

Efficient Java Native Interface for Android based Mobile Devices

by

Preetham Chandrian

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved May 2011 by the

Graduate Supervisory Committee:

Yann-Hang Lee, Chair

Hasan Davlcu

Baoxin Li

ARIZONA STATE UNIVERSITY

August 2011

i

 ABSTRACT

 Currently Java is making its way into the embedded systems and mobile

devices like androids. The programs written in Java are compiled into machine

independent binary class byte codes. A Java Virtual Machine (JVM) executes

these classes. The Java platform additionally specifies the Java Native Interface

(JNI). JNI allows Java code that runs within a JVM to interoperate with

applications or libraries that are written in other languages and compiled to the

host CPU ISA. JNI plays an important role in embedded system as it provides a

mechanism to interact with libraries specific to the platform.

This thesis addresses the overhead incurred in the JNI due to reflection

and serialization when objects are accessed on android based mobile devices. It

provides techniques to reduce this overhead. It also provides an API to access

objects through its reference through pinning its memory location. The Android

emulator was used to evaluate the performance of these techniques and we

observed that there was 5 - 10 % performance gain in the new Java Native

Interface.

ii

To My Beloved Family

iii

ACKNOWLEDGEMENTS

 I would like to sincerely thank my advisor; Dr. Yann-Hang Lee, without

whose guidance, encouragement and support, this thesis would not have been

possible. I have gained a lot of knowledge about my field, improved my research

skills and otherwise, working under him. In all it has been a very satisfying and a

fulfilling experience.

I would also like to thank Dr. Hasan Davulcu and Dr. Baoxin Li for their time and

effort to help me fulfill my degree requirements; as part of my thesis committee.

I am grateful to all my friends at Arizona State University who made me feel at

home and making this stay an enjoyable experience. I am thankful to all my lab

mates, especially Yaksh Sharma, Zhou Fang and Rohit Girme who helped me

with my queries.

Finally, I am indebted to my parents and my family. They all have constantly

encouraged me and been understanding through all the tough times. I wish to

express my utmost and deepest gratitude to them for being patient, warm and

supportive.

iv

TABLE OF CONTENTS

 Page

LIST OF TABLES……………………………………………………………….vii

LIST OF FIGURES……………………………………………………………..viii

CHAPTER

1 INTRODUCTION……………………………………………….........1

1.1 Motivation ... 2

1.2 Document Outline ... 4

2 JAVA NATIVE INTERFACE (JNI) .. 6

2.1 Role of JNI .. 6

2.2 Overview ... 7

2.3 Native Method Arguments ... 9

2.4 The JNIEnv Interface Pointer ... 10

2.5 JNI Functions .. 11

3 ANDROID ARCHITECTURE .. 15

3.1 Application Framework .. 16

3.2 Android Runtime .. 17

3.3 Android Application Architecture .. 20

4 RELATED WORK... 21

4.1 JNI Bridge ... 22

4.2 Interfacing Java to the Virtual Interface Architecture 22

4.3 Jeannie ... 23

v

CHAPTER Page

4.4 Inlining Java Native Calls At Runtime 24

4.5 Janet ... 24

4.6 Native Code Profiling ... 25

5 DESIGN .. 26

5.1 Class Structure .. 26

5.2 Hashing JNI fields .. 29

5.3 Find Class .. 31

5.4 Get Field .. 34

5.5 Get Method ... 36

5.6 Pinning object ... 38

6 IMPLEMENTATION .. 40

6.1 Implementation of hash function .. 40

6.2 Implementation of GetFieldId .. 42

6.3 Implementation of GetMethodId .. 43

6.4 Implementation of pinObject and unpinObject 44

6.5 Implementation of FindClass ... 45

7 EVALUATION .. 47

7.1 Android Debug Bridge .. 48

7.2 Profiling results ... 50

8 CONCLUSION .. 57

9 FUTURE WORK ... 58

vi

CHAPTER Page

REFERENCES .. 59

vii

LIST OF TABLES

Table Page

1. JNI Function Table 1 ...12

2. JNI Function Table 2 ...13

3. JNI method profile ...50

4. Heap sort running time ..51

5. Execution time for JetBoy ...54

6. Running Time for JetBoy with modified JNI ..54

 7. JNI modified method profile for

JetBoy………………………...........Error! Bookmark not defined.

 8. Reference object access time. .. 56

viii

LIST OF FIGURES

Figure Page

1. Overview of JNI ..4

2. Role of JNI ..6

3. Steps writing a JNI program ..9

4. The JNIEnv interface pointer ..10

5. Thread local JNIEnv Interface Pointer .. 11

6. Primitive array access ..14

7. Major Components of Android Applications ..15

8. Application Layer of Android ...16

9. Application Framework of Android Libraries16

10. Libraries Layer of Android ..17

11. Layers of Android Application ..18

12. Android Runtime Layer ...19

13. Linux Kernel in Android Hardware Abstraction Layer19

14. Flow of findClass ...33

15. GetField workflow ..35

16. Get Method ..37

17. Pinning object ..39

18. JNI method Profiling ...51

19. Heap sort comparison graph ..52

20. Execution time of JetBoy ..53

ix

Figure Page

21. Execution time for the Modified JNI JetBoy ..55

 22: Execution time for Lunar Lander with Android JNI 55

 23: Execution time for Lunar Lander with modified JNI ... Error! Bookmark

not defined.56

1

CHAPTER 1

INTRODUCTION

 With the introduction of JavaME (Micro Edition) by Sun MicroSystem for

mobile and embedded devices Java has rapidly acquired a significant amount of

market share. Also the applications based on JavaME are portable across devices

developers favor Java over other programming languages. The problems with

using Java are following:

 Standard Java libraries do not support platform specific features that are

needed by the application.

 If the developers wants to use libraries written in different languages because

of the fact that these libraries are more efficient and faster than its Java

counterpart.

 If the developer wants to implement time critical code in lower level

language.

Java Native Interface (JNI) addresses all these issues. It provides the following

functions:

 It can create, update and inspect Java objects which include arrays.

 It can call Java methods from C/C++

 It can catch and raise exception from native code.

 Native code can load class and request class information.

JNI has played a major role in development of application which needs to interact

2

with native code (C/C++). In recent years Java has become one of the favorite

application programming languages and is widely used by developers. This is

evident in android as well as majority of the application are written in Java. But

the fact that the operating system that android is developed on is Linux like which

requires JNI to interact with the devices. As more and more features are being

added to the mobile devices there is a need for an efficient JNI. There are papers

[1] which demonstrate the overhead incurred while making JNI calls. It provides

detailed performance benchmarks of several popular, modern, and representative

JNI implementations, pointing out their weak points and suggesting possible

solutions. There is a need to decrease these overhead in embedded systems like

android phones. Foreign-function interfaces (FFIs) such as “Jeannie” have been

developed to improve safety and productivity of JNI.

 JNI are commonly used to interact with native libraries which involves

processing of chunks of data. The data transfer between the JVM address space

and that of the native address space is costly. Further the overhead occurred in

reflection and serialization of not primitive data is significant.

1.1 Motivation

Android uses JNI in its NDK (Native Development Kit), which is a toolset that

helps developers to interact with native code components in their application.

