2),

which is a smallest subtree that contains matches to both keywords. On the other hand,

irrelevant match state (0.0.3.0) can be detected since the subtree that contains this match

and a match to Galleria is rooted at retailer, which is not a smallest subtree that contains

matches to both keywords.

As can be seen from the example, matches that are not in a smallest subtree that

contains matches to all keywords are unlikely to be relevant, such as the state node 0.0.3.0.

Choosing such smallest subtrees can prune some irrelevant matches.6

Given the intuition of such smallest subtrees, now we formally define Descendant

Matches and SLCA [144].

Definition 4.6 (Descendant Matches) For query Q on XML data D, the descendant matches

of a node n ∈ D, denoted by dMatch(n), is a set of keywords in Q, each of which has at

least one match in the subtree rooted at n.

6Additional irrelevant matches need to be pruned as will be discussed later in this section.

46

Definition 4.7 (SLCA) A set of smallest lowest common ancestor (SLCA) of matches to Q

on D, denoted by SLCA(Q,D), consists of nodes t ∈ D that satisfy the following: (i) the

set of descendant matches of t is Q, i.e. dMatch(t) = Q, and (ii) there does not exist a

node t′ which is a descendant of t, such that dMatch(t′) = Q.

Example 4.10 Continuing the previous example, there are three nodes in D1 that con-

tain matches to both keywords in Q1 in their subtrees, dMatch(0.0.2) = dMatch(0.1) =

dMatch(0) = Q. Therefore we have SLCA(Q1, D1)={0.0.2}.

In MaxMatch, a query result tree is identified as r = (t,M), where t ∈ SLCA(Q,D)

is the root. Next we introduce an XML keyword search strategy that selects relevant

matches M in the subtree rooted at t, which satisfies both monotonicity and consistency.

Semantics of Selecting Relevant Matches

Not all matches in the subtrees rooted at SLCA nodes are relevant. Recall R(Q2, D1) in

Example 4.3, where match node state (0.0.3.0) in the subtree rooted at the SLCA node

retailer in D1 is irrelevant to Q2 (Brooks Brothers, Galleria, state) since it corresponds to

store West Village.

To identify irrelevant matches, we observe that not every descendant of an SLCA

node is equally important in contributing to query results. A node in the subtree rooted at

an SLCA node may provide strictly less information than its sibling nodes. Continuing the

example of R(Q2, D1), store (0.0.3) provides strictly less information than its sibling node

store (0.0.2), since the set of descendant matches of store (0.0.3) ({state}), is a proper

subset of that of store (0.0.2) ({Galleria, state}). Therefore store (0.0.3) is considered to be

inferior than store (0.0.2) and the matches in its subtree are considered as irrelevant.

Definition 4.8 (Contributor) For an XML tree D and a query Q, a node n in D is a con-

tributor to Q if (i) n has an ancestor-or-self n1 in the SLCA set, n1 ∈ SLCA(D,Q), and (ii)

n does not have a sibling n2, such that dMatch(n2) ⊃ dMatch(n), where dMatch(n) is

the set of descendant matches of node n (Definition 4.6).

47

By Definition 4.8, an SLCA node is a contributor. Furthermore, there is at least one

contributor among sibling nodes. Now we define relevant matches based on contributors.

Definition 4.9 (Relevant Match) For an XML tree D and a query Q, a match node m in D

is relevant to Q if (i) m has an ancestor-or-self n, n ∈ SLCA(D,Q), and (ii) every node on

the path from n to m is a contributor to Q.

For Q2 on D1, every node on the path from SLCA retailer to Galleria is a contributor,

therefore Galleria is a relevant match. Similarly, Brooks Brothers and state (0.0.2.0) are

relevant matches.

Note that we consider the partial order among sibling nodes induced by the ⊂ rela-

tionship of the sets of their descendant matches, therefore a contributor is a maximal node

among its siblings. A match is considered to be relevant if its ancestors are all maximal

nodes among the siblings.

Proposition 4.1 (t,M) qualifies to be a query result, where SLCA node t ∈ SLCA(Q,D),

M is the set of relevant matches in the subtree rooted at t. In other words, M contains at

least one match to every keyword in Q.

Proof. Let M ′ be the set of all the match nodes in the subtree rooted at t in D.

According to the definition of SLCA (Definition 4.7), M ′ contains at least one match to each

keyword in Q. Removing the irrelevant matches from M ′ result in set M . If an irrelevant

match m1 to keyword k is pruned, then it must have an ancestor-or-self n1 that is not a

contributor. That is, n1 has a sibling contributor node n2, dMatch(n1) ⊂ dMatch(n2).

Therefore k ∈ dMatch(n2). By induction, there still exists at least one match to keyword k

in the subtree of t, for every keyword k ∈ Q, and finally M contains at least one match to

each keyword.

Definition 4.10 (Query Results of MaxMatch) For an XML tree D and query Q, each

query result generated by MaxMatch is defined by r = (t,M) for every t ∈ SLCA(Q,D),

where M is the set of relevant matches to keywords in Q in the subtree rooted at t. A query

result tree r consists of the contributors and relevant matches that are descendants of t.
48

Property Analysis

We prove that MaxMatch satisfies both monotonicity and consistency with respect to data

and query.

Proposition 4.2 MaxMatch satisfies data monotonicity.

Proof. Consider query Q and two XML documents D and D′, D′ = D ∪ {n},

where n is an XML node, n /∈ D. According to Definition 4.10, the number of query results

generated by MaxMatch is equal to the number of SLCA nodes. For any t ∈ SLCA(Q,D),

there are two possibilities.

• t ∈ SLCA(Q,D′).

• t /∈ SLCA(Q,D′). We still have dMatch(t) = Q, but t is no longer the root of

a smallest subtree that contains matches to all keywords. Then there must exist at

least one descendant of t that qualifies to be in SLCA(Q,D′).

Therefore, we have |SLCA(Q,D′)| ≥ |SLCA(Q,D)|, and |R(Q,D′)| ≥ |R(Q,D)|.

Proposition 4.3 MaxMatch satisfies query monotonicity. Proof. Consider two queries Q

and Q′ and an XML document D, Q′ = Q ∪ {k}, where k is a keyword, k /∈ Q. For any

t ∈ SLCA(Q,D), there are two possibilities:

• t ∈ SLCA(Q′, D)

• t /∈ SLCA(Q′, D). This is because t no longer contains matches to all keywords in

its subtree, i.e. k /∈ dMatch(t), dMatch(t) ̸= Q′. It is not possible for a descendant

of t to be in SLCA(Q′, D). At most one ancestor of t can be in SLCA(Q′, D), since

SLCA nodes do not have ancestor-descendant relationship by Definition 4.7.

Therefore, we have |SLCA(Q′, D)| ≤ |SLCA(Q,D)|, and |R(Q′, D)| ≤ |R(Q,D)|.

49

Proposition 4.4 MaxMatch satisfies data consistency.

Proof. Consider query Q and two XML documents D and D′, D′ = D ∪ {n},

where n is an XML node, n /∈ D. If δ(R(D,Q), R(D′, Q)) is empty, then MaxMatch trivially

satisfies this property.

If δ(R(D,Q), R(D′, Q)) is not empty, let n1 be the root of a delta result tree in

δ(R(D,Q), R(D′, Q)), and n2 be the parent of n1. By Definition 4.3 and 4.8, n1 is not

a contributor of (D, Q), but a contributor of (D′, Q), and n2 is a contributor of both (D,

Q) and (D′, Q). Therefore, there must be a node n3 which is a sibling of n1, such that

dMatch(n1) ⊂ dMatch(n3) holds for D, but not for D′. This shows that the delta result

tree rooted at n1 must contain the newly inserted node n, and n must match a keyword in

Q.

Proposition 4.5 MaxMatch satisfies query consistency.

Proof. Consider two queries Q and Q′ and an XML document D, Q′ = Q ∪

{k}, where k is a keyword, k /∈ Q. The proof is similar to that of Proposition 4.4. If

δ(R(D,Q), R(D,Q′)) does not exist, then MaxMatch trivially satisfies the property. Other-

wise, for the root n1 of each delta result tree in δ(R(D,Q), R(D,Q′)), n1 must contain a

match to the new keyword k in its subtree.

Algorithm

The algorithm of realizing the semantics of MaxMatch is presented in Algorithm 1. There

are four stages in the processing. First, we retrieve the matches to each keyword in the

query using procedure findMatch. Then we compute the set of SLCA nodes from the

matches using procedure findSLCA. We group all keyword matches according to their

SLCA ancestors using procedure groupMatches. Each group group[i] = {t,M} consists

of an SLCA node t, and the set of matches M that are descendants of t. Finally, the

pruneMatches procedure identifies and outputs contributors and relevant matches in M .

Next we illustrate each stage of the algorithm using Q2 (Brooks Brothers, Galleria,

50

Algorithm 1 MaxMatch
MaxMatch (keyword[w])

1: kwMatch← findMatch(keyword)
2: SLCA← findSLCA(kwMatch) {adopted from [144]}
3: group← groupMatches(kwMatch, SLCA)
4: for all group[j] do
5: pruneMatches(group[j])

GroupMatches (kwMatch[w], SLCA[u])

1: match[v]← merge(kwMatch[0], ..., kwMatch[w − 1])
2: i← 0, j ← 0
3: while (i ̸= u) or (j ̸= v) do
4: group[i].t← SLCA[i]
5: if isAncestor(group[i].t,match[j]) then
6: group[i].M = group[i].M ∪match[j]
7: j ← j + 1
8: else if group[i].M ̸= ∅ then
9: i← i+ 1

10: else
11: j ← j + 1

PruneMatches (group = (t,M))

1: i←M.size
2: start← t
3: while i ≥ 0 do
4: for each node n on the path from M [i](exclusively) to start do
5: if n matches keyword[j] then
6: set the jth bit of n.dMatch to 1
7: np ← n.parent, nc ← n.child on this path
8: if nc ̸= Null then
9: n.dMatch← n.dMatch OR nc.dMatch

10: n.last← i {record the last descendant match of n}
11: np.dMatchSet[num(n.dMatch)] ← true {let num be the function converting a binary

number to a decimal number}
12: i← i− 1
13: start← LCA(M [i],M [i+ 1])
14: i← 0
15: start← t
16: while i ≤M.size do
17: for each node n from start to M [i] do
18: if isContributor(n) = false then
19: i← n.last+ 1 {skip the matches in the subtree rooted at n}
20: break
21: else
22: output n
23: i← i+ 1
24: start← LCA(M [i− 1],M [i])

IsContributor (n)

1: np ← n.parent
2: i← num(n.dMatch)
3: for j ← i+ 1 to 2w − 1 do
4: if np.dMatchSet[j] = true && AND(i, j) = i then
5: return false
6: return true

51

state) on D2 in Figure 1.3 as a running example, which searches for the position of store

Galleria and West Village in retailer Brooks Brothers.

Matching Keywords. For a set of input keywords keyword[w], procedure findMatch

retrieves the list of data nodes sorted in the order of their ID, kwMatch[j], that match key-

word keyword[j], 1 ≤ j ≤ w. To enable efficient retrieval, an inverted index is built from a

word to the XML name or value nodes that contain this word.

Example 4.11 We start with retrieving the list of nodes matching each keyword in Q2:

Brooks Brothers, Galleria, city (0.0.2.1, 0.0.3.1), respectively.

Computing SLCA. The procedure findSLCA computes the SLCA nodes from

kwMatch according to the algorithm proposed in [144], which utilizes the Dewey labeling

scheme introduced in Chapter 2. To efficiently retrieve the information of a node with its

Dewey ID, we build a Dewey index of Btree structure, clustered by Dewey ID.

Example 4.12 In our example, the SLCA node is retailer (0.0), as this is a lowest (in fact,

the only) node that contains matches to all the keywords.

Grouping Matches. Then the groupMatches procedure groups keyword matches

kwMatch, such that the matches in each group are descendants of the same SLCA node.

First we merge kwMatch[j] ordered by Dewey ID, 1 ≤ j ≤ w, to produce a match

list ordered by Dewey ID. Then we build groups according to match and the SLCA nodes,

such that for each t ∈ SLCA, we have group[i] = (t,M), M is the set of matches in the

subtree rooted at t. According to Definition 4.7, M ̸= ∅. Furthermore, SLCA nodes do not

have ancestor-descendant relationship, a match can have at most one SLCA ancestor, and

therefore belong to at most one group. Due to these two properties and the fact that SLCA

and match are sorted by Dewey ID, the grouping can be achieved by a single traversal of

SLCA and match, during which matches that do not belong to any group (i.e. do not have

an SLCA ancestor) are discarded. We set the cursor to the beginning of SLCA, group,

and match (i = 0, j = 0). For each SLCA[i], we set group[i].t = SLCA[i]. If the current

52

node match[j] is a descendant of group[i].t, then it is added into group[i].M . Otherwise,

if group[i].M is not empty, it is possible that match[j] is a descendant of SLCA[i+ 1], we

move the cursor of SLCA and group (i + 1). If group[i].M is empty, then match[j] does

not have an SLCA node as its ancestor and does not belong to any group, therefore it is

discarded.

Example 4.13 Continuing our running example, we merge four lists of kwMatch and pro-

duce match: Brooks Brothers (0.0.0.0), state (0.0.2.0), Galleria (0.0.2.2.0), state (0.0.3.0).

We group match based on the SLCA nodes. In this example, there is only one SLCA

node: retailer (0), therefore we have group[0], where group[0].t is the SLCA node, and

group[0].M is equal to match.

Pruning Matches. Each group group = (t,M) defines a tree Tg composed of the

nodes on the paths from t to each match in M . Procedure pruneMatches identifies and

outputs the contributors and relevant matches in Tg as query results.

According to Definition 4.8, a node n is a contributor if n does not have any sibling

whose descendant match set is a proper superset of that of n. We use a boolean array

n.dMatch of size w to record the set of descendant matches of node n with respect to

query keyword[w]. This array is represented as a binary number that has 1 at position

j if and only if keyword[j] has a match in the subtree rooted at n, 1 ≤ j ≤ w. Let

num(n.dMatch) be the decimal value of n.dMatch.

Example 4.14 In the running example of processing Q2 (Brooks Brothers, Galleria, state),

node store (0.0.2) contains matches to Galleria and state in its subtree, therefore its dMatch

is 011. Similarly, the dMatch of store (0.0.3) and name (0.0.0) are 001 and 100, respec-

tively.

Instead of checking n.dMatch with respect to each of its siblings, we associate its

parent node np a boolean array dMatchSet of size 2w to record the dMatch information

of np’s children. Specifically, np.dMatchSet[i] = true if and only if np has a child n, such

that num(n.dMatch) = i.
53

If the values of dMatch and dMatchSet are set, procedure isContributor deter-

mines that a node n is a not a contributor if there exists a number j that subsumes i, and

we have np.dMatchSet[j]

= true. A number j subsumes i if bitwise AND(i, j) = i, j ̸= i.

Example 4.15 Continuing our running example, let n be the node store (0.0.3), n.dMatch =

001. Let np be its parent: retailer (0.0). Since the dMatch of np’s two children are 011 and

001, respectively, we set np.dMatchSet[1] = np.dMatchSet[3] = true. Since 011 sub-

sumes 001 and np.dMatchSet[3] = true, n is not a contributor. On the other hand, the

store node with ID 0.0.2 is a contributor.

To set the values of dMatch and dMatchSet for each group g = (t,M), the proce-

dure pruneMatches performs a post-order traversal of the tree Tg. For each node n ∈ Tg,

if n matches a keyword keyword[j], 1 ≤ j ≤ w, then we set the jth position of n.dMatch to

be 1. If n has children, we further set n.dMatch according to the bitwise OR of the dMatch

of n’s children. Then we set dMatchSet(np)[num(dMatch(n))] = true, where np is the

parent of n.

To identify relevant matches, recall that a match in M is relevant if and only if all

its ancestors up to SLCA node t are contributors (Definition 4.9). Equivalently, if a node is

disqualified as a contributor, then none of the matches in its subtree can be relevant. The

pruneMatches procedure performs a pre-order traversal of tree Tg in identifying relevant

matches. If a node reached is not a contributor, then we skip its subtree, discarding all its

descendant-or-self matches. The matches that remain in the traversal are considered to be

relevant and are then output.

Example 4.16 In the running example, tree Tg consists of the paths in D2 from group[0].t,

retailer, to each match in group[0].M . We perform a pre-order traversal on Tg. We start

with outputting the root retailer. Then since name (0.0.0) is a contributor, it is output. So

does its child, a relevant match Brooks Brothers (0.0.0.0). Similarly we output the nodes on

the path from retailer to relevant matches state (0.0.2.0) and Galleria. When we visit store

54

Baseball
QB1 Jim, Abbott, Outfield
QB2 Jim, Abbott, James, Baldwin, Starting Pitcher
QB3 store, Abbott, Baldwin
QB4* Tigers, Starting Pitcher, surname
QB4 Tigers, Starting Pitcher, surname
QB5 Tigers, Starting Pitcher, Outfield, surname
QB6 Cordero, First Base
QB7 Cordero, First Base, Tigers
QB8 1998 Abbott retailer
Mondial
QM1 United States, Birmingham, Population
QM2* United States, United Kingdom, Birmingham, Population
QM2 United States, United Kingdom, Birmingham, Population
QM3 Tasmania, Sardinia, Gotland, Area
QM4 Ethnicgroups, Chinese, Indian, Capital
QM5 Mondial, Country, Muslim
QM6 Country, Muslim
QM7 Asia, China, Government
QM8 Organization, Name, Member

Figure 4.3: Part of Query Sets for Testing MaxMatch

0

20

40

60

80

100

QB1 QB2 QB3 QB4* QB4 QB5 QB6 QB7 QB8

XKSearch XRank XSEarch(A) XSEarch(*) CVLCA MLCA MaxMatch

Figure 4.4: Precision of MaxMatch on Baseball Data Set

(0.0.3), since it is not a contributor, we move to the next match in group[0].M that is not a

descendant of store (0.0.3). In this example, there is no more matches in group[0].M so

the process is complete.

4.5 Experiments

To evaluate the effectiveness of MaxMatch, we tested three metrics: search quality mea-

sured by precision, recall and F-measure compared with the relevant query results obtained

from user studies, processing time and scalability.

For speed and scalability test, since only XKSearch/SLCA [144] and Timber’s im-
55

0

20

40

60

80

100

QB1 QB2 QB3 QB4* QB4 QB5 QB6 QB7 QB8

XKSearch XRank XSEarch(A) XSEarch(*) CVLCA MLCA MaxMatch

Figure 4.5: Recall of MaxMatch on Baseball Data Set

0

20

40

60

80

100

QM1 QM2* QM2 QM3 QM4 QM5 QM6 QM7 QM8

XKSearch XRank XSEarch(A) XSEarch(*) CVLCA MLCA MaxMatch

Figure 4.6: Precision of MaxMatch on Mondial Data Set

0

20

40

60

80

100

QM1 QM2* QM2 QM3 QM4 QM5 QM6 QM7 QM8

XKSearch XRank XSEarch(A) XSEarch(*) CVLCA MLCA MaxMatch

Figure 4.7: Recall of MaxMatch on Mondial Data Set

plementation (MLCA) [86] are available, we only compare with these two approaches and

use their query results for quality test. The quality of other approaches of identifying rel-

evant matches (XRank [56], XSEarch [43] all-pairs and star semantics and CVLCA [82])

are tested based on the semantics described in those papers.

56

Experimental Setup

Equipment. The experiments are performed on a 3.0GHz AMD Athlon(TM) dual-core CPU

running Microsoft Windows Server 2008 Enterprise operating system with 4.0GB memory.

The algorithms are implemented in Microsoft Visual C++ 8.0. We use Oracle Berkeley

DB [5] as the tool for creating inverted index and Dewey index.

The test data and part of the query sets are shown in Figure 4.3.

Data Set. We have tested two data sets: Baseball and Mondial. Baseball is a data

set about the retailers and stores of North American baseball league.7 Mondial is a world

geographic data set.8

Query Set. Our queries consist of two parts. First we pick eight distinct queries

for each data set, which are shown in Figure 4.3. These queries are chosen to represent a

variety of cases, where both tag names and values are used.

To test the validity of data monotonicity and data consistency, the queries in Fig-

ure 4.3 with a ‘∗’ in their names are evaluated on the modified data sets. QB4* is evaluated

on the Baseball data set after removing a Starting Pitcher node within retailer Tigers. QM2*

is evaluated on the Mondial data set after removing the Birmingham node of United King-

dom.

To test the validity of query monotonicity and query consistency, we design some

query pairs, such that one contains one more keyword than the other, including QB4 and

QB5, QB6 and QB7, QM1 and QM2, QM5 and QM6.

In addition, ten test queries for each data set are issued by students who are not

involved in this project, which are omitted due to limited space.

7http://www.ibiblio.org/xml/books/biblegold/examples/baseball/.
8http://www.cs.washington.edu/research/xmldatasets.

57

Search Quality

To measure search quality, we need to assess the relevance of query results. We have

conducted user surveys on the test data and queries to set the ground truth of relevant

matches of each query. Thirteen students participated in the survey. Each participant was

asked to specify relevant matches for each query. The ground truth of relevant matches are

the ones selected by at least seven out of the thirteen users.

Perception of the Proposed Properties. For the queries designed to test the

proposed properties, user study results confirm our intuition. Whenever we add a new

keyword to a query, the number of relevant query results should not increase; and if a delta

result tree exists, it should contain at least one match to the new keyword. Whenever we

add a new data node, the number of relevant query results should not decrease; and if a

delta result tree exists, it should contain the new data node.

Quality of MaxMatch. We compared the search quality of MaxMatch with XK-

Search [144], XRank [56], XSEarch [43] (including all-pair semantics and star semantics),

CVLCA [82] and MLCA [86].

To measure the search quality, we use precision, recall, and F-measure. Precision

measures the percentage of the output nodes that are desired, recall measures the per-

centage of the desired nodes that are output. F-measure is the weighted harmonic mean

of precision and recall, and is computed as:

F =
(1 + α2)× precision× recall

α2 × precision+ recall
(4.1)

The precision and recall of each approach on the test queries in Figure 4.3 are

shown in Figure 4.4 - 4.7 respectively.

Now we analyze each approach on the test queries. XKSearch always has a perfect

recall except QM4 (which will be discussed later), but generally has a very low precision as

it outputs all the match nodes under each SLCA node, which are not necessarily relevant.

Take QB4 for example, SLCA outputs the surname nodes of all the stores, including the
58

0

20

40

60

80

100

α=0.5 α=1 α=2

XKSearch

XRank

XSEarch(A)

XSEarch(*)

CVLCA

MLCA

MaxMatch

Figure 4.8: F-measure of All 36 Test Queries

ones who are not Starting Pitchers, and therefore has a low precision.

The query result of XRank, for a given query and document, is a superset of that of

XKSearch. For many test queries, XRank has the same query results as XKSearch, such

as QB4, where the surname nodes of all the stores (including the ones who are not Starting

Pitchers) are output. It has a different precision and recall from XKSearch for queries like

QM4. The semantics of QM4 is to find capitals of the countries that have ethnicgroups

Chinese or Indian. In the data, some countries have both Chinese and Indian, some have

one of them, and some have neither. XKSearch outputs the countries that have both. On

the other hand, besides outputting all such countries, XRank additionally considers the LCA

that contains all query keywords of the remaining keyword matches, which is the document

root. Therefore all keyword matches are considered to be relevant, and the information

of the countries that have either ethnicgroups of Chinese or India are output, achieving a

better recall than XKSearch. Both approaches have a low precision as XKSearch outputs

all ethnicgroups nodes within the countries that have both Chinese and Indian, while XRank

outputs all capital and ethnicgroups nodes in the entire data.

XSEarch star semantics has the same precision and recall as XKSearch on some

queries such as QB4 and QM5. Take QB4 for example. Keyword Tigers is a retailer

name, and all Starting Pitcher and surname nodes within the retailer are interconnected

with Tigers, and are considered relevant, which gives the same set of relevant matches as

XKSearch. XSEarch star semantics has a zero recall on several queries, for example, QB1.

In the data, the store named Jim Abbott is not an outfield, and the semantics of the query

59

is to find the stores that play with Jim Abbott whose position is outfield. However, since

the matches of Jim and Abbott are not interconnected with those of Outfield, XSEarch star

semantics gives an empty result, leading to zero recall.

XSEarch all-pair semantics and CVLCA have zero recall on more queries than

XSEarch star semantics, as they require that in a qualified pattern match, every two nodes

must be interconnected. XSEarch all-pair and CVLCA have the same result for test queries

except QB3. For this query, XSEarch all-pair semantics correctly identifies relevant matches,

as the match nodes are two store nodes which are interconnected. However, CVLCA gen-

erates empty result as the matches to Abbott and Baldwin are not interconnected.

The query result output by MLCA, for a given query and document, is a subset

of that output by XKSearch. Some query results generated by MLCA are the same as

XKSearch, such as QB6 and QM6. MLCA has a better precision on many queries such

as QB4, where irrelevant surname matches of stores other than Starting Pitcher that are

output by XKSearch are avoided. MLCA has the worse recall for queries like QB5, where

an empty result is returned since there is no surname node that is meaningfully related with

both Starting Pitcher and Outfield. In general MLCA has a high precision and a low recall.

MaxMatch has perfect precision and recall for most of the test queries, especially

when the data structure is simple and regular, such as the Baseball data set. However,

there are queries it can further be improved.

For QM2∗, since the Birmingham of United Kingdom is removed from the data, all

population nodes under country United Kingdom is output by MaxMatch, leading to a low

precision.

For QM4, according to user study, the user would like to find the capitals of the

countries that have ethnic group of Chinese or Indian. MaxMatch has a low recall because

it only outputs the captials of the countries that have both Chinese and Indian ethnic groups.

MaxMatch also has a low precision as it outputs not only the capital of each country, but

also the capital of each province, which is irrelevant to the query.

For QM5, the user would like to search the countries with religion Muslim. However,

60

0.0001

0.001

0.01

0.1

1

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8

T
im

e
 (

s)

XKSearch MaxMatch MLCA

0.0001

0.001

0.01

0.1

1

QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8

T
im

e
 (

s)

XKSearch MaxMatch MLCA

(a) Processing Time of MaxMatch on
Baseball

(b) Processing Time of MaxMatch on
Mondial

Figure 4.9: Processing Time of MaxMatch

in the Mondial data set, a Province and a City node can have a child Country. All the

approaches output these Country nodes of a Muslim country and thus have a low precision.

In fact, for QM5, XKSearch, XRank and XSEarch star semantics output all the Country

nodes in the data set, which leads to a lower precision.

QM6 searches for the country with Muslim. Since each province and city has a

country child, and all these country nodes are output by all approaches, thus they all suffer

from low precision.

Figure 4.8 shows the F-measure with all 36 test queries (including the 20 queries

issued by users and 16 queries in Figure 4.3) with α = 0.5, 1 and 2. As we can see, overall

MaxMatch outperforms other approaches.

Processing Time

The XML keyword search systems XSEarch, XRank and CVLCA are not available online.

We have implemented XKSearch and MaxMatch, both of which use the approach in [144]

for computing SLCA of keyword matches. We use Timber [8] with default settings for iden-

tifying relevant matches using MLCA semantics.

We use the Baseball data of size 1014KB, and a portion of the Mondial data of size

515KB.9 The processing times of XKSearch, MLCA, and MaxMatch over the queries on

9We did not use a larger data set because Timber reported error on larger data when evaluating most

61

0

50

100

150

1 250 500 750 1000

T
im

e
 (

s)

Data Size (MB)

XKSearch MaxMatch MLCA

Figure 4.10: Scalability of MaxMatch

Baseball and Mondial data sets are shown in Figure 4.9 (a) and (b), where the y-axis is in

logarithmic scale.

Both XKSearch and MaxMatch retrieve keyword matches and compute the SLCA

nodes. XKSearch additionally needs to output all the matches in the trees rooted at SLCA

nodes. MaxMatch additionally needs to group matches according to their SLCA ances-

tors, traverse subtrees rooted at SLCA nodes, identify relevant matches according to the

descendant matches of each node in these subtrees. Therefore MaxMatch has process-

ing overhead compared with XKSearch. For queries like QM6, there are a lot of match

nodes that are not descendants of any SLCA node, therefore the time for pruning irrelevant

matches in the subtrees rooted at SLCA nodes is small, and the keyword match retrieval

and SLCA computation time is the bottleneck. In this case, the processing time of XKSearch

and MaxMatch are close. For queries where most of the keyword matches have an ances-

tor SLCA node, MaxMatch is slower than XKSearch. MLCA retrieves pattern matches to a

query, and then checks whether the nodes in the pattern matches are pairwise meaningfully

related, which is usually expensive.

Scalability

We have tested the scalability of MaxMatch, XKSearch and MLCA with respect to the in-

crease of XML data size. The result is shown in Figure 4.10, which represents the process-

queries.

62

ing of QB1 on the Baseball data with size increased from 1MB to 1GB by replicating the

original data set. It can be observed that the processing times of MaxMatch and XKSearch

both increase linearly with the increase of the data size.

In summary, MaxMatch achieves improved search quality compared with existing

XML keyword search engines in identifying relevant matches with efficiency.

4.6 Summary

In this chapter we addresses an open problem of reasoning about XML keyword search

algorithms. We take an axiomatic approach and have identified the properties that an

XML keyword search algorithm should ideally possess in identifying relevant matches to

keywords. Monotonicity states that data insertion (query keyword insertion) causes the

number of query results to non-strictly monotonically increase (decrease). Consistency

states that after data or query keyword insertion, if an XML subtree becomes valid to be

part of new query results, then it must contain either the new data node or a match to the

new query keyword. We have shown that these properties are non-trivial, non-redundant,

and satisfiable.

We have proposed MaxMatch, a novel semantics for identifying relevant matches

and an efficient algorithm to realize this semantics, which is the only known algorithm that

satisfies all properties. Experimental studies have verified the intuition of the properties and

shown the effectiveness of our approach.

63

Chapter 5

IDENTIFYING RETURN INFORMATION

5.1 Motivation and Goal

Recall that inferring structures for a keyword query on XML involves three tasks: infer-

ring relevant keyword matches (analogous to the “for” and “where” clauses in an XQuery),

inferring the information that should be returned (analogous to the “return” clauses in an

XQuery), and inferring how the nodes to be returned should be connected to compose the

query results (analogous to inferring how the XQuery should be structured). We have dis-

cussed the first task in Chapter 4. In this chapter, we focus on the second task: inferring

return information.1 In other words, besides the relevant keyword matches and the paths

connecting them, other nodes in the XML data can be relevant to the query, and should be

identified and returned.

As mentioned in Section 4.1, several recent attempts have been made on sup-

porting keyword search on XML documents, however, all of them focus on the problem of

identifying relevant keyword matches, and identifying return information is an open chal-

lenge. There are two baseline approaches for determining return nodes adopted in the

existing works. One is to return the subtrees rooted at selected LCA nodes [56, 43, 144],

referred to as Subtree Return. Alternatively, we can return the paths in the XML tree from

each LCA node to its descendants that is a relevant match, as described in [21, 61], which

are referred to as Path Return. However, neither approach is effective in identifying return

nodes.

Let us look at some sample queries listed in Figure 4.1. For Q6, it is likely that the

user is interested in the information about Brooks Brothers. Both Subtree Return and Path

Return first compute the LCA of the keyword matches and find relevant matches, which is

the node with ID 0.0.0.0, then output the node Brooks Brothers itself. However, to echo

print the user input without any additional information is not informative. Ideally, we would

like to return the subtree rooted at the retailer node for information about Brooks Brothers.

1In addition to the returned information, we also return the relevant matches, serving as evidence that the
returned information is relevant.

64

Now let us consider Q1 and Q7. By issuing Q7, the user is likely to be interested in

information about the store whose name is Galleria and which is located in Texas. Therefore

the subtree rooted at the store node with ID 0.0.2 is a desired output. In contrast, Q1

indicates that the user is interested in a particular piece of information: the state of Galleria.

As we can see, an input keyword can specify a predicate for the search, or specify

a desired return node. However, existing approaches fail to differentiate these two types of

keywords. In particular, Path Return approach returns the paths from the LCA node store

(0.0.2) to Galleria and to Texas for Q7, and the path from store to Galleria and state for Q1,

respectively. On the other hand, since Q1 and Q7 have the same LCA node store (0.0.2),

Subtree Return outputs the subtree rooted at this node for both queries, although the user

indicates that only the state information is of interest in Q1.

Now let us look at a more complex query Q8, intending to find information about the

retailer who sells apparel and has stores in Texas. Subtree Return approach outputs the

whole tree rooted at retailer (0.0), and requires the user him/herself to search the relevant

stores in this big tree. On the other hand, Path Return approach outputs the path from re-

tailer to apparel and to Texas, without providing any additional information about the retailer

and its stores.

Finally, if the input keywords match a big subtree, displaying the whole tree at once

can be overwhelming to the user. It is more desirable to output the most relevant information

first, and then provide expansion links, so that the user can click and browse detailed infor-

mation. For example, to process Q6, we do not directly output all stores of Brooks Brothers,

but output an expansion link which, upon click, provides information about all the stores of

Brooks Brothers. Each store also has expansion links to the clothes it sells. The question is

how to identify the information to be displayed at the beginning, and subsequently, at each

expansion step.

As we can see from the above sample queries, existing approaches fail to effectively

identify relevant return nodes. Sometimes they suffer low precision, such that users need

to browse and screen relevant information from large output themselves, which can be time

consuming. Sometimes they have low recall, such that users are not able to get informative

65

results.

The only works that have considered the problem of identifying return nodes is

[63, 75]. Both of them require schema information. In addition, [63] requires a system

administrator to split the schema graph into pieces, called Target Schema Segments (TSS)

for search result presentation. [75] requires users or a system administrator to specify a

weight of each edge in the schema graph, and then each user needs to specify a degree

constraint and cardinality constraint in the schema to determine the return nodes.

There are several desirable features for determining the return nodes that an XML

keyword search system should achieve. First, though schema information can be used

whenever possible, its presence should be optional, since XML data may not have an as-

sociated schema. Second, it is important for the system to automatically infer return nodes

without eliciting preference from users and system administrators due to two reasons: the

users who do not issue structured queries are probably unwilling or unable to specify the

output schema; and it is hard for a system administrator to specify return nodes that reflect

individual user needs. Furthermore, return node identification should consider not only data

structure, but also keyword patterns, as shown in Q1 and Q7.

In this chapter, we present techniques that allow users to search information in XML

documents by keywords, and identify meaningful return nodes as exemplified in the above

sample data and queries without user solicitation. To achieve this, we analyze both XML

data structure and keyword patterns. We differentiate three types of information represented

in XML data: entities in the real world, attributes of entities, and connection nodes. We also

categorize input keywords into two types: the ones that specify search predicates, and the

ones that indicate return information that the user is seeking. Based on data and keyword

analysis, we discuss how to generate return nodes, which can be explicitly inferred from

keywords, or dynamically constructed according to the entities in the data that are relevant

to the search. Finally, data nodes that match predicates and return nodes are output as

query results with optional expansion links.

66

5.2 Identifying Explicit and Implicit Return Information by Keyword Match and Data

Analysis

As we have discussed in Chapter 1, besides relevant keyword matches, other data nodes

that do not match keywords may also be relevant to the user’s query, which correspond

to the return clause in XPath or SELECT clause in SQL. For example, if the user wants

to search the information of Galleria using a structured query, she would likely select all

attributes of the store table and possibly other tables such as clothes. However, if she

uses keyword search she may simply use a single keyword Galleria. Besides returning the

relevant matches to Galleria, it is desirable to also return the general information related

to the stores named Galleria. In this chapter we focus the discussion on how to identify

meaningful return information given a group of relevant matches.

Analyzing XML Data Structure

To decide what information should be returned, we need to understand the roles and rela-

tionships of nodes in the data. The information in XML documents can be recognized as

a set of real world entities, each of which has attributes 2, and interacts with other entities

through relationships. This mimics the Entity-Relationship model in relational databases.

For example, for the XML data in Figure 1.3, conceptually we can recognize three

types of entities: retailer, store and clothes. Each type of entity has certain attributes.

retailer has name, product, store has attributes state, city and name, etc. The relationships

between entities are represented by the paths connecting them. For example, a retailer has

one or more stores.

We believe that by issuing a query a user would like to find out information about en-

tities along with their relationships in a document. Therefore to determine the search result,

we should consider the entities in the document that are related to the input keywords.

For example, consider query Q6 in Figure 4.1 that searches Brooks Brothers. Very

2In the rest of the paper, attribute refers to the one defined in an ER-model, rather than the one defined in
XML specification [141].

67

likely the user would like to find out the information about the real world entity that Brooks

Brothers corresponds to. Therefore, we first identify that the retailer node with ID 0.0 is the

corresponding entity of Brooks Brothers. Then, we output the information of this retailer

entity. The attributes associated with the retailer entity are considered as the most impor-

tant and relevant information, and are output at the first place. The relationship between

retailer and store is considered to be of secondary importance. A link is generated for the

relationship to store, which allows users to click and browse the interacting entities.

The first guideline of identifying return information is to differentiate nodes repre-

senting entities from nodes representing attributes, and generate return nodes based on

the entities related to the keyword matches.

However, since XML data may be designed and generated by autonomous sources,

we do not necessarily know which nodes represent entities, and which represent attributes

directly. Next we present heuristics for inferring entities and attributes in two situations:

when the schema is available, and when it is absent.

When the schema of an XML document is available, we classify nodes into entities

and attributes according to their node relationships. If a node of name n1 has a one-to-many

relationship with nodes of name n2, then very likely n2 represents an entity rather than an

attribute of n1. On the other hand, a one-to-one relationship is more likely to introduce an

attribute.

In general, we make the following inferences on node categories.

Definition 5.1 1. A node represents an entity if it corresponds to a *-node in the DTD.

2. A node denotes an attribute if it does not correspond to a *-node, and only has one

child, which is a value.

3. A node is a connection node if it represents neither an entity nor an attribute. A

connection node can have a child that is an entity, an attribute or another connection

node.

68

For example, consider the DTD fragment in Figure 2.1 for the XML data in Fig-

ure 1.3. retailer is a *-node, indicating a many-to-one relationship with its parent node

retailers. We infer that retailer represents an entity that has a relationship with retailers,

instead of an attribute of retailers. name, and product are considered as attributes of a re-

tailer entity. On the other hand, merchandises is not a *-node and it does not have a value

child, therefore it is considered as a connection node.

It is worthwhile to notice that the notion of entity used throughout this dissertation is

different from the entities declared in XML DTDs. A DTD entity is a variable which defines a

shortcut to standard text or special characters. On the other hand, the entities in this thesis

refer to real world objects similar as the entities in the E-R model.

Though these inferences do not always hold (for example, one person may have

multiple attributes of phone number, and the league node should be considered as an

entity instead of a connection node), they provide good heuristics in the absence of the E-R

model.

When the schema information is not available, we infer the schema based on data

summarization, similar as [49, 146]. Then we identify the entities and attributes in the data

according to the inferred schema. For example, since the retailer node can occur more than

once within its parent retailers, it is considered as a *-node.

Analyzing Keyword Patterns

Besides studying the structure of XML data and inferring inherent entities and attributes

presented in the data, we also analyze the pattern of the input keywords to infer search

predicate and return node specifications.

Recall Q7 and Q1 in Figure 4.1, which have the same set of SLCA nodes and

relevant keyword matches. Existing approaches do not differentiate these two queries while

generating results. However, different patterns of these two queries imply different user

intensions. Q7 searches information about Galleria located in Texas. Q1 searches the state

information of Galleria.

69

The second guideline of the XSeek system is to take keyword patterns into consid-

eration when generating search results, by classifying input keywords into two categories:

search predicates and return nodes.

1. Some keywords indicate predicates that restrict the search, corresponding to the

where clause in XQuery or SQL.

2. Some keywords specify return nodes as the desired output type, corresponding to the

return clause in XQuery or the select clause in SQL.

Since keywords do not have any structure, the immediate question is how we should

infer predicates and return nodes. To achieve this, we first differentiate data types from data

values. If the XML schema is available, we can obtain type information directly. Otherwise,

we use node names to indicate data types. Recall that in a structured query language such

as XQuery or SQL, typically a predicate consists of a pair of type and value, while a return

clause only specifies data types without value information (whose values are expected to

be query results). For example, consider an SQL query: select state from DB where name

= “Galleria”.

Based on this observation, we make the following inference on keyword categories

for each match group.

1. If an input keyword k1 has a relevant match which is a node name (type) u, and there

does not exist an input keyword k2 who has a relevant match which is a value v, such

that u is an ancestor of v, then we consider k1 as a return node.

2. A keyword that is not a return node is treated as a predicate. In other words, if a

keyword has a relevant match which a node value, or is a node name (type) that has

a value descendant matching another keyword, then we consider this keyword as a

predicate.

For example, in Q7, Texas is considered as a predicate since it matches a value.

Similarly, Galleria in both Q7 and Q1 are considered as a predicate. retailer in Q8 is also
70

inferred as a predicate since it matches a name (0.0) which has a descendant value node

(0.0.0.0) that matches another keyword Brooks Brothers. On the other hand, state in Q1 is

considered as a return node since it matches the name of a node (0.0.2.0, 0.0.3.0), neither

of which has any descendant value node matching another keyword in Q1. Similarly, city in

Q3 is also treated as a return node.

However, note that an ill-designed XML may invalidate the heuristics we have pro-

posed, such as an XML document that converts all text values in Figure 1.3 into tag names

with dummy value children. Such an XML document will affect the correctness of our in-

ference of node and keyword categories. Therefore, in this thesis we assume that an XML

document is reasonably designed with meaningful and proper tag names and values.

Generating Search Results

Once we have identified the inherent entities and attributes in the data and the keyword

patterns according to the previous discussion, we generate search results accordingly.

The third guideline of XSeek is to output data nodes that match query predicates

and return nodes as search results.

Outputting Predicate Matches. One difference between performing keyword search

and processing a structured query is that, besides outputting the data matching the poten-

tial return nodes, we should also output the data matching predicates. Since in face of

the inherent ambiguity of keyword search, the user often would like to check the predicate

matches and make sure that the predicates are satisfied in a meaningful way. Therefore,

the paths from the SLCA nodes3 to each match in the XML subtrees will be output as part

of search results, indicating how the keywords are matched and how the matches are con-

nected to each other. For example, for Q1, even the user is only interested in the state

information, we also output the path from the SLCA store (0.0.2) node to the predicate

match Galleria.

Identifying Return Nodes. Return nodes can be explicit or implicit. For some

queries, explicit return nodes can be inferred from the input keywords as we have discussed

3In fact, the paths start from the master entities as defined later.

71

before. For example, state is an explicit return node in Q1. For other queries, all the

input keywords are considered as predicates, and no return nodes can be inferred from the

keywords themselves, such as Q7. In this case, we believe that the user is interested in the

general information about the entities related to the search. We define master entity and

relevant entity in the following, and consider them as implicit return nodes when the input

keywords do not have explicit return nodes specified.

Definition 5.2 If an entity e is the lowest ancestor-or-self of the SLCA node in a group g,

then e is named as the master entity of group g. If such an entity e can not be found, the

root node of the XML tree is considered as the master entity.

Since SLCA is the lowest common ancestor of all the matches in a group, master

entity is the lowest common entity ancestor of them. All the information that is considered

to be relevant to the query is in the subtree rooted at the master entity.

Definition 5.3 If an entity e is an ancestor-or-self of a keyword match v in a group g, and it

is a descendant-or-self of the master entity, then e is a relevant entity with respect to v for

the group g.

In Q7, since both Galleria and Texas are inferred as predicates, there is no explicit

return nodes specified in the keywords. We first identify the store node (0.0.2) as the SLCA

node. It is in fact the master entity, and the relevant entities are store and clothes. Therefore

store and clothes are treated as the implicit return node for Q7.

Outputting Return Nodes Based on Node Categories. After we have identified

explicit or implicit return nodes, the next question is how to display them appropriately.

The data nodes that match return nodes will be displayed according to their categories:

attributes, entities, and connection nodes. To output an attribute, we display its name and

value. On the other hand, the subtrees rooted at entities and connection nodes can be big.

Rather than outputting the whole subtree at once, it is often more user-friendly to display the

most relevant information at the first stage with expansion links to less relevant information.

Then the user may click links and browse for more details. The question is what information
72

should be returned at the first stage. For an entity or a connection node, we first output its

name. For an entity, we additionally output all of its attributes. Then we generate a link to

each group of children entities that have the same name (type), and a link to each child

connection node (except those who have descendant matches to keywords, which will be

output explicitly).

For example, consider Q1. We infer store as an implicit return node since it is a

relevant entity and no return node is specified in the keywords. We display its name store,

the names and values of its attributes state, city and name. Then we generate an expansion

link to its connection child merchandises.

In summary, we make the following inference on search result generation.

1. We infer return nodes either explicitly from the input keywords by analyzing keyword

patterns, or implicitly by considering both keyword predicates and relevant entities in

the data.

2. The data nodes that match return nodes are output based on their node categories:

attributes, entities and connection nodes.

3. Besides outputting the matches to return nodes, data nodes that match search pred-

icates are also output such that the user can verify the meaning of the matches.

5.3 Algorithms

After we have discussed the semantics of XSeek, we will present the algorithms that pro-

cess keyword searches on XML data and achieve the semantics efficiently.

Indexes

To efficiently retrieve the information of a node with its Dewey ID, XSeek uses a similar

Dewey Index as used for MaxMatch, except that each node contains more information,

which is the category of the node. The Dewey Index is structured as B+ tree.

73

Query Processing

The algorithm KeywordSearch is presented in Figure 5.1, which identifies and outputs

meaningful return information for XML keyword search. There are two stages in the pro-

cess. First, the findRelMatch procedure retrieves all the XML nodes matching the input

keywords which are deemed relevant. We adopt MaxMatch for this purpose. Then the pro-

cedure genResult generates search results for each group. Next we will discuss procedure

genResult in detail. We use Q3 on the XML data D2 in Figure 4.1 which intends to search

for the city of Galleria and West Village for retailer Brooks Brothers.

Example 5.1 We first adopt MaxMatch for identifying relevant matches. For Q3, there is

on SLCA node retailer (0.0), and the relevant matches are Brooks Brothers, Galleria, West

Village, city (0.0.2.1) and city (0.0.3.1), in the order of the Dewey label, as output by Max-

Match.

After we find the relevant matches, we check whether there are explicit return nodes

in each group. Since each group of relevant matches are ordered by Dewey ID, we can do

this by a single traversal. If a relevant match, group[i][j] is a node name, and it is not an

ancestor of group[i][j + 1], then it means group[i][j] does not have a descendant relevant

match, therefore it is considered as a return node, and we set retSpecified[i] = true for this

group.

Generating Results. Once we have the SLCA nodes and the groups of relevant

matches, we generate search results by outputting data nodes that match search predicates

and return nodes. Note that implicit return nodes will be inferred if no explicit return nodes

are specified.

In the following, we use a group of matches to refer to a set of matches which are

descendants of the same SLCA node.

We start by retrieving the master entity of a group using procedure findEntity,

which accesses the ancestors of a SLCA node in order until an entity or the XML tree root

74

KeywordSearch(keyword[n], indexes)

1: SLCA, group← findRelevantMatch(keyword, indexes) {adopting MaxMatch}
2: for each SLCA[i] do
3: retSpecified← false
4: for each group[i][j] do
5: if group[i][j] is a tag name and group[i][j] is not an ancestor of group[i][j + 1] then
6: retSpecified[i]← true
7: currMatch← group[i][1]
8: genResult(findEntity(SLCA[i]))

genResult(v)

1: if (v.name = currMatch) then
2: {v is an explicit return node}
3: outputRet(v, explicit)
4: else if retSpecified[j] = false and isEntity(v) then
5: {v is an implicit return node}
6: outputRet(v, implicit)
7: else if isAttribute(v) then
8: output v.name and v.value
9: else

10: output v.name
11: u = first child of v
12: while (currMatch ̸= null) and (u ̸= null) do
13: if u is an ancestor-or-self of currMatch then
14: genResult(u)
15: if u.name = currMatch or u.value = currMatch then
16: currMatch++ {move to the next match in group[j]}
17: u← v’s next child that is either an attribute or an ancestor-or-self of currMatch

outputRet(v)

1: if isAttribute(v) then
2: if v.name and v.value don’t match a keyword then
3: {Otherwise, v.name or v.value will be output by function genResult}
4: output v.name and v.value
5: else
6: {v is an entity or connection node}
7: output v.name, and v’s attribute children that don’t match a keyword
8: for each of v’s children entities with distinct name and connection nodes w do
9: if type = explicit then

10: generate a link to w
11: else
12: if w doesn’t have a descendant match then
13: generate a link to w

findEntity(v)

1: for each node u along the path from v to the root node do
2: if isEntity(u) then
3: return u

Figure 5.1: Identifying Meaningful Return Information

75

is reached.

The genResult procedure navigates the paths from the master entity to each match

in a group, identifies and outputs the matches to predicates and explicit or implicit return

nodes. Initially genResult is invoked on the master entity v, and then it is recursively

invoked on the attribute children of v and the children of v that are on the path from v

to a match in the group, in document order. If return nodes are not explicitly specified

(retSpecified = false), then an entity node v on those paths (i.e. a relevant entity) is

considered as an implicit return node. In this case, v’s attribute children and a link to

each distinct name (type) of v’s children that are entities or connection nodes and don’t

have descendant matches is displayed. Eventually, genResult is invoked on one of the

matches v. If the match is a node name (v.name = currMatch), it is considered as an

explicit return node (retSpecified = true). We invoke procedure outputRet(v), which

display v according to its category, an attribute, entity or connection node. After a match is

processed, we move to the next match in the group.

Example 5.2 In the running example, since the SLCA node retailer (0.0) is itself an entity,

it is the master entity and a relevant entity of this group. The genResult procedure is in-

voked on the master entity. The variable currMatch is initialized to be Brooks Brothers

(0.0.0.0). In the group of relevant matches, the two city nodes are node names with no

descendant match, therefore they are considered as explicit return nodes, and no implicit

return node is considered. After we output the path from retailer to currMatch, Brooks

Brothers, currMatch is moved to the next match in the group, the city node 0.0.2.1. Re-

cursively, the path from retailer to city node 0.0.2.1 is output. Since it is considered as an

explicit return node, its corresponding value, Houston, is output. The algorithm continues

until all relevant matches have been processed.

5.4 Experiments

To evaluate the effectiveness of XSeek, we compare its performance with two search result

generation approaches as introduced in Chapter 1. Subtree Return outputs the whole sub-

tree rooted at each SLCA. Path Return outputs the paths from each SLCA to the matches

76

WSU: 4.7MB
QW1 course, title
QW2 course, title, days crs credit sect
QW3 ECON, 572, place, times
QW4 CAC, 101
QW5 42879, title, days
QW6 42606, TU, TH
QW7 root, MILES, course
QW8 ECON
Mondial: 6.0MB
QM1 organization, name, members
QM2 country, population
QM3 mondial, Africa
QM4 Belarus, population
QM5 mondial, country, Muslim
QM6 Croatia
QM7 Bulgaria, Serb
QM8 Group_of_77, members
Auction: 24.5MB
QA1 closed_auction, price
QA2 closed_auction, price, date, itemref, quantity, type, seller, buyer
QA3 open_auction, person257
QA4 person0, address
QA5 closed_auction, buyer, person133
QA6 person257, person133
QA7 seller, person179, buyer, price, date
QA8 seller, 04/02/1999

Figure 5.2: Data and Query Sets for Testing Return Information Identification

0

20

40

60

80

100

QW1 QW2 QW3 QW4 QW5 QW6 QW7 QW8

Subtree Return Path Return XSeek

Figure 5.3: Precision of XSeek on WSU Data Set

in the subtree rooted at the SLCA. All three approaches adopt [144] for computing SLCA

from keyword matches.

We have tested three metrics to compare these approaches: the quality of the

search results measured by precision, recall and F-measure, the speed, and scalability

77

0

20

40

60

80

100

QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8

Subtree Return Path Return XSeek

Figure 5.4: Precision of XSeek on Mondial Data Set

0

20

40

60

80

100

QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8

Subtree Return Path Return XSeek

Figure 5.5: Precision of XSeek on Auction Data Set

0

20

40

60

80

100

QW1 QW2 QW3 QW4 QW5 QW6 QW7 QW8

Subtree Return Path Return XSeek

Figure 5.6: Recall of XSeek on WSU Data Set

upon increase of document and query size, and decrease of the height of SLCA.

Experimental Setup

The experiments were performed on a 3.60GHz Pentium 4 machine running Windows XP,

with 2GB memory and one 160GB hard disk (7200rpm).

78

0

20

40

60

80

100

QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8

Subtree Return Path Return XSeek

Figure 5.7: Recall of XSeek on Mondial Data Set

0

20

40

60

80

100

QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8

Subtree Return Path Return XSeek

Figure 5.8: Recall of XSeek on Auction Data Set

The experiments are performed on three XML data sets. The characteristics of the

data sets and query sets are shown in Figure 5.2.

Data Sets. We have tested three XML data sets, Mondial, WSU4, and Auction5.

Mondial is a world geographic database integrated from the CIA World Factbook, the Inter-

national Atlas, and the TERRA database among other sources. WSU is a course descrip-

tion database. Auction is a synthetic benchmark data set generated by the XML Generator

from XMark using the default DTD.

Query Sets. We have tested eight queries for each data set. Among them, the first

two only involve node names without values, therefore have relatively low selectivity (and

large query result size); the rest six involve node values.

4 Both Mondial and WSU are available at http://www.cs.washington.edu/research/xmldatasets. We repli-
cated the WSU and Mondial data sets three times to get a larger data size.

5http://monetdb.cwi.nl/xml/

79

Search Quality

To measure the search quality, we use precision, recall, and F-measure, defined as follows:

precision =
|Rel ∩Ret|
|Ret|

, recall =
|Rel ∩Ret|
|Rel|

where Rel is the set of relevant nodes (i.e. desired search results), Ret is the set of nodes

returned by a system, and we use |S| to denote the number of elements in a set S. Precision

measures the percentage of the output nodes that are desired, recall measures the percent-

age of the desired nodes that are output. F-measure is calculated using Equation 4.1. We

use α = 0.5, 1 and 2 for computing F-measures.

Each keyword search is expressed as an English sentence, according to which

XML fragments are extracted from the original document and are set as ground truth, Rel.

Then, we exam the output generated by each system, Ret, and count how many nodes in

Ret appear in Rel.

The precision and recall of three approaches on each test data and query set are

shown in Figure 5.3 - 5.8, respectively.

As we can see, Subtree Return usually has a perfect recall as the whole subtree

rooted at each SLCA is returned. The only exceptions are QM6 Croatia and QW8 ECON,

both of which consist of a single value, which is in turn returned as the search result. The

precision of subtree return is usually low as not all the nodes in the subtree rooted at each

SLCA are relevant. In particular, consider QM3 mondial, Africa, the whole document tree

rooted at mondial is returned, even the user is only interested in the information about Africa

in the mondial document.

On the other hand, Path Return has the best precision, even perfect precision in

many cases, since the matches to predicates and the paths connecting these matches are

almost always considered to be relevant. However, it often has a low recall. Consider QM3

again, no information about Africa will be returned except the input keyword themselves.

XSeek has in general a high precision and recall across different queries on the

data sets. Its precision is almost the same as Path Return, and its recall is almost the same
80

0

20

40

60

80

100

α=0.5 α=1.0 α=2.0

Subtree Return Path Return XSeek

Figure 5.9: F-measure of XSeek All Test Queries

Figure 5.10: Processing Time of XSeek on WSU Data Set

Figure 5.11: Processing Time of XSeek on Mondial Data Set

as Subtree Return, or even better for some queries.

However, there are several cases that XSeek needs to be improved. For example,

QM2 country population intends to search the population of each country. However, XSeek

returns the population of all the cities instead of the population of countries, therefore suffers

a zero precision and a zero recall. This is because in Mondial document, each country node

has city children, and each city node has an attribute node named country. Both country

81

Figure 5.12: Processing Time of XSeek on Auction Data Set

and city element nodes have a child population. According to the definition of SLCA that

these three approaches adopt from [144], city instead of country is the SLCA. The element

nodes matching country are not descendants of any SLCA nodes and are discarded, and

all three approaches fail. A similar problem exists for QM4. The only difference is that the

SLCA node is the country element node that has a descendant Belarus, and therefore the

population of the country will be output along with city populations.

For QW7, all three systems suffer a low precision. This is because the root node

is considered as the SLCA, all the matches of course and MILES are in the same group

and are returned even the course instructor is not MILES. Similar situation occurs for QM5

where the root node mondial is searched.

To process QA3, under the open_auctions node we find an open_auction node

which has a descendant person257, so this open_auction node is a SLCA, and its subtree

should be the desired output. Besides, under the people node, there’s a person named per-

son257 and there are a lot of open_auction nodes, but no open_auction node is associated

with the person person257, so these nodes are not desired. However, since the people

node is another SLCA of this query, all approaches output the corresponding information

within the subtree rooted at people (which is very large), leading to low precisions.

In QA7, the order of the keywords indicates that the user is interested in the buyer,

price and date of the auction whose seller is person179. However, XSeek does not consider

the order of keywords, and returns auctions whose buyer is person179, and therefore has

82

0

0.1

0.2

0.3

0.4

0.5

4.8 9.6 14.4 19.2 24 28.8 33.6 38.4

Document Size (MB)

T
im

e
(s

)

Subtree Return Path Return XSeek

0

1

2

3

4

5

4.8 9.6 14.4 19.2 24 28.8 33.6 38.4

Document Size (MB)

T
im

e
(s

)

Subtree Return Path Return XSeek

(a) QA1 (b) QA2

Figure 5.13: Processing Time of XSeek with Increasing Document Size

a low precision.

Furthermore, we compute the F-measure of each approach according to the av-

erage precision and recall across all the test queries, with parameter α = 0.5, 1 and 2,

as presented in Figure 5.9. As we can see, XSeek significantly outperforms the Subtree

Return and Path Return approaches.

Processing Time

We have tested the processing time for three approaches. The processing time for all

queries is shown in Figure 5.10, Figure 5.11 and Figure 5.12.

All three approaches need to search for keyword matches and compute SLCA from

the matches. Then Subtree Return requires time to output subtrees rooted at SLCA. Path

Return requires time to group keyword matches, and then output the paths from each SLCA

to matches in the corresponding group. XSeek also groups matches and accesses the

path from the master entity to the matches in each group. Furthermore, XSeek needs to

determine the predicates and explicit or implicit return nodes based on XML data structure

and keyword patterns, and output them accordingly as described in Section 5.3. Since

XSeek needs to output at least as much information as Path Return, the processing time of

Path Return is the lower bound of that of XSeek.

The processing time of Subtree Return depends on the total number of nodes under

all SLCAs, and the processing times of Path Return and XSeek depend mainly on the

number of matches. For example, QW1 and QW2 have the same SLCA, the latter has more

83

keywords and therefore more matches. Subtree Return requires the same amount of time

to process these two queries, while Path Return and XSeek require longer processing for

QW2. We observe the same situation for QA1 and QA2. Note that since Path Return and

XSeek need to additionally group matches compared with Subtree Return, they may require

more time even their output size is smaller than that of Subtree Return. Besides, it is worth

mentioning that Path Return and XSeek need to merge KWmatch into Allmatch, whose

processing time is proportional to the total number of matches in a document. On the other

hand, Subtree Return outputs the subtree rooted at each SLCA, and doesn’t process those

matches that do not belong to any SLCA. Therefore, when there are a lot of matches that do

not belong to any SLCA (e.g. for Q4 in Figure 4.1, those retailer nodes except the first one

don’t belong to any SLCA), the processing times of Path Return and XSeek are relatively

longer compared with Subtree Return.

