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ABSTRACT

This dissertation presents three essays in economics. Firstly, I study the

problem of allocating an indivisible good between two agents under incomplete in-

formation. I provide a characterization of mechanisms that maximize the sum of

the expected utilities of the agents among all feasible strategy-proof mechanisms:

Any optimal mechanism must be a convex combination of two fixed price mech-

anisms and two option mechanisms. Secondly, I study the problem of allocating

a non-excludable public good between two agents under incomplete information.

An equal-cost sharing mechanism which maximizes the sum of the expected util-

ities of the agents among all feasible strategy-proof mechanisms is proved to be

optimal. Under the equal-cost sharing mechanism, when the built cost is low, the

public good is provided whenever one of the agents is willing to fund it at half cost;

when the cost is high, the public good is provided only if both agents are willing to

fund it. Thirdly, I analyze the problem of matching two heterogeneous populations.

If the payoff from a match exhibits complementarities, it is well known that absent

any friction positive assortative matching is optimal. Coarse matching refers to a

situation in which the populations into a finite number of classes, then randomly

matched within these classes. The focus of this essay is the performance of coarse

matching schemes with a finite number of classes. The main results of this essay

are the following ones. First, assuming a multiplicative match payoff function, I

derive a lower bound on the performance of n-class coarse matching under mild

conditions on the distributions of agents’ characteristics. Second, I prove that this

result generalizes to a large class of match payoff functions. Third, I show that

these results are applicable to a broad class of applications, including a monopoly

pricing problem with incomplete information, as well as to a cost-sharing problem

with incomplete information. In these problems, standard models predict that opti-
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mal contracts sort types completely. The third result implies that a monopolist can

capture a large fraction of the second-best profits by offering pooling contracts with

a small number of qualities.
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CHAPTER 1

OPTIMAL ALLOCATION OF AN INDIVISIBLE GOOD

1.1 Introduction

In this paper we consider the problem of allocating an indivisible good among two

agents when agents’ valuations of the good are private information. A typical

problem of such is the bilateral bargaining model in which a seller and a buyer

negotiate with each other as to if and how to trade a particular good. This problem

has generated a large literature since the pioneering work of Myerson and

Satterthwaite (1982). Another more practical example is how to allocate a more

desirable office among two interested employees. The intense research interest in

this type of problem is derived from a fundamental dilemma due to Green and

Laffont (1977): when agents’ valuations are private information, it is impossible to

find a costless method that always gives the good to the agent with the higher

valuation.

Several methods are commonly used in practice to solve such allocation

problems: Lotteries, seniority ranking or other type of queuing, or even auctions,

are just few of the well-known examples. Many of such methods are quite

effective in soliciting agents’ revelation of true valuations. Yet some methods may

often assign the good to the agent with the lower valuation (lotteries), others may

incur negative cash outflows from the agents (auctions). At the more theoretical

level, two particular classes of methods have received researchers’ attentions. The

first class consists of all Vickery-Clark-Groves pivotal mechanisms (Vickery,

1961, Clarke, 1971, Groves, 1973) that extend the conventional English auction

scheme. The second class consists of all fixed-price mechanisms (Hagerty and

Rogerson, 1987), in which the good is assigned to one agent (the seller) unless

both agents are willing to trade the good at a predetermined price. It is well-known
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that these two classes of methods have their own strength and weakness, yet no

one has ever carried out any formal comparisons of these two methods, not to

mention comparisons of more general methods.

We shall conduct a systemic investigation of various allocation methods

from the optimal mechanism design perspective. We are focused on methods that

are both robust and practical. Specifically, we require that all methods be immune

to individual manipulation so that it must be a dominant strategy for each agent to

reveal their true valuations. We also require that all methods be feasible so that

there would be no need of injection of money from outside. Our task is to find

among all such methods those that maximize the sum of the utilities of both

agents. We show that fixed price mechanisms are indeed optimal. In addition, this

exercise leads us to another class of mechanisms, called the option mechanisms. In

an option mechanism, one agent is the temporary holder of the good and the other

agent is the recipient of a call option that allows him to purchase the good from the

first agent at a predetermined price. The good changes hands as long as the option

recipient is willing to buy the good from the temporary holder at the

predetermined price. In comparison, under the fixed price mechanism, the good

changes hands only when both agents agree to the trade at a predetermined price.

We can show that option mechanisms are also optimal. In fact, the main result of

our paper is that any optimal mechanisms must be a lottery of fixed price

mechanisms and option mechanisms.

Our result makes a significant contribution to the literature of mechanism

design. While the optimal mechanism approach has been standard for the study of

Bayesian mechanisms, it has rarely been applied by anyone to study strategy-proof

mechanisms1. Our result is one of the very few that have identified the structure of
1 The fact that there few known results with strategy-proof mechanisms is not
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optimal strategy-proof mechanisms in a canonical allocation model2. It is also

interesting that we have found a new role for options. In the traditional finance

literature options are either used as instruments for risk management for investors

or as means to provide incentives for managers. In our model, however, they are

used as a part of a mechanism to maximize the sum of agents’ utilities.

1.2 The Main Result

Consider a model with two agents and one indivisible good. The good is a private

good so that it can be consumed by one agent only. Each agent has a quasi-linear

utility function for the good and the money transfer,

vi(xi, ti;θi) = θi xi + ti.

Here the parameter θi ∈ [0,1] is agent i’s valuation of the good, or i’s type and

xi ∈ [0,1] is the probability that agent i receives the good. The value of θi is known

to agent i only.

When the values of θ1 and θ2 are commonly known, the efficient allocation

is to give the good to the agent with the higher θi. However, when θ1 and θ2 are

privately known only, it is not always possible to identify and execute the efficient

the only motivation behind our work. The predicted outcomes of a strategy-proof
mechanism are deemed reliable since all agents have unambiguous optimal actions
regardless others’ actions. The predicted outcomes of a Bayesian mechanism are
accepted only under strong informational and behavioral assumptions. For exam-
ple, one must assume that the distribution of agents’ types is common knowledge
among all agents and is also known to the designer of the mechanism. We will not
debate on the relative merits of Bayesian mechanisms, strategy-proof mechanisms
and other alternatives here. Interested readers can find them in other papers on this
issue (Chung and Ely, 2004, d’Aspremont and Gerard-Varet (1979), Bergemann
and Morris, 2005, Jehiel et al, 2006).

2Miller considers a model that is similar to ours in a recent working paper
(Miller 2007, see also Athey and Miller 2007). After conducting a series of simu-
lations, he arrives at the conclusion that the fixed price mechanism maximizes the
sum of the agents’ utilities as a conjecture. Moreover, there is no mentioning of the
option mechanism and the characterization of all optimal mechanisms.
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allocation. We consider here direct mechanisms that ask agents to report their

types and use their reported types to determine the allocation as well as transfers to

the agents. This attention on direct mechanisms is not excessively restrictive since,

by the revelation principle, our analysis immediately extends to all direct

mechanisms in which both agents have dominant strategies at every type profile.

Otherwise, we allow nearly all direct mechanisms. In particular, we allow all

mechanisms that allocate the good to agents randomly.

Formally, a direct mechanism M consists of four integrable functions on

[0,1]× [0,1]: x1(θ1,θ2), x2(θ1,θ2), t1(θ1,θ2), t2(θ1,θ2). Since x1(θ1,θ2) and

x2(θ1,θ2) are respectively the probabilities agent 1 and agent 2 receive the good,

they must satisfy

xi(θ1,θ2) ∈ [0,1] , and x1(θ1,θ2)+ x2(θ1,θ2)≤ 1, ∀θ1,θ2.

The functions t1(θ1,θ2) and t2(θ1,θ2) are transfers to the agents.

To ensure that agents have incentives to report their true types, we require

that all mechanisms under consideration be strategy-proof, i.e.,

θ1x1(θ1,θ2)+ t1(θ1,θ2)≥ θ1x1(θ̃1,θ2)+ t1(θ̃1,θ2), ∀θ1, θ̃1,θ2

θ2x2(θ1,θ2)+ t2(θ1,θ2)≥ θ2x1(θ1, θ̃2)+ t1(θ1, θ̃2), ∀θ1,θ2, θ̃2.
(IC)

We also require that all mechanisms be feasible so that it does not need outside

money,

t1(θ1,θ2)+ t2(θ1,θ2)≤ 0, ∀θ1,θ2. (F)

The majority of work on bilateral bargaining further assumes

budget-balanced-ness, i.e.,

t1(θ1,θ2)+ t2(θ1,θ2) = 0, ∀θ1,θ2. (BB)

We don’t want to impose budget-balanced-ness in our work. Although money

burning seems inefficient ex post, it might conceivably increase the ex ante
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efficiency of a mechanism since it could provide incentives more effectively. In

fact, all Vickery-Groves-Clarke mechanisms that implement the efficient

allocation of the good do not satisfy budget-balanced-ness. If we were to impose

budget-balanced-ness, we would have excluded a large class of mechanisms that

are popular in the literature of mechanism design from consideration and the end

result would be much weaker.

So far the basic structure our model looks virtually the same as the auction

model with private values (Myerson, 1980) and the bilateral bargaining model

(Myerson and Satterthwaite, 1983, Hagerty and Rogerson, 1987). The main

distinction between our model and the others is the difference in objectives. In the

auction literature the objective is maximal revenue extraction by an outsider from

the agents, whereas in the bilateral bargaining model the objective is maximal

revenue extraction by one agent (the seller) from the other (the buyer). In contrast,

we adopt the utilitarian viewpoint here and our objective is to find mechanisms

that maximize the sum of utilities of both agents.

Given any feasible strategy-proof mechanism

M = {x1(θ1,θ2), x2(θ1,θ2), t1(θ1θ2), t2(θ1,θ2)}, the sum of agents’ utilities is at

each (θ1,θ2) is

U1(θ1,θ2)+U2(θ1,θ2) = θ1x1(θ1,θ2)+θ2x2(θ1,θ2)+ t1(θ1,θ2)+ t2(θ1,θ2).

Since the mechanism M satisfies feasibility,

U1(θ1,θ2)+U2(θ1,θ2)≤ Max{θ1,θ2} , ∀θ1,θ2.

If we could find a feasible strategy-proof mechanism M for which

U1(θ1,θ2)+U2(θ1,θ2) = Max{θ1,θ2} , ∀θ1,θ2,

then M would be the optimal mechanism. However, this is impossible the classical

result by Green and Laffont (1977) shows. On the other hand, for every (θ̃1, θ̃2), it
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is easy to find a feasible strategy-proof mechanism M(θ̃1,θ̃2)
for which

U1(θ̃1, θ̃2)+U2(θ̃1, θ̃2) = Max
{

θ̃1, θ̃2
}
,

(just the trivial mechanism that always give the good to the agent with the higher

θ̃i). Hence, we cannot find a first-best mechanism that (weakly) dominates all

others at all type profiles. As a result, a meaningful criterion of optimality should

be based on some average measurement.

In a Bayesian model one must specify a distribution function P of agents’

types and one would naturally use P to calculate the average. We have not

specified a distribution of agents’ types yet since in our model agents choose their

best actions using the simple idea of dominance strategies. In the absence of a

distribution of types as the primitive of the model, we may use some discretion in

choosing a probability distribution to calculate the average. In his classical article

on utilitarianism (1955), Harsanyi argues that one may assume the uniform

distribution on the unknown when one is behind the “veil of ignorance.” Hence,

we will use in this paper the uniform distribution on agents’ types as the basis for

to calculate the average3.

Let F denote the class of all feasible strategy-proof mechanisms. For each

M ∈ F , the total utilities of M is given by:

TU(M) =

1∫
0

1∫
0

(θ1x1(θ1,θ2)+θ2x2(θ1,θ2)+ t1(θ1,θ2)+ t2(θ1,θ2))dθ1dθ2.

3While this is a restrictive assumption, we want to emphasize that this assump-
tion in our dominance-strategy-based model is not nearly as strong as the same
assumption in a Bayesian model. First, agents’ optimal actions are independent
of this distribution assumption. Second, as a consequence, the set of all mecha-
nisms under consideration is independent of this distribution assumption. We are
simply using some probability distribution, from the viewpoint of the designer of
the mechanism, to evaluate the efficiency of various mechanisms. The use of the
uniform distribution reflects the fact that we are not really sure about the true dis-
tribution of agents’ types, which is one of the main reasons why we are studying
strategy-proof mechanisms in the first place.
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Figure 1: The Fixed Price Mechanism

Our goal is to characterize all mechanisms M∗ ∈ F that yield the highest average

total utilities, that is,

TU(M∗) = MaxM∈F TU(M).

Let us calculate TU(M) for some well-known mechanisms.

First, the canonical pivotal mechanism (or the second price auction

mechanism) MSP has the total utility TU(MSP) =
1
3 , which is not very high. It is

not even the best one among all V-C-G mechanisms. In a separate paper we find

the best V-C-G mechanism MBVCG with TU(MBVCG) =
7
12 (Shao and Zhou, 2007).

Hagerty and Rogerson (1987) consider fixed price mechanisms: assuming

that agent one is the seller and agent two the buyer, a trade will take place at some

fixed price p if and only both the seller and the buyer agree. Formally, the fixed

price mechanism with price p is defined as follows (see Figure 1):
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Figure 2: The Option Mechanism



x1(θ1,θ2) = 0,

t1(θ1,θ2) = p,

x2(θ1,θ2) = 1,

t2(θ1,θ2) =−p,

when θ1 ≤ p and θ2 ≥ p; and



x1(θ1,θ2) = 1,

t1(θ1,θ2) = 0,

x2(θ1,θ2) = 0,

t2(θ1,θ2) = 0,

otherwise.

Among all fixed price mechanism, the mechanism with the price p = 1
2 yields the

highest total utility TU(MF) =
5
8 . (The same holds for the fixed price mechanism

in which agent two is the designated seller.)

In this paper we also consider another mechanism, called the option

mechanism, which is related to, but different from, the fixed price mechanism. It

gives the good to agent one conditionally and, at the same time, issues a call option

to agent two that allows him to buy the good from agent one at a fixed exercise

price of p. Obviously, agent two will exercise the option if and only if θ2 > p.

Formally, it is defined as follows (see Figure 2):
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x1(θ1,θ2) = 0,

t1(θ1,θ2) = p,

x2(θ1θ2) = 1,

t2(θ1,θ2) =−p,

when θ2 ≥ p; and



x1(θ1,θ2) = 1,

t1(θ1,θ2) = 0,

x2(θ1,θ2) = 0,

t2(θ1,θ2) = 0,

otherwise

Among all option mechanisms, the mechanism with the option price p = 1
2 yields

the highest total utility TU(MO) =
5
8 . (The same holds for the option mechanism

in which agent two is the conditional owner of the good and agent one is awarded

the option.)

It is interesting that the best fixed price mechanism and the best option

mechanism yield the same level of total utilities. These two mechanisms differ

only in the region θ1 ≥ 1
2 and θ2 ≥ 1

2 where both agents’ types are greater than or

equal to 1
2 . The fixed price mechanism favors agent one by giving the whole region

to agent one, whereas the option mechanism favors agent two. The total utilities

are the same since agents’ types are distributed symmetrically.

The main finding of our paper is that both the fixed price mechanisms and

the option mechanisms (with p = 1
2) are optimal. Moreover, all optimal

mechanisms are convex combinations of these four mechanisms.

Theorem Every optimal mechanism is a convex combination of the two

fixed-price mechanisms and the two option mechanisms.

Proof We will divide the proof into two parts. In Part I we show

MaxM∈F TU(M) = 5
8 . In Part II we demonstrate that any mechanism that satisfies

TU(M) = 5
8 must be a convex combination of the four mechanisms.

Part I We begin with the structure of a generic mechanism M ∈ F . First, since M

is strategy-proof, x1(θ1,θ2) is non-decreasing in θ1 and x2(θ1,θ2) is

non-decreasing in θ2. For every pair of such x1(θ1,θ2) and x2(θ1,θ2), we can find
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a continuum of pairs of t1(θ1,θ2) and t2(θ1,θ2) such that these four functions

define a feasible strategy-proof mechanism. The canonical transfers are the

generalized pivotal-taxes:

t p
1 (θ1,θ2) =−θ1x1(θ1,θ2)+

θ1∫
0

x1(α ,θ2)dα, and

t p
2 (θ1,θ2) =−θ2x2(θ1,θ2)+

θ2∫
0

x2(θ1,β )dβ .

By definition, the pivotal-taxes are non-positive so that they define a feasible

mechanism. However, they represent outflows of money from agents so the

resulting mechanism is not efficient. To improve the efficiency of the mechanism,

we consider redistribution of the pivotal transfers between two agents while

keeping the incentive property of the mechanism intact. To achieve this goal, we

add some function of θ2 only —h1(θ2)— to t p
1 (θ1,θ2) and some function of θ1

only —h2(θ1)— to t p
2 (θ1,θ2):

t1(θ1,θ2) =−θ1x1(θ1,θ2)+
θ1∫
0

x1(α ,θ2)dα +h1 (θ2) , and

t2(θ1,θ2) =−θ2x2(θ1,θ2)+
θ2∫
0

x2(θ1,β )dβ +h2 (θ1) .

Obviously, the new mechanism is still strategy-proof. In fact, this is actually the

only way to maintain the incentives. We may consider these functions h1(θ2) and

h2(θ1)as rebates to the agents —h1(θ2) is the amount of money agent 1 receives

when agent 2’s type is θ2 and h2(θ1) is the amount of money agent 2 receives

when agent 1’s type is θ1. The total amounts of money that can be redistributed

between the agents are limited from above by the feasibility condition:

h1 (θ2)+h2 (θ1)≤ θ1x1(θ1,θ2)−
θ1∫

0

x1(α ,θ2)dα −
θ2∫

0

x2(θ1,β )dβ . (F)

Now let us estimate the upper-bound of

TU(M) =

1∫
0

1∫
0

(θ1x1(θ1,θ2)+θ2x2(θ1,θ2)+ t1(θ1,θ2)+ t2(θ1,θ2))dθ1dθ2.

10



Since θ1x1(θ1,θ2)+ t1(θ1,θ2) =
∫ θ1

0 x1 (a,θ2)da+h1 (θ2), we have

1∫
0

1∫
0

(θ1x1(θ1,θ2)+ t1(θ1,θ2))dθ1dθ2

=

1∫
0

1∫
0

 θ1∫
0

x1(τ,θ2)dτ

dθ1dθ2 +

1∫
0

h1(θ2)dθ2

=

1∫
0

1∫
0

 1∫
τ

x1(τ,θ2)dθ1

dτdθ2 +

1∫
0

h1(θ2)dθ2

=

1∫
0

1∫
0

(1− τ)x1(τ,θ2)dτdθ2 +

1∫
0

h1(θ2)dθ2

=

1∫
0

1∫
0

(1−θ1)x1(θ1,θ2)dθ1dθ2 +

1∫
0

h1(θ2)dθ2.

Thus,

TU(M)

=

1∫
0

1∫
0

(θ1x1(θ1,θ2)+θ2x2(θ1,θ2)+ t1(θ1,θ2)+ t2(θ1,θ2)) dθ1dθ2

=

1∫
0

1∫
0

((1−θ1)x1(θ1,θ2)+(1−θ2)x2(θ1,θ2)) dθ1dθ2

+

1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1

=

1∫
0

1∫
0

(x1(θ1,θ2)+ x2(θ1,θ2)) dθ1dθ2 +

1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1

−
1∫

0

1∫
0

(θ1x1(θ1,θ2)+θ2x2(θ1,θ2)) dθ1dθ2

11



≤
1∫

0

1∫
0

(x1(θ1,θ2)+ x2(θ1,θ2)) dθ1dθ2 +

1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1

−
1∫

0

1∫
0

(θ1x1(θ1,θ2)+θ2x2(θ1,θ2)+ t1(θ1,θ2)+ t2(θ1,θ2)) dθ1dθ2

=

1∫
0

1∫
0

(x1(θ1,θ2)+ x2(θ1,θ2)) dθ1dθ2 +

1∫
0

h1(θ2)dθ2

+

1∫
0

h2(θ1)dθ1 −TU(M).

Hence,

TU(M)≤ 1
2

 1∫
0

1∫
0

(x1(θ1,θ2)+ x2(θ1,θ2))dθ1dθ2


+

1
2

 1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1

 . (E)

The equation holds in (E) if and only if
1∫
0

1∫
0
(t1(θ1,θ2)+ t2(θ1,θ2))dθ1dθ2 = 0.

The next Lemma gives us an estimate of the second term on the right hand side of

(E):

Lemma Let A be the area in that is below the minor diagonal θ1 +θ2 = 1:

1∫
0

h1 (θ2)dθ2+

1∫
0

h2 (θ1)dθ1 ≤
3
4
−
∫
A

(x1 (θ1,θ2)+ x2 (θ1,θ2))dθ1dθ2.

Proof of Lemma Let us consider the feasibility inequality on the minor diagonal

θ1 = θ , and θ2 = 1−θ :

h1 (θ)+h2 (1−θ)

≤θx1(θ ,1−θ)−
θ∫

0

x1 (α,1−θ)dα +(1−θ)x2(θ ,1−θ)−
1−θ∫
0

x2 (θ ,β )dβ .
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We integrate the above inequality over θ1 ∈ [0,1],

1∫
0

h1 (θ)dθ+
1∫

0

h2 (1−θ)dθ

≤
1∫

0

θx1(θ ,1−θ)dθ −
1∫

0

θ∫
0

x1 (α,1−θ)dαdθ +

1∫
0

(1−θ)x2(θ ,1−θ)dθ

−
1∫

0

1−θ∫
0

x2 (θ ,β )dβdθ

=

1∫
0

(θx1(θ ,1−θ)+(1−θ)x2(θ ,1−θ))dθ −
1∫

0

θ∫
0

x1 (α,1−θ)dαdθ

−
1∫

0

1−θ∫
0

x2 (θ ,β )dβdθ .

The first term is easy to estimate: Since

max
x1+x2≤1

{θx1(θ ,1−θ)+(1−θ)x2(θ ,1−θ)}=

 1−θ , θ ≤ 1
2

θ , θ ≥ 1
2

,

we have

1∫
0

(θx1(θ ,1−θ)+(1−θ)x2(θ ,1−θ))dθ ≤

1
2∫

0

(1−θ)dθ +

1∫
1
2

θdθ =
3
4
.

Through the change of variables, we can express the double integrals in the second

and the third term as integrals over the area A,

1∫
0

θ∫
0

x1 (α ,1−θ)dαdθ+
1∫

0

1−θ∫
0

x2 (θ ,β )dβdθ

=

1∫
0

1−θ̃∫
0

x1
(
α , θ̃

)
dαdθ̃+

1∫
0

1−θ∫
0

x2 (θ ,β )dβdθ

=
∫
A

(x1 (θ1,θ2)+ x2 (θ1,θ2))dθ1dθ2.

13



Putting these two inequalities together, we prove the lemma. Finally, we can apply

the lemma to (E) to obtain the desired estimate

TU(M)≤ 1
2

 1∫
0

1∫
0

(x1(θ1,θ2)+ x2(θ1,θ2))dθ1dθ2


+

1
2

 1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1


≤ 1

2

 1∫
0

1∫
0

(x1(θ1,θ2)+ x2(θ1,θ2))dθ1dθ2


+

1
2

3
4
−
∫
A

(x1 (θ1,θ2)+ x2 (θ1,θ2))dθ1dθ2


=

1
2

 ∫
[0,1]×[0,1]\A

(x1 (θ1,θ2)+ x2 (θ1,θ2))dθ1dθ2

+
3
8

≤ 1
2
× 1

2
+

3
8
=

5
8
.

Since TU(M) = 5
8 for both the fixed price mechanisms and the option

mechanisms, these mechanisms are all optimal.

Part II We now show that any mechanism that satisfies TU(M) = 5
8 must be a

convex combination of the fixed price mechanisms and the option mechanisms.

We can see from the proof above that any mechanism M satisfies TU(M) = 5
8 must

also satisfy

h1 (θ2)+h2 (θ1)

=θ1x1(θ1,θ2)−
θ1∫

0

x1 (α,θ2)dα +θ2x2(θ1,θ2)−
θ2∫

0

x2 (θ1,β )dβ , a.e. (B1)

x1 (θ1,θ2)+ x2 (θ1,θ2) = 1 (a.e.) on [0,1]× [0,1]\A. (B2)

To avoid unnecessary repetitions, we will drop the qualifier (a.e.) from the proof
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whenever we invoke (B1) and (B2)4. We now divide [0,1]× [0,1] into four small

squares of equal size and study M on each of them separately.

Part II-1 Consider first the upper-left square (0, 1
2 ]× (1

2 ,1]. On this area, agent 2’s

type is always higher than agent 1’s type. It is intuitive that the good should and

could be given to agent 2, i.e., x2 (θ1,θ2) = 1 on
(
0, 1

2

]
×
(1

2 ,1
]
. Let us present a

formal proof. We begin with the upper half of
(
0, 1

2

]
×
(1

2 ,1
]

and prove

x2 (θ1,θ2) = 1 for (θ1,θ2) with θ1 <
1
2

and θ1 +θ2 > 1.

