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ABSTRACT

Many products undergo several stages of testing ranging from tests on individ-

ual components to end-item tests. Additionally, these products may be further “tested”

via customer or field use. The later failure of a delivered product may in some cases be

due to circumstances that have no correlation with the product’s inherent quality. How-

ever, at times, there may be cues in the upstream test data that, if detected, could serve

to predict the likelihood of downstream failure or performance degradation induced

by product use or environmental stresses. This study explores the use of downstream

factory test data or product field reliability data to infer data mining or pattern recog-

nition criteria onto manufacturing process or upstream test data by means of support

vector machines (SVM) in order to provide reliability prediction models. In concert

with a risk/benefit analysis, these models can be utilized to drive improvement of the

product or, at least, via screening to improve the reliability of the product delivered to

the customer. Such models can be used to aid in reliability risk assessment based on

detectable correlations between the product test performance and the sources of supply,

test stands, or other factors related to product manufacture. As an enhancement to the

usefulness of the SVM or hyperplane classifier within this context, L-moments and the

Western Electric Company (WECO) Rules are used to augment or replace the native

process or test data used as inputs to the classifier.

As part of this research, a generalizable binary classification methodology was

developed that can be used to design and implement predictors of end-item field failure

or downstream product performance based on upstream test data that may be com-

posed of single-parameter, time-series, or multivariate real-valued data. Additionally,

the methodology provides input parameter weighting factors that have proved useful in

failure analysis and root cause investigations as indicators of which of several upstream

product parameters have the greater influence on the downstream failure outcomes.
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Chapter 1

INTRODUCTION

In the testing or quality-control phase of a manufacturing process, data is collected

and analyzed in order to ensure that the manufactured products meet some acceptance

criteria. This data may include selected process data and product subcomponent data

as well as product performance data. Often this data is used not only to grade the

product (or service) but also as a means of identifying the control state of the

manufacturing process.

In statistical process control, the statistics of one or more parameters are used

to develop a set of control limits. For example, the average measured value (X) of a

parameter over a defined subgroup (or “lot”) of assemblies might be tracked across an

increasing set of such subgroups as a process statistic. Using historical data a sample

mean of X (X) and a sample standard deviation (σ ) are determined. In general, X is

assumed to be normally distributed.1 Upper and lower control limits are then typically

determined as this sample mean ±3σ . The units which perform outside the control

limits are considered deviations from the controlled process (outliers) or as indications

that the process has gone out of statistical control. In either case, in an SPC system, a

process alarm (or signal) is set. Of course, if the distribution of a test parameter is

indeed Gaussian, the probability of false alarm is non-zero. The classical “3-sigma”

control limits assume a normal distribution of the process parameter or variable. In

situations where the process variable is not normally distributed, control limits (or

control regions) may be set based on a chosen probability of false alarm (Type I error)

1Based on the Central Limit Theorem, this assumption is increasingly justified as
the fixed number N of independent (or partially-correlated) elements included in each
subgroup or lot is increased. Typically, for ease of implementation, the number N is
fixed across lots, but for particular applications N may be variable if associated ad-
justments are made for the calculation of the standard deviation of X across multiple
subgroups.
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or risk of false rejection of alarm (Type II error).

Even for production units which perform within the control limits, certain

additional limitations (such as the “Western Electric Rules”) may be imposed to

identify possible process or measurement abnormalities known as runs[1][2, p.25].

Runs consist of a series of successive readings whose low joint probability of

occurrence can be used to signal a process problem. For example, Western Electric

“Rule 4” indicates an alarm condition if fifteen consecutive points (readings) in a row

all fall within a one-sigma region on one side of the mean.

Products whose performance is consistent with a controlled process, exhibit no

abnormalities, and meet product specifications are deemed good. However, even good

product may have latent defects or environmental susceptibilities that may impinge

upon the product’s life or reliability. Some of these reliability characteristics may be

detectable but unidentified given the available process data. Other characteristics may

have no corresponding cues contained in the implemented process data set. If

reliability history is available, this history might be used in concert with historical

process data to develop predictive criteria. Since some failures may be induced by

environmental events apart from inherent product quality deviations, some means of

specifying the confidence of a prediction must be provided. The question “could this

failure have been predicted as a function of the process data?” might possibly have the

answer “no.” Given a limited population of returns due to failure, it might be possible

to develop a predictor function (or machine) on the prior process data that would be

consistent with respect to that population. However, if with high probability, the

returned population could represent simply an unbiased random sampling of available

fielded units, then the predictor machine may be overfit and not generalize well for

other test samples. To empirically determine the generalization ability of the predictor,

one would check the classification accuracy of the initial predictor operating on a

representative population of both failed and survived units that were not included as

2



samples in the training or design of the predictor.2

During this research, a binary classification methodology was developed that

can be used to design and implement predictors of end-item field failure/survival or

downstream product test pass/fail performance based on upstream test data that may

be composed of single-parameter, time-series, or multivariate real-valued data.

Additionally, the methodology has proved useful as a forensic tool in failure analysis

investigations as it provides indicators of which of several upstream product

parameters have the greater influence on the downstream failure outcomes. While the

data analysis or design portion of this generalizable methodology requires several

input data processing and transformation steps, the implementation form (synthesis)

of the prediction machine is relatively simple, only requiring taking the inner product

of a derived weight vector with the upstream input data for a particular component or

end-item, adding a derived offset, and then basing the classification decision on the

sign of the result. Once designed for a specific dataset, the prediction machine can

enable effective screening out of suspect components or end-items, especially in cases

where the methodology has identified high correlation between one or more parameter

elements of the upstream data and the downstream failure mode. As a interim output,

the methodology also provides a normalized weight vector whose elements are

weighting values that can serve to indicate which of the elements of a parameter input

(or time-series) vector is of more key importance to the classification decision. This

interim weight vector has proved useful as a forensic tool in determining likely

contributing factors to low downstream test yields or failure modes. In real-world

scenarios, the correlation between the downstream failure and cues in the upstream

2Depending on the specific fault mode and period of performance on which “sur-
vival” is defined, the current set of “survived” units may or may not contain potential
future failures. For example, if survival is defined as not exhibiting a particular failure
mode prior to some fixed number of years, then data (if available) from non-overlapping
sets of failed units and survived units could be used to test the predictor. In other sce-
narios, the possibility of potential future failures among the current survivals should
inform the interpretation of this classification accuracy testing.
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manufacturing data may not, if they exist at all, be perfectly correlated to the failure

mode under review. If the correlation is only partial, the predictor generated by this

methodology also has a non-zero probability of either screening out units that would

not fail or allowing units that would fail to escape the screen. Hence, in practice, there

tends to be a trade-off between the detection rate (or, the ability to positively identify

“bad” units) and the false positive rate (or, the fraction of “good” units falsely

rejected). There are cases where the upstream test data would not be expected to

provide true cues since the downstream failure mode is related to a latent defect that

evidences no performance change in the affected product until the defect (such as, for

example, a broken structural support or ruptured vapor barrier) actually occurs. In

such cases, the prediction machine developed under this methodology would be

expected to not perform well (as a predictor) on input test data not included in the

design analysis even if the training data were to be classified with little or no error. In

such cases, as will be demonstrated in one of the case studies explored in this

dissertation, the resultant prediction may have a false positive rate rivaling or even

exceeding the detection rate.

In this dissertation, we explore the use of downstream factory test data or

product field reliability data to infer data mining or pattern recognition criteria onto

manufacturing process or test data by means of support vector machines (SVM’s) in

order to provide reliability prediction models. In concert with a risk/benefit analysis,

these models can be utilized to drive reliability improvement of the product or, at least,

through screening to improve the reliability of the product delivered to the customer.

Additionally, such models can be used to aid in reliability risk assessment based on

detectable correlations between the product test performance and the sources of

supply, test stands, or other factors related to product manufacture.

This work provides the following contributions:

4



• Algorithmic details of a modified SVM classifier that can be trained on labeled

subsets of data from a statistically controlled process along with performance

analysis of the classifier on several sets of actual manufacturing test data. The

classifier so trained could then be used as a predictor function on the members

of the overall dataset with respect to inclusion in the classes represented by the

training data.

• The use of L-moment vectors and/or L-moment extensions to the input data

vectors as means of increasing the discrimination power of the SVM upon the

data streams from a statistically controlled process or upon multi-parameter

vectors that may have correlation between elements.

• Algorithmic details and performance analysis of a modified SVM classifier that

uses specific functions of order statistics of input vectors in order to embed

discriminant information into the classifier equivalent to that required in the

implementation of the classical 3-sigma process limits and Western Electric

Rules.

The general classifier design methodology involves variations of the following

top-level plan:

1. Begin with real-valued data from a statistically controlled process, with all data

falling within some defined sigma level (say, 3 to 6 standard deviations from the

process mean)

2. Ensure the data are organized into a set of vectors that each have the same

number of elements.

3. On an element-by-element basis statistically normalize the data using the

ensemble means and standard deviations calculated over the available dataset or

subset of interest.

5



4. Extend or replace the input data vectors with elements representing

problem-specific functions on or transformations of the input data vectors..

5. Depending on the specific dataset or problem, statistically normalize the

extension or replacement element (recommended if the classifier weight vector

is to be later utilized to determine the relative influence of the input elements).

6. Use a portion of the dataset to train the binary classifier. (This assumes that

samples from both classes are available.)

7. Review the resultant weight vector to determine which input data or extended

input data vector elements are the most significant.

8. If desired, reduce the number of vector elements (or, alternately, set those

elements to zero in the weight vector) and retrain the classifier.

9. Use the classification parameters to implement (synthesize) a classifier or

predictor specific to the dataset.

10. If desired, transform the classifier parameters so that the classifier can be used

directly on the input data in its native form.

11. Test the classifier on new data or a portion of the original input data (statistically

normalized, of course) not used in the design (analysis) or training of the

predictor.

In practice, it may be necessary to iteratively improve the classifier by varying the

training set in order to enhance the performance of the classifier over the test set (i.e. a

set of data not included in the training itself).

As part of this research, a modified SVM implementation has been applied to

real-world product test data from several statistically controlled processes in an

aerospace manufacturing environment. In each of three case studies, SVM’s were

6



trained using measurement and/or error data vectors from two labeled classes. The

generalization ability of the resultant SVM’s was explored by using the SVM’s to

classify end items using transformed versions of the actual test data. These

experiments are detailed in Chapter 5. Each sample vector for these experiments

consists of sets of elements representing the values of several different measurement

parameters. In Chapter 8, a fourth case study using SVM’s is explored in which the

sample vectors consist of set of instantiations of the same measurement parameter.

Feature selection continues to be a viable area of research in the SVM field and

is often dependent on the particular dataset and data usage under consideration. Along

with completion of the intended contributions outlined above, research objectives

accomplished as part of this effort include exploration of the application of the

Structural Risk Minimization approach to normalization of feature-vectors, reduction

of feature vector length, and effects of using varying numbers of training vectors for

particular sets of measurement and measurement error data3 derived from aerospace

sensor manufacturing processes.

Following this introduction, Chapter 2 provides a review of the literature and

background material in four areas: statistical process control, support vector

machines, divergence estimation using minimum spanning trees, and order statistics

(especially L-moments). These provide context for subsequent discussion about the

application of support vector machines in the analysis of data from statistically

controlled processes. Chapter 3 provides a detailed development of the hyperplane

classifier and its use in a modified Support Vector Machine (SVM) which relaxes the

requirement to necessarily locate the optimal hyperplane. Chapter 4 examines several

data-dependent limitations of this modified SVM and how these can be mitigated.

3Due to the potentially confidential nature of the real-world data used for this re-
search, affine transformations of the data are performed whenever the need arises to use
specific data in providing application examples.

7



Three case studies using statistically normalized versions of real-world data are used

in Chapter 5 to demonstrate the application of the SVM to statistically controlled

datasets. Chapter 6 provides a brief exposition of kernel theory and its application to

the hyperplane classifer. Chapter 7 introduces L-moment kernels and the application

of L-moment kernels in SVM’s. Chapter 8 describes methods of adding discriminant

information equivalent to the Western Electric Company (WECO) to the SVM and

provides a fourth case study utilizing both L-moments and WECO information in

various SVM implementations. Chapter 9 provides a summary of results and

observations along with suggestions for further research.

During this research, a binary classification methodology was developed that

can be used to design and implement predictors of end-item field failure/survival or

downstream product test pass/fail performance based on upstream test data that may

be composed of single-parameter, time-series, or multivariate real-valued data.

Additionally, the methodology has proved useful a forensic tool in failure analysis

investigations as it provides indicators of which of several upstream product

parameters have the greater influence on the downstream failure outcomes. While the

data analysis or design portion of this generalizable methodology requires several

input data processing and transformation steps, the implementation form (synthesis)

of the prediction machine is relatively simple, only requiring taking the inner product

of a derived weight vector with the upstream input data for a particular component or

end-item, adding a derived offset, and then basing the classification decision on the

sign of the result. Once designed for a specific dataset, the prediction machine can

enable effective screening out of suspect components or end-items, especially in cases

where the methodology has identified high correlation between one or more parameter

elements of the upstream data and the downstream failure mode. As a interim output,

the methodology also provides a normalized weight vector whose relative weights

serve to indicate which of the input elements of a parameter input (or time-series)

8



vector is of more key importance to the classification decision. This interim weight

vector has proved useful as a forensic tool in determining likely contributing factors to

low downstream test yields or failure modes.
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Chapter 2

BACKGROUND AND LITERATURE REVIEW

2.1 Statistical Process Control

We begin with a brief background study and literature review of the area of statistical

process control as applied in the manufacturing arena. Mass production assembly line

processes, as introduced by Henry Ford and others in the early 1900’s, required that

the form, fit, and function of assemblies (or subassemblies) made by different

individuals or machines be identical within allowable tolerances. One means of

monitoring the quality (i.e. uniformity) of manufacture is to inspect each individual

assembly using some means of measurement to ensure that the product meets

predetermined specifications. Products that fall outside of specification limits are

rejected or reworked. The fallout or rejection rate may be used as indicators of the

need for a process to be improved or corrected. However, this 100% inspection of the

outcome of each subprocess may be both unnecessary and uneconomical. In the

1920’s, H.F. Dodge and H.G Romig developed the use of statistical sampling as a

means of reducing this inspection burden [3, p.10]. Human errors, measurement

system errors, unobservable defects, and random process variation all pose limitations

to the benefit of relying primarily on inspection as a means of quality control.

In about 1924, Walter A. Shewhart and others at Western Electric’s Bell

Telephone Laboratories began work on the application of statistics to the control of

production processes. This work formed the basis of what is now known as Statistical

Process Control (SPC). A process is said to be in a state of statistical control with

respect to a particular quality variable when the variation of that variable can be

approximately described by a fixed probability distribution [4, pp.30-31]. This quality

variable may be a direct measurement variable, a derived variable (such as the mean or

range of a subgroup), or a vector of variables. Shewhart introduced process control
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charts (“Shewhart Charts”) for utilization in tracking the control state of

manufacturing processes [4, p.2][5, p.xiii]. If the control charts indicated that a

process output exceeded control limits or had changed control states (such as a

significant shift of the mean), some action might be taken to address the “special”

cause of the variation or to stabilize the process. Other variations of process outputs

within the control limits are considered to be “common” cause variations resulting

from the operation of a stable process. The use of the quality control concepts

described by Shewhart in his book Economic Control of Quality of Manufactured

Product (1931) [6] grew in the U.S.A. until World War II, but declined thereafter.

However, during the 1950’s, W. Edwards Deming and J.M Juran successfully

promoted the use of statistical process control in Japan. The success of the Total

Quality Control (TQC) movement in Japan would later prove an important influence

on the resurgence of interest in the use of statistical process control in the U.S.

manufacturing sector.1

By the mid-1950’s, it had been recognized that the Shewhart-type chart was

insensitive to some process abnormalities (small “shifts”) that may occur with no

points falling outside of the process control limits [7]. As a result, in 1956, the

Western Electric Company introduced five rules (known as the “Western Electric

Rules”) for guidance in determining alarm conditions from the classical control chart.

The first of these rules is simply a restatement of the rule already used with the

Shewhart chart, namely, to signal an alarm when a point lies beyond 3-sigma of the

mean of the estimation parameter. The remaining rules indicate alarm conditions for

some unlikely (i.e. low-probability) runs of successive points within the control limits.

Other enhancements to the control chart have been developed to (1) detect smaller

1However, as noted in both [4, p.6] and [5, pp.xix-xxi], there have been historical
differences between Japan and the U.S.A. in emphases and philosophical approaches
to the use of statistical methods with respect to quality control. A good discussion of
these issues can be found in [5, pp.1-6].
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process changes than the Shewhart chart, (2) account for autocorrelated data, and (3)

provide for multivariate detection of changes. Among these are the cumulative sum

(CUSUM) charts [8, p.12][3, pp.127-135] and the Exponentially Weighted Moving

Average (EWMA) charts [3, pp.135-136]. Multivariate control charts enable

consideration of interactive effects among multiple process variables in establishing

control limits or rules [8, p.12]. In the 1940’s, Hotelling developed the T-squared (T 2)

control charts for detection of shifts in a multivariate process [3, p.22]. Principal

component analysis (PCA) has been applied as a means of transforming correlated

variables into a set of uncorrelated variables upon which the traditional univariate

control chart methods can then be applied [9, p.147].

2.2 Support Vector Machines

The systematic study of the problem of inferring statistical relations in data began in

about the 1920’s as extensions of the work of Fisher [10, p.2] for parametric

approaches (i.e. parameter estimation based on maximum likelihood) and of the work

of Glivenko, Cantelli, and Kolmogorov for general or non-parametric (inductive)

methods [10, pp.2-3]. The development and utilization of parametric methods

proceeded rapidly through the 1930’s and into the 1960’s. It was not until the

expanded availability of computers to researchers in the 1950’s and 60’s (which

enabled extensive analysis of inference models on “real-life” datasets) that some

practical shortcomings of classical parametric statistical methods were formally

revealed to the statistical research community [10, pp.2-7][11, pp.ix - x]. The classical

methods, as framed at that time, demonstrated limited utility in cases where the

real-world datasets

1. were multivariate (the so-called “curse of dimensionality”),

2. had densities that could not be approximated by classical closed-form,

parametric density functions,
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3. were weighted sums of two or more normal distributions, or

4. had low cardinality (i.e. small sample sizes).

