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ABSTRACT 

Designing studies that use latent growth modeling to investigate change over time 

calls for optimal approaches for conducting power analysis for a priori 

determination of required sample size.  This investigation (1) studied the impacts 

of variations in specified parameters, design features, and model misspecification 

in simulation-based power analyses and (2) compared power estimates across 

three common power analysis techniques: the Monte Carlo method; the Satorra-

Saris method; and the method developed by MacCallum, Browne, and Cai 

(MBC). Choice of sample size, effect size, and slope variance parameters 

markedly influenced power estimates; however, level-1 error variance and 

number of repeated measures (3 vs. 6) when study length was held constant had 

little impact on resulting power.  Under some conditions, having a moderate 

versus small effect size or using a sample size of 800 versus 200 increased power 

by approximately .40, and a slope variance of 10 versus 20 increased power by up 

to .24.  Decreasing error variance from 100 to 50, however, increased power by 

no more than .09 and increasing measurement occasions from 3 to 6 increased 

power by no more than .04.  Misspecification in level-1 error structure had little 

influence on power, whereas misspecifying the form of the growth model as 

linear rather than quadratic dramatically reduced power for detecting differences 

in slopes. Additionally, power estimates based on the Monte Carlo and Satorra-

Saris techniques never differed by more than .03, even with small sample sizes, 

whereas power estimates for the MBC technique appeared quite discrepant from 

the other two techniques.  Results suggest the choice between using the Satorra-
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Saris or Monte Carlo technique in a priori power analyses for slope differences in 

latent growth models is a matter of preference, although features such as missing 

data can only be considered within the Monte Carlo approach.   Further, 

researchers conducting power analyses for slope differences in latent growth 

models should pay greatest attention to estimating slope difference, slope 

variance, and sample size. Arguments are also made for examining model-implied 

covariance matrices based on estimated parameters and graphic depictions of 

slope variance to help ensure parameter estimates are reasonable in a priori power 

analysis.    
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

The study of change and development is integral in the social and 

behavioral sciences, including education, family studies, psychology, and 

sociology.  Whether researchers are interested in language development (e.g., 

Peterson & Dodsworth, 1991), video game violence and aggression (e.g., Möller 

& Krahé, 2008), children’s social and academic performance (e.g., Brock, 

Nishida, Chiong, Grimm, & Rimm-Kaufman, 2008), or the influence of stress on 

health (e.g., Öhman, Bergdahl, Nyberg, & Nilsson, 2007), statistical techniques 

for handling data collected over multiple points in time are necessary for 

longitudinal research.  The two most popular frameworks for modeling this type 

of data are the multilevel modeling (MLM) and SEM-based latent growth 

modeling (LGM) traditions (Bauer, 2003).  Both of these techniques explicitly 

consider change and growth at the individual and group levels.  SEM-based latent 

growth modeling offers great flexibility.  SEM models, in general, are very 

accommodating to predictive paths, with any given variable able to act as a 

predictor, outcome, or both (Raudenbush, 2001; Singer & Willett, 2003).  

Examples of this flexibility can be seen in growth modeling contexts; growth can 

be treated as both an outcome and predictor, and multiple growth factors can be 

included in a single model.   

However, the increasing popularity of latent growth models as a method of 

investigating change over time also calls for a better understanding of optimal 

approaches for conducting power analysis within a growth context.  Power 
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analysis, and, in particular, a priori determination of required sample size, is an 

important step in designing longitudinal research studies (Muthén & Muthén, 

2002; Zhang & Wang, 2009).  Through power analysis, investigators can become 

equipped to understand the likelihood of appropriately rejecting a null hypothesis 

under various design and analysis conditions.  Accordingly, this understanding 

can assist a researcher in the planning stages of a study (e.g., determining 

appropriate sample size) and is often a required step in applications for funding.  

Miles (2003) further argued that power analysis is “not just a statistical or 

methodological issue, but an ethical issue” (p. 7).  Although a number of 

techniques have been developed to estimate power for certain statistical tests, as 

explained by Duncan, Duncan, and Li (2003), a number of issues relating to the 

measurement of power in growth modeling (including intervention effects) must 

be further examined.   

Currently, researchers tend to use one of three methods for conducting 

power analysis in growth models based on a latent variable framework: the Monte 

Carlo simulation method (Muthén & Muthén, 2002; Partridge & Lerner, 2007); 

the Satorra-Saris method (Satorra & Saris, 1985; Muthén & Curran, 1997); or the 

RMSEA-based MacCallum-Browne-Cai (MBC) method (MacCallum, Browne, & 

Sugawara, 1996).  Whereas the Monte Carlo technique relies on multiple 

replications generated from a specified population model to determine power for 

particular parameters, the Satorra-Saris and MBC techniques rely on the 

estimation of the noncentrality parameter to determine power.  Once a 

noncentrality parameter is calculated, one simply needs to use a noncentral chi-
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square distribution table, degrees of freedom, and alpha to determine power.  

However, the method of estimating the noncentrality parameter differs greatly for 

the MBC and Satorra-Saris methods.  The Satorra-Saris method uses a two-step 

estimation procedure to estimate the noncentrality parameter by using the 

estimated mean vectors and covariances matrices derived from a properly 

specified model to estimate a second, misspecified model (Satorra & Saris, 1985).  

The resulting likelihood ratio chi-square value thus approximates the 

noncentrality parameter (Satorra & Saris, 1985).  The MBC technique, on the 

other hand, makes use of overall model fit (based on RMSEA), model degrees of 

freedom, and sample size to calculate the noncentrality parameter (MacCallum, 

Browne, & Cai, 2006). In both the Satorra-Saris technique and the MBC 

technique, once the noncentrality parameter is estimated, the same procedures 

follow to determine estimated power.   

This investigation first and foremost focused on the application of the 

Monte Carlo approach to power analysis, specifically the process of parameter 

value estimation, a critical step in the Monte Carlo process.  By investigating 

power under conditions that employed different slope variance values, error 

variance values, slope values, sample sizes, numbers of repeated measures, and 

misspecification, results may suggest which parameters are most influential in 

power estimates, thereby aiding researchers in selecting their values in a Monte 

Carlo power analysis.   

In addition to this focus on the Monte Carlo technique, this investigation 

also considered the other common power analysis techniques, explicitly 
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comparing the performance of the Monte Carlo simulation method (Muthén & 

Muthén, 2002), Satorra-Saris method (1985), and MacCallum-Browne-Cai 

method (2006) in assessing power under varying model conditions.  Because of 

the accuracy and precision of the Monte Carlo technique (von Oertzen, 2010), it 

was regarded as the most accurate power estimate among those compared in this 

investigation; therefore, it was against this approach that the less labor intensive 

power analysis methods were compared.    

Using simulated data, both parts of this investigation focused on the power 

to detect the difference in slope parameters between a treatment and control group  

for latent growth models that included a repeatedly-measured continuous 

outcome, an intercept factor, a slope (i.e., growth) factor, and a two-group 

dummy-coded covariate.  As in Muthén and Muthén (2002), this covariate might 

be conceptualized as representing a treatment variable, indicating a control and 

treatment group, or a variable such as gender.  For the purposes of this study, it 

will be referred to as a treatment variable.   

Power is the probability of rejecting a false null hypothesis; therefore, in 

this study, the focus was on the power to detect the statistical significance of a 

particular parameter that was nonzero in the population.  The Monte Carlo 

approach derives power estimates from the proportion of samples in which a 

particular parameter is significant, thus investigators using this technique most 

typically use the Wald test in judging significance.  Users of the Satorra-Saris 

approach, on the other hand, typically employ a likelihood ratio chi-square test in 

estimating the noncentrality parameter used to determine power.  Finally, the 
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MBC approach focuses on overall model fit and power to detect differences in fit 

between more- and less-constrained models as a whole using the RMSEA.  

Despite the typical methods of determining significance (e.g., the Wald test in the 

Monte Carlo technique), other options do exist.  For example, Hertzog, von 

Oertzen, Ghisletta, and Lindenberger (2008) explain that a likelihood ratio chi-

square test can be considered a better option than the Wald test, with two types of 

likelihood ratio tests available in latent growth modeling.  In fact, Zhang and 

Wang (2009) used a Monte Carlo power analysis approach; however, rather than 

focusing on the significance of a particular value using the Wald test, they 

focused on the 2 times log-likelihood difference between nested models.  Thus, it 

is important to recognize unique approaches in judging significance within these 

common power analysis techniques.   

As in Muthén and Muthén (2002), the parameter of interest in this 

investigation was the regression coefficient that results when regressing the slope 

growth factor on the treatment variable.  This coefficient is of great interest 

because the influence of a covariate on rate of growth for an outcome is a popular 

hypothesis investigated in latent growth modeling applications.  The power to find 

this parameter significant (i.e., to detect a decrement in fit when this parameter 

was constrained vs. unconstrained, as in the MBC approach) was estimated under 

various conditions.   

Data generation conditions varied, included slope variance, error variance, 

effect size for the difference in slopes, sample size, number of repeated measures, 

and misspecification.  Additionally, when using the MBC power analysis 
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technique, choices of target RMSEA values and intervals were also varied.   

Outcomes examined were estimates of power from each of the three power 

analysis techniques, noncentrality parameters, and, for conditions in which the 

null hypothesis for the difference in slopes was true, Type I error rates.  

This study yields recommendations for the selection of parameter values 

when using the Monte Carlo technique as well as guidance in selecting power 

analysis techniques under particular circumstances.   Ultimately, it is hoped that 

findings from this study will make the use of a priori power analyses more 

accessible and effective for applied investigators.   

The application of latent growth modeling coupled with the necessity of 

power analyses for study design and sample size determination demands explicit 

attention to the various power analysis techniques used in a latent growth context 

and the conditions that influence that power.   Thus, this chapter comprises a 

description of approaches to modeling growth and a review of the literature on 

power analysis in latent growth modeling contexts.  

Statistical Approaches for Modeling Growth 

Longitudinal data analysis is a popular and important analysis technique.  

Even with thoughtful research design, if improper analytic methods are employed, 

rich longitudinal data can become less meaningful, neglecting the importance of 

individual change and variation (Bryk & Raudenbush, 1987).  Therefore, it is 

important that researchers understand methods of analyzing longitudinal data. 

Two key frameworks for modeling growth include the multilevel modeling 

(MLM) and SEM-based latent growth modeling (LGM) traditions (Bauer, 2003).  
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While these two frameworks are essentially comparable in many circumstances, 

they grow out of distinct statistical traditions and offer their own advantages and 

disadvantages. 

Multilevel modeling.  Multilevel modeling (MLM; also referred to as 

random coefficient modeling or hierarchical linear modeling) grew in response to 

data analysis techniques that did not take the clustering of data into account 

(Chou, Bentler, & Pentz, 1998).  Bryk and Raudenbush (1987) described previous 

methods of analyzing change as being fraught with “inadequacies in 

conceptualization, measurement, and design” (p. 147).  By ignoring the 

hierarchical structure of data (e.g., students within schools), researchers were 

faced with biased and inaccurate results (e.g., smaller standard errors, inaccurate 

coefficients; Chou, Bentler, & Pentz, 1998), the tendency to overlook change on 

an individual level, and failure to recognize variation in growth rates and initial 

status among individuals (Bryk & Raudenbush, 1987).  Multilevel modeling, 

therefore, made the important step of explicitly taking the hierarchical nature of 

data into account by modeling multiple levels of analysis (Singer & Willett, 

2003).  Because longitudinal data can be framed as having a hierarchical structure 

(measurement occasions within individuals), studies of individual change 

eventually found their place in multilevel modeling (Chou, Bentler, & Pentz, 

1998), thus allowing one to investigate changes and variations both within 

individuals and across individuals, rather than ignoring change happening across 

levels (Bryk & Raudenbush, 1987).   
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The MLM approach to growth modeling conceptualizes growth at two 

levels or stages (Bryk & Raudenbush, 1987).  Level 1 of the model focuses on 

individual growth parameters (intercept, π0i, and growth rate, π1i) and 

measurement error or level-1 residuals (εti) predicting an outcome (Yti for a 

particular individual, i, at time t) (Singer & Willett, 2003).   

Level 1: Yti = π0i + π1i(Timeti) + εti  (1) 

In this manner, every individual in a given longitudinal dataset comes with his or 

her own level 1 equation that, while assuming the same overall form of growth, 

allows growth to differ in intercept and slope between individuals (Singer & 

Willett, 2003).  Level 2, on the other hand, captures differences between 

individuals the influences of time-invariant predictors on growth parameters can 

be measured.  At level 2, the individual growth parameters become the outcomes 

of their own regression equations and are predicted based on an average growth 

rate (γ10), average intercept (γ00), measured predictors, and deviations (residual or 

error) from the averages (ζ0i and ζ1i) (Singer & Willett, 2003).   

Level 2: π0i = γ00 + ζ0i (2) 

              π1i = γ10 + ζ1i (3) 

This method of modeling change at two levels allows a researcher to 

simultaneously investigate individual growth as well as group averages and 

individual variance around those averages (Singer & Willett, 2003).  However, 

these two levels can be combined into a single equation or “composite model” by 

substituting the level 2 equations for the equivalent growth terms in the level 1 

model (Singer & Willett, 2003, p. 80).  A basic, linear growth model with no 
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predictors (unconditional growth model) can thus be represented by the following 

equations:  

Composite model: Yti = γ00 + γ10(Timeti) + ζ0i + ζ1i(Timeti) + εti (4) 

Ultimately, these equations can be conceptualized as consisting of two key 

components: (1) fixed effects (γ00 and γ10) and (2) random effects (ζ0i, ζ1i, and εti; 

Singer & Willett, 2003).  The fixed effects correspond to the influence that 

predictors and average growth parameters have on individual change trajectories 

(Singer & Willett, 2003, p. 69).  The random effects, on the other hand, capture 

the differences between expected and observed values of the outcome variable for 

each individual over time, and thus reflect the variance among individuals (Singer 

& Willett, 2003, p. 84).   

Latent growth modeling.  In contrast to the MLM framework, latent 

growth modeling is part of the structural equation modeling (SEM) tradition.  

SEM is a flexible analytic approach that is popular in various fields of research, 

including psychology, education, and biology (Tomarken & Waller, 2005).  

Structural equation models allow a researcher to conceptualize latent constructs 

based on measured indicators (i.e., measurement models), and then create 

relationships between latent constructs (i.e., structural models) (Tomarken & 

Waller, 2005).  Thus, the measurement model takes observed scores, error, and 

true scores into account for each latent construct while the structural model allows 

for predictive relationships among various latent and measured variables (Singer 

& Willett, 2003).  In fact, because of the flexibility of SEM, variables (measured 

or latent) need not be labeled only as “predictor” or “outcome,” but rather “one 
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predictor’s outcome may be another outcome’s predictor” (Singer & Willett, 

2003, p. 269).  It is precisely because of the flexibility of the SEM model that 

Meredith and Tisak (1990) were able to specify an SEM model that could model 

growth over time.  Although, on the surface, it may appear that using an SEM 

framework to model repeated measures would result in problems with 

dependency among measures, by carefully specifying various aspects of the 

model, one can successfully create a model of change over time (Curran, 2003, p. 

530).   

In an LGM model, a growth model is conceptualized as a single-level 

model in which the repeated measures are influenced by time, in conjunction with 

two required latent factors: One factor that represents the intercept (similar to π0i 

in equation 1) and one factor that represents growth (similar to π1i in equation 1; 

Chou, Bentler, & Pentz, 1998).  For an unconditional growth model, these factors 

and their related indicators can be expressed as measurement and structural 

models as follows: 

Measurement: yti = vt + λ0tη0i + λ1tη1i + εti (5) 

Structural (intercept): η0i = k0 + ζ0i (6) 

Structural (growth): η1i = k1 + ζ1i (7) 

These equations are similar in form to equations 1, 2 and 3 from the MLM 

framework, with the MLM level 1 model represented as a measurement model 

and the MLM level 2 model represented as structural models (Raudenbush, 2001). 

Here, an individual’s score on a given outcome at a given time (yti) is 

predicted by the measurement model’s intercept (v), underlying factors η0i 
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(intercept) and η1i (growth), and an error or residual term (Bauer, 2003; Chou, 

Bentler, & Pentz, 1998).  Further, as in the MLM level 2 models, the latent factors 

are predicted based on the sum of a given value and an error or residual term.  

However, while the structural model equations appear quite similar to the MLM 

level-2 models, at this point, the LGM measurement model is not fully 

comparable to the MLM level 1 model (notice the presence of extra parameters).   

However, by appropriately constraining parameters, the MLM and LGM models 

become comparable.  First, the intercept (v) in the measurement model must be 

constrained to zero in order to pass the information carried by that parameter onto 

the latent variables in the form of k0 (the intercept factor mean) and k1 (the growth 

factor mean).  Next, the value of λ0t must be set to equal 1 and the values of λ1t 

must be set equal to the appropriate measures relating to the passage of time 

(Bauer, 2003; Chou, Bentler, & Pentz, 1998; Singer & Willett, 2003).  Following 

these constraints, one can more readily recognize the similarities between the 

MLM and the LGM models:   

LGM Measurement Model: yti = η0i + η1i(Time) + εti (8) 

MLM Level 1 Model: Yti = π0i + π1i(Timeti) + εti 

Similarities are also apparent in considering how LGM captures MLM parameters 

through a path diagram for a linear latent growth curve model (see Figure 1).  As 

with more general SEM models, additional predictors (time-variant, time-

invariant, and even additional measurement models) can also be incorporated into 

the structural model(s).  For example, Figure 1 includes a time-invariant dummy-

coded predictor variable (representing treatment vs. control conditions).  
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Figure 1. Path diagram for linear latent growth curve model with three repeated measures.  The 

target parameter for which power was evaluated was γ11 . 

Latent growth modeling of a treatment effect. When the focus of a power 

analysis is on the influence of a treatment on growth in a growth model, a number 

of options for how to model that treatment in a latent growth context are 

available.  Muthén and Muthén (2002) opted to use a time-invariant binary 

variable to represent control versus treatment conditions.  This technique involves 

the analysis of just one population, which offers simplicity to the practitioner.  

According to Muthén and Curran (1997), however, this technique is restrictive in 

that it does not allow for variations in other parameters between the treatment and 

control groups. Muthén and Curran (1997) used a two-group model, arguing that 

 
Intercept 
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1 1 1 t1  t2 t3 
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τ10 
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… 
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only this approach offers “generality in the modeling” (p. 376).  Therefore, rather 

than conceptualizing the sample as coming from a single population, where 

participants are coded as belonging to one of two treatment conditions, Muthén 

and Curran  modeled two distinct populations (a treatment population and control 

population).   By formulating the model in this way, one can then constrain the 

intercept factor and growth factor to be equal between these two groups and add a 

third growth factor for the treatment population.  This third factor then represents 

the influence of the treatment on growth (in addition to any growth expected in 

the absence of the treatment) (Muthén & Curran, 1997).   In practice, both the 

dummy coded technique (e.g., Muthén & Muthén, 2002; Fan, 2003) and multi-

group technique (e.g., Muthén & Curran, 1997) are employed, with selection of a 

particular technique being influenced by analysis goals and contexts (e.g., a power 

analysis that does not manipulate differences in variance between the treatment 

and control group may lend itself to the simplicity of the dummy coded 

technique).   