Suppose, on the contrary, x2(θ ∗
1 ,θ

∗
2 )≤ 1−δ with δ > 0 for some (θ ∗

1 ,θ
∗
2 ) with

θ ∗
1 < 1

2 and θ ∗
1 +θ ∗

2 > 1. Since x1(θ1,θ2) is non-decreasing in θ1 and x2(θ1,θ2) is

non-increasing in θ2 (since x2(θ1,θ2) = 1− x1(θ1,θ2) on this region), we must

have

x2(θ1,θ2)≤ 1−δ for all (θ1,θ2) with θ1 ≥ θ ∗
1 and θ2 ≤ θ ∗

2 (see Figure3).

In particular, this inequality holds on the minor diagonal θ1 = θ , and θ2 = 1−θ

when θ ∗
1 ≤ θ1 ≤ 1

2 . Repeating a part of the proof of Lemma, we have

1∫
0

h1 (θ)dθ+
1∫

0

h2 (1−θ)dθ

≤
1∫

0

θx1(θ ,1−θ)dθ −
1∫

0

θ∫
0

x1 (α ,1−θ)dαdθ +

1∫
0

(1−θ)x2(θ ,1−θ)dθ

−
1∫

0

1−θ∫
0

x2 (θ ,β )dβdθ

4The proof remains valid if we have to be more rigorous. At some steps we need
to use the Fubini theorem to justify our argument.
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Figure 3

=

θ∗
1∫

0

(θx1(θ ,1−θ)+(1−θ)x2(θ ,1−θ))dθ −
∫
A

(x1 (θ1,θ2)+ x2 (θ1,θ2))dθ1dθ2

+

1
2∫

θ∗
1

(θx1(θ ,1−θ)+(1−θ)x2(θ ,1−θ))dθ

+

1∫
1
2

(θx1(θ ,1−θ)+(1−θ)x2(θ ,1−θ))dθ

≤
θ∗

1∫
0

(1−θ)dθ+

1
2∫

θ∗
1

(θδ +(1−θ)(1−δ ))dθ

+

1∫
1
2

θdθ −
∫
A

(x1 (θ1,θ2)+ x2 (θ1,θ2))dθ1dθ2

<
3
4
−
∫
A

(x1 (θ1,θ2)+ x2 (θ1,θ2))dθ1dθ2.

When we plug this into the estimation of TU(M), we have

TU(M)<
5
8
.

This contradicts the assumption that M is optimal. Thus

x2 (θ1,θ2) = 1 for (θ1,θ2) with θ1 <
1
2

and θ1 +θ2 > 1.
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Now we show that x2 (θ1,θ2) = 1 also holds for the other half of [0, 1
2 ]× (1

2 ,1] in

which θ2 >
1
2 and θ1 +θ2 ≤ 1.

First, for any θ ′
2 > θ2 >

1
2 , we can find some θ1 with θ1 <

1
2 and

θ1 +θ2 > 1. Then

h1 (θ2)+h2 (θ1) = θ2 −
θ2∫

0

x2 (θ1,β )dβ and

h1
(
θ ′

2
)
+h2 (θ1) = θ ′

2 −
θ ′

2∫
0

x2 (θ1,β )dβ .

Taking the difference of the two, we have

h1
(
θ ′

2
)
−h1 (θ2) = θ ′

2 −θ2 −
θ ′

2∫
θ2

x2 (θ1,β )dβ = 0.

Hence, h1 (θ2) is a constant h∗12 on θ2 ∈
(1

2 ,1
]
. A similar argument also shows that

h2 (θ1) is a constant h∗21 on θ1 ∈
(
0, 1

2

]
. Consider any (θ1,θ2) with θ2 >

1
2 and

θ1 +θ2 ≤ 1. Since x1 is zero to the right of the diagonal, x1 is also zero on this area

for x1 is non-increasing in θ1. Hence

h1 (θ2)+h2 (θ1) = θ2x2(θ1,θ2)−
θ2∫

0

x2 (θ1,β )dβ .

Choosing any θ ′
2 > 1−θ1 ≥ θ2, we have

h1
(
θ ′

2
)
+h2 (θ1) = θ ′

2 −
θ ′

2∫
0

x2 (θ1,β )dβ .

Subtracting one from the other yields

θ ′
2 −θ2x2 (θ1,θ2) =

θ ′
2∫

0

x2 (θ1,β )dβ −
θ2∫

0

x2 (θ1,β )dβ =

θ ′
2∫

θ2

x2 (θ1,β )dβ ≤ θ ′
2 −θ2.

This shows x2 (θ1,θ2) = 1. Hence,

x2 (θ1,θ2) = 1 on
(

0,
1
2

]
×
(

1
2
,1
]
. (II-1)
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Part II-2 When we work with the lower-right square
(1

2 ,1
]
×
(
0, 1

2

]
, we can show

that h1 (θ2) is a constant h∗11 on θ2 ∈
(
0, 1

2

]
and that h2 (θ1) is a constant h∗22 on

θ1 ∈
(1

2 ,1
]
, and

x1 (θ1,θ2) = 1 on
(

1
2
,1
]
×
(

0,
1
2

]
. (II-2)

Part II-3 Now consider the upper-right square
(1

2 ,1
]
×
(1

2 ,1
]
. (B2) implies

h∗12 +h∗22 = θ1x1(θ1,θ2)−
θ1∫

0

x1 (α ,θ2)dα +θ2x2(θ1,θ2)−
θ2∫

0

x2 (θ1,β )dβ .

Since x1 (α,θ2) = 0 for α < 1
2 , and x2 (θ1,β ) = 0 for β < 1

2 ,

h∗12 +h∗22 = θ1x1(θ1,θ2)−
θ1∫

1
2

x1 (α ,θ2)dα +θ2x2(θ1,θ2)−
θ2∫

1
2

x2 (θ1,β )dβ .

If we let both θ1 → 1
2 and θ2 → 1

2 , we obtain h∗12 +h∗22 =
1
2 . Now plug it back into

the equation above,

1
2
= θ1x1(θ1,θ2)−

θ1∫
1
2

x1 (α ,θ2)dα +θ2x2(θ1,θ2)−
θ2∫

1
2

x2 (θ1,β )dβ , or

θ1∫
1
2

x1 (α ,θ2)dα +

θ2∫
1
2

x2 (θ1,β )dβ =

(
θ1 −

1
2

)
x1(θ1,θ2)+

(
θ2 −

1
2

)
θ2x2(θ1,θ2).

Since x1(θ1,θ2) is non-decreasing in θ1 and x2(θ1,θ2) is non-decreasing in θ2, the

equation above implies

x1 (α,θ2) = x1(θ1,θ2), for all α ∈
[

1
2
,θ1

)
, and

x2 (θ1,β ) = x2(θ1,θ2), for all β ∈
[

1
2
,θ2

)
.

It is easy to verify that this holds for all (θ1,θ2) ∈
(1

2 ,1
]
×
(1

2 ,1
]

if and only if

there are two constants c1 and c2 with c1 + c2 = 1 such that

x1 (θ1,θ2) = c1 and x2 (θ1,θ2) = c2 on
(

1
2
,1
]
×
(

1
2
,1
]
. (II-3)
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Part II-4 Lastly, we consider the lower-left square
(
0, 1

2

]
×
(
0, 1

2

]
. We know

h∗11 +h∗21 = θ1x1(θ1,θ2)−
θ1∫

0

x1 (α ,θ2)dα +θ2x2(θ1,θ2)−
θ2∫

0

x2 (θ1,β )dβ .

When let both θ1 → 1
2 and θ2 → 1

2 , we obtain h∗11 +h∗21 = 0. Hence,

θ1x1(θ1,θ2)+θ2x2(θ1,θ2) =

θ1∫
0

x1 (α,θ2)dα +

θ2∫
0

x2 (θ1,β )dβ .

So we can conclude that there are two constants d1 and d2 such that

x1 (θ1,θ2) = d1 and x2 (θ1,θ2) = d2 on
(

1
2
,1
]
×
(

1
2
,1
]
. (II-4)

To find out more about d1 and d2, we put together we have shown about h’s

and x’s. First, on the upper-left square, we have

h∗11+h∗21 = θ2x2(θ1,θ2)−
θ2∫

0

x2 (θ1,β )dβ = θ2−
(

θ2 −
1
2

)
−

1
2∫

0

d2dβ =
1
2
(1−d2) .

Similarly, on the lower-right square

h∗21 +h∗12 =
1
2
(1−d1) .

On the other hand, we already know

h∗12 +h∗22 =
1
2

and h∗11 +h∗21 = 0.

These four equations together lead to d1 +d2 = 1.

Hence, any optimal mechanism can be characterized by two parameters

c ∈ [0,1] and d ∈ [0,1] with the allocation probabilities given by the table in Figure

4:

There are four different combinations of extreme values of c and d:

(i) c = 0 and d = 0: this corresponds to the fixed price mechanism M00 in which
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Figure 4

agent two is the seller;

(ii) c = 1 and d = 1: this corresponds to the fixed price mechanism M11 in which

agent one is the seller;

(iii) c = 0 and d = 1: this corresponds to the option mechanism M01 in which

agent one is given the good and agent two is given the option; and

(iv) c = 1 and d = 0: this corresponds to the option mechanism M10 in which agent

two is given the good and agent one is given the option.

Any other optimal mechanism M is just a convex combination of these four

mechanisms:

M = c◦M11 +(d − c)◦M01 +(1− c−d)◦M00, for c ≤ d; or

M = d ◦M11 +(c−d)◦M10 +(1− c−d)◦M00, for c > d.

This provides the characterization optimal mechanisms among all feasible

strategy-proof mechanisms.

Q.E.D.
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1.3 Discussions

Before closing, we discuss more about our result in comparison with other known

results in the literature and explore some possible extensions of our result for

future research.

Every feasible strategy-proof mechanism consists of two parts: the first

part is the rule of assigning the good to the agents, and the second part transfers

that are necessary to force the agents to report their types truthfully. The loss of

efficiency may come both sources: either the good is not assigned to the agent with

the higher valuation, or the total transfer lead to a money outflow. A very natural

and important question is: What is the optimal trade-off between these two types

of inefficiency? However, this issue has never been addressed formally by others

in the previous literature. Most papers in the literature either focus on V-C-G

mechanisms or on trading mechanisms in which money changes hands between

two agents. These two classes of mechanisms are mutually exclusive by definition:

all V-C-G mechanisms are immune from the first type of inefficiency, and most

trading mechanisms — including the fixed-price mechanisms — are immune from

the second type of inefficiency. Hence, it is impossible to discuss the potential

trade-off within between the two types of inefficiency in either model. In order to

address this issue, we must adopt a more general setting that includes both V-C-G

mechanisms and trading mechanisms as subclasses of admissible mechanisms. We

have done it successfully in this paper. The finding is somewhat surprising:

although it might be expected that an optimal mechanism entails a compromise of

both types of inefficiency, our result indicates the second type of inefficiency

seems more damaging and it must be completely absent at any optimal mechanism.

Our model also differs from the model of Hagerty and Rogerson, and other
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models in bilateral bargaining, in another dimension for we do not impose

individual rationality on mechanisms under consideration in our model. Since this

enlarges the class of admissible mechanisms, this makes our result even stronger.

In addition, we are able to discover the two optimal option mechanisms, which

have never been studied before largely because they do not satisfy individual

rationality when one agent the designated seller and the other agent the designated

buyer5. In many allocation problems where neither agent originally owns the

good, such as the office assignment problem, the option mechanisms are better

alternatives than the fixed-price mechanisms as they are more equitable ex ante.

This advantage is not huge as it disappears once lotteries are admissible.

Once we break away from the bilateral bargaining model, it is then natural

to consider a model in which an indivisible good (or even multiple units of the

good) are allocated among more than two agents. We still do not have any formal

results in such a model yet. Admittedly, it will be quite difficult to obtain a

complete characterization of all optimal mechanisms. However, it is reasonable to

believe that we can still derive some partial results. While we are unsure how to

extend the fixed-price mechanism, we have found a generalization of the option

mechanism. We assign the good to an agent, say agent one, conditionally and

direct him to run a second-price auction of the good with the other n−1 agents

with a reservation price α . This mechanism always balances the budget since

money just changes hands from one agent to another. It should also be reasonably

efficient, depending on the value of α . The best value of α can be found by

maximizing the sum of the expected utilities of all agents (the transfers are absent
5Nevertheless, that the option mechanisms do satisfy the weak individual ratio-

nality condition that no agent has negative utility at any profile.
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since the budget is always balanced):

α∗ = argmax

1
2

αn−1 +

1∫
α

yd(yn−1)

 .

Hence, α∗ = 1
2 . Note that this optimal reservation value is the same as that in

Myerson’s mechanism in which the expected revenue of the seller is maximized. It

would be remarkable that the maximum efficiency in allocating an indivisible good

among n agents can be achieved when we give the good to one of the agents and

direct him to conduct a revenue maximizing auction with the other n−1 agents as

buyers. Of course, this is just a conjecture at this point, and further research is

needed to yield a formal answer.

Finally, we return to an issue we already mentioned when we set up the

basic model. Although we have made some justifications for our use of the

uniform distribution to calculate the expected utilities of the agents, one may still

ask what will happen to our main finding if different distributions are used.

Although it is clear that optimal mechanisms will change, we have not been able to

derive a full characterization of all optimal mechanisms for a general distribution

function of agents’ types. In a separate paper (Shao and Zhou, 2008), we

undertake a more modest task. Instead of including all feasible strategy-proof

mechanisms, we consider only the V-C-G mechanisms and the fixed-price

mechanisms (or the option mechanisms), two classes of mechanisms that are most

prominent in the literature. Assuming that the distributions of agents’ types are

independent and symmetric, we manage to find separately the best mechanism

among all V-C-G mechanisms and the best mechanism among all fixed-priced

mechanisms. Then we compare these two mechanisms to see which one is better.

For some distributions, the best V-C-G mechanism actually outperforms the best

fixed-price mechanism. However, in two important cases when the distribution
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function of types is either concave or convex, we show that the best fixed-price

mechanism beats the best V-C-G mechanism. We should point out that the model

of quasi-linear preferences with a general distribution of types is mathematically

equivalent to the model of more general preferences with a uniform distribution of

types. Copic and Ponsati (2004) have reported some results for the latter model in

the bilateral bargaining framework. While their work has made some progresses in

dealing with non-linearity of preferences, it still shares the similar weakness that

Hagerty and Rogerson’s work exhibits. For instance, it assumes

budget-balanced-ness so it excludes the V-C-G mechanisms as well as many other

potentially mechanisms from consideration. Hence, it cannot even compare the

efficiency of the fixed-priced mechanisms and the V-C-G mechanisms. This being

said, their work is already a rather complicated mathematical exercise. We

certainly cannot underestimate the difficulty we shall face when we try to find

optimal feasible strategy-proof mechanisms when we assume a general

distribution of agents’ types.
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CHAPTER 2

OPTIMAL EQUAL-COST SHARING SCHEME FOR THE ALLOCATION OF

NON-EXCLUDABLE PUBLIC GOODS

2.1 Introduction

Public goods have non-rival and non-excludable properties. The consumption of

the good by one individual does not exclude the amount available for others. By

correctly perceiving the negligible influence on the aggregate level provided one

has, individuals would take advantage of the public good without contributing

much. The direct impact reflected on the market is, the level of the public good

provided is usually far from being sufficient, efficient allocation would not be

generated under the gain-seeking strategic behaviors. Samuelson (1954) has

shown, the competitive market system is not appropriate to cover the allocation of

public goods. Different from purely private goods economy, increasing the size of

the population does not ameliorate incentive to ”misbehave”, it is even more

serious (Roberts 1976). The degree of insufficiency also depends on the

distribution of income. The under provision could be mitigated with the increasing

difference of income distribution (Olson 1982).

The recognized failure of the decentralized allocation encourages

enormous analysis of alternative mechanisms and the evaluation against efficient

yardstick. One natural solution is to introduce a central bureau, or called a

government, to coordinate decisions over the level of a public good provided and

shares of cost. Both production level and cost sharing are related to information of

individuals’ preferences. To induce individuals report their privately known

information, feasible mechanisms should satisfy certain incentive compatibility

conditions. One branch of the literature proceeds with scheme design in the

framework of general equilibrium models. Groves and Ledyard (1977) presented a
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class of optimal government rules, with which every competitive allocation

relative to a government scheme is Pareto optimal. Moreover, truth-telling

marginal willingness to pay for the public good is Nash equilibrium, yet not

yielding dominant-strategy equilibria. As an alternative to Groves-Ledyard

mechanism, a simpler incentive compatible scheme was provided by Mark Walker

(1981), and achieves Pareto optimal as well.

The other branch carries out incentive compatible mechanisms in the

partial equilibrium models with transferable utility. Groves (1973) developed a

general scheme to solve the conflict between efficiency and incentive in the

context of a team decision model. Furthermore, truth-telling is a dominant strategy

for each agent. It was later applied to a production problem with a group of firms

using public inputs, in which the coordinating agent determines the optimal

quantity of the public inputs according to the information each firm sends (Groves

and Loeb 1975). The efficiency and strong incentive properties make Groves

scheme glowing in the bunch of mechanisms. However, as Green and Laffont

(1977) pointed out, Groves scheme generally incurs negative aggregate transfers.

Redefine the measure of efficiency by adding aggregate transfer to the sum of

agents’ utilities, Groves scheme is no longer satisfactory. The negative result was

also obtained independently in Walker’s model with restricted individual

preference (1980). Both results implied that dominant strategy property can

generally be obtained only by sacrificing Pareto optimality. Green, Kohlberg and

Laffont (1975) showed this loss can be kept small by subjecting a small randomly

selected sample of the population to a particular Groves scheme. With retention of

optimality, the natural response is to use other implementation concepts including

undominated perfect Nash equilibrium (Bagnoli and Lipman 1989), subgame

perfect equilibrium (Jackson and Moulin 1991), and slack the strong incentive
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compatibility, for instance, Bayesian incentive compatibility. D’Aspremont and

Gerard-Varet (1979) proposed a mechanism that is Bayesian incentive compatible,

budget-balanced and optimal, but typical criticisms aim at the fact that the

outcome relies too much on the strong common knowledge assumption, and

eventually leads to the unreliable predicted outcome.

The objective in this paper is to investigate various allocation schemes of a

non-excludable public good between two agents using the optimal mechanism

design approach. Agents’ valuations of the public good are privately known. For a

robust predicted result, we require that all individuals have dominant strategies to

report their true valuations. We also require that the allocation schemes are feasible

so that there is no fund from outside. The goal is to find the optimal mechanisms

that maximize the sum of agents’ utility and aggregate transfer among all possible

allocation schemes. Our main result shows that the optimal mechanism is an

equal-cost sharing scheme. It suggests that the potentially large aggregate transfer

could indeed overturn the optimality of the commonly used Groves scheme.

The paper is organized as follows. The model is described in section 2. In

section 3, we characterize all feasible strategy-proof schemes. In section 4, the

optimality of the proposed scheme is proved.

2.2 Model

The planner is concerned with the construction of a public project. The choice set

of the planner contains only two alternatives d = {0,1}. The decision d = 1

represents the agreement to build a public project–a bridge, a park, or a street lamp

etc. at a cost of c (0 ≤ c < 2), and d = 0 represents the decision not to build.

There are two agents, indexed by i = 1,2. Agents’ types θ1 and θ2 are

private information, independently and uniformly distributed over [0,1]. Each
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agent’s utility function is quasi-linear:

vi(d, ti;θi) = θid + ti

where ti is the transfer paid for the construction of the public good to the planner.

In order to solve the free-rider problem, the planner provides a mechanism

under which agents have dominant strategies to report their true valuations.

Definition 1 A scheme is {d(θ1,θ2); t1(θ1,θ2), t2(θ1,θ2)} where

d : [0,1]× [0,1]→{0,1}, ti : [0,1]× [0,1]→ R.

Definition 2 A scheme is said to be strategy-proof, if for all θ1,θ
′
1,θ 2 ∈ [0,1],

{d(θ1,θ2); t1(θ1,θ2), t2(θ1,θ2)} satisfies,

θ1d(θ1,θ2)+ t1(θ1,θ2)≥ θ1d(θ
′
1,θ2)+ t1(θ

′
1,θ2)

θ2d(θ1,θ2)+ t2(θ1,θ2)≥ θ2d(θ1,θ
′
2)+ t1(θ1,θ

′
2).

Definition 3 A scheme is feasible, if for all (θ1,θ 2) ∈ [0,1]× [0,1],

t1(θ1,θ2)+ t2(θ1,θ2)+ cd(θ1,θ2)≤ 0.

The objective function of the planner is

EC(M) =
∫ 1

0

∫ 1

0
[(θ1 +θ2)d (θ1,θ2)+ t1 (θ1 +θ2)+ t2 (θ1 +θ2)]dθ1dθ2.

Remark 1 No mechanism outperforms all others at every profile of types. Hence,

we assume the government just chooses a scheme to maximize the expected value

of the sum of agents’ utilities and transfers, rather than pointwise optimization.

Definition 4 A scheme is optimal, if {d∗(θ1,θ2); t∗1(θ1,θ2), t∗2(θ1,θ2)}

max
{d(·);t1(·),t2(·)}

∫ 1

0

∫ 1

0
[(θ1 +θ2)d (θ1,θ2)+ t1 (θ1 +θ2)+ t2 (θ1 +θ2)]dθ1dθ2

subject to strategy-proofness and feasibility.
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2.3 The characterization of feasible and strategy-proof scheme

Mimic Myerson’s analysis (1981), we first characterize the feasible and

strategy-proof schemes in this part, then introduce one specific scheme in the class

of strategy-proof and feasible mechanisms —the equal–cost sharing scheme that

attracts the most interest.

By strategy-proofness, we know d(θ1,θ2) is non-decreasing in θ1and θ2.

Define ϕ1(θ2) = inf{θ1 |d(θ1,θ2) = 1} and ϕ2(θ1) = inf{θ2 |d(θ1,θ2) = 1}.

Graphically, ϕ2(θ1) and ϕ2(θ1) are the curves carving the whole area [0,1]× [0,1]

into two parts, one on which d(θ1,θ2) = 1, i.e. the public good is built, and the

other on which d(θ1,θ2) = 0. Furthermore, functions ϕ2(θ1) and ϕ2(θ1) exhibit

non-increasing because of the non-decreasing property of d(θ1,θ2). The

strategy-proof mechanism can be described by {ϕ2(θ1),ϕ1(θ2),h1(θ2),h2(θ1)}

d(θ1,θ2) =

 1 i f θ2 > ϕ2(θ1)

0 i f θ2 < ϕ2(θ1)

t1(θ1,θ2) =

 h1(θ2)−ϕ1(θ2) i f θ1 > ϕ1(θ2)

h1(θ2) i f θ1 < ϕ1(θ2)

t2(θ1,θ2) =

 h2(θ1)−ϕ2(θ1) i f θ2 < ϕ2(θ1)

h2(θ2) i f θ2 < ϕ2(θ1)

where h1(θ2), h2(θ1) are arbitrary functions on [0,1].

Remark 2 We do not specify whether public goods should be built or not and how

to distribute the cost between agents when θ2 = ϕ(θ1). However, it does not affect

the estimation of the upper bound of EC(M) later. So no condition is actually

imposed on the issue of breaking the tie.
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Besides strategy-proofness, {ϕ2(θ1),ϕ1(θ2),h1(θ2),h2(θ1)} should also

satisfy the following feasibility conditions,

h1(θ2)+h2(θ1)−ϕ1(θ2)−ϕ2(θ1)+ c ≤ 0 i f θ2 ≥ ϕ2(θ1)

h1(θ2)+h2(θ1)≤ 0 i f θ2 < ϕ2(θ1).

2.4 The optimal scheme

Theorem The optimal scheme for the allocation of a public goods is an equal-cost

sharing scheme.

Proof This argument proceeds separately in two cases, these ares, 2 > c ≥ 1 and

1 > c > 0. For each case, we show, for all strategy-proof feasible schemes, the

expected value of the allocation of a non-excludable public good has an upper

bound, which is exactly the expected value achieved under an equal-cost sharing

scheme. Hence the equal-cost sharing scheme is optimal.

From previous description:

t1(θ1,θ2) = v1(θ1,θ2)−θ1d(θ1,θ2) =

θ1∫
0

d(s,θ2)ds+h1(θ2)−θ1d(θ1,θ2).

t2(θ1,θ2) = v2(θ1,θ2)−θ2d(θ1,θ2) =

θ2∫
0

d(θ1,s)ds+h2(θ1)−θ2d(θ1,θ2).

