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ABSTRACT  

Current economic conditions necessitate the extension of service lives for a 

variety of aerospace systems. As a result, there is an increased need for structural 

health management (SHM) systems to increase safety, extend life, reduce 

maintenance costs, and minimize downtime, lowering life cycle costs for these 

aging systems. The implementation of such a system requires a collaborative 

research effort in a variety of areas such as novel sensing techniques, robust 

algorithms for damage interrogation, high fidelity probabilistic progressive 

damage models, and hybrid residual life estimation models. This dissertation 

focuses on the sensing and damage estimation aspects of this multidisciplinary 

topic for application in metallic and composite material systems. 

The primary means of interrogating a structure in this work is through the use of 

Lamb wave propagation which works well for the thin structures used in 

aerospace applications. Piezoelectric transducers (PZTs) were selected for this 

application since they can be used as both sensors and actuators of guided waves. 

Placement of these transducers is an important issue in wave based approaches as 

Lamb waves are sensitive to changes in material properties, geometry, and 

boundary conditions which may obscure the presence of damage if they are not 

taken into account during sensor placement. The placement scheme proposed in 

this dissertation arranges piezoelectric transducers in a pitch-catch mode so the 

entire structure can be covered using a minimum number of sensors. The stress 

distribution of the structure is also considered so PZTs are placed in regions 
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where they do not fail before the host structure. In order to process the data from 

these transducers, advanced signal processing techniques are employed to detect 

the presence of damage in complex structures. To provide a better estimate of the 

damage for accurate life estimation, machine learning techniques are used to 

classify the type of damage in the structure. A data structure analysis approach is 

used to reduce the amount of data collected and increase computational 

efficiency. In the case of low velocity impact damage, fiber Bragg grating (FBG) 

sensors were used with a nonlinear regression tool to reconstruct the loading at 

the impact site. 



  iii 

  

   

 

 

 

 

This dissertation is dedicated to  

my parents, Peter and Lynette Coelho, 

 for their unwavering love and support. 

Without you, none of this would be possible. 



  iv 

ACKNOWLEDGMENTS  

First and foremost, I would like to thank my advisor Dr Aditi Chattopadhyay for 

her guidance and support throughout my PhD. Her encouragement and high 

standards helped me to widen my professional horizons and achieve more than I 

thought I was capable of. She welcomed me into the group like I was one of her 

own and I will be forever grateful to her for everything she has done for me. 

A special thank you to Santanu Das, first my coworker, then my committee 

member for helping me learn the ropes in graduate school. I would also like to 

acknowledge my other committee members Antonia Papandreou-Suppappola, 

John Rajadas, Lenore Dai, and Teresa Wu for their advice and suggestions.  

I would also like to thank Kay Vasley, executive assistant of the AIMS center for 

all her hard work managing our research group. We would all be drowning in 

paper work and bureaucracy were it not for you. 

Last but not least, I would like to thank all my coworkers and friends, too many to 

name, for your help and support both personally and professionally. I truly believe 

that this dissertation was a group effort and I would not have been able to 

complete my PhD without the unique contribution that each of you made to my 

life and my work. 

The support of the NASA IVHM Program (NNX07AD70A), and AFOSR MURI 

Program (FA9550-06-1-0309), is also gratefully acknowledged. 



  v 

TABLE OF CONTENTS  

          Page 

LIST OF TABLES ...................................................................................................... ix 

LIST OF FIGURES ..................................................................................................... x 

1.INTRODUCTION .................................................................................................... 1 

1.1. Optimal Sensor Placement ......................................................................... 7 

1.2. Information Management ......................................................................... 10 

1.3. Damage Detection .................................................................................... 11 

1.4. Damage Classification .............................................................................. 14 

1.5. Load History Reconstruction for Impact Damage................................... 17 

1.6. Objectives  ................................................................................................. 19 

1.7. Outline of the Dissertation ....................................................................... 20 

2. SENSOR PLACEMENT FOR WAVE BASED DAMAGE INTERROGATION  

 ................  ................................................................................................................... 23 

2.1. Sensor Placement Issues ........................................................................... 24 

2.1.1. Effect of Material Properties ............................................................... 25 

2.1.2. Excitation Energy................................................................................ 25 

2.1.3. Background Noise ............................................................................... 25 

2.1.4. Excitation Frequency .......................................................................... 26 

2.1.5. Signal Features for Damage Interrogation .......................................... 28 

2.1.6. Transducer Bonding, Spacing and Structural Geometry Considerations

 29 



  vi 

          Page 

2.2. Sensing Region ......................................................................................... 30 

2.2.1 Threshold voltage and attenuation calculation ................................... 31 

2.2.2 Calculation of energy conversion for Lamb wave modes .................. 33 

2.2.3 Calculation of sensing region.............................................................. 36 

2.3. Optimization Algorithm ........................................................................... 37 

2.4. Results and Discussion ............................................................................. 40 

3. DAMAGE DETECTION ...................................................................................... 47 

3.1. Time Delay Embedding ........................................................................... 48 

3.2. One Class Support Vector Machines ....................................................... 52 

3.3. Experimental Setup .................................................................................. 59 

3.4. Signal Conditioning .................................................................................. 61 

3.5. Results and Discussion ............................................................................. 62 

4. DAMAGE CLASSIFICATION ............................................................................ 70 

4.1. Support Vector Machines ......................................................................... 71 

4.2. SVM as a binary tree classifier ................................................................ 74 

4.3. Feature extraction algorithm .................................................................... 76 

4.4. Experimental setup ................................................................................... 77 

4.4.1. Fatigue Crack ...................................................................................... 78 

4.4.2 Delamination ........................................................................................ 79 

4.4.3 Impact .................................................................................................. 80 

4.4.4 Tensile Damage ................................................................................... 81 

4.5. Results and discussion .............................................................................. 82 



  vii 

          Page 

5. INFORMATION MANAGEMENT FOR DAMAGE CLASSIFICATION ...... 92 

5.1. Linear Discriminant Analysis .................................................................. 92 

5.2. Relevance weighting ................................................................................ 94 

5.3. Feature reduction ...................................................................................... 95 

5.4. Binary tree SVM classifier ....................................................................... 98 

5.5. Experimental setup ................................................................................... 99 

5.5.1. Aluminum Lug Joint ........................................................................... 99 

5.5.2. Composite Plate ................................................................................ 100 

5.6. Results and discussion ............................................................................ 103 

5.6.1. Lug Joint Damage Classification ...................................................... 103 

5.6.2. Composite Panel Damage Classification .......................................... 110 

6. LOAD HISTORY RECONSTRUCTION FOR LOW VELOCITY IMPACT 117 

6.1. Time Delay Embedding ......................................................................... 117 

6.2. Support Vector Regression..................................................................... 118 

6.3. Finite Element Model ............................................................................. 123 

6.3.1. Composite Plate Model ..................................................................... 123 

6.3.2. Composite Wing Model .................................................................... 124 

6.4. Results and discussion ............................................................................ 128 

6.4.1. Simulation Results ............................................................................ 128 

6.4.2. Experimental Results ........................................................................ 131 

7. SUMMARY AND FUTURE DIRECTION ....................................................... 135 

7.1. Optimal Sensor Placement ..................................................................... 136 



  viii 

          Page 

7.2. Damage Detection .................................................................................. 137 

7.3. Damage Classification ............................................................................ 138 

7.4. Information Management ....................................................................... 139 

7.5. Load Reconstruction for Low Velocity Impact ..................................... 140 

 



  ix 

LIST OF TABLES 

Table Page 

1. Pros and cons of different maintenance paradigms   .................................... 5

2. Classes of observations used to study differences in classification rate 

between 50% and 100% torque.  ................................................................ 66

3. Classification rate (matrix) for sensor set 1,2,7,8.   .................................... 68

4. Outcome of the classifier.   ......................................................................... 69

5. Results of the nested binary classification scheme (lug joint)   .................. 84

6. Classification of damage type results (composite)   ................................... 88

7. Classification results for delamination  ...................................................... 89

8. Classification results for impact damage   .................................................. 90

9. Classification results for tensile damage  ................................................... 90

10. Results of the SVM classifier without data reduction   ............................ 108

11. Results of the SVM classifier with data reduction  .................................. 109

12. Confusion matrix showing classification results using information from 

sensor 2.   .................................................................................................. 114

13. Classification results using data from sensors 5 and 6   ........................... 115

14. Material properties for twill weave composite.   ...................................... 124

15. FBG sensor locations on the composite plate   ......................................... 124

16. Location of FBG sensors on composite wing structure.   ......................... 125

17. Impact load history estimation result on composite plate   ....................... 129

18. Impact load history estimation on a composite wing   .............................. 131

19. Experimental prediction results for impact on a composite wing........... 134



  x 

LIST OF FIGURES 

Figure Page 

1. Typical damage state at various inspection points.   ..................................... 3

2. Typical damage detection and identification process.   ................................ 6

3. Issues affecting performance of a sensor network.   ................................... 24

4. Dispersion curves for aluminum (a) group velocity curves, (b) phase 

velocity curves.   ......................................................................................... 27

5. Effect of thickness change on Lamb wave propagation   ........................... 29

6. Setup for attenuation measurement.   .......................................................... 33

7. Determination of mode converted waves due to damage using collocated 

transducers.   ............................................................................................... 35

8. Experimental determination of Lamb wave modes.   ................................. 36

9. Sensing region for different transducer spacing.   ...................................... 37

10. Use of random jumps in simulated annealing to escape local optima and 

seek global optima.   ................................................................................... 39

11. Navy SHM test bed.   .................................................................................. 40

12. Initial (a) and final (b) configuration of sensors after optimization.  ......... 42

13. Lug joint specimen with fatigue crack.   ..................................................... 42

14. Stress distribution in lug joint   ................................................................... 43

15. Grayscale stress distribution   ..................................................................... 44

16. Initial (a) and final (b) placement of sensors for crack detection on a lug 

joint    ........................................................................................................... 46



  xi 

Figure Page 

17. Three dimensional delayed reconstruction of sensor signal from bolted 

joint (100% torque, 0 cycles)   .................................................................... 50

18. Phase portrait x(t) vs x(t+1) for 3 measurements without change in 

damage state.   ............................................................................................. 51

19. Phase portrait x(t) vs x(t+1) for 3 measurements made at different damage 

states   .......................................................................................................... 52

20. Finding complex separatrix through high dimensional mapping.   ............ 53

21. Graphical representation of hyperplane construction.   .............................. 57

22. Demonstration of optimal σ selection   ....................................................... 58

23. Experimental setup used when testing bolted joints.   ................................ 59

24. Sensor placement used for data collection on bolted joint.   ...................... 61

25. Crack length as a function of number of cycles   ........................................ 62

26. Classification Error Rate (1 - Classification rate) variation with number of 

cycles, trained with 0 kcycles and 100% torque.   ...................................... 63

27. (a) Displacement field in the z direction, perpendicular to the lap. (b) 

Relative z variation along the black line in (a).   ........................................ 64

28. Classification error rate variation with number of cycles, trained with 70 

kcycles and 100% torque.   ......................................................................... 65

29. Distinguishing two classes using one-class SVM   ..................................... 67

30. Representation of parameters needed for hyperplane construction in two 

dimensions.    ............................................................................................... 74



  xii 

Figure Page 

31. Construction of multiple hyperplanes without overlapping regions for 

multi-class problems.   ................................................................................ 75

32. (a) Specimen dimensions and (b) Specimen with sensor/actuator 

placements and failure modes   ................................................................... 79

33. Composite plate with delamination and sensors   ....................................... 80

34. Dimensions of impact specimen.   .............................................................. 81

35. Tensile test specimen   ................................................................................ 82

36. Principal component analysis of (a) raw signals, (b) MPD features 

extracted from signals   ............................................................................... 83

37. Histogram of distance from the optimal hyperplane   ................................. 86

38. ROC curve for each classifier used   ........................................................... 87

39. Organization of binary tree classifier   ........................................................ 88

40. Computational efficiency of different SVM approaches   .......................... 91

41. Illustration of data reduction procedure. (a) Initial data set projected into 

2D, (b) Data clusters after removing interior data points, (c) Data points 

greater than the distance between cluster centroids are removed, (d) 

Remaining points after data reduction.   ..................................................... 97

42. Schematic of binary tree classification structure   ...................................... 99

43. Sensor position and damage path in lug joint   ......................................... 100

44. Experimental setup. (a) Specimen in test fixture with surface mounted 

transducers. (b) Dimensions of test specimen with damage sites and 

transducer locations    ................................................................................ 102



  xiii 

Figure Page 

45. Sample waveforms collected before and after each impact   .................... 103

46. (a)Results of the LDA  (b),(c) Results of the data reduction algorithm   . 105

47. Histogram of healthy state data cluster (a) 2D histogram, (b) slices along 

each axis   .................................................................................................. 106

48. Decision plane for the first binary classifier for (a) the entire data set, (b) 

the reduced data set   ................................................................................. 108

49. Resulting clusters in 2D after LDA: (a) using the first half of the training 

set; (b) using the second half of the training set   ..................................... 111

50. Features extracted using RWLDA in 2D: (a) using first half of the training 

set; (b) using second half of the training set   ........................................... 111

51. Results of the feature extraction process: (a) original data; (b) after 

removing interior data points; (c) after removal of points unlikely to be 

support vectors   ........................................................................................ 113

52. Echotherm image of plate 1 showing impact damage locations and 

actuator location   ...................................................................................... 116

53. Schematic of (a) SVR construction and, (b) ε insensitive tube   .............. 120

54. (a) Locations of FBGs (blue) and impacts (red) [Plate dimensions in 

inches], (b) finite element simulation showing impact in composite plate

 ................................................................................................................. 126

55. (a) Schematic of wing showing boundary condition, location of FBGs 

(blue) and impacts (red) [Plate dimensions in inches], (b) finite element 

simulation showing impact on a composite wing.    .................................. 127



  xiv 

Figure Page 

56. Simulated and predicted load history for impact at (8,4)  ........................ 128

57. Simulated and SVR prediction result for impact at (5,8)  ........................ 130

58. Experimental load cell reading and SVR prediction for impact at (6.5,5).

 ................................................................................................................. 132

59. Locations of experimental impacts on the wing.   .................................... 132

60. Thermographic image showing damage induced (red) on the leading edge 

of the composite wing after repeated impacts.   ........................................ 133

 



  1 

Chapter 1 

INTRODUCTION 

The economic downturn of recent years has led to a decline in U.S. spending in 

the defense and aerospace industry. As a result, there are fewer new military and 

civilian aircrafts being ordered, requiring that the existing fleet of aircraft operate 

well past their expected service lives. In the past, the United States Air Force 

(USAF) retired aircraft in order to free up capacity for newer aircraft while 

reallocating maintenance funds for the remainder of the aging fleet [1]. Since the 

number of new aircraft being ordered is insufficient to maintain the current fleet 

size, this has meant that older aircraft be kept in service longer. In addition to the 

cost of materials and training required to maintain such a large, aging fleet, 

maintenance capacity also needs to be expanded to handle increasing fleet 

servicing needs. These issues are contributing factors in determining the 

acceptable cost of keeping older aircraft in service [1]. Maintenance costs 

typically increase as a system ages; therefore, a significant change in the way 

aircraft fleets are maintained is required in order to keep these assets mission 

ready.   

The current maintenance paradigm is a mix of preventative (schedule based) and 

corrective repair and replacement [2]. The schedule based system requires that 

maintenance action be taken at fixed time intervals regardless of the state of the 

system. Corrective maintenance is performed once a part has failed. However, this 
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type of maintenance can often lead to excessive system downtime, particularly if 

replacement parts require lead time to be procured. In the aerospace industry, the 

schedule based maintenance system has been the preferred mode of fleet servicing 

because it safeguards against failure of a critical system or subsystem that can 

lead to significant economic and human loss. The frequency of this type of 

inspection involves a trade-off between the cost of inspection and the risk of 

induced damage, which takes into account the expected loads and environmental 

conditions of the structure. Often, this design load envelope is very different from 

the loading that is actually seen by the structure in service. Consequently, as part 

of the servicing schedule, several components replaced even though they have 

considerable safe operating life remaining. This is because a thorough inspection 

is expensive and time consuming, and replacement is often a cheaper alternative.  

Figure 1 shows the typical progression of damage in a structure. Initially, there 

may be some flaws that develop in the system that are small enough and do not 

affect performance or safety of the system. Current non-destructive evaluation 

(NDE) techniques cannot detect these flaws. Once the damage becomes 

detectable, the structure may show signs of degradation, but it can still be 

operated safely. At this point the damage grows at a relatively slow rate. 

Designers typically specify a critical damage type or size, at which the part must 

be repaired or replaced, either because the damage growth rate will increase 

rapidly and lead to failure, or because the performance of the system has degraded 

beyond a certain limit. Figure 1 shows that there could be significant savings if 

remedial measures were only taken prior to the damage becoming critical.  
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Figure 1: Typical damage state at various inspection points. 

Condition based maintenance (CBM) is the process of using the actual state of the 

system to schedule repairs and maintain performance. If implemented, such a 

system has the potential to dramatically reduce life cycle cost, improve safety, and 

reduce weight since components could be designs using reduced margins. CBM 

also increases productivity since the system would have less down time due to 

unnecessary maintenance. The logistics enterprise required to maintain a large 

fleet can also be streamlined so that parts can be ordered and delivered just before 

they are needed, reducing inventory cost and lead time. A comparison of the 

traditional maintenance approaches with CBM [2] is presented in Table 1.  

The prospect of reductions in maintenance cost and time due to CBM has made 

structural health management (SHM) research a priority for the aerospace 

community. SHM is the process of detecting, classifying, localizing, and 

quantifying damage for residual life estimation. One aspect of SHM is 

implementing traditional NDE approaches within a framework for in situ, real-
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time damage assessment. To accurately assess damage information from onboard 

sensors, traditional NDE, performance metrics, and load (mechanical and 

environmental) histories must be mined to estimate the current state of the system 

and predict its safe operating life. 

