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 ABSTRACT    

 Currently Java is making its way into the embedded systems and mobile 

devices like androids. The programs written in Java are compiled into machine 

independent binary class byte codes. A Java Virtual Machine (JVM) executes 

these classes. The Java platform additionally specifies the Java Native Interface 

(JNI). JNI allows Java code that runs within a JVM to interoperate with 

applications or libraries that are written in other languages and compiled to the 

host CPU ISA. JNI plays an important role in embedded system as it provides a 

mechanism to interact with libraries specific to the platform. 

This thesis addresses the overhead incurred in the JNI due to reflection 

and serialization when objects are accessed on android based mobile devices. It 

provides techniques to reduce this overhead. It also provides an API to access 

objects through its reference through pinning its memory location. The Android 

emulator was used to evaluate the performance of these techniques and we 

observed that there was 5 - 10 % performance gain in the new Java Native 

Interface. 
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CHAPTER 1 

 

INTRODUCTION 

 

 With the introduction of JavaME (Micro Edition) by Sun MicroSystem for 

mobile and embedded devices Java has rapidly acquired a significant amount of 

market share. Also the applications based on JavaME are portable across devices 

developers favor Java over other programming languages. The problems with 

using Java are following: 

 Standard Java libraries do not support platform specific features that are 

needed by the application.  

 If the developers wants to use libraries written in different languages because 

of the fact that these libraries are more efficient and faster than its Java 

counterpart.  

 If the developer wants to implement time critical code in lower level 

language. 

Java Native Interface (JNI) addresses all these issues. It provides the following 

functions: 

 It can create, update and inspect Java objects which include arrays. 

 It can call Java methods from C/C++ 

 It can catch and raise exception from native code.  

 Native code can load class and request class information.  

JNI has played a major role in development of application which needs to interact 
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with native code (C/C++). In recent years Java has become one of the favorite 

application programming languages and is widely used by developers. This is 

evident in android as well as majority of the application are written in Java. But 

the fact that the operating system that android is developed on is Linux like which 

requires JNI to interact with the devices. As more and more features are being 

added to the mobile devices there is a need for an efficient JNI. There are papers 

[1] which demonstrate the overhead incurred while making JNI calls. It provides 

detailed performance benchmarks of several popular, modern, and representative 

JNI implementations, pointing out their weak points and suggesting possible 

solutions. There is a need to decrease these overhead in embedded systems like 

android phones. Foreign-function interfaces (FFIs) such as “Jeannie” have been 

developed to improve safety and productivity of JNI. 

 JNI are commonly used to interact with native libraries which involves 

processing of chunks of data. The data transfer between the JVM address space 

and that of the native address space is costly. Further the overhead occurred in 

reflection and serialization of not primitive data is significant.  

1.1 Motivation 

Android uses JNI in its NDK (Native Development Kit), which is a toolset that 

helps developers to interact with native code components in their application. 

The NDK provides the following: 

 It provides tools and builds files that are helpful for developers to generate 

native code libraries from C and C++ sources. 
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 It helps developers embed native libraries into an application package file. 

 A set of native system headers and libraries that will be supported in all future 

versions of the Android platform, starting from Android 1.5. Applications that 

use native activities must be run on Android 2.3 or later. 

 

NDKs are used to build activity, handle user inputs, use hardware sensors and 

platform specific operations and the fact that they heavily rely on JNI. Making 

JNI faster will not only make the application response time faster but also reduces 

the use power consumption of the device. The bottle neck in JNI is the data 

transfer between the JVM memory space and the native memory space. There is 

also time consumed while accessing class structure and fieldIds of class attributes. 

The transfer of data can be reduced if we can pin the memory address of the 

object or array that we intend to manipulate. If we could cache the class structure 

and the fieldIds of its attributes the over head of searching the class structure can 

be reduced.  As each call to the JNI is treated as new call without the information 

of its previous history a lot of information is lost. If this information were 

available to us we could use it and reduce the execution time of the JNI. 

One of the approaches is the use of JIT (Just In Time) compilers to inline the JNI 

calls. This reduces the cost of callouts to native code by reducing the over head of 

stack operations that needs to be performed during the JNI calls. 

 The proposed solution alters the JNIEnv structure to include hash map to 

store the recently accessed fieldIds and methods. It also has caches the class 

structure in the JNIEnv structure. A new method is introduced to pin the address 
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of the Java object so that the same address can be used in future access this 

decreases the access time and also the information can be accessed without the 

use of JNI as we already know its location in the memory. To access such kind of 

address the program should be a thread in the same process as that of the JVM.  

  

Figure 1: Overview of JNI 

1.2 Document Outline 

The rest of the document is organized as follows. 

Chapter 2, 3 provides Background information about Android, its architecture, 

and JNI. It also explains some terms to better understand the document.  

Chapter 4 talks about the Related Work done in the area of JNI in general. It also 

mentions certain works which describe the specific mechanism and techniques 
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used to make JNI developer friendly and efficient. 

Chapter 5 talks about the design and techniques that are used to make Android 

JNI efficient as a whole. It mentions the detailed working of various JNI calls and 

way they are made efficient.  

Chapter 6 describes the implementation details. 

Chapter 7 gives a various measuring techniques used for comparing the efficiency 

of the new JNI aver the existing one. It concludes the thesis as a whole.  

Chapter 8 presents some features and enhancements that can be done to the 

existing implementation. This will further enhance the tool. 
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CHAPTER 2 

Java Native Interface (JNI) 

2.1 Role of JNI 

When the Java platform is deployed on top of host environments, it may become 

desirable or necessary to allow Java applications to work closely with native code 

written in other languages. Java is slowly replacing the programs that were 

written in C and C++ as they are platform independent. The Java Native Interface 

is a feature that allows the programmer to take advantage of the Java virtual 

machine, but still can use code written in other languages and libraries. As a part 

of the Java virtual machine implementation, the JNI is a two-way interface that 

allows Java applications to invoke native code and vice versa. Figure 2 illustrates 

the role of the JNI. 

 

Figure 2: Role of JNI 

The JNI is designed to handle situations where you need to combine Java 

applications with native code. It supports calls from native library and calls from 

native application.  
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 The JNI can be used to write native methods that allow Java applications to 

call functions implemented that are implemented in native libraries. Java 

applications call native methods in a similar way that is a simple Java method 

invocation only difference is that it has the keyword native in its prototype. 

But these Java calls are internally translated to calls to the native that call the 

native method or library. 