EC(M) =

1∫
0

1∫
0

[(θ1 +θ2)d(θ1,θ2)+ t1(θ1,θ2)+ t2(θ1,θ2)]dθ1dθ2

=

1∫
0

1∫
0

[(θ1 +θ2)d(θ1,θ2)+

θ1∫
0

d(s,θ2)ds+h1(θ2)−θ1d(θ1,θ2)

+

θ2∫
0

d(θ1,s)ds+h2(θ1)−θ2d(θ1,θ2)]dθ1dθ2
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=

1∫
0

1∫
0

[

θ1∫
0

d(s,θ2)ds+h1(θ2)+

θ2∫
0

d(θ1,s)ds+h2(θ1)]dθ1dθ2

=

1∫
0

1∫
0

[

1∫
s

d(s,θ2)dθ1]dsdθ2 +

1∫
0

1∫
0

[

1∫
s

d(θ1,s)dθ2]dsdθ1

+

1∫
0

1∫
0

[h1(θ2)+h2(θ1)]dθ1dθ2

=

1∫
0

1∫
0

(1−θ1)d(θ1,θ2)dθ1dθ2 +

1∫
0

1∫
0

(1−θ2)d(θ1,θ2)dθ1dθ2

+

1∫
0

1∫
0

[h1(θ2)+h2(θ1)]dθ1dθ2

=

1∫
0

1∫
0

(2−θ1 −θ2)d(θ1,θ2)dθ1dθ2 +

1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1.

Both sides are subtracted by
1∫
0

1∫
0
[t1(θ1,θ2)+ t2(θ1,θ2)]dθ1dθ2, we have

EC(M)−
1∫

0

1∫
0

[t1(θ1,θ2)+ t2(θ1,θ2)]dθ1dθ2

=

1∫
0

1∫
0

2d(θ1,θ2)dθ1dθ2 −EC(M)+

1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1.

Simplify the above equation, and we get

EC(M) =

1∫
0

1∫
0

d(θ1,θ2)dθ1dθ2 +
1
2

1∫
0

1∫
0

[t1(θ1,θ2)+ t2(θ1,θ2)]dθ1dθ2

+
1
2

1∫
0

h1(θ2)dθ2 +
1
2

1∫
0

h2(θ1)dθ1.
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Denote the area on which d(θ1,θ2) = 1 as A and the rest, d(θ1,θ2) = 0, as B.

EC (M) =
∫∫
A

dθ1dθ2 +
1
2

∫∫
A

[t1 (θ1 +θ2)+ t2 (θ1 +θ2)]dθ1dθ2

+
1
2

∫∫
B

[t1 (θ1 +θ2)+ t2 (θ1 +θ2)]dθ1dθ2 +
1
2

1∫
0

h1 (θ2)dθ2 +

1∫
0

h2 (θ1)dθ1

≤
∫∫
A

dθ1dθ2 +
1
2

1∫
0

h1 (θ2)dθ2 +

1∫
0

h2 (θ1)dθ1.

The last inequality holds due to the feasibility conditions.

Case I If 2 > c ≥ 1:

First define the equal-cost sharing scheme M1
E in this case as:

d(θ1,θ2) =

 1 i f θ1 >
c
2 and θ2 >

c
2

0 otherwise

t1(θ1,θ2) = t2(θ1,θ2) =

 − c
2 i f θ1 >

c
2 and θ2 >

c
2

0 otherwise
.

Clearly, the equal-cost sharing scheme M1
E is strategy-proof and feasible.

Moreover, EC(M1
E) =

(2−c)3

8 . In order to find the appropriate upper bound of

EC(M), we divide the set of ϕ1(θ2), ϕ2(θ1) into several subsets. Those subsets

cover all possibilities. We then show that, for each possibility, EC(M) has the

same upper bound (2−c)3

8 .

I-a Suppose that ( c
2 ,

c
2) ∈ A.

Let θ ∗ = inf{θ |(θ ,θ) ∈ A}, and obviously θ ∗ ≤ c
2 . From Figure 5,

we see

Area(A) = (1−θ ∗)2 +

1∫
θ∗

(θ ∗−ϕ1(θ2))dθ2 +

1∫
θ∗

(θ ∗−ϕ2(θ1))dθ1.
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Figure 5

Next, we try to estimate
1∫
0

h1(θ2)dθ2 +
1∫
0

h2(θ1)dθ1. We may assume WLOG that

sup
θ2∈[0,θ∗]

h1(θ2)≤ 0 and sup
θ1∈[0,θ∗]

h2(θ1)≤ 0.

Hence,
θ∗∫
0

h1(θ2)dθ2 ≤ 0 and
θ∗∫
0

h2(θ1)dθ1 ≤ 0.

On the other hand, on the square [θ ∗,1]× [θ ∗,1], feasibility implies

h1(θ2)+h2(θ1)≤ ϕ1(θ2)+ϕ2(θ1)− c.

As we integrate the inequality above over [θ ∗,1]× [θ ∗,1], we get the following:

1∫
θ∗

h1(θ2)dθ2 +

1∫
θ∗

h2(θ1)dθ1 ≤
1∫

θ∗

ϕ1(θ2)dθ2 +

1∫
θ∗

ϕ2(θ1)dθ1 − c(1−θ ∗).

Thus,

1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1 ≤
1∫

θ∗

ϕ1(θ2)dθ2 +

1∫
θ∗

ϕ2(θ1)dθ1 − c(1−θ ∗).
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Hence,

EC (M)≤
(

1− c
2

)∫∫
A

dθ1dθ2 +
1
2

1∫
0

h1 (θ2)dθ2 +

1∫
0

h2 (θ1)dθ1

= (1− c
2
)Area(A)+

1
2

1∫
0

h1(θ2)dθ2 +
1
2

1∫
0

h2(θ1)dθ1

≤ (1− c
2
)[(1−θ ∗)2 +

1∫
θ∗

(θ ∗−ϕ1(θ2))dθ2 +

1∫
θ∗

(θ ∗−ϕ2(θ1))dθ1]

+
1
2

1∫
θ∗

ϕ1(θ2)dθ2 +
1
2

1∫
θ∗

ϕ2(θ1)dθ1 −
c
2
(1−θ ∗)

= (1− c
2
)(1−θ ∗)2 +2(1− c

2
)θ ∗(1−θ ∗)+(

c
2
− 1

2
)

1∫
θ∗

ϕ1(θ2)dθ2

+(
c
2
− 1

2
)

1∫
θ∗

ϕ2(θ1)dθ1 −
c
2
(1−θ ∗)

≤ (1− c
2
)(1−θ ∗)(1+θ ∗)+(

c
2
− 1

2
)(1−θ ∗)c− c

2
(1−θ ∗)

= (1− c
2
)(1−θ ∗)[(1+θ ∗)− c]

= (1− c
2
)(1−θ ∗)(1+θ ∗)+(

c
2
−1)(1−θ ∗)c.

The last inequality holds since

ϕ1(θ ∗)+ϕ2(θ ∗) = θ ∗+θ ∗ ≤ c
2
+

c
2
= c.

Observe that (1− c
2)(1−θ ∗)(1+θ ∗− c) achieves maximum value when

1−θ ∗ = 1+θ ∗− c since 1−θ ∗+1+θ ∗− c = 2− c is a constant. Thus θ ∗ = c
2 .

Hence EC(M)≤ (2−c)3

8 .

II-b ( c
2 ,

c
2) /∈ A, but there exists a (θ̂ , θ̂) ∈ A, such that ϕ2(θ̂)+ϕ1(θ̂) = c. Denote

y = ϕ2(θ̂) and x = ϕ1(θ̂). We first estimate the upper bound of
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1∫
0

h1(θ2)dθ2 +
1∫
0

h2(θ1)dθ1. We may assume WLOG that

sup
θ2∈[0,y]

h1(θ2) = sup
θ1∈[0,x]

h2(θ1) =−a ≤ 0.

The feasibility condition on [x, θ̂ ]× [0,y], h1(θ2)+h2(θ1)≤ 0, implies

sup
θ1∈[x,θ̂ ]

h2(θ1)≤ a.

Similarly, we also have

sup
θ2∈[y,θ̂ ]

h1(θ2)≤ a.

Hence

θ̂∫
0

θ̂∫
0

(h1(θ2)+h2(θ1))dθ1dθ2

=
∫∫
C

(h1(θ2)+h2(θ1))dθ1dθ2 +
∫∫
D

(h1(θ2)+h2(θ1))dθ1dθ2

+
∫∫
E

(h1(θ2)+h2(θ1))dθ1dθ2+
∫∫
F

(h1(θ2)+h2(θ1))dθ1dθ2

≤
∫∫
C

(h1(θ2)+h2(θ1))dθ1dθ2 +
∫∫
F

(h1(θ2)+h2(θ1))dθ1dθ2

≤−2axy+2a(θ̂ − x)(θ̂ − y)

≤−2axy+2a(1− x)(1− y)

= 2a(−xy+1− x− y+ xy)

= 2a(1− x− y)

= 2a(1− c)≤ 0.

The last inequality holds due to 2 > c ≥ 1, and area C,D,E,F shown in the Figure

6. Then,
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Figure 6

1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1 ≤
1∫

θ̂

h1(θ2)dθ2 +

1∫
θ̂

h2(θ1)dθ1

≤
1∫

θ̂

ϕ2(θ1)dθ1 +

1∫
θ̂

ϕ1(θ2)dθ2 − c(1− θ̂).

The last part is obtained by integrating the feasibility constraint over [θ̂ ,1]× [θ̂ ,1].

Therefore,

EC(M)≤ (1− c
2
)Area(A)+

1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1

≤ (1− c
2
)Area(A)+

1∫
θ̂

ϕ2(θ1)dθ1 +

1∫
θ̂

ϕ1(θ2)dθ2 − c(1− θ̂).

Construct the new functions ϕ̂2(θ1) and ϕ̂1(θ2) as follows,

ϕ̂2(θ1) =

 ϕ2(θ̂)1 i f θ1 ∈ [ϕ1(θ̂), θ̂ ]

ϕ2(θ1) otherwise
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Figure 7

ϕ̂1(θ2) =

 ϕ1(θ̂)1 i f θ2 ∈ [ϕ2(θ̂), θ̂ ]

ϕ1(θ2) otherwise
.

Denote the area that is shaped by ϕ̂2(θ1), φ̂1(θ2), x = 1 and y = 1 as A′, which is

shown in Figure 7. θ̂ ∗ is the intersection of θ2 = θ1 and ϕ̂2(θ1) or φ̂1(θ2).

Obviously, θ̂ ∗ = max{ϕ1(θ̂),ϕ2(θ̂)}.

1∫
θ̂∗

ϕ̂2(θ1)dθ1 +

1∫
θ̂∗

ϕ̂1(θ2)dθ2 − c(1− θ̂ ∗)

=

θ̂∫
θ̂∗

ϕ2(θ̂)dθ1 +

θ̂∫
θ̂∗

ϕ1(θ̂)dθ2 − c(θ̂ − θ̂ ∗)+

1∫
θ̂

ϕ2(θ1)dθ1 +

1∫
θ̂

ϕ1(θ2)dθ2 − c(1− θ̂)

=[ϕ2(θ̂)+ϕ1(θ̂)− c](θ̂ − θ̂ ∗)+

1∫
θ̂

ϕ2(θ1)dθ1 +

1∫
θ̂

ϕ1(θ2)dθ2 − c(1− θ̂)

=

1∫
θ̂

ϕ2(θ1)dθ1 +

1∫
θ̂

ϕ1(θ2)dθ2 − c(1− θ̂).
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The last equality holds since ϕ2(θ̂)+ϕ1(θ̂) = c. The upper bound then is

EC(M)≤ (1− c
2
)Area(A)+

1
2

1∫
0

h1(θ2)dθ2 +
1
2

1∫
0

h2(θ1)dθ1

≤ (1− c
2
)Area(A)+

1
2

1∫
θ̂

ϕ1(θ2)dθ2 +
1
2

1∫
θ̂

ϕ2(θ1)dθ1 −
c
2
(1− θ̂)

≤ (1− c
2
)Area(A′)+

1
2

1∫
θ̂∗

ϕ̂1(θ2)dθ2 +
1
2

1∫
θ̂∗

ϕ̂2(θ1)dθ1 −
c
2
(1− θ̂ ∗)

= (1− c
2
)[(1− θ̂ ∗)2 +

1∫
θ̂∗

(θ̂ ∗− ϕ̂1(θ2))dθ2 +

1∫
θ̂∗

(θ̂ ∗− ϕ̂2(θ1))dθ1]

+
1
2

1∫
θ̂∗

ϕ̂2(θ1)dθ1 +
1
2

1∫
θ̂∗

ϕ̂1(θ2)dθ2 −
c
2
(1− θ̂ ∗)

= (1− c
2
)(1− θ̂ ∗)2 +2(1− c

2
)θ̂ ∗(1− θ̂ ∗)+(

c
2
− 1

2
)

1∫
θ̂∗

ϕ̂1(θ2)dθ2

+(
c
2
− 1

2
)

1∫
θ̂∗

ϕ̂2(θ1)dθ1 −
c
2
(1− θ̂ ∗)

≤ (1− c
2
)(1− θ̂ ∗)(1+ θ̂ ∗)+(

c
2
− 1

2
)

1∫
θ̂∗

ϕ̂1(θ̂ ∗)dθ2 +(
c
2
− 1

2
)

1∫
θ̂∗

ϕ̂2(θ̂ ∗)dθ1

− c
2
(1− θ̂ ∗)

= (1− c
2
)(1− θ̂ ∗)(1+ θ̂ ∗)+(

c
2
− 1

2
)(1− θ̂ ∗)c− c

2
(1− θ̂ ∗)

= (1− c
2
)(1− θ̂ ∗)(1+ θ̂ ∗− c).

As in previous case, EC(M) reaches maximum (2−c)3

8 when θ̂ ∗ = c
2 .

I-c ( c
2 ,

c
2) /∈ A, but there does not exist a (θ̂ , θ̂) ∈ A, where ϕ2(θ̂)+ϕ1(θ̂) = c. The

characteristics of ϕ2(θ) and ϕ1(θ) in this case imply that, for all θ ∈ [θ ∗,1],

ϕ2(θ)+ϕ1(θ)− c > 0, where θ ∗ = inf{θ |(θ ,θ) ∈ A}. Particularly,

ϕ2(1)+ϕ1(1)− c = ε > 0.
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Construct a new feasible mechanism determined by

{ϕ̃2(θ1), ϕ̃1(θ2), h̃1(θ2), h̃2(θ1)}, where ϕ̃2(θ1) = ϕ2(1)− ε
2 , for θ1 ∈ [ϕ1(1)− ε

2 ,1];

ϕ̃1(θ2) = ϕ1(1)− ε
2 , for θ2 ∈ [ϕ2(1)− ε

2 ,1]; h̃1(θ2) = 0, for θ2 ∈ [0,1] and

h̃2(θ1) = 0, for θ1 ∈ [0,1].

Notice that ϕ̃2(1)+ ϕ̃1(1)− c = 0. Denote the area under this new mechanism on

which d(θ1,θ2) = 1 as A”. It is clearly to see A ⊂ A” by our construction. So we

have

8EC(M)≤ 1
2
(2− c)

∫∫
A

dθ1dθ2 +

1∫
0

h1(θ2)dθ2 +

1∫
0

h2(θ1)dθ1

≤ 1
2
(2− c)

∫∫
A”

dθ1dθ2 +

1∫
0

h̃1(θ2)dθ2 +

1∫
0

h̃2(θ1)dθ1.

The new constructed mechanism is the one belonging to case I-b, using the proved

result there that the upper bound is (2−c)3

8 , we get the same upper bound here.

Case II If 1 > c > 0:

Define the equal-cost sharing scheme M2
E in this case as:

d(θ1,θ2) =

 1 i f θ1 >
c
2orθ2 >

c
2

0 otherwise

t1(θ1,θ2) = t2(θ1,θ2) =

 − c
2 i f θ1 >

c
2orθ2 >

c
2

0 otherwise
.

Here, M2
E is strategy-proof and feasible. Moreover, EC(M1

E) =
1
8c3 − c+1. We

next show that in the class of all strategy-proof and feasible mechanisms EC(M)

has the upper bound 1
8c3 − c+1. Let x = φ1(

c
2) and y = φ2(

c
2). WLOG, we

assume that x ≤ y. First, find the upper bound of
∫ 1

0
∫ 1

0 [h1(θ2)+h2(θ1)]dθ1dθ2,

given each φ2 (θ1) and φ1 (θ2).
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Define the following function

λ (θ1,θ2) =



1−c+y
(1− c

2 )
2 i f (θ1,θ2) ∈ [ c

2 ,1]
2

1
(1− c

2 )
i f (θ1,θ2) ∈ [y, c

2 ]× [ c
2 ,1]∪ [ c

2 ,1]× [y, c
2 ]

1
y i f (θ1,θ2) ∈ [0,y]× [0,y]

0 otherwise

.

Note that
1∫
0

λ (θ1,θ2)dθ1 = 1 for all θ2 and
1∫
0

λ (θ1,θ2)dθ2 = 1 for all θ1. Hence

∫ 1

0

∫ 1

0
[h1(θ2)+h2(θ1)]dθ1dθ2 =

∫ 1

0

∫ 1

0
λ (θ1,θ2) [h1(θ2)+h2(θ1)]dθ1dθ2.

From the feasibility condition, we have

∫ 1

0

∫ 1

0
λ (θ1,θ2) [h1(θ2)+h2(θ1)]dθ1dθ2

=
∫ 1

c
2

φ2 (θ1)dθ1 +
∫ 1

c
2

φ1 (θ2)dθ2 − c(1− y)+
∫ c

2

y
φ2 (θ1)dθ1 +

∫ c
2

y
φ1 (θ2)dθ2.
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Plug this into EC (M), we have

EC (M)≤
(

1− c
2

)
Area(A)+

1
2

∫ 1

0

∫ 1

0
[h1(θ2)+h2(θ1)]dθ1dθ2

≤
(

1− c
2

)(
1− c

2

)2
+
(

1− c
2

)∫ 1

c
2

(c
2
−φ2 (θ1)

)
dθ1

+
(

1− c
2

)∫ 1

c
2

(c
2
−φ1 (θ2)

)
dθ2 +

(
1− c

2

)∫ c
2

y

(c
2
−φ1 (θ2)

)
dθ2

+
1
2

∫ 1

c
2

φ2 (θ1)dθ1 +
1
2

∫ 1

c
2

φ1 (θ2)dθ2 −
1
2

c(1− y)

+
1
2

∫ c
2

y
φ2 (θ1)dθ1 +

1
2

∫ c
2

y
φ1 (θ2)dθ2

=
(

1− c
2

)3
+ c
(

1− c
2

)2
+

(
c
2
− 1

2

)∫ 1

c
2

φ2 (θ1)dθ1

+

(
c
2
− 1

2

)∫ 1

c
2

φ1 (θ2)dθ2 +
c
2

(
1− c

2

)(c
2
− y
)

+

(
c
2
− 1

2

)∫ c
2

y
φ1 (θ2)dθ2 +

1
2

∫ c
2

y
φ2 (θ1)dθ1 −

1
2

c(1− y)

=
(

1− c
2

)3
+ c
(

1− c
2

)2
+

c
2

(
1− c

2

)(c
2
− y
)

+

(
c
2
− 1

2

)∫ c
2

y
φ1 (θ2)dθ2 +

1
2

∫ c
2

y
φ2 (θ1)dθ1 −

1
2

c(1− y)

≤
(

1− c
2

)3
+ c
(

1− c
2

)2
+

c
2

(
1− c

2

)(c
2
− y
)

+

(
c
2
− 1

2

)(∫ c
2

x
φ2 (θ1)dθ1 +

c
2
(x− y)

)
+

1
2

∫ c
2

y
φ2 (θ1)dθ1 −

1
2

c(1− y)

=
(

1− c
2

)3
+ c
(

1− c
2

)2
+

c
2

(
1− c

2

)(c
2
− y
)
+

(
c
2
− 1

2

)∫ y

x
φ2 (θ1)dθ1

+

(
c
2
− 1

2

)
c
2
(x− y)+

c
2

∫ c
2

y
φ2 (θ1)dθ1 −

1
2

c(1− y)

≤
(

1− c
2

)3
+ c
(

1− c
2

)2
+

c
2

(
1− c

2

)(c
2
− y
)
+

(
c
2
− 1

2

)
(y− x)φ2 (y)

+

(
c
2
− 1

2

)
c
2
(x− y)+

c
2

(c
2
− y
)

φ2 (y)−
1
2

c(1− y).

Let φ2(y) = z, note that 0 ≤ x ≤ y ≤ z ≤ c
2 , this is also shown in Figure 8.
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Figure 8

Define

L(x,y,z) =
(

1− c
2

)3
+ c
(

1− c
2

)2
+

c
2

(
1− c

2

)(c
2
− y
)
+

(
c
2
− 1

2

)
(y− x)z

+

(
c
2
− 1

2

)
c
2
(x− y)+

c
2

(c
2
− y
)

z− 1
2

c(1− y).

For all 0 ≤ x ≤ y ≤ z ≤ c
2 , L(x,y,z)≤ L(0, c

2 ,
c
2) =

1
8c3 − c+1. Combing all the

cases discussed above, we can conclude that equal-cost sharing scheme is the

optimal scheme for the allocation of non-excludable public good.

Q.E.D.

2.5 Concluding Remarks

Although Groves scheme exhibits seemly prominent mitigation of conflict

between allocation efficiency and incentive compatibility, the unbalanced budget is

a deadly blemish when the overall efficiency being evaluated includes the

aggregate transfer. Shao and Zhou (2008) challenges the wide acceptance of

Groves scheme by showing that all mechanisms including Groves mechanisms are
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weakly inferior to a particular class of mechanisms with budget-balance-ness

when allocating an indivisible private good between two agents under incomplete

information. In this paper, we prove the optimal scheme is equal-cost sharing,

rather than Groves scheme, in the allocation of a public good. Only a

non-excludable public good is considered here. However, for many non-rival

goods, it is also feasible to exclude consumers from usage. An efficient

mechanism for public goods with use exclusion is provided by Peter (2004), and

he claimed that a fixed fee mechanism is almost optimal.

One interesting follow-up research is to find the optimal scheme for the

allocation of public goods when there are more than two agents. The proof we

provided in this paper are mostly based on the geometric properties in R2. Things

appear much more complicated when the type space is extended to [−1,1]n. Our

conjecture here is the optimality of the equal-cost sharing could survive through

such extension, but we may turn to an alternative method to show it.
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CHAPTER 3

GENERALIZED COARSE MATCHING

3.1 Introduction

Consider a canonical matching problem: there are two heterogeneous populations

of equal size. Agents within each population have the same preferences regarding

the other population. For instance, one population may consist of men and a

second of women. Within each population, agents differ by ability, beauty,

education, etc., and they each prefer agents from the other population with higher

ability, beauty, education, etc. If two agents (e.g., a man and woman) match, their

payoffs depend on the characteristics of both partners.

It is well known that if a payoff function exhibits complementarities, it is

optimal to match the two populations in a positive assortative fashion. (See Becker

(1973).) That is, men with the best (worst) characteristics are matched with the

women with the best (worst) characteristics. This method of matching is clearly

better than randomly assigning men to women. Indeed, the efficiency gain of

positive assortative matching over random matching can be significant.

This paper focuses on an intermediate method of pairing two populations,

namely, coarse matching. In its simplest version, each population is split into two

categories of agents—those with high characteristics and those with low

characteristics. (The number of agents with high characteristics is the same in the

two populations.) The set of men with high attributes is randomly matched with

the set of women with high attributes, and similarly with the sets of men and

women with low attributes.

More generally, coarse matching proceeds by partitioning the population

into n classes and then randomly matching individuals within each class. This is a

44



phenomenon we observe in practice. For instance, dating services classify agents

according to a small number of attributes that in fact partition them into coarse

classes. Similar examples can be found in labor markets.

This paper asks: how much of total surplus is captured by coarse matching

(henceforth, CM) when compared with total surplus generated by positive

assortative matching (henceforth, PAM)?1 Before coming to the answer derived,

let us explain the importance of the question.

Observe that PAM requires that a social planner know the actual type of

each member of each population. For instance, a matchmaker must know the exact

characteristics of each man and woman in given populations. When the

populations are large, this is a strong informational requirement. On the other

hand, CM only requires that the planner have coarse information, which may be

relatively easier to acquire. For instance, the matchmaker may have—or may

easily acquire—information on the income bracket of each man and woman in the

population (e.g., whether they earn less than $50,000, more than $200,000 or

between $50,000 and $200,000).

In practice, there is a cost of acquiring information on agents’ types. This

cost is not modeled in typical analyses. We would think that the cost of acquiring

perfect information is significantly greater than the cost of acquiring coarse

information. Given these costs, should the social planner implement PAM, or

should he settle for CM? The answer depends on whether the efficiency gain of

using PAM over CM is small vs. large. If it is small, it may not justify the cost of

acquiring this additional information.2

1In this paper, by PAM we mean perfect sorting, although CM also involves
positive assortative matching in a very coarse sense.

2This is not the only justification for CM. For instance, McAfee (2002) argues
that “The use of a continuum of priorities is not feasible in many circumstances-
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This question is not new. It was first addressed by McAfee (2002) in a

seminal paper. He considered coarse matching, where each population was

partitioned into exactly two classes. He showed that when the match payoff

function takes a certain (multiplicative) form and distributions of attributes satisfy

certain hazard rate conditions, then CM can capture at least half of the total surplus

generated by PAM.

McAfee (2002) raised an important question—but one that he did not

answer completely. For instance, he implicitly assumed that the coarse information

available indicates whether a particular member of the population is above or

below the mean. This may not be the type of information available to the planner.