Aircraft, rotorcraft, spacecraft, industrial equipment, and civil infrastructure 

already have sensors in place that monitor a host of environmental and 

performance metrics. One method for determining the degradation of a structure 

is using various data analysis techniques that will 

i. perform a trend analysis to check for performance decline, possibly 

indicating damage. 

ii. check if any parameters have crossed thresholds defined by experts. 

iii. determine if there is a pattern in the data that corresponds to damage as 

observed in other similar systems.  

The aforementioned data analysis techniques can only provide a short window for 

preventative maintenance since detection using these approaches requires an 

appreciable degradation of the system. 
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Table 1: Pros and cons of different maintenance paradigms 

  
Corrective 

Maintenance 
Scheduled 

Maintenance 
Condition based 

maintenance 

PR
O

S 
Fewer maintanance 
checks 

Easier to plan 
maintanance budget 

Avoid unexpected 
failure 

No cost/weight 
penalty for CBM 
equipment 

Greater chance of 
catching damage 
before failure 

Parts ordered to 
minimize storage 
cost & lead time 

  
Standardized 
maintenance 
procedure 

Maintenance 
performed when 
convenient 

  
Logistical planning 
easier for fleet 
maintenance 

Equipment life 
extended 

    No unnecessary 
maintenance 

        

C
O

N
S 

Noticeable 
degradation before 
maintenance 

Maintenance when 
no faults present 

Cost/weight penalty 
for CBM hardware 

Unpredictable fleet 
readiness 

Unexpected failures 
still possible   

High cost/lead time 
for spare parts Parts inventory cost    

Safety hazard     

Increased labor 
time/cost     

Since existing sensors and data analysis tools are insufficient for early detection 

and accurate prognosis, the SHM research community is developing new sensing 

technologies to measure more useful system parameters and new algorithms to 
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understand this information, making residual useful life predictions [3] more 

accurate.  

This research focuses on sensor placement techniques and on mining the data 

from these sensors for damage state awareness. The process of damage 

interrogation involves a) determining whether sensor information indicates 

presence of damage, and b) once damage is detected, conducting further analysis 

to assess damage type and location. Based on information gleaned from these two 

steps, the state of the system can be assessed and then presented in terms of 

simple damage metrics. Figure 2 shows the procedure involved in identifying 

damage in a part or structure. 

 

Figure 2: Typical damage detection and identification process. 

In this work, the SHM process will be viewed in terms of statistical pattern 

recognition where the response of a system due to known or unknown loading 

will be studied and compared against examples of healthy and damaged 

configurations. For many complex engineering systems, uncertainty and 

variability in boundary conditions, material properties, mechanical and 

environmental loading combined with noise can cause large changes in measured 
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responses that may not indicate the presence of damage. Since there is no way to 

quantify all these benign signal variations, statistical tools need to be employed to 

make it easier to interrogate large structures with increased speed and accuracy. 

The different aspects of damage interrogation will be discussed in the following 

sections. 

1.1.  Optimal Sensor Placement 

A significant amount of research is being conducted on damage detection 

techniques and sensors for SHM applications. However, the performance of these 

approaches is highly dependent on the quality of the information obtained by the 

sensors. In order to detect damage with maximum efficiency, the sensors need to 

be placed optimally so that information pertaining to damage in a structure can be 

quantified with a high degree of confidence. The sensor placement must also 

address the global requirement that damage in any part of the structure can be 

detected to prevent failure under service conditions. Since a major deciding factor 

for the implementation of SHM systems in aerospace structures is cost and 

weight, approaches for sensor placement must balance the need for redundancy 

with the associated weight penalty of having many sensors.  

A robust SHM framework would require the installation of a distributed sensor 

network that would enable rapid and frequent damage measurements without 

significant effort or expense. Several types of sensor networks have been 

investigated thus far, including strain gauges [4], accelerometers[5], piezo-

transducers [6], and fiber optic sensors [7]. Strain gauges, as the name suggests, 
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measure the resulting strain at a point on a structure due to an applied load. Strain 

gauges are typically used to check if a structure is deforming more than allowable 

tolerance, indicating the presence of damage. These sensors are limited in their 

resolution and sampling frequency, and the point strain information they provide 

cannot be used to parameterize damage except in very simple structures. 

Accelerometers can provide a more global view of damage in a structure, but 

existing technologies are unable to detect the presence of small damage. Another 

drawback of this type of sensing approach is that significant energy input is 

required to excite large structures at different frequencies. Piezoelectric 

transducers show considerable promise for structural monitoring because they use 

the concept of guided wave based interrogation which can be used to inspect 

relatively large areas with high fidelity. Another benefit is that the transducers can 

act as both actuators and sensors, eliminating the need for extra actuation 

hardware. Data from these sensors provide a lot of information about a structure 

and can be used to identify, classify, localize, and quantify faults. Fiber Bragg 

grating (FBG) sensors are advantageous because they can be tailored to include 

multiple sensors on a single fiber, resulting in a significant weight advantage 

when implemented on a large structure. Also, FBG sensors are low weight, 

require minimal space, and are immune to electromagnetic interference, which is 

a concern in the harsh operating environments of aerospace structures. FBGs are 

able to provide very high resolution strain measurements and can be embedded in 

composite systems eliminating sensor-host bonding issues. Since piezoelectric 

transducers can yield the most information about a structure, they were chosen for 
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the damage identification research being presented in this dissertation. In addition, 

FBG sensors were used for impact studies to reconstruct the loading during a low 

velocity impact.  

A substantial amount of literature exists on the issue of sensor placement for wave 

based SHM. Worden and Burrows [8] developed a technique for placing passive 

sensors on a structure for detecting damage. This approach used bio-inspired 

optimization algorithms for placing the sensors to detect modal changes due to 

damage. Using evolutionary algorithms, Gao and Rose [9] placed transducers for 

detecting changes in the Lamb wave propagation due to the presence of damage. 

Their approach focused on sensor networks operating in a pulse echo mode and 

on minimizing the probability of missed detection. Lee and Staszewski’s 

approach [10] involved placing piezoelectric sensors using a physical 

understanding of the wave propagation behavior in a structure. This approach 

requires modeling the structure before and after the introduction of damage and 

observing the change in wave propagation characteristics. Sensors were then 

placed in locations where the change in the signal before and after the damage 

was at its maximum. This approach requires the user to have an idea of the 

possible damage type and location in the structure, which may not always be 

possible in real applications. Das et al. [11] placed sensors based on the concept 

of minimum sensing distance. This passive sensor placement approach considered 

the maximum distance a perturbation could travel due to damage, but it did not 

address the excitation energy necessary to produce an acceptable perturbation 

level. This work was then extended by Soni et al. [12] to include the stress 
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distribution in the structure to identify the hotspots. A hotspot is a region or 

component of a structure where the probability for damage to occur is high. 

Sensors could then be biased to regions of higher stress where damage was more 

likely to initiate. Flynn and Todd [13-14] designed a sensor placement scheme 

that incorporates a statistical model of the active sensing approach and takes into 

account the line of sight between the sensors.  

The work presented in this dissertation places sensors so that the entire structure 

can be interrogated using an active wave based technique with a user-defined 

probability of false alarm. Loading conditions for the component are taken into 

account to ensure that sensors are not placed in regions of high stress where they 

can fail or become debonded. The features used to identify damage are based on 

conversion of Lamb wave modes due to damage. A simulated annealing based 

optimization algorithm is used to find the minimum number of sensors required 

for reliable SHM. 

1.2.  Information Management 

The aerospace systems and civil infrastructure that would benefit from SHM 

systems typically remain in service from years to decades. This means that the 

continuous monitoring of these systems would generate massive amounts of data 

that need to be stored and processed. With typical structures, there will be a lot of 

uninteresting information that is collected when the structure is healthy followed 

by short bursts of useful information as damage is introduced in the structure. For 

this reason it maybe be beneficial to remove redundant information or maintain 
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information about the system at an aggregate level [15]. One option to reduce the 

amount of data that is collected over the life of the structure is to switch to an 

active interrogation approach at discrete intervals. While this does reduce the 

amount of collected data significantly, it can still produce a lot of data depending 

on the frequency of interrogation. Within the active interrogation framework, the 

ideal way to control the amount of data being generated would be by making 

decisions at the individual sensing nodes and storing only the structural state at 

the current time. Unfortunately, with current technology, it is not possible to 

instrument processing units at each node without increasing the weight and power 

requirement of the entire system. Also, if further processing needed to be 

performed on some anomalous data, it would not be available. As a result, the 

information management work in this dissertation focuses on reducing the amount 

of data after feature extraction in an attempt to increase the computational 

efficiency of the damage identification tools and reduce the amount of redundant 

data that needs to be stored.   

1.3.  Damage Detection 

A principal objective of SHM is to be able to detect the presence of defects close 

to the nucleation stage in order to take measures that avoid system or sub-system 

level failure. Typical NDE techniques, such as the liquid penetrant inspection 

method, eddy current and optical microscope inspection [16] can detect fairly 

small damage especially in metallic structures; however, they require that 

components or structures be taken out of service and disassembled for inspection. 

For composite specimens, a variety of NDE techniques exist, such as ultrasonic c-
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scanning [17], pulsed thermography [18] and acoustic emission [19] that provide 

reliable ways of inspecting for damage, however, they too require that internal 

components be removed for inspection. One method for inspecting a structure for 

damage is through the use of modal analysis [20], which allows users to estimate 

the state of a structure based on changes on modal properties that could be caused 

by damage. There are two issues with this approach that prevent it from being 

adopted for aerospace structures. The first is the fact that induced damage must be 

significant before it can be reliably detected using this approach. The other is the 

shift is modal properties that is observed with change in temperature. In a study of 

modal properties on the Alamosa Canyon bridge [20], it was found that uneven 

heating of the bridge caused by the position of the sun resulted in modal changes. 

Since the position of the sun varies with the seasons and time of day, it is possible 

that change due to damage could be ignored or that changes due to environmental 

factors could be mistaken for damage.  

Another approach that has been widely adopted by the research community is the 

use of guided wave propagation to inspect structures for flaws. Wave based 

techniques are well-suited for this task because sensors can be surface mounted; 

they do not require much support equipment and the technique works on complex 

geometry. Passive techniques [21-22] may not be as efficient as active techniques 

because the frequency of operation of the system may not be the best frequency 

with which to excite the damage that is present and obtain a sufficiently large 

response. Also, the ideal frequency for exciting the damage may change as the 

damage evolves [23]. Active wave based techniques [6, 11, 24-26] are 
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advantageous because they allow the user to select a somewhat narrow band of 

frequencies with which to excite the structure depending on the scale of the 

defect. This allows customization of the input signals for the different types of 

damage that are expected to occur in the structure.  

Finally, the most crucial part of structural health monitoring is the efficient and 

accurate analysis of the data collected by the sensors. There are many algorithms 

currently being used for damage detection [4, 6, 23, 27-33], the most common of 

which are cepstrum analysis, kurtosis, time-domain averaging, crest factor 

analysis, envelope detection, high frequency resonance technique, discrete cosine 

transform, neural networks, and matching pursuit decomposition (MPD). 

In this dissertation, one-class Support Vector Machines (SVMs) [34] was used as 

a pattern recognition algorithm that looks for anomalous changes in the sensor 

signal arising from damage in complex metallic geometries [35]. SVMs are a set 

of related learning methods that analyze data and recognize patterns and are used 

for classification and regression analysis. The advantage of using these methods 

for classification is that they produce reasonably accurate results while using only 

a fraction of the computational time of other commonly used algorithms [36-38]. 

SVMs belong to a class of data driven methods that can be supervised or 

unsupervised in nature, based on the way they are trained on the available 

historical data. In an unsupervised learning technique, the model experiences the 

nominal behavior of the system and would be capable of identifying unseen 

abnormalities, if they occur. However, in supervised learning it is assumed that 
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the given system features have already been classified by a human expert into m 

of n categories, based on some prior knowledge, and the training is performed on 

all possible categories. The drawback of this method is that every possible 

behavior for a system must be known for accurate classification, which is not 

practical for real world problems where an infinite number of off-normal 

behaviors can exist. Since the specimens being used in this dissertation for 

damage detection are complex, an unsupervised detection scheme was used. This 

means that the algorithm is trained only with the dataset or attributes extracted 

from those datasets that characterize the normal behavior of the system, which are 

then considered as ‘observed’ features. 

The one-class SVM, an unsupervised technique used in this study, utilizes only 

the nominal state of the system while looking for different fault modes that may 

occur during its operation. SVM techniques make the classification problem 

easier by converting a classification problem that is difficult in some input space 

into a higher dimensional space where a class separatrix can be generated more 

easily. Although there are multiple ways to map data into different feature spaces, 

the Radial Basis Function (RBF) kernel is the most popular in machine learning 

applications [36-37].  

1.4.  Damage Classification 

In certain hotspot applications, the different types of damage that can occur in the 

structure are known, usually from examples of similar components that have 

failed in the past. Using this information, it is possible to take sensor data from a 



  15 

structure and categorize it as being healthy or belonging to a particular damage 

class. Knowing the type of damage in a structure is useful because different 

damages grow at different rates, and this information can help in the prediction of 

residual useful life. Damage classification involves the characterization and 

identification of the key damage-related features, which can be used within a 

structural health monitoring (SHM) framework as damage indicators and 

differentiators. Physics-based modeling techniques can be used to accurately 

characterize the interaction of the actuation-induced stress wave with a given 

damage and sample type in order to determine the sensor output [39]. The 

drawback of this approach is that it is computationally expensive to model all the 

expected damage scenarios for a particular part and moreover, does not account 

for imperfections in the material and sensors, unexpected damage, and ambient 

noise. Also, it is very difficult to solve the inverse problem of finding the change 

in the system due to damage using the sensor signal alone.  

The methodology used for this research is a data-driven approach [6] that uses 

examples of actual signals from sensors that have been categorized by experts, 

and also uses these signals as a guide to identify similar damage types. It is 

assumed that the training data collected from every class of damage contains 

information within the signals that relates to the wave-damage interaction. 

Although this method requires a large database of training signals, it takes into 

account all the variations that are not accounted for in physics based models.  
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To classify the type of damage in a structure, another application of SVMs have 

been utilized. SVMs have a strong mathematical foundation [34] and show good 

generalization when applied to classification problems in a number of fields. 

Traditional approaches to the classification of multiclass problems have been 

conducted in the form of ‘one versus one’, ‘one versus rest’, hybrid [37, 40], and 

clustering [41] algorithms. In ‘one versus one’, the amount of training time 

required is very large since k(k − 1)/2 classifiers need to be constructed for a k 

class problem. For a ‘one versus rest’ scheme, a problem involving k classes of 

data will require the construction of k classifiers. One problem with the latter case 

is that each classifier will require the use of the entire training set, which becomes 

computationally intractable. For both methods, a voting scheme is used in which 

the classifier that scores the highest for a given data set assigns all the points in 

that particular set to a given class. Also, in such a case, it is very difficult to 

decide which class the test data belongs to if two classifiers have similar scores. 

Clustering schemes are able to learn signal characteristics well and can decide the 

uniqueness of different classes (or even classes within classes) based on the 

clustering of data points in a hyperspace. While this approach is promising for 

damage detection scenarios where all possible damage types cannot be known, the 

computational expense involved with determining cluster boundaries increases 

exponentially with the increase in training sets. 

 This research presents a framework for damage classification that applies a ‘one 

versus rest’ scheme [42] organized into a binary tree structure that addresses some 

of the computational issues associated with a large number of classes by reducing 
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the total number of required classifiers. The novelty of this approach over 

traditional SVM schemes is twofold. First, it allows the user to prioritize damage 

cases, making it quicker to identify common or expected damage states. Second, 

by organizing classifiers correctly, it is possible to simultaneously reduce the 

number of classifiers necessary as well as the complexity of each classifier. The 

research presented here shows that this scheme works well for these types of 

applications. 

1.5.  Load History Reconstruction for Impact Damage 

Survivability of composite structures subjected to dynamic contact loads is of 

critical importance in many aerospace applications. Low velocity impacts can 

result in subsurface delamination that cannot be detected using visual surface 

inspection even though the delamination results in stiffness degradation and a 

significant loss in structural integrity, especially in thick composites. Impact 

damage is also highly dependent on the mass, shape, and velocity of the 

impacting objects.  

Due to the weight savings and embedding capability associated with FBG sensors, 

they were chosen as the sensing system for the study of low velocity impact 

damage in composites. However, since these sensors only measure strain along 

the length of the fiber, a prediction scheme that can estimate location and loading 

using randomly oriented and dispersed sensors is key to damage state awareness. 

This could reduce installation time and the total number of sensors required to 

interrogate a complex structure.  Unexpected impact loading on an aerospace 
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structure can often lead to catastrophic failure. Therefore, a passive detection 

approach [21] is required to ensure that the structure can be constantly monitored 

and the operator notified immediately if there is an adverse event. A framework 

that detects the location and estimates the strains induced at the point of impact 

will allow users to conduct a detailed structural analysis and decide whether to 

take immediate action or schedule maintenance at a later date.  

The work presented in this dissertation focuses on estimating the loading 

generated in a structure during an impact. Although several approaches exist to 

determine the location of an impact, only a few provide force-time history 

reconstruction of the impact event. One method to localize damage uses the 

guided waves that are emitted from the source of the impact. This method requires 

explicit knowledge of wave speed, which works relatively well for homogenous 

structures [43]. In composites, however, the wave propagation speed varies as a 

function of direction [44], which makes localization more difficult and this 

approach cannot be used to estimate the induced strains. Kim and Lee [45-46] 

used a Green’s function approach to localize damage in an aluminum plate and 

reconstruct the load history. This approach assumes an infinite plate when solving 

for the transfer function between the impact location and sensor response. This 

same transfer function is used for the recovery of impact load, which means it 

may not be applicable to small and/or complex structures. Park and Chang [47] 

proposed a system identification technique that is based on training data from an 

experiment. Since the designed transfer function does not require a physical 

model, it represents the observed system response more accurately. However, the 
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structural deformation must be linearly elastic during the impact process, and the 

deformation of the structure must be small enough to neglect geometric 

nonlinearity. The approach used in this paper uses a machine learning technique 

to take data from experimental or modeling data and use it to build a model that 

can reconstruct the load history as a function of time. The support vector 

regression (SVR) technique, based on the popular support vector machines 

classifier [48], and applied in other fields for time series prediction [49-50], was 

chosen because it performs well with high dimensional data sets and does not 

require extremely large training sets for generalization. Using the FBG sensor 

signals from finite element simulations and a time delay approach, impact force-

time curves at the point of impact were estimated. The objective of this work is to 

build a data-driven framework that can accurately estimate the impact load at 

random locations even in the absence of complete strain information.  

