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ABSTRACT

The Magnetoplasmadynamic (MPD) thruster is an electromagnetic

thruster that produces a higher specific impulse than conventional chemical

rockets and greater thrust densities than electrostatic thrusters, but the well-

known operational limit—referred to as “onset”—imposes a severe limitation

efficiency and lifetime. This phenomenon is associated with large fluctuations

in operating voltage, high rates of electrode erosion, and three-dimensional

instabilities in the plasma flow-field which cannot be adequately represented

by two-dimensional, axisymmetric models.

Simulations of the Princeton Benchmark Thruster (PBT) were conducted

using the three-dimensional version of the magnetohydrodynamic (MHD)

code, MACH. Validation of the numerical model is partially achieved by com-

parison to equivalent simulations conducted using the well-established two-

dimensional, axisymmetric version of MACH. Comparisons with available ex-

perimental data was subsequently performed to further validate the model and

gain insights into the physical processes of MPD acceleration.

Thrust, plasma voltage, and plasma flow-field predictions were calculated

for the PBT operating with applied currents in the range 6.5kA < J < 23.25kA

and mass-flow rates of 1g/s, 3g/s, and 6g/s. Comparisons of performance

characteristics between the two versions of the code show excellent agreement,

indicating that MACH3 can be expected to be as predictive as MACH2 has

demonstrated over multiple applications to MPD thrusters. Predicted thrust

for operating conditions within the range which exhibited no symptoms of the
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onset phenomenon experimentally also showed agreement between MACH3

and experiment well within the experimental uncertainty. At operating con-

ditions beyond such values , however, there is a discrepancy—up to ∼ 20%—

which implies that certain significant physical processes associated with onset

are not currently being modeled. Such processes are also evident in the exper-

imental total voltage data, as is evident by the characteristic “voltage hash”,

but not present in predicted plasma voltage. Additionally, analysis of the pre-

dicted plasma flow-field shows no breakdown in azimuthal symmetry, which

is expected to be associated with onset. This implies that perhaps certain

physical processes are modeled by neither MACH2 nor MACH3; the latter

indicating that such phenomenon may not be inherently three dimensional

and related to the plasma—as suggested by other efforts—but rather a conse-

quence of electrode material processes which have not been incorporated into

the current models.
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31. MACH3 currents contours at J = 12kA and ṁ = 6g/s . . . . 67
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NOMENCLATURE

B = magnetic field, T

ξ = dimensionless current

ma = mass of propellant atom, amu or kg

ucr = critical ionization velocity, m/s

εi = ionization potential for ith electron, eV

j = current density, A/m2

µ0 = permeability of free space, N/A2

v = velocity, m/s

ρ = density, kg/m3

P = pressure, Pa

σdji = elastic stress tensor

δji = unit dyad

Te(i) = electron (ion) temperature, K or eV

εe(i) = electron (ion) specific internal energy, J

η = electrical resistivity, Ω−m

Pe(i) = electron (ion) thermanl pressure, Pa

ne = electron number density, N/m3

e = elementary charge of an electron, C

κe(i) = electron (ion) thermal conductivity, W/(m−K)

ΦeR = radiation coupling, W/m3

cve(i) = electron (ion) specific heat, J/K

τei = electron-ion equilibrium time, s
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UR = radiation energy density, J/m3

G = shear modulus

χros = rosseland mean opacity

µ = viscosity

γ = ratio of specific heats

E = electric field, V/m
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CHAPTER 1

INTRODUCTION

Traditionally, space exploration has relied heavily on chemical propulsion

technologies. Current and future long-range, or long-term, space missions,

however, require more efficient utilization of propellant mass. From the rocket

equation[1], this is equivalent to requiring a greater exhaust velocity from

the propulsion system. The exhaust velocity of chemical rockets is limited

by the amount of intrinsic energy available in chemical reactions, the unre-

coverable energy deposition to internal modes, or “frozen flow” losses, and

energy lost through heat transfer. Electric propulsion technologies are very

attractive because they can provide solutions to these performance limiting

problems inherent in chemical rockets. Electric propulsion is defined as[1]:

“The acceleration of gases for propulsion by electrical heating and/or by elec-

tric and magnetic body forces”. For electric thrusters the propulsive energy is

deposited electrically, by an external source, instead of chemically, effectively

removing the available energy limitation of chemical thrusters. This allows for

a much greater range of exhaust velocities and equivalent space missions.

Electric propulsion concepts are classified based on their primary ac-

celeration mechanism into electrothermal, electrostatic, and electromagnetic

thrusters. Electrothermal devices electrically heat the propellant, usually by

joule heating, and convert the enthalpy of the propellant into kinetic energy

via expansion through a suitable nozzle. Such devices, however, are still lim-

ited by frozen flow and heat transfer losses. Electrostatic devices accelerate a

pre-ionized propellant via direct application of electric body forces. These de-
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vices are not subject to the thermal limitations of chemical or electrothermal

rockets, and can therefore achieve much higher exhaust velocities and greater

efficiency. The necessity to pre-ionize the propellant, however, increases the

complexity of the devices and associated propellant feed systems as well as

limiting the practical mass-flow rate and, consequently, the thrust density.

Additionally, beam neutralization is required to prevent excess charge from

building up on the spacecraft and degrading thruster performance, which fur-

ther increases complexity. Electromagnetic thrusters accelerate propellant via

interaction of applied and induced electromagnetic fields with electric currents

driven through the propellant. This allows more robust designs and greater

thrust densities than electrostatic devices.

Figure 1. MPD Thruster diagram.

The Magnetoplasmadynamic (MPD) thruster, a simple schematic of which

is shown by Figure 1, is one example of an electromagnetic thruster that can

produce the desired elevated exhaust speeds. The MPD thruster is a steady-

state electromagnetic accelerator that accelerates an ionized plasma through
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a channel and exhausts it to generate thrust. Specifically, A neutral gas is

introduced into a cylindrical thrust chamber with an outer anode surrounding

a central cathode[2]. An applied, radial arc current ionizes the gas and induces

an azimuthal magnetic field. The interaction of the magnetic field and the

current induces a Lorentz body force that accelerates the propellant axially

and produces thrust.

Despite the increased simplicity of design and improved thrust densities,

MPD thruster development and application has lagged compared to other

electric rockets due to performance limitations that are not fully understood

[3]. These limitations include high rates of electrode erosion and the “onset”

phenomenon which limit the lifetime of the thrusters to orders of magnitude

less than typical mission requirements. Onset is an observed phenomenon

associated with increased erosion, large voltage fluctuations, and performance

degradation at higher power level operation. There have been several theories

put forth to try and explain onset[3, 4, 5, 6]. These theories include predictions

that the onset phenomenon is due to an excessive back EMF force, due to

electrothermal instability, due to magnetohydrodynamic instability, and due

to anode starvation. Due to the complexity of the problem, however, the

precise cause of onset is still not well understood.

Due to the complex, interdependent nature of the physics involved in MPD

acceleration, any analytical approach would be impossible without simpli-
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fying assumptions that severely limit the applicability or accuracy of such

an approach. Numerical investigation is, therefore, the next logical step to-

ward a better understanding of the operation of an MPD thruster. To date,

there has been a significant amount of progress in the numerical modeling

of MPD thrusters[7, 8, 9, 10, 11, 12], which have yielded a better under-

standing of the operational modes, as well as suggesting potential performance

improvements[7]. All of the previous work, however, has been performed with

two-dimensional models assuming an axisymmetric flow. This has again lim-

ited the scope of investigations, and a fully three-dimensional numerical model

is required to explore a phenomenon that is inherently asymmetrical. This

work will describe a relatively new three-dimensional upgrade to a success-

fully utilized two-dimensional, axisymmetric code for the purpose of MPD

modeling. This upgraded code has been previously validated[11] against ana-

lytical models and preceding numerical models, and in this effort it will also

be validated by comparisons to available experimental data.
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CHAPTER 2

BACKGROUND

There has been a great deal of periodic research on MPDs over the past

three decades, which is detailed in literature[13, 14, 15]. This research has led

to slow but steady improvements in MPD performance, but due to its per-

formance and lifetime limitations, the MPD thruster has not received much

attention in terms of real mission utilization. As mentioned above, these lim-

itations are related to a phenomenon referred to as “onset”.

2.1. Previous Numerical Work

This section will outline some of the recent numerical research and de-

velopment efforts focused on understand and improving the MPD thruster.

Though, historically, much of the MPD research performed has been analyti-

cal and empirical, the continual technical advancements in computing is mak-

ing numerical modeling increasingly viable. Consequently, there have been a

number of recent research efforts focused on MPD thruster modeling.

The two-dimensional axisymmetric magnetohydrodynamic (MHD) code

MACH2, described in more detail below, was originally designed to simulate

collisional plasmas but has been successfully utilized to model the physics of

MPD operation. MACH2 has been used to model the multi-megawatt MY-II

MPD thruster[7], and this study led to a better understanding of the dominant

energy modes of the thruster and suggested improved performance through

proper nozzle expansion. The code has also been used to model the NASA



Lewis Research Center 100-kW applied field MPD [9]. This study showed that

at the energy levels and geometry studied, the main acceleration mechanism

was the conversion of thermal energy to axial thrust, and that the applied

magnetic field did not interact with the low-density, low-conductivity argon

plasma in the manner of a magnetic nozzle as expected.