Research into the extension of classical methods to address these issues did continue,

but awareness of the aforementioned issues served to motivate parallel research into

methods that could be used to infer or “learn” patterns (relations or structure) directly

from the data (i.e. inductively) rather than predetermining a parametric structure and

using the data to determine the best fit or discriminator using maximum likelihood or

expectation maximization. Frank Rosenblatt is credited with the introduction of the

first supervised learning machine2, the Perceptron [12, pp.62-68][13, pp.11-19]. The

Perceptron essentially extends the McCulloch-Pitts neuron model (introduced in 1943

by Warren McCulloch and Walter Pitts) [12, pp.62-63] by feeding back the

comparison of the present neuron output with the correct output as a means of

adjusting the values of the neuron’s internal weighting factors that operate upon the

input data. Constructed to address a two-class pattern recognition problem, the

Perceptron was demonstrated to be able to determine a hyperplane that correctly

segmented the training data into two classes if the training data are linearly separable.

Under the assumption that the training data are a representative sampling of the two

fixed-distribution classes, the ability of this hyperplane classifier to generalize (i.e. to

correctly classify subsequent test data) is related to the margin of separation between

the two classes of training data.

While the study of learning machines based on neural networks progressed,

learning machines (including general adaptive filters) not necessarily based on

neurobiological models also demonstrated the ability to learn patterns or generalize

based on training data. A common general principle uniting various learning

2While, as Vapnik points out [11, p.1], Fisher had considered the separation of two
sets of vectors using their set probability distributions, Fisher had not used data or
“examples” directly to infer the classification relation of the two sets of vectors.
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approaches is the strategy of empirical risk minimization (ERM) [10, p.7]. In this

strategy one chooses, from a given set of decision rules or functions, the function that

minimizes the risk of training error (empirical risk). In the 1960’s, this induction

principle from the statistical sciences was applied to the pattern recognition problem

using indicator functions (i.e. functions whose range is the discrete set {0,1}). By the

end of the 1970’s, ERM theory was expanded to include real-valued functions in

solution of regression and density estimation problems [10, p.8] For any set of

indicator functions with finite VC dimension3, the ERM induction process is a

consistent method — that is, it converges in probability to a solution with minimum

expected risk among the candidate functions as the number of training samples (or

observations) increases4. However, if the set of functions is chosen such that for any

possible finite set of training vectors and classifications assignments, training will be

error-free, then generalization may not be possible due to overfitting. Stated another

way, there exists an inherent trade-off between the classification power or capacity of

a learning machine (family of functions) and its ability to generalize from the training

data to new test samples.

Capacity (or VC dimension) control is a key feature of the statistical learning

theory from which support vector machines were eventually developed. Based on

bounds for the non-asymptotic (i.e. limited sample set) rate of convergence of the

ERM learning principle and related bounds on the probability of test error of a

learning machine, an induction approach known as “Structural Risk Minimization”

(SRM) was developed [10, pp.55-57][10, p.10]. Given a nested structure of admissible

3The VC (Vapnik-Chervonenkis) dimension for this case is defined by Vapnik as the
greatest number h of data vectors that can be “separated into two different classes in

all 2h possible ways using this set of functions (i.e. the VC dimension is the maximum
number of vectors that can be shattered by the set of functions).” [10, p.147] Thus VC
dimension is a measure of the binary classification capacity of a the learning machine
(set of functions).

4See proofs in [10, pp.121-137].
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machines5 and a predetermined confidence interval, the SRM induction principle

recommends selection of the machine for which minimizing the training error

(empirical or sample-based risk) yields the lowest bound on the probability of test

error (actual or global risk) [11, pp.93-96]. This bound is related to the VC dimension,

the number of training errors, and the number of training samples [14, pp.123-124]. It

should be noted that the error convergence “bounds” on the learning machines that we

have been discussing are not absolute bounds in the sense that, as the number of

training samples increases, the generalization or expected test error cannot exceed

some given δ > 0, but rather that with probability 1−η , where 0<η < 1, the learning

error will not exceed that δ . For this reason, this statistical approach or learning model

is generally known in the computer science community as the “Probably

Approximately Correct” (or pac) model [13, pp.52-54].

Application of SRM to high dimensional linear learning problems proved to

have accuracy and generalization results that rivaled those of neural networks

including multilayer perceptrons. In combination with the use of kernels which can be

used to map non-linear inputs into linear feature spaces, learning algorithms using the

learning bias suggested by the SRM approach and well known Lagrange multiplier

optimisation and dual theory lead to the development in the early 1990’s of what is

now known as Support Vector Machines (SVM’s) [13, p.7]. Support vector machines

use the Gram matrix relationships between functions of the training input vectors to

train a learning machine that, in many cases, turns out finally to be a function of only a

subset of the input vectors. These vectors are therefore called the support vectors since

the training machine that is to be used to test new inputs is independent of the other

(non-supporting) input vectors.

5A machine (set of indexed functions, Qa(x),a ∈ Λ, where Λ is the set of indices)
is admissible if it has finite VC dimension and the set is totally bounded or, at least,
||Qa||N/||Qa||1 is bounded for all a ∈ Λ for some integer N > 2 [11, pp.94-95].
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Since support vector machines (or kernel learning theory) draw upon several

research disciplines, their conceptual roots encompass a multi-threaded and extensive

background. Some additional background details can be accessed from [10, pp.1-15],

[11, pp.7-15], [13, p.8], [15, pp.xvii - xix], and [16, pp.1-2]. Vapnik also provides a

summary timeline of developments from the Perceptron to SVM’s over the period

1958 to 1995 [10, pp.301-302].

Several authors, including Vapnik [10, pp.156-163], have noted the similarity

of the SVM algorithm to approaches based on kernel logistic regression (KLR) which

use regularized functions in reproducing kernel Hilbert spaces (RKHS). Approaches

such as the import vector machine (IVM), which selects a submodel approximation of

a fitted KLR model, have demonstrated performance similar to that of support vector

machines even though the loss function differs from that used for the SVM [17,

p.201]. The success of SVM-like machines in avoiding overfitting has been partly

attributed to the fact that the regularization terms included in the model definitions act

to control the complexity (or capacity) of the model space even in cases where the

associated loss functions are not margin-maximizing loss functions [17, pp.200-201].

Extensions of SVM’s to the problem of learning hidden information are discussed in

some more recent material by Vapnik [18, pp.438-446].

2.3 Divergence Estimation Using Minimum Spanning Trees

In order to assess the performance of an SVM-classifier, given a particular set of

sample data (embedded in R
n) from two classes, it would be helpful to have a prior

estimate of the separability or divergence of the two class distributions. Given

representative training vectors from each distribution, the Henze-Penrose divergence

estimate [19] (ĤP) ranges between 0 and 1. Let M represent the total number of points

(or vectors) in the training set which contains labeled members from each class. Let

m0 and m1 represent the number of samples in each of the two respective classes, so

16



that M = m0 +m1. Then as m0,m1 → ∞, ĤP → HP, the Henze-Penrose divergence

between the two distributions [19]. ĤP approaches 0 as M approaches infinity for a

structured intermixing of the two class samples in which each class member is closer

to a member of the opposite class than to any member of its own class. Conversely,

ĤP approaches 1 as M approaches infinity if each class member is closer to a member

of its own class than to any member of the opposite class. If the two sets of training

vectors have approximately the same spatial distribution (with arbitrary intermixing),

then ĤP tends toward 0.5 as M approaches infinity if the sets have the same number of

members. If these sets do not necessarily have the same number of members, but the

ratio m0 : m1 is fixed, then as M approaches infinity, ĤP tends toward the quantity(
1+

min(m0,m1)

max(m0,m1)

)−1

.

ĤP may be determined through the use of a minimum spanning tree (MST) graph,

embedded in R
n, connecting the points (or vectors) of the training set [19].

Construction of the MST may be initiated by selecting any of the training points as the

first member of the spanning tree. Next, find the sample point not in the tree that,

among all non-tree sample points, is the shortest distance away from any points within

the tree. This non-tree sample point is then connected with a new edge to the point in

the tree to which it is the closest. This new point is then considered a point in the tree

and the process of augmenting the tree with new edges and non-tree points continues

until all points are in the tree. The Friedman-Rasky test statistic on this MST is the

number N of edges in the tree that connect two points in opposite classes. Given N,

ĤP = 1−N/M.

2.4 Order Statistics and L-moments

Linear (or “L”) moments derive their name from the fact that they can be estimated

using linear combinations of the expectations of order statistics. A unified approach to
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univariate descriptive statistics based on L-moments was described by Hosking in

1990 [20]. This approach, built primarily upon several authors’ contributions dating as

far back as 1912 [20, p.106], provides an alternative to classical moment-based

approaches for the estimation of parametric distributions from data samples. It has

been shown to be able to provide more robust and accurate sample-based estimations

of underlying data distributions when only a limited number of samples is available.

L-moments are now widely used in the hydrology and flood-management fields [21,

p.194][22, pp.18-41] where the reliability of inferences (i.e. predictions) based on

classical methods in many cases was limited due to the availability of only a small

number of samples and the inclusion of outlier data [23, p.6].

The following definitions are adapted from Hosking6 [20, pp.106-107][21,

pp.193-194]. Suppose {Xi}n
i=1 →{Xk:n : Xj:n ≤ Xk:n whenever j < k} is a real-valued

set of n iid samples of a random variable X , which has a cumulative distribution

function (CDF) F and an associated inverse CDF or quantile7 function QF :

F : R→ [0,1]

x �→ p := F(x), where F(x)≡ Pr(X ≤ x)
(2.1)

QF : [0,1]→ R

p �→ x := QF(p), where QF(p)≡ inf{x : F(x)≥ p}
(2.2)

6Some changes in notation have been made for the sake of heuristic clarity. For
example, in his 1990 article [20], Hosking uses F to denote, at different times, both
the cumulative distribution function (CDF) of the random variable X and the input to
the inverse CDF. Likewise, x is used to denote both the inverse CDF itself and the
input to the CDF. Hence, F(x) ≡ Pr(X ≤ x) and x(F) ≡ inf{x : F(x) ≥ F}. While
the expression x(F) for the inverse CDF is technically correct and notationally con-

venient, we have chosen instead to express the inverse CDF (i.e. x(y) ≡ F−1(y) ) as
QF(y), where y ∈ [0,1].

7The p-quantile is the infimum of the set {x : F(x)= p} [23, p.14][24, p.5][25]. That
is, with probability p, the random variable X does not exceed the p-quantile value.
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Let the samples be sorted in ascending order and relabeled as Xk:n,,(k ∈ [1, ...,n]),such

that Xj:n ≤ Xk:nwhenever j < k. Then the sample Xk:nis called the kth order statistic.

The expected value of the kth order statistic given a sample size of n can be expressed

as [20, p.106][24, p.34]:

EXk:n =
n!

(k−1)!(n− k)!

ˆ ∞

−∞
x{F(x)}k−1{1−F(x)}n−kdF(x) (2.3)

or, in terms of the quantile function

EXk:n =
n!

(k−1)!(n− k)!

ˆ 1

0

QF(p) pk−1 (1− p)n−k dp. (2.4)

The rth L-moment, λr, is defined as [20, p.106]:

λr ≡ 1

r

r−1

∑
k=0

(−1)k

⎛⎜⎝ r−1

k

⎞⎟⎠EXr−k:r, r = 1,2, ... (2.5)

where

⎛⎜⎝ n

k

⎞⎟⎠≡ n!
k!(n− k)! and 0! ≡ 1. By using equation 2.4 to expand the right side

of equation 2.5 and combining polynomial terms of the same order, λr can be

expressed in terms of the product of QF(p)and polynomials in p integrated on the

interval [0,1] [20, pp.106-107]:

λr =
1

r

ˆ 1

0

QF(p)

(
r−1

∑
k=0

(−1)k (r−1)!r!

(k!(r− k−1)!)2
pr−k−1(1− p)k

)
dp

=

ˆ 1

0

QF(p)

⎛⎜⎜⎝r−1

∑
k=0

⎡⎢⎣
⎛⎜⎝ r−1

k

⎞⎟⎠
⎤⎥⎦

2

pr−k−1(p−1)k

⎞⎟⎟⎠dp

=

ˆ 1

0

QF(p)

⎛⎜⎝r−1

∑
k=0

(−1)r−k−1

⎛⎜⎝ r−1

k

⎞⎟⎠
⎛⎜⎝ r+ k−1

k

⎞⎟⎠ pk

⎞⎟⎠dp (2.6)
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Hence, the first five L-moments are8:

λ1 = E(X1:1)

=
´ 1

0 QF(p)dp

λ2 = 1
2E(X2:2 −X1:2)

=
´ 1

0 QF(p) (2p−1)dp

λ3 = 1
3E(X3:3 −2X2:3 +X1:3)

=
´ 1

0 QF(p)
(
6p2 −6p+1

)
dp

λ4 = 1
4E(X4:4 −3X3:4 +3X2:4 −X1:4)

=
´ 1

0 QF(p)
(
20p3 −30p2 +12p−1

)
dp

λ5 = 1
5E(X5:5 −4X4:5 +6X3:5 −4X2:5 +X1:5)

=
´ 1

0 QF(p)
(
630p4 −560p3 +210p2 −30p+1

)
dp

Other quantities defined by Hosking are the L-coefficient of variation (L-CV),

τ ≡ λ2/λ1 and the L-moment ratios τr (where τr ≡ λr/λ2, r ≥ 3).

Some key properties of L-moments and L-moment ratios are

1. The existence of the L-moments of a real-valued random variable X requires as

its only condition that the mean of X be finite [20, p.107].

2. Any distribution with a finite mean is determined by its L-moments [21,

pp.194-195].

3. If X is non-degenerate and is non-negative almost surely, then the absolute

values of its L-moment ratios have an upper bound of one. In particular [20,

8The first four of these were also expanded (with slightly different notation) in [20,
p.107][23, p.22].
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p.108],

0 < τ < 1 ,

and

|τr|< 1, r ≥ 3.

4. L-moment estimators can be used as to approximate a wider range of

distributions than conventional moment estimation methods, typically

converging to their asymptotic distribution more rapidly than classical

parameter estimators when sample sizes are small [20, p.105]9.

5. Estimations of L-moments and L-moment ratios can be used as summary

statistics for a data stream or data vector and provide a simultaneous means of

“detecting” the underlying parametic distribution of the data if such a

distribution exists. λ1 is simply the distribution mean. λ2,τ3,τ4, and τ5 are

somewhat related to the conventional measures of variance, skew, kurtosis, and

bimodal tendency, respectively [20, pp.109-111]10.

L-moments can be expressed as linear combinations of probability weighted moments

(PWM’s) and vice versa [23, p.xii][20, p.108]. However, PWM’s, which were

introduced by Greenwood and others in the late 1970’s [26], are not as easily

interpretable (compared to L-moments) as measures of the variance, skew, kurtosis,

etc. of probability distributions [20, p.109].

In many practical applications, the underlying distribution of X is unknown.

For such cases, L-moments must be estimated from samples by averaging sample

order statistics over subgroups of available data. These estimates of L-moments (and

9Hosking states that “L-moments sometimes yield more efficient parameter esti-
mates than the maximum likelihood estimates” [20, p.105].

10λ1,λ2,τ3, and τ4 are also known as the L-location, L-scale, L-skewness, and L-
kurtosis, respectively [23, p.24][20, p.110].
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L-statistics) based on sample data are known as U-statistics, which have been used in

non-parametric (i.e. sample-based) statistical settings [20, p.113-114].

While, in theory, the characterization of some distributions by L-moments may

require an infinite set of L-moments to fully describe the distributions, many

distributions can be well-described or at least well-approximated by the first few lower

order L-moments [20, p.110]. Given several instantiations of a random vector stream

of size n generated from the same unknown distribution, one could conceivably control

the generalization ability (i.e. avoid overfitting) of an L-moment estimation machine

by limiting the order of L-moment terms included in the L-moment estimator. In this

light, a finite-order L-moment estimator may be viewed as a limited capacity machine

(set of functions) that transforms random data vectors into a multidimensional linear

feature space. Hence, we propose to explore the use of L-moments in association with

SVM’s as a means of separating data vectors sourced from generators with different

distributions or as a means of detecting a subdistribution within mixed-source data.
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Chapter 3

HYPERPLANE CLASSIFIERS AND THE SUPPORT VECTOR MACHINE

3.1 Binary Classification Using Hyperplanes

Let Z be a nonempty set of inputs, parameter vectors, patterns, or objects and Y be a

non-empty, countable set of outputs or class labels.1 When presented with z ∈ Z, a

decision agent or process selects y ∈ Y in accordance with some fixed conditional

probability distribution P(y|z). Suppose the set {P(y|z) : y ∈ Y, z ∈ Z} are unknown

(or hidden), but a representative training set of m input/output observations

(z,y) ∈ Z ×Y is available. We hypothesize that the agent or process can be modeled as

a capacity-limited set of functions { fλ : Z → Y} and a probability distribution P(λ )

such that P(y|z) = ∑λ∈Λ P(λ )I(y, fλ (z)), where I is a comparator function that returns

“1” if its two inputs are equal and “0” otherwise. Λ is a set of indices or parameter

values that are used to identify particular members of this set of functions relating Z

and Y . Under this framework, the classification learning problem is to infer (from the

training set) estimates of f ∈ { fλ} or P(y|z) that can be used to predict the class yt ∈Y

the decision agent will choose, given test input zt ∈ Z. However, if zt has no

corresponding observation (zt ,y) included in the training set, we are at a loss to predict

yt unless some measure of similarity exists or can be imposed on the elements (z,y)

[27, p.2] .

One way to impose (or redefine) a similarity measure on Z is to map (or

embed) the inputs or patterns z into a feature space H (where H is a separable real

Hilbert space and therefore has a countable orthonormal basis [28, p.168]) by a map

[27, p.3]:

1Here we are restricting the discussion to the classification problem. For the general
pattern recognition problem, which includes probability density estimation and regres-
sion analysis, Y need not be restricted to a countable set.
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Φ : Z → H

z �→ h := Φ(z).

A real-valued similarity (or dissimilarity) measure k may be defined on Z by:

k(z,z′) =
〈
Φ(z),Φ(z′)

〉
where 〈·, ·〉 is the inner product in H . The similarity measure for Y in this

classification learning context can be taken to be an indicator or comparator function:

I : Y ×Y →{0,1}

y× y′ �→ r := I(y,y′) .

For the binary classification problem, Y has only two elements or labels.