1.6.  Objectives 

The objectives of this dissertation are as follows: 

1. Develop a framework for placing piezoelectric actuators and sensors on a 

structure for damage interrogation. The resulting framework will allow the 

user to detect a predefined minimum damage in a structure with a 

minimum probability of false alarm using the minimum number of 

sensors. Placement of sensors in high stress regions where failure of the 

sensors or bonding layer might occur will be avoided. 
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2. Use advanced signal processing techniques to extract features from sensor 

signal that provide the most information regarding the state of the system. 

3. Manage data from sensors in order to reduce storage cost and improve 

computational efficiency of the SHM algorithms. 

4. Detect the presence of damage in complex structures and classify it 

accurately and efficiently. 

5. In the case of impact loading, reconstruct the load history at the point of 

impact using randomly dispersed strain measurements so that further 

analysis regarding the severity of the impact can be conducted. 

1.7. Outline of the Dissertation 

This dissertation contains 7 chapters and is organized as follows: 

Chapter 2 presents a framework for placing piezoelectric transducers on a 

structure for guided wave based damage interrogation. By determining the 

sensing region of a pair of transducers for an acceptable probability of false alarm, 

various placement options can be tested to check the amount of sensor coverage 

and redundancy. In order to increase the durability of the sensors, the stress 

distribution of the structure is also taken into account so that sensors are placed in 

low stress areas. A simulated annealing approach was used to perform the 

optimization and provide an optimal arrangement of transducers on complex 

geometries. 

Chapter 3 presents a kernel based method to diagnose structural defects. Using 

time delay embedding features, a one class SVM algorithm was used to identify 
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anomalies in sensing signals that might indicate the presence of damage. Since 

minor changes are expected due to noise and changing environmental conditions, 

a novel scheme is implemented that uses this one class approach to determine if 

changes in the signal are significant enough to be considered a different class. 

This approach is tested for damage detection in bolted joints subjected to fatigue 

loading. 

Chapter 4 discusses the classification of damage in both metallic and composite 

test specimens. Using an SVM classifier organized in a binary tree approach, the 

number of classifiers that need be built is reduced which could result in 

computational savings for large problems. The features that were used for 

classification were generated using matching pursuit decomposition, a time 

frequency signal processing tool that decomposes signals into a linear 

combination of atoms that have a physical meaning and can be used for the 

assessment of damage. 

Chapter 5 addresses the problem of information management for long term SHM. 

The signal features used were generated using a modified linear discriminant 

analysis (LDA) technique. The resulting features were analyzed based on their 

geometric properties in the feature space and then reduced by removing data that 

did not contribute any class discriminatory information. The approach was 

demonstrated on data obtained from testing on different metal and composite 

specimens. 
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Chapter 6 focuses on determining the load as a function of time for low velocity 

impacts. FBG sensors were used in this study and they provided only one 

component of the strain at the sensor locations. A support vector regression 

framework was developed to take the incomplete strain information from the 

sensors and use it to predict the loads at the impact site. Validation for this study 

was carried out using ABAQUS simulated data and experimental testing on a 

composite wing. 

Chapter 7 summarizes the research work and highlights the unique contributions 

of this dissertation in the area of SHM. The future work that needs to be 

accomplished before these techniques can be implemented is also discussed.  
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Chapter 2 

SENSOR PLACEMENT FOR WAVE BASED DAMAGE INTERROGATION 

With research in structural health monitoring (SHM) moving towards increasingly 

complex structures for damage interrogation, the placement of sensors is 

becoming a key issue in the performance of the damage detection methodologies. 

For ultrasonic wave based approaches, this is especially important because of the 

sensitivity of the travelling Lamb waves to material properties, geometry, and 

boundary conditions that may obscure the presence of damage if they are not 

taken into account during sensor placement. The framework proposed in this 

chapter defines a sensing region for a pair of piezoelectric transducers in a pitch-

catch damage detection approach by taking into account the material attenuation 

and probability of false alarm. Using information about the region interrogated by 

a sensor-actuator pair, a simulated annealing optimization framework is 

implemented in order to place sensors on complex metallic geometries such that a 

selected minimum damage type and size could be detected with an acceptable 

probability of false alarm anywhere on the structure. The stress distribution of a 

component subjected to some known loading is also taken into consideration to 

ensure that sensors are biased towards regions of low stress where the possibility 

of damage to the sensor or bonding layer is minimal. This approach is 

demonstrated on a lug joint for crack detection and on a large Naval SHM test bed 

where the resulting sensor placement allowed for interrogation of all parts of the 

structure using the minimum number of transducers. 
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This chapter is organized as follows. Section 2.1 discusses issues that must be 

considered when trying to implement a sensor network for damage detection 

using Lamb waves. Sections 2.2 and 2.3 present a theoretical background on the 

methods used to determine the sensing region for a pair of transducers and 

optimization scheme. The effectiveness of the sensor placement scheme on some 

selected SHM test articles is demonstrated in section 2.4. 

2.1. Sensor Placement Issues 

There are several issues that need to be addressed when placing sensors on 

complex service structures. Figure 3 lists some of the more important issues 

associated with implementing a sensor network. Each of the listed issues is 

interrelated and must be considered together for a given structure. 

 

Figure 3: Issues affecting performance of a sensor network. 
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2.1.1. Effect of Material Properties 

The behavior of the material being interrogated is the first and possibly the most 

important factor in deciding the type of sensors and mode of damage detection. 

For wave based interrogation in homogenous material systems, the induced strain 

wave can travel with the same speed and attenuation in all directions. In the case 

of a heterogenous system such as carbon fiber composites, the guided wave 

travels slower and sees more attenuation when it travels perpendicular to the fiber 

direction. The opposite is true for a wave travelling along the fiber direction. The 

attenuation of the travelling wave is also a function of the material properties. 

2.1.2. Excitation Energy 

The energy of the excitation used to excite a structure determines the size of the 

interrogation region. Excitations that are very low in energy can only interrogate 

small areas and in some cases, the energy may not be sufficient to produce a 

measurable change in the response of the system. For sensing systems that use 

mechanical exciters, injecting too much energy into the system could itself cause 

damage. For the piezoelectric transducers used in this work, the maximum energy 

that can be used for excitation is limited by the power supply and the physical 

limitations of the piezoelectric material. For this reason, an acceptable excitation 

level must be specified before transducers can be placed in optimum locations.  

2.1.3. Background Noise 

Every sensor measurement contains some inherent error due to background noise. 

If the noise level is high, the signal that is being measured has larger error. In 
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some cases, if the noise level is too high, the signal can be completely masked by 

the noise. In the case of wave based interrogation, the guided wave attenuates as it 

travels through the media, and there is a point when it can no longer be 

distinguished from the noise, which can vary based on the environment and 

operating condition of the system. If an onboard monitoring system is to be 

implemented, it needs to be able to detect damage under any expected operating 

condition. The key to making this possible is to determine the worst case scenario 

and ensure that the sensing system meets the design criteria in those conditions. 

2.1.4. Excitation Frequency 

In an active detection framework, the frequency of excitation is an important 

parameter that can affect resolution and performance. Figure 4 shows the 

dispersion curves for Lamb wave propagation in an aluminum plate. It can be 

seen that for a single excitation at a given frequency, multiple modes can be 

generated in the structure with the number of modes increasing with frequency. 

Typically, it is possible to detect smaller damages using high frequency Lamb 

waves. However, at high frequencies, since more modes are generated in the 

structure, it is more difficult to analyze changes in the signal. Also, the varying 

phase velocities for each of the excited modes causes a distortion of the wave 

packets making it more difficult to discern the presence of additional modes due 

to damage or other types of changes in the signal. For the work presented in this 

dissertation, an excitation frequency range was selected such that only the a0 and 

s0 modes were excited. Within the range of frequencies where only a0 and s0 were 
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present, the frequency that produced the highest response from the piezoelectric 

transducers was selected as the central frequency of the induced burst excitation. 

 

(a) 

 

 (b) 

Figure 4: Dispersion curves for aluminum (a) group velocity curves, (b) phase 

velocity curves. 
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2.1.5. Signal Features for Damage Interrogation 

There are many different types of signal features that can be used to indicate 

changes in sensor readings caused by damage. Each of these features will have 

different sensitivities to changes in damage type and size. Therefore, it is 

important to ascertain the type of features that will be extracted ahead of time so 

that the sensitivity of these features under different damage cases and 

environments can be evaluated. For the work in this chapter, the types of damage 

being studied behave like through thickness asymmetries to a propagating Lamb 

wave, resulting in the generation of additional modes in the structure. The signal 

features that were used attempted to capture this phenomenon. In the case of crack 

damage, the crack tip acts as a source of asymmetry (or thickness change) that 

causes mode conversion. The effect of thickness on Lamb wave propagation is 

illustrated in Figure 5. At a given product of frequency and thickness (fd1), a0 and 

s0 modes are generated. For the sake of simplicity, the concept of mode 

conversion will be illustrated in Figure 5 using only the s0 mode. Without any 

changes in thickness, this mode travels through the structure at a constant group 

and phase velocity. If a through-thickness asymmetry is encountered, it acts as a 

thickness change for the traveling s0 mode, and the energy of the s0 (at fd1) mode 

is used to generate an a0, s0 and a1 mode (at fd2). The detection of these 

unexpected modes can be used to detect the presence of damage. 
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Figure 5: Effect of thickness change on Lamb wave propagation 

2.1.6. Transducer Bonding, Spacing and Structural Geometry Considerations 

As mentioned in the previous section, the presence of geometric variations can 

produce additional modes in the sensing signals. These effects need to be 

considered prior to interrogating a structure. For example, if a structure has 

varying thickness, it may be prudent to select an actuation frequency such that a 

minimum number of modes are excited in the thickest part of the structure. Figure 

5 shows that an increase in thickness (with constant frequency) can lead to 

additional modes being generated. However, if the frequency is selected such that 

the maximum  f.d results in only two modes being generated, then for any thinner 

section of the structure, no additional modes will be created. The locations of all 

the boundaries also need to be taken into consideration when placing transducers. 
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If transducers are placed too close together, all the modes may arrive very close 

together making it very difficult to discern expected from unexpected modes. In 

order to monitor aerospace systems that are in service for long periods in varying 

conditions, the quality of the bonding between the sensor and the host structure is 

a critical issue. Current bonding methodologies for smart sensors are unable to 

provide the required durability characteristics. This results in sensors debonding 

or failing before the structure. In such cases, information from these compromised 

sensors could indicate that maintenance is required for a healthy structure or cause 

the missed detection of real damage.  

2.2. Sensing Region 

In wave based damage detection, the first step towards optimal sensor placement 

is to determine the region in a structure that can be interrogated by an actuator-

sensor pair. This region depends on a number of factors, including transducer 

excitation frequency/bandwidth, actuation energy, and host structure properties. 

To address this, the first step is to experimentally determine the signal attenuation 

at a set frequency for the Al 6061-T651 material, which is used in both test 

structures. The excitation signal is a Gaussian windowed sine wave with a central 

frequency of 200 kHz. This excitation frequency was chosen because the APC 

850 type lead zirconate titanate (PZT) transducers that were used in this 

experiment showed acceptable actuation energies at this frequency. This 

frequency also resulted in clear damage features being introduced into the signal 

for the damage cases that were investigated. A collocated transducer approach is 

used to extract features from the signal that result from the introduction of 
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damage to the structure. Since the damage induced in the structure causes mode 

conversion, a time frequency based signal analysis approach, such as the 

matching pursuit decomposition (MPD) technique [51], can also be used to 

extract the converted modes. However, the collocated sensor approach used 

provides a simple way to extract the modes without the wave mode approximation 

errors that occur with MPD. Once the damage modes are extracted, the amount of 

the symmetric (S0) excitation mode that gets converted into an antisymmetric 

mode (A0) is calculated and the maximum sensing region is calculated. The 

theoretical formulation of this approach is presented in the following subsections.  

2.2.1 Threshold voltage and attenuation calculation 

In this approach, the sensing region for a transducer is calculated based on an 

acceptable probability of false alarm (Pfa) [12] which is given by, 

𝑃𝑓𝑎 =  𝑒
�−

𝑉𝑡ℎ
2

𝜎2 � (1) 

where Vth is the threshold voltage or the perturbation in the sensor signal caused 

by damage and σ2 is the variance of the background noise. As the perturbation due 

to damage gets closer to the background noise level, Pfa increases. In the present 

case, the background noise level was measured, and an acceptable probability of 

false alarm was set at 0.01% and the voltage threshold was calculated. This 

implies that any signal below this voltage cannot be reliably sensed. 
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Next, the attenuation in the media must be calculated to determine how far the 

excited and converted Lamb wave modes can travel before they drop below the 

voltage threshold. Figure 6 shows the setup of the PZT actuators and sensors used 

to conduct this study. To take into account the bond quality and the variation in 

the electromechanical property of the PZT transducers, actuator A2, which is 

equidistant from sensors S1 and S2, was used to excite the structure (Figure 6). 

Since both sensors should receive the same signal from A2, the effects due to 

actuator/structure coupling are eliminated. The sensor information can be used to 

quantify the relative differences in the received signal due to the difference in 

electromechanical property of the sensors and the sensor/host bond quality itself. 

The energy ratio of the sensors can be related using the following. 
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𝑛𝑁−1

𝑛=0

∑ 𝐸𝑆2𝐴2
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where ∑ ES1A2
nN−1

n=0  and ∑ ES2A2
nN−1

n=0  represent the total energy received from 

actuators by S1 and S2, respectively, determined over N time intervals, and Tme1 

and Tme2 are the transfer functions for sensor 1 and 2, respectively. Since the 

differences in sensor properties have now been quantified, the attenuation 

coefficient (α) and energy ratio of the sensor signals between S1 and S2 (Figure 

6) can be found using the following relations: 
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𝛼 = −
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where RAS1 and RAS2 are the distances from the actuator to sensors as shown in 

Figure 6. For this study, the attenuation coefficient (α) was calculated to be 0.693 

in-1. 

 

Figure 6: Setup for attenuation measurement. 

2.2.2 Calculation of energy conversion for Lamb wave modes 

If Lamb waves propagating along a thin plate encounter a discontinuity point such 

as an open crack, then some portion of the transmitted Lamb wave modes will be 

converted into other modes. For example, when a S0 mode arrives at the 

discontinuity, the transmitted wave is separated into S0 and A0 modes (denoted as 

S0/S0 and A0/S0, respectively). In a similar manner, an A0 mode is also divided 

into S0 and A0 modes (S0/A0 and A0/A0).  
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The first arrivals of the additional modes due to mode conversion occur between 

the S0 and A0 modes when a notch is located between the exciting and sensing 

PZT transducers. Figure 7  schematically shows the relative arrival times and 

phases of various modes generated and sensed using the illustrated actuator/sensor 

pair. In Figure 7, signal AB denotes a measured Lamb wave signal from PZT A to 

PZT B. Signals AC, DB, and DC are defined similarly. 

Ideally, signals AB and DC (or signals AC and DB) should be the same because 

the converted Lamb wave modes (S0/A0 and A0/S0) do not appear in the absence 

of damage as shown in Figure 7 (a). However, these conditions are no longer 

valid when the notch is formed because the phases of the converted Lamb wave 

modes are totally different between signals AB and DC (or signals AC and DB). 

Based on this finding, Equation (5) was introduced to achieve full decomposition 

of individual Lamb wave modes from measured Lamb wave signals.  

 �

Signal S0
Signal MC2
Signal MC1
Signal A0

� =
1
4
�

1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

� �

Signal AB
Signal AC
Signal DB
Signal DC

� (5) 

Note that signal MC1 will contain only the S0/A0 mode (the S0 mode converted 

from the A0 mode) in the presence of damage while signal MC2 includes the A0/S0 

mode only. By monitoring the appearance of converted modes in signals MC1 and 

MC2, the presence of damage can be identified. 
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 (a) Relative phases of individual Lamb wave 

modes in a healthy plate 

(b) Relative phases of individual Lamb wave 

modes in a damaged plate 

Figure 7: Determination of mode converted waves due to damage using 

collocated transducers. 

Using this approach, the Lamb wave modes were calculated for the two damage 

cases being tested: a 99g bonded mass and a fatigue crack. For this research, only 

the S0 to A0 converted mode (A0/S0 mode) in signal MC2 was used as a damage 

indicator. Figure 8 shows the modes that were determined experimentally. Using 

Equation (5), the MC2 mode after damage was determined.  
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Figure 8: Experimental determination of Lamb wave modes. 

2.2.3 Calculation of sensing region 

Once the S0 mode for the healthy case and the S0 to A0 converted mode for the 

damaged case were calculated, the energy of the incident S0 mode at the damage 

location as well the mode resulting from S0 conversion were computed using the 

experimentally determined attenuation in aluminum. Using this information, the 

proportion of the S0 energy that is converted to A0 can be calculated. Assuming 

that this energy conversion ratio will remain constant for this type of damage, the 

maximum distance that a damage mode can travel can be calculated using the 

following equation: 

𝛼 = −
1

2𝑅𝐴𝐵
ln �

𝐸𝐴
𝐸𝐵
� (6) 



  37 

where EA and EB represent the signal energies at any two points A and B, 

respectively, and RAB is the distance between the two points. Since this critical 

distance (dcrit) is constant, the sensing region around two transducers is an ellipse. 

