
Sequence-based Web Page Template Detection

by

Wei Huang

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2011 by the
Graduate Supervisory Committee:

Kasim Candan, Chair
Hari Sundaram
Hasan Davulcu

ARIZONA STATE UNIVERSITY

May 2011

ABSTRACT

Templates are wildly used in Web sites development. Finding the template for a

given set of Web pages could be very important and useful for many applications like Web

page classification and monitoring content and structure changes of Web pages. In this

thesis, two novel sequence-based Web page template detection algorithms are presented.

Different from tree mapping algorithms which are based on tree edit distance, sequence-

based template detection algorithms operate on the Prüfer/Consolidated Prüfer sequences

of trees. Since there are one-to-one correspondences between Prüfer/Consolidated Prüfer

sequences and trees, sequence-based template detection algorithms identify the template

by finding a common subsequence between to Prüfer/Consolidated Prüfer sequences. This

subsequence should be a sequential representation of a common subtree of input trees.

Experiments on real-world web pages showed that our approaches detect templates effec-

tively and efficiently.

i

DEDICATION

For my parents, who offered me unconditional love and support throughout the course of

this thesis.

ii

ACKNOWLEDGEMENTS

Dr.Kasim Selçuk Candan has been the ideal thesis supervisor. His sage advice, insightful

criticisms, and patient encouragement aided the writing of this thesis in innumerable ways.

I also would like to thank Dr.Hari Sundaram and Dr.Hasan Davulcu for their helpful

suggestions on this thesis.

Finally, I am indebted to my fellow labmates in EmitLab: Xinxin Wang, Renwei Ye,

Songling Liu, Parth Nagarkar, Mithila Nagendra, Shruti Gaur and Mijung Kim for providing

a stimulating and fun environment in which to learn and grow.

iii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iv

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER . 1

1 INTRODUCTION . 1

2 RELATED WORK . 6

3 BACKGROUND . 8

Tree Mapping and Template Detection . 8

Overview of the Top-Down algorithm . 9

Overview of the Bottom-Up algorithm . 11

Limitations of Top-down and Bottom-up Tree Mapping algorithms 11

4 SEQUENCE-BASED SOLUTION . 14

Problem Formulation . 14

DOM to Sequence . 14

Subsequence Matching . 16

Template Match Identification . 20

Optimization . 22

Prüfer sequence-based Template Match Identification 22

Consolidated Prüfer sequence-based Template Match Identification 29

Template Retrieval . 32

Discussion . 32

5 EXPERIMENTAL EVALUATION . 38

Experimental Setup . 38

Effectiveness Evaluation . 38

Efficiency Evaluation . 42

Discussion . 45

6 CONCLUSION . 59

REFERENCES . 60

iv

LIST OF TABLES

Table Page

4.1 List of algorithms for LCS problem . 19

5.1 Brief description of data set . 38

v

LIST OF FIGURES

Figure Page

1.1 Illustration of the FireDiff . 2

1.2 Screen shots of BBC Home page at different time 3

1.3 Screen shot of FireDiff . 4

3.1 DOM tree of a sample Web page . 8

3.2 Restricted top-down mapping between T1 and T2 10

3.3 Restricted bottom-up mapping between T1 and T2 12

3.4 An example showing that the RBM-TD algorithm may not find all template map-

pings . 13

3.5 False mapping given by the RBM-TD . 13

4.1 Prüfer sequence and Consolidated Prüfer sequence of a labeled tree 16

4.2 Table L of sequences S1 and S2 . 18

4.3 CLOSET table and σ-OCC lists for S1 and S2 20

4.4 Finding template match from possible LCSs . 22

4.5 Step by step template match identification based on Prüfer sequence 28

4.6 Step by step template match identification based on Consolidated Prüfer sequence 33

4.7 Example of limitations of sequence-based algorithms:Input trees and optimal

template . 36

4.8 Example of limitations of sequence-based algorithms:Template found by PS-TD 36

4.9 Example of limitations of sequence-based algorithms:Template found by CPS-TD 37

5.1 Effectiveness evaluation without penalty . 40

5.2 Effectiveness evaluation with penalty . 41

5.3 An example of BU-TD result . 43

5.4 Part of Template nodes identified by BU-TD . 44

5.5 Efficiency evaluation results-1 . 46

5.6 Efficiency evaluation results-2 . 47

5.7 Efficiency evaluation results-3 . 48

5.8 Efficiency evaluation results-4 . 49

5.9 Efficiency evaluation results-5 . 50

vi

Figure Page
5.10 Average Time vs F-score . 51

5.11 Average Time vs F-score . 52

5.12 Correlations between running time of TD-TD and tree size,leaf size,total-change

ratio,leaf-change ratio,total changes and leaf changes 55

5.13 Correlations between running time of BU-TD and tree size,leaf size,total-change

ratio,leaf-change ratio,total changes and leaf changes 56

5.14 Correlations between running time of PS-TD and tree size,leaf size,total-change

ratio,leaf-change ratio,total changes and leaf changes 57

5.15 Correlations between running time of CPS-TD and tree size,leaf size,total-change

ratio,leaf-change ratio,total changes and leaf changes 58

vii

Chapter 1

INTRODUCTION

Templates are widely used in web sites development. In a study, Gibson et al.[1] have

found that templates represent over 40% of data available on the Web. Using web page

templates bring convenience for web site designers and developers. However, the

presence of templates can negatively impact information retrieval and data mining tasks.