Or, more interestingly, the planner may have the ability to choose the type of

coarse matching he desires. For instance, instead of the matchmaker acquiring

information on whether a man’s income is above the mean, he can acquire

information on whether his income is above a (different) threshold, or whether it

lies in one of three income brackets, etc. In other words, an important open

problem is how to analyze the performance of n-class CM when the planner does

not constrain himself to a particular way of partitioning the populations.

This paper tackles this problem and investigates the performance of n-class

CM (i.e., the fraction of the total surplus it obtains) for a very general class of

distributions. The main result shows that for each n, there is a way to construct an

n-class CM so that there is a “meaningful” lower bound on its performance. We

using many priorities makes the scheme unwieldy to administer and opaque to con-
sumers. Moreover, if the priority prices are determined by bidding, as is natural,
the auction process will be complex and expensive to operate when there are many
service classes.” For the cost, Hoppe, Moldovanu, and Ozdenoren (2010) suggests
that “These costs may take the form of: communication, complexity (or menu),
and evaluation costs for the intermediary (who needs more detailed information
about the environment in order to implement a fine scheme), and for the agents
(who need precise information about their own and others’ attributes in order to
optimally respond to a fin scheme), or higher production costs for firms offering
different qualities.”
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show that the efficiency loss from using n-class CM instead of PAM is bounded by

an expression that is proportional to 1/n2, where the constant of proportionality

depends on the distributions of agents’ characteristics but not on n. The paper

provides a method to compute this constant of proportionality, and it argues, by

way of example, that this constant—and hence the lower bound—is easy to

compute. It also shows by example that this lower bound is tight.

As in McAfee (2002), our main result assumes that the match payoff is

multiplicative in agents’ types. We show, however, that it generalizes to match

payoff functions that are supermodular in agents’ characteristics, so long as a

condition that involves both the payoff function and the distributions of attributes

is satisfied. Therefore, this paper substantially enlarges the class of matching

problems in which the performance of CM can be assessed.

An important step of the argument is that we choose how to divide two

given populations into n-class, so that the lower bound obtains. This is quite

different than the exercise in McAfee (2002) who assumes that the 2-class must be

divided based on the mean. Indeed, the structure of the mathematical argument is

also quite distinct from McAfee (2002). To trace a clearer parallel, Theorem 3.3.2

below shows that McAfee’s argument extends to 2n-classes. (This is intuitively

clear but not mathematically obvious.) The key is that, in this case, we can divide

the partitions into smaller partitions and still preserve the monotone hazard rate

requirements. It is not apparent, however, that the same applies to a partition of

arbitrary n classes, a problem that we are able to address successfully in our

n-class CM analysis.3

3A key trick in McAfee (2002) is to split the two populations at the mean value,
starting from random matching. We show that this extends to 2n classes by repeat-
edly splitting each class at the conditional mean associated with random matching
for that class. But in the case of an arbitrary partition there is no natural substitute
for the role that the conditional mean plays, precluding an extension to n classes.
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This raises the question: are there situations of applied interest, in which

the planner can effectively choose which coarse information to obtain? One

difficulty is that members of one or both populations may have incentives to

misreport and so not give the planner necessary information.

Nonetheless, we argue that the planner may indeed be able to obtain such

information. To make this argument, we consider a textbook problem of monopoly

pricing under incomplete information about a buyer’s valuation (type). This is not

typically thought of as a matching problem. But we show that, mathematically, it

can be thought of as a matching problem. It is well known that the optimal pricing

scheme involves a continuum of price-quantity pairs (or price-quality pairs), each

one tailored to a particular possible value of a buyer’s type. This is akin to PAM.

In practice, such a finely tuned pricing scheme may be impractical or too costly to

implement. Thus, an important issue for a firm is to assess how much profit is

sacrificed by using ‘simpler’ pricing schemes that pool intervals of types (e.g.,

involving only a small number of qualities or quantities offered). This corresponds

to CM.

It is not straightforward to apply CM results here to evaluate the profit loss

by using pooling contracts. Unlike the original canonical matching model where

incentive compatibility and participation conditions are absent, in this problem, the

payoffs of the optimal contract and pooling contracts are twisted differently due to

different numbers of incentive compatibility and participation conditions faced by

the monopolist. Therefore, the connection between pooling contracts and the

optimal contract is not as simple as the connection between n-class CM and PAM.

As another application, we analyze CM in a cost-sharing problem. In this

circumstance, a principal wants to procure a product from a firm. The cost of

production for the firm is randomly distributed. The firm can reduce the initial cost
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by exerting effort and bearing some disutility. Both initial cost and effort level are

unobservable to the principal. The principal can only observe realized cost. The

principal’s goal is to maximize cost reduction from the initial cost. This problem

involves both incomplete information of the firm’s initial cost and a hidden action

of the firm’s choice of effort levels. When facing a firm with initial cost drawn

from an interval, the optimal contract induces the firm to exert a different effort

level for each possible value of initial cost. Similar to the monopoly pricing

problem, this application is also amenable to a reinterpretation as a matching

problem. Once we account for incentive compatibility and participation, we apply

CM results to give a lower bound regarding the amount of cost reduction

accomplished by pooling contracts.

RELATED LITERATURE. Wilson (1989) considers a model where a

monopolist sells goods with limited supply to a continuum of consumers with

different valuations. He analyzed the efficiency gain of using a priority pricing

schedule. The priority pricing schedule involves each consumer receiving a good

out of the available supply in different priorities and paying different prices. This

schemes forms n priority groups of consumers based on the consumers’

valuations. Wilson (1989) shows that the efficiency loss of using n priorities

converges to zero at a rate of O
(
1/n2). However, knowing the convergence rate is

not quite informative for understanding the performance of pricing schedules with

a given number of priority groups, especially when this number is small. McAfee

(2002) considers 2-class coarse matching. He proves that 2-class coarse matching

can achieve at least half of the efficiency gain under certain conditions. In

addition, he also provides a way to map Wilson (1989) into his matching model.

Therefore, 2-class coarse matching result can be used to evaluate the efficiency

gain of using 2 priorities in Wilson (1989). By contrast, our results allow any
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number of classes. In our paper the efficiency loss is bounded above by a number

proportional to 1/n2 Damiano and Li (2007) and Hoppe, Moldovanu, and

Ozdenoren (2010) study a matching model with two-sided private information. In

Damiano and Li (2007) the goal of the matchmaker is to maximize its revenue.

They provide necessary and sufficient conditions under which the matchmaker

achieves maximum revenue with efficient sorting pattern (PAM). In our paper the

matchmaker is a social planner whose objective is to maximize total efficiency

from matching. Hoppe, Moldovanu, and Ozdenoren (2010) also restricts attention

to 2-class coarse matching when establishing lower bounds on total efficiency, the

revenue of the matchmaker, and the welfare of the agents. Rogerson (2003) and

Chu and Sappington (2007) consider a procurement model with one-sided private

information and moral hazard under very special distributional assumptions. The

purpose of their papers is to establish lower bounds of the performance of the

optimal 2-level contracts in terms of cost. Although the model they consider is

quite different from the matching model in McAfee (2002), Rogerson (2003)

points out that there seems to be a common mathematical structure behind these

models. Our paper shows that the coarse matching results can be applied to this

procurement model and establishes a lower bound on the performance of n-level

contracts under much more general distributional assumptions. Hence, this paper

also sheds some light on the common mathematical structure behind these models.

Our paper develops as follows: In Section 2, we introduce the formal

model, notations and assumptions. In Section 3, we first briefly discuss the result

of McAfee (2002). Then we show that under strictly weaker conditions his result

could be extended to 2n-class coarse matching. Section 4 contains our main

theorem. Section 5 consists of three applications. Also see Appendix for details of

proofs and algebra of examples.
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3.2 The Model

A two-sided market consists of two populations of agents of equal size. For clarity,

we call the agents of each population men and women, each of whom, are

characterized by types. Denote the types as x and y respectively. Agents’ types are

randomly distributed over [0,τ] where τ < ∞ according to distribution functions

F (x) and G(y). Throughout the paper, we assume that corresponding density

functions f (x) and g(y) are continuous and positive over (0,τ). We also assume

that F (x) and G(y) have finite variances.

Each agent is assumed to be matched with one agent from the other

category, namely, one man may only marry one woman. The payoff for matched

agents with type x and type y equals x · y. The couple shares this payoff in

proportion, e.g., they split it equally.

It is known in the literature (e.g., Becker (1973)) that if a match payoff

function exhibits complementarity in agents’ types, the optimal allocation involves

PAM i.e., the highest-type man matches the highest-type woman and the second

highest-type man matches the second highest-type woman and so on.

To interpret what follows, it is instructive to think there is a matchmaker

who can manipulate a certain type of man to match a certain type of women. The

goal of the matchmaker is to maximize the total payoff from matching. However,

to achieve PAM, the matchmaker has to know an inordinate amount of

information, i.e., the true type of each agent. Alternatively, the matchmaker can

create several locations, or sub-markets, for men and women with types belong to

a certain interval to meet at one sub-market. Within each sub-market, agents match

randomly. This matching scheme requires much less information than PAM since

the matchmaker only needs to know the interval to which an agent’s type belongs
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instead of the exact type. In Section 5.1, we discuss in detail how to implement

such a matching scheme and why it requires less information relative to PAM.

The matching rule ϕ (x) for PAM is a function defined by

G(ϕ (x)) = F (x) , which specifies with whom an agent of type x is matched. The

total payoff from PAM is

u∞ =
∫ τ

0
xϕ (x)dF (x) .

By contrast, the total payoff from random matching is

u1 =
∫ τ

0
xdF (x)

∫ τ

0
ydG(y) .

Now suppose the matchmaker creates n sub-markets where men and women meet.

Within each sub-market, agents match randomly. We denote such a matching

scheme as n-class CM. For each sub-market, one to one matching requires the

same mass on both sides. Hence, given distributions F (·), G(·) and a type range

contained in the sub-market, e.g., [a,b] and [c,d] for each category respectively, we

have F (b)−F (a) = G(c)−G(d). The match payoff from this sub-market is

∫ b

a
x

f (x)
F (b)−F (a)

dx
∫ d

c
y

g(y)
G(c)−G(d)

dy,

where ϕ (a) = c and ϕ (b) = d. Given cutoff points {xi}n−1
i=1 , the total payoff for

n-class CM is

un =
n

∑
i=1

(F (xi)−F (xi−1))
∫ xi

xi−1

x f (x)
F (xi)−F (xi−1)

dx
∫ ϕ(xi)

ϕ(xi−1)

yg(y)
G(ϕ (xi))−G(ϕ (xi−1))

dy,

where x0 = y0 = 0 and xn = yn = τ . If n goes to infinity, CM becomes PAM. If

n = 1, CM is random matching. Using a change of variables, un could also be

written as

un =
n

∑
i=1

(ci − ci−1)
∫ ci

ci−1

F−1 (x)
ci − ci−1

dx
∫ ci

ci−1

G−1 (y)
ci − ci−1

dy,
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where ci = F (xi) . Throughout the paper, the cutoff points refer to three sets of

points {xi}n−1
i=1 , {yi}n−1

i=1 and {ci}n−1
i=1 with yi = ϕ (xi) and ci = F (xi) . Given

distributions F and G, any set of cutoff points could imply the other two sets.

Whenever we use un, we implicitly assume that there exists cutoff points {xi}n−1
i=1

such that the match payoff is un.

The measure we use to evaluate the efficiency gain of an n-class CM is

un −u1

u∞ −u1
. (3.1)

The denominator is the total surplus of PAM over random matching. The

numerator is the surplus of an n-class matching over random matching. The payoff

difference between PAM and an n-class CM, u∞ −un, can be written as

u∞ −un = ∑(ci − ci−1)

[∫ ci

ci−1

1
ci − ci−1

F−1 (z)G−1 (z)dz

−
∫ ci

ci−1

1
ci − ci−1

F−1 (z)dz
∫ ci

ci−1

1
ci − ci−1

G−1 (z)dz
]
.

Note that∫ ci
ci−1

1
ci−ci−1

F−1 (z)G−1 (z)dz−
∫ ci

ci−1
1

ci−ci−1
F−1 (z)dz

∫ ci
ci−1

1
ci−ci−1

G−1 (z)dz is the

surplus of PAM over random matching of one particular sub-market. Therefore,

the payoff difference u∞ −un is a weighted sum of surpluses of each sub-market.

Under current payoff function xy, any non-negative and bounded type

space can be normalized to [0,1] without changing the value of (1) (see Appendix).

Therefore, henceforth, we assume that the type space is [0,1]. We can immediately

see that the efficiency gain is zero when n = 1, and the efficiency gain is one when

n goes to infinity. Intuitively, when n becomes larger, the CM scheme becomes

finer and the efficiency gain larger. Our goal is to establish a lower bound for the

efficiency gain for CM with any n classes. Such bound should be an increasing

function of n.
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3.3 An Extension of McAfee (2002)

Before we present our main theorem, it is instructive to discuss the result of

McAfee (2002). McAfee’s 2-class CM result together with our extension of his

result regarding 2n-class CM give a hint of the form of the efficiency gain for CM

with n classes. Once the main theorem for n-class CM is presented in the next

section we can also compare it to results in this section.

Theorem 3.3.1 (McAfee 2002) If for distribution functions F and G

1. F (x)/ f (x) and G(y)/g(y) are both increasing,

2. [1−F (x)]/ f (x) and [1−G(y)]/g(y) are decreasing,

with x1 = E (X) or ϕ (x1) = E (Y ) . Then

u2 −u1

u∞ −u1
≥ 1

2
.

The main tool used in the proof of the above theorem is Chebyshev’s

inequality. One of the difficulties McAfee mentioned that prevents him from

further extending Theorem 3.3.1 to CM with more classes is that there are no

alternatives to conditions 1 and 2. However, we show in Appendix that such

alternative conditions indeed exist when considering 2n classes that are directly

implied by conditions 1 and 2 from Theorem 3.3.1. Hence, the above theorem can

be generalized to 2n-class CM.

Theorem 3.3.2 If for distribution functions F and G

1. F (x)/ f (x) and G(y)/g(y) are both increasing, and
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2. [1−F (x)]/ f (x) and [1−G(y)]/g(y) are decreasing,

with x2i· j =
∫ x2i·( j+1)

x2i·( j−1)

z

F
(

x2i·( j+1)

)
−F

(
x2i·( j−1)

)dF (z) or

ϕ
(
x2i· j

)
=
∫ x2i·( j+1)

x2i·( j−1)

z

G
(

ϕ
(

x2i·( j+1)

))
−G

(
ϕ
(

x2i·( j−1)

))dG(z) with

j (mod 2) ̸= 0, then
u2n −u1

u∞ −u1
≥ 1− 1

2n .

In this theorem, the index of the cutoff point is represented as 2i · j. In order

to ensure the uniqueness of the representation, we require that j be an odd number.

SKETCH OF THE PROOF. We prove Theorem 3.3.2 by induction. The

idea is that by doubling the number of classes the loss of efficiency gain is reduced

by half. Theorem 3.3.1 actually illustrates this point by doubling the number of

classes from n = 1, random matching, to n = 2, 2-class CM. By assuming that the

result holds for n-class CM, we want to show that the efficiency loss from 2n-class

CM is no more than half of the efficiency loss of given n-class CM. In particular,

we want to show 2(u2n −un)≥ u∞−un. As in the discussion of Section 2, the right

hand side of this inequality is a weighted sum of surpluses of PAM over random

matching of all sub-markets. Loosely speaking, we could apply Theorem 3.3.1 to

each sub-market, and then sum them together to obtain 2(u2n −un)≥ u∞ −un.

One key step of the proof is to determine cutoff points. It is trivial to

conclude that if all cutoff points collapse to one end point, 0 or 1, the n-class CM

scheme becomes random matching. In the proof, to double the number of classes,

we split each interval by the conditional mean of such an interval. To generalize

the result for matching with any n classes, we need to divide one interval into

several sub-intervals. The trouble is that there is no analog rule to choose cutoff
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points to divide a given interval into more than two sub-intervals. If it exists, such

a rule would give the same cutoff points, the conditional mean, if we divide the

interval into two parts.

WEAKER CONDITIONS. Conditions in Theorem 3.3.1 are usually

referred to as hazard rate conditions. These conditions are essential to

Chebyshev’s inequality. They are sufficient but not necessary. It is possible that

the result of Theorem 3.3.1 still holds while one of these conditions is violated.

Example 3.3.1 Consider F (x) = G(x) = 1− (1− x)
1
4 . Since (F (x)/ f (x))′ is

negative when x is close to one, condition 1 in Theorem 3.3.1 is violated. Since

[(1−F (x))/ f (x)]′ =−4 < 0, condition 2 in Theorem 3.3.1 is satisfied. Using the

cutoff point c = E [x] = 4
5 , we calculate (u2 −u1)/(u∞ −u1) directly, which yields

(u2 −u1)/(u∞ −u1) −1
2 = 0.22676 > 0.

In fact, hazard rate conditions in Theorem 3.3.1 can be relaxed to

incorporate the above example. By replacing Chebyshev’s inequality in the proof

of Theorem 3.3.1 with Lemma 2 (see Appendix), we have the following theorem.

Theorem 3.3.3 If for distributions F and G

1. E
[

F (x)
f (x)

| x < t
]
≤ E

[
F (x)
f (x)

| x < x1

]
and

E
[

G(y)
g(y)

| y < ϕ (t)
]
≤ E

[
G(y)
g(y)

| y < ϕ (x1)

]
for any t ≤ x1

2. E
[

1−F (x)
f (x)

| x > t
]
≥ E

[
1−F (x)

f (x)
| x > x1

]
and

E
[

1−G(y)
g(y)

| y > ϕ (t)
]
≥ E

[
1−G(y)

g(y)
| y > ϕ (x1)

]
for any t > x1

with x1 = E (X) or ϕ (x1) = E (Y ). Then

u2 −u1

u∞ −u1
≥ 1

2
.
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The conditions in Theorem 3.3.3 are still sufficient but weaker than

conditions in Theorem 3.3.1. It is not difficult to see that conditions 1 and 2 in

Theorem 3.3.3 are implied by hazard rate conditions in Theorem 3.3.1. The next

example shows that the conditions in Theorem 3.3.3 are indeed weaker.

Example 3.3.2 Return to Example 3.3.1. We need to verify conditions in Theorem

3.3.3. Condition 2 is implied by the fact that [(1−F (x))/ f (x)]′ < 0. For condition

1: we can show that E [F (x)/ f (x) | x < t]≤ E
[
F (x)/ f (x) | x < 4

5

]
when

t ≤ 4
5 .Therefore, Theorem 3.3.3 can be applied.

Similarly, we could also apply Lemma 2 to derive weaker conditions for

Theorem 3.3.2 to hold. But as n increases, the number of conditions to be checked

grows quickly.

3.4 Main Results

The previous section provides a result regarding 2n-class CM (as much as can be

derived using McAfee’s argument), which relies on the fixed cutoffs at the mean

and certain hazard rate conditions. In this section, we develop a different line of

attack, which provides results for n-class CM. A conjecture for n-class CM from

Theorem 3.3.2 is
un −u1

u∞ −u1
≥ 1− 1

n
. (3.2)

In fact, our main theorem states

un −u1

u∞ −u1
≥ 1− β

n2 , (3.3)

where β is independent of n and it is only a function of the distributions.

To show that inequality (3) holds is equivalent to showing

u∞ −un

u∞ −u1
≤ β

n2 . (3.4)
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The total surplus of PAM, u∞ −u1, can also be written as

u∞ −u1 =
∫ 1

0
(x−µx)(ϕ (x)−µy)dF (x)

=COV (x,ϕ (x)) .

The last equality is due to the fact that x and ϕ (x) are defined over the same

probability space. Then it follows the definition of covariance:

COV (x,y) =
∫ ∫

(x−µx)(y−µy)dF (x,y)

=
∫

(x−µx)(ϕ (x)−µy)dF (x) .

If both women and men have the same distribution, the covariance COV (x,ϕ (x))

degenerates to the variance. The reason to write u∞ −u1 as COV (x,ϕ (x)) is to

highlight that such value only depends on distributions F and G.

Main Theorem

Theorem 3.4.1 is our main theorem, providing the lower bound of efficiency gain

of CM with any n classes. The lower bound is 1−
(
β/n2) . The value of β picks

the minimum of βi corresponding to an n-class CM scheme associated with a

different vector of cutoff points. Each βi is represented in the form of p-norm.

p-norm ∥ f∥[a,b]p is defined as ∥ f∥[a,b]p =
(∫ b

a | f (x)|p dx
) 1

p for p ≥ 1 and

∥ f∥[a,b]∞ = esssup[a,b] {| f |}. Given our assumption about densities, f (x) and g(y)

are continuous and positive over (0,1). Hence, ∥ f∥[0,1]p may go to infinity only

when f (x) goes to infinity at 0 or 1. Similarly, ∥1/ f∥[0,1]p may go to infinity only

when f (x) goes to zero.

Theorem 3.4.1 Given F and G, for each n, there exists a vector of cutoff points

(x1, ...,xn−1) such that
un −u1

u∞ −u1
≥ 1− β

n2 ,
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where β = min{β1,β2,β3}

1. β1 =
1

4COV (x,ϕ (x))

2. β2 = min

min
p,q

∥∥F−1′∥∥[0,1]
p

∥∥G−1′∥∥[0,1]
q

8COV (x,ϕ (x))
,

∥∥F−1′∥∥[0,1]
∞

∥∥G−1′∥∥[0,1]
∞

12COV (x,ϕ (x))

 ,

where 1
p +

1
q = 1 and p,q ∈ [1,∞]

3. β3 = min
{

β a
3 ,β

b
3
}
,

where β a
3 = min

p1,q1

∥ f∥[0,1]p1

2
√

2 [(q1 +1)(2q1 +1)]
1

2q1 COV (x,ϕ (x))
,

β b
3 = min

p2,q2

∥g∥[0,1]p2

2
√

2 [(q2 +1)(2q2 +1)]
1

2q2 COV (x,ϕ (x))
,

1
p j
+ 1

q j
= 1 and p j,q j ∈ [1,∞] , j = 1,2.

Remark 3.4.1 The cutoff points {xi}n−1
i=1 associated with each condition are

pinned down as follows:

1. If β = β1, {xi}n−1
i=1 should satisfy (xi − xi−1)(ϕ (xi)−ϕ (xi−1)) = 1/n2 with

i = 1 to whenever possible up to i ≤ n−1.

2. If β = β2, {xi}n−1
i=1 should satisfy F (xi)−F (xi−1) = 1/n, where i ≤ n.

3. a) If β = β a
3 , {xi}n−1

i=1 should satisfy

(xi − xi−1)
1+ 1

q1 (ϕ (xi)−ϕ (xi−1)) = (1/n)2+ 1
q1 with i = 1 to whenever

possible up to i ≤ n−1.

b) If β = β b
3 , {xi}n−1

i=1 should satisfy

(xi − xi−1)(ϕ (xi)−ϕ (xi−1))
1+ 1

q2 = (1/n)2+ 1
q2 with i = 1 to whenever

possible up to i ≤ n−1.
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SKETCH OF THE PROOF. We sketch the proof of Theorem 3.4.1 here

(see Appendix for a complete proof). One key tool used to prove the theorem is

Gruss inequality. Unlike Chebyshev’s inequality, which only implies that the

payoff of PAM is greater than the payoff of random matching, Gruss inequality

gives the upper bound of difference in payoffs. We prove this theorem by showing

that inequality (4) holds. Since u∞ −un is a weighted sum of surpluses of all

sub-markets, we prove that the surplus of each sub-market is bounded above by a

number proportional to 1/n2 by using Gruss-type inequalities. Then the weighted

sum yields the upper bound for u∞ −un, which can be represented as B/n2, where

B is a fixed value. By letting β = B/COV (x,ϕ (x)) , we have

(u∞ −un)/(u∞ −u1)≤ β/n2. Due to the different versions of Gruss inequality we

use, the value of B could be different as could be the value of β . Hence, we choose

the minimum among all possible values of β .

Given the number of classes n, the optimal n-class CM yields the highest

payoff by choosing cutoffs optimally. Such optimal n-class CM usually involves

solving for a quite complex programming problem and is not informative once n

has changed. Cutoff points {xi}n−1
i=1 from the above theorem need not be chosen

optimally nor be the same as cutoff points in Theorem 3.3.2 when restricted to 2m

classes. The lower bound is tight if cutoffs from Theorem 3.4.1 coincide with

cutoffs of optimal CM.

The choice of cutoff points is important for Theorem 3.4.1 to hold. To be

more specific, it is critical for us to represent the upper bound of u∞ −un as a

function of 1/n2. The reason is that the size of each sub-market is determined by

cutoff points. The larger the size of the sub-market, the larger the efficiency loss

due to the mismatch within such a sub-market. If all cutoff points concentrate

together, the efficiency gain from CM is close to the efficiency gain from random
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matching. Therefore, we need to spread cutoff points to keep a proper size of each

sub-market so that efficiency loss can be bounded by a number proportional to

1/n2. The reason we can do this relies on the assumption that the type space is

bounded. As a consequence, the weighted sum of those efficiency losses is

bounded by a function of 1/n2.