As we have discussed, XSeek requires at least as much time for node processing

and output as Path Return. For queries that XSeek outputs a little more information than

Path Return such as QW1, QM4, QA4 and QA5, it takes almost the same amount of

time as Path Return. On the other hand, for those queries that XSeek outputs a lot more

information than Path Return, such as QW6, QM1, QA6, XSeek is slower. In summary,

XSeek generates search results with improved quality and reasonable cost for most of the

test queries.

Scalability

We tested the scalability of XSeek on the Auction data set over three parameters: document

size, query size, and the depth of SLCA. Since the complexity and scalability of calculat-

ing SLCA were presented in [144], we only test the scalability of grouping matches and

generating search results in this section.

Document Size. We replicated the Auction data set of size 4.8MB between 1 and

8 times to get increasingly large data sets. The processing time of queries QA1 and QA2 is

shown in Figure 5.13. As we can see, the processing time of all three approaches increases

linearly when the document size increases. In QA1, there is only one return node, and the

84

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7

Number of Return Nodes

T
im

e
(s

)
Subtree Return Path Return XSeek

Figure 5.14: Processing Time of XSeek with Increasing Return Nodes

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9

Depth of VLCA

T
im

e
(s

)

Series1 Series2 Series3

2.7

Figure 5.15: Processing Time of XSeek with Decreasing SLCA Depth

processing times of three approaches are close, while in QA2 where seven return nodes

are inferred, Subtree Return is the fastest.

Number of Keywords. The experiments were performed on the Auction data set

of size 24.5 MB for queries with an increasing number of keywords. We differentiate two

different cases.

For queries with an increasing number of return nodes, a constant number of pred-

icates, and a constant depth of SLCA nodes, the performance of three approaches are

presented in Figure 5.14. Seven queries are tested, from QA1: closed_auction price to

QA2: closed_auction price date itemref quantity

type sellar buyer, adding one keyword each time.

As we can see, since the set of SLCA nodes and the subtrees rooted at SLCAs

remain the same across different queries, the result size and therefore the result generation

85

time of Subtree Return remains the same across the queries. On the other hand, as the

number of return nodes increases, the result size and therefore the result generation times

of Path Return and XSeek increase linearly. Note that these two approaches have almost

the same processing as Subtree Return when there is only one return node in the query,

but require more time when the number of return nodes is larger than one.

We have also tested queries with an increasing number of predicates, a constant

number of return nodes and a constant depth of SLCA nodes. The test queries are con-

structed by replacing the node names in the queries of the previous test to their correspond-

ing values. The processing time of all three approaches can almost be neglected as there

are few value nodes in the data that match the keywords, and therefore the experimental

figure is omitted.

Depth of SLCA. The experiments were performed on the Auction data set of size

38.4 MB for queries that have SLCAs of a decreasing depth in the XML data tree. Nine

queries are tested, from the SLCAs of depth 9 to the document root, decreasing the depth

by one each time. The number of match nodes are the same for all nine queries.

From the experimental results presented in Figure 5.15, we can see that when

the depth of SLCA becomes smaller, the size of the subtree rooted at a SLCA increases

exponentially, therefore the processing time of Subtree Return increases exponentially. On

the other hand, the number of output nodes and therefore the result generation times of

Path Return and XSeek, increase very slowly.

In summary, XSeek has an improved search quality compared with Subtree Return

and Path Return by analyzing XML data structure and keyword patterns without eliciting

user specifications. The processing overhead for return node inferences is reasonable.

XSeek scales well when the document size and/or the query size increase, or the depth of

the SLCAs of matches decrease.

5.5 Summary

In this chapter we present an XML keyword search engine XSeek that addresses an open

problem of inferring desirable return nodes in keyword search without elicitation of user

86

preferences and have achieved promising results. we analyze both the XML data structure

and keyword patterns, and generate meaningful return nodes accordingly. Data nodes that

match predicates and return nodes are output as search results with optional expansion

links. Compared with two baseline approaches, XSeek achieves improved precision and

recall with reasonable cost and good scalability.

87

Chapter 6

RANKING FRIENDLY RESULT COMPOSITION

6.1 Motivation and Goal

So far we have addressed two problems in identifying structures for a keyword search: iden-

tifying relevant keyword matches (analogous to identifying which nodes should be bound to

a variable in an XQuery) in Chapter 4, identifying relevant return information (analogous to

identifying which information should be returned in the “return” clause) in Chapter 5. In this

chapter, we focus on the problem of how to connect the nodes to be returned and compose

results. This is analogous to inferring how to compose query results in the “return” clause

in XQuery using variable binding. As discussed in Chapter 1, for keyword query “men,

apparel, store”, there are three possible way to compose the results: (1) each result con-

tains a single retailer with all stores and all clothes in each store; (2) each result contains a

single store with all clothes; (3) each result contains a single clothes. As shown in the fol-

lowing examples, although different ways of composing results return the same amount of

information in all results, the way of composing results in XML keyword search has crucial

effects on result ranking. Example 6.1 illustrates a favorable way of composing results and

Examples 6.2 and 6.3 show the undesirable behaviors of existing approaches.

Example 6.1 Consider query “men, apparel, store” on the XML tree in Figure 1.3. After

identifying relevant matches (i.e., the match nodes relevant to keywords “men”, “apparel”,

and “store”) as well as the relevant return information (the information related to retailer,

store and clothes), ideally we should compose the results in such a way that each query

result should contain one instance of store, along with the related matches to men and

apparel as evidence of its relevance, such as the two query results shown in Figure 6.1.

Besides, results should be properly ranked. For instance, many ranking schemes [18, 43,

56, 124, 24] will rank the store that has more men’s apparels higher.

Intuitively, each keyword search has a goal, which is usually the information of a

real world entity or relationship among entities, as observed in [36, 38]. We use the term

search target to refer to the information that the user is looking for in a query, and target
88

store

sta te city
merchandises

clothes

fitting

men

Texas Houston

reta iler

category

suit

clothes

fitting

men

situation

formal

name product

Brook

Brothers
apparel

situation

casual

name

Galleria

category

outwear

...

store

state city
merchandises

clothes

fitting

men

Texas Austin

retailer

category

outwear

clothes

fitting

men

situation

casual

name product

Brook

Brothers
apparel

situation

casual

name

West

Village

category

shirt

...

Query Result 1 Query Result 2

Figure 6.1: Desirable Query Results of Q9

instance to denote each instance of the search target in the data. Each desirable query

result should have exactly one target instance along with all associated evidence, so that

ranking and top-k query processing can be based on target instances, and thus become

meaningful. Specifically, query results of an XML keyword search should be: (1) Atomic:

it should consist of a single target instance; (2) Intact: it should contain the whole target

instance as well as all its supporting information.

However, the query result composition methods adopted in existing XML keyword

search engines, named as Subtree Result and Pattern Match respectively in this disserta-

tion, fail to satisfy the atomicity and intactness properties. Subtree Result defines a query

result as a tree rooted at a selected LCA node consisting of all relevant matches that are de-

scendants of this LCA node and the paths connecting them, as adopted in [56, 144, 91, 93].

The results generated by Subtree Result generally fail to be atomic, and such information

overload causes ineffective ranking.

Example 6.2 For query “men, apparel, store”, a result produced by Subtree Result gen-

erally contains many target instances: the tree rooted at a retailer node that contains the

match to apparel and all the matches to store and men, such as the ones shown in Fig-

ure 6.2. As we can see, subtree result violates the Atomicity property. With many target
89

store

state city
merchandises

clothes

fitting

men

Texas Houston

retailer

category

suit

clothes

fitting

men

situation

formal

name product

Brook

Brothers
apparel

situation

casual

name

Galleria

category

outwear

...

store

state city
merchandises

clothes

fitting

men

Texas Austin

category

outwear

clothes

fitting

men

situation

casual

situation

casual

name

West

Village

category

shirt

...

Figure 6.2: A Query Result of Q9 Returned by Subtree Result

store

state city
merchandises

clothes

fitting

men

Texas Houston

retailer

category

suit

name product

Brook

Brothers
apparel

situation

casual

name

Galleria

Query Result 1 Query Result 2

store

state city
merchandises

clothes

fitting

men

Texas Austin

retailer

category

outwear

name product

Brook

Brothers
apparel

situation

casual

name

West

Village

store

state city
merchandises

clothes

fitting

men

Texas Houston

retailer

category

outwear

name product

Brook

Brothers
apparel

situation

formal

name

Galleria

Query Result 3

Figure 6.3: Three Query Results of Q9 Returned by Pattern Match

instances (stores) in a single result, ranking is not performed on target instances, and can

be totally unreasonable. Suppose there are two results result 1 and result 2 which have

similar sizes, and result 1 has more matches to query keywords than result 2. Then result 1

is ranked higher by existing ranking schemes [18, 43, 56, 124, 24]. However, it could be the

case that result 2 has a store which sells many clothes for men. It may also be the case that

in both results, there are some stores with very few or no clothes for men, but such stores

are still returned, and may be returned earlier than the stores that are more relevant.

Besides, Subtree Result may return excessively big results, e.g., for Q9, many

stores with a large number of clothes are returned as a single huge result without being

90

ranked, which is very overwhelming and unreadable.

On the other hand, Pattern Match defines a query result as a tree rooted at an

LCA node consisting of exactly one match to each query keyword which are meaningfully

related with each other and the paths connecting them, used in [43, 61, 74, 82, 86]. The

results generated by Pattern Match Result generally fail to be intact, and such information

underload causes ineffective ranking.

Example 6.3 The top 3 results of query “men, apparel, store” generated by Pattern Match

are shown in Figure 6.3. Although each result is atomic, it is not intact: the same target

instance (store) named Galleria with two men’s clothes is presented as two results, one for

each match of men.

The lack of intactness results in several problems. First, the top-k results generally

contain information about less than k target instances, since multiple results can describe

the same target instance. In this example, top 3 results presented in Figure 6.3 are about

two stores. This not only wastes the user’s time but also makes it difficult for a user to find

the top k ranked target instances.

Second, from such results the user loses information, e.g., the first and third results

are actually the same store.

Furthermore, separating the supporting information (men) of the same target in-

stance (store) into multiple results will divide the ranking signals among these results. It

demotes all results corresponding to this target instance and potentially puts them in lower

positions. In this example, all results returned by Pattern Match have the same size and

the same number of keyword matches, thus they are almost indifferentiable by any ranking

scheme. However, the store with more matches to men should intuitively be ranked higher.

As we can see from Examples 6.1 - 6.3, the way of result composition has a big

effect on the effectiveness of ranking.

91

Intuitively, each keyword search has a goal, which is usually the information of a

real world entity or relationship among entities, as observed in [36, 38]. We use the term

search target to refer to the information that the user is looking for in a query, and target

instance to denote each instance of the search target in the data. Each desirable query

result should have exactly one target instance along with all associated evidence, so that

ranking and top-k query processing can be based on target instances, and thus become

meaningful. Specifically, query results of an XML keyword search should satisfy:

Atomicity. A query result should be atomic: it should consist of a single target

instance. In the above sample query, each result should correspond to a distinct store.

Atomicity enables the ranking method to rank the target instances and show the top-k most

relevant ones to the user.

Intactness. Each query result should be intact: containing the whole target in-

stance as well as all its supporting information. In the above sample query, all keyword

matches related to the same store should be in one result. With intactness, a ranking

method has the whole view of each target instances to give a fair ranking.

In this chapter we propose a novel technique to automatically compose atomic and

intact query results for XML keyword searches, such that each result contains exactly one

search target instance along with all its evidence, as illustrated in the above examples. Un-

like the existing approaches, which are oblivious to users’ search intentions, the proposed

query result composition is driven by the user search target and hence ranking friendly.

Two technical challenges are addressed. First, we need to identify user search tar-

get. Although we could define a special query syntax and ask the users to explicitly specify

the search target, such as some existing works [36, 38], not all users are willing to take this

extra effort. Thus, to relieve users’ burden, our system supports simple keyword queries

and makes best-effort for automatic search target inferences. However, such inferences are

very challenging, as the search target may not even appear as a keyword in a user query.

Interestingly, we discover that the meta-information of the data, the matching patterns of the

query keywords, as well as the mined modification power of keyword matches often provide

hints on identifying search targets. The second challenge is, given the inferred search tar-

92

gets, how to compose atomic and intact query results, each of which is an XML tree that is

centered around a single instance of search target and encompasses all keyword matches

related to this instance.

6.2 Target Driven Query Result Composition

Users who issue queries often desire the information of one or a set of entities that sat-

isfy certain conditions. We name such entities as target entities. In this section we first

define two properties based on target entities that an ideal XML search engine should sat-

isfy: atomicity and intactness. Then we propose a strategy, called Targeted Return, which

automatically infers target entities and composes meaningful query result based on target

entities and their relationships toward achieving these two properties.

Atomicity and Intactness

As discussed and illustrated by examples in Section 6.1, results of XML keyword search

should be atomic, i.e., consist of a single target instance; and intact, i.e., contain the whole

target instance together with all its supporting information. Here we formally define atomicity

and intactness.

Definition 6.1 (Atomicity) Given a set of target entity type E = {E1, E2, · · · , En} of a

query Q, a result of Q is atomic, if it contains exactly one instance of each Ei ∈ E.

Definition 6.2 (Intactness) Given a set of target entity type E = {E1, E2, · · · , En} of a

query Q, a result of Q is intact, if it contains all supporting nodes of the instance of each

Ei ∈ E that match keywords in the result.

The concept of “supporting node” in Definition 6.2 is defined as following.

Definition 6.3 (Supporting Node) A node u labeled U is a supporting node of a node v

labeled V , if there does not exist a node u′ labeled U , such that LCA(u′, v) is a descendant

of LCA(u, v), where LCA denote the lowest common ancestor of two nodes.

93

Intuitively, if we can find such a u′, then u′ has a closer, or more specific, relationship

with v. Thus it is likely that u′ is a supporting node of v, not u. For example, in Figure 1.3,

apparel is a supporting node of retailer.

Other measurements of node relationships, such as interconnection relationship1 [43]

and “meaningfully related” relationship [86], can also be used to define supporting node.

Note that the supporting relationship between two nodes is similar but different as the

“meaningfully related” relationship. That u is a supporting node of v does not imply that

v is also a supporting node of u. Two nodes u and v are meaningfully related if they are

supporting nodes of each other.

Next we present techniques for identifying search targets as well as composing

results.

Identifying Target Entities

We infer target entities by analyzing the matches to input keywords and the XML data

structure. Two different situations are considered:

CASE 1. In many queries, users provide hints about the XML nodes they are

looking for as well as the conditions these nodes should satisfy. We call these XML nodes

return nodes and the conditions search predicates.

Intuitively, if an entity is specified in a query without information about its associated

attributes, then likely their instances that satisfy the search predicates should be returned.

If a connection node or attribute node is specified in a query, but none of their value de-

scendants matches any keyword, then probably the instances of these nodes along with

the values are what the user is searching for. In this case, the entity associated with this

attribute, or the nearest descendant entity of the connection node, is considered as the

target entity. Note that a value node (e.g., Houston), or a name node, which, together with

its descendant attribute value(s), (e.g., city, Houston) can serve as search predicate.

Example 6.4 For query “Brooks Brothers, city”, city is considered as a return node as it

matches attribute name and its subtree does not contain any keyword match. It is likely that

94

the user wants to retrieve the city of store that satisfy the search predicates: it is a store

of Brooks Brothers. Therefore, the entity associated with city, which is store, is the search

target.

Return nodes can be inferred using the method discussed in Chapter 5. After we

have the return nodes, we can infer target entities from return nodes. If a return node is an

entity node, then it is a target entity. If a return node is an attribute (e.g., city in the previous

example), then the associated entity (e.g., store) is considered as a target entity. Otherwise,

a return node is a connection node (e.g., merchandises in sample XML document), then its

nearest descendant entities are considered as target entities (e.g., store).

However, some queries may have more than one return nodes and they have more

than one associated entities, and it is not obvious which associated entity should be the

search target. Therefore we discuss case 2, in which there are entities associated with

return nodes.

CASE 2. In case there are more than one entities associated with return nodes, we

exam all such entities and the modifying relationship between search predicates and theses

entities to identify target entities. Let us look at an example.

Example 6.5 Consider query “Galleria, casual", where both keywords are search predi-

cates. The implicit return nodes are entities store and entities clothes. Let us judge two

candidate semantics of this search that consider different entities as the target entity:

1. Find the store that (i) is named Galleria (ii) has casual clothes.

2. Find the clothes who (i) are for casual situations and (ii) are sold in Galleria.

If we take a closer look, semantics (1) is counter intuitive: it specifies two conditions

for search target store. However, nearly every store has casual clothes. The second con-

dition does not modify (or restrict/constrain) the store entity, and is unlikely to be used by a

reasonable user for searching stores.

95

On the other hand, all search conditions for semantics (2) are reasonable as they

indeed modify the clothes entity: (i) Not all clothes are for casual situations; (ii) Not all

clothes are sold in Galleria. Therefore, both input keywords can be viewed as predicates

for selecting the specific clothes entity.

Enlightened by this example, when all the keywords are predicates, we can infer the

modifying relationship between the keywords that match attribute values and the relevant

entities. Intuitively, if an attribute value A is always related to an entity type E, then A does

not modify E; otherwise A is a modifier of E. Note that this intuition is analogous to the

concept of information gain in machine learning: if attribute value A is always related to

entity type E, using keyword A does not distinguish any instance of E, thus the information

gain is zero if the search target is E. Therefore, A should not be a modifier of E.

Definition 6.4 (Modifier) In an XML document D, an attribute value A is a modifier of

entity E, if and only if there is at least one instance of E in document D which does not

have any instance of A as its descendants.

In Example 6.5, suppose in the XML data in Figure 1.3, every store instance has

at least one instance of attribute value casual in its descendants, then casual and is not

retailer’s modifier. On the other hand, all attribute values in the keyword query modify

clothes.

Note that attribute values of an entity are always considered to be modifiers of

its non-ancestor entities, as we assume that the attribute value will not be shared by all

instances of the entity. For example, all attribute values of entity store modify a descendant

entity clothes, as any attribute value of store, unless shared by all the instances of store,

can always be used as a predicate to constrain the instances of clothes entity. We may

search clothes who are sold in Galleria, Texas, Houston, etc.

Besides the modifying relationship among attribute values and entities, in fact, dif-

ferent modifiers have different modification power, as illustrated in the following example.

96

Example 6.6 Consider query “Brooks Brothers, Houston”. Two candidate semantics of this

query are:

1. Find the retailer named Brooks Brothers that has one or more stores located in Hous-

ton.

2. Find the store for Brooks Brothers located in Houston.

In the data, Brooks Brothers uniquely identifies a retailer. If the user’s search target

is a retailer, s/he does not need additional keywords like Houston. Therefore, the first

semantics is less likely to reflect the user intention and it is more likely that the second

semantics is what the user actually means.

As we can see, although both Brooks Brothers and Houston are modifiers of re-

tailer by Definition 6.4, they have different modification power. A key of an entity, such as

Brooks Brothers, has the strongest modification power, whose presence shadows/disables

all other modifiers. In analogous to the concept of information gain, if the search target is

retailer, using Brooks Brothers already identifies the instance of the search target, thus the

information gain of using other modifiers is zero. Therefore, retailer is unlikely the search

target.

The key attributes of an entity is usually specified using the “ID” attribute in DTD.

In case we do not have the DTD, it can be retrieved by mining method: if every value

combination in an attribute set S associated with entity E is unique across all the instances

of E, then S is considered as a key for entity E.

Note that the rules of defining modifiers and the process of key mining can be

relaxed in practise. For example, in an XML document, it is possible that a few stores do

not have casual clothes, but as long as the vast majority of the stores have at least one

casual clothes, casual can be considered a non-modifier of store. Similarly, an attribute can

be considered as a key of an entity if the number of its duplicate values is quite small, but

not necessarily zero. The threshold can be flexibly set in different applications.

In summary, we identify target entities according to the following heuristics.
97

Definition 6.5 (Target Entity) For a keyword search Q on XML data D, for each relevant

entity E:

1. There are return nodes inferred in Q: E is a target entity if it is a return node, or the en-

tity associated with a return node that matches an attribute, or a nearest descendant

entity of a return node that matches a connection node.

2. There is no return node in Q: E is a target entity if both of the following two conditions

hold:

a) All keywords in Q that match attribute values in D are modifiers of E.

b) None of the modifiers of E are keys, or all of them are keys.

3. When we can not find one target entity from the last two steps, we treat all relevant

entities as target entities.

When there is only a single target entity, it is called the center entity of the query

result.

Definition 6.6 (Center Entity) For a keyword search Q on XML data D, if the set of target

entities is a singleton {E}, then E is defined as the center entity of Q on D.

Composing a Query Result

After identifying target entities and center entity, we discuss how to compose atomic and

intact results according to the inferred target entities and center entity.

When a query has a center entity, we construct one query result for each instance

of the center entity to make sure that it is atomic. We also include into a result the matches

of the keyword that are supporting nodes of this center entity instance to make the result

intact.

Example 6.7 Take query “Galleria, casual” as an example, which is likely to search the

casual clothes sold by Galleria. We identify clothes as the center entity, as discussed

98

in previously. Each query result includes an instance of clothes. Consider the result that

includes clothes (0.0.2.3.0). For keyword Galleria, the supporting node to clothes (0.0.2.3.0)

is Galleria (0.0.2.2.0) since their LCA is node 0.0. Other matches to Galleria, if any, has

a higher LCA (0) with clothes (0.0.2.3.0) which is an ancestor of 0.0. For keyword casual,

similarly, its supporting node to clothes (0.0.2.3.0) is node casual1 (0.0.2.3.0.1.0).

We also include the data node Galleria (0.0.2.2.0) into other query results rooted at

store (0.0.2), serving as evidence that the corresponding clothes node is relevant.

When a query has multiple target entities, we observe that atomicity and intactness

may not be simultaneously achievable. Consider Figure 1.3 for example. If both store

and clothes are known as target entities, then both casual nodes under store (0.0.2) are

supporting nodes of store (0.0.2). According to intactness, they should both be included in

the result that contains store (0.0.2). However, according to atomicity, only one clothes, and

hence one casual node can be included in one result.

In this case, since atomicity and intactness are not both achievable, we choose to

achieve intactness using subtree result. The reason is that subtree result can be achieved

much more efficiently and scalably than pattern match as shown in the experiments.

6.3 Algorithms

In this section, we present the algorithms to efficiently identify target entities and generate

meaningful query results.

Building Indexes

We build three indexes offline to speed up query processing. A Label Index is an inverted

index, supporting operation Label2ID(k) which retrieves a sorted list of Dewey IDs of the

data nodes matching input keyword k. A Dewey Index and a Modifier Index are used to

determine target entities.

As discussed in Section 6.2, we have different strategies for determining target

entities in two different situations. Case 1: if there are return nodes specified in input

99

keywords, target entities are the entities associated with the return nodes. Case 2: If return

nodes are not specified, we check the modifying relationship between each attribute value

that matches a keyword and each relevant entity involved in the query.

For the first case, we need to quickly determine a return node’s associated entity.

If a return node is an entity, then it is a target entity. Otherwise, if a return node is an

attribute, we need to efficiently find out the attribute-entity association relationship; and if it

is a connection node, its nearest descendant entities. To support this, we build a Dewey

index whose entries are either entity instances with their corresponding attribute instances,

or connection node instances. Each entry records the node label, the names and values of

associated attribute instances (if any), as well as the information of parent and children that

are not attribute instances. For a given Dewey ID, Dewey index returns the corresponding

entry that contains the information of this node.

For the second case, we need to quickly determine whether a predicate is a modifier

of an entity type. To efficiently determine it, we build a modifier index that records the mod-

ifying relationship between attribute values and entities. In this index, each attribute value

has an associated list that records two types of information: (1) the entities of which it is a

key attribute; and (2) the entities that are not modified by this attribute value. Since the en-

tities that are modified by an attribute value are far more than those that are not modified by

it, we record the negative cases. The list of attribute values and the list of entities associated

to each attribute value are implemented using hash table. Only the attribute values whose

associated lists are not empty are recorded. To determine whether an attribute value A is a

key of entity E or whether A modifies E, we first search the entry of A in the attribute list us-

ing hashing, then search E in the associated list of A. Modifier index allows three operations

to identify the relationship of A and E: keyModifier(A,E), nonKeyModifier(A,E), and

nonModifier(A,E) whose functionalities are self-explanatory.

For the XML tree in Figure 1.3, its modifier index looks like the one shown in Fig-

ure 6.4. For attribute value Brooks Brothers, it is a key attribute of entity retailer, therefore

its associated list contains retailer with an underline to denote the key attribute relationship.

Since entity retailer and store are not modified by casual, they are in the list of casual.

100

Brook Brothers

casual

{retailer}

{store}

......

Figure 6.4: Modifier Index for the XML tree in Figure 1.3. An underlined entity indicates that
the value is the key of the entity. Otherwise, the value is not a modifier of the entity.

For a keyword search, we first use the label index to find the Dewey IDs of match

nodes. Then using Dewey index, we can determine the node category of each keyword

match and then infer the return nodes and search predicates of the query. If return nodes

are present, we can find the corresponding target entity instances by accessing the Dewey

index. Otherwise, we find the modifying relationship and consequently the target entity

instances by accessing the modifier index, as will be discussed in details later.

Algorithm 2 Building Modifier Index
buildModifierIndex (Label Index: Lidx; Dewey Index: Didx)

1: Initialize Midx as empty
2: for each attribute value A in Lidx do
3: C[E] = 0 for all entity type E
4: L(A) = Label2ID(Lidx,A) {L(A) is the list of DeweyID of nodes matching A retrieved from

Lidx}
5: for each instance a of A in L(A) list order do
6: a′ = node in L(A) immediately before a {a′ is the instance of A that has the biggest Dewey

ID smaller than that of a}
7: for each entity e on the path from a (inclusive) to LCA(a, a′) (not inclusive) obtained from

Didx do
8: {if a′ does not exist, let LCA(a, a′) be the XML root}
9: C[E] + +

10: if C[E] = |E| then
11: add E to Midx[A] with non-modifier relationship
12: if A is a key attribute of E then
13: add E to Midx[A] as key attribute relationship

The construction of label index and Dewey index is omitted due to space limitation.

The construction of the modifier index (denoted as Midx) is presented in Algorithm 2. Ini-

tially, the list associated with each attribute value is empty (line 1). The algorithm examines

all the distinct attribute values in turn. For each attribute value A, we count the number of

entity instances of type E that are related to A, denoted by C[E]. For A we use the label

index to retrieve a list of instances of A in their Dewey ID order, denoted as L(A). For each

instance a in L(A), we find the entity instances e on the data path from a to LCA(a, a′),

101

where a′ is the node in L(A) that appears immediately before a. That is, a′ is an instance

of A that has the largest Dewey ID which is smaller than that of a. For each such entity

instance e, whose type is E, we increment the counter C[E] by 1, denoting that there is

one more attribute value a that is related to E (line 9). The information of e is obtained by

accessing Dewey index using e’s Dewey ID. To guarantee that every entity instance will be

counted at most once in the counter C[E], we should not increment counters for entity in-

stances on the data path from LCA(a, a′) to the root of the data tree, as they have already

been taken care of when we process the nodes in L(A) appearing before a. If at the end

of processing L(A), the counter C[E] is equal to the total number of instances of E in the

XML data, denoted as |E|, it implies that every instance of E is related to an instance of A.

Therefore, we conclude that A does not modify E, and add E to the list associated with A in

the modifier index (line 11). E is also added to the list of A if A is a key attribute value of E

(line 13). For simplicity, our implementation only mines singleton keys (a key that consists

of a single attribute), and the procedure is omitted in the algorithm.

Example 6.8 Consider the modifier index entry for attribute value casual for the XML tree

in Figure 1.3 as an example to illustrate Algorithm 2. From label index, we retrieve the

list of nodes that match casual (L(casual)): {0.0.2.3.0.1.0, 0.0.2.3.2.1.0, ...}. For node

0.0.2.3.0.1.0 which does not have a preceding node in the list, we examine the nodes on

the path from this node to root retailers (0). Given the Dewey ID of a node, we can find out

whether the node is an entity instance or not, and if it is, find the entity type, using Dewey

index. Since clothes, store and retailer are entities on the path, we increase C[clothes],

C[store] and C[retailer] by 1. Then we move to the next node casual (0.0.2.3.2.1.0) in

L(casual) list, and process the nodes on the path from this node to LCA(0.0.2.3.0.1.0,

0.0.2.3.2.1.0) = 0.0.2.3. We increase C[clothes] by 1, and now we have C[clothes] = 2.

We continue the processing for nodes in the list. At the end, we find that C[store] is equal

to the number of store instances in the data, which means that every store has at least one

casual clothes in its subtree. Therefore casual is not a modifier of store, so we add store to

the list associated with casual in Midx. On the other hand, C[clothes] is smaller than the

number of clothes nodes, as not all clothes are for casual situations, therefore we do not

102

need to update Midx’s casual entry with respect to clothes.

Generating Query Results

Now we present Algorithm 3, which takes relevant matches to a keyword query (which are

obtained by adopting one of the existing approaches [43, 56, 61, 82, 86, 144]) and indexes

as input, and composes meaningful query results.

First the algorithm computes VLCA nodes, each of which is the root of one or more

query result trees (line 1 of procedure TargetedReturn), for which purpose we use the

algorithm proposed in XKSearch [144]. Then it finds relevant entity instances, and invokes

procedure findCenterEntity for identifying the center entity of the query (line 3). If the

center entity exists, then each relevant entity instance e that is an instance of the center

entity leads to a query result, denoted by QR. For each such entity instance e, a query

result is generated consisting of e and the matches to each keyword k that are supporting

nodes of e (Definition 6.3), together with their connections (line 6-7). Such a result satisfies

Definitions 6.1 and 6.2, and is atomic and intact. If there is no center entity, it takes the

default mode, which adopts Subtree Result as its efficiency is superior to Pattern Match as

shown in Section 6.4. That is, it generates query results by returning the relevant matches

in the subtrees rooted at VLCA nodes, which are intact (line 9-10).

Example 6.9 Take query “Galleria, casual” as a running example for this algorithm. The

relevant matches of this query are Galleria (0.0.2.2.0), casual (0.0.2.3.0.1.0, 0.0.2.3.2.1.0).

Their SLCA is node store (0.0.2). Relevant entity instances are store (0.0.2), clothes

(0.0.2.3.0, 0.0.2.3.2). The center entity is clothes (returned by procedure findCenterEntity,

which will be illustrated shortly). There are three entity instances of clothes, each forming

a query result. Consider clothes (0.0.2.3.0), for keyword Galleria, node 0.0.2.2.0 is the

supporting node and therefore is included into the corresponding query result. Similarly,

we also add the supporting node that match keyword casual (0.0.2.3.0.1.0) into this query

result.

Procedure findCenterEntity finds the center entity given relevant matches and

103

Algorithm 3 Composing Ranking Friendly Results
TargetedReturn (relMatches, indexes, Q)

1: V LCA=computeV LCA(relMatches) [144] {Group relMatches such that each group shares
the same V LCA node}

2: relEntityIns = the set of entity instances that are on a data path from a node in V LCA to a
node in relMatches

3: centerEntity = findCenterEntity(relMatches)
4: if centerEntity ̸= null then
5: for each e ∈ relEntityIns whose type is centerEntity do
6: for each keyword k ∈ Q do
7: add the matches to k that are supporting nodes of e, along with the edges connecting

them, to QR
8: else
9: for each v ∈ V LCA do

10: QR = a tree rooted at v which contains nodes in relMatches that are descendants of v

findCenterEntity (relMatches, indexes)

1: retNode, tarEntity = findReturn(relMatches)
2: if tarEntity ̸= ∅ then
3: if tarEntity is a singleton then
4: return the element in tarEntity
5: else
6: return null
7: else
8: for each E that is the type of a target entity instance do
9: S[E]=0 {use S[E] to encode the modifying status of entity E}

10: for each keyword k, that matches a value do
11: if nonModifier(k,E) then
12: S[E]=-1
13: else if nonKeyModifer(k,E) then
14: if S[E]=2 then
15: S[E]=-1
16: else if S[E]=0 then
17: S[E]=1
18: else
19: if S[E] = 0 or 2 then
20: S[E]=2
21: else
22: S[E]=-1
23: if there is exactly one entity type E such that S[E]=1 or 2 then
24: return E
25: else
26: return null

findReturn (relMatches, indexes)

1: retNode=∅, tarEntity=∅
2: for each m ∈ relMatches do
3: if (m matches a node name N) and (there does not exists m′, such that m′ ∈ relMatches

and m′ is a descendant of m) then
4: find the corresponding entity instance e of m, E=the type of e
5: retNode=retNode ∪ {N}, tarEntity=tarEntity ∪ {E}
6: if (m matches an instance of entity E) and (none of the attributes associated with m matches

a keyword in Q) then
7: retNode=tarEntity=tarEntity ∪ {E}
8: return retNode, tarEntity

104

indexes as input. First, procedure findReturn is called to find the return nodes retNode

(if any). It also returns entities these return nodes are associated with: tarEntity, which

is a list of all target entities. If there is only one element in tarEntity, then it is the center

entity, otherwise there is no center entity.

If there are multiple candidate center entities, an entity is a target entity if it is modi-

fied by every keyword k that is a predicate value; and if one modifier is a key attribute, then

all modifiers are key attributes. We use an integer S[E] as a flag to denote whether E is a

target entity. Specifically, S[E]=0 indicates that E is not a target entity since some attribute

values that match input keywords do not modify it. S[E]=-1 indicates that E is not a target

entity since some of its modifiers are key attributes, but others are not. S[E]=1 means that

E is a target entity modified by non-key attributes. S[E]=2 indicates that E is a target entity

exclusively modified by key attributes. Now let us look at how to set S[E]. If k does not

modify E, we simply set S[E]=-1 (line 12 of procedure findCenterEntity). Now consider

the case when k is non-key modifier of E (line 13). If S[E]=2, indicating that there is a

already keyword representing a key attribute modifier of E, entity E becomes disqualified,

and S[E]= -1 (line 15). If S[E] still has the initial value 0, then now it has a non-key modifier,

so S[E]= 1 (line 17). On the other hand, when k is a key attribute modifier of E, S[E] is set

to −1 if E has found a non-key modifier (line 23). Otherwise, S[E] =2 (line 21). Finally, if

there is only one entity type E such that S[E] = 1 or 2, then E is the center entity.

Example 6.10 Continuing the previous example. For query “Galleria, casual, there are two

candidate center entities: store and clothes. Since keyword Galleria is a modifier of entities

store and clothes, we have S[store]=2 and S[clothes]=1. For keyword casual, it is a non-

modifier of store and a non-key modifier of clothes, therefore S[store]=-1 and S[clothes]=1.

Finally, clothes is the only target entity, hence the center entity of this query.

6.4 Experiments

In this section we present experimental study of our approach for composing query results,

Targeted Return. Three metrics are tested: quality of query results, efficiency of generating

query results and scalability with respect to increasing data and query size.

105

Table 6.1: Data and Query Sets for Testing Result Composition

Baseball Mondial Synthetic
Q1 American, Relief Pitcher Q16 France, population, 95 Q31 bookstore, book
Q2 Central, Abbott Q17 mondial, Tasmania, Gotland, Area Q32 location, book
Q3 starting Pitcher, Cleveland Q18 mondial, Country, Muslim Q33 price, bookstore, Seattle, Borders
Q4 First Base, east Q19 country, Berlin Q34 book, tempe
Q5 Team, 1998 Q20 mondial, organization, member Q35 subsection, Breaking Dawn
Q6 player,name,Minnesota Q21 Germany datacode Q36 subsection, New Moon
Q7 Jim,wins Q22 democracy, muslim Q37 Bookstore, Harry Potter
Q8 Cleveland,losses Q23 country, province Q38 star, 22.5
Q9 team, player Q24 Austria,gdp Q39 Borders, Tom
Q10 Dwight, Gooden Q25 china, province Q40 Best selling, Tempe
Q11 Paul, team Q26 Albania, city Q41 Amazon, Borders, Seattle
Q12 Chicago, Central Q27 cuba, gdp, area Q42 caption, price, author, book
Q13 white sox , Abbott Q28 ethnicgroups, Slovene Q43 Breaking Dawn, subsection, English
Q14 Joey, Jim Q29 Canada, province, Edmonton Q44 Harry Potter
Q15 Mariners, player Q30 river, Mississippi Q45 author, English

Experimental Setup

Equipment. The experiments were performed on a 3.60GHz Pentium 4 machine with 2GB

memory running Windows XP Professional. We implemented Targeted Return in Microsoft

Visual C++, in which we used Oracle Berkeley DB1 for label index and Dewey index. The

test data and query sets are shown in Table 6.1.

Data. We have tested three data sets: Baseball, Mondial and Bookstore. Baseball

is a data set recording the teams and players of North American baseball league.2 Mondial

is a world geographic data set.3 To show the applicability of our approach on a variety

of XML data, we also generate a synthetic bookstore data set, which contains recursive

elements of average depth 5.4.

A Dewey index, label index and modifier index is built on each data set. The av-

erage ratios of the size of these indexes to the size of the data are 3.90, 1.42 and 0.01,

respectively.

Queries. Our query set, shown in Table 6.1, consists of three parts with 45 queries

in total. We invited 10 graduate students majoring in computer science who did not par-

ticipate in this project for a user survey to obtain test queries. We asked each of them to

1http://oracle.com/technology/products/berkeley-db/index.html
2http://www.ibiblio.org/xml/books/biblegold/examples/baseball
3http://www.cs.washington.edu/research/xmldatasets

106

issue keyword queries on each data set. Since the queries issued by the users may not be

complex enough to cover a variety of query patterns, we also issued five queries ourselves

for each dataset. Q1 − Q5, Q16 − Q20, Q31 − Q35 are the queries we issued, and the

other queries were issued by the users. Our query set contains a number of different query

patterns: some queries only have tag names thus have lower selectivity, some only have

attribute values, and some have both. Besides, some queries have VLCA nodes of small

depths and potentially each query result tree is large, while some have VLCA nodes of large

depths. Some queries have a single inferred target entity, while others have multiple, as

indicated by user study to be introduced shortly.

Comparison Systems. We compare Targeted Return with Subtree Result and

Pattern Match. We implemented Subtree Result as [144], and used Timber [8] for Pattern

Match approach.

Quality of Query Results

We study the quality of query results generated by different strategies. Note that for a given

query, the union of the content of all results is the same for all three approaches. Therefore,

common metrics for measuring whether relevant nodes are retrieved, such as precision,

recall and F-measure, are not helpful for this experiment. Instead we performed user study

to score the quality of query results generated by each approach in terms of the accuracy

of inferring search targets, as well as the users’ overall satisfaction with the results.

Also note that since no ranking scheme is perfect, introducing a particular ranking

method in the experiment may bring unnecessary bias and distract the user. Therefore,

we made a questionnaire for the users, which is composed of two parts. As discussed in

Section 1, an approach that provides 1-1 mapping between a result and a search target is

likely a ranking-friendly result composition method, since it enables ranking to be based on

target instances, and users will see exactly k target instances in the top-k results. Thus Part

1 evaluates whether our proposed approach provides 1-1 mapping between a result and a

search target, which does not depend on any particular ranking function. Additionally, to

verify that 1-1 mapping enables good results, Part 2 asks for users’ overall impression on

107

the result generated by our approach compared with those generated by Subtree Result

and Pattern Match.

In the following, we use Q6 in our query set, “player, name, Minnesota”, as an

example to illustrate the process of the user study.

Part 1. In order to verify our claim that Targeted Return makes query results cater to

user’s search intention, we asked the users to write down an English sentence to illustrate

their search goal for each query. We also required the users to either underline the search

target in the sentence or explicitly specify search target followed by the sentence. For

example, for Q6 (player, Minnesota,name), the sentence describing its semantics is “Find

the player’s name, who played in team Minnesota” (i.e., the search target is player).

After collecting the queries and their semantics, we use Target Return, Subtree

Result and Pattern Match to generate the query results and based on the semantics of

each query, categorize the results into the following three categories:

• (A) There is one to one mapping between results and search target instances.

• (B) There is one to many relationship between results and search target instances.

• (C) There is many to one relationship between results and search target instances.

Take Q6 as an example, whose search target is player. The results generated by

the three approaches are shown in Figure 6.5. As we can see, Targeted Return places each

distinct player in one result, and therefore the results of Targeted Return on Q6 belong to

category (A).

On the other hand, Subtree Result has only one result for this query, consisting

of the team node whose name is Minnesota as well as all the players in its subtree. The

information of all players is returned in one result of Q6, hence category (B). Pattern Match

produces two results for each player, and therefore, it is categorized as (C). Such an orga-

nization of results would cost the user additional effort to browse the query results to get

the desired information.

108

team

name

Minnesota
player

First
name

Last
name

Rick Aguilera

team

name

Minnesota
player

First
name

Last
name

Travis Baptist

…

(a) Targeted Return

team

name

Minnesota

player

First
name

Last
name

Rick Aguilera

player

First
name

Last
name

Travis Baptist

…

(b) Subtree Result

team

name

Minnesota

player

First
name

Rick

team

name

Minnesota

player

First
name

Aguilera

(c) Pattern Match

…

Figure 6.5: Results of Q6 generated by Targeted Return, Subtree Result and Pattern Match

The distribution of categories the results of 45 test queries belong to is shown in

Figure 6.6. As we can see, a large number of results produced by Subtree Result get

option (B), since results of Subtree Return usually contain multiple search target instances.

On the other hand, Pattern Match mainly gets option (C) for the opposite reason. The query

results given by Targeted Return, in most cases, have one to one mapping between a result

and a target instance. Therefore, ranking of results generated by Targeted Return can be

based on each target instance, and is thus desirable.

Part 2. For each query, the users were given the results generated by the three

approaches with shuffled order, and were asked to give an overall satisfaction score based

on their impression of each query result of scale [1, 3]:

• 3: I have no trouble finding what I am looking for.

• 2: I need efforts to extract the desired information from the results.

• 1: I cannot find what I am looking for without re-organizing the results.

109

-20%

0%

20%

40%

60%

80%

100%

Targeted Return Subtree Result Pattern Match

One to one mapping between results and target instances (A)
One to many mapping between results and target instances (B)
Many to one mapping between results and target instances(C)

Figure 6.6: Quality Survey on Top-k Query Results

0

1

2

3

4

5

Google FD FD-IRD FD-IRD-Ratio Optimal Xoom

Figure 6.7: Scores of Targeted Return, Subtree Result and Pattern Match

The average scores of the three approaches of all 45 test queries given by the user

is shown in Figure 6.7. Targeted Return got the best score of 2.76, followed by Pattern

Match 1.92 and Subtree Result 1.15. This indicates that the organization of query results

by Targeted Return is closest to users’ expectations.

Now we analyze the quality of the query results generated by Targeted Return.

Generally, when a user’s query has a return node, or only one entity is modified by all

predicates, Targeted Return can successfully infer the user’s search target, and the query

results are very close to, if not exactly the same as, user’s expectation. Furthermore, for

queries like Q35 where the search target, subsection, is a recursive element in the data,

Targeted Return also produces desirable results by having each result contain one instance

110

of subsection. This verifies the applicability of our heuristics of inferring target entities and

center entities.

On the other hand, there are two cases that Targeted Return needs improvements

(though it is not worse than existing approaches – Subtree Result and Pattern Match).

First, Targeted Return may fail to infer center entities from multiple inferred target entities.

In this case Targeted Return adopts Subtree Result for result generation, which may include

multiple target instances in a result. An example is Q2, where there are two target entities:

team in the central division, or player named Abbott. The results of Targeted Return have

one team in each result, which is not desirable as the user’s search goal is to find the

player named Abbott who plays in a team in the central division. Targeted search do not

compose desirable results for Q23 and Q31 for the same reason. The other case is that

the user searches for a relationship, rather than the information of a single entity, such as

Q14, which searches for the relationship of two players. Targeted Return infers player as

the center entity, and outputs two players in each result. The results have overlaps, as each

result is based on a single instance of player named Joey (Jim), and includes the matches

of Jim (Joey) that are supporting nodes of player. This is undesirable as the results may be

confusing and the users need more efforts to find the desired information. It is our future

works to infer the correct center entity in face of multiple target entities, and deal with target

relationships.

Processing Time

To test the processing time of each approach, we choose the Baseball data with size

1014KB, a portion of the Mondial data with size 515KB and the Bookstore data with size

423 KB.4

The processing time of each approach in log scale is shown in Figure 6.8 - 6.10.5

When the processing time of a query is not perceivable, we set it as 0.002 second in order

to be shown in the figures.

4We did not use larger data set because Timber reports error when evaluating most queries on larger data.
Larger data are used in the scalability test.

5“e” means that the system reports error for query evaluation.

111

0.001

0.01

0.1

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Ti
m

es
 (

s)

Targeted Return Subtree Result Pattern Match

eee

Figure 6.8: Processing Time of Targeted Return on Baseball Data

0.001

0.01

0.1

1

10

Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30

Ti
m

es
 (

s)

Targeted Return Subtree Result Pattern Match

e e e

Figure 6.9: Processing Time of Targeted Return on Mondial Data

0.001

0.01

0.1

1

10

Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45

Ti
m

es
 (

s)

Targeted Return Subtree Result Pattern Match

ee e e e

Figure 6.10: Processing Time of Targeted Return on Synthetic Data

As shown in the figures, the processing time of Targeted Return is always longer

than that of Subtree Result. This is because both approaches need to calculate VLCA nodes

and find relevant matches within VLCA nodes, and besides, Targeted Return also needs to

differentiate return nodes and predicates in a query, find target entities from Dewey index

when there are return nodes or identify target entities according to modifying relationship

112

0

2

4

6

8

200 400 600 800 1000

T
im
e
(s
)

Data Size (MB)

Targeted Return Subtree Result

Figure 6.11: Scalability of Targeted Return over Data Size

among attribute values and relevant entities, and generate a query result for each center

entity instance by outputting the matches of each keyword that are supporting nodes of

the center entity instance, together with the paths connecting them when there is a center

entity.

Therefore, when there is no center entity for a query, such as Q9 and Q23, the

processing time of Targeted Return is almost the same as that of Subtree Result. For

some queries that have center entity, The time consumed by Targeted Return is still close

to that of Subtree Result, such as Q16. When the number of instances of return nodes or

center entity is large, Targeted Return needs to process each individual ones, group them

according to VLCA nodes, and therefore takes a longer time, such as Q18, Q37 and Q39.

The processing time of Pattern Match is always longer due to the cost of enumerat-

ing patterns.

Scalability

We test the scalability of our approach with respect to data size. The data size is increased

by replicating the data. The result of processing query Q1 on the Baseball dataset whose

size is increased from 200MB to 1GB is shown in Figure 6.11. The processing times of

113

Targeted Return and Subtree Result both increase linearly with the increase of the data

size. Results of processing other queries are similar and are omitted.

In summary, the query results given by Targeted Return have much better quality

than those generated by Subtree Result and Pattern Match. Targeted Return has a reason-

able processing time overhead compared with the Subtree Return approach, and is more

efficient than Pattern Match.

6.5 Summary

Properly defining query results has a significant benefit on query result ranking, top-k query

evaluation as well as user-friendliness. From the semantics point of view, each user query

has a search target. Therefore each query result should be atomic and intact, i.e., con-

taining exactly a single instance of the search target along with all the relevant match or

non-match nodes related to this instance. Subsequently, the ranking defined on query re-

sults should reflect the ranking of these target instances. A query result that contains mul-

tiple instances of a target entity, as produced by Subtree Result, overwhelms the user and

messes up the ranking among target entity instances. On the other hand, multiple query

results that correspond to the same target entity instance, as generated by Pattern Match,

annoy the user with repeated result and disturb the ranking among target entity instances.

Our approach of composing query results is driven by user search targets, and

produces atomic and intact query results. To identify user search targets, we infer return

nodes for keyword searches and the modifying relationship among attribute values and

entities in the data. Then we determine the target entities and center entity for a keyword

search, based on which query results are composed. Experimental evaluation has shown

the effectiveness and efficiency of our approach. The proposed query result generation

technique can be adopted in existing XML keyword systems [43, 56, 61, 82, 86, 91, 93,

144].

114

Chapter 7

RESULT SNIPPET

7.1 Motivation and Goal

As discussed Chapter 1, structural ambiguity, keyword ambiguity and user preference am-

biguity can be alleviated by result analysis techniques. By helping users view and analyze

the query results conveniently, the user will be able to quickly understand the structure of

a result, the keyword semantics in a result, the comparison of different results, etc. In this

chapter as well as the following few chapters, we will discuss result analysis techniques. In

particular, this chapter discusses how to generate snippets for structured search results.

Result snippets help users quickly judge the relevance of query results by providing

a brief quotable passage of each query result. Note that although various ranking schemes

have been proposed to assess the relevance of query results, it is impossible to design a

ranking scheme that always perfectly gauges query result relevance with respect to users’

intentions. To compensate the inaccuracy of ranking functions, result snippets are used by

almost every web search engine.

Compared with result snippets for text document search, structured data presents

better opportunities for generating meaningful and helpful search result snippets. In docu-

ment search, due to the lack of structure, a common strategy is to use document fragments

that contain keywords along with the surrounding words as snippets in order to approximate

a semantic summary of the document. On the other hand, structured data contains meta-

data, providing meaningful annotations to the data content, thus presenting a better hope

of generating semantically meaningful snippets.

To generate meaningful snippets for keyword search on structured data, we begin

with identifying the specific goals that a semantically meaningful result snippet should meet.

First, different result snippets should be distinguishable from one another, so that the user

can differentiate the results from their snippets with little effort. Second, a snippet should

be representative to the query result, thus the user can grasp the essence of the result from

its snippet. At last, a result snippet should be small so that the user can quickly browse

115

store1

state city
merchandises1

clothes1

fitting

men1

Texas1 Houston

store2

state city

Texas2 Austin

merchandises2

retailer

category

suit1

clothes2 clothes3 clothes4 clothes5

fitting

men2

situation

formal2

situationfitting

women3 casual3

category

outwear3

situationfitting

men4

category

outwear4

categoryfitting

women5 skirt5

name product

Brook
Brothers

apparel

city: Houston:6; Austin: 1; other cities (3): 3
fitting: men: 600; women: 360; children: 40
situation: casual: 700; formal: 300
category: outwear: 220; suit: 120; skirt: 80; sweaters: 70; other categories (7): 580

casual4

situation

casual1

Result Statistics

name

Galleria

name

West
Village

…… ……

…………

category

outwear2

Figure 7.1: Part of a Query Result and Statistics about Value Occurrences.

several snippets. However, achieving these goals is highly challenging.

To illustrate these goals, we use query Q8 in Figure 4.1 on the XML data in Fig-

ure 1.3. A sample result of this query is shown in Figure 7.1. Some statistics of the full

query result in this example are presented at the bottom of the figure, where for each dis-

tinct name-value pair, we record the number of its occurrences in the query result. For

instance, “city: Houston: 6" indicates that there are 6 occurrences of Houston as a value of

node city in the query result. Values with low occurrences are omitted.

The first goal of snippets is to allow the user to easily distinguish different query

results from one another. To achieve this in text document search, result snippets often in-

clude the document titles. Analogously, we propose to select the unique identifier (aka. key)

of a query result into its snippet to identify this query result and highlight the fundamental

differences among results. Intuitively, a node in a query result is a key if the values of the

nodes with the same name are all distinct in all the query results. A plausible solution would

use such nodes as the keys of a query result. For example, we may consider that name of

a store as a key of the results of query Texas apparel retailer. However, this is unlikely to

be reasonable, as the user searches for retailer, which can have hundreds of stores. It is

116

an open question how to infer the key of a query result.

The second goal is to design snippets that provide representative summaries of

the query results by including the most prominent features in each result. Intuitively, a

prominent feature is often reflected by a large number of occurrences of such a feature in

the result. Continuing our example, suppose Brooks Brothers has 1000 clothes of different

styles, among which 600 are for men and 40 for children. Therefore including clothes of

fitting men instead of children in the snippet shows a prominent feature of this query result:

this retailer targets clothes for men. However, the relationship between the prominence of a

feature and the number of occurrences is not always reliable. In our example, the number

of occurrences of Houston: 6, is much less than that of children: 40. However, considering

that the majority of Brooks Brothers stores are in Houston in the query result, Houston

should be considered as a prominent feature.

Besides, the prominence of a feature can also be measured by its general impor-

tance in other results, analogous to measuring the importance of a keyword via inverse

document frequency (IDF). Similar as IDF, a feature with many occurrences in many results

should be considered as a non-prominent feature. Consider a result of query “Esprit, store,

shirt” in Figure 7.4(a). It is common sense that most shirts are made of cotton, thus cotton

is an uninteresting and non-prominent feature. This is captured by the fact that cotton has

many occurrences in all results.

Furthermore, a snippet should be faithful to the original query result. This could

be achieved by keeping the distributions among the selected values as much as possible.

For example, the query result in Figure 1.5 about Brooks Brothers retailer has 600 different

clothes styles for men, 360 for women and 40 for children. Suppose another query result is

about Talbots retailer which has 500 different clothes styles for women, 280 for men, and 20

for children. As we can see, although both retailers sell clothes for men and women, clearly

they have different specialities. A good snippet should reflect the differences in terms of

occurrences of features in the corresponding result.

The two goals discussed above address the requirements on the semantics of a

result snippet. Clearly the larger a snippet is, the more information it has and the better it

117

store1
store2

retailer

name product

Brook

Brothers

apparel

city

merchandises1

clothes1

fitting

men1

Houston

clothes3

fitting situation

women3 casual3

clothes4

fitting

men4

merchandises2

category

suit1

category

outwear3

category

outwear4

state

Texas1

Figure 7.2: A Snippet of the Query Result in Figure 1.5

can meet these goals. A trivial solution to generate snippets that meet these goals could be

using the query result itself as the snippet. Nevertheless, this is obviously undesirable. The

last goal specifies a conflicting requirement: a snippet should be small so that a user can

quickly and efficiently browse and understand snippets of several query results. Therefore

the challenge is how to provide as much information as possible in a snippet to meet the

first two goals within an upper bound of the snippet size.

In this chapter we address the problem of generating effective snippets for struc-

tured search results, and comprehensively test the snippets generated our approach in

terms of quality, efficiency, scalability, as well as the effectiveness of grouping query results

based on snippets.

We assume a query result is subtree of the data (which is either a tree or a graph).

A snippet of a result R is a subtree of R. There are two steps to generate result snippets.

Step 1: Identifying Important Information in the Result (Section 7.2). In this

step, we identify what information in the result serves as best summarization of the result,

hence should be included in the snippet. To do so, we identify three desirable properties of

a snippet: a snippet should be an information unit of a bounded size that effectively sum-

marizes the query result and differentiates itself from others. To achieve this, we analyze

the semantics of the query result. We identify the key of the result as well as the prominent

118

features in the result. We put this information in a snippet information list, in which items

are ordered by their importance to be included in the snippet.

A feature in a query result is defined as an “entity:attribute:value” triplet, such as

“clothes:fitting:men”. Features can be identified from search results on many common data

models, e.g., XML and relational databases. Data in relational database are often organized

based on the Entity-Relationship model, from which we can identify entities. Column name

and the value in each cell can be considered as attribute and value, respectively. For XML

data, it is modeled as a rooted labeled tree. Entities and attributes can be identified by the

heuristics discussed in Chapter 5. Specifically, a node is an entity if it corresponds to a

*-node in the DTD, i.e., it has siblings with the same label. A node is an attribute if it is not

an entity and has only one leaf child.

Given a result, we initialize the snippet information list with the keywords in the

keyword query, as at least one match to each keyword should be included in the snippet. For

example, if the result in Figure 1.5 is obtained by a keyword query “Texas, apparel, retailer”,

then IList initially consists of these three keywords as shown in Step 1 in Figure 7.3. In the

next several subsections we discuss what other items should be added to the list in order

to make the snippet distinguishable and representative.

Step 2: Selecting Instances of Items in the Snippet Information List (Sec-

tion 7.3). An item in the snippet information list may have multiple occurrences in the result.

Selecting different occurrences to compose the snippet will lead to different snippet sizes.

Since snippet should be concise, we would like to select as many items in the snippet in-

formation list as possible given a snippet size limit. We show that this problem is NP-hard.

A novel algorithm is proposed that efficiently generates semantic snippets with a given size

bound for structured search results.

As an illustration, the snippet for the query result in Figure 7.1 is shown in Figure 7.2.

It captures the heart of the query result in a small tree: the query result is about retailer

Brooks Brothers, which has many stores in Houston and features casual clothing for men

more than women. While for categories of clothing, it features mainly suits and outwears.

119

7.2 Identifying Significant Information in Query Results

We have discussed three goals in generating result snippets for structured search results

and the challenges to achieve them. In this section we discuss how to tackle the challenges

to meet the first two goals, such that the most significant information in a query result to be

selected in its snippet is identified.

Distinguishable Snippets

Goal 1: A snippet should make the corresponding query result distinguishable from (the

snippets of) other query results such that the users can differentiate them with little effort.

As discussed in Section 7.1, we propose to select the key of a query result into its

snippet, reminiscent to the document title in result snippets in text document search, such

that a query result can be identified and differentiated from other results.

However, it is not obvious how to identify the key of a query result, as a query result

may contain several entities, each of which has a key. Thus the question is which entities’

keys should be considered as the key of the query result. Intuitively, each query has a

search goal. The search goal can be used to classify the entities in a query result into two

categories.

1. return entities are what the users are looking for when issuing the query.

2. supporting entities are used to describe the return entities in a query result.

Since return entities are the core of a query result, their keys can function as the

key of the query result and can be used to differentiate this query result from others. There

can be many heuristics for inferring return entities, and we adopt the following heuristics:

An entity in a query result is a return entity if its name matches a query keyword or its

attribute name matches a keyword. If there is no such entity, that is, no keyword matches

node names, then the highest entity (i.e., entities that do not have ancestor entities) in the

query result are considered the default return entity.

120

| step1 | | step2 | | step3 |

IList: Texas, Apparel, Reta iler, Brook Brothers, Houston, outwear, men, casual, suit, women

keywords key prominent features
goal1 goal2

Figure 7.3: IList of the Query Result in Figure 1.5

Example 7.1 In our running example, for query Texas apparel retailer, entity retailer matches

a keyword, and therefore is considered as a return entity, corresponding to the user’s search

goal. The key attribute of retailer: name is considered the key of this query result, and is

added to the snippet information list. The current IList comprises the first two steps in

Figure 7.3.

The key of XML nodes/database tuples can be directly obtained from the schema

or DTD, if available. Otherwise, we find the most selective attribute of the return entity and

use it as the key. Specifically, for all query results, we find the attribute of the return entity

that has the fewest duplicate values.

Representative Snippets

Goal 2: A snippet should be representative of the query result, so that the users can grasp

the essence of the result from its snippet.

Similar as text document search, a snippet should provide a summary of the query

result. A good summary should be concentrated on the most prominent features of a query

result, and at the same time be faithful to the meaningful statistical value distribution in the

query result.

We define a feature in the result as a triplet (entity name e, attribute name a, attribute

value v). For example (store, city, Houston) is a feature. The pair (entity name e, attribute

name a) is referred as the type of a feature, and attribute value v is referred as the value

of a feature. If the number of words contained in a text value is larger than a threshold

(which is likely a long text value consisting of sentences/paragraphs), then each individual

word is considered as a distinct feature value. Intuitively, outputting sentences/paragraphs

is space-consuming, and the significance of the sentences is hard to judge, thus we choose

121

to output statistically representative words instead. The threshold can be flexibly set; in our

implementation and experiments, the threshold is set as 5. For this type of long values, we

can also consider each important phrase as a single feature value by applying the phrase

identification techniques in the literature, such as [88] and [135]. Note that the entity name

is taken into account because different entities may share the same attribute names. For

example, both retailer and store have attribute name. For presentation purpose, we refer to

a feature by its value when there is no ambiguity.