Other numerical codes have also been independently developed and ap-

plied to the problem of modeling MPD operation. A group at Princeton has

developed a code to include self-consistent treatment of flow and magnetic

field equations, conservation formulation of equations, and a characteristics-

splitting scheme [16, 17]. It was developed with the intention of more accu-

rately capturing discontinuities such as shocks and MHD waves. The code has

been subsequently validated and used to gain insights into the operation of the

Princeton Benchmark Thruster, such as weak dependence of thrust on anode

geometry, the predominantly electromagnetic nature of the thrust, and the

importance of the near cathode region to plasma energy dissipation[18, 12].

Another independent code was developed to investigate plasma flows in

self-field MPD thrusters. It was designed to solve the conservation equations

describing a continuum-mechanical, turbulent axisymmetric argon plasma flow

under the influence of an arc discharge in thermal and reaction non-equilibrium

on adaptive, unstructured meshes [19]. This code was verified to accurately

predict the thrust and arc shape of the modeled thruster. It was also used to
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suggest that the drop in density in front of the anode, due to the pinch effect,

is the cause for the onset of performance degrading instabilities.

Substantial progress has been achieved over the past two decades in the

numerical modeling of MPD acceleration. These efforts range from single-

temperature, two-dimensional models on simple geometries [20, 21] to multi-

temperature models [22, 23] and unstructured adaptive grids for various ge-

ometries with detailed ionization and transport models [24, 25]. With the

exception of the three-dimensional upgrade of MACH2 to MACH3 [26, 11],

however, numerical modeling of MPDs has been entirely two-dimensional.

2.2. Theories of Onset

The nature of MPD performance is such that both exit velocity and effi-

ciency increase monotonically with the scaling parameter J2/ṁ[1]. However,

operating MPD thrusters at J2/ṁ beyond a limiting value—which scales with

energy deposition to internal modes such as ionization—leads to a phenomenon

commonly referred to as “onset”. This phenomenon is associated with terminal

voltage oscillations, or “voltage hash”, anode spotting and increased rates of

electrode erosion, non-azimuthal current distributions, and a non-azimuthal,

unsteady plasma flow. Onset also has a dramatic impact on thruster per-

formance. The efficiency of the MPD thruster operating beyond the onset

limit is severely degraded, and the ablation of the anode places a limit on the

lifetime of the thruster that is well below the necessary durations for useful

7



missions.[27]

Over the years MPD research has led to many theories on the cause of

onset, though the process is still not fully understood. Most of these theories

relate to either current discharge or plasma instabilities [28, 4, 29, 5], anode

mass starvation [30, 27], or thermodynamics [4, 3, 31, 29]. Instability theories

suppose that when the operating current surpasses the critical current value,

an instability in the plasma flow develops which breaks the axisymmetry and

causes the symptoms observed in experiments. Anode mass starvation theo-

ries instead predict that as the acceleration increases the density drops until

there are regions where there are insufficient charge carriers to transport the

applied current. In this condition the thruster is starved for mass and current

symmetry breaks down, causing the onset phenomenon. Other theories alter-

natively use thermodynamic conditions to analytically determine a theoretical

limit to the operating conditions that is interpreted as onset.

The research in this area, however, has been predominantly analytical and

empirical, and due to the complex, interdependent nature of the physics in the

MPD thruster, the analytical models contain many simplifying assumptions

that limit their ability to predict MPD thruster performance, especially beyond

the onset limiting value.

The natural evolution of such approaches is to develop more accurate nu-

merical models to study the performance and effects of operating beyond the
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onset limit. Although there has been ample numerical work in modeling MPD

thruster operation, it has been mostly limited to well behaved modes of oper-

ation. The main reason for this is that until recently the capability of model-

ing MHD flows has been limited to two-dimensional, axisymmetric numerical

codes. The onset phenomenon and its manifestations, however, are inherently

three-dimensional, and therefore require a fully three-dimensional numerical

code to study. The focus of this current study is present and verify an ad-

vanced, fully three-dimensional numerical code that can be used as a tool to

study these problems.

2.2.1. Critical Current. Regardless of the cause, numerous MPD ex-

periments have shown that the dimensionless current ξ = J/Jcr scales various

aspects of MPD behavior related to onset[32]. Jcr is a critical current related

to ionization of the propellant. The physical interpretation of the critical cur-

rent is generally as follows. As energy is deposited from the current into the

plasma, most of it is deposited into useful acceleration of the plasma. This

continues until the plasma reaches a point where additional energy deposited

into the plasma goes toward ionization of the propellant (a phase change)

instead of useful acceleration until it is fully ionized. The point where this oc-

curs can be described by defining a nominal regime for MPD operation where

an equipartition of energy (or power) sinks can be stated, in terms of power,

as[32]
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1

2
Tuex = ṁ(ε/M) (2.1)

Or, in other words, the energy in the useful sink is equal to that required to

ionize the plasma. ε is the first ionization potential of the propellant, and can

be represented using the Alfven critical velocity, or critical ionization velocity,

as

ucr =

√
2ε

ma

(2.2)

From the preceeding two equations and the Maecker formula,

T =
µ0J

2

4π
(ln

ra
rc

+ δ) (2.3)

which is described in section 6.1.1, the critical current can be estimated as

Jcr =

[
ṁucr

µ0
4π

(ln ra
rc

+ δ)

]
(2.4)

The critical current can then be used to define the dimensionless current

ξ = J/Jcr (2.5)

which is thought of as a similarity parameter in the sense that two thrusters op-

erating at similar values of ξ are expected to exhibit similar characteristics[32].

This analysis works well for singly-ionized plasmas, but for operating condi-

tions like those in this study, multiple ionization levels are observed. In this
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case, the critical current based on the first ionization level appears to be less

“critical”, and the value of critical current can be adjusted to account for ex-

tra ionization levels by including extra ionization potential levels in the Alfven

critical velocity. These critical currents associated with higher ionization levels

can be interpreted in the same fashion as the first critical current; specifically,

they represent the currents at which we expect additional power to be de-

posited into ionization of the corresponding ionization level. Extending ξ to

account for these additional ionization levels involves the minor modification

to eq. 2.2:

ucrj =

√
2εj
ma

(2.6)

Substituting this modified critical velocity into eqs. 2.4 and 2.5 yields the

updated expressions:

Jcrj =

[
ṁucrj

µ0
4π

(ln ra
rc

+ δ)

]
(2.7)

ξj = J/Jcrj (2.8)
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CHAPTER 3

THEORY

The modeling of an MPD Thruster requires a complex, non-linear set of

coupled equations that can describe a quasi-neutral plasma flow and it’s inter-

action with electromagnetic body forces. Such a basic set constitutes the fun-

damental Magnetohydrodynamic (MHD) equations. MACH3 solves an aug-

mented set of these equations, which are breifly described. This chapter con-

cludes with derivations of the similarity parameters present in the equations

and a description of the simplifications applied for this work.

3.1. Magnetohydrodynamic (MHD) Equations

The physics involved in the flow through an MPD channel include coupled

aspects of compressible gasdynamics, ionized physics, electromagnetic field

theory, and particle electrodynamics[1]. Any attempt to faithfully attend all

of these processes, even numerically, would be a severely daunting task. There-

fore, to obtain a useful model of the flow through an MPD thruster, we must

make some simplifying assumptions about the nature of the flow and processes

involved. One of the most common, and useful, approaches to this problem is

the magnetohydrodynamic (MHD), or magnetogasdynamic, formulation. We

assume the flow consists of a single, quasi-neutral fluid that behaves as a con-

tinuum in the presence of an electromagnetic field. The physical properties

are then adequately described by a set of bulk thermodynamic properties and

an equation of state that includes ionization. Similarly, the fluid’s behavior



can be described by a set of continuum conservation laws that include the ad-

ditional body forces and energy exchanges associated with the interaction of

the fluid with an electromagnetic field, Maxwell’s equations, Ohm’s law, and

necessary constitutive and transport relations. With these considerations and

the MHD approximation, ∇× ~B = µ0
~j, the following set of equations can be

derived[33].

Conservation of Mass:

∂ρ

∂t
= −∇ · (ρ~v) (3.1)

Conservation of Momentum:

ρ
Dvi

Dt
= ∇j

[
−Pδji +

1

µ0

(
BjBi − 1

2
B2δji

)
+ σdji

]
(3.2)

Conservation of Energy for Electrons:

ρ
Dεe
Dt

= −Peδji∇ivj+ηj
2−~j ·

(
∇Pe
ene

)
+∇·(κe∇Te)−ΦeR−ρcve

(Te − Ti)
τei

(3.3)

Conservation of Energy for Ions:

ρ
Dεi
Dt

=
[
−Piδji + σdji

]
∇ivj +∇ · (κi∇Ti) + ρcve

(Te − Ti)
τei

(3.4)

Generalized Ohm’s Law:

~E =←→η ·~j − ~v × ~B +
1

ene

(
~j × ~B

)
(3.5)
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Generallized Ohm’s Law can be combined with Faraday’s Law and Am-

pere’s Law to eliminate the electric field and current density. This produces

the following magnetic induction equation.