Suppose Y = {−1,1} and that X is the n−dimensional Hilbert space R
n. Further

assume that each x ∈ X maps to only one class y ∈ Y (i.e. P(y|x) ∈ {0,1}) and that the

m-element training set Tm = {(x1,y1), ...,(xm,ym)} contains labeled members of both

classes.2 For this type of feature space one of the most elementary classifiers is the

hyperplane classifier [27, pp.11-15]. For the binary hyperplane classifier, the decided

(or estimated) classification for any test input vector x is determined by the side of a

chosen hyperplane on which that input vector lies. For any fixed w ∈ X and b ∈ R, an

2This corresponds to “noiseless” observations. For noisy observations, in which
0 < P(y = −1|x) < 1, some learning machine implementations remain robust in that
they tend to weight conflicting class label assignments for a given input value x in
keeping with their frequency of occurrence in the training set.
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associated hyperplane in X is the set

hw,b = {x : 〈w,x〉+b = 0}, (3.1)

where w is, by construction, a normal vector of the hyperplane and
||b||
||w|| is the distance

of the hyperplane from the origin (zero vector) in X . Given a hyperplane hw,b, the

classification of a test input vector xt is then determined by the decision function:

yt = f (xt) = sgn(〈w,xt〉+b) , (3.2)

where

sgn(r)≡

⎧⎪⎨⎪⎩ 1, if r ≥ 0

−1, if r < 0
, r ∈ R .

Let A ⊂ X ×R be the set of all possible hyperplane parameters α .
= (w,b) for

hyperplanes in X . Then { fα}, with f as defined in equation 3.2, is a set of decision

functions each based on an associated hyperplane hα ⊂ X . Since X ⊂ R
n, the decision

function set { fα} has a VC dimension d = n+1 [14, p.125]. In training the binary

classifier or learning machine, the hyperplane parameters (w,b) are chosen to

minimize the empirical risk (or average training error rate [27, p.8][14, p.123]):

Remp [ fα ] =
1

m

m

∑
i=1

0.5 |yi − fα(xi)| . (3.3)

We note that for the training set Tm, the subset of { fα} that minimizes the empirical

risk is non-singular. That is, for the Hilbert feature space and a separable training set

consisting of a finite number of entries, there are always multiple members of { fα}
that result in the minimal value of empirical risk. Given any two parallel hyperplanes

hw,b1
and hw,b2

(with b1 < b2) whose associated decision functions result in the same

binary classifications of the training inputs, any member of the compact set of

hyperplanes {hw,b : b1 ≤ b ≤ b2} also has an associated decision function fα , where

α = (w,b), that results in the same classifications. Indeed, if the number of training
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inputs is finite, the solution of equation 3.3 for all decision functions fα that minimize

empirical risk, results in selection of a subset of { fα} in which the members of the

subset are associated with a family of non-singular compact sets of hyperplanes in X .

If the training data are linearly separable, this set of decision functions can be chosen

such that Remp[ fα ] = 0.

3.2 The Optimal Hyperplane

As discussed in section 2.2, when the training set is linearly separable, the capacity of

the hyperplane classifier decreases (and generalization improves) with increasing

margin. The margin of a separating hyperplane is defined as the minimum distance

between the separating hyperplane and the nearest training vector. Among the

hyperplanes that correctly separate the training data, there is an optimal one that

provides the maximum margin [11, pp.131-132][29, p.6]:

max
w,b

min
i
{||x− xi|| : x ∈ X , 〈w,x〉+b = 0, (w,b) ∈ A , i = 1, ...,m} (3.4)

As in the previous section, let hw,b = {x : 〈w,x〉+b = 0,(w,b) ∈ A , ||w||> 0}
represent a hyperplane selected from H ⊂ X . Based on equation 3.2 and the density of

H in X , correct classification of a linearly separable training set

Tm = {(x1,y1), ...,(xm,ym)} by a hyperplane hw,b, where {xi}m
i=1 ∩hw,b = /0, implies

that, for some δ > 0,

yi (〈w,xi〉+b)≥ δ , ∀ i = 1, ...,m (3.5)

If, for at least one of the training vectors, equality is attained in this equation, then δ is

known as the functional margin of the training inputs (xi,yi) with respect to hw,b [13,

p.11]. Note that if X = R
n, then given any real number k > 0, hw,b and hkw,kb are

equivalent designations of the same oriented hyperplane:
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hw,b = {x : 〈w,x〉+b = 0}
= {x : 〈kw,x〉+ kb = 0}
= hkw,kb .

(3.6)

Now let the feature space X = R
n. Given the separable training set Tm, we can then set

δ = 1 in equation 3.5 and find w and b such that [13, p.95][27, p.196][14, p.129]:

yi (〈w,xi〉+b)≥ 1, ∀ i = 1, ...,m (3.7)

The geometric margin of (xi,yi) is the Euclidean distance between xi and the

hyperplane hw,b [13, p.12]. Its value can be deduced by normalizing the normal vector

w in equation 3.7 (for the case of equality) to obtain:

yi

(〈
w

||w|| ,xi

〉
+

b
||w||

)
=

1

||w||

To find the optimal hyperplane (equation 3.4), one minimizes ||w|| or ||w||2

(i.e. maximizes the margin 1
||w|| ) subject to the condition of equation 3.7. This

constrained optimization problem can be solved using the method of Lagrange

multipliers [27, pp.13-15][13, pp.94-100][29, pp.6-8]. Define the objective function

φ(w) as

φ(w)≡ 1

2
||w||2 = 1

2
〈w,w〉 (3.8)

This function is to be minimized with respect to w subject to the constraints

yi (〈w,xi〉+b)≥ 1, ∀ i = 1, ...,m

Expressed in the conventional form of optimization inequality constraints [30, p.4][13,

p.80], the constraints are

− [yi (〈w,xi〉+b)−1]≤ 0, ∀ i = 1, ...,m
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Using non-negative real dual variables ai (where at least two of the variables are

non-zero), the primal Lagrangian may then be expressed as [14, p.130][29, p.6]:

LP (w,b,A)≡ 1

2
||w||2 −

m

∑
i=1

ai [yi (〈w,xi〉+b)−1] (3.9)

where where A is a vector or set of the coefficients ai for i = 1, . . . ,m.

At a constrained minimum value of the objective function φ(w), we require by

classical Lagrangian optimization theory that the partial derivatives of Lp with respect

to the primal variables w and b be zero:

∂LP

∂w
= w−

m

∑
i=1

aiyixi = 0

∂LP

∂b
=−

m

∑
i=1

aiyi = 0

This results in the relations [29, p.7][13, p.95]:

w =
m

∑
i=1

aiyixi (3.10)

m

∑
i=1

aiyi = 0 (3.11)

Substituting these relations into 3.9 yields the following dual representation in terms

of the coefficients ai [13, p.96]:

W (A) = 1
2

〈
∑m

i=1 aiyixi , ∑m
j=1 a jy jx j

〉
−∑m

i=1 ai

[
yi

(〈
∑m

j=1 a jy jx j , xi

〉)]
−b∑m

i=1 aiyi +∑m
i=1 ai

= −1
2 ∑m

i=1 ∑m
j=1 aia jyiy j

〈
xi,x j

〉
+∑m

i=1 ai

(3.12)

The Wolfe dual optimization problem [29, p.8] for this representation is to maximize

W (A) with respect to the dual variables ai subject to the constraints

m

∑
i=1

aiyi = 0 (3.13)

ai ≥ 0, i = 1, ...,m (3.14)
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We note that the primal objective function φ is convex since for λ ∈ [0,1] and

w1,w2 ∈ X , we have, by the triangle inequality (recalling that φ(w)≡ 1
2 ||w||2),

φ (λw1 +(1−λ )w2) ≤ λ 2φ (w1)+(1−λ )2 φ (w2)

≤ λφ (w1)+(1−λ )φ (w2) .

We also note that the primal constraints are affine functions of w. Under these

conditions, given that X is convex, the Strong duality theorem [13, p.86] implies that

the optimal solution value of the triplet3 (w,b,A) is optimal for both the primal and

dual optimization problems (i.e. there is no duality gap). That is, there exists an

optimal set or Lagrangian function saddle point (wopt ,bopt ,Aopt) such that for

wopt ∈ X ; bopt ∈ R; and Aopt (where 0 ≤ aopt
i ∈ Aopt):

Lp
(
wopt ,bopt ,A

)≤ Lp
(
wopt ,bopt ,Aopt)≤ Lp

(
w,b,Aopt) (3.15)

for all w ∈ X ; b ∈ R; and all sets A (with elements ai ≥ 0, i = 1, ...,m). Furthermore,

the Karush-Kuhn-Tucker (KKT) conditions of optimization theory [30, pp.95-96][13,

p.87] imply the existence at this optimal solution value of a set of non-negative dual

variables or coefficients aopt
i such that the following KKT complementarity condition

holds:

aopt
i

[
yi
(〈

wopt ,xi
〉
+bopt)−1

]
= 0, ∀ i = 1, ...,m. (3.16)

For such a set of coefficients, it can be deduced from equation 3.16 that only input

vectors xi for which the inequality constraints are met with equality (i.e. where

yi (〈w,xi〉+b)−1 = 0) can have corresponding non-zero coefficients aopt
i

4. Under the

3Note that this is not identical to the triplet described in [13, p.86]. There, β repre-
sents a vector of equality constraint coefficients and w represents a solution vector in
the domain of the primal objective function. In our case, the primal variables consist
of both the objective function domain variable w and the constraint condition offset
variable b.

4In practice, due to numerical limitations of computers, equation 3.16 may be mod-

ified as aopt
i [yi (〈wopt ,xi〉+bopt)−1] ≤ ε, ∀ i = 1, ...,m where ε> 0. The value of

ε is chosen to be sufficiently large to compensate for limited numerical precision and
round-off error [31, p.8].
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KKT complementarity condition, the remaining coefficients must be zero and their

corresponding input vectors therefore would not contribute to a constrained optimal

solution of w via the relation wopt = ∑m
i=1 aopt

i yixi . Of course, this does not in general

negate the possibility that there exists a set A, not meeting the KKT complementarity

condition, such that wopt = ∑m
i=1 aiyixi

5. However, if an optimal normal vector (or

point) w exists, then the KKT conditions guarantee the existence of a set Aopt ,

associated with this optimal vector, for which equation 3.16 does hold. Thus to solve

the primal optimization problem we can find the set of coefficients A that solve the

Wolfe dual optimization problem, use equation 3.10 to solve for an optimal normal

vector w, and then apply the KKT complementarity condition to find a corresponding

coefficient set Aopt .

Introducing the Lagrangian multipliers γ and ηi for the constraints (equations

3.13 and 3.14) associated with W (A), we obtain for the Wolfe dual optimization

problem the dual Lagrangian LD, where6

LD(A)≡−1

2

m

∑
i=1

m

∑
j=1

aia jyiy j
〈
xi,x j

〉
+

m

∑
i=1

ai − γ
m

∑
i=1

aiyi +
m

∑
i=1

ηiai (3.17)

Applying the KKT complementarity condition to the inequality constraint 3.14

implies that

ηiai = 0, ∀ i = 1, ...,m

Hence, ηi is zero unless ai = 0. But if ai is zero, then the associated input xi is not a

support vector and can be omitted from the current training set. Note that if ηi is

chosen to be to zero for all i, then LD does not impose the inequality conditions

5The existence of a set of non-negative coefficients ai associated with the con-
strained optimal solution of w does not necessarily negate the possibility of the ex-
istence of another non-KKT set of coefficients ai that can also be associated with this
optimal solution. In such a scenario, some of the non-support vectors might be included
with non-zero coefficients in equation 3.10.

6Our use here of the label LD differs from Burges [14, p.130] who uses LD to repre-
sent the quantity that we have labeled W (A) in close similarity with the nomenclature
of Scholkopf [29, p.8] and Cristianini [13, p.96].
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(ai ≥ 0) that are associated with W (A), so the maximization of LD can result in values

of ai < 0. In this case, the non-negativity constraint on ai can be enforced by

iteratively maximizing LD, setting to zero the ai that is most negative, and

remaximizing LD without the associated input vector xi. The iteration stops when the

obtained solution contains only non-negative values of ai. At this point, we obtain w

by application of equation 3.10. The solution set (w,b,A) thus obtained can then be

checked against the KKT complementarity condition for the primal Lagrangian LP

(equation 3.16) and modified as necessary by setting to zero the violating ai (if any)

associated with the largest magnitude for the quantity

yi (〈w,xi〉+b)

LD is then remaximized and the primal KKT complementarity condition (equation

3.16) is rechecked. This iteration stops when the primal KKT complementarity

condition is met (or approximately met, given numerical limitations of the computing

device). In summary, if the Langrangian dual LD is concave (i.e. −LD is convex) with

respect to A, then by assuming ηi to be identically zero, the solution of the dual

optimization problem (and a subsequent reduction of the obtained coefficient set) can

be accomplished with an iterative approach to the optimization constraints imposed on

the coefficients ai. Note that if the Langrangian dual LD is not uniformly concave with

respect to A, then the solution obtained may not be the optimal one. For now, however,

we will continue to develop the solution to equation 3.17 without assuming that ηi is

identically zero.

At a saddle point of LD, we have

∂LD

∂ai
=−1

2
∑
j �=i

a jyiy j
〈
xi,x j

〉−aiy2
i 〈xi,xi〉+1− γyi +ηi = 0 ∀ i = 1, ...,m. (3.18)

With explicit inclusion of the equality constraint, ∑m
i=1 aiyi = 0, this system of
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equations can be expressed in matrix form as⎡⎢⎢⎢⎢⎢⎢⎢⎣

y2
1 〈x1,x1〉 · · · 1

2y1ym 〈x1,xm〉 y1

...
. . .

...
...

1
2ymy1 〈xm,x1〉 · · · y2

m 〈xm,xm〉 ym

y1 · · · ym 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1

...

am

γ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1+η1

...

1+ηm

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.19)

Let G represent the leftmost matrix in equation 3.19, so that

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y2
1 〈x1,x1〉 · · · 1

2y1ym 〈x1,xm〉 y1

...
. . .

...
...

1
2ymy1 〈xm,x1〉 · · · y2

m 〈xm,xm〉 ym

y1 · · · ym 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Then, if G is invertible, ⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1

...

am

γ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= G−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1+η1

...

1+ηm

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.20)

The variables ηi may be set to zero, employing iterative solution methods as

earlier discussed. However, depending on the training data set, the solution obtained

in this manner may converge to a local minimum (that fails to meet the primal KKT

complementarity condition) rather than the global minimum, particularly under

conditions of data sparsity or extreme variance within classes. Yet even this

non-optimal solution can be useful in determining classification boundaries for

statistically controlled datasets as we plan to later explore. Certainly, iterative solution

search, gradient descent, and other methods can be employed to solve for the maximin

margin hyperplane directly from equation 3.4 or from the primal and dual

Langrangians (ensuring that the KKT optimality conditions are met). But such

approaches are often more computationally expensive compared with the use of

equation 3.20, whose dependence on training data beyond the maximin margin is
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actually advantageous in the classification of statistically controlled datasets.

Alternately, relaxing the requirement to solve for the optimal hyperplane, the variables

ηi may be set to values that result in selection of a satisfactory separating hyperplane

which may or may not be the so-called “optimal” hyperplane (which is the hyperplane

that maximizes the minimum margin between itself and all of the training vectors).

One such useful definition (which is to be further explored with reference to case

studies of data analysis) is

ηi =−
(‖xmax‖−‖xi‖

‖xmax‖
)p

(3.21)

where

xmax = xn : ‖xn‖ ≥ ‖xi‖ ∀ i = 1, ...,m; n ∈ {1, ...,m}

and the choice of p (p ≥ 0) may be dataset or problem dependent.7 If 00 � 1, then as p

ranges from 0 to ∞, ηi ranges from −1 to 0. After setting or calculating values for ηi,

the resultant set of coefficients ai are used in equation 3.10 to determine w. In this

case, while there may be non-zero coefficients associated with training vectors that are

not on the maximin margin, the coefficients ai are larger for training vectors on or near

that margin than for the more distant training vectors thus placing more weight on

training vectors on or close to the maximin margin.

Next, having determined w, we need to solve for b. Let x j and xk be training

vectors from opposite classes. The functional margin, δ , between these vectors is

δ j,k =
∣∣〈w,x j

〉−〈w,xk〉
∣∣

Suppose x j and xk are chosen such that they minimize the functional margin among all

possible pairs of opposite-class training vectors. Then b may be calculated by taking

the inner product of each of these two vectors with the hyperplane normal vector w
7The value of p can be adjusted to obtain a maximum margin hyperplane that, de-

pending on the particular training set, approximates or actually matches the optimal
hyperplane as defined in equation 3.4.
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and then negating the average:

b =−0.5
(〈

w,x j
〉
+ 〈w,xk〉

)
.

Equivalently (see[13, p.96]),

b =−0.5

(
max
yi=−1

〈w,xi〉+min
yi=1

〈w,xi〉
)
.
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Chapter 4

CUE DETECTION FOR STATISTICALLY CONTROLLED DATASETS

In this chapter, we explore the supervised classification behavior of a modified support

vector machine (SVM), based on equation 3.20, operating on data vectors whose

elements are statiscally stable with a controlled subgroup mean and controlled

subgroup range or variance. In the manufacturing setting, the data vectors may be a

set of direct real-valued measurements (or measurement errors) or a set of real-valued

transformations of the underlying measurement or process data. For example, one

may extend a set of vectors consisting of the measurements of the twelve edges of a

cube by including derived values of the six face surface areas, the volume of that cube,

differences between edges, etc. In some cases, a transformed set of vectors may

provide classification cues not distinguishable by an SVM operating directly on the

underlying measurement or error data. Alternately, this transformation can be

embedded in the SVM by a suitable choice of the kernel function used as a similarity

measure (see section 3.1) for the underlying measurement or error data.

4.1 Data-Dependent Anomalies of SVM’s

In practical implementations of SVM’s, data dependent errors due to finite-precision

calculations can sometimes accumulate in ways that cause divergence from an existing

clasification solution even in the separable case. Additionally, the generalizing ability

of a particular SVM implementation may result in misclassification of data in a

training set even when that set is separable by a maximin margin hyperplane due to

spatial colinearity resolution and vector element scaling issues.