Next we will discuss two factors that affect the prominence of a feature: feature

dominance (FD) and inverse result dominance (IRD). We will then discuss feature value

distribution.

Feature Dominance

As discussed in Section 7.1, a dominant feature of a query result is often reflected by a

large number of occurrences of the feature in the result. For example, the fact that there

are more clothes for men than children in the query result indicates that Brooks Brothers is

specialized for men instead of children clothes.

However, the relationship between the dominance of a feature and the number

of occurrences is not reliable due to two reasons. First, different features have different

domain sizes. The domain size of a feature type (e, a) is defined as the number of distinct

values (e, a, v) of this type, denoted as D(e, a). The smaller size a domain has, the more

chances for a value to have more occurrences in the result. For example, the number of

occurrences of outwear: 220, is less than that of women: 360. However, considering the

domain sizes of their corresponding feature types in the query result: D(clothes, category) =

11, D(clothes, fitting) = 3, outwear could be more dominant than women in their respective

domains.

Second, due to the tree structure of the query result, different features have different

total number of occurrences in the query result, denoted as N(e, a). The more occurrences

of a feature type, the more chances that a value of this feature type to occur. For example, a

value Houston only occurs 6 times, while children occurs 40 times in the query result. How-

122

ever, considering the number of occurrences of their corresponding feature types: N (store,

city) = 10, N (clothes, fitting) = 1000, Houston is likely to be more dominant than children.

As observed from these examples, comparing the number of occurrences of values

of different feature types may not make sense in determining dominant features. To quantify

the above intuition, we propose to use normalized frequency, called feature dominance, to

measure the significance of a feature in a query result.

Definition 7.1 We define feature dominance of a feature f = (e, a, v) as follows:

FD(f, r) =
N(e, a, v)

N(e,a)
D(e,a)

(7.1)

where R is a query result, N(x) denotes the number of occurrences of x in R,

D(e, a) denotes the domain size of (e, a) in R.

Example 7.2 Continuing our example, we compute the feature dominance for features in

the query results. In the following the corresponding feature types are omitted for concise-

ness.

FD(Houston) = 6 / (10 / 5) = 3.0

FD(men) = 600 / (1000 / 3) = 1.8

FD(women) = 360 /(1000 / 3) = 1.08

Similarly, we get FD(casual) = 1.4, FD(outwear) = 2.2, and FD(suit) = 1.2.

In summary, a feature has a higher feature dominance if it occurs more frequently

in the result compared with other features of the same type.

Inverse Result Dominance

While feature dominance measures one aspect of the prominence of a feature, it is not suf-

ficient. Recall that in information retrieval, the importance of a keyword in a text document

is measured from two aspects: its frequency in the document (TF) and the appearance of

the keyword in all documents (IDF). TF measures the importance of a keyword in a single

123

document in terms of its frequency in the document; IDF measures the general importance

of keywords in terms of how many documents contain this keyword. It is easy to see that

feature dominances resemble term frequencies by evaluating the feature within a result.

Analogously, a feature is prominent if it is dominant in only a small number of results, as to

be shown in the following example.

Example 7.3 Consider a query “Esprit, store, shirt” on an XML document about apparel

retailers. Each result is a store that sells shirts, one of which is shown in Figure 7.4 (a).

Suppose that the majority of shirts are made of cottons, and that the Esprit store in each

result either only sells or mainly sells women clothes, while in the result in Figure 7.4 (a),

40% of the shirts are for men, which is unusual.

Two possible snippets of the result in Figure 7.4 (a) are shown in (b) and (c). The

snippet in (b) is generated according to feature dominance discussed before, which consists

of the features with the highest feature dominance. The one in (c) does not have feature

(clothes,material,cotton), but shows a feature (clothes,fitting,men), which has a lower fea-

ture dominance in the result. The snippet in (c) is more informative, as cotton has a high

feature dominance in all results, and thus outputting cotton is not interesting or helpful. In-

deed, it is common sense that most shirts are made of cotton. On the other hand, the result

in Figure 7.4 (a) has unusually many shirts for men compared with other results, so it is

desirable to instead show the feature men, which informs the user of the uniqueness of this

store.

As we can see, to identify prominent features, we should not only use the feature

dominance which is a score within a result, but also measure its dominance over all results.

However, it is an open question how to measure it and it is challenging to do so. Due to the

differences between features and keywords, the formula of IDF cannot be directly applied

for computing the weight of a feature. Recall that IDF is calculated as:

IDF (k) = log
|D|
|Dk|

124

store

merchandises

clothes

fitting

women

category

shirt

clothes

fitting

men

situation

formal

situation

casual

name

ESprit ……

category

shirt

materia l

cotton

material

cotton

store

merchandises

clothes

category

shirt

situation

casual

name

ESprit

material

cotton

clothes

fitting

women

store

merchandises

clothes

fitting

women

name

ESprit

situation

casual

clothes

category

shirt

fitting

men

(a)

(b) (c)

Figure 7.4: Query Result Fragment and Snippets of Query “Esprit, store, shirt”

where k is a keyword, |D| is the number of documents and |Dk| is the number

of documents that contain keyword k. There are two important differences between the

importance of a feature and the importance of a keyword (IDF).

First, IDF considers the frequency of a keyword in the universe of text documents;

however, we propose to use the set of results of a query, rather than the entire data repos-

itory, as the universe, to measure whether a feature is interesting with respect to a query.

The reason is that whether a feature is prominent or not varies by queries. For example,

recall the query “Esprit, store, shirt”. By common sense, cotton is unlikely an interesting

feature as most of the shirts are made of cotton, which can be captured by the fact that cot-

ton has a high feature dominance in almost all results. However, cotton can be a prominent

feature for other queries such as “store, outwear”, if it has a small number of occurrences

125

in most results.

Second, even if a feature appears in all results, it may still be a prominent feature

and its weight should not be zero. Consider query “Esprit, store, shirt” again, if each store

sells at least one shirt for men, then feature men appears in all results. According to the

IDF formula, men should get a weight of 0, which is implausible. In fact, if men occurs

only a few times in most results but occurs more frequently in one result, then it is likely an

interesting feature to be included in the snippet of this result. Thus a feature should have

a low weight only if it has a high feature dominance in most results. As we can see, the

second difference between IDF and feature weight is: the number of documents are huge

and are from different domains, so a keyword that appears in many or all documents must

be a very unimportant word, such as a stop word. On the other hand, the results of the

same query are generally similar with each other, thus it is possible that they have many

common features, and these features should not be regarded as useless.

Despite these differences, the idea that a feature occurring in a small number of

results is important, is still valid. We define the Inverse Result Dominance (IRD) of a feature

in a way similar as IDF of a keyword, which is tailored for computing the weight of a feature

under the guidance of the two differences mentioned above. We use the number of query

results, rather than the number of all structured data, as the numerator. Besides, instead of

using the number of results containing a feature as the denominator, we measure the total

feature dominance of the features in all results. The inverse result dominance of a feature

f , IRD(f), is computed via the following formula:

IRD(f) = log2(
|R|∑

r′∈R
FD(f, r′)

+ 1) (7.2)

According to Formula (7.2), if the average feature dominance of feature f over all

results is lower than 1, which means that f is on average a non-dominant feature, then its

IRD is higher than 1, and vice versa.

We define the score of a feature as the product of its feature dominance and inverse

result dominance:
126

score(f, r) = FD(f, r)× IRD(f) (7.3)

Definition 7.2 A feature f is a prominent feature in query result r if score(f, r) ≥ 1.

Example 7.4 Consider the query result in Figure 7.4. Let r denote the result shown in the

figure. Assume that the average feature dominance of feature cotton and men is as follows:

average FD in all results FD in result r

cotton 10 10

men 0.1 0.8

Then according to Formulae 7.2 and 7.3, IRD(cotton) = 0.14, score(cotton, r) =

1.4. On the other hand, IRD(men) = 3.46, and score(men, r) = 2.77. As we can see, men

now gets a higher score and hence a higher priority over cotton, and will be output in the

snippet before cotton.

We include the prominent features into the snippet information list in the decreasing

order of their scores, which now contains the items in all three steps in Figure 7.3.

Faithful Summary of Results

As we have discussed, the prominent features are added to the snippet information list in

order to present a representative summary of the query result. For a snippet to be faithful

to the original query result, it should also try to keep the meaningful distributions among the

select features as much as it can. Being unaware of the relative significance of different

features, the users may not be able to determine whether a query result is relevant or not.

Recall the example discussed in Section 7.1. Both men and women are prominent

features, with different numbers of occurrences in the query result about retailer Brooks

Brothers in Figure 1.5. Suppose there is another query result about Talbots (not shown in

the figure), which sells clothes for both men and women, but focusing on women’s. Including

127

keywords key prominent features

IList: Texas, Apparel, Retailer, Brook Brothers, Houston, outwear, men, casual, suit, outwear, women, men

Weight: 1 1 1 2-1 2-2 2-3 2-4 2-5 2-6 2-7

| step1 | | step2 | | step3 |

goal1 goal2

Figure 7.5: Adjusted IList of the Query Result in Figure 1.5

one men and one women in the snippet for each query result can mislead users about their

specialization.

To better capture the characteristics of the original query result, for the prominent

features of the same type in the snippet, we propose to preserve the ratios of their number

of occurrences. For example, since Brooks Brothers has 600 clothes for men and 360 for

women, selecting 5 clothes for men and 3 clothes for women shows that this retailer targets

more for men than women. Note that including the minimum number of occurrences that

can keep the ratio already makes the information saturated. For example, showing 10 men

and 6 women for Brooks Brothers does not add any additional information in the snippet,

and therefore is unnecessary.

Note that keeping the ratio across different feature types won’t make much sense,

as the user rarely compares the values from different features. For example, it is not com-

parable whether the retailer has more clothes for men or has more clothes in the outwear

category. We also do not keep the ratio among entities as it can be too costly to be mean-

ingful. For example, if each retailer has 20 stores, each of which has 20 to 1000 clothes.

Keeping the ratio among retailer, store and clothes in a reasonably small snippet is difficult.

In fact, due to space limitation, we often keep a rough ratio among features. Let mf

be the maximum number of prominent features that we want to select into the snippet per

feature type (e, a). Then the number of occurrences of a feature (e, a, v) in the snippet is

set to:

occ(e, a, v) = ⌊mf ×N(e, a, v)/

n∑
j=1

N(e, a, vj)⌋ (7.4)

128

Where (e, a, vj), 1 ≤ j ≤ n, is a prominent feature and N(x) is the number of

occurrences of x.

Based on the above discussion, we adjust the snippet information list of a query re-

sult such that multiple appearances of the same features may be included, add the promi-

nent features into the snippet information list, each of which may have multiple appear-

ances, in order to keep the distribution information of this feature type.

Example 7.5 Referring to the snippet information list of the sample query result in Fig-

ure 7.3. Note that feature outwear and suit are of the same type (clothes, category). In

the query result, the number of occurrences of outwear and suit are 220 and 120, re-

spectively. Assuming the upper bound for each feature type in the snippet is 4, we select

220*(4/(220+120))=2 clothes for outwear and 120*(4/(220+120))=1 for suit into the informa-

tion list. Similarly we choose 2 clothes for men and 1 for women.

The snippet information list is adjusted to reflect the distribution, as shown in Fig-

ure 7.5.1 Compared with Figure 7.3, when it comes to suit, since a feature of the same

type, outwear, is already in the IList, therefore to keep their ratio we should output another

outwear together with suit. Similarly, a men node needs to be output together with women.

Note that since a snippet has a limited size, we might not be able to include all the fea-

tures necessary to keep the faithful ratio of prominent features. For example, for features

suit, outwear bounded by black box in Figure 7.5, suppose we can include feature suit in

the snippet, but then we do not have enough space to include outwear. In this case, only

including suit will mislead the users for the same reason as we have mentioned before,

and only including outwear is useless. Therefore, in this case we include neither suit or the

additional outwear in the snippet. Generally, for the items in the same rectangle in IList,

they are either included together or none of them is included in the snippet.

1The weight of each item in the figure is used in the snippet generation algorithm which will be discussed
in Section 7.3.

129

Algorithm 4 Construction of Snippet Information List
keywordSearch (Q,D)

1: QR[m] = obtainResults(Q,D) {using any existing search engine}
2: constructIList(QR[m], Q)
3: for i = 1 to m do
4: selectInstance(QR[i], IList[i], sizeLimit)

constructIList (QR[m], Q) {Generate IList for all query results}
1: for i = 1 to m do
2: IList[i] = ∅
3: processQR (QR[i], Q, IList[i])
4: compute the IRD and score of each feature using Formula (7.2) and (7.3)
5: for i = 1 to m do
6: for each feature f = (e, a, v) do
7: if score(f,QR[i]) ≥ 1 then
8: IList[i] = IList[i] ∪ {f}
9: adjustIList(IList[i])

10: sort all features in IList by their scores
11: return IList

processQR (QR, Q, IList) {Traverse a query result to identify return entities and count feature
occurrences}
1: returnEntity = ∅
2: IList = IList ∪Q
3: for each node n in a pre-order traversal of QR do
4: if n is an entity then
5: e = n.name
6: if e matches a keyword then
7: returnEntity = returnEntity ∪ {e}
8: else if n is an attribute name then
9: a = n.name

10: N(e, a) + +
11: if a matches a keyword then
12: returnEntity = returnEntity ∪ {e}
13: else if n is a value then
14: v = n.value
15: N(e, a, v) + +
16: if triplet (e, a, v) has not appeared before then
17: D(e, a) + +
18: IList = IList∪ the set of key attribute values of returnEntity
19: for each feature f = (e, a, v) do
20: compute FD(f,QR) using Formula (7.1)

Algorithm for Snippet Information List Construction

As has been discussed, the snippet information list IList contains the following three com-

ponents in order. Each item in the list is referred as an informative item.

1. Keywords;

130

2. The key of the query result, represented by the keys of the return entities, contributing

to distinguishable snippets;

3. An ordered list of prominent features whose distribution among all prominent features

of the same type is preserved, contributing to faithful summaries of query results.

The algorithm of constructing IList is shown as procedure constructIList in Algo-

rithm 1. It is called in procedure keywordSearch after query results are generated. It first

processes each query result (procedure processQR) to add keywords and keys into each

snippet, and calculate the feature dominance of features in each result. Then, using the

feature dominance of features in all results, it computes the IRD and score for each feature

(line 4) and add the prominent features into each IList (line 5-9).

In procedure processQR, we use e, a and v to denote the last entity name, attribute

name and attribute value that have been encountered during the traversal, respectively.

First, we add the keywords into IList (line 2). To add keys and prominent features, we

perform a pre-order traversal of the query result, as shown in procedure processQR in

Algorithm 1. The feature dominances of the features in each result are also computed

during the traversal. For each node n visited in the traversal, if n is an entity, we set e as

n.name (line 5). We consider e as a return entity if e matches a keyword (line 6-7). If n is

an attribute name, we set a as n.name (line 9), and increase the number of occurrences of

feature type (e, a) (line 10). If a matches a keyword, entity e is considered as a return entity

(line 11-12). If n is an attribute value, we set v as n.value (line 14), increase the number

of occurrences of feature (e, a, v) (line 15) and increase the domain size of feature type

(e, a) if feature (e, a, v) has not appeared before (line 16-17). Then we add the key attribute

values of the return entities into IList (line 18), and calculate the feature dominance of

each feature (line 19-20).

After all query results are processed, we compute the IRD and the score of each

feature using Formulae (7.2) and (7.3). Then we add prominent features into each IList and

sort the features in each IList in descending order of their final scores.

131

Algorithm 5 Adjusting Snippet Information List
adjustIList (initIList) {Adjust an IList to keep feature distributions}
1: IList = ∅
2: for each item i in initIList do
3: if i is a keyword or key then
4: IList = IList ∪ i
5: else
6: {i is a prominent feature}
7: if Feature j of the same type as i has already been added into IList then
8: Calculate the number of occurrence of j and i need to be added, based on the statistics
9: Add the corresponding number of j and i into IList

10: else
11: IList = IList ∪ i
12: return IList

It is worth mentioning that despite the requirement that IRDs of features are com-

puted at query time, as shown in the experiments in Section 7.4, when there are no more

than several hundred query results, the overhead of IRD computation is negligible. When

the number of query results is large, we can use only the top-k results for computing IRDs,

where k can be flexibly chosen, provided that the search engine produces ranked results.

This is reasonable as the user may only care about the top-k results.

Now we analyze the time complexity of Algorithm 1. A hash index was built off-line

on the data, which takes an input of a node ID and returns the information about this node,

such as node type (entity, attribute, or connection node) and key values (if exists). Hash

indexes are also built to access N(e, a), D(e, a) and N(e, a, v) in O(1). Therefore the cost

of traversing the query result (line 3-17 of processQR) is bounded by the size of the query

result, O(|QR|). Since the number of prominent features is bounded by |QR|, computing

their feature dominances (line 19-20) also takes O(|QR|) time. Computing the IRDs and

scores of all features takes O(|QR|×m) time, where m is the number of results. Sorting an

IList (Line 26) takes O(|L|log|L|), where |L| is the size of IList. Therefore, the complexity

of constructing ILists for all results is O(m× (|QR|+ |L|log|L|)).

After adding keywords, keys and prominent features into IList, we adjust the num-

ber of prominent features in IList to keep the ratio of prominent features, so that the snippet

is faithful to the corresponding query result. The IList can be adjusted as shown in Algo-

rithm 2. We use initIList to denote the initial IList and adjust the items in initIList.

132

First we add the keywords, entities and keys into IList (line 3-4). Then for each prominent

feature i in initIList, if a feature j of the same type has already been included in IList,

adjust the number of prominent features according to statistics, i.e., put i and j in the same

rectangle to enforce that they either both appear or neither appears (line 9-10). Otherwise,

simply add this feature into IList (line 12). Apparently a linear scan of the initIList is

sufficient for adjusting the number of prominent features and therefore the complexity is

O(|initIList|), where |initIList| denotes the length of initIList.

In the following section, we discuss how to extract data nodes from the query result

to capture the items in the list as much as possible.

7.3 Generating Small and Meaningful Result Snippets

We have discussed how to identify the snippet information list for a query result, which

contributes to a representative and distinguishable snippet. Besides the requirements on

the semantics, we also need to meet a conflicting goal on snippet size.

Goal 3: A query result snippet should be small so that the user can quickly browse

several snippets.

Problem Definition

The challenge is given an upper bound on the size, how to include as many items in the

snippet information list as possible into the snippet to make it maximally informative.

Recall that an informative item in the list, such as a keyword and a prominent feature

value, can have multiple occurrences in the query result. Although the instances of the

same informative item are not distinguishable in terms of semantics, different instances

have different impacts on the size of the snippet. To include an instance of an informative

item in a tree-structured snippet, we need to add a path to the snippet from its nearest

ancestor in the query result that is already in the snippet to this node. Therefore we should

carefully select instances such that they are close to each other in order to capture as many

informative items as possible given the size limit of the snippet. For example, considering

the instance of Houston, to capture informative item outwear, choosing instance outwear3

133

root

E1 E2

A11 A12

a11 a12

… A21 A22

a21 a22

… Am1 Am2

am1 am2

Em…

…

Figure 7.6: Reduction from Set Cover

results in a smaller snippet tree compared with outwear4.

However, the problem of maximizing the number of informative items selected in a

snippet given the snippet size upper bound is hard. We prove that its decision problem is

NP-complete as follows.

Definition 7.3 For a query result tree T , let label(u) be the label of node u ∈ T , and

label(T) =
∪
(label(u) | u ∈ T). The tree size |T | is the number of words in T . We use a

boolean cont(T, v) to denote whether tree T contains a label v.

Given a query result tree T , an integer c, and a set P of labels v, v ∈ label(T),

the instance selection problem is to find T ’s subtree T ′, such that |T ′| 6 c, and ∀v ∈ P ,

cont(T, v) = true.

The problem can be illustrated as: given a tree T , a set of labels P and a size

bound c, whether it is possible to find a subtree T ′ of T , such that T ′ contain every label in

P and has a size no more than c.

Theorem 7.1 Instance selection problem is NP-Complete.

Proof. It is easy to see that this problem is in NP. Given a T ’s subtree T ′, we can

check in polynomial time whether |T ′| 6 c, and ∀v ∈ P , cont(T, v) = true.

Now we prove that it is NP-Complete by reducing the set cover problem to it, Set

Cover≤P Instance Selection. Recall the set cover is the following problem: given a universe

U = {a1, a2, . . . , an}, a collection C of m subsets si ⊆ U(1 6 i 6 m) and an integer k,

134

can we select a collection C ′ of at most k subset in C, whose union is U , i.e.,
∪
(s | s ∈

C ′) = U?

For any instance of set cover, we construct a tree as shown in Figure 7.6. For each

si ∈ C, we construct a node Ei, whose parent is root. Let the j-th element in si be aij .

For each aij , we create a node Aij with value aij as a child of Ei. Except leaf nodes, no

node label is the same as an element in U . For every ai ∈ U , we have a corresponding

label ai and let P denote the set of such labels. Let c = k + 2|U |. This transformation

takes polynomial time. Next we show that this transformation is a reduction: the set cover

problem can be answered if and only if this constructed instance selection problem can be

answered.

Given an answer to set cover, we obtain T ’s subtree T ′ as follows: ∀si ∈ C ′, we

select Ei and a subset of its children, such that every element ai ∈ U has exactly one leaf

node in T with value ai selected. Such leaves along with their ancestors up to the root

compose T ′. Now we have ∀a ∈ P , cont(T ′, a) = true, and |T ′| 6 k + 2|U | = c. T ′ is an

answer to the instance selection problem.

Given an answer to the instance selection problem T ′, |T ′| 6 c and ∀a ∈ P ,

cont(T ′, a) = true. Let R denote the set of nodes Ei in T ′. 2|U |+ |R| 6 |T ′| 6 c, therefore

|R| 6 c− 2|U | = k. Let C ′ be the collection of set si, such that Ei ∈ R. The union of si is

U and |C ′| = |R| 6 k, therefore C ′ is an answer to the set cover problem.

Algorithm for Instance Selection

As has been shown, the decision problem of instance selection is NP-complete. However,

snippet generation must be efficient as web users are often impatient. We propose a greedy

algorithm that efficiently selects instances of informative items in generating a meaningful

and informative snippet for each query result given an upper bound on size.

There are several challenges in instance selection. First, nodes in the result interact

with each other. Selecting each individual node in isolation can result in a large snippet.

Second, the cost associated with a node, measured by the number of words to be added

to the snippet if this node is selected, changes dynamically during the selection procedure.
135

Third, due to dynamic costs of node selection, we are not able to determine the number of

informative items that can be covered till the very end.

Next we discuss how to address these challenges, by effectively determining the

data unit for selection, measuring the benefit and cost of each selection, and designing an

efficient instance selection algorithm.

Since informative items in the information list have different priorities, we assign

weights to these items. Though we know that the items will be selected in the order of their

appearance in the information list until the snippet size limit is reached, we are not able

to determine the number of items to be selected beforehand. Note that an item in the list

should not be considered before all its precedents are chosen to be in the snippet, otherwise

the dominance of different features of the query result can not be faithfully reflected in the

snippet. For example, for two features men and women, if score (men) is bigger than score

(women) but men has a bigger cost to output than women, then although outputting women

saves space, it also gives the user the misleading information that the store sells more

clothes for women than men. Therefore, we choose to enforce the order of features to

ensure that each snippet is a faithful summary of the result.

Based on this, we assign the weights to the items in the list to reflect the higher

importance of the items that appear earlier in the list. Specifically, the weight of an item is

half of the weight of its previous one. For the first several items that are keywords or keys

of the entities involved in the query result, each is assigned a weight of 1. It is easy to see

that such a weighting scheme satisfies the requirement: an item is more important to be

selected than all the items after it in the list combined together, as an item must be included

in the snippet before any of its successors is included.

Example 7.6 The weight of each item in the snippet information list for the example is

annotated below the items in Figure 7.5. Note that all keywords and entity names have the

highest weight of 1, and that items in the same rectangle has the same weight.

Entity Path Based Selection. For an instance of an informative item to be selected

into the snippet, we need to include the path from the closest ancestor of this node that is
136

in the current snippet to the node. We thus make the selections based on paths instead of

nodes, which makes the selection procedure more efficient as fewer data units need to be

considered for selection. One solution would consider each root-to-leaf path in the query

result tree as a data unit for selection in determining which one to be included in the snippet.

However, each path often only contains an instance of a single informative item, as most

of the informative items are feature values, which are leaf nodes. Therefore each selection

is still based on individual informative items without considering the possible interaction

among them.

We consider entity-based paths as data units for selection. We use leaf entity to

refer to the entities that do not have descendant entities. An entity path consists of a path

from the closest ancestor of a leaf entity in the query result that is currently included in the

snippet, to the leaf entity, along with all the attributes of the entities on the path. If a node

instance of an informative item itself or its associated entity is on an entity path, then we

say this informative item is covered by the path.

Example 7.7 To concisely illustrate our algorithm, here we only present how to choose

from the paths in the query result fragment shown in Figure 1.5, although there are many

paths in the query result, based on which the IList in Figure 7.3 is computed. There are

five leaf entities in the figure, all of which are clothes entity. Therefore there are five entity

paths, each of which is from retailer to a clothes node. We use p1 - p5 to denote the path

from retailer to clothes1 - clothes5 respectively.

Benefit-Cost of an Entity Path. To decide which path to select, we choose the

one that has the maximal benefit-cost ratio. The cost of selecting a path p p.cost, is the

number of words to be added into the snippet tree when selecting p. Initially, p.cost is the

number of words on p.

The benefit of selecting path p, p.benefit, is the summation of the weights of all the

informative items covered by this path. p.benefit is initialized during a depth first traversal

of the query result, as presented in procedure init in Algorithm 3. For each node n in the

query result, we use n.ancCover to denote the set of the informative items covered if n is
137

Algorithm 6 Instance Selection of Snippet Information List
selectInstance (QR, IList, sizeLimit) {Select instances for items in IList}
1: init(QR)
2: snippet = ∅
3: sizeLimitExceeded = false
4: currSize = 0
5: repeat
6: if next item in IList is a box of items then
7: V = all items in the box
8: else
9: V = next item {v} in IList

10: for each item v ∈ V do
11: if v is already covered then
12: add the covered instance of v to snippet if it is not in snippet yet
13: currSize += number of edges added to snippet
14: else
15: find the path p with the highest (benefit/cost) that covers v
16: add the shortest prefix p′ of p to snippet, such that p′ covers v
17: currSize += number of words added to snippet
18: if currSize > sizeLimit then
19: break
20: if p′ = p then
21: p.benefit = 0
22: for each path p′′ that share a prefix with p′ do
23: p′′.cost -= length of common prefix of p′ and p′′

24: for each item v′ in IList covered by p′ do
25: put a mark on v′ to denote that v′ has been covered
26: for each path p′′ that covers v′ do
27: p′′.benefit -= weight of v′ in IList
28: if currSize > sizeLimit then
29: remove all nodes added to snippet in this iteration
30: sizeLimitExceeded = true
31: until all items in IList are selected in snippet or sizeLimitExceeded = true
32: return snippet

init (QR) {Compute benefits and costs of paths in a query result}
1: QRroot.ancCover = the informative items covered by the root of QR if it is an entity
2: for each entity n in the depth-first traversal of QR do
3: n′ = the nearest ancestor entity of n in QR, and if it does not exist, QRroot
4: n.ancCover = n′.ancCover∪ the informative items covered by n
5: if n is a leaf entity then
6: p = the path from QRroot to n
7: p.benefit = the sum of weights of the items in n.ancCover
8: p.cost = number of words on the path from QRroot to n

selected. Note that if n is selected, then all its ancestors in path p will be included in the

snippet, therefore n.ancCover = n′.ancCover ∪ V , where n′ is the parent of n, and V is

the set of informative items that are covered by n’s label and its attributes (if exists). We set

p.cover = n.ancCover, where n is the leaf entity of p.

138

Example 7.8 Take the path p1 from retailer to clothes1 for example. p1 covers informative

items Texas, apparel, retailer, Brooks Brothers, Houston,

men, casual, and suit, thus p1.benefit is the summation of their weights, 1 + 1 + 1 + 2−1

+ 2−2 + 2−4 + 2−5 + 2−6 ≈ 3.86. Similarly, benefit of the paths p2, p3, p4 and p5 are

initialized to be 3.81, 3.91, 3.72, 3.51 respectively. The cost of all paths is 3 initially.

Path Selections and Benefit-Cost Updates. The algorithm for selecting informa-

tive items is presented in procedure selectInstance in Algorithm 3. For an input query, each

of its query results QR, an upper bound of the snippet size sizeLimit and its information

list IList, we generate a snippet. Initially, the snippet is empty. We process the informative

items in IList one by one in order, and select an entity path in the query result that can

cover this item with maximal benefit-cost into a snippet, till all the items are covered in the

snippet or the upper bound of snippet size is reached.

In each iteration, the informative items to be added to the snippet, denoted by V ,

is either one item or a box of items (line 6-8). Let v be the current informative item being

considered at each step. If a node instance of v is already included in the snippet, nothing

needs to be done. If its associated entity is included in the snippet, then it can be easily

added into the snippet by adding the path from the associated entity itself to the snippet

(line 10-11). For example, if we want to include an instance of item outwear in the snippet,

and entity clothes3 is already in the snippet, then, we simply add the path from clothes3

to outwear3 without choosing another entity path that covers outwear, and therefore has a

minimal cost.

Otherwise, we need to choose a new entity path to cover the current informative

item v. For all entity paths covering v, we choose the one p that has the best cost-benefit

p.benefit/p.cost to the snippet (line 14). Notice that for a chosen entity path, we only need

to add its shortest prefix p′ to cover the current informative item. If p′ is a proper prefix of

p, then p will not be removed from the entity path lists, but has its cost adjusted, as to be

discussed soon; otherwise p can be disregarded.

Example 7.9 The running example is continued here. We start with the first informative
139

item in the list Texas. Since all five entity paths cover it, we choose the one with the highest

benefit/cost, which is p3. In fact, we only need to add a prefix of p3, from entity retailer to

entity store1, together with their associated attributes into the snippet to cover Texas.

After an entity path p′ is added to the snippet, we need to update the information

list, the cost and benefit of affected paths, according to the following.

First, for each item in IList that is covered by p′, we put a mark on it, denoting that

it has been covered (line 23). If one of these items is encountered in future, it has a node

instance that can be added to the snippet with the low cost (i.e., the number of nodes from

this instance to its associated entity, or zero if it is already in the snippet), without the need

of choosing another entity path.

Second, we update the costs of the affected entity paths. For each entity path p′′

that has a common prefix with p′, including p itself, its cost is decreased by the length of the

common prefix. We use Dewey labeling to efficient compute the length.

The length of the common prefix of two entity paths can now be easily calculated

as the length of the common prefix of the Dewey IDs of the leaf entities of p′ and p′′ (line

21). To efficiently identify these affected paths, we sort all entity paths by the Dewey ID of

their leaf entities in a list. For the first node n in path p′, we find the first and the last path

in the entity path list whose leaf entity is a descendant of n, using a binary search. Each of

the paths in the entity path list between them has a common prefix with p′.

At last, we need to update the benefits of the affected entity paths. For each entity

path p′′ that covers an item which is already covered by p′, its benefit p′′.benefit is de-

creased by the weight of the corresponding item, for all the commonly covered items of p′′

and p′ (line 24-25).

After an instance of the current informative item v in IList is included into the

snippet, we need to check whether the snippet exceeds the size limit. If so, we must

remove the nodes that were added into the snippet in this iteration (line 27), and set the flag

that no more nodes need to be added into the snippet as its size limit is reached (line 28).

140

Example 7.10 Continuing the running example, after selecting the highest benefit-cost en-

tity path p3 to cover item Texas, we include its prefix from retailer to store1 to the snippet,

and perform the following updates. First, we annotate in the IList that the informative items

Apparel, retailer, Brooks Brothers and Houston are covered. Second, we update the costs

of affected path. Since paths p1, p2 and p3 have a common prefix with the path included in

the snippet, their costs are decreased by the length of this common prefix. Now the costs

of the updated entity paths p1, p2, and p3 are all 2.

We also update the benefits of the affected paths. Since Texas, apparel, retailer,

Brooks Brothers and Houston are all considered to be covered by the first selected path, the

benefits of the paths that cover these informative items need to be subtracted accordingly.

Specifically, since p1, p2 and p3 originally cover the above six items, each of their benefits

is subtracted by the sum of these items’ weights: 3.75. p4 and p5 cover the first five items

in the above list, and each has its benefit subtracted by 3.5.

Now, the next uncovered item in IList is outwear. We choose the path that covers

it and has the highest benefit-cost, hence p3, which is from merchandises1 to outwear3.

Now p3 is removed from the entity path list, as the entire path is included in the snippet.

Now besides outwear, items casual and women in IList are also marked as covered. The

cost of p1 and p2 is now reduced to 1. For each path that covers outwear, i.e., p2 and p4,

its benefit is reduced by the weight of outwear: 2−3. We also subtract the weight of casual

from the benefits of p1 and p4, and subtract the weight of women from the benefit of p5.

We cover the items in IList one by one in this manner. Note that items in the same

box, e.g., suit and outwear, women and men, must be all included or not included in the

snippets. Suppose the size limit of the snippet allows us to include all the items in the IList

in Figure 7.3 into the snippet, the final snippet is presented in Figure 7.2.

To efficiently select the entity path to cover the current item in the snippet informa-

tion list and to perform updates after a selection, we build a bitmap index for a query result

during a traversal. The path dimension has all the paths sorted by the Dewey ID of their

leaf entities. The value dimension has all the distinct informative items in the order of their

141

appearance in the query result. Each entry B(p, v) in the index records whether an item v

is covered by p, and if so, which node on p covers it. For each path p, we also record its

benefit p.benefit and cost p.cost.

Now we analyze the complexity of the algorithm. Let QR be the query result, P the

set of all entity paths in QR, d the document depth, and |L| the size of IList. To include one

item v in the information list IList into the snippet, the algorithm searches for the path with

the best benefit-cost that covers v (line 15 in selectInstance) by traversing all the entries

B(p, v), which entails a cost O(|P |). After selecting the entity path p′, we update the cost

of all the paths that share a prefix with p′. Finding such a path using binary search on

the path list has a cost O(log|P |). Each of such paths has the cost updated according to

Dewey label prefix computation, which is bounded by d. The complexity of performing cost

updates is O(|P |d), as in the worst case all paths need to be updated. We also update the

benefits of the affected paths. For each item v′ covered by p′, we reduce the benefits of the

paths that cover v′ by traversing all entries B(p′′, v′). The complexity of performing benefit

updates is O(|L||P |). The total number of iterations is bounded by |L|, and the cost of

adding nodes into the snippet is O(|P |d). Therefore, the total time complexity for instance

selection is max{|L||P |d, |L|2|P |}.

7.4 Experiment Evaluation

Experimental Setup

We have developed an effective and efficient snippet generation system for structured

search results: eXtract. We tested three versions of the eXtract implementation (FD, FD-

IRD, FD-IRD-Ratio). All the systems we have tested are listed as follows:

• FD: The version denoted as FD is the one reported in a conference paper of this

work [65], which generates snippets using the features with the highest feature dom-

inance.

• FD-IRD: We improved the algorithms, denoted as FD-IRD (Algorithms 1 and 3) which

generates snippets based on the IList containing prominent features whose scores

are calculated using the improved formulae (7.2 and 7.3).
142

• FD-IRD-Ratio: We further improved snippet generation by additionally containing

faithful distribution of dominant features, which is denoted as FD-IRD-Ratio (Algo-

rithms 1, 2 and 3).

• Optimal: We implemented an algorithm which, given an IList and a snippet size limit,

exhaustively search for the best instance for each item in the IList. Thus it outputs an

optimal solution with respect to the IList and the size limit.

• Xoom: We implemented Xoom [116], which generates a readable query-independent

summary for each XML document in a corpus.

• Google Desktop: Since there is no existing system for generating query-specific

snippets for structured search results in the literature, we also compared our system

with a popular text document search engine, Google Desktop. To focus the compari-

son on snippet generation instead of query result generation, we store each keyword

query result as an XML file. Then we issue the test query using Google Desktop on

the corresponding XML file to obtain its result snippet.

Metrics: We have evaluated all six approaches for the quality of the snippets gen-

erated. We also evaluated our approaches on processing time of snippet generation and

scalability over the increase of query result size, as well as the upper bound of snippet size

in terms of the number of words in a tree. Since we implemented Xoom ourselves, compar-

ing the efficiency of this implementation and eXtract may not be helpful, and thus we do not

report this in the experiment analysis. As snippets can be used to cluster the query results

effectively and more efficiently, we also show the performance of grouping results using the

snippets or ILists.

Environment: The experiments were performed on a 3.6 GHz Pentium 4 machine,

running Windows XP, with 2GB memory and 160 GB hard disk.

Data and Query Set: We have tested four data sets. Film is an XML data set about

movies, which has the combined information of 7 XML data available online (main.xml,

actor.xml, people.xml, cast.xml, studios.xml, codes.xml, remakes.xml)2, each of which con-
2http://infolab.stanford.edu/pub/movies/dtd.html

143

Film
QF1 films, Hitchcock, Paramount
QF2 films, Hitchcock
QF3 films, Disney
QF4 Lifeboat, 1943
QF5 Drama, films
QF6 1922, GB, Famous
QF7 Hitchcock, Paramount
QF8 30m, films
QF9 director, films
QF10 Drama, film
Retailer
QR1 Store, formal
QR2 Store
QR3 retailer, Texas, men
QR4 Store, Texas
QR5 retailer, California, sportswear
QR6 Store, Houston
QR7 Store, Texas, men
QR8 Retailer, apparel, Store, Philadelphia, formal
QR9 store, shirt
QR10 retailer, athletic, shoe
Auction
QA1 Africa, item
QA2 closed, auctions, 1998
QA3 item regions
QA4 charges asia
QA5 open, auctions
QA6 closed auctions pays
QA7 people
QA8 Auctions asia
QA9 closed auctions seller 1999
QA10 site asia
Wikipedia
QW1 scientist, films
QW2 programming language
QW3 American independence
QW4 Francis Hopkinson
QW5 guitar
QW6 Frederick Douglass
QW7 skating sporting
QW8 Franklin President
QW9 FAO
QW10 French, cuisine

Figure 7.7: Data and Query Sets for Testing Snippet Generation

tains information of specific entities related to movie (e.g., people, studios, etc.). Retailer

is a synthetic data set that has similar schema and domains for node values as the one

in Figure 1.5, while the value of a node is randomly selected from its corresponding do-

main. For each data set we have tested ten queries, as shown in Figure 7.7. Auction

144

0

1

2

3

4

5

Google FD FD-IRD FD-IRD-Ratio Optimal Xoom

Figure 7.8: Average Scores of Google Desktop, FD, FD-IRD, FD-IRD-Ratio, Optimal Algo-
rithm and Xoom over All Queries

is a synthetic data containing information about items, people and auctions generated by

XMark (a publicly available XML benchmark).3. Wikipedia is a document-centric XML data

set used in INEX 2009. For each query, a snippet size limit is randomly selected ranging

from 6 to 23. The query results are generated using one of the existing keyword search

approaches [144].

Snippet Quality

As there is no benchmark for evaluating the snippet quality for XML keyword search, we

performed a user study. The quality test involves two parts: scoring snippets generated

using six different approaches by users, and measuring the quality of snippets by precision,

recall and F-measure based on the ground truth selected by users. A group of graduate

students who were not involved in our project were invited to participate in the user study to

assess the snippet quality.

Assessment of Snippets by User Scoring. For each query result of the forty

queries in Figure 7.7, we use six approaches, FD, FD-IRD, FD-IRD-Ratio, Optimal algo-

rithm, Google Desktop and Xoom, to generate snippets. Since a query result may be large,

the users are given the statistical information of each query result (like the one shown in

Figure 1.5) together with its snippet. Each user is asked to give a score for each snippet

generated by each approach, respectively, on a scale of 1-5. The user do not know which

3http://monetdb.cwi.nl/xml/

145

snippet is generated by which approach.

The evaluation result is shown in Figure 7.8. The score for each algorithm shown in

the figure is the average score of all the queries provided by all the users. As we can see,

the scores of our approaches (FD, FD-IRD and FD-IRD-Ratio) are close to that of the Opti-

mal approach, and are much better than that of Google Desktop. Xoom has a close score

to FD, but is significantly outperformed by FD-IRD and FD-IRD-Ratio. For most queries,

FD-IRD-Ratio either generates the same snippets as the Optimal approach, or misses one

or two items in the snippet information list compared with the Optimal algorithm, thus their

scores are close. The figure also suggests that incorporating IRD and ratio improves the

quality of the snippets. Google Desktop is a search engine designed for text documents. It

does not consider the tree structures of the XML documents when generating snippets, but

simply concatenates the values in the XML document and outputs a fragment of it. Since

Google Desktop has a low score for snippet generation on XML documents, we do not

further compare with it in the experiments.

The Wikipedia data set verifies that the proposed approach generally works well on

document-centric XML, compared with Google Desktop and Xoom which output sentences

that summarize long text values in the snippets. The advantages of outputting statistically

important words rather than sentences include: (1) The sentence that contains the key-

words, which is output by Google Desktop, may not be the most informative sentence in the

result. This commonly happens if the keywords do not appear in the first sentence of the

document or a paragraph. Con- sider QW2 “processing, input”, which retrieves a document

about stack-oriented programming language, the sentence that contains the keywords, “Af-

ter processing all the input, we see the stack contains 56, which is the answer.”, does not

tell much information about this document. Xoom is query-independent and may not even

output the sentence containing keywords. On the other hand, eXtract not only outputs the

key of this result, “stack-oriented programming language”, but also outputs statistically im-

portant words in this document such as “forth” (stack-oriented programming language is

also known as the forth programming language), “programming”, “code”, which helps users

understand the content of this document. (2) Due to the necessity to limit the snippet size,

146

0

20

40

60

80

100

QF1 QF2 QF3 QF5 QF9 QR1 QR4 QR6 QR9 QR10 QA1 QA2 QA5 QA8 QA9 QW1 QW3 QW6 QW8 QW10

FD FD-IRD FD-IRD-Ratio Optimal Xoom

Figure 7.9: Precision Measurements for Snippet Generation

in many cases a snippet can not even afford to include 1 full sentence (as is the case

for Google and Bing), which makes it hard to understand. For example, for QW3 “Ameri-

can, independence”, the sentence that summarizes the retrieved document, which is “The

American Revolution is the political upheaval during the last half of the 18th century in which

thirteen of Britain’s colonies in North America at first rejected the governance of the Parlia-

ment of Great Britain, and later the British monarchy itself, to become the sovereign United

States of America.”, is too long to be included in the snippet in its entirety. For this query,

eXtract outputs a succinct set of words that achieve similar effects with much less space,

including “Douglass”, “Garrison”, “constitution”, etc. (3) There may not even exist a single

sentence in a document that can well summarize it, which is typically found in documents

about stories, commentaries, product reviews, description of an object, etc. Consider QW10

“French cuisine” that retrieves a document about French cuisine, there is no single sentence

in the document that can summarize so many aspects of French cuisine. In these cases,

outputting important terms better serves the purpose of summarizing a document, such as

“elegant”, “wine”, “seafood”, “cheese”, which are in the snippet output by eXtract.

On the other hand, if the retrieved document has a center sentence that well sum-

marizes its content (such as QW3), and if the snippet size limit is big enough to accommo-

date this sentence, then outputting this center sentence is generally more desirable than

outputting words.

Assessment of Snippets by Comparing with Ground Truth. To make a deep

147

0

20

40

60

80

100

QF1 QF2 QF3 QF5 QF9 QR1 QR4 QR6 QR9 QR10 QA1 QA2 QA5 QA8 QA9 QW1 QW3 QW6 QW8 QW10

FD FD-IRD FD-IRD-Ratio Optimal Xoom

Figure 7.10: Recall Measurements for Snippet Generation

0

20

40

60

80

100

β=0.5 β=1 β=2

FD FD-IRD FD-IRD-Ratio Optimal Xoom

Figure 7.11: F-measure of Snippet Generation

analysis of our approach, we have conducted user surveys to define ground truth for the

snippet of a given query result. We found that it is extremely difficult for users, who may not

have experience or background in XML, to decide which nodes in the query result should

be included in the desired snippet. Therefore, we asked the users to focus on the content,

instead of the tree structure, in a query result. For each query result, each user is asked

to provide a set of top k most important items in the query result, which they think should

be included in the snippet. Since this part of the user study requires a lot of effort from the

users, we randomly select twenty queries in Figure 7.7 to perform this study. After collecting

the set of items provided by each user, in order to get the sorted snippet information list, we

combine the top-k items from all the users together to form a universal set. Then we rank

the items according to the numbers of their occurrences in the universal set, i.e., the number

of users who think that the item should be selected in the snippet. Then according to user

preferences, the list obtained in this way is adjusted as necessary to reflect the ratio among

148

different features, which is considered as the ground truth of the snippet information list.

Since the Optimal algorithm guarantees to find the optimal snippet with respect to a given

snippet information list, we invoked the instance selection part of the Optimal algorithm on

each ground truth information list, whose result is considered as the ground truth snippet

for the corresponding query result.

Figures 7.9, 7.10 and 7.11 show the quality assessment of the snippets produced

by each approach. Precision measures the percentage of the informative items output by

an algorithm that are in the ground truth snippet. Recall measures the percentage of the

informative items in the ground truth snippet that are output by an algorithm. F-measure is

the weighted harmonic mean of precision and recall and can be computed as:

F = (1 + β2) ∗ precision ∗ recall
β2 ∗ precision+ recall

As we can see, on some queries Xoom outperforms FD and FD-IRD. The advan-

tage of Xoom is that, although Xoom does not output features with high FD and IRD, it

may happen to output features that users are interested in. For example, for QR1, Xoom

outputs the brand of clothes, which do not have high FD and IRD but are interesting to the

user, and thus the precision and recall of Xoom are both higher than FD and FD-IRD. The

FD-IRD-Ratio approach still has the highest precision/recall for this query due to its keeping

the ratios of features. The drawbacks of Xoom include: first the summary Xoom outputs do

not include keywords and keys of the results, thus are not query-based and differentiable,

e.g., for QR3 “retailer, Texas, men”, the keywords and the key attribute name of the retailer

are preferred by users, but are not in the summary generated by Xoom. Second, Xoom

ranks the tag names in each XML file in the order of their importance. For a set of tags, if

the number of results containing these tags is the same, Xoom does not differentiate them.

For example, for QF10 “drama, film”, since all films have attributes “title”, “year”, “producer”,

“director”, “studio”, etc., these tags have the same rank and are selected randomly into the

snippet.

FD, FD-IRD and FD-IRD-Ratio all have a good precision and recall, which confirms

149

the intuition of our approach. This is because the snippet information list that our algorithm

generates is similar as the one given by the user study, especially the items that appear

earlier in the information list. Therefore, the snippets generated according to our information

list by FD, FD-IRD, FD-IRD-Ratio and Optimal, have on average a high quality.

On the other hand, the precisions and recalls of FD, FD-IRD and FD-IRD-Ratio are

not perfect, mainly because the information list that we generate are often not the same

as the ground truth. The main reason of these differences is that the user may prefer

interesting features of an entity, instead of/besides prominent features. Take QR1 (Store,

formal) for example. This query looks for the information of the stores selling formal clothes.

To summarize a query result, our approach selects the most prominent features, such as

“fitting:men” of the clothes. However, this feature is not necessarily interesting to the user,

and the user actually chose “brand:Adidas” instead.

Furthermore, we compare the quality of snippets generated by the Optimal algo-

rithm, FD, FD-IRD, FD-IRD-Ratio and Xoom. For test queries QF2, QF5 and QA8, the

precisions and recalls of FD, FD-IRD, FD-IRD-Ratio and the Optimal algorithm are the

same because the query result returned for these queries are small, and don’t contain

much information.

For test queries QF1, QF9, QR9, QR10, QA2, QA8, QA9, QW1, QW8, QW10, FD-

IRD, FD-IRD-Ratio and Optimal have better precision and recalls because they considered

demoting features with low IRDs. In QF1, for example, Hitchcock was well known by the

suspicious films he directed. When people search for Hitchcock’s film, they already expect

the film to be of category suspicious, and expect other features in the snippet such as title.

Therefore, demoting the feature category:suspicious in the query results satisfies the users’

information needs. In QR9, as a common knowledge, shirts are mostly made of cotton.

When people search for shirts in a store, they will be more interested in other features of

the shirts rather than the material of the shirts, which will mostly be cotton. Therefore,

demoting the feature “material:cotton” saves the space to include other features which the

users might be interested in such as “situation:formal”.

For test queries QF3, QR1, QR4, QA1, QA5, QW3, QW6, FD-IRD-Ratio and Opti-

150

mal achieve better precision and recall compared with other approaches, because the two

approaches considered keeping the ratio of prominent features. For example, in the results

of QF3, films produced by Disney are mostly cartoons and fantacy films and they focus

more on cartoons. Therefore showing more cartoon than other films provides the user with

more accurate information. For QR4, Brooks Brothers’s stores target more on men’s clothes

than women’s. Therefore showing more men’s clothes than women’s in the snippet gives

users the right impression.

For QR6, Optimal has a higher precision and recall than all other approaches, be-

cause it may include additional features in the IList compared with other approaches.

Finally we compute the F-measure of each approach according to the average pre-

cision and recall across all the queries in user study, with parameter β =0.5, 1 and 2, as

presented in Figure 7.11. FD-IRD-Ratio outperforms all other approaches except Optimal,

which coincides with the user scoring in Figure 7.8.

Besides the techniques used to generate snippets given a fixed size limit, different

sizes of the snippet can also influence the quality of snippets generated. To evaluate the

effect of the size of snippet on these systems, we test the F-measures of FD-IRD-Ratio

and Xoom with varying snippet sizes. We omit FD and FD-IRD in this test as they are

clearly outperformed by FD-IRD-Ratio. We used three queries: QA1, QW7 and QW10,

which represent three different cases: QA1 represents queries on data-centric XML; QW7

represents queries on document-centric XML whose result has a center sentence that sum-

marizes it; QW10 represents queries on document-centric XML whose result has no such

center sentence. The result of this test is shown in Figure 7.12.

As can be seen from Figure 7.12, for QA1, the features chosen by users include the

payment, location, name and category of items, which largely coincides with the output of

FD-IRD-Ratio. On the other hand, Xoom does not differentiate the tag names in the results,

and output unimportant features such as the id, quantity, etc. For QW10 “French, cuisine”,

since no single sentence in the result can well summarize the document which contains

various aspects of French cuisine, users prefer selecting statistically representative words

as snippets, such as “elegant”, “wine”, “seafood”, “cheese”, even if the snippet size limit

151

is 30, which largely coincides with what FD-IRD-Ratio outputs. Xoom outputs as snippet

one or two sentences (depending on the size limit), which are “French cuisine is a style of

cooking derived from the nation of France. It evolved from centuries of social and political

change.”. These sentences are not considered as informative by the users. An interesting

case if QW7 “skating, sporting”. FD-IRD-Ratio has a better F-measure than Xoom initially,

but is outperformed when the snippet size limit reaches 25. The reason is that when the size

limit is this large, users prefer using a sentence that summarizes the result as the snippet,

rather than individual words. For this query, such a sentence would be “Figure skating is

a Olympic sport in which individuals, pairs, or groups perform spins, jumps, footwork and

other intricate and challenging moves on ice.” which summarizes the definition of figure

skating. Xoom outputs part of this sentence when snippet size is 15 or 20, while users

prefer seeing words; but when snippet size is 25, users instead prefer this sentence as

the snippet, thus the F-measure of Xoom is boosted, and the F-measure of FD-IRD-Ratio

suffers a decline. When snippet size is 30, users choose this sentence, as well as a few

important words in the document; however, Xoom starts to output a portion of another

sentence, thus its F-measure decreases.

As we can see, FD-IRD-Ratio can generally cover the same set of informative items

as optimal. FD-IRD and FD-IRD-Ratio achieves a better quality than FD on many queries

by adopting IRD and considering ratios of features. Optimal has the best quality for some

queries as the greedy algorithm is unable to select the optimal instances for items in the

IList. Our proposed approaches, FD, FD-IRD and FD-IRD-Ratio, outperforms Xoom.

Processing Time

To evaluate the efficiency of our approach for generating result snippets, we test the pro-

cessing times of the queries listed in Figure 7.7. The processing times, comprising the

time of generating IList and selecting instances, of the four approaches are shown in Fig-

ures 7.13 - 7.16. The sizes of the query results vary from 106KB to 360KB, and the snippet

size limits vary from 10 to 20 words. As we can see, FD, FD-IRD and FD-IRD + Ratio are

much faster than the Optimal algorithm. Besides, compared with FD, the additional pro-

cessing time of FD-IRD and FD-IRD-Ratio is usually very small. To verify the applicability,
152

0

20

40

60

80

100

15 20 25 30

F
-m

ea
su
re

Snippet Size Limit

FD-IRD-Ratio (QW7) Xoom (QW7) FD-IRD-Ratio (QW10)

Xoom (QW10) FD-IRD-Ratio (QA1) Xoom (QA1)

Figure 7.12: Average F-measure of Snippet Generation wrt Snippet Size Limit

1

10

100

1000

10000

100000

QR1 QR2 QR3 QR4 QR5 QR6 QR7 QR8 QR9 QR10

T
im

e
 (

m
s)

FD FD-IRD FD-IRD-Ratio Optimal

Figure 7.13: Processing Time of Snippet Generation on Retailer Data Set

we compute IRD on all results for each query.

All algorithms need to traverse the query result and construct an ordered snippet

information list, in the same way. As we can see, the cost of keeping the ratio and calculat-

ing IRDs for features is generally small compared with the processing needed for instance

selection, as FD-IRD-Ratio generally has a similar processing time as FD-IRD and FD.

However, for some queries who have a large number (several hundred) of query results,

such as QF1 and QF4, FD-IRD and FD-IRD-Ratio take a relatively longer time to calculate

IRDs compared with FD, as it needs to traverse all results for this purpose. This is nonethe-

less not a problem in practice, as the user is usually interested in the top-k results and

hence we can use the top ones rather than all results to computed the IRDs efficiently. The

Optimal algorithm searches for the optimal solution by enumerating possible combinations
153

1

10

100

1000

10000

QF1 QF2 QF3 QF4 QF5 QF6 QF7 QF8 QF9 QF10

T
im

e
 (

m
s)

FD FD-IRD FD-IRD-Ratio Optimal

Figure 7.14: Processing Time of Snippet Generation on Film Data Set

1

10

100

1000

10000

100000

QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QA10

T
im
e
(m
s)

FD FD-IRD FD-IRD-Ratio Optimal

Figure 7.15: Processing Time of Snippet Generation on Auction Data Set

of instances to each item in the snippet information list, which leads to a cost exponential

to the size of the information list. When the query result size or the snippet size limit is

small (e.g. QF5 whose query result size is 10KB and snippet size limit is 13, and QF6

whose result size is 2KB and snippet size limit is 12, as well as QA4, QA10, QW1, QW6

and QW3 etc, whose details are omitted here), the processing times of all algorithms are

small. However, when the query result size is relatively large, indicating a potentially large

number of instances of each informative item, the difference between the processing times

of these approaches becomes significant (e.g. QR3 whose result size is 23KB and snippet

size limit is 10, and QF9 whose result size is 102KB and snippet size is 11, as well as QA6,

QA9, QW10 etc, whose details are omitted here).

154

1

10

100

1000

QW1 QW2 QW3 QW4 QW5 QW6 QW7 QW8 QW9 QW10

T
im
e
(m
s)

FD FD-IRD FD-IRD-Ratio Optimal

Figure 7.16: Processing Time of Snippet Generation on Wikipedia Data Set

Scalability

We test the scalability of our system on the Film data set over two parameters: query result

size and snippet size.

Query Result Size. The scalability test with respect to query result size is shown

in Figure 7.17 (the processing times for Optimal which are longer than 15s are not shown).

A query result of QF9 is replicated between 1 and 6 times to make the size of query result

increasingly larger each time. The upper bound for the snippet size is fixed to be 11. We

have tested the performances of the Optimal algorithm, FD, FD-IRD and FD-IRD-Ratio on

these query results. As we can see, the processing time of the Optimal algorithm grows

very rapidly as the complexity of the Optimal algorithm is high-order polynomial to the size of

query result, the order of which is the size of the snippet information list. On the other hand,

the processing times of the FD, FD-IRD and FD-IRD-Ratio grow slowly. For query result of

360KB, FD and FD-IRD, FD-IRD-Ratio only need 3.6, 4.7 and 5.0 seconds, respectively.

Snippet Size. In this test we evaluate the performance of the three algorithms

with respect to the increase of snippet size upper bound, while keeping the query result

size to be 106KB. Recall that when the snippet size increases, more items in the snippet

information list can be included in the snippet, thus more nodes in the query result need to

be processed in order to cover those items. The result in Figure 7.18 (the processing times

for Optimal which are longer than 5s are not shown) shows that the processing times of FD,

155

0

5

10

15

106K 150K 211K 258K 316K 360K

T
im
e
 (
s)

Result Size

FD FD-IRD FD-IRD-Ratio Optimal

Figure 7.17: Scalability Test for Snippet Generation on Size of Query Results

0

1

2

3

4

5

10 12 14 16 18 20

T
im
e
 (
s)

Snippet Size Limit

FD FD-IRD FD-IRD-Ratio Optimal

Figure 7.18: Scalability Test for Snippet Generation on Number of Words

FD-IRD and FD-IRD-Ratio increase much slower than that of the Optimal algorithm, where

the later has a time complexity exponential to the number of informative items to be output.

In summary, this set of experimental evaluations shows that the snippets generated

by our algorithm for XML search has high quality, as reflected by a high score in user eval-

uations, and high precision , recall and F-measure with respect to the user defined ground

truth. The snippet generation is efficient for various queries, and scales well when the query

result size and snippet size increase. The improved approach (FD-IRD-Ratio) achieves a

better quality without much processing time overhead. Compared with the Optimal algo-

rithm, our algorithm based on a greedy approach has a close quality in practice, and is

much more efficient.

156

7.5 Summary

To the best of our knowledge, this is the first work that addresses the problem of generating

result snippets for structured search results. We identify three goals of a good result snippet:

distinguishable, representative and small. To meet the first two requirements in generating

semantically meaningful snippets, we identify the most significant information in the query

result that should be selected into a snippet as a snippet information list. To satisfy the third

requirement, we need to generate the snippet that is maximally informative with respect to

this list given an upper bound of the snippet size. However, its decision problem is proved to

be NP-complete. Finally, we have designed and implemented a novel algorithm to efficiently

generate informative yet small snippets. We verified the effectiveness and efficiency of our

approach through experiments.

157

Chapter 8

SEARCH RESULT DIFFERENTIATION

8.1 Motivation and Goal

As we discussed in Chapter 1, many keyword queries are for information exploration pur-

poses, where the user may not have a clear idea of what s/he wants, leading to user pref-

erence ambiguity. For this type of queries, even if the query results are highly relevant, the

user still needs to check multiple results to make a decision (as opposed to navigational

queries whose intent is to reach a particular website). Studies show that about 50% of

keyword searches on the web are for information exploration purposes [25]. Information

exploration queries are especially common in domains like online shopping, job hunting,

etc. Without the help of tools that can automatically or semi-automatically analyze multiple

results, a user has to manually read, comprehend, and analyze the results in informa-

tional queries. Such a process can be time consuming, labor-intensive, error prone or even

infeasible due to possibly large result sizes. Although we have proposed techniques for

generating result snippets in Chapter 7, as to be shown later, snippets are not designed to

show the differences of multiple query results.

For example, consider a customer who is looking for stores that sell clothess in

Houston and issues a keyword query “Houston, clothes, store”. There are many results

returned, where the fragments of two results by searching on structured data are shown

in Figure 1.5(a) and some statistics information of the results is shown next to the results.

