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ABSTRACT

Reliable extraction of human pose features that are invariant to view angle and body shape

changes is critical for advancing human movement analysis. In this dissertation, the multifac-

tor analysis techniques, including the multilinear analysis and the multifactor Gaussian process

methods, have been exploited to extract such invariant pose features from video data by de-

composing various key contributing factors, such as pose, view angle, and body shape, in the

generation of the image observations. Experimental results have shown that the resulting pose

features extracted using the proposed methods exhibit excellent invariance properties to changes

in view angles and body shapes. Furthermore, using the proposed invariant multifactor pose fea-

tures, a suite of simple while effective algorithms have been developed to solve the movement

recognition and pose estimation problems. Using these proposed algorithms, excellent human

movement analysis results have been obtained, and most of them are superior to those obtained

from state-of-the-art algorithms on the same testing datasets. Moreover, a number of key move-

ment analysis challenges, including robust online gesture spotting and multi-camera gesture

recognition, have also been addressed in this research. To this end, an online gesture spotting

framework has been developed to automatically detect and learn non-gesture movement patterns

to improve gesture localization and recognition from continuous data streams using a hidden

Markov network. In addition, the optimal data fusion scheme has been investigated for multi-

camera gesture recognition, and the decision-level camera fusion scheme using the product rule

has been found to be optimal for gesture recognition using multiple uncalibrated cameras. Fur-

thermore, the challenge of optimal camera selection in multi-camera gesture recognition has

also been tackled. A measure to quantify the complementary strength across cameras has been

proposed. Experimental results obtained from a real-life gesture recognition dataset have shown

that the optimal camera combinations identified according to the proposed complementary mea-

sure always lead to the best gesture recognition results.
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Chapter 1

INTRODUCTION

1.1 Background and Motivations

Movement-driven human computer interaction (HCI) systems have received considerable

attention in the past decade. Such systems allow users to communicate with computers through

movements in a much more intuitive and natural manner than the traditional human-computer

interfaces based on mouse clicks and keystrokes. Embodied HCI systems have many important

applications, including immersive virtual reality systems [3] such as GrImage [4], augmented

reality [5–7], industrial control [8], human-robot interaction [9, 10], health care and cognitive

assistance [11, 12], sign language analysis [13], computer games [14], and interactive media

systems [15–18].

There are mainly two types of communication cues applied in movement-driven HCI sys-

tems, namely, static body poses and continuous body gestures. To enable machines to read

and understand these two types of communication cues is critical for developing such HCI sys-

tems. Machines mainly understand movement cues by recognizing the type of pose or gesture

a subject is performing, or by estimating the joint angle or joint position of the subject. There-

fore, pose recognition, gesture recognition and pose estimation are three important problems in

movement sensing.

Movement sensing systems using markers or other wearable sensors such as the inertial sen-

sors (accelerometers, gyros, and magnetometers) [19] can be used in pose recognition, gesture

recognition and pose estimation. (e.g., [20–23]). However, such movement sensing techniques

are intrusive and they require placing passive (e.g., retro-reflective markers for optical mo-

tion capture) or active (e.g., LED markers and inertial sensors) sensors on the subject’s body

to collect movement data. Placing additional sensors on the subject is cumbersome and time-

consuming and it may also restrain the subject’s movement. Therefore, it is preferred to develop

nonintrusive gesture recognition systems without placing sensors on the subject. To this end,

video-based sensing techniques have been widely applied to nonintrusive movement analysis.

1



Video-based movement sensing systems need to process streams of images obtained by video

cameras. The dimensionality of an image is usually very high. In addition, in most cases, much

of the data captured within a movement image is redundant. Therefore, to extract movement

features from images is essential.

1.2 Existing Video-Based Movement Feature Extraction Methods

Existing video-based movement feature extraction methods can generally be categorized into

the global methods and the local methods. The global methods treat an image, or a 3D shape

obtained from images using the shape-from-silhouette techniques [24], as a whole when ex-

tracting movement features. One common global feature extraction approach is to embed high-

dimensional image data into a low-dimensional feature space using linear or nonlinear meth-

ods. For example, in [25], the principal component analysis (PCA) has been applied for linear

low-dimensional embedding for movement feature extraction. Furthermore, in [26], the local-

ity preserving projections (LPP) method has also been used in movement feature extraction.

In [27], the authors have applied the local linear embedding (LLE) method to extract movement

features. In [28], high-dimensional visual inputs are also embedded in a nonlinear manifold.

Additional examples of low-dimensional embedding include discriminant embedding [29] and

kernel based embedding [30]. Another type of global features are statistical features. Statistical

moments such as the Hu moments [31] and the Zernike moments [32] are typical examples of

this type of feature. Also, the histogram-based 2D and 3D shape contexts are applied respec-

tively in [33] and [34].

In contrast to the global methods, the local methods focus on finding local features in images

or 3D shapes. One type of local features are body landmarks. For example, in [35–37], positions

of selected joints are tracked as movement features. Another type of local features are salient

points. One example of such features is the Harris corners [38], which are the points where a

shift in any direction will result in large pixel value changes. In [39], the scale invariant feature

transform (SIFT) features have been developed by finding the extrema from the differences of

images convolved by Gaussian filters with different scales. Speeded up robust features (SURF)

[40] is an improved version of the SIFT features. In [41], the radial gradient transform is

2



applied for fast feature extraction. In [42], the linear discriminant analysis (LDA) has been

used to extract discriminative local features through postprocessing. Besides local features in

2D images, spatial-temporal features can also be extracted from video streams. For example,

in [43] and [44], the Harris corners are detected in three orthogonal planes of a video volume.

In [45], the formulation of the Harris corner detector is extended to 3D. In [46] and [1], features

have been detected by convolving the video volume with a combined filter. The Gaussian filter

is applied in the spatial domain and Gabor filter in the temporal domain. In [47] local steering

kernels are applied for spatial-temporal feature extraction. Also, in [48] a combination of optical

flow and spatial gradient are applied in feature extraction.

1.3 Invariant Pose Feature Extraction

It is important to extract pose features that are invariant to other factors, such as the view

angle of the camera and the body shape of the subject. View-invariance is an important factor for

video-based pose and gesture recognition in many HCI applications. It requires the recognition

system to identify poses and gestures invariant to changes in the camera view angle. When

cameras are fixed, this is equivalent to recognition invariant to the orientation of the subject with

respect to the camera system. Many existing pose recognition [49, 50] and gesture recognition

[51–57] methods are view-dependent, i.e., assuming that the relative torso orientation with

respect to the cameras is known. While it is a valid assumption in some scenarios, such as

automatic sign language interpretation, having to know body orientation with respect to the

camera presents an undesirable constraint which hampers the flexibility, and sometimes, the

usability of an HCI system in applications such as interactive dance [18] and embodied learning

[58]. In these applications, it is preferable that a gesture can be recognized from any view

point with respect to the cameras so that the subject can freely move and orient in the space.

The extraction of pose features invariant to body shape is also important. Tests using two

challenging gesture recognition datasets, the KTH dataset [59] and the IXMAS dataset [60],

reveal that it is challenging to obtain a gesture recognition rate higher than 95%. One of the

reasons is that these two datasets contain gestures performed by multiple subjects with quite

different body shapes.
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Using the existing global and local feature extraction methods, extracting pose features in-

variant to the changes in the view angle and body shape is challenging. Body kinematic

features, such as joint angles and joint positions, are invariant to view angle and not sensi-

tive to body shape variation. Several kinematic-based gesture recognition approaches are also

view-invariant, based on tracking landmark points or joint angles. For example, Shen and

Foroosh [36, 61, 62] have applied the invariance of homography and fundamental ratio of joint

point triplets in view-invariant pose recognition and action recognition. In [63], curvature of

the trajectory of a single point was applied. In [37], the “area-cross-ratio” computed from joint

points was applied in action recognition. Unfortunately, such methods are subject to tracking

failures due to self-occlusion especially for complicated movements.

Besides recovering body kinematics, another strategy for achieving view-invariance has been

taken by extracting view-invariant pose features from volumetric reconstruction of the subject

from multiple views. Once extracted, view-invariant features can be directly used to match

the input 3D volumetric data and the training templates without additional view alignment. To

extract view-invariant features, the volumetric data is first transformed into certain alternative

representations, such as the 3D shape context (e.g., in [34, 64]) and the 3D motion history

volume (MHV) (e.g., in [60]). Data points in these alternative 3D representations can be indexed

in a body-centered cylindrical coordinate system using (h,r,θ) coordinates, which respectively

correspond to the height, radius and angular location of the data point. The h-axis of the body-

centered coordinate system coincides with the vertical central axis of the subject. To further

obtain view-invariant features, the angular dimension θ is suppressed in the feature extraction

process so that the final extracted feature is independent of the data point distribution in θ .

To achieve this goal, in [34, 60, 64], data points are first grouped into rings centered at and

orthogonal to the h-axis so that data points on the same ring correspond to different θ , while

sharing the same h and r. Then a ring-based feature is extracted from each ring and these ring-

based features of all the rings constitute the final θ−independent feature vector of the input

volumetric data. A number of methods have been used to obtain such ring-based features.

In the case of 3D shape context [34, 64], the sum of the bin values on a ring is taken as the

corresponding ring-based feature. Similarly, in the case of 3D MHV [60], the Fourier transform

of the data points along a ring is first computed and then the sum of their Fourier magnitudes is
4



taken as the ring-based feature. Pose features extracted using these methods are view-invariant

since the orientation of the subject no longer affects the extracted features. However, on the

other hand, suppression of the angular dimension may cause information loss and introduce

ambiguity in gesture recognition. Note that in [65,66], another invariant human pose descriptor

based on 3D shape context has also been introduced and used for pose classification [65] and

action clustering [66]. This pose descriptor is obtained as the weighted average of a number

of local 3D shape context features centered at sample points from a reference visual hull. This

pose descriptor has a good invariance property for translation and scaling. However, it is only

possibly invariant to rotation [66] and it is unclear to what extent this descriptor is invariant

to rotation. To summarize, reliable extraction of invariant pose features remains a challenge

because kinematic values are hard to track and summing up data along rings causes loss of

information.

1.4 The Proposed Approaches

In this dissertation, two approaches to invariant pose feature are proposed. An important prin-

ciple in both approaches is to model body pose, view angle (or body orientation when cameras

are static) and body shape as separate contributing factors to observations of poses. By multi-

linear analysis, pose observations obtained with video cameras are projected onto independent

low-dimensional pose feature spaces. Using the multifactor Gaussian process (MGP) model,

a mapping is also modeled as from separate latent spaces to pose observation space. Invariant

pose representation is achieved by inferring the latent variable in pose feature space.

After invariant pose features are obtained, pose recognition can be achieved using the support

vector machine (SVM). To address the problem of pose recognition, SVM classifiers are applied

in a one-versus-the-rest manner. For each pose in the vocabulary, a binary SVM classifier is

trained. Recognizing a new pose involves traversal of all classifiers to find the best pose class

to which it belongs.

Also using extracted pose features, the hidden Markov models (HMMs) are applied for pre-

segmented gesture recognition. To tackle this problem, an HMM is applied to model each of

the gestures in the gesture vocabulary. An unknown gesture, represented as a sequence of pose
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feature vectors, can be classified to the gesture class whose corresponding HMM yields the

maximum likelihood of the feature sequence.

Based on the method of pre-segmented gesture recognition, online gesture spotting has also

been achieved using a network of HMM models. In the HMM network, not only gesture models

but also specific non-gesture models have been incorporated to represent both gesture and non-

gesture movement patterns. An approach to detect and model non-gestural movement patterns

automatically from continuous training data has been developed. As shown in our experimental

results, using specific non-gesture models significantly improves gesture spotting by reducing

false alarm rates and increasing the recognition reliability, without significantly sacrificing the

recognition rates.

From the viewpoint of sensor fusion, different strategies are explored for multiple camera

fusion for video-based gesture recognition. Using the presented gesture recognition framework

based on invariant pose features and HMM as a benchmark gesture framework, the perfor-

mances of data-level, feature-level and decision-level fusion in gesture recognition are system-

atically analyzed. For a fixed set of cameras, the performances of different fusion strategies

have been analyzed. The optimal configuration for a fixed number of cameras has also been

analyzed.

Finally, the invariant pose features are applied for pose estimation. In order to estimate

joint positions of the subject when performing the pose, a mapping from pose features to joint

positions has been established using the relevance vector machine (RVM).

1.5 Contributions

This dissertation presents the research on invariant pose feature extraction and its applications

in movement recognition and pose estimation. Obtaining invariant pose features is fundamen-

tal to this research. In order to extract invariant pose features from pose observations, two

multifactor analysis techniques, the multilinear analysis and the multifactor Gaussian process

(MGP), are exploited. The resulting invariant pose features are then used for pose recognition

using SVM and gesture classification using HMM. A framework of online gesture spotting is
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further developed using HMM networks. In addition, different multi-camera fusion techniques

for gesture recognition are explored from sensor fusion point of view. Finally, invariant pose

features are applied in pose estimation using RVM.

The major contributions of this dissertation are as follows. Firstly, two methods of invariant

pose feature extraction were developed based on multilinear analysis and MGP. Part of the

results of invariant feature extraction have been archived in the following publication.

• Bo Peng, Gang Qian, Yunqian Ma and Baoxin Li, Multifactor feature extraction for

human movement recognition , Computer Vision and Image Understanding. vol. 115,

no. 3, pp. 375 - 389, 2011

Secondly, invariant pose features are successfully applied for pose recognition using SVM.

Some pose recognition results have been presented in the following publications.

• Bo Peng and Gang Qian, Binocular Dance Pose Recognition and Body Orientation

Estimation via Multilinear Analysis, in proceedings of IEEE International Conference

on Computer Vision and Pattern Recognition (CVPR) workshops, 2008

• Bo Peng , Gang Qian and Yunqian Ma, View-Invariant Pose Recognition Using Mul-

tilinear Analysis and the Universum, in proceedings of International Symposium on

Visual Computing (ISVC), 2008

• Bo Peng and Gang Qian, Binocular Full-Body Pose Recognition and Orientation Infer-

ence Using Multilinear Analysis, in Tensors in Image Processing and Computer Vision,

pp. 215 - 236, Springer London, May 2009

• Bo Peng and Gang Qian and Yunqian Ma, Recognizing Body Poses using Multilinear

Analysis and Semi-Supervised Learning. Pattern Recognition Letters. vol. 30, no. 14,

pp. 1289 - 1294 , 2009

Thirdly, invariant pose features are applied in gesture recognition using HMM and in pose

estimation using RVM. Results of gesture recognition using the proposed framework have been

presented in the following publications.
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• Bo Peng, Gang Qian and Stjepan Rajko, View-Invariant Full-Body Gesture Recognition

from Video, in proceedings of International Conference on Pattern Recognition, 2008

• Bo Peng, Gang Qian and Stjepan Rajko, View-Invariant Full-Body Gesture Recognition

via Multilinear Analysis of Voxel Data, in proceedings of International Conference on

Distributed Smart Cameras, 2009

In the second publication listed above, this gesture recognition method was tested on the chal-

lenging IXMAS data set and our results are state of the art.

Fourthly, an online gesture spotting framework was developed based on invariant pose fea-

tures and HMM network. A method was developed to automatically detect non-gesture patterns

and train non-gesture models. Results of online gesture spotting have been presented in the fol-

lowing paper.

• Bo Peng and Gang Qian, Online Gesture Spotting From Visual Hull Data, in IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 33, no. 6, pp.

1175 - 1188, 2011.

Finally, different multi-camera fusion techniques for gesture recognition have been explored

systematically. The optimal camera fusion scheme for uncalibrated cameras has been identified.

A cross-camera complementary measure and an incremental camera selection scheme have also

been developed and verified. The relevant research and experimental results have been reported

in the following submitted paper.

• Gang Qian and Bo Peng, Multi-Camera Fusion for Gesture Recognition, submitted to

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2011.
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Chapter 2

INVARIANT POSE FEATURE EXTRACTION

The observation of a human pose is mainly affected by three factors: body shape of the

subject, joint angle configuration of the subjects (different poses) and view angle (or body

orientation of the subject if cameras are fixed).

In this chapter, approaches to extraction of pose features invariant to the other two factors

are discussed. This problem can be modeled in two ways. Firstly, we can try to minimize the

effect body shape by normalization and focusing on extracting view-invariant pose features.

We can also try to extract pose features invariant to both view (orientation) and body shape. In

both models, a key point is to separate the contributions of body pose and other factors to an

observation of a pose. This issue can be addressed by applying multilinear analysis and multi-

factor Gaussian Process (MGP) models. Using these two methods, invariant pose features are

successfully extracted.

2.1 Invariant Pose Feature Extraction Using Multilinear Analysis

In this section, an approach to extraction of invariant pose features using multilinear analysis

is discussed. The method of extracting view-invariant pose features is first discussed. Then, it

is extended to extracting pose features invariant to both view and body shape.

2.1.1 An Introduction to Multilinear Analysis

In multilinear analysis, tensors are applied as the representations of multi-mode data collec-

tions. As introduced in [67], a tensor, also known as n-way array or multidimensional matrix

or n-mode matrix, is a higher order generalization of a vector (1-mode tensor) and a matrix

(2-mode tensor). High-order tensors can represent a collection of data in a more complicated

way. When a data vector is determined by a combination of m factors, the collection of the data

vectors can be represented as an (m + 1)-mode tensor T ∈ RNv×N f 1×N f 2···×N f m , in which Nv is

the dimensionality of the data vector and N f i, (i = 1,2, . . . ,m) is the number of possible values
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of the ith contributing factor.

A tensor can be unfolded into a matrix along each mode. The mode- j unfolding matrix of a

tensor A ∈ RN1×N2···×Nn is denoted as A( j), and A( j) ∈ RN j×(N1...N j−1N j+1...Nn). An illustration of

the unfolding of a 3-mode tensor is shown in Figure 2.1.

Fig. 2.1. Unfolding of a 3-mode tensor.

As an analogue to matrix-matrix multiplication, an n-mode tensor can be multiplied by com-

patible matrices in each mode. The mode- j multiplication of an n-mode tensorA∈RN1×N2···×Nn

with a matrix M∈RN′
j×N j can be denoted asR=A× j M,R∈RN1×···×N j−1×N′

j×N j+1×···×Nn . The

entries of R are defined as

Ri1,...,i j−1,i,i j+1...,in =
N j

∑
k=1
Ai1,...,i j−1,k,i j+1,...,inMi,k, (2.1)

in which i = 1,2, . . . ,N′
j. The unfolded matrix representation of mode- j multiplication of A by

M is as follows.

R( j) = MA( j). (2.2)

As an example, the multiplication of a 3-mode tensor and a matrix in each mode is illustrated

in Figure 2.2 (a). When a 3-mode tensor is multiplied by a compatible row vector, it will

degenerate into a matrix, as illustrated in Figure 2.2 (b).
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(a) (b)

Fig. 2.2. Multiplication of a 3-mode tensor with a matrix (a) and a vector (b).

As a generalization of singular value decomposition (SVD) on matrices, we can also perform

high order singular value decomposition (HOSVD) [68] on tensors. A tensor A ∈ RN1×N2···×Nn

can be decomposed into

A= S ×1 U1×2 U2 · · ·×n Un, (2.3)

where U j ∈RN j×N′
j (N′

j ≤N j) are mode matrices containing orthonormal column vectors which

are analogous to the left and right matrices in SVD. S ∈ RN′
1×N′

2···×N′
n is called the core tensor

which is analogous to the diagonal matrix in SVD.

In order to calculate mode matrices U j ( j = 1 . . .n), we can first calculate the SVD of the

unfolding matrix A( j). Then U j can be obtained by taking the columns of the left matrix of

the SVD of A( j) corresponding to the N′
j largest singular value. Then, the core tensor S can be

calculated as follows.

S =A×1 UT
1 ×2 UT

2 · · ·×n UT
n . (2.4)

Denote u j,k to be the k’th row vector of matrix U j, then the decomposed tensor possesses the

property as follows [69].

Ai1,i2,...,in = S ×1 u1,i1 ×2 u2,i2 · · ·×n un,in . (2.5)
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DenoteA(i1, . . . , i j−1, :, i j+1, . . . in) to be the column vector containing the elements ofAi1,...,i j,...,in , i j =

1 . . .N j. Then we can also get

A(i1, . . . , i j−1, :, i j+1, . . . in)

= S × j U j×1 u1,i1 ×2 u2,i2 · · ·× j−1 u j−1,i j−1

× j+1 u j+1,i j+1 · · ·×n un,in .