Colinearity Resolution

If a subgroup of the training set contains vectors from both classes and all vectors of

the subgroup are each closer to a particular separating hyperplane than to any other
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vector in its own class, the SVM may treat the vectors as if they lie on that hyperplane

with respect to the separability of the vectors. For example, suppose we are given the

following training set T in two-dimensional space (as illustrated in figure 4.1):

T = {(x1,y1), ...,(x4,y4)}

=

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣ 2

1

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 10

9

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 4

5

⎤⎥⎦ ,−1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 9

10

⎤⎥⎦ ,−1

⎞⎟⎠
⎫⎪⎬⎪⎭

The optimal separating hyperplane hw,b for this training set can be determined by

applying the definition of equation 3.4. Its parameters, for a functional margin of

δ = 1, are

w =

⎡⎢⎣ 1

−1

⎤⎥⎦
b = 0

Solving for the separating hyperplane using equations 3.19 and 3.20, with

ηi = 0, results in misclassification of two vectors ([10,9] and [4,5]) due to the

proximity of the training vectors to the separating hyperplane in concert with the

relative proximity of each misclassified vector to one of the opposite class. The

calculated hyperplane solution is

w =

⎡⎢⎣ −0.107945857

−0.338081215

⎤⎥⎦
b = 3.122189592,

where w and b are normalized so that the minimum functional margin is 1. Perturbing

any single vector element by 5% or less results in the same classification solution

(with slightly differing separating hyperplanes). The vectors are almost colinear with
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Figure 4.1: Colinearity Resolution Example

the optimal hyperplane relative to the distance between vectors of the same class and

“appear” to this SVM to be non-separable.

Using equation 3.21 to determine ηi and setting p to approximately

0.017594729, we obtain the so-called “optimal” hyperplane, which does correctly

classify all four input vectors. This value of p can be found by adjusting p to

maximize the minimum geometric margin such that the separating hyperplane

correctly classifies training vector. Again, for this hyperplane

w =

⎡⎢⎣ 1

−1

⎤⎥⎦
b = 0
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However, this solution is “unstable” in the sense that a very small perturbation of

either the [10,9] or [9,10] vector results in a large change of hyperplane orientation

and misclassification of two vectors. For example, changing the [9, 10] vector to [9,

10.000001] results in a calculated hyperplane solution of

w =

⎡⎢⎣ −0.166951429

−0.249572857

⎤⎥⎦
b = 2.91567

As in the case of ηi = 0, this hyperplane solution results in misclassification of the two

vectors [10,9] and [4,5].

Vector Element Scaling

If a separable training set is composed of N − element vectors, where N is a positive

integer greater than 1, then the relative scaling or range between vector elements may

effect the ability of the SVM to locate or identify a separating hyperplane. As an

example, consider the following training set T (see Figure 4.2):

T = {(x1,y1), ...,(x4,y4)}

=

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣ 0.1

100

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 0.2

400

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 0.4

300

⎤⎥⎦ ,−1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 0.5

200

⎤⎥⎦ ,−1

⎞⎟⎠
⎫⎪⎬⎪⎭

Let xm,n represent the nth element of the mth training vector. Note that for the

given example the scaling, range, and range of variation (variance or sigma level) are

several times greater for the elements xm,2 than for the elements xm,1. Assuming a

functional margin of δ = 1, the parameters of the optimal separating hyperplane hw,b

for this training set are

w =

⎡⎢⎣ −60
7

1
350

⎤⎥⎦
38



Figure 4.2: Vector Element Scaling Example

b =
11

7

Solving for the separating hyperplane using equations 3.19 and 3.20, with

ηi = 0, results in misclassification of two vectors ([0.2,400] and [0.5,200]) even

though the training vectors are separable on the basis of the first elements (xi,1) alone.

The calculated hyperplane solution is

w =

⎡⎢⎣ −20

−3952.573643

⎤⎥⎦
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b = 1185779.093,

where w and b are normalized so that the minimum functional margin is 1. This

hyperplane is a nearly horizontal line passing near the [0.4,300] vector.

This solution has apparently been dominated by the second vector element xi,2,

which (considered apart from the first element) is not separable. Why has this effect

occurred? If the second vector elements of this training set had all been identical,

regardless of magnitude, the SVM would have calculated the hyperplane solution

parameters as

w =

⎡⎢⎣ −10

0

⎤⎥⎦
b = 3.

This results defines a vertical line through the point [0.3,0] that correctly separates the

training vectors. In experimenting with various values for the second vector element,

it was found that the variance (or range of difference) among the input samples of this

element (in comparison with the sample variance of the first vector element) rather

than the absolute magnitude of the second vector element is the significant factor

affecting the SVM’s ability to detect the separability offered in this case by the first

element.

Returning to the training set T , using equation 3.21 to determine ηi, and

setting p to approximately 0.409290302, we obtain the optimal hyperplane solution

mentioned earlier. However, similar to the colinearity resolution example, this SVM

solution is sensitive to small (< 0.01%) changes in the values of the second elements.

For example, changing the [0.1, 100] vector to [0.1, 99.995] results in a calculated

hyperplane solution of

w =

⎡⎢⎣ −20

−0.087089808

⎤⎥⎦
b = 33.12694253
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As in the case of ηi = 0, this hyperplane solution results in misclassification of the two

vectors [0.2,400] and [0.5,200].

4.2 Statistical Normalization

One way to reduce the effects of colinearity resolution and inter-element variance

differences is to use the element sample means and element sample standard deviation

to normalize the training vectors and subsequent test vectors on an

element-by-element basis. These ensemble statistics (i.e. the element sample means

and element sample standard deviations) may be derived from the training vectors or

from a larger sample pool including the training vectors. Each input element is first

offset by the element sample mean and then divided by the element sample standard

deviation1. This has the effect of mapping or transforming the input vectors to a

statistically normalized domain without affecting the relative order of the data among

the input samples for an element. Hence, the separability (or non-separability) of the

training vectors is unaffected by this normalization process.

Applying this statistical normalization to the two example cases above resulted

in correct vector classification as follows. For the vector scaling problem, correct

classification was achieved with ηi = 0, as well as with ηi determined by equation

3.21 with p = 1. For the colinearity problem a “stable” and correct classification result

was achieved using statistical normalization along with using equation 3.21 to

determine ηi with p = 1. However, using statistical normalization alone (i.e. with

ηi = 0) for the colinearity problem still resulted in misclassification of two vectors

(this time [2,1] and [9,10]).

1If this sample standard deviation is zero, the associated input element may be set to
zero without loss of generality since a sample standard deviation of zero for an element
indicates that the element values (including those of the training vectors) that were used
to calculate it were identical. Hence, the input vectors cannot be separated on the basis
of that vector element.
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Chapter 5

CASE STUDIES

5.1 Case A: Lot-Dependency of Statistically Controlled Datastream

To achieve a high level of measurement repeatability, the manufacture of a high

accuracy sensor involved the bonding of highly specialized glass, metal, and silicon

materials to produce subassemblies that were later incorporated at another facility into

computerized measurement modules. To ensure consistency and proper operation of

the sensor subassemblies, each sensor was preconditioned and required to undergo a

suite of tests involving at least 44 test parameters. The pass/fail or statistical control

limits established for these and other manufacturing process parameters still allowed

more measurement response variation between sensors than was allowable at the

end-item or module level. However, the highly consistent repeatibility of each sensor

enabled its measurement response to be characterized under various conditions.

Utilizing customizable parameters in the end-item device, a high degree of

measurement accuracy was achieved. To validate the characterization, static and

dynamic measurement error tests were performed at the end-item level.

During one period, even though the sensors from a given population were

statistically “in control” with respect to the 44 test parameters used by the

manufacturer, these sensors began failing a characterization error test (curve fit test) at

a greater than typical rate at the end-item level prior to shipment to the customer.

These failures were highly correlated with a particular manufacturing lot among the

several lots that comprised this population. In the course of the investigation, the

sensor manufacturer forwarded historical test data for several hundred sensors,

including data for additional sensors from the suspected lot. The population failure

rate for the curve fit test, excluding the suspect lot, was less than 5% while the failure

rate for a tested subset of 36 units from the suspect lot was greater than 94%.
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However, all 44 test parameters for this tested subset had values within the upper and

lower 3-sigma control limits determined by the larger population.

Since the data used in the following case study is taken from actual process

data taken from a company’s data stores, an adjustment (element-by-element

normalization) was performed to obscure the amplitudes and ranges of the original

data. The ensemble population means and standard deviations were calculated on an

element-by-element basis using the “in control” population just mentioned. Then each

vector was transformed by subtracting the population mean and dividing by the

population standard deviations (which were all non-zero). This transformation

maintained the order relation among the vectors on an element-by-element basis and

also served to reduce the influence of scale or range differences among the vector

elements upon the solution of the classification hyperplane (or weight vector wad j). As

discussed in the previous chapter, this mapping maintains the relative separability

relations among the input vectors.

The total number of samples in this case study set is 861. Let “Group A”

designate the group of units with the lot code that based on a tested subset is highly

correlated to characterization test failure and “Group B” the remainder of these

samples (which, based on population test history, are less likely to contain

characterization test failures). Group A is comprised of 160 samples, leaving 701

samples in Group B. The entire set (861 samples) was used to calculate a 44-element

vector of ensemble means and a 44-element vector of ensemble standard deviations.

For each data vector element, all of the samples for this study population were within

4.5 standard deviations of this ensemble mean vector. Additionally, 98.75% (158) of

the lot A vectors and 84.45% (592) of the lot B vectors were also within 3 standard

deviations of the mean (again considered on an element-by-element basis).

As a baseline measure of class separability, the Henze-Penrose divergence of

the study set was estimated through use of minimum spanning trees on groups of 200
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vectors (100 from each class) to determine Friedman-Rafsky (FR) statistics. The

Henze-Penrose divergence estimate (ĤP) for each such group is 1 minus the FR

statistic normalized by the total number of vectors (200). The range of fourteen (14)

such estimates, encompassing the entire study set, was from 0.815 to 0.985, averaging

0.884 with a standard deviation of 0.053. The expected value for ĤP is 0.5 if the two

classes were random samples drawn from the same distribution, and 1 if the two

classes are drawn from fully separable distributions. The estimated Henze-Penrose

divergence for this study set indicates that there is significant divergence between the

inferred class distributions, but that the distributions also have significant overlap.

For experiments A1, A2, and A3, the trainings and tests were based on

detection of membership in Group A vs. Group B. For experiments A4, A5, and A6,

the trainings and tests were based on detection of failed vs. non-failed units.

Experiment A1

Eight vectors (from units that had actually failed characterization testing) were

randomly selected from Group A and eight other vectors (from units with no record of

characterization test failure) were randomly chosen from among several of the lot sets

in Group B. These vectors were then used to train the support vector machine (SVM),

yielding a weight vector wad j and a bias term bad j, which have both been scaled or

adjusted so that the minimum functional margin of the hyperplane hwad j,bad j is 1. To

simulate ηi = 0∀ i, we found that setting p ≥ 100 was sufficient. The graph in Figure

5.1 shows the data values (referenced to the left y-axis labels) for each of the sixteen

vectors on an element-by-element basis. The vectors from Group A are labeled A1

thru A8 and those from Group B are labeled B1 thru B8. The vector element (or

parameter) labels are indicated along the x-axis. In each parameter column, the

associated weight vector element value (referenced to the right y-axis labels) is also

shown. The calculated value of bad j is approximately −0.60560.
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Figure 5.1: Training and Weight Vectors for Experiment A1

The modified SVM (with ηi = 0 in this case) identified a separating hyperplane

(in 44-dimensional space) that did correctly classify the training vectors. Notice on the

graph that the weight vector elements with the largest absolute magnitude are

associated with the parameters whose training elements are the most separable. Using

this weight vector and the calculated bias term (or a positive scalar multiple of this set

of variables) to classify the remaining 845 vectors results in a Type 1 error or false

positive rate (α) of 31.75% and a Type II error or false negative rate (β ) of 23.68%,

where a positive indication for a particular vector means that the associated sensor has

been classified as belonging to Group A, a group of sensors suspected to have a higher

likelihood to fail the characterization error test than sensors from Group B. For the

twenty-six (26) Group A vectors associated with actual characterization test failures

(excluding the training vectors), the false negative rate was 19.23%. This means that
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the detection rate or percentage of actual failure units classified correctly by this SVM

was 80.76%, which implies that 21 of the 26 failed units could possibly have been

screened out at the sensor level, prior to end-item manufacture, using this classifier.

This detection rate and the overall detection rate of 76.32% appear to be useful levels

of detection for screening out potential downstream failures at the sensor level, prior

to end-item manufacture. However, the trade-off is an unacceptably high false positive

rate of 31.75%. One approach to this dilemna is to adjust the parameters of the SVM

to achieve a very low false positive rate, sacrificing much of the detection power of the

classifier while still providing some limited benefit of accurately screening out a

portion of the units that would fail characterization tests at the end-item level.

Experiment A2

To increase the power of the test (i.e. 1−β ), the SVM was retrained using the eight

vectors from the 34 Group A test failures that were closest to the hyperplane

determined above along with the same set of previously selected vectors from Group

B non-failed units. The training vectors and resultant weight vector are depicted in

figure 5.2.

It can be discerned from the graph that for each of the 44 parameters, the

associated training data points are not linearly separable in any single dimension.

However, this training set was classified with no errors and bad j =−0.19972 (for

ηi = 0).1 For the 845 test vectors, classification under with this new hyperplane

resulted in α = 41.56% and β = 8.55%. For the thirty-four (34) Group A test failures,

the false negative rate (β ) was 0%. This time the overall detection rate had increased

to 90.45%, but the false positive rate also increased.

1The training set was also correctly classified using equation 3.21 to determine ηi
with p = 1.
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Figure 5.2: Training and Weight Vectors for Experiment A2

Experiment A3

In another experiment, a modified SVM was trained with the 34 vectors from the

Group A test failures and 166 vectors from Group B nonfailed units (including the 8

vectors used in the previous two experiments). With ηi = 0, the training error was 2%

with one (1) Type I error and three (3) Type II errors. When ηi was determined by

equation 3.21 with p = 0.5, the training error was 1% with no Type I errors. Using

this SVM to classify the remaining 661 vectors results in a false positive rate (α) of

10.28% and a false negative rate (β ) of 80.16%. The level of significance of the test

(i.e. 1−α) appeared to improve (increase) over that of the SVM trained with only 16

vectors, but the power of the test (i.e. 1−β ) or ability of the SVM to pre-identify

sensors from Group A had greatly decreased. However, this interpretation implicitly

assumes that Group A is homogenous. A closer review of the 34 failures from this lot

4547



reveals that the failures from this lot were manufactured during the same 3-day period

and designated with the same sublot letter. A total of 36 units from this sublot were

included in the Group A lot. Thus, the SVM based on 200 training vectors turned out

to be more selective with respect to detecting potential characterization test failures

from Group A than the two earlier SVM’s, which were more effective in detecting

Group A membership.

In this experiment, along with some other 16-training-vector SVM

experiments, it was noted that the percentage of Type I errors increased dramatically

for the last 100 test parameter vectors from Group B. The set of test vectors were

arranged such that the vectors for sensors from the same manufacturing lot tended to

be listed together. For the 533 Group B test vectors, twenty-two (22) vectors within

the last 100 listed accounted for 40% of the overall false positive errors under this

experiment. One particular lot (a set of 8 sensors) from this subgroup had a false

positive rate of 100%. This large deviation from the nominal false positive rate

indicates the possibility that these sensors may have parameter characteristics similar

to those from lots associated with Group A that tend to fail the characterization test.

Experiment A4

Again, using 200 training vectors, an SVM was trained; this time using vectors from

the 36 characterization test failures (17 from Group A and 19 from Group B) for one

class and 164 vectors from non-failed units (41 from Group A and 123 from Group B)

for the second class. Hence, for this experiment, a positive indication is associated

directly with membership in the group of sensors likely to fail characterization test

rather than membership in Group A. The remaining vectors were used as a test set,

which now contained 36 vectors belonging to the class of known characterization

failures and 625 non-failed sensors. For this SVM, ηi was determined by equation

3.21 with p = 1. An errorless classification hyperplane was not found, so bad j (the
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SVM offset parameter) was adjusted to achieve minimal training error. At

bad j =−32.7, the training error rate was 6.5% (3.5% of which was due to Type I

error). Using this SVM to classify the remaining 661 vectors results in a false positive

rate of 18.88% and a false negative rate of 41.67%.

For the four SVM implementations above, the false positive rates were too

high to enable practical direct use of these SVM’s as predictive discriminators for

potential characterization test failure. A predictive discriminator with a high false

negative rate (β ) or low positive-detection rate (1−β ) might still provide an economic

or time-savings value if this value is not outweighed by the loss of units removed from

production due to a false positive indication. For example, if the false positive rate is

zero or suitably small, then even a 5% positive-detection rate (β = 0.95) might enable

significant time and cost savings through avoidance of processing some units likely to

fail characterization test. An attempt had been made to reduce the false positive rate

for the last SVM by modifying the value of bad j. However, as the false positive rate

approached zero in this case, the positive-detection rate also approached zero.

Experiment A5 and Experiment A6

In reviewing the weight vector (Wad j) for the last SVM described above, it was noted

(see the figure 5.3) that 30 of the 44 weight vector elements were less than 25% of the

magnitude of the largest weight vector element. The other 30 elements of each training

vector were zeroed out. This resulted in the corresponding elements of the resultant

weight vector also being zeroed out, effectively reducing the 861 case study vectors to

include only the remaining 14 elements. Under these conditions, the SVM was

retrained using the same training set as used for the previous SVM. This time, ηi was

determined by equation 3.21 with p = 0.415. A satisfactory compromise between the

false positive rate and the positive-detection rate was achieved with bad j =−116.24.

The training error rate was 14% with no Type I error. Using this SVM to classify the
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Figure 5.3: Weight Vector for Experiment A4

remaining 661 test vectors resulted in a false positive rate of 1.92% and a

positive-detection rate of 11.11% (β = 0.8889). Alternately, setting bad j =−18.017,

resulted in a false positive rate of 0.96% with a positive-detection rate of 8.33%. The

training error rate for this setting was 17%, again with no Type I error.

Observations and Conclusions

Since the 72 characterization failures noted in this 861-unit sample set tended to

largely occur in sublot groupings, this latter SVM might be used as follows:

1. Use the SVM as a detector on a sublot basis.

2. Indicate that a sublot is suspect if its SVM detection rate exceeds, say, 6%

(where the detection rate equals number of SVM-resultant positive indications

divided by the tested sublot population).

4850



Using the SVM as a pass/fail detector on a sublot basis requires only that there exists a

sufficient spread between the false positive rate (α) and the positive-detection rate

(1−β ), with the positive-detection the rate being the greater of the two. Then, one can

set a threshold between these two rates or, for a more rejection-cautious approach,

above the initially determined SVM positive-detection rate and use that threshold to

decide whether a particular test sublot is likely to have a high characterization test

failure rate based on the SVM positive indication rate (positive test

indications/number of test samples). For instance, when the fourth SVM described

above was used to classify the 661 test vectors, the result was a false positive rate of

18.9% and a positive-detection rate of 58.3%. If a positive-indication threshold of

65% is selected, then application of this SVM detector to each of the 41 sublots of the

861-unit study group results in rejection of 3 sublots:

1. The original 36-unit sublot from Group A that contained 34 characterization test

failures with an SVM positive-indication rate of 81%.