Figure 9 shows a schematic of the sensor sensitivity region.  When a pair of 

transducers is spaced farther than dcrit, they do not form a sensor-actuator pair as 

shown in Figure 4(a). The sensing region is elliptical if the spacing is less than 

dcrit, Figure 9 (b), and it becomes more circular as the PZT transducers get closer, 

Figure 9 (c). 

 

 (a) (b) (c) 

Figure 9: Sensing region for different transducer spacing. 

2.3. Optimization Algorithm 

Simulated annealing (SA) has been used for sensor placement optimization. SA is 

a probabilistic, metaheuristic optimization approach based on the annealing 

concept in metals where a metal is heated and cooled in a controlled manner to 

increase the size of the crystals that form and reduce their defects. When the metal 

is heated, the atoms escape their local minimum energy state. By controlling the 

rate of cooling the atoms are then able to move around in this higher energy state 

and find lower energy minima. For the minimization problem addressed in this 
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work, the SA evaluates nearby solutions at every iteration and replaces the current 

solution (x*) with the new solution (x) with a probability (P) that is given by, 

𝑃 =  �
1     ,  if x<x*

𝑒�
𝑥∗−𝑥
𝑇 �,  otherwise

� (7) 

where T is the temperature that gradually decreases as the algorithm progresses. 

From Equation (7), it can be seen that the algorithm will always accept candidate 

solutions that result in lower function values. However, if all the surrounding x 

values result in higher function values, the SA can still escape this minimum with 

a probability that is proportional to the temperature. Initially a large value of T is 

used to allow the algorithm to explore the function space and not get trapped in 

local minima. T is reduced after each iteration, thus narrowing the search space of 

the algorithm. When T=0, the algorithm is limited to only moving ‘downhill’. 

Figure 10 shows an example of this for a maximization problem. A traditional hill 

climbing approach would reach a local maximum and then get trapped because all 

surrounding solutions have a lower function value. The simulated annealing 

approach, however, can jump randomly, which may lead to the discovery of a 

better optima in the function space. 
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Figure 10: Use of random jumps in simulated annealing to escape local optima 

and seek global optima.  

(http://maxdama.blogspot.com/2008/07/trading-optimization-simulated.html) 

In this research, the objective is to have complete sensor coverage of the structure 

using the minimum number of sensors. To ensure that the result does not have 

excessive redundancy, a penalty term is introduced in the objective function that 

penalizes sensors for covering the same space on the structure. The objective 

function is expressed as follows, 

Y = w1(Ano coverage) + w1(Aexcessive coverage) -  w3(Agood coverage) + w4(Ntransducers)  

+ w5(σtransducer location) 
(8) 

where Ax is the area of the plate subjected to sensor coverage condition x, wi  are 

user defined weight factors that can be used to specify the relative importance of 

the different terms in the equation, and Ntransducers is the number of 
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actuator/sensors being placed on the structure. σtransducer location is normalized stress 

at the transducer location. 

2.4. Results and Discussion 

Two different test articles were used to investigate the efficiency of the sensor 

placement approach. The first is a Navy SHM test bed provided (Figure 11). It 

consists of two 36”x36” plates bolted together using a doubler and several bolts. 

Each plate has different diameter holes in them with surrounding bolt holes for 

added complexity. The top and bottom 3” sections of the plate were reserved for 

clamping and sensors could not be placed in that region. However, it is important 

that these regions be covered by the sensing region since damage could initiate 

due to the boundary conditions. The same applies to the joint at the center of the 

structure where the two plates are bolted to each other using a doubler. 

 

Figure 11: Navy SHM test bed. 
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Figure 12(a) shows the initial random configuration of the transducers before 

optimization. The right of the figure shows the regions where sensors cannot be 

placed but where damage could still occur (red), and the location of the holes. The 

left part shows a discretized version of the same structure. Each grid point 

represents a location that was checked to see if it was covered by a sensor-

actuator pair. Blue indicates regions that were not covered by any sensors, green 

regions have excessive sensor coverage and black regions are covered by 1-2 

transducer pairs. The value of dcrit that was calculated for the added mass type 

damage was about 26”. Figure 12(b) shows the output of the algorithm and the 

final placement of all the transducers. For this structure, the loading and boundary 

conditions were not known so a uniform stress distribution/probability of damage 

was assumed. Initially, 20 sensors were placed on the structure, but the 

optimization results indicate that only 11 sensors are required to provide complete 

coverage to this structure. 

 
(a) 
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(b) 

Figure 12: Initial (a) and final (b) configuration of sensors after optimization. 

The second test article is an aluminum lug joint, Figure 13, for which dcrit was 

estimated to be about 6” in the case of crack damage. 

 

Figure 13: Lug joint specimen with fatigue crack. 

The predominant failure mode of the lug joint is through fatigue loading applied 

at the pin holes, in the direction of the red arrows (Figure 13). Since the loading 
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for this specimen is known, a finite element analysis (FEA) was carried out to 

determine the regions of high stress where damage is most likely to occur. 

Through the optimization procedure, the goal is to not place sensors in these areas 

but still detect the initiation of damage at these locations with high fidelity. Figure 

14 shows the stress distribution in the lug joint. It can be seen from the figure that 

the most likely location for a fatigue crack to initiate and propagate is at the 

shoulder of the joint where the stress is highest. In order to utilize this information 

in the optimization procedure, the stress distribution was converted into a 

grayscale image where darker regions had higher stress. This image was then 

converted into a matrix of luminosity values, which were normalized and then 

used to provide a measure of relative stress at different points of the structure. 

 

Figure 14: Stress distribution in lug joint 
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Figure 15: Grayscale stress distribution 

Figure 16(a) shows the initial placement of the sensors before optimization. The 

region covered by each pair of transducers is also indicated. The pin holes of the 

joint were not discretized since in practice there is a clevis connector that is used 

when the structure is setup for fatigue testing. This means that sensors cannot be 

placed in this region. Figure 16(b) shows the result of the optimization reducing 

the number of transducers from 10 to 6 while maintaining maximum coverage at a 

user defined probability of false alarm. 
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(a) 
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 (b) 

Figure 16: Initial (a) and final (b) placement of sensors for crack detection on a 

lug joint 
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Chapter 3 

DAMAGE DETECTION 

The principle objective of structural health monitoring is to be able to detect the 

presence of defects close to the nucleation stage so that steps can be taken to 

avoid system or sub-system level failure. In a structure, it is well known that the 

dominant sites for crack nucleation and growth occur at joints because of stress 

concentrations created by varied geometry and part interfaces. For bolted joints in 

particular, a loss of torque in one or more bolts can dramatically reduce the 

fatigue life [52-54] of the part. The role of torque in a bolted joint is to provide a 

clamping load that increases the friction between the areas of the lap that are in 

contact, preventing slip during loading. In this way, the applied load is transferred 

directly from one lap to another through friction. When a bolt becomes loose, 

there is a stress concentration at the interface between the bolt shank and the 

edges of the hole due to load transmission through the bolt and plate hole, causing 

fretting. The motivation of this chapter is to investigate fatigue damage in bolted 

joints caused by torque loss.  

This chapter presents a kernel based method to diagnose structural defects and 

presents some examples for damage detection in bolted joints. An anomaly 

detection tool is developed using one-class Support Vector Machines (SVMs) that 

utilize only the nominal state of the system while looking for different fault 

modes that might occur during its operation. The fundamental idea behind the 
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kernel based method is to use a function Θ  to map a given dataset, ,Xx ∈  into 

the Hilbert space. The transformed features are then manipulated to perform a 

specific task. Here the objective is to separate different defect signatures 

(patterns). Specifically, Radial Basis Function (RBF) has been used to do the 

mapping. The one-class SVMs, an unsupervised technique used in this study 

identifies outliers in the test dataset and characterizes anomalous behaviors in 

wave based sensor signatures.   

3.1. Time Delay Embedding 

The sensor response collected from a piezoelectric sensor is a time series, which 

can be defined as a sequence of measurements ( )x t  at different instances of time 

of an observable x acquired at regular time intervals. In time series applications, 

the dynamical information of the system can be extracted for a given data set of 

scalar observations where each of these observations correspond to the projection 

of the systems’ state vector in one dimension. Taken’s theorem [55] states that it 

is possible to reconstruct the attractor in the phase space given ( )x t . This can be 

achieved using the time embedding approach where a one-to-one differential 

mapping between a finite windowed time series can be constructed. Given a time 

series ( )x t  with N number of data points, the state space vectors can be 

represented as follows, 
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where the time instant st nT= , sT being the sampling time. The parameter ED  is 

the embedding dimension andτ is the time delay. Delay reconstruction makes it 

possible to view the dynamics in terms of the scalar field. The best surface fitting 

these points represent the approximate dynamics of the system. Figure 17 shows a 

three dimensional phase portrait generated using sensor signals from a bolted joint 

structure. This type of visualization makes it easier to identify changes in the 

signals that are manifest through the introduction of damage. 
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Figure 17: Three dimensional delayed reconstruction of sensor signal from bolted 

joint (100% torque, 0 cycles) 

The time embedding approach is a very popular technique in the field of nonlinear 

dynamics and is commonly used to predict the future dynamics of a system. To 

ensure proper reconstruction, the embedding dimension and the time delay have 

to be assigned properly. In data driven approaches, while introducing delay in 

experimental data sets, the choice of the time delay is considered to be a very 

important step. This is because when τ  is chosen to be very small compared to 

the internal time scale of the system, the successive components of the delay 

vectors ( )x t and ( )x t τ+ are almost linearly dependent, that is, they are highly 

correlated. On the other hand, a very large delayτ , can result in an “over-folding” 

of the attractor. A practical way to choose the proper τ  is to assign an interval 

,5.00 fmT<< τ where fmT is the reciprocal of the dominant frequency present in 
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the spectrum. In the present work, ED  has been taken as 11 and τ  as the interval 

between two consecutive sample points. This means that each measurements x(t) 

would lead to 11 dimensional input vectors. Figure 18 represents the closeness of 

the phase portrait in 2D for three different measurements taken by a sensor from a 

bolted joint at the same damaged state (100% torque at 0 kcycles). Figure 19 

shows how the phase portrait differs when the dynamics of the system changes 

under different torque conditions (100%/60%/30% cases). 

 

Figure 18: Phase portrait x(t) vs x(t+1) for 3 measurements without change in 

damage state. 
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Figure 19: Phase portrait x(t) vs x(t+1) for 3 measurements made at different 

damage states 

3.2. One Class Support Vector Machines 

SVM is a machine learning technique that maps the extracted feature vector of 

input space to high dimensional domain known as feature space and, thereafter 

constructs an optimal hyperplane to separate the features by solving a quadratic 

optimization problem. Often, in the real world, patterns are nonlinearly separable 

in input space.  The idea is to map the n- dimensional vectors of the input space 

into a high-dimensional (possibly infinite dimensional) feature space (Figure 20) 

where the transformed image of the input patterns are linearly separable. This can 

be achieved using Cover’s theorem, which states that a multidimensional input 

space can be transformed to a feature space where the transformed image of the 
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input patterns are linearly separable provided the transformation is nonlinear and 

the dimensionality of the feature space is high enough.  

 

Figure 20: Finding complex separatrix through high dimensional mapping. 

The high dimensionality of the feature space enables the construction of a 

linear separating hyperplane in the space. However numerical optimization 

schemes in high dimension would suffer from the problems associated with 

dimensionality. Such computational complexities can be avoided by taking 

advantage of the inner–product kernel where the dot product in the feature map is 

implicitly computed by evaluating the simple kernel, thus avoiding the explicit 

calculation of the feature map. In the present study, the input data is mapped into 

an infinite-dimensional feature space using a Radial Basis Function (RBF) kernel 

and can be expressed as,   

 
,

2
1exp 22i i

K x xx x
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where the two vectors correspond to the input vector x


and the thi  input pattern

→

ix . RBFs [56] are popular for interpolating scattered data as the associated 
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system of linear equations is guaranteed to be invertible under very mild 

conditions on the locations of the data points. For example, the thin-plate spline 

only requires that the points are not co-linear while the Gaussian and multiquadric 

place no restrictions on the locations of the points. In particular, RBFs do not 

require that the data lie on any sort of regular grid. Once the data is mapped to the 

N dimensional space, an N-1 dimensional hyperplane is constructed, which 

maximizes the separation of the data from the origin taking into account the 

nonlinear relationship of the data and treats the origin as belonging to the second 

class. Traditional methods utilize a structure risk minimization method to 

minimize the empirical training error [56]. The method employed here maximizes 

the separation of the data from the origin, thus maximizing the observable 

difference between the training set and data that belongs to a different class. The 

classifier uses the outliers as representatives of data that have not been observed 

in the training set.  This optimization problem is aimed at finding the optimal set 

of hyperplane parameters for which the margin of separation between the origin 

and the support vectors are maximized. This is same as minimizing the Euclidean 

norm of the weight vector ( w


). For non-separable patterns, the primal problem 

can be formulated as follows.  

  (11) 

subject to 〈𝑤,𝛩(𝑥)〉 ≥ 𝜌 − 𝜉𝑖, 𝜉𝑖 ≥ 0, for 𝑣 ∈ [0,1], 

where Θ is the feature map, ρ is the separation of the hyperplane from the origin, 
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v is the training error limit, and ξ is the non-zero slack variable. Formulation of 

the dual problem (Equation (15)) is achieved by first constructing the Lagrangian 

function, which is expressed as:  

 ( ) 1, , 1
2 1

NT TJ x w w y w xi i i
i

ρ α α ρ
  = − + −∑   

  =

    

 (12) 

The two optimality conditions are: 
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Using the Kuhn-Tucker conditions of optimality[57] on the Lagrangian function, 

with some simple manipulation, it is possible to construct the dual problem which 

is expressed as 

  
(15) 

subject to, 
10 , 1i ilv

α α≤ ≤ =∑ , where αi is the Lagrange multiplier. The offset 

parameter (ρ) can be recovered for all values of αi.  Once this optimization 

problem is solved, all the parameters necessary to construct the optimal 

hyperplane are known.  Mathematically, features with non-zero Lagrangian 

),(
2
1min

, jiji ji xxK∑ αα
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multipliers ( 0≥iα  ) are termed as support vectors. Once Θ(x) and αi are 

available, the offset can be calculated from the following relation. 

  (16) 

Although all the points in Θ are separable, it may not be computationally effective 

to compute the canonical hyperplanes for data sets that are not linearly separable; 

therefore an allowable training error ν  is introduced [58]. Even though this 

results in a hyperplane that is not canonical, it rapidly yields acceptable solutions. 

In this study, an allowable error of 10 percent was used as the maximum allowed, 

which means that a 90 percent classification rate must be achieved when 

constructing the hyperplane using the training data. This parameter allows the 

user to make a trade-off between model complexity and training error. The main 

advantage of the one-class SVM becomes apparent while training the algorithm 

because only one class of data belonging to any arbitrary reference can be used 

[30]. Since there is often no data pertaining to the healthy state of an existing 

structure, an algorithm must not be greatly affected by a change in the training 

data. To achieve the optimum classification rate, the algorithm minimizes the 

upper bound of the generalization error by maximizing the separations of the most 

similar patterns or support vectors in hyperspace. As a consequence, the margin 

between the data and the separating hyperplane is also maximized. During 

classification if the test data points are sufficiently different from the training 

data, they are placed near the origin on the opposite side of the decision plane. 

This represents a change in the state of the system most likely due to structural or 

),( jii i xxK∑= αρ
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sensor damage. To determine on which side of the hyperplane a particular point 

belongs, a decision function is used to test each new data point. The decision 

function for a given test vector Θ(z) is expressed in terms of the RBF kernel by 

the following function: 

 
1( ) ( , )l

i i jiF z sign K x xα ρ
=

 
 
 

= −∑  (17) 

where F(z) is the decision function that decides whether a training point should lie 

on the same side of the hyperplane as the training data or near the origin if it is 

from a different class. A data point that is from the same class is assigned a value 

of +1 and data that is not from the same class is assigned a value of -1 (Figure 

21). 

 

Figure 21: Graphical representation of hyperplane construction. 

In order to design the SVM classifier, it is necessary to select an appropriate 

kernel parameter for each class of data. The parameter controls the smoothness of 
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the kernel function and is tuned based on the model parameter, such that the upper 

bound on the classification error is satisfied. The parameter σ acts as an in-built 

tuning parameter that controls the quality of the training. The kernel width has a 

regularization effect on the cost function, which is minimized during training in 

order to achieve the upper bound of the allowable error v [59]. Since choice of 

this parameter is application specific, it is important to calculate an optimum 

value for a given training set. A simple brute force method is adopted to do this 

[60]. First, αi and ρ are calculated for a range of kernel parameters and the data is 

classified using these parameters. The optimal σ is selected as the smallest kernel 

parameter that reduces the misclassified data to v percent of the training data. A 

graphical representation of this selection is shown in Figure 22.  

 

Figure 22: Demonstration of optimal σ selection 
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3.3. Experimental Setup 

The test specimens used for testing were machined out of an Al 6061-T651 plate, 

1/8” thick. The dimensions of the laps were chosen so that they were 

representative of commonly used joints in aerospace structures. Since the location 

of the notch was known before testing, sensors were only mounted on the center 

lap. The single lap bolted joint was instrumented with 0.25 in diameter, 0.01 in 

thick, APC 850 pzts in an optimized arrangement. The fatigue loading of the 

bolted joint was carried out on an Instron 1331, 22 kip capacity servo hydraulic 

load frame. The joint was subjected to a 2 kip max load (R=0.1) at 20Hz. To 

speed up the testing, one bolt was left completely loose while the other bolts were 

tightened to 100 in-lb of torque. Figure 23 shows the setup that was used.  