 The JNI supports an invocation interface that allows us to call Java virtual 

machine code from the native code. Native applications can link with a native 

library that uses Java API, and then the native code can use the JNI APIs to 

call these functions in the Java virtual machine.  

2.2 Overview 

The figure below illustrates the steps required write a simple application that 

invokes a C function. 

1. Create a class (HelloWorld.java) that declares the native method. 

2. Use javac to compile the HelloWorld source file, resulting in the class file 

HelloWorld.class. The javac compiler is supplied with JDK or Java 2 SDK 

releases. 

3. Use javah -jni to generate a C header file (HelloWorld.h) containing the 

function prototype for the native method implementation. The javah tool is 

provided with JDK or Java 2 SDK releases. 

4. Write the C implementation (HelloWorld.c) of the native method. 

5. Compile the C implementation into a native library, creating HelloWorld.dll or 
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libHelloWorld.so. Use the C compiler and linker available on the host. 

Run the HelloWorld program using the Java runtime interpreter. Both the class 

files (HelloWorld.class) and the native library (HelloWorld.dll or 

libHelloWorld.so) are loaded at runtime. 
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Figure 3: Steps writing a JNI program 

The native method in Java is declared as follows 

  class HellWorld { 

   private native void print(); 

    : 

    : 

  } 

2.3 Native Method Arguments 

As discussed in the previous section, the native method implementation such as 

Java_Prompt_getLine accepts two standard parameters, in addition to the 

arguments declared in the native method. The first parameter, the JNIEnv 

interface pointer, points to a location that contains a pointer to a function table. 

Each entry in the function table points to a JNI function. Native methods always 

access data structures in the Java virtual machine through one of the JNI 

functions. Figure illustrates the JNIEnv interface pointer. 
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Figure 4: The JNIEnv interface pointer 

The second argument differs depending on whether the native method is a static 

or an instance method. The second argument to an instance native method is a 

reference to the object on which the method is invoked, similar to this pointer in 

C++. The second argument to a static native method is a reference to the class in 

which the method is defined. Our example, Java_Prompt_getLine, implements an 

instance native method. Thus the jobject parameter is a reference to the object 

itself. 

2.4 The JNIEnv Interface Pointer 

Native code accesses virtual machine functionality by calling various functions 

exported through the JNIEnv interface pointer. 
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Figure 5: Thread local JNIEnv Interface Pointer 

 A JNIEnv interface pointer is a pointer to thread-local data, which in turn 

contains a pointer to a function table. Every interface function is at a predefined 

offset in the table. The JNIEnv interface is organized like a C++ virtual function 

table. Figure  illustrates a set of JNIEnv interface pointers. 

 Functions that implement a native method receive the JNIEnv interface 

pointer as their first argument. The interface pointer passed to the native methods 

depends on the thread which calls it. The Java virtual machine passes the same 

interface pointer to native method functions that are called from the same thread. 

The calls made from different thread will have got different environment pointer. 

The interface pointers are thread-local but the JNI function table are indirectly 

referenced and shared among multiple threads. 

 As some of the platform does not provide efficient mechanism to support 

thread local data access the JNIEnv refers to the thread local structure. By passing 

the pointer to the thread local structure, the JNI implementation inside the virtual 

machine can avoid many thread-local storage access operations that it would 

otherwise have to perform if it was not referenced. 

2.5 JNI Functions 

The Java native interface provides various functions that can be called to access 

the Java objects and methods. To access arrays it provides get<Type>ArrayRegion 

.If the array contains object in Java then we need access each element 
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individually. Whenever we access the data it is copied from the Java heap to 

native region. The string must be converted from Java utf-16 to UTF-8 type. It 

also provides APIs to call methods in the Java form the native code. But this is 

rarely used in the native code as it is costly. Following tables describes various 

functions of JNI 

JNI Function  Description  Since 

Get<Type>ArrayRegion 

Set<Type>ArrayRegion 

Copies the contents of primi- 

tive arrays to or from a pre 

allocated C buffer. 

JDK1.1 

Get<Type>ArrayElements 

Release<Type>ArrayElements 

Obtains a pointer to the contents 

of a primitive array. May return 

a copy of the array. 

JDK1.1 

GetArrayLength Returns the number of elements 

in the array. 

JDK1.1 

New<Type>Array Creates an array with the given 

length 

JDK1.1 

GetPrimitiveArrayCritical  Obtains or releases a pointer to 

the contents of a primitive array.   

Java 2 

SDK1.2 

Table 1: JNI Function Table 1  
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JNI Function  Description  Since 

GetStringChars 

ReleaseStringChars 

Obtains or releases a pointer to the 

contents of a string in Unicode format. 

JDK1.1 

GetStringUTFChars 

ReleaseStringUTFC

hars 

Obtains or releases a pointer to the 

contents of a string in UTF-8 format. May 

return a copy of the string. 

JDK1.1 

GetStringLength Returns the number of Unicode characters 

in the string. 

JDK1.1 

GetStringUTFLengt

h 

Returns the number of bytes needed to 

represent a string in the UTF-8 format. 

JDK1.1 

NewString Creates a java.lang.String instance that 

contains the same sequence of characters 

as the given Unicode C string. 

JDK1.1 

NewStringUTF Creates a java.lang.String  JDK1.1 

GetStringCritical 

ReleaseStringCritical 

Obtains a pointer to the contents of a string 

in Unicode format or a copy of the string.  

Java 2 

SDK1.2 

GetStringRegion 

SetStringRegion 

Copies the contents of a string to or from a 

preallocated C buffer in the Unicode 

format. 

Java 2 

SDK1.2 

Table 2 : JNI Function Table 2 
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The figure below shows how a primitive array is accessed in JNI. 

 

 

Figure 6: Primitive array access 
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CHAPTER 3 

Android Architecture 

 Android is a software stack for mobile devices that includes an operating 

system, middleware and key applications. Figure shows the major components of 

the Android operating system. Each section is described in more detail below. 

Figure 7: Major Components of Android Applications 

 Basic applications like contact, email, browser settings, Bluetooth etc., 

come with the android package. All these applications are written in the Java 

programming language. Many of these applications can be multi-threaded 

depending upon their use and interaction. Applications can be added based upon 

the user through Android Market.  
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Figure 8: Application Layer of Android 

3.1 Application Framework  

Application framework contains programs that manage the phone's basic 

functions like resource allocation, voice applications, and window allocation for 

applications, managing lifecycle of applications and keeping track of the phone's 

physical location. This layer is majorly written in the Java programming 

language. The API that is exposed is used by developers in their application. 