(2.6)

In this way, A(i1, . . . , i j−1, :, i j+1, . . . in) can be represented as a multilinear combination of the

column vectors (S × j U j)(i1, . . . , i j−1, :, i j+1, . . . in), i j = 1 . . .N j, j = 1 . . .n. The coefficients

uk,ik in each mode can be considered as independent factors contributing to the data vector, and

the interaction of these factors are governed by the tensor S × j U j.

The mode matrices obtained from HOSVD can be considered as independent contributing

factors, and the interaction of these factors are governed by the core tensor. Using this property,

multilinear factorization has been used successfully in decomposing ensembles of static data

such as image and 3D volumetric data, into perceptually independent sources of variations.

Previous successful applications include multifactor face image representation in the form of

TensorFace [67], modeling of 3D face geometry [70], texture and reflectance [71], and image

synthesis for articulated movement tracking [72]. The TensorFace framework [67] is a well

known framework, which incorporates many factors that affect the resulting face image, such

as facial geometry (different persons), head pose, and illumination. With mutilinear analysis by

tensor decomposition, each of these affecting factors can be analyzed separately.

2.1.2 Extraction of View-Invariant Pose Features

In order to extract view-invariant pose features using multilinear analysis, the first step is to

form a pose tensor.

A 3-mode pose tensor can be formed using the observation vectors of a set of key poses

in different orientations, as shown in Figure 2.3. Details on key pose selection and obtaining

corresponding observation vectors can be found in the experimental section of this chapter.

These observation vectors are centered by subtracting the mean value of all vectors. In this

way, the binary (0 or 1) values of the vector elements become relatively continuous values
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Fig. 2.3. The structure of the pose tensor

ranging from -1 to 1. Denote Nd to be the number of elements in an observation vector, No the

number of body orientations and Np the number of key poses, then the dimension of the pose

tensor is A is Nd ×No×Np.

As described in the previous subsection, we can perform HOSVD on the 3-mode pose tensor

to extract the core tensor and mode matrices. In the framework discussed in this chapter, di-

mension reduction is not conducted in any of the modes. According to (2.3), the training tensor

A ∈ RNd×No×Np can be decomposed into:

A= S ×1 Ud ×2 Uo×3 Up, (2.7)

in which S is the core tensor of the same size as A. Ud ∈ RNd×Nd , Uo ∈ RNo×No , Up ∈ RNp×Np

are orthogonal matrices representing respectively the data mode, the orientation mode and the

pose mode. In order to extract orientation-invariant pose features, only the mode matrices Uo

and Up need to be calculated, and Ud can be combined with the core tensor S. Denote

D = S ×1 Ud . (2.8)

Then we can get

A=D×2 Uo×3 Up. (2.9)
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The decomposed tensor possesses the following property.

A(:, i, j) =D×2 uo,i×3 up, j, (2.10)

where A(:, i, j) stands for an observation vector of pose j in orientation i. uo,i and up, j are re-

spectively the ith row of Uo and the jth row of Up. Alternatively speaking, uo,i is the coefficient

vector representing the ith orientation, and up, j is the coefficient vector representing the jth

pose. Therefore, an observation of a pose is modeled as the bilinear combination of columns in

D with a orientation vector and a pose vector independent on each other.

Based on (2.10), a new pose observation vector z can be projected onto the pose coefficient

space and the orientation coefficient space by solving the bilinear problem defined as follows:

z =D×2 vo×3 vp, (2.11)

where vo is the orientation coefficient vector and vp is the pose coefficient vector.

The problem of finding the pose and orientation coefficient vectors of a new input vector can

be solved by using the iterative alternating least square (ALS) algorithm [73] as follows. Let

the previous estimate of the orientation coefficient vector be v̂(n)
o . Then D can be flattened into

a matrix C(n)
o by multiplying v̂(n)

o .

C(n)
o =D×2 v̂(n)

o , (2.12)

Inserting (2.12) into (2.11) we can get

z = C(n)
o vp. (2.13)

Thus, the current estimate of the pose coefficient vector v(n+1)
p can be easily obtained by solving

the linear system (2.13). Similarly, using the current pose coefficient vector v̂(n+1)
p , we can

update the estimate of the orientation coefficient vector vo by solving a similar linear equation.

z = C(n+1)
p vo, (2.14)

where C(n+1)
p = D×3 v̂(n+1)

p . Given the initial value of v(0)
p or v(0)

o , we can obtain both vectors

by solving (2.13) and (2.14) alternately until convergence.

Initialization is important for ALS. One possibility to initialize ALS is to use the row vec-

tors in Uo (standard orientation vectors) as one initial value of vo and obtain a set of candidate
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solutions. Then the final solution can be chosen to be the one resulting in the minimum re-

construction error. Using multiple initial values requires the ALS procedure to be performed

multiple times and hence it is computationally expensive. In order to improve the computational

efficiency and at the same time maintain the stability of the solution, an improved initialization

method has been developed as follows. First, all the row vectors {uo,i}No
i=1 of Uo are used as the

initial values for vo. For each uo,i, we find the corresponding pose vector vp,i by solving (2.13)

only once. Then among {vp,i}No
i=1, the pose vector that is the most similar to one of the standard

poses {up,i}Np
i=1 is chosen as the initial pose coefficient vector v(0)

p to initialize ALS, as defined

below.

v(0)
p = argmax

vp,i
max

j

vp,i ·up, j

‖vp,i‖ · ‖up, j‖ . (2.15)

where i = 1, . . . ,No is the orientation index, and j = 1, . . . ,Np is the pose index. By choosing

only one initial value v(0)
p to solve (2.11), the computational efficiency is improved while good

experimental results were still achieved, which will be shown later. By solving the bilinear

equation (2.11), each input observation vector can be projected into a pose coefficient vector vp

which is independent of body orientation.

2.1.3 Extraction of View and Shape-Invariant Pose Features

The feature extraction framework presented in the previous subsection can be extended to

extract pose features invariant to both view and body shape. The same pose tensor described in

Section 2.1.2 can be constructed using observations of each of Ns people. When these tensors

are assembled together, the pose tensor is expanded to A ∈ RNd×No×Np×Ns . Similar to (2.9), A
can be decomposed into

A=D×2 Uo×3 Up×4 Us. (2.16)

in which Us ∈ RNs×Ns is the matrix representing the body shape mode. Similar to (2.10), the

decomposed tensor possesses property that

A(:, i, j,k) =D×2 uo,i×3 up, j×4 us,k, (2.17)
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in which us,k is the kth row of Us. Therefore, the generation of a new observation z can be

modeled as a trilinear equation

z =D×2 vo×3 vp×4 vs, (2.18)

in which vs is the body shape coefficient vector, and vp is the pose coefficient vector invariant

to orientation and body shape.

The ALS method can also be applied to solve the trilinear equation (2.18). If v̂(n)
o and v̂(n)

s

are known, we can get

C(n)
os =D×2 v̂(n)

o ×4 v̂(n)
s , (2.19)

and v̂(n+1)
p can be obtained by solving the linear equation.

z = C(n)
os vp. (2.20)

Then, v̂(n+1)
o and v̂(n+1)

s can be updated by solving

z = C(n+1)
po vs, (2.21)

and

z = C(n+1)
ps vo, (2.22)

where

C(n)
po =D×2 v̂(n)

o ×3 v̂(n+1)
p (2.23)

and

C(n+1)
ps =D×3 v̂(n+1)

p ×4 v̂(n+1)
s , (2.24)

Therefore, by initializing v̂(0)
o and v̂(0)

s , we can solve (2.20), (2.21) and (2.22) alternatively until

convergence.

An initialization method similar to the method described in Section 2.1.2 has been adopted.

First, all combinations of row vectors {uo,i}No
i=1 of Uo and row vectors {us,k}Ns

k=1 of Us are used as

the initial values for vo and vs. For each combination of uo,i and us,k, we find the corresponding

pose vector vp,ik by solving (2.20) only once. Then the pose vector most similar to one of the

standard poses {up, j}Np
j=1 is chosen as the initial pose coefficient vector v(1)

p , as defined below.

v(1)
p = argmax

vp,ik
max

j

vp,ik ·up, j

‖vp,ik‖ · ‖up, j‖ . (2.25)
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Then, v(1)
p and its corresponding uo,î can be applied to initiate the iteration by renewing v(1)

s by

solving (2.21).

2.2 Invariant Pose Feature Extraction Using MGP

Invariant pose features can also be extracted using multifactor Gaussian process (MGP). Re-

cently, kernel-based multifactor analysis has been developed to separate content and style from

motion capture data. Such kernel-based approach has been found to be effective to represent

and model potential nonlinearity involved in the contributing factors. Although the kernel-

based multifactor analysis [74] has been proposed, it has been mainly used in modeling and

synthesizing movement data. It has not yet been exploited in view/body-invariant pose fea-

ture extraction. In this section, an MGP based approach is applied to tackle the challenge of

achieving invariance in extracting pose descriptors.

2.2.1 An Introduction to Multifactor Gaussian Process

Recently, the multifactor Gaussian process (MGP) model has been proposed [74] as a proba-

bilistic kernel-based multifactor analysis framework for separation of style and content of move-

ment data and movement synthesis. MGP was developed based on the Gaussian process (GP)

method [75, 76] and the Gaussian process latent variable model [77] by inducing kernel func-

tions based on the multilinear model. Because of the use of kernel functions, MGP is able to

represent more general multifactor models beyond multilinear relationship. In addition, since

MGP is rooted on GP, it is inherently a probabilistic framework.

Let f be a zero-mean Gaussian process, defined as a function of X = {x1,x2 . . .xN} and the

function values f = { f (xn)|n = 1,2, . . . ,N} satisfy a multivariate Gaussian distribution

p(f;K) =N (f;0,K). (2.26)

In (2.26), the elements of the covariance matrix K are defined based on the covariance function

or kernel function Ki, j = k(xi,x j). Two of the most commonly applied kernel functions are the
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linear kernel

k(x,x′) = x ·x′, (2.27)

and the RBF kernel

k(x,x′) = exp(−γ
2
‖x−x′‖2). (2.28)

Gaussian processes can be applied to predict the function value of unknown point. If a set of

input variables X and corresponding function values f are known, the conditional distribution

of function value f∗ at a new input point x∗ is [76]

p( f∗|f) =N ( f∗;k∗K−1f,k∗∗−k∗K−1kT
∗ ), (2.29)

in which k∗∗ = k(x∗,x∗) is the unconditional variance of f∗; k∗ is the cross covariance vector

of f∗ and f, i.e. k∗,i = k(x∗,xi); and K is the covariance matrix of f determined by X and the

kernel function as defined above. This conditional distribution of f∗ given f is still Gaussian

since they are jointly Gaussian. The conditional mean of f∗ is a linear combination of sample

function values f. The conditional variance of f∗ is smaller than the unconditional variance

due to the knowledge of the sample points. In addition, this conditional distribution of f∗ is

completely determined by the kernel function and the input point x∗ when the sample input and

output points are given.

MGP is a special case of Gaussian process with a special design of kernel functions. MGP

models the effect of multiple independent factors on the output. Therefore, the input space is

divided into multiple factor spaces. An input variable X = {x(1), . . . ,x(M)} is made up of a

variable in each factor space. The kernel function of MGP is then given by

k(X ,X ′) =
M

∏
i=1

ki(x(i),x(i)′)+β−1δ (X ,X ′), (2.30)

in which δ (X ,X ′) is 1 when X = X ′ and zero otherwise, and β is the output noise factor [77].

The kernel function of each factor ki(x(i),x(i)′) can be independently defined. Therefore, the

influence of each factor on the output can be defined separately.

MGP can be applied to model the mapping from a latent space consisting of multiple factor

spaces to a high-dimensional observation space. In this case, each dimension of the observation

vector is an MGP, and kernel functions for all dimensions are the same or at most differed by a
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linear scaling factor. If given an observation point set, the latent points are unknown, the model

can be viewed as a special case of Gaussian process latent variable model (GPLVM) [77].

2.2.2 Extraction of View-Invariant Pose Features Using MGP

In order to extract view-invariant pose features, observation of a pose is modeled to be af-

fected by two factors: pose and orientation. Therefore, a latent point can be represented as

X = {x(p),x(o)}, in which x(p) is the pose vector and x(o) is the orientation vector.

In order to learn MGP models, observation vectors of a set of key poses in a set of orientations

need to be generated. Details on formation of the training set can be found in the experimental

section of this chapter. Let the training samples be a matrix Yt in which each row is is an

observation vector. Since zero-mean MGPs are applied, a mean vector needs to be subtracted

from each row of Yt . After centering the training data, the training data are also normalized by

dividing elements in each dimension by the standard deviation of the dimension. The resulting

training observations are denoted as Y. Let Np be the number of key poses and No the number

of designated orientations. Denoting N = Np×No to be the number of training samples and D

to be the dimensionality of the observation vector, the dimensionality of Y is N×D.

The body orientation variable has one degree of freedom. In order to model the periodicity

of rotation, a 2D orientation vector x(o) is used to represent the body orientation, which can

be intuitively considered to be the corresponding location of the body orientation angle on the

unit circle. On the other hand, Dp the dimensionality of the pose feature vector x(p) can be

determined according to the distribution of the latent points. Initially, Dp is set to be equal to

Np and the latent points corresponding to Y are obtained according to the training procedure

presented in the following paragraph. These latent points contain redundant information, and

dimension reduction can be performed to improve computational efficiency in pose feature

extraction. Similar to dimension reduction in the principal component analysis (PCA), Dp is

found based on the eigen-analysis of the covariance matrix of the laten points. To reduce Dp,

in our research we first compute M the covariance matrix of the learned pose vectors and find

the eigenvalues of M, which correspond to the energy of the covariance matrix. We then find

the smallest set of eigenvalues so that a certain percentage of the energy can still be preserved
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when the remaining eigenvalues are dropped. Dp is then selected to be the cardinality of the

smallest set of eigenvalues satisfying the energy preservation constraint.

Given the dimensions of the latent space, the following training procedure can be taken to

learn the latent points. During the training process, it is constrained that the latent points of

samples belonging to the same pose remain the same. Likewise, the orientation coefficients

of samples belonging to the same orientation will maintain to be the same. In this training

process, the orientation coefficients of the designated orientations are initialized to be 2D points

evenly distributed on the unit circle. The latent points of the key poses are initialized to be

nonnegative Dp dimensional vectors. The pair-wise distances of these initial pose latent points

are also made similar to each other. With such constraints and initial latent points, given training

observations Y, the corresponding set of latent points X∗ = {X ∗
n }N

n=1 and parameters of the

kernel function Γ∗ = {γ∗p,γ∗o ,β ∗} are optimized by maximizing the following log likelihood

function with respect to X = {Xn}N
n=1 and Γ = {γp,γo,β}:

L(X,Γ) = log p(Y|X,Γ) = log

(
D

∏
i=1

p(yi|K(X,Γ))

)

=
ND
2

log(2π|K(X,Γ)|)− 1
2

D

∑
i=1

yT
i K(X,Γ)−1yi

(2.31)

where yi is the ith row vector of Y. The covariance matrix K(X,Γ) is specified as Ki, j(X,Γ) =

k(Xi,X j,Γ) and the kernel function is defined as

k(X ,X ′,Γ) =

exp(−γp

2
‖x(p)−x(p)′‖2)exp(−γo

2
‖x(o)−x(o)′‖2)+β−1δ (X ,X ′).

(2.32)

in which Γ = {γp,γo,β} is the parameter set of the kernel function.

The quasi-Newton [78] method is applied for optimization. At each optimization step, the

latent points and kernel parameters are optimized together. In this case, the RBF kernel is

applied for pose and orientation factors. Other types of kernel functions and their combinations

will be explored in future research.

After the latent points X∗ and model parameters Γ∗ are learned from the training data Y,

the conditional distribution of the observation y∗ corresponding to a new latent point X∗ =

{x(p)
∗ ,x(o)

∗ } can be found as a normal distribution according to the Gaussian process theory.
20



Define k∗ = k(X∗,X∗,Γ∗) to be the cross-covariance vector with X∗ and X∗. The ith element

of k(X ,X′,Γ) is given by

ki(X ,X′,Γ) = k(X ,X ′
i ,Γ), (2.33)

in which the kernel function k is defined in (2.32). Define K∗ = K(X∗,Γ∗) and k∗ = k(X∗,X∗,Γ∗).
The conditional distribution of y∗ is given by

p(y∗|X∗,Y,X∗,Γ∗) =
D

∏
i=1
N (y(i)

∗ ;k∗K∗−1yi,k∗−k∗K∗−1kT
∗ ), (2.34)

where y(i)
∗ is the ith element of y∗ and yi is the ith row vector of Y.

To extract invariant pose descriptors, we need to infer the latent point X∗ = {x(p)
∗ ,x(o)

∗ } from

a new observation y∗. In the proposed framework, this is done by solving the following opti-

mization problem

X∗ = argmax
X

log p(y∗|X ,Y,X∗,Γ∗), (2.35)

in which the distribution p(y∗|X ,Y,X∗,Γ∗) is defined in (2.34).

To solve this optimization problem, the quasi-Newton method is applied. Since the quasi-

Newton method can only find the local optimal points, it is important to find a good initial point

for the optimization process. Furthermore, it is often plausible to use multiple initial points to

improve the optimization result. In the proposed framework, m points in X∗ that yield m largest

likelihood of y∗ evaluated with function (2.34) are selected as the initial points. After opti-

mization, m local optimal latent points can be obtained, and the latent point yielding the largest

likelihood of y∗ is chosen to be the solution for X∗. In practice, there is a tradeoff in selecting

m between precision (requiring a larger m) and computational efficiency (requiring a smaller

m). In experiments discussed in this dissertation that are related to pose feature extraction using

MGP, m=10 initial points are used.

By inferring the latent point X∗, both pose coefficient x(p)
∗ and orientation coefficient x(o)

∗

can be obtained. The pose coefficient x(p)
∗ can be applied as a feature vector describing the

corresponding pose which is invariant to orientation.

21



2.2.3 Extraction of View and Shape-Invariant Pose Feature Using MGP

The MGP model described in the previous subsection can be extended to a 3-factor model,

in which a latent point is expressed as X = {x(p),x(o),x(s)}, and x(s) is the coefficient vector

representing the body shape. Then, the kernel function can be defined as

k(X ,X ′,Γ) =exp(−γp

2
‖x(p)−x(p)′‖2)exp(−γo

2
‖x(o)−x(o)′‖2)exp(−γs

2
‖x(s)−x(s)′‖2)

+β−1δ (X ,X ′),

(2.36)

and the parameter set of the kernel function becomes Γ = {γp,γo,γs,β}.

To form the training data, a set of observation vectors of a set of pose performed by a set

of people in a set of orientations are generated. Denoting N′ to be number of observations in

the training set, the latent point set corresponding to the training observations can be expressed

as X = {Xn}N′
n=1. Using updated kernel function (2.36), kernel parameters Γ and latent points

X, the 3-factor MGP model can be learned by optimizing the negative log likelihood function

(2.31). Once the model parameters X∗ and Γ∗ are learned, the inference of X∗ corresponding to

observation y∗ can be obtained by solving the optimization problem (2.35) in the same way as

described in the previous subsection. Then the pose coefficient x(p)
∗ contained in X∗ is taken as

the pose feature vector invariant to orientation and body shape.

2.3 Evaluations of View-Invariant Features

In this section, the quality of view-invariant pose features extracted using 2-factor models is

evaluated.

2.3.1 The IXMAS Dataset

In order to systematically evaluate the view-invariance of pose features obtained using mul-

tilinear analysis and MGP, a set of experiments on the IXMAS action recognition dataset [60]

were conducted. The IXMAS dataset contains calibrated multi-view silhouette and visual-hull

data of 12 subjects performing 14 daily actions. For each subject, three trials of gesture data
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were included in the dataset, each containing various execution of all 14 actions. To be consis-

tent with [60] and [79], only data from 10 subjects and 11 actions were used and these subject

and action sets are identical to those in [60] and [79].

2.3.2 Data Normalization

In the IXMAS dataset, 3D volumetric reconstructions of poses are provided. In order to ac-

count for the variations in volumetric reconstructions introduced by location and body shape

differences across different gesture trials and subjects, the volumetric data need to be normal-

ized. In the proposed framework, visual hull normalization involves centering and rescaling.

Let OW be the original 3D world space used in the volumetric reconstruction with the third

coordinate axis z upward. Assume that the resolution of OW in voxel reconstruction is D×
D×D. Let C be the coordinate set of all the valid voxels of the 3D body shape in OW and

v = (vx,vy,vz) be the coordinates of a voxel in V . Let c = (cx,cy,cz) be the centroid of the 3D

body visual hull in OW . To perform data centering, a body-centered local coordinate system OB

is first selected using c as the new origin. The coordinate axes of OB are aligned with those of

OW . Let the resolution of OB be D′×D′×D′. Voxel rescaling is required to reduce the effect

of body shapes on the voxel reconstruction. It is carried out by mapping a valid voxel v in OW

onto a corresponding point v′ = (v′x,v′y,v′z) in OB:

v′x =
vx− cx

MR
D′,

v′y =
vy− cy

MR
D′,

v′z =
vz− cz

MZ
D′,

(2.37)

in which the mapping parameters MR and MZ are computed based on the horizonal and vertical

spans of the original visual hull reconstruction.