Three forms of βi are given to ensure the tightness of the lower bound.

Generally speaking, β1 performs relatively well if distributions are symmetric. β2

utilizes information of 1/ f and 1/g. Hence, if densities could achieve very large

value or go to infinity, β2 performs better than other two forms. The third form β3

uses f and g directly. Hence, if densities go to some small value, β3 would be

better.

Benefits of Theorem 3.4.1 include that 1) in order to evaluate the

performance of n-class CM, people do not need to know anything about cutoff

points to derive the lower bound for efficiency gain; 2) the value of β only depends

on distributions; 3) the lower bound is tight, which is shown in Example 3.4.1; 4)

instead of solving for the optimal n-level CM scheme, cutoff points from Remark

3.4.1 provide a much easier way to find an n-level CM scheme with efficiency gain

no less than the lower bound.

Note that although given certain distributions, β2, β3 may go to infinity, β1

is always finite. Therefore, β is always a finite number. This fact guarantees that

the lower bound is meaningful at least when n is large enough. Comparing the

lower bound derived in Theorem 3.4.1 to inequality (2), it is obvious that Theorem

3.4.1 is better if β ≤ n in the sense that the lower bound is larger. Since β is fixed

over n, there exists an n∗ such that Theorem 3.4.1 is better for all n > n∗. This fact
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gives us a way to compare Theorem 3.4.1 and Theorem 3.3.2 when we restrict

ourselves to a non-negative and bounded type space with 2m classes. When m is

large enough, the lower bound from Theorem 3.4.1 is tighter. Especially if β is

less than 2, Theorem 3.4.1 is better from m = 1. For this reason, we are

particularly interested in comparing β to 2 later on. Moreover, Theorem 3.4.1

holds with much more general conditions on distribution functions.

To apply Theorem 3.4.1, we need to go through all possible values of all

βis to pick the minimum, which often requires a large amount of calculations. The

value of one particular βi is often good enough. By sacrificing tightness slightly,

focusing on one particular βi with a particular value of pi decreases the amount of

calculations dramatically. Furthermore, if the distributions behave ”nicely”

enough, we can derive the lower bound in a much easier way. The following

corollary is developed to illustrate this point. If densities are bounded from zero,

then instead of utilizing detailed information about the density, the corollary only

involves those bounds. Therefore, the calculation of the lower bound is simplified.

Certainly, the lower bounds could potentially be improved if we employed the

much more complex Theorem 3.4.1.

Corollary 3.4.1 The lower bound of efficiency gain
un −u1

u∞ −u1
is:

1. 1− 1
4an2 if COV (x,ϕ (x))≥ a,

2. 1−
√

3AB
3
2

n2 if densities satisfy f (x)≤ A,g(x)≤ B,

3. 1− a2b2

n2 if densities satisfy f (x)≥ 1/a and g(x)≥ 1/b,

4. 1− 1
n2

AB
ab

if densities a ≤ f (x)≤ A and b ≤ g(y)≤ B,
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Lower bound 1 of above corollary is simply a direct implication from β1 in

Theorem 3.4.1. In particular, if f (x) = g(x) , COV (x,ϕ (x)) becomes the variance

σ2
x . Then the larger the variance, the larger the lower bound. Roughly speaking,

this result indicates that the higher the variation, the less the efficiency loss. Lower

bound 2-4 provide large lower bounds as long as densities don’t vary dramatically.

Now we apply the above corollary to the following simple example.

Example 3.4.1 Consider F (x) = G(x) = x. Density equals 1. By Corollary 3.4.1,

we have (un −u1)/(u∞ −u1)≥ 1−1/n2. In fact, the lower bound is tight. The

highest efficiency gain can that be achieved by an n-level CM scheme is 1−1/n2.

Corollary 3.4.1 provides an easier way to derive lower bounds by

employing less information on distributions. The tradeoff then is the sacrifice of

tightness of the lower bound. In Example 3.4.2, we apply part of Theorem 3.4.1,

which gives a better bound than the above corollary.

Example 3.4.2 Suppose F (x) = G(x) = 1√
e−1e

1
2 x − 1√

e−1 with x ∈ [0,1]. Then

f (x) = 1
2

1√
e−1e

1
2 x ∈

[
1
2

1√
e−1 ,

1
2

1√
e−1e

1
2

]
and F−1 (x) = 2log((

√
e−1)x+1). It is

easy to check that none of the bounds derived from Corollaries 4.1 are less than 2.

We now derive the bound using β2 with p = q = ∞. We have β2 = 1.7045 < 2.

Hence, (un −u1)/(u∞ −u1)> 1−2/n2.

The value of β1 in Theorem 3.4.1 can be improved if the inverse functions

of F and G are totally (completely) monotonic or absolutely monotonic. A

function f (x) is totally (completely) monotonic if (−1)n f (n) (x)≥ 0 for all

n = 0,1,2, .... A function f (x) is absolutely monotonic if it has nonnegative

derivatives of all orders.
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Corollary 3.4.2 For any F and G,

β1 =
1

12COV (x,ϕ (x))
if F−1 and G−1 are totally (completely) monotonic or

β1 =
4

45COV (x,ϕ (x))
if F−1 and G−1 are absolutely monotonic.

Example 3.4.3 For distributions F (x) = G(x) = x
1
α defined over [0,1] with

integer α greater than 1, the inverse function F−1 (x) = xα is absolutely

monotonic. The value of COV (x,x) = α2

(α+1)2(2α+1)
≥ 2

45 when α = 1, ..,8. By

Corollary 3.4.1, β1 =
4

45COV (x,x) ≤ 2 when α = 1, ..,8.

The value of β from Theorem 3.4.1 depends on distributions. If β is too

large, the lower bound is meaningless for CM with small n. As we discussed

above, the value of β depends on the symmetry of distributions. In the following

example we consider distributions F (x) = G(x) = x
1
α , where α ∈ (0,∞) , and

show that β ≤ 3 for any α . Therefore, the lower bound implied by Theorem 3.4.1

is useful. The reason we are interested in this class of distributions is that as α

changes this class covers both symmetric and asymmetric distributions. If α = 1,

the distributions are uniform and symmetric. If α is closed to 0 or ∞, the

distributions are highly asymmetric. We believe this example suggests that in

general β from Theorem 3.4.1 cannot be too large. The following example also

illustrates the advantage of Theorem 3.4.1 over Theorem 3.3.1 and 3.3.2.

Example 3.4.4 Consider a class of distributions F (x) = G(x) = x
1
α over [0,1]

where α ∈ (0,∞).

(i) From Theorem 3.3.2, condition 1 and 2 are satisfied only if α ≤ 1.

Therefore, for α ∈ (0,1] we have

u2m −u1

u∞ −u1
≥ 1− 1

2m .
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(ii) In this case, simply applying Theorem 3.4.1 won’t give a tight lower

bound over all α . Special treatment is needed. We show in Appendix that by

adapting the proof of Theorem 3.4.1, we can derive the following result:

u2 −u1

u∞ −u1
≥ 1

2
and

un −u1

u∞ −u1
≥ 1− 3

n2

for any α ∈ (0,∞) and n ≥ 3.

Compared to the lower bound derived from part (i), part (ii) provides a

tighter bound when restricted to α ≤ 1 and the number of classes equals 2m.

Furthermore, it provides a bound for any α ∈ (0,∞) and any number of classes.

MEASURE OF PERFORMANCE. Ratio un/u∞ is also used as a measure

of the performance of CM in the literature. As we show in Appendix, when the

match payoff function is xy, ratio (un −u1)/(u∞ −u1) is convenient since its value

is not affected by shifting the type space while un/u∞ is. For a general match

payoff function u(x,y), ratio (un −u1)/(u∞ −u1) may lose such advantage due to

the curvature of u(x,y) . Depending on interest, it is sometimes also more sensible

to use un/u∞ as a measure of the performance of CM. In fact, Theorem 3.4.1 is

enough to establish a lower bound for un/u∞. Because
un −u1

u∞ −u1
≥ 1−β/n2 implies

that
un

u∞
≥ 1−β/n2. If we replace COV (x,ϕ (x)) in β with u∞, a tighter lower

bound for un/u∞ is obtained. Note that u∞ only depends on distributions F and G.

General match payoff Function

We derive all previous results by assuming that the match payoff function is simply

x · y. However, those results can be easily generalized to matching with payoff

function m(x)n(y) , where m(·) and n(·) are continuous monotonic functions.

Treat F (x(m)) and G(y(n)) as new distribution functions w.r.t. m and n, where
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x(m) and y(n) are inverse function of m(x) and n(y) . Then the payoff function

becomes mn. Hence all previous results hold if the payoff function is separable.

In general, there is no reason why the payoff function should be separable.

But results regarding general payoff functions are rarely seen in related literature.

We show below that the main result extends if a condition imposed jointly on the

payoff function and on the densities holds

Formally, we consider matching with a general payoff function u(x,y) ,

which is complementary in x and y. Due to the curvature of u(x,y) , we are no

longer able to assume that the type space is [0,1] without loss of generality. Here,

we assume the type space [a,b] is nonnegative and bounded.

We have the following similar notations for match payoff of random

matching and PAM:

u1 =
∫ 1

0

∫ 1

0
u
(
F−1 (α) ,G−1 (β )

)
dαdβ

u∞ =
∫ 1

0
u
(
F−1 (α) ,G−1 (α)

)
dα.

Theorem 3.4.2 For c.d.f. F,G defined over a non-negative bounded type space

[a,b] with
∂ 2

∂x∂y
u
(
F−1 (x) ,G−1 (y)

)
∈
[
A,A

]
, we have

un −u1

u∞ −u1
≥ 1− β

n2 ,

where β = A/A. The cutoff points are {ci}n
i=1 such that ci = i/n.

The condition required in Theorem 3.4.2
∂ 2

∂x∂y
u
(
F−1 (x) ,G−1 (y)

)
equals

u21/( f g). The value of u21 characterizes the degree of complementarity of the

match payoff function in matched agents’ types. This condition indicates that a

lower bound exists if the degree of complementarity together with the reciprocal of
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densities are bounded away from zero and infinity. The lower bound is large if

u21/( f g) doesn’t vary significantly over the type space.

To illustrate Theorem 3.4.2 consider the following example:

Example 3.4.5 Suppose u(x,y) = e
1
4 xy and x and y are uniformly distributed over

[0,1]. Then u
(
F−1 (x) ,G−1 (y)

)
= e

1
4 xy. It’s easy to check that

u21F−1′G−1′ = 1
16e

1
4 xy (xy+4) ∈

[
1
4 ,

5
16e

1
4

]
and β = A/A = 1.605. By Theorem

3.4.2, we have
un −u1

u∞ −u1
≥ 1− 1.605

n2 .

In Appendix, we provide two more technical conditions for the result in

Theorem 3.4.2 to hold.

3.5 Applications

All of our results so far are derived under a canonical matching model assuming

the matchmaker can at least obtain coarse information of agents’ types. As we

mention in the introduction, in practice, agents may have incentive to misreport

their types. For example, in the monopolistic pricing model, a monopolist could

produce products with various qualities and sell them to consumers with different

valuations that are privately known. It is well known that to maximize its profit,

the monopolist can design an optimal contract to provide agents incentives to

report honestly. Under such an optimal contract, the consumer with the highest

valuation chooses the product with the highest quality and so on. From the

practical point of view, seldom does a firm adopt such an optimal contract by

offering a product with different quality for each consumer. Instead, a firm usually

offers a simple contract with products possessing only several different qualities
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that target different groups of consumers. In the same spirit of coarse matching,

we are interested in the performance of such ”simple contracts”.

We start this section with a matching model with private information. We

illustrate how to implement coarse matching when agents’ types are only known to

themselves. We then turn our attention to contracting models. The first to be

examined is a monopolistic pricing model, which is a pure adverse selection

model. The second is a cost-sharing model, which has both private information

and hidden actions.

Coarse Matching with Private Information

In this application, we discuss how to implement coarse matching with private

information. Consider the previous marriage model with individual’s type

privately known to themselves. Assume that the match couple shares the payoff xy

equally. The setting is quite similar to Damiano and Li (2007). However, instead

of revenue, as a social planner, the matchmaker cares about the total payoff from

matching which is a sum over all payoffs of individuals and transfers between

individuals and the matchmaker.

Given the number of classes adopted by the matchmaker, our CM results

provide a lower bound of the efficiency gain of n-class CM with perfect

information. Next we show that the same lower bound of the efficiency gain can be

derived for n-class coarse matching. To implement a particular n-class CM scheme

given distributions of individuals’ types, the matchmaker creates n sub-markets for

individuals with types belonging to different intervals. Individuals within each

sub-market match randomly. The cutoffs of types of each sub-market is public

announced by the matchmaker. Hence, any individual has an expectation of

payoffs from participating different sub-markets. Denote cutoffs men and women
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associated with ith sub-market as {xi−1,xi} and {yi−1,yi} respectively with

yi = ϕ (xi) and i = 1, ...,n. Also denote the participation fees for men and women

for ith sub-market are pm
i and pw

i respectively. The matchmaker could induce

individuals to choose right sub-markets by setting participation fees properly. A

fee schedule {pm
i , pn

i }
n
i=1 is incentive compatible for men with type x ∈ [xi−1,xi]

and women with type y ∈ [ϕ (xi−1) ,ϕ (xi)] if

∫ yi

yi−1

xy
G(yi)−G(yi−1)

dG(y)− pm
i ≥

∫ y j

y j−1

xy
G
(
y j
)
−G

(
y j−1

)dG(y)− pm
j∫ xi

xi−1

xy
F (xi)−F (xi−1)

dF (x)− pw
i ≥

∫ x j

x j−1

xy
F
(
x j
)
−F

(
x j−1

)dF (x)− pw
j .

Such fee schedule indeed exists. For illustration, suppose a matchmaker

adopts a 2-class CM. To implement, the matchmaker creates two locations in

which men and women to meet, one for individuals with types above thresholds x∗

and y∗ (high type) and the other one for individuals with types below x∗ and y∗

(low type). Now men and women who want to participate the high type location

will be charged fees pm and pw respectively. It is free to participate in the low type

location. Knowing they will match some individuals with high (low) type by

participating in high (low) type locations, they will pay the following fees

pm =
1
2

∫ 1

y∗

x∗y
1−G(y∗)

dG(y)− 1
2

∫ y∗

0

x∗y
G(y∗)

dG(y)

pw =
1
2

∫ 1

x∗

xy∗

1−F (x∗)
dF (x)− 1

2

∫ x∗

0

xy∗

F (x∗)
dF (x) ,

which are incentive compatible. All men and women with types above (below) x∗

and y∗ respectively will participate in high (low) type locations. Since transfers

between individuals and the matchmaker don’t affect overall payoffs from CM,

2-class CM can be implemented. Alternatively, we could interpret those

individuals who are willing to pay fees as being premium members, with the

matchmaker only introducing premium members to premium members. It is the
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same procedure to implement CM with any number of classes, even PAM, by

charging fees continuously for each type. The reasons why a matchmaker may

prefer CM to PAM may be 1) there is a cost for creating more locations for

individuals to meet or alternatively, it is costly to introduce a new tier of

membership; 2) the welfare concern of individuals means that to implement PAM

the matchmaker has to take a large share of total payoff away from individuals.

In sum, the efficiency gain of n-class CM with private information of

individuals’ types can be bounded below by 1−β/n2 from Theorem 3.4.1.

Monopolistic Pricing

In this application, we consider a textbook monopoly pricing model. Under

standard assumptions, the optimal contract offered by the monopolist induces a

consumer with a higher valuation to buy a product with a higher quality and pay a

higher price continuously. This sorting result can be thought of as PAM between a

consumer’s type and product’s quality. It is natural to interpret CM with n classes

in this setting as an n-level contract consisting of products with n different

qualities for n groups of consumers, which induces each group of consumers with

valuations within an interval to buy products with the same quality and pay for the

same price. Given the number of different qualities the monopolist could produce,

the monopolist could change the size of each group of consumers by choosing

cutoffs of consumers’ valuations to maximize its profit. The natural question to

ask is how to apply our previous CM result to evaluate the performance of optimal

n-level contracts relative to the optimal contracts.

Unlike our original canonical matching model where the incentive

compatibility (IC henceforth) and participation (IR henceforth) conditions are

absent, in this model, the payoff of the optimal contract and optimal n-level
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contract are twisted differently away from the product of consumer’s valuation and

product’s quality due to different numbers of IC and IR conditions faced by the

monopolist. Therefore, the connection between n-level contracts and the optimal

contract is not as simple as the connection between n-class CM and PAM. It is not

straightforward to apply CM results here to obtain the profit gain (analog to the

efficiency gain) of the optimal n-level contract. To overcome the difficulty caused

by IC and IR conditions, we first treat the payoff of the optimal contract as PAM

then apply CM results mechanically to this payoff, which implies the lower bound

of n-class CM. Note, n-class CM derived here is based on the optimal contract’s

payoff, which is generated endogenously taking IC conditions into account. It

does not correspond to any n-level contract directly. To link n-class CM and

n-level contract, in the second step, we construct an n-level (feasible) contract that

satisfies IC and IR conditions. The profit gain of such a feasible contract can be

bounded below by the lower bound of n-class CM derived in the first step. Since

the optimal n-level contract should have a (weakly) higher profit than any feasible

n-level contract, the lower bound derived in the first step, therefore, is the lower

bound of the profit gain for the optimal n-level contract.

PROBLEM FORMULATION. A monopolist seller could choose to

produce a product with quality a at cost c ·a. The buyer’s utility from such a good

is assumed to be θu(a) , where θ is this buyer’s type privately known to herself

and u(a) is an increasing concave function of quality a. Type θ is randomly

distributed over [0,1] with c.d.f. F̂ (θ). The monopolist maximizes its profit by
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solving the following problem:

max
a(θ),t(θ)

∫ 1

0
[t (θ)− ca(θ)]dF̂ (θ)

s.t θu(a(θ))− t (θ)≥ θu
(
a
(
θ ′))− t

(
θ ′) for any θ ,θ ′ ∈ [0,1] (IC)

θu(a(θ))− t (θ)≥ 0 for any θ ∈ [0,1] (IR) .

THE OPTIMAL CONTRACT. It is standard to assume that(
1− F̂ (θ)

)
/ f̂ (θ) is a decreasing function. Then by using standard procedures,

we can solve for the optimal contract. Denote the optimal contract as a∗ (θ) ,

which specifies the quality of the product a buyer gets if his valuation is θ . The

monopolist’s profit is

π∞ =
∫ 1

θ

(
θ − 1− F̂ (θ)

f̂ (θ)

)
u(a∗ (θ))dF̂ (θ)︸ ︷︷ ︸

revenue

−
∫ 1

θ
ca∗ (θ)dF̂ (θ)︸ ︷︷ ︸

cost

,

where θ satisfies θ −
(
1− F̂ (θ)

)
/ f̂ (θ) = 0.

COARSE MATCHING. Let φ (θ) =
[
θ −

(
1− F̂ (θ)

)]
/ f̂ (θ) . Denote

revenue under the optimal contract as R∞ which can be written as

R∞ =
∫ 1

θ
φ (θ)u(a∗ (θ))dF̂ (θ) .

Since both φ (θ) and u(a∗ (θ)) are increasing, R∞ can be thought of as PAM

between “agents” with types φ (θ) and u(a∗ (θ)). Denote the inverse function of

φ (θ) as φ−1 (x). Then revenue R∞ can be written as∫ 1
0 xu

(
a∗
(
φ−1 (x)

))
dF̂
(
φ−1 (x)

)
. We then apply Theorem 3.4.1 directly to R∞ to

derive a lower bound for (Rn −R1)/(R∞ −R1). Here Rn is defined as

Rn = ∑
(

1
F (φ−1 (xi))−F (φ−1 (xi−1))

∫ xi

xi−1

xdF̂
(
φ−1 (x)

)
×
∫ xi

xi−1

u
(
a∗
(
φ−1 (x)

))
dF̂
(
φ−1 (x)

))
.
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By letting πn = Rn −
∫ 1

θ ca∗ (θ)dF̂ (θ) , we have equality

(Rn −R1)/(R∞ −R1) = (πn −π1)/(π∞ −π1). Note that Rn and πn do not have any

economic meaning in this setting thus far. Both Rn and πn are numbers implied by

Theorem 3.4.1.

CONNECTION TO n-LEVEL CONTRACTS. Our goal is to establish a

lower bound for the profit gain of the optimal n-level contract. Denote the profit

under the optimal n-level contract as π∗
n . We want to utilize the lower bound of

(Rn −R1)/(R∞ −R1) derived above to establish a lower bound for

(π∗
n −π1)/(π∞ −π1). This can be achieved if we can show that π∗

n is not less than

πn.

Let πn be the profit from an n-level contract satisfying both IC and IR

conditions. By definition, the profit of the optimal n-level contract π∗
n is no less

than πn. In order to do a comparison, we need show that there indeed exists an

n-level contract that satisfies IC and IR conditions under which the monopolist has

profit equal to πn. We show this by construction. Consider an n-level stochastic

contract offered by the monopolist such that a consumer with type θ ∈ [θi−1,θi]

gets a product with quality randomly distributed according to ai (x) = a∗ (x) where

x is randomly distributed over [θi−1,θi] by F̂ (x) and {θi}n
i=1 are cutoff points

associated with Rn. By offering products with stochastic qualities within certain

intervals and charging fix prices, the monopolist could induce consumers to buy

products targeted to their types. We claim such a contract satisfies IC and IR

conditions (hence implementable), and it has profit equal to πn (see Appendix). In

fact, this n-level contract also has revenue equal to Rn.

RESULT. To apply Theorem 3.4.1, define F (x) = F̂
(
φ−1 (x)

)
,

G
(
u
(
a∗
(
φ−1 (x)

)))
= F (x) and ϕ (x) = u

(
a∗
(
φ−1 (x)

))
. Let C = ϕ (1)−ϕ (0).

Now distributions F (·) and G(·) are defined over [0,1] and [ϕ (0) ,ϕ (1)]. By
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adapting the proof of Theorem 3.4.1 (π∗
n −π1)/(π∞ −π1)≥ 1−C

(
β/n2) where

β is the same as in Theorem 3.4.1. However, unlike in the canonical matching

model, (π∗
n −π1)/(π∞ −π1) may not be a natural measure for the profit gain of the

optimal n-level contract. On the contrary, measure π∗
n/π∞ captures the fraction of

the profit that can be generated from the optimal n-level contract relative to the

optimal contract. By the logic of the proof of Theorem 3.4.1, with a little

modification, we have the following result regarding π∗
n/π∞.

Proposition 3.5.1 The profit of the optimal n-level contract π∗
n satisfies

π∗
n

π∞
≥ 1− β̂

n2 ,

where β̂ = min
{

β̂1, β̂2, β̂3

}

1. β̂1 =
C

4π∞

2. β̂2 =

C min

min
p,q

∥∥F−1′∥∥[0,1]
p

∥∥G−1′∥∥[ϕ(0),ϕ(1)]
q

8π∞
,

∥∥F−1′∥∥[0,1]
∞

∥∥G−1′∥∥[ϕ(0),ϕ(1)]
∞

12π∞

 ,

where 1
p +

1
q = 1 and p,q ∈ [1,∞]

3. β̂3 = min
{

β̂ a
3 , β̂

b
3

}
,

where β̂ a
3 = min

p1,q1

C∥ f∥[0,1]p1

2
√

2 [(q1 +1)(2q1 +1)]
1

2q1 π∞

,

β̂ b
3 = min

p2,q2

C∥g∥[ϕ(0),ϕ(1)]p2

2
√

2 [(q2 +1)(2q2 +1)]
1

2q2 π∞

,

1
p j
+ 1

q j
= 1 and p j,q j ∈ [1,∞] , j = 1,2.

To illustrate this proposition, we apply it to the following example.
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Example 3.5.1 Consumer’s utility function is θu(a) = θa
1
2 . The c.d.f. of

valuation is F̂ (θ) = θ α over [0,1]. Then the optimal contract is

a(θ) = φ2 (θ)/4c2, where φ (θ) =
(
θ −

(
1− F̂ (θ)

)
/ f̂ (θ)

)
. The revenue under

the optimal contract is R∞ = 1
2c
∫ 1

θ φ2 (θ)dF (θ). Hence,

F (x) = G(x) = F̂
(
φ−1 (x)

)
. We have R∞ = 1

2c
∫ 1

0 x2dF (x) . For illustration, we

simply choose β̂ a
3 with p1 = ∞ from the previous proposition

β a
3 =

√
3∥ f∥[0,1]∞
12π∞

.

We can show that β3 ≤ 2, for any α ∈ [1,20]. Therefore, for any α ∈ [1,20],

π∗
n

π∞
≥ 1− 2

n2 .

WITHOUT THE OPTIMAL CONTRACT. To derive β̂ for the profit gain

of an optimal n-level contract, we need to know the entire function of the optimal

contract a∗ (θ) . However, the closed form of a∗ (θ) is usually difficult or

impossible to derive. Now the question is, how do we know the gain of profit

recovered by an optimal n-level contract if we don’t have the optimal contract? In

this part, we consider an alternative to solving the optimal contract.