Comparison of Growth Modeling Approaches.  In comparing the MLM 

and LGM approaches and how the MLM parameters were incorporated into an 

SEM framework, it is possible to see why Curran (2003) explained that “the 

boundaries between these two modeling strategies are becoming increasingly 

porous…We seem to be approaching a point in which the terms SEM and MLM 

better distinguish historical roots and commercial software rather than the 

underlying statistical models” (p. 565).  Further, not only are these models 

mathematically comparable with sufficient constraints of the SEM model, but 
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applied studies have revealed that, with appropriate parameterizations, they do 

indeed yield comparable, if not identical, results (Bauer, 2003; Chou, Bentler, & 

Pentz, 1998; Curran, 2003; Tomarken & Waller, 2005).  However, because of 

differences in strategy, in combination with statistical software idiosyncrasies, 

each framework does come with different advantages and disadvantages.   

One drawback to latent growth modeling relates to measurement 

occasions and spacing between occasions.  In MLM, by modeling time as a 

predictor in a “person-period” dataset where each measurement occasion is a row 

of data, it is quite simple to include individuals who vary in the number of 

measurement occasions and time between measurement intervals (one simply 

needs to add additional rows of data to the dataset; Raudenbush, 2001; Singer & 

Willett, 2003).  However, in LGM, when time is treated as fixed loading values, it 

becomes more difficult to allow for varied measurement schedules and occasions.  

In the past, LGM was not considered optimal when observations were unbalanced 

on time (Farkas, 2008; Mroczek, 2007; Singer & Willett, 2003); however, 

advances in analysis software (such as Mplus 6) have made it easier to vary time 

intervals and measurement occurrences in LGM (Mehta & West, 2000; Mroczek, 

2007).   Thus, MLM is no longer the only framework that can accommodate 

longitudinal data unbalanced on time; although it could be argued that the process 

of analyzing data that is unbalanced on time is still simpler using an MLM 

approach and software program.  Despite this potential complication with the 

latent growth approach, the flexibility of latent growth modeling makes LGM an 

attractive and prevalent analysis technique.   
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The latent growth modeling technique has become a widely used method 

for longitudinal data analysis primarily because of its flexibility.   Mediation 

effects, for example, can be easily included in a latent growth model (Mroczek, 

2007).  Additionally, an LGM can extend beyond conceptualizing growth as only 

an outcome variable, with growth trajectory and intercept becoming potential 

predictors of other outcomes.  Further, a given growth model can actually be 

predicted by another growth model (“growth on growth analysis”) (Singer & 

Willett, 2003, p. 274).  Another cited advantage of the LGM framework is that 

error can be better estimated through the use of measurement models (Mroczek, 

2007).  Based on the advantages and popularity of the latent growth approach, it is 

this approach that is the focus of the present investigation.  In fact, the flexibility 

of SEM is what allows for a number of power analysis techniques to be employed 

in analyzing the power of latent growth curves.   

Power Analysis Approaches 

A priori power analyses are an integral part of planning a study, allowing 

an investigator to understand how various conditions will influence the ability to 

find an effect of a particular parameter (or differences between models), and 

determine required sample sizes for doing so.  While a number of power analysis 

techniques exist, the most popular techniques in the latent growth modeling 

context include the Monte Carlo simulation method (Muthén & Muthén, 2002), 

the Satorra-Saris method (Satorra & Saris, 1985), and the MacCallum-Browne-

Cai (MBC; 2006) method.   
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Monte Carlo simulation.  The Monte Carlo simulation approach makes 

use of multiple replications based on generated population data (Muthén & 

Muthén, 2002).  Sample syntax for using the Monte Carlo approach in Mplus is 

available in Appendix A.  In this technique, parameter values are theoretically 

estimated based on past research, pilot data, and/or theory.  It is this step of 

selecting parameter values that often proves to be the most difficult part of the 

Monte Carlo power analysis process and it is not uncommon to lack pilot data or 

appropriate past research to assist in selecting these values.  Therefore, one must 

consider broad findings relating to parameter values and, to an extent, rely on trial 

and error in finding parameter values that behave realistically.  For example, 

Hertzog et al. (2008) report that slope variance is typically small to moderate 

compared to intercept variance.  Based on this information, Hertzog et al. opted to 

set intercept variance at 100 with slope variance equal to either 50 (1:2 variance 

ratio) or 25 (1:4 variance ratio), noting that variance ratios are often smaller than 

1:4.  Hertzog et al. also set error variance to 100, 25, 10, or 1, treating error 

variance as homogenous across time.  Muthén and Muthén (2002), on the other 

hand, set the intercept variance at .5 and slope variance at .1 (1:5 variance ratio) in 

a basic growth model.  Similarly, Muthén and Curran (1997) also report that a 1:5 

variance ratio is often seen in applied growth models.  Once the slope variance, 

intercept variance, and residual variance values are set (based on past research, 

pilot data, or general parameter value recommendations, as above), it becomes 

much easier to explore possible values for remaining parameters.   
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Using these estimated parameter values, many samples can be generated 

and a growth model can be estimated for each sample.  Using an appropriate 

analysis program, one can quickly see the proportion of samples that correctly 

rejected the null hypothesis for a particular parameter (i.e., produced a significant 

parameter estimate based on the parameter of interest, such as a treatment effect 

parameter).  The proportion of samples that produced the significant parameter is 

the power estimate (Muthén & Muthén, 2002).  When using Mplus for this 

technique of power estimation, output also includes information regarding bias (in 

standard error and parameter estimates) and coverage (how often the parameter 

value was contained in a 95% confidence interval across replications; Duncan & 

Duncan, 2004).   

According to Muthén (2002), the Monte Carlo power analysis technique is 

often accurate with 500 replications, although increasing replications increases the 

precision and dependability of the estimates (with 10,000 replications being a 

very conservative, yet potentially time consuming, choice).  Von Oertzen (2010) 

indicated that “with increasing repetitions, the result of the Monte Carlo 

simulation converges to the precise power of the SEM” (p. 260).  It is precisely 

because Monte Carlo simulations can converge on the “exact power” (von 

Oertzen, 2010, p. 262) that this technique is typically used to determine the 

accuracy of other power analysis techniques (e.g., Muthén & Curran, 1997; 

Satorra & Saris, 1985).  In addition to potential accuracy in determining power, 

another key advantage to this technique is that an investigator can easily alter the 

population parameters, missingness of data, normality of distributions, and sample 
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sizes in order to investigate how power is influenced by these factors.  Overall, 

Abraham and Russell (2008) described this simulation approach as very flexible 

and Maxwell, Kelley, and Rausch (2008) proclaimed that, “a general principle of 

sample size planning appears to hold: Sample size can be planned for any 

research goal, on any statistical technique, in any situation with an a priori Monte 

Carlo simulation study” (p. 553).   

Satorra-Saris.  The Satorra-Saris method is another common method of 

analyzing power.  This two-step technique focuses on estimating power for very 

specific parameters (effects) in the growth model (Duncan et al., 2003).  Sample 

syntax for using the Satorra-Saris approach in Mplus is available in Appendix B.  

Note that although the Satorra-Saris technique can ultimately be completed in two 

steps, three steps are used in Mplus, with the second step included in order to 

double check that the model was properly set up and parameter estimates are 

correctly retrieved based on what was entered in step one.   

Ultimately, two models are compared in this technique: a model that is 

assumed to be correctly specified and a second, more-constrained model that is 

nested within the correctly specified model and is assumed to be misspecified.  

The first step involves specifying the correct model and analyzing that model in 

order to obtain mean and covariance values.  As with the Monte Carlo method, 

one may determine parameter values based on past research, pilot data, and/or 

theory.  The second step involves using the estimated mean vectors and 

covariance matrices derived from step one to specify an incorrect model by fixing 

the effect of interest (e.g., the treatment effect, as in Muthén & Curran, 1997) to 
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zero.  Based on the findings of Satorra and Saris (1985), the likelihood ratio chi-

square value derived from step two approximates the noncentrality parameter, 

which can then be used to determine power based on degrees of freedom, alpha, 

and chi-square tables (Muthén & Curran, 1997).   Appendix C presents SAS 

syntax that can be used to determine power based on the noncentrality parameter, 

degrees of freedom, alpha, and chi square.  An alternative (yet comparable) 

approach, in which one need only specify a single model, is also available 

(Duncan, Duncan, Strycker, & Li, 2002).  Rather than using the likelihood ratio 

chi-square test derived from two specified models, a researcher can rely on the 

Lagrange multiplier (LM) or Wald (W) test statistics that, like the likelihood ratio 

chi-square, also correspond to the noncentrality parameter.  A researcher could, 

therefore, specify a model with the parameter of interest set to zero and focus on 

the LM statistic or specify a model that estimates the parameter of interest and 

focus on the W statistic.  As with the likelihood ratio test discussed previously, 

one can use these values in conjunction with the degrees of freedom, alpha, and 

sample size to determine power using the chi-square distribution tables (Duncan, 

Duncan, Strycker, & Li, 2002).   

Simulation studies suggest these Satorra-Saris based techniques for 

estimating power are accurate even when sample size is “quite small” (although a 

specific sample size is not reported) (Satorra & Saris, 1985, p. 89).  Similarly, 

Muthén and Curran (1997) report that simulation studies indicate this technique is 

“sufficiently accurate for practical purposes at small sample sizes,” citing 

Curran’s (1994) study as an example, in which he found “very good results at 
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sample sizes of 100” (p. 382).   However, Duncan and Duncan (2004) and 

Muthén (2002) explain that the Satorra-Saris technique is inappropriate when data 

is missing or nonnormal.   

MacCallum-Browne-Cai (MBC). MacCallum, Browne, and Sugawara 

(1996) proposed a power analysis technique that aims to be easier for applied 

users of SEM to utilize than other popular techniques, such as those discussed 

above.  MacCallum, Browne, and Cai (2006) further developed this technique to 

include comparisons of nested models.  Rather than focusing on the power of a 

particular parameter or parameters, as done in the Satorra-Saris and Monte Carlo 

techniques, MBC assesses overall model fit, thus eliminating the need to estimate 

various model parameters.  Although the MBC technique was not intended, and 

has not been recommended, for calculating power to detect a specific parameter, it 

is not unlikely that this technique has been employed by applied investigators in 

this way, which is why this technique, although different from the Monte Carlo 

and Satorra-Saris techniques, is considered here.   

According to MacCallum, Browne, and Sugawara (1996), the MBC 

method shares identical assumptions and distributional approximations as the 

Satorra-Saris technique and also employs the same calculations to determine 

power once the noncentrality parameter is estimated (see Appendix C for SAS 

code that can convert the noncentrality parameter into a power estimate).  

Therefore, it is the processes of estimating the noncentrality parameter that sets 

the MBC technique apart.  Overall, the MBC technique defines the noncentrality 

parameter, using model RMSEA values, as follows: 
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λ = n (dAε
2

A – dBε
2

B) (9) 

where dA and dB are degrees of freedom for models A and B, εA and εB equal 

RMSEA values for models A and B, and n represents one minus sample size 

(MacCallum, Browne, & Cai, 2006).  Through this calculation, it is possible to 

determine the power of detecting defined differences in model fit.  Similar to the 

Satorra-Saris approach, it is also possible to investigate power related to 

difference in fit between nested models using the MBC technique (MacCallum, 

Browne, & Cai, 2006).  In order to approximate the Satorra-Saris and Monte 

Carlo approaches of determining power to detect a particular parameter, one can 

simply determine the degrees of freedom that result from constraining the 

parameter of interest to zero (Model A) and use that information in conjunction 

with the degrees of freedom for the unconstrained model (Model B).   

Typical hypothesis testing and power analysis techniques (e.g., Satorra-

Saris method) in an SEM context tend to consider tests of exact fit, with a null 

hypothesis predicting no discrepancy between models where the distribution of 

the null hypothesis is a central chi square distribution.  However, MacCallum et 

al. (2006) have argued that exact fit is not realistic and the likelihood of finding 

exact fit (accepting the null hypothesis) diminishes as sample sizes increase.  As 

an alternative, MacCallum et al. have also proposed a method of testing a null 

hypothesis of small difference.  This approach is similar to the process of testing a 

null hypothesis of exact fit; however, with a null hypothesis of small difference, 

an investigator can specify the difference in fit for the null hypothesis using 
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RMSEA values, which then makes both distributions (under the null and 

alternative hypotheses) noncentral chi square distributions. 

According to MacCallum et al., the selection of RMSEA values to include 

in the MBC equation for the noncentrality parameter is an important decision that 

must be made carefully, particularly when “N is moderate and dA and dB are also 

moderate (probably less than 50 or so, and greater than 5 or so, as rough 

guidelines), with the difference not being very large” (p. 30).  MacCallum et al. 

first recommend that RMSEA values fall in the “midrange of the scale, roughly 

.03 to .10” (p. 31). Next, they recommended “choosing pairs of values with 

moderate to large differences (e.g., at least .01-.02)” (p. 31).  Finally, they 

recommended exploring prior research relating to model fit, selecting smaller 

RMSEA values when a given model has been shown by past research to fit 

reasonably well.  MacCallum et al. further explained that nested models differing 

greatly in the numbers of parameters likely merit RMSEA values that differ more 

than nested models differing by only a parameter or two.  Despite these 

guidelines, MacCallum et al. ultimately recognized that it is not uncommon to 

have little guiding information in selecting these RMSEA values.  Therefore, they 

suggested computing power or sample size using multiple pairs of RMSEA 

values.  The basic suggestion was to compute power with pairs of RMSEA values 

that (1) “[represent] a small difference in the low range (e.g., = .05 and = .04),” 

(2) “[represent] a larger difference in the higher range (e.g., = .10 and = .07)” and 

then (3) explore a variety of pairs within “the recommended range” (p. 31).  For 

this last step, MacCallum et al. suggest a SAS program that computes power or 
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required sample size by incrementally varying pairs of RMSEA values (see 

Appendix D). MacCallum, Browne, and Cai (2006) also recommend against using 

observed RMSEA values (from sample data) in determining power, arguing that 

“no new information is provided by observed power” (p. 32).   

In exploring the MBC approach, one might consider the use of alternative 

measures of fit in estimating power.  In fact, MacCallum, Browne, and Cai (2006) 

suggest that the GFI and AGFI initially appear to be appropriate for these power 

analysis calculations.  However, after further explorations showed these indices 

yielded problematic results, MacCallum et al. concluded that RMSEA was the 

best fit index for this power analysis technique.   

The MBC technique offers several advantages in comparison with other 

power analysis methods.  According to MacCallum, Browne, and Sugawara 

(1996), one benefit is that this technique is not model specific and specification of 

an alternative model is not required.  Therefore, the MBC technique is simple to 

apply and requires only RMSEA values and model degrees of freedom for power 

estimation and sample size determination.  Additionally, this technique is flexible 

in that researchers are not restricted to testing exact fit. Rather, the hypotheses 

specified by designated RMSEA values can represent hypotheses of close or not 

close fit as well.  Indeed, compared to the Satorra-Saris and Monte Carlo 

techniques, the MBC technique is simple and greatly decreases the amount of 

parameter estimation required to calculate power; however, in considering the 

guidelines for selecting appropriate RMSEA values, it is evident that this 

technique does not completely eliminate the need to make decisions that could 
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potentially influence resulting power calculations.  Further, one may wonder if the 

benefit of eliminating the need for model specifications could result in decreased 

precision in power and required sample size estimates.   

Comparison of power analysis approaches. Among the three described 

approaches to power analyses in SEM are similarities and differences that make 

each technique potentially useful.  Assuming sufficient replications are used, the 

Monte Carlo approach provides a means of assessing the accuracy of other power 

analysis methods.  For example, Satorra and Saris (1985) compared their power 

approximation technique to results from a Monte Carlo study (with 300 

replications) to indicate the accuracy of their technique.  Satorra and Saris 

reported that, for a significance level of .05 and sample size of 100 for a given 

model, the Monte Carlo technique estimated power of .390 whereas the Satorra-

Saris technique estimated power of .407.  Increasing sample size to 600 further 

narrowed this gap, with the Monte Carlo technique yielding a power of 1 and the 

Satorra-Saris technique resulting in power of .998.  Muthén and Curran similarly 

used the Monte Carlo technique, based on  1,000 replications, to verify the 

accuracy of the Satorra-Saris technique for their two-group model of interest. 

Muthén and Curran found that “for a treatment effect size of 0.30 and a total 

sample of 200 divided equally among control and treatment group observations, 

the Satorra-Saris method obtained a power of 0.734 as compared with 0.755 from 

the simulation.  An even better agreement was obtained at the higher total sample 

size of 500 with a treatment effect size of 0.20 where the Satorra-Saris method 

obtained a power of 0.783, whereas the simulation resulted in 0.780” (p. 383).   
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Despite some slight differences in power estimates resulting from the 

Monte Carlo and Satorra-Saris approaches, particularly for smaller sample sizes, 

the Satorra-Saris technique has enjoyed many years of popularity due to its 

relative simplicity in comparison with the Monte Carlo approach.  However, the 

Satorra-Saris technique also has its drawbacks. First, in some conditions, the 

Satorra-Saris technique may result in inaccurate power estimates (Hertzog, von 

Oertzen, Ghisletta, and Lindenberger, 2008).  For example, Hertzog, 

Lindenberger, Ghisletta, and von Oertzen (2006) had used the Satorra-Saris 

technique with success, indicating that their findings were comparable to findings 

of the Monte Carlo simulation technique.  However, in their 2008 study, Hertzog 

et al. reported that the Satorra-Saris technique produced unacceptable results, 

finding errors in approximation with the Satorra-Saris technique compared to the 

Monte Carlo technique.   These errors appeared to be related to the fact that 

Hertzog et al. were comparing two slightly misspecified, nested models.  Because 

of these errors, Hertzog et al. (2008) ultimately used the Monte Carlo simulation 

technique to measure power.   

Von Oertzen (2010) also suggested there can be problems with accuracy 

with the Satorra-Saris technique, explaining that with this technique “power can 

be computed very rapidly, but the accuracy of the result cannot be improved 

beyond a small approximation error (2% in this example)” (p. 262).  Although 

Monte Carlo simulations may take longer to run, von Oertzen suggests that this 

technique will “eventually give the exact power with a very low standard 

deviation” (p. 262).  In fact, von Oertzen, in his investigation of power 
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equivalence in SEM, compared the traditional Monte Carlo and Satorra-Saris 

techniques on accuracy and run time.  His findings indeed support the accuracy of 

the Monte Carlo technique (1,000 iterations run in 3580 milliseconds with mean 

power of .9625, SD = .0059) but the speed of the Satorra-Saris technique (run in 

.6208 milliseconds with power of .9863).  The Satorra-Saris technique, therefore, 

offers a faster method of estimating power that differs slightly from the more 

accurate Monte Carlo technique, with the Satorra-Saris power estimate of .9863 

and the Monte Carlo power estimate of .9625. 

MacCallum, Browne, and Cai (2006), on the other hand, outlined 

situations in which either the MBC or Satorra-Saris technique may be good 

options for estimating power, with their focus on these less labor intensive power 

estimate techniques (compared to the Monte Carlo approach).  First, MacCallum 

et al. argued that one should make use of all available information (e.g., pilot data, 

prior research) when calculating power.  Therefore, in situations in which a great 

deal of prior work has been done, providing a foundation for estimating all 

required parameters, and sufficient knowledge about the model and model 

parameters merits specific questions relating to particular parameters, the Satorra-

Saris technique is an appropriate choice for power estimation. Similar reasoning 

would suggest that the Monte Carlo technique could also be appropriately 

employed in such instances.  Additionally, more simple models that require fewer 

estimates of parameter values (such as latent growth curve models, according to 

MacCallum et al.) are also good candidates for the Satorra-Saris (or Monte Carlo) 

technique.  However, MacCallum et al. (2006) posited that in those circumstances 
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in which prior knowledge and theory do not provide sufficient information to 

create reasonable parameter estimates, the MBC technique would be the 

appropriate choice.   