The navigation links, side bars and advertisements generated by the templates are barely

related to the “main contents”. Experimental evaluations have shown that the classification

and clustering results can be substantially improved if templates on these pages are

treated adequately [2][3][4].

Most of existing template detection algorithms are based on two basic ideas. The

first idea is to divide the web page into blocks and then separate the template-generated

blocks and the content blocks by some score measurement. The other idea is to find the

common structure among the Document Object Model(DOM) trees of a set of web pages.

In our research, we focus on detecting the template from a set of DOM trees. To identify

the common subtree of DOM trees, two recent approaches based on the top-down

mapping and the bottom-up mapping are proposed by Vieira et al.[2][5]. The top-down

mapping algorithm is quadratic but gives optimal results. The bottom-up method is a linear

time algorithm which is the theoretically fastest approach, but it may give a partial template

and it may lead to false alarms. Because of limitations of the top-down and bottom-up

template detection algorithms, we propose sequence-based template detection algorithms

which are faster than the top-down approach and gives better results than the bottom-up

method.

Motivation Application: Web page content changes regularly[6], and study

showed that the content people revisit is particularly likely to change[7]. When a user visits

a previously visited page, it would be helpful that changes of that page can be highlighted.

However, current Web browsers do not support a historical view of Web content. Given

two versions of a web page, if we can find parts repeated between these two versions, we

1

Web page p1

Firefox
Plugin

DOM tree T1 of
Web page p1

DOM tree T1
URL of p1

Template
Detection

T1

T2
DOM tree of the
cached P1

T3

Merged tree
highlights added
and removed
parts

Firefox
Plugin

Server

Figure 1.1: Illustration of the FireDiff

can easily tell what is added in the new version and what is removed from the old version.

Based on the template detection algorithm, a Firefox Plugin, FireDiff, has been designed

specifically to support awareness of how a revisited page has changed. Figure 1.1

illustrates how the system works and Figure1.2 shows a screen shot of the system. Gray

shaded areas show parts that appeared in the old version but removed from current

version. Yellow shaded areas indicate newly added information. Since there were not

many changes between Figure 1.2a and Figure 1.2b, highlighted blocks in Figure 1.3

could help users quickly locating updated information.

Main contributions: In this thesis, Prüfer/Consolidated Prüfer sequences are

applied to the problem of template detection. Before constructing Prüfer/Consolidated

Prüfer sequences, each node of trees is assigned a new label based on its top-down path.

Then this new label is used in constructing Prüfer/Consolidated Prüfer sequences. This

2

(a) BBC Home page at 1:38PM,4.7,2011

(b) BBC Home page at 2:37PM,4.7,2011

Figure 1.2: Screen shots of BBC Home page at different time

3

Figure 1.3: Screen shot of FireDiff

strategy guarantees that nodes with different top-down paths can not form a mapping pair.

Because of this labeling strategy, Prüfer/Consolidated Prüfer sequences of trees have

some nice properties that are very useful for template detection. Details are discussed in

Chapter 4.

Another major contribution is that we present two sequence-based template

detection algorithms in this thesis. Since sequence comparison could be faster than tree

comparison, we convert the problem of finding a common subtree of two input trees to the

problem of looking for a common subsequence of their sequential representations. This

common subsequence is a sequential representation of a common subtree. Different from

the existing bottom-up tree mapping algorithm, our sequence-based algorithm guarantee

to find a common subtree which satisfies the definition of template. Experiment on

real-world web pages data shows that our approaches detect templates effectively and

efficiently.

4

Outline of the thesis: We present the related work in Chapter 2. In Chapter 3, we

briefly review the top-down and bottom-up template detection algorithms and their

limitations. We present our sequence-based solutions in Chapter 4. In Chapter 5, we show

the experimental results in terms of efficiency and effectiveness.

5

Chapter 2

RELATED WORK

The problem of template detection and web page cleaning has obtained considerable

attention in research. In general, template detection algorithms are studied on two levels:

the site level and the page level.

Site-level template detection The intuition of the site-level template detection is

that the structures or contents repeated across many web pages are regarded as parts of

the template.Bar-Yossef and Rajagopalan first introduced the problem of template

detection and removal in [4]. They proposed a technique based on segmentation of the

DOM tree, followed by the selection of certain segments as candidate templates

depending on their content.

Lin and Ho[8] introduced the concept of block entropy to separate the content

blocks from the redundant blocks generated by the templates. It was assumed that

template generated blocks should appear more frequently than the content blocks. Thus

they have different entropy values. Yi et al. [9] proposed an algorithm based on the similar

intuition. The Site Style Tree (SST) approach provided another way to identify the contents

generated by templates. The SST is concentrating more on the visual impression single

DOM tree elements are supposed to achieve. They look for identically formatted DOM

sub-trees which frequently occur in the documents and therefore are declared to be

produced by templates. In this approach, a SST is built to represent a summary of all the

presentation styles and all the contents found in the pages of a web site. The likelihood of

its nodes representing noisy nodes on the pages is evaluated based on the diversity of

presentation styles and contents associated to it on the SST tree.

The use of tree-mappings for detecting templates in a given set of web pages was

introduced in [2]. Reis et al. proposed the restricted top-down tree mapping algorithm

RTDM to calculate a tree edit distance between two DOM trees. The tree edit distance is

used as well to perform a cluster analysis in order to find clusters of different templates

within the training set. Vieira et al. proposed a bottom-up mapping strategy RBM-TD[5]

6

which identifies the template in linear time. RBM-TD is also applied to detect multiple

templates for a given web instead of obtaining only one like previous template detection

did.