Magnetic Induction:

∂ ~B

∂t
= ∇×~v× ~B −∇× η

µ0

∇× ~B −∇×
[

1

eneµ0

(
∇× ~B

)
× ~B +

∇Pe
ene

]
(3.6)

3.2. MACH Equations

The MACH codes solve an augmented version of the the preceeding set

of dynamic, single-fluid, multi-temperature, resistive MHD equations. These

equations are advanced in a time-split manner that implicitly treats diffu-

sive processes. Implicit treatment of the computationally intense diffusion

processes allows a relaxation of the time step size constraint without compro-

mising stability. The following sections briefly describe MACH’s treatment

of the MHD equations, as much more detailed descriptions are available in

literature[34, 35, 36].

3.2.1. Mass Conservation Equation. The conservation of mass equa-

tion is simply a statement of the balance between the rate of change of mass

within a volume and the flux through the boundaries of that volume. MACH

implicitly computes the Lagrangian time advance of the MHD quantities in a

way that conserves mass, momentum, and magnetic flux[35].

14



3.2.2. Momentum Equation.

ρ
Dvi

Dt
= ∇j

[
−
(
P +Q+

1

3
uR

)
δji +

1

µ0

(
BjBi − 1

2
B2δji

)
+ σdji

]
(3.7)

MACH’s momentum equation includes an artificial viscosity term Q and a

radiation energy density term. The artificial viscosity is a pressure term that

is a quadratic function of the divergence of the fluid velocity. The term is only

present when the divergence of the fluid velocity is negative, and effectively

smooths discontinuities to improve stability. This term can be controlled or ze-

roed depending on the problem. In addition, surface forces other than pressure

are included in a bulk stress tensor σdji. This enables the modular use of any

available or user created models. MACH2 currently contains Newtonian-fluid

viscous (Navier-Stokes) and elastic-plastic stress models[8]:

Viscous: σji = µ

(
vij + vji −

2

3
δjivkk

)
(3.8)

Elastic:
∂σji
∂t

= 2Gδji − vk∇kσ
ji (3.9)

MACH3 has not yet been extended to include such stress models, but, for

the MPD operating conditions studied, the effects of viscosity are assumed to

be negligible based on large Reynolds numbers.

3.2.3. Energy Equations. The MACH codes can solve up to three en-

ergy equations: electron specific internal energy, ion specific internal energy,

and radiation energy density. The electron and ion coupling is controlled by

15



the user and can be set to assume equilibrium (single temperature) or non-

equilibrium (two-temperature). MACH also has the ability to solve for the

radiation energy density using the following equation:

DuR
Dt

= −4

3
uR∇ · ~v +∇ · (ρχros∇uR) + ΦeR (3.10)

MACH contains models for radiation emission, equilibrium radiation diffu-

sion, and flux-limited radiation diffusion. These processes, however, have been

assumed negligible and excluded from the studied simulations.

3.2.4. Equations of State and Transport Equations. In order to gen-

erate a solution, the set of MHD equations must be completed with an equation

of state and transport equations. The equation of state and caloric equation of

state prescribe the fluids pressure and specific internal energy based on num-

ber densities and temperatures[8]. The transport equations similarly define the

transport coefficients, such as electrical diffusivity and thermal conductivity.

These equations can be provided by either analytical models or tabular data.

MACH can use a provided set of analytical models, including the ideal gas

model and Grneisen model, or can be extended to include additional models.

The preferred method, though, is to use tabular models. These models

are provided via the SESAME data tables generated by the T-4 group of the

Theoretical Division at Los Alamos National Laboratory. These tables are

packaged in SESAME equation of state data libraries and include thermody-

16



namic properties and fractional ionization state based on Local Thermody-

namic Equilibrium[8]. It is important to note that the tables do not take into

account molecular disassociation, but this limitation does not affect this study,

as only monotonic propellants are used. The libraries can also contain tables

for photon transport, or opacity tables, and electron transport, but were not

available for this work. Additionally, while not used here, independent tables

can be generated to meet specific needs[37].

3.3. Non-Dimensionalization of the MHD Equations

The set of single-fluid MHD equations presented in section 12 can be further

reduced by non-dimensionalization, or deriving the similarity parameters that

scale their behavior. These similarity parameters can then be analyzed in the

context of the physical MPD problem to determine the relative importance of

present physical processes. The following set of non-dimensional parameters

are considered:

x̄ = ~x/Lc, v̄ = ~v/Uc, t̄ = t/ (Lc/Uc) , ρ̄ = ρ/ρc, P̄ = P/Pc,

B̄ = ~B/Bc, η̄ = η/ηc, ∇̄ = Lc, n̄e = ne/neC = ne/ (Zρc/mi)

3.3.1. Momentum Equation. The momentum equation—or equation

of motion—describes the evolution of the fluid’s momentum in response to the

surface and body forces acting on it. The surface forces include pressure and

viscous forces. The body forces include electromagnetic forces, but neglect
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polarization and magnetization of the plasma as negligible[8]. Equation 3.2

includes the viscous forces in a more general stress tensor σdji, but it is more

convenient for this formulation to explicitly express them as:

σ̄dji =
L

Re

(
−2

3
µ̄
(
∇̄ · v̄

)
δji + µ̄∇̄v̄

)
(3.11)

Where we have additionally assumed that the fluid is homogeneous and

isotropic, and that the Stoke’s condition is satisfied.

Substituting the non-dimensional parameters into the momentum equation

(eq. 3.2) yields:

ρ̄
Dv̄i

Dt̄
= ∇̄j

[
− 1

γM2
P̄ δji +

1

M2
m

(
B̄jB̄i − 1

2
B̄2δji

)
+

1

Re
σ̄dji

]
(3.12)

Which contains three similarity parameters. The first is the Mach num-

ber M , which is a measure of the compressibility effects. The second is the

magnetic mach number Mm, which is a relative measure of inertial forces to

magnetic forces. The third is the Reynolds number Re, which is a relative

measure of the inertial forces to the viscous forces.

3.3.2. Magnetic Induction Equation. The magnetic induction equa-

tion describes the evolution of the magnetic field. It includes convection and

diffusion of the magnetic field, the Hall effect, and electron pressure diffusion.

Applying the non-dimensional parameters to the magnetic induction equation

(eq. 3.6) yields:
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∂B̄

∂t̄
= ∇̄× v̄× B̄− 1

Rm

∇̄× η̄∇̄× B̄− Ω

Rm

∇̄×
[

1

n̄e

(
∇̄ × B̄

)
× B̄ +

Pec
2PBc

∇̄P̄e
n̄e

]
(3.13)

This formulation introduces two additional similarity parameters. The

first is the magnetic Reynolds number Rm, which is a relative measure of

flow velocity to magnetic diffusion velocity or magnetic advection to magnetic

diffusion. The second is the Hall parameter Ω, which is a relative measure of

Hall currents to conduction currents. The final term in the equation is the

gradient of the electron thermal pressure. When it is non-dimensionalized, it

is preceeded by the ratio of thermal pressure to magnetic pressure, β = P
PB

,

where the magnetic pressure is PB = B2

2µ0
.

3.3.3. Similarity Parameter Analysis. The advantage of deriving sim-

ilarity parameters is that they can provide insight into the relative importance

of present physical phenomenon in the context of a specific problem, and in

turn allow simplifications to be made to the physical model. From the pervious

section, we have the following similarity parameters:
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Mach Number: M =

√
U2
c ρc
γPc

Magnetic Mach Number: Mm =

√
µoρcU2

c

B2
c

Reynolds Number: Re =
LcUcρc
µc

Magnetic Reynolds Number: Rm =
µoLcUc
ηc

Hall Parameter: Ω =
Bc

ηcenec

Beta Parameter: β =
P

PB
(3.14)

If we consider a typical operating condition for the high-power MPD

thruster using Argon as a propellant, we can estimate the magnitudes of these

parameters. The assumed values are shown in Table 1, and the values are

representative of operation with a mass-flow rate of 6g/s and a current of

15kA. Table 1 also shows the resulting similarity parameters calculated from

these values. From these parameters we can make a few inferences for the

simulations.

First we note that the Reynolds Number is much larger than one. This

indicates that the viscous forces are insignificant when compared to the inertial

forces, and we therefore exclude viscosity from our model. The Magnetic

Reynolds number is also larger than one, though only by∼ 60%. Consequently,

we expect that both magnetic diffusion and magnetic convection contribute

significatnly to the evolution of the flow.
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Based on the average characteristic values the Hall parameter Ω ≈ 0.2.

This indicates that the hall currents should be on average about 20% of the

conduction currents. The hall currents are predominantly axial jz currents

and will have the effect of skewing the current distribution from purely ra-

dial to a distribution with current contours extending further downstream

in the direction from the cathode to the anode. This effect is expected to

be most pronounced in the region between electrodes, because in the plume

region, though the density decreases, we expect the ionization level to in-

crease as well as the electrical resistivity due to contributions from anomalous

resistivity[23, 10]. Since we are primarily interested in integrated performance

characteristics and the integration includes the total current distribution, in-

corporating distributions far downstream of the thruster exit, we do not expect

such slight variations to substantially affect the integration for the total ~j× ~B

force. Based on these arguments and the lack of a three-dimensional numerical

routine for the Hall effect in literature, we have excluded it from the model.

The ultimate justification of these assumptions, however, will be forthcoming

after validation of the model by comparison to experimental data is performed.
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Table 1. Similarity parameters for the MPD model.