Overall, the Monte Carlo technique allows for accuracy, whereas the 

Satorra-Saris technique is a simplification over the Monte Carlo technique that 

allows for faster, slightly less accurate power estimations, and the MBC technique 

is the simplest of the power analysis methods that requires no model specification 

(beyond degrees of freedom).  Although each of these techniques has a place in 

power analysis, with MacCallum et al. even recommending power analysis 

techniques other than the MBC when possible, it is still quite feasible that 

investigators do not properly consider the strengths and weaknesses of each 

technique based on specific contexts.  In fact, it is not surprising if some 

investigators simply default to the simpler MBC approach without considering 

more complex, yet potentially more precise and accurate, power analysis 

alternatives.  It is for these reasons that these techniques should be explicitly 

compared under varying data and model contexts, thus allowing investigators to 

be more informed when selecting a power analysis approach.   

In addition to considering how to determine power, it is important to 

consider what influences power to aid in a comparison of the approaches across 

various contexts in which power changes.  A summary of investigations of power 

in latent growth modeling contexts is presented in Table 1.   



28 

Table 1 

Comparison of Selected Power Investigations for Latent Growth Modeling 

 
Power 
Analysis 
Technique 

Model Type 
Focal 
Parameter 

Manipulated Factors Key Results 

 
Muthén & 
Curran 
(1997) 

 
Satorra-
Saris 

 
Linear, 
multiple-
population  

 
Treatment 
effect (on 
growth, 
intercept, and 
both) 

 
Sample size (100 – 
1,000), effect size (.2, 
.3, .4, .5), number of 
measurement 
occasions (3, 5), 
length of study (3-7 
time points), 
balanced/unbalanced 
data across groups 
(proportion in 
treatment group from 
.1 to .9) 

 
Balanced data does 
not necessarily 
maximize power 
when more variance 
is in treatment group 
 
Increase sample size 
= greater power, 
increase number of 
measurements = 
greater power, 
increase length of 
study = greater 
power, increase 
effect size = greater 
power 

Muthén & 
Muthén 
(2002) 

Monte 
Carlo 

Linear with 4 
measurement 
occasions and 
a dummy 
coded 
covariate 

Regression 
coefficient for 
the regression 
of the growth 
parameter on 
a dummy 
coded 
covariate  

Effect size (.1, .2), 
data missingness (no 
missing vs. 
covariate=0, t1-t4 
missing-12%, 18%, 
27%, 50%; 
covariate=1, t1-t4 
missing-12%, 38%, 
50%, 73%) 

Missing data = less 
power 

Fan 
(2003) 

Monte 
Carlo 

2-group, 
linear growth 
with 5 
measurement 
occasions 

Group 
differences in 
slope and 
intercept 

Sample size (50, 100-
1,000 in increments 
of 100), 5 patterns of 
group differences in 
growth trajectory  - 
intercepts and slope 
(with effect sizes of 
0, .2, .5, .8) 

Pattern of group 
differences 
influences power 

Hertzog, 
Linden-
berger, 
Ghisletta, 
and von 
Oertzen 
(2006) 

Satorra-
Saris 

Linear 
simultaneous 
growth 

Covariance of 
slopes for two 
variables over 
time 

Sample size (200, 
500), effect size (.25, 
.5, .75), number of 
measurement 
occasions (3, 4, 5, 6, 
10, 20), growth curve 
reliability (.5-.99 in 
.005 increments), 
slope variance (50 or 
25 at t19) 

Increase growth 
curve reliability = 
greater power; 
With effect size of 
.5, sample of 200, 3-
6 measurement 
occasions, GCR 
needed to be .85 for 
power of .80; Best 
when GCR is above 
.90 
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Hertzog, 
von 
Oertzen, 
Ghisletta, 
and 
Lindenber
ger (2008) 

Monte 
Carlo  

Linear 
simultaneous 
growth 

Slope 
variance 

Sample size (100, 
200, 500, 1,000), 
growth curve 
reliability (.5, .8, .91, 
.99), slope variance 
(50, 25, 0), intercept-
slope correlation (-.5, 
-.25, 0, .25, .5), 
occasions of 
measurement (0/2/4, 
0/2/4/6, 0/2/4/6/8, 
etc.), variance tests 
(generalized variance 
test, specific variance 
test, Wald test) 

“Profound effect of 
GCR on power” (p. 
557) 

Zhang and 
Wang 
(2009) 

Chi-square 
difference 
simulation 
technique 

Linear model 
and non-
linear model 
with 6 
measurement 
occasions 

 Sample size (50-
1,000), effect size (.1, 
.2, .3), number of 
measurement 
occasions (3-6), data 
missingness (no 
missing vs. attrition 
of 10%) 

Focus was on the 
development of a 
SAS macros to 
calculate power 

 

A great deal of research has been conducted to help inform investigators 

as to which factors can influence power, including some recommendations 

specific to latent growth modeling.  For example, in the context of growth curve 

models, it has been reported that power increases as the number of measurement 

occasions increases (Hertzog, Lindenberger, Ghisletta, & von Oertzen, 2006; 

Zhang & Wang, 2009), as growth curve reliability increases (level-1 error 

decreases; Hertzog et al., 2006), and as correlations between repeated measures of 

an outcome become stronger (Murphy & Myors, 2004).  Additionally, as in other 

types of models, power in growth models is also influenced by sample size, effect 

size, and missing data (Hertzog et al., 2008; Jung & Ahn, 2003; Zhang & Wang, 

2009).   
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Purpose of the Study 

This investigation had two aims related to power for detecting the 

difference in slopes between populations in a latent growth curve modeling 

context.  First, the impacts of variations in particular specified parameters (slope 

variance, error variance, and slope difference), design features (sample size, 

number of repeated measures), and model misspecification in simulation-based 

power analyses were studied.  Second, power estimates were compared across 

three common power analysis techniques: the Monte Carlo method (Muthén & 

Muthén, 2002); the Satorra-Saris method (Satorra & Saris, 1985); and the 

MacCallum-Browne-Cai (MBC) method (MacCallum, Browne, & Cai, 2006).    

By understanding how parameter values and model design features within the 

Monte Carlo technique influence power, it may be possible to provide applied 

investigators with guidance in parameter value selection, model specification, and 

study design.  Additionally, by comparing powers and, for null conditions, Type I 

errors across different power analysis techniques, investigators can also make 

informed decisions regarding the selection of power analysis techniques. 

The model of interest in this investigation included a repeatedly measured 

continuous outcome, with the growth trajectory on this outcome specified by an 

intercept factor and a slope factor. A dummy-coded covariate was also included to 

represent two treatment conditions (control vs. treatment; see Figure 1).  This 

model is similar to the latent growth model explored in Muthén and Muthén 

(2002).  The focal parameter was the coefficient for regression of the slope 

growth factor on the treatment variable.  
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Power for this model was estimated for manipulated conditions including 

slope variance, error variance, difference in slopes, sample size, number of 

repeated measures, and misspecification of the error structure and the form of the 

growth trajectory. Additionally, when using the MBC power analysis technique, 

choices of target RMSEA values and intervals were varied.  
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CHAPTER 2 

METHOD 

This investigation first focused on the process of parameter estimation in 

the Monte Carlo power analysis technique.  By varying slope variance, error 

variance, and slope difference (effect size) under varying conditions, it was 

possible to consider how parameters may influence resulting power estimates.  In 

addition to the focus on the Monte Carlo technique, all three popular methods of a 

priori power analysis in a latent growth modeling context (Monte Carlo 

simulation technique, Satorra-Saris technique, and MacCallum-Browne-Cai 

technique) were compared. 

The focal parameter in each of these investigations was the regression 

coefficient that resulted when regressing the slope growth factor on a dummy 

coded treatment variable.  Therefore, when using the Monte Carlo technique, the 

model was specified to include this significant covariate.  When using the Satorra-

Saris technique, on the other hand, two models were specified, including one that 

was specified correctly to include a regression coefficient based on the slope 

being regressed on the treatment variable and one that misspecified the model by 

setting the regression coefficient of interest to zero.  Similarly, in using the MBC 

power technique, the model was treated as a nested model comparison based on 

the same degrees of freedom for the two models specified for the Satorra-Saris 

technique.   

The varying parameter estimates and the three power analysis approaches 

were utilized under various simulated data generation conditions in order to 
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understand how these techniques compared across common scenarios known to 

influence power estimation and sample size determination.   

Data Simulation Procedures and Conditions 

In order to investigate power under various conditions and across power 

analysis techniques, multivariate normal data were simulated for both the Monte 

Carlo and Satorra-Saris techniques.  The MBC technique did not require the use 

of simulated data as only model degrees of freedom and RMSEA values were 

required for that technique. 

Monte Carlo parameter values: Base conditions.  An initial 

investigation focused on parameters and conditions that influence power using a 

Monte Carlo power analysis.  In specifying model parameters, intercept variance 

was set at 100 (as in Hertzog, Lindenberger, Ghisletta, & von Oertzen, 2006). The 

intercept-slope covariance was also held constant with a correlation value of .2.  

Initial status for both groups, the control group growth over time, and the 

intercept for the outcome variables were all set to zero. Additionally, the 

regression coefficient for the regression of the intercept growth factor on the 

dummy coded treatment variable and the correlations among level-1 error 

variances across time were set to zero.  These parameter values, and those that 

follow, were selected based on past simulation studies as well as an investigation 

of the model-implied population correlation matrices (for the outcome variable) 

that resulted based on these parameter values.  In terms of the model-implied 

correlation matrices, the goal was to select parameter values that resulted in 

relatively realistic correlation matrices in which correlations were not unusually 
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high or unlikely (although, it is recognized that some correlation values were 

likely higher than one might see in an applied setting). See Table 2 for the model-

implied population correlation matrices that resulted from the selected parameter 

values.   

Table 2 

Model-Implied Correlation Matrices Resulting from Selected Parameter Values in the Linear 

Growth Model with an Intercept Variance of 100 

  Slope Variance = 10  Slope Variance = 20 

  Y1 Y2 Y3 Y4 Y5 Y6  Y1 Y2 Y3 Y4 Y5 Y6 

E
rr

or
 V

ar
ia

nc
e 

=
 5

0 

Y1 1.00      
 

1.00      

Y2 0.66 1.00     
 

0.65 1.00     

Y3 0.63 0.72 1.00    
 

0.59 0.75 1.00    

Y4 0.58 0.71 0.78 1.00   
 

0.53 0.73 0.83 1.00   

Y5 0.54 0.69 0.78 0.83 1.00  
 

0.48 0.70 0.83 0.88 1.00  

Y6 0.50 0.66 0.77 0.84 0.87 1.00 
 

0.43 0.68 0.82 0.89 0.92 1.00 

  Y1 Y2 Y3 Y4 Y5 Y6  Y1 Y2 Y3 Y4 Y5 Y6 

E
rr

or
 V

ar
ia

nc
e 

=
 1

00
 

Y1 1.00      
 

1.00      

Y2 0.50 1.00     
 

0.50 1.00     

Y3 0.49 0.57 1.00    
 

0.47 0.61 1.00    

Y4 0.46 0.57 0.65 1.00   
 

0.43 0.61 0.72 1.00   

Y5 0.44 0.57 0.66 0.72 1.00  
 

0.39 0.60 0.73 0.79 1.00  

Y6 0.41 0.56 0.66 0.73 0.78 1.00 
 

0.36 0.59 0.73 0.81 0.85 1.00 

 

Slope variance.  Because Hertzog et al. (2008) found that slope variance 

related to power, and in order to explore the effect of selected slope variance 

values on resulting power estimates in Monte Carlo analyses for the model of 

interest in this investigation, slope variance was set to be equal to either 10 or 20.  
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These values include the range of recommended variance ratios suggested by 

Hertzog et al. (2008), Muthén and Muthén (2002), and Muthén and Curran 

(1997).    

Level-1 error variance. Level-1 error variance of the continuous outcomes 

were set to either 50 or 100.  These values are similar to those used in Muthén and 

Muthén (2002) (who set intercept variance to .5, slope variance to .1, and error 

variance to .5) and Hertzog et al. (2008) (who set intercept variance to 100, slope 

variance to 25 or 50, and used error variance values of 1-100).   Hertzog et al. 

(2008) conceptualized changes in error variance as changes in growth curve 

reliability (measured at wave one as intercept variance divided by total variance), 

resulting in growth curve reliability values of .5 to .99.  With an intercept of 100 

in the present investigation, an error variance of 50 corresponds to a growth curve 

reliability of .67 and an error variance of 100 corresponds to a growth curve 

reliability of .5.   

Muthén and Muthén’s parameter values (intercept variance of .5, slope 

variance of .1, 0 slope-intercept covariance, and error variance of .5) resulted in 

an R squared value for error variance of .5 at wave one and would result in an R 

square value of .86 at wave six.  In most cases, similar R square values were 

obtained using the selected error variance values in the present investigation.  

Using an error variance of 50 and slope variance of 10 resulted in a wave one R 

square value of .67 and a wave six R square value of .89.  An error variance of 50 

and slope variance of 20 resulted in a wave one R square value of .67 and a wave 

six R square value of .93.  An error variance of 100 and slope variance of 10 
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resulted in a wave one R square value of .5 and a wave six R square value of .81.  

Finally, an error variance of 100 and slope variance of 20 resulted in a wave one 

R square value of .5 and a wave six R square value of .87.   

When using the Monte Carlo approach, error variance was specified to be 

homogenous across time in the population but was not constrained to be equal in 

the model.   

Slope difference/effect size. In considering the parameter of interest (the 

regression of the slope on the treatment group covariate), it was important to 

determine a method of operationalizing the magnitude of the slope difference 

between the control and treatment conditions. Feingold (2009) explained that 

calculating effect size in repeated measures models has been “controversial 

because there are two possible denominators that can be used in the formula: (1) 

the standard deviation of the pretest-posttest change scores that reflect within-

group variations in improvement over the course of the trial (Gibbons, Hedeker, 

& Davis, 1993; Mullen & Rosenthal, 1985; Rosenthal, 1991) or (2) the standard 

deviation of the raw scores (often based on the preset or baseline data) that 

estimate variations in the outcome measure of the population (Becker, 1988)” (pp. 

3-4).   Because an effect size based on variations in improvement is not available 

in latent growth modeling, one must utilized Feingold’s (2009) recommended 

calculation for an effect size based on standard deviation at the onset of the 

investigation:  

β11(time)/SDRAW (11) 
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Here, β11 represents the difference in mean growth rates between the treatment 

and control groups and SDRAW  refers to the initial standard deviation of raw 

scores.   

In using this equation to determine effect size for the slope parameter, 

however, difficulties arise because of the relationship between error variance, 

effect size, and slope difference.  Using this equation, an increase in error 

variance necessarily results in an increase in slope difference if effect size is held 

constant (e.g., given this study’s model parameters, for an effect size of .3, an 

error variance of 50 results in a slope difference of .7348 whereas an error 

variance of 100 results in a slope difference of .8485).  This increase in slope 

difference results an increase in power as error increases when effect size held 

constant across error variance values.  As seen in Hertzog et al. (2008), an 

increase in error variance has not been found to increase power.   

Therefore, to understand the influence of increased error on power, slope 

difference was held constant in the present investigation rather than effect size.  

However, average effect size across error variance values was taken into account 

in the selection of slope differences.  For example, rather than holding effect size 

equal to .30 across error variance values of 50 and 100 (resulting in slope 

differences of .7348 and .8485 respectively), a single slope difference value was 

used for both the error variance conditions of 50 and 100, approximating an effect 

size of .3.  This value was determined by averaging the slope difference values for 

an effect size of .3 across error variance values (.7348 and .8485), resulting in a 

slope difference of .7917 (which equates to an effect size of .32 when error 
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variance is 50 and an effect size of .28 when error variance is 100).  Using this 

technique of averaging slope difference values across error variances of 50 and 

100 for three effect sizes (.2, .3, and .4), the following slope difference values 

were used in the present investigation: 0 (to test Type I error), .5278 

(approximating an effect size of .2), .7917 (approximating an effect size of .3), 

and 1.0556 (approximating an effect size of .4).  This range in effect size is 

similar to Muthén and Curran, who investigated small to moderate effect sizes of 

.2 to .5.   

Sample size. As with most power analysis investigations, sample size was 

manipulated, with total sample sizes set to 200, 500, or 800 (similar to sample 

sizes and ranges used in Hertzog et al., 2006; Muthén & Curran, 1997; Zhang & 

Wang, 2009).   

Number of repeated measures. In addition to the specified parameter and 

variance values above, the number of repeated measures was also varied to be 

equal to three or six time points, values similar to past investigations of how 

power was influenced by number of repeated measures (e.g., Zhang & Wang, 

2009).  The length of the study was held constant.  For example, one could 

conceptualize the number of repeated measures as either three equally spaced 

repeated measures taken across six months or six equally spaced repeated 

measures taken across six months.  In order to model this, the factor loadings for 

the growth factor were set to equal 0, 1, 2, 3, 4, and 5 or 0, 2.5, and 5.   

Monte Carlo parameter values: Error variance conditions.  Following 

the investigation of the base conditions using the Monte Carlo technique, 



39 

additional aspects of the growth model were explored, including error variance 

and its homogeneity or heterogeneity across repeated measures.  In addition to 

investigating power when variance was equal but unconstrained in the model 

(EU), power was also considered when variance was equal in the population but 

constrained to be equal in the model (EC), unequal in the population and 

unconstrained in the model (UU), and unequal in the population but constrained 

to be equal in the model (UC), with the last error variance condition resulting in 

model misspecification.  Error variance at wave one was set to be 50 all (EC, UU, 

and UC) conditions. Because variations in error variance across time can take on a 

number of forms with applied data (increasing over time, increasing AND 

decreasing over time, and increasing/decreasing by different increments), this 

investigation simply investigated a single, simplified form of unequal error 

variance over time: (1) error increasing in increments of 5 across the six time 

points (resulting in a variance of 50 at wave one and 75 at time six) and (2) error 

increasing in increments of 15 across the six time points (resulting in a variance of 

50 at wave one and 125 at time six).  While these values are necessarily arbitrary 

due to the wide range of error variance patterns in applied research, they do 

provide a foundation for investigating the potential influence of different error 

variance patterns and model specifications (and misspecifications) on power.   

In this investigation of error variance, slope variance was held constant at 

20. As in the base conditions, the full range of sample size (200, 500, 800) and 

slope difference (0, .5278, .7917, and 1.0556) were investigated. 
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Monte Carlo parameter values: Misspecification.  Various forms of 

model misspecification and their influence on the probability of rejecting 

correctly the null hypothesis for the difference in slopes parameter were also 

investigated. Although power is investigated under circumstances where the 

model is assumed to be properly specified, proportions of replications that 

correctly reject the null hypothesis for the difference in slopes parameter under 

conditions of misspecification are referred to here as power. In investigating error 

variance conditions using the Monte Carlo technique, some model 

misspecification was introduced.  Specifically, the misspecification occurred in 

the UC conditions in which error variance was unequal in the population but the 

model constrains the error variance to be equal.  By increasing the increment of 

increase in error variance across time (5 versus 15), the amount of 

misspecification is also increased and resulting power could be investigated.   