MR = max
v∈V

√
(vx− cx)2 +(vy− cy)2,

MZ = max
v∈V

|vz− cz|
(2.38)

The scaling on z axis compensates the differences in height, and the scalings on x and y axes

the differences in the other two dimensions. An example of visual hull normalization is shown

in Figure 2.4.
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(a) (b)

Fig. 2.4. An example of visual hull normalization. (a) Original visual hull (b) Normalized
visual hull.

2.3.3 Key Pose Selection and Formation of Training Data

As discussed in previous sections, in order to enable extraction of view-invariant pose fea-

tures, a training set needs to be first constructed.

The first step to construct this training set is to find a set of key poses. In order to do this, a

number of key pose candidates are first detected from sample sequences of 3D volumetric re-

constructions based on motion energy, and then these key pose candidates are clustered based on

distances measured using their normalized volumetric reconstructions. These resulting cluster

centers are then taken as the final set of key poses.

Let Vt be the 3D voxel data of the original reconstructed visual hull before normalization,

at time t, and Vt(i, j,k) the value of the voxel at location (i, j,k). The reason for using the

volumetric reconstructions in this step is to preserve the motion energy in the raw movement

data. A difference visual hull Ft can be derived based on Vt :

Ft(i, j,k) =





1
t+W/2

∑
τ=t−W/2

Vτ(i, j,k) > 0 and Vt(i, j,k) = 0

0 otherwise

(2.39)

where W is the width of a time window. The number of valid voxel in Ft reflects the amount

of motion during time window centered at t with length W . Given a continuous movement

sequence of L frames, the “motion energy” at time t, for W/2+1≤ t ≤ L−W/2, is defined as

the number of nonzero voxel in the difference visual hull Ft , i.e.

E(t) = ∑
i, j,k
Ft(i, j,k) (2.40)
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In the proposed framework, given training samples of all the gestures in the gesture vocabulary,

candidate key poses are first selected automatically when the motion energy E(t) reaches local

maximum or minimum.

Since some key pose candidates may repetitively appear in different gestures, the candidate

key poses need to be clustered and only the poses at the cluster centers are selected as the final

key poses. To cluster the candidate key poses, we need to compute the distance between two

poses. In this step, the normalized volumetric reconstructions are used to suppress inter-pose

distance caused by differences in body shapes and gesture execution locations. Further, the

impact of view difference in distance computation between two candidate key poses are also

removed.

We first define the distance between two volumetric reconstructions V and V’:

dV (V,V ′) =
‖ V −V ′ ‖
‖ V ∩V ′ ‖ (2.41)

where ‖ · ‖ is the cardinality operator and it returns the number of valid (nonzero) voxels. The

involved intersection (∩) operation is carried out by treating binary visual hulls as logical data

arrays.

Using dV (·, ·), we can further derive dP(p1, p2), an orientation-independent distance measure

between two poses p1 and p2. The difference between dP(·, ·) and dV (·, ·) is that dP(·, ·) is

computed in a way that it is an orientation-invariant distance measure between two poses while

dV (·, ·) is simply the distance between two visual hulls. Let V1 and V2 be the normalized visual

hulls of two poses p1 and p2, respectively. The body orientations of the two poses in V1 and V2

are unknown and they can be arbitrary. To obtain an orientation-independent distance measure

between p1 and p2, we define dP(·, ·) as the following:

dP(p1, p2) = min
θ

dV (V1,R(V2,θ)) (2.42)

where R(V2,θ) stands for the visual hull obtained by rotating V2 counterclockwise about the z

axis of OB in an angle of θ . In practice, given V1 and V2, dP(p1, p2) is found through exhaustive

search over θ on a uniform grid in (0,2π].

Using dP(·, ·), the distance matrix of the candidate key poses can be reliably computed. Using

this distance matrix, the normalized-cut [80] algorithm is applied to further cluster these poses.
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There are two reasons for choosing the normalized-cut algorithm. Firstly, this algorithm works

directly on the distance matrix. Secondly, using this algorithm we can obtain a global optimal

solution instead of local optimal solutions obtained through iterative clustering algorithms such

as k-means. After normalized-cut clustering, the center of each cluster is selected a member of

the key pose set.

Using this key pose selection method, 25 key poses were selected from one of the movement

piece performed by Florian (one of the ten subjects) in IXMAS dataset. This subject was se-

lected because of the good quality of the volumetric reconstruction of his movement data. These

selected 25 key poses are shown in Figure 2.5. Each pose is shown in the most distinguishable

view.

After key poses were selected, observation vectors of each pose in 16 orientations evenly

distributed in a circle are generated to form the training set for both multilinear and MGP feature

extraction. Given a key pose, the volumetric reconstruction of the pose is rotated about the

vertical axis (axis perpendicular to the ground plane) to form new reconstructions and vectorize

these reconstructions to form desired observation vectors.

Fig. 2.5. Selected key poses from the IXMAS gesture dataset.

2.3.4 Data Reconstruction Test

Using trained multilinear and MGP models, the first test conducted is reconstruction of pose

observation from pose feature. Given the volumetric reconstruction of a sample pose, pose

features were extracted using both methods and then visual hulls were reconstructed using these
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(a) (b)

(c)

Fig. 2.6. Comparison of data reconstruction. (a) Original data (b) Reconstructed data using
MGP. (c) Reconstructed data using multilinear projection.

pose feature vectors. The reconstructed 3D data are shown in Figure 2.6.

It can be seen that the data reconstructed using coefficients obtained by MGP mapping is

much cleaner than that reconstructed using multilinear projection. Also, some details (hand) is

missed in the latter reconstruction.

2.3.5 View-Invariance and Robustness Test

In order to test the view-invariance of pose features, two poses performed by a subject other

than the subject whose data is used in training set are selected. One of them is close to a key pose

in the training set and the other is not close to any key poses. The volumetric reconstructions

of both poses are rotated to obtain their observations in 16 orientations. Then, both multilinear

approach and MGP approach are taken to extract pose feature vectors from these observations.

The volumetric reconstruction of the key pose in 16 orientations are shown in Figure 2.8 (a), and

the 25 dimensional pose vectors extracted using the multilinear approach in Figure 2.8 (b) and

the 12 dimensional pose vectors extracted using the MGP in Figure 2.8 (c). Similarly, Figure 2.9
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(a) (b) and (c) presents volumetric reconstructions and the corresponding pose features of the

non-key pose. From these figures it can be seen that the pose features extracted from volumetric

reconstruction of the same pose viewed from different view angles are indeed close to each

other.

In practice, visual-hull data are often noisy due to 3D reconstruction errors. Visual hull errors

often exhibit as large blocks of uncarved background voxels and large blocks of miscarved

foreground voxels. In this chapter, the first type of errors is referred to as protrusion errors

and the second type partial occlusion errors. To verify and compare the robustness of the two

proposed feature extraction approaches in the presence of such errors, pose features extracted

from noisy visual-hull data have been examined. In this experiment, noisy visual-hull data were

obtained by adding either the protrusion or partial occlusion errors to the original data used in

the previous analysis (Figure 2.8 (a) and Figure 2.9 (a)). To add a protrusion error to a visual

hull, a protrusion sphere with a random center in the background voxels and a diameter of a tenth

of the side length of the volumetric reconstruction is first selected. To realistically synthesize

a protrusion error, this random sphere has to overlap with the visual hull with overlapping

volume less than half of the sphere. Otherwise, another random sphere will be selected and

tested, until a valid protrusion error is synthesized. Once a protrusion sphere is found, all the

voxels inside the sphere are considered protrusion voxels and their values set to 1. Likewise, to

add a partial occlusion error, a partial occlusion sphere is first generated with a random center

in the foreground voxels and a radius of three voxels. Then all the voxels within this sphere

are considered occluded and their values set to 0. Examples of such noisy visual-hull data are

shown in Figure 2.7.

(a) (b) (c)

Fig. 2.7. Examples of two types of visual hull errors: (a) original visual hull (b) noisy data with
a protrusion error (red) (c) noisy data with a partial occlusion error (green).

28



The noisy visual-hull data for the key pose and the corresponding pose vectors extracted

using the multilinear and the MGP approaches are presented in the middle (protrusion error)

and bottom (partial occlusion) rows of Figure 2.8. The noisy data and pose vectors of the

non-key pose are given in Figure 2.9. It can be clearly seen from these figures that both the

multilinear and the MGP approaches are robust to noises in volumetric reconstructions.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2.8. Visual hull data of a key pose in 16 body orientations (upper-left) and its corresponding
pose descriptors obtained using multilinear analysis (middle column) and MGP (right column)
from original data (top row), sample data corrupted by protrusion errors (middle row), and
sample noisy data with partial occlusion errors (bottom row).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2.9. Visual hull data of a non-key pose in 16 body orientations (upper-left) and its corre-
sponding pose descriptors obtained using multilinear analysis (middle column) and MGP (right
column) from original data (top row), sample data corrupted by protrusion errors (middle row),
and sample noisy data with partial occlusion errors (bottom row).

To obtain a quantitative measure of the error-resilience for both approaches, the mean nor-

malized inter-orientation distance (MNIOD) of the pose vectors has been computed for each

scenario, indexed by the dataset (key pose vs. non-key pose), error type (protrusion-error vs.

partial occlusion error), and the feature extraction method (multilinear vs. MGP). The normal-

ization factor for each dataset and method is the mean of the norms of pose vectors obtained

from the 16 visual hulls without noise. The resulting distances are shown in Table 2.1. Ac-

cording to Table 2.1, we can see that both the multilinear and the MGP approaches are robust
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TABLE 2.1
MEAN NORMALIZED INTER-ORIENTATION DISTANCE (MNIOD) OF POSE VECTORS

OBTAINED FROM VOLUMETRIC RECONSTRUCTIONS WITH DIFFERENT NOISE ADDED

Method & Noise Type MNIOD for Key
Pose

MNIOD for Non-
Key Pose

Multilinear, original 0.055 0.112
Multilinear, protrusion 0.072 0.159
Multilinear, partial oc-
clusion

0.085 0.177

MGP origional 0.074 0.025
MGP, protrusion 0.074 0.027
MGP, partial occlusion 0.083 0.028

to visual hull errors. Furthermore, the two types of errors appear to have similar impact to the

MNIOD.

To evaluate the view-invariance in more general cases, tests were also performed on 100

poses randomly selected from the IXMAS dataset. The selected data include poses close to the

key poses as well as those very much different from the key poses. Many of the visual-hull data

of selected poses suffer from the protrusion errors and the partial occlusion errors introduced

before. Examples of such volumetric construction errors are shown in Figure 2.10. Therefore,

the results reported in this section also reflect the performance of the proposed features using

noisy visual-hull data.

Using the selected visual-hull data, a view-invariance evaluation test dataset is then synthe-

sized by rotating each of the testing poses to 16 orientations. Once the test dataset is constructed,

for each pose, we can extract the corresponding pose features from these 16 visual hulls and

obtain their pair-wise Euclidean distance. The maximum of these distances, defined as maxi-

mum inter-orientation distances (MIOD), are applied as a measure of view-invariance of pose

vectors obtained at this frame. The histogram of the MIOD for all the testing poses will present

a picture of the view-invariance of the corresponding pose feature.

The view-invariance property of pose descriptors extracted using both multilinear analysis

and MGP were evaluated. In this study, 10 frames of visual-hull data were randomly selected

from each of 10 subjects and totally 100 frames from the 10 subjects were used for view-

invariance evaluation. Among these 100 frames, 18 frames are close to one of the key poses.
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(a) (b) (c)

(d) (e) (f)

Fig. 2.10. Examples of noisy visual hull data in the IXMAS dataset. Typical errors (in the
dotted circles) include remaining uncarved blocks in the background (a,b) and missing (wrongly
carved) blocks in the foreground (c - f).

To put such a view-invariance difference measure into the proper context, the pair-wise inter-

frame distances using the 100 original visual hull frames were also computed. The histogram

of the MIOD of both the key pose frames and the non-key pose frames corresponding to the

pose features obtained using multilinear analysis are shown in Figure 2.11 (a) and (b). The

histogram of overall inter-frame distance is shown in Figure 2.11 (c). Using the same dataset,

pose features were also extracted using the MGP method and the corresponding histograms

are shown in Figure 2.12. Please note that the normal distance ranges of the multilinear and

MGP features are different, 0 to 2 for the multilinear feature and 0 to 6 for the MGP feature

(See Figures 2.11 and 2.12). To obtain a normalized view for the distance distributions, all

the histograms are set to 10 bins, and the size of each bin is a tenth of the maximum overall

inter-frame distance (MOIFD) of corresponding type of pose descriptor. From Figures 8 and 9

it can be seen that the MIOD values of nearly all the key-pose frames (17 out 18 for multilinear

pose descriptors and all the 18 for MGP pose descriptors) and the majority (73 out 82 for

multilinear pose descriptors and 78 out of 82 for MGP pose descriptors) of non-key pose frames
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are less than a tenth of MOIFD. Therefore, only a small percentage (10% for multilinear pose

descriptors and 4% for MGP pose descriptors) of the testing frames has high MIOD values.

Hence, it was experimentally verified that the proposed pose feature extraction method using

both multilinear analysis and MGP can effectively extract view-invariant features from visual-

hull data. Moreover, between the two different view-invariant feature extraction approaches, the

MGP-based approach exhibits slightly stronger view-invariance property than the multilinear

analysis-based approach.

(a) (b) (c)

Fig. 2.11. Distance distributions of pose vectors obtained by multilinear analysis. (a) Inter-
orientation distances of pose vectors obtained from key pose frames. (b) Inter-orientation dis-
tances of pose vectors obtained from non-key pose frames. (c) Inter-frame distances between
pose vectors obtained from 100 frames.

(a) (b) (c)

Fig. 2.12. Distance distributions of pose vectors obtained using MGP. (a) Inter-orientation
distances of pose vectors obtained from key pose frames. (b) Inter-orientation distances of pose
vectors obtained from non-key pose frames. (c) Inter-frame distances between pose vectors
obtained from 100 frames.

2.4 Evaluations of View and Shape-Invariant Pose Features

In this section, the quality of view and shape-invariant pose features extracted using 3-factor

models is evaluated. The experiments in this section were still based on IXMAS dataset, as
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Fig. 2.13. Selected 19 key poses for 3-factor model traning.

described in the previous section.

2.4.1 Formation of Training Data

In order to extract view and shape-invariant pose features using the multilinear and MGP

methods, a set of training data needs to be constructed. In the previous section, 25 key poses

were selected from poses performed by one of the subjects in the IXMAS dataset. However, not

all key poses are commonly performed by all the subjects. In order to build a 4-mode (3-factor)

training tensor for multilinear analysis, observation vectors of all the poses performed by all

the subjects in all the orientations are necessary. Therefore, 19 key poses performed by all the

10 subjects except Chiara and Clare were selected to form the training poses. The selected key

poses are show in Figure 2.13. The resulting training tensor was formed by the observations of

19 poses by 8 people in 16 orientations. The same training data was applied to train the 3-factor

MGP model, except that due to limited computer memory, not all of the 16 observations of a

pose performed by a person were included.

2.4.2 Invariance Test

The invariance property of the pose features was first tested using a sample pose. Instances

of the sample pose performed by all ten subjects in IXMAS dataset were selected as the testing

data. The testing instances did not include those applied in training. The 3D reconstructions

of the testing instances of the sample pose are shown in Figure 2.14. It can be seen from

Figure 2.14 that these pose instances were performed by subjects with different body shapes
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Fig. 2.14. Selected testing instances of a sample pose.

in different body orientations. From these 3D reconstructions, view-invariant pose features as

well as view and shape-invariant pose features were extracted using both multilinear analysis

and MGP. These features are shown in Figure 2.15.

In order to evaluate the invariance of the pose features quantitatively, the mean normalized

inter-shape distance (MNISD) similar to MNIOD in the previous section was applied. For each

feature extraction method, inter-body-shape distances are normalized by the mean of the norms

of all the pose features extracted from the instances of a pose. The MNIODs of the pose features

extracted from the sample pose are listed in Table 2.2. From both Figure 2.15 and Table 2.2

it can be seen that the invariance of the view and shape-invariant features extracted using the

3-factor MGP is the best. We can also see noticeable improvement in invariance from features

extracted using the 2-factor MGP to those extracted using the 3-factor MGP. Application of the

3-factor model in multilinear analysis, however, does not improve pose feature invariance very

much compared to the 2-factor model.

Feature invariance test described above has been repeated for all the 19 key poses applied

in the training of 3-factor models. For each key pose, testing instances were selected from all
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Fig. 2.15. Pose features extracted from 3D reconstructions shown in Figure 2.14. (a)View-
invariant features obtained using multilinear analysis, (b)View-invariant features obtained using
MGP, (c)View and shape-invariant features obtained using multilinear analysis, (d)View and
shape-invariant features obtained using MGP.

TABLE 2.2
MEAN NORMALIZED INTER-SHAPE DISTANCE (MNISD) OF POSE FEATURES OBTAINED

FROM THE INSTANCES OF THE SAMPLE POSE

Extraction Method MNISD for view-invariant
features

MNISD for view and shape-
invariant features

Multilinear 0.943 0.912
MGP 1.01 0.886

the ten subjects in the IXMAS dataset in the same way as in the previous subsection. MNISD

was calculated for each key pose, and the histograms of MNISDs are shown in Figure 2.16.

For each feature extraction method, the mean of MNISDs of all the key poses are given in

Table 2.3. From Figure 2.16 and Table 2.3 some general trends of invariance of different pose

features can be obtained. First, in concurrence with the previous subsection, view and shape-

invariant features extracted using 3-factor MGP show noticeable advantages in invariance over

all the other feature extraction models. Second, it can be noticed that use of the 3-factor model

in multilinear analysis does not improve and even deteriorates pose feature invariance compared

to the 2-factor model. There are two reasons for such deterioration. First of all, observations
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TABLE 2.3
MEAN OF MNISD OF POSE FEATURES OBTAINED FROM 19 KEY POSES

Extraction Method Mean MNISD for
view-invariant features

Mean MNISD for view and
shape-invariant features

Multilinear 0.899 0.957
MGP 0.800 0.706

of poses are nonlinear in pose mode. Therefore the nonlinear MGP model performs better

than multilinear analysis. In addition, it is harder to find a stable solution for a trilinear equation

(2.18) than to solve a bilinear equation (2.11). Due to such deterioration, invariant pose features

obtained using 3-factor multilinear analysis are not used in experiments in other chapters of this

dissertation.
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Fig. 2.16. Histogram of MNISD of features extracted from 19 key poses. (a) View-invariant
features obtained using multilinear analysis, (b) view-invariant features obtained using MGP,
(c) view and shape-invariant features obtained using multilinear analysis, (d) view and shape-
invariant features obtained using MGP.
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Chapter 3

POSE RECOGNITION USING INVARIANT POSE FEATURES AND SVM

The aim of pose recognition is to classify a pose observation into one of the poses in the

vocabulary or identify it as an outlier. In this chapter, a method of video-based pose recognition

using invariant pose features discussed in the previous chapter is presented.

3.1 Overview of Video-Based Pose Recognition

Video-based pose recognition has been extensively studied in the literature [81]. Existing

methods can be mainly categorized into three groups according to types of features extracted,

namely body kinematics [82, 83], 3D volumetric reconstruction [34] and 2-D silhouettes [84,

85].

Pose recognition would be straightforward when body kinematics such as joint angles can

be reliably recovered from the input images. Recently video-based motion capture has seen

tremendous progress using various generative-based (e.g. [86–88]) and discriminative-based

(e.g. [89,90]) approaches. Various dynamical models have been used to represent the movement

dynamics and at the same time reduce the dimensionality of the movement state space [91,92].

Recent literature surveys can be found in [93–95]. Once body kinematics are recovered, poses

can be recognized using body joint angles as the feature. However, video-based motion capture

is mainly limited to pre-trained types of movements, such as walking and running. Reliable

recovery and tracking of poses for general movement which has not been seen in the training

remains a very challenging task. In some situations, such as dance performance, the subject

can easily go through a wide variety of movements. It is unrealistic for a video-based motion

capture system to keep tracking through such untrained movement.

As an alternative, many methods have been developed for silhouette based pose recognition.