By observing β̂ in the above proposition, both C and π∞ are related to

optimal contract a∗ (θ). However, C = u(a∗ (1))−u(a∗ (θ)) , which depends on

the value of a∗ (θ) at only two points, a∗ (1) and a∗ (θ). Furthermore, from the

conditions that the optimal contract need to satisfy, we could imply that a∗ (θ) = 0

and u′ (a∗ (1)) = c. Hence, once the form of u(·) is known, the value of a∗ (1) can

be solved immediately. By contrast, the value of π∞ is determined by the entire

function a∗ (θ). Denote the value of β̂ by replacing π∞ with π∗
2 as β̃ , where π∗

2 the

profit of the optimal 2-level contract. Since the optimal 2-level contract only

involves two IC conditions, it is easy to derive π∗
2 . Furthermore, π∗

2 ≤ π∞ implies

that β̃ ≥ β̂ . Therefore, π∗
n/π∞ ≥ 1− β̃/n2.
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To illustrate the above discussion, we consider the same example as

Example 3.5.1 with α = 1.

Example 3.5.2 For Example 3.5.1 with α = 1, It is easy to solve for an optimal

2-level contract that has profit π∗
2 = 1

25c . Based on previous discussion, for

simplicity, let β̃ be β̂1 with π∞ replacing by π∗
2 . Hence, β̃ = u(a∗ (1))/(4π∗

2 ). That

is u(a∗ (1)) = 1/(2c). Therefore, β̃ = 25/8.

Hence,
π∗

n
π∞

≥ 1− β̃
n2 .

Cost-Sharing

In the cost-sharing model, a principal wants to procure a product from a firm. The

cost of production for the firm is randomly distributed. The firm could reduce the

initial cost by exerting effort and bearing some disutility. Both initial cost and

effort are unobservable to the principal. The principal only observes realized cost.

Compared to the monopolistic pricing model, this model includes both adverse

selection and hidden actions. Laffont and Tirole (1986) studied this model in a

very general setting. They completely solved the problem for the optimal contract

containing a continuum of items. However, Rogerson (2003) argued that such a

contract was not widely used due to its complexity. He then studied this model

within a very restrictive environment and showed that a ”simple contract”

performs relatively well in terms of cost. Chu and Sappington (2007) followed this

idea. They analyzed the same cost-sharing model as Rogerson (2003) under a

slightly more general class of distributions. They provided a different ”simple

contract” and showed that such contract could often outperform the one used in

Rogerson (2003) under different distributions.
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The ”simple contract” in these two papers refers to a 2-level contract,

which is a combination of two of the following three contracts: fixed price (FP)

contract, cost reimbursement (CR) contract and linear cost sharing (LCS) contract.

Under a FP contract, the principal pays a fixed price for the product regardless the

realized cost. Under a CR contract, the principal pays the realized cost to the firm.

Under an LCS contract, the principal pays a lump-sum payment and shares a fixed

fraction of the realized cost. In Rogerson (2003), the ”simple contract” is a 2-level

contract which has FP and CR. In Chu and Sappington (2007), the ”simple

contract” is a 2-level contract containing LCS and CR.

We consider the same cost-sharing model as Rogerson (2003) and Chu and

Sappington (2007) with much more general distributions. Unlike the previous two

papers, we want to evaluate the performance of n-level contracts. To apply CM

results to this model, we have the same difficulty as in the monopolistic pricing

case due to feasibility (IC and IR) conditions required for n-level contracts. PAM

is generated endogenously under the optimal contract. The CM scheme, in

general, is not a feasible contract. By the same logic as in monopoly pricing, to

apply our CM results, we construct a ”simple contract” that can be bounded by the

lower bound derived from CM result. Moreover, such contract is feasible. The

”simple contract” to be analyzed is an n-level linear cost sharing cost

reimbursement (LCSCR) contract. Such a contract contains n items with n−1

different LCS items and one CR item.

To derive the lower bound of the efficiency gain for the optimal n-level

LCSCR contract, we first formulate this problem and solve for the optimal contract

enabling us to see the sorting feature in the principal’s value function. Due to

sorting, we can apply our CM results and establish a lower bound. In the end, we

show that this lower bound is indeed a lower bound of the efficiency gain of a
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feasible n-level LCSCR contract.

MODEL DESCRIPTION. A risk-neutral principal wants to buy a unit of

product from a firm. The firm’s initial cost of production is a random variable

following a c.d.f. F (x) over [0,1]. The firm could exert effort y to reduce the initial

cost, and the disutility of effort is 1
4k y2. Such an effort could not be observed by the

principal. The principal could only observe the realized cost, which is c = x− y.

Since the firm’s initial cost is private information, the contract should satisfy both

IC and IR conditions. The goal of the principal is to offer a feasible contract that

minimize expected transfer to the firm.

THE OPTIMAL CONTRACT. Following the standard procedure

developed in Laffont and Tirole (1986), we have y(x) = 0 if F (x)/ f (x)≥ 2k and

y(x) = 2k− (F (x)/ f (x)) if F (x)/ f (x)≤ 2k (see Appendix). Function

F (x)/ f (x) is usually assumed to be an increasing function. Hence, the effort y(x)

is decreasing in x and bounded below by zero.

Denote x∗ = min{{x,1}| [F (x)/ f (x)] = 2k.}. The expected transfer to the

firm is

µx − k
∫ x∗

0

[
1
2k

F (x)
f (x)

−1
]2

dF (x)︸ ︷︷ ︸
cost reduction

.

Under a CR contract, the principal pays the firm for the observed cost. It is easy to

check that a CR contract is feasible, and under this contract the firm exerts no

effort and the expected cost for the principal is µx. Hence, the second term

k
∫ x∗

0 [1−F (x)/2k f (x)]2

dF (x) is the cost reduction from the CR contract. The objective of the principal is

equivalent to finding a contract that maximizes cost reduction. Under any contract,

the expected transfer to the firm can be represented as µx subtracting an amount of

cost reduction. The performance of a ”simple contract” then can be measured by
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the amount of cost reduction.

COARSE MATCHING. Denote cost reduction under the optimal contract

as u∞. That is u∞ = k
∫ x∗

0 [1−F (x)/2k f (x)]2 dF (x). Note that u∞ can be viewed

as PAM between “agents” with two identical types F (x)/2k f (x)−1. As in

monopoly pricing model, we could apply CM results to u∞ and provide a lower

bound of (un−1 −u1)/(u∞ −u1). Here,

un−1 = k
n−1

∑
i=1

1
F (xi)−F (xi−1)

(∫ xi

xi−1

[F (x)/2k f (x)−1]dF (x)
)2

,

where x0 = 0, xn−1 = x∗ and {xi} are determined by the main theorem. Note un−1

again is the a value implied by the CM result and has no meaning in this model

thus far.

CONNECTION TO THE n-LEVEL CONTRACT. In order to use the

lower bound of (un−1 −u1)/(u∞ −u1) to evaluate the performance of the optimal

n-level contract, we need to show that there exists a feasible n-level contract which

has the amount of cost reduction equals to un−1. The n-level contract we analyze is

an n-level LCSCR contract, where the first n−1 items are n−1 different LCS

contracts for the firm with type less than x∗ and the last is a CR contract for the

firm with type greater than x∗. The reason such an n-level contract has cost

reduction equal to un−1 is because the CR part of an n-level LCSCR contract

provides no cost reduction.

We prove the existence by construction. The principal offers an n-level

LCSCR contract that has LCS contract {Ti,αi} if i ≤ n−1 and CR contract if

i = n. {αi}n−1
i=1 are chosen to satisfy

(1−αi)
2 =

1
F (xi)−F (xi−1)

(∫ xi

xi−1

[
1− 1

2k
F (x)
f (x)

]
dF (x)

)2

,

where {xi}n−1
i=1 are the same as the cutoff point for un−1. Lump-sum transfers

{Ti}n−1
i=1 can be solved recursively so that IC and IR conditions can be satisfied.
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Therefore, the n-level LCSCR contract we constructed is feasible. Moreover, the

cost reduction of this n-level contract is the same as un−1. Hence, the value of un−1

can be treated as the cost reduction of some n-level LCSCR contract. Note that

such an n-level LCSCR contract needs not be optimal.

THE OPTIMAL n-LEVEL LCSCR CONTRACT. So far we have

established the lower bound for (un−1 −u1)/(u∞ −u1) and showed that there

exists a feasible n-level LCSCR under which the cost reduction is un−1. By

definition, the optimal n-level LCSCR contract should provide a weakly higher

cost reduction denoted as u∗n−1. The lower bound of (un−1 −u1)/(u∞ −u1) then is

a lower bound of
(
u∗n−1 −u1

)
/(u∞ −u1) .

Similarly to monopoly pricing model, u∗n−1/u∞ here is a more sensible

measure, which captures the fraction of cost reduction can be achieved by the

optimal n-level LCSCR contract of the optimal contract. We could derive an

analog result to Proposition 3.5.1. For simplicity, by using the proof of β1 in

Theorem 3.4.1, we show the following result.

Proposition 3.5.2 If F(x)
f (x) is increasing, the cost reduction of the optimal n-level

LCSCR contract u∗n−1 satisfies u∗n−1/u∞ ≥ 1−β/(n−1)2 , where β =
k

4u∞
.

Rogerson (2003) shows that with uniform distribution an optimal two-level

FPCR contract has (u∗1/u∞)≥ 0.75. Chu and Sappington (2007) shows that under

a c.d.f. F (x) =
(

x−x
x−x

)α
, where α ∈ [0,∞) an optimal 2-level LCSCR has

u∗1/u∞ ≥ 2/e ≈ 0.73.

By restricting ourselves to distributions used in above two papers, our

results may not outperform their lower bounds. Because our results are derived for

much more general environments and for contracts with any number of levels. On
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the contrary, under specific forms of distributions, the optimal two-level contracts

can be solved. Hence, tighter lower bounds can be provided.

3.6 Concluding Remarks

We have analyzed the efficiency gain of n-class CM of two-sided markets with

heterogeneous agents relative to the optimal matching scheme that requires PAM.

We revisited McAfee (2002) and showed that his result extends in an intuitive yet

non-obvious way to 2n classes. But the same method cannot be applied to further

extend the result to CM with n classes. We then developed a completely different

method, one that involves a novel use of some powerful inequalities. Our first

main result provides a lower bound on the efficiency gain of CM for suitable

n-class partitions of the populations. Furthermore, the distributions required are

very mild, as they only need to have finite variance and continuous densities over a

non-negative bounded interval. The second main result of the paper provides an

extension to more general payoff functions that are supermodular in the agents’

characteristics, so long as a condition that involves both the payoff function and

the distributions of attributes is satisfied. In the end, we showed that there are

several problems seemingly unrelated to matching in which our results can be

fruitfully applied. We illustrated this by adapting the coarse matching results to

models like monopoly pricing problem and cost-sharing problem so as to evaluate

the performance of pooling contracts that are easy implemented relative to optimal

contracts. Compared to the results from Rogerson (2003) and Chu and Sappington

(2007) regarding the cost-sharing problem, our results hold for contracts with any

n levels under much more general conditions of distributions. This application also

sheds some light on the comments made in Rogerson (2003) about the common

mathematical structure behind the matching and cost-sharing models.
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APPENDIX A

PROOF AND OMITTED STEPS OF CHAPTER 3
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Normalization of Type Space

In this part, we show that if the match payoff is xy, any non-negative and bounded

type space [a,b] can be normalized to [0,1] without affecting the value of

(un −u1)/(u∞ −u1). It’s easy to see that the length of the type space can be

assumed to be one without loss of generality.

Define

ua
∞ =

∫ a+1

a
xϕ̃ (x)dF̃ (x) , ua

1 =
∫ a+1

a
xdF̃ (x)

∫ a+1

a
ydG̃(y)

ua
n =

n

∑
i=1

1
F (xi)−F (xi−1)

∫ xi

xi−1

xdF̃ (x)
∫ ϕ(xi)

ϕ(xi−1)
ydG̃(y) .

Here, for any x,y ∈ [a,a+1], F̃ (x) = F (x−a) and G̃(y) = G(y−a) and

G(ϕ (x−a)) = G̃
(
ϕ̃ (x)

)
. Therefore, ϕ̃ (x) = ϕ (x−a)+a.

Lemma 1
ua

∞ −ua
n

ua
∞ −ua

1
=

u0
∞ −u0

n

u0
∞ −u0

1
.

Proof. For x,y ∈ [a+1,b+1] , F̃ (x) = F (x−1), G̃(y) = G(y−1) ,

F (x) = G(ϕ (x)) and G(ϕ (x−1)) = G̃
(
ϕ̃ (x)

)
. Hence, ϕ̃ (x) = ϕ (x−1)+1.

To prove the lemma, it is enough to prove the following equality:

∫ b

a
xϕ (x)dF (x)− 1

F (b)−F (a)

∫ b

a
xdF (x)

∫ b

a
ydG(y)

=
∫ b+1

a+1
xϕ̃ (x)dF̃ (x)− 1

F̃ (b+1)− F̃ (a+1)

∫ b+1

a+1
xdF̃ (x)

∫ b+1

a+1
ydG̃(y) ,

where b−a ≤ 1.
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To show it,

∫ b+1

a+1
xϕ̃ (x)dF̃ (x)− 1

F̃ (b+1)− F̃ (a+1)

∫ b+1

a+1
xdF̃ (x)

∫ b+1

a+1
xdG̃(x)

=
∫ b

a
(y+1) ϕ̃ (y+1)dF (x)− 1

F (b)−F (a)

∫ b

a
(y+1)dF (y)

∫ b

a
(y+1)dG(y)

=
∫ b

a
(y+1)(ϕ (y)+1)dF (x)− 1

F (b)−F (a)

∫ b

a
(y+1)dF (y)

∫ b

a
(y+1)dG(y)

=
∫ b

a
xϕ (x)dF (x)+

∫ b

a
ϕ (x)dF (x)+

∫ b

a
xdF (x)+

∫ b

a
1dF (x)

− 1
b−a

∫ b

a
xdF (x)

∫ b

a
xdG(x)−

∫ b

a
xdG(x)−

∫ b

a
xdF (x)−

∫ b

a
1dF (x)

=
∫ b

a
xϕ (x)dF (x)− 1

b−a

∫ b

a
xdF (x)

∫ b

a
xdG(x) .

If the type space is an arbitrary interval [a,b], we can redefine F̃ (x) = F
( x−a

b−a

)
and

G̃(y) = G
( y−a

b−a

)
. Then the same argument goes through.

From the above proof, one could immediately see that ratio

ua
1

ua
∞
=

∫ 1
0
(
F−1 (z)+a

)
dz
∫ 1

0
(
G−1 (z)+a

)
dz∫ 1

0 (F−1 (z)+a)(G−1 (z)+a)dz

is not immune to the shift of domain. In fact, by letting a go to infinity, ua
1/ua

∞ goes

to 1.

Preliminary Results

The following results are collected from Mitrinovic et al., 1993.

Lemma 2 (Steffensen’s Inequality) Let g,h : [a,b]→ R and F : [a,b]→ [0,1] be

a distribution function. Suppose that g is monotonically increasing. Define

HF : (a,b]→ R, HF (t) =
∫ t

a h(s)dF (s)/
∫ t

a dF (s) . If HF (t)≤ HF (b) for all

t ∈ (a,b], then

∫ b

a
g(s)h(s)dF (s)≥

∫ b

a
g(s)dF (s)

∫ b

a
h(s)dF (s) .
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Define

T ( f ,g; p) =
1∫ b

a p(x)dx

(∫ b

a
p(x) f (x)g(x)dx

− 1∫ b
a p(x)dx

∫ b

a
p(x) f (x)dx

∫ b

a
p(x)g(x)dx

)
.

In particular, if p(x) = 1
b−a , T ( f ,g) = T ( f ,g; p).

Lemma 3 (Korkine’s identity)

T ( f ,g; p) =
1
2

∫ b

a

∫ b

a
p(t) p(s)( f (t)− f (s))(g(t)−g(s))dtds.

Lemma 4

T ( f ,g) = f ′ (ε)g′ (η)T (x,x) ε,η ∈ [a,b] .

Lemma 5 Assume φ ≤ f (x)≤ ϕ and γ ≤ g(x)≤ Γ, then

T ( f ,g)≤ 1
4
(ϕ −φ)(Γ− γ) .

Lemma 6 If f (·) ,g(·) are totally(completely) monotonic,

T ( f ,g)≤ 1
12

( f (b)− f (a))(g(b)−g(a)) .

If f (·) ,g(·) are absolutely monotonic,

T ( f ,g)≤ 4
45

( f (b)− f (a))(g(b)−g(a)) .

Define K ( f , p,q) =
∫ b

a q(x) f (x,x)dx−
∫ b

a
∫ b

a f (x,y) p(x,y)dxdy.

Lemma 7 K ( f , p,q) = f21 (ε,η)K ((x−a)(y−a) , p,q)
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Lemma 8

1
b−a

∫ b

a
u
(
F−1 (α) ,G−1 (α)

)
dα −

(
1

b−a

)2 ∫ b

a

∫ b

a
u
(
F−1 (α) ,G−1 (β )

)
dαdβ

≤ 1
4
(
u
(
F−1 (b) ,G−1 (b)

)
+u
(
F−1 (a) ,G−1 (a)

)
−u
(
F−1 (a) ,G−1 (b)

)
−u
(
F−1 (b) ,G−1 (a)

))
=

1
4

∫ b

a

∫ b

a
u21F−1′G−1′dαdβ

The following result is from Elezovic, Marangunic and Pecaric 2007.

Lemma 9 If f (·) and g(·) are absolutely continuous, for α,β > 1, 1
α + 1

β ≤ 1 we

have

|T ( f ,g)| ≤ 1
12

(
3
2

) 1
α + 1

β
(b−a)2− 1

α − 1
β
∥∥ f ′
∥∥

α
∥∥g′
∥∥

β .

The following result is from Barnett, Cerone, and Dragomir etc. 2001.

Lemma 10 Given p.d.f function f (x) defined over [a,b], if standard deviation σ

exists, then

σ ≤



√
3(b−a)2

6 ∥ f∥∞ , provided f ∈ L∞ [a,b] , ;
√

2(b−a)1+ 1
q

2[(q+1)(2q+1)]
1
2q
∥ f∥p , provided f ∈ Lp [a,b] ,

and p > 1, 1
p +

1
q = 1;

1
2 (b−a) , provided p = 1.

.

An Extension of McAfee (2002): Proof of Theorem 3.3.2 and 3.3.3

The proof of Theorem 3.3.2 requires the following lemma.

Lemma 11 If conditions (1) and (2) of Theorem 3.3.1 hold,

1. (z− c)F−1′ (z) and (z− c)G−1′ (z) are increasing for z in (c,1], and
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2. (c− z)F−1′ (z) and (c− z)G−1′ (z) are decreasing for z in [0,c).

Proof. Function (z− c)F−1′ (z) is increasing if and only if (F (x)− c)/ f (x) is

increasing. From condition (1) of Theorem 3.3.1, F (x)/ f (x) is increasing. The

derivative is
d
dx

F (x)
f (x)

=
f 2 (x)−F (x) f ′ (x)

f 2 (x)
> 0.

The derivative of (F (x)− c)/ f (x) is

d
dx

F (x)− c
f (x)

=
f 2 (x)− (F (x)− c) f ′ (x)

f 2 (x)
.

If f ′ (x)< 0, [(F (x)− c)/ f (x)]′ > 0 due to (F (x)− c)> 0. If f ′ (x)> 0, we have

f 2 (x)− (F (x)− c) f ′ (x)> f 2 (x)−F (x) f ′ (x). That is [(F (x)− c)/ f (x)]′ > 0.

Similarly, we can prove (z− c)G−1′ (z) is increasing.

For the second statement:

Function (c− z)F−1′ (z) is decreasing if and only if (c−F (x))/ f (x) is

decreasing. From condition (2) of Theorem 3.3.1, (1−F (x))/ f (x) is decreasing.

The derivative is

d
dx

1−F (x)
f (x)

=
− f 2 (x)− (1−F (x)) f ′ (x)

f 2 (x)
< 0.

The derivative of (c−F (x))/ f (x) is

d
dx

c−F (x)
f (x)

=
− f 2 (x)− (c−F (x)) f ′ (x)

f 2 (x)
.

Note that c−F (x)> 0 for z ∈ [0,c). If f ′ (x)> 0, [(c−F (x))/ f (x)]′ < 0. If

f ′ (x)< 0, −(c−F (x)) f ′ (x)<−(1−F (x)) f ′ (x). Therefore,

d
dx

c−F (x)
f (x)

=
− f 2 (x)− (c−F (x)) f ′ (x)

f 2 (x)
<

− f 2 (x)− (1−F (x)) f ′ (x)
f 2 (x)

< 0.

91



Proof of Theorem 3.3.2. Instead of proving the theorem directly, we show that

u2n −u2n−1

u∞ −u2n−1
≥ 1

2

holds for any given n by induction. Theorem 3.3.1 shows that the above inequality

holds when n = 1. By induction, assume it is true for n−1. We need to show that

u2n −u2n−1

u∞ −u2n−1
≥ 1

2
.

First rewrite u2n−1 as

u2n−1 =
2n−1

∑
i=1

(F (xi)−F (xi−1))

(∫ xi

xi−1

x
f (x)

F (xi)−F (xi−1)
dx

×
∫ ϕ(xi)

ϕ(xi−1)
y

g(y)
G(ϕ (xi))−G(ϕ (xi−1))

dy
)

with fixed cutoff points {xi}2n−1

i=0 .

To obtain 2n classes with cutoff point {xi}2n−1

i=0 ∪{zi}2n−1

i=0 , we insert 2n−1 cutoff

points such that zi ∈ [xi−1,xi] for i = 1, ...,2n−1. The payoff for this 2n-class CM is

u2n =
2n−1

∑
i=1

(F (zi)−F (xi−1))

(∫ zi

xi−1

x
f (x)

F (xi)−F (xi−1)
dx

×
∫ ϕ(zi)

ϕ(xi−1)
y

g(y)
G(ϕ (xi))−G(ϕ (xi−1))

dy
)

+
2n−1

∑
i=2

(F (xi)−F (zi−1))

(∫ xi

zi−1

x
f (x)

F (xi)−F (zi−1)
dx

×
∫ ϕ(xi)

ϕ(zi−1)
y

g(y)
G(ϕ (xi))−G(ϕ (zi−1))

dy
)
.

Let ci = F (xi) = G(ϕ (xi)) and di = F (zi) = G(ϕ (zi)). Rewrite above equations

to obtain:

u2n−1 =
2n−1

∑
i=1

(ci − ci−1)
∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz

u2n =
2n−1

∑
i=1

(di − ci−1)
∫ di

ci−1

F−1 (z)
di − ci−1

dz
∫ di

ci−1

G−1 (z)
di − ci−1

dz

+
2n−1

∑
i=1

(ci −di)
∫ ci

di

F−1 (z)
ci −di

dz
∫ ci+1

di

G−1 (z)
ci −di

dz.
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Therefore,

u2n −u2n−1

=
2n−1

∑
i=1

1
di − ci−1

(∫ di

ci−1

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz

×
∫ di

ci−1

(
G−1 (z)−

∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz
)

+
2n−1

∑
i=1

1
ci −di

(∫ ci

di

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz

×
∫ ci

di

(
G−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz
)
.

Rewrite u∞ −u2n−1 as

u∞ −u2n−1

=
∫ 1

0
F−1 (z)G−1 (z)dz−

2n−1

∑
i=1

(ci − ci−1)
∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz

=
2n−1

∑
i=1

∫ ci

ci−1

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)(

G−1 (z)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz.

Focus on one of those terms, we have

∫ ci

ci−1

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)(

G−1 (z)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz

=
∫ di

ci−1

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)(

G−1 (z)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz

+
∫ ci

di

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)(

G−1 (z)−
∫ ci

ci

G−1 (z)
ci − ci−1

dz
)

dz.
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Integrate by parts and collect terms to obtain

= (ci − ci−1)

(
F−1 (di)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)(

G−1 (di)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

−
∫ di

ci−1

(z− ci−1)F−1′ (z)
(

G−1 (z)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz

−
∫ di

ci−1

(z− ci−1)G−1′ (z)
(

F−1 (z)−
∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz

+
∫ ci

di

(ci − z)F−1′ (z)
(

G−1 (z)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz

+
∫ ci

di

(ci − z)G−1′ (z)
(

F−1 (z)−
∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz.

Given the conditions required in Theorem 3.3.2 and Lemma 12,

≤ (ci − ci−1)

(
F−1 (di)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)(

G−1 (di)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

− 1
di − ci−1

∫ di

ci−1

(z− ci−1)F−1′ (z)dz
∫ di

ci−1

(
G−1 (z)−

∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz

− 1
di − ci−1

∫ di

ci−1

(z− ci−1)G−1′ (z)dz
∫ di

ci−1

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz

+
1

ci −di

∫ ci

di

(ci − z)F−1′ (z)dz
∫ ci

di

(
G−1 (z)−

∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz

+
1

ci −di

∫ ci

di

(ci − z)G−1′ (z)dz
∫ ci

di

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz.