Page-level template detection Instead of using multiple pages to detect the

template, some page-level algorithms given a single page has been proposed. Most of the

page-level algorithms focused on finding the informative blocks of web pages. Song et al.

[10] proposed a learning method for assigning importance weights to hierarchically

arranged segments in web pages. They used a vision-based page segmentation algorithm

to partition a web page into semantic blocks with a hierarchical structure and then each

block was assigned an importance score based on its spatial and content features. Kao et

al.[11] segment a given web page using a greedy algorithm operating on features derived

from the page. Debnath et al. [12] proposed a page-level algorithm that applied a classifier

to DOM nodes, but only certain nodes are chosen for classification, based on a predefined

set of tags.

Chakrabarti et al. [3] develop a framework for the page-level template detection.

Their method first generated a training data by applying the site-level template detection

method in [1] on randomly selected sites. Then a classifier was trained from the training

data set to assigns importance values to each node of a page in the test phase. The

decision of which nodes in that page constitute the template is made after applying an

isotonic smoothing procedure, which adjusts the importance values of the nodes.

7

Chapter 3

BACKGROUND

Tree Mapping and Template Detection

According Document Object Model(DOM) HTML Specification[13], each web page can be

represented by a DOM tree structure. The DOM tree is labeled, ordered and rooted tree

structure. Figure 3.1b shows the DOM tree of the HTML code in Figure 3.1a.

For ordered trees, a mapping shows the one-to-one correspondence between

nodes of two trees. The following is the formal definition of mappings.

Definition 1. Let Tx be a tree and tx[i] be the i-th node of tree Tx in a preoder walk. A

mapping from a tree T1 to a tree T2 is a set M of ordered pairs of integers (i, j),

1 ≤ i ≤ n1, 1 ≤ j ≤ n2, satisfying the following conditions, for all (i1, j1),(i2, j2) ∈M :

• i1 = i2 if, and only if,j1 = j2;

• t1[i1] is to the left of t1[i2] if, and only if, t2[j1] is to the left of t2[j2];

• t1[i1] is an ancestor of t1[i2] if, and only if, t2[j1] is an ancestor of t2[j2].

A mapping set M indicates the edit operations needed to transform a tree T1 to

another tree T2. A node t1[i] without any pair (i, j) ∈M associated is deleted from T1. A

<html>
<head>
<title>DOM Tutorial</title>
</head>
<body>
<h1>DOM Lesson one</h1>
<p>Hello world!</p>
</body>
</html>

(a) Example of the HTML code of a web
page

DOCUMENT

HTML

HEAD BODY

TITLE

“DOM Tutorial”

H1 P

“Lesson one” “Hello world”

(b) DOM tree of the HTML code in Figure
3.1a

Figure 3.1: DOM tree of a sample Web page

8

pair (i, j) ∈M indicates the replacement operation to substitute node t1[i] by t2[j]. A

node t2[j] with no pair (i, j) ∈M shows that it is inserted into T2.

For each operation, a cost can be associated to it so the total cost to transform T1

to T2 can be computed. The following is the definition of mapping cost.

Definition 2. Let M be a mapping between tree T1 and tree T2; S be the set of pairs

(i, j) ∈M with t1[i] and t2[j] with different labels; D be the set of nodes t1[i] with no

(i, j) ∈M associated; I be the set of nodes t2[j] with no (i, j) ∈M associated. The cost

of mapping M is given by |S|p+ |I|q + |D|r, where p,q,r are the costs assigned to

replacement, insertion and deletion operations, respectively.

Commonly, the cost of identical substitutions is 0 and cost of other operations is 1.

The mapping with minimal cost is regarded as the optimal mapping.[2]

A template can be viewed as a subtree which is common to the DOM-tree

representations of a web page collection. So the problem of template detection can be

reduced to the problem of finding the a common subtree among a given set of trees. The

latter problem can be solved by applying a tree mapping[5].

Two tree mapping based template detection algorithms were reported in recent

literature. The top-down tree mapping approach was applied in [2]. Vieira, etc. proposed

the bottom-up template detection algorithm in [5].

Overview of the Top-Down algorithm

Definition 3. A mapping M between a tree T1 and a tree T2 is said to be top-down only if

for every pair (i1, i2) ∈M there is also a pair (i1.parent, i2.parent) ∈M , where i1 and i2

are non-root nodes of T1 and T2 respectively.

The top-down distance was first introduced by Selkow. In [14], an algorithm given

to compute the top-down distance between two trees in O(n1n2) time, where n1 and n2

are the numbers of nodes of two trees. A restricted top-down mapping was introduced in

9

R R14 15

A A AA 13
1210 9

EAA A E D

6 7 5 211 11

CEO A E C CEO A E C

1 2
48 48

EE
3 33 3

T1 T2

Figure 3.2: Restricted top-down mapping between T1 and T2

[15] to deal with problems that require the evaluation of structural similarity between web

pages.

Definition 4. A top-down mapping M between a tree T1 and a tree T2 is restricted if and

only if for every pair (i, j) ∈M , such that if t1[i] 6= t2[j], there is no descendant of i or j in

M .