In addition to investigating model misfit relating to error variance, growth 

form was also investigated in terms of model misspecification using the Monte 

Carlo technique.  Specifically, the form of growth was set to be quadratic in the 

population but growth was linear in the model.  In this manner, it was possible to 

explore differences in power when a model was correctly specified as linear 

(when linear in the population) as opposed to a model that was incorrectly 

specified as linear (when quadratic in the population).  Investigating quadratic 

growth required additional parameter value selection.  According to Yu (2002) a 

common variance ratio between intercept variance, slope (linear) variance and 

quadratic growth variance is 1, .3, and .1.  Wu (2008), however, employed a 
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smaller quadratic variance value (in terms of its ratio to intercept and slope 

variance) than suggested by Yu.  In considering the values from each of these 

studies, a quadratic variance of 3 was selected (which falls between the 

proportional variance used by Yu and Wu).  Additionally, the quadratic growth 

factor was set to -.03 (as done in many of the models in Wu, 2008).   

In this investigation of misspecification, slope variance was held constant 

at 20. As in the base conditions, the full range of sample size (200, 500, 800) and 

slope difference (0, .5278, .7917, and 1.0556) were investigated. In investigating 

error variance misfit, error variance was set to either 50, increasing in increments 

of 5 or 50, increasing in increments of 15 across time in the population (and was 

constrained to be equal in the model).  In investigating growth form misfit, error 

variance was set to be equal to 50 in the population, but was not constrained to be 

equal in the model.   

Power analyses across techniques.  In addition to investigating power 

using the Monte Carlo power analysis technique, power analyses were also 

conducted using the Satorra-Saris and MBC power analysis methods.  In 

comparing these three power analysis techniques, slope variance was set to 20.  

As in the initial base conditions using the Monte Carlo technique, the full range of 

values was investigated for level-1 error variance (50 or 100, with equal variance 

across time in the population and unconstrained in the model), number of 

measurement occasions (3 or 6), slope difference (0, .5278, .7917, or 1.0556), and 

sample size (200, 500, or 800).   
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In analyzing power using the MBC approach, it was also necessary to 

define RMSEA values.  Because a  key aspect of using the MBC power analysis 

approach is selecting RMSEA values to test fit between nested models, it was 

important to explore how selected pairs of RMSEA values influenced power 

estimates.  Power analyses typically employ a null hypothesis of no difference in 

fit between models (Kim, 2005); therefore, a null hypothesis of no difference was 

employed with the MBC technique to maintain comparability among power 

analysis techniques.  Thus, any given power analysis using the MBC approach 

required the specification of two RMSEA values for models A and B (where 

model A is nested within model B), as well as the degrees of freedom for these 

models.   

In this investigation, the values considered were either .01 (model A) and 

0 (model B), .02 (model A) and 0 (model B), or .05 (model A) and .04 (model B).  

The two pairs with a model B RMSEA value of 0 were selected to mirror the 

Satorra-Saris technique, in which a correctly specified model (which one would 

expect to have a zero or near zero RMSEA) is compared to a model that is 

misspecified by setting a single parameter to 0 (MacCallum, Browne, and Cai 

recommend a difference in RMSEA values of .01 or .02 when the models differ 

by only one parameter).  The .04-.05 pairing uses the RMSEA criteria suggested 

by MacCallum, Browne, and Cai, who suggest selected RMSEA values in the 

mid-range of the RMSEA scale (which assumes a model is not perfect, but may 

be near perfect).   Additionally, this pairing (.04 and .05) was commonly used as 

an example in MacCallum, Browne, and Cai (2006).    
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Analysis Conditions 

The Monte Carlo technique was conducted with Mplus (version 6.1) using 

1,000 replications and maximum likelihood estimation.  In total, six conditions 

were manipulated using the Monte Carlo technique: sample size, slope difference, 

slope variance, error variance, number of repeated measures, and misspecification 

conditions.  These manipulated conditions resulted in a total of 96 combinations 

using the Monte Carlo technique.  The investigation of error variance conditions 

using the Monte Carlo technique involved the manipulation of slope difference 

and sample size, resulting in 72 combinations.   Finally, the investigation of 

growth form misspecification involved 12 conditions (as slope variance, error 

variance, quadratic growth, and quadratic growth variance were held constant). 

The Satorra-Saris technique was also conducted using Mplus (version 6.1) 

and maximum likelihood methods.  In using the Satorra Saris technique, four 

conditions were manipulated (with slope variance held at 20):  sample size, slope 

difference, error variance (EU), and number of repeated measures.   

Misspecification could not be considered using the Satorra Saris technique.  These 

manipulated conditions resulted in a total of 36 combinations using the Satorra 

Saris technique.  

The MBC technique, on the other hand, uses only model degrees of 

freedom, desired alpha level, and specified RMSEA values to calculate power.  

Therefore, an Excel spreadsheet was used to complete these calculations.   

Because the MBC technique considers only model degrees of freedom and 

RMSEA values, it was not influenced factorially by the manipulated generation 
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conditions.  Thus, it was only calculated for three versus six measurement 

occasions and across sample sizes.  In considering RMSEA pairs in conjunction 

with sample size and the number of repeated measures, a total of 18 conditions 

were investigated using the MBC power analysis technique. 

See Table 3 for a summary of manipulated conditions and constant 

parameter values across the power analysis techniques.   

Table 3  

Simulation Design 

Monte Carlo: Base Conditions      

Intercept variance 100    

Initial status for both groups 0    

Intercept with slope correlation .20    

Sample size  200 500 1000  

Slope difference between  

treatment and control 

0 .5278 .7917 1.0556 

Slope variance 10 20   

Number of repeated measures 3 6   

Level-1 Error variance (EU) 50 100   

Monte Carlo: Specification of Level-1 

Error Variance 

    

Slope variance 20    

Number of repeated measures 6    

Sample size  200 500 1000  

Slope difference between  

treatment and control 

0 .5278 .7917 1.0556 

Error variance at time 1 50    

Error variance specification EU EC UU,  
increments of  

5 or 15 

UC, 
increments of 

5 or 15 
Monte Carlo: Misspecification of 

growth form  

    

Slope variance 20    

Number of repeated measures 6    
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Sample size  200 500 1000  

Slope/linear growth  0 .5278 .7917 1.0556 

Error variance across time 50    

Quadratic variance 3    

Quadratic growth  -.03    

Comparison of Analysis Techniques     

Slope variance 20    

Sample size  200 500 1000  

Slope difference between  

treatment and control 

.5278 .7917 1.0556  

Number of repeated measures 3 6   

Level-1 error variance (EU) 50 100   

MBC RMSEA values 0, .01 0, .02 .04, .05  

 
Analysis of Results 

In using the Monte Carlo technique, power and Type I error was 

determined based on the % Sig Coeff. column in the Mplus output.  This column 

indicates the proportion of replications that found the parameter of interest to be 

significant at the .05 level (two-tailed test, critical value = 1.96).  Therefore, 

whereas the % Sig Coeff. column indicates power when the parameter is nonzero 

in the population, the same column provides the Type I error rate when the 

parameter is equal to zero in the population (Muthén & Muthén, 2002).  Coverage 

(available in the Mplus output column labeled Cover.) refers to the proportion of 

replications that a focal parameter values fall within a 95% confidence interval of 

the true parameter value (Muthén & Muthén, 2002); this was also summarized for 

conditions in this study.  Finally, the proportion of nonconverging samples were 

recorded for each analysis condition in order to monitor potential problems.   
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Power calculations with the Satorra-Saris technique, on the other hand, 

involved using the resulting noncentrality parameter related to the chi-square test.  

Similarly, power was calculated with the MBC technique by using the resulting 

noncentrality parameter based on pairs of RMSEA values and model degrees of 

freedom (for the nested models specified for the Satorra-Saris technique).  Thus, 

the results compiled from these two techniques were the noncentrality parameter 

and power estimate.   

Resulting power estimates from each of the three analysis techniques were 

compiled into tables presenting changes in power based on model attributes and 

power analysis approach.  Power curve plots were also created for select 

conditions to illustrate changes in power across various conditions.   
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CHAPTER 3 

RESULTS 

In all Monte Carlo simulation conditions, 1,000 replications were 

generated to investigate the power to detect significance of the coefficient based 

on regression of the slope growth factor on a dummy-coded treatment variable.  

Under no circumstances did replications fail to converge.  However, error 

messages for particular replications were observed in some conditions.   

Specifically, in some instances, Mplus indicated that “the residual covariance 

matrix (Theta) is not positive definite.”  This could indicate a negative 

variance/residual variance for an observed variable, a correlation greater or equal 

to one between two observed variables, or a linear dependency among more than 

two observed variables.”  This error message was received only for conditions 

with three repeated measures when sample size was either 200 or 500.   

The error was most common (5% of the replications) for the condition in 

which slope variance was 20, error variance was 50, and sample size was 200.  

When sample size for this condition was increased to 500, this error was reported 

for only 0.5% of replications and no errors were reported for a sample size of 800.  

The error was seen in 4% of replications when slope variance was 10, error 

variance was 100, and sample size was 200.  Again, increasing the sample size 

dramatically decreased this occurrence, with a sample of 500 resulting in only 

0.4% of the replications with errors.  The error was observed in approximately 2% 

of replications with a sample size of 200 when slope variance was 20 and error 

variance was 100 or when slope variance was 10 and error variance was 50.  
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However, this decreased to 0.2% when sample size was increased to 500.   

Replications for which an error message was indicated were not included in the 

calculation of empirical powers  or other summary statistics for those conditions.   

Type I Error 

When using the Monte Carlo approach, Type I error was investigated by 

setting the slope difference between the treatment and control groups to zero.  

Mplus simulation output reports the proportion of replications that indicated a 

significant slope difference, which was Type I error for these null conditions.  

Based on an alpha of .05, the empirical Type I error rate would be expected to be 

approximately .05.  In no cases did Type I error exceed .059, with this value 

occurring with the smallest sample size (200), the smallest error variance (50), the 

largest slope variance (20), and three repeated measures.  The smallest Type I 

error value was .037, with this value occurring with the largest sample size (800), 

the largest error variance (100), the largest slope variance (20), and six repeated 

measures.  See Tables 4, 7, and 12 for Type I error rates across conditions.   

The trend of decreasing Type I error rates as sample size increases 

suggests that Type I error tends to be slightly conservative with higher sample 

sizes.  A similar trend is apparent in terms of number of repeated measures, with 

more repeated measures corresponding to lower Type I error rates. Despite 

slightly conservative Type I error rates, all of the Type I error rates do fulfill 

Bradley’s (1978) liberal criterion (Type I error values fall between .025 and .075) 

for an alpha of .05.  Further, all but one Type I error rate (.037) fulfill Bradley’s 

moderate criterion (Type I error values fall between .04 and .06) for an alpha of 
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.05.  This conservative value of .037, however, does fall well within Bradley’s 

liberal criterion (Type I error values fall between .025 and .075). 

Monte Carlo Power Analyses: Base Conditions 

Table 4 indicates empirical powers for the base conditions using the 

Monte Carlo analysis; these are depicted graphically in Figure 2.   In these 

conditions, error variances were generated to be equal across time, but were 

unconstrained in the analysis model. 



 

Table 4  

Type I and Power  when Level-1 Error Variance is Equal across Time 

Level-1  
error  
variance 

Number of 
measurement 
occasions 

 
Slope 
difference 

Slope variance = 10  Slope variance = 20 

Sample size  Sample size 

200 500 800  200 500 800 

50 3 (df=2) 0 .056 .053 .043  .059 .048 .048 

  .5278 .184 .350 .533  .143 .225 .337 

  .7917 .326 .659 .844  .218 .436 .645 

  1.0556 .527 .891 .976  .328 .675 .861 

 
6 (df=20) 0 .051 .046 .040  .054 .047 .040 

 .5278 .174 .340 .540  .112 .220 .343 

  .7917 .337 .677 .853  .205 .437 .631 

  1.0556 .545 .913 .989  .346 .676 .853 

100 3 (df=2) 0 .056 .050 .051  .056 .051 .049 

  .5278 .144 .273 .426  .115 .197 .291 

  .7917 .260 .545 .750  .194 .387 .564 

  1.0556 .430 .808 .937  .289 .609 .791 

 
6 (df=20) 0 .056 .042 .043  .052 .051 .037 

 .5278 .154 .284 .452  .104 .199 .307 

  .7917 .273 .595 .785  .188 .382 .583 

  1.0556 .458 .839 .966  .305 .630 .809 
*Note: Slope difference calculated as average slope difference across level-1 error variance values of 50 and 10, yielding effect sizes of approximately 0, 0.2 (slope difference 
of .5278), 0.3 (slope difference of .7917), and 0.4 (slope difference of 1.0556).  

 

50
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Figure 2. Monte Carlo power for 6 repeated measures and equal level-1 error variance across time 

(not constrained to be equal in the model). 
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Sample size.  Sample size contributed to power for detecting the slope 

difference between treatment and control conditions, as expected.  As indicated in 

Figure 2, power increased as sample size increased for all combinations of base 

conditions, with an approximate increase of .3 to .4 from the smallest to the 

largest sample size. The maximum power achieved with a sample size of 200 was 

.55, which occurred with a slope difference of 1.0556 (approximately an effect 

size of .4), level-1 error variance of 50, slope variance of 10, and 6 repeated 

measures. Thus, no conditions yielded acceptable power with a sample size of 

200. 

In contrast with a sample size of 200, sample sizes of 500 and 800 did 

yield acceptable power under certain conditions.  With a sample size of 500, all 

conditions with a 1.0556 slope difference and slope variance of 10 exceeded a 

power of .80, ranging from .81 to .91, with the highest value occurring with an 

error variance of 50, slope variance of 10, and 6 repeated measures.  No 

conditions with a sample size of 500 and slope variance of 20 reached a power of 

.80 (the maximum power was .68).  With a sample size of 500, no other slope 

differences (.5278 or .7917) yielded power near .80 (the highest value among 

these slope differences was .68).  With a sample size of 800, all but one condition 

with a 1.0556 slope differences exceeded .80, with values ranging from .81 to .99.  

The exception occurred when slope variance was 20, error variance was 100, and 

the model included three repeated measures, in which case power equaled .79. 

When slope variance was set to 10, power for a sample size of 800 and slope 

difference of .7917 (an effect size of approximately .2) ranged from .75 to .85. 
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Slope difference/effect size.  As expected, the magnitude of the slope 

difference was also a major contributor to power to detect the difference in slope 

between populations.  Figure 2 indicates the improvement in power as slope 

difference increased from .5278 (a small effect size of approximately .2) to 

1.0556 (a moderate effect size of approximately .4).  For example, with a small 

slope difference, the highest power achieved in the investigated conditions was 

approximately .50 (slope variance of 10, error variance of 100, sample size of 

800). However, this same condition, with a moderate effect size, resulted in a 

power of over .90. In considering slope difference in conjunction with sample 

size, when the slope difference is small (.5278, an approximate effect size of .2), 

the differences between power estimates across conditions becomes greater as 

sample size increases.  For example, with a small difference in slopes, whereas 

power ranges from about .10 to .18 (a spread of .08) when sample size was 200, a 

sample size of 800 yielded a range in values from .29 to .53 (a spread of .24). 

However, this trend is less apparent when slope differences are larger, with the 

range of power values not necessarily increasing as sample size increased. With a 

large slope difference of 1.0556, the range of power estimates for a sample size of 

500 was wider than for a sample size of 800.  Additionally, the power increase 

from sample sizes 200 to 500 was more substantial for larger slope differences 

than for smaller slope differences.    

Number of repeated measures. Based on initial plots of power 

comparing models with three or six repeated measures, it was evident that this 

difference in number of measurement occasions did not substantially influence 
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power. Patterns of results for conditions with three and six repeated measures 

were very similar.  The maximum difference in power between three and six 

repeated measures was .05, when error variance was 100, slope variance was 10, 

sample size was 500, and the slope difference was .7917).  However, the majority 

of conditions differed by approximately .02 or less across number of repeated 

measures.  Accordingly, further investigations of power considered only models 

with six repeated measures.    

Slope variance.  Figure 3 displays observed growth (fit to a linear 

trajectory) for 30 randomly selected cases from the treatment group for conditions 

with 10 versus 20 for slope variance (holding other conditions constant; sample 

size of 800, population intercept variance of 100, error variance of 50, slope 

difference of 1.0556).  Slope variance influenced power such that larger slope 

variances resulted in decreased power.  A slope variance of 10 resulted in 

increases of power ranging from .05 to .24 over conditions with a slope variance 

of 20.  A moderate slope difference combined with sample sizes of 500 or 800 

typically resulted in the most improvement in power when slope variance was 10 

rather than 20.  Because of the consistent difference and patterns of powers in 

comparing slope variances of 10 and 20 across conditions, many of the additional 

power investigations employed only a slope variance of 20, which is consistent 

with past literature (e.g., Muthén & Curran, 1997; Muthén & Muthén, 2002) 

suggesting specification of a 1:5 ratio for slope to intercept variance.   

In addition to considering how slope variance influenced power, an 

additional investigation was conducted to examine power for conditions in which 
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the ratio of the slope difference to slope standard deviation was held constant 

while varying the components of this ratio, that is, the slope difference and slope 

variance. This ratio of slope difference to slope standard deviation was used by 

Muthén and Muthén (2002) to calculate effect size.  In this initial investigation, 

level-1 error variance was 50, sample size was 500, and the model included 6 

repeated measures.  First, a slope difference to slope standard deviation ratio of 

.33 was considered.  Power for this condition was calculated for the following 

pairs of values (slope difference, slope variance): 0.5278, 2.5; 1.0556, 10; 0.7917, 

5.625; 2.1112, 40.  Although the resulting power estimates differed across the 

slope variance and slope difference values, the range was relatively narrow (.71 to 

.96) considering the range of effect sizes represented (.22 to .86).  A slope 

difference to slope standard deviation ratio of .24 was also considered using the 

following pairs of values (slope difference, slope variance): 0.5278, 5; 1.0556, 

11.25; 0.7917, 20; 2.1112, 80.  Powers for a ratio of .24 ranged from .54 to .71.    
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Slope variance = 10 

 

 
Slope variance = 20 

 

Figure 3.   Observed individual growth trajectories, fit to linear growth, for 30 randomly selected 

cases in the treatment condition, for slope variance values of 10 and 20.  Plots were for a sample 

size of 800 with the following population parameters held constant across slope variance 

conditions: intercept variance (100), error variance (50), and slope difference (1.0556). 

Level-1 error variance.  The magnitude of error variance also influenced 

power, with greater error variance slightly decreasing power.  With an error 

variance of 50, power was from approximately .01 to .09 larger in comparison 

with conditions with an error variance of 100.   
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Bias, efficiency, and coverage.  Absolute biases and efficiencies for the 

slope difference parameters are available in Table 5.  Absolute bias was 

calculated as the difference between the estimated slope difference and the slope 

difference defined in the population.  As seen in Table 5, absolute bias was 

typically very small, with the largest absolute bias (-0.03) occurring with a sample 

size of 200, slope variance of 20, error variance of 100, and 6 repeated measures.  

Relative bias, defined as the difference between the estimated parameter value 

and the population value divided by the population parameter value, was also 

computed.  According to Muthén and Muthén (2002), investigations of sample 

size determination based on desired power must consider parameter values and 

conditions that yield a relative bias of no more than 10%.  In the correctly 

specified models under investigation, relative bias reached no more than 4.89%.   

Muthén and Muthén also suggested that standard error bias for the parameter of 

interest (calculated as the standard error estimate across replications minus the 

population standard error, divided by the population standard error) not exceed 

5%.  In the base conditions, standard error bias ranged from 0 to 4%.  Finally, 

Muthén and Muthén suggested parameter coverage should range between .91 and 

.98.  This was also satisfied in this investigation, with coverage for the slope 

difference parameter, across all conditions, ranging from .94 to .96.  