Characteristic Values Similarity Parameters

ρ = 1 · 10−4 kg
m3 M ≈ 47

P = 30Pa Mm ≈ 14

U = 7.5kms Re ≈ 12000

B = 0.03T Rm ≈ 1.6

n = 1021m−3 Ω ≈ 0.16

µ = 1 · 10−5 kg
m·s β ≈ 0.05

η = 500m
2

s · µ0
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CHAPTER 4

COMPUTATIONAL MODELING

The simulation code used for this study is the Multi-block Arbitrary Co-

ordinate Hydromagnetic (MACH) family of MHD codes. MACH is a general

purpose, time-dependent MHD code for complex geometries[35]. It exists in a

serial, two-dimensional axisymmetric version (MACH2) and a parallel, three-

dimensional version (MACH3) that utilizes MPI to facilitate parallel process-

ing. The code was designed to be relatively modular, so that its capabilities

can be extended to include additional physical models which offers MACH the

flexibility to solve a wide variety of non-ideal MHD problems.

The code has been used to gain understanding of a wide variety of high-

density plasma configurations[35]. Additionally, the code has been subse-

quently upgraded over the years and applied to a diverse range of plasma

problems, including those in electric propulsion. Specifically, the axisymmet-

ric version of MACH has been instrumental to providing insights into the

energy loss mechanisms[7] of self-field MPD thrusters, as well as acceleration

processes[9] in applied-field MPD thrusters.

This chapter will breifly describe the basic concenpts of MACH that are

required to construct a model. A more detailed description of MACH and how

it works can be found in the manual[35].



4.1. Numerical Scheme

4.1.1. Geometry. The MHD equations are solved on a computational

mesh that consists of arbitrarily shaped hexahedral cells. This mesh is a

continuous image of a logical mesh composed of a patchwork of conjoined

sub-meshes called blocks.[35] This modular design allows complex geometries

to be decomposed into simpler subsections that can each be described by an

individual block. Each block is solved as its own individual problem, with

neighboring blocks used only as a source of boundary conditions.

Such a divide and conquer strategy is ideally suited to parallel processing,

and MACH3 is designed to be run in a parallel processing environment where

each processing node is responsible for one or more individual blocks. Because

adjacent blocks are required to exchange boundary information, the Message

Passing Interface (MPI) protocol is used to facilitate communication between

nodes. This parallelization capability is necessary to perform any type of

complex, three-dimensional simulations in a reasonable amount of time.

4.1.2. Boundary Conditions. The philosophy of MACH is such that

the boundary conditions describe the limit of the conditions of the fluid as the

boundary is approached[36]. The conditions at, and beyond, the boundary

are therefore assumed to be known or simply related to conditions inside the

boundary. MACH has the ability to model the most common boundary types

for it’s included set of physical models. The boundary conditions used in these
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simulations are described in section 5.2.2, but a more complete set of possible

boundaries available in MACH is described in literature[36, 35].

As with most of their design, the MACH codes handle boundary conditions

in a modular, generic fashion. Each block’s computational mesh is padded with

an extra set of “ghost” cells. This allows quantities on the interior mesh to

be computed without any special treatment or modification of the difference

equations at the boundaries. A wide range of desired boundary condition can

therefore be applied by explicitly controlling the values that are placed in the

ghost cells. In addition, ghost cells on internal boundaries are copied directly

from the neighbor’s mesh, making decomposition transparent to the numerical

method.

4.2. MACH Upgrades

In order to successfully apply MACH3 to the specific problem of simulat-

ing the operation of a high-power MPD thruster, some upgrades to the code

were necessary. Since MACH was provided in the form of its source code,

modification is possible and even encouraged. The major modifications are

described below and include porting to 64-bit, calculation and output of ad-

ditional performance quantities, and the ability to input a custom, externally

generated physical mesh. In addition, some minor bug fixes were required as

well as re-implementing restart capability.
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4.2.1. 64-bit Port. The locally available computational resources, while

adequate for MACH2 simulations, make fully three-dimensional modeling of

an MPD thruster in a reasonable amount of time infeasible. Fortunately,

for this research, the processing power of ASU’s High Performance Cluster,

Saguaro, was made available. All of the nodes on Saguaro, however, run on

64-bit architecture and contain 64-bit implementations of the MPI libraries.

Thus, in order to utilize the parallel processing power required to complete

three-dimensional simulations, it was necessary to port MACH3 to 64-bit.

MACH uses the non-standard Cray Pointer FORTRAN extension to facili-

tate dynamic memory which would not be possible with standard FORTRAN

77. Due to the organizational structure of the code, however, most pointers

are explicitly declared as type integer.On a 32-bit machine, both integers and

memory pointers are the same size (32 bits). On a 64-bit machine, as on a 32-

bit machine, an integer is 4 bytes (32 bits), but a memory pointer is 64 bits.

To prevent truncation of memory pointers, and subsequent memory access

errors, and preserve the organization of the code, all pointers are explicitly de-

clared as type integer*8, or 64-bit integers. Similarly, all file pointers as well

as pointers in C helper functions were re-declared in MACH3 and dependent

libraries.

4.2.2. Custom Grid Loader. Both MACH codes include a fairly sophis-

ticated set of mesh generation subroutines which are controllable through a set
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of user specified parameters. It is sometimes of interest, however, to explicitly

specify a grid that may be difficult or impossible for the built-in generation

subroutines to produce. For this reason the code was modified to include the

ability to import an explicit grid specified in PLOT3D format. With this, a

mesh can be created using an external program such as GridGen and imported

into MACH for finer control over the computational mesh.

4.2.3. Performance Characteristic Calculations. MACH was up-

graded to include calculation of additional performance quantities that are

not normally computed for MHD plasma simulations but are of interest to

propulsion scientists. These include integration of the propulsive thrust and

plasma voltages.

4.2.3.1. Thrust Calculation. One of the main parameters used to measure

MPD performance is Thrust. MACH, however, was designed for the simulation

of plasmas and not specifically for propulsion, so it does not explicitly calcu-

late the thrust. All the flow-field parameters required to compute the thrust,

though, are simulated throughout the domain. An additional boundary con-

dition was added to the code to identify boundaries as thrust producing. On

these boundaries, the thrust is integrated by:

Ti =

∫ (
p+

B2

2µ0

)
~dAi + ρ(~u · ~dA)~ui (4.1)
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Where i is an axis and ~dA is calculated using:

~dA =
1

2

∑
j

~rj × ~rj+1 (4.2)

4.2.3.2. Voltage Calculation. In addition to the thrust calculation, a new

subroutine for calculating the simulated plasma voltage was required. Due to

the absence of available models for the sheath voltage drop at the electrodes,

any simulated voltage will be lower than the experimental total voltage. Ap-

proximating the plasma voltage, though, does have some value as a relative

measure of performance in terms of conversion of plasma-deposited power to

exhaust kinetic power, i.e. thrust power. Furthermore, it can be used with

experimental data to estimate the magnitude of voltage drop at the electrodes,

as the distinction between plasma and electrode voltage drop often isn’t avail-

able. In order to calculate the voltage across the plasma, we integrate Ohm’s

Law between the electrodes (eq. 4.3).

V =

∫
~E · ~dl =

∫ (
η ~J − ~u× ~B

)
· ~dl (4.3)

This integration is necessarily taken away from the backplate to avoid ar-

tificial influences from the boundary conditions. For the modeled thruster

geometry (in Figure 2), the integration is taken at the gap between the ex-

tended section of the anode and the electrode.

28



CHAPTER 5

NUMERICAL MODELING

Simulations of the Princeton Benchmark Thruster (PBT), shown in Fig-

ure 2, operating with applied currents in the range 6.5kA < J < 23.25kA and

mass-flow rates of 1g/s, 3g/s, and 6g/s are progressed to steady-state. Valida-

tion is partially achieved by comparison to equivalent simulations conducted

using the well-established two-dimensional, axisymmetric version of MACH.

Comparisons with available experimental data is subsequently performed to

further validate the model and gain insights into the physical processes of

MPD acceleration.

The three-dimensional simulations were performed on Arizona State Uni-

versity’s Saguaro cluster described in section 5.3. Each simulation was ex-

ecuted on 37 processors for approximately 95 hours, requiring about 3500

CPU-hours per simulation. Convergence to steady-state was verified by ex-

amining the integrated quantities of thrust, voltage, and mass flux out of the

domain. Figure 3 shows a typical plot of these quantities used to verify steady-

state. Since only steady-state operation was sought for this study, the initial

conditions were chosen only to maintain numerical stability during the large

gradients that are seen during the transient period of the simulations.



Figure 2. Princeton Benchmark Thruster (PBT) geometry.
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Figure 3. Integrated quantities verifying steady-state for MPD operation at
J = 22kA and ṁ = 6g/s.
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5.1. Physical Setup

The experimental data used to validate these simulations is from the MPD

Thruster performance database compiled by Choueri and Ziemer[38]. It in-

cludes thrust, voltage, and efficiency data of the coaxial, gas-fed, self-field

Princeton Benchmark Thruster running in a quasi-steady pulsed mode of op-

eration. The mass-flow rates included 0.5, 1, 3 and 6g/s runs using Ar, Xe,

H2, and D2 as propellants. The propellant chosen for this study was Argon.

The mass-flow rates available for Argon in the performance database were 1,

3 and 6g/s, and all three were simulated. The operating current ranged from

6.5kA to 12.7kA for 1g/s, 10.6kA to 20.9kA for 3g/s, and 10.9kA to 23.25kA

for 6g/s.