 

Figure 23: Experimental setup used when testing bolted joints. 
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In order to know the exact initiation site for the crack, the bolt hole with the 

loosened bolt was notched using an Electrical Discharge Machining wire. The 

fatigue test was paused frequently during the test to take PZT measurements and 

pictures of the damage. Pictures were taken using a camera attached to an optical 

camera focused on the notch. In order to improve the picture quality and make it 

easier to distinguish surface scratches from a growing crack, only the viewing 

surface was polished using 1200 grit paper. The rest of the contact surfaces were 

untouched so that the fatigue behavior of the structure was not significantly 

altered. The bolted joint was left on the frame when data was collected to ensure 

uniform boundary conditions for all the readings. The level of torque in the 

loosened bolt was also adjusted to 30, 60, and 100 percent to show the effect of 

torque on the observed signal at a given crack length.  A 130 kHz, Gaussian 

windowed sine wave was used as the excitation signal. The acquisition was 

carried out at a rate of 2 MSa/s with 100 observations taken for each sensor. 

Before the test specimen could be instrumented with detection hardware, it is 

necessary to determine the wave attenuation in the aluminum media. By 

understanding the extent of the attenuation in the material, distance between 

sensors placed on the structure can be determined so that there is sufficient 

overlap of the sensing regions in the structure. An optimal sensor placement 

technique [11] is used to determine the placement of the sensors on the structure. 

The optimization was constrained so that sensors were not placed too close to the 

edges or the bolts. The resulting sensor placements are shown in Figure 24. 

Before the placement of the sensors could be determined, it was necessary to 
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decide the minimum size of crack that could be detected so that a threshold 

voltage corresponding to that minimum crack size could be ascertained and any 

signal with a lower voltage could be ignored as noise.  

 

Figure 24: Sensor placement used for data collection on bolted joint. 

3.4. Signal Conditioning 

Since the data for the bolted joint specimen was collected while it was still 

mounted on the servo hydraulic frame, the acquired signal had some parasitic 

parameters that had to be removed before classification. These parameters 

included broadband noise, a low frequency wiggle since the sample was still 

mounted on the frame, non-uniform signal energy, and DC clamping. In order to 

remove these parameters, the data was first processed using band pass filter, 

allowing frequencies between 10-300 kHz to remove the low frequency wiggle, 

noise, and DC clamping. The signals were then normalized and down sampled to 

make the signal processing faster. A matching pursuit decomposition using 60 

iterations was used to decompose the signal and then reconstruct it to make the 

input signal smoother for classification. 
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3.5. Results and Discussion 

Figure 25 shows the length of the crack measured using the optical telescope as a 

function of the number of cycles. The data collected at different number of load 

cycles and different torques from the different sensors were combined and used to 

train the SVM algorithm so that it could identify changes on a system level and 

not be susceptible to changes local to each sensor. This approach also reduces the 

computational expense of running several different combinations of data sets. To 

simulate a more realistic scenario, the system was trained with data from the 

100% torque, 0 kcycles case, representing a new structure. The trained algorithm 

was then tested using data from every other data collection point. 

 

Figure 25: Crack length as a function of number of cycles 

Every time the fatigue test was stopped, data was collected from the sensors and 

combined in such a manner that the algorithm was trained with all the features of 
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this state. Figure 22 shows the classification error rate as a function of the number 

of cycles, which corresponds to the increase in crack length. The classification 

error rate is plotted instead of the classification rate to provide a measure of the 

anomalous data caused by the presence of damage. 

 

Figure 26: Classification Error Rate (1 - Classification rate) variation with number 

of cycles, trained with 0 kcycles and 100% torque. 

Since a three-dimensional crack that may not be straight through the thickness is 

generated in the single lap joint, there are a number of possibilities that could 

contribute to the trends shown in Figure 26. Subjecting a sample to a compressive 

load caused by torque, causes attenuation of the signal when it reaches the bolt, 

reducing the small change in the features of the wave. Due to the nature of the 

load applied, there might be crack closure due to compression reducing the 

change in the output signal that would be caused by a fully open crack. This 

makes the wave more likely to be classified as a ‘healthy’ or nominal data point. 

When a crack grows out of this compressive region near the bolt, it becomes 
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easier to identify, resulting in an increase in the percentage of (1-CR). In the case 

of a completely loose bolt, some of the load gets redistributed to the nearby bolt. 

It is possible that since the crack length at 80 kcycles was more than half way to 

the other bolt, it entered the enlarged area of compressive stress around the 

neighboring bolt. 

Figures 27(a) and (b) show displacement fields of the surface of the top lap at 

100% torque with 0% torque as the baseline state using an ARAMIS 3D image 

correlation device. In this figure, the crack originated from the right bolt hole and 

travelled towards the left bolt. The displacement field plotted shows out-of-plane 

curvature caused by the application of torque. The apparent buckling of the joint 

suggests that the crack will be open on the top surface but will be closed on the 

back surface. There is also a possibility that the buckling changes the load transfer 

between the laps, in turn changing the stress state around the crack. The exact 

order or combinations of the aforementioned phenomena that cause the trends 

shown are not yet fully understood. 

  

(a) (b) 
Figure 27: (a) Displacement field in the z direction, perpendicular to the lap. (b) 

Relative z variation along the black line in (a). 
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It is not always possible to obtain healthy state readings for an existing structure, 

so it is necessary to study the effect of using the current state of a system to see if 

similar trends in the classification rate are observed. The algorithm was trained 

using data from 70 kcycles at 100% torque. The results in Figure 28 show that a 

similar trend is observed.  

 

Figure 28: Classification error rate variation with number of cycles, trained with 

70 kcycles and 100% torque. 

From Figure 26 and Figure 28, it can be seen that there is a large difference in 

classification error rate between the 0% torque case and the other torque cases. To 

study the ability of the algorithm to differentiate between  the different cases at 

50% and 100% torque, the SVM algorithm was trained with every combination of 

torque and crack length and then tested with every other combination of torque 

level and crack length. Table 2 shows the different training and testing classes that 

were used for this analysis. 
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Table 2: Classes of observations used to study differences in classification rate 

between 50% and 100% torque. 

Data description              

( fatigue cycles) 

Class 

(C) 
Torque level 

Training/Testing 

Classes 

Total 

observations 

70Kcycs 1 50% TRC1 40 

80Kcycs 2 50% TRC2 40 

90Kcycs 3 50% TRC3 40 

95Kcycs 4 50% TRC4 40 

70Kcycs 5 100% TRC5 40 

80Kcycs 6 100% TRC6 40 

90Kcycs 7 100% TRC7 40 

95Kcycs 8 100% TRC8 40 

Let A and B represent 2 classes of signals that may or may not be distinct (Figure 

29). If we train the algorithm with A and test with B, it will yield a classification 

rate X. Similarly, training with B and testing with A yields a classification rate Y. 

If the absolute value of the difference between X and Y is less than a defined 

threshold, then the two signals A and B belong to the same class, and this has been 

used as a selection criteria. In the present analysis, this difference is taken to be 

less than five percent of the required classification rate (1-ν). Geometrically, the 

selection criteria means that the hyperplane constructed for the first case is very 

similar to the hyperplane constructed in the second case in that most of the data 

lies on the same side for both cases. In this study, Rij is the number of 

observations classified as being in the same class in Qij divided by the total 
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number of observation combinations. Table 2 shows the results of this analysis. 

Since there are eight training classes and eight testing classes, there are 64 

combinations but only 32 independent results. 

 

Figure 29: Distinguishing two classes using one-class SVM 
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Table 3: Classification rate (matrix) for sensor set 1,2,7,8. 

ijS  

ν =0.1 

σ  

TRC1 

(test) 

TRC2 

(test) 

TRC3 

(test)) 

TRC4 

(test) 

TRC5 

(test) 

TRC6 

(test) 

TRC7 

(test)) 

TRC8 

(test) 

0.08 
TRC1 

(train) 
0.9 0.86 0.75 0.76 0.83 0.85 0.82 0.77 

0.065 
TRC2 

(train) 
0.86 0.9 0.77 0.73 0.83 0.85 0.83 0.75 

0.085 
TRC3 

(train) 
0.95 0.92 0.9 0.9 0.96 0.95 0.93 0.89 

0.075 
TRC4 

(train) 
0.94 0.92 0.86 0.9 0.93 0.93 0.93 0.87 

0.07 
TRC5 

(train) 
0.89 0.87 0.8 0.77 0.9 0.87 0.84 0.78 

0.065 
TRC6 

(train) 
0.9 0.88 0.79 0.78 0.86 0.9 0.84 0.78 

0.075 
TRC7 

(train) 
0.91 0.88 0.8 0.78 0.87 0.88 0.9 0.8 

0.075 
TRC8 

(train) 
0.95 0.91 0.87 0.86 0.93 0.94 0.93 0.9 

From Table 3, it can be seen that in many cases, Sij is very close to Sji. A selection 

criteria is defined as follows, 

If ( )0.05 1ij jiS S ν− ≤ − ,  1ij jiQ Q= =  

Else     
0ij jiQ Q= =

. 
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Using this selection criterion, the Qij matrix is computed and presented in Table 4. 

Out of the 32 cases that were tested, the algorithm was able to correctly predict 23 

cases, resulting in a success rate of 72%. 

Table 4: Outcome of the classifier. 

 

ijQ  
TRC1 

(test) 

TRC2 

(test) 

TRC3 

(test)) 

TRC4 

(test) 

TRC5 

(test) 

TRC6 

(test) 

TRC7 

(test)) 

TRC8 

(test) 

TRC1 

(train) 
1 1 0 0 0 0 0 0 

TRC2 

(train) 
1 1 0 0 1 1 0 0 

TRC3 

(train) 
0 0 1 1 0 0 0 1 

TRC4 

(train) 
0 0 1 1 0 0 0 1 

TRC5 

(train) 
0 1 0 0 1 1 1 0 

TRC6 

(train) 
0 1 0 0 1 1 1 0 

TRC7 

(train) 
0 0 0 0 1 1 1 0 

TRC8 

(train) 
0 0 1 1 0 0 0 1 
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Chapter 4 

DAMAGE CLASSIFICATION 

Damage classification is an important aspect of structural health monitoring 

because it gives the user an indication of the type and extent of the damage 

induced in the structure. Knowledge of the type of damage in the structure also 

aides in the prediction of damage growth since different damage types grow at 

different rates when subject to the same loading. This chapter presents a 

methodology for data mining of sensor signals for damage classification using 

SVMs.  

A hierarchical decision tree structure was constructed for damage classification, 

and experiments were conducted on metallic and composite test specimens with 

surface mounted piezoelectric transducers. Damage was induced in the specimens 

by fatigue, impact, and tensile loading; in addition, specimens with seeded 

delaminations were also considered. Data was collected from surface mounted 

sensors at different severities of induced damage. A Matching Pursuit 

Decomposition (MPD) algorithm was used as a feature extraction technique to 

preprocess the sensor data and extract the input vectors used in classification. 

Using this binary tree framework, the computational intensity of each successive 

classifier was reduced, increasing the efficiency of the algorithm as a whole. The 

results obtained using this scheme show that this type of classification 

architecture works well for large data sets because of a reduced number of 
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comparisons that are required. Due to the hierarchical setup of the classifiers, 

performance of the classifier as a whole is heavily dependent on the performance 

of the classifier at higher levels in the classification tree. 

This chapter is organized as follows. Sections 4.1 and 4.2 presents a theoretical 

background on the method used for classification and its organization as a binary 

tree classifier. The theory behind the extraction of features used for classification 

is presented in section 4.3. The experimental setup and some details regarding 

data collection have been discussed in section 4.4. Section 4.5 demonstrates the 

effectiveness of the classification scheme through selected results from a fatigued 

lug joint. 

4.1. Support Vector Machines 

Support Vector Machines have been used for classification in a number of 

different fields because of their good generalization[42] capability, i.e., they are 

able to learn the behavior of the system even with relatively few examples. The 

ability of SVMs to separate nonlinearly separable data is based on Cover’s 

theorem[61], which states that non-separable or nonlinearly separable patterns in 

input space (low-dimensional space) are more likely to be linearly separable in a 

new high-dimensional feature space, provided that the transformation is nonlinear 

and the dimensionality of the feature space is high enough. The patterns in this 

high-dimensional (say N dimension) space are then separated by constructing an 

N-1 dimension hyperplane, which takes into account the nonlinear relationship of 

the data. The mapping kernel used in this research is the Radial Basis Function 
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(RBF), which is popular in machine learning applications[35, 62] involving data 

sets that are not linearly separable. The RBF kernel takes the form of 

 
22( , ) ,
ix x

iK x x e σ

−
−

=  (18) 

where x is the input vector, xi is the ith input pattern, and σ is the width of the 

kernel that has been optimized during the training phase. Once the training data 

has been mapped into high- dimensional space, an optimal hyperplane is 

constructed. The optimal hyperplane is defined as one which maximizes[61] the 

separation between the two classes allowing the algorithm to learn the differences 

in the data sets.  

The decision boundary for patterns that are linearly separable is defined as, 

 0,iw z b⋅ + =  (19) 

where w is an adjustable weight vector, b is a bias and zi is the mapped input 

pattern. For an input point (zi, yi), where yi is the corresponding class label, the 

above equation is subject to, 

 ( ) 1.i iy w z b⋅ + ≥  (20) 

This is obtained by rescaling w and b such that two parallel hyperplanes for yi=±1 

are obtained. The distance between these two hyperplanes defines the margin of 

the classifier. In most practical applications, the data is nonlinearly separable, and 

it is not possible to construct a hyperplane without admissible training errors. In 
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such a case, a soft margin[63] is imposed, which allows a certain number of data 

points to be misclassified (Figure 30), and the above equation can be modified as, 

 ( ) 1 ,i i iy w z b ξ⋅ + ≥ −  (21) 

where 0i iξ ≥ ∀ ,  is a slack variable. In order to find this optimal hyperplane 

that minimizes the classification error, the following optimization problem needs 

to be solved  

 21min ,
2 i

i
w D ξ+ ∑  (22) 

subject to the constraint shown in Equation (21)  The variable D refers to a 

regularization parameter that can be modified to control the complexity of the 

model. A large value of D means that the classifier will only classify separable 

data. For this research, a k-fold cross-validation scheme will be used to optimize 

the hyperparameters σ and D. Defining ( ) i i ii
w y zα α=∑ , the dual problem can 

be constructed as, 

 
1max W( ) ( ) ( ),
2i

i
w wα α α α= − ⋅∑  (23) 

subject to 0 i D iα≤ ≤ ∀  and 0i ii
yα =∑ . Solving Equation (23) for the 

Lagrange Multipliers (α), it is possible to recover the solution to the primal 

problem. The decision function for the classifier becomes, 

 ( )( ) sign , .i i i
i

y x y K x x bα = + 
 
∑  (24) 
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Figure 30: Representation of parameters needed for hyperplane construction in 

two dimensions. 

4.2. SVM as a binary tree classifier 

The multi-class classifier used in this paper combines a modified ‘one vs rest’ 

algorithm with a binary tree structure[42] to minimize the number of comparisons 

that are necessary to identify a data class while still taking into account all 

possible classes. For a four-class problem as shown in Figure 31, the binary tree 

classifier is setup as follows. 

Step 1. A two-class SVM is trained using pattern 1 as Class A and patterns 2, 3, 

and 4 as Class B, and a hyperplane is constructed. 

Step 2. Next, data points corresponding to pattern 1 are removed from the 

training set and pattern 2 is denoted as Class A and patterns 3 and 4 are 

denoted as Class B for hyperplane construction. 

Step 3. This process is repeated until the last classifier compares the last two 

patterns.  
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Figure 31: Construction of multiple hyperplanes without overlapping regions for 

multi-class problems. 

The advantage of this approach is that for a k class problem, only (k-1) 

hyperplanes need to be constructed. Also, removing patterns after each classifier 

is constructed reduces the computational expense. In this way, it is also possible 

to prioritize damage classes and terminate the classification algorithm during 

testing before checking all possible cases. In this paper, since the damage 

considered is only of one type, the classifiers are arranged in order of increasing 

crack length. In a more complex structure like a bolted joint, for example, it 

would be possible to prioritize torque loss (fault type A) over structural damage 

(fault type B), and the algorithm can be terminated midway if a loose bolt is 

detected[6, 35]. In order to ensure there is no region of overlap where one point 

could be classified as belonging to multiple classes, a point in the first comparison 

that is classified as belonging to Class A is removed from the test set, and the 

points in Class B move on to the next classifier. 

  



  76 

4.3. Feature extraction algorithm 

Feature extraction is a vital part of any data mining algorithm. The features 

extracted from the raw data need to be meaningful in the sense that they reflect 

changes in the system due to different types of damage. In this research, matching 

pursuit decomposition (MPD) has been used as a feature extraction tool. MPD has 

been used for various applications such as feature extraction, signal 

characterization and classification[64], and signal encoding and 

reconstruction[65]. The working principle of MPD relies on decomposing a given 

signal into linear expansions of elementary functions (or atoms). The resulting 

decomposition reveals the waveform’s time-frequency structure[51]. A change in 

the signal is represented by the selection of different atoms that represent the 

waveform. 

In this research, the dictionary elements were composed of Gabor atoms, 

normalized in both the time and the frequency domain[51]. These atoms were 

selected since they have energy that is concentrated in the time-frequency domain, 

and there exists a closed-form[51, 66] analytical time-frequency representation for 

such atoms. Also, the algorithm is guaranteed to converge if the dictionary used is 

complete and the atoms have unitary energy[67]. The decomposition of the signal 

is based on four variables that define each dictionary element: expansion 

coefficient (C), time shift (τ), frequency shift (f) and atom width (k). The 

expression for the atoms used is given by 

 ( ) ( )22 cos 2( ) .i i ik t f t
ig t e τ π− −=  (25) 
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Using these atoms, the decomposition after M iterations can be written as, 

 
1

0
( ) ( ),

M
M

i i
i

x t C g R x t
−

=

= +∑  (26) 

where ( )MR x t  is the residue of the signal after decomposing the signal M times, 

and ( )0R x t  is the original signal for M = 0. As M →∞ , the signal residue will go 

to zero and the entire signal will be decomposed, that is, 

 
1

2
0 2

lim ( ) lim ( ) 0.
M

M
i iM M i

R x t x t C g
−

→∞ →∞
=

= − =∑  (27) 

The MPD algorithm is adopted because it reduces a given signal into fewer 

representative components that are more easily classified. Also, for physical 

systems the number of iterations can be limited so that the part of the signal that 

contains information is decomposed while the noise is contained in the residue. 