N. R. Howe [84] achieved pose tracking by looking up a collection of silhouettes of known

poses. F. Huang, H. Di and G. Xu [85] proposed a viewpoint insensitive recognition system

using “envelope shape” representation of poses, and performed experiments on several simple

actions. F. Guo and G. Qian have also performed research on dance pose recognition in [96].
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Gaussian Mixture Model (GMM) was used for feature extraction of the silhouette and relevance

vector machine (RVM) for pose recognition.

Another alternative approach is to first recover the 3D volumetric reconstruction of the per-

former using e.g. visual-hull techniques [34,86] and then conduct pose recognition based on the

3D voxel data. Compared to silhouettes, 3D volumetric reconstruction is a much more informa-

tive representation of poses and great reduces the occlusion, but to recover a 3D body structure

increases the demand for data-capturing hardware (certain amount of calibrated cameras (e.g.

6) are needed) and computational power.

In this chapter, a method of pose recognition using invariant features extracted from 2D

silhouettes or 3D volumetric reconstructions is presented. In this method, support vector ma-

chine(SVM) is applied as the tool of classification. Using this method, promising experimental

results have been obtained.

3.2 An Introduction to Support Vector Machines

This section briefly introduces binary SVM classifiers. A binary SVM classifier applies a

linear model in a feature space in the form of

y(x) = wT φ(x)+b, (3.1)

in which x is the input vector, w is the linear coefficient, b is the bias scalar and φ(x) is a

set of feature functions that transform input vectors into a feature space. The feature function

set can be finite or infinite. Given a trained model in the form of (3.1), a dividing hyperplane

would form in the feature space defined by y(x) = 0, and a new input vector x∗ can be classified

according to the sign of y(x). The distance from x∗ to the dividing hyperplane in the feature

space is given by

d f (x∗) =
|y(x∗)|
‖w‖ . (3.2)

Given a set of N training input vectors x1, . . . ,xN and their corresponding target values

t1, . . . , tN , where tn ∈ {−1,1}, and defining slack variables ξ1, . . . ,ξN , the target of SVM is

to maximize the classification margin while softly penalizing wrongly classified points by min-

imizing
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C
N

∑
n=1

ξn +
1
2
‖w‖2 (3.3)

subject to

tny(xn)≥ 1−ξn (3.4)

ξn ≥ 0 (3.5)

for n = 1, . . . ,N. In (3.3), C > 0 is a trade-off parameter.

The dual problem of this optimization problem is to minimize

L̃(a) =
N

∑
n=1

an− 1
2

N

∑
n=1

N

∑
m=1

anamtntmk(xn,xm) (3.6)

subject to

0≤ an ≤C (3.7)

N

∑
n=1

antn = 0 (3.8)

for n = 1, . . . ,N. In (3.6), k(xn,xm) = φ(xn)T φ(xm) is the kernel function of xn and xm.

Given this dual form, in an SVM framework, we do not need to explicitly define the feature

functions. Instead, we only need to define the kernel function for any pair of input vectors.

Solving the dual problem, we can obtain an,n = 1, . . . ,N. Denoting S = {n|an > 0}, which is

also known as the indices of support vectors, and denoting NS = |S|, the discriminative function

y(x) can be calculated as

y(x) =
N

∑
n=1

antnk(x,xn)+b, (3.9)

in which

b =
1

NS
∑
n∈S

(tn− ∑
m∈S

amtmk(xn,xm)). (3.10)

Also, ‖w‖ can be computed as

‖w‖=

√
N

∑
n=1

N

∑
m=1

anamk(xn,xm). (3.11)

Details of SVM classification can be found in [97].
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3.3 Pose Recognition Using Multiple SVMs

Multi-class pose recognition can be achieved by using a set of support vector machine (SVM)

classifiers in a one-versus-the-rest manner [98]. For each pose, we train a binary SVM classifier

to identify whether the input pose feature “is” or “is not” the target pose. RBF kernels as defined

in (2.28) are used in all binary SVM classifiers, and kernel parameters are set to be the same.

Therefore, feature spaces of all the SVM classifiers are also the same.

When all the classifiers are trained, recognition of a pose feature can be achieved by a traver-

sal of all the classifiers. If all the classifiers returns negative results, then the pose feature is

classified as an outlier. Otherwise, it is possible that one or more SVM classifiers return posi-

tive results. In this case, among SVM classifiers returning positive results, the pose feature is

recognize as the pose corresponding to the classifier yielding the maximum distance from the

testing point to the dividing hyperplane in feature space. This distance can be easily computed

by combining (3.2),(3.9) and (3.11).

3.4 Experimental Results on Dance Pose Data

Pose recognition method described in this chapter was first tested on a two-view data set

containing 20 dance poses choreographed by a professional dancer. These poses are shown in

Figure 3.1 (a). This data set also contains 20 trick poses. These trick poses are outliers but

are similar to one of the 20 standard poses. The trick poses are shown in Figure 3.1 (b). This

experiment is designed to test the ability of the discussed method to perform multi-class pose

recognition with outliers.

3.4.1 Data Acquisition and Preprocessing

In this test, pose images were obtained using two uncalibrated wide-baseline cameras. The

configuration of the cameras is shown in Figure 3.2. These two cameras are mounted at approx-

imately half body height with looking directions parallel to the ground plane and orthogonal

to each other. The restrictions of the setting of cameras are not strict, so the subject has some

flexibility to move around the intersection of the optical axes of the two cameras. Using such a
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(a) (b)

Fig. 3.1. (a) 20 full-body dance poses used for pose recognition, (b) samples of trick poses

binocular approach can reduce ambiguities in body shape representation by reducing occlusion

in some conditions (e.g. side view of poses that all the limbs are in the frontal plane). By setting

up two cameras orthogonal to each other, the two captured images can be complementary most

of the time.

Fig. 3.2. Configurations of two uncalibrated cameras.

From each pair of images obtained from the two cameras, silhouettes are extracted. Each

silhouette is then normalized and resized so that all the silhouettes are of the same height and

horizontally centered. A pair of such normalized silhouettes are vectorized and concatenated to

form a complete observation vector.

A pair of sample images taken from the two cameras and the silhouettes extracted from them

are shown in Figure 3.3, and their normalized silhouettes are shown in Figure 3.4.
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Fig. 3.3. Sample images obtained from two uncalibrated cameras and their silhouettes.

Fig. 3.4. Normalized silhouettes obtained from two uncalibrated cameras.

3.4.2 Synthesizing Data for Tensor Training

In tensor training, in order to obtain images of a pose in precise orientations, the 3D recon-

struction of the pose is synthesized using motion capture data and animation software. Then,

the 3D reconstruction is projected onto image planes in different angles to form 2D silhouettes,

and these silhouettes are vectorized and concatenated to form desired observation vectors.

3.4.3 Pose Recognition Results

In pose recognition test, pose features were extracted using both multilinear and MGP method.

In order to train the SVM classifiers, synthetic image as well as real images captured by two

video cameras were applied. Images applied for testing were additional real images which were

different from those in the training set. For each pose, there were 192 synthetic training sam-
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TABLE 3.1
RECOGNITION RESULTS OF 20 DANCE POSES

Feature Extraction
Method

SVM parameters Recognition
Rate

False Detec-
tion Rate

Multilinear Analysis γ =0.7, C = 5 87.81% 5%
Multilinear Analysis γ =1.2, C = 6 88.75% 8.75%
Multilinear Analysis γ =1, C = 2 89.06% 10.63%
MGP γ =0.2, C = 6 62.81% 5%
MGP γ =0.3, C = 4 68.43% 8.75%
MGP γ =0.4, C = 9 74.38% 10.63%

ples and 8 real training samples, and 16 real image pairs were used as testing samples. For

trick poses, 320 real image pairs were used, 160 of them applied as training samples, and the

remaining 160 applied as testing samples.

In the test, each testing sample is recognized as one of the 20 poses or as an outlier. Recog-

nition results are evaluated using the recognition rate (RR) and the false detection rate (FDR).

The recognition rate is the percentage of testing samples of standard poses that are correctly

recognized as their corresponding poses. The false detection rate is the percentage of testing

samples of trick poses that are wrongly recognized as one of the standard poses. The RR and

FDR of pose recognition using both multilinear analysis based features and MGP based features

are shown in Table 3.1. It can be seen that using features obtained from multilinear analysis has

led to much better pose recognition results than those obtained using features obtained from the

MGP method.

3.5 Experimental Results on the IXMAS Dataset

The pose recognition method is also tested on IXMAS dataset, which is introduced in the

experimental section of previous chapter. The same 25 key poses as in the previous chapter

were used for invariant feature extraction. To obtain training and testing data, poses similar to

one of the key poses were selected from the movement pieces performed by the 10 subjects in

the dataset. Among the 25 poses, five poses are discarded because do not commonly exist in

movements of all subjects, The remaining 20 pose were chosen as the set of poses for recog-

nition. The 20 pose are shown in Figure 3.5. On average, there are 23 samples of each pose
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performed by all subjects for training and testing. From Figure 3.5 we can see that some of the

pose pairs in these 20 poses are similarly to each other, making this dataset more challenging.

This challenging dataset is applied as a benchmark dataset so that the discussed method can be

compared with other classification methods.

Fig. 3.5. Twenty poses selected from the IXMAS data set.

For this data set, training and testing are performed in a cross-validation manner. At each

cycle, poses performed by one subject is applied as testing data and the remaining are applied

as training data. This process is repeated for all the 10 subjects.

In this experiment, all the testing samples are from the 20 target poses. Therefore, during

pose recognition, a testing sample will be classified into one of the poses in the pose vocabulary.

In this case, we simply assign the sample to the pose corresponding to the classifier yielding

the maximum signed distance to the SVM dividing hyperplane in the feature space and every

testing sample is assigned to one and only one pose class. To evaluate the performance of pose

recognition, we have computed the recognition rate (RR) and the false alarm rate (FAR). For a

particular pose p, the corresponding RR is computed as the percentage of correctly recognized

in-class pose samples, and the corresponding FAR is the ratio of the number of testing samples

misrecognized as pose p to the total number of out-class samples for pose p (i.e., testing samples

of the other poses).

To compare different pose feature extraction and classification methods, pose recognition re-

sults were obtained from the view-invariant multilinear and the MGP features(extracted using

2-factor models), from view and shape-invariant MGP features (extracted using 3-factor mod-

els) as well as from raw visual hull data using the SVM and the K-nearest neighbors (K-NN)

classifiers. The Euclidean distances have been used in all cases. In the case of SVM, the RBF
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TABLE 3.2
RECOGNITION RESULTS OF 20 POSES IN IXMAS DATASET

Classifier Feature Extraction
Method

Recognition
Rate

False Alarm
Rate

SVM
Multilinear Analysis 74.40% 1.35%
MGP 68.09 % 1.68%
MGP-3 factor 74.58 % 1.34%
Raw visual hull data 66.42 % 1.77%

K-NN
Multilinear Analysis 71.43 % 1.51%
MGP 64.38% 1.88%
MGP-3 factor 72.73% 1.43%
Raw visual hull data 65.49% 1.81%

kernel has been used for the multilinear and MGP features. When the raw visual hull data is

used in SVM, the linear kernel has been adopted, due to the high dimensionality of the visual

hull data [99]. For each classifier-feature (or raw data) scenario, a grid search has been carried

out in the corresponding parameter space to identify the best parameters. The pose recognition

results obtained using the optimal classification parameters for each case are given in Table 3.2.

From Table 3.2, the following conclusions can be drawn. Firstly, 3-factor MGP features

has led to the best pose recognition results using either SVM or K-NN. Compared to 2-factor

MGP features, using 3-factor MGP features in pose recognition has led to great increase in

accuracy. This further verified that 3-factor MGP features are more invariant with the change

of body shapes. Secondly, among features not extracted with 3-factor model and raw data, the

multilinear feature has led to the best results. This concurs with the results in the previous

experiment. The reason for this is that in multilinear analysis, observations are projected onto

the pose feature space discriminatively. Pose recognition accuracy using multilinear features

and SVM is only about 0.2% lower than the accuracy achieved using 3-factor MGP features.

Therefore, the two results are totally comparable. Furthermore, the average running time for

extraction of multilinear features per frame is much smaller (about 4 seconds v.s. about 1

minute) than that for extraction of 3-factor MGP features.
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Chapter 4

GESTURE CLASSIFICATION USING HMM

In this chapter, an approach to classification of gestures which are already segmented, i.e. the

starts and ends are already known, is presented.

4.1 Overview of Video-Based Gesture Recognition

Many video-based methods have been developed for hand [100–102], arm [64,103] and full-

body [10,60] gesture recognition. Recent literature surveys on gesture recognition can be found

in [104, 105].

According to the system methodology, video-based gesture recognition systems can be clas-

sified as either kinematic-based [10, 14, 35–37, 101, 106] or template-based approaches [33, 60,

79, 103, 107–109].

In kinematic-based gesture recognition [10, 14, 35–37, 101, 106], movement kinematic pa-

rameters related to the articulated body motion are first recovered as joint angle vectors [10],

body-centered joint locations [35] or body part positions [14, 101, 106]. Gesture recognition is

then conducted in such kinematic parameter spaces. The major weakness of kinematic-based

gesture recognition is that the recovery of the movement kinematics is subject to tracking fail-

ures, especially in complicated full-body movements. As discussed in the previous section,

reliably tracking joint angles from video, often referred to as video-based motion capture, is

itself a very challenging task for computer vision. Although recently there has been noticeable

progress in video-based motion capture, the state-of-the-art technology is only able to track the

kinematic parameters for pre-trained movements.

On the other hand, template-based approaches such as [33,60,79,107–110] do not use such an

intermediate kinematic representation, but instead directly represent actions using image infor-

mation such as silhouettes or 3D volumetric reconstructions (e.g., visual hulls). Compared to the

kinematic-based approaches, the template-based approaches are more practical and applicable

in real life human-machine interactions. Based on how a gesture is represented, template-based
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gesture recognition approaches fall into two categories: the holistic and sequential approaches.

In the holistic approaches, e.g. [60, 107, 108, 110], to recognize a gesture, the entire gesture

segment is first modeled as a spatio-temporal shape either in the 3D image-time space in a

monocular setup, or in a 4D visual hull-time space in a multi-view scenario. Then features

are extracted from such 3D or 4D gesture representations. Using features from training data,

a gesture recognizer can be built using popular statistical pattern recognition techniques such

as SVM, LDA. In contrast to the holistic approaches, sequential approaches, e.g. [33, 79, 109],

represent a gesture as a temporal series of templates of a set of key poses selected from the ges-

ture vocabulary in training. Pose features are then extracted from these key poses. A gesture is

then modeled as a sequence of pose features of the associated key poses. Gesture recognition is

achieved through sequential pattern recognition, e.g. using the HMM or the conditional random

field (CRF) by treating the key pose as the states and pose features as the observations.

Compared to the holistic approaches, sequential approaches are more powerful in capturing

and modeling varying movement dynamics in gestures, and in processing continuous incoming

gesture data for gestural spotting. Varying execution speeds of the same gesture are common

across different subjects, sometimes even within a single gesture execution. Such speed varia-

tion can be very well represented by state transition probabilities in an HMM. In contrast, holis-

tic approaches are limited in representing such variations. Extracting gesture features invariant

to temporal variations is challenging. Moreover, when processing continuous incoming ges-

ture data, holistic approaches need to first identify the gesture boundaries prior to recognition,

which will introduce extra delay to online gesture spotting. On the other hand, the sequential

approaches are capable of simultaneously finding the gesture boundaries and computing the

probabilities of the gestures for every incoming frame of data in a recursive manner. Therefore,

template-based sequential gesture recognition is more suitable for practical HCI systems.

In this chapter, a sequential gesture classification method based on hidden Markov models

(HMM) is used, and invariant pose features, as discussed in Chapter 2, are used as observations

of HMMs. State-of-the-art results on a public dataset have been obtained using the proposed

method. This method can be extended to online gesture spotting, which is discussed in the next

chapter.
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4.2 An Introduction to The Hidden Markov Model

Currently, hidden Markov models (HMMs) [111] and other related state-based probabilistic

models comprise the state of the art in sequential data processing such as speech recognition,

handwriting recognition and gesture recognition. Using state-based probabilistic modeling of

the gestures, such models provide a robust and accurate framework for many kinds of pattern-

based analysis.

4.2.1 Original Left-to-Right HMM

Figure 4.1 shows a traditional left-to-right HMM commonly applied in gesture recognition

[2]. It is composed entirely of emitting states, except for the starting and end states sb and se. In

a model with n emitting states E1 . . .En, the states are enumerated as S0 = sb, S1 = E1, S2 = E2,

. . ., Sn = En, Sn+1 = se. To specify the transition probabilities between each pair of states, the

traditional left-to-right HMM uses a transition probability matrix:

T (Si,S j) =





0, if j < i or i = n+1

ti, j, otherwise
. (4.1)

Fig. 4.1. (Extracted from [2]) Transitions for a traditional HMM model with 7 emitting states.
Only transitions out of one state (E3) are displayed for clarity. In general, any state can have a
non-zero probability specified for transitions to itself or to any state depicted to its right.

4.2.2 Parameter-Reduced HMM

When applying the traditional HMM discussed above to gesture recognition, a large number

of parameters are required to be trained in order to give satisfying recognition results. In par-

ticular, an n state HMM requires O(n2) parameters to be trained for the transition probability

matrix, which limits its usability in environments where training data is limited.

In [2] a variation on HMMs has been proposed which reduces the number of parameters

required to infer all transition probabilities to O(n). In addition, our proposed model reduces
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Fig. 4.2. (Extracted from [2]) Transitions for the reduced parameter models with 7 emitting
states. For simplicity, transitions from the beginning state sb are omitted. The displayed transi-
tions are determined differently for each of the reduced parameter models.

Fig. 4.3. (Extracted from [2]) Transition probability parameters for the reduced model.

the computational complexity of the inference algorithm, permitting the number of states used

in the model to increase significantly while preserving real-time applicability.

The reduced model uses a constant number of parameters for each state to determine transi-

tion probabilities between all states. The parameters correspond to the probabilities of transi-

tions depicted in Figure 4.2. In this case, the following parameters are used:

• τi is the probability of remaining in an emitting state (T (Ei,Ei))

• ηi is the probability of going to the next emitting state (T (Ei,Ei +1))

• ςi is the probability of skipping at least one emitting state (T (Ei,Ni+1))

• κi is the probability of skipping an additional emitting state (T (Ni,Ni+1))

• ρi is the probability of ending a skip sequence (T (Ni,Ei+1))

The parameters pertaining to an individual pair of emitting / non-emitting states is shown in Fig-

ure 4.3. Note that given these parameters for each state, an entire transition probability matrix

that would correspond to the transition matrix used in the standard model can be constructed
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(focusing on the transitions between emitting states):

Tstandard(Ei,E j) =





0, if j < i

τi, if j = i

ηi, if j = i+1

ςi ∏ j−2
k=i+1 κkρ j−1, if j > i+1

. (4.2)

Since we constrain each state’s outgoing probabilities to sum to 1, we note the following con-

straints:

τi +ηi + ςi = 1 (4.3)

κi +ρi = 1 (4.4)

Hence, determining three of the parameters for each state is sufficient to construct all probabil-

ities of transition coming out of a state. The reduced HMM can also be trained using the EM

algorithm. Since the number of transitional parameters has been reduced to O(n), the compu-

tational complexity for HMM training has been greatly reduced [2]. Due to the same reason,

reduced HMM can be trained using less training samples than those needed for standard HMM.

4.3 Modeling and Recognizing Gestures Using HMM

In order to model gestures, the reduced-parameter HMMs introduced in the previous section

are used. Each emitting state is modeled as a Gaussian mixture with diagonal covariance matrix.

Assume that there are N gestures in the gesture vocabulary G. For each gesture g to be recog-

nized, a corresponding HMM with model parameter set Λg is learned using the EM algorithm

from the associated training samples. These training samples were manually segmented from

the training movement pieces. Once these gesture models are learned from training data, they

can be directly used to classify pre-segmented movement data. For a pre-segmented movement

piece of an unknown gesture, the corresponding pose feature sequence O = {O1,O2, . . . ,Ot}
can be obtained. The pre-segmented data can then be classified to be gesture g∗ based on the

maximum likelihood principle, i.e.,

g∗ = argmax
g∈G

p(O|Λg). (4.5)

The number of states in HMMs can be determined by cross validation and linear search.
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4.4 Experimental Results

Tests of pre-segmented gesture recognition were conducted on IXMAS data set discussed in

Chapter 2. This dataset has been used to evaluate a few state-of-the-art view-invariant gesture

recognition and spotting algorithms [60], [79] and [33]. To be consistent with [60] and [79],

in this experiment only data from 10 subjects and 11 actions were used (Table 4.3) and these

subject and action sets are identical to those in [60] and [79].

In experiments described in this section, methods for key pose selection and training data

formation for feature extraction are the same as described in Chapter 2.