There is no restriction applied while accessing this Java API in the application 

developed by the programmer this helps in utilizing the features provided by the 

Android. 

 

Figure 9: Application Framework of Android Libraries 

Each Android component has a set of C/C++ libraries which are used by several 

System components. These are exposed to developers through the Android 

application framework. Most of the CPU related tasks and peripheral devices are 
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done using native C/C++ libraries (Figure 10). Some of the core libraries are: 

 System C library - a tuned implementation of the standard C system library 

(libc), for embedded Linux-based devices 

 Media Libraries - these libraries support playback and recording of many 

popular audio and video formats and image files. 

 3D libraries - the libraries use either hardware 3D acceleration (where 

available) or the included, highly optimized 3D software rasterizer. 

 SQLite - a powerful and lightweight relational database engine. 

Figure 10: Libraries Layer of Android 

As these libraries are for embedded systems they are optimized like fast pthread 

implementation using 4-byte mutex rather than the 12-byte mutex (as there may 

not be as many thread as compared to PC). 

3.2 Android Runtime  

As applications are written in Java the Android runtime environment consists of a 

virtual machine. Android has its own Virtual Machine called Dalvik Virtual 
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Machine. The generated byte code in java is converted into DEX code and an 

interpreter is used to convert them into assembly code. Every Android application 

runs in its own process, along with its own instance of the Virtual Machine 

Figure 11: Layers of Android Application 

Dalvik primarily is a process virtual machine. Refer Figure below. Support 

multiple virtual machines running concurrently. The Dalvik VM executes files has 

the extension (.dex) format which is optimized for minimal memory footprint. 

The .dex files are compiled from the .class files that are generated by Java by the 

“dx”tool. The VM is register-based, and runs classes compiled by a Java language 

compiler. The Dalvik VM is written in C and relies on the Linux kernel for core 

OS functionality. 
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Figure 12: Android Runtime Layer 

 Android‟s kernel is based on Linux version 2.6 for core system services 

such as security, memory management, process management, network stack, and 

driver model. The kernel acts as an abstraction layer between the hardware and 

the rest of the software stack. The kernel is modified so that it can cater Android 

specific requirements by adding drivers etc.,. Refer Figure below. 

Figure 13: Linux Kernel in Android Hardware Abstraction Layer  

There is an abstraction layer present in between the Linux kernel and above 

layers. This enables certain core default system applications and services to be 

replaced by third party/ custom implementations. Most mobile OEMs have the 

basic drivers to control their audio, video etc. Android defines this hardware 

abstraction layer on top of kernel and standardizes Android„s interface. This 

hardware abstraction layer exists as a user-space C/C++ library. This probably 

means that Android implements a standard interface for Audio, irrespective of the 

technology supported by the underlying hardware, just asking implementations of 
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features that it needs from the particular hardware. 

3.3 Android Application Architecture  

Android applications are written in the Java programming language. The 

compiled Java code, all the necessary data and resource files of the application are 

bundled by the “aapt” tool into an Android package. This file has a .apk suffix. 

This file can then be used for installing the application on devices. All the code in 

a single .apk file is considered to be one application. 

Android application sandbox model Android uses the process separation provided 

by Linux kernel as the primary means of achieving isolation against other 

suspicious applications. Each application runs in its own Linux process. 

Furthermore, each managed piece of code executes in a virtual machine (DVM). 

As a result each application is sand- boxed from the other applications running at 

any given time. All IPC is achieved via the mechanisms provided by Binder. 

 A second level of isolation builds upon the capability of underlying Linux to 

strongly isolate data/files of one user from the other. This is achieved by 

allocating a unique user-id to each installed application on a particular system. 

Android starts the process when any of the application's code needs to be 

executed, and shuts down the process when it's no longer needed and other 

applications are in need of resources. Unlike applications on most other systems, 

Android applications don't have a single entry point for everything in the 

application (no main() function, for example).  
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CHAPTER 4 

Related work 

This chapter discusses the research that has been done on the JNI. It also reviews 

projects that are relevant to this thesis. From the discussion above it is clear that if 

we decrease the time required to retrieve an object in JNI and decrease the time 

taken for the reflection and serialization of the data that is being transferred from 

the JVM to the native space we can get a better performance and save battery life 

of the device. Arrays are the main area of concern as huge amounts of data needs 

to moved to and fro. Where as if the class object is huge then time is spent on 

finding the attributes that we are interested in. The paper Fast Online Paper 

Analysis[2] helps us understand the issues of runtime pointer analysis while using 

reflection, dynamic loading of libraries etc., This helps us understand the issues 

when we use some of the JNI APIs which rely on finding and loading of classes 

using reflection. Walter Cazzola[3] analyses the use of reflection and its internal 

working. It proposes a class named SmartMethod which transforms the calls made 

by the use of reflection to direct calls that will be carried out similar to the 

standard Java  method invocation. SmartInvokeC[3]  tool is used to generate the 

stub of a class from its byte code, so to invoke a method we no longer need to use 

the JNI. The call is made from a C stub that is generated. To retrieve and invoke 

method faster the necessary information is hashed. Tamar et. Al[4] provides an 

memory management scheme for thread local heap. This technique determines the 

objects that are local and global and uses this information to avoid unnecessary 
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synchronization. 

 The following section describes some of the techniques. 

4.1 JNI Bridge 

One reason to use Java is that it can be ported easily on different platform as the 

application runs inside the virtual machine. But if the application uses native call 

the porting becomes difficult. That is we need to use the libraries that are specific 

to the platform. This paper describes the challenges and solution so that the JVM 

supports the native calls on different ISA. Here dynamic translators are used to 

translate native calls based on the underlying architecture. To handle the JNI up 

calls and marshaling of the data a simulated JNIEnv  object in the IA-32 

execution environment is used to enable 32-bit native libraries to call 64-bit 

function pointer. They also use marshaling tables to map 64-bit references to 32-

bit references by intercepting the up calls and wrapping it with the reference and 

during the down call the corresponding 32-bit reference is used. To avoid the data 

movement when GetPrimitiveArrayCritical JNI API call is made the reference is 

directly taken from the JVM internals. The JVM-independent implementation has 

to resort to Java reflection to obtain this information. 

4.2 Interfacing Java to the Virtual Interface Architecture 

This paper explores the use of User-level network interface for the 

communication between the Java heap and native buffer. It describes two 

approaches the first approach manages the buffer between the Java heap and the 
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native space which requires the data to be copied while the second approach  uses 

a Java-level buffered abstraction and allocates space outside the Java heap and 

this allocated space can be accessed like array in the Java. The second approach 

eliminates the use of copying the data but the native garbage collector has to be 

modified. 