2. A 23-unit sublot from Group B that contained 20 characterization test failures

and had an SVM positive-indication rate of 82%.

3. An 8-unit sublot from Group B that contained only 1 characterization test

failure, but had a SVM positive-indication rate of 75%.

Suppose this SVM discriminator had been applied to identify these same sublots as

suspect. Then not using these sublots would have resulted in avoiding the

manufacturing efforts and test time spent on 55 end-item characterization test failures

with the trade-off of falsely rejecting 12 sensors that have no record of

characterization test failure. If a positive-indication threshold of 80% were chosen, the

result would be rejection of 54 end-item characterization test failures with false

rejection of 5 sensors with no record of test failure.
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Experiment Training

Vectors

Training

Error
Test

Vectors

Type I

Error

(α)

Type II

Error

(β )

Detection

Rate

(1−β )

A1 16 0 845 0.318 0.237 0.763

A2 16 0 845 0.416 0.086 0.915

A3 200 0.01 661 0.103 0.802 0.198

A4 200 0.065 661 0.189 0.417 0.583

A5 200 0.14 661 0.0192 0.889 0.111

A6 200 0.17 661 0.0096 0.917 0.083

Table 5.1: Summary of Results for Case Study A

Of course, actual implementation in a manufacturing environment of an SVM

sublot-based discriminator to prescreen sensors would likely require obtaining

additional sensor test data, particularly more samples of units that failed

characterization testing, and further validating of the performance and

cost-effectiveness of the SVM discriminator(s) given various detection rate thresholds.

In discussing some of these results with one of the company’s design engineers, it was

also suggested that pre-sensor level data be reviewed for detection cues as well. This

is possible due to the fact that some electrical testing of sensor components occurs

before the construction of the sensor itself. If an SVM discriminator could detect

failure cues in that data, then such results could be used to (1) avoid utilization of

suspect components (or component lots) in the further manufacture of sensors and/or

(2) possibly determine the root causes of the failure mechanism(s), enabling process

or product improvements that could remove or reduce these root sources of failure.

5.2 Case B: Latent Sensor Failure

A group of products that had passed production testing at the sensor level later failed

in a particular mode sometimes prior to and sometimes after shipment to the customer.

Failure analysis of several of the sensors indicated that the failure mode was not

related to mechanical shock or mishandling, but rather was related to manufacturing

process limitations or variations. Also, the failure rate was very small compared to the

52



field population of product. One question is whether there are cues in the sensor

production test data that correlate with a propensity of a sensor to later fail in this

mode. In an attempt to find these cues (if any), an SVM was developed and

subsequently trained using statistically normalized input data and equation 3.21 with

p = 1. The parameters vectors in this case contained 28 elements. Both the training

set (16 vectors) and the test set (152 vectors) had vectors whose elements were all

within 4.2 sigma of the element mean2. Of the 168 sensors selected for this study, five

(5) had failed after shipment to the customer (i.e. in the “field”) and 27 had failed

during end-item factory testing. The remaining 136 sensors were not known to have

failed (or had indeed passed end-item testing). Since the dormancy of the latent failure

mode would have some dependencies on the various environments to which the

sensors are exposed, some of these remaining 136 samples, while treated as negative,

might have cues (if they exist) that correlate to this failure mode.

The Henze-Penrose divergence of this study set was estimated through use of

minimum spanning trees on groups of 64 vectors (32 from each class) to determine

Friedman-Rafsky (FR) statistics. The range of five (5) such estimates, encompassing

the entire study set, was from 0.531 to 0.549, averaging 0.541 with a standard

deviation of 0.008. The estimated Henze-Penrose divergence for this study set

indicates that these two classes are likely drawn from the same approximate

distribution. Another Henze-Penrose estimate was calculated using an unbalanced test

set comprised of 32 vectors in one class and 136 vectors in the second class. In this

case, the divergence estimate was 0.720. For this unbalanced test set, the expected

Henze-Penrose estimate, given the hypothesis that the samples come from the same

2Initially, element sigmas and means were derived based on element-by-element
ensemble statistics for 188 vectors. Twenty (20) of these were between 3 to 6 sigma
away from the mean and were subsequently removed from the test set, leaving the
subject 168 vectors referenced above. Recalculation of the element sigmas and means
based on the 168 vectors results in each element value remaining within 4.2 sigma of
the element mean.
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distribution is 0.692. Again, the divergence estimate indicates that there is little

divergence between the two sample sets and favors the hypothesis that the samples are

drawn from the same underlying distribution.

For experiment B1, the training and tests were based on detection of field

failures vs. non-failed units. For experiment B2, the training and tests were based on

detection of field and factory failures vs. non-failed units.

Experiment B1

In one experiment, the five field failures were used as positive training examples.. The

eleven “negative” training samples taken from the non-failed population were selected

based on iterative SVM training and subsequent testing in an attempt to maximize the

SVM detection rate for the 5 field failure failures while minimizing Type I error

among the non-failed samples. The SVM was trained with no errors. The training

vectors and associated weight vector are shown in figure 5.4. The Type I error rate for

the test set was 51.2%. The Type II error rate was 70.4%. The SVM positive-detection

rate for the non-failed test group exceeded that of the known group of factory failures.

Experiment B2

In another experiment, three of the factory failed units were also included in the

training group, for a total of eight positive examples. The eight negative examples

were iteratively selected from the non-failed population to minimize Type II test error

while ensuring that Type I error was not 100%. Errorless training was achieved and

the Type II test error attained was 20.8%. However, the Type I test error was 82.8%,

implying similar SVM positive-detection rates for both the group of factory failures

and the “nonfailed” group. The training results are shown in figure 5.5.
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Figure 5.4: Training and Weight Vectors for Experiment B1

Observations and Conclusions

In these and several other experiments, it was observed that while the field failures as a

group appeared to be detectable and largely separable (based on functional margins)

from the nonfailed group3, the factory failures appeared to have similar SVM

positive-detection rates as those of the nonfailed group. In other words, the factory

failures appear likely to belong to the same class as the remaining population with

respect to the implemented SVM discriminators. This latter result was to be expected

on the basis of the Henze-Penrose divergence estimates on the data which favored the

hypothesis that the two classes were samples drawn from the same distribution.

3Of course, since the training set includes the data from only five field failures, the
statistical significance of this 100 % detectability is in doubt. Based on the Type I error
(α) obtained using 136 samples for the first SVM described for this case study, the
empirical level of significance (1−α) is only about 30%.
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Figure 5.5: Training and Weight Vectors for Experiment B2

So far, no cues had surfaced with respect to predetection of the factory failures.

It may be that the sensor level test data does not reveal the manufacturing anomalies

(if any) that through subsequent environmental or end-item test exposure result in

sensor failure. Or, perhaps these factory failures occur as a result of the end-item

manufacturing processes apart from any manufacturing flaws in the sensors.

Concerning the field failure units, more samples of field failures would need to

be obtained in order to test whether either of the two SVM’s described above could

indeed predetect cues for field failures (assuming that these cues could be different

than those of the factory failures). Since the time that data was obtained for the 168

units of this study, at least five other units with the failure of interest have been

returned from the field. Root cause investigation eventually resulted in identifying

process improvements and product testing scenarios that have since resulted in the
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Experiment Training

Vectors

Training

Error

Test

Vectors

Type I

Error

(α)

Type II

Error

(β )

Detection

Rate

(1−β )

B1 16 0 152 0.50 0.70 0.30

B2 16 0 152 0.828 0.208 0.792

Table 5.2: Summary of Results for Case Study B

field occurence of this latent failure mode becoming a very rare event. The identified

root cause is supportive of the hypothesis that the sensor performance effects of this

latent fault mode are not apparent until actual failure occurs. Note that the high false

positive rates obtained from the SVM under both experiments are also consistent with

this hypothesis. While the training was errorless for both experiments, the resultant

predictor did not generalize well with respect to its classification performance given

test samples from data not included in the training.

5.3 Case C: Range Capability

A group of sensors designed for a specified performance range were utilized in end

items with extended measurement range. However, it was later discovered that only a

portion of these sensors could function adequately within the entire extended range.

Some sensors had upper or lower performance limits that were less than extended

range requirements. It was determined through correlation analysis of past end-item

test data that preselection of sensors that could meet extended range requirement could

be based on two parameter elements of the 44-element sensor-level test data vector,

namely parameter vector elements 17 and 31. While other vector elements could also

be used, these two elements provided a means of adequate prediction of which sensor

could pass extended range testing. Without this preselection, the historical test data

analyzed indicated that about half (30% to 70%) of the sensors manufactured for the

nominal range were probably not capable of passing extended range testing. The

thresholds for these two parameter elements were chosen to minimize the probability
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of that a non-capable sensor would be selected for use in the extended range end item.

Some of the sensors rejected as extended range candidates may well have been able to

pass extended range testing.

Let the variables R17 and R31 represent values of the parameter elements 17

and 31, respectively. In general terms, R17 represents the maximum output of the

sensor under certain input conditions. R31 represents the change in sensor output (or

output span) given a particular minimum and maximum input range. Using the

statistically normalized ranges of these parameter elements (rather than the native

ranges), the preselection criteria is to accept as extended range capable those sensors

for which R17 < 0.49183 and R31 <−0.425353. The pass/fail results for end items

whose sensors were selected based on this criteria were used to validate these criteria

limits. Review of several end-item production runs revealed no failures due to range

capability when this criteria was used. These results were also consistent with the

underlying sensor characteristics represented by the selection variables. To be specific,

the upper and lower measurement ranges of the sensor could be extended to the higher

range if the nominal maximum response was held below some fixed maximum value

and the nominal span was also held below an associated fixed maximum value.

This case study is based on the sensor-level data for 753 sensors. The samples

for each vector element of the data for this study population were within 4.5 standard

deviations of the associated ensemble mean. The assumed “true” classification of each

sensor is based on the preselection criteria previously described. Three SVM’s were

developed and trained using portions of this sensor-level data. The data not used for

training was used as test data as a means of evaluating the performance of the SVM’s.

Statistically normalized input data was utilized for all three SVM’s with ηi selected in

accordance with equation 3.21. A positive classification is taken to indicate that a

sensor is predicted to pass extended range testing. Therefore, the classification of a

sensor by an SVM as capable when the “true” classification (based on our
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conservative selection criteria) should be non-capable is a Type I error (false positive).

Classification of a sensor by an SVM as non-capable when the true classification is

capable is a Type II error (false negative). The 753-unit dataset contains 277 positive

samples and 476 negative samples. Since our base selection criteria is believed to be

overly restrictive (risk-adverse) with respect to selecting extended-range-capable

sensors, then a more accurate discriminator (with respect to the initial dataset) would

be expected to yield reduced Type II errors (rejections of capable sensors) when

evaluated in terms of future end item results. However, the generalization trade-off is

an increased risk in the future of admitting some sensors that are actually non-capable.

The Henze-Penrose divergence of this study set was estimated through use of

minimum spanning trees on groups of 200 vectors (100 from each class) to determine

Friedman-Rafsky (FR) statistics. The range of fifteen (15) such estimates,

encompassing the entire study set, was from 0.775 to 0.975, averaging 0.905 with a

standard deviation of 0.053. The estimated Henze-Penrose divergence for this study

set indicates that there is significant divergence between the inferred class

distributions, but that the distributions also have some overlap.

All three experiments were based on detection of extended range capable vs.

non-capable units.

Experiment C1

The first SVM was trained with eight positive (extended range capable) samples and

eight negative (rejected) samples. The training data and resultant weight vector are

shown in figure 5.6. The training vectors were classified with no errors using p = 1 in

equation 3.21 and b = 0.1058275 for the bias term of equation 3.7. For this

implementation, using the remaining 737 samples as test samples, the Type I test error

was 29.7%. The Type II test error was 5.2%.
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Figure 5.6: Training and Weight Vectors for Experiment C1

Experiment C2

Another SVM was trained with 100 positive samples and 100 negative samples using

p = 5 and b =−0.1. The average training error was 3% with a Type I error of 5% and

Type II error of 1%. The resultant weight vector for this SVM is depicted in figure 5.7.

Using the remaining 553 samples to test this SVM resulted in a Type I test error (α) of

21.3% and a Type II test error (β ) of 2.8%. Both the power of the test (1−β ) and the

specificity of the test or significance level (1−α) had apparently improved in

comparison with the first SVM (even with a first-order proportional accounting for the

test set size difference).
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Figure 5.7: Weight Vector for Experiment C2

Experiment C3

For the first SVM, the largest absolute value of an element of the weight vector (Wad j)

was attained by element R31. In figure 6, note that five(5) other elements of the Wad j

vector have an absolute value that exceeds 85% of this maximum value. In order of

decreasing magnitude these are R30,R32,R34,R17, and R16. For the second SVM

(see figure 7), the largest absolute element value of Wad j was attained by element R34,

which is associated with a measure of the non-linearity of the sensor response to input

stimuli. The next five elements in order of decreasing magnitude were

R31,R32,R30,R18, and R17. The appearance of R17 and R31 among the top six
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elements of the weight vector with respect to absolute magnitude is not unexpected, of

course, since two elements are the basis of the criteria use to determine the “true”

classification of each sensor. R16,R17, and R18 are identical measurements of the

same underlying parameter (maximum nominal output) taken under different

environmental conditions. Similarly, R30,R31, and R32 share the same underlying

parameter (nominal span). Both SVM implementations identified R34 as being among

the four most significant elements of the weight vector.

Based on the weight vector results described above for the first SVM, and

including only the highest magnitude element from the two measurement triplets, the

three most significant weight vector elements are R31,R34, and R17. A third SVM

was trained using only these three elements (the other vector elements were set to zero

during the training phase only). The training vectors used were those used for the first

SVM. For this experiment, p = 1 and b =−0.119389. The resultant SVM had no

training errors. The training data and resultant weight vector are shown in figure 5.8.

Again using the remaining 737 samples as test samples, the Type I test error was

16.7%. The Type II test error was 1.5%.

Observations and Conclusions

The third SVM, which uses only three active (non-zero) elements for its weight vector,

provided classification results that had the least test errors with respect to the assumed

base line classification of the data. Application of this SVM to the preselection of

sensors for use in extended range applications would result in rejecting less sensors

overall and thus increasing the number of sensors from a given manufactured quantity

that are available for extended range end items. Note that while elements R17 and R31

were separable on an element-by-element basis for the selected training vectors, R34

was not. The addition of the non-linearity factor (R34) might serve to avoid use of

sensors that would not be capable at either the higher or lower end of the extended
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Figure 5.8: Training and Weight Vectors for Experiment C3

measurement range even though the maximum nominal (tested) output and nominal

span results might appear to indicate a capable sensor based on linear extrapolation.

The implementation of this SVM is feasible in a production environment since

classification of each sensor would now be dependent on the sign of the result of

summing the weighted values of only three vector elements. The false positive rate of

16.7% in Experiment C3 may be of some concern, even though the detection rate of

98.5% is good. Based on current selection criteria, this false positive rate implies that

some “non-capable” sensors would be falsely accepted as extended range capable.

However, the current criteria are known to be overly restrictive in acceptance of

extended range sensors. This is not deemed a problem, because sensors that are falsely

rejected as extended range capable may still be used in normal range applications. It is

uncertain whether use of this SVM would actually result in an increase in the rate of

end-item extended range capability failures or, instead, would result in an increase in
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Experiment Training

Vectors

Training

Error

Test

Vectors

Type I

Error

(α)

Type II

Error

(β )

Detection

Rate

(1−β )

C1 16 0 737 0.297 0.052 0.948

C2 200 0.03 553 0.213 0.028 0.972

C3 16 0 737 0.167 0.015 0.985

Table 5.3: Summary of Results for Case Study C

the number of detected extended range sensors available due a less restrictive selection

criteria. Whether this is indeed a better discriminator would need to be validated by

end-item test results for sensors that have been classified by this SVM as capable. In

any case, use of this SVM might still be justified depending on desired tradeoffs

between the need to increase extended range sensor supplies, the avoidance of costs

associated with end-item test failure, and the need to optimize sensor production flow

(by reducing the total amount of sensors that may need to be built in order to obtain a

given amount of extended range sensors).
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Chapter 6

KERNELS AND THE HYPERPLANE CLASSIFIER

6.1 Basic Definitions

In chapter 3, the use of the hyperplane classifer was discussed with a brief allusion to

use of a similarity measure k, defined on the input product space X ×X , which

measure was in turn the inner product of the transforms of the inputs or patterns x into

a separable Hilbert space H:

k(x,x′) =
〈
Φ(x),Φ(x′)

〉
.

Prior to further discussion of the use of this similarity measure in extending the

usefulness of the hyperplane classifiers, we will overview some fundamental

definitions of Hilbert space, kernels, and reproducing kernel Hilbert spaces.

Hilbert Space

Let H be a vector space equipped with an inner product

〈 〉 : H ×H → C or R

(x,y) �→ z := 〈x,y〉

that induces a norm on H by

‖x‖=
√

〈x,x〉.

This norm in turn induces a metric d on H by d(x,y) = ‖x− y‖.

H is a Hilbert Space if it is complete1 with respect to the metric d [33,

p.11][28, p.164][34, p.307]. In addition, the Hilbert space has a countable

1i.e. every Cauchy sequence in H converges to a member of H [32, p.49][28,
p.14]
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orthonormal basis if and only if it is separable [28, p.168]. The Riesz Representation

Theorem shows that each element of a Hilbert space defines a linear functional on that

space by the inner product [28, pp.164-165, 205][32, p.50]. That is, given x,y ∈ H ,

we can define a corresponding linear functional fx as

fx (y) = 〈x,y〉 .

And every continuous linear functional on H can be represented in this form. [35,

pp.40-47,130-132]

Kernel Function

A function k on X ×X is a kernel if it has the form k(x,y) = 〈Φ(x),Φ(y)〉 for some

Φ : X → H .

If X itself is already embedded in Hilbert space , then one possible kernel is

k(x,x′) = 〈x,x′〉, using the identity function Φ(x) = x. However, even with X being

embedded in a separable Hilbert space, there may be instances in which separable

classes in X may not be linearly separable in the X domain but may be linearly

separable if transformed non-linearly into another isomorphic Hilbert space. Under

certain conditions, we may be able to exploit this resultant linear separability through

direct use of the kernel k as a similarity measure without resort to the intermediate

step of explicit transformation of the input variables.