As each store sells hundreds of clothes, it is very difficult for users to manually check each

result, compare and analyze these results to decide which stores to visit.

To help users analyze search results, the websites of many banks and online shop-

ping companies, such as Citibank, Best Buy, etc., provide comparison tools for customers

to compare specific products based on a set of pre-defined metrics, and have achieved big

success. However, in these websites, only pre-defined types of objects (rather than arbi-

trary search results) can be compared, and the comparison metrics are pre-defined and

static. Such hard coded approaches are inflexible, restrictive and not scalable.

158

As an example, Figure 1.5(b) shows the snippets of results in Figure 1.5(a) gener-

ated by eXtract [65, 95], given the upper bound of snippet size of 14 edges. These snippets

highlight the most dominant features in the results. As we can see from the statistics infor-

mation in Figure 1.5(a), the store in result 1 mainly sells outwear and shirt casual clothes,

while the store in result 2 mainly sells outwear and suit formal clothes. However, snippets

are generally not comparable. From their snippets, we know result 2 focuses on formal

clothes, but have no idea whether or not result 1 focuses on formal or casual, since the

information about the store, specifically situation, is missing in its snippet due to space lim-

itation. Similarly, result 1 has many shirt clothes, but we do not have information about

whether result 2 has many shirt clothes or not. As we can see, snippets are not designed

to help users find out the differences among multiple results.

Although a general tool for informative query result comparison is very useful in

diverse domains, it is not supported in existing text search engines. The main reason is that

text documents are unstructured, making it extremely difficult if not impossible to develop a

tool that automatically compares the semantics of two documents.

On the other hand, when searching structured data, the structural information of

result may provide valuable meta data, and thus present a potential to enable result com-

parison. For example, directly generating a “comparison table" of an apple and an orange

based on two general textual descriptions is difficult, but it becomes possible if the descrip-

tion is presented in structured format, with markups in XML or column names in relational

databases to hint their features such as size, color, isFruit, and so on.

However, many challenges remain, even for enabling structured result comparison.

For example, which features in the search results should be selected for result compari-

son? One desideratum is, of course, such features should maximally highlight the differ-

ences among the results. Then, how should we define the difference, and the degree of

differentiation of a set of features? Another desideratum is, the selected features should

reasonably reflect the corresponding results, so that the differences shown in the selected

features reflect the differences in the corresponding results. Furthermore, how should we

select desirable features from the results efficiently?

159

In this chapter we present the techniques for structured data search result com-

parison and differentiation, which takes as input a set of structured results, and outputs

a Differentiation Feature Set (DFS) for each result to highlight their differences within a

size bound. Features in the results are defined in the same way as Chapter 7. To show

the usefulness of our technique in the real world, we develop a structured search result

differentiation system named XRed, and use both real and synthetic data to evaluate our

algorithms in experiments. The XRed system can take the results generated by any of

the existing keyword search engines on structured data as the input and generate DFSs

for result differentiation. In fact, the generated DFSs can also be used to compare results

of structured query (e.g., XPath, XQuery, SQL) upon user request. Sample DFSs for the

query results in Figure 1.5(a) are shown in Figure 1.5(c).

8.2 Desiderata of DFS and the DFS Generation Problem

In this section we first discuss three desiderata for Differentiation Feature Set (DFS): limited

size (Section 8.2), reasonable summary (Section 8.2), and maximal differentiation (Sec-

tion 8.2). While maximal differentiation is the optimization goal in generating DFSs, limited

size and reasonable summary are necessary conditions: the former ensures that the DFSs

can be easily checked by a user, and the later ensures that the comparison based on DFS

correctly reflects the comparison of results. Then we formalize the problem of generating

optimal DFSs for a set of query results with a size bound and prove the NP-hardness of the

problem.

Desiderata of Differentiation Feature Sets

Next, we discuss three desiderata for a set of DFSs.

Being Small

To enable users quickly differentiate query results, the first desideratum of a set of DFSs is:

being small, so that users can quickly browse and understand them. The upper bound size

of a DFS can be specified by the user.

160

Desideratum 8.1 (Small) The size of each DFS D, denoted as |D|, is defined as the num-

ber of features in D. |D| should not exceed a user-specified upper bound L, i.e., |D| ≤ L.

Summarizing Query Results

For the comparisons based on DFSs to be valid, a DFS should be a reasonable summary

of the corresponding result by capturing the main characteristics in the result. Otherwise,

the differences shown in two DFSs may not be meaningful.

Example 8.1 Consider again the two results of query “Houston, clothes, store” in Fig-

ure 1.5(a). Both results mainly sell outwear clothes. Each store also sells some suit clothes.

Suppose we have the DFS for result 1, D1={store:category:suit}, and the DFS for result 2,

D2={store:category:outwear}. Obviously these two DFSs are different. However, these

DFSs are not meaningful, since it gives the user a wrong impression: the difference of

these two stores is that the first store mainly sells suit clothes, and the second store mainly

sells outwear clothes. Obviously, this is not true. Intuitively, a feature that has more occur-

rences in the result should have a higher priority to be selected in the DFS, so that the DFS

reflects the most important feature in the result, and the differences among DFSs correctly

reflect the main differences of their corresponding results.

Furthermore, although both stores in these results sells outwear and suit, it is unde-

sirable to simply output a single occurrence of outwear and suit in the DFS of each result.

Such DFSs give users the impression that the two stores are similar in terms of their spe-

ciality on outwear and suit. However, the store in result 1 mainly focuses on outwear with

just a couple of suit; whereas the store in result 2 focuses on both outwear and suit, with

roughly the same number of clothes. Intuitively, the DFS should capture the distributions of

features of the same type.

As we can see from Example 8.1, a valid DFS should be a reasonable summary of

the result, so that the important differences of the DFSs can be seen by the user. Thus we

define the validity of a DFS as the following.

161

Desideratum 8.2 (Validity) A DFS D is valid wrt a result R, denoted as valid(D,R), if

and only if the following rules are satisfied:

(1) Dominance Ordered: A feature can be included in D only if the features of the same

type that have more occurrences in R are already included in D. That is, features of the

same type should be ordered by dominance (defined as their number of occurrences).

(2) Distribution Preserved: A DFS should capture the distributions of features of the same

type.

To ensure a DFS satisfies Dominance Ordered, we sort the features of the same

type in each result by their number of occurrences. Features of the same type with the

same number of occurrences can be sorted in any way that is uniform for all results. We

use alphabetical order in our approach. There are various ways to achieve Distribution

Preserved. For each feature output in a DFS, we also show its percentage of occurrence

within its feature type, such as the DFSs in Figure 1.5(c). Another way of achieving Distri-

bution Preserved is to use font size to represent the percentage of features: features with

higher percentage are shown in bigger fonts, which is analogous to Tag Cloud. Note that

in this case, we may want to use a “weighted size” of each feature: a feature with higher

percentage occupies more space of the DFS, since it has a bigger font.

Example 8.2 In the result 1 in Figure 1.5(a), features of type clothes:category, in the de-

scending order of their dominance, are outwear, shirt, sweater and suit. Then in order for its

DFS to be valid, feature sweater can be included in the DFS only if both features preceding

it, outwear and shirt, are already included.

Differentiating Query Results

Being small and a good summary are necessary conditions for a DFS, yet they are insuffi-

cient.1 In this section, we propose the unique and most challenging requirement for a good

DFS: differentiability, i.e., a set of features that can differentiate one result from others.

1Indeed snippets are generally small and summarize results, nevertheless are ineffective for result com-
parison and differentiation, as discussed in Section 8.1.

162

Differentiability of DFSs. We define that two results are comparable by their DFSs

if their DFSs have common features types. Two results are differentiable if the DFSs have

different characteristics of those shared feature types.

Intuitively, features of different types are not comparable, e.g., we are not able

to compare clothes:category:outwear in result 1 with clothes:situation:formal in result 2.

Therefore, we consider each feature type as the differentiation unit. Each feature type can

be considered as a vector, in which each component represents a feature of this type in

the DFS, and the value of a component is the percentage of the feature. Typical ways

of measuring the distance of two vectors include L1 distance (i.e., Manhattan distance),

Euclidean distance, cosine similarity, etc. Intuitively, the degree of difference of a feature

type can be considered as the sum of percentage differences of all its values. Therefore,

we use L1 distance to define the degree of difference of a feature type. Other distance

metrics can also be used.

There are also some approaches for measuring the distance of probability distribu-

tions, most of which can also be applied to compute the degree of difference of a feature

type. However, note that some of them are not applicable. For example, some of these

metrics are not symmetric, e.g. KL divergence [77]. The KL divergence of v1 and v2 and

that of v2 and v1 are generally different, which is not suitable for our approach, since the

difference of two feature types should intuitively be symmetric. Some other metrics, e.g.,

Earth Mover’s Distance [117], are sensitive to the order of the components in the vector,

which is also undesirable for the purpose of computing the difference of a feature type.

Note that there is an important issue when modeling a feature type in a DFS as

a vector. Given two DFSs If a feature is included in both DFSs, its difference is simply

the difference of percentage in the two DFSs. However, if it is not included in a DFS, the

corresponding values in the vector should not always be 0. This is because a DFS only

records partial information in the corresponding result, i.e., a feature that does not appear

in a DFS may have occurrences in the results. If a feature is not included in any DFS, then

the corresponding value in the vector should be considered as 0%, since the user cannot

see this feature, and thus cannot see its difference in the results. But if a feature is included

163

in some of the DFSs but not the others, we should determine how much difference the user

can deduce from the DFSs about this feature. Let us look at an example.

Example 8.3 For the two results in Figure 1.5(a), suppose feature type clothes:category in

the two DFSs are:

D1: outwear: 52%, shirt: 25%

D2: outwear: 53%, suit: 47%

Then for outwear, the difference is 1%. For shirt, its percentage is 25% in result 1.

In result 2, since outwear and suit already sums up to 100%, there is no shirt in result 2,

thus the difference of shirt should be 25%. For suit, its percentage in result 2 is 47%. Since

in result 1, outwear and shirt sums up to 77%, the percentage of suit in result 1 is at most

23%. Thus the percentage difference of suit in the two results is at least 47%-23% = 24%.

For any other feature of this type, since it is not shown in either DFS, its difference is 0.

Therefore, for this feature type, by L1 distance, its degree of difference in the two results is

1% + 25% + 24% = 50%.

As we can see, if we simply consider the percentage of suit in D1 as 0%, then we

would conclude that the difference of suit is 47%, but the real difference may be only 24%.

In other words, from these two DFSs, the user can only deduce a difference of 24% for suit.

Consider another example, in which the two DFSs are:

D1: outwear: 40%, shirt: 30%

D2: suit: 20%

For outwear, in result 2, its percentage is at most 20% (since we output the features

in the order of their percentage). Thus the difference of outwear is at least 20%. Similarly,

for shirt, its difference is at least 10%. On the other hand, for suit, the percentage in result

1 is at most 30%. Therefore, the difference of suit in the two DFSs is 0%, because there is

a possibility that its percentage is 20% in result 1. Therefore, the total degree of difference

of this feature type is 20% + 10% = 30%.

164

As we can see, if we consider the percentage of suit in D1 as 0%, we would get a

difference of 20% for suit, which may not be true.

Example 8.3 gives us an idea of how to define the degree of difference of a feature

type in two DFSs. Intuitively, the degree of difference of a feature type depends on how

many features of this type we can differentiate, and how much difference of each feature

is there in the two DFSs. For a feature F , if F appears in both DFSs, then we simply

use its percentage difference in the two DFSs. If it appears in neither DFS, it cannot be

differentiated. If it appears in one DFS but not the other, we should use the minimum

difference of this feature type in the two DFSs that we can infer. For a feature type T ,

we sum up the differences of all features F of type T in the two results. If we consider

feature type T as a vector in each DFS with its features as components, then the degree of

difference of T is the L1 distance of these two vectors. The formal definition is given below.

Definition 8.1 Given a feature type T in two DFSs D1 and D2, the degree of difference of

T in D1 and D2, denoted by DoDT (D1, D2), is computed as

DoDT (D1, D2) =
∑
F∈T

diff(F)

where F is a feature of type T . diff(F) is computed as:

• If F is included in both D1 and D2, let p1 and p2 be the percentage of F in D1 and

D2. The difference of F is |p1 − p2|.

• If F is included in D1 but not D2, let p1 be the percentage of F1 in D1. We first

compute p2 as the maximum possible percentage of F in D2. p2 is the smaller of

the following two numbers: (1) the percentage of the last feature of type T output in

D2; (2) 1 - the total percentage of all features of type T output in D2. If p1 ≥ p2, the

difference of F is p1 − p2. Otherwise, the difference of F is 0.

• If F is included in D2 but not D1, its difference is measured in a similar way as above.

• If F is not included in either D1 or D2, its difference is 0.
165

Example 8.4 Consider the two DFSs in Figure 1.5(c). For feature type store:name, we

have diff(Galleria) = 1, diff(Adorama) = 1, thus DoDstore:name(D1, D2) = 2. For

feature type clothes:category, diff(outwear) = 0.01, diff(shirt) = 0.25, diff(sweater) =

0.13, diff(suit) = 0.37. Therefore, DoDclothes:category(D1, D2) = 0.76. For feature type

clothes:category, diff(casual) = 0.87 and diff(formal) = 0.87, thus DoDclothes:situation(D1, D2) =

1.74.

Note that for non-negative numbers a1, · · · , an and b1, · · · , bn, we have

n∑
i=1

|ai − bi| ≤
n∑

i=1

ai + bi

Therefore, for any feature type T and two DFSs D1 and D2, DoDT (D1, D2) is

always between 0 and 2.

Given the definition of the DoD of a feature type T in two results, we define the DoD

of a feature type T in multiple DFSs as the sum of the DoD of T in every pair of DFSs, and

also define the total DoD of multiple DFSs as the sum of the DoD of all feature types in

those DFSs.

Definition 8.2 Given a set of DFSs D1, · · · , Dn, the DoD of a feature type T in these DFSs

is defined as

DoDT (D1, · · · , Dn) =
∑

1≤i≤n

∑
i<j≤n

DoDT (Di, Dj)

the total DoD of these DFSs is defined as

DoD(D1, · · · , Dn) =
∑
T

DoDT (D1, · · · , Dn)

166

Example 8.5 In the two DFSs in Figure 1.5(c), we have DoDstore:name(D1, D2) = 2,

DoDclothes:category(D1, D2) = 0.76 and DoDclothes:situation(D1, D2) = 1.74. Thus DoD(D1, D2) =

3.50.

we have the following desideratum 3 for differentiation feature sets:

Desideratum 8.3 (Differentiability) Given a set of results R1, R2, · · · , Rn, their DFSs,

D1, D2, · · · , Dn, should maximize the total degree of differentiation defined in Definition 8.2.

We will show in the next subsection that, unfortunately, generating valid and small

DFSs that maximize their DoD is NP-hard.

Problem Definition and NP-Hardness

In this section, we formally define the problem of generating DFSs for search result differ-

entiation and analyze its complexity.

As we discussed in Sections 8.2 - 8.2, given a set of results, their DFSs should

maximize the DoD, i.e., the total degree of differentiation, and the DFSs should be valid

with respect to the corresponding result, and be small.

Definition 8.3 The DFS construction problem (R1, R2, · · · , Rn, L) is the following: given n

search results R1, R2, · · · , Rn, compute a DFS Di for each result Ri, such that:

• DoD(D1, D2, · · · , Dn) is maximized.

• ∀i, valid(Di, Ri) holds.

• ∀i, |Di| ≤ L.

Theorem 8.1 The DFS construction problem is NP-hard.

Proof. We prove the NP-completeness of the decision version of the DFS construc-

tion problem by reduction from X3C (exact 3-set cover). The decision version of the DFS

167

construction problem is: given n results R1, R2, · · · , Rn, is it possible to generate a DFS Di

for each result Ri, such that valid(Di, Ri, p), |Di| ≤ L, and DoD(D1, D2, · · · , Dn) ≥ S?

This problem is obviously in NP, as computing the DoD of a set of DFSs can be

done in polynomial time. Next we prove the NP-completeness.

Recall that each instance of X3C consists of:

• A finite set X with |X| = 3q;

• A collection C of 3-element subsets of X, i.e., C = {C1, C2, · · · , Cl}, |C| = l, Ci ⊆

X and |Ci| = 3.

The X3C problem is whether we can find an exact cover of X in C, i.e., a subcol-

lection C∗ of C, such that every element in X is contained in exactly one subset in C∗.

Now we transform an arbitrary instance of X3C to an instance of the DFS construc-

tion problem. We construct an instance of the DFS construction problem, in which there

are 3q query results, and l different feature types. Each Ci ∈ C corresponds to a feature

type ti, which has three different features: Fi1, Fi2, Fi3. For each Ci = {Xa, Xb, Xc} in

the X3C instance, let feature type ti appear once in the Xa-th, Xb-th and Xc-th results, with

feature Fi1, Fi2 and Fi3, respectively. Note that in this way, all features have a percentage

of 100% in each results. Let the DFS size limit L be 1, i.e., there can only be one feature

in each DFS. The question is: can we find a DFS for each of the 3q results, such that

DoD(R1, · · · , R3q) ≥ 6q?

If we can find an exact cover C∗ for the X3C instance, then we select the corre-

sponding q feature types. For each selected feature type, we add its 3 features to the

corresponding 3 DFSs. In this way, each DFS has exactly one feature. Each feature type

contributes 6 to the DoD, thus the total DoD is 6q.

If we can find a set of DFSs such that their DoD is 6q, then it is easy to see that

we must find q feature types, and for each feature type, all its 3 features must appear in the

corresponding DFSs. Otherwise, if a feature type has only 1 feature appearing in the DFSs,

168

then it does not contribute to the DoD; if it has 2 features appearing in the DFSs, it takes 2

slots but only contributes 2 to the DoD, making the total DoD impossible to reach 6q.

This means that there is an exact cover for the instance of X3C if and only if we

can find a set of DFSs with a DoD of 6q. Therefore, it is a reduction. Since this reduction

obviously can be performed in polynomial time, the decision version of the DFS construction

problem is NP-complete, and the DFS construction problem is NP-hard.

8.3 Local Optimality and Algorithms

Due to the NP-hardness of the DFS construction problem, in order to address the problem

with good effectiveness and efficiency, we propose two local optimality criteria: single-swap

optimality and multi-swap optimality. An algorithm that satisfies a local optimality criterion

does not necessarily produce the best possible result, but always produces results that are

good in a local sense. Next we show that single-swap optimality can be achieved efficiently

in polynomial time. On the other hand, multi-swap optimality is more challenging to achieve,

as a naive algorithm would be exponential. We present an efficient dynamic programming

algorithm in that realizes multi-swap optimality.

Single-Swap Optimality

In this section we present the first local optimality criterion, single-swap optimality, for the

DFS construction problem, and present a polynomial time algorithm achieving it.

Definition 8.4 A set of DFSs is single-swap optimal for query results R1, R2, · · · , Rn if, by

changing or adding one feature in a DFS Di of Ri, 1 ≤ i ≤ n, while keeping valid(Di, Ri)

and |Di| ≤ L, their degree of differentiation, DoD(D1, D2, · · · , Dn), cannot increase.

Let us look at an example.

Example 8.6 The two DFSs in Figure 1.5(c) satisfy single-swap optimality, i.e., changing or

adding any feature won’t increase their DoD. For instance, if we change clothes:category:suit,

47% in D2 to clothes:fitting:men, 70%, then the DODclothes:category(D1, D2) reduces from

169

Algorithm 7 Algorithm for Single-Swap Optimality
constructDFS (Query Results: QR[n]; Size Limit: L)

1: for i = 1 to n do
2: arbitrarily generate DFS[i] for QR[i]
3: for i = 1 to n do
4: for each feature type t in DFS[i] do
5: f = the next feature of type t that is in result[i] but not in DFS[i]
6: add f into DFS[i]
7: sizeinc = the size of feature f {features may have different sizes, e.g., a feature with long text or large font may

have a bigger size}
8: DFS[i].size+ = sizeinc
9: if DFS[i].size > L then
10: remove f from DFS[i]
11: DFS[i].size− = sizeinc
12: else
13: benefit = computeBenefit(DFS, i, t, f , null, null)
14: if benefit > 0 then
15: goto line 3
16: else
17: remove f from DFS[i]
18: for each feature type t′ in result[i] do
19: f = the last feature of type t in DFS[i]
20: f ′ = the next feature of type t′ that is in result[i] but not in DFS[i]
21: change the occurrences of f to occf ′ occurrences of f ′ in DFS[i]
22: if DFS[i].size > L then
23: undo the change from f to f ′

24: else
25: benefit = computeBenefit(DFS, i, t, f, t′, f ′)
26: if benefit > 0 then
27: goto line 3
28: else
29: undo the change from f to f ′

computeBenefit (DFS[n]; i; Feature Type: t; Feature Value: f ; Feature Type: t′; Feature Value:
f ′)

1: {This function computes the delta DoD after adding f ′ to DFS[i] and removing f from DFS[i]}
2: benefit = 0
3: for j = 1 to n do
4: if j = i then
5: continue
6: newDoD = DoDt′ (DFS[i], DFS[j]) (Definition 8.1) {newDoD is the current DoD of feature type t′}
7: remove f ′ from DFS[i]
8: oldDoD = DoDt′ (DFS[i], DFS[j]) {oldDoD is the DoD of feature type t′ before adding f ′}
9: benefit = benefit+ newDoD − oldDoD
10: add f ′ to DFS[i]
11: newDoD = DoDt(DFS[i], DFS[j]) {newDoD is the current DoD of feature type t}
12: add f to DFS[i]
13: oldDoD = DoDt(DFS[i], DFS[j]) {oldDoD is the DoD of feature type t before adding f }
14: benefit = benefit+ newDoD − oldDoD
15: remove f from DFS[i]
16: return benefit

170

76% to 1%. On the other hand, D1 and D2 are still not differentiable on clothes:fitting, since

there is no feature of this type in D1. Thus their DoD decreases by 75%.

Single-swap optimality can be achieved by a polynomial-time algorithm: enumera-

tion. The pseudo code of this algorithm is presented in Algorithm 7. There are four steps.

1. Initialization. We start with a randomly generated valid DFS for each result, satisfying

the size limit (procedure constructDFS lines 1-2).

2. Checking. Performing an iteration of checking and updating DFSs (lines 3-28). For

each DFS DFS[i], we check whether the DoD of all DFSs can increase after adding

a feature of type t to DFS[i] (lines 4-15) or switching an existing feature of type t to

a new feature of type t′ that is currently not in DFS (lines 16-28).

3. Updating and Iteration. If such a DFS is found, then we make the update and restart

the iteration in step 2 (lines 13 and 26).

4. Termination. If there is no DFS that can be changed to further improve the DoD, then

we terminate and output the DFSs.

As we can see, in the Initialization step, DFSs are generated randomly. In fact, the

initialization of DFS does not affect the local optimality of the proposed algorithms, but has

impact on the generated DFSs and where a local optimal point is achieved. Investigation of

good DFS initialization is an orthogonal problem.

Although the high-level description of the algorithm and the example look simple,

there are three technical challenges to be addressed. First, when updating a feature in a

DFS, we must ensure its validity with respect to the corresponding result and satisfaction of

the size limit. Since each DFS must be valid, the addition of a feature to a DFS must be in

the dominance order of this feature type, and the removal of features from a DFS must be in

the reverse order of feature dominance. For single-swap optimality, we only check whether

altering one feature can improve the DoD. Thus, to add a feature of type t to a DFS, only

the most dominant feature of type t that is not in the DFS can be added; to remove a feature

171

of clothes: 120

situation: formal: 80%; Others: 20%

category: sweater: 60%; skirt: 35%; Others: 5%

fitting: women: 70%; children:18%; men: 12%

(a) Statistics Information of Result 3

iteration D1 D2 D3

0 store: name: Galleria, 100%

clothes: category: outwear, 52%

clothes: fitting: men

store: name: West Village, 100%

clothes: category: outwear, 53%

clothes: category: suit, 47%

store: name: Biltmore, 100%

clothes: category: sweater, 60%

clothes: situation: formal, 80%

1 store: name: Galleria, 100%

clothes: category: outwear, 52%

clothes: fitting: men, 80%

clothes: situation: casual, 94%

same as above same as above

2 same as above store: name: West Village, 100%

clothes: category: outwear, 53%
clothes: category: suit, 47%

clothes: situation: formal, 93%

same as above

3 same as above same as above store: name: Biltmore, 100%

clothes: category: sweater, 60%

clothes: situation: formal, 80%

clothes: fitting: women, 70%

4 same as above store: name: West Village, 100%

clothes: category: outwear, 53%

clothes: category: suit, 47%

clothes: situation: formal, 93%

clothes: fitting: men, 70%

same as above

(b) Iterations Performed by Algorithm 1

Figure 8.1: Running Example of Algorithm 7

of type t′, only the least dominant feature of t′ that is in the DFS can be removed. Let us

look at an example.

Example 8.7 To explain the single-swap optimal algorithm, we use the two results in Fig-

ure 1.5(a), and another result whose statistics information is shown in Figure 8.1(a), as a

running example. Suppose that the three DFSs are randomly initialized as in iteration 0 in

Figure 8.1(b), and that the size limit for each DFS is 5. The algorithm updates one DFS for

one of the three results in the 4 iterations as shown. In iteration 1, the algorithm attempts

to add a feature of type clothes:situation to D1. The feature to be added must be the most

dominant one of this type: casual. The addition can increase DoDclothes:fitting(D1, D3),

and thus increase the DoD of the three DFSs..

172

The second challenge is that, due to the interactions among DFSs, one DFS may

need to be updated multiple times, where the number of updates cannot be determined

before the termination of the algorithm.

Example 8.8 Continuing Example 8.7, in iteration 2, Algorithm 7 tries to add (formal, 93%,

the most dominant feature of type clothes:situation, to D2. This increases the total DoD.

Note that at this time, adding (clothes: fitting: men, 70%) to D2 does not increase the DoD,

as D1 has exactly the same (feature, precentage) pair, and D3 does not have feature type

clothes:fitting. However, after adding (clothes: fitting: women, 70%) to D3 in iteration 3, it

becomes valuable to add (clothes: fitting: men, 70%) to D2 in iteration 4, which will increase

the total DoD. As we can see, after D2 was first checked and updated in iteration 2, it needs

to be updated again to further improve the DoD after other DFSs are updated.

The iteration continues till no DFSs can be added or changed to improve the DoD.

Since the number of times that we may update a DFS is unknown, one question is whether

the algorithm terminates and how many iterations will be performed. As will be analyzed

shortly, this enumeration algorithm is guaranteed to run in polynomial time in terms of the

number of results (n) and the number of features (m).

The third challenge is that we need to compute the delta of DoD upon an altered

or added feature (Procedure computeBenefit). Note that adding a feature to a DFS may not

increase the DoD, and removing a feature from a DFS may not decrease the DoD. After

each iteration of Algorithm 7, we compute the DoD of the altered feature type according to

Definition 8.1, then update the total DoD of all DFSs.

Now we analyze the complexity of the Algorithm 7. Let n be the number of query

results, and m be the number of feature types in a result.

• In each iteration, we check at most n DFSs. For each DFS DFS[i] (in a single

iteration), we check at most m2 feature pairs to see whether an existing feature should

be replaced, and check at most m features to see whether a feature should be added.

As discussed earlier, for each feature type, we have to check the features with respect

173

to their dominance order, thus there are only m choices of feature swap or addition

for one result in one iteration. Each check will compute the delta of DoD by invoking

Procedure computeBenefit. Procedure computeBenefit computes the DoD of feature

type t, we sort the features of type t in both DFSs, then scan them and compute the

DoD of type t according to Definition 8.1. Therefore, it takes O(LlogL) time, where

L is the DFS size limit. Thus, computeBenefit takes O(nLlogL), and each iteration

takes at most O(n2m2LlogL) time.

• In each iteration except the last one, the DoD of the DFSs at least increases by

1. The maximum possible DoD for each feature type in two results is 2, thus the

maximum possible DoD for two results is 2m, and the maximum DoD of all n DFSs is

bounded by O(n2m). This means we need at most O(n2m) iterations, and thus the

algorithm runs in polynomial time in terms of n and m.

Multi-Swap Optimality

After discussing single-swap optimality, we propose multi-swap optimality, a stronger crite-

rion. Then we present an efficient dynamic programming algorithm to achieve it.

Recall that single-swap optimality guarantees that the DoD of a set of DFSs won’t

increase by changing one feature in a DFS. On the contrary, multi-swap optimality requires

that the DoD cannot increase by changing any number of features in a DFS, as formally

defined below.

Definition 8.5 A set of DFSs is multi-swap optimal for query results R1, R2, · · · , Rn if, by

making any changes to a DFS Di of Ri, 1 ≤ i ≤ n, while keeping valid(Di, Ri) and

|Di| ≤ L, DoD(D1, D2, · · · , Dn) cannot increase.

Example 8.9 Figure 8.2 is an example of DFSs achieving single-swap optimality but not

multi-swap optimality. D′
1 and D2 are DFSs of the two results in Figure 1.5(a) (sup-

pose the percentage of feature clothes:category:outwear is 53% in Result 1). As we can

see, DoD(D1, D2) cannot be improved by changing or adding a single feature in either

174

store:city:Houston, 100%

store:name:Galleria, 100%

clothes:fitting:men, 70%

clothes:situation:casual, 94%

DFS for result 1 (D1’)

store:name:West Village, 100%

clothes:category:outwear, 53%

clothes:category:suit, 47%

clothes:situation:formal, 93%

DFS for result 2 (D2)

store:name:Galleria

clothes:category:outwear 53%

clothes:category:shirt, 25%

clothes:situation:casual, 94%

DFS for result 1 (D1)

Figure 8.2: Single-Swap Optimality and Multi-Swap Optimality

DFS. However, if we change (store:city:Houston, 100%) and (clothes:fitting:men, 70%)

into (clothes:category:outwear, 53%) and (clothes:category:shirt, 25%), then feature type

clothes:category now have a non-zero DoD in the two DFSs, and thus DoD(D1, D2) in-

creases.

In fact, achieving multi-swap optimality is more challenging than achieving single-

swap optimality. Consider an enumeration based algorithm, adapted from Algorithm 7.

While keeping the Initialization, Updating and Iteration and Temination steps the same,

the Checking step is different. Instead of checking whether adding a single feature or

swapping a single feature in a DFS can improve the DoD, we now need to check every

possible combination of features in a DFS. Since the number of features in a query result

is bounded by the result size n, there can be up to 2n different combinations of features in

its corresponding DFS, leading to an exponential time complexity.

In fact, Theorem 8.2 shows that achieving multi-swap optimality is NP-hard.

Theorem 8.2 Given a set of query results, the problem of constructing a DFS for each

result such that the DFSs are multi-swap optimal, is NP-hard.

Proof. In order to prove that multi-swap optimal is NP-hard to achieve, we can

instead prove that it is NP-hard to verify, which indicate the NP-hardness of achieving multi-

swap optimality. If we can efficiently answer the question of whether a set of DFSs is

multi-swap optimal, then we can efficiently answer the following question: whether we can

175

update a specified DFS to increase their DoD. Therefore, we only need to prove that the

following problem is weakly NP-hard: let there be n results. The DFS of the first n − 1

results are fixed. How to generate the last DFS such that their DoD is maximized?

This problem is obviously in NP. We prove its NP-hardness by reduction from 0-1

knapsack. In an instance of 0-1 knapsack, there are m items, item i has value pi and weight

wi. The knapsack capacity is W . 0-1 knapsack is the problem of maximizing the value of

the selected items, such that their total weight does not exceed W .

Now we reduce it to an instance of the problem above. Let the last result have m

feature types, one corresponding to one item in knapsack problem. For feature type Ti, let

the first feature fi1 and the second feature fi2 have a ratio of (wi − 1) : 1. Let this feature

type appear in another pi results, in which the first feature in order of their importance is fi1,

but the second feature is not fi2. Then, in the DFS of the last result, if we output wi features

of type Ti, we increase the DoD by pi. Outputting less than wi features won’t increase the

DoD, and outputting more than wi features won’t further increase the DoD beyond pi. Let

the DFS size limit be W .

It is easy to see that if we select a subset of items in the 0-1 knapsack instance to

achieve maximum total value, then outputting the corresponding subset of features in the

instance of the multi-swap optimality problem also gives the maximum DoD. The reverse

is also true. This reduction can obviously be performed in polynomial time. Therefore,

checking multi-swap optimality is NP-hard, and achieving multi-swap optimality is also NP-

hard.

To efficiently achieve multi-swap optimality, we have designed a dynamic program-

ming based algorithm that runs in polynomial time with respect to n (the number of query

results) and m (the maximum number of features in a result). We address the technical

challenges in Step 2 Checking: verifying whether there exists any change to a DFS, re-

ferred to as “target DFS”, that can improve the total DoD. Instead of enumerating changes

to a DFS (as the number of possible changes are exponential), our algorithm directly gen-

erates a valid multi-swap optimal target DFS, given the others DFSs.

176

To generate such a target DFS, we first need to determine for each feature type,

what are the choices of selecting features to compose a valid DFS. Intuitively, for each

feature type, there are multiple choices of including its features in the DFS, each with a

different number of features included. To measure the effect of each choice, we define

benefit and cost of a feature type. Specifically, if we include x features into the target

DFS, then the cost is x, and the increase of DoD obtained by adding these x features is

considered as benefit y.

Algorithm 8 Algorithm for Multi-Swap Optimality
constructDFS (Query Results: QR[n]; Size Limit: L)

1: for i = 1 to n do
2: arbitrarily generate DFS[i] for QR[i]
3: DoD[i] = 0
4: for i = 1 to n do
5: for j = 1 to n do
6: for each feature common feature type t in DFS[i] and DFS[j] do
7: DoD[i]+ = DoDt(DFS[i], DFS[j]) (Definition 8.1)
8: for i = 1 to n do
9: DoD′, newDFS = checkDFS(QR[i], DFS, i, L)

10: if DoD′ > DoD[i] then
11: DFS[i] = newDFS
12: DoD[i] = DoD′

13: goto line 9

checkDFS (Query Result: QR; DFSs: DFS[n]; i; Size Limit: L)

1: {This function constructs the optimal DFS[i] given the other DFSs}
2: t = number of feature types in QR
3: for l = 1 to L do
4: compute s1,l according to Figure 8.3
5: Suppose s1,l is maximized by outputting x features of type 1
6: best1,l = x
7: for k = 2 to t do
8: for l = 1 to L do
9: compute sk,l according to Figure 8.3

10: Suppose sk,l is maximized by outputting x features of type k
11: bestk,l = x
12: k = t
13: l = L
14: newDFS = ∅
15: while k > 0 and l > 0 do
16: output x features of type k in newDFS
17: k −−
18: l− = x
19: DoD′ = 0
20: for j = 1 to n do
21: DoD′+ = the degree of differentiation between DFS[i] and DFS[j]
22: return DoD′, newDFS

177

Example 8.10 We use the query results in Figure 1.5(a) to explain the benefits and costs

of a feature type. For feature type clothes:category, we have

D2 = {outwear, 53%, suit, 47%},

Consider D1 as the target DFS. According to Figure 1.5(a), the list of features of this type

in the order of their dominance in result 1 is {outwear, shirt, sweater, suit}.

(1) If we have D1 = {outwear, 52%}, then cost=1, benefit=1%. This is because

the percentage of outwear in D1 and D2 are 52% and 53%, respectively. Note that the

difference of suit is 0%, since the maximum possible percentage of suit in D1 is 48%.

(2) If we have D1 = {outwear, 52%, shirt, 25%}, then cost=2, and benefit=50%, as

illustrated in Example 8.3.

(3) If we have D1 = {outwear, 52%, shirt, 25%, sweater 13%}, then cost=3, and

benefit=76%, as now diff(sweater) = 13% (increased by 13% compared with cost=2)

and diff(suit) = 37% (increased by 13% compared with cost=2).

As we can see, for each feature type, there is a list of choices of how many features

can be selected in a DFS, each with a benefit and a cost. We denote the above three

choices as (1, 1%), (2, 50%) and (3, 76%), respectively.

Given the choices of generating valid DFSs discussed above, our goal is to calcu-

late the optimal valid target DFS that can maximize the DoD, given the DFSs of the other

results. We use sm,L to denote the maximum DoD that can be achieved by a valid optimal

target DFS, where m is the total number of feature types in the result and L is the DFS size

limit.

sm,L can be computed using dynamic programming. We give an arbitrary order to

the feature types in the query result of target DFS. Let sk,l denote the maximum DoD that

can be achieved by considering the first k feature types in the result, with DFS size limit l.

Each sk,l is calculated using the recurrence relation discussed in the following.

• If k = 1, sk,l = the maximal benefit of the first feature type that can be achieved with

cost not exceeding l.
178

s
b c l k

s s b c l
k l

ki ki

k l k l c ki ki
ki

,

, ,

max{ | }

max{ , max{ |
=

≤ =
+ ≤− − −

 1

1 1
}}} k >

 1

Figure 8.3: Recurrence Relation

• If k > 1, then we have multiple choices. We can choose not to include any feature

of the k-th feature type at all, thus sk,l = sk−1,l. Otherwise, for the k-th feature type,

suppose the list of feature selections that comprise a valid and small DFS is denoted

as a list of benefit and cost pairs: (b1, c1), (b2, c2), and so on. We can choose any

item in this list. For instance, if we choose to output c1 features, then we can increase

the benefit with b1, but to accommodate the cost c1, the first k − 1 feature types can

only include l − c1 features, i.e., sk,l = sk−1,l−c1 + b1.

Therefore, the recurrence relation for calculating sk,l is shown in Figure 8.3, where

we assume that the k-th feature type has pk different benefit and cost pairs, (bk1, ck1),

(bk2, ck2), · · · (bkpk , ckpk), and 1 ≤ i ≤ pk.

The dynamic programming procedure that computes the optimal valid DFS[i] is

given in Algorithm 8 procedure checkDFS. We first compute s1,l for each l (lines 2-5),

then compute sk,l as discussed. Meanwhile, we record array best, which is used to re-

produce the optimal DFS, newDFS (lines 11-17). Finally, DoD′ is calculated by comparing

newDFS with every other DFS (lines 18-21).

The entire algorithm for multi-swap optimality is presented in Algorithm 8. Similar

as Algorithm 7, it begins with randomly generating a DFS for each result (Procedure con-

structDFS lines 1-3). Then it computes DoD[i], the total DoD between DFS[i] and other

DFSs (lines 4-8). In each iteration (lines 9-14), instead of tentatively making changes to

each DFS as what Algorithm 7 does, this algorithm directly generates a valid multi-swap

optimal newDFS given the other DFSs, whose DOD is DoD′, by invoking Procedure

checkDFS. If DoD′ is bigger than DoD[i], then DFS[i] is replaced by newDFS with

DoD[i] updated (lines 11-14). Similar as Algorithm 7, Algorithm 8 terminates when no

DFS can be changed to further improve the DoD.

Now we analyze the complexity of Algorithm 8. Let n, m, m′, L denote the number
179

of results, number of feature types, number of features and DFS size limit, respectively. In

procedure checkDFS, we first compute newDFS using the equation in Figure 8.3 (lines

2-17), with complexity O(m′L). Lines 18-20 of checkDFS compute the DoD of two DFSs.

Since determining whether two DFSs can be differentiated on a given feature type takes

O(LlogL) time, the complexity of newDFS is O(m′L+mLlogL). In constructDFS, we first

compute the DoD of every two results in O(nmLlogL) (lines 4-8). Similar as Algorithm 7,

the iteration in lines 9-14 is executed at most O(n2m) times. Therefore, the total complexity

of Algorithm 8 is O(n2mLlogL(mn+m′)).

As to be shown in Section 8.5, the algorithm is in fact quite efficient in practice, as

the number of iterations is generally far less than n2m.

8.4 Feature Type Oriented DFS Construction

We have shown how to achieve two local optimality criteria in Section 8.3. Both of them

consider one result at a time: single-swap optimal tries to change one feature in one result,

and multi-swap optimal tries to change multiple features in one result. These two algorithms

have the following disadvantage: the quality of the algorithms depends on the initialization.

Specifically, if a good feature type does not have enough occurrences in the initialization,

then it will not be chosen during the DFS generation.

Example 8.11 Consider the two results shown in Figure 1.5(a). Consider an initialization

of the two DFSs as shown in Figure 8.4. In this case, no matter how we change a single

DFS, we cannot increase the DoD. Specifically, for feature type store:city, both results have

the same feature which is Houston. For clothes:category, if we only change one or more

features in a single DFS, the DoD of this feature type will remain at 1%, and will not increase.

Only when the DFSs of both results have two features included, they can have a larger

DoD. It is the same for clothes:fitting. Besides, some feature types like store:name is not in

the initial DFSs, and adding it to the DFS of one result does not increase the DoD either.

Therefore both Algorithms 7 and 8, which only change one DFS at one time if the change

increases the DoD, will not change the initial setting of both DFSs, resulting in low DoD of

1%.

180

D1 D2

store:city:Houston, 100%

clothes:category:Canon, 52%

clothes:fitting:men, 70%

store:city:Houston, 100%

clothes:category:Canon, 53%

clothes:fitting:men, 70%

Figure 8.4: A Possible Initialization of DFSs for the Results in Figure 1.5(a)

Note that in contrast to single-swap and multi-swap optimality, another possible

local optimality criteria is: the DoD of all DFSs cannot increase by changing any one feature

in multiple DFSs. The problem above can be largely solved by achieving this local optimality

criteria. Unfortunately, using the same proof as the one for Theorem 8.1, it is easy to see

that achieving this local optimality criterion is NP-hard.

In observance of the above problem, in this section, we propose heuristics algo-

rithms which, although not necessarily achieving a local optimality criteria, are superior to

Algorithms 7 and 8 in that they consider multiple results together when generating DFSs.

As we can see from the example above, Algorithms 7 and 8 may miss a good feature type

if it does not have enough occurrences in all DFSs in the initialization. Thus our new algo-

rithm considers a feature type at each time, rather than a result. We refer to the algorithms

based on this idea as feature type oriented DFS construction algorithm.

The intuition of the feature type oriented algorithms is that we can compute how

“good” a feature type is, then select the feature types according to certain criteria. How-

ever, one barrier of this idea is: under the current problem setting, feature types cannot

be completely considered as independent, which makes the problem much harder. For

example, consider feature types t1 and t2. Let us assume that t1 and t2 can significantly

differentiate many results, thus they both have a “high” quality. However, suppose that to

significantly differentiate many results, both t1 and t2 require a large presence in a DFS Di.

Since Di has a size limit, it may not be able to accommodate many occurrences of both t1

and t2, which means using t1 and t2 together may not be a good idea.

With this observation, to handle the interaction between feature types, we first at-

tempt to solve an alternative problem, which is the same as the problem defined in Defini-

tion 8.3, except that there is a single size limit for all DFSs, rather than a size limit for each

181

DFS. If the size limit of the individual DFS is L and there are n results, then we consider

the size limit for all DFSs as n × L. For this problem, we can measure the quality of each

feature type independently of other feature types, and select the feature types accordingly.

After we get a solution to this problem, since an individual DFS do not have a size limit,

there may be some DFSs whose sizes exceeds L and some other DFSs whose sizes are

smaller than L. If this happens, then we iteratively remove some features from each DFS

whose size exceeds L, and greedily add some features for each DFS whose size is smaller

than L, which will be discussed later.

Apparently, the quality of a feature type depends on how many occurrences it is

allowed to have. Recall that in Algorithm 8, for each feature type in the result being pro-

cessed, we compute a set of (benefit, cost) pairs, then use dynamic programming to find

the optimal number of occurrences of each feature type. The same idea can be adopted

here. We can compute a set of (benefit, cost) pairs for each feature type with respect to all

results. In other words, each (benefit, cost) pair denotes the DoD contributed by the feature

type (benefit) if we allow it to have a certain number of occurrences (cost) in all results.

After we compute the (benefit, cost) pairs for all feature types, since we consider a single

size limit for all DFSs, we can use the same recurrence relation as in Figure 8.3 to compute

the optimal number of occurrences of each feature type.

However, computing (benefit, cost) pairs for a feature type with respect to all results

is much harder than doing so with respect to one result. In a single result, given a fixed

number of occurrences of a feature type, the features that can be output are fixed: we out-

put the features one by one in the order of their dominance, keeping ratios of occurrences

whenever necessary, until we reach the given number of occurrences. On the other hand,

given a fixed number of occurrences of a feature type in all results, there are many possibil-

ities to assign these slots to all results, and the best slot assignment given a certain number

of slots needs to be computed. We discuss two ways to compute the (benefit, cost) pairs

for a feature type in the next two subsections: exact computation or heuristics computation.

The pseudo code of the framework of the feature type oriented algorithm is shown

in Algorithm 9. We use L = n×L as the total size limit for all DFSs, where L is the size limit

182

for each individual DFS. For each feature type in the results, we compute a set of (benefit,

cost) pairs with respect to all results (line 4, which will be detailed in the next subsections),

then use dynamic programming (procedure DP) to find the optimal number of occurrences

of each feature type in all results. Note that since this approach considers a single size

limit for all DFSs, it may generate some DFSs whose sizes are larger than L. In this case,

we perform a post-processing for these DFSs. For each DFS whose size exceeds L, we

iteratively remove some features from it. Specifically, each time we pick one feature, such

that removing this feature will cause the smallest loss of DoD. We do so until it has exactly

L features. Similarly, for each DFS whose size is smaller than L, we iteratively add some

features into it, until its size is L, or all features in the corresponding result has been added.

Since procedure DP computes a two dimensional array with size nL×m, the time

complexity of procedure DP is O(mnL). The complexity of constructDFS depends on

line 4, which is executed m times, and will be discussed later.

Exact Computation of (Benefit, Cost) Pairs

To compute the exact (benefit, cost) pairs, we compute the benefit for all possible costs, i.e.,

from 1 to L. For each possible cost c, we enumerate all possible ways to assign these c slots

to the n results. The number of ways to assign c slots to n results equals to

(
c+ n− 1

n− 1

)
.

To see this, note that assigning c slots to n results such that each result has ≥ 0 slots is

equivalent to assigning c+n slots to n results such that each result has≥ 1 slots. The latter

problem can be considered as: there are c + n points on the x-axis, each representing a

slot. We insert n− 1 “baffles”, such that each baffle is placed between two adjacent points,

and no two baffles coincide. What is the number of ways to place all baffles? Note that

for each placement of the n − 1 baffles, we get an assignment of the slots: the number of

points in between two baffles are the number of slots assigned to the corresponding result.

For example, in Figure 8.5, result 1 and 2 are assigned 1 slot each; result n is assigned

2 slots. Therefore, the number of ways to assign the slots is equivalent to selecting n − 1

from c+ n− 1, i.e.,

(
c+ n− 1

n− 1

)
.

Therefore, the exact computation of (benefit, cost) pairs is to enumerate all

(
c+ n− 1

n− 1

)
183

Algorithm 9 Feature Type Oriented DFS Construction
constructDFS (Query Results: QR[1 · · ·n]; Size Limit: L)

1: L = n× L
2: ftype[1 · · ·m] =all feature types in QR[1 · · ·n]
3: for i = 1 to m do
4: benefit[1 · · · L], cost[1 · · · L] = computeBenefitCost_exact/heuristics(ftype[i], QR,L)
5: DFS[1 · · ·n] = DP (benefit, cost)
6: for each i = 1 to n do
7: while DFS[i].size > L do
8: F = a feature in DFS[i], such that removing F from DFS[i] causes the smallest loss of

DoD
9: remove F from DFS[i]

10: while DFS[i].size < L do
11: F = a feature in DFS[i], such that adding F to DFS[i] gives the largest increase of DoD
12: if F = null then
13: break
14: add F to DFS[i]

DP (benefit[1 · · ·n], cost[1 · · ·n])
1: m = number of feature types in QR
2: for l = 1 to L do
3: compute s1,l according to Figure 8.3
4: Suppose s1,l is maximized by outputting x features of type 1
5: best1,l = x
6: for k = 2 to m do
7: for l = 1 to L do
8: compute sk,l according to Figure 8.3
9: Suppose sk,l is maximized by outputting x features of type k

10: bestk,l = x
11: k = m
12: l = L
13: while k > 0 and l > 0 do
14: output x features of type k in all DFSs
15: k −−
16: l− = x

c+n-1

1 2 3 c+n-2 c+n

baffle 1 baffle 2 baffle n-1

…

…

Figure 8.5: Points and Baffles

184

Algorithm 10 Exact Computation of Benefit and Cost
computeBenefitCost_exact (ftype, result[1 · · ·n],L)

1: for c = 1 to L do
2: DoD = computeBenefit(ftype, result, c)
3: benefit[c] = DoD, cost[c] = c

computeBenefit (ftype, result[1 · · ·n], c)
1: {consider n+ c− 1 points on the x-axis and n− 1 baffles}
2: {A qualified baffle assignment: (1) each baffle is placed between two adjacent points; (2) no two

baffles are placed between the same two points}
3: {The baffles are recorded in baffle[1 · · ·n − 1]. baffle[i] = j means the ith baffle is placed

between points j and j + 1}
4: bestBenefit = 0
5: for each qualified baffle assignment baffle[1 · · ·n− 1] do
6: size[1] = baffle[1]
7: size[n] = n− baffle[n− 1]
8: for i = 2 to n− 1 do
9: size[i] = baffle[i]− baffle[i− 1]

10: for i = 1 to n do
11: assign size[i] slots to DFS[i]
12: benefit = 0
13: for i = 1 to n do
14: for j = i+ 1 to n do
15: benefit+ = DODftype(DFS[i], DFS[j])
16: if benefit >= bestBenefit then
17: bestBenefit = benefit
18: return bestBenefit

ways of assigning c slots for each c (1 ≤ c ≤ L). Note that this number is only exponential

wrt n (the number of results), while polynomial wrt all other parameters. Since in reality a

user will unlikely select a large number of results for comparison, this algorithm should work

well practically.

The pseudo code of the exact computation of (benefit, cost) pairs is presented in

Algorithm 10. All baffle assignments are enumerated for each cost c(1 ≤ c ≤ L), and the

assignments that has the largest benefit (DoD) is recorded for each c.

Now we analyze the complexity of Algorithm 10. For each cost c, we enumerate(
c+ n− 1

n− 1

)
= O(cn) baffle positions. For each baffle position, we need to check whether

the each pair of DFSs are differentiable. Let m denote the maximum number of features

of each feature type. Since checking the differentiability of a feature type involves checking

the order of features and the ratio of every two features, it takes O(m2) time, and thus

checking the differentiability of all pairs of DFSs takes O(n2m2) time. Therefore, the total

185

complexity of Algorithm 10 is O(
n×L∑
c=1

cn × n2m2).

Heuristic Computation of (Benefit, Cost) Pairs

Although Algorithm 10 is only exponential with respect to n, it may still be inefficient in some

situations. The main reason that may lead to its inefficiency is that for every possible cost,

it needs to compute the optimal slot assignment from scratch, rather than incrementally. It

has to do so because this problem does not have the optimal substructure property, in other

words, to compute the optimal assignment of cost c+1, we are unable to reuse the optimal

assignment of c or any other cost, as their optimal assignment may be totally different.

When the number of results increases, both n and c increases (as each DFS has a fixed

size limit), thus the processing time may increase very quickly.

Now we discuss an algorithm that heuristically computes the (benefit, cost) pairs

with much better efficiency. The idea is to reuse the optimal assignment of lower costs when

computing the optimal assignment of a higher cost, under the assumption that the optimal

assignment of a higher cost likely does not differ too much from the optimal assignment of

the lower cost. To do so, we use a vector OptAsgnmt[1 · · · L], which records the optimal

assignment of all costs we have computed so far. We compute OptAsgnmt[i] by greedily

adding a feature from OptAsgnmt[i − 1]. For each i, suppose OptAsgnmt[i] gives us a

DoD of di, then we record a (benefit, cost) pair (di, i).

We start from processing OptAsgnmt[0]. OptAsgnmt[0] is trivial: there is no (fea-

ture, percentage) pair in any result. To get OptAsgnmt[i](1 ≥ 1), we attempt to add

a (feature, percentage) pair to each DFS from the best assignment of cost i − 1, i.e.,

OptAsgnmt[i − 1]. Suppose adding a (feature, percentage) pair to the jth result will give

us the largest increase in DoD, then we add a (feature, percentage) pair to jth DFS from

OptAsgnmt[i − 1] and consider it as OptAsgnmt[i]. Then, we go to the next cost, i + 1,

and process OptAsgnmt[i+ 1].

Example 8.12 Consider the two results in Figure 1.5(a), and feature type clothes:category

(other feature types are processed in the same way). Table 8.4 shows the construction

186

Table 8.1: An Illustration of the Heuristics Method for Computing (benefit, cost) Pairs

D1 D2 DoD
OptAsgnmt[0] empty empty 0
OptAsgnmt[1] clothes:category:outwear 52% empty 0
OptAsgnmt[2] clothes:category:outwear 52% clothes:category:outwear 53% 1%
OptAsgnmt[3] clothes:category:outwear 52% clothes:category:outwear 53% 1%

clothes:category:shirt 25%
OptAsgnmt[4] clothes:category:outwear 52% clothes:category:outwear 53% 50%

clothes:category:shirt 25% clothes:category:suit 47%
OptAsgnmt[5] clothes:category:outwear 52% clothes:category:outwear 53% 76%

clothes:category:shirt 25% clothes:category:suit 47%
clothes:category:sweater 13%

of OptAsgnmt for feature type clothes:category. Initially, OptAsgnmt[0] outputs no fea-

tures of this type in either DFS, thus DoD = 0. Now we try to add a (feature, percentage)

pair in a DFS in OptAsgnmt[0], e.g. add (outwear, 52%) in D1, as shown in Table 8.4.

At this time, the DoD is still 0. We also attempt to add a (feature, percentage) pair to

D2 in OptAsgnmt[0]. Since this does not increase the DoD either, we do not update

OptAsgnmt[1] and its DoD. Then, from OptAsgnmt[1], we continue to output one (fea-

ture, percentage) pair in a DFS. If we add a (feature, percentage) pair (shirt, 25%) in D1 in

OptAsgnmt[1], since D2 is empty, the DoD is still 0. On the other hand, if we add a (feature,

percentage) pair (outwear, 53%) in D2, we get a DoD of 1%. Therefore, in OptAsgnmt[2],

we assign one slot to each DFS. The process continues as shown in Table 8.4.

The pseudo code of this algorithm is presented in Algorithm 11. We use OptAsgnmt[c]

to record the optimal slot assignment for cost c, and use OptDoD[c] to record the bene-

fit (i.e., DoD) achieved by OptAsgnmt[c]. We first initialize OptAsgnmt[0] (line 1) and

OptDoD[c] for each c (line 4). Then start from c = 1, for each c, we compute the assign-

ments of cost c based on OptAsgnmt[c − 1] (lines 5-12). We try to add a feature to each

DFS, and compare the DoD obtained by all these n choices. Then, we select a DFS D

such that adding a feature to D will give us the largest DoD. We add a feature to D and

consider it as OptAsgnmt[c] (lines 9-11). Finally, we record L (benefit, cost pairs), i.e.,

(OptDoD[1], 1), · · · , (OptDoD[L],L) (lines 13-16).

187

Algorithm 11 Heuristic Computation of Benefit and Cost
computeBenefitCost_heuristics (ftype, result[1 · · ·n],L)

1: OptAsgnmt[0] = {0, 0, · · · , 0}
2: OptDoD[0] = 0
3: for i = 1 to L do
4: OptDoD[i] = −1
5: for c = 1 to L − 1 do
6: for i = 1 to n do
7: add a feature to DFS[i] from OptAsgnmt[c− 1]
8: currDoD = DODftype(DFS[1], · · · , DFS[n])
9: if currDoD ≥ OptDoD[c] then

10: OptDoD[c] = currDoD
11: OptAsgnmt[c] =current slot assignment
12: remove the newly added feature from DFS[i]
13: for c = 1 to L do
14: if OptDoD[c] ≥ 0 then
15: benefit[c] = OptDoD[c]
16: cost[c] = c

Now we analyze the complexity of Algorithm 11. For each cost c, we try to add

a feature to each of the n results, then see whether this result is differentiable with any

other results. Recall that checking whether a feature type can differentiate two results takes

O(m2) time, and there are in total nL different costs. Therefore, the total complexity is

O(n2Lm2).

8.5 Evaluation

To verify the effectiveness and efficiency of our proposed approach, we implemented the

XRed system and performed empirical evaluation from three perspectives: the usefulness

of DFSs, the quality of DFSs, the time for generating the DFSs and the scalability upon the

number of query results and the DFS size limit.

Environments and Setup

The evaluations were performed on a desktop with Intel Core(TM) 2 Quad CPU 2.66GHZ,

8GB memory, running Windows 7 Professional.

We used two data sets in our evaluation: a movie data set and a retailer data set.

The movie data set records information about movies, which was extracted from IMDB.2

The retailer data is a synthetic data set that records the information of apparel retailers and

2ftp://ftp.sunet.se/pub/tv+movies/imdb/

188

store

retailer

name product

name state city merchandises

clothes

fitting categorysituation

*

*

Figure 8.6: Schema of the Retailer Data

their stores. The schema of the retailer data is shown in Figure 8.6. The value of each

node is randomly generated without functional dependencies. The test query set is shown

in Table 1. The query results of these queries are generated using the approach discussed

in Chapter 5.

To verify the usefulness of DFSs, we performed a user study on Amazon Mechani-

cal Turk, in which we compare differentiating results using DFSs with differentiating results

using result snippets, and using results themselves. The detailed setting of the user study

is presented later in this section. For all other tests, for each query we generate DFSs for

the first five results using six approaches: the single-swap optimal algorithm (Algorithm 7),

the multi-swap optimal algorithm (Algorithm 8), the two feature type oriented algorithms (Al-

gorithms 10, denoted as FTO-Exact and 11, denoted as FTO-Heuristics), a beam search

algorithm and an algorithm that exhaustively searches for the optimal DFSs. The beam

search algorithm first generates a set of initial states, and in each iteration, takes the top-k

states and generates successors states of the top-k states, then takes the top-k successor

states and repeats the iteration, till the search is finished. For our problem, each initial state

contains one DFS for each result which contains a single feature. Given a state s containing

a set of DFSs, each successor state contains one DFS for each result such that each DFS

contains one more feature than the corresponding DFS in s. Thus beam search takes L

iterations for our problem where L is the DFS size limit. We set k as 20 in the experiment.

The DFS size limit is set as 10.

189

Table 8.2: Data and Query Sets for Testing Result Differentiation

Film
QM1 director, UK
QM2 Italy, movie
QM3 Austria, romance
QM4 director, Yinka Adebeyi, Anthony Ainley, Sean Adames
QM5 2002, Sci Fi, director
QM6 UK, comedy, Anita
QM7 1960, France, comedy
QM8 actor, 2004, drama
Camera
QR1 store
QR2 retailer, pants, children
QR3 men, category, outwear, retailer
QR4 Texas, pants
QR5 men, outwear, footwear, shirts
QR6 men, women, children, outwear
QR7 casual, shirts, store
QR8 retailer, casual, shirts

Usefulness of DFS

In this test we performed a user study with 50 users on Amazon Mechanical Turk, aiming at

verifying the usefulness of DFSs given existing techniques for constructing result compari-

son tables. We compare with two result comparison approaches: (1) showing the snippets

of the results to the user, as developed in [95]; (2) showing the results to the user, which

is done by websites of banks such as chase.com (for comparing accounts, credit cards,

etc.) and online retailers such as bestbuy.com (for comparing products). We made two

modifications to approach (2). First, since a query result may have multiple occurrences

of a feature (e.g., a store sells multiple DSLR cameras), we do not show users the entire

result, but show them each distinct feature with its percentage, such as the infoboxes next

to the results in Figure 1.5(a). Second, since many results are too big for the user to read,

for each result, we only show the first few features (the number of features shown is the

same as the DFS size limit) to the user (denoted as “result prefix”).