The experiments were carried out in a quasi-steady mode utilizing a pulse

forming network due to the low availability of steady high-power sources, es-

pecially in space. The pulse forming network, however, effectively simulates

steady operation for up to several hundred µs and therefore can be used to

describe steady-state operation[38]. To best capture such current variation,

the numerical simulations model a constant current started by a short 5µs

ramp up from zero to the desired operating current. Figure 4 shows typical

current waveforms from the PBT experiments and MACH simulations.
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Figure 4. Typical current waveform at J = 17kA from the PBT experiments
and MACH simulations.
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5.2. Geometry Setup

The thruster used to verify MACH3 is the Princeton Benchmark Thruster

(PBT), shown in Figure 2 with dimensions. The PBT is a cylindrical thruster

which is described in detail in other works[39, 38]. For the purpose of these

simulations, a few simplifications are made to the model. The PBT injects its

propellant through a choked multiple orifice which splits the flow such that

54% is injected at the cathode base and 46% is injected through a ring of 12

holes in the backplate located at 3.8 cm[12]. Since this would greatly increase

the complexity of the grid and associated simulation time, a uniform mass

injection is assumed across the backplate. This change has been shown not to

severely affect the accuracy of axisymmetric simulations. The rounded tips of

the anode lip and cathode tip are also flattened to simplify the complexity of

the mesh and avoid numerical instabilities.

5.2.1. Computational Mesh. The computational domain for the PBT

thruster includes the “thrust chamber”, between the anode and cathode, and

the “plume region”, which contains the flow outside the thrust chamber and

extends radially three times the anode radius and axially three times the cath-

ode length. The dimensions of the computational domain ensure that all the

currents are captured and that the normal gradients at the boundaries are

small enough to justify free stream boundary conditions. The anode contains

a lip that protrudes into the thrust chamber, and although this protrusion does
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not have a significant effect on thrust[12], it does act as a stagnation point that

consequently affects the streamlines. Along with the choice of four blocks to

span the azimuthal direction, the computational mesh in Figure 5, shown with

a quarter cut away, is produced, containing 12 blocks for the thrust chamber,

24 blocks for the plume region, and one block for the center-line.

Figure 5. MACH3 Computational Mesh with 1/4 cut away
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5.2.1.1. Grid Resolution and Sensitivity Analysis. The grid resolution used

in all simulations was chosen such that accuracy of the implicit schemes is

ensured while maintaining stability and preventing the amount of time for

a simulation to reach steady-state from becoming prohibatively large. The

code maintains stability of implicit methods by adjusting the timestep based

on the fluid flow velocity, the Alven velocity (VA = B/
√
ρµ0), and a user-

specified Courant number which was set to 0.8. MACH additionally restricts

the timestep such that a user-specified, maximum amount of mass (which was

set to 25%) can convect from a cell. With the chosen grid-cell dimension of

∆ = 2.5mm and the code’s restrictions, the simulations advanced at with

typical timesteps in the range 5ns < t < 10ns.

Diffusion of the magnetic field is modeled using implicit methods in MACH,

and to ensure accuracy, we require the grid-cell dimension to be sized such that

characteristic gradients are adequately captured. The characteristic dimension

for magnetic diffusion gradients is the diffusion depth, δ =
√
η̄δt. For typical

timesteps, this characteristic length is on the order of δ ∼ 5mm, which implies

gradient resolution on the order of δ/∆ ∼ 2 for field diffusion.

The grid density can be further justified by conducting a grid sensitivity

analysis. The analysis is performed by re-computing a simulated operating

condition (J = 12kA and ṁ = 6g/s) on progressively coarser grids. Four

additional grids were used, with each one 20% coarser than the previous, and
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the simulations were allowed to converge to steady-state for comparisons of

their performance characteristics. The results of the analysis, displayed in

Figure 6, indicate that a 20% decrease in grid density has a negligible effect,

with each examined value remaining within 2% of the baseline, confirming

grid convergence. Decreasing the grid density further by 40% still maintains

the integrated performance characteristics to within 5%, demonstrating low

sensitivity to grid dimensions at the chosen resolution.
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Figure 6. Performance characteristics for operation at J = 12kA and ṁ =
6g/s for different grid resolutions. Grid effectively converges at the resolution
utilized for presented computations, displaying a discrepancy of less than 2%.
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5.2.2. Boundary Conditions. The set of boundary conditions applied

to the model were chosen to reflect, as accurately as possible, the physical con-

ditions that would exist for the MPD thruster in space or a vacuum chamber.

The model’s boundaries can be classified into four categories: the inlet, the

insulating wall, the electrodes, and exhaust boundaries.

The inlet boundary contains the necessary information to inject a speci-

fied mass-flow rate into the problem domain. As previously mentioned, this

boundary is applied to the entire backplate. The mass injection is achieved

with specified density and velocity flows (eqs. 5.1 and 5.2)

~v = ~vi = v⊥ (5.1)

ρ = ρi (5.2)

where ρ and ~v are chosen such that ṁi = ρv⊥A with v⊥ =
√
γRTi and A =

π (r2ch − r2c ). The model injects the propellant as cold, Ti = 300K, neutral gas

at sonic speed. It is possible, due to the difficulties with accurately modeling

ionization breakdown[40], to inject the propellant as a pre-ionized gas. This

has the effect of shifting the actual backplate a few millimeters behind that

of the model’s backplate[18]. This approach was not taken because it does

not account for energy required to ionize, however small, or allow for partial

ionization which is seen at higher mass-flow rates[12].

In addition to mass injection, a current boundary is applied to the back-
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plate. The current boundary condition uses Ampere’s Law to fill the ghost

cells of the boundary with the resulting magnetic field(eq. 5.3). The magnetic

field is then moved into the domain by the code’s convective and diffusive

subroutines.

~B =
µo~j × ~r

4πr3
(5.3)

The insulating wall in the thrust chamber is similar to that of the inlet

boundary with the exception of mass injection. Instead, a no-slip condition is

applied to this boundary (eq. 5.4).

~v = 0 (5.4)

Even though we have neglected viscosity in our equations due to large

Reynolds numbers, the flow indeed does have a small boundary layer at phys-

ical boundaries. This boundary condition has the effect of creating a one cell

thick boundary layer. The circuit-current boundary condition is also applied

to the insulating wall to complete the “circuit” between the two electrodes.

The electrode boundaries cover the surfaces of both the anode and cathode.

As with the insulating wall, a no-slip condition is applied to these boundaries.

The magnetic boundary condition applied to these boundaries is that of an

ideal conductor. For an ideal conductor, the normal component of the mag-

netic field and the tangential component of the electric field must be continu-
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ous, which implies[8]:

jθ = 0 (5.5)

n̂ · ∇̄ (rBθ) = 0 (5.6)

All the non-solid boundaries are considered exhaust boundaries. These

boundaries are taken far enough away from the thruster that all the perti-

nent physical phenomenon and gradients are enclosed in the computational

domain. As a result, Ampre’s law states that the magnetic field, and thus

magnetic pressure, at the exhaust boundaries are zero. The floor density, or

minimum simulation density, was specified on the exhaust boundaries to simu-

late vacuum. This was chosen over a continuative boundary condition because

the latter induced numerical instabilities which lead to incorrect results.

5.3. Computational Resources

The three-dimensional simulations were performed at Arizona State Uni-

versity using the Saguaro cluster, the centerpiece of ASU’s High Performance

Computing Initiative. The Saguaro cluster is composed of 220 dual quad-core

Intel Xeon EM64T nodes. Each node has 16 gigabytes of memory and is linked

via Cisco Infiniband high speed interconnects and gigabit copper. Saguaro has

an additional 185 nodes with Intel Xeon MP 64bit processors for serial jobs,

giving it a total of almost 2200 processor cores, 4000GB of memory, and 5TB

of storage space.
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CHAPTER 6

RESULTS

The following sections present the simulation results. Unless otherwise

specified, comparisons with physical data are made against the Princeton

Benchmark Thruster (PBT). Some simple analytical models are also used for

comparison where appropriate. First, the general performance characteristics

of the models are presented, then analysis proceeds based on three-dimensional

distributions of the flowfield properties.

6.1. Performance Characteristics

6.1.1. Thrust Comparison. The thrust for the MACH simulations was

calculated using eq. 4.1. From the flow-field and integrating the pressure over

the exhaust boundaries, it was clear that the dominant component of the

thrust was the momentum flux, and that the static and magnetic pressures

were negligible. This was expected as the computational domain was chosen to

be large enough to totally include the current distribution, and the magnetic

field at the boundaries should be zero. In addition to experimental data and

two-dimensional simulations, the Maecker formula is included for comparison.

The Maecker formula is a very basic formula that is derived by integrat-

ing the ~j × ~B forces for a cylindrical MPD thruster assuming azimuthal uni-

formity, purely radial current except the cathode tip, and a simplified axial

distribution[41]. The model can be expressed as



T = bJ2 (6.1)

The coefficient b is a parameter based on the geometry of the thruster and

current distribution over the cathode tip. It is generally approximated as

b =
µ0

4π
ln

(
ra
rc

+ δ

)
(6.2)

where ra and rc are the radii of the anode and cathode, and δ is the cathode

tip parameter and depends on the current distribution. This parameter can

also be approximated from data by plotting T/J2 as a function of current[2].