Reproducing Kernel Hilbert Space (RKHS)

Suppose H is a Hilbert space of vector-valued functions defined on a nonempty

domain set X [36, p.23]. That is, H is associated with an inner product (or dot

product) 〈 f ,g〉= z and a norm ‖ f‖ :=
√〈 f , f 〉, where f ,g ∈ H and z ∈ C or R [27,

p.36]. Then H is a reproducing kernel Hilbert space if there exists a reproducing

kernel (r.k.) K defined on X ×X such that [33, p.12][36, p.23]:
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1. For any fixed y ∈ X , the function Ky(x), where Ky(x)≡ K(x,y), is an element of

H .

2. For every y ∈ X and every f ∈ H ,

f (y) =
〈

f (x),Ky(x)
〉
.

Since Ky ∈ H ∀y ∈ X , then from (2) we have for any fixed w,y ∈ X [27, p.36],

〈
Ky(·),Kw(·)

〉
= Ky(w) = K(w,y) (6.1)

6.2 Properties of Reproducing Kernel Hilbert Spaces

1. Uniqueness: For the inner product space H , 〈 f ,g〉= 〈g, f 〉 if H is complex

(where 〈·〉 is complex conjugation) [28, p.163]. If K is an r.k. for a particular

Hilbert space H and L is also an r.k. for H , then equation 6.1 implies the

identity of L and K [33, p.12][36, p.23].

2. Existence: A necessary and sufficient condition for the existence of an r.k. for a

Hilbert space H is the existence of a functional f ∈ H that is continuous at

every y ∈ X [33, p.12].

3. Reproducing Kernels on Finite-Dimensional Hilbert Spaces: If H has finite

dimension n and f1, · · · , fn are linearly independent functions in H , then a

reproducing kernel K exists if and only if the conjugate of the inverse of the

Gram matrix of the system of functions is positive definite. If K exists, it can be

determined as a function the inner products of the vectors f1, · · · , fn [33,

pp.15-16]. (See also Mercer’s theorem [13, p.35], which details the conditions

under which K(x,z) can be expanded as a uniformly convergent series in terms

of f1, · · · , fn)
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6.3 The “Kernel Trick” and the Hyperplane Classifier

Non-Linear Transformation and Linear Separability

Consider the following training set S consisting of elements xi in R
2 and their

associated class labels yi ∈ {−1,1} :

S = {(x1,y1), ...,(x8,y8)}

=

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣ 0.5

0

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 0

0.5

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ −0.5

0

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 0

−0.5

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 1.5

0

⎤⎥⎦ ,−1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 0

1.5

⎤⎥⎦ ,−1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ −1.5

0

⎤⎥⎦ ,−1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 0

−1.5

⎤⎥⎦ ,−1

⎞⎟⎠
⎫⎪⎬⎪⎭

Figure 6.1: X (Input) Domain
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Figure 6.2: V (Transform) Domain

Figure 1 depicts this training set. The estimated Henze-Penrose divergence between

the two classes (based on FR statistics) is 0.500, indicating little or no distribution

divergence between the two classes. Clearly, in the X input domain, the two classes

within the training set cannot be separated by a single line (i.e. a hyperplane in R
2).

However, treating the elements of X as rectangular coordinate pairs, we can transform

each element into an R
2 domain V, wherein each element in X is represented by the

principal polar coordinate equivalent element in V:

Φ : X → V

x �→ v := Φ(x) = Φ(

⎡⎢⎣ a

b

⎤⎥⎦) =
⎡⎢⎣ √

a2 +b2

arctan
(b

a

)
⎤⎥⎦=

⎡⎢⎣ ‖x‖
arg(x)

⎤⎥⎦ ,
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where arg(x) ∈ (−π,π]. Mapping the training set S to the V domain results in the

following training set T, which is depicted in Figure 2:

T = {(v1,y1), ...,(v8,y8)}

=

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣ 0.5

0

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 0.5

π
2

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 0.5

π

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 0.5

−π
2

⎤⎥⎦ ,1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 1.5

0

⎤⎥⎦ ,−1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 1.5

π
2

⎤⎥⎦ ,−1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 1.5

π

⎤⎥⎦ ,−1

⎞⎟⎠ ,

⎛⎜⎝
⎡⎢⎣ 1.5

−π
2

⎤⎥⎦ ,−1

⎞⎟⎠
⎫⎪⎬⎪⎭

In the V domain, the training set T (which is a non-linear transformation of S) is now

linearly separable. The estimated Henze-Penrose divergence between the two classes

(based on FR statistics) is 0.500, signaling little distribution divergence between the

two classes in the V domain. However, if the aforementioned vectors in the V domain

were to be statistically normalized on an element-by-element basis across the training

sets, then the Henze-Penrose divergence estimate would become 0.875, signaling

significant divergence between the two classes. In the X domain, statistical

normalization would not change the divergence estimate from its initial value of

0.500. Applying the criteria of equation 3.4, the optimal separating hyperplane in the

V domain can be described by the set {v : 〈wv,v〉+b = 0} with weight vector

wv =

⎡⎢⎣ −1

0

⎤⎥⎦
and offset b = 1. Formally, wv can be determined using Equations 3.19 and 3.20 (with

the elements vi instead of xi and setting ηi = 0) to determine the coefficients ai and

then using the relation from equation 3.10, so that wv = ∑8
i=1 aiyivi. Based upon

equation 3.2, the classification of a new test input vector xn is determined (with

appropriate choice of bv) by the decision function:
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yt = f (xn) = sgn(〈wv,Φ(xn)〉+bv) = sgn

((
8

∑
i=1

aiyi 〈Φ(xi) ,Φ(xn)〉
)
+bv

)

Note that the classification of the new test vector xn does not require explicit

knowledge of wv if the inner products of Φ(xn) with the elements of the training set T

are known. Further note that the inner product terms 〈Φ(xi) ,Φ(xn)〉 can be replaced

by a kernel function K(xi,xn), so that explicit mapping of input test vectors into the V

domain (or feature space) in not required in order to classify new input test vectors:

K : X ×X → R

(x,y) �→ r := K(x,y) = 〈Φ(x),Φ(y)〉= ‖x‖‖y‖+ arg(x)arg(y) (6.2)

Hence,

yt = f (xn) = sgn

((
8

∑
i=1

aiyiK(xi,xn)

)
+bv

)
(6.3)

K(xi,x j) can also be used to replace the inner product terms in Equation 3.19, which is

used to determine the coefficients ai associated with the separating hyperplane in the

feature space. This substitution of the inner products of elements from a feature space

with a kernel function on elements of the related input space is known as the “kernel

trick” [27, p. 15]. The use of kernels enables the application of hyperplane classifiers

to training sets that are not linearly separable in their native or input domain. In some

instances, multiple kernels can be combined to effect non-linear separation manifolds

for specific sets of input data.

Deriving Kernels from Data

Given a training set for a binary classifier, inferred differences in the characteristics of

the two classes of data within the training set can be used as an aid in determining a
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suitable capacity-limited set of decision functions available to the learning algorithm.

For the support vector machine (hyperplane classifier), the choice of kernel determines

the ability of the associated learning machine to classify the training set samples and

to generalize in classifying new test samples. In the previous section, the

visually-evident structure of the training set S was used to choose apriori a transform

function and associated kernel function.2 The two classes of input samples could be

discriminated based on the distance of the sample from the origin without regard to

angle. Therefore, another workable choice of kernel would have been the Gaussian

kernel or radial basis function (RBF) kernel [32, p.77]:

K : X ×X → R

(x,y) �→ r := K(x,y) = exp

(
−‖x− y‖2

2σ2

)
(6.4)

If we define a transform Φ to another feature space as Φ(x) = ‖x‖, then yet a third

choice of kernel that would result in errorless training is

K(x,y) = 〈Φ(x),Φ(y)〉= ‖x‖‖y‖ . (6.5)

While the training data serves to constrain the choice of kernels that will result

in successful classification, it does not necessarily uniquely determine such a kernel.

In other words, the selection of a kernel or set of candidate kernels is a choice of an

expected solution space for the binary classification problem under consideration and

should take advantage of our prior knowledge of the associated datasets.[37, p.73][27,

p.407][32, p.72] Even after exposition of kernels based on generative probability

2The assumption, of course, is that the training set, though having a very limited
number of samples, contains fairly representative distributions from the two classes.
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models, including the Fisher kernel, Schölkopf and Smola indicate that the choice of

kernel cannot generally be determined solely on the basis of a finite dataset:

... the choice of kernel function is crucial in all kernel algorithms. The

kernel constitutes prior knowledge that is available about a task, and its

proper choice is thus crucial for success. Although the question of how to

choose the best kernel for a given dataset is often posed, it has no good

answer. Indeed, it is impossible to come up with the best kernel on the

basis of the dataset — the kernel reflects prior knowledge, and the latter

is, by definition, knowledge that is available in addition to the empirical

observations. [27, p.423]

For some training sets, which may even be known to be somewhat separable based on

class divergence measures (such as the Heine-Penrose divergence), the choice of

suitable kernel is not always initially apparent, so it may be necessary to test a set of

candidate kernels in order to determine the most viable individual or composite kernel

for the classifier. [32, p.72] In this regard, it is useful to note that kernels can

constructed from the linear combinations, products, polynomial functions and

exponentials of other kernels. [27, pp.408-412][32, pp.75-77][13, pp.42-44]

If the input data is already embedded in a Hilbert space, another method of

effecting an implicit selection of a kernel function is to transform each input vector to

a composite feature space by augmenting the vector with transforms of the baseline

input vector. For example, in the toy problem of section 6.3, the two-element vectors

of training set S could be transformed into four-element vectors to produce a new

training set R in feature domain U, where the added elements correspond to the polar

coordinates of the the first two elements:
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R =
{(

x1
v1
,y1

)
, ...,

(
x8
v8
,y8

)}
=

⎧⎪⎨⎪⎩
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⎫⎪⎬⎪⎭

In this case, the class samples are linearly separable in the feature domain U. Again

applying the criteria of equation 3.4, the optimal separating hyperplane in domain U

can now be described by the set {u : 〈wu,u〉+b = 0} with weight vector

wu = [0,0,−1,0]T and offset b = 1. Noting that the weight vector elements are zero

except for the third element, the choice of kernel could be reduced to that of equation

6.5 corresponding to the one-dimensional feature space determined by the transform

Φ(x) = ‖x‖.

In summary, two of the ways in which the selection of a suitable kernel for a

particular binary hyperplane classification problem can be accomplished are (1) by

direct trial of one or more candidate kernel functions, or (2) by element extension (or

reduction) of input training vectors, where the extension elements are determined

using transforms into kernel domains having tractable transform functions. Under

both approaches, the initial selection of kernels or transform functions is assisted by

available apriori knowledge of the classification problem and its associated dataset.

Under the element extension (vector augmentation) approach, the weight vector

obtained via a support vector machine can subsequently be used to determine which of

several candidate kernel functions (or transforms) can best be used to classify the

training set(s).

74



Application of Non-linear Kernel Techniques to a Statistically Controlled Dataset

In this section, we provide an example application of non-linear kernels to one of the

datasets used in chapter five. For convenience, we include here a copy of the summary

table from Case Study A.3 This application example will exhibit the use of both vector

element expansion and reduction (i.e. transformation to a lower-dimensional feature

space) in improving the test performance of the hyperplane classifier.

To apply the non-linear kernel techniques discussed above to the dataset of

Case Study A, each normalized 44-element input vector was extended by adding 3

elements comprised of the standard deviation, vector length, and skew of the

forty-four (44) elements of the subject vector. These added elements were then

normalized by subtracting the element’s ensemble mean taken over the 861 input

vectors and scaling the result by the element ensemble standard deviation. The vectors

selected for the training set were those used in experiment A1 now extended by the

three added elements. The weighting vector obtained from the training set was used to

determine which of the vector elements were more significant with respect to

separability of the class samples. By zeroing out some vector elements corresponding

to the smaller weighting factors and retraining the classifier, it was found that the

classification error on the test set could be improved. By iterative experimentation, the

47-element vector was able to be reduced to a 15-element vector (including the 3

added elements)4 that resulted in a Type I (false positive) test error of 0.310 and a

3Recall the for experiments A1, A2, and A3, the trainings and tests were based on
detection of membership in Group A vs. Group B. For experiments A4, A5, and A6,
the trainings and tests were based on detection of failed vs. non-failed units.

4

____Note that this reduction in vector dimension is effectively the same (in the

context of the hyperplane classifier) as multiplying each 47-element input vector by a

transform matrix consisting of a 47-by-47 identity matrix with all except selected

diagonal elements set to zero. This type of “element selection” matrix is a subset of

the broader class of non-linear vector transform matrices.
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Experiment Training

Vectors

Training

Error
Test

Vectors

Type I

Error

(α)

Type II

Error

(β )

Detection

Rate

(1−β )

A1 16 0 845 0.313 0.237 0.763

A2 16 0 845 0.437 0.165 0.835

A3 200 0.01 661 0.105 0.881 0.119

A4 200 0.065 661 0.188 0.417 0.583

A5 200 0.14 661 0.0192 0.861 0.139

A6 200 0.17 661 0.0096 0.917 0.083

Table 6.1: Recap of Results for Case Study A

detection rate of 0.875 (Type II error = 0.125). Subsequent removal of the 3 added

elements results in a Type I test error of 0.348 and a detection rate of 0.908. Thus the

reduction of the initial 44-element input vector to a particular subset consisting of 12

elements results in a 14.5% increase in detection rate but at the expense of a 3.5%

increase in the Type I test error rate. Inclusion of the 3 added elements results in an

11.2% increase in detection rate (from that obtained in experiment A1) while

maintaining approximately the same Type I test error rate (0.310 vs. 0.313).
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Chapter 7

L-MOMENT KERNELS

7.1 Definitions and Derivations

Order statistics and L-statistics (including L-moments) were introduced earlier, in

chapter 2. To recap, we suppose a set {Xi}n
i=1 is a real-valued set of n iid samples of a

random variable X , which has a cumulative distribution function (CDF) F

F : R→ [0,1]

x �→ p := F(x)≡ Pr(X ≤ x)
(7.1)

Let the samples be sorted in ascending order and relabeled as Xk:n,(k ∈ [1, . . . ,n]), such

that Xj:n ≤ Xk:n whenever j < k. Then the sample Xk,n is called the kth order statistic of

this set of n sample elements. L-moments, so-called because they are derived from

linear combinations of order statistics, are “difference moments”, a family of which

can be used to characterize any distribution with a finite mean [21, pp.194-195]. The

rth L-moment, λr, is the weighted expected value of the (r−1)thdifference of sets

composed of r order statistics (i.e. an ordered set of r iid samples) of the subject

random variable X . The weighting factor is equal to 1
r . For example, λ3, which is a

measure of distribution skewness, is one-third (1
3) the expected value of the 2nd

difference of random sets composed of iid samples of X taken three (3) at a time:

λ3 = 1
3E([X3:3 −X2:3]− [X2:3 −X1:3])

= 1
3E(X3:3 −2X2:3 +X1:3).

Similarly, λ4, a measure of distribution peakedness (kurtosis), is one-fourth (1
4) the

expected value of the 3rd difference of random sets composed of iid samples of X

taken four (4) at a time:

λ4 = 1
4E([(X4:4 −X3:4)− (X3:4 −X2:4)]− [(X3:4 −X2:4)− (X2:4 −X1:4)])

= 1
4E(X4:4 −3X3:4 +3X2:4 −X1:4)
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In general, as stated in chapter 2, the rth L-moment, λr, can be expressed in terms of

expected values of order statistics as [20, p.106]:

λr ≡ 1

r

r−1

∑
k=0

(−1)k

⎛⎜⎝ r−1

k

⎞⎟⎠EXr−k:r, r = 1,2, ...

Note that the distribution of the Gaussian random variable is uniquely

determined by its first two L-moments just as it is by the first two classical moments.

Given a normal random variable Z ∼ (μ,σ2):

λ1 = E(Z1:1) = E(Z) = μ

λ2 = 1
2E (Z2:2 −Z1:2)

= 1
2E ([Z2:2 −μ]− [Z1:2 −μ])

= 1
2

(
1

2πσ2

)´ ´ |x− y| exp
(
−x2

2σ2

)
exp

(−y2

2σ2

)
dxdy

= 1
2

(
1

2πσ2

)[´ ∞
−∞
´ ∞

y (x− y) exp
(
−x2

2σ2

)
exp

(−y2

2σ2

)
dxdy

+
´ ∞
−∞
´ ∞

x (y− x) exp
(
−x2

2σ2

)
exp

(−y2

2σ2

)
dydx

]
= 1

2πσ2

´ ∞
−∞
´ ∞

y (x− y) exp
(
−x2

2σ2

)
exp

(−y2

2σ2

)
dxdy

= 1
2πσ2

´ π
4

− 3π
4

´ ∞
0 (r cosθ − r sinθ) exp

(
−r2 cos2 θ

2σ2

)
exp

(
−r2 sin2 θ

2σ2

)
r dr dθ

= 1√
2πσ2

´ π
4

− 3π
4

(cosθ − sinθ)
[

1√
2πσ2

´ ∞
0 r2 exp

(
−r2

2σ2

)
dr
]

dθ

= 1√
2πσ2

[
σ2

2

] ´ π
4

− 3π
4

(cosθ − sinθ) dθ

= σ√
π

For other distributions, it may take several orders of L-moments to adequately

characterize the distribution. However, for the purposes of detecting differences of

statistical distribution between two classes (or the lack thereof), use of the first few

L-moments may suffice. Given input vectors already embedded in R
n (i.e. vectors

with real-valued elements) and composed of elements which have been
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ensemble-normalized, we may treat the elements of each resultant vector as a set of

random samples and extend the vector with estimates of the first few L-moments

based on this set of vector elements. This will implicitly induce a modified kernel

function within the hyperplane classifier as discussed in the previous chapter. If each

input vector can be classified primarily or solely on the basis of its inter-element

statistics, then we would expect that the statistical summary information reflected in

the derived L-moment vector-extension sets could also be successfully used as a basis

of classification decision. Note that inter-element correlation differences between two

classes of input vectors may be detectable on the basis of vector element set statistics

even when differences between the classes of vectors may elude detection on an

element-by-element basis. In the next sections, we plan to discuss the estimation of

L-moments and their use in detection of classes within statistically controlled datasets.