The NDK provides the following:

 It provides tools and builds files that are helpful for developers to generate

native code libraries from C and C++ sources.

3

 It helps developers embed native libraries into an application package file.

 A set of native system headers and libraries that will be supported in all future

versions of the Android platform, starting from Android 1.5. Applications that

use native activities must be run on Android 2.3 or later.

NDKs are used to build activity, handle user inputs, use hardware sensors and

platform specific operations and the fact that they heavily rely on JNI. Making

JNI faster will not only make the application response time faster but also reduces

the use power consumption of the device. The bottle neck in JNI is the data

transfer between the JVM memory space and the native memory space. There is

also time consumed while accessing class structure and fieldIds of class attributes.

The transfer of data can be reduced if we can pin the memory address of the

object or array that we intend to manipulate. If we could cache the class structure

and the fieldIds of its attributes the over head of searching the class structure can

be reduced. As each call to the JNI is treated as new call without the information

of its previous history a lot of information is lost. If this information were

available to us we could use it and reduce the execution time of the JNI.

One of the approaches is the use of JIT (Just In Time) compilers to inline the JNI

calls. This reduces the cost of callouts to native code by reducing the over head of

stack operations that needs to be performed during the JNI calls.

 The proposed solution alters the JNIEnv structure to include hash map to

store the recently accessed fieldIds and methods. It also has caches the class

structure in the JNIEnv structure. A new method is introduced to pin the address

4

of the Java object so that the same address can be used in future access this

decreases the access time and also the information can be accessed without the

use of JNI as we already know its location in the memory. To access such kind of

address the program should be a thread in the same process as that of the JVM.

Figure 1: Overview of JNI

1.2 Document Outline

The rest of the document is organized as follows.

Chapter 2, 3 provides Background information about Android, its architecture,

and JNI. It also explains some terms to better understand the document.

Chapter 4 talks about the Related Work done in the area of JNI in general. It also

mentions certain works which describe the specific mechanism and techniques

5

used to make JNI developer friendly and efficient.

Chapter 5 talks about the design and techniques that are used to make Android

JNI efficient as a whole. It mentions the detailed working of various JNI calls and

way they are made efficient.

Chapter 6 describes the implementation details.

Chapter 7 gives a various measuring techniques used for comparing the efficiency

of the new JNI aver the existing one. It concludes the thesis as a whole.

Chapter 8 presents some features and enhancements that can be done to the

existing implementation. This will further enhance the tool.

6

CHAPTER 2

Java Native Interface (JNI)

2.1 Role of JNI

When the Java platform is deployed on top of host environments, it may become

desirable or necessary to allow Java applications to work closely with native code

written in other languages. Java is slowly replacing the programs that were

written in C and C++ as they are platform independent. The Java Native Interface

is a feature that allows the programmer to take advantage of the Java virtual

machine, but still can use code written in other languages and libraries. As a part

of the Java virtual machine implementation, the JNI is a two-way interface that

allows Java applications to invoke native code and vice versa. Figure 2 illustrates

the role of the JNI.

Figure 2: Role of JNI

The JNI is designed to handle situations where you need to combine Java

applications with native code. It supports calls from native library and calls from

native application.

7

 The JNI can be used to write native methods that allow Java applications to

call functions implemented that are implemented in native libraries. Java

applications call native methods in a similar way that is a simple Java method

invocation only difference is that it has the keyword native in its prototype.

But these Java calls are internally translated to calls to the native that call the

native method or library.

 The JNI supports an invocation interface that allows us to call Java virtual

machine code from the native code. Native applications can link with a native

library that uses Java API, and then the native code can use the JNI APIs to

call these functions in the Java virtual machine.

2.2 Overview

The figure below illustrates the steps required write a simple application that

invokes a C function.

1. Create a class (HelloWorld.java) that declares the native method.

2. Use javac to compile the HelloWorld source file, resulting in the class file

HelloWorld.class. The javac compiler is supplied with JDK or Java 2 SDK

releases.

3. Use javah -jni to generate a C header file (HelloWorld.h) containing the

function prototype for the native method implementation. The javah tool is

provided with JDK or Java 2 SDK releases.

4. Write the C implementation (HelloWorld.c) of the native method.

5. Compile the C implementation into a native library, creating HelloWorld.dll or

8

libHelloWorld.so. Use the C compiler and linker available on the host.

Run the HelloWorld program using the Java runtime interpreter. Both the class

files (HelloWorld.class) and the native library (HelloWorld.dll or

libHelloWorld.so) are loaded at runtime.

9

Figure 3: Steps writing a JNI program

The native method in Java is declared as follows

 class HellWorld {

 private native void print();

 :

 :

 }

2.3 Native Method Arguments

As discussed in the previous section, the native method implementation such as

Java_Prompt_getLine accepts two standard parameters, in addition to the

arguments declared in the native method. The first parameter, the JNIEnv

interface pointer, points to a location that contains a pointer to a function table.

Each entry in the function table points to a JNI function. Native methods always

access data structures in the Java virtual machine through one of the JNI

functions. Figure illustrates the JNIEnv interface pointer.

10

Figure 4: The JNIEnv interface pointer

The second argument differs depending on whether the native method is a static

or an instance method. The second argument to an instance native method is a

reference to the object on which the method is invoked, similar to this pointer in

C++. The second argument to a static native method is a reference to the class in

which the method is defined. Our example, Java_Prompt_getLine, implements an

instance native method. Thus the jobject parameter is a reference to the object

itself.

2.4 The JNIEnv Interface Pointer

Native code accesses virtual machine functionality by calling various functions

exported through the JNIEnv interface pointer.

11

Figure 5: Thread local JNIEnv Interface Pointer

 A JNIEnv interface pointer is a pointer to thread-local data, which in turn

contains a pointer to a function table. Every interface function is at a predefined

offset in the table. The JNIEnv interface is organized like a C++ virtual function

table. Figure illustrates a set of JNIEnv interface pointers.

 Functions that implement a native method receive the JNIEnv interface

pointer as their first argument. The interface pointer passed to the native methods

depends on the thread which calls it. The Java virtual machine passes the same

interface pointer to native method functions that are called from the same thread.

The calls made from different thread will have got different environment pointer.

The interface pointers are thread-local but the JNI function table are indirectly

referenced and shared among multiple threads.

 As some of the platform does not provide efficient mechanism to support

thread local data access the JNIEnv refers to the thread local structure. By passing

the pointer to the thread local structure, the JNI implementation inside the virtual

machine can avoid many thread-local storage access operations that it would

otherwise have to perform if it was not referenced.

2.5 JNI Functions

The Java native interface provides various functions that can be called to access

the Java objects and methods. To access arrays it provides get<Type>ArrayRegion

.If the array contains object in Java then we need access each element

12

individually. Whenever we access the data it is copied from the Java heap to

native region. The string must be converted from Java utf-16 to UTF-8 type. It

also provides APIs to call methods in the Java form the native code. But this is

rarely used in the native code as it is costly. Following tables describes various

functions of JNI

JNI Function Description Since

Get<Type>ArrayRegion

Set<Type>ArrayRegion

Copies the contents of primi-

tive arrays to or from a pre

allocated C buffer.

JDK1.1

Get<Type>ArrayElements

Release<Type>ArrayElements

Obtains a pointer to the contents

of a primitive array. May return

a copy of the array.