4.4.1 Training and Testing Schemes

To obtain a good picture of the system performance, following [60] and [79] the gesture

recognition method discussed in this chapter is evaluated through cross-validation. In each

training and testing cycle, the movement data and associated pose features of nine of the ten

subjects in the IXMAS dataset were used as the training data and those of the remaining subject

were then used for testing. This procedure was repeated ten times so that each subject will be

used once as the testing subject. The final results reported were based on the cumulative results

obtained in all ten training-testing cycles.

Following [60] and [79], in this experiment a corresponding element movement was selected

for each action as the corresponding representative action signature. For example, for the “check

watch” action, the “raise hand” motion was selected as the representative action signature. The

set of the 11 action signatures then became the gesture vocabulary for this experiment. All the

movement segments corresponding to the action signatures were manually identified from the

IXMAS dataset and used as training and ground-truth data. They are referred to as the gesture

segments in this section.

In each training-testing cycle, on average about 283 gesture segments were used to train the

HMMs for the 11 gestures in the gesture vocabulary. To be consistent with the experimental

procedure reported in [60] for fair performance comparison, for gestures executed multiple

times in a movement trial (three trials for each subject are included in the IXMAS dataset),
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TABLE 4.1
NOTATIONS FOR PERFORMANCE EVALUATION USING PRE-SEGMENTED DATA

Notation Definition

G The number of gesture classes in a gesture set

Ni The number of testing samples belonging to the
ith gesture

Ci The number of samples belonging to the ith ges-
ture that are correctly recognized

Fi The number of samples belonging to other ges-
tures that are wrongly recognized as the ith ges-
ture

RRi = Ci
Ni

Gesture recognition rate of the ith gesture

FARi = Fi
∑ j 6=i N j

False alarm rate of the ith gesture

RR = ∑G
i=1 Ci

∑G
i=1 Ni

The overall gesture recognition rate

FAR = 1
G ∑G

i=1 FARi The overall false alarm rate

only one of them was (randomly) selected to be included in the training set.

The testing data were from the gesture segments of the remaining testing subject. To be

consistent with [60], for gestures executed multiple times in a single movement trial, only one

of them was used in testing. On average, about 31 testing movement segments were used in

each testing cycle.

4.4.2 Evaluation Criteria

To evaluate the gesture recognition results using the pre-segmented testing data, the corre-

sponding recognition rates RR and the false alarm rates FAR have been calculated. The RR and

FAR for both the individual gestures and entire gesture vocabulary are defined in Table 4.1.

4.4.3 Selection of Pose Feature Type

As shown in the previous chapter, view-invariant pose features extracted using multilinear

analysis and view and shape-invariant features extracted using MGP perform almost equally
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TABLE 4.2
COMPARISON OF GESTURE CLASSIFICATION RESULTS OF TWO TYPES OF POSE FEATURE

IN THE TRIAL EXPERIMENT

Feature RR
View and Shape-Invariant MGP Feature 78.9%
View-invariant Multilinear Feature 91.6%

well in pose recognition. As discussed in Section 2.4, extracting view and shape-invariant

MGP features is very time consuming. Furthermore, in the cross-validation scheme in this

gesture classification test, all view and shape-invariant pose features need to be recomputed in

each training-testing cycle since key poses performed by all training subjects (different in each

cycle) need to be applied for training for feature extraction. Therefore, to select a proper type

of pose feature for gesture classification, a trial experiment was first carried out performing

only the first three training-testing cycles (using first three subjects as testing subjects). The

recognition rates using two types of features are compared in Table 4.2. It can be seen that

although view and shape-invariant MGP features perform a little better in pose recognition, in

gesture classification, view-invariant multilinear features perform much better. Based on this

fact, in experiments of gesture classification and gesture spotting discussed in this dissertation,

only view-invariant features obtained from multilinear analysis are applied.

4.4.4 Gesture Classification Results

Using view-invariant multilinear features, the complete gesture classification test results are

presented in Table 4.3. The confusion matrix of gesture classification is presented in Figure 4.4.

To demonstrate the superiority of the proposed method, the method is first compared with

a simple discrete method. In this method, for each volumetric frame, the volumetric distance

measure of equation (2.42) is applied between that frame and each of the 25 key poses, and the

ID of the key pose providing the best similarity is selected to represent each input frame. Then

HMMs with the same structure as the proposed method but with discrete states are applied for

gesture modeling and recognition. The results of the discrete method are shown in Table 4.4.

Results on gesture classification using pre-segmented data from the IXMAS dataset have
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TABLE 4.3
GESTURE CLASSIFICATION RESULTS

Gesture RR FAR
Check watch 82.76% 0.70%
Cross arms 90% 1.05%
Scratch head 90.91% 0.34%
Sit down 100% 1.05%
Get up 100% 1.40%
Turn around 100% 0%
Walk 100% 0%
Wave hand 92.31% 1.38%
Punch 96.4% 0%
Kick 100% 0%
Pick up 86.67% 0%
Overall 94.60% 0.54%

Fig. 4.4. Confusion matrix of pre-segmented gesture recognition (in percentage).

been reported in [60] and [79]. The comparison of results obtained using method discussed in

this chapter against those reported in [60] and [79] is shown in Table 4.4. It can be seen that our

proposed framework using view-invariant features performed slightly better than the methods

in [60] and [79].
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TABLE 4.4
COMPARISON OF GESTURE CLASSIFICATION RESULTS ON IXMAS DATASET

Method RR FAR
Weinland 3D [60] 93.33% ∼ 0.67%
Weinland 2D [79] 81.3% ∼ 1.97%
Discrete method 35.35% 6.49%
The proposed method 94.60% 0.54%
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Chapter 5

ONLINE GESTURE SPOTTING USING HMM NETWORK

In order for an HCI system to quickly respond to gestural commands in real time, the gesture

recognition system should be able to accurately detect and recognize gestures from a continuous

incoming movement data stream with minimum delay. This task is often referred to as gesture

spotting in the literature. In this chapter, an approach to spotting of gestures online from a

continuous movement data stream is discussed.

5.1 Overview of Online Gesture Spotting

In an HCI system, an effective online gesture spotting framework is often desired. Online

gesture spotting requires that at the current time instant the gesture spotting decision is made

based only on the current and past data without using any future movement data. Online gesture

spotting presents a critical research issue due to the following reasons. In many gesture-driven

HCI scenarios, the reaction time of the system needs to be short, i.e., immediate response of

the system is desired once a gesture command is issued. Therefore, the gesture spotting system

is required to perform real-time gesture recognition using observation data up to the current

time instant. Moreover, due to the real-time interactive nature of HCI systems, once an HCI

system has responded to the user’s command based on the gesture spotting results in various

forms of visual/aduio feedback, it is nearly impossible for the system to make any correction

to such issued feedback if the gesture spotting system realized the previous result was wrong

based on the afterwards newly available data. Therefore reliable online gesture spotting is a

very practical pressing challenge for gesture-driven HCI systems.

Existing pattern spotting methods include DTW [112], HMM [111] and conditional models

such as the maximum entropy Markov models (MEMM) [113] and CRF [57, 114]. DTW was

originally designed to evaluate the similarity between two presegmented data sequences. Suc-

cessful applications of DTW include recognition of speech [115, 116], music [117] and hand

gesture [118, 119]. Variants of DTW have also been developed for gesture spotting. For ex-

ample, in [52] DTW was successfully adapted and applied in America sign language spotting.
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Compared to CRF and HMM, the biggest limitation of DTW is its lack of expressive modeling

of system dynamics, which results in its limited ability to represent gesture variations.

Conditional models such as the MEMM [113] and the CRF [114] have recently been applied

to pattern spotting with encouraging results, e.g. [57]. MEMM and CRF are discriminative

state-based models describing the conditional probability of the state sequence given the obser-

vation sequence. MEMM and CRF have been claimed to be superior over generative models

such as HMMs because of their improvement in observation dependencies [114, 120]. Flexible

features using both the past and future observations are applied in these models to explicitly rep-

resent long-distance interactions and dependency. Such flexible and long-distance dependency

may result in more natural models of sequential data than those based on HMM. However,

MEMM and CRF have their own limitations. It is well known that MEMM suffers from the

label bias problem [114]. For CRF, its training procedure is much more computationally expen-

sive and converges much slower than those of HMM and MEMM [114, 120]. In addition, the

scalability of CRF is also a problem. CRF builds a unified model consisting of all the patterns

to be recognized. As a result, adding new patterns will require retraining the entire model and

the previously trained model has to be discarded.

HMM [111] is a generative state-based framework widely applied in sequential pattern anal-

ysis. Using HMM, a sequence of observations (e.g., pose feature vectors) is modeled as being

emitted from a sequence of hidden states. There are a number of HMM-based gesture spotting

systems [20, 51, 55, 56, 121]. In these systems, each gesture is represented by an individual

HMM. In addition, one or more HMMs are used to capture the non-gesture movement. These

HMMs are parallell connected in an HMM network [51, 55] for gesture recognition. Although

the long-distance interaction is not explicitly described in HMM as it is in MEMM and CRF,

this actually does not present a problem for online gesture spotting, where a decision needs to

be made immediately upon the arrival of the data. Without explicitly encoding long-distance

interaction could potentially enforce the HMM to extract the most information from the past

and current observation, which is actually in favor of online gesture spotting. To the contrary,

because of its ability to encode long-distance interaction, decision making in CRF and MEMM

might rely more on future data than on the past and current data. Consequently, the performance
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of online gesture spotting using CRF and MEMM might deteriorate when the recognition de-

cision has to be made on-the-fly without any future data. Therefore, compared to MEMM and

CRF, HMM is more suitable for online gesture spotting.

Although promising results have been obtained using HMM-based approaches, how to ef-

fectively detect and model non-gesture movement remains a challenge. Many existing gesture

spotting systems [20,51,55,56,121] make use of non-gesture models in HMM networks to pro-

vide thresholds for rejecting non-gestural movements. In [55, 56, 121], a threshold model was

built as a weak universal movement model trying to represent all the gestures, which provides

an adaptive thresholding mechanism for rejecting non-gesture movement. In [20], the threshold

model was simplified into a single garbage gesture model which contains one emitting state

with flat emitting probability over all the observations. In [51], two general garbage models

were trained to represent non-gestural movement patterns. Although reasonable results have

been reported, when the testing data includes complex non-gesture movement patterns resem-

bling portions of the gestures, using one or two threshold or garbage models will not be able

to effectively reject such non-gesture movement. Therefore, effective online gesture spotting in

general movement sequences is still a challenging problem.

In this chapter, an approach to online gesture spotting based on HMM network is introduced.

In order to tackle aforementioned challenges, a systematic approach is developed to detect and

model non-gestural movement patterns automatically from continuous training data. By in-

cluding specific non-gesture models in an HMM network, its ability of rejecting non-gesture

movements is greatly improved without significantly sacrificing the ability of spotting true ges-

tures.

5.2 HMM Network for Gesture Spotting

Using the pose descriptors obtained through multilinear analysis as observation vectors, ges-

tures can be spotted from a continuous movement stream by using an HMM network [51, 55].

As illustrated in Figure 5.1, an HMM network is formed by connecting a set of movement

HMMs together using a non-emitting starting state and a non-emitting end state. The HMMs

involved in the HMM network for gesture spotting include gesture models, non-gesture models
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and a general garbage gesture model. The gesture models are the same as the models trained

for pre-segmented gesture recognition, as described in Chapter 4. The non-gesture models and

the garbage gesture model are trained to represent the specific non-gesture movement patterns.

Fig. 5.1. The HMM network applied in gesture spotting.

5.3 Model Learning

As discussed above, the gesture models in the HMM network can be learned in the same way

as in Chapter 4.

A garbage gesture model is also defined to model general non-gesture movement sequences.

It has a single emitting state, with a flat probability distribution function over the entire observa-

tion space. The single state can loop back to itself (non-gesture continues), or exit (non-gesture

ends). Applying this garbage model is equivalent to applying a normalized log-likelihood con-

straint to spotted gestures, since the log-likelihood of a non-gesture segment is just the log of

the flat probability value times the length of the segment.

In complex testing scenarios, for example, when the testing data includes non-gesture move-

ment patterns resembling portions of the gestures, using one or two threshold or garbage models

will not be able to effectively reject such non-gesture movement. To tackle this challenge in the

proposed gesture spotting framework, in addition to a general garbage gesture model, a number

of specific non-gesture models are deployed to further improve the gesture spotting ability of the

proposed system. These specific non-gesture models include automatically identified and man-

ually specified models. These non-gesture models are aimed to represent specific non-gesture

movement patterns observed from the training data and then reject these non-gesture move-

ment patterns in gesture spotting. Some non-gesture movement patterns are manually picked,

including
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• repetitive inter-gesture patterns (such as stand still),

• false gestures that are similar to the true ones,

• movement patterns shared by two or more gestures.

These movement patterns can be commonly found in the training movement pieces. They can

be manually segmented and used as the training samples of corresponding non-gesture models.

HMMs for these manually selected non-gesture patterns can be trained in the same manner as

the gesture models.

To improve the efficiency of non-gesture model detection and learning, a systematic approach

to autonomous non-gesture model detection and learning from training data has also been devel-

oped, which is illustrated in Figure 5.2 (a). Key steps for the non-gesture movement detection

and learning approach are as follows. First, the training movement sequences are automatically

segmented into element pieces by finding the minima of the motion energy, which is defined

in Section 2.3.3. Element pieces with large overlap with the training segments used for gesture

models and manually specified non-gesture models (if there are any) are eliminated, leaving

only unused element pieces corresponding to remaining non-gesture movement patterns. Then,

a similarity matrix is calculated for the element pieces. The similarity between two element

pieces is calculated using dynamic time warping (DTW) [112], and the distance between two

observations is defined to be the Euclidean distance. Based on the similarity matrix, the non-

gesture training data is grouped into a number of clusters using normalized-cut [80], one for

each automatically detected non-gesture model. The number of clusters is essentially the num-

ber of detected non-gesture models. This number is preset manually. Finally, the element pieces

similar enough to the cluster centers (similarity value exceeds a pre-chosen threshold) are ap-

plied as training samples for the corresponding non-gesture model. By applying this automatic

model training scheme, the number of non-gesture models can be flexibly controlled according

to the actual requirement of a specific application.

After model training, a collection of HMMs is available for gesture spotting, including

HMMs for the gesture vocabulary G, and the non-gesture set F corresponding to the gen-
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(a) (b)

Fig. 5.2. (a) Automatic detection and training of non-gesture movement patterns. (b) The
flowchart of the gesture spotting algorithm

eral garbage gesture model, the manually selected non-gesture models, and the automatically

detected non-gesture models.

5.4 Gesture Spotting

Using both gesture and non-gesture movement models, gesture spotting can be achieved

by evaluating the joint probability of the observation sequence and the path of hidden state
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transition in an HMM network.

For online gesture spotting, an observation ot is fed into the HMM network at each time

instant t. Let qt be the hidden state at time instant t, Sn the nth hidden state in the HMM network,

S the collection of all the states of the HMM network, and Ot the observation sequence from

the beginning of the movement piece up to time instant t. Define

δt(Sn) = max
q1,...,qt−1

p(Ot ,q1, . . . ,qt−1,qt = Sn|Λ) (5.1)

to be the probability of the optimal state path to the current state Sn given the current observation

sequence. In (5.1), Λ denotes the parameter set of the entire HMM network, including the model

parameter sets of both the gesture and non-gesture models. Using the Viterbi algorithm, δt(Sn)

can be computed based only on the information of the previous time instant, δt−1(S),∀S ∈
S, and the current observation. Therefore, the evaluation of δt(Sn) can be performed in an

incremental manner.

As described in Section 4.2.2, each gesture model contains a non-emitting end state. Reach-

ing this end state means that the corresponding gesture has been fully executed. Let Eh be the

end state of HMM h. At time instant t, if the end probability of a gesture g∗ is the largest among

all the gestures and non-gestures, g∗ is spotted, i.e.,

g∗ = arg max
h∈G∪F

δt(Eh) and g∗ ∈ G (5.2)

Once a gesture is detected, the starting time instant of the gesture can also be easily found by

backtracking the most probable path.

This preliminary spotting result is further refined according to the length of the spotted ges-

ture segment and the corresponding likelihood. A length constraint and a likelihood constraint

are set up to reject outliers. In this experiment, the length of a spotted gesture was constrained to

be less than 50 frames (since the length of ground truth gesture segments are in the range of 10

to 35 frames) and the likelihood of the segment given recognized gesture was constrained to be

larger than 10−70 (the majority of the likelihood are in the range of 10−15 to 10−40). Movement

segments satisfying the length and likelihood constraints are considered to be gesture segment

candidates. Moreover, temporal consistency is also used to stabilize the gesture spotting re-

sults. To be specific, only when gesture segment candidates sharing the same starting frame are
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continually detected T times without any other candidates detected in the middle, where T is

a prechosen threshold, then a final online spotting decision will be made. The overall gesture

spotting scheme is summarized using a flowchart in Figure 5.2 (b).

Given a continuous stream of movement data, the final gesture spotting result is a series of

recognized gesture segments, including the gesture label, the beginning and end frame numbers

of the segment, and the corresponding likelihood.

5.5 Experimental Results

Gesture spotting experiments were also conducted on IXMAS dataset. The subjects and

gesture vocabulary applied were also the same.

5.5.1 Training and Testing Scheme

Training and testing for gesture spotting follows the same cross-validation manner as de-

scribed in the experimental section of Chapter 4. In each training-testing cycle, training of ges-

ture models is also the same as in Chapter 4. For gesture spotting, non-gesture models also need

to be trained besides gesture models. When manually specified non-gesture models were used,

their corresponding movement segments of the same nine training subjects were hand-picked

from the dataset to train the associated HMMs. Likewise, the HMMs of the automatically de-

tected non-gestures were trained by applying the training samples obtained according to the

method presented in Section 5.3.

To test gesture spotting from a continuous data stream, in each training-testing cycle the three

complete movement trials of the testing subject were used as testing data. All the gesture and

non-gesture models were integrated in the HMM network presented in Section 5.4 for gesture

spotting. The manually identified gesture segments from these movement trials were then used

as ground-truth to evaluate the gesture spotting results from the proposed system.
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TABLE 5.1
NOTATIONS USED IN PERFORMANCE EVALUATION OF GESTURE SPOTTING

Notation Definition
NT The number of true gesture segments in the testing data
NC The number of gesture segments that are correctly detected and

recognized
ES The number of gesture segments that are detected but misrecog-

nized (substitution error)
EM The number of gesture segments that are missed (i.e. not detected)
ET The number of gesture segments that are not correctly spotted,

ET = NT −NC

EI The number of insertion errors
TI The cumulative number of frames of all insertion errors

TNG The cumulative frame numbers of non-gesture segments

5.5.2 Evaluation Criteria

In gesture spotting using continuous testing data, for each input testing stream the algorithm

discussed in this chapter returns a series of spotted gesture segments, including the label of

the recognized gesture, the beginning and end frame numbers of the segment, and the cor-

responding likelihood. Due to gesture spotting errors, a spotted gesture might not be a true

gesture. To evaluate the performance of the discussed approach, such gesture spotting results

were compared against the ground-truth gesture segment data and analyzed in a number of as-

pects, including temporal matching accuracy, recognition and false alarm rates, and reliability

of recognition. In this section, the method to measure the temporal matching accuracy of a

spotted gesture segment is first introduced. Then, other performance indicators derived from

gesture spotting results and ground-truth data are discussed.

Let Fb(i) and Fe(i) be the beginning and end frame numbers of the ith true gesture segment

in the testing data. The length of this segment is thus

LGT (i) = Fe(i)−Fb(i)+1. (5.3)

Let Sb(i) and Se(i) be the beginning and end frame numbers of a spotted gesture segment.

Define the absolute temporal matching score OA(i) as the number of the overlapped frames
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between the spotted and ground-truth gesture segments

OA(i) = min{Se(i),Fe(i)}−max{Sb(i),Fb(i)}, (5.4)

and the absolute temporal matching score OR(i) be the ratio of OA(i) to the length of the true

segment.

OR(i) =
OA(i)
LGT (i)

, (5.5)

When OR(i) is larger than a pre-chosen threshold η , (0 < η ≤ 1), the spotted gesture is con-

sidered to be temporally matched to the ground-truth segment. In this experiment, the default

value of η was 0.5. Results were also obtained using different values of η and examined how

different values of η can affect different performance measures.

Once a spotted gesture segment is temporally matched to a ground-truth gesture segment,

their gesture labels are compared. If they share the same gesture label, the spotted segment is

then considered to be correctly recognized and the number of correctly spotted segments NC

will increase by 1. Otherwise, the spotting gesture segment will be counted as a substitution

error. If a gesture segment is not temporally matched to any ground-truth gesture segment with

respect to η , it will be treated as an insertion error. On the other hand, if a ground-truth gesture

segment was not matched to any spotted gesture segment, it is then counted as a missing error.