 The first level of Javia (Javia-I)[5] manages the buffers used by VIA in 

native code (i.e. hides them from Java) and adds a copy on the transmission and 

reception paths to move the data into and out of Java arrays. Javia-I [5] can be 

implemented for any Java VM or system that supports a JNI-like native interface. 

(Javia-II) introduces a special buffer class that, coupled with special features in 

the garbage collector, eliminates the need for the extra copies. In Javia-II [5], the 

application can allocate pinned regions of memory and use these regions as Java 

arrays. These arrays are genuine Java objects (i.e. can be accessed directly) but 

are not affected by garbage collection as long as they need to remain accessible by 

the network interface DMA. This allows the application to manage the buffer and 

to send or receive Java array directly. It also describes the issues of memory 

management when application creates memory outside the Java heap.  

4.3 Jeannie 

This paper proposes a new foreign functional interface design called Jeannie[6]. 

Here programmers can write both the Java code and the native code in the same 

file. Jeannie compiles these files down to their respective JNI calls. This enables 

static error detection across the languages and simplifies the resource 
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management. It addresses the issues of JNI being unsafe as it does not require 

dynamic checks. By integrating and  analyzing both Java and C together, the 

compiler can produce error messages which can  prevent many a maintenance 

issues. The compiler is implemented using rats![6]. To access string form C in 

Java conversion for UTF-8 to UTF-16 is made, and vice versa is done while 

accessing strings from Java in C. The array region is still copied from the Java 

heap to C memory space when access is made, the following functions are used to 

gain the access _copyFromJava and _copyToJava. 

4.4 Inlining Java Native Calls At Runtime 

This technique inlines the native functions using JIT in java applications. The 

callbacks to the JNI are transformed into their equivalent lightweight 

operations[7]. IBM TR JIT[7]  compiler is used as it supports multiple JVMs and 

class library implementation. The control flow for the TR JIT consists of phases 

for intermediate language (IL) generation, optimization and code generation. They 

have enhanced the inliner so that it can synthesize the opaque call to the native 

function. Then they have introduce a callback transformation mechanism that re- 

places expensive callbacks with compile-time constants and cheaper byte code 

equivalents, while preserving the semantics of the original source language. 

4.5 Janet 

Janet[8] is the Java language extension which enables convenient development of 

Java to native code interfaces by completely hiding the JNI layer from the user. 
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The source file is similar to ordinary Java source file except that it may contain 

embedded native code (in terms of native method implementations), and the 

native code can easily and directly access Java variables as Java code would. It 

enables efficient direct access to Java arrays from the native side. However, when 

the array is to be processed by external routine the array pointer has to be used. 

Java types are converted by Janet generally to native types having the same name. 

The array conversion introduces no performance reduction on platforms where 

appropriate Java and native types are equivalent, but it requires allocation and 

copying of the whole array in the case when they are different. 

4.6 Native Code Profiling 

 This paper describes the technique used to profile native code that are part 

of the application. Most of the profiling tool like 'hprof' do not segregate the time 

spent in native code if we have this information then we can find the parts of the 

code that can be improved further. The paper[2] introduces a profiling tool based 

on JVM tool interface. The technique involves introduction of a wrapper methods 

for the native function prototype in Java. It has the same method name and 

signature as that of the native method but not a native method. This wrapper 

function calls the J2N_Begin which recodes the time stamp and other profiling 

information. Then it calls the native method. Upon return the wrapper calls 

J2N_End is called which records the exit timestamp. Her profiling is done 

statically by using a tool called ASM[2], as dynamic profiling overhead. 
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CHAPTER 5 

Design 

This chapter talks about the overview of the changes that are made to the existing 

JNI in android. We first need to understand the class structure of a Java class 

structure and how the methods and fields are represented in Java. The following 

section describes these representation: 

5.1 Class Structure  

In Dalvik virtual machine the class can be either '.class' or '.dex' extension.  We 

are interested in the '.class' format as JNI API uses them. The class structure is 

defined in the Object header file. Here are the fields that are of our interest: 

 Status- It is a structure of  type ClassStatus through which we can know the 

sate of initialization like initialized, ready, loaded etc., 

 super- It holds the reference to its super class if any other wise NULL. 

 Interfaces – It is a two dimensional array which contains the list of interfaces 

in this class. 

 DirectMethodCount and directMethods– DirectMethodCount hold the count 

of the direct methods that are present in the class. Direct methods are static, 

private and init methods. DirectMethod is an array which points to the 

methods 

 VirtualMethods and VirtualMethodCount –  VirtualMethodCount holds the 

count of the virtual methods present in the class. VirtualMethod points to these 
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methods. 

 Vtable - Virtual method table (vtable) is for use by "invoke-virtual". 

  The vtable from the superclass is copied in, and virtual methods from this class 

either replace those from the super or are appended. 

 sfields – These are structures of type StaticFileds and contains the type of the 

field and its Jvalue. 

 Ifields – These contains all the instance fields of this object. Also all the 

instance fileds that refer to objects are present in the beginning. Each instance 

filed object has its field type and an offset which is the offset from the object 

pointer. 

 SourceFile – This is the name of the source file. 

Every method is represented by a structure called Method. The structure Method 

has the following members: 

 clazz – This points to the class that this method belongs to. 

 MethodIndex – This contains the offset from either the vtable or the iftable of 

its class. 

 Name – This is the method name. 

 Prototype – This is the method prototype descriptor string that contains the 

return type and the argument type. 

 Insns – this contains the actual code for the method. 

 NativeFunc -  This is pointer to native method. This could either be a JNI 

bridge function or an actual internal native function. This can be checked by 
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performing a null check on the insns field. 

 JniArgInfo – This contains cached JNI argument and return type hints. 

 InsSize – This contains the count of the number of input argument to the this 

method. 

 OutsSize – This contains the count of the number of return arguments of this 

function. 

The fields in the Dalvik virtual machine is represented by the structure Field. It 

contains the following members. 

 Clazz - The pointer to the class it belongs to. 

 Name – The name of the field. 

 Signature – Its signature like "I", "[C", "Landroid/os/Debug;" 

 accessFlags – The access type. 

 Once the JNI has found the method that needs to be executed it transfers the 

control to the DVM interpreter. The interpreter checks weather the function is 

Java function or native. If the function is Java then the byte code is interpreted 

into the architecture specific code.  