Integrate by parts and collect terms:

= (ci − ci−1)

(
F−1 (di)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)(

G−1 (di)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

+
2

di − ci−1

(∫ di

ci−1

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz

×
∫ di

ci−1

(
G−1 (z)−

∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz
)

+
2

ci −di

(∫ ci

di

(
G−1 (z)−

∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz

×
∫ ci

di

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz
)
.
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Thus

u∞ −u2n−1

=
2n−1

∑
i=1

∫ ci

ci−1

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)(

G−1 (z)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz

≤
2n−1

∑
i=1

(ci − ci−1)

(
F−1 (di)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)(

G−1 (di)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

+
2n−1

∑
i=1

2
di − ci−1

(∫ di

ci−1

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz

×
∫ di

ci−1

(
G−1 (z)−

∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz
)

+
2n−1

∑
i=1

2
ci −di

(∫ ci

di

(
G−1 (z)−

∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

dz

×
∫ ci

di

(
F−1 (z)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)

dz
)

=
2n−1

∑
i=1

(ci − ci−1)

(
F−1 (di)−

∫ ci

ci−1

F−1 (z)
ci − ci−1

dz
)(

G−1 (di)−
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz
)

+2(u2n −u2n−1) .

Let F−1 (di) =
∫ ci

ci−1

F−1 (z)
ci − ci−1

dz or G−1 (di) =
∫ ci

ci−1

G−1 (z)
ci − ci−1

dz. Hence

u2n −u2n−1

u∞ −u2n−1
≥ 1

2
.

This immediately implies that
u2n −u1

u∞ −u1
≥ 1− 1

2n .

Proof of Theorem 3.3.3. From the proof of Theorem 3.3.1 in McAfee (2002),

conditions (1) and (2) in Theorem 3.3.1 could ensure the validity of Chebyshev’s

inequality. Since Lemma 2 gives exactly the same inequality but under a weaker

condition, we only need to verify that the conditions in Lemma 2 are satisfied

given conditions (1) and (2) from Theorem 3.3.3. In the proof of Theorem 3.3.1 in
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McAfee (2002), Chebyshev’s inequality is applied to the following four terms:

∫ c

0
zF−1′ (z)

(
G−1 (z)−µy

)
dz,
∫ c

0
zG−1′ (z)

(
F−1 (z)−µx

)
dz∫ 1

c
(1− z)F−1′ (z)

(
G−1 (z)−µy

)
dz and

∫ 1

c
(1− z)G−1′ (z)

(
F−1 (z)−µx

)
dz.

It is enough for us to consider

∫ c

0
zF−1′ (z)

(
G−1 (z)−µy

)
dz and

∫ 1

c
(1− z)F−1′ (z)

(
G−1 (z)−µy

)
dz.

Define HF (t) = 1
t
∫ t

0 zF−1′ (z)dz. Since G−1 (z)−µy is increasing in z, for

Steffensen’s inequality to hold, we need to show that

1
t

∫ t

0
zF−1′ (z)dz ≤ 1

c

∫ c

0
zF−1′ (z)dz for all t ∈ (0,c]

which is equivalent to

1
t

∫ F−1(t)

0
F (x)dx ≤ 1

c

∫ F−1(c)

0
F (x)dx.

Similarly, we need to show

1
1− t

∫ 1−t

0
zF−1′ (1− z)dz ≥ 1

1− c

∫ 1−c

0
zF−1′ (1− z)dz

Rewrite
∫ 1

t (1− z)F−1′ (z)dz as
∫ 1−t

0 zF−1′ (1− z)dz. This is equivalent to

1
1− t

∫ 1

t
(1− z)F−1′ (z)dz ≥ 1

1− c

∫ 1

c
(1− z)F−1′ (z)dz for all t ∈ (c,1].

Therefore, conditions (1) and (2) in Theorem 3.3.3 are enough to guarantee that

Steffensen’s inequality to holds. Replace Chebyshev’s inequality by Steffensen’s

inequality in the proof of Theorem 3.3.1 in McAfee (2002), and Theorem 3.3.3

holds immediately.

Generalized CM: Proof of Theorem 3.4.1
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Proof of Theorem 3.4.1. To show that inequality (4) holds, we first show that

numerator u∞ −un ≤
(
1/n2)Bi. Next, by letting βi = Bi/COV (x,ϕ (x)) , we have

(u∞ −un)/(u∞ −u1)≤ βi/n2, which implies (un −u1)/(u∞ −u1)≤ 1−βi/n2.

The following three circumstances derive Bi by using different versions of the

Gruss inequality.

Part 1:

u∞ −un =
n

∑
i=1

(ci − ci−1) [
∫ ci

ci−1

1
ci − ci−1

F−1 (z)G−1 (z)dz

−
∫ ci

ci−1

1
ci − ci−1

F−1 (z)dz
∫ ci

ci−1

1
ci − ci−1

G−1 (z)dz]

≤ 1
4

n

∑
i=1

(ci − ci−1)
(
F−1 (ci)−F−1 (ci−1)

)(
G−1 (ci)−G−1 (ci−1)

)
≤ 1

4
1
n2 .

The first inequality is due to Lemma 5. To show the second inequality, we choose

ci s.t.
(
F−1 (ci)−F−1 (ci−1)

)(
G−1 (ci)−G−1 (ci−1)

)
= 1

n2 starting from i = 1 up

to some i until
(
F−1 (ci)−F−1 (ci−1)

)(
G−1 (ci)−G−1 (ci−1)

)
≤ 1

n2 . WLOG, we

could assume that for all i ≤ n−1,(
F−1 (ci)−F−1 (ci−1)

)(
G−1 (ci)−G−1 (ci−1)

)
= 1

n2 . Then the last term is(
1−∑n−1

i=1 ai
)(

1−∑n−1
i=1 bi

)
, where ai =

(
F−1 (ci)−F−1 (ci−1)

)
and

bi =
(
G−1 (ci)−G−1 (ci−1)

)
. It is not difficult to show that(

1−∑n−1
i=1 ai

)(
1−∑n−1

i=1 bi
)
≤ 1

n2 .

Part 2: By Lemma 9

u∞ −un =
n

∑
i=1

(ci − ci−1)

(∫ ci

ci−1

1
ci − ci−1

F−1 (z)G−1 (z)dz

−
∫ ci

ci−1

1
ci − ci−1

F−1 (z)dz
∫ ci

ci−1

1
ci − ci−1

G−1 (z)dz
)

≤ 1
12

(
3
2

) 1
p+

1
q n

∑
i=1

(ci − ci−1)
3− 1

p−
1
q
∥∥F−1′ (z)

∥∥[ci,ci−1]

p

∥∥G−1′ (z)
∥∥[ci,ci−1]

q
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Let ci − ci−1 =
1
n and 1

p +
1
q = 1,

≤ 1
8n2

∥∥F−1′ (z)
∥∥[0,1]

p

∥∥G−1′ (z)
∥∥[0,1]

q .

The above inequality is due to the Holder’s inequality. That is

n

∑
i=1

∥∥F−1′ (z)
∥∥[ci,ci−1]

p

∥∥G−1′ (z)
∥∥[ci,ci−1]

q

=
n

∑
i=1

(∫ ci

ci−1

(
F−1′ (x)

)p
dx
) 1

p
(∫ ci

ci−1

(
G−1′ (x)

)q
dx
) 1

q

≤

(
n

∑
i=1

[(∫ ci

ci−1

(
F−1′ (x)

)p
dx
) 1

p
]p) 1

p
(

n

∑
i=1

[(∫ ci

ci−1

(
G−1′ (x)

)q
dx
) 1

q
]q) 1

q

=

(∫ 1

0

(
F−1′ (x)

)p
dx
) 1

p
(∫ 1

0

(
G−1′ (x)

)q
dx
) 1

q

=
∥∥F−1′ (z)

∥∥[0,1]
p

∥∥G−1′ (z)
∥∥[0,1]

q .

If p = q = ∞,

1
12

(
3
2

) 1
p+

1
q n

∑
i=1

(ci − ci−1)
3− 1

p−
1
q
∥∥F−1′ (z)

∥∥[ci,ci−1]

p

∥∥G−1′ (z)
∥∥[ci,ci−1]

q

≤ 1
12n3

n

∑
i=1

∥∥F−1′ (z)
∥∥[0,1]

∞

∥∥G−1′ (z)
∥∥[0,1]

∞

=
1

12n2

∥∥F−1′ (z)
∥∥[0,1]

∞

∥∥G−1′ (z)
∥∥[0,1]

∞ .

Hence,

u∞ −un ≤
1

12n2

∥∥F−1′ (z)
∥∥[0,1]

∞

∥∥G−1′ (z)
∥∥[0,1]

∞

Part 3: By Holder’s inequality,

u∞ −un ≤
n

∑
i=1

(ci − ci−1)

(
1

ci − ci−1

∫ ci

ci−1

(
F−1 (z)−

∫ ci

ci−1

1
ci − ci−1

F−1 (z)dz
)2

dz

) 1
2

×

(
1

ci − ci−1

∫ ci

ci−1

(
G−1 (z)−

∫ ci

ci−1

1
ci − ci−1

G−1 (z)dz
)2

dz

) 1
2
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According to Lemma 10,(
1

ci − ci−1

∫ ci

ci−1

(
F−1 (z)−

∫ ci

ci−1

1
ci − ci−1

F−1 (z)dz
)2

dz

) 1
2

≤ 1
ci − ci−1

√
2
(
F−1 (ci)−F−1 (ci −1)

)1+ 1
q

2 [(q+1)(2q+1)]
1
2q

∥ f∥[F
−1(ci−1),F−1(ci)]

p .

Also by Lemma 10 with p = 1,(
1

ci − ci−1

∫ ci

ci−1

(
G−1 (z)−

∫ ci

ci−1

1
ci − ci−1

G−1 (z)dz
)2

dz

) 1
2

≤ 1
2
(
G−1 (ci)−G−1 (ci −1)

)
.

Let
(
F−1 (ci)−F−1 (ci −1)

)1+ 1
q
(
G−1 (ci)−G−1 (ci −1)

)
=
(1

n

)2+ 1
q . With an

analog argument as in Part 1, we could have

u∞ −un

≤
n

∑
i=1

√
2

4 [(q+1)(2q+1)]
1

2q n2+ 1
q

(∫ i
n

i−1
n

f p (θ)dθ

) 1
p

≤
√

2

4 [(q+1)(2q+1)]
1
2q n2+ 1

q

 n

∑
i=1

(∫ i
n

i−1
n

f p (θ)dθ

) 1
p
p

1
p (

n

∑
i=1

1

) 1
q

=

√
2

4 [(q+1)(2q+1)]
1
2q n2+ 1

q
∥ f∥[0,1]p ×n

1
q

=

√
2

4 [(q+1)(2q+1)]
1
2q n2

∥ f∥[0,1]p .

The second inequality is due to Holder’s inequality.

Similarly, let
(
F−1 (ci)−F−1 (ci −1)

)(
G−1 (ci)−G−1 (ci −1)

)1+ 1
q =

(1
n

)2+ 1
q .

Then we also have

u∞ −un ≤
√

2

4 [(q+1)(2q+1)]
1

2q n2
∥g∥[0,1]p .

Since F−1′ (·) is a continuous function,
∥∥F−1′∥∥[0,1]

p

∥∥G−1′∥∥[0,1]
q is continuous in p.

From (1/p)+(1/q) = 1, it is enough for us to focus on p. We also know that
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when p goes to infinity the value of
∥∥F−1′∥∥[0,1]

p increases and
∥∥G−1′∥∥[0,1]

q goes to∥∥G−1′∥∥[0,1]
1 , which is finite. Hence, the value of

∥∥F−1′∥∥[0,1]
p

∥∥G−1′∥∥[0,1]
q is either

finite or goes to infinity when p goes to infinity. Similarly, the value of∥∥F−1′∥∥[0,1]
p

∥∥G−1′∥∥[0,1]
q is either finite or goes to infinity when p approaches 1.

Therefore, the minimum value of
∥∥F−1′∥∥[0,1]

p

∥∥G−1′∥∥[0,1]
q exists. For a similar

reason, the minimum of ∥ f∥[0,1]p /
(

4 [(q+1)(2q+1)]
1
2q

)
and

∥g∥[0,1]p /
(

4 [(q+1)(2q+1)]
1

2q

)
over p also exist. Therefore, β can be obtained.

Proof of Corollary 3.4.1. 2): By Lemma 4, we have

COV (x,ϕ (x)) = 1
12F−1′ (ε)G−1′ (η)

= 1/(12 f g)≥ 1/(12AB). β3 in Theorem 3.4.1 is less than(√
3A
)
/(12COV (x,ϕ (x))) if p = ∞. Similarly β3 could also be(√

3B
)
/(12COV (x,ϕ (x))). Hence,

β3 ≤
(√

3
√

AB
)
/(12COV (x,ϕ (x))) =

√
3AB

3
2 .

3): By Lemma 3, we have COV (x,ϕ (x)) = 1
2
∫ 1

0
∫ 1

0 f (x)g(y)(x− y)2 dxdy ≥ 1
12ab .

Using β2 of Theorem 3.4.1 with p = q = ∞,

β2 =

∥∥F−1′∥∥[0,1]
∞

∥∥G−1′∥∥[0,1]
∞

12COV (x,ϕ (x))
=

ab
12COV (x,ϕ (x))

.

That is, β2 ≤ a2b2.

4): By Lemma 4 u∞ −un = ∑ 1
12n2 F−1′ (εi)G−1′ (ηi)≤

1
12n2ab

. By Lemma 4

COV (x,ϕ (x)) =
1

12
F−1′ (ε)G−1′ (η)≥ 1

12AB
. It is obvious that the result holds.

CM with General Match Payoff: Proof of Theorem 3.4.2

The following theorem is a stronger version of Theorem 3.4.2.
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Theorem 3.4.2′ For any c.d.f. F (θ) ,G(θ) defined over a non-negative bounded

type space [a,b] with u21F−1′G−1′ ≥ A, we have

un −u1

u∞ −u1
≥ 1− β̃

n2 ,

where β̃ = min
{

β̃1, β̃2, β̃3

}

1. β̃1 =
A
A if u21F−1′G−1′ ≤ A,

2. β2 =
3
A
∫ b

a u21
(
F−1 (α) ,G−1 (α)

)
F−1′ (α)G−1′ (α)dα

if ∂ 4

∂α2∂β 2 u
(
F−1 (α) ,G−1 (β )

)
≥ 0,

3. β3 =
3
A (u(b,b)+u(a,a)−u(a,b)−u(b,a))

if ∂ 4

∂α2∂β 2 u
(
F−1 (α) ,G−1 (β )

)
≤ 0.

Proof. Part 1: By Lemma 7,

u∞ −un = ∑(ci − ci−1)

(∫ ci

ci−1

1
ci − ci−1

u
(
F−1 (α) ,G−1 (α)

)
dα

−
(

1
ci − ci−1

)2 ∫ ci

ci−1

∫ ci

ci−1

u
(
F−1 (α) ,G−1 (β )

)
dαdβ

)

= ∑(ci − ci−1)u21 (εi,ηi)F−1′ (εi)G−1′ (ηi)

[
1

12
(ci − ci−1)

2
]

By letting ci − ci−1 =
1
n together with u21F−1′G−1′ ∈

[
A,A

]
,

u∞ −un ≤
1

12n2 A.

Also

u∞ −u1 =
1

12
u21 (ε,η)F−1′ (ε)G−1′ (η)≥ 1

12
A.

Hence, by letting β̃1 = A/A, we have

un −u1

u∞ −u1
≥ 1− β̃1

n2 .

101



Part 2: By Lemma 8,

u∞ −un = ∑(ci − ci−1)

(∫ ci

ci−1

1
ci − ci−1

u
(
F−1 (α) ,G−1 (α)

)
dα

−
(

1
ci − ci−1

)2 ∫ ci

ci−1

∫ ci

ci−1

u
(
F−1 (α) ,G−1 (β )

)
dαdβ

)

≤ 1
4 ∑(ci − ci−1)

∫ ci

ci−1

∫ ci

ci−1

u21
(
F−1 (α) ,G−1 (β )

)
F−1′ (α)G−1′ (β )dαdβ .

If ∂ 4

∂α2∂β 2 u
(
F−1 (α) ,G−1 (β )

)
≥ 0,∫ ci

ci−1

∫ ci

ci−1

u21
(
F−1 (α) ,F−1 (β )

)
F−1′ (α)G−1′ (β )dαdβ

≤ (ci − ci−1)
∫ ci

ci−1

u21
(
F−1 (α) ,G−1 (α)

)
F−1′ (α)G−1′ (α)dα .

Hence,

1
4 ∑(ci − ci−1)

∫ ci

ci−1

∫ ci

ci−1

u21F−1′G−1′dαdβ

≤ 1
4 ∑(ci − ci−1)

2
∫ ci

ci−1

u21
(
F−1 (α) ,G−1 (α)

)
F−1′ (α)G−1′ (α)dα

=
1

4n2

∫ 1

0
u21
(
F−1 (α) ,G−1 (α)

)
F−1′ (α)G−1′ (α)dα .

The last equality holds by letting ci − ci−1 =
1
n . Similarly as in part 1, we have

β2 =
3
A

∫ 1

0
u21
(
F−1 (α) ,G−1 (α)

)
F−1′ (α)G−1′ (α)dα.

Part 3: Using Lemma 8,

1
4 ∑(ci − ci−1)

∫ ci

ci−1

∫ ci

ci−1

u21
(
F−1 (α) ,G−1 (β )

)
F−1′ (α)G−1′ (β )dαdβ

≤ 1
4n2

∫ 1

0

∫ 1

0
u21F−1′ (α)G−1′ (β )dαdβ

=
1

4n2 (u(b,b)+u(a,a)−u(a,b)−u(b,a)) .

The inequality is proved below. From here, by letting

β3 =
3
A
(u(b,b)+u(a,a)−u(a,b)−u(b,a))
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the result holds. Cutoff points {ci} are chosen such that ci =
i
n .

We will illustrate the inequality by showing the case n = 3 with [a,b] = [0,1] . It is

the same procedure to prove for any n and any domain [a,b]. Denote

U (α ,β ) = u
(
F−1 (α) ,G−1 (α)

)
.

∑(ci − ci−1)
∫ ci

ci−1

∫ ci

ci−1

u21F−1′G−1′dαdβ

=
1
3

∫ 1
3

0

∫ 1
3

0
U21 (α,β )dαdβ +

1
3

∫ 2
3

1
3

∫ 2
3

1
3

U21 (α ,β )dαdβ +
1
3

∫ 1

2
3

∫ 1

2
3

U21 (α ,β )dαdβ

Since ∂ 4

∂α2∂β 2 u
(
F−1 (α) ,F−1 (β )

)
≤ 0 implies that U21 is substitute in α and β ,

we claim that the following inequality holds

∫ 1
3

0

∫ 1
3

0
U21 (α,β )dαdβ +

∫ 2
3

1
3

∫ 2
3

1
3

U21 (α,β )dαdβ

≤
∫ 1

3

0

∫ 2
3

1
3

U21 (α ,β )dαdβ +
∫ 2

3

1
3

∫ 1
3

0
U21 (α ,β )dαdβ

To see this, rewrite the following terms:

∫ 1
3

0

∫ 2
3

1
3

U21 (α,β )dαdβ =
∫ 1

3

0

∫ 1
3

0
U21

(
α ,β +

1
3

)
dαdβ

∫ 2
3

1
3

∫ 1
3

0
U21 (α,β )dαdβ =

∫ 1
3

0

∫ 1
3

0
U21

(
α +

1
3
,β
)

dαdβ

∫ 2
3

1
3

∫ 2
3

1
3

U21 (α,β )dαdβ =
∫ 1

3

0

∫ 1
3

0
U21

(
α +

1
3
,β +

1
3

)
dαdβ

Then ∂ 4

∂α2∂β 2 u
(
F−1 (α) ,F−1 (β )

)
< 0 implies

U21

(
α +

1
3
,β +

1
3

)
+U21 (α,β )

≤U21

(
α +

1
3
,β
)
+U21

(
α ,β +

1
3

)
.
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From this,

∫ 2
3

0

∫ 2
3

0
U21 (α ,β )dαdβ

=
∫ 1

3

0

∫ 1
3

0
U21 (α,β )dαdβ +

∫ 2
3

1
3

∫ 2
3

1
3

U21 (α,β )dαdβ

+
∫ 1

3

0

∫ 2
3

1
3

U21 (α ,β )dαdβ +
∫ 2

3

1
3

∫ 1
3

0
U21 (α ,β )dαdβ

≥ 2
∫ 1

3

0

∫ 1
3

0
U21 (α ,β )dαdβ +2

∫ 2
3

1
3

∫ 2
3

1
3

U21 (α,β )dαdβ

Similarly,

∫ 2
3

1
3

∫ 2
3

1
3

U21 (α,β )dαdβ +
∫ 1

2
3

∫ 1

2
3

U21 (α,β )dαdβ

≤
∫ 1

2
3

∫ 2
3

1
3

U21 (α,β )dαdβ +
∫ 2

3

1
3

∫ 1

2
3

U21 (α ,β )dαdβ

∫ 1
3

0

∫ 1
3

0
U21 (α,β )dαdβ +

∫ 1

2
3

∫ 1

2
3

U21 (α,β )dαdβ

≤
∫ 1

2
3

∫ 1
3

0
U21 (α,β )dαdβ +

∫ 1
3

0

∫ 1

2
3

U21 (α ,β )dαdβ .

Hence,

3

(∫ 1
3

0

∫ 1
3

0
U21 (α,β )dαdβ +

∫ 2
3

1
3

∫ 2
3

1
3

U21 (α ,β )dαdβ +
∫ 1

2
3

∫ 1

2
3

U21 (α ,β )dαdβ

)

≤
∫ 1

3

0

∫ 1
3

0
U21 (α,β )dαdβ +

∫ 2
3

1
3

∫ 2
3

1
3

U21 (α ,β )dαdβ +
∫ 1

2
3

∫ 1

2
3

U21 (α ,β )dαdβ

+
∫ 1

2
3

∫ 2
3

1
3

U21 (α ,β )dαdβ +
∫ 2

3

1
3

∫ 1

2
3

U21 (α,β )dαdβ +
∫ 1

2
3

∫ 1
3

0
U21 (α ,β )dαdβ

+
∫ 1

3

0

∫ 1

2
3

U21 (α ,β )dαdβ +
∫ 1

3

0

∫ 2
3

1
3

U21 (α ,β )dαdβ +
∫ 2

3

1
3

∫ 1
3

0
U21 (α ,β )dαdβ

=
∫ 1

0

∫ 1

0
U21 (α ,β )dαdβ .

Omitted Algebra from Example 3.2 and 4.4
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Example 3.1 and 3.2. Consider F (x) = G(x) = 1− (1− x)
1
4 with p.d.f.

f (x) = g(x) = 1
4 (1− x)−

3
4 .

The cutoff point c = µ = 4
5 .

d
dx

(
1−F(x)

f (x)

)
=−4 < 0. Hence, the second condition is satisfied.

F(x)
f (x) =

1−(1−x)
1
4

1
4 (1−x)−

3
4

. d
dx

(
F(x)
f (x)

)
= 1

(1−x)
1
4

(
4(1− x)

1
4 −3

)
, which is not always

positive.

In particular, d
dx

(
F(x)
f (x)

)
|x=µ =−0.48605 < 0

E
[

F(x)
f (x) | x < 4

5

]
= 1

25

√
5+ 1

25
4
√

5+ 1
255

3
4 + 1

25and

E
[

F(x)
f (x) | x < t

]
=− 1

4√1−t−1

(
t − 4

5t 4
√

1− t + 4
5

4
√

1− t − 4
5

)
increasing in t when

t ≤ µ.

Hence, the result still holds. In fact, u2−u0
u∞−u0

− 1
2 = 0.22676.

Example 3.4.4. Consider the same distributions F (x) = G(x) = x
1
α over [0,1]

with densities f (x) = g(x) = 1
α x

1
α −1 and α ∈ (0,∞). The inverse function of c.d.f.

is F−1 (x) = xα .

(i) Note that (F (x)/ f (x))′ = α > 0 and

[(1−F (x))/ f (x)]′ =−x−
1
α

(
x

1
α α −α +1

)
, which implies that F (x) is condition

2 of Theorem 3.3.2 over [0,1] only when α ≤ 1. Therefore, for α ≤ 1 we have

u2n −u1

u∞ −u1
≥ 1− 1

2n .

(ii) Now we will use Theorem 3.4.1 and corollaries derived above to generalize

this result. Since both sides have the same distribution function,

COV (x,x)=σ2
x =

∫ 1

0
x2αdx−

(∫ 1

0
xαdx

)2

=
1

2α +1
−
(

1
α +1

)2

=
α2

(α +1)2 (2α +1)
.
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For α ≥ 1, the density is f (x) = 1
α x

1
α −1. If we use Theorem 3.4.1 directly, the

problem is that f (x) goes to infinity when x approaches zero. Hence, β2 involving

∥ f∥[0,1]p is not tight enough to give a meaningful lower bound. For β3, which

involves
∥∥F−1′ (z)

∥∥[0,1]
p , F−1′ (z) = αxα−1 becomes so large as α increases.