Based on the restricted top-down mapping, Vieira, etc proposed a template

detection algorithm, RTDM-TD, in [2]. RTDM-TD first finds all identical subtrees at the

same level during a post-order tree traversal. Then algorithms by Yang[16] and Reis[15]

are applied to compute the restricted top-down distance between trees. The sequence of

operations is obtained during the processing of calculating the restricted top-down

distance. RTDM-TD keeps track of cases where no insertion, removal or update

operations were applied to a given node. Similar to the top-down mapping algorithm by

Chawathe[14], the RTDM-TD has a time-complexity of O(n1n2) in the worst case,where

n1 and n2 are the numbers of nodes of T1 and T2. Figure 3.2 gives an example of

restricted top-down mapping found by RTDM-TD. Gray nodes in Figure 3.2 indicate

template nodes. Dash lines show the mapping pairs of the restricted top-down mapping.

10

Overview of the Bottom-Up algorithm

The bottom-up tree distance was introduced in [17] and an efficient bottom-up algorithm

for finding all common rooted subtrees in a forest in linear time in the worst case was also

given. The following is the formal definition of bottom-up tree mapping.

Definition 5. A mapping M between a tree T1 and tree T2 is said to be bottom-up if for

each pair (t1[i], t2[j]) ∈M , then (t1[i1], t2[j1]), . . . , (t1[ik], t2[ik]) ∈M .

To compute the bottom-up tree mapping, each node of two trees is assigned an

integer class label, which is determined by class labels of its children and the label of itself.

Given two nodes v and u, if they have the same class label, this indicates that two

subtrees rooted at v and u are isomorphic. Then the largest common forest between two

trees will be collected during a level-order tree traversal.

Vieira, etc.[5] proposed the RBM-TD algorithm algorithm based on Valiente’s

bottom-up tree mapping algorithm. The RBM-TD algorithm restricts the largest common

forest to contain only the identical subtrees having the same top-down paths in both input

trees. Thus, two nodes v of T1 and u of T2 will be considered as the template nodes if they

have the same class label and their top-down paths are identical. Also, all nodes on the

top-down paths of u and v will be considered as the template nodes when u and b are

template nodes. Figure 3.3 gives an example of finding the template using RBM-TD. In

Figure 3.3 numbers next nodes are class labels and gray nodes indicate template nodes.

Nodes with two circles indicate that they are marked as template nodes since they are

ancestors of template nodes.

Limitations of Top-down and Bottom-up Tree Mapping algorithms

One limitation of the top-down tree mapping algorithm is that it has a quadratic time

complexity in the worst case. Though it is claimed that the RMTD-TD algorithm achieves

better time complexity than quadratic time, experimental results in [5] shows that the

running time of RMTD-TD was proportional to a quadratic function in practice.

11

R R14 15

A A AA 13
1210 9

EAA A E D EAA A E D

6 7 5 211 11

CEO A E C
48 48

1 2
48 48

EE
3 3

T1 T2

Figure 3.3: Restricted bottom-up mapping between T1 and T2

Although the RBM-TD is the fastest known tree mapping algorithm in literature, it

has two major drawbacks. One is that some mappings are missing in the result. Figure 3.4

gives an example. Nodes of T3 and nodes of T4 are assigned different class labels

according to the RBM-TD algorithm. Since all nodes of T1 and T2 are put into different

equivalent classes, no mapping pairs can be found by the RBM-TD. However, there does

exist one common subtree of T3 and T4, which is shown in Figure 3.4b.

The other drawback of the RBM-TD is that it may result in false alarms. Figure 3.5

illustrates such a case. T5 and T6 are different since they are labeled and ordered trees.

Mapping returned by the RBM-TD does not satisfy the definition of mapping for ordered

trees.

12

5 6
R R

6

AA
3 4

CB
1 2

T3 T4

(a) Restricted
bottom-up mappings
between T1 and T2

R R R

AA A

CB

T3 T4 Template

(b) Template of T1 and T2

Figure 3.4: An example showing that the RBM-TD algorithm may not find all template map-
pings

R

A A

B B E

3

1 2

8

1

9 R

AA

BB E

3

1 2

8

1

10

T5 T6

(a) Two trees T3 and T4

R

A A

B B E

3

1 2

8

1

9 R

AA

BB E

3

1 2

8

1

10

T5 T6

(b) Restricted bottom-up mapping of T3 and T4

Figure 3.5: False mapping given by the RBM-TD

13

Chapter 4

SEQUENCE-BASED SOLUTION

Problem Formulation

In our work, we define the template of a set of web pages as following.

Definition 6. Given a set of web pages and their DOM tree representations T1, T2, . . . Tn,

the template of T1, T2, . . . Tn is a common subtree Ts of T1, T2, . . . Tn. For a tree

T ∈ {T1, T2, . . . Tn}, there should exist a restricted top-down mapping which can map all

nodes of Ts to nodes of T .

There could be multiple subtrees according to the definition of the template. The

subtree with the largest size is said to be optimal. According to the definition of web

template, template detection problem can be reduced to the problem of finding the

common subtree of a set of given trees. Different from the tree mapping algorithms, we

propose sequence-based template detection algorithms.

DOM to Sequence

Many approaches that transform tree structures to sequences have been reported in

literature. One way to do the transformation is using a form of numbering schema that

encodes each node of a tree by its positional information within the hierarchy of tree

structure it belongs to. Most of the numbering schemata are based on a tree-traversal

order, e.g. pre-and-post order[18] and extended pre-order[19] or textual positions of start

and end tags[20][21]. In our work, two encodings are used. One is the Prüfer sequence

and the other is the Consolidated Prüfer sequence. Both can construct one-to-one

correspondences between a tree and the sequence.