 

Table 5 

Absolute Bias (Population Value Minus Model Estimate) and Efficiency (in parentheses) when Level-1 Error Variance is Equal across Time but not 

Constrained to be Equal in the Model 

Level-1  
error  
variance 

Number of 
measurement 
occasions 

 
Slope 
difference 

Slope variance = 10  Slope variance = 20 

Sample size  Sample size 

200 500 800  200 500 800 

50 3 (df=2) 0 .004 (.54) -.0004 (.33) -.003 (.27)  .008 (.72) .0002 (.43) -.002 (.35) 

  .5278 .004 (.54) -.0004 (.33) -.003 (.27)  .008 (.72) .0002 (.43) -.002 (.35) 

  .7917 .004 (.54) -.0004 (.33) -.003 (.27)  .008 (.72) .0002 (.43) -.002 (.35) 

  1.0556 .004 (.54) -.0004 (.33) -.003 (.27)  .008 (.72) .0002 (.43) -.002 (.35) 

 
6 (df=20) 0 -.018 (.51) -.012 (.32) -.012 (.25)  -.021 (.67) -.014 (.42) -.015 (.34) 

 .5278 -.018 (.51) -.012 (.32) -.012 (.25)  -.021 (.67) -.014 (.42) -.015 (.34) 

  .7917 -.018 (.51) -.012 (.32) -.012 (.25)  -.021 (.67) -.014 (.42) -.015 (.34) 

  1.0556 -.018 (.51) -.012 (.32) -.012 (.25)  -.021 (.67) -.014 (.42) -.015 (.34) 

100 3 (df=2) 0 -.0001 (.61) -.0003 (.38) -.004 (.30)  .003 (.76) .0002 (.47) -.004 (.38) 

  .5278 -.0001 (.61) -.0003 (.38) -.004 (.30)  .003 (.76) .0002 (.47) -.004 (.38) 

  .7917 -.0001 (.61) -.0003 (.38) -.004 (.30)  .003 (.76) .0002 (.47) -.004 (.38) 

  1.0556 -.0001 (.61) -.0003 (.38) -.004 (.30)  .003 (.76) .0002 (.47) -.004 (.38) 

 
6 (df=20) 0 -.021 (.56) -.014 (.35) -.014 (.28)  -.025 (.72) -.016 (.45) -.017 (.36) 

 .5278 -.021 (.56) -.014 (.35) -.014 (.28)  -.025 (.72) -.016 (.45) -.017 (.36) 

  .7917 -.021 (.56) -.014 (.35) -.014 (.28)  -.025 (.72) -.016 (.45) -.017 (.36) 

  1.0556 -.021 (.56) -.014 (.35) -.014 (.28)  -.025 (.72) -.016 (.45) -.017 (.36) 
*Note: Slope difference calculated as average slope difference across level-1 error variance values of 50 and 10, yielding  effect sizes of approximating 0, 0.2 (slope difference 
of .5278), 0.3 (slope difference of .7917), and 0.4 (slope difference of 1.0556).  
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Global fit indices.  In addition to collecting power estimates, mean chi-

square and RMSEA (see Table 6) indices were also recorded for each condition.   

In all correctly specified models, the mean chi-square statistic was approximately 

equal to the model degrees of freedom, with the difference between the chi-square 

and degrees of freedom ranging from -.09 to .49.  Average RMSEA values for 

correctly specified models with six repeated measures were .017 (SD=.02) for a 

sample size of 200, .01 (SD=.01) for a sample size of 500, and .008 (SD=.01) for 

a sample size of 800.  In correctly specified models with three repeated measures, 

mean RMSEA values were .025 (SD=.04) for a sample size of 200, .014 to .015 

(SD=.02) for a sample size of 500, and .01 (SD=.02) for a sample size of 800.   

 
 

 

 



 

Table 6 

Mean RMSEA and Standard Deviation (in Parentheses) when Level-1 Error Variance is Equal across Time 

Level-1  
error  
variance 

Number of 
measurement 
occasions 

 
Slope 
difference 

Slope variance = 10  Slope variance = 20 

Sample size  Sample size 

200 500 800  200 500 800 

50 3 (df=2) 0 .025 (.04) .014 (.02) .011 (.02)  .025 (.04) .015 (.02) .011 (.02) 

  .5278 .025 (.04) .014 (.02) .011 (.02)  .025 (.04) .015 (.02) .011 (.02) 

  .7917 .025 (.04) .014 (.02) .011 (.02)  .025 (.04) .015 (.02) .011 (.02) 

  1.0556 .025 (.04) .014 (.02) .011 (.02)  .025 (.04) .015 (.02) .011 (.02) 

 
6 (df=20) 0 .017 (.02) .010 (.01) .008 (.01)  .017 (.02) .010 (.01) .008 (.01) 

 .5278 .017 (.02) .010 (.01) .008 (.01)  .017 (.02) .010 (.01) .008 (.01) 

  .7917 .017 (.02) .010 (.01) .008 (.01)  .017 (.02) .010 (.01) .008 (.01) 

  1.0556 .017 (.02) .010 (.01) .008 (.01)  .017 (.02) .010 (.01) .008 (.01) 

100 3 (df=2) 0 .025 (.04) .014 (.02) .011 (.02)  .025 (.04) .014 (.02) .011 (.02) 

  .5278 .025 (.04) .014 (.02) .011 (.02)  .025 (.04) .014 (.02) .011 (.02) 

  .7917 .025 (.04) .014 (.02) .011 (.02)  .025 (.04) .014 (.02) .011 (.02) 

  1.0556 .025 (.04) .014 (.02) .011 (.02)  .025 (.04) .014 (.02) .011 (.02) 

 
6 (df=20) 0 .017 (.02) .010 (.01) .008 (.01)  .017 (.02) .010 (.01) .008 (.01) 

 .5278 .017 (.02) .010 (.01) .008 (.01)  .017 (.02) .010 (.01) .008 (.01) 

  .7917 .017 (.02) .010 (.01) .008 (.01)  .017 (.02) .010 (.01) .008 (.01) 

  1.0556 .017 (.02) .010 (.01) .008 (.01)  .017 (.02) .010 (.01) .008 (.01) 
*Note: Slope difference calculated as average slope difference across level-1 error variance values of 50 and 10, yielding  effect sizes of approximating 0, 0.2 (slope difference 
of .5278), 0.3 (slope difference of .7917), and 0.4 (slope difference of 1.0556).  
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Level-1 Error Variance (Conditions with No Misspecification) 

In addition to using the Monte Carlo technique to investigate the influence 

of smaller versus larger error variances (50 vs. 100) when population variances 

were specified to be equal over time and were unconstrained in the analysis 

model, additional error variance patterns and model specifications with regard to 

error were also investigated (see Table 7).  In examining the influence of 

constraining error variances to be equal in the model (when they were in fact 

equal in the population; EC) as opposed to allowing error to vary across time in 

the model (EU), it was found that power for the difference in slopes parameter 

was not substantially influenced.  Differences in power across these two 

conditions (EC vs. EU) ranged from only .002 to .008.   

In considering error variances that are not equal across time, two 

magnitudes of increase were investigated: Error variance was set to increase from 

an initial variance of 50 by increments of either 5 or 15 at each successive wave.  

When the analysis model was correctly specified to allow error variance to vary 

across time, the powers were not substantially different when population error 

variances were generated to increase by 5 or 15 with successive waves.   

Although the model with reduced error variance (due to smaller incremental 

increases) did have slightly higher power, this boost in power ranged from .002 to 

.03, with a greater difference in power apparent with a larger slope difference.   



 

Table 7 

Type I Error and Power across Level-1 Error Variance Conditions, with Level-1 Error Variance at Wave One of 50, 6  

Repeated Measures, and Slope Variance of 20  

   Sample size 
Level-1 error variance condition Slope difference  200 500 800 
 
Equal error variance in population,  
unconstrained in model (EU) 
df = 20 

0  .054 .047 .040 
.5278  .112 .220 .343 
.7917  .205 .437 .631 
1.0556  .346 .676 .853 

 
Equal error variance in population,  
constrained to be equal in model (EC) 
df = 25 

0  .051 .047 .040 
.5278  .110 .223 .343 
.7917  .213 .441 .634 
1.0556  .354 .676 .853 

 
Unequal error variances in population (increase in increments of 5 
across time), unconstrained in model (UU) 
df = 20 

0  .052 .047 .040 
.5278  .109 .214 .335 
.7917  .200 .429 .620 
1.0556  .337 .668 .841 

 
Unequal error variances in population (increase in increments of 
15 across time), unconstrained in model (UU) 
df = 20 

0  .050 .045 .036 
.5278  .107 .212 .318 
.7917  .194 .409 .600 
1.0556  .320 .641 .819 

 
Unequal error variances in population (increase in increments of 5 
across time), constrained to be equal in model (UC) – Misspecified 
df = 25 

0  .050 .044 .039 
.5278  .115 .215 .331 
.7917  .199 .429 .620 
1.0556  .339 .663 .837 

 
Unequal error variances in population (increase in increments of 15 
across time), constrained to be equal in model (UC) – Misspecified 
df = 25 

0  .052 .045 .036 
.5278  .107 .211 .311 
.7917  .187 .405 .603 
1.0556  .316 .644 .817 

62
 



63 

As with the base conditions, biases and efficiencies of the slope difference 

parameter (see Table 8), RMSEA values (see Table 9), and chi-square values 

were collected.  Again, bias was minimal, with absolute bias ranging from -0.03 

to -0.02 and relative bias ranging from -1.12% to -4.16%.  In terms of the chi-

square statistic, when the population error variances were equal across time and 

the analysis model was constrained such that error variances were required to be 

equal (rather than leaving them unconstrained), the difference between chi-square 

and degrees of freedom was still minimal, although slightly higher (up to .65) 

than for models that did not constrain the model error variances to be equal (up to 

.49).  RMSEA values ranged from .01 to .02 for correctly specified models (EU, 

EC, and UU conditions), with RMSEA decreasing slightly as sample size 

increased.



 

Table 8 

Absolute Bias (Population value Minus Model Estimate) and Efficiency (in parentheses) across Level-1 Error Variance Conditions, with Level-1 Error 

Variance at Wave One of 50, 6 Repeated Measures, and Slope Variance of 20 

   Sample size 
Level-1 error variance condition Slope difference  200 500 800 
 
Equal error variance in population,  
unconstrained in model (EU) 
df = 20 

0  -.025 (.72) -.016 (.45) -.017 (.36) 
.5278  -.025 (.72) -.016 (.45) -.017 (.36) 
.7917  -.025 (.72) -.016 (.45) -.017 (.36) 
1.0556  -.025 (.72) -.016 (.45) -.017 (.36) 

 
Equal error variance in population,  
constrained to be equal in model (EC) 
df = 25 

0  -.020 (.67) -.014 (.42) -.015 (.34) 
.5278  -.020 (.67) -.014 (.42) -.015 (.34) 
.7917  -.020 (.67) -.014 (.42) -.015 (.34) 
1.0556  -.020 (.67) -.014 (.42) -.015 (.34) 

 
Unequal error variances in population (increase in increments of 5 
across time), unconstrained in model (UU) 
df = 20 

0  -.021 (.68) -.014 (.43) -.015 (.34) 
.5278  -.021 (.68) -.014 (.43) -.015 (.34) 
.7917  -.021 (.68) -.014 (.43) -.015 (.34) 
1.0556  -.021 (.68) -.014 (.43) -.015 (.34) 

 
Unequal error variances in population (increase in increments of 
15 across time), unconstrained in model (UU) 
df = 20 

0  -.022 (.70) -.015 (.44) -.016 (.35) 
.5278  -.022 (.70) -.015 (.44) -.016 (.35) 
.7917  -.022 (.70) -.015 (.44) -.016 (.35) 
1.0556  -.022 (.70) -.015 (.44) -.016 (.35) 

 
Unequal error variances in population (increase in increments of 5 
across time), constrained to be equal in model (UC) – Misspecified 
df = 25 

0  -.022 (.68) -.015 (.43) -.016 (.34) 
.5278  -.022 (.68) -.015 (.43) -.016 (.34) 
.7917  -.022 (.68) -.015 (.43) -.016 (.34) 
1.0556  -.022 (.68) -.015 (.43) -.016 (.34) 

 
Unequal error variances in population (increase in increments of 15 
across time), constrained to be equal in model (UC) – Misspecified 
df = 25 

0  -.026 (.70) -.017 (.44) -.018 (.35) 
.5278  -.026 (.70) -.017 (.44) -.018 (.35) 
.7917  -.026 (.70) -.017 (.44) -.018 (.35) 
1.0556  -.026 (.70) -.017 (.44) -.018 (.35) 
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Table 9 

Mean RMSEA across Level-1 Error Variance Conditions, with Level-1 Error Variance at Wave One of 50, 6 Repeated Measures, and Slope Variance of 20 

   Sample size 
Level-1 error variance condition Slope difference  200 500 800 
 
Equal error variance in population, unconstrained in model (EU) 
df = 20 

0  .017 (.02) .010 (.01) .008 (.01) 
.5278  .017 (.02) .010 (.01) .008 (.01) 
.7917  .017 (.02) .010 (.01) .008 (.01) 
1.0556  .017 (.02) .010 (.01) .008 (.01) 

 
Equal error variance in population, constrained to be equal in 
model (EC) 
df = 25 

0  .016 (.02) .010 (.01) .007 (.01) 
.5278  .016 (.02) .010 (.01) .007 (.01) 
.7917  .016 (.02) .010 (.01) .007 (.01) 
1.0556  .016 (.02) .010 (.01) .007 (.01) 

 
Unequal error variances in population (increase in increments of 5 
across time), unconstrained in model (UU) 
df = 20 

0  .017 (.02) .010 (.01) .008 (.01) 
.5278  .017 (.02) .010 (.01) .008 (.01) 
.7917  .017 (.02) .010 (.01) .008 (.01) 
1.0556  .017 (.02) .010 (.01) .008 (.01) 

 
Unequal error variances in population (increase in increments of 
15 across time), unconstrained in model (UU) 
df = 20 

0  .017 (.02) .010 (.01) .008 (.01) 
.5278  .017 (.02) .010 (.01) .008 (.01) 
.7917  .017 (.02) .010 (.01) .008 (.01) 
1.0556  .017 (.02) .010 (.01) .008 (.01) 

 
Unequal error variances in population (increase in increments of 5 
across time), constrained to be equal in model (UC) – Misspecified 
df = 25 

0  .032 (.02) .032 (.01) .033 (.01) 
.5278  .032 (.02) .032 (.01) .033 (.01) 
.7917  .032 (.02) .032 (.01) .033 (.01) 
1.0556  .032 (.02) .032 (.01) .033 (.01) 

 
Unequal error variances in population (increase in increments of 15 
across time), constrained to be equal in model (UC) – Misspecified 
df = 25 

0  .075 (.02) .076 (.01) .075 (.01) 
.5278  .075 (.02) .076 (.01) .075 (.01) 
.7917  .075 (.02) .076 (.01) .075 (.01) 
1.0556  .075 (.02) .076 (.01) .075 (.01) 
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Misspecification in Error Variance and Form of the Growth Model 

Two forms of misspecification were considered using the Monte Carlo 

technique: misspecification in the error variance structure and misspecification in 

the growth structure.  In looking at misspecification in the error variance (in 

which the population error variances were set to increase in increments of 5 or 15 

over time, but the analysis model constrained error variances to be equal over 

time), power to detect the difference in slopes was minimally influenced (see 

Table 7, UC conditions).  Given error variance was increasing in the population, 

the maximum difference in power between conditions in which the error 

variances were not constrained to be equal and those that did constrain error 

variances to be equal was .007, holding constant all other factors.  This difference 

was found under two conditions: (1) population error variance was increasing in 

increments of 15 with an effect size of approximately .3 and sample size of 200 

and (2) error variance was increasing in increments of 15 with an effect size of 

approximately .2 and a sample size of 800.   

As expected, chi-square values for models that are misspecified with 

respect to the error variance structure were larger than the degrees of freedom, 

with a larger increase in error variance (and thus increased misspecification) 

resulting in larger chi-square statistics relative to model degrees of freedom (see 

Table 10). Similarly, RMSEA values were greater for the conditions with 

misspecified error variance structures compared to the correctly specified models 

(see Table 9).  In the misspecified models, when error variance increased in 
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increments of 5, the RMSEA was approximately .03, and when error variance 

increased in increments of 15, RMSEA was approximately .08.



 

Table 10 

Average Chi-Square and Standard Deviation (in Parentheses) across Misspecified Level-1 Error Variance Conditions, with Level-1 Error Variance at Wave 

One of 50, 6 Repeated Measures, and Slope Variance of 20 

   Sample size 

Level-1 error variance condition Slope difference  200 500 800 

 
Unequal error variances in population (increase in 
increments of 5 across time), constrained to be equal in 
model (UC) – Misspecified 
 
df = 25 

0  31.63 (8.47) 40.02 (10.26) 47.90 (11.56) 

.5278  31.63 (8.47) 40.02 (10.26) 47.90 (11.56) 

.7917  31.63 (8.47) 40.02 (10.26) 47.90 (11.56) 

1.0556  31.63 (8.47) 40.02 (10.26) 47.90 (11.56) 

 
Unequal error variances in population (increase in 
increments of 15 across time), constrained to  
be equal in model (UC) – Misspecified 
 
df = 25 

0  54.78 (12.32) 97.49 (17.72) 139.36 (21.33) 

.5278  54.78 (12.32) 97.49 (17.72) 139.36 (21.33) 

.7917  54.78 (12.32) 97.49 (17.72) 139.36 (21.33) 

1.0556  54.78 (12.32) 97.49 (17.72) 139.36 (21.33) 

*Note: Slope difference calculated as average slope difference across level-1 error variance values of 50 and 100 for effect sizes of 0, 0.2 (slope difference of 
.5278), 0.3 (slope difference of .7917), and 0.4 (slope difference of 1.0556).  
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The investigation of the effect of misspecification of the form of the 

growth curve suggested a substantially larger impact on power than for the error 

variance misspecification, given the parameter values used in this study; this 

generalization is made with caution because the degree of misspecification is not 

equated between these conditions. In these conditions, the population growth 

model was quadratic in form, but was specified as linear in the analysis model. 

See Table 11 and Figure 4 for empirical powers as they relate to misspecification 

in the form of the growth model.    

Table 11 

Type I Error and Power under Correctly or Incorrectly Specified Form of the Growth Model for  

with 6 Repeated Measures, Slope Variance of 20, and Error Variance of 50 across Time  

 
Growth form  in  
population vs. model 

 
Slope 
difference 

Sample size 

200 500 800 

Quadratic – Linear  
(misspecified) 

0 .056 .051 .048 

.5278 .052 .081 .091 

 .7917 .080 .126 .183 

 1.0556 .108 .210 .319 

Linear – Linear  0 .054 .047 .040 

.5278 .112 .220 .343 

 .7917 .205 .437 .631 

 1.0556 .346 .676 .853 

*Note: Slope difference calculated as average slope difference across level-1 error variance values of 50 and 
10, yielding  effect sizes of approximating 0, 0.2 (slope difference of .5278), 0.3 (slope difference of .7917), 
and 0.4 (slope difference of 1.0556).  
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- - -  Quadratic growth in population-Linear growth in model (misspecified) 
    Linear growth in population-Linear growth in model 

 

 Linear growth difference = .5278 (effect size approximately .2) 
 Linear growth difference = .7917 (effect size approximately .3) 
 Linear growth difference = 1.0556 (effect size approximately .4)        

 
Figure 4. Comparison of power with and without growth form misspecification with 6 repeated 

measures, slope variance of 20, and error variance of 50. 