Notations of these performance indicators are summarized in Table 5.1. It is easy to see that the

substation and missing errors constitute the overall errors that can happen to the true gesture

segments. When a true gesture segment is not correctly spotted, there are two possibilities: it is

either not detected or detected but misrecognized. Therefore ET = NT −NC = ES +EM.

By using these performance indicators, additional performance measures including the recog-

nition (spotting) rate RR, the reliability measure RL, and the false alarm rate FAR can be further

derived and evaluated. In addition to measuring the numbers of correctly and incorrectly spotted

gesture segments, the overall temporal matching accuracy of correctly spotted gestures was also

measured. The corresponding indicators are average overlapping ŌA, average relative overlap-

ping ŌR, average beginning delay B̄A, average absolute beginning delay B̄AB, average relative

beginning delay B̄R, average end delay ĒA, average absolute end delay ĒAB, and average relative

end delay ĒR. All the performance measures used in experiments in this section are detailed def-
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initions in Table 5.2. By using these performance measures, a clear picture of the performance

of the proposed gesture spotting algorithm can be obtained as shown in the next section.

TABLE 5.2
PERFORMANCE INDICATORS FOR GESTURE SPOTTING (SUMMATIONS ARE OVER ALL THE

CORRECTLY SPOTTED GESTURE SEGMENTS)

Indicator Notation Definition

Recognition Rate RR
NC

NT

Reliability RL
NC

NC +ES +EI

False Positive Rate FAR
TI

TNG

Average Overlapping ŌA
1

NC
∑OA(i)

Relative Overlapping ŌR
1

NC
∑ OA(i)

LGT (i)

Average Beginning Delay B̄A
1

NC
∑(Sb(i)−Fb(i))

Average Absolute
Beginning Delay

B̄AB
1

NC
∑ |Sb(i)−Fb(i)|

Average Relative
Beginning Delay

B̄R
1

NC
∑ (Sb(i)−Fb(i))

LGT (i)

Average End Delay ĒA
1

NC
∑(Se(i)−Fe(i))

Average Absolute End
Delay

ĒAB
1

NC
∑ |Se(i)−Fe(i)|

Average Relative End
Delay

ĒR
1

NC
∑ (Se(i)−Fe(i))

LGT (i)
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5.5.3 Gesture Spotting Results

To examine the impact of using specific non-gesture models in gesture spotting, gesture spot-

ting has been conducted with different model configurations. In the beginning, only the gesture

models (GM) and the general garbage gesture models (GGM) were used. Then, automatically

specified non-gesture models (ANGM) were gradually added to the HMM network for gesture

spotting. Finally, manually specified non-gesture models (MNGM) were included.

The gesture spotting accuracy and temporal matching accuracy (η = 0.5) using various model

configurations are given by Table 5.3 and Table 5.4, respectively. From Table 5.3 it can be seen

that the inclusion of more specific non-gesture models greatly reduced the insertion errors with-

out significantly diminishing correct recognitions. Consequently, the reliability of the spotted

gestures also greatly increased. It can also be seen Table 5.3 that when the number of ANGMs

increased, adding MNGMs only slightly improved the spotting accuracy. From Table 5.4 we

can see that different gesture model configurations had only very slight impact on the temporal

matching accuracy of the spotted gesture segments. The measures of the temporal matching

accuracy obtained using various model configurations are all at reasonable levels.

The influence of the temporal matching threshold parameter η on the performance measures

of gesture spotting was also examined. Different values of η were applied to derive the corre-

sponding performance measures. The two HMM network configurations using 15 ANGMs and

with and without MNGMs, i.e. MNGM+15ANGM+GM+GGM and GM+GGM+15ANGM,

were tested and the corresponding results are shown in Table 5.5. It can be seen from Table 5.5

that when η decreased, both the recognition rate and recognition reliability increased and and

at the same time the insertion error and the false alarm rate were reduced. This is because when

η is low, more spotted gesture segments can be considered to be matched to the corresponding

true gesture segments.

Another observation can be made from Table 5.5 is that the value of η affected the error

distribution between the substitution error and the missing error. As mentioned early, these two

types of errors constitute the overall errors that can happen to the true gesture segments, i.e.,

ET = ES +EM. It can be seen from Table 5.5 that when η was decreasing, both ET and EM were
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TABLE 5.3
GESTURE RECOGNITION ACCURACY (η = 0.5)

Models used in
the HMM
network

NT NC ES EM EI RR RL FAR

GM+GGM 539 451 68 20 511 83.67% 43.79% 30.44%
5ANGM+GM
+GGM

539 446 57 36 344 82.75% 52.66% 20.93%

10ANGM+GM
+GGM

539 441 53 45 292 81.82% 56.11% 18.20%

15ANGM
+GM+GGM

539 436 41 62 207 80.89% 63.74% 12.85%

MNGM+GM
+GGM

539 437 41 61 279 81.08% 57.73% 18.37%

MNGM+5ANGM
+GM+GGM

539 441 41 57 226 81.82% 62.29% 15.42%

MNGM+10ANGM
+GM+GGM

539 437 36 66 194 81.08% 65.52% 13.07%

MNGM+15ANGM
+GM+GGM

539 432 33 74 156 80.15% 69.57% 10.16%

decreasing while ES was increasing. This is because reducing η allowed more spotted gestures

to be temporarily matched to true gestures (thus reducing EM). On the other hand, some of

the newly matched spotted gestures did not share the same gesture label with the true gesture

segment, which led to increased ES.

Gesture spotting results using continuous streams from the IXMAS dataset have been re-

ported in [60] and [33]. In this section, gesture spotting results obtained using discussed method

is also compared against those reported in [60] and [33].

In [60], Weinland et al. reported experiments and results comparable to gesture spotting. The

result comparison is shown in Table 5.6. It can be seen that the proposed method evaluated

using different η consistently achieved higher recognition rates and lower false positive rates

than the results reported in [60].

An important point about this comparison that needs to be made is that the way to evaluate

the gesture spotting accuracy in this dissertation is much stricter and more complete than that

used in [60]. Different from this experiment where gestures were spotted directly from a con-
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TABLE 5.4
TEMPORAL MATCHING ACCURACY OF CORRECTLY RECOGNIZED GESTURES (η = 0.5)

Models used in
the HMM
network

ŌA ŌR B̄A B̄AB B̄R ĒA ĒAB ĒR

GM+GGM 14.35 0.84 1.20 2.42 0.060 0.63 3.49 0.10
5ANGM+GM
+GGM

14.29 0.84 1.14 2.46 0.056 0.57 3.47 0.09

10ANGM+GM
+GGM

14.28 0.84 1.08 2.44 0.054 0.51 3.44 0.09

15ANGM
+GM+GGM

14.31 0.84 1.11 2.42 0.057 0.40 3.41 0.08

MNGM+GM
+GGM

14.57 0.84 1.25 2.54 0.062 0.76 3.58 0.11

MNGM+5ANGM
+GM+GGM

14.58 0.84 1.19 2.55 0.058 0.90 3.66 0.12

MNGM+10ANGM
+GM+GGM

14.54 0.84 1.23 2.52 0.062 0.75 3.64 0.11

MNGM+15ANGM
+GM+GGM

14.56 0.85 1.19 2.52 0.059 0.82 3.49 0.11

TABLE 5.5
GESTURE RECOGNITION ACCURACY WITH VARIOUS η VALUES AND TWO HMM
NETWORK MODELS: 15ANGM+GM+GGM / MNGM+15ANGM+GM+GGM

η NT NC ES EM EI RR RL FAR
0.05 538 456/448 74/56 9/35 153/115 84.60%/

83.12%
66.76%/
72.37%

9.02%/
7.25%

0.1 538 456/448 71/54 12/37 156/117 84.60%/
83.12%

66.76%/
72.37%

9.21%/
7.38%

0.2 538 455/448 65/50 19/41 163/121 84.42%/
83.12%

66.61%/
72.37%

9.72%/
7.65%

0.5 538 436/432 41/33 62/74 207/156 80.89%/
80.14%

63.74%/
69.57%

12.84%/
10.16%

0.7 538 366/372 23/20 150/147 296/230 67.90%/
69.02%

53.43%/
59.81%

18.87%/
15.38%

0.8 538 295/291 17/14 227/234 373/317 54.73%/
53.99%

40.07%/
46.78%

23.69%/
21.21%

tinuous movement stream, in [60] Weinland et al. first segmented the movement stream using

a segmentation algorithm based on the motion energy and then classified these movement seg-

ments as either gestures in the vocabulary or non-gesture movement segments. To compute the

recognition and false alarm rates, ground-truth was obtained manually on top of the segmented
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data. Therefore, in the gesture spotting results reported in [60], segmentation errors were not

taken into account. For example, when the segmentation algorithm wrongly grouped two ges-

tures, the combined segment will be treated as a non-gesture movement segment in [60] and this

segmentation error will not be reflected in the gestural spotting results since the ground-truth

was taken on top of the segmented data. Obviously, obtaining ground-truth purely based on the

segmented data and omitting segmentation errors in the calculation of gesture recognition rate is

suboptimal in evaluating a gesture spotting method. The true gesture recognition rate should be

the number of correctly recognized gesture (NC) divided by the number of actual gestures (NT )

in the given testing continuous data, which is the exact recognition rate used in the proposed

approach. However, when the errors introduced by wrong segmentation are not considered, the

resulting gesture recognition rate is then NC divided by NS, the number of correctly segmented

gestures. Since NS is always less than or equal to NT , the recognition rate without counting the

segmentation errors will be always higher than or at most equal to the actual recognition rate.

In practice, these segmentation errors will surely introduce errors in gesture spotting from live

continuous movement data. Even using a stricter method for computing the gesture recognition

rate, it can be seen in Table 5.6 that the proposed method consistently outperformed the method

in [60].

Another point worthy to be mentioned is that in [60] the false positive rate is defined based

on the segmented data, as the percentage of the non-gesture segments that are classified as a

gesture. In this experiment, as shown in Table 5.2, frame-wise false positive rate, defined as the

ratio of the cumulative number of frames of inserted gestures and the total time of non-gesture

movements, was used to evaluate the performance.

To demonstrate the advantage of the parameter-reduced HMM applied in this gesture spotting

method, the gesture spotting results is also compared with the results using conventional left-

to-right chain HMM model without skip in Table 5.6. It can be seen that result obtained using

proposed method significantly outperforms the chain models especially in the sense of false

alarm rate.

The gesture spotting results were also compared with those presented in [33]. In [33], the

percentage of correctly labeled frames is used as a measure of gesture spotting accuracy. In [33],
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the global optimal path of HMM states was obtained at the end of the data stream and used for

performance evaluation. For fair comparison, gesture labeling results using global optimal

path, in addition to results computed online, were also computed in this experiment. The result

comparison is given in Table 5.7. It can be seen that if global optimal path was applied, the

proposed method outperformed the method in [33]. It is clear that using the global optimal

path does increase gesture spotting accuracy measured based on the correctly labeled frames.

One thing worthy of mentioning is that in [33], a total of 15 actions, including the 14 actions

originally in the IXMAS dataset and a “stand still” action identified from the same dataset by

the authors of [33], were used for recognition. To be consistent with [60] and [79], in this

experiments only ten actions were used. The comparison with [33] was done based on the data

of the ten common actions used in both this experiment and [33].

Another thing to be noted is that although in [33] only one view is applied, it requires a lot

of synthesized images from motion capture data. This is somewhat equivalent to applying 3D

information, since the training images are generated by projecting a 3D avatar performing the

poses into arbitrary view plains. Also, the authors in [33] assume the tilt angle of the camera

to be known. This is a strong constraint of the experimental condition. Without this constraint,

the search space of the method proposed in [33] will greatly increase. With the conditions

stated above, comparison between the proposed method and the method proposed in [33] is

reasonable.
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TABLE 5.6
COMPARISON OF GESTURE RECOGNITION ACCURACY

Framework RR FAR
Weinland 3D [60] 78.79% 14.08%
Chain HMM
(MNGM+15ANGM+GM+GGM, η = 0.5)

77.92% 20.18%

Chain HMM
(MNGM+15ANGM+GM+GGM, η = 0.2)

83.30% 15.62%

The proposed method
(15ANGM+GM+GGM, η = 0.5)

80.89% 12.84%

The proposed method
(15ANGM+GM+GGM, η = 0.2)

84.42% 9.72%

The proposed method
(MNGM+15ANGM+GM+GGM, η = 0.5)

80.14% 10.16%

The proposed method
(MNGM+15ANGM+GM+GGM, η = 0.2)

83.12% 7.65%

TABLE 5.7
COMPARISON OF PER-FRAME ACCURACY OF GESTURE SPOTTING

Gesture Lv and Neva-
tia [33]

The proposed
method, global
path

The proposed
method, online

Check watch 82.5% 81.0% 72.9%
Cross arms 82.1% 80.6% 71.2%
Scratch head 80.2% 83.2% 55.6%
Sit down 83.7% 80.8% 85.9%
Get up 84.3% 63.5% 37.6%
Turn around 78.8% 83.5% 88.4%
Walk 79.7% 92.5% 91.7%
Wave hand 79.9% 73.9% 81.1%
Punch 86.8% 82.8% 45.3%
Kick 87.7% 95.5% 96.6%
Pick up 83.2% 92.6% 88.5%
Overall ∼81.6% 85.0% 80.2%
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Chapter 6

MULTI-CAMERA FUSION FOR GESTURE RECOGNITION

For view-invariant pose and gesture recognition, application of multiple cameras is necessary

to reduce ambiguity introduced by self-occlusion. In previous chapters, data obtained from mul-

tiple cameras are combined in only two ways. In Chapter 3, when testing on dance pose data,

silhouettes extracted from two uncalibrated cameras are directly concatenated. When applying

IXMAS dataset in Chapters 3, 4 and 5, visual hulls obtained from five calibrated cameras are

applied. In this chapter, more techniques of multi-camera fusion for gesture recognition are

discussed.

6.1 Overview

Recently, multiple cameras have been deployed for robust gesture recognition to reduce am-

biguity introduced by self-occlusion and to improve view-invariance, which requires a system

to recognize gestures equally well independent of the facing direction of the subject. Multi-

camera gesture recognition essentially belongs to homogeneous multi-sensor fusion [122,123],

and the data and information from different cameras can be fused and integrated at the data

level, the feature level, or the decision level [122,123]. Data-level fusion directly combines im-

age data from multiple cameras. When multiple calibrated cameras (i.e., both the internal and

external camera parameters are known) are used, data-level fusion has been the dominant sensor

fusion scheme for multi-camera gesture recognition. For example, a typical data-level multi-

camera fusion scheme for gesture recognition using calibrated cameras in [34,60,79,124–126]

has been to first reconstruct the 3D visual hull data of the subject from multi-view images using

the shape-from-silhouette method [24], and then extract pose or gesture features from the visual

hull data for gesture recognition. Data-level fusion has also been used in gesture recognition

using multiple uncalibrated cameras without reconstructing 3D visual hull data. Compared to

calibrated cameras, uncalibrated cameras are easy to set up and can be quickly deployed for

gesture recognition in real-life scenarios. For example, in [109], images obtained from two un-

calibrated cameras have been concatenated to form the integrated image observation vector for
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gesture recognition. In the feature-level gesture recognition fusion scheme, features extracted

independently from individual cameras are combined into an integrated feature vectors for ges-

ture recognition. For example, in [1] and [127], spatio-temporal features have been extracted

from each camera view and then integrated for gesture recognition. In decision-level fusion,

gesture recognition is first conducted independently for each camera view and then the indi-

vidual recognition results are combined according to various classifier integration rules [128],

including the sum rule (e.g., [126]), the product rule (e.g., [1]), the maximum likelihood rule

(e.g., [129]), and the majority vote rule (e.g., [130, 131]).

Unlike the case of using multiple calibrated cameras for gesture recognition, where the data-

level fusion scheme has been dominant through the extraction of 3D visual hull data, despite

the large body of existing research, two fundamental research problems remain largely unad-

dressed for gesture recognition using multiple uncalibrated cameras: a) given the fixed set of

cameras, which multi-camera data fusion scheme can produce the best gesture recognition re-

sults? and, b) given the fixed number of cameras, how to find the optimal camera combination

that leads to the best gesture recognition results? In the multi-camera gesture recognition litera-

ture, there has been no systematic comparison between the data-level, the feature-level, and the

decision-level fusion schemes using the same image feature and benchmark gesture recognition

framework on a common testing dataset. Camera selection has been discussed in the camera

network research [132–138]. However, existing research on camera selection is tuned to solve

specific camera network problems using customized camera selection criteria and metric and

might not transfer very well to solving the camera selection problem for multi-camera gesture

recognition. For example, in [132, 133], the optimal camera combination is selected so that

image data captured from the selected cameras can be used to best synthesize the image from

a desired target camera view. In [134–136], the optimal camera combination is found from a

wireless camera network to reach a balance between computational and communication effi-

ciency and the quality of 3D reconstruction. In [137, 138], the size, view, and position in the

field of view of a tracked person have been adopted as criteria for optimal camera selection

for multi-camera multi-person tracking. These existing camera selection criteria cannot effec-

tively capture the desired relationship among collaborating cameras in multi-camera gesture

recognition. For example, in the decision-level fusion scheme for multi-camera gesture recog-
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nition, a requirement for effectively combining results from different cameras is that results

from individual cameras should not strongly correlate with each other in their misclassifica-

tions. Furthermore, it is desired that in the case of misclassification by one camera view for a

testing data, another camera view produces the correct classification. Hence, optimal camera

combination for multi-camera gesture recognition should be identified according to the com-

plementary strength within the camera combination. The key challenge is to develop a measure

of complementary strength across cameras. In this chapter, the research that attempts to address

these fundamental research problems for gesture recognition using multiple uncalibrated cam-

eras is presented. To obtain valid gesture recognition comparison across various data fusion

schemes, in this chapter, the publicly available IXMAS gesture recognition dataset [60] has

been used as the benchmark testing and training dataset for mult-camera gesture recognition.

Moreover, the same gesture recognition framework using the multilinear human pose features

and the hidden Markov models (HMM) presented in [109, 125, 139] has been adopted for all

multi-camera data fusion schemes as the common benchmark gesture recognition framework to

ensure fair comparison.

Further analyzing these gesture recognition results has led to the following striking observa-

tions and findings. The experimental results have shown that the decision-level fusion with the

product rule is the optimal multi-camera data fusion scheme consistently for all the tested cam-

era combinations using the benchmark gesture recognition framework. To my best knowledge,

systematic comparison of different data fusion schemes for multi-camera gesture recognition

using a common benchmark gesture recognition framework has not been done in existing re-

search. The consistent superiority of the product rule-based decision-level fusion scheme over

the data-level and the feature-level fusion schemes across a number of key camera combinations

suggests that decision-level fusion with the product rule is the most effective way to integrate

information from multiple uncalibrated cameras for gesture recognition. This is the first key

contribution of this chapter. This finding is compelling also because it verifies existing prin-

ciples for combining classifiers in decision-level fusion in the literature [140] in the particular

case of multi-camera gesture recognition, which has not been done before either.

In addition, the gesture recognition results obtained using the benchmark gesture recognition
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framework based on the multilinear human pose features and HMM are always better than

the existing results reported on the same testing data using the same camera combination and

sensor fusion scheme. This observation validates and justifies the use of the benchmark gesture

recognition framework in the comparison study across data-fusion schemes reported in this

chapter.

To address the challenge for selecting the optimal camera combination, as the second key

contribution of this chapter, the complementary coefficient has been has been proposed as a

simple while revealing measure of the complementary strength between cameras. Based on the

complementary coefficient computed across the IXMAS cameras, it has been further identified

that the optimal camera combinations for the number of camera C = 2,3,4, which indeed corre-

spond to the best performing camera combinations according to the actual gesture recognition

results on the IXMAS dataset. This observed consistency between the optimal camera combi-

nations and their complimentary coefficients validates the the proposed approach to the com-

plementary strength measure across cameras. Such an inter-camera complementary strength

measure can find important applications in camera selection for multi-camera vision problems.

Another interesting observation from the results is that the optimal C-camera combinations

for C≥ 3 always contain the overhead camera. This observation is striking because in traditional

multi-camera gesture recognition, the overhead camera is often considered nonessential when

other side-view cameras are available (e.g., [127]). The research in this chapter has revealed

that using the multilinear human pose features, the overhead camera has exhibited strong com-

plementary strength with the side-view cameras in the IXMAS dataset, which explains why the

overhead camera plays a more important role using the benchmark gesture recognition frame-

work.