 Here is how the JNI calls are made to invoke a main method for an 

application :- 

JNI_CreateJavaVM will be called to construct a Dalvik virtual machine.The 

JNI_CreateJavaVM will create everything needed to execute the .dex file, such as 

dynamic memory management, thread, bytecode verifier, etc. Then JavaVM and 

JNIEnv arguments will become the function interfaces to provide supported 
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functions. JNI function FindClass(JNIEnv* env, const char* name)  will be called 

to find the class by name. Before executing a main method in Java program, its 

class is needed to be found by a specified name. GetStaticMethodID(JNIEnv* 

env, jclass jclazz, const char* name, const char* sig) is called because the Java 

main function must be a static method, this JNI function will be called to get the 

main method ID. CallStaticVoidMethod(JNIEnv* env, jclass jclazz, jmethodID 

methodID, …) This function will start to interpret the .dex file. This function will 

call the Dalvik interpreter to interpret the .dex file. 

5.2 Hashing JNI fields 

There are several ways to store the data and use it future so the next call made to 

function is faster if the programs future request can be handled based on the 

previous . Hashing is the technique used here to make the JNI call efficient. As 

JNI accesses fields in the Java domain it first needs to know the exact memory 

location of the field. As we have seen earlier each function in the JNI API has 

access to the JVM environment pointer that it is running in. This JVM 

environment pointer contains the pointer to the heap and the refernces to the 

object. It can also access the class structure of the classes that are loaded and that 

are present in the class path or in the jar file that is included in the class path. 

When we make a JNI request to access field the JNI API first checks if the class is 

loaded or not. Then it access the class structure and goes through the field list. If it 

finds the field that we are looking for it returns the fieldId to the caller. Now the 

caller can access this field's data using this Id. This as you can see can take a long 
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time. To solve this issue hashing technique is used. The hash function design is as 

follows. There are three different hashing techniques used here. The first one is to 

hash and store the class structures. The second is used to store the offset and the 

methodId of methods that are called through the JNI regardless of weather it is 

native method or Java method. The third is for the fields that are accessed by the 

JNI in its native domain.  

 The hashing bypasses the reflection calls that need to be made every time 

when we need to access a method or field. Now due to hashing the reflection call 

is made during the first access any future access will use the value obtained from 

the hash table. One problem with this approach is the we will not know the size of 

the hash table that we need to create. This issue is addressed by increasing the size 

by a set amount when the hash table reaches its limit. To compute the hash of the 

string we use the predefined function in the UtfString file.  

 There are always possibilities that the two stings may hash to the same key. 

This is called collision. To handle this probing technique is used. In this when we 

try to insert an entry into the hash table and we find that the slot in the hash table 

already full then we first check if the vale is the same as the old one if so we 

replace the value with new one as this is the latest value. If the value does not 

match then we store it in the next available free slot. This technique is chosen 

over the chaining for collision resolution as it uses the memory in an optimal way. 

Due to the use of probing while inserting the value in the hash table the retrieval 

takes longer. We need not address the synchronization issue as JNI API is 
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executed by a single thread and there is only one thread accessing the JVM 

environment variable. 

 There are three hash table defined one each for to hold the class structure, 

field memory location and methodIds. The following are the names of the hash 

map 

 fieldEntryJni 

 refEntryTable 

 methEntryTable 

 These hash tables are updated when the call to FindClass, getMethodId and 

getFieldId is called by the JNI API. These hash tables are initialized when the new 

JNI environment variable is created when dvmCreateJNIEnv  is called     

during API invocation. 

5.3 Find Class 

The find class in the JNI is used to load the class given the fully qualified class 

name in the JVM pointed by the JNI environment object. The find class takes in 

two argument one the JNI environment object and the class name. The findClass 

first make a check by calling dvmGetCurrentJNIMethod, this method check if the 

current thread is executing a native method if so it returns the method by 

inspecting the interp stack. Then we get the class descriptor form the class name. 

The class name is surrounded by 'L' and ';'.  Then we load the class from its class 

loader and add the local reference in the reference table. This is a very important 

step if the class does not have a reference then this class cannot be accessed in the 
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native stack. Then we return the reference to the caller who can use it to access 

fields and methods.  

 If the class was already loaded then we could reuse this instance of the class 

to get the fieldIds and methodIds. To accomplish this we store the reference of the 

class in the hash table refEntryTable in the JNI environment variable. Every time 

the findClass is called we check if the class already loaded by looking up in the 

hash map. If not we proceed as usual and load the class. After loading the class we 

add this to the hash map. If the class we are looking for is present in the hash map 

we validate its reference as it may be garbage collected if the reference is valid 

then we add it to the local reference table so that the class reference is not garbage 

collected. Then we return this instance to the caller. This decreases the time taken 

to load the class. The key that we use here is the class descriptor rather than the 

class name passed. This is because the two classes can have the same name but 

the descriptor are different.  

 The below flow diagram for the findClass method 
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Figure 14: Flow of findClass 

 The method findClass is used to load the applications main method hence 

optimizing this will reduce the execution time of the application. As long as the 

local reference of the class is present the class is not unloaded  hence we can reuse 

it.  These are methods for the hash table access 

 hashcmpRefEntryTableStr 

 hashcmpRefEntryTable 

 findRefEntryTableEntry 

 addRefEntryTableEntry     
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5.4 Get Field  

The getFieldId is used to get the instance field give the field name, its signature, 

and the Java class. To access any field in the Java object we need to use this 

function. It returns the fieldId in the class structure through which we can get the 

offset from the object pointer. The Java class structure is obtained from the 

previous findClass. As we have the reference in the local reference table of the 

JNI we need to get the reference of the actual class. This is accomplished by the 

function dvmDecodeIndirectRef. The we check if the class is initialized. Then we 

find the filedId as follows 

 First we search the class object for the given field name and signature. 

 This is done by walking through the ifields of the class that is provided. If 

found the filedId is returned. 

 If it is not found in the class then we see if there is any super class present. 

If yes then we scan through the ifields of the super class. If it is found here 

then we return this fieldId. 

 If the field is not found then we throw an exception. 

 As we can see this procedure of scanning through the list can take a lot of 

time. Once we find the fieldId we can add it to the hash. But this is tricky as 

multiple class have the same field name and signature. To make the key unique 

there is a combination of the field name, field signature and class descriptor. 

Hence this is unique.  Here we also need to check if the class is loaded or not 

when we return the fieldID from the hash table. If the class that the field belongs 
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is not loaded the further use of the Id will generate exception. This can be taken 

care by looking into the hash table of findClass as this will take only O(1). If the 

class is not loaded then we assert an exception similar to the actual flow. 