For each of the 16 queries, we selected 2 or 3 results, and showed the users all

distinct features together with their percentages in these results. Then, for each distinct

feature type and each pair of results, the users are asked to select one of the following

190

0

5

10

15

20

25

30

35

40

45

QR1 QR2 QR3 QR4 QR5 QR6 QR7 QR8 QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8

S
c
o
r
e

DFS Snippet Result

Average Score:

DFS: 16.7

Snippet: 11.2

Result: 12.2

Figure 8.7: The Differentiation Powers of DFSs, Snippets and Result Prefixes

options:

(A) This feature type has the same features in the two results.

(B) This feature type slightly different features in the two results.

(C) This feature type significantly different features in the two results.

For each approach, if it shows the difference of a feature type which got option (A),

(B) or (C) by most of the users, we give it a score of 0, 1 and 3, respectively.

The scores of each approach on each query is shown in Figure 8.7. For the DFS

approach, we used the FTO-Heuristics method. As we can see, DFS shows significantly

more differences than the other two methods. When the user compares the results by

reading the result statistics itself, since a result may have many features, the users may

often be able to read the first few features. However, the first few features may not show

the differences of the results. For result snippets, as discussed in Section 8.1, although

they output selected features in the results, the criteria of feature selection is based on

whether a feature summarizes a single result, rather than whether a feature differentiates

multiple results. Therefore, snippets are not designed for result differentiation and may not

be helpful for the users to compare the search results. Note that the snippet method often

has a worse performance than result statistics. This is because the snippets of different

results may have completely different feature types, which are not comparable. On the

other hand, the result statistics method uses the first several features in each result, which

usually have the same type and thus it has a better chance of differentiating results.

191

0

10

20

30

40

50

60

70

80

90

100

QR1 QR2 QR3 QR4 QR5 QR6 QR7 QR8 QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8

D
o
D

Single-Swap Multi-Swap FTO-Exact FTO-Heuristics Beam Search Optimal

Figure 8.8: Quality of DFSs

Quality of DFS

For each query, the quality of the DFSs for its results is measured by their degree of differ-

entiation (DoD) (Definition 8.2). The Optimal method is only shown for 6 queries, because

for the remaining 10 queries it fails to terminate within 10 hours.

As we can see from Figure 8.8, all approaches achieve a DoD that is close to the

optimal DoD, indicating good qualities of the algorithms. The multi-swap optimal algorithm

usually exhibits a superior quality to the single-swap algorithm This is because the single-

swap algorithm can only change one feature in a DFS at one time, and terminates if it

cannot find such a change that can improve the DoD. For several queries such as QM4,

QM5 and QM8, the single-swap algorithm only achieves 5% to 30% of the DoD achieved by

the multi-swap algorithm.

The feature type oriented algorithms generally achieve a higher DoD compared

with the swap-based algorithms. As discussed in Section 8.4, these algorithms evaluate the

quality of each feature type and selects the feature types in the order of their quality, thereby

avoiding the problem of missing good feature types if they are not chosen initially. For

queries such as QM3 and QM7, the feature type oriented algorithms achieve a significantly

higher DoD than the swap-based algorithms. Note that the performance of swap-based

algorithms are closer to the feature type oriented algorithms on the shopping data, since
192

there are fewer distinct feature types in the shopping data compared with the movie data,

thus the initialization of the swap-based algorithms will likely select all or most of the feature

types into the DFSs, which results in a good quality of the swap-based algorithms.

The FTO-Exact approach achieves slightly higher DoD than the FTO-Heuristics

approach on four queries (QR2, QR8 and QM2), since it is able to compute the exact set of

(benefit, cost) pairs by enumeration. However, for query QM5, note that FTO-Exact has a

slightly lower DoD than that of FTO-Heuristics. This is because both algorithms start with a

single DFS size limit for all DFSs, rather than a size limit for each DFS. Thus some of the

initial DFSs they generate may have a size larger than L, the size limit for each individual

DFS in the problem. If this happens, both algorithms perform a post-processing, which

greedily removes some features from each DoD whose sizes exceed the limit, and greedily

adds some features to each DoD whose sizes are smaller than the limit. Since this is a

greedy procedure, the FTO-Heuristics approach may happen to get a better set of DFSs,

which is the case for QM5. However, for this query, FTO-Exact indeed achieves a better

DoD for the initial set of DFSs generated (i.e., without post-processing).

The beam search algorithm has a similar DoD as FTO-Exact and FTO-Heuristics

for all queries. It has slightly higher DoD than FTO algorithms for one third of the queries

and has slightly lower DoD for another one third of the queries, indicating that the beam

search algorithm generally has a good quality. However, as to be shown in the efficiency

test, beam search algorithm is much slower since it needs to generate a large number of

states.

Processing Time

To evaluate the efficiency of our algorithms, we measure the times that these approaches

take to generate DFSs for the results of test queries in Table 8.2, which is shown in Fig-

ure 8.9. Since FTO-Exact, Beam Search and Optimal approaches are significantly slower

than the others, their time are shown separately in a table to the right. “N/A” means that the

Optimal approach does not finish within 10 hours for that query.

As we can see, the single-swap optimal algorithm generally achieve a better effi-

193

FTO-

Exact

Beam

Search

Optimal

QR1 0.30 2.29 56.5

QR2 0.003 0.54 N/A

QR3 0.002 0.018 0.038

QR4 0.003 0.059 0.009

QR5 0.30 2.28 21.1

QR6 0.30 2.18 20.7

QR7 0.32 2.39 57.9

QR8 0.005 0.49 N/A

QM1 1.22 22.4 N/A

QM2 0.87 3.89 N/A

QM3 1.60 21.1 N/A

QM4 2.68 57.9 N/A

QM5 2.30 43.3 N/A

QM6 1.59 13.9 N/A

QM7 2.56 60.6 N/A

QM8 2.67 58.0 N/A

0

0.005

0.01

0.015

T
im
e
 (
s)

Single-Swap Multi-Swap FTO-Heuristics

Figure 8.9: Processing Time of Generating DFSs

ciency compared with the multi-swap optimal algorithm. The single-swap algorithm enu-

merates all possible changes to a single feature in a single DFS in each iteration, and has

the iteration repeat till no further improvements can be made. The multi-swap algorithm

checks possible changes of any number of features in a single DFS in an iteration, which

involves computing a set of (benefit, cost) pairs and a dynamic programming process, and

can be potentially more expensive. However, by exploiting dynamic programming, over-

lapping subproblems are identified in achieving the optimal solution, and thus repetitious

computation is avoided, thus the processing time of the multi-swap algorithm is still very

short. FTO-Exact has the lowest efficiency as its complexity is exponential to the number

of results. On the other hand, FTO-Heuristics generally has a better efficiency compared

with multi-swap algorithm, as it directly evaluates each feature type and construct the DFS

accordingly, thereby avoiding iteratively modify a DFS. The beam search algorithm is much

slower even compared to the FTO-Exact algorithm. This is because the beam search al-

gorithm needs to generate a large number of states to complete the search. In fact even

the number of initial states is huge: each initial state corresponds to a set of DFSs, each

with one feature, thus the number of initial states is bounded by TR, where T is the number

of feature types and R is the number of results. The beam search algorithm is slower on

Movie data than on Retailer data since the Movie data has more feature types. On movie
194

0

1

2

3

4

3 5 10 20 30 40 50

T
im
e
 (
s)

of Results

Single-Swap

Multi-Swap

FTO-Exact

FTO-Heurstics

Figure 8.10: Processing Time of DFS Generation with Respect to the Number of Results

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25

T
im
e
 (
s)

DFS Size Limit

Single-Swap

Multi-Swap

FTO-Exact

FTO-Heurstics

Figure 8.11: Processing Time of DFS Generation with Respect to DFS Size Limit

data, the average DFS generation time for the beam search algorithm is 35 seconds.

Scalability

We have tested the scalability of the single-swap optimal, multi-swap optimal, FTO-Exact

and FTO-Heuristics algorithms over two parameters: Number of Query Results and DFS

Size Limit. Since beam search is extremely inefficient, we do not test its scalability.

Number of Query Results. In order to increase the number of query results, we

varied the number of results generated for QM6 from 3 to 50. The DFS size limit is set

as 10. The performance of the algorithms is shown in Figure 8.10. As we can see, the

processing times of all algorithms increases with more results. The single-swap algorithm

has the best scalability, as its complexity is proportional to n2L, where n is the number

of results and L is the size limit. The processing time of FTO-Heuristics increases faster

195

than the single swap algorithm, since its complexity is actually proportional to n2L = n3L.

That being said, it still has a reasonable efficiency: in practice a user would rarely choose

more than 50 results for comparison, while the DFS generation time of FTO-Heuristics for

50 results is less than 4 seconds. The multi-swap algorithm also increases faster than the

single-swap optimal algorithm, since it changes multiple features of a DFS in each iteration.

The processing time of FTO-Exact quickly deteriorates, as it is exponential to the number

of results.

DFS Size Limit. In this test we evaluate the DoD and processing times of the

four algorithms with respect to the increase of DFS size limit (i.e., the maximum number of

features allowed in a DFS). We use the 5 results generated for QM8. The efficiency of each

approach is shown in Figure 8.11.

When the DFS size limit increases, the processing time of single-swap, multi-swap

and FTO-Heuristics algorithms slightly increases, but the processing times of all these ap-

proach are close to 0. On the other hand, since the complexity of the FTO-Exact approach

is proportional to Ln, its processing time increases very quickly. As we can see, although

the FTO-Exact approach has the best quality among all four approaches, it is practical only

if both the number of results and the DFS size limit are small.

To summarize, the FTO-Heuristics algorithm works best among these algorithms. It

can achieve almost the same quality as that of FTO-Exact in most cases, but is much more

efficient and scalable. It has superior quality and comparable efficiency compared with the

single-swap and multi-swap optimal algorithm.

8.6 Summary

Informational queries are pervasive in web search, where a user would like to investigate,

evaluate, compare, and synthesize multiple relevant results for information discovery and

decision making. We initiate a novel problem: how to design tools that automatically dif-

ferentiate structured data search results, and thus relieve users from labor intensive pro-

cedures of manually checking and comparing potentially large results. Towards this goal,

we define Differentiation Feature Set (DFS) for each result and quantify the degree of dif-

196

ferentiation. We identify three desiderata for good DFSs, i.e., differentiability, validity and

small size. We then prove that the problem of constructing DFSs that are valid and can

maximally differentiate a set of results within a size bound is an NP-hard problem. To pro-

vide practical solutions, we first propose two local optimality criteria, single-swap optimality

and multi-swap optimality, and design efficient algorithms for achieving these criteria. Then

we design an improved feature type oriented method which evaluates the quality of feature

types using two alternative methods: exact computation and heuristics computation. The

feature type oriented method achieves an improved DFS quality by avoiding dependency on

the random initialization, which has a significant impact on DFS quality. Experiments veri-

fied the efficiency and effectiveness of the proposed approaches. Our proposed method is

applicable to general query results which have features defined as (entity, attribute, value).

To show the usefulness of our approach, these algorithms are implemented in the XRed

system, which can be used to augment any existing structured keyword search engine that

returns tree-structured results.

197

Chapter 9

DESCRIBABLE QUERY AWARE RESULT CLUSTERING

9.1 Motivation and Goal

So far we have discussed two result analysis methods, generating snippets in Chapter 7

and generating comparison tables in Chapter 8. Result clustering is another important ap-

proach for result analysis. Through result clustering, the users can quickly view different

types of query results and choose the desirable cluster(s) to explore, hence result clustering

helps alleviate structural ambiguity. In the same way result clustering also addresses key-

word ambiguity and user preference ambiguity. In this chapter, we discuss how to cluster

the results based on their structures and automatically generate a describable semantics

description for each cluster. Chapter 10 will discuss how to improve the efficiency of clus-

tering using result snippets, and Chapter 11 will discuss how to generate expanded queries

from clustered results, where results are clustered based on the values in the results.

Clustering is especially important for queries that naturally have multiple interpreta-

tions. Consider the query “auction, seller, buyer, Tom” introduced in Chapter 1. There are

many possible query semantics, some of which are:

1. Find the seller of the auction whose buyer is Tom

2. Find the buyer of the auction whose seller is Tom

3. Find the buyer and seller of the auction whose auctioneer is Tom

Note that the possible semantics are inferred according to the data. Indeed each

above semantics has query results in the XML tree in Figure 1.6. For this query, whether

a keyword should serve as a predicate or as a return node is ambiguous. For example,

keyword seller can be either a predicate or a return node, depending on whether its value

is Tom.

Another example of ambiguous queries could be “country, government, republic”

where keyword republic may match a country name in some query results (such as Czech

198

Republic), and match the government type in other results, and therefore result in different

return nodes for this query (e.g., government versus country). More ambiguous queries

have been found and analyzed in Section 9.4.

As we can see, for an inherently ambiguous query, it is hard to infer which se-

mantics among all possibilities the user intention corresponds to. This problem can not be

solved even if a ranking scheme is introduced. Instead of returning all query results at one

stage to the user, we propose to cluster similar query results, such that each cluster is de-

scribable using natural language sentences. Then, we can return only one representative

of each cluster as well as the description of the cluster to the user. In this way, the user can

easily see the interpretation of the query semantics for each cluster, and click on a cluster

representative that s/he thinks relevant to see all the query results that belong to this cluster,

which share the same semantic.

For example, for the query above “auction, seller, buyer, Tom”, its query results can

be divided into multiple clusters, such that each of the three semantics above comprises

one cluster. Next we discuss how to cluster query results based on their semantics.

9.2 Clustering Search Results Using Inferred Keyword Categories

As can be seen from the example above, a keyword search can be ambiguous because a

keyword may serve as a search predicate in some query results, but as a return node in oth-

ers. We define an equivalence relationship among query results based on the classification

of search predicates and return nodes of keywords.

Definition 9.1 For a keyword search Q on data D, two query results R1 and R2 satisfy the

equivalence relation sim, i.e., R1 sim R2, if and only if for any keyword k ∈ Q, if it serves as

a predicate (return node) in R1, then it also serves as a predicate (return node) in R2, and

vice versa.

Example 9.1 Processing query “auction, seller, buyer, Tom" on the XML data in Figure 1.6,

auction nodes (such as 0.3.0.0, 0.3.0.5, 0.4.0.9) are SLCA nodes. There are several types

of query results, e.g.: (1) the type that has auction, buyer, Tom as search predicates, seller

199

as a return node; (2) the type that has auction, seller, Tom as search predicates, buyer as

a return node; (3) the type that has auction, Tom as search predicates, seller and buyer as

return nodes. According to the definition, each query result belongs to a distinct equivalence

class. Indeed the semantics of each query result is different from the others. Note that

Figure 1.6 only shows a fragment of data, in general each equivalence class has many

instances.

For each equivalence class, one query result will be displayed at the first stage,

together with the description of the cluster (which will be discussed later).

Algorithms. To effectively process such ambiguous queries, we propose an algo-

rithm for efficiently clustering query results based on their equivalence classes.

Note that a query result contains a SLCA node and its keyword match descendants.

To cluster query results into equivalence classes, we need to identify for each query result,

whether a keyword is a return node or a search predicate.

We achieve this goal efficiently by assigning each SLCA node a boolean vector

of 2|Q| components, named as dMatch, where |Q| is the number of keywords in query

Q. Each component is either ‘0’ or ‘1’. Each keyword k in Q corresponds to two compo-

nents in dMatch, one representing a return node and the other representing a predicate.

Specifically, 01 indicates that keyword k serves as a search predicate in the query result,

10 indicates that k serves as a return node, and 11 means that k serves as both. Note that

00 is impossible, as there are no other functionality that a keyword can serve.

The algorithm for processing ambiguous queries is presented in Algorithm 12. Pro-

cedure calcDMatchAndRetNode (called in KeywordSearch line 4) is an extension of the

procedure detRetNode in the algorithm of identifying relevant return information discussed

in Chapter 5 (Figure 5.1). It partitions the SLCA nodes into equivalence classes accord-

ing to their dMatch: two SLCA nodes (and hence their query results) are in the same

equivalence class if and only if they have the same dMatch value. To set the dMatch

of each SLCA node SLCA[i], we check each keyword match in group[i]: group[i][j]. If

group[i][j] matches the p-th query keyword and serves as a return node, then the 2p-th bit

200

Algorithm 12 Matching Keywords and Grouping Match Nodes and Clustering Results
KeywordSearch (keyword[1 · · ·n], indexes)

1: KWmatch = findMatch(keyword)
2: SLCA = computeSLCA(KWmatch) {adopted from [144]}
3: group = groupMatch(KWmatch, SLCA)
4: calcDMatchAndRetNode(keyword, group, SLCA)
5: for j = 1 to SLCAclass.size do
6: curr = 1
7: Suppose SLCAclass[j][1] is SLCA[k]
8: genResult(findEntity(SLCA[k], k))

onClick (SLCA[1 · · ·m])

1: j = id of the SLCAclass that SLCA[m] is in
2: for i = 1 to SLCAclass[j].size do
3: curr = 1
4: Suppose SLCAclass[j][i] is SLCA[k]
5: genResult(findEntity(SLCA[k], k))

groupMatch (KWmatch[1 · · ·n], SLCA[1 · · ·m])

1: dMatch[i] = 0 for all nodes in SLCA
2: i = 1
3: for j = 1 to n do
4: cursor[j] = the first node in KWmatch[j] that is a descendant-or-self of SLCA[1]
5: while (i ≤ m) do
6: j = keyword id such that cursor[j] points to the node with the smallest Dewey ID
7: if j = null then
8: break {This indicates cursor[k] = null, 1 ≤ k ≤ n}
9: if isDescendant(KWmatch[j][cursor[j]], SLCA[i]) = false then

10: i++
11: group[i] = group[i] ∪KWmatch[j][cursor[j]]
12: cursor[j] + +
13: if cursor[j] = null or KWmatch[j][cursor[j]] is a descendant-or-self of SLCA[i] then
14: continue
15: else if i ≤ n then
16: cursor[j] = first node in KWmatch[j] that is a descendant-or-self of SLCA[i+ 1]
17: else
18: cursor[j] = null

calcDMatchAndRetNode (KWmatch[1 · · ·n], group[1 · · ·m], SLCA[1 · · ·m])

1: for i = 1 to m do
2: for j = 1 to group[i].size do
3: if group[i][j] matches keyword[p], isName(group[i][j]) and not

isAncestor(group[i][j], group[i][j + 1]) then
4: retSpecified[i] = false
5: set the 2p-th bit of SLCA[i].dMatch as 1 {A return node is met.}
6: else
7: set the (2p+ 1)-th bit of SLCA[i].dMatch as 1 {A search predicate is met.}
8: SLCAclass = partition SLCA nodes according to their dMatch

201

of SLCA[i]’s dMatch is set as 1. Otherwise, group[i][j] serves as a predicate, and the

(2p+ 1)-th bit of SLCA[i]’s dMatch is set as 1. The value of retSpecified is also set ac-

cording to keyword categories in this procedure. Then in the KeywordSearch procedure,

for each class, one SLCA and its associated query result is displayed. Upon the click of

a query result, the onClick procedure is invoked, which outputs the query results whose

SLCAs are in the same equivalence class as the one being clicked.

Example 9.2 We use the query “auction, seller, buyer, Tom” on the data shown in Fig-

ure 1.6 as a running example to illustrate Algorithm 12. Each auction node shown has at

least one match to every keyword in the query and thus is a SLCA node. Since there are

four keywords in the query, each SLCA node has a boolean vector dMatch of size 8. Take

the first auction node for example to see how to set dMatch. Initially, its dMatch is 0.

We process keyword matches that are descendants of this node in their Dewey ID order:

{auction, seller, buyer, Tom}. First, auction is processed. Since it matches a node name

and is an ancestor of the next match node seller, it is considered as a predicate. Therefore,

the second bit of this dMatch is set to 1, with dMatch now becoming 01000000. Then we

process the second match node in this query result, seller node. Since it matches a node

name and is not an ancestor of the next match node buyer, it is considered as a return

node. The third bit of this dMatch is set to 1. Similarly, buyer is considered as a return

node and has the fifth bit of dMatch set to 1, and Tom is a predicate and has the eighth bit

set to 1. Finally, the dMatch of the first SLCA node is be 01101001. Similarly, the dMatch

of the second and third auction nodes are set as 01100101 and 01011001, respectively.

Therefore, there are three query result equivalence classes on the sample data, each of

which has a distinct dMatch.

9.3 Clustering Search Results with a Controlled Number of Clusters

By clustering query results according to keyword categories as discussed in Section 9.2,

we are able to describe the semantics of each cluster so that the user can easily under-

stand what the commonalities of the results in the same cluster are with respect to the

query. However, such a clustering scheme does not give users any control of the number

202

of clusters. This can often be undesirable as the user may want to control the granularity

of the clustering. Indeed the results that share the same return nodes and predicates can

still be quite different from each other, making the semantics of a cluster too general to be

useful. In this section, we discuss how to get the best of both: clustering results with a

controlled number of clusters and yet has the property that the semantics of each cluster is

describable.

Example 9.3 Continuing Example 9.2: for query “auction, seller, buyer, Tom” on the XML

data in Figure 1.6, the results are clustered based on keyword categories in three clusters:

(1) The seller of the auction is Tom; (2) The buyer of the auction is Tom; (3) The auctioneer

of the auction is Tom.

In a cluster, the results may be rooted at closed auction, or open auction, and the

corresponding year information may also be different. Sometimes a user may prefer a larger

number of clusters, each with more precise and specific semantics. To this end, we can

further cluster the results in a cluster according to the closest context (i.e., parent) of the

keyword matches. In this example, we split cluster (1) to two, one containing results where

the parents of seller and buyer are closed auction, with the semantics “Find the seller and

buyer of closed auctions whose seller is Tom”, while the other corresponds to open auction.

Should more clusters be asked, we further split each cluster according to the next closest

context, i.e. the closest ancestors of the previous split points, which can make a difference.

In this example, since the parent of closed auction (open auction) nodes are the same, the

cluster is further split into multiple clusters corresponding to the next ancestors 2008, 2009,

etc. The clustering can be further refined recursively.

In general, a user may specify that the desired number of clusters is k, and our tech-

niques should generate clusters whose number is as close to k as possible, while keeping

each cluster describable. Being able to describe the commonalities of results in a cluster

is the basic philosophy of our approach, which is especially important for clustering query

results. To achieve it, we refine clustering recursively based on the closest ancestors of

the previous split nodes, as they have closer relationships to keyword matches and provide

203

more specific contexts. The results of each cluster share the same set of data paths end-

ing at the keyword matches, named as suffix paths, which can be used in their semantics

description as shown in Example 9.3.

Furthermore, the refinement of clustering should be balanced, in order to avoid

clusters with semantics that is neither too general nor too specific. To illustrate it, let us look

at an example.

Example 9.4 Continuing Example 9.3, where there are 3 result clusters according to key-

word categories, and a user specifies k = 20 as the desirable number of clusters. To

achieve this, we could split cluster (1) into 18 clusters according to closed auction versus

open auction, and then the year information, and keep the other two original clusters in-

tact. However, it is not a balanced clustering in terms of both the semantics and the size

of a cluster. The 18 clusters resulted from the original cluster (1) are likely small, with very

specific semantics, while the other 2 clusters are on the opposite side.

Thus to achieve a balanced clustering, we require that the suffix paths that are used

for cluster splitting should not have a length difference larger than 1.

Specifically, the problem of result clustering given a user specified number of clus-

ters is the following:

Definition 9.2 Given a set of structured search results and a desired number of clusters k,

cluster the results according to keyword categories if the number of such clusters is no less

than k; otherwise cluster the results with the following two conditions and make the number

of clusters is as close to k as possible: (1) The clusters should be split based on the suffix

paths of keyword matches, and (2) The lengths of such suffix paths should not be different

by more than 1, unless the paths reach the result root.

It is noteworthy that we do not require the user to specify the number of clusters. If

it is not specified, we generate the clusters according to node categories (Section 5.2). If

the user is interested in a specific number of clusters, he/she can input the desired number,

204

which is typical for clustering problems. In this case we will generate clusters whose number

is as close to the desired number as possible while ensuring each cluster is describable.

Theorem 9.1 The result clustering problem defined in Definition 9.2 is NP-hard.

Proof: We prove the NP-completeness of the decision version of the problem by

reduction from the subset sum problem.

The decision version of the result clustering problem is: whether the number of

generated clusters is exactly k, while satisfying conditions (1) and (2) in Definition 9.2.

Obviously, any given solution to this problem can be verified in polynomial time.

Now we prove the subset sum problem is reducible to the result clustering problem

in polynomial time. Recall that the subset sum problem is: given a set of n positive integers

d1, · · · , dn and a target number t, whether we can find a subset of them such that their sum

is exactly t. Given any instance of the subset sum problem, we transform it to an instance of

the result clustering problem by the following approach: suppose there are n initial clusters

obtained considering keyword categories. According to the parents of keyword matches,

each cluster i (1 ≤ i ≤ n) can be further split into ci clusters, where ci = di + 1. The

question is whether we can find a way of splitting a subset of clusters such that the total

number of clusters obtained is k, k = t+n. This transformation obviously takes polynomial

time.

It is easy to see that, if in the subset sum problem we can select a subset of set

{d1, · · · , dn}, such that their sum is t, then we can split the corresponding subset of the

clusters, and the final number of clusters will be t + n. The opposite direction is similar.

Therefore the decision version of the result clustering problem is NP-complete, and thus

the result clustering problem is NP-hard.

Algorithms. We propose a dynamic programming algorithm to solve the result

clustering problem. The main steps of the algorithm are the following:

(1) Cluster the results based on keyword categories using the algorithms in Sec-

tion 9.2. If the number of clusters is no less than k, stop and output the clusters.
205

Algorithm 13 Grouping Match Nodes Subject to the Number of Clusters
K − Clustering (keyword[1 · · ·n], indexes, group, k)

1: if SLCAclass.size ≥ k then
2: return {We cannot have less than SLCAclass.size clusters.}
3: level = 0
4: D = XML document depth
5: while true do
6: level ++
7: if level > D then
8: return {We’ve reached the root and cannot have more clusters}
9: ancEntitySet, newCluster, newClusterCount = ∅

10: sum = 0
11: for i = 1 to SLCAclass.size do
12: for j = 1 to SLCAclass[i].size do
13: groupID = SLCAclass[i][j]
14: for r = 1 to n do
15: ancEntitySet[i][j][r] = the node labels of the levelth ancestor of matches in

group[groupID] to keyword[r]
16: Split SLCAclass[i] into newClusterCount[i] new clusters according to

ancEntitySet[i][j][r]
17: add the new clusters into newClusters
18: sum+ = newClusterCount[i]
19: if sum < k then
20: SLCAclass = newCluster
21: else
22: break {We get more than k clusters at the next level.}
23: v = SLCAclass.size
24: let d[i] = newClusterCount[i]− 1 for each i
25: result1 = DP (d[v], k − v, best1[v][result1])
26: result2 = DP (d[v], sum− k + v, best2[v][result1])
27: result = (k − v − result1) < (sum− k + v − result2)?result1 : result2
28: best[result] = (k − v − result1) < (sum− k + v − result2)?best1 : best2
29: i = v, j = result {The following “While” loop finds the clusters to split.}
30: while i ≥ 1 and reuslt ≥ 1 do
31: if best[i][j] = split then
32: split SLCAclass[i] into newClusters {Split this cluster.}
33: i−−, j− = d[v]
34: else
35: add SLCAclass[i] into newClusters {Do not split this cluster.}
36: i−−
37: SLCAclass = newClusters

DP (d[v], k, best)

1: for i = 1 to v do
2: for j = 1 to k do
3: compute s[i][j] according to the recurrence relation in Figure 9.1
4: if s[i][j] is maximized by splitting cluster i then
5: best[i][j] = split
6: else
7: best[i][j] = not split
8: return s[v][k]

206

(2) Determine the shorter lengths of the suffix paths used for clustering by recur-

sively splitting every existing cluster using the next ancestors of keyword matches, until the

number of clusters is closest but not exceed k (that is, if we further split every existing clus-

ter, we obtain more than k clusters). Note that after this step, the length of the suffix paths

for each cluster is the same. If the total number of clusters is equal to k, stop and output

the clusters.

(3) Determine which cluster(s) to further split, such that the total number of clusters

is closest to k, using dynamic programming. These clusters correspond to longer suffix

paths, whose lengths are one bigger than the ones in step (3). Output the clusters.

Now we focus the discussion on how to address the challenge of step (3), as deter-

mining a subset of the clusters in step (2) for further split is NP-hard according to Theorem

9.1. Suppose we have n clusters (n < k) after step (2). In step (3), we aim at splitting some

of these n clusters to get k clusters. For each cluster i, if we split it, we get ci clusters,

otherwise we get 1 cluster. Equivalently, if we split it, we increase the number of clusters by

ci-1, otherwise we do not increase the number of clusters, and our goal is to increase the

number of clusters by k−n. This is essentially to find a subset of {c1−1, c2−1, · · · , cn−1},

such that their sum is as close to k − n as possible.

The solution to the above problem can be found in the following two steps:

(a) Find a subset of {c1 − 1, c2 − 1, · · · , cn − 1}, such that their sum is as close to

k − n as possible, but not bigger than k − n.

(b) Find a subset of {c1 − 1, c2 − 1, · · · , cn − 1}, such that their sum is as close to

k − n as possible, but not smaller than k − n.

Then, we compare the subsets found in (a) and (b), and take the one whose sum is

closer to k − n.

Note that problem (b) is equivalent to: finding a subset of {c1−1, c2−1, · · · , cn−1},

such that their sum is as close to
n∑

i=1

(ci − 1) − (k − n) as possible, but not bigger than it,

then take the complement of the subset. The reason we use this equivalent formulation of

problem (b) is that we want to use the same procedure to solve both (a) and (b): given a

207

1

1 1

,
1,

1, 1,

0 if 1,

 if 1,

 if 1,

max(,) if 1,
i

i j
i j i

i j i j d i i

i d j

d i d j
s

s i d j

s s d i d j

−

− − −

= >

= ≤
= = >

+ = ≤

Figure 9.1: Recurrence Relation for Generating a Certain Number of Clusters

set of numbers, find a subset whose sum is closest but not exceeding a given number.

Using this procedure, let di = ci−1, now we want to find a subset of a set of integers

{d1, · · · , di}, such that the sum is as close to an integer t as possible but not exceeding t,

where the value of t is k − n for step (a), and
n∑

i=1

(di)− (k − n) for step (b).

We use the recurrence relation in Figure 9.1, in which si,j denotes the maximum

possible sum that does not exceed j, by choosing a subset from the set of the first i num-

bers: {d1, · · · , di}. Note that if di > j, then we are unable to use di. Thus when i = 1, si,j

is initialized to be 0; and when i ≥ 1, we have si,j = si−1,j . Otherwise (di ≤ j), when i = 1,

si,j is initialized to be d1. When i ≥ 1; we have two choices: (a) use di, which means that

the sum of the numbers chosen from {d1, · · · , di−1} cannot exceed j−di, and by choosing

di the sum becomes si−1,j−di + di; or (b) do not use di, which means si,j is the same as

si−1,j . Since we want to maximize the sum, we take the larger value of these two cases.

Example 9.5 Continuing our example, suppose the user prefers the number of clusters to

be 5. Step (1) of result clustering generates three clusters based on keyword categories, as

achieved in Algorithm 12: (1) The seller of the auction is Tom; (2) The buyer of the auction

is Tom; (3) The auctioneer of the auction is Tom. Suppose each of these three clusters

contains results rooted at closed auction as well as ones rooted at open auction.

In step (2) of this algorithm, we attempt to split every existing cluster. Take cluster

(1) for example. We examine the nearest ancestors of the keyword matches in the results,

and find that matches to seller have two different parents in the results: open auction and

closed auction. So does matches to buyer. Thus cluster (1) could be split into two clusters.

Same for cluster (2) and (3). Since these splits will result in 6 clusters, which is larger than

5, we do not perform the split, but exit step (3) and enter step (4). Note that if the desired
208

number of clusters is more than 6, then we stay at step (3) and try to further split the clusters

using the next ancestors of keyword matches.

In step (3), we run a dynamic programming procedure to determine which cluster(s)

obtained from step (3) to further split, so that the total number of clusters is closest to 5.

The result of this procedure is that two clusters are split, and one remains.

The pseudo code of the clustering algorithm with a user input number of clusters is

presented in Algorithm 13. The K − clustering procedure is called between lines 4 and

5 of procedure KeywordSearch in Algorithm 12 to further split each cluster. To implement

step (2), in each “while” loop in the K− clustering procedure (between lines 5 and 22), we

examine whether further splitting every existing cluster using the next ancestors of keyword

matches still results in less than k clusters. If so, we further split every cluster. Otherwise,

we proceed to step (3): compute which subset of the clusters to split so that the total

number of clusters is closest to k (lines 23-36). Then we call the dynamic programming

procedure (DP) to find the largest number of clusters that is smaller than k − n (lines 25),

and the smallest number of clusters that is larger than k − n (line 26), respectively. The

DP procedure computes the best way of choosing a subset of clusters to split based on

the recurrence relation in Figure 9.1. Then we choose the subset of clusters to split so that

the total number of clusters is closest to k (lines 27-36).

Note that although Algorithms 12 and 13 is for XML search results, they can be nat-

urally modified to support clustering on tree-structured results generated from other struc-

tured data.

Having discussed how to cluster search results based on the classification of pred-

icates and return nodes as well as the user-specified desirable number of clusters, now

we discuss how to describe the semantics of each cluster. Note that the results in each

cluster have the same set of predicates and return nodes. We use “Find ret” for return

nodes, where ret is explicit or implicit return nodes. Recursively, for each ancestor entity

of the return nodes, we add a phrase “of entity”, where entity is the name of the entity if

it is consistent throughout all results in the cluster, otherwise we use the word “entity”. For

209

predicates, we recursively check whether the same predicate in all the results corresponds

to the same entity and/or attribute. If so, we associate the entity / attribute name in the

description; otherwise we simply use the term “entity” or “attribute”.

Example 9.6 For query “auction, seller, buyer, Tom”, consider a cluster of results, each of

which is rooted at a closed auction under 2008, the auctioneer is Tom, and the buyer and

seller are not Tom. For return nodes seller and buyer, we generate phrase “Find seller and

buyer of closed auctions”. For predicates auction and Tom, all results in this cluster have

Tom as the value of attribute auctioneer of entity closed auction. We generate the English

sentence as “Find seller and buyer of closed auctions of 2008, whose auctioneer is Tom”.

If some results in this cluster are rooted at open auction rather than closed auction,

then we will use “entities” to replace “auctions”, and the description becomes “Find seller

and buyer of entities of 2008 whose auctioneer is Tom”.

The ability of generating an English sentence to describe each cluster is a unique

feature of XSeek. Existing tree clustering approaches, which are based on tree edit dis-

tances or vector space model [11, 87, 47, 107, 140, 128, 52, 137, 136], are unable to de-

scribe the semantics of each cluster, as the results in each cluster may not have a common

semantics. Indeed, the three results in Figure 1.6 rooted at 0.3.0.0., 0.3.0.5 and 0.4.0.9 are

quite similar to each other and would be put into the same cluster by existing approaches,

whose semantics are unclear.

9.4 Experiments

To test the quality and efficiency of clustering, we performed a set of experiments, whose

results are reported in this section.

Experimental Setup

Comparison Systems. We compare three approaches. The first approach, named XSeek,

is the one discussed in Chapter 5. XSeek does not perform result clustering. The ap-

proach discussed in this section has been implemented on top of XSeek and is denoted as

210

XSeek+Cluster. The desired number of clusters is set as 5. The output of the XSeek+Cluster

approach consists of one query result of each cluster, and all the query results in the clus-

ters that are clicked by the user. Which cluster the user clicks depends on the semantics

given by the user study. The third approach is XSeek+C-index [46], which performs cluster-

ing based on tree edit distance. This approach is query-independent. We use the results

generated by XSeek as the input to C-index. For this approach, we pick the first result it

outputs in each cluster and show it to the user. Same as XSeek+Cluster, whether the user

clicks a cluster depends on the semantics of the query obtained by user study.

Machine. The experiments were performed on a Pentium 4 3.60GHz machine run-

ning Windows 2003 Enterprise, with 2GB main memory and 160GB hard disk (7200rpm).

All approaches were implemented and compiled with Visual C++. We used Oracle Berkeley

DB1 to build on-disk Dewey index and Keyword index.

Data Sets. We have tested three XML data sets, SigmodRecord2, Mondial3 and

Auction4. SigmodRecord is a list of articles grouped by issue and volume. Mondial is a

world geographic database integrated from the CIA World Factbook, the International Atlas,

and the TERRA database among other sources. Auction is a synthetic benchmark data

set generated by the XML Generator from XMark using the default DTD. These datasets

represent XML data of varying structures: SigmodRecord has a tree structured schema with

a depth of 6; Mondial has a graph structured schema with a depth of 5, and can have nodes

of the same name appear in different depths; and Auction has a recursive graph schema

with the test data of depth 11. The numbers of elements in the DTDs of SigmodRecord,

Mondial and Auction are 11, 23 and 78, respectively.

Query Sets. We use 30 queries in total: 10 on each data set, as shown in Fig-

ures 9.2 - 9.4. The sentence below each query is the query’s semantics, obtained through

user study. Six users participated in the user study, who are undergraduate and graduate

students majoring in computer science who did not involve in this project. For each query,

each user was asked to describe in natural language the semantics of the query. If there

1http://www.oracle.com/technology/products/berkeley-db/
2http://www.cs.washington.edu/research/xmldatasets/data/sigmod-record/SigmodRecord.xml
3http://www.cs.washington.edu/research/xmldatasets/data/mondial/mondial-3.0.xml
4http://monetdb.cwi.nl/xml/

211

are more than one semantics, the ground truth is the one provided by the majority of the

users.

Our query sets include all the following cases: keywords matching tag names only

(such as QS7, QM7, QA5, QA6), keywords matching values only (such as QM2, QM6,

QA7), single-keyword queries (QM2), SLCA nodes with big depths (thus the subtree rooted

at each SLCA is relatively small, such as QS6, QS7, QM10, QA2), SLCA nodes with small

depths (QS5, QM5, QA7), keywords serving as predicates only (QS10, QM5, QA3), key-

words serving as return node only (QS7, QM7, QA5, QA6), keywords serving as both (QS8,

QA4, QA9). Furthermore, 10 ambiguous queries are tested, QS4, QS8, QS9, QM8, QM9,

QM10, QA3, QA8, QA9, QA10. Each of these 10 queries have at least 2 different se-

mantics and can produce at least 2 describable clusters. For example, QS4 is ambiguous,

because a number (such as 3 and 7) can appear as a value of one or multiple of the four

attributes: issue, volume, initPage and endPage. This means that initPage and endPage

can both serve as predicates or return nodes, depending on whether their value is 3, or

7, or neither. In fact, this query intends to find the articles with initPage 3 and endPage 7;

thus only the articles whose initPage and endPage are both predicates are relevant. Other

ambiguous queries are ambiguous for similar reason.

Search Quality

Measurements. To measure the search quality, we use precision, recall, and F-measure.

Precision measures the percentage of the output nodes that are desired, recall measures

the percentage of the desired nodes that are output, and F-measure is their harmonic mean.

The precision, recall and F-Measure of the 30 queries are shown in Figures 9.5 -

9.7. As we can see, XSeek suffers from a low precision for ambiguous queries. Take QS4

as an example. According to user intention, both initPage and endPage are predicates,

specifically, the articles whose initPage is 3 and endPage is 7 are desired. However, XSeek

will output all subtrees rooted at SLCA that contain the keywords, which includes a lot of

irrelevant ones, e.g. (i) the article whose volume number is 3 and initPage is 7, (ii) the

issue whose number is 3 and has articles with endPage 7, (iii) the articles in issue 3 and

212

SigmodRecord: 61MB
QS1 B-Tree, volume, author

Find the volume and author of the articles whose titles include “B-tree"

QS2 author, position, 01, Harry, article
Find the articles with Harry as the second author

QS3 Jim Gray, title, initPage, endPage
Find the initPage and endPage of articles written by Jim Gray

QS4 initPage, 3, endPage, 7
Find the articles whose initPage is 3 and endPage is 7

QS5 SigmodRecord, Laura
Find the information of Laura in the SigmodRecord data

QS6 author, Nicolas
Find the authors that work together with Nicolas

QS7 article, title, author
Find the titles and authors of all articles

QS8 initPage, 7, article, endPage
Find the endPage of articles whose initPages are 7

QS9 volume, 11, article
Find the articles in volume 11

QS10 Asuman, Pinar, article
Find the articles written by Asuman or Pinar

Figure 9.2: Queries on SigmodRecord Data for Testing Result Clustering

volume 7, etc. In fact, XSeek+Cluster produces 5 clusters for this query, and not all of them

are relevant. By clustering the results, XSeek+Cluster has a much better precision, since

only one result from each irrelevant query result cluster will be output. For similar reasons,

XSeek+Cluster achieves an improved precision compared with XSeek for other ambiguous

queries QS8, QS9, QM8, QM9, QM10, QA3, QA8, QA9 and QA10.

Note that XSeek+Cluster always has a non-perfect precision for ambiguous queries,

as it outputs one result from each cluster, including the irrelevant clusters. When the irrele-

vant results are large, the precision of XSeek+Cluster can still be low. In particular, for QA3,

an irrelevant result is an open auction whose “end” attribute matches 2000. Such a query

result is larger than the total size of all relevant query results, each of which consists of only

one article. For QM8 and QM9, there are a lot of “country” nodes occurring as children of

213

Mondial: 68MB
QM1 Torneaelv, country, province

Find the country and province of Torneaelv

QM2 Luanda
Find the information of Luanda

QM3 Roman Catholic, percentage, United States
Find the percentage of religion “Roman Catholics" in the United States

QM4 population, 87, Albania, city
Find the populations of the cities in Albania in 1987

QM5 mondial, Africa
Find the information of Africa in the mondial data set

QM6 Bulgaria, Serb
Find the countries whose ethnic groups contain “Balgaria" or “Serb"

QM7 organization, name, members
Find the name and members of all organizations

QM8 country, government, republic
Find the countries whose government types are republic

QM9 country, ethnicgroups, German
Find the countries whose ethnic groups contain “German"

QM10 city, Washington, province
Find the province of the city called “Washington"

Figure 9.3: Queries on Mondial Data for Testing Result Clustering

“province” and “city” nodes, which are irrelevant as the query asks for the information of the

country. Therefore, each relevant result has a large number of irrelevant nodes, and this,

together with the irrelevant results, makes the precision quite low.

For ambiguous queries, XSeek+Cluster aims to generate 5 result clusters for each

query, but it may not always be able to do so due to the requirement that each cluster has

a describable semantics. XSeek+Cluster generate 2 clusters for QM10, 3 clusters for QA9,

4 clusters for QS8, QM9 and QA8, 6 clusters for QM8 abd QA3, and 5 clusters for the

remaining ambiguous queries (QS4, QS9, QA10).

For XSeek+C-index, its precision and recall are usually lower than XSeek+cluster.

This is because XSeek+C-index performs query-independent clustering, thus a cluster may

214

Auction: 103MB
QA1 name, augurers, internationally, description

Find the description of the items, whose names contain “augurers" and
whose shipping methods contain “international"

QA2 Arun, emailaddress
Find the email address of Arun

QA3 date, 2000
Find the events occurred in 2000

QA4 Oakland, zipcode
Find the zip code of Oakland

QA5 closed auction, price
Find the price of all closed auctions

QA6 closed auction, price, date, itemref, quantity, type, seller, buyer
Find the price, date, itemref, quantity, type, seller, and buyer of all closed

auctions

QA7 person257, person133
Find the activities of person257 and person133

QA8 auction, seller, person133
Find the auctions whose sellers are person133

QA9 seller, person179, buyer, price, date
Find the buyer, price and date of the auctions whose sellers are person179

QA10 country, name
Find the country and name of all persons

Figure 9.4: Queries on Auction Data for Testing Result Clustering

have both relevant and irrelevant results. Whether such a cluster is browsed by the user

depends on the first result in the cluster: the cluster is browsed if the first result is rele-

vant. If the cluster is browsed, it leads to a low precision; otherwise it leads to a low recall.

Another reason XSeek+C-index has low precision and recall is because it sometimes con-

siders some results as outliers and does not put them into any cluster. Such results will not

be seen by the user. In the extreme cases like QA8 and QA9, all relevant results are con-

sidered outliers, and XSeek+C-index has a zero precision and zero recall. XSeek+C-index

outperforms XSeek for most queries since the clustering quality is usually reasonable, thus

many irrelevant results are hidden from the user.

215

0

20

40

60

80

100

P
re
c
is
io
n
 (
%
)

XSeek XSeek+Cluster XSeek+C-index

Figure 9.5: Precision of Clustering

0

20

40

60

80

100

R
e
c
a
ll
 (
%
)

XSeek XSeek+Cluster XSeek+C-index

Figure 9.6: Recall of Clustering

0

20

40

60

80

100

β=0.5 β=1 β=2

F
-M

e
a
s
u
re
 (
%
)

XSeek XSeek+Cluster XSeek+C-index

Figure 9.7: F-Measure of Clustering

Efficiency

We evaluated the processing times of index construction as well as query processing. The

time for building indexes for Sigmod Record, Mondial and Auction (during which we also

infer node categories) are 274 seconds, 320 seconds and 295 seconds, respectively. Note

216

0.01

0.1

1

10

100

T
im
e
 (
s
)

XSeek XSeek+Cluster

Figure 9.8: Efficiency of Clustering

that indexing building is performed offline, and does not affect the query processing time

that a user perceives.

The query processing time of XSeek and XSeek+cluster is shown in Figure 9.8.

The speed of XSeek+C-index is extremely slow: even on the original version of these three

data sets with 10-20 results, it may take 10-20 seconds to cluster the results. Therefore, we

do not include XSeek+C-index in this test as well as the scalability test.

Although XSeek+Cluster takes additional time for clustering compared to XSeek,

it also saves time as it avoids outputting many irrelevant results. For QS9 XSeek+Cluster

is faster than XSeek as many irrelevant query results do not need to be output. For other

ambiguous queries, the additional time taken by XSeek+Cluster is quite small compared

with the query processing time. Some queries such as QS7, QM7 and QM8 take longer

time to process due to the low selectivity of keywords (most keywords match tag names).

Scalability

We tested the scalability of XSeek and XSeek+Cluster on the Auction data set over three

parameters: data size, query size, the depth of SLCA, and the desired number of clusters.

Since the complexity and scalability of calculating SLCA were presented in [144], we only

test the scalability of grouping matches, generating search results and clustering.

Increasing Data Size. The experiments were performed on the Auction data with

an increasing size up to 1GB. The results for queries QA6 (unambiguous) and QA10 (am-

217

0

5

10

15

200 400 600 800 1000
T

im
e

 (
s)

Document Size (MB)

XSeek XSeek+Cluster

0

5

10

15

20

200 400 600 800 1000

T
im

e
 (

s)

Document Size (MB)

XSeek XSeek+Cluster

(a) QA6 (b) QA10

Figure 9.9: Processing Time of XSeek and XSeek+Cluster with Increasing Document Size

0

1

2

1 2 3 4 5 6 7

T
im

e
 (

s)

Number of Return Nodes

XSeek XSeek+Cluster

Figure 9.10: Processing Time of XSeek and XSeek+Cluster with Increasing Number of
Return Nodes

biguous) are shown in Figure 9.9. Results for other queries are similar and are omitted. As

we can see, the processing times of both approaches increase linearly when the data size

increases. XSeek+Cluster avoids generating most results of irrelevant clusters, however, it

takes additional time for clustering, thus its processing time is longer XSeek. However, their

processing times are comparable.

Increasing Query Size. The experiments were performed on the Auction data of

103MB with seven queries starting from QA5 to QA6, increasing one keyword at each time,

which means that the number of return nodes increases from 1 to 7. The result is shown

in Figure 9.10. As the number of return nodes increases, the result size and therefore the

result generation times of both approaches increase linearly.

Furthermore, we have tested queries with an increasing number of predicates, a

constant number of return nodes and a constant depth of SLCA nodes. The test queries

are constructed by replacing the node names in the queries of the previous test to their

corresponding values. Since generally keywords that match values have high selectivity
218

0

1

2

3

4

5

2 3 4 5 6 7 8 9 10 11

T
im

e
 (

s)

Number of Desired Clusters

XSeek+Cluster

3

4

5 6 6 9 9 10

11

3

Figure 9.11: Processing Time of XSeek+Cluster with Increasing Desired Number of Clus-
ters

(resulting in a small number of matches), the processing times of both approaches can

almost be neglected, and therefore the experimental figure is omitted.

Increasing the Desired Number of Clusters. We use an ambiguous query, QA10,

to test the scalability of XSeek+Cluster with respect to the desired number of clusters, which

is increased from 2 to 11 (the maximum number of clusters for QA10). The query processing

times are presented in Figure 9.11. The numbers above each point in the curve are the

actual numbers of clusters generated, which may not necessarily be exactly the same as

the desired number of clusters.

As we can see, the processing times are non-decreasing when increasing the de-

sired number of clusters. Furthermore, the processing times are similar for 2-3 clusters,

and 5-10 clusters. To understand this, we observe that the clustering time is dominated by

the time to determine the lengths of the suffix paths used for clustering, that is, the exe-

cution time of the “while” loop (lines 5-22) in Algorithm 13. This time is proportional to the

number of results and the number of keyword matches, which are large (in fact, this query

has 19866 results, the total size of which is 1.4MB). On the other hand, although the DP

procedure takes more time when the number of clusters increases, its processing time is

proportional to the number of existing clusters and the number of desired clusters, which

are much smaller than the number of results and keyword matches. Thus the running time

of DP only constitutes a small portion of the clustering time.

The results of QA10 has 3 clusters from node categories, thus we already have

219

3 clusters after procedure groupMatch in Algorithm 12. When the number of clusters is

4, we split the clusters according to the parents of keyword matches (i.e. suffix paths of

length 2). For 5-10 clusters, we split based on the grandparents and parents of keyword

matches (i.e. suffix paths of length 3), thus their processing times are similar, which has an

increase compared with that of 4 clusters. Considering grandparents can only produce up

to 10 clusters. Thus for 11 clusters, we need to consider the next ancestors, which leads to

another increase of the processing time.

9.5 Summary

In this section we discuss a query-aware clustering scheme that clusters results according

to the structures and a user-specified number of clusters so that users can browse possible

semantics interpretation with desirable granularity and quickly find the set of relevant re-

sults. We first cluster the results based on the keyword roles (predicates and return nodes).

If the user wants more clusters, we further split the clusters them based on the suffix paths.

Generating as close as possible to a user specified number of clusters is NP-hard, and

we proposed an efficient dynamic programming algorithm for this problem. Experimental

evaluation verified the effectiveness and efficiency of the proposed clustering method.

220

Chapter 10

EFFICIENT RESULT CLUSTERING USING RESULT SNIPPETS

10.1 Motivation and Goal

As discussed in Chapter 9, clustering the query results helps address structural, keyword

and user preference ambiguities. A unique challenge of result clustering for a structured

search engine is that clustering must be performed online, because each result is dynami-

cally generated, rather than a text document in text search.

With this concern in mind, a better solution for grouping structured search results

is to use a small summary of each result, rather than the results themselves. We have

discussed in Chapter 7 that result snippets are concise and faithful summaries of the query

results, which are constructed by selecting proper instances for items in ILists. Therefore, it

is a natural idea to use either the snippets or the ILists, instead of the results themselves, for

grouping the query results in order to get better efficiency. Intuitively, similar search results

can be expected to have similar snippets and ILists, and using snippets and ILists to group

the results should have a similar quality as using results themselves.

In Section 10.2, we will report the effectiveness and efficiency of grouping query

results based on their snippets or ILists. Experiments indicate that, by grouping results

according to snippets or ILists, we achieve a similar quality compared with directly grouping

results, and meanwhile getting significant efficiency improvement and thus greatly reduce

the query response time.

Is it better to group results using snippets or ILists? In fact, their qualities and

speeds are in general similar, as both are good representatives of query results and both

are small. However, in certain cases using IList has some advantages over using snippets.

Intuitively, if the scores of the same features differ a lot in two ILists it means the two results

are quite different and should be separated into two groups, which is likely the case if

clustering using ILists. However, the two snippets may be similar or even the same, making

it more likely for the two results to be put into the same group using snippets.

221

Example 10.1 Consider two results of query “Texas, apparel, retailer”. Both retailers sell

outwears, suits, skirts, sweaters and shirts. The detailed numbers of these merchandises

as well as their scores are shown in the following table:

result 1 result 2

number of occurrences score number of occurrences score

outwear 5000 4.15 5000 5.00

suit 1000 0.83 10 0.10

skirt 10 0.08 10 0.10

sweater 10 0.08 10 0.10

shirt 10 0.08 10 0.10

As we can see, these two stores sell quite different numbers of suits, and it is

reasonable to differentiate them, which is the case if we use IList, as IList records the score

of each prominent feature of this type. However, outwear is the only prominent feature

in both results. Assuming that the other features in the two results are similar, then they

have similar snippets which means the two results have a much higher possibility of being

mistakenly grouped together.

The problem of grouping XML documents has been studied. Various grouping mea-

sures and schemes have been proposed. A number of XML grouping approaches focused

on tree edit distance or its variants as the similarity measurement for different XML doc-

uments [11, 87, 47, 45, 107, 140, 139, 78, 128], and proposed corresponding grouping

algorithm based on different similarities measured from tree edit distances. [87, 47, 45]

proposed different methods to summarize the graph. Based on the summarization they

calculate the similarity between XML documents, which is more efficient compared with

using the document trees. Alternatively, some other works on XML documents group-

ing [52, 137, 136] proposed to use grouping algorithms based on vector space model.

Since clustering XML results needs to be done online, efficiency is very important.

Therefore, we choose to use a grouping algorithm that uses the vector space approach for

XML trees, as it has a lower complexity than computing tree edit distances [136]. Among

the three approaches that use vector space model, [136] is the most suitable one for XML
222

result clustering because it uses distinct root to leaf paths for clustering. [52] uses parent-

child node pairs and [137] uses only tag names, which have less information for clustering.

For the methods proposed in [87, 47, 45], since they do not consider the value of attributes

when summarizing the XML documents, they can not be used to effectively cluster the re-

sults generated by XML keyword search, which usually come from data source with similar

schema and mainly differ in values.

In a vector space model, each object is modeled as a vector with a weight on each

component. Two vectors are similar if they have a large inner product. When clustering

using snippets, we follow [136] which uses each distinct root-leaf path as a component

whose weight is its number of occurrences. When clustering using ILists, we model each

component of a vector as an item in the IList, whose weight is the feature score if it is a

feature, and is 1 otherwise.

10.2 Experiments

To test the effectiveness and efficiency of grouping query results based on snippets and

ILists, we implemented the clustering algorithm in [136]. If the input is a set of XML doc-

uments (query results or snippets), it converts each XML document into a corresponding

vector representation such that each component of the vector is a path from root to leaf

whose weight is its number of occurrences in the document, and clusters the input doc-

uments using the classical vector space model. For clustering using ILists, each item in

the IList is a component in the vector representation, whose weight is its score. We com-

pare the performances of grouping query results using results and snippets, respectively,

in terms of processing time and grouping quality.

To obtain the ground truth of grouping query results, we generate multiple retailer

documents according to a set of distinct patterns. For example, one pattern has the prob-

ability of the value fitting:men to be 75%, women 20% and children 5%. The probabilities

of every possible attribute and value, such as category:outwear, situation:casual, are set.

Then we generate multiple documents for each pattern with the given probability distribu-

tion. The ground truth is simply obtained by placing the retailers/stores generated from the

223

Queries for clustering
Q1 store
Q2 retailer
Q3 store, clothes
Q4 retailer, apparel

Figure 10.1: Test Queries for Clustering Using Snippets or ILists

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Q1 Q2 Q3 Q4

T
im
e

(s
)

Snippet Ilist Query Result

Figure 10.2: Result Clustering Time Using Query Result, Snippets and ILists

same pattern into the same group. We use the queries in Figure 10.1 for evaluating the

quality and efficiency of grouping query results.

Processing Time. The processing times of clustering algorithm using the query

results, snippets and ILists are shown in Figure 10.2. Query results of the queries in Fig-

ure 10.1 are generated by the underlying XML query engine, and we generated the snippets

for all these query results. The query results and the corresponding snippets are used as

input for the clustering method. We run the clustering method with these inputs for 10 times

and report the average processing time. As we can see from Figure 10.2, the processing

times of using snippets and ILists are much smaller compared with the processing time

using query results, which is important. The difference between using snippets and ILists

is very small, as an IList has more features than the corresponding snippet, but it does not

have internal nodes in the tree structure.

Quality. In this test we evaluate the qualities, in terms of precisions and recalls, of

the result groups generated using query results, snippets and ILists. As discussed earlier in

224

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4

Snippet Ilist Query Result

Figure 10.3: Clustering Precision Using Query Results, Snippets and ILists

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4

Snippet Ilist Query Result

Figure 10.4: Clustering Recall Using Query Results, Snippets and ILists

this section, ground truth is obtained from the generative model. Precision is calculated by

counting the number of correct placements of query results divided by the number of results

in a cluster, and recall is calculated by counting the number of correct placements divided

by the number of results in the ground truth. As we can see in Figure 10.3 and Figure 10.4,

although a snippet or IList contains much less information than the corresponding result,

the precision and recall of the clustering result using snippets and ILists are generally very

close to those of using query results.

Grouping results using snippets and ILists have a similar quality except Q1, where

using IList achieves a better quality than using snippets. Since snippets do not record

225

the accurate score of each feature and only has a subset of prominent features, they may

sometimes be outperformed by ILists with respect to result clustering.

10.3 Summary

Grouping results using snippets and ILists achieves a favorable tradeoff between quality

and efficiency – it achieves a much better efficiency while generally sacrificing little quality,

compared with grouping results using results themselves. It also indicates that the snippets

and ILists generated by eXtract are indeed concise yet good summaries of the correspond-

ing results.

226

Chapter 11

GENERATING EXPANDED QUERIES FROM CLUSTERED RESULTS

11.1 Motivation and Goal

Query expansion, or query refinement, is the process of reformulating a seed query to im-

prove retrieval performance and resolve keyword ambiguity. Web search engines typically

make query suggestion based on similar and popular queries in the query log [39, 19]. To

handle a bootstrap situation where the query log is not available, there are works on query

result summarization [142, 28, 26, 130, 76, 119], where popular words in the results are

identified and suggested to the user for query refinement. The popularity of words are typi-

cally measured by factors such as term frequency, inverse document frequency, ranking of

the results in which they appear, etc.

However, existing query expansion techniques based on result summarization using

popular words can not effectively handle ambiguous queries which have multiple possible

interpretations of their meanings, or exploratory queries [25] where the user does not have

a specific search target, but would like to navigate the space of possibly relevant answers

and iteratively find the most relevant ones. The expanded queries generated by such an

approach may only cover a subset of the possible query semantics, and fail to provide a

classification of the results. The problem becomes especially severe when the expanded

queries are generated by summarizing the top-K results, which is typically the case for

efficiency reasons. One type of results may have higher ranks than other types and will

suppress other result types to be reflected in the expanded queries. For instance, when

searching “apple” on Google there is only one result about apple fruit in the top 30 re-

sults, whereas the rest are about Apple Inc. Since keywords about apple fruit have a small

presence in these results, they are unlikely to be considered as popular words. Expanded

queries generated according to popular words will bear the ranking bias and fail to cover

the query semantics of searching apple fruit.