Therefore, when α is large enough, β3 is not tight enough. Also when α is large,

the distribution is highly asymmetric, which makes β1 is not tight. If α is close to

zero, we have the same problem. Hence, Theorem 3.4.1 can not provide a

meaningful lower bound when α is either too large or too small. To provide a

meaningful lower bound, we’ll use a combination of both ∥ f∥p and
∥∥F−1′ (z)

∥∥
p.

To do this, we split the type space into two intervals by a properly chosen point c∗.

Then we use
∥∥F−1′ (z)

∥∥[0,c]
p and ∥ f∥[F

−1(c),1]
p respectively on each interval.

Given n, Let θ ∗ and corresponding c∗ = F (θ ∗) be the splitting point. We consider

n to be an even number and an odd number separately. If n = 2m with m ∈ N,

u∞ −un

=
m

∑
i=0

(ci − ci−1)

(∫ ci

ci−1

1
ci − ci−1

F−1 (z)G−1 (z)dz

−
∫ ci

ci−1

1
ci − ci−1

F−1 (z)dz
∫ ci

ci−1

1
ci − ci−1

G−1 (z)dz
)

+
n

∑
i=m+1

(ci − ci−1)

(∫ ci

ci−1

1
ci − ci−1

F−1 (z)G−1 (z)dz

−
∫ ci

ci−1

1
ci − ci−1

F−1 (z)dz
∫ ci

ci−1

1
ci − ci−1

G−1 (z)dz
)

≤ c∗2

12(m)2

∥∥F−1′ (z)
∥∥[0,c∗]

∞

∥∥G−1′ (z)
∥∥[0,c∗]

∞ +

√
3(1−θ ∗)3

12(m)2 ∥ f∥[θ
∗,1]

∞ .

Let θ ∗ =
(1

2

) 1√
α and c∗ = F (θ ∗) =

(1
2

)√α
. Note that the total number of classes is

2m. In the spirit of the proof of Theorem 3.4.1 we have

β ∗
1 =

c∗2
∥∥F−1′ (z)

∥∥[0,c∗]
∞

∥∥G−1′ (z)
∥∥[0,c∗]

∞ +
√

3(1−θ ∗)3 ∥ f∥[θ
∗,1]

∞
3σ2

x
.
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Denote B = β ∗
1 σ2

x . In order to compare β ∗
1 and 2, we compare

COV (x,x)−2B

=
α2

(α +1)2 (2α +1)
− 1

6

((
1
2

)√
α
)2

α2

((
1
2

)√
α
)2α−2

−
√

3
6

(
1−
(

1
2

) 1√
α
)3

1
α

(
1
2

) 1√
α (

1
α −1)

≥ 0.

The last inequality holds for α ≥ 1. Therefore, β ∗
1 ≤ 2 if n = 2m and α ≥ 1.

If n = 2m+1 with m ∈ N,

u∞ −un = ∑(ci − ci−1)

(∫ ci

ci−1

1
ci − ci−1

F−1 (z)G−1 (z)dz

−
∫ ci

ci−1

1
ci − ci−1

F−1 (z)dz
∫ ci

ci−1

1
ci − ci−1

G−1 (z)dz
)

=
m−1

∑
i=0

(ci − ci−1)

(∫ ci

ci−1

1
ci − ci−1

F−1 (z)G−1 (z)dz

−
∫ ci

ci−1

1
ci − ci−1

F−1 (z)dz
∫ ci

ci−1

1
ci − ci−1

G−1 (z)dz
)

+
n

∑
i=m

(ci − ci−1)

(∫ ci

ci−1

1
ci − ci−1

F−1 (z)G−1 (z)dz

−
∫ ci

ci−1

1
ci − ci−1

F−1 (z)dz
∫ ci

ci−1

1
ci − ci−1

G−1 (z)dz
)

≤ c∗2

12(m)2

∥∥F−1′ (z)
∥∥[0,c∗]

∞

∥∥G−1′ (z)
∥∥[0,c∗]

∞ +

√
3(1−θ ∗)3

12(m+1)2 ∥ f∥[θ
∗,1]

∞ .

Let θ ∗ =
(1

2

) 1√
α and c∗ = F (θ ∗) =

(1
2

)√α
. Similarly,

n2 c∗2

12(m)2

∥∥F−1′ (z)
∥∥[0,c∗]

∞

∥∥G−1′ (z)
∥∥[0,c∗]

∞ +n2
√

3(1−θ ∗)3

12(m+1)2 ∥ f∥[θ
∗,1]

∞

= (2m+1)2 c∗2

12(m)2

∥∥F−1′ (z)
∥∥[0,c∗]

∞

∥∥G−1′ (z)
∥∥[0,c∗]

∞ +(2m+1)2
√

3(1−θ ∗)3

12(m+1)2 ∥ f∥[θ
∗,1]

∞

≤ 3c∗2

4

∥∥F−1′ (z)
∥∥[0,c∗]

∞

∥∥G−1′ (z)
∥∥[0,c∗]

∞ +

√
3(1−θ ∗)3

4
∥ f∥[θ

∗,1]
∞ .
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Let

β ∗
2 =

3c∗2

4σ2
x

∥∥F−1′ (z)
∥∥[0,c∗]

∞

∥∥G−1′ (z)
∥∥[0,c∗]

∞ +

√
3(1−θ ∗)3

4σ2
x

∥ f∥[θ
∗,1]

∞ .

Since n = 2m+1, we start by comparing β2 to 3.

Denote B′ = β ∗
2 σ2

x . Then

σ2
x −

1
3

B′ =
α2

(α +1)2 (2α +1)
− 1

4

((
1
2

)√
α
)2

α2

((
1
2

)√
α
)2α−2

−
√

3
12

(
1−
(

1
2

) 1√
α
)3

1
α

(
1
2

) 1√
α (

1
α −1)

≥ 0.

The inequality holds for α ≥ 1. Hence, β ∗
2 ≤ 3 for n = 2m+1 and α ≥ 1.

By far, we have shown that for even number classes β ∗
1 ≤ 2, for odd number

classes we have β ∗
1 ≤ 3.

Similarly, we can have the same result for α < 1, by choosing ∥ f∥[0,θ
∗]

∞ and∥∥F−1′ (z)
∥∥[c∗,1]

∞ instead. For n = 2m we have β ∗
1 ≤ 2 due to

α2

(α +1)2 (2α +1)
≥ 1

6

(
1−
(

1
2

)√
α
)2

α2

((
1
2

)√
α
)2α−2

+

√
3

6

(
1
2

) 3√
α 1

α

(
1
2

) 1√
α (

1
α −1)

.

For n = 2m+1, we have β ∗
2 ≤ 3 due to

α2

(α +1)2 (2α +1)
≥ 1

4

(
1−
(

1
2

)√
α
)2

α2

((
1
2

)√
α
)2α−2

+

√
3

12

(
1
2

) 3√
α 1

α

(
1
2

) 1√
α (

1
α −1)

.

In sum,
u2 −u1

u∞ −u1
≥ 1

2
or

un −u1

u∞ −u1
≥ 1− 3

n2

for any α ∈ (0,∞) and n ≥ 3.
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Monopolistic Pricing: Omitted Steps and Proof of Proposition 3.5.1

OPTIMAL CONTRACT. Incentive compatibility condition together with

integration by parts implies

t (θ) = t (0)+θu(a(θ))−
∫ θ

0
u(a(θ))dF̂ (θ) .

Substituting back into the objective function we get:

∫ 1

0

[(
θ − 1− F̂ (θ)

f̂ (θ)

)
u(a(θ))− ca(θ)

]
dF̂ (θ) .

It is standard in the literature to assume that
(
1− F̂ (θ)

)
/ f̂ (θ) is increasing in

θ .Let θ satisfy θ − 1−F̂(θ)
f̂ (θ) = 0. The optimal contract then has a(θ) = t (θ) = 0

for θ < θ . The optimal contract also needs to satisfy(
θ − 1− F̂ (θ)

f̂ (θ)

)
u′ (a(θ)) = c.

This condition together with
(
1− F̂ (θ)

)
/ f̂ (θ) is an increasing function, implying

that the optimal contract is monotonic in agent’s type.

Denote the optimal contract as a∗ (θ). The maximized profit obtained by the

monopolist is

π∞ =
∫ 1

θ

[(
θ − 1− F̂ (θ)

f̂ (θ)

)
u(a∗ (θ))− ca∗ (θ)

]
dF̂ (θ) .

EXISTENCE OF n-LEVEL CONTRACT. It would be enough to show the

existence of a 3-level contract. The same procedure extends it for arbitrary n.

For any 3-level contract {(a1, t1) ,(a2, t2) ,(a3, t3)} that satisfies IC and IR

conditions, given IR conditions, we need θu(a1)− t1 ≥ 0, which is binding to

maximize the profit. Hence, t1 = θu(a1) . From IC conditions:

θu(a1)− t1 ≥ θu(a2)− t2 and θu(a1)− t1 ≥ θu(a3)− t3 if θ ≤ θ1.
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By the first inequality, θ1 =
t2 − t1

u(a2)−u(a1)
. Similarly, θ2 =

t3 − t2
u(a3)−u(a2)

.

We need to verify that θu(a1)− t1 ≥ θu(a3)− t3 if θ ≤ θ1. Since θu(a1)− t1

≥ θu(a2)− t2 if θ ≤ θ1, θu(a1)− t1 ≥ θu(a3)− t3 if

θu(a2)− t2 ≥ θu(a3)− t3, which is θ ≤ t3 − t2
u(a3)−u(a2)

= θ2. To verify

θu(a3)− t3 ≥ θu(a1)− t1 if θ ≥ θ3, similarly, we only need to verify

θu(a2)− t2 ≥ θu(a1)− t1. If θu(a2)− t2 ≥ θu(a1)− t1, all IC conditions hold.

This is equivalent to θ ≥ t2 − t1
u(a2)−u(a1)

= θ1.

Now we construct a 3-level stochastic contract which has the same profit as π3, the

valued yielded by 3-class CM. Let a1 (x) = a∗ (x) if x ∈ [θ ,θ1], a2 (x) = a∗ (x) if

x ∈ [θ1,θ2] and a3 (x) = a∗ (x) if x ∈ [θ2,1]. The expected utility for an agent with

type θ ∈ [θ ,θ1] is

θEu(a1) =
θ[

F̂ (θ1)− F̂ (θ)
] ∫ θ1

θ
u(a∗ (θ))dF̂ (θ) .

The expected utility for an agent with type θ ∈ [θ1,θ2] is

θEu(a2) =
θ[

F̂ (θ2)− F̂ (θ1)
] ∫ θ2

θ1

u(a∗ (θ))dF̂ (θ) .

The expected utility for an agent with type θ ∈ [θ2,1] is

θEu(a3) =
θ[

1− F̂ (θ2)
] ∫ 1

θ2

u(a∗ (θ))dF̂ (θ) .

The transfers correspondingly are

t1 = θEu(a1) , t2 = θ1 (Eu(a2)−Eu(a1))+θEu(a1)

t3 = θ2 (Eu(a3)−Eu(a2))+θ1 (Eu(a2)−Eu(a1))+θEu(a1) .

By the above argument, such a contract satisfies IC and IR conditions.
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By offering such a contract, the profit is

π̃3 = θEu(a1)
[
F̂ (θ1)− F̂ (θ)

]
+(θ1 (Eu(a2)−Eu(a1))+θEu(a1))

[
F̂ (θ2)− F̂ (θ1)

]
+(θ2 (Eu(a3)−Eu(a2))+θ1 (Eu(a2)−Eu(a1))+θEu(a1))

[
1− F̂ (θ2)

]
− c

∫ 1

θ
a∗ (θ)dF̂ (θ)

= θEu(a1)
[
1− F̂ (θ)

]
+θ1 (Eu(a2)−Eu(a1))

[
1− F̂ (θ1)

]
+θ2 (Eu(a3)−Eu(a2))

[
1− F̂ (θ2)

]
− c

∫ 1

θ
a∗ (θ)dF̂ (θ) ,

while the 3-class CM yields

π3 =
1[

F̂ (θ1)− F̂ (θ)
] ∫ θ1

θ
ϕ (θ)dF̂ (θ)

∫ θ1

θ
u(a∗ (θ))dF̂ (θ)

+
1[

F̂ (θ2)− F̂ (θ1)
] ∫ θ2

θ1

ϕ (θ)dF̂ (θ)
∫ θ2

θ1

u(a∗ (θ))dF̂ (θ)

+
1[

1− F̂ (θ2)
] ∫ 1

θ2

ϕ (θ)dF̂ (θ)
∫ 1

θ2

u(a∗ (θ))dF̂ (θ)− c
∫ 1

θ
a∗ (θ)dF̂ (θ)

= θEu(a1)
[
F̂ (θ1)− F̂ (θ)

]
+(θ −θ1)Eu(a1)

[
1− F̂ (θ1)

]
+θ1Eu(a2)

[
F̂ (θ2)− F̂ (θ1)

]
+(θ1 −θ2)Eu(a2)

[
1− F̂ (θ2)

]
+θ2Eu(a3)

[
1− F̂ (θ2)

]
− c

∫ 1

θ
a∗ (θ)dF̂ (θ)

= θEu(a1)
[
1− F̂ (θ)

]
+θ1 (Eu(a2)−Eu(a1))

[
1− F̂ (θ1)

]
+θ2 (Eu(a3)−Eu(a2))

[
1− F̂ (θ2)

]
− c

∫ 1

θ
a∗ (θ)dF̂ (θ) .

Hence, π̃3 = π3.

Proof of Proposition 3.5.1. Applying the analog argument in the proof of

Theorem 3.4.1 and taking the fact that G is defined over [ϕ (0) ,ϕ (1)] into account,
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we show that π∞ −π∗
n ≤C

(
B̂i/n2). Then by letting β̂i = B̂i/π∞, we get the result.

Example 3.5.1. Consider u(a) = a
1
2 and F̂ (θ) = θ α . From φ (θ)u′ (a) = c we

can derive that a = φ2/4c2. From the assumption that the distribution satisfies

IFR, α ≥ 1, R∞ =
∫ 1

θ

(
θ − 1−F̂(θ)

f̂ (θ)

)
u(a(θ))dF (θ) = 1

2c
∫ 1

θ φ2dF̂ (θ). Without

loss of generality, let c = 1
2 .

R∞ =
∫ 1

θ
φ (θ)2 dF̂ (θ) =

∫ 1

( 1
α+1)

1
α

(
θ − 1−θ α

αθ α−1

)2

αθ α−1dθ

=
α

α2 −4

((
1

α +1

) 2
α
+α

(
1

α +1

) 2
α
−1

)
,

π∞ = R∞ − 1
2

∫ 1

θ
φ (θ)2 dF (θ) =

1
2

R∞

and

∂φ
∂θ

=
∂

∂θ

(
θ − 1−θ α

αθ α−1

)
=

1
θ αα

(α +θ αα +θ α −1) .

∂θ
∂φ

=
1

1
θ α α (α +θ αα +θ α −1)

.

By a change of variable,
∫ 1

θ φ (θ)dF (θ) =
∫ 1

0 φdF̂ (θ (φ)) . Here θ (φ) is the

inverse function of φ (θ) . Denote F (φ) = F̂ (θ (φ)) . We have

f (φ) = f̂ (θ (φ))θ ′ (φ) = αθ α−1 ∂θ
∂φ .

That is f (φ) = αθ α−1 1
1

θ α α (α +θ αα +θ α −1)

= θ 2α−1 α2

α +θ αα +θ α −1
, where θ ∈

[(
1

α +1

) 1
α
,1

]
.

Taking the derivative of f (ϕ), we have

d
dθ

(
θ 2α−1 α2

α +θ αα +θ α −1

)
= θ 2α−2α2 α −1

(α +θ α +θ αα −1)2 (2α +θ α +θ αα −1)> 0,
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because θ α (1+α)≥ 1. Hence, θ 2α−1 α2

α+θ α α+θ α−1 is increasing in θ , and,

∥ f∥[θ ,1]∞ = α/2. Use β3 from Proposition 3.5.1, β3 =

√
3∥ f∥[θ ,1]∞
12π∞

. If α ∈ [1,20],

π∞ −
√

3
24

∥ f∥[θ ,1]∞ =
α

α2 −4

((
1

α +1

) 2
α
+α

(
1

α +1

) 2
α
−1

)
−

√
3

48
α

≥ 0 .

Hence, we have β3 ≤ 2. Therefore, for any α ∈ [1,20],
π∗

n
π∞

≥ 1− 2
n2 .

Example 3.5.2. Now we solve for the optimal 2-level contract:

maxθ1a
1
2
1 (θ2 −θ1)+

[
θ2

(
a

1
2
2 −a

1
2
1

)
+θ1a

1
2
1

]
[1−θ2]− ca1 (θ2 −θ1)−

ca2 [1−θ2] .

FOC:

θ1 : a
1
2
1 (1−2θ1)+ ca1 = 0

θ2 :
(

a
1
2
2 −a

1
2
1

)
[1−2θ2]− ca1 + ca2 = 0

a1 : 1
2θ1a

− 1
2

1 (θ2 −θ1)+
1
2a

− 1
2

1 [θ1 −θ2] [1−θ2]− c(θ2 −θ1) = 0

a2 : 1
2θ2a

− 1
2

2 [1−θ2]− c [1−θ2] = 0.

Solving those equations we get:

θ1 =
3
5 , θ2 =

4
5 , ca

1
2
1 = 1

5 , ca
1
2
2 = 2

5 .

The profit is π∗
2 = 1

25c .Hence, β̃ = u(a∗ (1))/(4π∗
2 ). We’ve already shown that

a∗ (θ) = ϕ (θ)/2c. Therefore, β̃ = 25/8. Therefore, we have
π∗

n
π∞

≥ 1− β̃
n2 .

Cost-Sharing: Omitted Steps and Proof of Proposition 3.5.2

PROBLEM FORMULATION. The principal offers a contract to minimize
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expected transfer T (x) to the firm, which is:

min
T (x),y(x)

∫ 1

0
T (x)dF (x)

s.t. T (x)− (x− y(x|x))− 1
4k

y2 (x|x)

≥ T (x̃)− (x− y(x̃|x))− 1
4k

y2 (x̃|x) and

T (x)− (x− y(x))− 1
4k

y2 (x|x)≥ 0 for all x ∈ [0,1] ,

where x− y(x̃|x) = x̃− y(x̃).

THE OPTIMAL CONTRACT. Define u(x) = T (x)− (x− y(x|x))− 1
4k y2 (x|x).

From the envelope theorem for the agent,

u′ (x) =−dC (y(x̃|x))
dx

|x̃=x =−C′ (y(x))≤ 0.

Hence, u(1) = 0.

u(x) =
∫ 1

x
C′ (y(x̃))dx̃.

This implies that∫ 1

0
u(x)dF (x) =

∫ 1

0
C′ (y(x))

F (x)
f (x)

dF (x) and∫ 1

0
T (x)dF (x) =

∫ 1

0

[
x− y(x)+C (y(x))+C′ (y)

F (x)
f (x)

]
dF (x) .

The derivative w.r.t. y(x) is

−1+C′ (y(x))+C′′ (y(x))
F (x)
f (x)

.

Since C (y) = 1
4k y2, the derivative becomes

−1+
1
2k

y(x)+
1
2k

F (x)
f (x)

.

If F (x)/ f (x)≥ 2k, to minimize cost y(x) = 0. If F (x)/ f (x)≤ 2k, then

y(x) = 2k−F (x)/ f (x). Since F (x)/ f (x) is an increasing function, y(x) is

decreasing in x and bounded below by zero.
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Denote x∗ = min{{x,1}| [F (x)/ f (x)] = 2k.}. The expected transfer to the firm is

∫ 1

0

[
x− y∗ (x)+

1
4k

y∗ (x)2 +
1
2k

y∗ (x)
F (x)
f (x)

]
dF (x)

= µx −
∫ 1

0
y∗ (x)

[
1− 1

4k
y∗ (x)− 1

2k
F (x)
f (x)

]
dF (x)

= µx −
∫ x∗

0

[
2k− F (x)

f (x)

][
1
2
− 1

4k
F (x)
f (x)

]
dF (x)

= µx − k
∫ x∗

0

[
1− 1

2k
F (x)
f (x)

]2

dF (x) .

EXISTENCE OF n-level LCSCR CONTRACT WITH COST REDUCTION

EQUALS un−1.

For illustration purpose, we show the existence of a 3-level LCSCR contract that

has cost reduction equals to u2. The same procedure shows it for arbitrary n.

The principal offers a firm a contract containing {T1,α1} , {T2,α2} if the firm has a

type belonging to [0,x∗1] and [x∗1,x
∗] respectively and a cost reimbursement contract

if the firm has a type greater than x∗. The firm with x < x∗ needs to solve

max
y

(1−αi)y− 1
4k

y2.

Then yi = 2k (1−αi) .

The firm’s profit under such contract is

Ti +αi (x− y(x))−C (y(x))− (x− y(x))

= Ti − [1−αi] [x−2k (1−αi)]−
1
4k

[2k (1−αi)]
2 .

The firm with x > x∗ exerts no effort and the profit is zero.

When x = x∗, the profit of the firm is zero. Hence,

T2 − [1−α2] [x∗−2k (1−α2)]−
1
4k

[2k (1−α2)]
2 = 0.
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This implies

T2 = (1−α2)x∗− k (1−α2)
2 .

A firm with type x∗1 should be indifferent to choosing between the two contracts.

Therefore,

That is

T1 = (1−α2)x∗+(α2 −α1)x∗1 − k (1−α1)
2 .

The principal’s expected cost is

∫ x∗1

0
T1 +α1 [x− y(x)]dF (x)+

∫ x∗

x∗1
T2 +α2 [x− y(x)]dF (x)

=
∫ x∗1

0

[
(1−α2)x∗+(α2 −α1)x∗1 +α1x− k

(
1−α2

1
)]

dF (x)

+
∫ x∗

x∗1

[
α2x+(1−α2)x∗− k

(
1−α2

2
)]

dF (x) .

The principal minimizes expected cost over α1 and α2, which yields first order

conditions

∫ x∗1

0
[x− x∗1]dF (x) =−2kα1

∫ x∗1

0
dF (x) and∫ x∗

x∗1
[x− x∗]dF (x) =−2kα2

∫ x∗

x∗1
dF (x)+

∫ x∗1

0
[x∗− x∗1]dF (x) .

The cost reduction associate with such contract is

∫ x∗1

0

[
−(1−α2)x∗− (α2 −α1)x∗1 +(1−α1)x+ k

(
1−α2

1
)]

dF (x)

+
∫ x∗

x∗1

[
(1−α2)(x− x∗)+ k

(
1−α2

2
)]

dF (x)

=
∫ x∗1

0

[
(1−α1)(x− x∗1)+(1−α2)(x∗1 − x∗)+ k

(
1−α2

1
)]

dF (x)

+
∫ x∗

x∗1

[
(1−α2)(x− x∗)+ k

(
1−α2

2
)]

dF (x)
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=−2kα1 (1−α1)
∫ x∗1

0
dF (x)+

∫ x∗1

0

(
(1−α2)(x∗1 − x∗)+ k

(
1−α2

1
))

dF (x)

−2kα2 (1−α2)
∫ x∗

x∗1
dF (x)+

∫ x∗

x∗1

[
k
(
1−α2

2
)]

dF (x)+(1−α2)
∫ x∗1

0
[x∗− x∗1]dF (x)

=−2kα1 (1−α1)
∫ x∗1

0
dF (x)+

∫ x∗1

0
k
(
1−α2

1
)

dF (x)

−2kα2 (1−α2)
∫ x∗

x∗1
dF (x)+

∫ x∗

x∗1

[
k
(
1−α2

2
)]

dF (x)

=
∫ x∗1

0
k (1−α1)

2 dF (x)+
∫ x∗

x∗1
k (1−α2)

2 dF (x) .

Since

u2 =
k

F
(
x∗1
) (∫ x∗1

0

[
1− 1

2k
F (x)
f (x)

]
dF (x)

)2

+
k

F (x∗)−F
(
x∗1
) (∫ x∗

x∗1

[
1− 1

2k
F (x)
f (x)

]
dF (x)

)2

,

by letting

1−α1 =
1

F
(
x∗1
) ∫ x∗1

0

[
1− 1

2k
F (x)
f (x)

]
dF (x)

1−α2 =
1

F (x∗)−F
(
x∗1
) ∫ x∗

x∗1

[
1− 1

2k
F (x)
f (x)

]
dF (x) ,

such a 3-level LCSCR contract has cost reduction equals u2.

Proof of Proposition 3.5.2. By the proof of Theorem 3.4.1, we have

u∞ −un−1 ≤
kF (x∗)

4(n−1)2 ≤ k

4(n−1)2 .

Then
u∞ −un−1

u∞
≤ 1

4(n−1)2
k

u∞
.

This implies
un−1

u∞
≥ 1− β

(n−1)2 ,
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where β =
k

4u∞
.
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