JDK1.1

GetArrayLength Returns the number of elements

in the array.

JDK1.1

New<Type>Array Creates an array with the given

length

JDK1.1

GetPrimitiveArrayCritical Obtains or releases a pointer to

the contents of a primitive array.

Java 2

SDK1.2

Table 1: JNI Function Table 1

13

JNI Function Description Since

GetStringChars

ReleaseStringChars

Obtains or releases a pointer to the

contents of a string in Unicode format.

JDK1.1

GetStringUTFChars

ReleaseStringUTFC

hars

Obtains or releases a pointer to the

contents of a string in UTF-8 format. May

return a copy of the string.

JDK1.1

GetStringLength Returns the number of Unicode characters

in the string.

JDK1.1

GetStringUTFLengt

h

Returns the number of bytes needed to

represent a string in the UTF-8 format.

JDK1.1

NewString Creates a java.lang.String instance that

contains the same sequence of characters

as the given Unicode C string.

JDK1.1

NewStringUTF Creates a java.lang.String JDK1.1

GetStringCritical

ReleaseStringCritical

Obtains a pointer to the contents of a string

in Unicode format or a copy of the string.

Java 2

SDK1.2

GetStringRegion

SetStringRegion

Copies the contents of a string to or from a

preallocated C buffer in the Unicode

format.

Java 2

SDK1.2

Table 2 : JNI Function Table 2

14

The figure below shows how a primitive array is accessed in JNI.

Figure 6: Primitive array access

15

CHAPTER 3

Android Architecture

 Android is a software stack for mobile devices that includes an operating

system, middleware and key applications. Figure shows the major components of

the Android operating system. Each section is described in more detail below.

Figure 7: Major Components of Android Applications

 Basic applications like contact, email, browser settings, Bluetooth etc.,

come with the android package. All these applications are written in the Java

programming language. Many of these applications can be multi-threaded

depending upon their use and interaction. Applications can be added based upon

the user through Android Market.

16

Figure 8: Application Layer of Android

3.1 Application Framework

Application framework contains programs that manage the phone's basic

functions like resource allocation, voice applications, and window allocation for

applications, managing lifecycle of applications and keeping track of the phone's

physical location. This layer is majorly written in the Java programming

language. The API that is exposed is used by developers in their application.

There is no restriction applied while accessing this Java API in the application

developed by the programmer this helps in utilizing the features provided by the

Android.

Figure 9: Application Framework of Android Libraries

Each Android component has a set of C/C++ libraries which are used by several

System components. These are exposed to developers through the Android

application framework. Most of the CPU related tasks and peripheral devices are

17

done using native C/C++ libraries (Figure 10). Some of the core libraries are:

 System C library - a tuned implementation of the standard C system library

(libc), for embedded Linux-based devices

 Media Libraries - these libraries support playback and recording of many

popular audio and video formats and image files.

 3D libraries - the libraries use either hardware 3D acceleration (where

available) or the included, highly optimized 3D software rasterizer.

 SQLite - a powerful and lightweight relational database engine.

Figure 10: Libraries Layer of Android

As these libraries are for embedded systems they are optimized like fast pthread

implementation using 4-byte mutex rather than the 12-byte mutex (as there may

not be as many thread as compared to PC).

3.2 Android Runtime

As applications are written in Java the Android runtime environment consists of a

virtual machine. Android has its own Virtual Machine called Dalvik Virtual

18

Machine. The generated byte code in java is converted into DEX code and an

interpreter is used to convert them into assembly code. Every Android application

runs in its own process, along with its own instance of the Virtual Machine

Figure 11: Layers of Android Application

Dalvik primarily is a process virtual machine. Refer Figure below. Support

multiple virtual machines running concurrently. The Dalvik VM executes files has

the extension (.dex) format which is optimized for minimal memory footprint.

The .dex files are compiled from the .class files that are generated by Java by the

“dx”tool. The VM is register-based, and runs classes compiled by a Java language

compiler. The Dalvik VM is written in C and relies on the Linux kernel for core

OS functionality.

19

Figure 12: Android Runtime Layer

 Android‟s kernel is based on Linux version 2.6 for core system services

such as security, memory management, process management, network stack, and

driver model. The kernel acts as an abstraction layer between the hardware and

the rest of the software stack. The kernel is modified so that it can cater Android

specific requirements by adding drivers etc.,. Refer Figure below.

Figure 13: Linux Kernel in Android Hardware Abstraction Layer

There is an abstraction layer present in between the Linux kernel and above

layers. This enables certain core default system applications and services to be

replaced by third party/ custom implementations. Most mobile OEMs have the

basic drivers to control their audio, video etc. Android defines this hardware

abstraction layer on top of kernel and standardizes Android„s interface. This

hardware abstraction layer exists as a user-space C/C++ library. This probably

means that Android implements a standard interface for Audio, irrespective of the

technology supported by the underlying hardware, just asking implementations of

20

features that it needs from the particular hardware.

3.3 Android Application Architecture

Android applications are written in the Java programming language. The

compiled Java code, all the necessary data and resource files of the application are

bundled by the “aapt” tool into an Android package. This file has a .apk suffix.

This file can then be used for installing the application on devices. All the code in

a single .apk file is considered to be one application.

Android application sandbox model Android uses the process separation provided

by Linux kernel as the primary means of achieving isolation against other

suspicious applications. Each application runs in its own Linux process.

Furthermore, each managed piece of code executes in a virtual machine (DVM).

As a result each application is sand- boxed from the other applications running at

any given time. All IPC is achieved via the mechanisms provided by Binder.

 A second level of isolation builds upon the capability of underlying Linux to

strongly isolate data/files of one user from the other. This is achieved by

allocating a unique user-id to each installed application on a particular system.

Android starts the process when any of the application's code needs to be

executed, and shuts down the process when it's no longer needed and other

applications are in need of resources. Unlike applications on most other systems,

Android applications don't have a single entry point for everything in the

application (no main() function, for example).

21

CHAPTER 4

Related work

This chapter discusses the research that has been done on the JNI. It also reviews

projects that are relevant to this thesis. From the discussion above it is clear that if

we decrease the time required to retrieve an object in JNI and decrease the time

taken for the reflection and serialization of the data that is being transferred from

the JVM to the native space we can get a better performance and save battery life

of the device. Arrays are the main area of concern as huge amounts of data needs

to moved to and fro. Where as if the class object is huge then time is spent on

finding the attributes that we are interested in. The paper Fast Online Paper

Analysis[2] helps us understand the issues of runtime pointer analysis while using

reflection, dynamic loading of libraries etc., This helps us understand the issues

when we use some of the JNI APIs which rely on finding and loading of classes

using reflection. Walter Cazzola[3] analyses the use of reflection and its internal

working. It proposes a class named SmartMethod which transforms the calls made

by the use of reflection to direct calls that will be carried out similar to the

standard Java method invocation. SmartInvokeC[3] tool is used to generate the

stub of a class from its byte code, so to invoke a method we no longer need to use

the JNI. The call is made from a C stub that is generated. To retrieve and invoke

method faster the necessary information is hashed. Tamar et. Al[4] provides an

memory management scheme for thread local heap. This technique determines the

objects that are local and global and uses this information to avoid unnecessary

22

synchronization.