      

Figure 15: GetField workflow 

The above diagram shows the function flow.These are methods for the hash table 

access 

 hashcmpFieldEntryTableStr 

 hashcmpFieldEntryTable 

 findFieldEntryTableEntry 

 addFieldEntryTableEntry 
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5.5 Get Method  

The GetMethodId is used to find the methodId for a given method name, 

signature and class. Similar to the GetFieldId to get the methodId we first need to 

load the class by calling findClass. Form this methodId we can get the offset from 

the class pointer and invoke the method. The following is performed by this 

method 

 It first checks if the class is loaded and initialized. If not an exception is 

thrown. 

 It then goes through the list vtable to check if the method and the signature is 

present if present it checks if the method is static. If not then it returns this 

methodId. 

 If the it is not a virtual function then it goes through the directMethods list to 

check if it is present in this. If present it checks if the method is static or not. If 

static then it throws exception else returns the methodId. 

 The method's class may not be the same as class that is supplied , but if  it isn't 

this must be a virtual method and the class must be a superclass Hence we 

initialize the super class. 

We add the method Id to the hash table represented by methEntryTable. When a 

call is made first we check if the method is present in the hash table if so we 

check if the class and its super class is initialized or not by checking the hash table 

for the refEntryTable. If the class is not initialized we initialize it add it to the 

refEntryTable and also add it to the local reference. The key used here is the class 
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descriptor, the method name and the signature. Hence this key is unique. 

Figure 16: Get Method 

The above digram shows the flow for the GetMethodId function. These are 

methods for the hash table access 

 hashcmpMethEntryTableStr 

 hashcmpMethEntryTable 

 findFieldMethTableEntry 
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 addFieldMethTableEntry 

5.6 Pinning object 

To access objects we need to go through the reflection and serialization in the JNI. 

If we pin the memory location and obtain the memory location in the native space 

we can access its field by knowing the offset. Pinning not only allows us access 

the object but makes sure that the memory location of the object does not change. 

It is also important to unpin the object once we are done using it as these can be 

picked up by the garbage collector when in Java  program it is assigned to a new 

reference. For this two new functions are provided pinObject and unpinObject . 

The pinObject method adds an entry to the global DVM pin reference table. The 

pin reference table is a global table and has a limit to the number of reference it 

can hold. If we cannot add it an exception is thrown. First we add this object to 

the global reference table so that while pinning we can check if the address is a 

valid object. We also increase the global count if it already exists and also make 

sure that it is pinned only once. If it is pinned more than once then the release has 

not been called.  

 In the unpinObject function we remove the reference from the  global DVM 

reference table. We also remove the global reference that we added. To access the 

global DVM reference table we need to obtain mutex lock over the table. Care 

should be taken while accessing the attributes an changing it as the memory that is 

obtained has no restriction on it. If we override the method table or any other vital 

data the object will become corrupt. Also currently only a few objects can be 
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pinned as the global table has limited count. 

 The figure below show the approach of pinning the object 

 

Figure 17: Pinning object 
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CHAPTER 6 

Implementation  

The following section gives the implementation details of the hash functions used 

and the changes made to JNI API. 

6.1 Implementation of hash function  

The hash function has the following functions 

HashTable* dvmHashTableCreate(size_t initialSize, HashFreeFunc freeFunc) 

 This function is used to initialize the hash table. The free function depends 

on the value that we are storing. In our approach three different functions have 

been used as there are hash tables for findClass, GetFieldId and GetMethodId. 

The basic operation that the free function does is that it removes the local 

reference that we have added for the classes that are related to the value that we 

are storing. 

void* dvmHashTableLookup(HashTable* pHashTable, u4 itemHash, void* item, 

HashCompareFunc cmpFunc, bool doAdd) 

 This function has dual purpose that is it servers the purpose of look up when 

the doAdd flag is set to false and it inserts the <key, value> pair when the flag is 

true. It also takes in the compare function. Our approach has used two different 

compare functions one while adding entry to the hash table and the other while 

retrieving the value from the hash table. Since while adding we need to compare 

only the hash value of the key and the collision is taken care by probing the 

compare function is simple. During the retrieval of the value we need to perform 
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checks based the data that we are retrieving. The hash is computed using the UT8 

string which is the key.  

 void dvmHashTableLock(HashTable* pHashTable) 

 This function is used to lock the table so that no two threads change the data 

simultaneously. Each hash table has its own mutex lock. This function grabs the 

lock. 

void dvmHashTableUnlock(HashTable* pHashTable) 

 This function is used to release the lock on the hash table once the 

operations on it completed. 

static bool resizeHash(HashTable* pHashTable, int newSize) 

 When we initialize the hash map the size of the map is set to 50 entries. But 

during the program execution the size may increase. This function allows us to 

resize the hash table. To perform this operation we need to remove all the 

elements and reenter them into this bigger hash table. To take care of the null 

values the use of tombstone constant is used. This is an expensive task as all the 

values needs to be reentered into the table. To perform the resize operation the 

table must be 75% full. This is the threshold value that we have used for the hash 

tables. 

bool dvmHashTableRemove(HashTable* pHashTable, u4 itemHash, void* item) 

 This function removes an item from the hash table with the given hash. 

The hash function that has be used is as follows as the keys are strings and are of 

UTF8 format we use the below formulae to calculate the hash  
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hash = hash *31 + value of character 

 This hash is computed for the whole length of the string.  Here we presume 

that add and look up happen more frequently than the remove. Whenever remove 

function is called there should be an explicit call to the free function as well as the 

remove function does not invoke it internally. If the free function is not called 

then there is high chances that we will be running out of space in the local 

reference table of the JNI environment. Similarly the free function also handles 

the global references that we have created for the values that we store. 

6.2 Implementation of GetFieldId 

As discussed in the earlier section the we are using an hash map int the JNI 

environment variable that is passed with the JNI API call. To insert into the hash 

table the function addFieldEntryTableEntry is used. This function takes in the 

hash table, the class pointer, the field name and its signature. The key is 

combination of class->descriptor plus the name plus signature. This key is hashed 

using the technique described previously. While adding if the slot is already 

occupied the we retrieve the vale and the following check is made 

fieldId->clazz->descriptor is compared with class descriptor 

fieldId->name is compared with the field name  

filedId->signature is compared with field signature 

 If all of the following matches we replace this with the new entry by 

removing this value. If not probing is used to find the next empty position. 