As seen in Figure 4, incorrectly modeling quadratic growth and thereby 

analyzing a linear model under these conditions produces substantially lower 

power than analyzing a correctly specified linear model.  Whereas a moderate 

slope difference produces a maximum power of approximately .85 when the 

linear model is correctly specified, a quadratic model that is analyzed as a linear 
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model reaches a maximum power of slightly more than .3.  Therefore, if one is 

investigating power for a model they assume to be linear, but is, in actuality, 

quadratic, resulting power estimates will be deceptively high.  

As expected, bias and efficiency (see Table 12), RMSEA values (see 

Table 13), and chi-square values (see Table 14) are higher in the presence of this 

form of misspecification.  The substantial size of the chi-square values relative to 

the degrees of freedom suggests a large degree of misfit between the population 

and the specified model.   

Table 12 

Absolute Bias (Population value Minus Model Estimate) and Efficiency (in parentheses) under 

Correctly or Incorrectly Specified Form of the Growth Model for  with 6 Repeated Measures, 

Slope Variance of 20,  and Error Variance of 50 across Time  

 
Growth form  in  
population vs. model 

 
Slope 
difference 

Sample size 

200 500 800 

Quadratic – Linear  
(misspecified) 

0 -.146 (1.23) -.139 (.78) -.135 (.61) 

.5278 -.146 (1.23) -.139 (.78) -.135 (.61) 

 .7917 -.146 (1.23) -.139 (.78) -.135 (.61) 

 1.0556 -.146 (1.23) -.139 (.78) -.135 (.61) 

Linear – Linear  0 -.021 (.67) -.014 (.42) -.015 (.34) 

.5278 -.021 (.67) -.014 (.42) -.015 (.34) 

 .7917 -.021 (.67) -.014 (.42) -.015 (.34) 

 1.0556 -.021 (.67) -.014 (.42) -.015 (.34) 
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Table 13 

Mean RMSEA and Standard Deviation (in Parentheses) under Correctly or Incorrectly Specified 

Form of the Growth Model for with 6 Repeated Measures, Slope Variance of 20, and Error 

Variance of 50 across Time 

 
Growth form  in  
population vs. model 

 
Slope 
difference 

Sample size 

200 500 800 

Quadratic – Linear  
(misspecified) 

0 .219 (.02) .219 (.01) .219 (.01) 

.5278 .219 (.02) .219 (.01) .219 (.01) 

 .7917 .219 (.02) .219 (.01) .219 (.01) 

 1.0556 .219 (.02) .219 (.01) .219 (.01) 

Linear – Linear  0 .017 (.02) .010 (.01) .008 (.01) 

.5278 .017 (.02) .010 (.01) .008 (.01) 

 .7917 .017 (.02) .010 (.01) .008 (.01) 

 1.0556 .017 (.02) .010 (.01) .008 (.01) 

 

Table 14 

Average Chi-Square and Standard Deviation (in Parentheses) under Correctly or Incorrectly 

Specified Form of the Growth Model for  with 6 Repeated Measures, Slope Variance of 20, and 

Error Variance of 50 across Time 

 
Growth form  in  
population vs. model 

 
Slope 
difference 

Sample size 

200 500 800 

Quadratic – Linear  
(misspecified) 

0 223.75 (31.60) 525.00 (50.96) 824.56 (62.99) 

.5278 223.75 (31.60) 525.00 (50.96) 824.56 (62.99) 

 .7917 223.75 (31.60) 525.00 (50.96) 824.56 (62.99) 

 1.0556 223.75 (31.60) 525.00 (50.96) 824.56 (62.99) 
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Comparison of Results across Power Analysis Approaches 

Three different power analysis techniques (Monte Carlo, Satorra-Saris, 

and MacCallum-Browne-Cai) were used to estimate power to detect a significant 

difference in slopes.  Table 15 reports the resulting power estimates across these 

three techniques and data conditions (slope variance of 20; level-1 error variance 

of 50 or 100; 3 or 6 measurement occasions; sample size of 200, 500, or 800; and 

slope difference of .5278, .7917, or 1.0556).  Figures 5, 6, and 7 graphically 

depict power across these techniques and conditions.   

In examining the power estimates for the Monte Carlo and Satorra-Saris 

technique, it is apparent that, across conditions for level-1 error variance, slope 

variance, number of measurement occasions, slope difference, and sample size, 

these two techniques provide comparable results.  In fact, under no condition did 

power estimates from the Monte Carlo and Satorra-Saris technique differ by more 

than 0.03; this condition was for error variance of 100, sample size of 500, and six 

repeated measures, with the majority of estimates differing by 0.01 or less across 

these two techniques.  The overlap of the Monte Carlo and Satorra-Saris power 

plots in Figures 5, 6, and 7 emphasize the similarities between these techniques 

across conditions.  Even with a sample size of 200, Satorra-Saris power estimates, 

across all conditions, were quite close to the Monte Carlo estimates.   

A limited investigation of smaller sample sizes smaller than 200 suggests 

that sample size can be quite small and these techniques can still yield comparable 

results. With an intercept variance of 100, slope variance of 20, error variance of 

50, and slope difference of 0.7917, powers differed by no more than 0.01 between 
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the Monte Carlo and Satorra-Saris techniques for samples sizes from 50 to 200.  

For sample sizes of 200 and 150, the Satorra-Saris technique yielded power 

estimates that were approximately 0.01 greater than the Monte Carlo technique.  

With sample sizes of 100 and 50, however, the Satorra-Saris technique yielded 

power estimates that were approximately 0.01 less than the Monte Carlo 

technique. 

However, any similarities between MBC technique estimates and the 

Monte Carlo (or Satorra-Saris) technique appear more arbitrary, as different 

model conditions result in different MBC power estimates more closely 

approximating the Monte Carlo power values.  When using the MBC technique 

with six repeated measures, the lower RMSEA values that assume perfect fit for 

the full model (0 and .01; 0 and .02) tend to result in power estimates closest to 

the Monte Carlo and Satorra-Saris estimates, with the 0-.01 criterion being the 

most accurate with a small slope difference and the 0-.02 criterion being the most 

accurate with a moderate slope difference (with an effect size of approximately 

.3).  For an effect size of approximately .4, the Monte Carlo and Satorra-Saris 

power estimates fall between the MBC power estimates with RMSEA pairs of 0-

.02 and .04-.05.  In all conditions with six repeated measures, the .04-.05 RMSEA 

criterion consistently overestimated power in comparison to the Monte Carlo and 

Satorra-Saris techniques.  This relationship between the MBC technique and the 

Monte Carlo and Satorra-Saris techniques, in terms of which RMSEA 

corresponds most closely estimated Monte Carlo and Satorra-Saris powers, 

changes when the model includes only three repeated measures.   
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The number of repeated measures plays a large role in the MBC power 

estimates, as greater degrees of freedom result in increased power (see Figure 7).  

Therefore, whereas power estimates for a model with six repeated measures 

includes many conditions that overestimate power relative to the Monte Carlo and 

Satorra-Saris approaches, power estimates for a model with three repeated 

measures results in power often being underestimated in comparison with the 

Monte Carlo and Satorra-Saris techniques.  Because of the substantial decrease in 

degrees of freedom between models with six vs. three repeated measures , when 

the model includes three repeated measures, only the .04-.05 RMSEA power 

estimates are remotely close to those of the Monte Carlo and Satorra-Saris 

estimates (with the increase in RMSEA values increasing power, bringing MBC 

estimates closer to the Monte Carlo approach).   

With three repeated measures, however, the influence of effect size on 

power estimates using the Monte Carlo and Satorra-Saris techniques is quite 

apparent, emphasizing differences between these techniques and the MBC 

technique.  Whereas conditions with six repeated measures included MBC 

estimates that were relatively close to the Monte Carlo and Satorra-Saris estimates 

(with larger RMSEA values better approximating power for conditions with larger 

effect sizes), the greatly underestimated power for the MBC technique with three 

repeated measures makes it obvious that as the slope difference increases, the 

Monte Carlo and Satorra-Saris power estimates become increasingly divergent 

from all MBC estimates.  Whereas the Monte Carlo and Satorra-Saris techniques 

respond to the increased effect size with substantial increases in power, the MBC 
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power remains underestimated due to low degrees of freedom and perhaps 

inappropriate RMSEA values under the given conditions.   

Finally, although the influence of level-1 error variance on power 

estimates in the Monte Carlo and Satorra-Saris techniques is small, the change in 

power seen across error variance conditions for the Monte Carlo and Satorra-Saris 

techniques is not apparent in the MBC technique because of the limited 

information required to estimate power using the MBC technique.  This 

emphasizes the fact that data conditions and parameter values that are known to 

influence power (such as error and slope variance) do not influence MBC power 

estimates, which could result in more divergence in power estimates between 

techniques.   



 

Table 15 

Power across Power Analysis Techniques with Slope Variance of 20 

 

 
 
Level-1 
error 
variance 

 
 
Number of 
measurement 
occasions 

 
 
 
Slope 
difference 

Monte Carlo  Satorra-Saris  MacCallum-Browne-Cai 

Sample size  Sample size  Sample size 

200 500 800 
 

200 500 800 
 200 500 800   200     500       800  200     500      800 

RMSEA: 0, .01          RMSEA: 0, .02       RMSEA: .04, .05 

50 3 
(unconstrained 
model df = 2; 
constrained 
model df = 3) 

.5278 .143 .225 .337  .119 .226 .331  .057 .067 .078  .078 .121 .165  .152 .311 .468

 .7917 .218 .436 .645  .208 .438 .627  -- -- --  -- -- --  -- -- -- 

 1.0556 .328 .675 .861  .330 .671 .860  -- -- --  -- -- --  -- -- -- 

                     

 

6 
(unconstrained 
model df = 20; 
constrained 
model df = 21) 

.5278 .112 .220 .343  .122 .235 .345  .099 .176 .254  .253 .535 .736  .524 .892 .982

.7917 .205 .437 .631  .215 .456 .647  -- -- --  -- -- --  -- -- -- 

1.0556 .346 .676 .853  .344 .692 .876  -- -- --  -- -- --  -- -- -- 

                    

100 3 
(unconstrained 
model df = 2; 
constrained 
model df = 3) 

.5278 .115 .197 .291  .109 .200 .292  -- -- --  -- -- --  -- -- -- 

 .7917 .194 .387 .564  .185 .386 .561  -- -- --  -- -- --  -- -- -- 

 1.0556 .289 .609 .791  .291 .605 .804  -- -- --  -- -- --  -- -- -- 

                     

 
 

6 
(unconstrained 
model df = 20; 
constrained 
model df = 21) 

.5278 .104 .199 .307  .114 .214 .313  -- -- --  -- -- --  -- -- -- 

.7917 .188 .382 .583  .197 .414 .597  -- -- --  -- -- --  -- -- -- 

1.0556 .305 .630 .809  .312 .641 .836  -- -- --  -- -- --  -- -- -- 
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 Monte Carlo     Satorra-Saris
  

 MBC  
(RMSEA = 0, .01) 

 MBC  
(RMSEA = 0, .02) 

 MBC  
(RMSEA = .04, .05) 

 
              
Figure 5. Comparison of power using different power analysis techniques with 6 repeated measures and slope variance of 20.
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 Monte Carlo     Satorra-Saris
  

 MBC  
(RMSEA = 0, .01) 

 MBC  
(RMSEA = 0, .02) 

 MBC  
(RMSEA = .04, .05) 

 
Figure 6. Comparison of power using different power analysis techniques with 3 repeated measures and slope variance of 20. 
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 Monte Carlo     Satorra-Saris
  

 MBC  
(RMSEA = 0, .01) 

 MBC  
(RMSEA = 0, .02) 

 MBC  
(RMSEA = .04, .05) 

 
Figure 7. Comparison of power using different power analysis techniques with 3 and 6 repeated measures, level-1 error variance of 50, and slope variance of 

20.
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CHAPTER 4 

DISCUSSION 

The present investigation was designed to assist investigators in 

understanding conditions that affect power to detect the influence of a treatment 

variable on growth in latent growth modeling.  By using the Monte Carlo 

approach to power analysis to investigate how slope variance, level-1 error 

variance, sample size, slope difference, and number of measurement occasions 

influenced power, it was possible to elucidate which parameter specifications 

require careful attention in conducting a priori power analyses.  Additionally, by 

estimating power using three power analysis techniques commonly employed for 

SEM contexts, investigators can be informed about conditions in which these 

methods are likely to yield inconsistent results. 

In the base power conditions using the Monte Carlo technique, number of 

repeated measures, slope variance, level-1 error variance, sample size, and slope 

difference had the greatest impact on power estimates.  Additionally, although 

misspecification in the level-1 error variance structure slightly influenced power, 

misspecification in the growth structure had a substantial influence on power.  

Further, power estimates varied somewhat according to the choice of technique 

used to estimate power, with the MBC approach differing markedly from the 

Satorra-Sarris and Monte Carlo approaches for some conditions.  

Type I error 

Overall, Type I error rates were quite close to the prescribed alpha in all 

conditions.  The conservative Type I error rates that occurred as sample size and 
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number of repeated measures increased could be potentially concerning; however, 

these Type I error rates were only slightly conservative. In fact, the most 

conservative Type I error estimate was .037 (for sample size of 800, slope 

variance of 20, error variance of 100, and 6 repeated measures), which still fell 

within Bradley’s (1978) liberal criterion for an alpha of .05, requiring that Type I 

error values fall between .025 and .075.  

Number of repeated measures 

This investigation did not show that number of repeated measures, across 

a fixed study length, substantially influenced power to detect between-group 

differences in slopes.  Although various studies have investigated how the number 

of repeated measures influence power in latent growth modeling (e.g., Hertzog et 

al., 2006; Hertzog et al., 2008; Muthén & Curran, 1997; Zhang & Wang, 2009), 

these studies typically focused on a different model parameter or focused on 

length of study rather than on number of repeated measures holding length of 

study constant. 

Hertzog et al. (2006), for example, focused on the power to detect 

correlated change between two variables measured over time, whereas Hertzog et 

al. (2008) focused on the power to detect slope variance.  In both studies, power 

was investigated across 1 to 19 repeated measures and an increase in repeated 

measures corresponded to an increase in study length, while varying conditions 

such as sample size, effect size, and growth curve reliability.  Growth curve 

reliability was measured at wave one as intercept variance divided by total 

variance (i.e., intercept variance plus error variance).  Thus, growth curve 
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reliability was manipulated by varying level-1 error variance values.  The 

influence of number of measurement occasions on power to detect the covariance 

between slopes (2006) and slope variances (2008) was more substantial than what 

was found in the present study.  For example, the 2006 study found that, under 

conditions of growth curve reliability between .5 and .7 (comparable to this 

study’s range of growth curve reliability) with a correlation of .50 between 

variable growth and a sample size of 500, the maximum difference in power to 

detect correlated growth between three and six repeated measures was 

approximately .40 (with a power of .03 for three repeated measures and a power 

of .43 for six repeated measures).  In the 2008 study, when growth curve 

reliability ranged from .5 to .7, with no correlation between slope and intercept 

variance, with a sample size of 500, the maximum difference in power to detect 

slope variance was .87 (.03 for three repeated measures, .90 for six repeated 

measures).  While a number of other conditions also influenced the magnitude of 

the difference in power, the influence of number of measurement occasions 

combined with length of study on power for these particular parameters appears to 

have had a more substantial influence on power than the present study, which 

investigated the influence of number of repeated measures only (i.e., holding 

length of study constant).   

Zhang and Wang (2009) took a similar approach to investigating number 

of repeated measures, with measurement occasions ranging from three to six and 

an increase in measurement occasions corresponding to an increased study length.  

Again, increased study length and number of measures was related to increased 
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power to detect growth.  For example, in order to obtain a power of .80 with 3 

repeated measures, a sample size of 300 was required, whereas the same power 

could be obtained with 6 repeated measures with a sample size of 210.   

Unlike Hertzog et al. (2006, 2008) and Zhang and Wang (2009), Muthén 

and Curran (1997) considered the number of repeated measures for a model in a 

more detailed manner and for a parameter similar to the present investigation—

the influence of a treatment variable on growth. Therefore, Muthén and Curran’s 

study yielded results more comparable to the present study.  Rather than focusing 

solely on length of study, Muthén and Curran considered length of study, number 

of measurement occasions for a given study length (as was investigated in this 

study), and study length for given number of measurement occasions.  Overall, 

similar to this investigation, the findings by Muthén and Curran suggest a small 

increase in power related to increased number of measurement occasions for a 

constant study length.  For example, in comparing three versus five repeated 

measures with a constant study length, power differed by no more than .06 

between numbers of repeated measures, which is similar to the maximum 

difference of .04 observed in this investigation.  However, as with the other 

studies that considered length of study along with measurement occasions, 

Muthén and Curran report a more dramatic influence on power when study length 

increased from three time points to seven time points, where time between 

intervals is equal, making the length of a study with seven time points longer than 

a study with three time points.  For example, with sample size of 500 and 3 time 
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points, power was approximately .52, whereas 7 time points and a 

correspondingly longer study period resulted in a power of .87.   

Ultimately, it appears as though the influence of number of measurement 

occasions, given a constant study length, does influence power to detect the 

influence of a treatment condition on growth, with more measurement occasions 

increasing power; however, this difference was small within the limited range 

investigated.  Clearly, the influence of study length and number of measurement 

occasions on power in latent growth modeling is an important consideration in 

study design.  A more complete understanding of how number of measurement 

occasions influence power to detect various parameters in latent growth models 

requires an approach similar to Muthén and Curran, who considered a greater 

range of how length of study and number of measurement occasions can jointly 

impact power to detect differences in growth rates.   Therefore, a limitation of the 

present study is that only one of the three measurement occasion conditions from 

Muthén and Curran’s study was considered in the present study. Researchers 

seeking to optimize power to detect particular effects while minimizing costs are 

advised to consider the potential impact on power of various feasible 

combinations of length of study and number of measurement occasions, along 

with other conditions (e.g., error variance, sample size, effect size).  

Additionally, although Hertzog et al. (2006, 2008) focused on different 

parameters and investigated the number of measurement occasions differently (as 

a combination of study length and number of repeated measures), their findings 

do suggest that a greater growth curve reliability increases the influence that 
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number of repeated measures have on power. Perhaps this relationship between 

growth curve reliability and number of repeated measures also occurs when the 

number of repeated measures is considered with a fixed study length.  The present 

study considered a narrow range of growth curve reliabilities that did not exceed 

.70; however, Hertzog et al. findings indicated that the greatest difference in 

power, relating to measurement occasions, occurred between growth curve 

reliabilities of .70 to .99.  Therefore, in addition to considering the number of 

measurement occasions more systematically, as was done by Muthén and Curran, 

future investigations should also consider a wider range of growth curve 

reliabilities, which can also be conceptualized as a wider range of error variances.   

Finally, Venter, Maxwell, and Bolig (2002) report that three repeated 

measures in an ANCOVA setting, as compared to a pre-test/post-test study 

design, provide the advantage of additional information relating to growth form.  