First, the weighted contribution of the dictionary element that best matches the 

signal (or the residue) is calculated. The dictionary element that has the highest 

time correlation with the signal is selected, and the weighted element is then 

extracted from the signal. The signal residue that is left is put back into the 

algorithm until the stopping criteria is reached. The stopping criteria can be 

defined in terms of the minimum energy that is extracted from the signal or the 

total number of iterations of the algorithm.   

4.4. Experimental setup 

For this study, experiments were carried out using different damage mechanisms 

in metallic and composite materials. The damage types investigated were fatigue 
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cracking in an aluminum lug joint along with delaminations, impact damage, and 

tensile failure in carbon fiber composite plates. 

4.4.1. Fatigue Crack 

The specimen tested was a lug joint that was subjected to tensile fatigue loading 

as shown in Figure 32(a). The sample was machined out of Al 2024 T351. One 

surface of the lug joint was polished using 1200 grit silicon carbide paper so that 

more accurate measurements of crack length could be made using an optical 

telescope. The sample was tested at a load ratio of 0.1 with a maximum load of 

1100lbs at 20Hz using an Instron 1331 servohydraulic test frame. Images of the 

crack length were taken every time the test was halted for data collection from the 

piezoelectric transducers using a CCD camera. Figure 32(b) shows the placement 

of the actuator and sensors on the structure. For the active interrogation and 

detection scheme used in this research, a 130 kHz Gaussian windowed sine wave 

was used as the excitation signal. The duration of the excitation was 500µs. The 

data collected from the sensors was sampled at 2MHz. Before preprocessing, each 

observation was downsampled to 500 kHz with a signal length of 512 points. 

Downsampling was feasible since the excitation was narrow band and most of the 

components of the sensor signal were between 100 kHz and 150 kHz, and the 

Nyquist frequency was still well above the maximum frequency component of the 

signal. It also made the matching pursuit algorithm computationally more 

efficient as the required dictionary size is reduced. A total of 300 observations 

were taken every time the damage state was measured. The fatigue experiment 

carried out on the lug joint resulted in five different damage states being 
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measured. The damage states differed in the length of the crack that was present. 

The different damage states are represented by Ci where i represents a different 

damage class, corresponding to: a) C1: Healthy; b) C2: 6mm crack (27.1%); c) 

C3: 8mm crack; (36.2%) d) C4: 10mm crack (45.3%); e) C5: 12mm crack 

(54.3%). The dimensions in parentheses are relative crack lengths with respect to 

a total possible crack length (width of the sample) of 1.15in. 

 

(a) (b) 

Figure 32: (a) Specimen dimensions and (b) Specimen with sensor/actuator 

placements and failure modes 

4.4.2 Delamination 

Four 12”x12” composite plates each with different delamination cases were tested 

as shown in Figure 33. The composite material that was used for all of the 

composite tests was a HexPly 954-3 unidirectional carbon fiber with a cyanate 
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resin in a [0,90]4s configuration. Again, a Gaussian windowed sine wave was used 

as the excitation and a total of 360 signals were measured for every different 

delaminations scenario. A sampling frequency of 500kHz was used when 

acquiring the data and only data from sensor 3 was used when classifying the 

data. The different delaminations cases tested were: a) C1: healthy; b) C2: 5% 

delamination at 4th interface; c) C3: square delamination at the edge of the 4th 

interface; d) C4: square delamination on the corner of the 4th interface. 

 

Figure 33: Composite plate with delamination and sensors 

4.4.3 Impact 

The coupons that were used for the impact tests are shown in Figure 34. Each 

coupon was impacted at a different velocity, and sensor responses due to a 

Gaussian windowed sine wave excitation were collected. The sampling frequency 

used for signal acquisition was 2MHz. A total of 150 signals were collected after 

impacting the sample. For the impact tests performed, the different damage types 
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were: a) C5: healthy; b) C6: impact velocity of 2.53 m/s; c) C7: impact velocity of 

2.11 m/s; d) C8: impact velocities of 1.71 m/s. 

 

 

 

 

 

Figure 34: Dimensions of impact specimen. 

4.4.4 Tensile Damage 

The tensile damage in the composite specimen shown in Figure 35 was induced 

by first creating a notch in the specimen so that a stress concentration is created 

and then loading the specimen until failure. The load levels where data were 

collected were determined by listening to the sample being loaded until a cracking 

sound was heard. Then the sample was unloaded and data was collected again 

using a Gaussian windowed sine wave for actuation. The different damage levels 

were: a) Class 9: Healthy; b) Class 10: 5350 lb tensile loading; c) Class 11: 6500 

lb tensile loading; d) Class 12: 7700 lb tensile loading; e) Class 13: 8800 lb tensile 

loading. 
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Figure 35: Tensile test specimen 

4.5.Results and discussion 

Data collected from the experiments were first processed using the MPD 

algorithm to extract features that are more easily classifiable. Figure 36(a), shows 

the first three principal components extracted using principal component analysis 

(PCA) of the raw signals that were collected during the testing of the aluminum 

lug joint. It can be seen from this figure that there is a tremendous amount of 

overlap and that accurate separation of these points in this form will be extremely 

difficult. The true dimension of the data being analyzed is 512x1. Figure 36(b) 

shows a PCA plot of the same signals after feature extraction. The feature 

extraction procedure reduced the dimension of the data from 512x1 to 60x1. It can 

be seen that even though there is still some overlap in the points, separation of 

these points in high-dimensional space is made easier. 
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(a) 

 

(b) 

Figure 36: Principal component analysis of (a) raw signals, (b) MPD features 

extracted from signals 

When classifying the damage state of the lug joint, training of each classifier in 

the binary tree was completed using 200 examples that belonged to each class. 

The testing of the classifier was completed using 100 data points from each 

damage class. A five-fold cross-validation was used to optimize the 

hyperparameters. The results of the classification algorithm are presented in the 
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nested binary confusion matrix (Table 5). From Table 1, it can be seen that the 

classifier performs extremely well in identifying data points that belong to C1, 

especially considering that a 15% error was permitted when training the classifier. 

This percentage was selected because of the nature of the overlap of the data 

patterns. It also prevented the classifier from ‘over-fitting’ the hyperplane to the 

data resulting in a loss of generalization. 

For data points belonging to the other classes, a small but significant portion of 

the data was misclassified as belonging to C1. Since points that are positively 

classified are removed from the test set before further classification, the elements 

in every column are classification results from a smaller set of data. As an 

example, the number of points in C2 correctly classified was 70 out 80 test points. 

A drawback of this classification scheme is that the results of a classifier are 

dependent on the performance of classifiers that are evaluated at higher nodes in 

the tree. 

Table 5: Results of the nested binary classification scheme (lug joint) 

 

  Predicted Class 

    C1 C2 C3 C4 C5 

A
ct

ua
l C
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ss

 

C1 94  1 2  1  2 

C2 6 88 2 1 3 

C3 8 7 74 4 7 

C4 3 3 5 85 4 

C5 10 2 4 5 79 
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In order to better visualize the data overlap, a histogram of the normalized 

distance of all the points from the hyperplane is constructed (Figure 37). The 

histogram clearly shows that when testing the decision hyperplane, there are 

relatively few points from C1 that are mistakenly classified, but there is a much 

larger number of points belonging to C2-C5 that falls into the C1 side of the 

decision plane. This causes the relatively large misclassification of points 

belonging to C2-C5. An optimal selection of training points from C2-C5 may 

allow for the construction of a more accurate classifier for this case. This will be 

investigated in future work. Chakraborty et al. [27] have analyzed the data from 

this experiment and have generated classification results using a Hidden Markov 

Model (HMM) with 20 MPD iterations. The results obtained have a minimum 

correct classification rate of 88.6% as compared to the 84% average classification 

presented for this work in Table 1. While resulting in a slightly lower 

classification than the HMM algorithm, the binary tree SVM framework proposed 

here takes substantially less time to run. This feature will become more prominent 

when the size of the data sets becomes large as in real-world applications. 
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Figure 37: Histogram of distance from the optimal hyperplane 

Figure 38 shows the receiver operating characteristic (ROC) curve[68] for each of 

the constructed classifiers. An ROC curve is a robust way to test the ability of a 

classifier to discriminate between classes. It allows a user to weigh the cost 

savings from maintaining or replacing a part after it is damaged but just before 

failure (true positive) against the added cost of replacing a part when it is still 

healthy (false positive). An ideal classifier would have a point at (0,1) which 

means that the classifier was able to correctly identify all the damage states and 

there was no overlap in the data patterns. If the data patterns do have some 

overlap, then false positives would occur, since the decision plane is fixed after 

training. The five classes being studied result in the construction of four 

classifiers that are constructed at different levels of the binary tree. The curves for 

each classifier represent the performance of each individual classifier and should 

not be used to judge the performance of the entire classification scheme. It can be 
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seen from this plot that all the classifiers have a performance that is well above 

the line of no-discrimination. 

 

Figure 38: ROC curve for each classifier used 

Next, the data from the composite experiments were analyzed in one large 

classification framework as shown in Figure 39. In the first level of the tree, the 

algorithm determines whether the damage class is delaminations, impact, or 

tensile. Table 6 shows the results of the first level of the classifier. For this 

classification, two thirds of the data was used for training and the remaining data 

was used for testing. It can be seen that the classifier is able to easily tell the 

difference between the different damage types because the interaction of the 

excitation signal with the different damage cases produces very different output 

signals.  
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Figure 39: Organization of binary tree classifier 

 

Table 6: Classification of damage type results (composite) 

 

  Predicted Class 

    Delam  Impact  Tensile  

A
ct
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Delam  1 0 0 

Impact  0 0.995 0.005 

Tensile  0 0 1 

Once the class of damage is selected, the algorithm then goes on to discard data 

from the other damage types and then assess the extent of the determined damage 

type. Table 7 -Table 9, which represent level 2 in the hierarchy, show the results 

of the classifier within each of these damage types. In each of the level 2 

classifiers, 100 data points from each class were used for training and 50 points 

were used for testing. The classification rates of the level 2 classifiers are not as 

good as the level 1 classifiers because there is more overlap in the sensor signals 

of a particular damage type. In the case of the seeded delaminations (Table 7), we 
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can see that the classifier performs very well when identifying C1-C3, but has a 

little trouble correctly classifying C4. This is probably because the damage is 

located very far from the sensor and all of the reflected waves from the corner 

delamination do not reach sensor 3. The high energy components that do reach the 

sensor are common to the signals in C1-C3, causing them to be misclassified. In 

the case of damage cause by impact and monotonic loading (Table 8 & Table 9), 

the classification tool is able to accurately classify all the damage classes C5-C13 

indicating that the constructed hyperplane is able to separate the classes while 

avoiding significant overlap. 

Table 7: Classification results for delamination 

 

  Predicted Class 

    C1 C2 C3 C4 

A
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C1 0.88 0.02 0.04 0.06  

C2 0.04 0.86 0.04  0.06 

C3 0.06  0.04 0.90 0.00 

C4 0.12  0.08 0.06 0.74 
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Table 8: Classification results for impact damage 

 

  Predicted Class 

    C5  C6  C7  C8  

A
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C5  0.88 0.04 0.00 0.08 

C6  0.10 0.82 0.02 0.06 

C7  0.06 0.02 0.90 0.02 

C8  0.02 0.04 0.04  0.90  

 

Table 9: Classification results for tensile damage 

 

  Predicted Class 

    C9  C10  C11  C12  C13  

A
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C9  0.90  0.04  0.02  0.02  0.02  

C10  0.06  0.88  0.02  0.00  0.04  

C11  0.08  0.04  0.80  0.06  0.02  

C12  0.04  0.02  0.04  0.86  0.04  

C13  0.08  0.00  0.04  0.04  0.84  

Figure 40 shows the computational time required to build the classification tree 

using sensor data from the tensile test on a composite plate. It can be seen from 

Figure 40 that in the case of a 3-class problem, the performance of the ‘one-vs-

one’ method and the binary tree method are similar but the ‘one-vs-all’ approach 

is not as efficient. This is because the overlap in the damage classes is significant 

and the time taken to optimally select the hyperparameters for a ‘one vs all’ 
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approach is longer than the time requirement for extra comparisons required in the 

‘one vs one’ approach. However, when the number of classes gets larger, the 

number of comparisons increases, and this starts to increase the execution time 

rapidly as shown in the case when 5 classes are considered. It is expected that if 

more data classes of this type were available, the ‘one vs one’ approach would be 

less efficient than the ‘one vs all’ approach. In the binary tree approach, the first 

comparison has the same computational intensity as a ‘one vs all’ approach. As 

the algorithm proceeds along the tree path, the complexity of each successive 

classifier is reduced until the last node, where it has the same computational 

intensity as a ‘one vs one’ classifier. This feature, combined with the reduced 

number of comparisons necessary for a k-class problem, makes it more efficient, 

as shown in Figure 40.  

 

Figure 40: Computational efficiency of different SVM approaches 
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Chapter 5 

INFORMATION MANAGEMENT FOR DAMAGE CLASSIFICATION 

The ability to detect anomalies in signals from sensors is imperative for structural 

health monitoring (SHM) applications. Many of the candidate algorithms for 

these applications either require a lot of training examples or are very 

computationally inefficient for large sample sizes. The damage detection 

framework presented in this chapter uses a combination of Relevance Weighted 

Linear Discriminant Analysis (RWLDA) along with Support Vector Machines 

(SVM) to obtain a computationally efficient classification scheme for rapid 

damage state determination. RWLDA was used for feature extraction of damage 

signals from piezoelectric sensors on a lug joint and a composite plate generating 

data clusters that could be analyzed and reduced based on their geometric 

properties. This data reduction reduces the computational intensity associated 

with the quadratic optimization problem that needs to be solved during training.  

5.1. Linear Discriminant Analysis 

A classification algorithm can only perform well when it is provided with features 

that accurately describe the dynamics of a system. The objective of LDA is to 

perform dimensionality reduction while preserving as much of the class 

discriminatory information as possible. LDA is a supervised technique that 

projects data in a lower dimensional space while considering the label information 

of the data. In order to find the dimension reducing transformation, LDA 
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minimizes the scatter within each class and maximizes the scatter between classes 

in a reduced dimensional space. For a k class problem, finding a projection vector 

that provides good class separability requires consideration of the cluster means 

as well as the interclass scatter ( BS ) and the intraclass scatter ( WS ). The 

definition of the scatter matrices are 
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N ∈

= ∑
 

(30) 

C is the number of points in class k and ip is the prior probability of class i. A good 

solution to the LDA problem is one where the class means are well separated, 

relative to the variances of each data set assigned to a particular class. For the k 

class problem considered here, (k-1) projection vectors ( ir ) are required, so that  

 T T
i iz r x z R x= ⇒ =  (31) 

where [ ]1 2 1| | |kR r r r −=  . Since the problem requires a projection that maximizes 

the ratio of between-class to within-class scatter, the optimization problem can be 

stated as  
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which can be solved as a simple eigenvalue problem.  

5.2. Relevance weighting 

One issue with the traditional multiclass formulation of LDA is that the resultant 

projection matrix is very sensitive to small changes in the smaller eigenvectors. 

To avoid this, a weighting parameter is introduced that reduces the effect of 

leverage points in the data on the smaller eigenvectors. The dissimilarity measure 

used for weighting, which has a form analogous to the Mahalanobis distance, is 

given by 

  1( ) ( ).
T

ij i j w i jL m m S m m−= − −  (33) 

This function effectively reduces the weighting of data points that are very 

different from the rest of the group allowing for the extraction of features that best 

represent the nominal behavior of the class. Using this metric, the scatter matrices 

can be modified as follows 
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where 
1

ij
j i ij

r
L≠

=∑ . 

5.3. Feature reduction 

The sample reduction algorithm that is implemented in this paper is based on 

the analysis of the geometry of the data clusters in space. Once the different 

classes of data have been separated and mapped into a feature space by the LDA 

algorithm (Figure 41(a)), the data points that do not contribute any information 

regarding the distinction of the different classes are removed. The distance metric 

used for this purpose is the Mahalanobis distance because it takes into account the 

correlations of the data set and is scale-invariant as opposed to the Euclidean 

distance. The expression used to calculate the Mahalanobis distance of a sample 

ix from a population [ ]1 2 1| | |kX x x x −=  is given by 

 ( , ) ( ) ( )T

i i id x X x xµ µ= − Σ −  (36) 

where Σ  is the covariance matrix that can be expressed in terms of the data set as 

 1 T

c
XX

N
Σ =  (37) 

Since this is a supervised technique that uses the provided class labels for every 

data point, the first step is to look for the interior points in each cluster using the 

Mahalanobis distance. Once the distance from each data point to its respective 

cluster (or class) centroid is calculated, the distances are sorted and the points 

with the smallest distances are removed as shown in Figure 41(b). 



  96 

Next, the points on the exterior of each cluster that do not affect the 

construction of a separating hyperplane are removed. The decision is made based 

on the fact that in a two-class problem, data points with a distance larger than the 

average distance between the two clusters are unlikely to be chosen as support 

vectors. Consider Figure 41(c) in which the exterior points of C1 are to be 

reduced. The average Mahalanobis distance from C2 to C1 and C3 to C1 is 

calculated as d21 and d31 respectively. The data points in C1 that have distances 

larger than d21 and d31 from C2 and C3 respectively, do not influence the decision 

boundary and can therefore be eliminated. The data points that are left are given 

by 

 ( )2 2,i k kid x N d≤  (38) 

Figure 41(d) shows the final result of the data reduction process in 2D. 
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(a) (b) 

  

(c) (d) 

Figure 41: Illustration of data reduction procedure. (a) Initial data set projected 

into 2D, (b) Data clusters after removing interior data points, (c) Data points 

greater than the distance between cluster centroids are removed, (d) Remaining 

points after data reduction. 
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5.4. Binary tree SVM classifier 

In this study, an SVM classifier organized in a binary tree structure is used to 

classify the detected damage type. For a five-class problem, as shown in Figure 

42, the binary tree classifier is set up as follows. 