Prüfer (1918) proposed a method that constructed a one-to-one correspondence

between a labeled tree and a sequence by removing nodes from the tree one at a time.

The algorithm to construct a sequence from tree Tn with n nodes labeled from 1 to n works

as follows. From Tn, delete the leaf with the smallest label to form a smaller tree Tn−1. Let

a1 denote the label of the node that was the parent of the deleted node. Repeat this
14

process on Tn−1 to determine a2 (the parent of the next node to be deleted), and continue

until only two nodes joined by an edge are left. The sequence (a1, a2, a3, ..., an−2) is

called the Prüfer sequence of tree Tn. From the sequence (a1, a2, a3, ..., an−2), the

original tree Tn can be reconstructed. To construct the Prüfer sequence from tree Tn, any

numbering scheme can be used to label the tree as long as it associates each node in the

tree with a unique number between 1 and the total number of nodes. This guarantees a

one-to-one mapping between the tree and the sequence. In our work, we adopt the same

Extended-Prüfer sequence construction algorithm used in [22], which is slightly different to

the way described above. The Prüfer sequence described above is called Regular-Prüfer

sequence in [22]. It only contains the labels of non-leaf nodes. The Extended-Prüfer

sequence is obtained by adding a virtual child node to each of its leaf nodes before

transforming them into sequences. In this way, the Extended-Prüfer sequence contains all

nodes of the tree. The Prüfer sequence representation defined in [22] consists of two

sequences: the Numbered Prüfer sequence(NPS) and Labeled Prüfer sequence(LPS).

NPS consists entirely of postorder numbers and LPS is constructed by replacing the

postorder numbers in NPS with corresponding node labels. NPS and LPS convey different

but complementary information. NPS gives the tree structure and LPS gives the labels for

each tree node.

In our work, each node of a given tree T is assigned a new label based on its

top-down path and a post-order number. Then the Prüfer sequence A of T , is built by

appending nodes to A during the post-order traversal. Each element of sequence A is a

node of the tree T . Figure 4.1 gives an example of Prüfer sequence representation of a

labeled tree. The dashed circles in Figure 4.1 are virtually added nodes in order to get the

Extended-Prüfer sequence. The numbers beside the nodes are the postorder numbers.

The (label, post-order number) pair in Figure 4.1 denotes the corresponding node in T7.

In [23],Shirish etc., proposed a Consolidated Prüfer Sequence, which is more

concise and space-efficient compared with the classical Prüfer sequence. Similar to the

classical Prüfer sequence, the Consolidated Prüfer sequence consists of two sequences:

Numbered Prüfer Sequence (NPS) and Label Sequence (LS). Like the way the classical

15

R
4

C A

Extended Prüfer sequence of Tree T7:

1
3 C

1
R
4

B
2

A
3

R
4

2

Consolided Prüfer sequence of Tree T7:

C B A R

B

2 C
4

B
3

A
4

R
‐

T7

Figure 4.1: Prüfer sequence and Consolidated Prüfer sequence of a labeled tree

Prüfer sequence being constructed, the Consolidated Prüfer sequence is constructed by

doing a post-order tree traversal. The NPS of a Consolidated Prüfer sequence is

constructed by removing the node with the smallest post-order traversal number and by

appending its parent node number to the already constructed partial sequence. The LS is

built in the similar but by appending the label of the removed nodes instead of their parent

node numbers to the sequence. The Consolidated Prüfer Sequence provides a bijection

between rooted, ordered and labeled trees and sequences. Since the Extended-Prüfer

sequence is constructed by adding a virtual child node to each of its leaf nodes before

transforming them into sequences, it is longer than the Consolidated Prüfer sequence.

Similar to the process of constructing the Prüfer sequence, in our work, each node

of tree T is assigned a new label based on the top-down path before generating the

Consolidated Prüfer sequence. Figure 4.1 shows an example of Consolidated Prüfer

sequence representation of a rooted, labeled and ordered tree. Different from the

Extended Prüfer sequence, a (label, post-order number) pair in the Consolidated Prüfer

sequence corresponds to an edge in the tree T7.

Subsequence Matching

Before we discuss how to find the template, we first introduce some basic concepts of the

Longest Common Subsequence(LCS) problem. The LCS problem is well studied in

16

literature. The dynamic programming algorithm[24] is classical to solve the LCS problem.

Studies show that the general LCS problem has a lower bound theoretical time complexity

of Ω(n2). However, there are algorithms which can achieve better performance under

certain situations. The theoretically fastest known algorithm is proposed by Masek and

Paterson[25], which takes time O(n2/logn). For situations where the length p of a LCS is

expected to be long, Myers[26] and Ukkonnen[27] developed an algorithm which takes

time O(n(n− p)). Wu et al.[28] later improved that algorithm to O(n(m− p)). If the

alphabet size is fixed, Hirschberg[29] and Hunt/Szymanski[30] proposed algorithms with

processing time O(pn) and O(m+ rlogp) respectively and both methods need an

additional preprocessing time O(nlogs).

The concept of subsequence is stated as follows.

Definition 7. A subsequence is any string that can be obtained by deleting zero or more

symbols from a given string.

The longest common subsequence is defined as follows.

Definition 8. Let A = a1a2 . . . am and B = b1b2 . . . bn, m ≤ n,be two sequences over an

alphabet Σ = {σ1σ2 . . . σs} of size s. A sequence C is said to be the common

subsequence of A and B if and only if C is a subsequence of both A and B. A common

subsequence with the maximal length is defined as the longest common

subsequence(LCS).