At high-power operation, there is an approximately constant region that can

be described by the Maecker formula. The model is adequately accurrate at

high J2/ṁ levels, but does not capture the magnitudes or trends at low power

levels. The operating conditions of these simulations, though, are high power,

and the flow is expected to be fully ionized close to the inlet[18]. For this

reason, only the simple Maecker model is considered here.

The primary shortcoming of the Maecker formula is that, while δ can be

determined by a least-squares fit to the data to make Maecker fit very well, it

is not known before aquiring data. This makes Maecker relatively ineffective

as a predictive model. δ is a parameter that represents the additional thrust

component imparted to the thruster due to the unique current distribution

over the cathode tip and depends on thruster geometry as well as flowfield

41



characteristics[1]. This makes it difficult to approximate theoretically, and

therefore it is generally simply set to δ = 0 for no current attachment or

δ = 3/4 for full current attachment. For the chosen thruster and operating

conditions δ = 3/4 greatly over-estimates the thrust, so δ = 0 is used for the

following plots.
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Figure 7. Experimental, MACH2, MACH3, and Maecker Thrust vs. Current
for a mass-flow rate of 1g/s. ξ = 1, ξ = 2 and ξ = 3 are shown as vertical
black lines at 7.21kA, 8.291kA and 9.1368kA, and the point of 10% voltage
hash shown as verticle dashed line at 11.1kA

Figure 7 contains the plots of Thrust vs. Current for a mass-flow rate of

1g/s. The plot compares MACH3 results to MACH2, the Maecker formula,

and experimental data. Additionally, three vertical lines are included to mark

the condition where ξ = 1 (J = 7.21kA),ξ = 2 (J = 14.4kA) and where the
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experimental voltage hash, or uncertainty, exceeds 10% of the average value

(J = 11.1kA). The comparisons in the figure show reasonable agreement be-

tween the numerical simulations (both in two-dimensional axisymmetric and

three-dimensions) and experimental data for 1g/s. At lower current levels the

predicted thrust values are well within experimental uncertainty. As operating

current increases the discrepancy also increases to a range of 7 − 15%. The

fidelity of the recently developed three-dimensional code, MACH3, is further

increased since predicted thrust agrees extremely well with the well-established

and repeatedly validated[7] two-dimensional version of the code, MACH2, for

a wide range of MPD geometries and operating conditions. Such agreement,

however, also indicates that three-dimensional physics do not significantly al-

ter integrated performance parameters such as thrust. This notion is further

explored in later sections. The Maecker formula comparison identifies the ap-

proximately parabolic trend as expected for a thruster operating in high power

mode, wherein the electromagnetic thrust contribution dominates over other

modes of kinetic energy conversion such as enthalpy conversion.

Figure 8 depicts thrust comparisons for operation at a mass-flow rate of

3g/s. Similar trends are identified wherein simulated thrust values agree well

with experiment for lower current operation. As the current increases, the

discrepancy also increases by MACH3 and MACH2 predictions. They under-

predict experimental thrust values by a maximum of 20%. Approximately the

43



10 12 14 16 18 20 22 24
Current (kA)

0

20

40

60

80

100

Th
ru

st
 (N

)

Maecker (T=bJ2 , b=1.68e�07)
PBT @ ṁ=3g/s

MACH2 @ ṁ=3g/s
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same insights emerge from comparisons at thruster operation of 6g/s depicted

by Figure 9.
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Figure 9. Experimental, MACH2, MACH3, and Maecker Thrust vs. Current
for a mass-flow rate of 6g/s. ξ = 1, ξ = 2 and ξ = 3 are shown as vertical
black lines at 17.65kA, 20.309kA and 22.380kA. Voltage hash only reached
8% for the range of data included.

Validation of the newly-developed three-dimensional MHD code, MACH3,

has been partially accomplished by thrust comparisons to experimental data

and the well-established, repeatedly validated two-dimensional, axisymmetric

version of the code, MACH2. Specifically, the predicted thrust values from the

two numerical models are in excellent agreement, indicating that MACH3 can

be expected to be as predictive as MACH2 has demonstrated over multiple

applications to MPD thrusters. Agreement to experimentally measured thrust
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for lower to medium-level current operation was also shown to be well within

empirical uncertainty for mass-flow operation within 1g/s < ṁ < 6g/s. A

more substantial discrepancy between experiment and simulation was observed

at current operation beyond such values at which “onset” related phenomenon

are present in experiment, e.g. significant voltage fluctuations. This implies

that perhaps certain physical processes that may be associated with such fluc-

tuations are modeled by neither MACH2 nor MACH3; the latter indicating

that such phenomenon may not be inherently three dimensional and related to

the plasma—as suggested by other efforts—but rather a consequence of elec-

trode material processes which have not been incorporated into the current

models.
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6.1.2. Voltage Comparison. Plasma voltage from several simulations

were calculated using eq. 4.3, and the integration was taken at the gap be-

tween the extended section of the anode and the electrode. Figures 10, 11,

and 12 depict such voltage comparisons for 1g/s, 3g/s, and 6g/s, respectively,

to experimental measurements of total voltage which includes two contribu-

tions; voltage drop across the plasma (plasma voltage) and voltage drop across

thin sheath electrode regions which are necessary such that charge plasma neu-

trality is maintained over a positive column. These voltage drops are referred

to as fall voltages and are not modeled by the MACH codes as they require

sub-grid physical models of Debye length scales.

The plasma voltage calculations from the simulations under-predict the

experimental total voltage as much as 80% in some cases. This is expected[8]

as neither MACH code is yet equipped with a model for fall voltage drop at the

electrodes. Hence, the difference between plasma voltage and the experimental

total voltage can be interpreted as an approximation of electrode fall voltage[8]

which in turn is an indication of the relative power deposited to the sheath

region. A self-consistent model that includes both plasma and fall voltage

calculations would be preferrable, however previous work and validation by

comparisons to experimental plasma voltage data for a single thruster has

shown very good agreement using the MACH2 code[9].

Along with under-predicting, the voltage plots don’t capture the non-linear
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Figure 10. Experimental total voltage (plasma voltage + fall voltage) and
MACH2, MACH3 predicted plasma voltage vs. Current for a mass-flow rate
of 1g/s. ξ = 1, ξ = 2 and ξ = 3 are shown as vertical black lines at 7.21kA,
8.291kA and 9.1368kA, and the point of 10% voltage hash shown as verticle
dashed line at 11.1kA

rise in voltage associated with the onset phenomenon. Also, because the model

treats the electrodes as simple, ideal conductors, the simulations don’t exhibit

the characteristic voltage hash that accompanies onset experimentally. The

comparisons seem to support the hypothesis that these effects are primar-

ily associated with an electrode, material-related phenomenon such as anode

spotting[8, 27], which coincides with the breakdown of azimuthal symmetry of

the flow-field.

Anode spotting involves ’hot spots’, or spots where the flow of current be-

tween the electrodes concentrates instead of distributing uniformly and may
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PBT @ ṁ=3g/s

MACH2 @ ṁ=3g/s
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Figure 11. Experimental total voltage (plasma voltage + fall voltage) and
MACH2, MACH3 predicted plasma voltage vs. Current for a mass-flow rate
of 3g/s. ξ = 1, ξ = 2 and ξ = 3 are shown as vertical black lines at 12.5kA,
14.361kA and 15.825kA, and the point of 10% voltage hash shown as verticle
dashed line at 18kA

be initiated by electrode material imperfections and roughness. These spots

of high current, and resulting high temperature, deteriorate the electrode,

causing pits and ablation of extra mass into the thrust chamber. The current

model using MACH does not include the possibility for such surface variations,

even though it is within its capability since the three-dimensional version can

combine azimuthal boundary variation coupled with several ablation mod-

els already included in MACH. The electrodes are simply region boundaries

with specified uniform boundary conditions. As a result, no fluctuations in

mass-flow rate or voltage hash can be predicted. Another interesting result is
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Figure 12. Experimental total voltage (plasma voltage + fall voltage) and
MACH2, MACH3 predicted plasma voltage vs. Current for a mass-flow rate
of 6g/s. ξ = 1, ξ = 2 and ξ = 3 are shown as vertical black lines at 17.65kA,
20.309kA and 22.380kA. Voltage hash only reached 8% for the range of data
included.

that the three-dimensional flow-field of the simulation results show azimuthal

symmetry, even past the point of onset. This further supports that the an-

ode spotting and breakdown of symmetry may be due to imperfections in the

electrodes, which MACH does not model, instead of a plasma instability or

thermodynamic causes[4, 3].

Assuming the difference in calculated plasma voltage and experimental

total voltage is equal to the fall voltage, we can estimate how much power is

deposited into the electrodes. Figure 13 shows the estimated power deposited

to fall voltage vs. current for each mass-flow rate.
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Figure 13. Power deposited into electrode sheaths (P = J · Vfall) based on
estimating fall voltage as the difference between experimental voltage and
calculated plasma voltage.

The total power input into the thruster is the product of the total voltage

and operating current, which are available by the experimental data. Compar-

ing the experimental input power to the fall power shows that between 60%

and 80% of the input power is being deposited to the electrode sheaths.