To handle ambiguous and exploratory queries, ideally query expansion should pro-

vide a classification of different interpretations of the original query, and thus guide the user

227

to refine the query in order to get more results of the desirable type. For query “apple”, intu-

itively, “Apple Inc.” and “apple fruit” would be desirable, even though “fruit” is not a popular

word in the set of top ranked results. Note that for this ambiguous query, either interpretation

can be relevant to the user, although one interpretation is ranked much higher.

To generate expanded queries that provide a classification of the query results, we

propose a technique in Chapter 11, which first clusters the results into k clusters1 using

one of the existing clustering methods, where k is an upper bound specified by the user.

In the above example of generating expanded queries for “apple” according to the top 30

results, although there is only one result about apple fruit, since it is significantly different

from others, it should comprise a cluster itself, and thus can be covered by an expanded

query.

Note that although the approach discussed in Chapter 9 is able to generate a set

of clusters and a description for each cluster, it may not work well for document-centric

structured data or text data. For example, consider a document-centric XML about research

papers. Given a query, e.g., “keyword search”, it may cluster the results according to where

the keyword appears (title, abstract, index term, etc.) as well as paper category (conference

paper, journal paper, etc.). However, it cannot further cluster the results based on text

attributes like abstract. This is undesirable since the abstract of a paper usually contain

important information about the topic of the paper. If we use a text clustering method, e.g.,

K-means, then although we are able to further cluster the papers, it is not obvious how to

refine the queries based on the clusters. Therefore in this approach we would like to find a

generic way of generating expanded queries given a set of clusters, where the clusters can

be obtained using any approach on any type of data.

Given a set of clusters of query results, the challenge is how to generate an ex-

panded query for each cluster, whose set of results is as close to the cluster as possible.

We assume that a result of a query is obtained by finding the data unit that contains all the

query keywords. If we consider a cluster of results as the ground truth, our goal is then to

generate a query whose set of results achieve both a high precision and a high recall. This

1We can either cluster the set of all query results or a set of top ranked results.

228

is a difficult problem as the expanded queries should not only be selective to eliminate as

many results in other clusters as possible (maximizing the precision), but also be general

to retrieve as many results in this cluster as possible (maximizing the recall). One intuitive

approach would apply existing works on cluster labeling / summarization [27, 105] to find

the popular words in each cluster, and then use these words as the query for the cluster.

However, the set of results retrieved by such a query would unlikely be similar to the orig-

inal cluster. For example, consider 5 keywords, each appearing in 80% of the results in

a cluster, but they do not co-exist in any result. A cluster labeling approach may output

these 5 keywords as the label of the cluster. Nevertheless, using these 5 keywords as an

expanded query will yield no result under AND semantics. This illustrates a unique chal-

lenge in generating queries for clustered results: the interaction of the keywords must be

considered. Moreover, a potentially large number of results, and a large number of distinct

keywords in the results add further challenges to the problem. Exhaustively searching for

the optimal query for each cluster will be prohibitively expensive in practice. We formally

define the problem of generating an optimal set of queries given the ground truth of each

query’s results. We show that this problem is NP-hard, and also APX-hard (i.e., it does not

have a constant approximation).

To tackle the challenges, we propose two efficient algorithms which are presented

in this chapter. The first algorithm, named iterative single-keyword refinement (ISKR), it-

eratively refines a query in a greedy fashion by adding or removing a keyword to improve

the quality of the query. The technical challenge is to dynamically and efficiently select

the promising keywords to add to/remove from the current query. The second algorithm,

named partial elimination based convergence (PEBC), attempts to find the best tradeoff

between precision and recall using a randomized procedure. Specifically, given a set of

sample queries and their F-measures, we find the two adjacent queries with the highest av-

erage F-measure, and iteratively test more points between them in search of an improved

F-measure. Since the space of all possible queries is exponential to the data size, the

technical challenge is how to efficiently find effective sample queries. We identify that this

problem bears some similarity with the weighted partial set cover problem, but with funda-

mental differences that demand novel solutions. Compared to ISKR, PEBC in most cases
229

favors more on the efficiency compared with quality, as shown in the experiments. Besides,

when the results have ranking scores, both algorithms take the ranking scores into consid-

eration by prioritizing the results with higher ranks when generating expanded queries.

11.2 Problem Definition

In this chapter, we consider keyword queries on either text documents or structured data.

A text document is modeled as a set of words, and a structured document is modeled as a

set of features defined as (entity:attribute:value) triplets [65], such as product:name:iPad.

Each result is a text document or a fragment of a structured document that contains

all the keywords in the query.

The goal of this work is to generate a set of expanded queries that provides a

classification of possible interpretations of the original user query. The input that we take

includes a user query, and a set of clustered query results where the results are optionally

ranked. Note that result clustering can be done using any existing clustering method (such

as k-means), which is not the focus of this work. The output is one expanded query for

each cluster of results, which maximally retrieves the results in the cluster, and minimally

retrieves the results not in the cluster.

We now formally define the optimization goal. Considering the cluster as the ground

truth, the quality of an expanded query can be measured using precision, recall and F-

measure. Precision measures the correctness of the retrieved results, recall measures the

completeness of the results, and F-measure is the harmonic mean of them. Let C1, · · · , Ck

denote the result clusters, qi denote the query generated for cluster Ci (1 ≤ i ≤ k), R(qi)

denote the set of results of qi. The precision, recall and F-measure of qi are computed as

precision(qi) =
R(qi) ∩ Ci

R(qi)
, recall(qi) =

R(qi) ∩ Ci

Ci

Fmeasure(qi) =
2× precision(qi)× recall(qi)

precision(qi) + recall(qi)

230

To handle the general case where results are ranked, we use a weighted version of

precision and recall. Let S(·) denote the total ranking score of a set of results, then

precision(qi) =
S(R(qi) ∩ Ci)

S(R(qi))
, recall(qi) =

S(R(qi) ∩ Ci)

S(Ci)

The optimization goal is measured by the overall quality of the set of expanded

queries (one for each cluster). We use the harmonic mean of their F-measures, whereas

other aggregation functions (e.g., algebraic mean) can also be used.

score(q1, · · · , qk) =
n

1
Fmeasure(q1)

+ · · ·+ 1
Fmeasure(qk)

(11.1)

To summarize, the problem of generating expanded queries based on clustered

results is defined as follows.

Definition 11.1 Given a set of clusters of query results, C1, · · · , Ck, retrieved by a user

query under AND semantics, the Query Expansion with Clusters problem (QEC) is to find

a set of queries, one for each cluster, such that their score (Eq. 11.1) is maximized.

Theorem 11.1 The QEC problem is NP-hard.

Proof. We reduce the vertex cover problem to the QEC problem. Recall that the

vertex cover problem selects the minimum set of nodes in an undirected graph, such that

every edge has at least one of its endpoints selected. Given any instance of the vertex cover

problem: an undirected graph G(V,E), where each node has at least one edge (otherwise

this node does not need to be considered for vertex cover), let n = |V |, m = |E|, we create

an instance of the QEC problem as follows.

1. Create n+ 1 keywords, k0, · · · , kn, where each keyword ki(1 ≤ i ≤ n) corresponds

to a node i in graph G.

2. Create one cluster C1 with n results. Let keyword ki(1 ≤ i ≤ n) appear in all the

results in C1 except the ith result.

231

3. Create cluster C2 with 4kn2m results, which are evenly partitioned to m groups, such

that each group corresponds to an edge in graph G and has 4kn2 results.

For each node i ∈ V , if it has x edges, then let keyword ki not appear in the corre-

sponding x groups of results in C2. For example, if node i has edges e1, e3, e6, then

ki does not appear in results in groups 1, 3, 6, in C2, but appears in all other results

in C2.

4. Let keyword k0 appear in all results in C2, but none of the results in C1.

Clearly the construction can be performed in polynomial time. For this instance of

QEC, it is easy to see that the optimal query for C2 is q2 = {k0}, and F −measure(q2) = 1.

Let q1 be the optimal query for C1. Next we prove that precision(q1) must be 1.

Suppose we have precision(q1) = 1, that is, q1 eliminates all the results in C2.

Next we show that recall(q1) ≥ 1
|C1| = 1

n . To see this, q1 must not contain all keywords

ki(1 ≤ i ≤ n), because any group in C2 can be eliminated by two keywords (according

to the construction of the QEC instance, each group corresponds to an edge in the graph,

which can be eliminated by the keyword corresponding to either endpoint of the edge),

and there must be at least one group that does not need both keywords included in q1.

Therefore, q1 should at least retrieve one result in C1, and recall(q1) ≥ 1
|C1| = 1

n ; F −

measure(q1) ≥ 2
n+1 , hence

S1 = score(q1, q2) ≥
2

n+1
2 + 1

=
4

n+ 3

.

Suppose otherwise, precision(q1) ̸= 1, q1 must retrieve some results in C2. Recall

that the results in C2 has m groups, each with 4kn2 identical results, q1 must retrieve at

least 4kn2 results in C2, thus:

precision(q1) <
n

4kn2
=

1

4kn

F −measure(q1) <
2

4kn+ 1
232

S2 = score(q1, q2) <
2

4kn+1
2 + 1

=
4

4kn+ 3

Since S2 ≤ 4
4kn+3 < 4

n+3 ≤ S1, S2 cannot be the optimal score of q1 and q2, thus

precision(q1) must be 1. Furthermore, the optimal q1 must use the minimum number of

keywords to eliminate all results in C2, since the more keywords q1 uses, the less results it

can retrieve in C1, the lower F-measure.

Now we show that the optimal solution of vertex cover corresponds to the optimal

solution of QEC problem. In the vertex cover instance, if we take the nodes that correspond

to the keywords in q1, we get the minimal vertex cover of G. To see that, if an edge ei(na, nb)

is not covered (i.e., neither ka nor kb is selected in q1), then since the results in group i in C2

only miss keywords ka and kb, these results are retrieved by q1, which is contradictory with

precision(q1) = 1. On the other hand, suppose that we have a minimal vertex cover of G,

in which each edge is covered by at least one of its endpoints. If we take the corresponding

keywords to compose q1, then every group in C2 will be eliminated. Since the number of

nodes in vertex cover is minimized, the number of keywords in q1 is minimized, the number

of results retrieved in C1 is maximized, giving an optimal F-measure of q1, and hence an

optimal score of q1 and q2. Therefore, the QEC problem is NP-hard.

Although the vertex cover problem has a simple 2-approxi-

mation algorithm and QEC can be reduced from the vertex cover problem, the following

theorem shows that the QEC problem does not have a constant polynomial-time approxi-

mation, i.e., it is APX-hard.

Theorem 11.2 The QEC problem is APX-hard.

Proof. We prove that the QEC problem is as hard as the independent set problem

in terms of approximation. Recall that the independent set finds the maximum set of nodes

in an undirected graph, such that no two nodes are connected by an edge. The indepen-

dent set problem has been proved to be APX-hard, i.e., it has no constant approximation

ratio [53]. We will prove that, if the QEC problem has an approximation ratio of k, then the

independent set problem has an approximation ratio of 4k − 3.

233

Given any instance of the independent set problem: an undirected graph G(V,E),

let n = |V |, m = |E|, we create an instance of the QEC problem in the same way as stated

in the proof of Theorem 11.1.

We first show that, for any arbitrary k-approximate solution for this QEC instance,

consisting of queries q′1 and q′2, we must have q′2 = {k0}, precision(q′1) = 1. This is

because

S2 × k ≤ 4k

4kn+ 3
<

4k

kn+ 3k
=

4

n+ 3
≤ S1 = OPT

where S1 and S2 are defined in the proof of Theorem 11.1, and OPT is the score

of the optimal solution. Unless precision

(q′1) = 1, it cannot approximate the optimal solution within k.

Suppose we have an algorithm that can give a k-approximate solution to the above

QEC instance in polynomial time, now we illustrate how to obtain an approximate solu-

tion to the independent set problem with ratio 4k − 3. Let R, F and S denote recall(q1),

F−measure(q1) and score(q1, q2) in the optimal solution, and R′, F ′ and S′ denote the cor-

responding values in the approximate solution. From k × S′ ≥ S, S = 2F
1+F and S′ = 2F ′

1+F ′ ,

we have F ′

F ≥
1

2k−1 .

Since F = 2R
1+R and F ′ = 2R′

1+R′ , we obtain

R′

R
≥ 1

4k − 3
(11.2)

Note that in the optimal solution, q1 is a query which eliminates all results in C2

using the minimum number of keywords. Let the number of keywords in q1 be P . Since

each keyword in q1 eliminates a result in C1, q1 retrieves n − P results in C1, thus R =

n−P
n . Similarly, in the approximate solution, let the number of keywords in q′1 be P ′, then

R′ = n−P ′

n . According to Equation 11.2, we have

n− P ′

n− P
≥ 1

4k − 3
(11.3)

234

Now let us look at the independent set instance. Recall that each node in G cor-

responds to a keyword in C1 in the QEC instance. In the proof of Theorem 11.1, we have

shown that the nodes corresponding to the keywords in P comprise the minimal vertex

cover of G. Therefore, the set of nodes corresponding to the keywords not in P comprises

the maximal independent set of G, whose size is n − P . Similarly, the set of nodes corre-

sponding to the keywords not in P ′ comprises an approximate independent set of G, whose

size is n − P ′. According to Equation 11.3, we have obtained a 4k − 3 approximate solu-

tion for this independent set instance. Since this is an arbitrary independent set instance,

it contradicts with the fact that independent set instance is APX-hard. Therefore, the QEC

problem is APX-hard.

In the next two sections we discuss the algorithms for query generation. Note that

maximizing the overall score (Eq. 11.1) is equivalent as maximizing the F-measure of each

query, thus each query can be generated independently. Specifically, the algorithms solve

the following problem.

Definition 11.2 Given a user query Q, a cluster C of results, and the set of results U in all

other clusters, as well as an optional ranking score of each result, the problem is to generate

a query q, whose F-measure with C as the ground truth is maximized.

11.3 Iterative Single-Keyword Refinement

The first algorithm we introduce is named Iterative Single-Keyword Refinement (ISKR).

Given the user query and a cluster of results, the ISKR algorithm iteratively refines the

input query until it cannot further refine the query to improve the F-measure of the query

result (considering the cluster as the ground truth). Then, it outputs the refined query as the

expanded query for the cluster. Specifically, it quantifies a value of each keyword appear-

ing in the results, and refine the query by choosing the keyword with the highest value in

each iteration. Several challenges need to be resolved for this approach to work: (1) How

should we quantify and compute the value of a keyword? (2) As discussed in Section 11.1,

keywords interact with each other when adding them to be part of a query. After the can-

didate query is refined, the value of a keyword may be changed. How should we identify
235

the keywords whose values are affected and update the values of these keywords? (3) We

start with the original user query, and try to add new keywords in the order of their values to

this query to form an expanded query. Are there any case that a previously added keyword

should be removed in order to improve the F-measure of the expanded query? (4) Since

there can be a potentially large number of results and a large number of distinct keywords

in a result, it is time-consuming to find the best set of keywords to add to the original query.

How can we ensure efficiency? Next we will present ISKR algorithm, whose pseudo code

can be found in Algorithm 14, that addresses these challenges.

Value of a Keyword. We first need to define the value based on which we choose

the best keyword to add to or remove from q at each step. When adding a keyword to a

query q, the F-measure achieved by q may either increase or decrease. Thus naturally, the

value of a keyword should be measured by the delta F-measure of query q after adding

this keyword. But a disadvantage of this value function is that the values of the keywords

are hard to maintain. The set of query results R(q) is dynamically determined, based on

the keywords that are already added to q. Since precision, recall, and thus F-measure are

defined based on R(q), the value of every keyword needs to be dynamically computed, and

updated after every change to q.

To efficiently measure the values of keywords, we have the following observations.

First, when adding a keyword k to q, the positive effect is that q may retrieve less results

in U (thus improving precision), and the negative effect is that q may retrieve less results

in C (thus decreasing recall). Thus the number of results eliminated from U and C can be

used to indicate whether it is good to add keyword k to query q. Second, it is more efficient

to maintain the number of results eliminated from U and C by adding a keyword k than to

maintain the delta F-measure of a keyword.

To see this, in the following, we use delta results of a keyword k with respect to

query q (or simply delta results, if k and q are obvious) to denote the set of results retrieved

by q, but not retrieved after adding k to q. After adding k to q, let D denote the set of delta

results. Consider a keyword k′ which appears in all results in D, i.e., it cannot eliminate any

result in D. Note that the delta results of k′ with respect to query q depends on how many

236

results of q can be eliminated by adding k′ to q. Since k′ cannot eliminate any result in D

anyway, the delta results of k′ with respect to q are the same as the delta results of k′ with

respect to q ∪ {k}. This means that the delta results of k′ are not affected after adding k to

q.

With these observations, we measure the value of a keyword by benefit and cost.

benefit(k, q) is the total ranking score of the results eliminated in U by adding k to q, and

cost(k, q) is the total score of the results eliminated in C by adding k to q. Thus

benefit(k, q) = S(R(q) ∩ U ∩ E(k))

cost(k, q) = S(R(q) ∩ C ∩ E(k))

where E(k) is the set of results that do not have keyword k (hence will not be

retrieved by any query that contains k).

We define the value of a keyword with respect to q as its benefit-cost ratio, as

commonly adopted in cost-benefit analysis:

value(k, q) =
benefit(k, q)

cost(k, q)
(11.4)

We consider value(k, q) as zero if both benefit(k, q) and cost(k, q) are zero.

Identifying Keywords with Affected Values. When we add a keyword to query q,

the benefits and costs of other keywords may be affected. As discussed before, the value of

a keyword is affected if and only if this keyword does not appear in at least one of the delta

results. For each such keyword, we re-compute its benefit, cost and value using Eq. 11.4.

Example 11.1 We use this example to illustrate the ISKR algorithm. Suppose the original

query is “apple”. Consider a cluster C with 8 results, R1, · · · , R8, and U , the set of results

that is not in C, with 10 results, R′
1, · · · , R′

10. We consider 4 keywords for query expansion.

237

The following table shows the keywords, and the results in C and U that each keyword can

eliminate.

ki E(ki) ∩ C E(ki) ∩ U

i = 1 job R1, · · · , R6 R′
1, · · · , R′

8

i = 2 store R1, · · · , R4 R′
1, · · · , R′

4, R′
9

i = 3 location R2, · · · , R5 R′
5, · · · , R′

8, R′
10

i = 4 fruit R1, · · · , R3 R′
2, · · · , R′

4

The initial benefit, cost and value of each keyword are:

keyword benefit cost value

job 8 6 1.33

store 5 4 1.25

location 5 4 1.25

fruit 3 3 1.00

Since keyword job has the largest value, we first add job into q; so q = {apple, job}.

Now q retrieves 2 results in C: R7 and R8, and 2 results in U : R′
9 and R′

10.

Now we need to update the benefit, cost and value of each affected keyword. For

example, the benefit of store becomes 1, since adding it to q can further eliminate one result

in U : R′
9. The cost of store becomes 0, since it does not eliminate any result in C, as both

results (R7 and R8) contain store. The updated benefit, cost, and value of each keyword is

shown in the following table (the row for job shows the benefit, cost and value of removing

job from the current query, which will be discussed later).

keyword benefit cost value

job 6 8 0.75

store 1 0 ∞

location 1 0 ∞

fruit 0 0 0

Thus we add store to q. After updating the benefit, cost, and value of the affected

keywords, we further add keyword location to q. At this time, the only remaining keyword,

fruit, has a value of 0, thus we do not further add keywords to the expanded query.

Necessity of Keyword Removal. Since keywords added to the query may have

238

Algorithm 14 Iterative Single-Keyword Refinement
ISKR (User Query: uq, Cluster: C, Results not in C: U)

1: K = the set of keywords in C ∪ U
2: q = uq
3: Refine(C,U,K, q, weight)
4: return q

Refine (C,U,K, q, weight))
1: T = ∅
2: for each k ∈ K, k /∈ q do
3: E(k) = the set of results that do not contain k
4: benefit(k) = S(R(q) ∩ C ∩ E(k))
5: cost(k) = S(R(q) ∩ U ∩ E(k))
6: value(k) = benefit(k)/cost(k)
7: insert k into T
8: for each k ∈ K, k ∈ q do
9: D(k) = R(q\k)\R(q)

10: benefit(k) = S(D(k) ∩ C)
11: cost(k) = S(D(k) ∩ U)
12: while true do
13: k = top-1 keyword in T
14: if value(k) ≤ 1 then
15: break
16: if k ∈ q then
17: q = q\k
18: MaintainT (T, q, k, E(k),K, C, remove)
19: else
20: q = q ∪ k
21: MaintainT (T, q, k, E(k),K, C, add)
22: return q

MaintainT (T, q, k, E(k),K, C, type)

1: if type = add then
2: deltaResult = R(q\k) ∩E(k)
3: else
4: deltaResult = R(q\k)\R(q)
5: for each k′ ∈ K do
6: if each k′ appears in all results in deltaResult then
7: continue
8: if type = add then
9: benefit(k′) = R(q) ∩ U ∩ E(k′)

10: cost(k′) = R(q) ∩ C ∩ E(k′)
11: else
12: D(k) = R(q\k)\R(q)
13: benefit(k′) = D(k) ∩ C
14: cost(k′) = D(k) ∩ U
15: remove k′ from T
16: value(k′) = benefit(k′)/cost(k′)
17: add k′ to T

239

complex interactions, it may be beneficial to remove a keyword from q that was added to q

earlier, as shown in the following example.

Example 11.2 Continuing Example 11.1. Note that keyword job was added into q at the first

step due to its highest value, but after adding store and location to q, it becomes beneficial

to remove job, which increases the recall but does not affect the precision. Indeed, the

current q = {apple, job, store, location} retrieves 2 results in C: R7, R8, and 0 result in U .

If we now remove job from q, then q will retrieve 1 more result in C: R6, but still retrieve 0

result in U . Therefore, we should remove job from q at this point.

When removing a keyword k ∈ q from q, the benefit, cost and value can be com-

puted in a similar way. In contrast to keyword addition, removing k from q increases the

results retrieved by q in both C and U , thus it may decrease the precision (measured by

cost) and increase the recall (measured by benefit). For the removal case, the benefit and

cost of k with respect to q are computed as

benefit(k, q) = S(C ∩D(k)), cost(k, q) = S(U ∩D(k))

where D(k) is the delta results after the removal of keyword k. value(k, q) is still

the benefit-cost ratio (Eq. 11.4).

Similar as adding a keyword, after removing a keyword, the values of other key-

words may be affected. It is easy to see that the affected keywords are also those that

do not appear in at least one of the delta results. For these keywords, we recompute their

benefits, costs and values.

The ISKR algorithm stops when the query cannot be further improved by adding or

removing a keyword, which is the case if the value of the best keyword is less than 1. In the

running example, after updating the table, we find that no keyword has a value greater than

1, thus we stop and output the current query, q = {apple, store, location}.

240

11.4 Partial Elimination Based Convergence

The ISKR algorithm iteratively attempts to add/remove a keyword to/from q, during which

process the values of many keywords may change and need to be updated, which incurs a

potentially high processing cost. In this section we propose a convergence based algorithm

for query expansion named Partial Elimination Based Convergence (PEBC). It approaches

the optimal solution in a fast and adjustable progress. Considering F-measure as a function

over q, our goal is to find the value of q that achieves the maximal value of F-measure.

However, since the functional relationship between F-measure and q is unknown, and the

space of all possible queries is exponential to the data size, finding the optimal value is very

challenging.

We propose algorithms that select several sample queries in the search space, and

iteratively test more queries between the promising sample queries toward an improved

F-measure. Specifically, given a set of queries and their F-measures, we find the two

adjacent ones with the highest average F-measure, and test more points between them in

search of an improved F-measure. The iteration continues until the expanded query is good

enough, or enough iterations have been performed. The idea of this method is related to

interpolation in numerical analysis, however, we do not infer the actual F-measure function

from the sampled data points due to its high complexity.

Two questions must be resolved. (1) What type of sample queries we should use

to converge to the optimal solution? (2) How can we obtain such sample queries?

Type of sample queries. To answer the first question, we propose to use a set

of sample queries, each of which maximizes the number of results to be retrieved in C,

given a percentage of results in U to be eliminated. This is in the spirit of maximizing the

recall given a fixed precision.2 If we don’t have the ranking scores of the results, we aim

at eliminating x% of U ’s results; otherwise, we aim at eliminating a set of U ’s results, such

that their total ranking score is x% of the total ranking score of all the results in U . In the

2Alternatively, we can choose sample queries that maximize the number of results to be eliminated in U
given a percentage of results in C to be retrieved.

241

following, we use “x% of the results in U ” to refer to both cases.

Example 11.3 Suppose we generate five queries, q1 to q5, to eliminate 0%, 25%, 50%,

75% and 100% of the results in U , respectively, and maximize the number of results in C

to be retrieved. We compute the F-measures of these queries, and suppose they are: 0.5,

0.6, 0.4, 0.8, 0.1, respectively. Note that the F-measures of these queries may not have an

obvious relationship. We take the two adjacent queries whose average F-measure is the

highest, which are q3 and q4. We zoom in the interval between them, further dividing them

to several intervals, and repeat the process.

Generating Sample Queries. The key challenge of the PEBC algorithm is: given a

percentage x of results in U to be eliminated, how can we generate query q that eliminates

roughly x% of the results in U , and maximizes the number of retrieved results in C? We

refer to this problem as partial elimination.

This problem bears some similarity with the weighted partial set cover problem,

which aims at using a set of subsets with the lowest total weight to cover at least x% of the

elements in the universal set. However, in contrast to the partial weighted set cover problem

which requires to cover at least x% of the elements, our goal is to eliminate as close to x%

of the elements as possible. This ensures that we can test data points that have roughly

uniform distances between each other to better gauge the F-measure function. In the next

subsections, we discuss how to address this new challenge and generate queries to achieve

partial elimination.

Keyword Selection Based on Benefit/Cost

One intuitive method is to apply the greedy algorithm commonly used in weighted set cover

for keyword selection: each time, we select the keyword with the largest benefit/cost ratio,

until we have approximately x% of the results in U eliminated. Benefit and cost are defined

in the same way as in ISKR: benefit is the total weight of the un-eliminated results in U that

a keyword can eliminate, and cost is the total weight of the un-eliminated results in C that a

keyword can eliminate.

242

However, this method has an inherent problem that makes it infeasible: since the

benefit/cost ratios of the keywords do not change with varying x, the keywords are always

selected in the same order. Specifically, let the list of keywords selected when x = 100 be

K = k1, · · · , kp. Now we want to select keywords to generate a query for each point in a

range of possible values of x. No matter which point it is, the set of keywords selected will

be a prefix of K. Such a “fixed-order" selection of keywords makes it very difficult to control

the percentage of results being eliminated.

Algorithm 15 Partial Elimination Based Convergence
PEBC (User Query: uq, Cluster: C, Results not in C: U)

1: K = the set of keywords in C ∪ U
2: q = uq
3: Converge(C,U,K, q)
4: return q

Converge (C,U,K, q))
1: nseg = 5 {set the number of segments to split the interval}
2: nit = 5 {set the number of iterations}
3: left = 0, right = 100, step = (right− left)/nseg
4: for i=1 to nit do
5: for x = left; x ≤ right; x+ = step do
6: currC = C, currU = U
7: repeat
8: r = a randomly selected result
9: bestvalue = 0

10: for each distinct keyword k /∈ r do
11: E(k) = the set of results that do not contain k
12: benefit(k) = E(k) ∩ U
13: cost(k) = E(k) ∩ C
14: value(k) = benefit(k)/cost(k)
15: if value(k) > bestvalue then
16: selecetd = k, bestvalue = value(k)
17: q = q ∪ selected
18: currC = C\E(k), currU = U\E(k)
19: until roughly x% percent of results in U are eliminated
20: left, right = the interval with the largest average score

Example 11.4 Consider a total of 10 results in U , R1, · · · , R10, and 4 keywords: k1=job,

k2=store, k3=location, k4=fruit. Suppose the set of results eliminated in U by each keyword

(benefit) and the number of results eliminated in C by each keywords (cost) are:

benefit(k1) = 4({R1, R2, R3, R4}), cost(k1) = 2

benefit(k2) = 6({R5, R6, R7, R8, R9, R10}), cost(k2) = 6

243

benefit(k3) = 3({R3, R4, R8}), cost(k3) = 1

benefit(k4) = 4({R4, R5, R6, R7}), cost(k4) = 4

Also suppose that the set of results in C that is eliminated by a keyword does not intersect

with the set eliminated by another keyword.

In this approach, the keywords are always selected in the decreasing order of their

benefit/cost ratio, that is: k3 → k1 → k2 → k4 (recall that after a keyword is selected, the

benefit/cost of other keywords may change, as discussed in Section 11.3). Having the order

of keyword selection fixed, there is a slim chance to achieve the goal of x% elimination. For

instance, in order to eliminate 7 results with the fixed order keyword selection, we will have

to either use {k3, k1} which eliminates 5 results, or {k3, k1, k2} eliminating all 10 results.

This poses a lot of restriction. Note that in this example, if we do not select keywords in this

order, we can choose {k1, k4} which eliminates exactly 7 results.

As we can see, always selecting keywords based on their benefit/cost ratio makes

it hard to eliminate a given percentage of the results. Next we discuss the approaches that

overcome this problem using a randomized procedure.

Keyword Selection Based on a Selected Subset of Results

Since selecting keywords in a fixed order is undesirable, we propose to introduce a ran-

domized procedure. First, we randomly select a subset of x% of the results in U . Then,

we select the keywords, aiming at eliminating these randomly selected results. In this way,

since the set of results to be eliminated is randomly selected, we will not select the key-

words in a fixed order. If the randomly selected set of results is “good”, we may be able to

eliminate exactly this set of results.

Given the randomly selected results, selecting a set of keywords that eliminate

these results with minimal cost is NP-hard, as the weighted set cover problem is a special

case of it. To see this, assume that each keyword eliminates part of the selected set of

results in U , and their costs are independent (i.e., they eliminates distinct sets of elements

in C). Then, each keyword is equivalent to a subset in the weighted set cover problem.

To choose a set of keywords that covers the randomly selected results, we can use some
244

greedy approaches, e.g., let S be the randomly selected set of results, at each time we

choose a keyword which covers the most number of results in S with minimal cost. Other

methods can also be used.

Example 11.5 Continuing Example 11.4, suppose that we want to eliminate 7 results and

the subset selected randomly is {R1, R2, R3, R4, R5, R6, R7}. Given this set of results, we

first update the benefits and costs of the four keywords. Keyword k1 is not affected, as all

four results it eliminates are selected. For k2, we need to decrease its benefit by 3 because

R8, R9 and R10 are not selected, and increase its cost by 3. For k3, we decrease its benefit

and increase its cost by 1. k4 is not affected. In this case, we can select {k1, k4} which

exactly eliminates this set of results.

However, if the randomly chosen subset is {R1, R2, R3, R4, R8, R9, R10}, then the

best we can do is: either using k1 eliminating 4 of them, or using {k1, k2} eliminating all 10

results.

As we can see, this approach has two problems. First of all, given a set of randomly

selected results, selecting a set of keywords that eliminate exactly this set of results with

minimal cost is an NP-hard problem. Second, as illustrated in the above example, the

quality of the algorithm highly depends on the selected subset, thus the chance that it can

get the optimal answer is still slim.

Keyword Selection Based on a Selected Result

Both approaches discussed before put high restrictions on keyword selection, and thus

generally suffer a low quality. We propose another randomized procedure that has a much

better chance to eliminate as close to x% of the results in U as possible. Instead of ran-

domly selecting a subset of results, we randomly select one result in U that is not eliminated

yet, and then select a keyword that (1) can eliminate the selected result, (2) has the highest

benefit cost ratio over all such keywords. In case of a tie, we choose the keyword that elimi-

nates fewer results to minimize the risk that we eliminate too many results. If the percentage

of the eliminated results is smaller than x%, we continue the procedure; otherwise we stop

245

and determine whether to include the last selected keyword based on which percentage is

closer to x%. Compared with the approach presented in Section 11.4, this one has a better

chance of approaching the desired percentage, x%, because selecting one result correctly

is much easier than selecting a set of results correctly, as shown in Example 11.6.

Example 11.6 Continuing the example, to eliminate all 7 results, we may get the correct

solution if we first choose one of the following five results: R1, R2, R5, R6 or R7. Suppose

that we choose R5, and choose k4 to eliminate it. After k4 is used, we have the set {R4, R5,

R6, R7} eliminated. Then we can get optimal solution if the next randomly selected result

is either R1 or R2. To eliminate R1 or R2, we choose k1, which additionally eliminates

results {R1, R2, R3}, totaling 7 results eliminated. As we can see, the approach has a much

higher chance to achieve the optimal solution (i.e. removing x% of results) than the ones

discussed before.

The pseudo code of the PEBC algorithm is shown in Algorithm 15.

11.5 Experiments

In this section we report a set of experimental evaluations on the quality of the expanded

queries generated by our approach, and the efficiency and scalability of query generation.

Experimental Setup

Environment. All experiments were performed on a machine with AMD Atholon 64 X2 Dual

Core Processor 6000+ CPU with 3GHz, 4GB RAM, running Windows Server 2008.

Data Set. We tested our approaches on two data sets: shopping and Wikipedia.

Shopping is a data set that contains information of electronic products crawled from circuitc-

ity.com. Each product has a title, a category, and a set of features. Wikipedia is a collection

of document-centric XML files used in INEX 2009.3

Query Set and Result Clustering. We tested 10 queries on each data set, as

shown in Table 11.1. The queries on Wikipedia dataset are composed of ambiguous words.

3http://www.inex.otago.ac.nz/

246

Wikipedia
QW1 San Jose
QW2 Columbia
QW3 CVS
QW4 Domino
QW5 Eclipse
QW6 Java
QW7 Cell
QW8 Rockets
QW9 Mouse
QW10 sportsman, Williams
Shopping
QS1 Canon Products
QS2 Networking Products
QS3 Networking Products Routers
QS4 TV
QS5 TV Plasma
QS6 HP Products
QS7 Memory
QS8 Memory 8GB
QS9 Memory Internal
QS10 Printer

Table 11.1: Data and Query Sets for Testing Query Expansion

The queries on shopping dataset are to search for specific products. We adopt k-means

for result clustering. Each result is modeled as a vector whose components are features in

the results and the weight of each component is the TF of the feature. The similarity of two

results is the cosine similarity of the vectors.

Comparison Systems. We compared the proposed ISKR and PEBC algorithms

with several representative query expansion methods:

(1) Data Clouds [76], which takes a set of ranked results, and returns the top-k important

words in the results. The importance of a word is measured by its term frequency in the

results it appears, inverse document frequency, as well as the ranking score of the results

that contain the word. Data Clouds is a representative method for returning important words

in the search results, without clustering the results.

(2) Google. For each test query, we take the first 3-5 related queries suggested by Google

(the number of which is the same as the number of queries generated by other approaches).

Google is a representative work of suggesting related queries using query logs.

(3) CS, representing Cluster Summarization [27]. It first clusters the results, then generates

247

a label for each cluster. The label of a cluster is selected based on the term frequency (tf)

and inverse cluster frequency (icf) of the words in the cluster. CS is a representative method

for cluster summarization and labeling.

(4) F-measure, which is an alternative ISKR algorithm that considers the value of a keyword

k with respect to a query q as the delta F-measure of q after adding k to q or removing k

from q. As discussed in Section 11.3, since our goal function is to maximize the F-measure

of a query, the delta F-measure more accurately reflects the value of a keyword than the

benefit/cost ratio. However, in this approach, after a keyword is added to or removed form

the current query, the values of all keywords will need to be updated, which potentially leads

to a low efficiency.

We implemented Data Clouds and CS.

In ISKR and PEBC, we consider the top-20% words in the results in terms of tfidf

for query expansion. In PEBC, we empirically set the number of points tested in each

iteration as 3, and the number of iterations as 3. Since there are a lot of results for queries

on Wikipedia data set, all systems only consider the top 30 results to generate expanded

queries, where the results are ranked using tfidf of the keywords. We also set the maximal

number of expanded queries for each approach to be 5.

Quality of Query Expansion

The evaluation of the quality of expanded queries consists of a user study and the mea-

surement of scores of the expanded queries (Eq. 11.1).

User Study

We performed a user study an Amazon Mechanical Turk and had 45 users participate in

our survey for evaluating the query expansion approaches. The user study consists of three

parts.

Part 1: Individual Query Score. In order to test whether an expanded query

generated by each approach is helpful for the users, we first asked the users to give a

score for each expanded query in the range of 1-5, which is referred to as individual query

248

0

1

2

3

4

5

ISKR PEBC CS Google DataClouds

Figure 11.1: Average Individual Query Score

0%

20%

40%

60%

80%

100%

ISKR PEBC TFICF Google DataClouds

(A) The expanded
query is highly related

to the search and
helpful.

(B) The expanded

query is related to the
search but there are
better ones.

(C) The expanded

query is not related to
the search.

Figure 11.2: Percentage of Users Choosing Options (A), (B) and (C) for Individual Queries

0

1

2

3

4

5

ISKR PEBC CS Google DataClouds

Figure 11.3: Collective Query Score for Each Set of Expanded Queries

score. The users were also asked to choose one of the options shown in Figure 11.2 as the

justification of the score.

The average score of all 20 queries given by all users for each approach is shown in

Figure 11.1, and the percentage of users choosing each option in this part of the user study

is shown in Figure 11.2. As we can see, ISKR, PEBC and Google have higher average

249

0%

20%

40%

60%

80%

100%

ISKR PEBC CS Google DataClouds

(A) Not

comprehensive and

not diverse

(B) Either not

comprehensive or

not diverse

(C) Comprehensive

and diverse

Figure 11.4: Percentage of Users Choosing Options (A), (B), (C) and (D) for Each Set of
Expanded Queries

query scores than Data Clouds and CS. Recall that data clouds returns the top keywords in

all results in terms of tf, idf and result rank, but such a top keyword may often be too specific

(e.g., “multicellular” for QW7) or too general, which is not informative as an expanded query.

On the other hand, an expanded query generated by ISKR and PEBC maximally retrieves

a cluster of results, thus is likely to have a better semantics. For example, for QW6 ISKR

and PEBC return “island” and “server”, which are more meaningful. Therefore, most users

chose option (A) for both ISKR and PEBC, while data clouds got plenty of (B) and (C).

The CS approach chooses keywords based on TFICF, thus may tend to pick key-

words that have high occurrence (TF) in a few results in the cluster. These keywords do

not retrieve many results in the cluster, thus the users mostly found it less desirable. For

example, for QW6 “java”, it returns a query “Java, blog, Microsoft”, which is too specific and

only cover a small part of the results.

Google chooses keywords based on query log, thus it often returns meaningful and

popular keywords. For example, for QW6 “Java”, Google returns the expanded queries

“Java, Tutorials”, “Java, Games” etc., which are generally very popular with the users. How-

ever, for some queries Google may return keywords that do not occur in the results. For

example, for QS1 “Canon, products”, Google returns a query “Sony, products”. While this

could be useful for some users, our user rating has indicated that many the users prefer the

expanded queries to be results oriented.

There are a few queries that ISKR and/or PEBC do not generate the most meaning-

ful expanded queries. This is mainly because the words that appear frequently in a cluster
250

is not necessarily the best one semantically. It is especially likely for the Wikipedia data

set, as it consists of document-centric XML with sentences/paragraphs, rather than suc-

cinct and informative features. Consider QW1 “San Jose”, for which one of our expanded

queries is “player”. Although this keyword is related to the sports teams of San Jose, the

users suggested that returning team information (e.g., baseball, hockey, etc.) gives better

expanded queries.

Part 2: Collective Query Score. Next we test whether the set of expanded queries

for each user query provides a classification of the original query result set. We asked the

users to give a collective score for all expanded queries of each user query, in the range of

1-5, and choose one of the options in Figure 11.4 as the justification of the score.

For all 20 queries, the collective score of each user query for each approach is

shown in Figure 11.3, and the percentage of users that chose each option is shown in

Figure 11.4. As we can see, ISKR, PEBC consistently received relatively high scores in

collective scoring. Since each expanded query of ISKR and PEBC maximally covers the

results in a cluster and minimally retrieves the results in other clusters, they are usually

comprehensive (i.e., covering various aspects/meanings of the original query) and diverse

(i.e., their results have little overlap). This was appreciated by the users as it is easy for the

users to see all options and decide the expanded query for retrieving the relevant results,

and the users gave favorable scores for ISKR and PEBC.

On the other hand, since Data Clouds only returns the top keywords in the results,

the expanded queries may lack comprehensiveness and diversity. Consider QS1 “Canon,

products”. Both ISKR and PEBC returns three main products of Canon: camera, printer and

camcorder. However, data clouds returns camera, printer and wp-dc26 (a camera-related

product). As we can see, the expanded queries of data clouds do not cover camcorder

products, failing to be comprehensive. Besides, the result of wp-dc26 is contained in the

result of camera, failing to be diverse. As a result, the users mainly chose options (A) and

(B) for data clouds.

For the CS approach, as discussed before, it tends to pick keywords that have high

occurrence in fewer results and do not cover the entire cluster. Such queries are usually too

251

specific and thus fail to be comprehensive. For example, for QW1 “San Jose”, CS returns

“San Jose, sabercat, season, arena” and “San Jose, war, California, gold”. Since these

expanded queries only retrieve a few results in the corresponding clusters, the user found

them not comprehensive. Note that the CS approach has a better score on shopping data

than the Wikipedia data. This is because in the shopping data, results are somewhat similar

in that they share many common keywords. Therefore, even though the CS approach does

not consider the relationship of keywords, the keywords it selects in an expanded query

likely co-occur in many results. On the other hand, on the Wikipedia data, it may choose a

set of keywords, such that each of them has a high occurrence but they do not necessarily

co-occur. Such a query will not retrieve many results which lowers its recall. For example,

for QW9 “mouse”, it returns a query “mouse, technique, wheel, interface”. These keywords

have high occurrences but low co-occurrences.

Since Google chooses expanded queries based on query log, it can also achieve

comprehensiveness and diversity for some queries. For example, for QW6 “Java”, Google

returns the expanded queries “Java, Tutorials”, “Java, Games” and “Java, test”, which

the users considered as comprehensive and diverse. However, sometimes the expanded

queries returned by Google may not be diverse. For example, for QW8 “rockets”, all ex-

panded queries returned by Google are about space rockets, and none of them refers to

the Rockets NBA team.

There are also a few cases where users choose (A) or (B) for ISKR and/or PEBC.

Due to the limitation of the data, we may not have the results that cover all meanings of a

query in the results. As an example, consider query QW1 “San Jose”, the top-30 results are

either about the city of San Jose in California, or about San Jose sports teams. Since San

Jose is also a major city in Costa Rica, which is not covered by our expanded queries, some

users selected (A) or (B) for our approach. Besides, due to imperfect clustering, sometimes

it may be impossible to generate comprehensive and diverse expanded queries.

Part 3. To verify the intuition of our approach, we finally asked the users a general

question: What is your opinion about a good set of expanded queries? According to the

answers from the users, the majority of users considered comprehensiveness and diversity

252

0

0.2

0.4

0.6

0.8

1

QS1 QS2 QS3 QS4 QS5 QS6 QS7 QS8 QS9 QS10

S
co
re
 (
E
q
. 1
)

ISKR PEBC F-measure CS

0

0.2

0.4

0.6

0.8

1

QW1 QW2 QW3 QW3 QW5 QW6 QW7 QW8 QW9 QW10

S
co
re
 (
E
q
. 1
)

ISKR PEBC F-measure CS

(a) Shopping Dataset (b) Wikipedia Dataset

Figure 11.5: Scores of Expanded Queries (Eq. 11.1)

0

0.2

0.4

0.6

0.8

1

QS1 QS2 QS3 QS4 QS5 QS6 QS7 QS8 QS9 QS10

T
im
e
(s
)

ISKR PEBC DataClouds F-measure CS

1.6 6.4 6.5 1.4 32.31.6 6.4 6.5 1.4 32.3

0

0.2

0.4

0.6

0.8

1

QW1 QW2 QW3 QW4 QW5 QW6 QW7 QW8 QW9 QW10

T
im
e
(s
)

ISKR PEBC DataClouds F-measure CS

(a) Shopping Dataset (b) Wikipedia Dataset

Figure 11.6: Query Expansion Time

as important properties for a set of expanded queries, which coincides with the philosophy

of our proposed approaches.

Scores of Expanded Queries Using Eq. 11.1

As defined in Eq. 11.1, the score (goal function) of a set of expanded queries is the har-

monic mean of their F-measures. In this section we test for each user query the score of

expanded queries generated by ISKR, PEBC, the F-measure approach and CS, as shown

in Figure 11.5. Since the queries generated by Data Clouds and Google are not based on

clusters, this score is inapplicable.

As we can see, in general ISKR and PEBC achieve similar and good scores. On the

shopping data, both algorithms achieve perfect score for many queries. This is because on

the shopping data, products of different categories usually have different features. Thus for

queries whose results contain several different product categories (e.g., QS1 “Canon, prod-

ucts” whose products contain camcorders, printers, and cameras), each category forms a

cluster, and it is usually possible to achieve a perfect precision and recall.

253

The scores of ISKR are generally a little better than those of PEBC. The reason is

that in each iteration of ISKR, we select the best keywords to add to q or remove from q.

Thus ISKR, although not necessarily produces the optimal expanded queries, does achieve

some form of local optimality: it stops only if no single keyword can give a better value if

we add it to q or remove it from q. On the other hand, PEBC relies on the assumption that,

if two adjacent points have the highest average score, then the optimal query should lie in

between these two points. Since this assumption is not always true, sometimes PEBC may

not choose the best interval to zoom in. However, if PEBC chooses the right interval at each

iteration, then it may achieve a better quality than ISKR as it will converge to the optimal

solution, as the case of QS4, QW10, etc.

The F-measure approach generally has the same or slightly better quality than ISKR

since delta F-measure is a more accurate measure of the value of a keyword. For some

queries its scores are lower, since both algorithms are heuristics-based and ISKR may

occasionally choose better keywords. However, as shown in Section 11.5, the F-measure

approach has a poor efficiency, while efficiency is highly important for a search engine.

The CS approach usually has a poor score. This is because it chooses a set of

keywords with high TFICF values with respect to a cluster, but these keywords may not

occur in many results in the cluster, thus causing a low recall. For example, for QW5

“eclipse” it returns a query “eclipse, core, plugin, official”. Moreover, as discussed before,

since the CS approach is designed to return cluster labels rather than query results, it does

not consider the interaction of keywords. Therefore, it may return an expanded query whose

keywords have high occurrences, but low co-occurrences.

Efficiency and Scalability

In the efficiency test, we measure the running time of all five methods. For all approaches

except Data Clouds, the response time that the user perceives (besides the query process-

ing time) includes both clustering and query expansion time. The average clustering time

on shopping and Wiki data sets are 0.02s and 0.35s, respectively. For data clouds, we

measure the time for finding the top-k words from a ranked list of results.

254

0

5

10

15

20

25

30

100 200 300 400 500

T
im
e
 (
s)

Number of Results

ISKR

PEBC

Figure 11.7: Scalability of Generating Expanded Queries over Number of Results

The processing time of query expansion is shown in Figure 11.6. In general, the

ISKR algorithm takes more time to generate expanded queries comparing with PEBC. Re-

call that ISKR allows both adding or removing keywords to the current expanded query, thus

it may have a large number of iterations before getting to the point that the query cannot be

further improved. Besides, at each iteration ISKR needs to maintain the values of keywords,

and in the worst case, the values of all keywords need to be updated. For QS8 which has

a large number of results (557) and a large number of distinct keywords (464 in the largest

cluster), it is significantly slower than PEBC.

Both ISKR and PEBC are much more efficient than the F-measure method. As

discussed in Section 11.3, the F-measure method needs to update the values (i.e., delta

F-measure) of all keywords every time a keyword is added to or removed from a query. On

the other hand, ISKR only needs to update the values of the keywords that do not appear in

all delta results, the number of which could be a small percentage of all distinct keywords.

For some queries the F-measure method takes more than 30 seconds. The efficiency of

the CS approach is usually comparable with ISKR and PEBC, since the TFICF of a keyword

can be efficiently computed. Data clouds is generally faster than both ISKR and PEBC, as

it only needs to compute the tf and idf for each keyword in the results.

We have tested the scalability of all three approaches with respect to the number of

results returned by the user query. We use query QW2 “Columbia”, and vary the number

of results from 100 to 500. The time shown for ISKR and PEBC include both clustering

and query generation. As shown in Figure 11.7, the processing time of both approaches

255

increases linearly, and they have a reasonable response time even if 500 results are used.

11.6 Summary

In this chapter we propose a novel framework for query expansion: generating a set of

expanded queries that provides a classification of the original query result set. Specifically,

the expanded queries maximally retrieve the results of the original query, and the results

retrieved by different expanded queries are different. To achieve this, we propose to first

cluster the results, and then generate an expanded query for each cluster, whose set of re-

sults should be as close to the cluster as possible. We formally define the Query Expansion

with Clusters (QEC) problem. This problem is APX-hard. We then design two efficient al-

gorithms ISKR and PEBC for generating expanded queries based on the clustered results.

This approach can be integrated with the structural clustering method discussed

in Chapter 9 in building a query result clustering framework for structured data. As we

discussed before, these two clustering approaches complement each other: the approach

in Chapter 9 is based on structures and this approach is based on values in the results.

The order of applying these two clustering methods depends on which type of ambiguity

(structural or keyword) is considered more important. In general, we believe that structural

ambiguity is more important to address since the user is searching structured data. How-

ever, value-based clustering is also desirable as it complements structured-based cluster-

ing. Therefore, we suggest to interleave these two clustering methods. For example, for

query “auction, buyer, seller, Tom”, intuitively, we should first resolve the ambiguity of key-

word roles: we cluster the results based on whether Tom is buyer, seller or auctioneer.

If more clusters are desired by the user, we can use the value-based clustering method

to refine the clusters into, for example, auctions of cars, auctions of houses, etc. If even

more clusters are needed, we can further refine the clusters using the structural clustering

method based on suffix paths.

Note that both clustering methods generate cluster descriptions: the structural clus-

tering method generates a sentence while this approach generates expanded queries. They

can be combined to generate one description for a cluster generated by the integrated ap-

256

proach. We can add phrase “about [expanded query]” to the sentence generated by the

structural clustering method. For example, “Find auctions about car whose seller is Tom”.

257

Chapter 12

EXPLOITING AND MAINTAINING MATERIALIZED VIEWS

12.1 Motivation and Goal

Efficiency is highly important for a search engine. As discussed in Chapter 1, efficiently gen-

erating results for keyword search on structured data is more challenging than processing

structured query or text search due to the larger search space. In this chapter, we discuss

how to efficiently generate query results for keyword search on XML using materialized

views, and how to incrementally maintain the views when the data is updated.

Materialized views have been proved successful for performance optimization in

evaluating structured queries on databases [16, 110, 14, 129, 103, 143]. They have also

been widely used in web applications. Caching query results as materialized views at the

application tier can decrease the workload of the servers. Exploiting materialized views at

client side can further decrease the number of network accesses.

Given the benefits of materialized views in structured query processing, it is a natu-

ral idea to explore them in the context of XML keyword search. In this part of the thesis, we

study two problems. First, how should we leverage materialized views of previous keyword

search results for efficient evaluation of new keyword searches on XML? Second, when

the source data is updated, how should we incrementally maintain materialized views of

XML keyword search to keep them fresh? Due to the differences of syntax, semantics and

query processing techniques between XPath/XQuery and keyword searches, answering

these questions for XML keyword searches presents a new set of challenges.1

How to exploit materialized views for query evaluation. Suppose we have a

set of materialized views of previous XML keyword search results. Upon the arrival of a

keyword query, we would like to utilize materialized views as much as possible in order

to gain performance improvements. The first question is how to determine which views

are relevant to a given query. If a relevant view itself can not answer the query, then

1A plausible approach would internally convert a keyword query to an XQuery and then directly use XQuery
query processing and optimization techniques. However, as evaluated in the literature [86, 43], such an ap-
proach incurs unnecessary high time complexity. Therefore query processing techniques are specifically de-
veloped to efficiently handle keyword queries in all existing XML search engines.

258

can we find a set of views which together can answer the query, i.e. an answer set?

Furthermore, if there are several answer sets, we need to efficiently find the optimal one for

query answering.

Different techniques are needed to answer these questions for XML keyword search

compared with XPath/XQuery. For instance, unlike XPath/XQuery where relevant views to

a query are the ones that have containment relationship with the query,2 new techniques

are needed to identify relevant views for XML keyword search, as no two distinct keyword

queries have containment relationship according to query result definitions in the litera-

ture [56, 144, 43, 86, 91, 82, 61]. On the other hand, if there are several answer sets to a

query in the materialized views, it is often hard to find the optimal one (with an approxima-

tion bound) for XPath/XQuery; while we have designed an efficient 2(ln|Q|+1) approxima-

tion algorithm for identifying optimal answer set for XML keyword search. Furthermore, the

techniques of answering queries using views must be different.

Example 12.1 Consider a keyword search query (Brooks Brothers, store, Texas, name,

city) on the XML data in Figure 1.3. Given a set of materialized views, we first need to iden-

tify which ones are relevant. Suppose we find relevant views: V1: (Brooks Brothers, store,

Texas), V2: (Texas, name), V3: (store, city) and V4: (Brooks Brothers, store, city). Then how

should we maximally exploit relevant views with minimal accesses to the source data and

index? Assuming that we find two sets of views to answer the query: S1 = {V1, V2, V3}, S2 =

{V2, V4}. Then we need to efficiently select the best answer set in order to minimize query

processing cost. Furthermore, techniques need to be developed to use the selected view

set for query answering.

How to incrementally maintain materialized views. For a materialized view to

be useful for evaluating new queries, it must be up-to-date with respect to dynamic source

data. Given an update to the source data, which materialized views are affected? Can we

maintain these materialized views incrementally using the original views and a small frag-

ment of the source data without re-computing the views on the updated data from scratch?

2A query Q is contained in Q′ if and only if the result of Q is contained in the result of Q′ for any XML data.

259

These questions pose unique challenges for maintaining materialized views of XML

keyword search compared with structured queries. Due to the ambiguity of keyword search,

a search engine may not always be able to accurately identify user intentions. Many ap-

proaches therefore follow the best-effort approach to determine the semantics based on

the current XML document and user input keywords [144, 56, 43, 86, 82]. When new

knowledge is added to the data, they may refine their semantics and the corresponding

query results. Therefore even if we only consider the AND semantics of keyword searches,

inserting new data nodes can result in deletions in the materialized views, as shown in

Example 12.2. This is different from structured queries, where unless the view definition

contains negation, insertion to the data will not cause deletion in the materialized views.

Similarly, deletion in XML data can cause insertions to the materialized views of keyword

searches.

Example 12.2 Consider a materialized view V for keyword search query Q (Accord, award)

on the XML tree D in Figure 12.1. It is reasonable that the keyword matches in the subtree

rooted at node dealer (2) constitute query result V . Now we insert a subtree rooted at

award (10) into D and obtain the new XML tree D′. Leveraging the information of the newly

inserted data, a better semantics of Q would be: searching for the award of Accord cars.

To be consistent with this semantics, award (4) in the result V should be replaced with the

newly inserted award (10) [144, 91, 86, 56].

To address these challenges, we present in Section 12.3 a general framework for

exploiting materialized views for XML keyword search. We first identify the relevant materi-

alized views that potentially can be used to answer a user query. We prove that given a set

of relevant materialized views V and a user query Q, the decision problem of finding the

minimal answer set in V is NP-complete.

We design and implement an XML keyword search engine that can answer queries

using materialized views. A polynomial time approximation algorithm is proposed that finds

the optimal answer set of materialized views to evaluate the input query. In order to keep

the materialized views fresh, they are incrementally maintained upon XML data insertion or

260

dealers(1)

dealer(2)

name(3)

Honda of
Stevens Creek

award(4)

title(5)

President’s
Award

year(6)

2006

cars(7)

car(8)

make(9)

Accord

award(10)

title(11)

CNN Best
Cars (mid-
size sedan)

year(12)

2006

D
D’

Figure 12.1: XML Trees D and D′

deletion. The realization of these functionalities depends on how query results are defined.

Our keyword search engine adopts a commonly used semantics to define query results

for XML keyword search, the SLCA semantics, which will be reviewed in Section 12.4.

SLCA semantics is used in XML keyword search systems,3 including [86], XSeek [91],

XKSearch [144], [126] and [61]. The techniques that we propose for answering queries

using views and maintaining materialized views of XML keyword searches can be directly

incorporated into these systems.

Our study of exploiting materialized views for evaluating XML keyword searches ap-

peared as a poster paper in the 24th International Conference on Data Engineering (ICDE),

2008 [92].

12.2 Definitions

We consider an XML tree model, in which internal nodes denote elements and attributes,

and leaf nodes denote text values. Two update operations on XML data are supported. It

is easy to see that any updates to the data can be accomplished by a sequence of these

primitive update operations.

3Some systems perform additional node filtering after SLCA computation is done.

261

1. Insert(n, n′), denoting an insertion of a tree rooted at node n as a child of node n′.

2. Delete(n), denoting a deletion of node n along with its subtree.

In the following, we use delta tree to refer to the inserted or deleted subtree.

In this thesis we study incremental view maintenance upon an insertion and deletion

of a single subtree. Multiple updates can be coped with one by one using our techniques.

Note that there is a trade-off between the cost of update and the freshness of views. Main-

taining the views after a number of data updates can potentially be less expensive than

doing so after each single update; however, the latter guarantees that the views keep fresh

and the former one does not. Different applications may be better served by different strate-

gies.

The query issued by user is a set of keywords. We take the AND semantics of XML

keyword search and define the query result of XML keyword search as follows.

Definition 12.1 The query result of evaluating a keyword search Q on XML data D, de-

noted as Q(D), consists of selected lowest common ancestors (LCA) of keyword matches

of Q. Specially, each s ∈ Q(D) satisfies: the set of keyword matches in s’s subtree contains

at least one match to each keyword in Q; and this set is not the same as the set of keyword

matches in the subtree rooted at any child of s.

A materialized view is a query whose result is materialized. Queries and views are

used interchangeably.

The size of a query Q, denoted as |Q|, is the number of keywords in Q. The size of

a query result (or materialized view) on data D, denoted as |Q(D)|, is the number of data

nodes it has.

Definition 12.1 gives a general definition of XML keyword search result for AND

semantics. It specifies a necessary condition that each XML keyword search result should

satisfy. There are many variations in the literature of defining query results for XML keyword

262

search involving AND condition [56, 86, 43, 144, 61, 82, 91], all of which are special cases

of Definition 12.1.

We also define the relationship between two keyword queries with respect to the

set of keywords they contain.

Definition 12.2 Let Q1 and Q2 be two keyword queries. We say Q2 is a subquery of Q1,

or Q1 is a superquery of Q2, denoted as Q2 E Q1, if every keyword in Q2 is in Q1. Q2 is

a proper subquery of Q1, denoted as Q2 ▹ Q1, if Q2 E Q1, and there exists a keyword k,

k ∈ Q1, k /∈ Q2.

Q is a union (intersection) of Q1 and Q2, denoted as Q = Q1 ∪Q2 (Q = Q1 ∩Q2),

if Q consists of the keywords that are in either Q1 or Q2 (in both Q1 and Q2).

The difference of Q1 and Q2, denoted as Q1 − Q2 is a query that consists of the

keywords in Q1 except those also in Q2.

12.3 Analysis

Given the general definition of XML keyword search result, we now discuss how to identify

relevant views, answer sets, and the minimal answer set of a query, in order to leverage

materialized views for query answering.

Definition 12.3 A set of view V = {V1, V2, . . . , Vm} can answer query Q, if there exists

an algorithm A such that for any data D, Q(D) = A(V(D)), where V(D) is the set of

materialized views, V(D) =
∪
{V (D)|V ∈ V}. V is named as an answer set of Q.