Although they report that the biggest gains in power typically occur with five 

repeated measures (vs. two repeated measures), Venter et al. point out that even 

with minimal increases in power to detect growth with three versus two time 

points, the gains in understanding of growth and growth form resulting from three 

repeated measures can be reason enough to include an additional measurement 

occasion.  Therefore, it is important to note that although power is an important 

consideration, small increases in power coupled with gaining additional 

information relating to growth can provide support for using additional 

measurement occasions.  Therefore, investigators must consider their 

hypothesized form of growth, available resources, method of including additional 
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measurement occasions (i.e., holding study length constant or increasing study 

length), and implications for power in determining number of measurement 

occasions. 

Slope variance 

Hertzog et al. also manipulated slope variance in their investigations of 

power to detect the covariance between slopes (2006) and slope variance (2008) 

in latent growth modeling, considering slope variances of 25 or 50.  However, 

these studies provide little insight into the influence of slope variance on power.  

In their 2006 investigation, Hertzog et al. investigated the influence of slope 

variance on power to detect growth covariance between two variables; however, 

the results of the slope variance conditions were not discussed.  In their 2008 

investigation, Hertzog et al. focused on power to detect slope variance, meaning 

an increase in slope variance increased power, making their scenario quite 

different from the present investigation.   

As expected, this study found that increased variance decreased power to 

detect the treatment effect on growth.  The power differences between slope 

variances of 10 and 20 were not inconsequential, with differences of up to .24 in 

power in the base conditions, holding all else constant.  This suggests that slope 

variance estimates in conducting power analyses require consideration, and power 

should be investigated with a range of slope variance values in order to ensure an 

accurate range of power estimates and to determine ideal sample size for a given 

study.   Additionally, researchers conducting power analyses might consider 

plotting their data based on parameter estimates, as done in Figure 3, in order to 
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get a visual sense of their slope variance estimates and to assist them in making 

more informed choices for slope variance. 

In terms of the supplemental exploration of the slope difference to slope 

standard deviation ratio as it relates to power to detect the influence of a treatment 

effect on growth, it is evident that a larger ratio is related to increased power, as 

expected.  However, power did increase within each ratio as slope difference 

increased.  The relatively narrow range in power estimates, even when effect size 

ranged from .22 to .86, suggests that slope difference and slope variance should 

be considered together.  The relationship between these two parameters could be 

helpful in providing an additional guide in parameter value selection as 

investigators consider their expectations relating to the magnitude of slope 

variance and effect size.  Overall, this ratio could potentially serve as an 

alternative effect size for a difference in slopes; however, the difference in power 

estimates, even when this ratio was held constant, indicates that this ratio does not 

capture all individual effects of slope difference and slope variance.  Because of 

the brief attention given to the ratio of slope difference to slope standard deviation 

in the present investigation, it is difficult to make strong conclusions at this point.  

Rather, additional consideration should be given to this matter in order to better 

understand this ratio’s relationship to power and potentially yield useful 

guidelines in parameter value estimates.  

Level-1 Error Variance 

Unlike their brief investigation of slope variance, Hertzog et al. (2006, 

2008) considered the influence of level-1 error variance more extensively.  They 
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conceptualized the manipulation of error variance as a manipulation of growth 

curve reliability, measured (at wave one) as intercept variance divided by total 

variance (i.e., intercept variance plus error variance). Their investigation 

considered growth curve reliability values ranging from .50 to .99, resulting in 

error variance values of 100 to 1, respectively.  Ultimately, as in their 2006 

investigation of power to detect slope covariances, Hertzog et al. (2008) found 

that growth curve reliability (and thus error variance) had a “profound effect” on 

power to detect slope variance (p. 557).  For example, with a large effect size (i.e., 

large slope variance), a sample size of 500, and five measurement occasions, 

power remained low when growth curve reliability was less than .91.  

Although this same pattern in which low error variance results in higher 

power was seen in the present study, the influence of error variance (50 vs. 100) 

was not substantial. However, the range of growth curve reliability values in this 

investigation (.50 or .67) was substantially more restricted than that of Hertzog et 

al.  In Hertzog et al. (2006), changes in power to detect a slope covariance across 

growth curve reliabilities of .50 to .70 (for both three and six measurement 

occasions) were evident; however, changes in power with lower growth curve 

reliabilities compared to changes for growth curve reliability values of .70 to .99 

were much less substantial.  Thus, the narrow range of the growth curve 

reliabilities in the present investigation and the fact that these values fell on the 

low end of the growth curve reliability scale (compared to Hertzog et al.) resulted 

in our finding that error variance did have an impact on power, albeit a less 
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pronounced effect than Hertzog et al. found across larger growth curve 

reliabilities.  

This, however, begs the question of whether or not such high growth curve 

reliabilities are plausible and worth investigating in a priori power analyses.  In 

determining population values for the base models, model-implied correlation 

values were considered in an effort to select parameter values that were realistic.  

Larger residual variance values played a key role in finding model-implied 

correlation values that were not unrealistically high.  Employing error variances 

of 1 or 10 (corresponding to growth curve reliabilities of .99 or .91) resulted in 

very high model-implied correlations between waves.  For example, with an 

intercept variance of 100, slope variance of 20, and error variance of 10, model-

implied correlations ranged from .65 to .98, (with a number of correlations 

exceeding .90.    

Although growth curve reliability, and, accordingly, error variance, can 

have a substantial impact on power, it appears that this impact occurs with error 

variance values that may be unrealistically low or would require special 

considerations in regard to study planning and execution to achieve.  Perhaps, in 

most cases, level-1 error variance will play a more minor role in a priori power 

analyses as greater error variances that yield lower growth curve reliabilities are 

more likely to be investigated in an effort to use realistic parameter values.  A 

review of applied study results and their level-1 error variance values and growth 

curve reliabilities may be helpful in determining a realistic range of growth curve 

reliability estimates.   
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As discussed further below, results similarly suggest misspecification of 

the error structure only slightly influences power, suggesting that, in many cases, 

error variance is not a parameter that requires a great deal of concern in power 

analyses.  However, for those investigators who believe their study can minimize 

error variance (e.g., by decreasing measurement error through the use of multiple-

indicators for the outcome variable; Hertzog et al., 2008), it could be useful to 

consider the increase in power that could result.  Of course, investigating higher 

error variance values allows for more conservative power estimates and sample 

size planning. It must also be noted that these results apply only to the power to 

detect differences in slopes.  Investigators who are interested in differences in 

means across groups at given time points may find that level-1 error variance is 

quite influential for the power to detect these differences in means.   

Misspecification in Level-1 Error Structure and Form of the Growth Model  

It is informative to consider how particular types of model 

misspecification can influence power to detect focal effects.  In reviewing the 

influence of error variance structure on power, it appears that constraining error 

variances to be equal when they are increasing over time only slightly influences 

power.  However, this could be related to the narrow range of error variance 

values considered.  The largest incremental increase in the residual error variance 

was 15 at each wave, meaning growth curve reliability was 50 at wave one 

(yielding a growth curve reliability of .67) and was 125 at wave six (yielding a 

growth curve reliability of .44).  As seen in Hertzog et al. (2006, 2008), the most 

substantial influence of error variance on power to detect slope covariances or 
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slope variances appeared when growth curve reliability approaches .7 or .8.  

Therefore, a greater influence of power due to misspecification could result with 

larger increments of increase or smaller error variance values.  Overall, it appears 

that constraining error variances to be equal across time when error variances 

increase over time, as manipulated in this study (by 5 vs. 15), only slightly 

influences power to detect slope differences and may not be a large concern for 

power analysts.   

Misspecifying the form of a growth model by modeling a quadratic 

growth model as linear, however, substantially influences the probability of 

detecting differences in slopes.  This finding supports the tactic of looking at form 

of growth sequentially in order to avoid misspecification of the form of growth.  

That is, researchers should first specify a linear growth model and then examine 

whether a quadratic model improves upon this model.  Although this tactic may 

have Type I error considerations, it helps ensure that the proper form of growth is 

not overlooked by testing a single omnibus hypothesis. In considering 

misspecification in the form of model growth in this investigation, however, only 

one form of misspecification was considered, making this portion of the 

investigation limited and only a first step in further studies.  Ultimately, it would 

be best to consider past research and theory so that the most likely growth form 

can be considered.  If past research is unclear regarding the likely shape of the 

growth trajectory for the focal outcome, power might consider investigating 

power across multiple forms of growth.   
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Power Analyses across Techniques 

Past studies have found that, for the most part, the Monte Carlo and 

Satorra-Saris power analyses techniques are quite comparable with latent growth 

models in detecting the significance of a number of parameters (e.g., slope 

covariances, differences in slopes; Muthén & Curran, 1997; Hertzog et al., 2006).  

However, in some settings, the Satorra-Saris approach has been found lacking in 

its accuracy, such as when comparing two slightly misspecified models (Hertzog 

et al., 2008), with the accuracy of the Satorra-Saris approach defined by its 

consistency with Monte Carlo power estimates.  In the present study conditions, 

however, the Satorra-Saris technique was found to approximate the Monte Carlo 

power estimates quite well, with power to detect a difference in slopes never 

differing by more than .03 between these two techniques.  In fact, in explorations 

of sample sizes as low as 50, consistent results were still found between the 

methods.  In choosing between the Satorra-Saris approach or the Monte Carlo 

approach under conditions in which both result in similar power estimates, 

researchers should therefore consider the feasibility of manipulating factors 

relevant to the study.  For example, investigations of the impact of non-normality, 

model misspecification, and missing data on power can only be examined using 

the Monte Carlo approach.  However, investigations that might focus on the 

influence of sample size for a particular model could use the Satorra-Saris 

approach, which allows for the calculation of noncentrality parameters across a 

range of sample sizes using the power estimate from just one sample size using a 

simple equation (multiplying the chi-square for a given sample size by the ratio of 
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the new sample size to the sample size used to determine the initial chi-square 

value).  Although the Satorra-Saris approach requires more steps (3 steps using 

Mplus), this technique could save time in estimating power for a parameter across 

multiple sample sizes.   

The MBC power analysis technique was most discrepant of the three 

analysis approaches.  Because of the limited factors considered in the calculation 

of power using this technique, only the targeted RMSEA values can be 

manipulated in order to improve power estimates.  Although MacCallum, 

Browne, and Cai (2006) recommend against using actual RMSEA values derived 

from samples in order to determine post hoc (i.e., observed) power, they do 

indicate that the selection of RMSEA values for a priori power analyses “be made 

with as much care as possible” (p. 30).  Therefore, understanding how RMSEA 

values behave under certain conditions and exploring RMSEA values from past 

research may aid users of the MBC technique.  

Ultimately, investigating power for a range of RMSEA values, in 

combination with considering model conditions and past research, may result in 

the most informative use of the MBC technique.  For example, a larger expected 

effect size could be factored into the MBC approach by selecting RMSEA values 

that are more discrepant (e.g., .01 and .05 rather than .01 and .02).  For example, 

in using the MBC SAS program that calculates power for a range of RMSEA 

values (Program F; MacCallum, Browne, & Cai, 2006), and focusing on a nested 

model with 3 degrees of freedom, a full model with 2 degrees of freedom, and 

sample size of 500, it was easy to see that by specifying the full model RMSEA to 
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be 0 (for compatibility with the Satorra-Saris technique), power estimates range 

from .07 to .97 as the nested model RMSEA increased from .01 to .10.  This 

information alone tells an investigator very little about the likely power for 

detecting the focal parameter in their model.  However, if one expects a small 

effect size for a parameter of interest, it might be useful to consider only the 

smaller discrepancies in RMSEA values (perhaps a nested model RMSEA value 

of .01 to .03, which yields a range in power estimates of .07 to .21; the Monte 

Carlo estimate was .23).  If a larger effect size is expected, perhaps the nested 

model RMSEA values should range from .04 to .07 (which yields a range in 

power estimates of .34 to .77; the Monte Carlo estimate was .44 and .67 for effect 

sizes of approximately .20 and .30).  Currently, these RMSEA values are selected 

arbitrarily; however, the general concept of selecting RMSEA pairings that reflect 

the expected effect size could help investigators determine a more specific range 

of power estimates that would more accurately reflect the Monte Carlo approach.  

Additionally, knowing that the MBC technique results in low power 

estimates with low degrees of freedom, one might consider using RMSEA values 

with slightly larger discrepancies in order to compensate for this. Further, with 

fewer degrees of freedom, constraining a single parameter to be 0 could have a 

greater influence on model RMSEA compared to constraining a parameter to be 0 

in a larger model; therefore, it would make sense to use more discrepant RMSEA 

values.   

Following the completion of this investigation, Li and Bentler (2011) 

suggested an alternative method of using the MBC (2006) technique to determine 
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power to detect differences in model fit.  Rather than selecting a pair of RMSEA 

values (i.e., a value for the full model and the nested model), Li and Bentler 

outline a technique that allows investigators to select only one RMSEA value.  

Whereas the selection of two RMSEA values can result in noncentrality 

parameters that are not necessarily comparable across models, even when the 

same RMSEA pairs are used, Li and Bentler’s method of defining a single 

RMSEA value means the RMSEA value can retain its meaning and be compared 

across models that differ in degrees of freedom.  This alternative method of using 

the MBC technique could be useful to practitioners in selecting RMSEA values 

that remain meaningful across models.  Although Li and Bentler’s approach 

appears to yield results comparable to the MBC approach, it may be useful to 

consider this alternative MBC approach in future investigations because of the 

benefits this approach has over the traditional MBC technique.  

Overall, it seems that although the MBC approach at first appears to yield 

a wide range of power estimates that can deviate from the Monte Carlo estimates 

substantially, it is possible that the MBC approach could be used to approximate 

the power to detect a single parameter if an investigator takes specific model 

conditions and RMSEA behaviors into account. However, additional 

investigations of MBC power estimates across RMSEA values and across model 

conditions is required before any specific suggestions could be made.  

Additionally, in considering the MBC versus the Monte Carlo and Satorra-Saris 

techniques, an important question then becomes whether or not the Monte Carlo 

and Satorra-Sarris power estimates are actually providing accurate power 
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estimates.  Of course, power estimates are only accurate if parameters are 

properly specified; therefore, although the MBC approach may result in estimates 

substantially different from the Monte Carlo and Satorra-Saris technique, if the 

latter techniques involved the use of inaccurate parameter estimates--perhaps due 

to a lack of pilot data or past research--then it may not be possible to say which 

power estimate is best.  Incorrect estimates for slope difference, for example, can 

substantially influence power and result in quite inaccurate estimates using the 

Monte Carlo and Satorra-Saris techniques.  As the number of parameters that 

require estimation increase, the chance of misestimating parameters that can 

influence power also increases.  Estimating the unknown, however, is an inherent 

concern in a priori power analyses, with any power analysis technique being 

riddled with estimates and guesses.   

Limitations and Future Directions 

Because of the nature of power analysis and simulation studies, this 

investigation considered only one set of manipulated conditions that influence 

power to detect a treatment effect in latent growth modeling.  This study aimed to 

determine factors that may impact power to detect slope differences with the goal 

of providing power analysts with some guidance in terms of factors that may be 

more or less important to estimate carefully. Within any one factor, only a small 

number of possible parameter values were considered; more in-depth study of 

factors such as slope difference or slope variance, for example, could be examined 

systematically in future simulation work.   
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First, only two error variance values and two slope variance values were 

considered.  Investigating a wider range of variances could help better identify 

trends in how they influence power across other model conditions.  Ultimately, 

for power analysts working within a particular domain, a careful review of the 

literature and previous parameter estimates within particular construct domains 

(e.g., standardized achievement measures or personality measures) may be 

required to properly estimate model parameters for power analysis via either the 

Monte Carlo or Saris-Satorra approach.  For example, the present study 

considered only homogenous level-1 error variance over time or consistently 

increasing variances over time; however, a thorough review of the literature in 

certain academic fields could suggest other observed patterns that should be 

investigated in terms of their influence on power.  Additionally, this investigation 

considered only number of repeated measures within a fixed study length.  Future 

research should also consider study length across fixed numbers of repeated 

measures in order to more fully understand when additional measurement 

occasions may or may not be fruitful in applied research.   

In comparing Monte Carlo power estimates to Satorra-Saris power 

estimates, the present investigation found these estimates to be very comparable; 

however, the model conditions investigated were quite limited.  In order to better 

understand how the Satorra-Saris approach compares to the Monte Carlo 

approach in power to detect differences in slope, it would be useful to consider 

more complex models and model conditions (e.g., additional covariates, quadratic 
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growth, missing data, nonnormal data) and models with varied slope and intercept 

relationships (as in Fan, 2003). 

Finally, the method of determining significance (e.g., Wald test vs. 

likelihood ratio test; Hertzog et al., 2008) should be considered and varied.  The 

design of this investigation involved conducting each power analysis approach as 

it would most likely be applied by a researcher.  A possible limitation of this 

approach is different statistical indices were used in estimating power across these 

techniques. For example, power estimates for the Monte Carlo approach were 

based on the Wald tests for the parameter of regressing the binary treatment 

covariate on the slope factor.  The Satorra-Saris approach, on the other hand, uses 

the likelihood-ratio chi-square test, with the resulting chi-square value for a 

slightly misspecified model (i.e., the focal parameter set to 0) approximating a 

noncentrality parameter.  Although investigating these power analysis approaches 

using the significance test that researchers would typically employ is useful, it is 

also important to consider these techniques with comparable methods of 

significance testing as well as with other methods of testing significance, as done 

by Hertzog et al. (2008).  Ultimately, the difference arising from the use of these 

two approaches is likely small, especially as sample size increases, as these two 

approaches are asymptotically equivalent (Buse, 1982).   

Another key consideration for future research involves defining effect size 

in studies focusing on longitudinal growth modeling.  Currently, the methods used 

to calculate effect size, particularly for differences in growth, vary across studies 

and capture different components of the model.  For example, Muthén and Curran 
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(1997) and Fan (2003) defined the effect size for differences in growth as the 

difference between groups at a particular time point divided by the standard 

deviation.  Further, the standard deviation used in this calculation could also vary, 

with investigators using either the standard deviation across the control and 

treatment groups or using the standard deviation for the control group only.  

Feingold (2009), on the other hand, suggested calculating effect size based on the 

overall growth rather than focusing on a particular point in time, with effect size 

calculated as the difference in growth multiplied by time and divided by the initial 

standard deviation of raw scores.  Muthén and Muthén (2002), however, took yet 

another approach, defining effect size as the difference in slope means divided by 

the slope standard deviation.  Varying approaches to calculating effect size for a 

single parameter makes equating findings difficult and complicates the power 

analysis process.   

Future studies should consider how effect size is (or should be) defined, as 

well as other techniques of conceptualizing parameter variances within the 

context of longitudinal models.  For example, further investigations of the slope 

difference to slope standard deviation ratio, two values that were found to 

substantially influence power, could yield information useful for estimating power 

and selecting parameter values.  In turn, a better understanding of this ratio could 

inform investigators as to whether or not they need to consider multiple parameter 

values that ultimately yield the same slope difference to standard deviation ratio.  

Similarly, one might consider the use of intraclass correlation coefficients to 

understand important parameters, such as slope variance, within the larger model 
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context.  Using such a technique could allow investigators to calculate the total 

percentage of variance in the dependent variable at a particular time accounted for 

by slope variance and therefore allow power analysts to better define what makes 

a large or small slope variance.  Overall, consistency in defining effect size and 

additional methods of operationalizing parameters within the larger model context 

(understanding how much particular parameters contribute to total variance) are 

important considerations for future investigations and may allow simplification of 

parameter selection and power analyses.   

Summary and Suggestions 

Overall, this investigation suggests that effect size, which was 

manipulated here by slope difference, slope variance, and sample size are 

important parameters to thoroughly investigate when conducting power analyses.  