 The following section describes some of the techniques.

4.1 JNI Bridge

One reason to use Java is that it can be ported easily on different platform as the

application runs inside the virtual machine. But if the application uses native call

the porting becomes difficult. That is we need to use the libraries that are specific

to the platform. This paper describes the challenges and solution so that the JVM

supports the native calls on different ISA. Here dynamic translators are used to

translate native calls based on the underlying architecture. To handle the JNI up

calls and marshaling of the data a simulated JNIEnv object in the IA-32

execution environment is used to enable 32-bit native libraries to call 64-bit

function pointer. They also use marshaling tables to map 64-bit references to 32-

bit references by intercepting the up calls and wrapping it with the reference and

during the down call the corresponding 32-bit reference is used. To avoid the data

movement when GetPrimitiveArrayCritical JNI API call is made the reference is

directly taken from the JVM internals. The JVM-independent implementation has

to resort to Java reflection to obtain this information.

4.2 Interfacing Java to the Virtual Interface Architecture

This paper explores the use of User-level network interface for the

communication between the Java heap and native buffer. It describes two

approaches the first approach manages the buffer between the Java heap and the

23

native space which requires the data to be copied while the second approach uses

a Java-level buffered abstraction and allocates space outside the Java heap and

this allocated space can be accessed like array in the Java. The second approach

eliminates the use of copying the data but the native garbage collector has to be

modified.

 The first level of Javia (Javia-I)[5] manages the buffers used by VIA in

native code (i.e. hides them from Java) and adds a copy on the transmission and

reception paths to move the data into and out of Java arrays. Javia-I [5] can be

implemented for any Java VM or system that supports a JNI-like native interface.

(Javia-II) introduces a special buffer class that, coupled with special features in

the garbage collector, eliminates the need for the extra copies. In Javia-II [5], the

application can allocate pinned regions of memory and use these regions as Java

arrays. These arrays are genuine Java objects (i.e. can be accessed directly) but

are not affected by garbage collection as long as they need to remain accessible by

the network interface DMA. This allows the application to manage the buffer and

to send or receive Java array directly. It also describes the issues of memory

management when application creates memory outside the Java heap.

4.3 Jeannie

This paper proposes a new foreign functional interface design called Jeannie[6].

Here programmers can write both the Java code and the native code in the same

file. Jeannie compiles these files down to their respective JNI calls. This enables

static error detection across the languages and simplifies the resource

24

management. It addresses the issues of JNI being unsafe as it does not require

dynamic checks. By integrating and analyzing both Java and C together, the

compiler can produce error messages which can prevent many a maintenance

issues. The compiler is implemented using rats![6]. To access string form C in

Java conversion for UTF-8 to UTF-16 is made, and vice versa is done while

accessing strings from Java in C. The array region is still copied from the Java

heap to C memory space when access is made, the following functions are used to

gain the access _copyFromJava and _copyToJava.

4.4 Inlining Java Native Calls At Runtime

This technique inlines the native functions using JIT in java applications. The

callbacks to the JNI are transformed into their equivalent lightweight

operations[7]. IBM TR JIT[7] compiler is used as it supports multiple JVMs and

class library implementation. The control flow for the TR JIT consists of phases

for intermediate language (IL) generation, optimization and code generation. They

have enhanced the inliner so that it can synthesize the opaque call to the native

function. Then they have introduce a callback transformation mechanism that re-

places expensive callbacks with compile-time constants and cheaper byte code

equivalents, while preserving the semantics of the original source language.

4.5 Janet

Janet[8] is the Java language extension which enables convenient development of

Java to native code interfaces by completely hiding the JNI layer from the user.

25

The source file is similar to ordinary Java source file except that it may contain

embedded native code (in terms of native method implementations), and the

native code can easily and directly access Java variables as Java code would. It

enables efficient direct access to Java arrays from the native side. However, when

the array is to be processed by external routine the array pointer has to be used.

Java types are converted by Janet generally to native types having the same name.

The array conversion introduces no performance reduction on platforms where

appropriate Java and native types are equivalent, but it requires allocation and

copying of the whole array in the case when they are different.

4.6 Native Code Profiling

 This paper describes the technique used to profile native code that are part

of the application. Most of the profiling tool like 'hprof' do not segregate the time

spent in native code if we have this information then we can find the parts of the

code that can be improved further. The paper[2] introduces a profiling tool based

on JVM tool interface. The technique involves introduction of a wrapper methods

for the native function prototype in Java. It has the same method name and

signature as that of the native method but not a native method. This wrapper

function calls the J2N_Begin which recodes the time stamp and other profiling

information. Then it calls the native method. Upon return the wrapper calls

J2N_End is called which records the exit timestamp. Her profiling is done

statically by using a tool called ASM[2], as dynamic profiling overhead.

26

CHAPTER 5

Design

This chapter talks about the overview of the changes that are made to the existing

JNI in android. We first need to understand the class structure of a Java class

structure and how the methods and fields are represented in Java. The following

section describes these representation:

5.1 Class Structure

In Dalvik virtual machine the class can be either '.class' or '.dex' extension. We

are interested in the '.class' format as JNI API uses them. The class structure is

defined in the Object header file. Here are the fields that are of our interest:

 Status- It is a structure of type ClassStatus through which we can know the

sate of initialization like initialized, ready, loaded etc.,

 super- It holds the reference to its super class if any other wise NULL.

 Interfaces – It is a two dimensional array which contains the list of interfaces

in this class.

 DirectMethodCount and directMethods– DirectMethodCount hold the count

of the direct methods that are present in the class. Direct methods are static,

private and init methods. DirectMethod is an array which points to the

methods

 VirtualMethods and VirtualMethodCount – VirtualMethodCount holds the

count of the virtual methods present in the class. VirtualMethod points to these

27

methods.

 Vtable - Virtual method table (vtable) is for use by "invoke-virtual".

 The vtable from the superclass is copied in, and virtual methods from this class

either replace those from the super or are appended.

 sfields – These are structures of type StaticFileds and contains the type of the

field and its Jvalue.

 Ifields – These contains all the instance fields of this object. Also all the

instance fileds that refer to objects are present in the beginning. Each instance

filed object has its field type and an offset which is the offset from the object

pointer.

 SourceFile – This is the name of the source file.

Every method is represented by a structure called Method. The structure Method

has the following members:

 clazz – This points to the class that this method belongs to.

 MethodIndex – This contains the offset from either the vtable or the iftable of

its class.

 Name – This is the method name.

 Prototype – This is the method prototype descriptor string that contains the

return type and the argument type.

 Insns – this contains the actual code for the method.

 NativeFunc - This is pointer to native method. This could either be a JNI

bridge function or an actual internal native function. This can be checked by

28

performing a null check on the insns field.

 JniArgInfo – This contains cached JNI argument and return type hints.

 InsSize – This contains the count of the number of input argument to the this

method.

 OutsSize – This contains the count of the number of return arguments of this

function.

The fields in the Dalvik virtual machine is represented by the structure Field. It

contains the following members.

 Clazz - The pointer to the class it belongs to.

 Name – The name of the field.

 Signature – Its signature like "I", "[C", "Landroid/os/Debug;"

 accessFlags – The access type.