6.2 The Benchmark Gesture Recognition Framework

In this chapter, the benchmark gesture recognition framework adopted is the HMM based

framework described in Chapter 4. The observations of HMMs are multilinear human pose fea-

tures described in Chapter 2. This benchmark framework is applied to compare the performance

of various sensor fusion schemes and camera configurations.
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(a) Data-level fusion (b) Feature level fusion

(c) Decision-level fusion

Fig. 6.1. General frameworks of three types of multi-camera fusion.

6.3 Multi-Camera Fusion for Gesture Recognition

Multi-camera fusion for gesture recognition using uncalibrated cameras can be achieved at

the data level, the feature level, and the decision level. The block diagrams corresponding to

each data fusion scheme using the proposed benchmark framework for gesture recognition are

illustrated in Fig. 6.1.

6.3.1 Data-Level Fusion

The data-level fusion scheme for multi-camera gesture recognition using multiple uncali-

brated cameras is illustrated by Fig. 6.1a. In this data fusion scheme, the complete observation

vector for multilinear pose feature extraction is formed by concatenating vectorized foreground

silhouette images from different cameras. The camera order for image concatenation is re-

quired to be fixed to secure the data consistency of the complete observation vector. Once
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such complete observation vectors are obtained, pose features can be extracted from the ob-

servation vectors using the ALS method as described in Section 2.1.2, and these pose features

are further applied in gesture modeling and recognition using HMM. In this data-level fusion

scheme, although the camera calibration parameters are not required to be known, the camera

configuration, such as the number of cameras and the relative locations and optical axis di-

rections of these cameras, needs to be consistent between system training (including the core

tensor extraction and HMM learning) and testing (including the extraction of the pose features

from new observation vectors and gesture recognition using HMM). In other words, the learned

core tensor and HMM models are tightly coupled with the corresponding camera configuration.

Data-level fusion using a pair of uncalibrated cameras with orthogonal optical axes has been

exploited in [109].

6.3.2 Feature-Level Fusion

The feature-level fusion scheme for multi-camera gesture recognition using multiple uncal-

ibrated cameras is illustrated by Fig. 6.1b. In this data fusion scheme, the pose features are

first independently extracted from individual cameras. Then, these pose features from different

cameras are concatenated to form a combined complete feature vector. The camera order for

feature concatenation is required to be fixed to secure the data consistency of the complete fea-

ture vector. The combined pose features are then applied in gesture modeling and recognition.

Similar to the data-level fusion, in the feature-level fusion the camera configuration also needs

to be consistent between system training and testing. In the feature-level fusion, since the pose

features are first independently extracted from different cameras, in general each camera has its

corresponding core tensor for multilinear pose feature extraction. On the other hand, when the

orientations of a group of cameras differ only in the pan angle (the rotation angle about the axis

perpendicular to ground plane) and share the same tilt angle, these cameras can use the same

pose tensor and core tensor for pose feature extraction.
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6.3.3 Decision-Level Fusion

The decision-level fusion scheme for multi-camera gesture recognition using multiple un-

calibrated cameras is illustrated by Fig. 6.1c. In this data fusion scheme, system training and

gesture recognition is first carried out independently for each cameras view. Then the gesture

recognition results from individual cameras are combined to infer the final gesture recognition

result using certain rules for combining classifiers. Let Oc be the pose feature sequence of a

gesture segment extracted from camera c, and Λc
g the HMM parameters learned for gesture g

in camera c, where c = 1, · · · ,C and g = 1, · · · ,G. Given a testing gesture segment, the pose

feature sequences {Oc}C
c=1 are first extracted from all the cameras, and then for each camera c

the likelihood of all the gestures {p(Oc|Λc
g)}G

g=1 with respect to each pose feature sequence is

evaluated according to the learned HMMs. In decision-level fusion, the following rules [140]

can be applied to combine results from different cameras to determine the final recognition

result g∗.

Sum Rule:

g∗ = argmax
g ∑

c
p(Oc|Λc

g). (6.1)

Product Rule:

g∗ = argmax
g ∏

c
p(Oc|Λc

g). (6.2)

Max Rule:

g∗ = argmax
g

[max
c

p(Oc|Λc
g)]. (6.3)

Min Rule:

g∗ = argmax
g

[min
c

p(Oc|Λc
g)]. (6.4)

The majority voting rule introduced in [140] is not applied in this chapter because ties of votes

may easily appear especially when using even number of cameras. In decision-level fusion, the

core tensor extraction and HMM learning are usually done separately for each camera. On the

other hand, similar to the feature-level fusion, a group of cameras with the same tilt angle can

share the same core tenor for multilinear pose feature extraction and the same set of HMM

parameters Λc
g for gesture recognition. Unlike the data-level and feature-level fusion scheme,
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Fig. 6.2. Images of a sample pose obtained from the five cameras in IXMAS dataset. The
brightness of the images are adjusted for better display.

where camera configurations between system training and testing are required to be consistent,

decision-level fusion scheme allows for completely different camera configurations between

training and testing. The only requirement for camera configuration in the decision-level fusion

is that a testing camera must share a similar tilt angle with one of the training cameras so that

pose features can be correctly extracted from the testing camera using the corresponding core

tensor.

6.4 Experimental Results

6.4.1 The Benchmark IXMAS Gesture Recognition Dataset

In order to systematically compare various data fusion schemes and camera configurations,

the same IXMAS dataset as applied in Chapter 4 is used as the benchmark dataset.

A total of five synchronized cameras have been used in the creation of the IXMAS dataset.

The corresponding pan and tilt angles of these cameras can be easily extracted from their pro-

jection matrices as shown in Table 6.1. Sample images simultaneously obtained from these

cameras are shown in Fig. 6.2. It can be seen that Camera 5 is an overhead camera and that

the the optical axes of Cameras 1 to 4 are approximately parallel to the ground plane. In this

experiment, Cameras 1 to 4 have been treated to be approximately sharing the same tilt angle

so that they share the same core tensor for multilinear pose feature extraction. The camera

calibration parameters are also given in the IXMAS dataset. In this experiment, such camera

calibration information has been discarded during system testing to enforce the assumption of

gesture recognition using multiple uncalibrated cameras.
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TABLE 6.1
PAN AND TILT ANGLES OF THE IXMAS CAMERAS

Camera ID 1 2 3 4 5
Pan Angle −84◦ −49◦ 18◦ 41◦ −16◦

Tilt Angle −21◦ −11◦ −39◦ −3◦ −80◦

TABLE 6.2
GESTURE RECOGNITION RATES OBTAINED ON THE IXMAS DATASET USING VARIOUS

DATA FUSION SCHEMES AND GESTURE RECOGNITION METHODS

Method Fusion
Level

Camera Combinations
1 3 1 4 2 4 3 5 1 3 5 1 2 3 1 2 3 5 1 2 3 4 1 2 3 4 5

Weinland 2006 [60] Data (3D) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 93.3%
Gu 2010 [124] Data (3D) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 94.4%

Multilinear+HMM Data (3D) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 94.6%
Weinland 2007 [79] Data (2D) N.A. N.A. 81.3% 61.6% 70.2% N.A. 75.9% 81.3% N.A.
Multilinear+HMM Data (2D) 82.8% 85.4% 84.1% 82.8% 88.2% 86.9% 91.7% 89.5% 92.0%

Srivastava 2009 [127] Feature 75.6% 79.1% 81.4% N.A
Multilinear+HMM Feature 86.0% 85.7% 84.1% 82.8% 89.8% 88.2% 91.7% 91.4% 92.4%

Yan 2008 [126] Decision (Sum
Rule)

71% N.A. 71% N.A. N.A. 60% N.A. 78% N.A

Multilinear+HMM Decision (Sum
Rule)

80.3% 80.9% 79.0% 76.8% 78.3% 81.9% 80.9% 80.3% 79.3%

Liu 2008 [130] Decision (Vote
Rule)

N.A. N.A. N.A. N.A. N.A. N.A. N.A. 82.8% N.A

Reddy 2009 [131] Decision (Vote
Rule)

N.A. N.A. N.A. N.A. N.A. N.A. N.A. 72.6% N.A

Multilinear+HMM Decision (Max
Rule)

80.3% 80.9% 79.0% 76.1% 78.0% 81.9% 80.6% 80.3% 79.0%

Multilinear+HMM Decision (Min
Rule)

79.6% 79.6% 81.2% 79.3% 82.5% 81.6% 84.4% 83.8% 84.4%

Yang 2008 [1] Decision
(Product Rule)

∼85% ∼85% 83.8% 78.8% 82.8% ∼83% 83.8% 85.9% ∼84%

Multilinear+HMM Decision
(Product Rule)

87.6% 86.3% 85.7% 84.7% 92.4% 91.1% 93.6% 91.7% 93.0%

6.4.2 Pose Tensor Formation Using 2D Observations

Unlike in Chapter 4, 2D silhouette images were applied in most experiments in this chapter.

Therefore, there were some changes in formation of the training tensor for multilinear pose

feature extraction. The 25 selected key poses, as described in the experimental section of Chap-

ter 2, were still applied for pose tensor formation. To obtain 2D image observations, the 3D

reconstruction of each key pose was rotated and then projected to the desired imaging planes.

Then, these image observations were vectorized and assembled as the training tensor.

6.4.3 Comparison Across Data Fusion Schemes

Using the same cross-validation scheme as described in Chapter 4, gesture recognition rates

for various camera combination scenarios and data fusion schemes have been obtained as shown

in Table 6.2. Representative results from other methods on the same dataset have also been in-
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cluded in the same table. In Table 6.2, each row corresponds to one gesture recognition method

using one data fusion scheme and contains gesture recognition rates for various camera combi-

nation scenarios. A gesture recognition rate spanning over multiple columns is the best result

among the corresponding camera combination scenarios. The second column of Table 6.2 in-

dicates the corresponding data fusion schemes, including the data-level fusion schemes using

3D visual hull data and 2D silhouette image data, the feature-level fusion scheme, and the

decision-level fusion schemes using various rules. For the sake of completeness, gesture recog-

nition results using 3D visual hull data obtained from calibrated cameras are also included in

the first three rows of Table 6.2. It can be seen from Table 6.2 that the gesture recognition re-

sults using the 3D visual hull data reconstructed from all five calibrated cameras obviously are

better than the gesture recognition results using the uncalibrated cameras. This is not surprising

because of the use of additional calibration information.

A close examination of Table 6.2 reveals two key observations. First of all, using the same

camera combination and data fusion scheme, the benchmark gesture recognition framework

using the view-invariant multilinear pose features and reduced-HMM has always produced the

best results (italic in Table 6.2) among all the competing methods. This observation validates

the selection of the benchmark gesture recognition framework in the reported comparison across

data fusion schemes for multi-camera gesture recognition. Furthermore, when only the camera

combination is fixed and the data fusion scheme can vary, the decision-level fusion scheme

with the product rule always yields the best gesture recognition results (bold in Table 6.2) using

the benchmark framework across all the tested camera combination scenarios. The importance

of this finding is twofold. First, to my best knowledge, systematic comparison of different

data fusion schemes for multi-camera gesture recognition using a common benchmark gesture

recognition framework has not been done in existing research. The consistent superiority of the

product rule-based decision-level fusion scheme over the data-level and the feature-level fusion

schemes across a number of key camera combinations suggests that decision-level fusion with

the product rule is the most effective way to integrate information from multiple uncalibrated

cameras for gesture recognition.

Secondly, the fact that the product rule outperforms the other competing rules in classi-
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fier combination for decision-level fusion in multi-camera gesture recognition essentially ver-

ifies existing data fusion principles in the sensor fusion and information integration literature.

In [140], it has been shown that the product rule usually leads to superior classification per-

formance when combining multiple classifiers for multi-class problems provided that the class

posterior probability are well estimated. The results essentially verify this principle in the par-

ticular case of multi-camera gesture recognition using uncalibrated cameras, which has not been

done before either. In general, the product rule takes into account the information obtained from

all cameras in the recognition process, so clearly it is a better generalization of all views than

the max rule and the min rule which only select the information from a representative camera.

It is also interesting to compare the product rule and the sum rule and to investigate why the

former outperforms the latter. It can be seen from Table 6.2 that the performances of the sum

rule and the max rule are very similar, and the sum rule is only slightly better than the max rule

in few camera combinations. This is because in this experiment the ratio between the largest

and second largest likelihoods of the same gesture obtained from different views is generally

very large (around 1000). In other words, the largest likelihood is generally dominant, making

the sum of the likelihoods almost equivalent to the maximum of likelihoods. In contrast, the

product rule applied to the likelihood is equivalent to adding up the logarithms of likelihoods

from all the camera views, which are in general on the same scale. Consequently, the product

rule is more effective in combining recognition results from different cameras than the other

rules for the decision-level fusion.

To summarize, given the fixed set of uncalibrated cameras (i.e., camera combination), the

decision-level fusion scheme using the product rule has been producing the best gesture recog-

nition results across all the tested camera combinations using the benchmark gesture recognition

framework.

6.4.4 Selection of Optimal Camera Combinations

When the number of cameras is fixed, how to identify the optimal camera combination is

an important challenge for multi-camera gesture recognition. Intuitively, such optimal camera

combination depends on the specific data fusion scheme and the image features used in multi-
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camera gesture recognition. As shown in the previous section, for a particular camera combi-

nation, the benchmark gesture recognition framework using the decision-level fusion scheme

and the product rule has been the optimal multi-camera gesture recognition method on the IX-

MAS dataset. Therefore, in this chapter focus has been given on identifying the optimal camera

combination given the fixed number of cameras using the benchmark method with product

rule-based decision-level fusion.

As pointed out in [128], a requirement for effectively combining results from different clas-

sifiers (i.e., the gesture recognition results from individual cameras in multi-camera gesture

recognition) is that results from individual classifiers should not strongly correlate with each

other in their misclassifications. Furthermore, it is desired that in the case of misclassification

by one classifier (camera view) for a testing data, another classifier (cameras view) produces

the correct classification. In this chapter, such these two cameras are referred to as being com-

plementary for the given testing data. For multi-camera gesture recognition, it is important

to measure the complementary strength across different cameras with respect to extracted im-

age features. Such a complementary measure essentially reflect how much these two cameras

disagree with other in the case of misclassification, and it is useful for camera selection and

may provide valuable insight to the formation of optimal camera combinations. In this chapter,

a simple while revealing inter-camera complementary strength measure have been proposed.

Based on this measure the optimal camera combinations for the IXMAS cameras have been

further identified in an incremental manner. As shown later in this section, these optimal cam-

era combinations are actually the best performing ones among all the camera combinations with

the same number of cameras on the IXMAS dataset.

One of the desired features for the inter-camera complementary measure is that the measure

can be easily evaluated without explicitly conducting gesture/pose recognition, ideally directly

from the image features extracted from different camera views. Such simple, image feature-

based complementary measure can find important applications in camera selection. In this

chapter, such a simple complementary measure have been proposed which can be directly eval-

uated using image pose features. In the approach to the inter-camera complementary measure,

a number of key-pose image sets are first slected in which each set contains multi-view image
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data synchronously collected using all the cameras corresponding to one of key poses identified

for gesture recognition. For each key-pose image set, the multilinear pose features are then

extracted from each camera view for all the cameras. Then, for each camera, pairwise Eu-

clidean distances are obtained among its pose features, and these distances can be further split

into two sets, a within-pose distance set containing pairwise pose feature distances between

pose features from the same key pose, and a between-pose distance set containing distances

between poses from different key poses. Let Dc
W = {dc,m

W }M
m=1 be the within-pose distance set

and Dc
B = {dc,n

B }N
n=1 the between-pose distance set for Camera c, c = 1, . . . ,C. Assume that

the distance indices m and n for the within-pose and between-pose distance sets from different

cameras are aligned so that all distances sharing the same index in different views are between

the pose features in the corresponding views from the same pair of key-pose image sets. Given

two pose features extracted from the same camera, it is a binary classification problem to de-

termine if they correspond to the same key pose or not. Equivalently, the same problem can

be cast as a binary classification problem based on the pairwise pose feature distances so that

a pairwise pose feature distance can be classified into the within-pose class or the between-

pose class. In the approach to the inter-camera complementary measure, the complementary

strength between two cameras when the above binary classification problem is solved has been

measured. In other words, it is examined how much two cameras disagree with each other in

the case of misclassification when solving the binary classification problem. In this experiment,

such a simple complementary measure has been shown useful in selecting the optimal camera

combinations in gesture recognition.

For each camera view, the above binary classification problem can be solved using a naive

Bayesian classifier. In this experiment, the following “flipped” exponential distribution has

been used to approximate the empirical distributions of the pose feature distances for both the

within-pose and the between-pose classes.

p(d) = λ exp−λ (a−d),d ≤ a (6.5)

where a =
√

2 is the maximum pose feature distance due to the fact that the multilinear pose

features are scale-invariant unit vectors, i.e., for any multilinear pose feature v, ||v|| = 1, and

∀α 6= 0, αv and v correspond to the same pose. In this experiment, the parameter λ is estimated
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from training data by fitting the empirical probability density function (PDF) using the nonlinear

least squares method. Although λ can also be found through maximum likelihood estimation,

the independence of the training data is questionable. Therefore, the curve fitting approach has

been taken to estimate λ . For a given camera view c, once the PDF parameter λW and λB have

been estimated from training data both the within-pose and the between-pose classes, using

uniform priors, the classification of a testing distance d∗ using the naive Bayesian classifier

becomes a likelihood-ratio test, which further boils down to the following threshold problem:

d∗ ≤ ∆c : within-pose distance class

d∗ > ∆c : between-pose distance class, (6.6)

where ∆c =
√

2− lnλB−lnλW
λB−λW

.

The complementary strength between two cameras can be measured based on the binary clas-

sification results using an aligned testing distance dataset. Consider two cameras α and β , α 6=
β and 1≤α ≤C. Let ∆α and ∆β be the corresponding thresholds for the binary within/between-

pose classification computed from training data. Let DT = {Dα
T ,Dβ

T} = {(dα
k ,dβ

k )}K
k=1 be the

aligned testing distance set. Using ∆α and ∆β , the testing data in Dα
T and Dβ

T can be indepen-

dently classified into the within-pose distance class and the between-pose distance class. Let E
be the set of indices at which a misclassification has occurred in at least one camera view, i.e.,

E = {k|dα
k is misclassified or dβ

k is misclassified, 1≤ k ≤ K}. (6.7)

The misclassification index set E can be easily obtained from the classification results in both

views and the ground-truth data. Furthermore, let C be the set of indices at which there is a

conflict between classification results from two cameras, i.e.,

C =
{

k|(dα
k −∆α) · (dβ

k −∆β ) < 0, 1≤ k ≤ K
}

. (6.8)

It is easy to see that C ⊆ E , since when the classification results from cameras α and β are

different, one of them must be a misclassification. To measure the complementary strength

between cameras α and β , it is examined how much their classification results disagree with

each other in the case of misclassification by defining the following complementary coefficient.

ρα,β =
||∑k∈C(dα

k −∆α) · (dβ
k −∆β )||

σα ·σβ
(6.9)
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where σ2
c = ∑k∈E(dc

k −∆c)2, and it can be easily seen that ρα,β = ρβ ,α and 0 ≤ ρα,β ≤ 1. A

close connection can be drawn between the proposed complementary coefficient of two cam-

eras and the correlation coefficient of two signals. In (6.9), the numerator can be treated as the

“covariance” between the conflicting classification results from individual cameras centered at

their corresponding classification thresholds. Likewise, σ2
c essentially captures the “classifica-

tion” energy for camera c, c = α,β , when there is a misclassification in either of these two

cameras. Large ρα,β indicates strong discrepancy between the results from individual cam-

eras when there is a misclassification, and combining classification results from cameras with

large complementary coefficient may lead to greater improvement than combining results from

cameras with small complementary coefficient. Furthermore, ρα,β can be extended to the case

when α is a camera set containing more than one cameras. Such situation may arise when a

camera needs to be selected from a number of candidates to add to an existing camera set. In

this case, the complementary strength between a camera candidate and the existing camera set

is required. To this end, the pairwise distance values between pose features from individual

cameras in the camera set α are first combined by taking their corresponding root mean square

across cameras. Thus, the camera set α can be treated as a virtual camera with its own pairwise

distance measures, and the complementary coefficient between a camera set α and a single

camera β can be computed as if α were also a single camera. In this experiment, when α is

a camera set, the empirical distributions of the within-pose distance training data Dα
W and the

between-pose distance training data Dα
B both approximately follow a normal distribution with

similar variances. Hence, the corresponding classification threshold ∆α in (6.6) is simply taken

as ∆α = µα
W +µα

B
2 , and µα

W and µα
B are the sample means of the corresponding training sets.

In this research, the proposed inter-camera complementary coefficient has been utilized to

identify the optimal camera combinations for the IXMAS dataset in an incremental manner.