Step 1. A two-class SVM is trained using pattern 1 as Class A and patterns 

2, 3, 4, and 5 as Class B, and a hyperplane is constructed. 

Step 2. Next, data points corresponding to pattern 1 are removed from the 

training set, pattern 2 is denoted as Class A, and patterns 3 and 4 are 

denoted as Class B for hyperplane construction. 

This process is repeated until the last classifier compares the last two patterns. 

Further details on this approach can be found in Chapter 4. 

  

(a) (b) 
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(c) (d) 

Figure 42: Schematic of binary tree classification structure 

5.5. Experimental setup 

5.5.1. Aluminum Lug Joint 

The first specimen tested was a lug joint that was subjected to tensile fatigue 

loading as shown in Figure 43. The sample was fabricated using Al 2024 T351 

and polished using 1200 grit silicon carbide paper. The purpose of polishing was 

to obtain more accurate measurements of crack length using an optical telescope. 

The sample was tested at a load ratio of 0.1 with a maximum load of 1100lbs at 

20Hz using an Instron 1331 servohydraulic test frame. The placement of the 

actuator and sensor are shown in Figure 43. For the active interrogation and 

detection scheme used in this research, a 130 kHz, Gaussian windowed sine wave 

with of duration 500µs was used as the excitation signal. The transient sensor 

response was sampled at 2MHz. Before preprocessing, each observation was 

downsampled to 500 kHz with a signal length of 512 points. Downsampling was 

feasible since the excitation was narrow band and most of the components of the 
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sensor signal were between 100 kHz and 150 kHz and the Nyquist frequency was 

still well above the maximum frequency component of the signal.  

 

Figure 43: Sensor position and damage path in lug joint 

A total of 300 observations were taken every time the damage state was 

measured. The fatigue experiment carried out on the lug joint resulted in five 

different damage states being measured. The damage states differed in the length 

of the crack that was present. The different damage states that were measured 

during the experiment were: a) C1: Healthy; b) C2: 6mm crack; c) C3: 8mm 

crack; d) C4: 10mm crack; e) C5: 12mm crack. Each crack length was measured 

from the shoulder of the lug joint. 

5.5.2. Composite Plate 

The data used for signal processing was collected from composite plates after 

different impact scenarios. Impact testing was performed on (0/90)s test specimen 

fabricated using unidirectional carbon fiber plies with EPON 863 epoxy and EPI-

CURE 3290 hardener. The plate in the test fixture, with sensors mounted, is 



  101 

shown in Figure 44(a). Figure 2(b) shows the dimensions of the square plate along 

with the locations of the APC 850 transducers used for data collection. Only the 

transducer labeled 1 was used as the actuator and transducers 2-6 were used as 

sensors. The samples were secured during impacting and data acquisition in a 

steel window frame setup (Figure 44(a)) to provide consistent boundary 

conditions.  
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(a) 

 

(b) 

Figure 44: Experimental setup. (a) Specimen in test fixture with surface mounted 

transducers. (b) Dimensions of test specimen with damage sites and transducer 

locations 

The composite plate used for testing was impacted at three locations with the 

order of the impact positions shown in Figure 44(b). The impact damage was 

induced using an inverted Charpy-style tester with a hemispherical tup 35mm in 

diameter. The plate was tested using an impact velocity of 5.56 m/s with an 

energy of 19.93 Joules. The input excitation was a 4.5 cycle burst wave with a 
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central frequency of 100 kHz, and the data that was collected from each of the 

sensors was sampled at 2 MHz. 500 observations were made at each of the 

damage states. Figure 45 shows a plot of the sensor response from the healthy 

plate and each of the damage cases.   

 

Figure 45: Sample waveforms collected before and after each impact 

5.6. Results and discussion 

5.6.1. Lug Joint Damage Classification 

The result of the LDA when performed directly on the raw sensor data are shown 

in Figure 46(a). It can be seen from this plot that even in 2D, the individual 

damage classes are well separated. Increasing the dimension improved the 

separation of the classes, as expected, and the data set that was used for 

classification was 4D and showed the best classification results. Before the data 

could be reduced, a 2D histogram was generated to ensure that the clusters were 

globular in nature and had a Gaussian distribution, making the data reduction 
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possible (Figure 47). Figure 46(b) shows the same sensor data in 2D after the 

points close to the centroid were removed. For this study, the Mahalanobis 

distances of each point to their respective clusters were arranged in ascending 

order and the data points that were close to the center of the cluster were removed. 

A 70% reduction in the amount of training data was achieved by this step. The 

choice of how much data to remove is dependent on the geometry of the cluster 

and the dimensionality of the data. The results of the final step of data reduction, 

which involves removal of exterior points that do not influence the decision plane, 

are shown in Figure 46(c). The classes on the periphery of the plot can be reduced 

the most since there are fewer clusters surrounding them. In the case of C3 and 

C4, however, most of the data is retained since they are surrounded on three sides 

by other clusters.  

Prior to the application of the data reduction algorithm, there were 260 training 

data points from each of the different damage classes for a total of 1330 points. 

By removing data points unlikely to be selected as support vectors by the 

classification algorithm, the data set was reduced to 313 points, which is a total 

reduction of over 75%. 
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(a) (b) 

 

(c) 

Figure 46: (a)Results of the LDA  (b),(c) Results of the data reduction algorithm 
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(a) 

 

(b) 

Figure 47: Histogram of healthy state data cluster (a) 2D histogram, (b) slices 

along each axis 

Figure 48 shows the hyperplane that is constructed for the original and reduced 

data set. This representative figure corresponds to the first classifier that is 

constructed between C1 and C2-C5. The hyperplanes that are constructed before 



  107 

and after data reduction use different support vectors but result in similar decision 

planes. Since the LDA algorithm provided a large separation between the different 

classes, the slight change in the hyperplane makes little difference in the 

confusion matrix that is generated when testing the performance of the classifier. 

It is also interesting to note that in Figure 48(a) the algorithm did not select any 

data from the two clusters in the middle as support vectors. In Figure 48(b), the 

algorithm used data from all the classes as support vectors, which might affect the 

performance depending on the variance of the test data set. 

 

(a) 
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 (b)  

Figure 48: Decision plane for the first binary classifier for (a) the entire data set, 

(b) the reduced data set 

The confusion matrices demonstrating the performance of the proposed binary 

tree classification scheme to detect crack damage in a lug joint is presented in 

Table 10 and Table 11. The training for each classifier used a five-fold cross-

validation to optimize the required hyperparameters. 

Table 10: Results of the SVM classifier without data reduction 

  

Predicted Class 

  

C1 C2 C3 C4 C5 

A
ct

ua
l C

la
ss

 

C1 1 0 0 0 0 

C2 0 1 0 0 0 

C3 0 0 1 0 0 

C4 0 0 0.16 0.84 0 

C5 0 0 0.12 0.08 0.8 
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Table 11: Results of the SVM classifier with data reduction 

 
  Predicted Class 

    C1 C2 C3 C4 C5 

A
ct

ua
l C

la
ss

 
C1 1 0 0 0 0 

C2 0 1 0 0 0 

C3 0 0 1 0 0 

C4 0 0 0.04 0.96 0 

C5 0 0 0.08 0.04 0.88 

Table 10 shows the confusion matrix when the entire training data set is 

considered. While the algorithm shows 100% classification for C1-C3, there is 

some misclassification between C4 and C5, which can be explained by the close 

proximity of the clusters in the 4D space. Figure 46(a) demonstrates this closeness 

in 2D. The time taken to run the classification algorithm with the complete 

training set was 41.47s on a standard Dell XPS 1330 laptop with a T7500 

processor and 3GB of RAM. Table 11 shows the results of the same problem 

when trained with the reduced training set. The results are similar for C1-C3 and 

there is a marked improvement when classifying C4 and C5. Due to the small 

Mahalanobis distance between C3-C4 and C4- C5, it is possible that the 

hyperplanes between these clusters are slightly overfitted for the case when all the 

data is used for training. Since there were fewer points to be selected as support 
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vectors after data reduction, it is possible that the resulting decision plane has 

better generalization. In both cases, the same 50 sensor signals were used as the 

unseen test set. The time taken to run the classification algorithm on this reduced 

data set was 24.37s which represents a reduction in CPU time of over 40% when 

compared with training with the full set. 

5.6.2. Composite Panel Damage Classification 

The data collected from the impact was first downsampled from 2 MHz to 400 

kHz. Since the input excitation was a narrow band excitation centered around 100 

kHz, useful sensor information with very high frequencies was expected. The data 

was also filtered to remove any components of the signal below 1 kHz, 

eliminating the noise in the signal caused by ambient conditions. In order to train 

and validate the classification algorithm, the data was partitioned into a mutually 

exclusive training and testing set. 50 signals from each class were used for testing 

and the rest of the data was used for training. Feature extraction was then carried 

out using information from sensor 2 for all damage classes. In order to show the 

need for relevance weighting, regular LDA was applied to two halves of the 

training set as shown in Figure 49. It is evident that the two data sets do not map 

the same even though they belong to the same classes. 

For multiclass problems, LDA has problems with generalization and tends to 

overfit the input data set. This property, combined with the effect of leverage 

points in the data set, leads to extracted features that do not accurately reflect the 

damage class. In order to mitigate the effect of these leverage points in the data 
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set, relevance weighting was added to the LDA and was applied to the same data 

with the results shown in Figure 50.  

  

(a) (b) 

Figure 49: Resulting clusters in 2D after LDA: (a) using the first half of the 

training set; (b) using the second half of the training set 

  

(a) (b) 

Figure 50: Features extracted using RWLDA in 2D: (a) using first half of the 

training set; (b) using second half of the training set 
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By weighting the points based on their similarity or dissimilarity with the rest of 

the class, it is possible to reduce the effect of leverage points, allowing the 

extraction of more useful features for classification as shown in Figure 50. Using 

the RWLDA algorithm, features were extracted from the entire training set. This 

was followed by the feature reduction process to reduce the amount of data 

required to train the classifiers. A step-by-step 2D representation of the procedure 

is shown in Figure 51. The original training set with 450 data points per class is 

shown in Figure 51(a). After hollowing out the individual clusters (Figure 51(b)), 

the amount of data was reduced by 70%. A further 9% data reduction was 

achieved by eliminating exterior points that were distant from opposing clusters 

as depicted in Figure 51(c).  
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 (a) (b) 

 

 (c) 

Figure 51: Results of the feature extraction process: (a) original data; (b) after 

removing interior data points; (c) after removal of points unlikely to be support 

vectors 

The result of the binary tree classification on the test data showed perfect 

classification (Table 12). The nomenclature used in the confusion matrix is 

defined as C0: Healthy, C1: 1st impact, C2: 2nd impact, and C3: 3rd impact. This 
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result is apparent when considering the large separation between the classes as 

well as the generalization performance of the RWLDA (Figure 50). 

Table 12: Confusion matrix showing classification results using information from 

sensor 2. 

CR Actual Damage State 

V = 0.05 C0 C1 C2 C3 
Pr

ed
ic

te
d 

D
am

ag
e 

St
at

e 

C0 1 0 0 0 

C1 0 1 0 0 

C2 0 0 1 0 

C3 0 0 0 1 

In order to test the performance of the classifier and see the effect of material and 

sensor variability on the resulting sensor response, the classifier was trained using 

data from one sensor and tested using data from another. For this test, data from 

sensors 5 and 6 were used because they were equidistant from the first impact 

site. Since each ply in the plate is unidirectional, sensors 5 and 6 are not truly 

symmetric with respect to the actuator and this could cause small differences in 

the response of each sensor. The classification algorithm was trained using data 

from sensor 5 and then tested with data from the healthy and first impact damage 

case collected from sensor 6. The result of the classification is shown in Table 13. 

When data from sensor 6 corresponding to the nominal class is tested, the 

algorithm is able to identify it as belonging to the healthy class. However, when 

the first impact case is tested, the algorithm is unable to clearly discern the true 

class of the damage. From this result it appears that the classifier is only able to 
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indicate that the first impact case, as observed by sensor 6, does not belong to the 

healthy class. One possible explanation for this is the fact that the impact caused 

small regions of delamination on either side of the impactor in the direction of the 

surface fibers as shown by flash thermography images of the damaged plate 

(Figure 52). Since the damage is not symmetric with respect to either sensor, it 

causes differences in the sensor response that cannot be correctly classified using 

this data-driven approach. Another possible explanation could be that since this 

classification scheme is a supervised technique, any test point put into the scheme 

will be classified as belonging to one of the classes regardless of the true nature of 

the data point.  

Table 13: Classification results using data from sensors 5 and 6 

CR Predicted Damage State 

v = 0.05 S5C0 S5C1 S5C2 S5C3 

A
ct

ua
l D

am
ag

e 
St

at
e S5C0 1 0 0 0 

S6C0 0.79 0.06 0.15 0 

S5C1 0 1 0 0 

S6C1 0.07 0.39 0.28 0.26 
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Figure 52: Echotherm image of plate 1 showing impact damage locations and 

actuator location 
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Chapter 6 

LOAD HISTORY RECONSTRUCTION FOR LOW VELOCITY IMPACT 

Low velocity impacts on composite plates often create subsurface damage that is 

difficult to diagnose. Fiber Bragg grating (FBG) sensors can be used to detect 

subsurface damage in composite laminates due to low velocity impact. This 

chapter focuses on the prediction of impact loading in composite structures as a 

function of time using a support vector regression approach. A time delay 

embedding feature extraction scheme is used since it can characterize the 

dynamics of the impact using the sensor signals. The novelty of this approach is 

that it can be applied on complex geometries and does not require a dense array of 

sensors to reconstruct the load profile at the point of impact. The efficacy of the 

algorithm has been demonstrated through simulation results on composite plates 

and wing structures. Trained using impact data at four locations with three 

different energies, the constructed framework is able to predict the force-time 

history at an unknown impact location on a composite plate and composite wing. 

Experimental validation on carbon fiber reinforced polymer wings is also 

presented showing low prediction errors even with small training sets. 

6.1. Time Delay Embedding 

As with sensor signals from piezoelectric sensors, the response collected from an 

FBG is a time series, which can be defined as a sequence of measurements ( )x t  at 

different time instances, of an observable x acquired at regular time intervals. 
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Using the time delay embedding approach with this data, it is possible to 

reconstruct the attractor in the phase space given ( )x t . Given a time series ( )x t  

with N number of data points, the state space vectors can be represented as 

follows, 

 

( )

( )
( )
( )

( )( )

2
.
.
.

1E

x t

x t

x t
y t

x t D

τ

τ

τ

 
 

+ 
 + 
 =
 
 
 
 
 + −
 

 (39) 

where the time instant st nT= , sT being the sampling time, ED  is the embedding 

dimension andτ is the time delay. Further details regarding a theoretical 

formulation of this approach have been presented in Chapter 3. The value of ED  

and τ  chosen for the experimental results presented here are 5 and 2.56 x 10-4s, 

respectively. The values were chosen based on user experience. A 5-fold cross-

validation on the training set was used to make sure these values were 

appropriate. 

6.2. Support Vector Regression 

SVMs [69], a popular machine learning based approach, has been adapted for 

regression [70] problems by using an alternative loss function. The basic idea 

behind  is the construction of a regression line ( )f x that has less than anε

deviation from the target responses y for a majority of the training data and is at 
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the same time as smooth as possible. Smoothness here refers to the complexity of 

the constructed model. If ( )f x is smooth or “flat,” it will be better at rejecting 

noise, but worse at fitting non-smooth training data when compared with non-

smooth ( )f x . This tradeoff is controlled by appropriately tuning the 

hyperparameters during optimization. 

Consider a data set S that will be used to build a support vector regression model. 

S is given by 

 ( ){ } 1
, , ,

m n
i i i

S x y x y
=

= ∈ ∈
 

   (40) 

where x  is a feature vector, y is a target function value, and m is the total number 

of training points. If this data cannot be linearly regressed as is the case with a lot 

of real-world data, a nonlinear regression approach is required. To solve this 

problem, consider the following linear estimation function [71] (Figure 53), 

 ( ) ( )f x w x b= ⋅Φ +
  

 (41) 

where ( )xΦ
 denotes a mapping function from the input space to a high 

dimensional feature space where the inputs can be linearly correlated with the 

system outputs, w  is a weight vector, and b is a constant offset term.  
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(a) 

 

(b) 

Figure 53: Schematic of (a) SVR construction and, (b) ε insensitive tube 

There are a number of loss functions that can be used in the SVR formulation. 

Although quadratic, Laplace and Huber’s loss function are common loss 

functions, they do not allow for the selection of a sparse set of support vectors. 

For this reason, an ε-insensitive loss function (Figure 53) that does not penalize 

data points within an ε -radius tube around the regression function is used. A 
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point which deviates from the regression function by an amount larger than ε , 

gets penalized by an amount proportional to its distance from the exterior of the 

ε -insensitive zone (Figure 53). These deviations on either side of the zero 

penalty zone are measured using the slack variables ξ and *ξ . The loss function 

is given by, 

 
( ) ( ) ( )

( ),
0

f x y if f x y
L f x y

otherwiseε

ε ε − − − ≥
= 


 



 (42) 

The variables w and b from Equation (41) can be estimated by minimizing the 

risk function given by 

 
( ) ( )( ) 2

1

1 1,
2

n

i i
i

R C C L f x y w
n ε

=

= +∑  

 (43) 

where 21

2
w is the regularization term used to find the flattest function with 

sufficient approximation qualities and C is a user-defined constant controlling the 

tradeoff between the empirical risk (training error) and the regularization term, 

which penalizes complexity. 

The risk function in Equation (43) can be transformed into a constrained 

optimization problem using the slack variables as shown. 

 
( )

*
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1
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w b
Min R f w

ξ ξ
=



 (44) 
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subject to,  

( )
( ) *

*

( )
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, 0, 1,..,

i i i
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i i
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for i n

ε ξ
ε ξ
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 ⋅Φ + − ≤ +
 ≥ =

 

 

. 