 Once the JNI has found the method that needs to be executed it transfers the

control to the DVM interpreter. The interpreter checks weather the function is

Java function or native. If the function is Java then the byte code is interpreted

into the architecture specific code.

 Here is how the JNI calls are made to invoke a main method for an

application :-

JNI_CreateJavaVM will be called to construct a Dalvik virtual machine.The

JNI_CreateJavaVM will create everything needed to execute the .dex file, such as

dynamic memory management, thread, bytecode verifier, etc. Then JavaVM and

JNIEnv arguments will become the function interfaces to provide supported

29

functions. JNI function FindClass(JNIEnv* env, const char* name) will be called

to find the class by name. Before executing a main method in Java program, its

class is needed to be found by a specified name. GetStaticMethodID(JNIEnv*

env, jclass jclazz, const char* name, const char* sig) is called because the Java

main function must be a static method, this JNI function will be called to get the

main method ID. CallStaticVoidMethod(JNIEnv* env, jclass jclazz, jmethodID

methodID, …) This function will start to interpret the .dex file. This function will

call the Dalvik interpreter to interpret the .dex file.

5.2 Hashing JNI fields

There are several ways to store the data and use it future so the next call made to

function is faster if the programs future request can be handled based on the

previous . Hashing is the technique used here to make the JNI call efficient. As

JNI accesses fields in the Java domain it first needs to know the exact memory

location of the field. As we have seen earlier each function in the JNI API has

access to the JVM environment pointer that it is running in. This JVM

environment pointer contains the pointer to the heap and the refernces to the

object. It can also access the class structure of the classes that are loaded and that

are present in the class path or in the jar file that is included in the class path.

When we make a JNI request to access field the JNI API first checks if the class is

loaded or not. Then it access the class structure and goes through the field list. If it

finds the field that we are looking for it returns the fieldId to the caller. Now the

caller can access this field's data using this Id. This as you can see can take a long

30

time. To solve this issue hashing technique is used. The hash function design is as

follows. There are three different hashing techniques used here. The first one is to

hash and store the class structures. The second is used to store the offset and the

methodId of methods that are called through the JNI regardless of weather it is

native method or Java method. The third is for the fields that are accessed by the

JNI in its native domain.

 The hashing bypasses the reflection calls that need to be made every time

when we need to access a method or field. Now due to hashing the reflection call

is made during the first access any future access will use the value obtained from

the hash table. One problem with this approach is the we will not know the size of

the hash table that we need to create. This issue is addressed by increasing the size

by a set amount when the hash table reaches its limit. To compute the hash of the

string we use the predefined function in the UtfString file.

 There are always possibilities that the two stings may hash to the same key.

This is called collision. To handle this probing technique is used. In this when we

try to insert an entry into the hash table and we find that the slot in the hash table

already full then we first check if the vale is the same as the old one if so we

replace the value with new one as this is the latest value. If the value does not

match then we store it in the next available free slot. This technique is chosen

over the chaining for collision resolution as it uses the memory in an optimal way.

Due to the use of probing while inserting the value in the hash table the retrieval

takes longer. We need not address the synchronization issue as JNI API is

31

executed by a single thread and there is only one thread accessing the JVM

environment variable.

 There are three hash table defined one each for to hold the class structure,

field memory location and methodIds. The following are the names of the hash

map

 fieldEntryJni

 refEntryTable

 methEntryTable

 These hash tables are updated when the call to FindClass, getMethodId and

getFieldId is called by the JNI API. These hash tables are initialized when the new

JNI environment variable is created when dvmCreateJNIEnv is called

during API invocation.

5.3 Find Class

The find class in the JNI is used to load the class given the fully qualified class

name in the JVM pointed by the JNI environment object. The find class takes in

two argument one the JNI environment object and the class name. The findClass

first make a check by calling dvmGetCurrentJNIMethod, this method check if the

current thread is executing a native method if so it returns the method by

inspecting the interp stack. Then we get the class descriptor form the class name.

The class name is surrounded by 'L' and ';'. Then we load the class from its class

loader and add the local reference in the reference table. This is a very important

step if the class does not have a reference then this class cannot be accessed in the

32

native stack. Then we return the reference to the caller who can use it to access

fields and methods.

 If the class was already loaded then we could reuse this instance of the class

to get the fieldIds and methodIds. To accomplish this we store the reference of the

class in the hash table refEntryTable in the JNI environment variable. Every time

the findClass is called we check if the class already loaded by looking up in the

hash map. If not we proceed as usual and load the class. After loading the class we

add this to the hash map. If the class we are looking for is present in the hash map

we validate its reference as it may be garbage collected if the reference is valid

then we add it to the local reference table so that the class reference is not garbage

collected. Then we return this instance to the caller. This decreases the time taken

to load the class. The key that we use here is the class descriptor rather than the

class name passed. This is because the two classes can have the same name but

the descriptor are different.

 The below flow diagram for the findClass method

33

Figure 14: Flow of findClass

 The method findClass is used to load the applications main method hence

optimizing this will reduce the execution time of the application. As long as the

local reference of the class is present the class is not unloaded hence we can reuse

it. These are methods for the hash table access

 hashcmpRefEntryTableStr

 hashcmpRefEntryTable

 findRefEntryTableEntry

 addRefEntryTableEntry

34

5.4 Get Field

The getFieldId is used to get the instance field give the field name, its signature,

and the Java class. To access any field in the Java object we need to use this

function. It returns the fieldId in the class structure through which we can get the

offset from the object pointer. The Java class structure is obtained from the

previous findClass. As we have the reference in the local reference table of the

JNI we need to get the reference of the actual class. This is accomplished by the

function dvmDecodeIndirectRef. The we check if the class is initialized. Then we

find the filedId as follows

 First we search the class object for the given field name and signature.

 This is done by walking through the ifields of the class that is provided. If

found the filedId is returned.

 If it is not found in the class then we see if there is any super class present.

If yes then we scan through the ifields of the super class. If it is found here

then we return this fieldId.

 If the field is not found then we throw an exception.

 As we can see this procedure of scanning through the list can take a lot of

time. Once we find the fieldId we can add it to the hash. But this is tricky as

multiple class have the same field name and signature. To make the key unique

there is a combination of the field name, field signature and class descriptor.

Hence this is unique. Here we also need to check if the class is loaded or not

when we return the fieldID from the hash table. If the class that the field belongs

35

is not loaded the further use of the Id will generate exception. This can be taken

care by looking into the hash table of findClass as this will take only O(1). If the

class is not loaded then we assert an exception similar to the actual flow.

Figure 15: GetField workflow

The above diagram shows the function flow.These are methods for the hash table

access

 hashcmpFieldEntryTableStr

 hashcmpFieldEntryTable

 findFieldEntryTableEntry

 addFieldEntryTableEntry

36

5.5 Get Method

The GetMethodId is used to find the methodId for a given method name,

signature and class. Similar to the GetFieldId to get the methodId we first need to

load the class by calling findClass. Form this methodId we can get the offset from

the class pointer and invoke the method. The following is performed by this

method

 It first checks if the class is loaded and initialized. If not an exception is

thrown.

 It then goes through the list vtable to check if the method and the signature is

present if present it checks if the method is static. If not then it returns this

methodId.