During the retrieval of the value we do the following check 
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fieldId->clazz->descriptor + 

fieldId->name + 

filedId->signature  are concatenated in the above  order and is compared to the 

key which is the input. 

If they are equal then we check if the local reference is valid. 

If it is valid return the value else  

remove the <key, value> from the hash table. 

 While adding the entry we check whether the class is initialized by invoking 

the dvmIsClassInitializing. The same is done while retrieving the class. Also 

checks are made to see if the local references are still valid otherwise we add the 

local reference to this class so that no exception occur in the future when the field 

values are accessed in the native domain. 

6.3 Implementation of GetMethodId 

The GetMethodId is a bit more complicated than the GetFieldId. Here the method 

can either be a direct method or a interface method. If it is an inter face method 

then we need to initialize the super class and add local reference to it. Here we are 

use  addMethEntryTableEntry  to insert it into the hash table. 

 The key here is the class descriptor, method name and its prototype. Here 

the prototype  contains the return and the argument list. This combination will be 

unique for a class.The comparison that we make while adding is the following 

meth->clazz->descriptor is compared with class descriptor. 

meth->name is compared with name 
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meth->prototype is compared with the sig  

Comparing the prototype and signature is handled by the method 

dvmCompareNameProtoAndMethod. If these match the we do not replace the 

value but if the method is virtual the we check if the super class is loaded. While 

retrieving the value when it is present in the hash table we check the following 

check if the method object is valid 

check is made to see if the class is initialized if not remove the object and throw 

exception 

check if the super class is initialized if not remove the object and throw exception 

If everything is fine add the local reference to the classes. 

 If we find that the method is static then we throw an exception as static 

methods cannot be accessed by the GetMethodId. Also check is made to see if 

there is code to execute in the method while returning the method Id so that we do 

not catch any abstract method. 

6.4 Implementation of pinObject and unpinObject 

 The hard part of accessing an object is that we need to do find class first 

then find the field offset and the get the value by invoking the get method for the 

object in JNI. This is because the garbage collector may move the object however 

if we pin the object we are guaranteed that the object will be in same memory 

location. This is very helpful as we can access array of objects if we know the 

starting location and size of the object instead of calling getObjectArrayElement. 

 The following is part of the code which adds the object to the global dvm 
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table. 

dvmAddToReferenceTable(&gDvm.jniPinRefTable, (Object*)Obj) 

 This assures us that once we add this object to this reference table the garbage 

collector will no longer move or reclaim this memory location. Once we have 

finished we need to call the unpinObject method so that the garbage collector can 

reclaim this memory and/or move the object. 

6.5 Implementation of FindClass 

In findClass when the class is requested we first get the class descriptor from the 

method dvmNameToDescriptor.The we hash this descriptor and find out whether 

this is present in the table if so we add local reference so as to make sure that this 

is not garbage collected. Then return this reference. While retrieving we do the 

following 

class->descriptor is compared with descriptor that got through 

dvmNameToDescriptor. If there is a match then we return the reference and add it 

to the local reference table. 

Below is the code snippet on how the comparison takes place 

ClassObject* clazz = (ClassObject*) ventry; 

 ClassObject* clazz1 = (ClassObject*) vnewEntry; 

 LOGI("desc val: %s, %s ",(const char*)clazz1->descriptor,(const 

char*)clazz->descriptor); 

 if(clazz!=NULL && clazz1!=NULL){ 

  return strcmp((const char*)clazz1->descriptor,  
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  (const char*)clazz->descriptor); 

 } 

 return 0; 
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CHAPTER 7  

Evaluation 

This section compares the JNI interface in the Dalvik virtual machine and the JNI 

with the proposed changes. To evaluate the execution time in the JNI we record 

the system clock in microseconds. This is accomplished by the following function 

is used to get the CPU time. 

static inline u8 getClock() 

{ 

#if defined(HAVE_POSIX_CLOCKS) 

    struct timespec tm; 

    clock_gettime(CLOCK_THREAD_CPUTIME_ID, &tm); 

    if (!(tm.tv_nsec >= 0 && tm.tv_nsec < 1*1000*1000*1000)) { 

        LOGE("bad nsec: %ld\n", tm.tv_nsec); 

        dvmAbort(); 

    } 

   return tm.tv_sec * 1000000LL + tm.tv_nsec / 1000; 

#else 

    struct timeval tv; 

    gettimeofday(&tv, NULL); 

    return tv.tv_sec * 1000000LL + tv.tv_usec; 

#endif 

}  
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The time is logged into the system log file using the following command  

LOGI(...) 

This is a predefined function in the Dalvik virtual machine which internally uses 

printf command to the output the sting into the system log buffer. This is then 

flushed to Android Debug Bridge console. The next section gives a brief 

background on  Android Debug Bridge (adb). 

7.1 Android  Debug Bridge 

The adb is a tool which allows us to manage the state of the emulator instance. It 

is a client server program with following three components 

 Client – This runs on the development machine. We can communicate to 

the device by issuing various adb commands. 

 Server – This is a background process that runs on the development 

machine. This manages the communication between the clients and the 

adb thread that runs on the emulator/device. 

 Daemon – This is the background process that runs on the device or 

emulator. 

When you start an adb client, the client first checks whether there is an adb server 

process already running. If there isn't, it starts the server process. 

 To view the logs we issue the following command once we connect the 

emulator to the adb server 

 $ adb logcat 

This logging system provides a mechanism for collecting and viewing system 
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debug output. Logs from various applications and portions of the system are 

collected in a series of circular buffers, which then can be viewed and filtered by 

this command. Each log message is associated with a tag and a priority. These are 

the different priority associated with the log 

 V- verbose(lowest) 

 D – Debug  

 I – Info  

 W – Warning 

 E – Error 

 F – Fatal 

 S – Silent 

To filter the log the following command is used  

adb logcat tag:I AppName:D *:loglevel 

This displays only the log statements that we are interested in. We also tag each of 

these log messages with their corresponding processId and threadId. 

 Brief - Display priority/tag and PID of originating process (the default 

format). 

 Process - Display PID only. 

 Tag -  Display the priority/tag only. 

 Thread - Display process:thread and priority/tag only. 

 Raw - Display the raw log message, with no other metadata fields. 

 Time - Display the date, invocation time, priority/tag, and PID of the 
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originating process. 

 Long - Display all metadata fields and separate messages with a blank lines. 