Equation (44) can be converted into its dual Lagrangian form with the Karush-

Kuhn-Tucker (KKT) [57] conditions of optimality to yield 
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∑
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The KKT conditions satisfied by the solution are * 0i iα α = . Solving the 

Lagrangian optimization problem, the general form of the SVR based regression 

function is given by 

 
( ) ( ) ( )* *

1
,

n

i i i
i

f x K x x bα α
=

= − +∑  

. (46) 

where the optimal weight vector and bias of the regression hyperplane are given 

by 
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In this work, the mapping of the data from the input space to a high dimensional 

feature space was carried out using a Radial Basis Function (RBF) kernel[48] 

defined as 

 ( ) 22,
ix x

iK x x e σ

−
−

=

 

 

 (48) 

6.3. Finite Element Model 

6.3.1. Composite Plate Model 

A finite element model simulating impact on a twill weave composite plate has 

been developed using ABAQUS Explicit. The dimensions of the plate specimen 

are 12in x 12in x 0.06in, and the material properties of the twill weave composite 

ply are presented in Table 14. A total of 15 simulations was conducted, 

representing impacts at five different locations (Figure 54(a)), (3,9), (4,4), (6,5), 

(8,3), (10,10), each with impact energies of 0.5J, 12.5J, and 50J. The bulk elastic 

properties along with the failure strength of the woven graphite epoxy plies are 

calculated at the microscale, using MAC/GMC, a micromechanics analysis based 

on the Generalized Method of Cells approach [72]. The four-ply laminate is 

modeled using continuum shell elements with clamped boundary conditions. A 

hemispherical impactor head (Figure 54(b)) with a 1.4in diameter is used. Hard 

contact and frictionless impact conditions are applied to model the interaction 

between the tup and the composite structure. The locations of the virtual FBG 

sensors, from where the strains measurements are obtained, are presented in Table 

15. 
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Table 14: Material properties for twill weave composite. 

E11 (GPa) 78.5600 

E22 (GPa) 78.5600 

E33 (GPa) 9.8330 

ν12 0.0252 

ν13 0.0392 

ν23 0.0392 

G12 (GPa) 5.4170 

G13 (GPa) 3.7860 

G23 (GPa) 3.7860 
 

Table 15: FBG sensor locations on the composite plate 

Sensor 
Number 

x-coordinate 
(in) 

y-coordinate 
(in) 

Measured 
strain 

component 

S1 3.875 2.750 εyy 

S2 8.125 2.750 εyy 

S3 9.375 6.750 εxx 

S4 6.000 9.250 εyy 

S5 2.625 6.750 εxx 

 

6.3.2. Composite Wing Model 

A four-ply twill weave composite wing has also been simulated using ABAQUS 

Explicit. The cross-section of the wing is based on the NACA 0012 airfoil. The 

simulated wing has an 11in chord length and a 17in span, with simply supported 
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edges (Figure 55(a)). A total of 15 simulations was run consisting of impacts at 5 

locations [(2,6), (5,8), (8,4), (6.5,5), (13,3)] (Figure 55(a)). The impact energies 

simulated at each location were 5J, 15J and 50J. Again, the material properties 

used in the simulation were calculated using the MAC/GMC code. Continuum 

shell elements were used to model the wing. Again, hard contact and frictionless 

impact conditions were applied to model the interaction between the tup and the 

composite wing. When analyzing the results of the FE simulation, it was found 

that the highest strain component was along the chord length so the FBG sensors 

were located and oriented as shown in Table 16. 

Table 16: Location of FBG sensors on composite wing structure. 

Sensor 
Number 

x-coordinate 
(in) 

y-coordinate 
(in) 

Measured 
strain 

component 

S1 2 2 εxx 

S2 11 2 εxx 

S3 11 9 εxx 

S4 2 9 εxx 
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(a) 

 

(b) 

Figure 54: (a) Locations of FBGs (blue) and impacts (red) [Plate dimensions in 

inches], (b) finite element simulation showing impact in composite plate 
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(a) 

 

(b) 

Figure 55: (a) Schematic of wing showing boundary condition, location of FBGs 

(blue) and impacts (red) [Plate dimensions in inches], (b) finite element 

simulation showing impact on a composite wing. 
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6.4. Results and discussion 

6.4.1. Simulation Results 

The data collected from the plate and wing simulations were smoothed to remove 

some minor perturbations in the sensor response in order to make algorithm 

training easier. Since the signal due to the impact is much larger than the noise 

present in the signal, smoothing does not adversely affect the result. To train the 

algorithm, strain data from four impact locations at all three energies were used to 

train the SVR classifier, and testing was done on the remaining unseen 50J 

impact. Figure 56 shows a sample load history prediction for impact at (8,4). It 

can be seen that the predicted loading is very similar to the simulated loading. In 

order to compare the time series from the simulation and the SVR algorithm, maxσ

and area under the curve (AUC) were used. In the case of impact on a plate, the 

response looks Gaussian so it is possible to quantify the result in terms of the 

maximum value and the variance. However, for more complex structures, the 

response may not be Gaussian, so AUC is a better metric for evaluating the result.  

 

Figure 56: Simulated and predicted load history for impact at (8,4) 
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The results of the regression framework on a composite plate are shown in Table 

17. It can be seen that the errors in the prediction of σmax and AUC are less than 

13 percent in all cases. It must be noted that since the simulated FBGs only 

measure strain in one direction, the strain information used to train the SVR 

algorithm is incomplete. In a complex structure where the measured loads behave 

more nonlinearly with variation in impact location and energy, the prediction 

accuracy of this approach may be adversely affected. In order to mitigate this 

effect, a larger training set may be used. 

Table 17: Impact load history estimation result on composite plate 

Impact 
location 

Simulated 
σmax 

(MPa) 

Predicted 
σmax 

(MPa) 
Error 

Simulated 
AUC 
(x106) 

Predicted 
AUC 
(x106) 

Error 

(10,10) 895 882 1.45% 22.8  21.6  5.26% 

(3,9) 988 882 10.73% 27.5  26.0  5.45% 

(4,4) 753 848 12.62% 24.3  21.4  11.93% 

(6,5) 780 750 3.85% 27.1  27.2  0.37% 

(8,4) 821 842 2.56% 26.6  28.7  7.89% 

For impact on a composite wing, strain data collected only in the direction of the 

chord length was used since the strains along the span were insensitive to some 
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impacts. Since the changes in measured strain along the chord were larger than 

spanwise strain changes due to varying impact positions, it would provide better 

prediction results. During data analysis, it was found that only sensors 3 and 4 

(Figure 55(a)) contributed useful information about the impact. During the 

impact, the trailing edge carries only small strains and as such, the information 

provided by sensors in this region may not be useful. This highlights the need for 

careful placement of the sensors on the wing so that all the sensors are able to 

provide useful data. For the current set of experiments, it was found that removal 

of information from sensors 1 and 2 did not change the performance of the result 

significantly so they were ignored in the interest of computational efficiency. The 

SVR framework has been trained using strains from all three impact energies at 

four locations with the test set being the fifth unseen 50J impact. Figure 57 shows 

the prediction result for an impact at (5,8). It can be seen that while the algorithm 

is able to capture the general trend of the loading, the predicted shape differs from 

the simulated load. 

 

Figure 57: Simulated and SVR prediction result for impact at (5,8) 
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Table 18 shows the results of the load history reconstruction scheme when tested 

on a composite wing. For all impacts between sensors 3 and 4, the algorithm was 

able to estimate the load history to within 10% of σmax and the AUC. For any 

point along the chord length, prediction results for impacts not between sensors 3 

and 4 are inaccurate. One possible explanation for this might be a significant 

change in sensor response as the impact moves closer to the simply supported 

boundary condition. Inclusion of more training data closer to the simply supported 

region may improve the performance of the regression framework and will be 

investigated further in future work. 

Table 18: Impact load history estimation on a composite wing 

Impact 
location 

Simulated 
σmax 

(MPa) 

Predicted 
σmax 

(MPa) 
Error 

Simulated 
AUC 
(x106) 

Predicted 
AUC 
(x106) 

Error 

(8,4) 531 514 3.20% 9.01 8.32 7.66% 

(13,3) 577 479 16.98% 6.56 6.05 7.77% 

(6.5,5) 541 522 3.51% 10.32 9.49 8.04% 

(2,6) 639 522 18.31% 11.77 9.31 20.90% 

(5,8) 576 636 10.42% 10.52 11.13 5.80% 

 

6.4.2. Experimental Results 

Experimental validation of the SVR impact estimation approach was conducted. 

The target variable used for prediction was the load measured by a dynamic load 

transducer at the tup. The input variables were the strains obtained using the 
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output of the four FBG sensors. Figure 58 shows an example prediction for 

impact at (6.5,5). Although the amount of training data is limited, the algorithm is 

still able to capture the general trend of the loading during impact.  

 

Figure 58. Experimental load cell reading and SVR prediction for impact at 

(6.5,5). 

 

Figure 59: Locations of experimental impacts on the wing. 
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Table 19 shows the results of the SVR algorithm on the experimental data with 

the impact locations plotted in Figure 59. For impacts along the span, the 

algorithm was able to predict the load with accuracies greater than 90%. For 

impact sites along the chord length, the errors are much larger since there is a 

significant change in the sensor response due to varying curvature. It must also be 

noted that after the impact at (6.5,8) the wing started showing signs of matrix 

cracking and fiber breakage which became very large after the impact at (6.5,9) as 

shown in Figure 60. This accounts for the high prediction errors at these locations. 

The use of a larger training set along the chord length or knowledge of the 

complete strain state at every sensor location should improve prediction results 

along the chord length. 

 

Figure 60. Thermographic image showing damage induced (red) on the leading 

edge of the composite wing after repeated impacts. 
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Table 19. Experimental prediction results for impact on a composite wing 

Impact 
location 

Expt 
Max 
Load 
(lbf) 

Predicted 
Load 
(lbf) 

Prediction 
Error 

Expt 
AUC 
(lbf-s) 

Predicted 
AUC 
(lbf-s) 

Prediction 
Error 

(3.5,5) 201.04 208.59 3.76% 2.49 2.62 5.22% 

(5,5) 192.19 208.09 8.27% 2.58 2.60 0.78% 

(6.5,5) 192.88 208.63 8.17% 2.54 2.61 2.76% 

(8,5) 188.59 199.21 5.63% 2.47 2.55 3.24% 

(9.5,5) 211.73 209.16 1.21% 2.74 2.63 4.01% 

(6.5,4) 204.26 271.69 33.01% 2.49 2.98 19.68% 

(6.5,5) 276.16 247.17 10.50% 2.83 2.75 2.83% 

(6.5,6) 288.14 242.83 15.72% 3.05 2.60 14.75% 

(6.5,7) 255.88 272.44 6.47% 2.85 2.68 5.96% 

(6.5,8) 296.67 244.30 17.65% 3.47 2.60 25.07% 

(6.5,9) 175.41 271.85 54.98% 2.32 2.91 25.43% 
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Chapter 7 

SUMMARY AND FUTURE DIRECTION 

The focus of the research work presented in this dissertation is on sensing and 

knowledge mining for SHM. The goal is to develop techniques to instrument an 

aerospace system with health monitoring sensors and use the collected 

information for continuous, reliable, and accurate structural state awareness. The 

proposed framework attempts to reduce the burden of manual inspection by 

automating the process, enabling more frequent system checks. The methods 

proposed have been tested on metallic specimens typically used in existing 

aerospace platforms and on composite specimens, which are the material system 

of choice for future vehicles. This dissertation addresses the following issues: 

1. Sensor placement for detection of damage using Lamb waves 

2. Damage detection in complex metallic joints using guided waves 

3. Damage classification in metallic and composite components 

4. Information management for health monitoring data 

5. Estimation of load history for low velocity impact on composite structures 

using FBG sensors 

The following sections summarize the work presented in this dissertation and 

suggest avenues of further research required to bring the proposed methodologies 

closer to the technological readiness required for implementation. 
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7.1. Optimal Sensor Placement 

A robust actuator and sensor placement scheme is presented for interrogation of 

large structures using guided waves. The framework takes into account the 

available actuation energy, material behavior, probabilities of false alarm for the 

smallest detectable damage, and durability of the bonding layer. The approach 

places the fewest transducers such that the entire structure can be checked reliably 

for damage. First, the smallest detectable damage signal at an acceptable 

probability of false alarm is calculated. Next, the attenuation of the travelling 

wave in the structure is determined. Using this information, the region of the 

structure that could be interrogated using a pair of transducers is calculated. Since 

the sensing region depends on the distance between the transducers, a 

metaheuristic optimization algorithm is employed to find the best method to place 

the piezo transducers. The simulated annealing algorithm is able to solve the 

multiobjective optimization problem that uses user-defined weights to decide the 

relative importance of sensor coverage, redundancy, number of sensors, and 

placement of sensors for maximum durability. In order to place sensors for the 

longest life, a finite element analysis of the structure under expected loading is 

conducted and the worst case loading scenario is used. A scaled value of the stress 

at the sensor locations is then used to penalize sensors being placed in high stress 

regions. This framework is demonstrated on two complex metallic test specimens 

and results in the structures being completely covered using the minimum number 

of sensors. 
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In order to extend this work of sensor placement on composite systems, the region 

of interrogation by a pair of transducers needs to be adjusted to take into account 

variable attenuation as a function of orientation. More complex structures may 

require further modification of sensing regions to account for interfaces and 

thickness changes.  

The framework presented in this dissertation works well for convex shaped 

specimens. For irregularly shaped specimens, the algorithm can be extended to 

include line of sight and boundary considerations. Another extension to this work 

would be to enable placement of other types of sensors like the FBG sensors 

demonstrated in Chapter 6. Since these are sensitive in only one direction, it 

would be very useful to know how to place them on a structure so that damage at 

any location can be detected. 

7.2. Damage Detection 

In order to detect damage in complex structures, an unsupervised machine 

learning tool is used in conjunction with time delay embedded features to identify 

the presence of a loose bolt or a crack emanating from the site of the loose bolt. 

Due to the complexity of the changes that occur in guided waves as they travel 

through such a complex structure, a purely data-driven approach is used that does 

not require any physics-based knowledge of the damage mechanism. The 

demonstrated performance of the scheme on bolted joint fatigue test data shows 

that it is possible to detect small damage using this approach. 
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Currently, this approach looks at the amount of each signal that is determined to 

be anomalous. Using a unique training-testing methodology, this approach is 

possible to determine if the data is different enough to be considered a different 

class of damage. The approach also uses some user-defined thresholds that may 

not be appropriate for real world operating conditions where environmental 

conditions can affect the sensor reading without causing a change in damage state. 

An adaptive learning method can be implemented to solve this problem. Future 

work can also experiment with different feature extraction techniques to 

determine the features that work best for a given SHM application. 

7.3. Damage Classification 

Once the presence of damage has been detected in a structure, the next step is to 

determine what kind of damage it is so that its severity and possibly cause can be 

assessed. To accomplish this task, a supervised version of the SVM classification 

algorithm was used to classify the damage that was induced in various metallic 

and composite test specimens. MPD was used to extract features from the 

collected signals, which were then classified using a binary tree SVM framework 

that needed fewer comparisons to classify all the available data. The results of this 

classification scheme were acceptable when tested on a variety of different 

damage types and material systems. 

Before such a framework can be applied to actual systems, investigations must be 

conducted to see the effect of temperature and other environmental factors on the 

MPD features. Excessive overlap in features due to extraneous factors would 
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severely decrease the performance of any classifier requiring the use of alternate 

features. Determining features that were sensitive to the presence of damage but 

insensitive to environmental factors would be invaluable for SHM applications. 

Another route for improvement is to incorporate the dispersive effects that Lamb 

wave modes see as they travel through a structure into the construction of the 

MPD dictionary to improve decomposition accuracy in a physically meaningful 

way. Increases in computational efficiency can also be obtained by implementing 

an adaptive version of the matching pursuit algorithm. 

7.4. Information Management 

Aerospace systems outfitted with health and usage monitoring systems generate 

vast amounts of data that need to be stored and processed to make maintenance 

planning decisions. The work presented in Chapter 5 attempts to address this 

problem by reducing the amount of collected data before it could be used for 

damage classification. This approach uses features generated using LDA because 

this method shows superior performance for supervised classification of damage 

in metallic and composite test specimens. A relevance-weighted formulation of 

LDA is used for the impact testing data because the extracted features show the 

presence of leverage points that affect feature mapping and proposed data 

reduction procedures. The implementation of the relevance weighting can enable 

feature extraction in parts, using subsets of the training set instead of applying it 

to the entire training set at once. Before the extracted features could be classified, 

the data is reduced through analysis of the geometry class of data. Data points that 

would not contribute any useful information to the construction of the separating 
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hyperplane are eliminated, reducing the storage requirement and in some cases the 

classification time for the training data set. The classification scheme used was 

the same binary tree SVM framework used for damage classification in Chapter 4. 

While this proof of concept study has shown promising results, further research is 

necessary to check the scalability of this approach to large data sets.  

7.5. Load Reconstruction for Low Velocity Impact 

In the case of low velocity impact in composite structures, knowledge of the 

location of the impact as well as the induced loads in important because of the 

possibility for subsurface damage not visible at the surface. The work proposed in 

Chapter 6 uses a distributed set of FBG sensors to reconstruct the loading caused 

by an impact of a composite wing test specimen. The approach utilizes an SVR 

algorithm coupled with a time embedding feature extraction to estimate the 

induced loads at the point of impact using only the unidirectional strain inputs 

from the FBG sensors. Although the sensor network provided incomplete strain 

information, the SVR algorithm is still able to capture the trend in strain 

measurements with impact load to generate a fairly good approximation of the 

actual loading. 

Due to the large difference in sensitivity of the FBG based on its orientation, this 

system could be improved by an understanding of the regions on the structure that 

can be reliably assessed so that only sensors providing useful information can be 

used to do load estimation for a given impact site. Use of a high fidelity impact 

model to train the model would also reduce the number of training impacts 
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required. Variations in the angle of impact and impactor shape on the induced 

loads should also be considered. 
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