The classical dynamic programming technique for solving LCS problem is to

determine the longest common subsequence for all possible prefix combinations of input

strings A and B by filling an m× n table L. The L table is filled by the following recursion.

Let |A| denote the length of a string A and let Ai,0 ≤ i ≤ |A|, denote the length i

prefix of A. Define

Li,j = max{|C| : C is a common subsequence of Ai and Bj},0 ≤ i ≤ m,0 ≤ j ≤ n, to be

the length of a LCS between Ai and Bj .

17

B A R B A E A R

Sequence S1

B 1 1 1 1 1 1 1 1

A 1 2 2 2 2 2 2 2

nc
e
S 2

E 1 2 2 2 2 3 3 3

A 1 2 2 2 2 3 4 4

R 1 2 3 3 3 3 4 5
Se
qu

en
R 1 2 3 3 3 3 4 5

Figure 4.2: Table L of sequences S1 and S2

Li,j =


0 if x = 0 or j = 0

Li−1,j−1 + 1 if ai = bj

max{Li−1,j , Li,j−1} if ai 6= bj

After table L is constructed, the value of Lm,n indicates the length of an LCS of A

and B. Computing the table takes time in O(mn) and reconstruct an LCS takes linear

time. Figure 4.2 gives an example of the table L of sequences S1 and S2.

Study showed that it is not necessary to fill every entry in the table L to get the

LCS[31]. Thus, to improve the running time of the classical dynamic programming method,

one approach is to reduce the number of entries to be computed in the table L.

An ordered pair (i, j) of positions in A and B is called a match if and only if

ai = bj . The set of all matches is M = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n and ai = bj}. Each

match belongs to a class Ck = {(i, j)|(i, j) ∈M ∧ Li,j = k},k ≥ 1 and C0 = {(0, 0)}. A

match m ∈M is called a k-match. It is proved that determining dominant matches is

sufficient to solve the LCS problem[31]. Thus the process of computing the LCS can be

sped up by only concentrating on the dominant matches. The dominant match is defined

as follows.

Definition 9. A match (i, j) ∈ Ck is called a dominant k-match if

∀(i′, j′) ∈ Ck : (i′ > i ∧ j′ ≤ j) or (i′ ≤ j ∧ j′ > j).

Dk = {(i, j)|(i, j) is a dominant k-match}.
18

Table 4.1: List of algorithms for LCS problem

Authors Time Complexity Reference
Wagner,Fischer O(mn) [24]
Hunt,Szymanski O(pn+ n log s) [30]
Hirschberg O(pn+ n log s) [29]
Apostolico,Guerra O(m log n+ d log(2mn/d)) [32]
Wu,Manber,Myers O(n(m− p)) [28]
Rick O(ns+min{pm, p(n− p)}) [31]

Circled entries of table L in Figure 4.2 give examples of dominant matches.

Auxiliary data structures were introduced to compute dominant matches efficiently. The

table CLOSEST was used in Apostolico/Guerra[32] algorithm to help finding dominant

matches efficiently.

Given a sequence B = b1b2 . . . bn over some alphabet Σ = {σ1, σ2, . . . σs},

CLOSEST [σi, j] =


n+ 1 if j = n+ 1

min{{j′ ≥ j|bj′ = σi} ∪ {n+ 1}} if j = 1, 2, . . . , n

To compute the CLOSEST table, a list σ-OCC of all positions of B which

correspond to occurrences of σ, for all σ ∈ Σ, in increasing order. Figure 4.3 gives an

example of σ-OCC lists and the CLOSEST table. σ-OCC lists can be obtained by

scanning the sequence once and the CLOSEST table can be computed in O(ns). The

time complexity of computing the CLOSEST table can be reduced to Θ(n) using a

compact representation[31]. Rick[31] improved Apostolico/Guerra algorithm to

O(ns+min{pm, p(n− p)}) in time complexity. If the compact representation of the

CLOSEST table is used, the time complexity of Rick’s approach is

O(n+min{pm log s, p(n− p) log s}).

Since Rick’s algorithm is fast when an LCS is expected to be long and it has a

much smaller degeneration in intermediate situations, we adopt Rick’s algorithm in our

work as the subsequence matching algorithm.

Let sequences A and B denote the Prüfer sequences of trees T1 and T2. In the

rest of this thesis, a match is a (A[i], B[j]) pair such that A[i].label = B[j].label. Also, the

label of each node is newly assigned according to its top-down path from the root. The
19

sequence S1: B A R B A E A R

σ‐Occ lists for sequenceσ‐Occ lists for

q 1
sequence S2: B A E A R

A 2 4

σ Occ lists for sequence
S2

σ Occ sts o
sequence S1

A 2 5 7 A 2 4

B 1

E 3

A 2 5 7

B 1 4

E 6

R 5R 3 8

CLOSEST table for CLOSEST table for

A 2 2 4 4 6

sequence S2
A 2 2 5 5 5 7 7 9 9

sequence S1

B 1 6 6 6 6

E 3 3 3 6 6

B 1 4 4 4 4 9 9 9 9

E 6 6 6 6 6 6 9 9 9

R 5 5 5 5 6R 3 3 3 8 8 8 8 8 9

Figure 4.3: CLOSET table and σ-OCC lists for S1 and S2

subsequence matching phase gives all dominant matches of A and B for later template

retrieval.