 If the it is not a virtual function then it goes through the directMethods list to

check if it is present in this. If present it checks if the method is static or not. If

static then it throws exception else returns the methodId.

 The method's class may not be the same as class that is supplied , but if it isn't

this must be a virtual method and the class must be a superclass Hence we

initialize the super class.

We add the method Id to the hash table represented by methEntryTable. When a

call is made first we check if the method is present in the hash table if so we

check if the class and its super class is initialized or not by checking the hash table

for the refEntryTable. If the class is not initialized we initialize it add it to the

refEntryTable and also add it to the local reference. The key used here is the class

37

descriptor, the method name and the signature. Hence this key is unique.

Figure 16: Get Method

The above digram shows the flow for the GetMethodId function. These are

methods for the hash table access

 hashcmpMethEntryTableStr

 hashcmpMethEntryTable

 findFieldMethTableEntry

38

 addFieldMethTableEntry

5.6 Pinning object

To access objects we need to go through the reflection and serialization in the JNI.

If we pin the memory location and obtain the memory location in the native space

we can access its field by knowing the offset. Pinning not only allows us access

the object but makes sure that the memory location of the object does not change.

It is also important to unpin the object once we are done using it as these can be

picked up by the garbage collector when in Java program it is assigned to a new

reference. For this two new functions are provided pinObject and unpinObject .

The pinObject method adds an entry to the global DVM pin reference table. The

pin reference table is a global table and has a limit to the number of reference it

can hold. If we cannot add it an exception is thrown. First we add this object to

the global reference table so that while pinning we can check if the address is a

valid object. We also increase the global count if it already exists and also make

sure that it is pinned only once. If it is pinned more than once then the release has

not been called.

 In the unpinObject function we remove the reference from the global DVM

reference table. We also remove the global reference that we added. To access the

global DVM reference table we need to obtain mutex lock over the table. Care

should be taken while accessing the attributes an changing it as the memory that is

obtained has no restriction on it. If we override the method table or any other vital

data the object will become corrupt. Also currently only a few objects can be

39

pinned as the global table has limited count.

 The figure below show the approach of pinning the object

Figure 17: Pinning object

40

CHAPTER 6

Implementation

The following section gives the implementation details of the hash functions used

and the changes made to JNI API.

6.1 Implementation of hash function

The hash function has the following functions

HashTable* dvmHashTableCreate(size_t initialSize, HashFreeFunc freeFunc)

 This function is used to initialize the hash table. The free function depends

on the value that we are storing. In our approach three different functions have

been used as there are hash tables for findClass, GetFieldId and GetMethodId.

The basic operation that the free function does is that it removes the local

reference that we have added for the classes that are related to the value that we

are storing.

void* dvmHashTableLookup(HashTable* pHashTable, u4 itemHash, void* item,

HashCompareFunc cmpFunc, bool doAdd)

 This function has dual purpose that is it servers the purpose of look up when

the doAdd flag is set to false and it inserts the <key, value> pair when the flag is

true. It also takes in the compare function. Our approach has used two different

compare functions one while adding entry to the hash table and the other while

retrieving the value from the hash table. Since while adding we need to compare

only the hash value of the key and the collision is taken care by probing the

compare function is simple. During the retrieval of the value we need to perform

41

checks based the data that we are retrieving. The hash is computed using the UT8

string which is the key.

 void dvmHashTableLock(HashTable* pHashTable)

 This function is used to lock the table so that no two threads change the data

simultaneously. Each hash table has its own mutex lock. This function grabs the

lock.

void dvmHashTableUnlock(HashTable* pHashTable)

 This function is used to release the lock on the hash table once the

operations on it completed.

static bool resizeHash(HashTable* pHashTable, int newSize)

 When we initialize the hash map the size of the map is set to 50 entries. But

during the program execution the size may increase. This function allows us to

resize the hash table. To perform this operation we need to remove all the

elements and reenter them into this bigger hash table. To take care of the null

values the use of tombstone constant is used. This is an expensive task as all the

values needs to be reentered into the table. To perform the resize operation the

table must be 75% full. This is the threshold value that we have used for the hash

tables.

bool dvmHashTableRemove(HashTable* pHashTable, u4 itemHash, void* item)

 This function removes an item from the hash table with the given hash.

The hash function that has be used is as follows as the keys are strings and are of

UTF8 format we use the below formulae to calculate the hash

42

hash = hash *31 + value of character

 This hash is computed for the whole length of the string. Here we presume

that add and look up happen more frequently than the remove. Whenever remove

function is called there should be an explicit call to the free function as well as the

remove function does not invoke it internally. If the free function is not called

then there is high chances that we will be running out of space in the local

reference table of the JNI environment. Similarly the free function also handles

the global references that we have created for the values that we store.

6.2 Implementation of GetFieldId

As discussed in the earlier section the we are using an hash map int the JNI

environment variable that is passed with the JNI API call. To insert into the hash

table the function addFieldEntryTableEntry is used. This function takes in the

hash table, the class pointer, the field name and its signature. The key is

combination of class->descriptor plus the name plus signature. This key is hashed

using the technique described previously. While adding if the slot is already

occupied the we retrieve the vale and the following check is made

fieldId->clazz->descriptor is compared with class descriptor

fieldId->name is compared with the field name

filedId->signature is compared with field signature

 If all of the following matches we replace this with the new entry by

removing this value. If not probing is used to find the next empty position.

During the retrieval of the value we do the following check

43

fieldId->clazz->descriptor +

fieldId->name +

filedId->signature are concatenated in the above order and is compared to the

key which is the input.

If they are equal then we check if the local reference is valid.

If it is valid return the value else

remove the <key, value> from the hash table.

 While adding the entry we check whether the class is initialized by invoking

the dvmIsClassInitializing. The same is done while retrieving the class. Also

checks are made to see if the local references are still valid otherwise we add the

local reference to this class so that no exception occur in the future when the field

values are accessed in the native domain.

6.3 Implementation of GetMethodId

The GetMethodId is a bit more complicated than the GetFieldId. Here the method

can either be a direct method or a interface method. If it is an inter face method

then we need to initialize the super class and add local reference to it. Here we are

use addMethEntryTableEntry to insert it into the hash table.

 The key here is the class descriptor, method name and its prototype. Here

the prototype contains the return and the argument list. This combination will be

unique for a class.The comparison that we make while adding is the following

meth->clazz->descriptor is compared with class descriptor.

meth->name is compared with name

44

meth->prototype is compared with the sig

Comparing the prototype and signature is handled by the method

dvmCompareNameProtoAndMethod. If these match the we do not replace the

value but if the method is virtual the we check if the super class is loaded. While

retrieving the value when it is present in the hash table we check the following

check if the method object is valid

check is made to see if the class is initialized if not remove the object and throw

exception

check if the super class is initialized if not remove the object and throw exception

If everything is fine add the local reference to the classes.

 If we find that the method is static then we throw an exception as static

methods cannot be accessed by the GetMethodId. Also check is made to see if

there is code to execute in the method while returning the method Id so that we do

not catch any abstract method.