The input power that does get deposited into the plasma is divided further

into useful acceleration and deposition to internal modes. The power deposited

into internal modes is refered to as ’frozen flow’ losses, and further impairs

efficiency. The relative fractions can be estimated by calculating the kinetic

power (thrust power) using eq. 6.3. The remaining power is the frozen flow

power.
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PK =
T 2

2ṁ
(6.3)

Using the calculated kinetic power and fall power above, the frozen flow

power can be determined. The simulation thrust is used to calculate the

kinetic power, because the simulation voltage is used to determine the total

plasma power. This voltage doesn’t include the fluctuations due to onset, and

if used with the experimental thrust that is effected by onset, the diverging

thrust in the onset region of the plots would result in a non-physical spike

in efficiency. Figures 14, 15, and 16 shows the resulting power budgets for

ṁ = 1g/s, ṁ = 3g/s, and ṁ = 6g/s.
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Figure 14. Power budget for ṁ = 1g/s using voltage and thrust calculated by
MACH3

52



10 12 14 16 18 20 22
Current (kA)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Po
w

er
 F

ra
ct

io
n 

(
P

P
T
ot
a
l
)

Power budget for ṁ=3g/s
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Figure 15. Power budget for ṁ = 3g/s using voltage and thrust calculated by
MACH3

From the figures, it is clear that the majority of input power is deposited

into the electrode sheaths. The power deposited into the plasma is divided

more evenly between the two major power sinks, with 40% − −50% of the

plasma power going to useful thrust and 50% − 60% of the plasma power

deposited into internal modes, e.g. heating and ionization.
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Figure 16. Power budget for ṁ = 6g/s using voltage and thrust calculated by
MACH3
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6.2. Flow-field Analysis

The experimental data did not include any flow-field distributions, and

therefore it is not possible to validate that aspect of the simulations. On the

other hand, the three-dimensional nature of the flowfield properties can provide

additional insights not available by experiments, especially when compared

to the two-dimensional model. Analysis and interrogation of the flowfield

property distributions is carried out for the representative operating conditions

of J = 12kA at ṁ = 1g/s and ṁ = 6g/s for minimum and maximum mass flow

rates, and J = 24kA at ṁ = 6g/s which represents the higher power range.

Three-dimensional distributions of density, current, temperature and average

degree of ionization are investigated and compared to their two-dimensional,

axisymmetric counterparts generated by MACH2.

Each MACH3 figure consists of two slices perpendicular to the flow axis,

one between the electrodes and one in the exhaust plume, a slice along the

flow axis, and a solid contour plot with a quarter cut out. The overarching

feature that is clearly evident after a brief assessment of all property distribu-

tions shown is that MACH3 suggests that the flowfield is mainly azimuthally

symmetric even for simulations at the high current level beyond which the ex-

periments have shown the fluctuations and rapid voltage increases associated

with onset. As mentioned above, such phenomenon are expected to break-

down azimuthal symmetry, as the depleted current carriers would tend to form
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arcs that are concentrated in smaller regions at the electrodes as opposed to

being uniformly diffused. This tends to support previous inferences that on-

set phenomenon and the associated azimuthal asymmetry may be initiated

by electrode surface imperfections, which tend to provide the preferred cur-

rent paths, as opposed to plasma inherent processes such as micro-instabilities

and/or thermo-chemistry.

A figure consisting of the corresponding MACH2 simulation follows each

set of MACH3 plots. For most of the plots the contours match very well

considering they are generated by two separate codes with different grid den-

sities. The main difference between MACH3 and MACH2 in most of the plots

occurs in the section of the plume that extends past the anode. This dif-

ference, though, is completely numerical. For the MACH2 simulations, the

exhaust boundaries are generally set to continuative, or zero-gradient[7], with

the assumption that the gradients at those surfaces are small enough to be con-

sidered negligible. In MACH3, however, a numerical instability prevented the

use of continuative boundary conditions on these boundaries, and instead, the

boundary conditions were set to simulate vacuum. This difference in bound-

ary conditions allows the gradients tangent to the boundaries to more easily

propagate along those boundaries in MACH2 than in MACH3, leading to dif-

ferent steady-state flow-fields in the region where the anode boundary joins

the exhaust boundary. Fortunately, this is a very low density region, and it is
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clear from the integrated quantities that this difference has a negligible effect

on the performance characteristics, i.e. thrust and voltage.

The numerical nature of this difference is confirmed by re-simulating the

two-dimensional simulation for the most effected case (J = 12kA and ṁ =

1g/s). The resulting current contours are shown in Figure 41 (in section A of

the APPENDIX) and show much better agreement to the three-dimensional

version in Figure 29. The performance quantities are also computed for this

simulation and show differences in both thrust and voltage of less than 3%

when compared with the three-dimensional version.

Figures 17 and 18 show the density contours for the J = 12kA at ṁ = 1g/s

case. The mass flows through the thrust chamber and expands in the plume

region. There is also some mass pinched to the center-line due to the Lorentz

(~j × ~B) force and the curvature of the current lines as they connect to the

cathode tip. While similar, MACH2 predicts density distributions that are

pushed further downstream than in MACH3. The flow in MACH experiences

a more severe pinching force due to the difference in current contours and

their resulting Lorentz forces. As previously mentioned, this is caused by

the difference in boundary conditions between MACH2 and MACH3, but has

negligible impact on performance characteristics.

Figures 19 and 20 show the mass flow rate for the J = 12kA at ṁ = 6g/s

case, and it is similar to the ṁ = 1g/s case with the exception of higher
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Figure 17. MACH3 density contours at J = 12kA and ṁ = 1g/s

Figure 18. MACH2 density contours at J = 12kA and ṁ = 1g/s
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Figure 19. MACH3 density contours at J = 12kA and ṁ = 6g/s

Figure 20. MACH2 density contours at J = 12kA and ṁ = 6g/s
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Figure 21. MACH3 density contours at J = 24kA and ṁ = 6g/s

Figure 22. MACH2 density contours at J = 24kA and ṁ = 6g/s
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density contours expanding into the plume. Additionally, the differences due to

dissimilar boundary conditions become much less pronounced with the increase

of mass-flow rate. The J = 24kA at ṁ = 6g/s case, shown in figures 21 and

22, show similar distributions with the stronger applied current causing the

difference to become more evident.

MACH3 and MACH2 predict very similar temperature distributions as

well, except for the inconsequential anode-exhaust interface region, the differ-

ences of which arise from the different boundary conditions previously men-

tioned. For the region that contains the bulk of the mass for the J = 12kA

at ṁ = 1g/s case, (see Figures 23 and 24), MACH predicts an average tem-

perature range of 1.5eV < T < 2.5eV . As the mass-flow rate is increased to

ṁ = 6g/s, (see Figures 25 and 26), the temperature decreases, as expected,

to an average range of 0.5eV < T < 1.5eV . Similarly, when the power input

is increased by increasing the operating current to J = 24kA, (see Figures 27

and 28), the average temperature range is 1eV < T < 2eV . In all cases we

note that elevated temperature ranges are produced, which in turn implies

that thrust performance can benefit from solid-wall nozzle expansion allowing

additional conversion of propellant enthalpy to exhaust kinetic energy. The el-

evated temperature values computed in the plume regions close and extending

along the centerline and in the otuer edges of the plume region are a conse-

quence of the lower densities computed in such regions. In these regions the
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Figure 23. MACH3 temperature contours at J = 12kA and ṁ = 1g/s

Figure 24. MACH2 temperature contours at J = 12kA and ṁ = 1g/s
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Figure 25. MACH3 temperature contours at J = 12kA and ṁ = 6g/s

Figure 26. MACH2 temperature contours at J = 12kA and ṁ = 6g/s

63



Figure 27. MACH3 temperature contours at J = 24kA and ṁ = 6g/s

Figure 28. MACH2 temperature contours at J = 24kA and ṁ = 6g/s

64



justification of the continuum assumption is challenged. Such very low density

regions, however, negligibly contribute to the overall integrated performance

characteristics of the rocket.

The plots of current distribution, in figures 29-34, also follow expected

trends. It is clearly evident that the choice of the extended plume region is

adequate to include the total current, which indicates that the total avail-

able current distribution is included in the calculation of the electromagnetic

component of the computed thrust. For both versions of the code, the an-

ode attachment is affected by the boundary condition, but the distributions

show very little current attachment to the cathode in any case, with less than

an eighth of the cathode attached at the most. The minimal current cath-

ode attachment supports the choice of δ = 0 for the Maecker thrust formula

previously used to produce the best comparison with experimental thrust.

Figures 35 and 36 show distributions of the average ionization level (ζ)

for ṁ = 1g/s and J = 12kA from MACH3 and MACH2. Because of the

low mass-flow rate, the propellant is fully ionized very close to the backplate.

The distributions are, aside from the dissimilar boundary condition, similar in

magnitude and layout. The highest ionization rates occurr near the electrodes

and in the centerline, which corresponds to regions with highest temperature,

or greatest energy deposition to interal modes. Much like the temperature

distributions, however, these regions contain the lowest densities and thus
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Figure 29. MACH3 currents contours at J = 12kA and ṁ = 1g/s

Figure 30. MACH2 currents contours at J = 12kA and ṁ = 1g/s
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Figure 31. MACH3 currents contours at J = 12kA and ṁ = 6g/s

Figure 32. MACH2 currents contours at J = 12kA and ṁ = 6g/s
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Figure 33. MACH3 current contours at J = 24kA and ṁ = 6g/s

Figure 34. MACH2 current contours at J = 24kA and ṁ = 6g/s
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negligibly contribute to the overall integrated performance characteristics. The

bulk of the mass in the simulation, in both versions of the code, is at an

ionization level of about ζ ∼ 2.