Template Match Identification

Let A and B be sequences derived from two trees T1 and T2. LCS L of A and B gives of a

set of matches. Each match (A[i], B[j]) can be seen as a mapping pair between nodes of

A[i] and B[j]. Since the subsequence matching algorithm generates the LCS based on

the label information and ignores the structural information, structure matching is needed

to prune false positives matches.

Because the sequence A is obtained by appending nodes of a tree to it during a

post-order traversal. If A[i] and A[j] represent the same node in tree T , we say

A[i] = A[j].

Definition 10. Template match: Let A and B be sequences derived from two trees T1 and

T2. Consider a LCS of A and B, L = {(A[i1], B[j1]), (A[i2], B[j2]), . . . , A[im], B[jm]}.

(A[ik], B[jk]) is a template match if and only if either of the following conditions hold:

20

1. Both A[ik] and B[jk] are root nodes.

2. (A[ik].parent,B[jk].parent) is a template match and currently there do not exist

template matches (A[ik], B[jp]) and (A[iq], B[jk]), B[jp] 6= B[jk] and A[iq] 6= A[ik].

Based on the definition of template match, Algorithm 1 shows a naive way to find

template matches from a given LCS. Figure 4.4 shows an example of template matches

found from LCSs. Figure 4.4b shows Prüfer sequences of two input trees in Figure 4.4a.

Two LCSs, LCS1 and LCS2, can be found by comparing the sequences. Template

matches found from LCS1 and LCS2 and their corresponding mapping pairs are shown

in Figure 4.4c and Figure 4.4d. One major drawback of this naive method is that we need

to enumerate all possible LCSs to obtain the optimal mapping. This is very costly since

number of all LCSs could be exponential[23].

Algorithm 1 TemplateMatchIdentification-Naive(LCS)
1: LCS_A← entries of A in LCS
2: LCS_B ← entries of B in LCS
3: i← size of LCS, j ← size of LCS
4: i+ +,j + +
5: while i > 0 AND j > 0 do
6: if LCS_A[i] and LCS_B[j] are root nodes then
7: mark LCS_A[i] and LCS_B[j] as template nodes
8: mapping[LCS_A[i]]← LCS_B[j], rmapping[LCS_B[j]]← LCS_A[i]
9: i−−,j −−

10: end if
11: if mapping[LCS_A[i]] = LCS_B[j] AND rmapping[LCS_B[j] = LCS_A[i] then
12: i−−,j −−
13: continue;
14: end if
15: if mapping[LCS_A[i]] 6= LCS_B[j] AND rmapping[LCS_B[j] 6= LCS_A[i] then
16: i−−,j −−
17: continue;
18: end if
19: if mapping[LCS_A[i]] = null AND rmapping[LCS_B[j] = null then
20: if (A[i].parent,B[j].parent) is a template match then
21: mapping[LCS_A[i]]← LCS_B[j], rmapping[LCS_B[j]]← LCS_A[i]
22: i−−,j −−
23: continue;
24: end if
25: end if
26: end while

21

R 6
R 4

A A
2

5 A 3

3 41 1 2
B B E B E

T8 T9

(a) Two input trees

R

A A

B B E

2

3 4

5

1

6
R

A

B E

3

4

1 2

T8 T9

B
1

A
2

R
6

B
3

A
5

E
4

A
5

R
6

B
1

A
3

E
2

A
3

R
4

Prüfer
sequence
S8 of T8
Prüfer
sequence
S9 of T9

(b) Prüfer subsequences of T1 and T2

R

A A

B B E

2

3 4

5

1

6
R

A

B E

3

4

1 2

T8 T9
B
1

A
2

E
4

A
5

R
6

B
1

A
3

E
2

A
3

R
4

LCS1:

(c) Mapping found from LCS1

R

A A

B B E

2

3 4

5

1

6
R

A

B E

3

4

1 2

T8 T9
B
3

A
5

E
4

A
5

R
6

B
1

A
3

E
2

A
3

R
4

LCS2:

(d) Mapping found from LCS2

Figure 4.4: Finding template match from possible LCSs

Optimization

To avoid generating all LCSs, we present two template match identification algorithms

operating on the dominant matches obtained in subsequence matching phase.

Prüfer sequence-based Template Match Identification

Theorem 1. Let p denote the length of an LCS of sequence A and B. A and B are Prüfer

sequences of trees T1 and T2. Then Dp ,the set of dominant p-matches has only one

match (A[i], B[j]) and nodes A[i] and B[j] are roots of tree T1 and T2.

Proof We prove Theorem 1 by contraction. If |Dp| 6= 1 and there exists another
22

dominant match (A[i′], B[j′]) ∈ Dp, where A[i′] and B[j′] are not root nodes. Then there

must exist two root nodes A[i] and B[j] where i > i′ and j > j′ because the root node is

always the last element of a Prüfer sequence. According to the definition of a dominant

match, (A[i], B[j]) should be a dominant (p+ 1)-match. Then the length of the LCS of

sequence A and B is (p+ 1). Here is the contradiction.

According to Theorem 1, our template identification algorithm starts from Dp and

then backtrack to D1. This is similar to a top-down tree mapping procedure, since Prüfer

sequences are built in a post-order fashion.