6.4 Implementation of pinObject and unpinObject

 The hard part of accessing an object is that we need to do find class first

then find the field offset and the get the value by invoking the get method for the

object in JNI. This is because the garbage collector may move the object however

if we pin the object we are guaranteed that the object will be in same memory

location. This is very helpful as we can access array of objects if we know the

starting location and size of the object instead of calling getObjectArrayElement.

 The following is part of the code which adds the object to the global dvm

45

table.

dvmAddToReferenceTable(&gDvm.jniPinRefTable, (Object*)Obj)

 This assures us that once we add this object to this reference table the garbage

collector will no longer move or reclaim this memory location. Once we have

finished we need to call the unpinObject method so that the garbage collector can

reclaim this memory and/or move the object.

6.5 Implementation of FindClass

In findClass when the class is requested we first get the class descriptor from the

method dvmNameToDescriptor.The we hash this descriptor and find out whether

this is present in the table if so we add local reference so as to make sure that this

is not garbage collected. Then return this reference. While retrieving we do the

following

class->descriptor is compared with descriptor that got through

dvmNameToDescriptor. If there is a match then we return the reference and add it

to the local reference table.

Below is the code snippet on how the comparison takes place

ClassObject* clazz = (ClassObject*) ventry;

 ClassObject* clazz1 = (ClassObject*) vnewEntry;

 LOGI("desc val: %s, %s ",(const char*)clazz1->descriptor,(const

char*)clazz->descriptor);

 if(clazz!=NULL && clazz1!=NULL){

 return strcmp((const char*)clazz1->descriptor,

46

 (const char*)clazz->descriptor);

 }

 return 0;

47

CHAPTER 7

Evaluation

This section compares the JNI interface in the Dalvik virtual machine and the JNI

with the proposed changes. To evaluate the execution time in the JNI we record

the system clock in microseconds. This is accomplished by the following function

is used to get the CPU time.

static inline u8 getClock()

{

#if defined(HAVE_POSIX_CLOCKS)

 struct timespec tm;

 clock_gettime(CLOCK_THREAD_CPUTIME_ID, &tm);

 if (!(tm.tv_nsec >= 0 && tm.tv_nsec < 1*1000*1000*1000)) {

 LOGE("bad nsec: %ld\n", tm.tv_nsec);

 dvmAbort();

 }

 return tm.tv_sec * 1000000LL + tm.tv_nsec / 1000;

#else

 struct timeval tv;

 gettimeofday(&tv, NULL);

 return tv.tv_sec * 1000000LL + tv.tv_usec;

#endif

}

48

The time is logged into the system log file using the following command

LOGI(...)

This is a predefined function in the Dalvik virtual machine which internally uses

printf command to the output the sting into the system log buffer. This is then

flushed to Android Debug Bridge console. The next section gives a brief

background on Android Debug Bridge (adb).

7.1 Android Debug Bridge

The adb is a tool which allows us to manage the state of the emulator instance. It

is a client server program with following three components

 Client – This runs on the development machine. We can communicate to

the device by issuing various adb commands.

 Server – This is a background process that runs on the development

machine. This manages the communication between the clients and the

adb thread that runs on the emulator/device.

 Daemon – This is the background process that runs on the device or

emulator.

When you start an adb client, the client first checks whether there is an adb server

process already running. If there isn't, it starts the server process.

 To view the logs we issue the following command once we connect the

emulator to the adb server

 $ adb logcat

This logging system provides a mechanism for collecting and viewing system

49

debug output. Logs from various applications and portions of the system are

collected in a series of circular buffers, which then can be viewed and filtered by

this command. Each log message is associated with a tag and a priority. These are

the different priority associated with the log

 V- verbose(lowest)

 D – Debug

 I – Info

 W – Warning

 E – Error

 F – Fatal

 S – Silent

To filter the log the following command is used

adb logcat tag:I AppName:D *:loglevel

This displays only the log statements that we are interested in. We also tag each of

these log messages with their corresponding processId and threadId.

 Brief - Display priority/tag and PID of originating process (the default

format).

 Process - Display PID only.

 Tag - Display the priority/tag only.

 Thread - Display process:thread and priority/tag only.

 Raw - Display the raw log message, with no other metadata fields.

 Time - Display the date, invocation time, priority/tag, and PID of the

50

originating process.

 Long - Display all metadata fields and separate messages with a blank lines.

We have used the display option of thread in our logs. The log statements have

been put in the JNI_ENTRY and JNI_EXIT macro. These macros are invoked

each time there is a call to JNI API. In each of the JNI API we log the method

name so that we can identify the time taken in each of these calls. The next

section will explain the results and comparison of the methods that have been

changed.

7.2 Profiling results

As explained earlier we are using logging provided by the Android Operating

System and the system clock to profile the JNI calls. Here we profile the JNI calls

that we have changed. We ran the application lunar lander and recoded the time in

each of the JNI calls by logging the system time. Then we took the average of the

calls. The below table shows the time.

Time in

microsecond

s

FindCl

ass

getMetho

dID

getFiledI

D

getStaticF

iedlID

dvmCreat

eJNIEnv

GetStatic

MethodI

D

JNI without

changes

708.18 147.84 133.18 269.4 308 80.7

JNI with

changes

606.38 117.05 114.9 198.4 281.63 82.16

Table 3: JNI method profile

 This is due to the fact that the subsequent calls to these methods need not go

through the reflection of the object to get the field or class. The calls still require

51

to initialize the object so that the reference is present int JVMs local reference.

Figure 18: JNI method Profiling

The below table gives the timings of the heap sort. First we implemented the heap

sort in Java and recorded the execution time. Then the heap sort was ran using JNI

and the sort was implemented in the native domain. Then we ran the same code

and the data on the improved JNI. The table below shows the result for the

various input size.

Array Size Dalvik Java (ms) JNI modified (ms) Android JNI (ms)

500 34.38 30 30

1000 40 30 32.81

2000 61.45 32.77 36.53

3000 63.54 31.42 40

4000 68.82 37.64 43.07

5000 76.74 43.51 48.37

6000 85.63 50.04 55.53

Table 4: Heap sort running time

FindClass
GetMethodId

GetFieldId
GetStaticFieldId

dvmCreateJNIEnv
GetStaticMethodId

0

100

200

300

400

500

600

700

800

Android JNI

Android JNI with changes

52

0

10

20

30

40

50

60

70

80

90

500 2000 4000 6000

Dalvik Java (ms)

JNI modified (ms)

Android JNI (ms)

Figure 19: Heap sort comparison graph

As we can see from the graph the execution time in the modified JNI decreases as

the input size increases. This is due to the fact that there is more data to be moved

from the Java heap to the native space.

 Next we run record the application time in Java, native calls and Operating

system. Form this we can see the amount to time that is saved due to the

techniques proposed. For this we use gprof to profile the emulator. Here we need

to address the issue of scheduling that is done by the kernel when multiple

applications are running. To tackle this issue only one application is loaded into

the emulator so that all the resources are used by this application. The application

53

that we choose was jetboy. The application changes the music based on the events

that occur in the game. It uses the JET library that is provided by android to play

the music file. OpenGL is used to render the graphic contents that is used in the

game. Both these use JNI by the means of NDK library. The below graph depicts

the running time of the application with the JNI API provided by the android.

Here we do not consider the time taken by the application to start. We run the

application for 2 seconds.