The optimal pairwise camera combination is first identified by finding the camera pair possess-

ing the largest complementary coefficient. Based on the optimal pairwise camera combination,

the problem of finding the optimal 3-camera combination is casted as selecting the best third

camera from the remaining cameras to add to the optimal 2-camera combination. Likewise,

the optimal 4-camera combination is found in a similar way based on the optimal 3-camera

combination. To identify the best pairwise camera combination, it is needed to evaluate the
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TABLE 6.3
COMPLEMENTARY COEFFICIENTS ACROSS THE IXMAS CAMERAS OBTAINED USING POSE

FEATURES

α β ρα,β

1 2 0.4804
1 3 0.5083
1 4 0.4824
1 5 0.4946
2 3 0.5078
2 4 0.4913
2 5 0.4949
3 4 0.4800
3 5 0.5069
4 5 0.4970

(1,3) 2 0.4724
(1,3) 4 0.4572
(1,3) 5 0.4863

(1,3,5) 2 0.4776
(1,3,5) 4 0.4685

complementary coefficients for all the camera pairs. To this end, a total of 520 key-pose image

sets have been manually selected. For each key-pose image set, the multilinear pose features and

pairwise distances among these pose features are obtained from each camera view for all the five

IXMAS cameras. These pairwise distances are further split into the within-pose and between-

pose distance sets. In this experiment, to compute ρα,β , half of the distance data in each camera

have been randomly selected for classifier training to learn the classification threshold ∆α and

∆β , and the other half is used for testing the classifier. The corresponding complementary coef-

ficient ρα,β can be evaluated using (6.9). Note that the distance data in the selected training and

testing datasets remain aligned across cameras α and β . In this experiment, for each camera

pair, such procedure has been repeated 100 times and the average is taken as the final comple-

mentary coefficient between the two cameras. Table 6.3 shows such average complementary

coefficients for all the pairwise camera combinations in the IXMAS dataset. It can be seen

from Table 6.3 that camera combination (1,3) possesses the largest complementary coefficient

among all the camera pairs. Hence, camera combination (1,3) is selected as the optimal camera

pair for 2-camera gesture recognition. Furthermore, given the optimal pairwise camera com-

bination (1,3), the best third camera to form the optimal 3-camera combination can be found
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according to the complementary coefficients ρα,β between α = (1,3) and β ∈ {2,4,5}. The

average complementary coefficients over 100 trials are also shown in Table 6.3. It can be seen

that Camera 5, the overhead camera, should be selected to add to (1,3) since this combination

has the largest complementary coefficient. Therefore, camera combination (1,3,5) is identified

to be the optimal combination for 3-camera gesture recognition. The same experiment has also

been done to select the best fourth camera to add to this optimal 3-camera combination. In

this case, ρα,β have been obtained where α = (1,3,5) and β ∈ {2,4} as shown in Table 6.3.

It can be seen that ρα,β is larger when β = 2, indicating Camera 2 should be added to (1,3,5)

to form the best 4-camera combination (1,2,3,5). The optimal camera combinations and their

complementary coefficients are highlighted in bold in Table 6.3.

To evaluate the accuracy of the identified optimal camera combinations with the fixed num-

ber of cameras using the proposed complementary coefficient, the gesture recognition results

for all the multi-camera combination scenarios in the IXMAS dataset have been obtained us-

ing the benchmark framework with product rule-based decision-level fusion through the same

cross-validated training and testing scheme described in Section 4.4.1. The corresponding ges-

ture recognition results are presented in Table 6.4 and Fig. 6.3. In Table 6.4, the optimal camera

combinations and their corresponding gesture recognition results using the benchmark method

are in bold. By comparing results in Tables 6.3 and 6.4, it is clear that all the optimal camera

combinations identified according to the complementary coefficients in Table 6.3 indeed cor-

respond to the best performing camera combinations in Table 6.4. This observed consistency

between the optimal C-camera combinations (C = 2,3,4) in Table 6.4 and their complimentary

coefficients in Table 6.3 validates the proposed approach to the complementary strength mea-

sure across cameras. Such an inter-camera complementary strength measure can find important

applications in camera selection for multi-camera vision problems.

For comparison purposes, gesture recognition results for these multi-camera combination

scenarios reported in [1] have also been included in Table 6.4 and illustrated in Fig. 6.3. Three

observations can be made by comparing results obtained using proposed method and those

in [1]. First of all, it is clear that the benchmark method with product rule-based decision-level

fusion is consistently superior to the method in [1] for all the multi-camera combination scenar-
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Fig. 6.3. Performance comparison between the benchmark method and Yang 2008 [1].

ios. Furthermore, it can be seen that using the benchmark method, adding additional cameras

to an existing camera combination always increases the recognition rate, except for only two

cases when Camera 4 is added to camera combinations (1,3,5) and (1,2,3,5). In contrast, as

summarized in Table 6.5, there are far more cases (about 20) in the results from [1] in which

additional cameras lead to decreased gesture recognition rates. This observation indicates that

the new information provided by additional cameras can be well adopted by the benchmark

method to improve the accuracy of multi-camera gesture recognition. Finally, when the number

of cameras C is fixed and C ≥ 3, the corresponding optimal camera combinations have always

included the overhead Camera 5. This is striking because in traditional multi-camera gesture

recognition, the overhead camera is often considered nonessential when other side-view cam-

eras are available. For example, in [127], the overhead Camera 5 has been excluded from being

used in multi-camera gesture recognition due to lack of discriminative features from this cam-

era. The reason behind this striking fact is that Camera 5 is the most complementary with the

optimal pairwise camera combination (1,3) as shown by Table 6.3.
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TABLE 6.4
GESTURE RECOGNITION RATES FOR DIFFERENT CAMERA COMBINATIONS USING

DECISION-LEVEL FUSION WITH THE PRODUCT RULE

Camera Recognition Rate
Combination Benchmark Yang 2008 [1]

(1,2) 86.3% 81.8%
(1, 3) 87.6% 85.8%
(1,4) 86.3% 85.8%
(2,3) 86.3% 82.7%
(2,4) 85.6% 79.7%
(3,4) 83.8% 83.9%
(1,5) 86.6% 81.5%
(2,5) 86.3% 82.7%
(3,5) 84.7% 78.8%
(4,5) 85.7% 81.8%

(1,2,3) 91.1% 83.0%
(1,2,4) 89.8% 83.9%
(1,2,5) 89.8% 84.9%
(1,3,4) 89.1% 87.0%
(1, 3, 5) 92.4% 83.0%
(1,4,5) 90.5% 84.9%
(2,3,4) 88.9% 82.7%
(2,3,5) 90.8% 81.8%
(2,4,5) 91.4% 83.9%
(3,4,5) 88.9% 80.9%

(1,2,3,4) 91.7% 85.8%
(1, 2, 3, 5) 93.6% 83.9%
(1,2,4,5) 92.4% 84.9%
(1,3,4,5) 92.4% 84.9%
(2,3,4,5) 92.4% 83.9%

(1, 2, 3, 4, 5) 93.0% 83.9%

TABLE 6.5
CRITICAL CAMERA COMBINATION SCENARIOS IN [1]

Original Cameras (1,3) (1,4) (2,3) (3,4) (2,5) (4,5) (1,2,5) (1,3,4) (1,4,5) (1,2,3,4) (1,2,4,5) (1,3,4,5)
Added Camera(s) 2, 5, (2,5) 2, 5, (2,5) 5 2, 5 3 3 3, (3,4) 2, 5, (2,5) (2,3) 5 3 2
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Chapter 7

POSE ESTIMATION USING INVARIANT FEATURES AND RELEVANCE VECTOR

MACHINE

Human pose estimation, i.e. estimating the joint configurations of a person, is an important

problem in human movement sensing. In some HCI systems, such as the interactive rehabili-

tation system in [141], human joint angles or positions have been used to evaluate the training

performance of subjects. In this chapter, the application of invariant pose features in pose esti-

mation is presented.

7.1 Overview

Estimating poses of a highly articulated and self-occluding non-rigid human body from im-

ages is a challenging problem. Existing pose estimation methods can be generally divided into

generative methods and discriminative methods.

Generative pose estimation methods [142–147] first define a likelihood function of an obser-

vation given a pose. The likelihood function is usually based on matching the query observation

with exemplars in the training set [147] or the projected observation from human models [144].

The Bayesian methods are often used to obtain the posterior distribution of a pose based on

the likelihood function. Using generative methods, the dimensionality of the search space is

usually very high, making these methods computationally expensive.

Discriminative pose estimation methods [148–151] establish a mapping from observation

space to pose space. One of the discriminative approaches is to detect body parts from observa-

tions [148, 149]. The mapping can also be established using regression methods, as introduced

in [150, 151]. One challenge of discriminative methods is that the mapping from image ob-

servations to poses is usually one-to-many. This challenge can be tackled by either obtaining

3D volumetric reconstruction from images [148], or dividing observation space into subspaces

where one-to-one mappings exist [150].

In this chapter, a discriminative pose estimation method is introduced. This method applies
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the relevance vector machine to establish a mapping from the invariant pose features to the joint

locations. The application of the invariant pose features simplifies the process of regression.

Using our simple method, the pose estimation results on a public dataset is comparable to the

existing results.

7.2 An Introduction to Relevance Vector Machine

The Relevance Vector Machine (RVM) is a sparse Bayesian regression method proposed by

Tipping [152]. The idea of RVM starts from a simple linear regression problem, in which the

relationship of the input x and output y is modeled as

y(x) = wT φ(x), (7.1)

where φ is a set of feature functions that map input vector x to a feature vector in order to model

nonlinearity, and w is the weight vector. To estimate w, a set of training inputs xi and target

values ti, i = 1, . . . ,N, are used. The target ti is modeled as

ti = y(xi)+ εi, (7.2)

in which εi ∼N (0,σ2) is a zero-mean Gaussian noise with variance σ2. The likelihood of the

target vector t = [t1, . . . , tN ]T can be expressed as

p(t|w,σ2) = (2πσ 2)−N/2 exp
{
− 1

2σ2 ‖t−Φw‖2
}

, (7.3)

in which Φ is the design matrix and Φi j = φ j(xi).

The maximum likelihood estimation of w and σ2 based on (7.3) often leads to overfitting. To

regularize w, a prior distribution can be added as follows.

p(w|α) =
M

∏
i=1
N (wi|0,α−1

i ), (7.4)

in which M is the number of feature functions and α is a set of hyperparameters describing the

variances of the weights.

Ideally, for Bayesian inference, parameters w, α and σ2 should be estimated by maximizing

the posterior probability p(w,α,σ2|t). However, this cannot be done analytically. Alterna-

tively, this problem can be solved in an iterative manner. The posterior distribution can be
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decomposed as

p(w,α,σ2|t) = p(w|α,σ2, t)p(α,σ2|t). (7.5)

Using Bayesian rules, the first element on the right side of (7.5) can be obtained and expressed

as

p(w|α,σ2, t) =N (m,Σ), (7.6)

in which the mean and the covariance matrix are

m = σ−2ΣΦT t, (7.7)

Σ = (A+σ−2ΦT Φ)−1, (7.8)

where A = diag(α1, . . . ,αM). To evaluate m and Σ we need to find α and σ2 that maximize the

the second element on the right side of (7.5), which can be decomposed as

p(α,σ2|t) ∝ p(t|α,σ2)p(α)p(σ2). (7.9)

By assuming uniformly distributed α and σ2, we can ignore p(α) and p(σ2). Then maximizing

p(α,σ2|t) becomes maximizing

p(t|α,σ2) =
∫

p(t|w,σ2)p(w|α)dw. (7.10)

By defining γi = 1−αiΣii, the maximizers of probability p(t|α,σ2) can be expressed as

αi =
γi

m2
i
, (7.11)

σ2 =
‖t−Φm‖2

N−∑i γi
. (7.12)

Therefore, given initial values of α and σ2, we can estimate the values of these two parameters

by using (7.7), (7.8) and (7.11), (7.12) iteratively until convergence. After this, we can compute

m using (7.7), which is just the optimal w in model (7.1).

In practice, during the estimation process, many of the αi approach infinity. An infinity value

of αi causes the corresponding wi to be zero, which means corresponding feature function φi

can be discarded. Therefore the resulting model is usually very sparse.
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7.3 Pose Estimation Using RVM

In this chapter, a human pose is represented as the 3D positions of M joints, denoted to be

mi ∈ R3, i = 1, . . . ,M. When calculating the coordinates of these joint positions, the global

translation of the pelvis and its rotation about the axis perpendicular to ground plane (body

orientation) is removed. Therefore, this pose representation is orientation-invariant. The coor-

dinates are also normalized by the height of the subject in order to minimize the differences in

joint positions caused by different body shapes.

To estimate poses using invariant pose features, a mapping need to be established from the

invariant pose feature vector to every dimension of each mi. The invariant pose features are

extracted from 3D volumetric reconstructions in order to avoid ambiguity. In this presented

framework, each mapping is modeled using a linear model (7.1), and the weights of the model

are learned using the method presented in the previous section. For each mapping, we apply the

same set of feature functions. If given N training inputs x1, . . . ,xN , N +1 feature functions are

applied. The first N functions are defined using RBF kernel as follows.

φi(x) = k(x,xi) = exp(−1
γ
‖x−xi‖2), i = 1, . . . ,N, (7.13)

in which γ the kernel parameter. The last feature function is defined to be φN+1(x) = 1 in order

to model the bias term.

7.4 Experimental Results and Analysis

7.4.1 The HumanEva-I Dataset

The pose estimation framework presented in this chapter was tested on the HumanEva-I

dataset [153] created by Brown University. It contains synchronized image and motion capture

data obtained from 4 subjects. Images of the movements were captured by 3 color cameras and

4 grayscale cameras. Each subjects has performed 6 types of movements, namely walking, jog-

ging, gesturing, throwing and catching a ball, boxing and combo. Following the most common

usage of this dataset, the first 3 subjects and the first 5 movements were used for training and

testing in the experiments in this section.
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In this dataset, two trials have been recorded for each subject performing each movement,

and the motion capture data was withheld for the second trial for testing purposes. Therefore,

for convenience of the experiment, only the first trial of each movement performed by each

subject was applied. Part of the trial (“training” frames defined in [153]) was used in training,

and the rest (“validation” frames defined in [153]) was applied in testing.

7.4.2 Pose Feature Extraction

The pose features applied in pose estimation are extracted from 3D volumetric reconstruc-

tions. In order to reconstruct the 3D shapes of the poses, the silhouette images were first ex-

tracted using background subtraction. In the HumanEva-I dataset, the quality of the silhouettes

extracted from grayscale cameras are relatively poor and false foreground regions often exist.

Therefore, the 3D reconstruction has been conducted in the following method. First, the capture

volume is discretized into voxels and these voxels are projected onto the image planes of all the

cameras. Then the voxels that are projected inside the foreground areas of all color cameras are

taken as valid points constructing the 3D pose (marked as 1). The rest of the voxels are carved

out (marked as 0).

As described in Section 2.3.3, a set of key poses are needed to construct the training set

for pose feature extraction. In this experiment, the similar key pose selection method used

in Section 2.3.3 was also applied. The only difference is that the motion energy and poses

distances were defined base on the differences in the joint positions. After key pose were

selected, the corresponding 3D reconstructions were applied to construct the training set for

pose feature extraction. In this experiment, 50 key poses were selected from pose performed by

the second subject in the HumanEva-I dataset.

For pose estimation, it is desired that the pose features are as continuous as possible, i.e. pose

features extracted from similar poses should be similar. For this purpose, the normalization pro-

cedure of visual hulls as described in Section 2.3.2 is modified. In the normalization procedure

for pose estimation, the bottom of the visual hulls are always on the floor, and a constant scal-

ing factor according to the height of the subject is applied to all dimensions. Furthermore,

the proper type of pose features also needs to be selected. If multilinear analysis is applied
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for feature extraction, the features of key poses are forced to be orthonormal regardless of ac-

tual difference between poses. MGP features, on the other hand, do not have this constraint.

Therefore, in the pose estimation experiment, the MGP pose features were selected to improve

continuity of the pose features. Both the view-invariant MGP features (extracted using 2-factor

model) and the view and shape-invariant MGP features (extracted using 3-factor model) were

tested for pose estimation.

7.4.3 Error Measure

In the HumanEva-I dataset, a pose is represented by the positions of 15 joints. Since the

global movement of the pelvis is removed, M = 14 joint remain. In this experiment, the average

Euclidean distance (AED) defined in [153] is applied for measuring the distance between the

estimated and ground truth poses. Denoting the estimated pose to be x̂ and the ground truth

pose x, the AED is defined as

D(x̂,x) =
1
14

14

∑
i=1
‖mi(x̂)−mi(x)‖ ·Hs, (7.14)

where mi is the normalized coordinate of joint positions, and Hs is the height of the subject

(the normalization term). When evaluating pose estimation for a stream of poses, the average

Euclidean distance is taken across all frames.

7.4.4 Pose Estimation Results

Using the training frames of all the five movements performed by all the three subjects, the

RVM regressors were trained. Then, these regressors were applied to estimate poses of the

testing frames. The AED errors of the estimations using view-invariant features and view and

shape-invariant features are listed in Table 7.1 and Table 7.2, respectively. In these tables,

N.A. means no valid motion capture data exist for the corresponding movement and subject.

The results obtained using the proposed method are also compared with results reported in

[154]. The comparison is shown in Table 7.3. From Table 7.3 it can first be observed that the

application of view and shape-invariant features has improved the pose estimation accuracy.

It can also be observed that results obtained using the proposed method is comparable to the
98



TABLE 7.1
POSE ESTIMATION ERRORS (IN MINIMETER) OF HUMANEVA-I DATASET USING

VIEW-INVARIANT FEATURES

Subject Walking Jogging Gesturing Boxing Throw and Catch
S1 61 72 27 74 N.A.
S2 45 51 81 95 82
S3 81 50 87 102 N.A.

Mean 62 56 60 94 82

TABLE 7.2
POSE ESTIMATION ERRORS (IN MINIMETER) OF HUMANEVA-I DATASET USING VIEW

AND SHAPE-INVARIANT FEATURES

Subject Walking Jogging Gesturing Boxing Throw and Catch
S1 53 60 25 59 N.A.
S2 45 52 76 102 84
S3 83 48 77 98 N.A.

Mean 59 52 55 89 84

TABLE 7.3
COMPARISON OF POSE ESTIMATION RESULTS

Method Walking Jogging Gesturing Boxing Throw and Catch Mean
The proposed method,
2-factor feature

62 56 60 94 82 71

The proposed method,
3-factor feature

59 52 55 89 84 68

Bo’s Method [154] 53 49 43 64 76 57

existing results reported in [154]. The minor inferiority of the proposed method could be mainly

cased by the quality of the 3D volumetric reconstructions. In future work, efforts will be made

to improve the quality of the 3D reconstructions.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, I present my research on invariant video-based pose feature extraction

and its application in movement recognition and pose estimation. Two approaches based on the

multilinear analysis and MGP have been developed to extract invariant pose features. Features

with decent view-invariance property have been successfully extracted using both approaches.

By including the body shape as additional factor in the MGP model, the body shape invariance

of pose features improves noticeably.

Using the invariant pose features and SVM, promising pose recognition results have been

obtained. Also, using such pose features and HMM, state-of-the-art gesture classification re-

sults have been obtained on the IXMAS dataset. Based on the approach to pre-segmented

gesture classification, the challenging problem of online gesture spotting has been solved using

an HMM-network with specific non-gesture models. Including specific non-gesture models in

the HMM-network improves gesture spotting by reducing false alarm rates without significantly

sacrificing the recognition rates. The invariant pose features also simplifies the regression pro-

cess in pose estimation. Using proposed pose features and RVM, promising pose estimation

results have been obtained on the HumanEva-I dataset.

Furthermore, different strategies of multi-camera fusion for gesture recognition have been

explored and decision-level camera fusion using the product rule has been found to be the opti-

mal fusion scheme for a fixed set of uncalibrated cameras. Also, a cross-camera complementary

measure has been developed. Using such complementary measure, the optimal camera combi-

nations for gesture recognition on the IXMAS dataset have been successfully identified.

In the future, the following improvements can be made to this research. First of all, to

improve computational efficiency, parallel computing can be exploited. Parallel computing can

be applied in silhouette extraction, visual-hull reconstruction as well as the feature-level and

decision-level fusion schemes. Furthermore, the RBF kernels are currently applied to all the

modes in MGP-based pose feature extraction methods. In the future, other types of kernels can

be explored. Different types of kernels can be applied to different modes to better represent the
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corresponding modes. Finally, in the current pose estimation framework, temporal information

is not applied. In the future, approaches making use of the temporal information can be explored

to improve the pose estimation.
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