We have used the display option of thread in our logs. The log statements have 

been put in the JNI_ENTRY and JNI_EXIT macro. These macros are invoked 

each time there is a call to JNI API. In each of the JNI API we log the method 

name so that we can identify the time taken in each of these calls. The next 

section will explain the results and comparison of the methods that have been 

changed. 

7.2 Profiling results 

As explained earlier we are using logging provided by the Android Operating 

System and the system clock to profile the JNI calls. Here we profile the JNI calls 

that we have changed. We ran the application lunar lander and recoded the time in 

each of the JNI calls by logging the system time. Then we took the average of the 

calls. The below table shows the time. 

Time in 

microsecond

s 

FindCl

ass 

getMetho

dID 

getFiledI

D 

getStaticF

iedlID 

dvmCreat

eJNIEnv 

GetStatic

MethodI

D 

JNI without 

changes 

708.18 147.84 133.18 269.4 308 80.7 

JNI with 

changes 

606.38 117.05 114.9 198.4 281.63 82.16 

Table 3: JNI method profile 

 This is due to the fact that the subsequent calls to these methods need not go 

through the reflection of the object to get the field or class. The calls still require 



51 

 

to initialize the object so that the reference is present int JVMs local reference. 

Figure 18: JNI method Profiling 

The below table gives the timings of the heap sort. First we implemented the heap 

sort in Java and recorded the execution time. Then the heap sort was ran using JNI 

and the sort was implemented in the native domain. Then we ran the same code 

and the data on the improved JNI. The table below shows the result for the 

various input size. 

Array Size Dalvik Java (ms) JNI modified (ms) Android JNI (ms) 

500 34.38 30 30 

1000 40 30 32.81 

2000 61.45 32.77 36.53 

3000 63.54 31.42 40 

4000 68.82 37.64 43.07 

5000 76.74 43.51 48.37 

6000 85.63 50.04 55.53 

Table 4: Heap sort running time 
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Figure 19: Heap sort comparison graph 

As we can see from the graph the execution time in the modified JNI decreases as 

the input size increases. This is due to the fact that there is more data to be moved 

from the Java heap to the native space. 

 Next we run record the application time in Java, native calls and Operating 

system. Form this we can see the amount to time that is saved due to the 

techniques proposed. For this we use gprof to profile the emulator. Here we need 

to address the issue of scheduling that is done by the kernel when multiple 

applications are running. To tackle this issue only one application is loaded into 

the emulator so that all the resources are used by this application. The application 
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that we choose was jetboy. The application changes the music based on the events 

that occur in the game. It uses the JET library that is provided by android to play 

the music file. OpenGL is used to render the graphic contents that is used in the 

game. Both these use JNI by the means of NDK library. The below graph depicts 

the running time of the application with the JNI API provided by the android. 

Here we do not consider the time taken by the application to start. We run the 

application for 2 seconds. 

 

  Figure 20: Execution time of JetBoy 

There were 1173 calls made to the JNI interface during the program execution . 

Here we captured the time in the JNI API using the system time stamp. To find the 

number of JNI calls that were made were recorded by a static variable declared in 

the JNIEnv variable. Once the JNI destroy was called we printed it to the log. 

Then we summed up all the count. The table below shows the execution time of 

the JetBoy. 

Java Time

JNI Time

OS and other Time
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Environments Time in mS 

Java  1.49 

JNI 0.37 

OS and other 0.1 

Table 5: Execution time for JetBoy 

The same experiment was conducted using the modified JNI. Though the number 

of calls remained almost same there was an improvement in the JNI time as the 

table below shows. This is mainly due to the calls made to the findClass and 

getFieldId API methods. The total number of calls that were made to the JNI were 

1184 

Environments Time in mS 

Java 1.48 

JNI 0.31 

OS and other 0.1 

Table 6: Running Time for JetBoy with modified JNI 

 

Time in 

microsecond

s 

FindCl

ass 

getMetho

dID 

getFiledI

D 

getStaticF

iedlID 

JNI without 

changes 

638.43 206.290 133.18 362.346 

JNI with 

changes 

572.37 168.5 92.9 294.35 

Table 7: JNI modified method profile for JetBoy 
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Figure 21: Execution time for the Modified JNI JetBoy 

The same was done for Lunar Lander application. This application demonstrates 

the drawing resources and animation in Android. The graph below shows the 

execution time for the application with unmodified JNI. 

Java

JNI

OS and others

 

Figure 22: Execution time for Lunar Lander with Android JNI 

Java Time

JNI Time

OS and other Time
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Java

JNI

OS and

others

 

Figure 23: Execution time for Lunar Lander with modified JNI 

To analyze the time taken to access the reference object we wrote a program to 

access the object which has a reference object as its member. The following were 

the results for the JNI modified and unmodified JNI. 

Time in micro seconds Reference access 

Android JNI 1307.742 

Modified Android JNI 1215.64 

Table 8: Reference object access time. 

While accessing the reference object we need to have the class structure of both 

the parent object and the member object. As we remove this step by caching the 

object structure this computation is saved and we see that the modified JNI is 

faster  
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CHAPTER 8 

Conclusion  

 JNI has always been an important part of the Java virtual machine. It is 

widely used in embedded application as they are architecture specific libraries in 

native code (C/C++) which can improve the performance of the application.  Our 

technique reduces the over head of reflection and serialization that are used while 

accessing the objects by the JNI. The pinning of objects helps the programmer to 

reference the data through its memory location rather than copying the object into 

the native space. There is an performance bonus of 5%-10% achieved using our 

technique. As we have seen by inlining the JNI calls[7] there can be a gain in the 

performance but these are not applied to the android JNI as it is new to the 

market. The Janet[8] provides the programmer an easy way to integrate the JNI 

and Java with type safe and static error checking. 

 There is not much research done in the JNI pertaining to android. This thesis 

shows that JNI performance can be improved by reducing the overhead of 

synchronization and by caching the class information for future use. 
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CHAPTER 9 

Future Work 

This thesis provides a technique that improves the running time of android 

application that use JNI. The technique uses pinning of objects so that it can be 

accessed through reference rather than copying the data. It also shows that if we 

cache the information of the class and fields there is a an improvement in the 

performance. There can be performance increase by inlining and use of JIT in the 

JVM. Currently we are not looking into the stack when the transfer is being made 

to the JNI and back. If we could reduce this over head then we make inexpensive 

calls to the JNI and use it frequently. Also the profiling of the JNI is done using 

the execution time of the application but we can gain a deeper insight once we 

inspect the instruction profile in the JNI. This will provide further areas of 

improvement. 

 As android is new to the market there is no benchmark application that can 

be used to profile the platform.  
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