Figures 37 and 38 show plots for ζ at ṁ = 6g/s and J = 12kA from MACH3

and MACH2. Because the mass-flow rate is increased six-fold with no increase

in current, the ionization levels are significantly decreased in comparison to

the ṁ = 1g/s case. From the plots, it is clear that the plasma doesn’t even

become fully ionized for this operating condition. We would expect that at this

operating condition there would be an elevated thermal contribution to thrust

due to conversion of enthalpy. This is also confirmed by Figure 9, where the

measured and simulated thrust values are greater than the Maecker formula

which only represents the electromagnetic component.

Figures 39 and 40 show plots for ζ at ṁ = 6g/s and J = 24kA from MACH3

and MACH2. The ionization levels aren’t as high as for the ṁ = 1g/s and

J = 12kA case, but the plasma is fully ionized within the thrust chamber and

the bulk of the mass reaches an ionization level in the range 1 < ζ < 1.5.
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Figure 35. MACH3 average ionization level contours at J = 12kA and ṁ =
1g/s

Figure 36. MACH2 average ionization level contours at J = 12kA and ṁ =
1sg/s
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Figure 37. MACH3 average ionization level (ζ) contours at J = 12kA and
ṁ = 6g/s

Figure 38. MACH2 average ionization level (ζ) contours at J = 12kA and
ṁ = 6g/s
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Figure 39. MACH3 average ionization level (ζ) contours at J = 24kA and
ṁ = 6g/s

Figure 40. MACH2 average ionization level (ζ) contours at J = 24kA and
ṁ = 6sg/s
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CHAPTER 7

CONCLUSION

The motivation for this study was to develop a model capable of address-

ing the inherently three-dimensional plasma flow of a self-field magnetoplas-

madynamic (MPD) thruster. Even though the flow produced by the rocket

operating at J2

ṁ
values below the onset criterion has been shown to be reason-

ably captured within the two-dimensional axisymmetric assumption, operation

beyond onset has been experimentally confirmed as highly three-dimensional.

Furthermore, three-dimensional modeling capability allows for exploration and

design of non-axisymmetric propellant injection schemes which are the estab-

lished methods for operating such rockets. The main focus of this study was

to develop, verify (by comparisons to the well-established two-dimensional ax-

isymmetric version of the same model), and validate (by comparisons to exper-

imental data) a fully three-dimensional model of steady-state magnetoplasma-

dynamic (MPD) thruster operation. This incorporated the following develop-

ments: 1) Modify the three-dimensional magnetohydrodynamic (MHD) code,

MACH, so it can be utilized to model an MPD in steady-state operation.

2) Develop an accurate physical model of an MPD that can be simulated in

MACH. 3) Use the developed model to generate predictions of the perfor-

mance and flow characteristics of an MPD for a range of operating conditions.

4) Verify and validate the predicted performance and flow characteristics by

comparisons to experimental data and by comparisons to identical simulations



using the previously validated two-dimensional code, MACH2.

Fully three-dimensional simulations of an MPD thruster operating at

steady-state were produced using the simulation code MACH3, described in

more detail in section 4. MACH3 was upgraded to a 64-bit code in order to

utilize the available computational resources of the Saguaro Cluster at Ari-

zona State University, described in section 5.3. Additionally, the code was

upgraded to compute performance characteristics of interest to rocket scien-

tists. These included the integration over the exhaust boundary conditions to

calculate thrust and mass-flow rate, and the intergatrion of induced currents

in the thrust chamber to calculate plasma voltage. Thrust and plasma voltage

were the primary performance characteristics used for verification.

Once upgraded, MACH3 was used to simulate the Princeton Benchmark

Thruster (PBT) with the following operating conditions: ṁ = 1g/s between

6.5kA < J < 12.7kA, ṁ = 3g/s between 10.6kA < J < 20.9kA, and ṁ = 6g/s

between 10.9kA < J < 23.25kA. This thruster and operating conditions

were chosen for verification because of the ample availablility of experimental

data[38].

Agreement to experimentally measured thrust for lower to medium-level

current operation was also shown to be well within empirical uncertainty for

mass-flow operation within 1g/s < ṁ < 6g/s. A more substantial discrep-

ancy (up to ∼ 20%) between experiment and simulation was observed at cur-
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rent operation beyond such values at which “onset” related phenomenon are

present in experiment, e.g. significant voltage fluctuations. This implies that

perhaps certain physical processes that may be associated with such fluctua-

tions are modeled by neither MACH2 nor MACH3; the latter indicating that

such phenomenon may not be inherently three dimensional and related to the

plasma—as suggested by other efforts—but rather a consequence of electrode

material processes which have not been incorporated into the current models.

Validation of the newly developed three-dimensional MHD code, MACH3,

has been partially accomplished by thrust comparisons to experimental data

and the well-established, repeatedly validated two-dimensional, axisymmetric

version of the code, MACH2. Specifically, the predicted thrust values from the

two numerical models are in excellent agreement, indicating that MACH3 can

be expected to be as predictive as MACH2 has demonstrated over multiple

applications to MPD thrusters.

Plasma Voltage-Current characteristics were also produced by the simula-

tions. Comparisons of calculated plasma voltage to experimental total voltage

serves as an estimate of the fall voltages maintained within thin sheaths in the

vicinity of the electrodes to sustain a voltage drop across a mainly neutrally-

charged plasma propellant. Such estimates are determined by the difference

between plasma and total voltage. In turn, such computation allows for the

estimation of power deposited to the sheaths; these comparisons showed that
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the majority of the input power (∼ 60% to ∼ 80%) is deposited into the elec-

trode sheaths instead of the propellant, thus substantially degrading thrust

efficiency.

In addition, the simulated plasma voltages do not contain the expected

non-linearity and voltage hash present in the experimental total voltage at op-

erating conditions exhibiting the symptoms of the onset phenomenon. These

comparisons support the hypothesis that these effects are primarily associated

with an electrode, material-related phenomenon such as anode spotting[8, 27],

which coincides with the breakdown of azimuthal symmetry. Anode spotting

involves ’hot spots’, or spots where the flow of current between the electrodes

concentrates instead of distributing uniformly and may be initiated by elec-

trode material imperfections and roughness. These spots of high current, and

resulting high temperature, deteriorate the electrode, causing pits and abla-

tion of extra mass into the thrust chamber. The current model using MACH

does not include the possibility for such surface variations, even though it is

within its capability since the three-dimensional version can combine azimuthal

boundary variation coupled with several ablation models already included in

MACH. Instead, the electrodes are simply region boundaries with specified

uniform, ideal boundary conditions. As a result, no fluctuations in mass-flow

rate or voltage hash can be predicted.

In order to further confidence in the predictive capability of the newly
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developed three-dimensional version of the MACH code, the two-dimensional

version was utilized to simulate the same operating conditions for relevant com-

parisons. MACH3 and MACH2 show excellent agreement, which gives confi-

dence in MACH3’s ability to model MPDs as MACH2 has already been verified

in several previous efforts[9, 7, 8]. The performance characteristics of MACH2

and MACH3 agree to within ∼ 5%. The flowfield distributions also correlate

very well even at different grid densities. The only disparity between the two

code flowfield predictions emerges from imposing different boundary conditions

in a region far downstream of the thruster’s exit, and it was shown inconse-

quential to the overall magnitudes of performance characteristics calculated.

The three-dimensional simulations can also be used to examine the nature of

the flow-field in the azimuthal direction, which MACH2 assumes is axisymmet-

ric. For the simulations performed, though, the azimuthal distributions show

symmetry, even in the range of operating conditions where the MPD thruster

is subject to symptoms associated with onset. In order to be consistent with

what experimental observations show, a breakdown in azimuthal symmetry is

expected in this range. Since MACH3 does not show such azimuthal asym-

metry it can be concluded that processes associated with onset may be a

consequence of material-dependent properties and imperfections of the elec-

trode surfaces as opposed to plasma induced instabilities of thermochemical

adjustment of the propellant in order to adjust the lower density operation.
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7.1. Future Work

This study has shown that MACH3 is a robust simulation code that can be

effectively used to predict and examine MPD thruster operation. As MACH2

was used to gain invaluable insights into performance limitations of MPD oper-

ation, the three-dimensional nature of MACH3 may lead to even greater under-

standing of MPD performance, including the onset phenomenon. This study

was focused on verifying a simple model of the PBT thruster against avail-

able experimental data, but the three-dimensional nature of the code makes

it promising for many possibile applications. To help understand the axisym-

metric nature of the flow with respect to mass injection, the geometry can

be modified to implement a more realistic mass injection scheme. This will

increase the complexity of the geometry, and it may be necessary to upgrade

the code to improve the passing of boundary information between processors.

Most importantly, however, such MACH3 simulations can be extended to

study and further confirm that onset phenomenon are initiated by electrode-

dependent processes as opposed to plasma related processes. This—which

is well within the present capabilities of the code—can be accomplished by

modeling azimuthally asymmetric electrode boundary conditions with the ca-

pability of ablation and geometry variations. In this manner, we can closely

model “spot” processes which have been observed as small regions of high

current concentration and electrode mass injection.
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APPENDIX A

BOUNDARY CONDITION FIX



Figure 41. MACH2 current contours at J = 12kA and ṁ = 1sg/s with vacuum
boundary conditions
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