7.2 Estimation of L-moments from Sample Data

Since L-moments are by definition expected values of linear combinations of order

statistics of iid random variables, a convenient estimate (λ̂r,N) for a given L-moment

(λr) is the average value of N instantiations of the combination of order statistics

associated with the L-moment:1

λ̂r,N ≡ 1

N

N

∑
j=1

1

r

r−1

∑
k=0

(−1)k

⎛⎜⎝ r−1

k

⎞⎟⎠Xr−k:r, j , N,r ∈ {1,2, ...},

where the set
{

Xr−k:r, j
}r−1

k=0
is the jth independent set of r iid random samples. If the

random samples are drawn independently from a distribution with finite mean and

variance, then λ̂r,N is a consistent estimate of λr:

1Note that the estimators described here are not the same as U-statistics alluded
to Chapter 2 (Background and Literature Review) since a U-statistic estimate of λr
requires averaging “over all subsamples of size r which can be constructed from the
observed sample of size n” [20, p.113-114], where n ≥ r.
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E
(

λ̂r,N

)
= E

⎛⎜⎝ 1
N ∑N

j=1
1
r

r−1

∑
k=0

(−1)k

⎛⎜⎝ r−1

k

⎞⎟⎠Xr−k:r, j

⎞⎟⎠
= 1

N ∑N
j=1

1
r

r−1

∑
k=0

(−1)k

⎛⎜⎝ r−1

k

⎞⎟⎠EXr−k:r, j

= λr

Var
(

λ̂r,N

)
= Var

⎛⎜⎝ 1
N ∑N

j=1
1
r

r−1

∑
k=0

(−1)k

⎛⎜⎝ r−1

k

⎞⎟⎠Xr−k:r, j

⎞⎟⎠
= 1

N2 ∑N
j=1

1
r2

r−1

∑
k=0

(−1)2k

⎛⎜⎝ r−1

k

⎞⎟⎠
2

Var
(
Xr−k:r, j

)

= 1
N2 ∑N

j=1
1
r2

r−1

∑
k=0

(−1)2k

⎛⎜⎝ r−1

k

⎞⎟⎠
2

Var (Xr−k:r)

= 1
N2 ∑N

j=1Var

⎛⎜⎝1
r

r−1

∑
k=0

(−1)k

⎛⎜⎝ r−1

k

⎞⎟⎠Xr−k:r

⎞⎟⎠
= 1

NVar (λr)→ 0 as N → ∞

In using L-moment estimates to extend input vectors drawn from statistically

controlled processes, our objective is determine whether the group of L-moment sets

for one class of input vectors is separable from those of the opposite class. Hence, the

concern for statistical independence of the vector elements from each other can be

relaxed, especially given the working assumptions that the entire data set under

consideration is both statistically controlled and has been statistically normalized prior

to application of the hyperplane classifier.
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7.3 Applying L-moment Kernels to Data

Given an input vector x with V elements (V ≥ 2), let the vector-valued L-statistics

function φm be defined by

φm(x)�
[
λ̂1,V (x) , λ̂2,�V/2� (x) , . . . , λ̂m,�V/m� (x)

]T
,

where 1 ≤ m ≤V and λ̂r,N (x) is the estimator λ̂r,N described in the previous section

with the elements of x being treated as the set of data samples used for the L-moment

estimation. Assume the data input vectors are defined on a V −dimensional real

Hilbert space X . Then for x,yε X , a kernel function K can be defined on X as an inner

product in terms of φm:

K (x,y) = 〈φm(x),φm(y)〉=
m

∑
k=1

(
λ̂k,�V/k� (x)

)(
λ̂k,�V/k� (y)

)
.

If we choose to use the m-dimensional feature space ⊕ induced by φm as the domain

of a hyperplane classifier, then this kernel function would be used in equation 3.19 in

place of the inner product terms shown therein in order to solve for the coefficients ai

(see equation 3.20). These coefficients are then used in equation 3.10 to solve for the

normal vector (or weight vector) w. Alternately, as was illustrated earlier, we may

choose to use φm(x) to extend the input vector x or to extend another vector-valued

function of x (such as a statistical normalization function based on a specific subset of

available population data). Of course, in this case, K would need to be defined in

terms of functions of the new extended vector.

For arbitrary vector structures, the usefulness of the L-statistic function as the

basis of a discriminator may be affected (positively or negatively) by the colinear

resolution and vector element scaling anomalies discussed in Chapter 4. To avoid

these effects for the data under consideration in this research, we choose to statistically

normalize the input vectors on an element-by-element basis by subtracting from each

vector element an ensemble mean and scaling the result by the ensemble standard
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deviation, where the ensemble statistics have been determined from a suitably large, or

at least representative, sample set of data from a statistically controlled process. After

determination of the L-statistic estimates for a set of input vectors, these statistics

themselves can be ensemble normalized on an element-by-element basis prior to use

in hyperplane classification training, especially if colinear resolution or vector element

scaling error effects would result from use of the native estimate sets.

The L-statistics function serves to summarize the statistical characteristics of

the input vector. In some cases, this summary may elucidate a characteristic difference

that can be used to discriminate between the data from two classes. In other cases, this

summary may result in the loss of important order-dependent information that could

be easily used to determine the input vector class.

For example, suppose the vectors in one class each consists of ten iid Gaussian

random elements with mean 0 and variance π , while the vectors in the other class each

consists of ten copies of one instantiation of a Gaussian random variable with mean 0

and variance π . On an element-by-element basis, the expected values of mean and

variance are the same for both classes. For the first class, the expected values of the

first two L-statistics of a member vector are 0 and 1, respectively. For the other class,

these expected values are both 0. Hence, the L-statistic function would, in this case,

serve as a good feature detector on which to base a binary classifier, even for low

sample sizes.

Now, suppose both classes consist of iid Gaussian random elements with

variance π and means alternating from -1 to 1 between elements with one class having

the first element’s mean equal to 1 while the first element of the other class has mean

equal to -1. In this case, the expected values of the first two L-statistics of a member

vector for either class are the same by construction, but the classes could be

distinquished with high probability using the dot product of each input vector with the

weighting vector [1,−1,1,−1,1,−1,1,−1,1,−1]T .
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Note that for both example cases just given, using the L-moment estimates to

extend (rather than replace) the feature vector would still allow high probability class

detection if less weight is assigned in the decision function to the set of vector

elements that provide little or no discrimination information for the dataset of interest.

This weighting assignment is an automatic feature of the SVM approach to training

the hyperplane classifier and is to be further explored with respect to L-statistics

functions in the next section.

7.4 SVM’s and L-moments

First, a brief review. In training the SVM or hyperplane classifer on vector-valued

samples within a real Hilbert space X , we define a hyperplane hw,b that separates X

into two half-spaces, where hw,b = {x : 〈w,x〉+b = 0}, w ∈ X , and b ∈ R. By

construction, w is a normal vector of the hyperplane and
||b||
||w|| is the distance of the

hyperplane from the origin (zero vector) in X . A classification function fw,b(x) assigns

a label yt ∈ {−1,1} to each test vector xt based on which of the two subspaces contain

xt :

yt = fw,b(xt) = sgn(〈w,xt〉+b) ,

where

sgn(r)≡

⎧⎪⎨⎪⎩ 1, if r ≥ 0

−1, if r < 0
, r ∈ R .

Given a training set of m samples (with at least one sample from each class), the

hyperplane parameters (w,b) are chosen to minimize the empirical risk (or average

training error rate [27, p.8][14, p.123]):

Remp

[
fw,b

]
=

1

m

m

∑
i=1

0.5
∣∣yi − fw,b(xi)

∣∣ .
As we have seen earlier, in cases where the training set is not linearly separable, a

suitable kernel function, K(w,xt) used in place of the inner product 〈w,xt〉 may result
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in a decision function with a reduced minimum empirical risk. In this case, the

separation hyperplane is in some transformed domain of X .

In the decision function fw,b (x), w acts a weighting vector and b as an offset.

Intuitively, a component (or vector-element) of the training vectors that are not

separable between classes based on that component should have less influence on the

classification decision than a component for which the training set is separable,

assuming the vector components are independent. From an empirical risk perspective,

reducing the weighting factor on the non-separable vector-element and increasing the

weighting factor on the separable vector element tends to decrease the risk of

misclassification. In cases where there is virtually no class divergence of values for

one component within the training set, one would expect that a relatively low or even

zero weight for that component if significant divergence exists for one or more other

components of the training vectors.

As implemented, the modified SVM used in this research tends to place greater

weight on those vector elements have greater influence on the hyperplane classifier’s

ability to separate the training set vectors. More specifically, assuming the input data

has been statistical normalized on an element-by-element basis, the elements of the

weight vector generated on the basis of a specific set of training vectors will have

greater numerical values at those element positions associated with the more separable

training set vector elements. In some cases, this allowed us to reduce the number of

vector elements (components) used in the classifier. However, as was illustrated in the

previous section, some component correlations can be missed by application of the

SVM or hyperplane classifier to the input vector space alone. L-moment statistics on

the statistically normalized dataset can be used to test whether vector element statistics

differ between the two classes of the training vectors. By using L-moment statistics to

extend the input vectors, classification information that may be contained within the

initial vector element set is retained while possibly providing additional information

84



now discernable to the classifier. As the resultant set of vectors is used to train the

hyperplane classifier, the weight vector w can be used to indicate the relative

contribution of the extension elements to the power of the classifier. If the larger

weighting factors correspond to the one or more of the L-moment statistical elements,

then that element might be beneficially included in a reduced set of vector components

to be used by the classifer. In data that is separable based purely on vector element

L-moment summary statistics, the L-moment statistical elements might even be used

in place of the initial input vectors in training the SVM. In this case, the input vectors

would have effectively each been transformed into an “L-moment” Hilbert space prior

to the hyperplane classification process or, equivalently, an L-moment kernel would

have been utilized in the decision function. In cases where the classes are not

generally separable, the SVM misclassification rate on test sets could be used to

compare the relative effectiveness of utilizing the SVM with various combinations of

the identity kernel (initial input space), the L-moment kernel, or some other kernels.

Use of L-moment statistics with the statistically controlled datasets we have

studied may also serve to extend the power of the hyperplane classifier while still

minimizing the risk of overfitting the decision function to a specific training set (i.e.

training the classifier to correctly classify a specific set in a manner that might not

generalize well to a subsequent test set of samples. To find a classifier that is not

overfit to a specific training set, we must make trade-off decisions between the

discrimination power of the classification function family (the learning machine) and

its generalization ability. For the supervised subgroup classification (or detection)

problem under study, an additional decision criterion might prove useful, namely, the

statistical likelihood that the selected subgroup represents simply a random sampling

of the total training set or, in information theoretic terms, the conditional entropy of

the selected subset (or subgroup) given the entire training set. If a selected or

pre-classified subgroup can be shown, with some given confidence level, to
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significantly differ in distribution from the total training set, then it is likely that the

trained classifier machine will provide significant detection or classification

information when applied to future test sets. Otherwise, even though the classifier may

appear to classify or segment the input data, it may not be actually “detecting” a

process variant subset, but be simply providing an artificial segmentation of the data.

Some conditional entropy or statistical significance test may be used in this case to

determine whether a labeled training set is admissible with respect to training the

learning machine to provide informative (statistically significant) classification or

detection. The use of L-moments to preprocess input distributions of test error results

enables the use of the SVM misclassification rate to simultaneously provide a measure

of the separability of the training data and its statistical information content .

In the next section, L-moment kernels are applied to the manufacturing test

datasets studied in Chapter 5.

7.5 Application of L-Moment Kernels to Case Studies

As an initial approach in exploring the effect of applying L-moment kernels to the

case studies of Chapter 5, the data vectors for these datasets were extended using

estimates of up to five L-moments, the L-coeficient of variation (τ) and L-moment

ratios τ3 (and/or τ4). For each of the case studies (Cases A, B, and C), the effect of

extending the statiscally normalized data vectors, including the training vectors, was

observed by revisiting the first experiment listed for the case (i.e. experiments A1, B1,

and C1). Recall that the Heinze-Penrose divergence estimates for Cases A, B, and C

averaged 0.884, 0.541, and 0.905, respectively. Thus, the datasets of Cases A and C

had exhibited significant class divergence, with some overlap; while the dataset of

Case B exhibits little class divergence based on a geometric or spatial measure.

For Case B (Experiment B1), extension of the dataset vectors with estimates of

λ1,λ2, and τ resulted in increasing the SVM detection rate of the twenty-seven (27)
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Figure 7.1: Extended Weight Vector for Experiment B1

factory failed units from 29.6% to 40.7%. However, the false positive rate for the

non-failed test group (125 units) also increased, from 51.2% to 60.8%. Figure 7.1

depicts the extended weight vector. Based on the weights assigned to the vector

elements (λ1,λ2, and τ), it is evident that these additional elements provide some but

not an overriding influence on the SVM classification of the dataset, with the

L-coefficient of variation (τ) carrying the greatest weight of the three.

For both Case A and Case C, the vectors were extended with estimates of the

set {λ1,λ2,λ3,λ4,λ5,τ}. Case A is additionally extended with estimates of τ3 and τ4.

For Case A, the resultant false positive rate was 27.8%, a decrease of 5.5%,

with the trade-off that the detection rate fell from 75.7% to 69.7%. The extended
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Figure 7.2: Extended Weight Vector for Experiment A1

weight vector is shown in Figure 7.2. τ appeared to be the most influential of the

extension elements, but was significantly less influential than other vector elements

with respect to affecting the decision outcomes of the SVM classifier.
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Figure 7.3: Extended Weight Vector for Experiment C1

For Case C, the false positive rate decreased from 29.7% to 25.4%, but the

detection rate changed from 94.8% to 88.1%, an decrease of 6.7%. Figure 7.3 displays

the extended weight vector for Case C. In this case, τ was assigned the greatest weight

among both the original and extension elements.

Note that in all three of these particular cases, the effect of extending the

dataset vectors using estimates of L-moments resulted in a tradeoff between the false

positive rate and the detection rate. Therefore, the choice of retaining this extension in

practice would be dependent on whether the desired end effect depended more heavily

on avoidance of false rejections or avoidance of escapes (false acceptances).
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Chapter 8

SVM IMPLEMENTATION OF WESTERN ELECTRIC COMPANY RULES

8.1 Definitions

Given a series of real-valued outputs from a statistical process, the Western Electric

Company (WECO) rules are a set of decision rules that serve to identify low

probability events and data sequences whose occurence may indicate that the process

is exhibiting a non-random effect or special cause. Under the classical WECO rules an

“out of control” alarm condition is set when at least one of the following conditions

occurs within the data stream [1, Section 6.3.2]:

1. Any point is outside the ±3σ control limits.

2. At least 2 of 3 consecutive points lie on the same side of the mean in a region

that is greater than 2σ away from the estimated process mean.

3. At least 4 of 5 consecutive points lie on the same side of the mean in a region

that is greater than 1σ away from the estimated process mean.

4. 8 or more consecutive points lie on the same side of the mean.

5. 6 or more consecutive points trend up or down.

6. 14 or more consecutive points alternate up and down.

8.2 Using the Modified SVM Construction to Utilize WECO Rules

Each of these WECO alarm conditions require tests on an indexed set (or series) of

real-valued data points x[i], i ∈ N0, to determine whether the condition has been met.

Suppose a subset of such data points is organized into a set of indexed vectors Sk, each
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of length m, with m ≥ 14:1

Sk = {x [k ·m+ j]}m−1
j=0 , k ∈ N0

Let Vk be a vector of length six (6), consisting of the outcomes of six indicator

functions, one for each WECO rule, operating on the associated input vector Sk:

Vk = {vn (Sk)}6
n=1

vn : Sk �→ [0,1]

The outcome of vn is “1” when the associated WECO alarm condition is true (i.e. the

WECO rule is violated).

A direct approach to implementing the WECO alarm conditions with an SVM

construction is to extend or replace each input vector Sk with the vector Vk. The SVM

weight vector and offset could then be assigned to yield a positive (or negative) result

when any WECO rule was violated and a negative (or positive) result otherwise. For

example, if the weight vector W is chosen to be a vector of six ones and the offset

b =−0.5, then the quantity dk = 〈W,Vk〉+b will be greater than 0 if any alarm

condition is true (set) and equal to b, otherwise. One obvious drawback to this

approach is that since each indicator function vn already operates on an input vector to

indicate whether the associated rule is violated, the further complication of extending

or replacing a vector in an SVM is superfluous if the end goal is simply to determine

whether an alarm condition has occurred. However, in a manufacturing situation, the

parameter data being analyzed may be associated with a larger set of parameters and

indicators. It may be useful not only to know that some WECO condition was violated

but also to know whether particular combinations of regular or intermittent WECO

1Since m is finite, there is always the chance of missing an alarm condition that
occurs across the artificially imposed vector endpoints. However, as m increases, the
likelihood of missing an alarm condition due to this anomaly decreases.
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alarm conditions are correlated to classifiable conditions of other associated

parameters or indicators. In this case, the SVM permits a convenient construction if

the problem can be resolved by a two-class discriminator or a series of two-class

discriminators. A extension of the SVM input vector with WECO condition indicators

(on a portion of the vector that represents serial process data) can thus be used in

much the same manner earlier proposed for L-moment estimators—as a means of

providing additional information about the input vector that might enhance the

classification power of the SVM.

If the objective of utilizing WECO conditions is to extend the information

content of a vector or subvector consisting of process data, then another though less

direct approach is to use extension vectors consisting of functions of selected order

statistics on the process data stream. The particular choice of order statistics is based

on their relation (or pseudo-relation) with the WECO conditions.

Let a set of SVM training vectors each consist of m iid samples of

time-ordered process data (where m ≥ 14), possibly with additional vector elements

representing other real-valued parameters. Further assume that the training vectors

have been statistically normalized. In this manner, process mean and sigma

information are then incorporated (on an element-by-element basis) into the SVM

training vectors. As will be outlined below, information similar to that provided by the

WECO conditions (as enumerated in the previous section) can be included with the

SVM by extending each input vector X with a particular set of order statistics. For

ease of explanation, we assume below that X consists only of the m elements of iid

samples. If the vector contains additional elements, the discussion applies to the

subvector consisting of said iid samples.

WECO Condition 1 can be determined using the information provided by Xm,m

and X1,m, which are the maximum and minimum values of the vector elements of X .

Since the data have been normalized to have a standard deviation of the estimated
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process sigma and an offset of zero, WECO Condition 1 will be positive (true) when

either Xm,m > 3 or X1,m <−3.

WECO Condition 2 can be determined using the maximum and minimum

values of the order statistic X2,3 taken over each of the m−2 three-element sets of

consecutive data in X . If X2,3 > 2, then X3,3 > 2 and the condition is true. The

condition is also true if X2,3 <−2, since this implies that X1,3 <−2.

Similarly, WECO Condition 3 is informationally related to the maximum value

of X2,5 and the minimum value of X4,5, both taken over each of the m−4 five-element

sets of consecutive data in X . Condition 3 is true when X2,5 > 1 or when X4,5 <−1.