However, repeated measures (3 vs. 6) when study length is held constant and 

level-1 error variance require less consideration.  Error variance has a small 

influence on power to detect the influence of a treatment on growth even in 

instances of model misspecification relating to error variance structure, when 

error variance values yield lower, potentially more realistic growth curve 

reliabilities.  Additionally, one’s decision to use the Monte Carlo technique or 

Satorra-Saris technique, under the conditions investigated here, depends largely 

on preference and focal conditions (e.g., power across sample sizes, missing data, 

non-normal data).  Further, although the MBC technique appears quite discrepant 

from the Monte Carlo and Satorra-Saris techniques, the assumption of superiority 

of the Monte Carlo and Satorra-Saris techniques presumes that reasonable 
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parameter estimates are employed; poor estimates of important parameters (e.g., 

effect size or slope variance) could result in misleading estimates of required 

sample size.  However, it is similarly apparent that although the MBC technique 

requires substantially less information (df, alpha, RMSEA), the selection of the 

RMSEA values greatly influences power estimates and results in a quite large 

range of power estimates depending on RMSEA values chosen.    

Additionally, model-implied correlation matrices and plots based on 

estimated parameters should be generated and examined to ensure model 

plausibility and assist in the selection of realistic model parameters. Power 

analysts would be wise to avoid relying solely on parameter values used in past 

power investigations, as some of these values may yield unrealistic model-implied 

correlations and plots.  Investigations of model-implied correlation matrices 

conducted while selecting parameter values in this study suggest that correlations 

among observations become more realistic as slope variance decreases and level-1 

error variance increases.  Therefore, these parameter values should be considered 

if correlations among observations are unrealistically high for a given measure or 

context.  In addition to observing model-implied correlations, however, it is also 

useful to consider plots of hypothetical data based on various parameter values.  

The combination of graphing trajectories and observing model-implied 

correlations can help ensure parameter values imply data that are reasonable, 

therefore yielding more accurate power analyses.    

Ultimately, a priori power analysis in latent growth contexts is a 

necessarily complex task that requires estimation of many parameters.   Multiple 



103 

decisions must be made in terms of growth model specification and the focal 

parameters may vary across investigations, making the a priori power analysis 

process unique for each investigation.  Further, any one study likely involves 

hypotheses that involve multiple parameters. Even in using a simplified analysis 

approach that requires minimal model information, such as the MBC approach, 

power estimates can vary widely and confidence in resulting estimates may be 

low.   However, by investigating a limited number of systematically varied focal 

parameters and models, researchers may be able to provide more useful guidance 

to power analysts as they begin their exploration of a priori power for particular 

models.   

In short, this investigation suggests that power analysts interested in 

differences between slopes in longitudinal growth models carefully consider 

values for effect size, sample size, and slope variance, as these model conditions 

and parameter values can substantially influence power estimates.  Exploring a 

range of each of these values can assist an investigator in selecting a sample size 

that is appropriate across a variety of potential model conditions.  Further, the fact 

that level-1 error variance and number of repeated measures within a given study 

length of six intervals did not appear to play a substantial role in power to detect 

differences in slopes suggests less attention is required in estimating these 

parameters.  Additionally, considering the plausibility of models by exploring 

model-implied covariance matrices and plotting data based on selected parameter 

values can further guide investigators in their selection of parameter estimates.  



104 

References 

Abraham, W. T., & Russell, D. W. (2008).  Statistical power analysis in 
psychological research.  Social and Personality Psychology Compass, 
2(1), 283-301.   

Bauer, D. J. (2003).  Estimating multilevel linear models as structural equation 
models.  Journal of Educational and behavioral Statistics, 28(2), 135-167.   

Bradley, J. V. (1978).  Robustness?  British Journal of Mathematical and 
Statistical Psychology, 31, 144-152.   

Brock, L. L., Nishida, T. K., Chiong, C., Grimm, K. J., & Rimm-Kaufman, S. E. 
(2008).  Children’s perceptions of the classroom environment and social 
and academic performance: A longitudinal analysis of the contribution of 
the Responsive Classroom approach.  Journal of School Psychology, 
46(2), 129-149.   

Bryk, A. S., & Raudenbush, S. W. (1987).  Application of hierarchical linear 
models to assessing change.  Psychological Bulletin, 101, 147-158.   

Buse, A. The likelihood ratio, Wald, and Lagrange multiplier tests: An Expository 
Note.  The American Statistician, 36(3), 153-157. 

Chou, C., Bentler, P. M., & Pentz, M. A. (1998).  Comparisons of two statistical 
approaches to study growth curves: The multilevel model and the latent 
curve analysis.  Structural Equation Modeling: A Multidisciplinary 
Journal, 5(3), 247-266.  doi: 10.1080/10705519809540104 

Curran, P. J. (2003).  Have multilevel models been structural equation models all 
along? Multivariate Behavioral Research, 38(4), 529-569.   

Duncan, T. E., & Duncan, S. C. (2004).  An introduction to latent growth curve 
modeling.  Behavior Therapy, 35, 333-363.   

Duncan, T. E., Duncan, S. C., & Li, F. (2003).  Power analysis models and 
methods: A latent variable Framework for power estimation and analysis.  
In Z. Sloboda and W. J. Bukosk (Eds.), Handbook of Drug Abuse 
Prevention (Handbooks of Sociology and Social Research) (pp. 609-626).  
New York, NY:  Kluwer Academic/Plenum Publishers. 

Duncan, T. E., Duncan, S. C., & Li, F. (2003).  Power analysis models and 
methods: A latent variable Framework for power estimation and analysis.  
In Z. Sloboda and W. J. Bukosk (Eds.), Handbook of Drug Abuse 
Prevention (Handbooks of Sociology and Social Research) (pp. 609-626).  
New York, NY:  Kluwer Academic/Plenum Publishers. 



105 

Duncan, T. E., Duncan, S. C., Strycker, L. A., & Li, F. (2002).  A latent variable 
framework for power estimation within intervention contexts. Journal of 
Psychopathology and Behavioral Assessment, 24(1), 1-12.   

Farkas, G. (2008).  A review of Latent curve models: A structural equation 
perspective.  Social Forces, 87(1), 619-621.  doi: 10.1353/sof.0.0084 

Feingold, A. (2009). Effect sizes for growth-modeling analysis for controlled 
clinical trials in the same metric as for classical analysis. Psychological 
Methods, 14(1), 43-53. 

Hertzog, C., Lindenberger, U., Ghisletta, P., & von Oertzen, T. (2006).  On the 
power of multivariate latent growth curve models to detect correlated 
change.  Psychological Methods, 11(3), 244-252.   

Hertzog, C., von Oertzen, T., Ghisletta, P., & Lindenberger, U. (2008).  
Evaluating the power of latent growth curve models to detect individual 
differences in change.  Structural Equation Modeling, 15, 541-563.  doi: 
10.1080/10705510802338983 

Jung, S., & Ahn, C. (2003).  Sample size estimation for GEE method for 
comparing slopes in repeated measurements data.  Statistics in Medicine, 
22, 1305-1315.   

Kim, K. H. (2005).  The relation among fit indexes, power, and sample size in 
structural equation modeling.  Structural Equation Modeling, 12(3), 368-
390. 

Li, L., & Bentler, P. M. (2011).  Quantified choice of root-mean-square errors of 
approximation for evaluation and power analysis of small differences 
between structural equation models.  American Psychological Association, 
16(2), 116-126.   

MacCallum, R. C., Browne, M. W., & Cai, L. (2006).  Testing differences 
between nested covariance structure models: Power analysis and null 
hypotheses.  Psychological Methods, 11(1), 19-35.  doi: 10.1037/1082-
989X.11.1.19 

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996).  Power analysis 
and determination of sample size for covariance structure modeling.  
Psychological Methods, 1(2), 130-149.  RMSEA method of power 
analysis 

Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008).  Sample size planning for 
statistical power and accuracy in parameter estimation.  Annual Review of 
Psychology, 59, 537-563.   



106 

Mehta, P. D., & West, S. G. (2000).  Putting the individual back into individual 
growth curves.  Psychological Methods, 5(1), 23-43.   

Meredith, W., & Tisak, J. (1990).  Latent curve analysis.  Psychometrika, 55(1), 
107-122.   

Miles, J. (2003).  A framework for power analysis using a structural equation 
modeling procedure.  BMC M edical Research Methodology, 3(27), 1-11.  
Retrieved from: http://www.biomedcentral.com/1471-2288/3/27  

Mroczek, D. K. (2007). The analysis of longitudinal data in personality research.  
In R. W. Robins, R. C.  Fraley, & R. F. Krueger (Eds.).  Handbook of 
research methods in personality psychology (pp. 543-556).  New York, 
NY: Guilford Press. 

Murphy, K. R., & Myors, B. (2004).  Statistical power analysis: A simple and 
general model for traditional and modern hypothesis tests (2nd ed.).  
Mahwah, NJ: Lawrence Erlbaum Associates.   

Muthén, B. (2002).  Using Mplus Monte Carlo simulations in practice: A note on 
assessing estimation quality and power in latent variable models.  Mplus 
Web Notes, 1(2).  Retrieved from: 
http://www.statmodel.com/download/webnotes/mc1.pdf 

Muthén, B. O., & Curran, P. J. (1997).  General longitudinal modeling of 
individual differences in experimental designs: A latent variable 
Framework for analysis and power estimation.  Psychological Methods, 
2(4), 371-402.   

Muthén, L. K., & Muthén, B. O. (2002).  How to use a Monte Carlo study to 
decide on sample size and determine power.  Structural Equation 
Modeling, 9(4), 599-620.   

Möller, I., & Krahé, B. (2008).  Exposure to violent video games and aggression 
in German adolescents: A longitudinal analysis.  Aggressive Behavior, 
35(1), 75-89.   

Öhman, L., Bergdahl, J., Nyberg, L., & Nillson, L. (2007).  Longitudinal analysis 
of the relation between moderate long-term stress and health.  Stress and 
Health, 23(2), 131-138.   

Partridge, T., & Lerner, J. V. (2007).  A latent growth-curve approach to difficult 
temperament.  Infant and Child Development, 16(3), 255-265.   

Peterson, C., & Dodsworth, P. (1991).  A longitudinal analysis of young 
children’s cohesion and noun specification in narratives.  Journal of Child 
Language, 18, 397-415.   



107 

Raudenbush, S. W. (2001).  Toward a coherent framework for comparing 
trajectories of individual change.  In C. M. Collins & A. G. Sayers (Eds.). 
New methods for the analysis of change (pp. 35-64).  Washington, DC: 
American Psychological Association.   

Satorra, A., & Saris, W. E. (1985).  Power of the likelihood ratio test in 
covariance structure analysis.  Psychometrika, 50(1), 83-90.   

Singer, J. D. & Willett, J. B. (2003).  Applied longitudinal data analysis: 
Modeling change and event occurrence.  New York, NY: Oxford 
University Press.   

Tomarken, A. J. & Waller, N. G. (2005).  Structural equation modeling: 
Strengths, limitations, and misconceptions.  Annual Review of Clinical 
Psychology, 1, 31-65.  doi: 10.1146/annurev.clinpsy.1.102803.144239 

Venter, A., Maxwell, S. E., & Bolig, E. (2002).  Power in randomized group 
comparisons: The value of adding a single intermediate time point to a 
traditional pretest-posttest design.  Psychological Methods, 7 (2), 194-209.  

von Oertzen, T. (2010).  Power equivalence in structural equation modeling.  
British Journal of Mathematical and Statistical Psychology, 63, 257-272.  
doi: 10.1348/000711009X441021 

Wu, W. (2008).  Evaluating model fit for growth curve models in SEM and MLM 
frameworks (Doctoral dissertation).  Retrieved from ProQuest. (3339593).   

Yu, C. (2002).  Evaluating cutoff criteria of model fit indices for latent variable 
models with binary and continuous outcomes (Doctoral dissertation: 
University of California).  Retrieved from 
http://statmodel2.com/download/Yudissertation.pdf 

Zhang, Z., & Wang, L. (2009).  Statistical power analysis for growth curve 
models using SAS.  Behavior Research Methods, 41(4), 1083-1094.   

  



108 

APPENDIX A 

SAMPLE MPLUS SYNTAX FOR MONTE CARLO POWER ANALYSIS FOR 

A LINEAR GROWTH CURVE MODEL WITH A DUMMY CODED 

COVARIATE 
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TITLE:             i100s20r50es4si2ss200gs55rm6EU 
MONTECARLO:        NAMES ARE y1-y6 x; 
                   CUTPOINTS = x (0); !split group; 
                   NOBSERVATIONS = 200; !sample size; 
                   NREPS = 1000; 
                   SEED = 0802; 
                   SAVE =save_i100s20r50es4si2ss200gs55rm6EU.sav; 
                   RESULTS = i100s20r50es4si2ss200gs55rm6EU.txt; 
 
MODEL MONTECARLO: 
               [x@0]; x@1; 
 
               i BY y1-y6@1; 
               s BY y1@0 y2@1 y3@2 y4@3 y5@4 y6@5; 
               [y1-y6@0]; 
               [i*0 s*0]; 
               i*100; !intercept variance; 
               s*20; !slope variance; 
               i WITH s*8.944; !intercept-slope covariance; 
               y1*50 y2*50 y3*50 y4*50 y5*50 y6*50; !level1resvar; 
               i ON x*0; 
               s ON x*1.0556; !slope difference; 
MODEL: 
               i BY y1-y6@1; 
               s BY y1@0 y2@1 y3@2 y4@3 y5@4 y6@5; 
               [y1-y6@0]; 
               [i*0 s*0]; 
               i*100; 
               s*20; !slope variance; 
              i WITH s*8.944; !intercept-slope covariance; 
              y1*50 y2*50 y3*50 y4*50 y5*50 y6*50; !level1resvar; 
              i ON x*0; 
              s ON x*1.0556; !slope difference; 
 
OUTPUT:       TECH9;  
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APPENDIX B 

SAMPLE MPLUS SYNTAX FOR THE THREE STEPS IN THE SATORRA-

SARIS POWER ANALYSIS FOR A LINEAR GROWTH CURVE MODEL 

WITH A DUMMY CODED COVARIATE 



111 

TITLE:               Satorra-Saris Step 1, Output yields model  
                     implied mean and correlation matrices 
 
   DATA:             FILE IS artific.dat; 

   !data in artific.dat file is as follows, 
   !first row is means followed by covariances 
   !0 0 0 0 0 0 0 
   !1 
   !0 1 
   !0 0 1 
   !0 0 0 1 
   !0 0 0 0 1 
   !0 0 0 0 0 1 
   !0 0 0 0 0 0 1 

                     TYPE IS MEANS COVARIANCE; 
                     NOBSERVATIONS = 1000; 
 
  
   VARIABLE:      NAMES ARE y1-y6 x; 
 
   ANALYSIS:      TYPE=MEANSTRUCTURE; 
 
   MODEL:      [x@.5]; x@.25; 
               i BY y1-y6@1; 
               s BY y1@0 y2@1 y3@2 y4@3 y5@4 y6@5; 
               [y1-y6@0]; 
               [i@0 s@0]; 
               i@100; 
               s@20; !slope variance; 
               i WITH s@8.944; !intercept-slope covariance                       
               y1@50 y2@50 y3@50 y4@50 y5@50 y6@50; !level1resvar; 
               i ON x@0; 
               s ON x@1.0556; !slope difference; 
 
   OUTPUT:     STANDARDIZED RESIDUAL; 
 
 
 
TITLE:               Satorra-Saris Step 2, Enter means and  
                     covariances derived from Step 1 into pop.dat  
                     file, use Step 2 to ensure parameter values  
                     in Step 1 are retrieved in the output for  
                     Step 2 
 
   DATA:             FILE IS pop.dat; 
                     TYPE IS MEANS COVARIANCE; 
                     NOBSERVATIONS = 1000; 
 
   VARIABLE:         NAMES ARE y1-y6 x; 
 
   ANALYSIS:         TYPE=MEANSTRUCTURE; 
 
   MODEL:            i BY y1-y6@1; 
                     s BY y1@0 y2@1 y3@2 y4@3 y5@4 y6@5; 
                     [y1-y6@0]; 
                     s on x; 
                     i on x; 
                     i with s;  
                     [i s]; 
  
                             
   OUTPUT:           STANDARDIZED RESIDUAL; 
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TITLE:               Satorra-Saris Step 3,  
                     Constrain parameter of interest to 0 
 
 
   DATA:             FILE IS pop.dat; 
                     TYPE IS MEANS COVARIANCE; 
                     NOBSERVATIONS = 200; 
 
   VARIABLE:         NAMES ARE y1-y6 x; 
 
   ANALYSIS:         TYPE=MEANSTRUCTURE; 
 
   MODEL:            i BY y1-y6@1; 
                     s BY y1@0 y2@1 y3@2 y4@3 y5@4 y6@5; 
                     [y1-y6@0]; 
                     s on x@0; !parameter fixed to 0 
                     i on x; 
                     i with s; 
                     [i s]; 
  
                             
   OUTPUT:          STANDARDIZED RESIDUAL; 
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APPENDIX C 

SAMPLE SAS SYNTAX TO DETERMINE POWER GIVEN A 

NONCENTRALITY PARAMETER DETERMINED USING THE SATORRA-

SARIS OR MBC TECHNIQUE 
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DATA POWER; 
DF=1; CRIT=3.841459;  
     *DF = difference in degrees of freedom  
      between full and nested model 
LAMBDA=1.026; 
      *LAMBDA = noncentrality parameter derived  
      from Satorra-Saris or MBC 
POWER=(1-(PROBCHI(CRIT,DF,LAMBDA))); 
RUN; 
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APPENDIX D 

SAMPLE SAS SYNTAX TO DETERMINE POWER USING THE MBC 

TECHNIQUE ACROSS A VARIETY OF RMSEA VALUES FOR A NULL 

HYPOTHESIS OF NO DIFFERENCE 
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Title ‘Power for different increments of RMSEA values’; 
data one; 
 
** Start of user input; 
alpha = 0.05;  *alpha level; 
 
** Enter the lower and upper limits of RMSEAs; 
rmseaAL = 0.01; *model A RMSEA lower limit; 
rmseaAU = 0.10; *model A RMSEA upper limit; 
rmseaBL = 0.0; *model B RMSEA lower limit; 
 
** Enter the step size for grid points to cover RMSEA range; 
stepsize = 0.01; *step size; 
 
** Enter model information; 
da = 3; *df for model A; 
db = 2; *df for model B; 
n = 500; *sample size; 
G = 1; *number of groups; 
** End of user input; 
 
** Power computation begins here; 
nA = int((rmseaAU-rmseaAL)/stepsize)+1; 
rmseaA = rmseaAL-stepsize; 
do i=1 to nA; 
  rmseaA = rmseaA+stepsize; 
  nB = int((rmseaA-stepsize-rmseaBL)/stepsize)+1; 
  rmseaB = rmseaBL-stepsize; 
  do j=1 to nB; 
    rmseaB = rmseaB+stepsize; 
    ddiff = da-db; *df difference; 
    fa = (da*rmseaA**2)/sqrt(G); *discrepancy fn value for model A; 
    fb = (db*rmseaB**2)/sqrt(G); *discrepancy fn value for model B; 
    ncp = (n-1)*(fa-fb); *non-centrality parameter; 
    cval = cinv(1-alpha,ddiff); *critical value from central chi^2; 
    Power = 1-probchi(cval,ddiff,ncp); *power; 
    output; 
  end; 
end; 
run; 
proc print data=one; var rmseaA rmseaB Power; run; 

 