Next we discuss how to exploit materialized views in the context of XML keyword

search. The following proposition shows that only the views that are subqueries of a query

Q are relevant for evaluating Q.

Proposition 12.1 Consider a universe of keywords K = {k1, k2, . . . , kn}, a set of materi-

alized views V = {V1, V2, . . . , Vm}, Vi EK, 1 ≤ i ≤ m, and a query QEK. Let V ′ be the

263

u

v

k1 k2 kn…

k

Figure 12.2: Proposition 7.2

set of subqueries of Q in V : V ′ = {V |V ∈ V ∧ V EQ}. We claim that Q can be answered

by V if and only if Q can be answered by V ′. A view in V ′ is called a relevant view to Q.

Proof. ⇐: If Q can be answered by V ′, since V ′ ⊆ V , Q can be answered by V .

⇒: Suppose (i) Q can be answered by V , (ii) but can not be answered by V ′.

Assumption (ii) indicates that there exists a document D, for which there does not exist

an algorithm A, such that A can derive the results of Q(D) from V ′(D) (i.e. A(V ′(D)) =

Q(D)). Now for every distinct word in tag names or text values t in D, t /∈ Q, we replace all

the occurrences of t with t′, where t′ is a word that does not appear in D, and denote the

new XML tree to be D′. Since D′ and D only differ in non-keyword words, Q(D) = Q(D′),

V ′(D) = V ′(D′). According to the assumption (ii), there does not exist algorithm A such

that A(V ′(D′)) = Q(D′). From the construction of D′, it is easy to see that for any view

Vi that contains keywords that are not in Q (i.e. Vi ∈ V , Vi /∈ V ′), we have Vi(D′) = ∅.

Therefore V(D′) = V ′(D′). Together with the assumption (ii), we have: there does not exist

an algorithm A such that A(V(D′)) = Q(D′). However, this indicates that Q can not be

answered by V (on XML document D′), which conflicts with assumption (i).

Proposition 12.2 shows that an answer set of an XML keyword query Q must have

the union of keywords to be the same as the set of keywords in Q.

Proposition 12.2 Given a query Q and a set of relevant materialized views V = {V1, V2, . . . , Vm},

Vi E Q, 1 ≤ i ≤ m, if Q can be answered by V , i.e V is an answer set of Q, then∪
(V | V ∈ V) = Q.

264

Proof. Assume that Q can be answered by V , but
∪
(V | V ∈ V) ̸= Q. Since

Vi E Q, there exists a keyword k such that k ∈ Q, and k /∈
∪
(V | V ∈ V). Let the set of

keywords
∪
(V | V ∈ V) be {k1, k2, ..., kn}. We can construct an XML tree D as illustrated

in Figure 12.2. Note that we must have the knowledge of where the matches to k locate,

in order to find the result of Q. However, none of the views in V provides such information

according to Definition 12.1. Therefore, Q can not be answered by V .

To answer a keyword query Q from a set of views that satisfies the condition in

Proposition 12.2, we must find an algorithm that can compute the query result of Q from

the results of Q’s (proper) subqueries. However, whether this is achievable depends on the

definition of the keyword query result. Note that if, for a query result definition, the result

of a query can not be computed from the results of its proper subqueries, then only the

materialized view that is exactly the same as a query can be used to answer the query,

which significantly limits the practical benefits of materialized views. Therefore in the rest

of the papers, we do not consider such a trivial case, and focus the discussion on the

general case where the answer set of a query can be any set of materialized views satisfying

Proposition 12.2.

Fortunately, a commonly used query result definition of XML keyword search, SLCA [144,

91, 61, 126], allows the result of a query to be computed from the results of its subqueries,

as will be analyzed in Section 12.4. It is an open question whether other XML keyword

search result definitions in the literature allow query answering using subqueries.

If for a given query, there are multiple answer sets in a set of materialized views,

then we need to find the best one. Intuitively, the fewer number of views in an answer set,

the more efficiently it can be used to answer the query due to less computational cost and

smaller intermediate query results.4 However, finding such an answer set is hard.

Definition 12.4 Consider a universal keyword set K, a query Q, Q ⊆ K, and a set of

materialized views V , ∀V ∈ V , V ⊆ K. The minimal answer set problem is the following:
4To be more accurate, we should select the answer set that can evaluate the query with the minimal cost.

However, the cost measurements depend on the complexity of the algorithms that answer a query using views,
which in turn depends on the definition of query result. Therefore we defer the discussion of finding the optimal
answer set with minimal cost in Section 12.4 when the query definition is set.

265

given an integer i, can we find an answer set V ′ of Q, i.e. V ′ ⊆ V , ∀V ∈ V ′, V E Q,∪
(V | V ∈ V ′) = Q, such that |V ′| ≤ i?

Theorem 12.1 The minimal answer set problem is NP-complete.

Proof. It is easy to see that this problem is in NP. We prove that this problem is

NP-complete by reducing the set cover problem to it in polynomial time, that is, Set cover

≤P minimal answer set. Consider an instance of Set Cover: a universe U , a collection S

of subsets of U , ∀S ∈ S, S ⊆ U , and an integer j, can we select a collection S ′ of at most

j subsets from S, S ′ ⊆ S, whose union is the universe U , i.e.
∪
(S | S ∈ S ′) = U? We

construct a transformation in polynomial time: let K = U , V ′ = S ′, V = S, Q = U , and

i = j. It is easy to see that U has a set cover S ′ with at most j subsets if and only if Q has

an answer set V ′ with at most i views.

12.4 Accelerating XML Keyword Search Using Materialized Views

Section 12.3 discusses the problem of identifying relevant materialized views and minimal

answer sets for XML keyword search queries in general. Several problems remain to be

addressed in order to feasibly and fully exploit materialized views. First, how to evaluate

a query from an answer set? Second, how to find the optimal answer set that requires

the minimal cost of query processing? Third, if we can not find an answer set for a query,

can we maximally leverage the relevant views with minimal accesses to source data/index?

Finally, how can we efficiently keep materialized views up-to-date? The answers to these

questions depend on the specific definition of keyword query result.

In this Section, we present an XML keyword search system that exploits materi-

alized views by answering the above questions. It adopts a commonly used query result

definition based on the semantics of SLCA, which (or its variation) is used in many XML key

search engines.

Search Semantics

To define query results of an XML keyword search, we follow the widely adopted semantics,

Smallest Lowest Common Ancestor (SLCA).
266

For the convenience of notation, we overload the concept of SLCA with respect to

XML node sets instead of keywords.

Definition 12.5 Let N1, N2, ..., Nn be n sets of nodes in XML dataD. SLCA(D, N1, N2, ..., Nn)

consists of all such nodes s:

1. s contains at least one node in each Ni (1 ≤ i ≤ n) in its subtree.

2. There does not exist a descendant of s that satisfies condition 1.

As we can see, suppose query Q contains keywords k1, ..., kn, and let Mi be the

set of matches to ki (1 ≤ i ≤ n), then SLCA(D, Q) = SLCA(D,M1,M2, ...,Mn).

As an example, for query Q = (A, B) on the XML data D1 in Figure 12.5, we have

SLCA(D1, {A,B}) = SLCA(D1, matches to A, matches to B)= {E (0.1.2)}.

To efficiently retrieve query result of XML keyword search, we need to be able to

quickly find out the lowest common ancestor of nodes. For this purpose, we assign each

XML node n a Dewey label [133] as a unique ID, referred as Dewey(n). We record the

relative position of a node among its siblings, and then concatenate these positions using

dot ‘.’ starting from the root to compose the Dewey ID for the node. Dewey ID can be used

to detect the relationship between nodes. A node n1 is an ancestor of node n2 if and only

if Dewey(n1) is a prefix of Dewey(n2). This indicates that the lowest common ancestor

(LCA) of nodes n1 and n2 has the Dewey ID which is the longest common prefix of Dewey(n1)

and Dewey(n2). Besides, we say Dewey(n1) is smaller than Dewey(n2) if n1 appears be-

fore n2 in document order.

Furthermore, to retrieve keyword matches efficiently, we build the commonly used

data inverted index which maps a word in the data to a sorted list of the Dewey IDs of the

data nodes whose tags or text values contain this word.

267

Answering Queries using Materialized Views

In this section, we present the algorithm of answering queries using relevant views for query

result definition given in Definition 4.7. We first show that a keyword query can be answered

by a set of subqueries whose union is equal to the query.

Proposition 12.3 For two queries Q1 and Q2 on dataD, SLCA(D, Q1 ∪Q2) = SLCA(D,

SLCA(D, Q1), SLCA(D, Q2)).

Proof. According to Definition 4.7, for each s ∈ SLCA(D,

Q1 ∪Q2), s contains all the keywords in both Q1 and Q2. Therefore s must contain at least

one node in SLCA(D, Q1) and one node in SLCA(D, Q2) in its subtree. Furthermore,

none of s’s descendants can contain a node in SLCA(D, Q1) and a node in SLCA(D, Q2)

in its subtree (otherwise, such a descendant disqualifies s to be in SLCA(D, Q1 ∪ Q2)).

According to Definition 12.5, all such s nodes compose SLCA(D,

SLCA(D, Q1), SLCA(D, Q2)).

Proposition 12.1 For query Q = Q1 ∪ Q2 ∪ ... ∪ Qk, we have SLCA(D, Q) = SLCA(D,

SLCA(D, Q1), ..., SLCA(D, Qk)).

Given a query Q and a set of materialized views V , if a keyword in Q is not in

any views in V , then V itself is not sufficient to answer the query. To maximally leverage

materialized views, we relax the definition of answer set as a subset of views V ′ that contain

all keywords in Q found in V . When V ′ ̸= Q, we additionally access the data inverted index

to retrieve the matches to keywords that are in Q but not in V ′, which together with V ′ can

answer Q.

Definition 12.6 Given a query Q and a set of materialized views V , we generalize the

answer set of Q as V ′, such that V ′ ⊂ V ,
∪
(V | V ∈ V ′) =

∪
(V | V ∈ V) ∩Q.

The algorithm of answering a query using views is presented in Figure 12.3. It first

invokes procedure findRelV iews (Figure 35) to find answerSet, an answer set of Q from
268

1: answerSet = findAnswerSet(Q, V)
2: if answerSet ̸= ∅ then
3: SLCA(D, Q) = answerSet[1]
4: for j = 2 to answerSet.size do
5: SLCA(D, Q) = computeSLCA(SLCA(D, Q),

SLCA(D, answerSet[j])) {apply the algorithm
in [144]}

6: for each keyword k in Q− answerSet do
7: SLCA(D, Q) = computeSLCA(D, SLCA(D, Q),

matches of k in D) {apply the algorithm in [144]}

Figure 12.3: Answering Query Using Views

V (line 1). Then it computes the SLCAs of the views in the answer set (line 2-5). If Q has

a keyword k that is not in the answer set, we access the data inverted index to retrieve the

matches to k, which is used to answer Q according to Corollary 12.1 (line 6-7).

Example 12.3 Consider evaluating Q = {A,B,C,D,E} given a set of materialized views

V : Q1 = {A,B}, Q2 = {A,B,C}, Q3 = {D}, Q4 = {B,D}, Q5 = {E,F}. Q1, ..., Q4 are

subqueries of Q and therefore are relevant to Q. Since keyword E is not in any view that is

a subquery of Q, we need to access the matches to E in the data inverted index.

For the purpose of computing SLCA, we adopt the algorithm proposed in XK-

Search [144].5 The cost of answering Q on data D with a set of materialized view V using

the Algorithm in Figure 12.3 is

cost(SLCA) = O(|Vmin| ·
∑
Vi∈V

log|Vi|) (12.1)

which is bounded by O(|Vmin(D)||V|log|Vmax(D)|), where Vmin and Vmax are the smallest

set and biggest set, respectively, among all materialized views in the answer set together

with the sets of keyword matches retrieved from the data inverted index.

Finding Optimal Answer Set

In Section 12.3 we discussed the problem of selecting the minimum answer set with respect

to a general query result definition for XML keyword search, which is NP-hard. Now we

5Specifically, our implementation adopts the Indexed Lookup Eager algorithm, as it generally outperforms
Scan Eager and stack algorithms.

269

discuss for SLCA semantics, whose time complexity of answering queries using views is

given in Eq. 12.1, how to select the optimal answer set of a query which has the minimal

cost of processing the query among all answer sets. It is easy to see that this problem is

also NP-complete, as in the special cases when each materialized view has the same size,

the goal becomes finding the smallest number of views, which is the same as the minimal

answer set problem shown to be NP-complete in Theorem 12.1.

We propose Algorithm 12.4 in search of the optimal answer set from a set of ma-

terialized view V for query Q on data D.6 Let VQ be the set of relevant materialized views

of Q in V , answerSet be the set of views selected from VQ to evaluate Q, currQ record

the remaining keywords in Q that are not in answerSet. We set Q.cost = log|Q(D)|,

where |Q(D)| denotes the size of the materialized view of Q. According to the time com-

plexity of answering a query using views that we have discussed, it is crucial to first pick

the relevant materialized view Q (i.e. Q ∈ VQ) whose size |Q(D)| is the smallest, i.e.

Q.cost is minimal among all relevant views to minimize the processing cost (line 5). Let this

view be Qs. Now the problem becomes: selecting a subset of VQ whose union is equal to∪
(Q | Q ∈ V) ∩ Q − Qs, such that the cost

∑
Qi∈V

log|Qi| is minimized. We use a greedy

algorithm to select the rest of the views. For each Q′ ∈ VQ, we use Q′.cover to record the

number of uncovered keywords in Q that can be covered by Q′, which is initialized to be

|Q′|, and Q.benefit = Q.cover/Q.cost. At each step, we select the view that has the max-

imal benefit value among all the views in VQ, with ties broken arbitrarily (line 13). When

a query Q′ is chosen and added to answerSet, for each previously uncovered keyword

k that is now covered by Q′, we find each view Q′′ in VQ that contains k, and decrease

Q′′.cover by one, and update Q′′.benefit (line 6-9, 16-19). The procedure continues till all

the keywords in Q are covered, or none of the views in VQ can provide additional cover (line

12, 14-15).

After selecting a set of relevant views, we invoke the Algorithm in Figure 12.3 to

compute the results of Q using views and data inverted index if necessary.

6Although the processing cost in Eq. 12.1 involves both materialized views and keyword match lists, we
only need to discuss how to select views to compose an answer set since keyword match lists are determined
directly by

∪
(V | V ∈ V) ∩Q.

270

1: currQ = the set of keywords in Q {currQ records the set
of uncovered keywords in Q}

2: answerSet = ∅ {answerSet records the set of selected
materialized views}

3: VQ is a subset of V consisting of subqueries of Q
4: for Q′ ∈ VQ, set Q′.cover = |Q′|, Q′.cost = log|Q′(D)|,

Q′.benefit = Q′.cover/Q′.cost
5: select Q′ such that Q′.cost is minimal over all views in VQ
6: for each keyword k ∈ Q′ do
7: for each view Q′′ ∈ VQ that contains k do
8: Q′′.cover = Q′′.cover-1
9: Q′′.benefit = Q′′.cover/Q′′.cost

10: answerSet = answerSet ∪Q′

11: currQ = currQ - Q′

12: while currQ ̸= ∅ do
13: select Q′ such that Q′.benefit is maximal over all

views in VQ
14: if Q′.benefit=0 then
15: break
16: for each keyword k ∈ currQ ∩Q′ do
17: for each view Q′′ ∈ VQ that contains k do
18: Q′′.cover = Q′′.cover-1
19: Q′′.benefit = Q′′.cover/Q′′.cost
20: answerSet = answerSet ∪Q′

21: currQ = currQ - currQ ∩Q′

22: return answerSet

Figure 12.4: Find Answer Set for a Query

Example 12.4 Continuing Example 12.3, we have VQ is {Q1, Q2, Q3, Q4}, and initialize

currQ = {A,B,C,D,E}, and answerSet = ∅. Suppose their costs (the size of the mate-

rialized views) are 100, 60, 80 and 20, respectively. Since Q4.benefit = Q4.cover/Q4.cost

= 0.1 has the largest benefit in VQ, we update answerSet = {Q4}, currQ = {A,C,E}.

Now Q3.cover = Q4.cover = 0, Q1.cover = 1 and Q2.cover = 2. Next step, we choose

the view with the largest benefit: Q2, and update answerSet = {Q2, Q4}, currQ = {E}.

Now, no query in VQ covers any keyword in currQ, so the algorithm in Figure 35 terminates.

To compute SLCA(D, Q), we invoke the algorithm in Figure 12.3. We first compute

SLCA(D, Q) = SLCA(D, SLCA(D, Q2),

SLCA(D, Q4)). Then we access the data for the matches to keyword E in currQ, and

update SLCA(D, Q) = SLCA(D, SLCA(D, Q), matches of E).

Note that although the algorithm looks similar as the greedy algorithm for weighted

set cover problem, the cost of answering queries using views is not the summation of the
271

cost of all selected views, as the case for weighted set cover. We know that the greedy

algorithm of weighted set cover has an approximation ratio of ln|Q|+1. Now an immediate

question is whether the algorithm in Figure 35 has an approximation bound. We prove that

the cost of answering a query Q using the answer set returned by Figure 35 is no more than

2(ln|Q|+ 1) times of the cost of answering Q using the optimal answer set.

Theorem 12.2 The algorithm in Figure 35 can find the optimal answer set with an approxi-

mation ratio of 2(ln|Q|+ 1), where |Q| is the number of keywords in Q.

Proof. We use OPT to denote the cost of answering the query using the optimal

answer set S, and APP to denote that using the answer set S′ found by the algorithm

in Figure 35. Suppose S consists of p views: S = {V1...Vp}, where V1 is the smallest

materialized views in S; and S′ has q views: S′ = {V ′
1 ...V

′
q}, where V ′

1 is the smallest

materialized view in S′. So we have OPT = |V1(D)| ·
p∑

i=2

log|Vi(D)|, and APP = |V ′
1(D)| ·

q∑
i=2

log|V ′
i (D)|.

Consider an instance Ins of the Weighted Set Cover (WSC) problem: a universe U

consists of all keywords in Q, and a collection S consists of subsets of U , ∀S ∈ S, S ⊆ U .

Each S ∈ S is associated with a cost cS which is a positive real number. In Ins, each S is

a view V ∈ VQ, and cV = V (D). WSC is the problem of finding a collection S ′ ⊆ S, such

that
∪
(S | S ∈ S ′) = U and

∑
S∈S′

cS ≤ l. Suppose for Ins, the optimal cost is OPTIns.

Let Ins′ be another instance of WSC, in which each keyword k ∈ V ′
1 is removed

from the universal set U , and all other settings are the same as Ins. Let the optimal cost of

Ins′ be OPTIns′ .

Since V1 is the smallest materialized view in S, we have

p∑
i=2

log|Vi(D)| ≥
p− 1

p
·

p∑
i=1

log|Vi(D)| ≥
p− 1

p
OPTIns

which means

OPT ≥ |V1(D)| ·
p− 1

p
·OPTIns (12.2)

272

On the other hand, after we choose the smallest materialized view V ′
1 from VQ in

the algorithm in Figure 35, the problem has become exactly WSC’ described above. The

procedure of choosing V ′
2 ...V

′
q in Figure 35 has an approximation ratio of ln|Q|+1 [44].

Therefore,

q∑
i=2

log|V ′
i (D)| ≤ OPTIns′ · (ln|Q|+ 1)

≤ OPTIns · (ln|Q|+ 1)

which means

APP ≤ |V ′
1(D)| ·OPTIns · (ln|Q|+ 1) (12.3)

According to Figure 35, V ′
1 is the smallest materialized view in VQ, we have |V1(D)| ≥

|V ′
1(D)|. When p = 1, there is only one relevant view and our algorithm finds it as the opti-

mal solution. When p > 2, from Eq. 12.2 and Eq. 12.3 we have

APP

OPT
≤ 2(ln|Q|+ 1)

As we can see, there are several operations that are often performed in Figure 35,

including finding whether a view is materialized, and finding all views that cover a given a

keyword. To speed up the processing, we build a view inverted index maps a word to a

sorted list of IDs of the queries that contain this word. A view existence index maps a query

to a boolean value, denoting whether the result of the query is materialized or not.

Now we analyze the complexity. In line 3, we find all subqueries of Q that are

materialized, which takes O(|V|), where |V| is the number of materialized views. The while

loop in line 12-22 is similar to the greedy algorithm for weighted set cover problem [44],

which takes O(|V||Q|2).The total time complexity of the algorithm in Figure 35 is therefore

O(|V||Q|2).

12.5 Incrementally Maintaining Views

For materialized views to be useful, they need to keep fresh upon data updates. In this Sec-

tion, we discuss how to incrementally maintain materialized views of XML keyword search
273

A
0

A
0.0

B
0.0.0

C
0.1

E
0.1.0

A
0.1.0.0

C
0.1.0.1

A
0.1.0.2

C
0.1.0.0.0

D
0.1.0.1.0

D
0.1.0.2.0

E
0.1.1

A
0.1.1.0

C
0.1.1.1

C
0.1.1.2

B
0.1.1.0.0

D
0.1.1.1.0

A
0.1.1.2.0

E
0.1.2

A
0.1.2.0

B
0.1.2.1

C
0.1.2.2

A
0.1.2.0.0

E
0.1.2.1.0

B
0.1.2.2.0

D1 D2

Figure 12.5: XML Trees D1 and D2

upon insertion and deletion of an XML subtree.

Identifying Affected Views Not all the views are affected by an XML data update.

The first task is to efficiently identify affected views to be checked for maintenance. Note

that SLCA is defined based on the nodes that match keywords, thus a view may be affected

by an update if the delta tree contain at least one match to a keyword in the view. For

a given update, we traverse the delta tree (inserted subtree or deleted subtree) and find

the keywords contained in the update. For each keyword, we use the view inverted index

(introduced in Section 12.4) to find out the list of views that contain this keyword. Then by

traversing on these lists in a similar fashion as merge-sort, we can find out all the views

that need to be checked for maintenance, and the keywords in the update tree that each

view contains. Next we focus the discussion on maintaining each view for data insertion

and data deletion, respectively.

Incremental View Maintenance upon Insertion

For materialized views to be useful, they need to be maintained upon insertions or deletions

of subtrees.

First let us look at how to identify affected views to be checked for maintenance

274

upon an update. Recall that SLCA is defined based on the nodes that match keywords,

thus a view may be affected by an update if the delta tree contains at least one match to

a keyword in the view. For a given update, we traverse the delta tree (inserted subtree or

deleted subtree) and find the keywords contained in the update. For each keyword, we use

the view inverted index (introduced in Section 12.4) to find out the list of views that contain

this keyword. Then by traversing on these lists in a similar fashion as merge-sort, we can

find out all the views that need to be checked for maintenance, and the keywords in the

update tree that each view contains.

In this Section we discuss view maintenance for data insertion. Consider the inser-

tion of a subtree rooted at node n to a node n′ in an XML tree, Insert(n, n′). Suppose the

original data is D1, the updated data is D2,7 and the inserted subtree is T . A data insertion

can result in an insertion and deletion in the view.

The algorithm of maintaining the materialized views of keyword search upon a sub-

tree insertion is presented in Figure 37. We consider two different cases.

Case 1: The inserted subtree T contains all keywords in Q (line 5-11 of Figure

37). Since there must exist nodes in T that are the SLCA nodes of Q, such an insertion

qualifies new SLCA nodes. We apply the algorithm proposed in [144] on T to compute

SLCA(T , Q), and have SLCA(T , Q) ⊆ SLCA(D2, Q).

Example 12.5 ConsiderD2 in Figure 12.5, obtained after an insertion of a subtree T rooted

at node A(0.1.0.2) to the original tree D1. Let a query Q be {A,D}. We have node

SLCA(D1, Q) = {0.1.0, 0.1.1}. Since T contains both keywords in Q, by applying algo-

rithm [144], we have node A(0.1.0.2) ∈ SLCA(D1, Q) as a new SLCA.

On the other hand, SLCA(T , Q) may disqualify some existing SLCA nodes. Specif-

ically, if a node in SLCA(T , Q) is a descendant of an SLCA node s ∈ SLCA(D1, Q), then

s is no longer an SLCA on the updated data D2. To find such s node(if exist), instead

of checking every node in SLCA(T , Q) with respect to SLCA(D1, Q), it is equivalent

7Note that upon a data update, the Dewey labels of some nodes may be affected. Efficient maintenance of
Dewey labeling is an orthogonal issue, and has been investigated in literature [80, 41, 109].

275

1: input: query Q, SLCA(D1, Q), original data D1, Insert(n, n′), new data D2,
delta tree T

2: output: SLCA(Q,D2)
3: let k1, . . . , kp be keywords in Q that are not contained in T
4: SLCA(D2, Q)← SLCA(D1, Q)
5: if T contains all keywords then
6: SLCAT ← computeSLCA(T , Q) {apply the algorithm in [144]}
7: if if n is a descendant of s ∈ SLCA(D1, Q) then
8: SLCA(D2, Q)← SLCA(D2, Q)− {s}
9: SLCA(D2, Q)← SLCA(D2, Q) ∪ SLCAT

10: return SLCA(D2, Q)
11: currLCA← n
12: for j ← 1 to p do
13: currLCA← the ancestor of currLCA and lowest(kj , currLCA,D1) [144]
14: if currLCA is not an ancestor of any s ∈ SLCA(D1, Q) then
15: SLCA(D2, Q)← SLCA(D2, Q) ∪ currLCA
16: if currLCA is a descendant of s then
17: SLCA(D2, Q)← SLCA(D2, Q)− {s}
18: return SLCA(D2, Q)

lowest (kj , r,D1)

1: {lowest(kj , r,D1) is lowest ancestor-or-self of node r in D1 that contains a
match to keyword kj .}

2: lm← leftMatch(kj , r,D1)
3: rm← rightMatch(kj , r,D1)
4: return the lower one of LCA(lm, r) and LCA(rm, r)

Figure 12.6: View Maintenance upon Data Insertion

to check n. Intuitively, if n is a descendant of s ∈ SLCA(D1, Q), then for every node

sT ∈ SLCA(T , Q), sT is a descendant of s. On the other hand, if node sT is a descendant

of s, then n must be a descendant of s, as s is not a node in the tree rooted at n. Since

SLCA nodes do not have ancestor-descendant relationship, there is at most one ancestor

of n in SLCA(D1, Q), which can be found efficiently according to the following proposition.

Proposition 12.4 If there is a node s ∈ SLCA(D, Q) that is an ancestor of n, then s has

the largest Dewey ID that is smaller than Dewey(n) among all the nodes in SLCA(D, Q).

Proof. Suppose s does not have the largest Dewey ID that is smaller than Dewey(n)

among all nodes in SLCA(D, Q), i.e. there is a node s′ ∈ SLCA(D, Q), such that

Dewey(s) < Dewey(s′) < Dewey(n). Since Dewey(s) is a prefix of Dewey(n), it is

easy to see that Dewey(s) must also be a prefix of Dewey(s′), and therefore s is an ances-

tor of s′. However, since SLCA nodes do not have ancestor-descendant relationship, this is

impossible, thus s must have the largest Dewey ID that is smaller than Dewey(n).

276

Symmetrically, we have the following proposition with omitted proof due to limited

space, which will be used later in this Section.

Proposition 12.5 If there are nodes in SLCA(D, Q) that are descendants of n, then node

s with the smallest Dewey ID that is larger than n among all the nodes in SLCA(D, Q) is a

descendant of n.

The propositions show that to find the ancestor (descendant) of a given node n in

SLCA(D, Q), we only need to search node s with the largest Dewey ID that is smaller than

Dewey(n) (with the smallest Dewey ID that is larger than Dewey(n)), then check if s is an

ancestor (descendant) of n. Since SLCA(D, Q) is sorted by dewey ID, this can be done

by a binary search.

Example 12.6 Continuing Example 12.5, for the newly found node in SLCA(T , Q): 0.1.0.2,

we find the largest Dewey ID in SLCA(D1, Q) that is smaller than 0.1.0.2: 0.1.0. Since node

0.1.0 is an ancestor of node 0.1.0.2, it no longer qualifies to be an SLCA. We remove it and

have SLCA(D2, Q) = {0.1.0.2, 0.1.1}.

Case 2: Now let us consider an inserted subtree T that does not contain all key-

words in Q. According to the discussion in Section 12.5, we can find the keywords in Q that

are not contained in T , denoted as k1, ..., kp. Three steps need to be performed to compute

SLCA(D2, Q), as shown in Figure 37.

First, we find the the lowest ancestor of n that contains matches to keywords

k1, ..., kp in its subtree, denoted as currLCA, which is a potential new SLCA (line 12-

14). We define lowest(kj , n,D) as the lowest ancestor of n in XML data D that contains a

match to keyword kj . As shown in [144], lowest(kj , n,D) must be either the LCA node of

leftMatch(kj , n,D) and n, or the LCA node of rightMatch

(kj , n,D) and n, where leftMatch(kj , n,D) is the match to kj in D with the largest Dewey

ID that is smaller than Dewey(n), and rightMatch(kj , n,D) is the match to kj with the

smallest Dewey ID that is larger than Dewey(n). Since the list of nodes matching a

keyword are sorted by their Dewey ID in the data inverted index, leftMatch(kj , n,D)
277

and rightMatch(kj , n,D) can be found efficiently using binary search. Initially, we set

currLCA = n. For each keyword kj from k1 to kp, if currLCA is a descendant of lowest(kj , n,D),

then we set currLCA = lowest(kj , n,D). Finally, currLCA is the lowest ancestor of n that

contains matches to all the keywords.

Example 12.7 ConsiderD1 andD2 in Figure 12.5. Let query Q = {B,D,E}. SLCA(D1, Q)

= {0.1.1}. Since T does not contain keywords B and E, we need to find the lowest ancestor

of node 0.1.0.2 that contains keywords B and E in its subtree. The list of nodes in D1 that

match keyword B is: {0.0.0, 0.1.1.0.0, 0.1.2.1}. We find leftMatch(B, 0.1.0.2,D1) to be

0.0.0, and rightMatch(B, 0.1.0.2,D1) to be 0.1.1.0.0. Therefore lowest(B, 0.1.0.2,D1)=

LCA(0.1.1.0.0, 0.1.0.2)=0.1. Similarly, we find the lowest ancestor of 0.1.0.2 that contains

E, which is 0.1.0. The lowest ancestor of 0.1.0.2 that contains all the keywords in Q is

therefore node 0.1.

Next, given currLCA, the lowest ancestor of n that contains matches to all key-

words in Q, we need to check whether currLCA qualifies to be a node in SLCA(D2, Q) or

not (line 14). Specifically, if there exists a node s ∈ SLCA(D1, Q), such that currLCA is

an ancestor of s, then currLCA is disqualified. This can be checked according to Proposi-

tion 12.5.

Example 12.8 Continuing Example 12.7, we check whether currLCA = 0.1 is an ancestor

of a node in SLCA(D1, Q) = {0.1.1}, which is indeed the case. Therefore currLCA is not

a new SLCA, and SLCA(D2, Q) = {0.1.1}.

Finally, if currLCA is identified as a node in SLCA(D2, Q), then we need to fur-

ther check whether any existing SLCA node should be removed (line 16-17). This is done

by checking whether any existing SLCA node is an ancestor of currLCA using Proposi-

tion 12.4.

Now we analyze the complexity of Figure 37. If T contains all keywords, the time

complexity is MT min|Q|dlogMT max, where MT min and MT max are the minimum and max-

imum number of matches to a keyword in delta tree T , respectively, and d is the depth of
278

1: input: query Q, SLCA(D1, Q), original data D1, Delete(n), new data D2,
delta tree T

2: output: SLCA(D2, Q)
3: let T be the subtree rooted at n
4: SLCA(D2, Q) = SLCA(D1, Q)
5: if n is an ancestor of s ∈ SLCA(D1, Q) then
6: SLCA(D2, Q) = SLCA(D2, Q)− {s}
7: return SLCA(D2, Q)
8: else if n is a descendant of s ∈ SLCA(D1, Q) then
9: Let k1, ..., kp be the keywords that are contained in T

10: currLCA = s
11: for j = 1 to p do
12: currLCA = the ancestor of currLCA and lowest(kj , s,D2))
13: SLCA(D2, Q) = SLCA(D2, Q)− {s}
14: if currLCA is not an ancestor of any s ∈ SLCA(D2, Q) then
15: SLCA(D2, Q) = SLCA(D2, Q) ∪ currLCA
16: return SLCA(D2, Q)

lowest (kj , r,D2)

1: {lowest(r, kj) is the match node of kj in D2 that has the lowest LCA with r.}
2: lm = leftMatch(kj , r,D2)
3: rm =rightMatch(kj , r,D2)
4: return the lower one of LCA(lm, r) and LCA(rm, r)

Figure 12.7: View Maintenance upon Data Deletion

T . If T does not contain all keywords, then the running time of line 12-13 of Figure 37

is O(|Q|dlogMmax), where Mmax is the largest number of matches to a keyword of Q in

D1. The running time of line 14 and 16 is O(logMmin), where Mmin is the minimum num-

ber of matches in the whole XML tree to a keyword in D1, which is the upper bound of

|SLCA(D1, Q)|. So the time complexity when T does not contain all keywords in Q is

O(|Q|dlogMmax).

Therefore, the overall complexity of Figure 37 is O(max{MTmin|Q|dlogMTmax,

|Q|dlogMmax}).

Incremental View Maintenance upon Deletion

Now let us consider a deletion of a subtree T rooted at node n from the XML data,

Delete(n). Let D1 be the original data and D2 be the updated data. According to the

discussion in Section 12.5, we can efficiently find the keyword k1,..., kp that are contained

in the deleted tree T .

The algorithm for maintaining a materialized view Q upon a data deletion is pre-

279

sented in Figure 38. There are three possible cases considering the relationship of n and

an existing SLCA node s ∈ SLCA(D1, Q).

Case 1: If n is neither an ancestor nor a descendant-or-self of any s ∈ SLCA(D1, Q),

then the deletion will not affect the query result, i.e. SLCA(D2, Q) = SLCA(D1, Q).

Case 2: If n is an ancestor of a node s ∈ SLCA(D1, Q), then none of such

s is an SLCA node for the updated data, as it has been removed. SLCA(D2, Q) =

SLCA(D1, Q)− s, for all s (line 5-7 of Figure 38).

Case 3: If n is a descendant of a node s ∈ SLCA(D1, Q), then s may no longer

contain all the keywords of Q after the deletion. If so, we search for the lowest ancestor of

s that contains all keywords in Q, denoted as currLCA, and replaces s with currLCA for

SLCA(D2, Q). The way to find currLCA is similar as Figure 37 (line 11-12), except that the

initial value of currLCA is set to be s rather than n. The reason is that n does not contain

any keyword inD2 (as the subtree rooted at n has been removed), so if we set currLCA as

n initially, we need to check all keywords in Q to find the potential new SLCA currLCA. On

the other hand, since s ∈ SLCA(D1, Q), s may no longer contain keywords k1, ..., kp in D2

because of the removal of subtree T , but it must contain all other keywords in its subtree, so

we only need to check these p keywords. Therefore it saves time by initializing currLCA to

be s. After we find currLCA which is the node that contains all the keywords in Q, it is put

into the SLCA list SLCA(D2, Q) if it does not have any descendant in SLCA(D2, Q) (line

14-15), checked according to Proposition 12.5. This check is necessary, as exemplified in

the following example.

Example 12.9 Consider Q = {A,C,D} on Figure 12.5, where D2 is the original data, D1

is the updated data with a deletion of the subtree T rooted at node n = A(0.1.0.2) from

D2. To show this example, suppose that node 0.1.0.1.0 is B rather than D. Notice that

n is a descendant of node s = 0.1.0 in SLCA(D2, Q) = {0.1.0, 0.1.1}. Since T con-

tains keywords A, D, we know s contains keyword Q − {A,D} = {C} in its subtree.

lowest(A, s,D1) = 0.1.0, and lowest(D, s,D1) = 0.1. So s is no longer an SLCA of Q on

D1, instead, C(0.1) becomes a potential new SLCA. However, since C(0.1) is an ances-

280

0

0.1

0.2

0.3

0.4

500 1000 1500 2000

Number of Views
Using Views From Scratch

T
im

e
(s

)

0

2

4

6

8

500 1000 1500 2000

Number of Views
Using Views From Scratch

T
im

e
(s

)

(a) Auction (b) DBLP

Figure 12.8: Average Query Processing Time, Varying Number of Views

tor of E(0.1.1) ∈ SLCA(D1, Q), C(0.1) is disqualified to be an SLCA in SLCA(D1, Q).

Therefore, SLCA(D1, Q) = {0.1.1}.

The complexity of Figure 38 is similar as Figure 37. Line 5, 8 and 14 takes

O(logMmin). Line 11-12 takes

O(|Q|dlogMmax). Therefore, the total time complexity of Figure 38 is O(|Q|dlogMmax).

12.6 Experiments

For performance evaluation, we compared the proposed techniques that exploits materi-

alized views as much as possible for query evaluation, referred as Using Views, with the

approach that only uses indexes without views, referred as From Scratch. We also com-

pared the performance of incremental view maintenance, referred as Incremental Mainte-

nance, with re-computing materialized views from indexes, referred as From scratch. The

From Scratch approach for query evaluation/view materialization is implemented based on

XKSearch [144].

An inverted full-text index for XML data was built using Oracle Berkeley DB, and is

used by all comparison approaches whenever necessary, including the case when a query

can not be (totally) answered by materialized views, as well as for view maintenance.

The experiments were conducted on a machine with 3.0GHz AMD Athlon(TM) dual-

core CPU, 4.0GB memory, running Microsoft Windows Server 2008 Enterprise operating

system. The algorithms were implemented in Microsoft Visual C++ 8.0.

281

Two data sets are used in the experiments. A synthetic auction data set generated

by XMark with default schema has a size of up to 1.5GB; and a real-world DBLP data set

has a size of 436MB.8

Exploiting Materialized Views for Evaluating Queries

To evaluate the effectiveness of materialized views in query evaluation, we synthesized a

workload of queries following the existing approaches where the distribution of keyword oc-

currences in the query workload satisfies Zipf-Law and the exponent z is 1 [79, 118, 54,

103]. We extract all distinct words in tag names and text values in each XML data set. Each

word is given a random rank in the Zipfian distribution. Each test query is generated con-

taining a random number of keywords varying from 2 to 6, where each keyword is randomly

selected based on the Zipfian distribution. Since it is an open problem of selecting which

views to be materialized for XML keyword search, we take a baseline approach. According

to Section 12.3, for a given query, only its subqueries can be used as relevant views, thus

it is more reasonable to materialize small queries than larger ones. We therefore generate

the views randomly in the same way as queries, except that each view contains either 2 or

3 keywords.

For 2000 test queries with 1000 materialized views on Auction data of 216MB, the

average time per query of answering queries using views and that of answering queries

from scratch are 0.31 second and 0.38 second, respectively. Whenever a query has a

relevant view, we refer this as a hit to materialized views. The overall hit rate is 55.4%.

Among this only 3.8% of the queries can find exactly same views, and 6.4% of the queries

can be completed answered by views. For DBLP data, the average query processing times

for using views and from scratch are 4.05 second and 5.23 second, respectively. It has a

hit rate of 30.8%, 1.8% of the queries can find exactly the same views, and 2.5% of the

queries can be completely answered by views. The average look-up time on view inverted

indexes is less than 0.001 second, which is negligible.

Note that the strategy of selecting which views to materialize is outside the scope of

8http://dblp.uni-trier.de/xml/

282

this chapter. We currently randomly generates the views based on the Zipfian distribution.

Since the materialized views only contain 2 or 3 keywords, a good hit rate is achieved.

However, most of the queries have to resort to data indexes to be fully answered. A more

carefully designed view selection algorithm would decrease the number of index accesses

and achieve a larger performance speedup for the whole query workload. To avoid the bias

of varying hit rates, in the following we only report and analyze the average processing time

for queries that can be partially or fully evaluated by views.

We test the efficiency of exploiting materialized views for query evaluation from two

aspects: varying the number of materialized views and varying data size, respectively.

1) Scalability over Number of Views. In this test, we increase the number of

materialized views from 500 to 2000 on both the Auction data set of size 216MB and the

DBLP data set. 2000 queries are tested.

Figure 12.8 (a) and (b) shows the average query processing time, varying the num-

ber of views. As we can see, if materialized views are exploited, the query processing

time significantly decreases when the number of views increases. When more materialized

views are available, it is more likely that a query will have relevant views, and therefore

fewer accesses to data index is needed and less query evaluation computation is required.

Although an increasing number of materialized views entails a larger cost for identifying

relevant views and finding optimal answer set, such performance overhead is imperceptible

(< 0.001 second for view look-up), and the overall performance speedup becomes larger

when the number of views increases. On the other hand, the time of query evaluation

without leveraging materialized views remains unchanged.

We also observe that the saving on DBLP data set is relatively larger than that of

Auction. By analyzing its data characteristics, we find that the average number of matches

to each word in DBLP is larger than that of Auction, and therefore its query evaluation is

much more expensive. On the other hand, the result of a query, even for a 2-keyword query,

is very small. For instance, the number of matches to “database" is huge, while the number

of results of evaluating a query “database, Levine" is much smaller. Therefore, as long as

a query can find a relevant view, its processing time is dramatically reduced.

283

0

1

2

3

4

5

216 648 1080 1512

Data Size (MB)
Using Views From Scratch

T
im

e
(s

)

Figure 12.9: Average Query Processing Time, Varying Data Size

2) Scalability over Data Size. To test the efficiency of our approach with respect to

different data sizes, we test the Auction data with sizes varying from 216MB to 1512MB, by

replicating the file multiple times. 1000 materialized views and 2000 queries are randomly

generated. The average query processing is shown in Figure 12.9. As we can see, the

processing time of using views and that of from scratch both increase linearly when data

size increases. The performance speedup of using views becomes larger when the data

size increases.

Materialized View Maintenance

To test the efficiency of incremental view maintenance upon data update, we test its pro-

cessing time with respect to different data size and delta tree size.

We randomly generated 1000 materialized views and 10 delta trees, and report

the average time required to maintain a single view upon a single update in Figure 12.10

and 12.11. To generate a delta tree, we first find for each tag name, the average size

of its subtree. For example, the average subtree size of item is 63. To generate a delta

tree of size about 63, we randomly pick a node of tag item in the original data and use a

copy of its subtree as a delta insertion tree. The insertion or deletion position is randomly

selected. The processing times shown in the figures do not include the time for maintaining

the inverted index and the Dewey labels, as these are the same for both approaches and

are orthogonal to this study.

1) Scalability of Data Size. We vary the Auction data size from 216MB to 1512MB

to test the efficiency of our approach. Delta trees are randomly selected with an average

284

0

1

2

3

216 648 1080 1512

Data Size (MB)
Incremental Maintenance From Scratch

T
im

e
(s

)

0

1

2

3

216 648 1080 1512

Data Size (MB)
Incremental Maintenance From Scratch

T
im

e
(s

)

(a) Insertion (b) Deletion

Figure 12.10: Average View Maintenance Time, Varying Data Size

0

0.1

0.2

0.3

63 219 820 4448

Avg. # of Nodes in Delta Trees
Incremental Maintenance From Scratch

T
im

e
(s

)

0

0.1

0.2

0.3

63 219 820 4448

Avg. # of Nodes in Delta Trees
Incremental Maintenance From Scratch

T
im

e
(s

)

(a) Insertion (b) Deletion

Figure 12.11: Average View Maintenance Time, Varying Delta Tree Size

size of 63. As shown in Figure 12.10 (a) and (b), the processing times of incremental view

maintenance and view maintenance from scratch both increase linearly with the increase of

data size. Incremental maintenance is far more efficient than computing views from scratch,

and performance benefits become larger when the data size increases.

2) Scalability of Delta Tree Size. The performance of incremental view mainte-

nance and computing views from scratch while varying the average delta tree size from 63

to 4448 nodes on the Auction data is shown in Figure 12.11 (a) and (b). The time of com-

puting from scratch is almost not affected, as the size of the delta tree is small compared

to the original data. On the other hand, the time required for incremental view maintenance

increases when the size of delta trees increases. This is because a larger delta tree con-

tains more words, therefore more materialized views are likely to be affected, and a higher

maintenance cost would be expected. Furthermore, for views that have all keywords appear

in the delta tree, the number of query results within the delta tree likely increases when the

285

delta tree size increases, and therefore also counts for a longer maintenance time.

In summary, experiment evaluation shows that our approach is much more effi-

cient in answering XML keyword queries using views and incrementally maintaining views,

compared with answering queries and maintaining views from scratch.

12.7 Summary

In this chapter we address an open problem of exploiting and maintaining materialized

views for XML keyword search. We analyze the problem of identifying the best answer set

of materialized views to evaluate a given query, which is NP-hard. We present the first XML

keyword search engine that can answer queries using materialized views for SLCA seman-

tics. We propose a polynomial time approximation algorithm for finding a good answer set

of a given query from a set of materialized views, and develop the algorithm of answering

query using its answer set. For materialized views to be useful for dynamic XML data,

we design incremental view maintenance algorithms upon data updates. Our techniques

can be incorporated into the XML keyword search systems that adopt SLCA semantics

[91, 144, 126, 61]. Experimental evaluation shows significant performance improvements

of our approach over computing query results or views from scratch.

286

Chapter 13

SEARCHING WORKFLOW HIERARCHIES

13.1 Motivation and Goal

As discussed in Chapter 2, besides tree and graph data, we also investigate in another data

model, i.e., nested graph, which contains a graph and recursive composite node definitions.

As to be discussed later, due to the uniqueness of this data model, existing result definition

for keyword search on trees and graphs fail to produce meaningful results on nested graphs.

Workflow hierarchy is one type of data that conforms to this data model. Workflow

hierarchies are widely used in scientific [17, 59, 123, 134, 22, 127] and business [20, 134]

domains, which ease the analysis, maintenance and reusability of workflows. As an exam-

ple, a workflow hierarchy describing the recipe of curry chicken is shown in Fig. 1.7. A node

represents a task, which can be a step in a recipe, a web service invocation, a database

query, a program run, or an experiment step, etc. A directed solid edge between nodes rep-

resents their dependency, dataflows, or control flows (AND/OR/XOR), referred as dataflow

edge. For instance, in the bottom box in Figure 1.7, after tasks add tenderizer (0.1.0.0), we

need to wait 10 min (0.1.0.3), and then have the data fed into the next task put into skillet

(0.1.1.0).

In order to reduce the analysis complexity, enable modularity and re-use [13, 108],

simplify provenance analysis [17, 23, 42], and achieve security [32], composite task is often

defined to abstract a group of tasks into a single task, as supported in many workflow

management systems, such as Kepler [2] and myExperiment [4]. For example, composite

task tenderize chicken breast (0.1.0) is an abstraction of a group of tasks consisting of add

tenderizer, sprinkle curry powder, add garlic and wait 10 min. Dotted lines connecting group

of tasks to its abstraction composite task are referred to as abstraction edges. Composite

tasks can be recursively defined to form a workflow hierarchy, such as the one in Figure 1.7.

On the other hand, the most detailed tasks (those shown in italic in bottom box Figure 1.7)

are called atomic tasks.

It is highly desirable if a user can search relevant workflow hierarchies in a reposi-

287

tory using keywords, and then re-use or revise them as needed when designing new work-

flows, so that the design phase will be easier and be shortened compared with designing

new ones from scratch.Suppose that a user would like to make a dish using chicken breast

and coconut milk by sauting, but doesn’t have a recipe in mind. She would issue a keyword

query “chicken breast, coconut milk, saute” (Q1 in Figure 13.1(a)) on a repository of recipes

to find useful ones.

We can easily find the workflow hierarchies in the repository that contain matches

to query keywords. Suppose Fig. 1.7 is one of such workflows in the repository, where

keyword matches are in bold font. Obviously, returning the whole workflow hierarchy as

a query result is not concise, as an overwhelming volume of information is delivered to

the user (e.g., many workflow hierarchies in the repository [2, 9, 7, 4] contain hundreds of

nodes).

The immediate challenge is how to define query results for keyword search on

workflows. Given much research done on keyword search on graph-structured data (e.g.,

relational) and tree-structured data (e.g.,XML), a natural question is whether we can adopt

their approaches: defining a query result on workflow hierarchies as a smallest tree in the

data that contains the query keywords. A result for query Q1 “chicken breast, coconut milk,

saute” using these approaches is shown in Fig. 13.1(d).

However, such query results are not desirable for two reasons. First, the results

do not necessarily capture the dataflows among keyword matches, and thus fail to be in-

formative on node relationships. For example, the relationship of tasks containing chicken

(0.1.0) and saute (0.1.1.2) is expressed as a path of both dataflow edges and cross-layer

expansion edges, while their dataflow is not captured, which should be: tenderize chicken

breast (0.1.0) → put into skillet (0.1.1.0) → add green pepper & union (0.1.1.1) → saute

until tender (0.1.1.2).

Besides, returning smallest subtrees does not necessarily produce self-contained

query results. Consider another query Q2 “brown rice, bake” in Figure 13.1(a). The smallest

subtree is the path from cook brown rice (0.3.2) to bake (0.3.4). However, such a path itself

does not have a semantic meaning. A clear meaning can only be obtained if we consider

288

prepare

pepper,

onion

0.3.0

fry pepper,

onion

0.3.1
cook

brown rice

0.3.2

combine

ingredients

0.3.3

bake

0.3.4

Q1 chicken breast, coconut milk, saute

Q2 brown rice, bake

tenderize

chicken

breast

0.1.0

add green

pepper & onion

0.1.1.1

saute until

tender

0.1.1.2

stir in

flour

0.2.0

add chicken

broth

0.2.1

add coconut

milk

0.2.2

cook &

stir until

solid

0.2.3

serve

0.4

make rice pilaf

0.3

(a) Sample Keyword Search

(b) Result of Q2

(c) Result of Q1

make chicken

broth

0.0

put into

skillet

0.1.1.0

tenderize

chicken

breast

0.1.0

concoct

0.1.1

saute until tender

0.1.1.2

preprocess

chicken

0.1

cook chicken

0.2

add coconut

milk

0.2.2

(d) Undesirable Result of Q1

slice

0.1.2

Figure 13.1: Sample Queries and Results on Workflow Hierarchies

the nodes in this path together with nodes (0.3.0, 0.3.1) (shown Figure 13.1(b)), which

correspond to a composite task make rice pilaf (0.3), meaning that these nodes as a whole

is a workflow about making rice pilaf.

According to our user studies (Section 5.2), when a user issues a keyword query

on a repository of workflow hierarchies, each of which has abstractions with different gran-

ularities of atomic tasks, it is likely that s/he is interested in retrieving workflow views that

contain these keywords and show their relationships. In our example, it is desirable to

present Figure 1.5(c) as a query result of Q1. This result explicitly captures the dataflow

among keyword matches (shown in bold). For example, after saute (the chicken) until ten-

der (0.1.1.2), we slice (it) (0.1.2), stir (it) in flour (0.2.0) and then add coconut milk (0.2.2).

Note that the dataflows among nodes in different composite tasks (i.e., different dashed line

boxes) are not explicitly shown in the workflow hierarchy, but are dynamically synthesized

from the workflow hierarchy. Such a query result is also self-contained, corresponding to a

composite task curry chicken.

289

In this chapter, we present WISE, a Workflow Information keyword Search Engine,

which, to the best of our knowledge, is the first work that returns query results capturing

query keywords and their dataflows. WISE has been published in PVLDB 10 [98] and

demonstrated at ICDE ’09 [125]. The contributions of WISE include:

First, we address an open problem of defining query results for keyword search on

hierarchical workflows. As we have discussed, a good query result should be informative

(i.e., capturing the keyword matches and their dataflows), self-contained (i.e., having a

name/goal), and concise (i.e., the minimal graph that is informative and self-contained). To

achieve this, we start with formally defining the concept of a view of workflows, which is a

graph defined in the same spirit as defining tree using Tree-Adjoining Grammar (TAG) [69]

and defining strings using context-free grammar. Then we define a workflow search result

as a minimal view of a workflow that contains query keywords.

Second, we develop efficient algorithms for query result generation. Unlike gen-

erating search results on graphs/trees, where only extractions of source data are needed,

WISE dynamically constructs query results by synthesizing the dataflows among keyword

matches. Given the workflow hierarchies containing all keywords in the query, the algorithm

for generating results has optimal time complexity.

Experiments show the effectiveness and efficiency of WISE, compared with existing

workflow search engines [2, 9, 7, 4] and a search engine on graph data [58].

Although the running example for WISE is a simple recipe workflow hierarchy,

the techniques that we propose is applicable for all workflow hierarchies. Such a multi-

resolution data structure is a generalization of graphs and trees, and is widely used in

many domains, such as scientific experiments, web services, spatial and temporal data,

hierarchical plans, etc. For instance, in spatial data, there are edges among the data points

in a graph, and a graph can be abstracted to a data point in a recursive way.

13.2 Workflow Hierarchy

In this section, we formally define workflow and workflow hierarchy.

290

Definition 13.1 (workflow) A workflow W = (V,E) is a directed graph where each node

represents a task and each edge indicates the dataflow, dependency or control flow be-

tween two tasks.

The bottom box in Figure 1.7 shows a workflow of curry chicken recipe.

Definition 13.2 (composite task) A composite task c is an abstraction of a group of tasks

S, denoted as c = abs(S).

If c = abs(S), c is called the parent of the nodes in S, and nodes in S are called the

children of c. Ancestors and descendants are recursively defined.

In Figure 1.7, each group of tasks within a dotted border is abstracted into a com-

posite task, pointed to from the group of tasks by a dotted edge. Composite tasks can be

recursively defined.

Definition 13.3 (workflow hierarchy) A workflow hierarchy H = (W, root) consists of a

workflow W (V,E) and a set of composite task specifications. Nodes in V are called atomic

tasks or leaf tasks. root ∈ V is the root of the hierarchy, whose name represents the

name/goal of the workflow hierarchy. The edge set E = {Ea, Ed} consists of both abstrac-

tion edges (Ea) and dataflow edges (Ed). An abstraction edge (S, abs(S)) ∈ Ea connects

a set of nodes to their corresponding composite task. A dataflow edge (u, v, d) represents

that an output of task u is an input of task v, where u, v ∈ V , and d denotes the data item

sent from u to v.1 A subworkflow hierarchy of H is a workflow hierarchy whose root is a

node in V .

Note that two composite tasks do not overlap, i.e., ∀c = abs(S) and c′ = abs(S′),

c ̸= c′, S ∩ S′ = ∅. If c = abs(S) and u ∈ S, we say S is the cluster of u.

Each node in a workflow hierarchy can have annotations, which record its name,

conditions of the task execution, or possibly a deadline, indicating that the task must be

1For edges that are from or to an external node of the workflow hierarchy, its corresponding u or v nodes
are captured by dummy nodes added to the workflow.

291

finished no later than the deadline during the execution of the workflow (referred to as

“Event-based workflow”), etc. The data items transferred between tasks can be of different

types, such as materials in the recipe, data files in the experiment, gene sequences, etc.

Note that there can be multiple dataflow edges between two nodes if multiple data items

are transferred. There can also be annotations on edges, which specify the control flow

(AND/OR/XOR) between two tasks.

Figure 1.7 shows a workflow hierarchy. The bottom box is a workflow, and each

dotted edge represents a composite task specification. Note that the edges that involve

composite tasks (e.g., the edge from 0.1.2 to 0.2) are not part of the workflow hierarchy, but

their relationship can be derived from the edges between atomic tasks, which is illustrated

in Definition 13.5.

Although a workflow hierarchy bears some similarity with a tree model, they have

some key differences. First, the relationships among “sibling nodes" are different. Siblings

in a tree structure are modeled as either a linearly ordered list or a set; whereas the sib-

lings in a workflow hierarchy represent a (possibly cyclic) graph, where the dataflow edges

explicitly capture their relationships. Second, the semantics of parent-child relationship are

different. A parent-child relationship in a tree generally specifies the relationship between

two distinct objects. In a workflow hierarchy, the task represented by a child is part of the

detailed procedure of performing the task represented by the parent. These differences

invalidate techniques for keyword search on trees/graphs, pose unique challenges to query

processing and demand novel approaches.

13.3 Search Results of WISE

Now we discuss how to define query results for keyword search on workflow hierarchies.

Each result should satisfy three properties: (1) informative: the result should contain all

dataflows between any two tasks matching keywords, so that the user gets the relation-

ships of the query keywords; (2) self-contained: the result should contain all the tasks for

achieving a goal; (3) concise: removing any edges from the result will make it violate infor-

mativeness or self-containedness.

292

To achieve these goals, we first identify the minimal workflow hierarchies that con-

tain all query keywords, then define its minimal views as query results.

Identifying Minimal Workflow Hierarchies

To be informative and concise, we first identify the smallest workflow hierarchies in the

repository that contain at least one match to each query keyword.

Definition 13.4 (Minimal Workflow Hierarchy) A minimal workflow hierarchy H = (V,E, root)

of a keyword search Q on a repository of workflows R is a workflow hierarchy, such that

1. Every keyword in Q has at least one match in H ;

2. There does not exist a subworkflow hierarchy of H that satisfies condition 1.

Note that there are typically multiple minimal workflow hierarchies when processing

a keyword query on a repository of workflows. Each minimal workflow hierarchy will derive

a query result, as to be discussed later, all of which compose the set of results for the query.

For example, consider Q2 “brown rice, bake” in Fig. 1.5(a). There are two workflow

hierarchies in Figure 1.7 containing keyword matches brown rice and bake: the one rooted

at curry chicken (0) and the one rooted at make rice pilaf (0.3). The one rooted at curry

chicken (0) is not considered as a minimal workflow hierarchy as it does not satisfy condition

2 in Definition 13.4: it has a subworkflow rooted at make rice pilaf (0.3) containing all query

keywords.

Note that we do not “compose” a new workflow hierarchy from several unconnected

sub-workflow hierarchies in the repository, in order to guarantee that each query result has

a clear semantic meaning.

Defining Query Results as Minimal Views

Minimal Views

Unfortunately, returning the whole minimal workflow hierarchy itself to users is neither in-

formative nor concise. Consider Q1 as an example, where a minimal workflow hierarchy is

Fig. 1.7. Returning the entire curry chicken hierarchy makes it difficult for users to find the
293

dataflows among keyword matches, as they have to go up and down the layers and manu-

ally construct the dataflows. These manual operations are tedious and time-consuming for

the users especially when the workflow hierarchy is large and complex.

Under this observation, we define the notion of view of a workflow hierarchy. Views

can be considered as a projection of the 3D workflow hierarchy on to a 2D plane which

hides less important information and simplifies analysis.

Definition 13.5 (View) A view V iew = (V,E) of a workflow hierarchy H = (V ′, E′, root)

is a directed graph with labels on edges. The node set V , V ⊆ V ′ satisfies:

1. There does not exist u, v ∈ V , u is an ancestor of v in H .

2. ∀u ∈ V ′ and u is a leaf node, ∃v ∈ V such that v is an ancestor-or-self of u.

3. For any u, v ∈ V , (u, v, d) ∈ Ed if and only if ∃u′, v′ ∈ V ′, u′ and v′ are descendant-or-

self of u and v, respectively, and (u′, v′, d) ∈ E′
d.

Condition 1 indicates that a view is a two dimensional projection of the three dimen-

sional workflow hierarchy, flattening out the nested hierarchy for the ease of user compre-

hension. Nodes in a view can have dataflow relationships, but not abstraction relationships.