WECO Condition 4 can be detected using the maximum value of X1,8 and the

minimum value of X8,8 each taken over the m−7 eight-element sets of consecutive

data in X . Condition 4 is true if X1,8 > 0 or X8,8 < 0.

For WECO Condition 5 we begin by generating a vector Y of length m−1 that

consists of the first difference of adjacent elements of the input vector X . Then

Condition 5 can be detected using the maximum value of Y1,5 and the minimum value

of Y5,5 taken over each of the m−5 five-element sets of consecutive data in Y . To add

the WECO Condition 5 information to the input vector, the maximum and minimum

values of Y1,5 and Y5,5, respectively, are used to extend the input vector X . If Y1,5 > 0

or Y5,5 < 0, then Condition 5 is true.

WECO Condition 6 can be detected as follows. First, generate a first difference

vector Y as described for Condition 5. Next, for each thirteen-element sub-vector Z of

consecutive data in Y , determine the maximum value of Z1,2 and the minimum value

of Z2,2 taken over each of the twelve (12) two-element sets of consecutive data in the

sub-vector. Condition 6 is true if, over any thirteen-element sub-vector Z of Y , both of

the following conditions are true: (a) the maximum value of Z1,2 < 0 AND (b) the

minimum value of Z2,2 > 0. To add WECO Condition 6 information to an input vector
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X , the following derived quantities are used to augment the elements of X :

min
Z∈Y

max(Z1,2)

max
Z∈Y

min(Z2,2)

Note that each of the six WECO Conditions can be determined based on

functions of two order statistics on the input vector X or its first difference vector Y .

By using these twelve derived values as extension elements to each vector X , the

informational content of the WECO Conditions can be included in the SVM classifier

for use, for example, in detecting classification differences of similar process data

generated from several manufacturing test stands. In this case, while the vector

extensions could be readily used to determine whether process alarms should be set,

the extension of the SVM input vector with WECO Condition-related information is

accomplished with variable data rather than attribute or discrete data. This may serve

to increase the classification power of the SVM in instances where the process vectors

generated from a particular source are exhibiting non-random behavior that can be

detected as belonging to a different class than the central group of sources even though

the deviation has not yet reached the point of setting a WECO condition alarm.

8.3 Effects of Extending the SVM Input Vectors with WECO Conditions

Since the WECO condition extensions to an input are based on order statistics of that

vector, we would expect that the extensions would add little or only incidental (or

overfitted) classification information to the SVM if the vectors from two classes are

randomly drawn from the same stationary source. In this case, the expected values of

the extension elements are the same for both classes. On the other hand, if the classes

are statistically divergent, the group of order statistic functions represented by the

extensions would be expected to display divergence as well.

94



As an experiment, WECO condition extensions were used to augment the

vectors of Case Study C in chapter 5. Recall that of the three case studies, Case Study

C had the largest estimate of Henze-Penrose divergence (0.905 compared to 0.815 and

0.541 for Case Studies A and B). Without the extensions, the detection rate was 94.8%

with a false positive rate of 29.7%. With WECO condition extensions added to each

vector, the resultant SVM detection rate increased to 97.8 percent, the tradeoff being

an increase in the false positive rate to 38.0%. Next, the WECO conditions extensions

were statistically normalized on an element-by-element ensemble basis to have a zero

mean and unit variance. This time the resultant SVM detection rate remained at 94.8%

and the false positive rate fell to 28.4%, a decrease of 1.3%.

The vectors in the Case Studies A, B, and C of Chapter 5 are non-homogenous

in the sense that they are each comprised of elements that represent different

parameters. Some of the parameters are correlated to each other while others are

independent. In the classical paradigm, the WECO conditions are typically applied to

homogeneous data streams or sets of homogenous data vectors in which the elements

of each vector are instantiations of the same parameter. As in our case studies, the

elements of each vector may or may not be correlated with other elements of the

vector. In fact, due to statistical normalization, the modified input vectors of the case

studies somewhat resemble data vectors of random elements with correlation between

some of the elements. For homogenous data streams generated by processes within

statistical control, the colinearity issue, discussed in Chapter 4, is intrinsically

addressed. In the case of the non-homogenous data vector, including that produced by

augmentation with WECO condition elements, application of statistical normalization

seems to enhance the performance of the SVM classifier by not prematurely over or

under-emphasizing the classification contribution of particular input vector elements.

In the next section, we explore the application of the SVM and WECO condition

extensions to a fourth case study involving homogenous data streams of the same
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measurement parameter from differing manufacturing builds.

8.4 Case Study D: Homogenous Data Streams

A new supplier (Supplier B) was chosen to provide a special functional part of a

particular sensor type. The new supplier utilized some different materials and

deposition methods than the previous supplier (Supplier A), but the project goal was

that the change should result in no detrimental impact to the performance of the

manufactured sensor when it was installed into the end-item measurement device

(transducer). The input data for this case study are a statistically normalized (i.e.

adjusted) set of 800 vectors (one per sensor/transducer) each having 44 elements.

Each vector element is a real number corresponding to the adjusted measurement error

of the transducer at a particular applied source stimulus level and temperature. Both

the training set (16 vectors) and the test set (784 vectors) had vectors whose elements

were each within 4.7 sigma of the its element mean. Of these 800 vectors, 773 vectors

consisted of elements all within 3.0 sigma of their element means. Let the

measurement vectors of sensors manufactured with a part from Supplier A be

designated Class A and considered the negative samples. Let the remaining vectors be

designated Class B and considered to be the positive samples. One-hundred (100) of

the input vectors were from Class B; seven-hundred (700) vectors were from Class A.

The Henze-Penrose divergence of this study set was estimated through use of

minimum spanning trees on groups of 200 vectors (100 from each class) to determine

Friedman-Rafsky (FR) statistics. The range of seven (7) such estimates, encompassing

the entire study set, was from 0.530 to 0.920 averaging 0.694 with a standard

deviation of 0.133. The estimated Henze-Penrose divergence average (ĤPavg) for this

study set is close to 0.7, suggesting that there is some distribution divergence between

the two classes, though the standard deviation and relatively wide range for the 7

estimates hints that that the overall distribution for the Class A vectors may be a

96



composite mixture of several distributions.

Each of the 800 vectors were extended with a 21-element set consisting of

estimates of L-statistics (λ1,λ2,λ3,λ4,λ5,τ,τ3,τ4,τ5) and the twelve WECO

condition elements, as defined previously. The 21 elements were then statistically

normalized to each have zero mean and unit variance across the 800-sample set. Using

the same 100-member groupings of vectors described above, ĤPavg was estimated for

various subvectors of the extended vector set. With all 65 elements (Data + Full

Extension) included for each vector, ĤPavg = 0.702 with a standard deviation

σHP = 0.122. Replacing each original 44-element input vector with only its

21-element extension (Full Extension) results in ĤPavg = 0.661 with a standard

deviation σHP = 0.141. Other vector subsets for which the Henze-Penrose divergence

was calculated include

• L-moments (λ1,λ2,λ3,λ4,λ5)

• L-moment Ratios (τ,τ3,τ4,τ5), including the L-coefficient of variation τ .

• L-statistics (λ1,λ2,λ3,λ4,λ5,τ,τ3,τ4,τ5)

• WECO Information (12-element extension vector), as defined in Section 8.2

• Data + WECO Information

• Data + L-moments (λ1,λ2,λ3,λ4,λ5)

The Henze-Penrose divergence estimates for all nine aforementioned vector subsets is

shown in Table 8.1.

Based on the tabulated ĤPavg estimates of divergence between the Class B and

each of the seven Class A subgroups, the third subgroup (A3) of samples from Class A

appears to be the most divergent from the Class B. Subgroups A5, A6, or A7 appear to

be the least divergent, depending on which vector subset is used for the estimates. Two
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subgroups of Class A were chosen, along with the Class B set, as the basis of the two

SVM experiments that follow. For Class A training sample candidates, experiment D1

utilizes subgroup A3, the most divergent subgroup of Class A with respect to the Class

B set. In experiment D2, Class A training samples were was chosen from subgroup

A7 (one of the less divergent subgroups). For both SVM’s, equations 3.20 and 3.21,

with p = 1, were invoked to solve for the SVM weight vectors and offsets.

Experiment D1

For this experiment, Class B is considered the positive set and Class A is considered

the negative set. An SVM was trained using 8 samples from class B and 8 samples

from subgroup A3 of Class A. The training samples for each class were randomly

chosen from among the 100 training candidate members.2 The remaining 784 samples

(92 from Class B and 692 from Class A) were used as test samples. Figure 8.1 shows

the resultant weight vector for this SVM obtained using the fully extended vector set.

Table 8.2 shows the trainings errors and classification performance obtained for

various subvector combinations.

Experiment D2

As in the prior experiment, Class B is considered the positive set. The SVM for this

experiment used 16 training samples (8 from each class), leaving 784 test samples.

The positive training samples were the same as those used in Experiment D1. The

negative training samples were randomly chosen from among the members of

subgroup A7. Figure 8.2 shows the weight vector for this SVM after training with the

2A random number generator (a component within a commercially available spread-
sheet software program) was used to generate 3 columns of 8 unique integers each
within the inclusive range of 1 to 100. It was not required that the numbers be unique
between columns, only within columns, resulting in the generation of 22 unique num-
bers and 2 replicates. The generated numbers in the three columns were then used as
the indices by which to select the training vectors from the Class B, Class A3, and Class
A7 sets, respectively.
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Figure 8.1: Extended Weight Vector for Experiment D1
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Figure 8.2: Extended Weight Vector for Experiment D2
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fully extended vector set. Table 8.2 shows the trainings errors and classification

performance.

Observations and Conclusions

For experiment D1, the detection rates under any of the subvector cases were, with the

exception of the L-moment ratio case, 84% or better, indicating that given all 700

positive samples from class B, the associated SVM (SVM_D1) correctly labeled at

least 588 of the samples. And, for the L-moment extension, the false positive rate was

reduced as well. However, the high false positive rates, which were all greater than

51%, support the hypothesis that, overall, class B is not generally separable from class

A, at least by the methods employed for this experiment.

Note that for experiment D1, extending the data vector with the full extension

set, the first five L-moments, or the WECO information did improve the detection

rate.Also of interest is the fact that under experiment D1, using the first five

L-moments or the L-statistics in place of the data vector provide classification results

on par with (actually, slightly better than) the results attained using the input data

alone. This is supportive of the notion that, for datastream classification scenarios in

which separability may be largely depend on datastream statistics (rather than element

by element inter-vector statistics), the first five L-moments can be used in a classifier

to represent the original input datastream or vector.

For experiment D2, which used a training set from class A that had a

distribution with little divergence from members of class B, the resultant SVM

classifier had poor detection rates (≤ 50%) and training errors for most of the

sub-vector cases, including the input-data-only case. This result indicates that the

training data did not provide sufficient information on which to base a “good”

separating hyperplane by which the larger set (training + test samples) could be

classified. Even in the sub-vector cases where there were no training errors, the
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resultant classifier did not generalize well to the larger sample set. In all three cases of

errorless training, the detection rate was ≤ 50% and the false positive rate exceeded

the detection rate.

An additional indicator of the relative ease or difficultly of training the SVM

could also be discerned by observing the SVM coefficient values (i.e. weight vector

element values). The large magnitudes of the weight vector element values for

experiment D2 (see graph 8.2) compared to the relatively low magnitudes seen in

experiment D1 (see graph 8.1) have a loosely inverse correlation to the estimated HP

divergence of the training sets in each case. The training set with the lower divergence

between its two classes resulted in coefficients with larger magnitudes than those

resulting from the training set with higher divergence.

Taken together, the results of both experiments indicate that there is likely little

performance difference between members of class A and class B that can be discerned

on the basis of the transducer end item accuracy testing represented by the input data.

In other words, the sampled process data used as input data for this SVM case study

did not signal general performance degradation of the sensor based on used of

component part provided by Supplier B relative to those historically provided by

Supplier A.
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Chapter 9

SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

9.1 Summary

Statistical process control (SPC) techniques have been widely applied to the product

manufacturing arena, one objective being to improve product quality and field

reliability. Over the years, SPC approaches has demonstrated added advantage toward

the objective of product reliability over simply using inspection criteria and

specification limits as the sole means of screening product on a PASS/FAIL basis.

However, there are cases in which, even though the available manufacturing test data

for the components of a product are within statistical process control limits, the

product later fails a downstream manufacturing test at the end-item level or fails

during use in the field. In some cases, there are cues in the manufacturing test data,

which were generated upstream from the point of failure, that are highly correlated to

the occurrence of the particular failure scenario. Such cues have been used as failure

predictors, enabling implicated components or end-items to be screened out prior to

further production processing or field use. In practice, the cues may not be a perfect

predictor of the failure mode of interest, so there is often a trade-off to be negotiated,

in adjusting the predictor-based screening criteria, between the rate of detection and

the risks of either rejecting “good” units or allowing “bad” units to proceed further

downstream.

As part of this research, a binary classification methodology was developed

that can be used to design (analyze) and implement (synthesize) predictors of

end-item field failure/survival or downstream product test pass/fail performance based

on upstream test data. Additionally, the methodology can be used as a forensic tool for

failure analysis and root-cause investigations. The implementation form of the

prediction classifier is given by equation 3.2.
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Once trained for a specific dataset, the prediction machine is most effective in

cases where the methodology has identified high correlation between one or more

parameter elements of the upstream data and the downstream failure mode. The

methodology also provides a weight vector (w) whose element values serve to indicate

the relative importance of the elements of a parameter input (or time-series) vector.

This enables the use of this methodology as a forensic tool in determining likely

contributing factors in support of investigations of manufacturing yield issues or field

failures. Such identification can also prove helpful in validating the results of product

improvements aimed at correcting failure modes known to be associated with

detectable cues in manufacturing test data. In real-world scenarios, the correlation

between the downstream failure and cues in the upstream manufacturing data is not

generally ideal, so some cost/benefit analysis may need to be incorporated in the

decision process of what trade-offs need to be made between the detection rate and the

false positive rate when introducing a predictor into the manufacturing process stream

as a screening tool. Or, indeed, whether the predictor should be implemented at all or

only used as a data analysis or forensics tool. There are cases where the upstream test

data would not be expected to provide true cues, especially if a latent defect or field

induced defect is unrelated to any currently tested performance effects. In such cases,

the prediction machine developed under this methodology might fail to perform well

on members of the target dataset that were not included in training the predictor.

Ironically, in such a case, this might serve as one piece of evidence, not necessarily

conclusive, that the manufacturing data under review offers little or no cues related to

the failure mode of interest.

In this dissertation, we have explored the use of product field reliability data

(or end-item test data) to infer data mining or pattern recognition criteria onto

manufacturing process data by means of a hyperplane classifier in conjuction with

transform mappings in order to provide reliability prediction models. The
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Henze-Penrose divergence estimate on the classifier test input data is used as a means

of gaging the relative performance of the prediction models across several case

studies. The data we have chosen to analyze for reliability cues is prior manufacturing

test data in which any data that lie beyond some chosen statistical control limits have

already been eliminated. However, downstream tests or field use may later reveal units

that fail or function uncharacteristically. The question then becomes whether there are

some characteristics in the statistically controlled prior data that can be exploited via a

hyperplane classifier to detect, based on this prior data, which of the units under test is

more likely to belong to a particular class of units whose downstream or field

performance differs from that of the general population.

We have made the following contributions:

• Algorithmic details of a modified SVM classifier that can be trained on labeled

subsets of data from a statistically controlled process along with performance

analysis of the classifier on several sets of actual manufacturing test data. The

classifier so trained could then be used as a predictor function on the elements of

the dataset for inclusion in the class represented by the training data.

• The use of L-moment vectors and/or L-moment extensions to the input data

vectors as means of increasing the discrimination power of the SVM upon the

data streams from a statistically controlled process or upon multi-parameter

vectors that may have correlation between elements.

• Algorithmic details and performance analysis of a modified SVM classifier that

uses specific functions of order statistics of input vectors in order to embed

discriminant information into the classifier equivalent to that required in the

implementation of the classical 3-sigma process limits and Western Electric

Rules.
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Use of kernel functions allowed substitution or extension of classifier input vectors, at

times improving the performance of the classifier on the test set. L-moment and

WECO information extensions can serve to provide additional discriminating power

to the SVM, especially in cases were the input data from both classes comes from an

overall dataset that is already in statistical control.

9.2 Directions for Further Research

In determining the SVM weight vector, we first determined the solution to the Wolfe

dual optimization equation 3.12, arriving at a solution in the form of equation 3.20.

Rather than solve this equation iteratively, with ηi set to zero, we chose to fix the

solution for the modified SVM by setting ηi with a relation based on the relative

lengths of the input vectors as expressed in equation 3.21. We observed that the value

of p could be adjusted to obtain a maximum margin hyperplane that, depending on the

particular training set, approximates or actually matches the optimal hyperplane as

defined in equation 3.4. In most cases, we left the value of p set to 1. One area of

research might be to explore automatic optimization of the choice of p with

constraints to avoid solution instability due to overfitting. A related area would be to

explore other relations for ηi.

In the one case study of statistically controlled datastreams, it appeared that the

first five L-moments were able to serve as a type of compressed data representation of

the 44-element input data vector, providing classification results on par with those

achieved using the input vector itself. However, while adding the WECO information

to the SVM resulted in some improvement to the detection rate, it also resulted in

increasing the false positive rate. This would seem to indicate, as might be expected in

this case, that the WECO condition states are significantly similiar between the two

classes. This suggests at least two potential areas of research. One would be to explore

the robustness of L-moment representations of statistically controlled datastreams
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(possibly with some outliers included) in training predictive classifiers both with

respect to their ability to “compact” the input data and with respect to whether using

only the first five L-moments is sufficient for various types of manufacturing or

process test data. The other area involves exploring the effectiveness of SVM’s that

are trained utilizing WECO condition information derived from the order statistics of

input data representing the classes of in-control (non-alarm) and out-of-control

(alarm) processes.

Another open area is the extension of this binary classification methodology to

multi-class problems. The simplicity of classifier implementation might justify

exploration of the following scenario. For some multi-class problems, one could

envision the use of several binary classifiers each used to classify different groupings

of the subject classes. Then the joint outcomes of the classifiers could be used as the

basis of deciding the class label that should be assigned to a test input.

SVM’s are but one approach to detecting correlations between input data and

classification assignments. Some of the methodology employed in this study (such as

element-by-element ensemble statistical normalization and input vector extension or

substitution via the use of kernels) are generalizable for use with other types of

classification engines or paradigms including, for instance, information theoretic or

entropy-based approaches. Also open for further research is exploration of the

performance optimality bounds of this methodology using SVM’s or other types of

classifiers.
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