 Figure 20: Execution time of JetBoy

There were 1173 calls made to the JNI interface during the program execution .

Here we captured the time in the JNI API using the system time stamp. To find the

number of JNI calls that were made were recorded by a static variable declared in

the JNIEnv variable. Once the JNI destroy was called we printed it to the log.

Then we summed up all the count. The table below shows the execution time of

the JetBoy.

Java Time

JNI Time

OS and other Time

54

Environments Time in mS

Java 1.49

JNI 0.37

OS and other 0.1

Table 5: Execution time for JetBoy

The same experiment was conducted using the modified JNI. Though the number

of calls remained almost same there was an improvement in the JNI time as the

table below shows. This is mainly due to the calls made to the findClass and

getFieldId API methods. The total number of calls that were made to the JNI were

1184

Environments Time in mS

Java 1.48

JNI 0.31

OS and other 0.1

Table 6: Running Time for JetBoy with modified JNI

Time in

microsecond

s

FindCl

ass

getMetho

dID

getFiledI

D

getStaticF

iedlID

JNI without

changes

638.43 206.290 133.18 362.346

JNI with

changes

572.37 168.5 92.9 294.35

Table 7: JNI modified method profile for JetBoy

55

Figure 21: Execution time for the Modified JNI JetBoy

The same was done for Lunar Lander application. This application demonstrates

the drawing resources and animation in Android. The graph below shows the

execution time for the application with unmodified JNI.

Java

JNI

OS and others

Figure 22: Execution time for Lunar Lander with Android JNI

Java Time

JNI Time

OS and other Time

56

Java

JNI

OS and

others

Figure 23: Execution time for Lunar Lander with modified JNI

To analyze the time taken to access the reference object we wrote a program to

access the object which has a reference object as its member. The following were

the results for the JNI modified and unmodified JNI.

Time in micro seconds Reference access

Android JNI 1307.742

Modified Android JNI 1215.64

Table 8: Reference object access time.

While accessing the reference object we need to have the class structure of both

the parent object and the member object. As we remove this step by caching the

object structure this computation is saved and we see that the modified JNI is

faster

57

CHAPTER 8

Conclusion

 JNI has always been an important part of the Java virtual machine. It is

widely used in embedded application as they are architecture specific libraries in

native code (C/C++) which can improve the performance of the application. Our

technique reduces the over head of reflection and serialization that are used while

accessing the objects by the JNI. The pinning of objects helps the programmer to

reference the data through its memory location rather than copying the object into

the native space. There is an performance bonus of 5%-10% achieved using our

technique. As we have seen by inlining the JNI calls[7] there can be a gain in the

performance but these are not applied to the android JNI as it is new to the

market. The Janet[8] provides the programmer an easy way to integrate the JNI

and Java with type safe and static error checking.

 There is not much research done in the JNI pertaining to android. This thesis

shows that JNI performance can be improved by reducing the overhead of

synchronization and by caching the class information for future use.

58

CHAPTER 9

Future Work

This thesis provides a technique that improves the running time of android

application that use JNI. The technique uses pinning of objects so that it can be

accessed through reference rather than copying the data. It also shows that if we

cache the information of the class and fields there is a an improvement in the

performance. There can be performance increase by inlining and use of JIT in the

JVM. Currently we are not looking into the stack when the transfer is being made

to the JNI and back. If we could reduce this over head then we make inexpensive

calls to the JNI and use it frequently. Also the profiling of the JNI is done using

the execution time of the application but we can gain a deeper insight once we

inspect the instruction profile in the JNI. This will provide further areas of

improvement.

 As android is new to the market there is no benchmark application that can

be used to profile the platform.

59

REFERENCES

[1] Sangchul Lee and Jae Wook Jeon “Evaluating Performance of

 Android Platform Using Native C for Embedded Systems” Control

 Automation and Systems (ICCAS), 2010 International Conference

 pages 1160 - 1163.

[2] Walter Binder, Jarle Hulaas and Philippe Moret “A Quantitative

 Evaluation of the Contribution of Native Code to Java Workloads”

 Workload Characterization, 2006 IEEE International Symposium

 pages 201-209.

[3] Walter Cazzola “SmartMethod: an Efficient Replacement for Method”

 In SAC'04, pages 1305 - 1309, Nicosia,Cyprus, Mar. 2004. ACM

 Press

[4] Tamar Domani and Gal Goldshtein “Thread-Local Heaps for Java”

 ISMM '02 Proceedings of the 3rd international symposium on

 Memory management pages.

[5] Chi-Chao Chang and Thorsten von Eicken “Interfacing Java to the

 Virtual Interface Architecture” JAVA '99 Proceedings of the ACM

 1999 conference on Java Grande pages 51-57.

[6] Martin Hirzel and Robert Grimm “Jeannie:

 Granting Java Native Interface Developers Their Wishes” OOPSLA

 '07 Proceedings of the 22nd annual ACM SIGPLAN conference on

 Object-oriented programming systems and applications pages 19 - 38

[7] Levon Stepanian, Angela Demke Brown, Allan Kielstra, Gita

 Koblents and Kevin Stoodley “Inlining Java Native Calls At Runtime”

 In VEE '05: Proceedings of the 1st ACM/USENIX international

 conference on Virtual execution environments, pages 121--131, New

 York, NY, USA, 2005. ACM Press.

[8] MarianBubak, DawidKurzyniec, and Piotr Luszczek “Creating Java to

 Native Code Interfaces with Janet Extension” In Proc. SGI Users's

 Conference, pp. 283--294, Oct. 2000.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language

 Specification. Addison-Wesley, second edition, June 2000.

[10] S. Liang. The Java Native Interface: Programmer‟s Guide and

 Specification. Addison-Wesley, June 1999.

60

[11] Sun Microsystems.Integrating native methods into Java programs.

 http://java.sun.com/docs/books/ tutorialNB/download/tut-

 native1dot0.zip, May 1998.

[12] G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan, S. Ravi, and D.

 Wang.” Safe Java native interface”. In Proc. 2006 IEEE International

 Symposium on Secure Software Engineering, pp. 97–106, Mar. 2006.

[13] M.Bubak, D.Kurzyniec, andP.Luszczek

 “CreatingJavatonativecodeinterfaces with Janet extension”. In M.

 Bubak, J. Mo scinski, and M. Noga, editors, Proceedings of the First

 Worldwide SGI Users‟ Conference, pages 283–294, Cracow, Poland,

 October 11-14 2000. ACC-CYFRONET.

[14] Java Native Interface.

 http://java.sun.com/j2se/1.3/docs/guide/jni/index.html.

[15] Oracle, "Java Virtual Machine Profiler Interface (JVMPI)."

[16] F. Y. Tim Lindholm, "The JavaTM Virtual Machine Specification,"

 1999

[17] D. Bornstein, "Dalvik VM Internals," 2008.

[18] P. Brady, "Anatomy & Physiology of an Android," 2008.

 http://www.oracle.com/technetwork/java/javame

[19] www.wikipedia.org

[20] Damianos Gavalas and Daphne Economou “Development Platforms

 for Mobile Applications” Software, IEEE Issue Jan.-Feb. 2011

 Volume 28 page 77

[21] J. Andrews “Interfacing Java with native code – performance limits.”

 http://www.str.com.au/jnibench/