Condition 2 ensures that the node set V of a view covers all leaf nodes (atomic tasks) in

the workflow hierarchy H : every leaf node in V ′ must have one corresponding zoomed-

out node in V . Since views may contain composite nodes whose edges are not explicitly

present in the workflow hierarchy, their edges need to be induced, as specified in Condi-

tion 3. For example, since there is a dataflow between wait 10 min (0.1.0.3) and put into

skillet (0.1.1.0), there should also be a dataflow between their parents, tenderize chicken

breast (0.1.0) and concoct (0.1.1). Condition 3 guarantees that the dataflow edge set Ed

in a view is faithful with respect to edge set E′
d according to H : the view preserves the

dataflow among nodes in the view. Note that a view may hide the dataflows of two nodes

in the workflow that are abstracted into a single node in the view, e.g., the edge between

nodes 0.1.0.0 and 0.1.0.3 in Figure 1.5(a). Conditions 2 and 3 together ensure that a view

is “semantically complete” with respect to the name/goal of H , and hence a self-contained

information unit whose name/goal is the same as H .

294

Note that Definition 13.5 bears some similarity with the TAG [69] and context-free

grammars. Context-free grammars have rules for rewriting symbols as strings of other

symbols, tree-adjoining grammars have rules for rewriting the nodes of trees as other trees,

and the proposed workflow views allow rewriting the nodes of a workflow as other graphs.

That is, a view is a graph defined on a nested graph hierarchy, analogous to the frontier

defined on a tree in TAG, and to a string defined in a context-free grammar.

As we can see, a view is a projection of a three dimensional workflow hierarchy to

a two dimensional plane that preserves the dataflows among the tasks in the view. Obvi-

ously a workflow hierarchy can have many views, as there are many projections of a three

dimensional object, depending on the viewing plane. For example, the tasks in each solid

rectangle in Figure 1.7 compose a view of the curry chicken workflow hierarchy. Fig. 1.5(c)

is another view of curry chicken.

We now define a keyword search result on workflow hierarchies as a minimal view of

a minimal workflow hierarchy that preserves all keyword matches in the workflow hierarchy

(which is also a philosophy of keyword search on relational databases or XML, where a

result is a minimal tree that contains at least one match to each keyword).

Definition 13.6 (Minimal View) For a keyword search Q on a repository of workflows R,

the minimal view V iew(H,Q) = (V,E) of a minimal workflow hierarchy H (Definition 13.4)

is the view with the smallest number of tasks over all the views of H that contain all the

keyword matches of Q in H .2

Definition 13.7 (Query Result) For a keyword search Q on a repository of workflows R,

the set of query results consists of the minimal view of each minimal workflow hierarchies

in the repository.

Note that such a result definition is general for all types of workflow hierarchies

where the nodes and edges may have annotations as discussed in Section 13.2. Given a

2Note that since the nodes in a view can not have ancestor-descendant relationships, only keyword
matches that do not have descendant keyword matches are selected as nodes in a view, which are anno-
tated with their ancestor keyword matches (if any).

295

minimal workflow hierarchy and a query, the minimal view is unique, which can be consid-

ered as a projection of a three dimensional workflow hierarchy on a two dimensional viewing

plane defined by the query. The result is informative since it captures all keyword matches

and their dataflows. The result is self-contained since the view serves an integrated goal

and has a unique name, which is the same as the corresponding minimal workflow hierar-

chy. Furthermore, the result is concise, as we opt to use the minimal view among all views

of each minimal workflow hierarchy.

13.4 Algorithms

After defining query results for keyword search on workflow hierarchies, we present the

algorithms of the WISE system that achieve the semantics efficiently.

Data Processing

We design labeling schemes and indexes for workflow hierarchies to efficiently find minimal

workflow hierarchies and their minimal views.

Labeling of nodes and edges. Each node n in the workflow hierarchy is assigned

a unique label NID(n). Since we need to explore the ancestor-descendant relationships

of nodes to generate results, we use the Dewey labeling scheme, as shown underneath

each node in Fig. 1.7. The label of the root is 0, and the label of a node n is composed by

the concatenation of the label of its parent and a unique integer ID within the cluster that n

is in. The unique in-cluster ID of a node can be arbitrarily set, i.e., the nodes in a cluster

can have an arbitrary order, independent of the dataflows (thus nodes can be ordered even

in a cyclic graph). NIDs of nodes are ordered alphabetically. The node labels don’t record

dataflow information, but parent-child information. They enable efficient retrieval of lowest

common ancestor (LCA) of two nodes u and v, whose node label is the longest common

prefix of NID(u) and NID(v). Each edge is also assigned a unique integer ID.

Leaf adjacency lists of nodes. To efficiently find dataflows among keyword matches

that may not be explicitly present in the data, we build a leaf adjacency list for each node

n in the workflow hierarchy, denoted as LAL(n). LAL(n) consists of IDs of the edges

296

between leaf nodes u and v, such that u is a descendant of n and v is not a descendant

of n. For each edge in LAL(n), we also record its direction, as well as the data items

transferred. For example, suppose the ID of the edge from node 0.1.0.3 to node 0.1.1.0

in Figure 1.7 is e1 and it transfers data item chicken breast, then e1 (outgoing, chicken

breast) ∈ LAL(0.1.0.3) and LAL(0.1.0), where “outgoing” means that it is an outgoing

edge from 0.1.0.3 to 0.1.0. Similarly, e1 (incoming, chicken breast) ∈ LAL(0.1.1.0) and

LAL(0.1.1). Leaf adjacency lists are used to efficiently derive dataflow edges in a query

result, as will be discussed later. Intuitively, according to Definition 13.5 there is a dataflow

edge between two composite nodes u and v if and only if there is an edge e between their

leaf descendants, and such an edge e is recorded in LAL(u) and LAL(v). By leveraging

leaf adjacency lists and a hash table, an edge can be derived in O(1) time.

Indexes. To speed up query processing, an inverted index is built which maps a

keyword to the list of nodes in the workflow repository whose names/descriptions contain

the keyword, sorted by their NID. We also build a B+ tree index on NIDs that retrieves

the subworkflow rooted at node NID, referred to as Dewey index.

The leaf adjacency list and indexes are built offline. They both take an affordable

amount of space: in the worst case, each dataflow edge is recorded in every ancestor of

each endpoint of the edge. Thus the leaf adjacency list takes O(|Ed|h) space where |Ed| is

the number of dataflow edges in the workflow hierarchy, and h is the height of the workflow

hierarchy. If each node contains at most p keywords, then the inverted index takes O(|V |p)

space where |V | is the number of nodes in the workflow hierarchy. The Dewey index takes

O(|V |) space.

Query Processing

WISE uses Algorithm 16 to retrieve relevant query results for keyword searches on work-

flow hierarchies. It consists of two steps: identifying minimal workflow hierarchies, and

constructing the minimal view for each minimal workflow hierarchy. We use Q1: “chicken

breast, coconut milk, saute” as a running example.

Retrieving minimal workflow hierarchies. We begin by obtaining the list of match

297

nodes for each keyword using the inverted index. In our running example (Q1), we obtain

the matches to chicken breast: 0.1.0, coconut milk: 0.2.2 and saute: 0.1.1.2.

Note that sometimes a user may issue a query whose keywords do not exactly

match the words in the data, but are semantically related. This can be addressed by looking

each keyword up in a dictionary of synonyms. For instance, if the user query contains

keyword “saute”, we look it up in the dictionary and find its synonyms, e.g., “fry” and “panfry”.

Then we search the inverted index for the matches to “saute”, “fry” and “panfry”, and take

the union of their matches as the matches to keyword “saute”. In the experiments we

have tested the efficiency of WISE when synonyms are considered in query processing.

Alternatively, we can also use an ontology, which not only records the similarity among

keywords but also the containment relationships (e.g. “saute” is a special type of “cook”).

Furthermore, the similarity measurement can be used as part of the ranking scheme.

Then procedure findMWHs identifies the minimal workflow hierarchies using the

Indexed Lookup Eager Algorithm [144], considering only expansion edges without dataflow

edges. In our running example, there is only one minimal workflow hierarchy, which is the

entire curry chicken hierarchy, as none of the descendants of curry chicken (0) contains all

three query keywords. As discussed, returning the entire minimal workflow hierarchy is not

informative or concise, thus we propose novel algorithms for computing minimal views of

each minimal workflow hierarchy.

Identifying minimal views of minimal workflow hierarchies. After identifying

minimal workflow hierarchies, procedure grouping groups the keyword matches according

to the minimal workflow hierarchies that they belong to. This is done by first merging the

lists of keyword matches into a single list mergedList, and then grouping the matches using

a single traversal of mergedList and the list of the roots of minimal workflow hierarchies.

Finally, we need to identify minimal views of minimal workflow hierarchies. For each

task in the minimal workflow hierarchy, we need to determine whether to include it in the

view or not, and extract or synthesize the dataflow among the nodes in the view. genMV

performs a single depth-first traversal of each minimal workflow hierarchy in the order of

NID, and a traversal on the list of keyword matches sorted by NID. Let cn be the node

298

Algorithm 16 Keyword Search on Workflow Hierarchies
keywordSearch (keyword[n], indexes)

1: for i = 1 to n do
2: matches[i] = word2NID(keyword[i])
3: roots[r] = findMWHs(matches) [144]
4: matchGroup[r] = grouping(matches, roots)
5: for i = 1 to r do
6: result[i] = genMV (roots[i],matchgroup[i], indexes)

grouping (matches[n][p], roots[r])

1: mergedList[m] = merge-sort matches[n][p] into a sorted list
2: i = j = 1
3: matchgroup[i] = ∅ for all 1 ≤ i ≤ r
4: while i ≤ r and j ≤ m do
5: if ancestor − or − self(roots[i],mergedList[j]) then
6: matchgroup[i] = matchgroup[i] ∪mergedlist[j]
7: j ++
8: else if matchgroup[i]! = ∅ then
9: i++

10: else
11: j ++

genMV (root,matchgroup[g], indexes)

1: cn = root; cm = 1; mv = ∅
2: EdgeHash = a hash table initialized as empty
3: while cn ̸= null and matchgroup[cm] ̸= null do
4: if cn = matchgroup[cm] then
5: if ancestor(cn,matchgroup[cm+ 1]) then
6: {cn is a match node and has descendant matches}
7: cm++
8: continue
9: else

10: {cn is a match node and has no descendant match}
11: outputnode(mv, cn,EdgeHash)
12: cn = cn’s next node in NID order, which is not a descendant of cn
13: else if ancestor(cn,matchgroup[cm]) then
14: {cn is not a keyword match and has descendant matches}
15: cn = cn’s first child
16: else
17: {cn is not a keyword match and has no descendant match}
18: outputnode(mv, cn,EdgeHash)
19: cn = cn’s next node in NID order, which is not a descendant of cn
20: return mv

outputnode (mv, cn,EdgeHash)

1: add cn into mv
2: for each edge entry eid(incoming/outgoing, d) ∈ LAL(cn) do
3: if there is an entry (eid, u) in the EdgeHash then
4: {u is the other endpoint of eid that has been output}
5: add an edge from u to cn (or from cn to u′) into mv with data item d
6: else
7: insert an entry (eid, cn) into EdgeHash

299

in the workflow hierarchy currently being visited and currMatch be the current keyword

match being visited in mergedList. During the traversal:

(1) If cn has descendant matches (which is true if cn is an ancestor of currMatch,

or cn = currMatch and is an ancestor node of the next node in mergedList), we do not

output cn, but update cn to be the first child of the current cn, i.e., continue to traverse

its subworkflow hierarchy. If cn matches a keyword, currMatch is updated to be the next

keyword match.

(2) If cn is not a keyword match and has no descendant match (which is true if cn

is not an ancestor-or-self of currMatch), then we output cn, skip its subworkflow hierarchy

and move to the next node in the workflow hierarchy which is not a descendant of cn.

(3) If cn is a keyword match and does not have descendant matches (which is true

if cn = currMatch, and is not an ancestor of the next match node), then cn is directly

interested by the user, and is output as part of the query result. The properties of match

nodes can be displayed upon click. Since we do not output the expansion of cn, we move

to the next node in the workflow hierarchy which is not a descendant of cn. We also move

currMatch to point to the next keyword match in mergedList.

In our running example, we have found the minimal workflow hierarchy, rooted at

curry chicken (0). The keyword matches in the order of their NID are: chicken breast

(0.1.0), saute (0.1.1.2), coconut milk (0.2.2). We traverse the minimal workflow hierarchy

and the keyword match list in parallel. Initially, cn = curry chicken (0) and currMatch =

0.1.0. Since cn is an ancestor of currMatch, we do not output curry chicken, but expand

it and traverse its children. Later on when we come to cn = 0.1.0, since cn = currMatch,

we output cn as a clickable node, then move cn to 0.1.1 and currMatch to saute (0.1.1.2).

The procedure continues until all nodes in the results are identified.

Next we discuss how to generate edges in the result. When outputting a node cn,

we need to find the edges corresponding to cn. A naive approach would search each leaf

descendant of every node u that has been output as well as each leaf descendant of cn,

and check whether there is an edge between them. If so, it means an edge should exist

300

between u and cn in the view (as discussed before, a view should preserve the edges

between two nodes in the workflow hierarchy that are descendants of different nodes in

the view). This approach is very inefficient, as u and cn may both have a large number of

descendants, and they may be accessed multiple times.

We propose a much more efficient approach using LAL and a hash table, which

will be shown to find each edge in O(1). When outputting a node cn we traverse LAL(cn);

for each edge with ID ei in LAL(cn), we check it in a hash table, which maps an edge ID

to an endpoint of the edge that has been output. The hash table is initially empty. If ei is

not in the hash table, it means the other endpoint of ei has not been output, and we put an

entry (ei, cn) into the hash table. If ei is in the hash table with entry (ei, u), then u has been

output, and there should be a dataflow edge between u and cn, whose direction and data

item depends on the corresponding entry in LAL(cn).

For example, when we output tendrize chicken breast (0.1.0), we check its LAL.

Suppose there is an edge from 0.1.0.3 to 0.1.1.0 with ID e1 and data item chicken breast,

then LAL(0.1.0) = {e1 (outgoing, chicken breast)}. Since node 0.1.1.0 has not been

output yet, e1 is not in the hash table, and we insert entry (e1, 0.1.0) into the hash table.

When we output put into skillet (0.1.1.0), since LAL(0.1.1.0) = {e1 (incoming, chicken

breast)}, we check e1 in the hash table, and get the entry (e1, 0.1.0). Therefore, we output

an edge from 0.1.0 to 0.1.1.0 with data item “chicken breast”.

Theorem 13.1 The results generated by Algorithm 16 for a keyword search Q on a repos-

itory of workflows R are the minimal views of all minimal workflow hierarchies H(R,Q) in

the repository (Definition 13.7).

Proof. We adopt the Indexed Lookup Eager Algorithm [144] to compute minimal

workflow hierarchies. In the following, we prove that a query result QR = (V,E) generated

by Algorithm 16 is the minimal view of a minimal workflow hierarchy that contains all keyword

matches which do not have descendant matches.

First, we prove that QR is a view of H(R,Q), i.e., it satisfies the three conditions of

view in Section 13.2.

301

1. ∀u ∈ H , if u ∈ QR, then none of u’s children is output in QR according to Algo-

rithm 16 (recall that after we output a node cn, we move to the next node that is not a

descendant-or-self of cn). Therefore, QR satisfies condition 1 in Definition 13.5.

2. ∀u, u is a leaf of H and u /∈ QR, according to Algorithm 16, during the depth-first

traversal of H , u must have an ancestor u′ which is visited and output in QR (recall

that we do not output a node if and only if it is expanded, or an ancestor node is

output). In other word, u′ is a node and has no descendant matching keywords.

Therefore, QR satisfies condition 2 in Definition 13.5.

3. ∀u, v ∈ V , according to Algorithm 16, there is an edge from u to v, (u, v, d), if and only

if the ID of the edge (e.g., ei) is recorded in both LAL(u) and LAL(v). According to

the design of leaf adjacency list, this happens if and only if there is an edge (u′, v′, d)

between a descendant u′ of u and a descendant v′ of v labeled ei. Therefore, an

edge (u, v, d) between u and v is output in the view if and only if there exists an edge

(u′, v′, d) between u′ and v′. Thus QR satisfies condition 3 in Definition 13.5.

Next we prove that QR contains all keyword matches in the minimal workflow hi-

erarchy that have no descendant keyword match. For any keyword match node m, each

of m’s ancestors will be visited and expanded during the traversal of the minimal workflow

hierarchy, as it has a descendant match. Therefore, m will be visited and output, as all

children of an expanded node will be visited.

At last we prove that QR generated by Algorithm 16 is minimal, i.e., it has the

smallest number of nodes among all views of H that contain all keyword matches. Suppose

there is another view of H , QR′ = (V ′, E′) which has a smaller number of nodes than QR

and contains all keywords. Since both views are from the same workflow hierarchy, there

must be at least one composite node u′ in H which is expanded in QR but not in QR′, i.e.,

∃u ∈ V and u′ ∈ V ′, such that u is a descendant of u′. According to Algorithm 16, u′ is

expanded in QR only if it has descendant keyword matches. But since u′ is output but not

expanded in QR′, none of its descendants can be output, thus QR′ can not contain all the

302

keyword matches of H , which is a contradiction. Therefore, QR is the minimal view of H ,

and is a qualified query result.

A minimal workflow hierarchy has exactly one minimal view for a query. Thus Algo-

rithm 16 finds exactly the set of query results.

Theorem 13.2 The time complexity of procedure genMV is O(N+E), where N,E are the

number of nodes and edges in the output (minimal view), i.e., the optimal time complexity for

finding minimal views. The overall time complexity of Algorithm 16 is O(MminkdlogMmax+

M +N +E), where Mmin and Mmax are the minimum and maximum number of matches

to a keyword, respectively, M is the total number of keyword matches, d is the depth of the

workflow hierarchy.

Proof. In Algorithm 16, finding the matches using the inverted index takes O(M)

time, where M is the number of keyword matches. Procedure findMWHs adopts the In-

dexed Lookup Eager Algorithm, which takes O(MminkdlogMmax) time [144]. The grouping

procedure traverses the roots of the minimal workflow hierarchies and the keyword match

list, whose complexity is bounded by O(M).

genMV scans each minimal workflow hierarchy, but only visits the ancestor-or-

self of the nodes in the minimal views. Since each non-leaf node in the minimal workflow

hierarchy has at least 2 children, the total number of nodes visited is no more than 2N . For

each edge in the minimal view, genMV has two operations: insert it into a hash table when

the first endpoint is output, and retrieve it from the hash table when the second endpoint

is output. Thus each edge takes O(1) time to process. Therefore, the time complexity of

genMV is O(N +E), which is the best possible complexity as it is equal to the output size.

The overall time complexity of the algorithm is O(MminkdlogMmax +M +N + E).

13.5 Experiments

To evaluate the effectiveness and efficiency of WISE, we compare its performance with

three methods in the literature. Node Return outputs individual tasks that contain query

keywords without dataflow information, as supported by the search modules in Kepler [2],

303

Biology
QB1 GenBank
QB2 Get Sequence, Filter
QB3 Get Promoters, Align
QB4 Align, Blast, Get Promoters
QB5 Filter, Synchronizer
QB6 Record Updater, Filter
QB7 Blast, Get Sequence, Merge
QB8 Array Merge, Align
QB9 Record Updater, Record Disassembler
QB10 Align, Filter, Synchronizer
Geography
QG1 SVG Concatenate
QG2 ExtractURL, ExtractShpURL
QG3 WebService, RecoradDisassembler
QG4 ClassifySample, extractAge
QG5 ClassifySample, AssertPoint
QG6 ClassifyBody, SVG To Polygon Converter
QG7 Composite Actor, SVG Concatenate
QG8 Add Point To SVG, QueryBodyAge
QG9 Get 2D Point, Record Disassembler, Render Mapler
QG10 Record Disassembler, SVG To Polygon Converter
Ecology
QE1 Add Grids
QE2 GarpPrediction, GarpAlgorithm
QE3 Future-Climate-Model, IJMacro
QE4 LocationFile, I - DataPoints
QE5 Create ASC Maps , Garp Prediction
QE6 Calculate Best Rulesets , CV Hull to RasterMask
QE7 IJMacro, II - EnvLayerSet
QE8 Add Grids , GarpAlgorithm
QE9 Future-Climate-Model,ConvexHull, GarpPrediction
QE10 Create ASC Maps, Add Grids, I - DataPoints

Figure 13.2: Query Sets in Sample Scientific Domains for Testing WISE

Triana [9] and Taverna [7]. Structure Return outputs a whole workflow hierarchy if it contains

all the query keywords, which is used in myExperiment [4]. The third approach, BLINKS

[58], is a state-of-the-art keyword search engine on graphs, which output minimal subtrees

in the data graph whose leaf nodes contain matches to query keywords. We implemented

Structure Return and Node Return approaches with best-effort, each of which only returns

information of the minimal workflow hierarchies for better precision. The implementation of

BLINKS is obtained from the authors.

We have tested two aspects: the quality of search results measured by the amount

of information returned, as well as user perceived precision, recall and F-measure; the

304

0

20

40

60

80

100

120

140

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8 QB9 QB10

of

 n
od

es

The number shown on top of each bar is the number of
dataflows among keyword matches captured in the
corresponding query result.

0 1 1 3 1 2 1 1 3 3

of dataflows
among
keyword
matches
(ground truth)

0

0

00

1

1

0 0

1

1
0

1

1 3
01

1

1

0 1

0

2

0 0
01

0

0

0

1

0
0

0

3

0

1

1

3

0 1

Structure Return WISE BLINKSNode Return

Figure 13.3: Number of Nodes vs. Number of Dataflows among Keyword Matches in the
Query Results

0

0.2

0.4

0.6

0.8

1

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8 QB9 QB10

Structure Return WISE Node Return BLINKS

Figure 13.4: Precision of Workflow Search

efficiency of the search algorithms measured by processing time and scalability over data

size.

In the efficiency test, we additionally test the efficiency of WISE in handling syn-

onyms of keywords. Specifically, we use WordNet [10] to find a set of synonyms for each

keyword, then take the union of the matches to all synonyms as the matches to this key-

word.

Experimental Setup

The experiments were performed on a 3.6GHz Pentium 4 machine. The systems were

implemented in Java using a commercial database as the backend. All experiments were

305

0

0.2

0.4

0.6

0.8

1

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8 QB9 QB10

Structure Return WISE Node Return BLINKS

Figure 13.5: Recall of Workflow Search

0

0.2

0.4

0.6

0.8

1

alpha = 0.5 alpha = 1 alpha = 2

Structure Return WISE Node Return BLINKS

Figure 13.6: F-measure of Workflow Search

repeated 5 times independently with cold cache, and we report the average processing time

discarding the maximum and minimum values.

Data Set. The data are obtained from the Kepler system[2] in MoML (Modeling

Markup Language) format [3], which is the standard file format for specifying workflow hi-

erarchies, widely used in many workflow systems such as Kepler [2], SEEK [6], GEON [1],

etc.

Query Set. We have tested thirty queries for workflows in three sample application

domains: Biology (QB1 − QB10), Geology (QG1 − QG10), and Ecology (QE1 − QE10).

Queries QB1 to QB10 are set by a biologist from the Biology department in Arizona State

University. For example, QB1 intends to find out the usage of GenBank, and QB2 intends

to find out how to filter sequences. The queries include single keyword queries, queries

whose keywords appear in the same cluster, same layer, or different layers. All queries can

be found in Figure 13.2.

306

Search Quality

Analysis of Information in Query Results. Fig. 13.3 shows the total number of nodes in

the query result, the ground truth of the number of dataflows between keyword matches in

the data, and the number of dataflow paths that are captured in the result, of each approach

on queries QB1 to QB10. We can see that these approaches in the decreasing order

of the amount of nodes output are: Structure Return, WISE, BLINKS, and Node Return.

Each result of each approach contains all keywords of the corresponding query. However,

the numbers of dataflow paths among keywords captured by these approaches are quite

different, as shown above the bars in Fig. 13.3. The total numbers of dataflows between

all pairs of distinct keywords in the data are considered as the ground truth, which are

listed below the x-axis. Node Return has zero dataflows returned as no pair of the nodes

in a query result are connected. BLINKS is unaware of the difference of dataflow edges

and expansion edges and thus often fails to capture the dataflow paths between keywords.

Structure Return outputs the entire minimal workflow hierarchies as query results, which

only explicitly capture the dataflow paths among keyword matches that are leaf nodes. Even

though it outputs much more data nodes than WISE, the amount of relevant information is

limited. On the other hand, WISE can capture all the dataflows by explicitly displaying the

dataflow paths connecting keywords in the query results, and thus return informative results.

We also evaluate the number of self-contained results generated from all four meth-

ods for QB1 - QB10. All results generated by WISE and Structure Return are self-contained,

as they generated minimal views / minimal workflow hierarchies as results. Node Return

does not generate any self-contained results. BLINKS generates self-contained results only

when it happens to return exactly the nodes and edges in a cluster as a result. For QB1 -

QB10, BLINKS does not generate self-contained results.

User Evaluation. To further verify the rationale of WISE’s semantics and the ac-

ceptance of WISE’s query results by users, we also performed a user study on QB1 to

QB10 to measure the precision, recall, and F-measure of these four approaches.

Ten students who are not aware of this project were invited for the survey. For

307

each query, we provided the users with the search results generated by each of the four

systems, as well as an option for them to specify their own query results if none of them

are satisfactory, by circling all the nodes they wish to be returned (Recall that dataflow

information is analyzed in Fig. 13.10). The ground truth is set based on the majority of

agreements by the users. We then calculate the precisions and recalls of each approach

on the ten queries based on the ground truth, which are shown in Fig. 13.4 and 13.5.

As we can see, Structure Return usually has a perfect recall as the entire minimal

workflow hierarchies are returned for each query. However, it suffers a low precision as not

all the nodes returned are relevant. Take QB2 as an example, the users are only interested

in the information about Get Sequence and Filter, which comprises only a small portion of

the minimal workflow hierarchy. On the other hand, Node Return has a perfect precision

on all queries, but suffers a very low recall. Consider QB4, no information about how to

use Align, Blast and Get Promoters together is returned. Similarly, BLINKS has a perfect

precision, but low recall, since the results that are returned are generally not self-contained

workflows.

WISE has both high precision and recall in general. There are a few queries on

which WISE’s search quality can be further improved. For query QB1, WISE has a low re-

call because WISE outputs the cluster containing GenBank, and task GenBank is clickable

but not expanded. However, the users prefer having the detailed information of GenBank

directly. The reason WISE has a low precision for QB8 is that the occurrences of the key-

words Array Merge and Align in the data are far away from the start tasks of the minimal

workflow hierarchy. In this case, the users prefer omitting some portion of the data from

the start tasks to the keyword matches in the result for conciseness reason. QB7 has the

similar reason as QB8.

We compute the F-measure of each approach according to the average precision

and recall across all the test queries, with parameter α= 0.5, 1 and 2, as presented in Fig.

13.6. WISE significantly outperforms Structure Return, Node Return and BLINKS.

308

0

0.02

0.04

0.06

0.08

0.1

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8 QB9 QB10

T
im
e
(s
)

WISE WISE* Structure Return Node Return BLINKS

Figure 13.7: Query Processing Time of Workflow Search on Biology Data

0

0.05

0.1

0.15

0.2

0.25

QG1 QG2 QG3 QG4 QG5 QG6 QG7 QG8 QG9 QG10

T
im
e
 (
s
)

WISE WISE* Structure Return Node Return BLINKS

Figure 13.8: Query Processing Time of Workflow Search on Geography Data

Efficiency

Processing Time. The processing times of WISE, Structure Return, Node Return and

BLINKS on the test data and query sets are shown in Fig. 13.7 - 13.9. WISE* denotes the

approach that incorporates WordNet for finding synonyms of keywords. All approaches are

efficient. Node Return is the fastest, followed by BLINKS and WISE, and Structure Return

is the slowest. WISE* takes additional processing time for finding the synonyms of each

keyword, as well as finding the matches to them. It can be seen that the additional time

WISE* takes to handle synonyms is fractional.

Fig. 13.10(a) shows the breakdown of the average processing time of each ap-

proach over all 30 queries. Structure Return, Node Return and WISE start with finding the

minimal workflow hierarchies; WISE further finds the minimal views; BLINKS has specific

309

0

0.2

0.4

0.6

0.8

1

QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9 QE10
T
im
e
 (
s
)

WISE WISE* Structure Return Node Return BLINKS

Figure 13.9: Query Processing Time of Workflow Search on Ecology Data

0

0.05

0.1

0.15

0.2

0.25

Structure Return WISE Node Return BLINKS

T
im

e(
s)

Output

(BLINKS) Result Generation

(WISE) Compute Minimal View

Find Minimal Workflow Hierarchy

 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

0.5

1

1.5

2

2.5

3

3.5

112 224 336 448 560 672 784 896 1008

T
im

e(
s)

workflow repository size(MB)

Node Return WISE Structure Return BLINKS

(a) Processing Time Breakdown (b) Scalability

Figure 13.10: Workflow Search Processing Time Breakdown, Scalability and Number of
Dataflows Captured

result generation algorithms; and all consume time for outputting results.

As we can see, the output time is dominant in the overall cost, which is determined

by the amount of information output. Fig. 13.3 shows the number of nodes that are output

by each approach for queries on Biology workflow repository. Structure Return, which out-

puts the whole minimal workflow hierarchies, has the largest output sizes and thus is the

slowest. Its output size is followed by that of WISE, and then BLINKS. On the other hand,

Node Return, which only outputs individual match nodes, has the smallest number of nodes

returned and therefore is fastest.

We also observe that the algorithm of WISE for generating minimal view is very

efficient, consuming a very small portion of its processing time. The result generation time

of WISE is similar to those of BLINKS and Node Return. The processing overhead of WISE

310

is mainly due to the additional information output, which captures more dataflows between

keyword matches (shown in Fig. 13.3) and results in best search quality among all (shown

in Fig. 13.4 and 13.5).

Scalability. We test the scalability of all four approaches over increasing data

sizes by replicating the workflows in the repository multiple times. The processing times of

QB1 are shown in Fig. 13.10(b). All four approaches increase linearly when the data size

increases. They scale similarly on other queries and the figures are omitted.

In summary, WISE achieves significantly better search quality compared with Struc-

ture Return, Node Return and BLINKS and returns self-contained, informative yet concise

query results. It is efficient and scales well.

13.6 Summary

In this chapter we present WISE, a keyword search engine for workflow hierarchies, which

are modeled as hierarchies of multiple layers. Due to the three dimensional data struc-

ture, existing techniques for searching trees or graphs are unhelpful for searching workflow

hierarchies. To identify self-contained, informative and concise query results on workflow

hierarchies, we identify the minimal views of minimal workflow hierarchies as query results,

which captures the dataflows between keyword matches. We then designed an algorithm

to find minimal views of a minimal workflow hierarchy with optimal time complexity. Experi-

mental evaluations have shown the effectiveness and efficiency of WISE.

311

Chapter 14

Conclusions and Future Work

14.1 Conclusions

Keyword search is a very desirable way for casual users to access structured data. Com-

pared with structured queries, keyword search is easy to use by casual users, and it en-

ables the discovery of unexpected and interesting information. Compared with text search,

searching structured data provides us with more opportunities to return meaningful results.

By supporting keyword search on structured data, we can significantly enhance the usabil-

ity of structured data and make it accessible by a large population of users. However, due

to the ambiguity of keyword queries and the large search space, effectively and efficiently

supporting keyword searches on structured data has many challenges.

In this dissertation we consider three structured data models: tree data, graph data

and nested graph data. We identify various challenges in supporting keyword search on

these data models and propose techniques to address each of them. The challenges and

our solutions discussed in this dissertation include:

Structural Ambiguity: keyword queries have no structures, but the user is usually

interested in one or a few specific structures. This is a unique challenge in processing key-

word searches on structured data. We address this challenge from two perspectives: (1)

Inferring structures for keyword queries to generate meaningful results, including identifying

relevant keyword matches (Chapter 4), identifying return information (Chapter 5) , compos-

ing results based on relevant matches and return information (Chapter 6); (2) Since it is

not always possible to generate perfect results, we also resolve structural ambiguity after

results are generated by helping users analyze the results, the techniques of which include

generating result snippets (Chapter 7) and clustering query results based on their structures

(Chapter 9). A result snippet is a subtree of a query result, from which the user can learn

the structure of the result. By structure-based result clustering, the user can quickly learn

what types of structures exist in the query results.

Keyword Ambiguity: the user may not use the perfect keywords to query the

312

structured data. The keywords may be misspelled, under-specified, over-specified, non-

quantitative, etc. This challenge also exists in processing structured queries and in pro-

cessing text search. However, it is generally an insignificant challenge in processing struc-

tured queries as the users of structured queries are usually database experts. Compared

with text search, the techniques of resolving keyword ambiguity can be different due to dif-

ferent definitions of query results, and structured data provides more opportunities to better

resolve keyword ambiguity.

To resolve keyword ambiguity, one way is to perform query cleaning and rewriting.

In this dissertation, we focus on another approach: helping users analyze the query results,

including generating result snippets (Chapter 7) and clustering query results based on their

values and generating expanded queries from the clusters (Chapter 11). By reading the

snippet of a query result, the user will likely understanding the precise meaning of the query

keywords. For example, for query “Java”, the user will learn from the snippets that in some

results, “Java” refers to a programming language while in some other results, “Java” refers

to an island. By clustering and query expansion, the user can also distinguish different

meanings of an ambiguous keyword.

User Preference Ambiguity: Many keyword queries are for information exploration

purposes, where the user may not have a clear idea of what s/he wants. In this case, the

user needs to check multiple results. For example, a user searching for an apparel store

may need to check the information of multiple stores to decide which one to visit. Similar

as keyword ambiguity, this challenge applies to both processing structured queries and

processing text search. It is generally an insignificant challenge in processing structured

queries, and compared with text search, structured data provides more opportunities to

better resolve user preference ambiguity.

Both result snippets (Chapter 7) and clustering (Chapters 9 and 11) help users

get insight from the query results. Besides, we also proposed techniques to generate a

comparison table for a set of results (Chapter 8), which consists of features that highlight

the differences of these results.

Efficiency: Efficiency is very important for a search engine, and generating key-

313

word search results efficiently involves several unique challenges compared with structured

query and text search. Compared to structured query, since the relevant nodes, their con-

nections and the return information are not specified in keyword queries, the search space

of keyword queries can be much larger. Compared to text search, the results of keyword

search on structured data are not individual documents, but rather subtrees or subgraphs

of the data that need to be dynamically identified. Given a structured data and keyword

query, the number of ways to connect nodes matching query keywords can be far bigger

compared with the size of the data.

To generate results efficiently, we proposed a framework in Chapter 12 that utilizes

materialized views to answer keyword queries on XML. We discussed that given a set of

materialized views and a keyword query, how to select the best set of views (a.k.a. answer

set) to answer the query, and how to use the selected views to answer the query. We also

discussed how to incrementally maintain the views when the data is updated.

Searching Nested Graphs: Due to the unique structure of nested graphs, existing

methods for defining search results on tree or graph data fail to produce meaningful results

on nested graphs. We propose in Chapter 13 a workflow search engine that generates

self-contained, informative and concise query results on workflow hierarchies. To do so,

we define a workflow search result as a minimal view of a workflow that contains query

keywords, which can be considered as a projection of three dimensional data onto a two

dimensional plane. In this way, the dataflows between keyword matches can be captured.

14.2 Future Work

In this section we discuss possible future works in several categories.

Processing Keyword Search on Structured Data with Improved and/or Con-

trollable Efficiency. As we said before, it is much more costly to process keyword queries

on structured data compared with processing keyword queries on text documents of com-

parable size. In order to achieve an efficiency comparable to that of Web search engines

and satisfy the needs of impatient users, it is important to develop techniques for process-

ing keyword searches on structured data with improved and/or guaranteed efficiency. One

314

way to address this problem is to generate the results in the order of their ranking. However,

this is possible only for a limited number of result semantics and ranking functions; besides,

in many cases generating the first result is already very difficult (which corresponds to the

group Steiner tree problem, an NP-hard problem). In Chapter 12, we initiate the study of us-

ing materialized views to answer keyword queries on XML and maintaining views, however,

it is applicable to a specific search semantics (SLCA) on a specific type of data (XML).

Possible future directions for approaching the efficiency issue of keyword search

engines include:

1) Developing query optimization techniques that estimate the cost of processing a keyword

query using different strategies, and choose the strategies accordingly. For example, we

may build a multi-resolution index of the data and use the right resolution/algorithm based

on the estimated query cost. This is very much in line with the cloud computing framework,

where the service provider needs to determine the optimal way of processing a user query,

considering factors like query characteristics, user priority, etc.

2) Parallel computation. Parallel computation is necessary for processing large data. While

parallel computing has been a popular research topic, leveraging such infrastructure for key-

word search on structured data poses new challenges that have hardly been addressed.

There is research on parallel computation of keyword queries on relational databases [114],

while more generic approaches for handling general graphs and being capable of comput-

ing top-k results are needed.

Complementing Structured Search Engines with Web Search Engines to Gen-

erate Meaningful Results. In our prior works, query results or result analysis (snippet,

comparison tables, cluster, etc.) are generated solely based on the query and the data. In

fact, text search and structured search can be combined to provide more effective search

results. For example, currently Web search engines have much more data and bigger query

log than a relational database used by an enterprise or organization, thus the search results

of a Web search engine carry more significant statistics. If a user-issued keyword query on

a database is ambiguous and have multiple possible semantics, we may issue one or more

Web queries, and use the set of results returned by the Web search engine to determine the

315

likelihood of each semantics (e.g., based on the number of results returned). If a keyword

in a user query does not appear in the data, we can also leverage Web search engines to

find out its synonyms or related terms (e.g., the user may use keyword “DB” while the data

contains word “database”). The research challenges herein include how to choose the right

set of queries to submit to the Web search engine, and how to use the results returned by

Web search engine to serve our purposes.

Self Explaining Structured Data. Unlike text documents, search results on struc-

tured data can provide results that integrate and aggregate information from multiple sources.

Thus the ability to help users understand such analytic results is important. Techniques are

demanded to allow users to ask certain types of questions to a structured data set, which

is able to give concise and meaningful answers. Some useful types of questions include:

1) Provenance questions with respect to query result, e.g., why a tuple is/is not returned for

a query? Where does a result come from?

2) Provenance questions with respect to ranking, e.g., why is one result ranked higher than

another?

3) Relationship/analytical questions with respect to tuples. For example, what are the most

significant relationships of these three tuples and what are other tuples that also possess

such relationships?

While provenance analysis for structured queries has been studied [30, 35, 66], it

is not yet available for keyword search.

To sum up, keyword search on structured data has been recognized as an important

problem by database researchers, who have achieved promising results in this area. In

order to develop a commercially successful keyword search engine on structured data that

benefits a large population of users, there are still many open and challenging questions

that await being studied in the future.

316

REFERENCES

[1] GEON. http://www.geongrid.org.

[2] Kepler. http://kepler-project.org/.

[3] MOML. http://ptolemy.eecs.berkeley.edu/papers/05/ptIIdesign1-intro/ptIIdesign1-
intro.pdf.

[4] myExperiment. http://www.myexperiment.org/.

[5] Oracle berkeley db. http://www.oracle.com/technology/products/berkeley-
db/index.html.

[6] Seek. http://seek.ecoinformatics.org.

[7] Taverna Project. http://taverna.sourceforge.net/.

[8] Timber project. http://www.eecs.umich.edu/db/timber/.

[9] Triana. http://www.trianacode.org/collaborations/index.html.

[10] Wordnet: a lexical database for the English language. http://wordnet.princeton.edu/.

[11] C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki. Xproj: A Framework for
Projected Structural Clustering of XML Documents. In KDD, 2007.

[12] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System for Keyword-Based
Search over Relational Databases. In ICDE, 2002.

[13] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler: An
extensible system for design and execution of scientific workflows. In SSDBM, pages
423–424, 2004.

[14] A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou. Structured Material-
ized Views for XML Queries. In VLDB, pages 87–98, 2007.

[15] K. Arrow. Social Choice and Individual Values. 1951.

[16] A. Balmin, F. Özcan, K. S. Beyer, R. Cochrane, and H. Pirahesh. A Framework for
Using Materialized XPath Views in XML Query Processing. In VLDB, pages 60–71,
2004.

[17] Z. Bao, S. Cohen-Boulakia, S. Davidson, A. Eyal, and S. Khanna. Differencing prove-
nance in scientific workflows. In Data Engineering, 2009. ICDE 2009. IEEE 25th
International Conference on, 2009.

317

[18] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective XML Keyword Search with Relevance
Oriented Ranking. In ICDE, pages 517–528, 2009.

[19] Z. Bar-Yossef and M. Gurevich. Mining Search Engine Query Logs via Suggestion
Sampling. PVLDB, 1(1):54–65, 2008.

[20] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes. In
VLDB, pages 343–354, 2006.

[21] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
Searching and Browsing in Databases using BANKS. In ICDE, pages 431–440, 2002.

[22] O. Biton, S. C. Boulakia, and S. B. Davidson. Zoom*UserViews: Querying Relevant
Provenance in Workflow Systems. In VLDB, pages 1366–1369, 2007.

[23] O. Biton, S. C. Boulakia, S. B. Davidson, and C. S. Hara. Querying and manag-
ing provenance through user views in scientific workflows. In Proceedings of ICDE,
pages 1072–1081, 2008.

[24] C. Botev and J. Shanmugasundaram. Context-Sensitive Keyword Search and Rank-
ing for XML. In WebDB, pages 115–120, 2005.

[25] A. Z. Broder. A Taxonomy of Web Search. SIGIR Forum, 36(2):3–10, 2002.

[26] G. Cao, J.-Y. Nie, J. Gao, and S. Robertson. Selecting Good Expansion Terms for
Pseudo-Relevance Feedback. In SIGIR, pages 243–250, 2008.

[27] D. Carmel, H. Roitman, and N. Zwerdling. Enhancing Cluster Labeling Using
Wikipedia. In SIGIR, pages 139–146, 2009.

[28] C. Carpineto, R. de Mori, G. Romano, and B. Bigi. An Information-Theoretic Approach
to Automatic Query Expansion. ACM Trans. Inf. Syst., 19(1):1–27, 2001.

[29] K. Chakrabarti, S. Chaudhuri, and S. won Hwang. Automatic Categorization of Query
Results. In SIGMOD Conference, pages 755–766, 2004.

[30] A. Chapman and H. V. Jagadish. Why Not? In SIGMOD Conference, pages 523–
534, 2009.

[31] S. Chaudhuri and R. Kaushik. Extending Autocompletion to Tolerate Errors. In SIG-
MOD Conference, pages 707–718, 2009.

[32] A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P. Yang. Scientific Workflow Prove-
nance Querying with Security Views. In WAIM, pages 349–356, 2008.

318

[33] L. J. Chen and Y. Papakonstantinou. Supporting Top-K Keyword Search in XML
Databases. In ICDE, pages 689–700, 2010.

[34] Z. Chen and T. Li. Addressing Diverse User Preferences in SQL-Query-Result Navi-
gation. In SIGMOD Conference, pages 641–652, 2007.

[35] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in Databases: Why, How, and
Where. Foundations and Trends in Databases, 1(4):379–474, 2009.

[36] T. Cheng and K. C.-C. Chang. Entity Search Engine: Towards Agile Best-Effort
Information Integration over the Web. In CIDR, pages 108–113, 2007.

[37] T. Cheng, H. W. Lauw, and S. Paparizos. Fuzzy matching of Web queries to struc-
tured data. In ICDE, pages 713–716, 2010.

[38] T. Cheng, X. Yan, and K. C.-C. Chang. EntityRank: Searching Entities Directly and
Holistically. In VLDB, pages 387–398, 2007.

[39] P.-A. Chirita, C. S. Firan, and W. Nejdl. Personalized Query Expansion for the Web.
In SIGIR, pages 7–14, 2007.

[40] E. Chu, A. Baid, X. Chai, A. Doan, and J. F. Naughton. Combining Keyword Search
and Forms for Ad Hoc Querying of Databases. In SIGMOD Conference, pages 349–
360, 2009.

[41] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In PODS, 2002.

[42] S. Cohen, S. C. Boulakia, and S. B. Davidson. Towards a model of provenance and
user views in scientific workflows. In DILS, pages 264–279, 2006.

[43] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic Search Engine
for XML. In VLDB, pages 45–56, 2003.

[44] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(Second Edition). The MIT Press, 2001.

[45] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. Sellis. A Methodology for Clustering
XML Documents by Structure. Inf. Syst., 31(3):187–228, 2006.

[46] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. K. Sellis. Clustering xml documents by
structure. In SETN, pages 112–121, 2004.

[47] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. K. Sellis. Clustering XML Documents
Using Structural Summaries. In EDBT Workshops, 2004.

319

[48] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword Search on External Memory
Data Graphs. Proc. VLDB Endow., 1(1):1189–1204, 2008.

[49] A. Deutsch, M. F. Fernández, and D. Suciu. Storing Semistructured Data with
STORED. In SIGMOD Conference, pages 431–442, 1999.

[50] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding Top-k Min-Cost
Connected Trees in Databases. In ICDE, pages 836–845, 2007.

[51] B. Ding, B. Zhao, C. X. Lin, J. Han, and C. Zhai. TopCells: Keyword-based search of
top-k aggregated documents in text cube. In ICDE, pages 381–384, 2010.

[52] A. Doucet and H. Ahonen-Myka. Naïve Clustering of a large XML Document Collec-
tion. In INEX Workshop, 2002.

[53] L. Engebretsen and J. Holmerin. Clique Is Hard to Approximate within n1−o(1). In
ICALP, pages 2–12, 2000.

[54] J. Feng, N. Ta, Y. Zhang, and G. Li. Exploit Sequencing Views in Semantic Cache to
Accelerate XPath Query Evaluation. In WWW, 2007.

[55] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword Proximity Search in Complex Data
Graphs. In SIGMOD Conference, pages 927–940, 2008.

[56] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked Keyword
Search over XML Documents. In SIGMOD Conference, pages 16–27, 2003.

[57] P. Hansen and F. S. Roberts. An impossibility result in axiomatic location theory. In
Mathematics of Operations Research, 1996.

[58] H. He, H. Wang, J. Y. 0001, and P. S. Yu. BLINKS: Ranked Keyword Searches on
Graphs. In SIGMOD Conference, pages 305–316, 2007.

[59] T. Heinis and G. Alonso. Efficient Lineage Tracking for Scientific Workflows. In SIG-
MOD Conference, pages 1007–1018, 2008.

[60] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-Style Keyword Search
over Relational Databases. In VLDB, pages 850–861, 2003.

[61] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword Proximity
Search in XML Trees. IEEE Trans. Knowl. Data Eng., 18(4):525–539, 2006.

[62] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword Search in Relational
Databases. In VLDB, pages 670–681, 2002.

320

[63] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword Proximity Search on XML
Graphs. In ICDE, pages 367–378, 2003.

[64] Y. Huang, Z. Liu, and Y. Chen. eXtract: A Snippet Generation System for XML
Search. PVLDB, 1(2):1392–1395, 2008.

[65] Y. Huang, Z. Liu, and Y. Chen. Query Biased Snippet Generation in XML Search. In
SIGMOD Conference, pages 315–326, 2008.

[66] R. Ikeda and J. Widom. Panda: A System for Provenance and Data. IEEE Data Eng.
Bull., 33(3):42–49, 2010.

[67] M. Jayapandian and H. V. Jagadish. Automated Creation of a Forms-based Database
Query Interface. PVLDB, 1(1):695–709, 2008.

[68] M. Jayapandian and H. V. Jagadish. Automating the Design and Construction of
Query Forms. IEEE Trans. Knowl. Data Eng., 21(10):1389–1402, 2009.

[69] A. K. Joshi and Y. Schabes. Tree-Adjoining Grammars and Lexicalized Grammars.
In Tree Automata and Languages, pages 409–432. 1992.

[70] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar.
Bidirectional Expansion For Keyword Search on Graph Databases. In VLDB, pages
505–516, 2005.

[71] A. Kashyap, V. Hristidis, and M. Petropoulos. FACeTOR: Cost-Driven Exploration of
Faceted Query Results. In CIKM, pages 719–728, 2010.

[72] B. Kimelfeld and Y. Sagiv. Finding and Approximating Top-k Answers in Keyword
Proximity Search. In PODS, pages 173–182, 2006.

[73] J. M. Kleinberg. An Impossibility Theorem for Clustering. In NIPS, pages 446–453,
2002.

[74] L. Kong, R. Gilleron, and A. Lemay. Retrieving Meaningful Relaxed Tightest Frag-
ments for XML Keyword Search. In EDBT, pages 815–826, 2009.

[75] G. Koutrika, A. Simitsis, and Y. E. Ioannidis. Précis: The Essence of a Query Answer.
In ICDE, pages 69–78, 2006.

[76] G. Koutrika, Z. M. Zadeh, and H. Garcia-Molina. Data Clouds: Summarizing Keyword
Search Results over Structured Data. In EDBT, pages 391–402, 2009.

[77] S. Kullback. The Kullback-Leibler Distance. In The American Statistician, 1987.
321

[78] M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. XClust: Clustering XML Schemas for
Effective Integration. In CIKM, 2002.

[79] R. Lempel and S. Moran. Predictive Caching and Prefetching of Query Results in
Search Engines. In WWW, 2003.

[80] C. Li, T. W. Ling, and M. Hu. Efficient Processing of Updates in Dynamic XML Data.
In ICDE, 2006.

[81] C. Li, N. Yan, S. B. Roy, L. Lisham, and G. Das. Facetedpedia: Dynamic generation
of query-dependent faceted interfaces for wikipedia. In WWW, pages 651–660, 2010.

[82] G. Li, J. Feng, J. Wang, and L. Zhou. Effective Keyword Search for Valuable LCAs
over XML Documents. In CIKM, pages 31–40, 2007.

[83] G. Li, S. Ji, C. Li, and J. Feng. Efficient Type-ahead Search on Relational Data: A
TASTIER Approach. In SIGMOD Conference, pages 695–706, 2009.

[84] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: an effective 3-in-1 keyword
search method for unstructured, semi-structured and structured data. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD international conference on Manage-
ment of data, pages 903–914, New York, NY, USA, 2008. ACM.

[85] J. Li, C. Liu, R. Zhou, and W. Wang. Suggestion of Promising Result Types for XML
Keyword Search. In EDBT, pages 561–572, 2010.

[86] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In VLDB, pages 72–83,
2004.

[87] W. Lian, D. W. lok Cheung, N. Mamoulis, and S.-M. Yiu. An Efficient and Scalable
Algorithm for Clustering XML Documents by Structure. IEEE Trans. on Knowl. and
Data Eng., 16(1):82–96, 2004.

[88] Y.-H. Liang, T.-J. Zhao, H. Yu, and J.-M. Yao. High Precision English base Noun
Phrase Identification Based on “Waterfall” Model. In Machine Learning and Cyber-
netics, pages 4902–4907, 2005.

[89] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective Keyword Search in Relational
Databases. In SIGMOD Conference, pages 563–574, 2006.

[90] Z. Liu, Y. Cai, and Y. Chen. TargetSearch: A Ranking Friendly XML Keyword Search
Engine. In ICDE, pages 1101–1104, 2010.

[91] Z. Liu and Y. Chen. Identifying Meaningful Return Information for XML Keyword
Search. In SIGMOD Conference, pages 329–340, 2007.

322

[92] Z. Liu and Y. Chen. Answering Keyword Queries on XML Using Materialized Views.
In ICDE, pages 1501–1503, 2008.

[93] Z. Liu and Y. Chen. Reasoning and Identifying Relevant Matches for XML Keyword
Search. PVLDB, 1(1):921–932, 2008.

[94] Z. Liu and Y. Chen. Return Specification Inference and Result Clustering for Keyword
Search on XML. ACM Trans. Database Syst., 35(2), 2010.

[95] Z. Liu, Y. Huang, and Y. Chen. Improving XML Search by Generating and Utilizing
Informative Result Snippets. ACM Trans. Database Syst., 35(3), 2010.

[96] Z. Liu, S. Natarajan, and Y. Chen. Query Expansion Based on Clustered Results.
PVLDB, 4(6), 2011.

[97] Z. Liu, S. Natarajan, P. Sun, S. Booher, T. Meehan, R. Winkler, and Y. Chen. XSACT:
A Comparison Tool for Structured Search Results. PVLDB, 3(2):1581–1584, 2010.

[98] Z. Liu, Q. Shao, and Y. Chen. Searching Workflows with Hierarchical Views. PVLDB,
3(1):918–927, 2010.

[99] Z. Liu, P. Sun, and Y. Chen. Structured Search Result Differentiation. PVLDB,
2(1):313–324, 2009.

[100] Z. Liu, J. Walker, and Y. Chen. XSeek: A Semantic XML Search Engine Using
Keywords. In VLDB, pages 1330–1333, 2007.

[101] Y. Lu, W. Wang, J. Li, and C. Liu. XClean: Providing Valid Spelling Suggestions for
XML Keyword Queries. In ICDE, pages 661–672, 2011.

[102] Y. Luo, X. Lin, W. Wang, and X. Zhou. SPARK: Top-k Keyword Query in Relational
Databases. In SIGMOD Conference, pages 115–126, 2007.

[103] B. Mandhani and D. Suciu. Query Caching and View Selection for XML Databases.
In VLDB, pages 469–480, 2005.

[104] A. Markowetz, Y. Yang, and D. Papadias. Keyword search on relational data streams.
In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 605–616, New York, NY, USA, 2007. ACM.

[105] M. Muhr, R. Kern, and M. Granitzer. Analysis of Structural Relationships for Hierar-
chical Cluster Labeling. In SIGIR, pages 178–185, 2010.

323

[106] U. Nambiar and S. Kambhampati. Answering Imprecise Queries over Autonomous
Web Databases. In ICDE, page 45, 2006.

[107] A. Nierman and H. V. Jagadish. Evaluating Structural Similarity in XML Documents.
In WebDB, 2002.

[108] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition
and enactment of bioinformatics workflows. In Bioinformatics, pages 3045–3054,
2003.

[109] P. OąŕNeil, E. OąŕNeil, S. Pal, I. Cseri, and G. Schaller. ORDPATHs: Insert-Friendly
XML Node Labels. In SIGMOD, 2004.

[110] N. Onose, A. Deutsch, Y. Papakonstantinou, and E. Curtmola. Rewriting Nested XML
Queries Using Nested Views. In SIGMOD Conference, pages 443–454, 2006.

[111] M. J. Osborne and A. Rubinstein. A Course in Game Theory. In MIT Press, 1994.

[112] D. M. Pennock, E. Horvitz, and C. L. Giles. An Impossibility Theorem for Clustering.
In AAAI, 2000.

[113] K. Q. Pu and X. Yu. Keyword Query Cleaning. In VLDB, 2008.

[114] L. Qin, J. Yu, and L. Chang. Ten Thousand SQLs: Parallel Keyword Queries Com-
puting. PVLDB, 3(1):58–69, 2010.

[115] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Querying Communities in Relational
Databases. In ICDE, pages 724–735, 2009.

[116] M. Ramanath and K. S. Kumar. A Rank-Rewrite Framework for Summarizing XML
Documents. In ICDE Workshops, pages 540–547, 2008.

[117] Y. Rubner, C. Tomasi, and L. J. Guibas. A Metric for Distributions with Applications
to Image Databases. In ICCV, pages 59–66, 1998.

[118] P. C. Saraiva, E. S. de Moura, N. Ziviani, W. Meira, R. Fonseca, and B. RibeiroNeto.
Rank-Preserving Two-Level Caching for Scalable Search Engines. In SIGIR, 2007.

[119] N. Sarkas, N. Bansal, G. Das, and N. Koudas. Measure-driven keyword-query ex-
pansion. PVLDB, 2(1):121–132, 2009.

[120] A. Sawires, J. Tatemura, O. Po, D. Agrawal, A. E. Abbadi, and K. S. Candan. Main-
taining XPath Views In Loosely Coupled Systems. In VLDB, pages 583–594, 2006.

324

[121] A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S. Candan. Incremental Mainte-
nance of Path Expression Views. In SIGMOD Conference, pages 443–454, 2005.

[122] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano. Efficient Keyword Search Across
Heterogeneous Relational Databases. In ICDE, pages 346–355, 2007.

[123] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva. Querying and Re-
Using Workflows with VisTrails. In SIGMOD, 2008.

[124] F. Shao, L. Guo, C. Botev, A. Bhaskar, M. Chettiar, F. Y. 0002, and J. Shanmu-
gasundaram. Efficient Keyword Search over Virtual XML Views. In VLDB, pages
1057–1068, 2007.

[125] Q. Shao, P. Sun, and Y. Chen. WISE: A Workflow Information Search Engine. In
ICDE, pages 1491–1494, 2009.

[126] C. Sun, C. Y. Chan, and A. K. Goenka. Multiway SLCA-based Keyword Search in
XML Data. In WWW, pages 1043–1052, 2007.

[127] P. Sun, Z. Liu, S. B. Davidson, and Y. Chen. Detecting and Resolving Unsound
Workflow Views for Correct Provenance Analysis. In SIGMOD Conference, pages
549–562, 2009.

[128] A. Tagarelli and S. Greco. Toward Semantic XML Clustering. In SDM, 2006.

[129] N. Tang, J. X. Yu, M. T. Özsu, B. Choi, and K.-F. Wong. Multiple Materialized View
Selection for XPath Query Rewriting. In ICDE, pages 873–882, 2008.

[130] Y. Tao and J. X. Yu. Finding Frequent Co-occurring Terms in Relational Keyword
Search. In EDBT, pages 839–850, 2009.

[131] A. Tombros, R. Villa, and C. J. V. Rijsberge. The Effectiveness of Query-specific Hier-
archic Clustering in Information Retrieval. Information Processing and Management,
38(4):559–582, 2002.

[132] O. Vechtomova, S. E. Robertson, and S. Jones. Query Expansion with Long-Span
Collocates. Inf. Retr., 6(2):251–273, 2003.

[133] V. Vesper. Let’s Do Dewey. http://www.mtsu.edu/ vvesper/dewey.html.

[134] M. Vrhovnik, H. Schwarz, S. Radeschütz, and B. Mitschang. An Overview of SQL
Support in Workflow Products. In ICDE, pages 1287–1296, 2008.

325

[135] N. Wacholder, D. K. Evans, and J. Klavans. Automatic Identification and Organization
of Index Terms for Interactive Browsing. In JCDL, pages 126–134, 2001.

[136] J. T. L. Wang, J. Liu, and J. Wang. XML Clustering And Retrieval Through Principal
Component Analysis. International Journal on Artificial Intelligence Tools, 14(4):683,
2005.

[137] T. Wang, D. xin Liu, and X.-Z. Lin. XML Document Clustering by Independent Com-
ponent Analysis. In KDXD, 2006.

[138] D. Xin, Y. He, and V. Ganti. Keyword++: A Framework to Improve Keyword Search
Over Entity Databases. PVLDB, 3(1):711–722, 2010.

[139] G. Xing, J. Guo, and Z. Xia. Classifying XML Documents Based on Structure/Content
Similarity. In INEX, 2006.

[140] G. Xing, Z. Xia, and J. Guo. Clustering XML Documents Based on Structural Simi-
larity. In DASFAA, 2007.

[141] Extensible markup language (xml) 1.0, 2004. http://www.w3.org/TR/REC-xml/.

[142] J. Xu and W. B. Croft. Query Expansion Using Local and Global Document Analysis.
In SIGIR, pages 4–11, 1996.

[143] W. Xu and Z. M. Özsoyoglu. Rewriting XPath Queries Using Materialized Views. In
VLDB, pages 121–132, 2005.

[144] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for Smallest LCAs in XML
Databases. In SIGMOD Conference, pages 537–538, 2005.

[145] Y. Xu and Y. Papakonstantinou. Efficient LCA Based Keyword Search in XML Data.
In EDBT, pages 535–546, 2008.

[146] C. Yu and H. V. Jagadish. Schema Summarization. In VLDB, pages 319–330, 2006.

[147] B. Zhou and J. Pei. Answering Aggregate Keyword Queries on Relational Databases
Using Minimal Group-bys. In EDBT, pages 108–119, 2009.

326