Since DOM trees are labeled, rooted and ordered trees, template matches should

also preserve relative orders between nodes. If a match (A[i], B[j]) is marked as a

template match, it means that template matches between nodes to the right of A[i] and

B[j] are already identified. To preserve relative orders between nodes, next template

match (A[i′], B[j′]) should satisfy i′ < i ∧ j′ < j. Since A and B are obtained from

post-order traversals, nodes of T1 and T2 are visited from top to bottom and right to left if A

and B are visited from right to left. Thus each edge of a tree will be visited at most once.

This guarantees that template matches identified preserve relative orders between trees.

Theorem 2. Given nodes A[i] and A[j](j > i). A[j] is the first element having the same

label as A[i] on the right side of A[i]. A[i] = A[j] if and only if there does not exist an

A[l](1 < l < j) such that A[l].label = A[i].parent.label.

Proof ONLY IF: A is constructed by appending the parent of the node currently

being visited in a post-order traversal. If there exists an A[l](i < l < j) such that

A[l].label = A[i].parent.label, then it means that node A[i] pointing to in the tree structure

is already visited when A[j] is appended to the sequence. Since each node is visited only

once during the sequence construction, A[i] 6= A[j]. Thus, there does not exist an

A[l](i < l < j) such that A[l].label = A[i].parent.label.

IF: We prove the necessary condition by contradiction. If A[i] 6= A[j], A[i] must be

a node which is left to A[j] since i < j. Node A[i] must be visited and the parent of A[i]

must be appended to the sequence right after A[i] since sequence A is constructed by

23

appending the parent node to the sequence in a post-order tree traversal. Thus, there

exists an A[l](1 < l < j) such that A[l].label = A[i].parent.label. Here is the

contradiction.

According to Theorem 2, if A[j] is the first node on the right side of A[i] such that

A[i] = A[j], then {A[i+ 1]A[i+ 2] . . . A[j − 1]} is the sequential representation of the

subtree rooted at A[j − 1].A[j − 1] is a child node of A[j]. In other words, i+ 1 is the left

boundary of the sequential representation of the subtree rooted at A[j − 1] in A.

Now, for A[i],(1 ≤ i ≤ n), we introduce a branch boundary attribute denoted by

A[i].bd, to indicate the range of one of its branch in the sequence.

A[i].bd = max(A[i].parent.bd, s+ 1)

s = max({j | A[j].label = A[i].label ∧ 1 ≤ j < i}). If there does not exist an A[j] such

that A[j].label = A[i].label (1 ≤ j ≤ i), then s = 0. If A[i] is root node,

A[i].parent.bd = 1.

For each σ in the alphabet Σ, positions it appearing in the sequence is stored in

the σ-Occ list in increasing order during the subsequence matching phase. The boundary

attribute of a given element A[i] can be computed efficiently using binary search. The

algorithm to compute the boundary of an element is presented in Algorithm 2.

Algorithm 2 computeBoundaries((A[i], B[j]))
1: occ_list_A← σ-Occ list of A[i].label for A
2: occ_list_B ← σ-Occ list of B[i].label for B
3: left← the largest value which is smaller than i in occ_list_A
4: up← the largest value which is smaller than j in occ_list_B
5: if left < B[j].parent.bd then
6: left← B[j].parent.bd
7: end if
8: if up < A[i].parent.bd then
9: up← A[i].parent.bd

10: end if
11: A[i].bd← up
12: B[j].bd← left

If A[i].parent.bd < s+ 1, then A[j] = A[i] according to Theorem 2. Thus,

sequence A[A[i].bd]A[A[i].bd+ 1]] . . . A[i− 1] is the sequential representation of the
24

subtree rooted at A[i− 1].

If (A[i], B[j]) is the current template match and neither of nodes is leaf node, this

means that currently we are finding mapping pairs between subtrees rooted at A[i− 1]

and B[j − 1]. Let up = A[i].bd, left = B[j].bd. Thus, match (A[i′], B[j′]) is not

considered as a template match if i′ < up or j′ < left since A[i′] or B[j′] is not a

descendant of A[i] or B[j] respectively.

Let (A[i], B[j]) be the current template match. An unmarked match (A[s], B[t]) is

a template match if it satisfy the following conditions:

1. (A[s].parent,B[t].parent) is a template match

2. A[s].parent.bd ≤ s < i and B[t].parent.bd ≤ t < j

Given a match (A[i], B[j]) ∈ Ck, it means that k is the upper bound of the size of

the common forest of forests denoted by A[1]A[2] . . . A[i] and B[1]B[2] . . . B[j]. To find

template matches as many as possible while maintaining a low cost, a match

(A[i′], B[j′]) ∈ Ck′ is marked as a template match if it satisfies the above conditions and

k′ is the largest possible value.

If current template match is (A[i], B[j]) and (A[i], B[j]) ∈ Ck, (A[s], B[t]) ∈ Ck′ is

picked as next template match if it satisfy the following conditions:

1. (A[s].parent,B[t].parent) is a template match

2. s < i and t < j

3. A[s].parent.bd ≤ s and B[t].parent.bd ≤ t

4. k′ < k and the value of k′ is closest to k

Condition 1,2, and 3 ensure that identified template matches can form a mapping

which is consistent with the definition of restricted top-down tree mapping. Condition 3 and

4 is used to include as many template matches as possible. If a dominant match satisfies

all other conditions except Condition 3, we can check if there is any non-dominant match
25

which satisfies all four conditions. In this thesis, we call Condition 3 and 4 the current

boundary conditions.

Algorithm 3 gives the procedure of finding template matches. The input array

dm[1, 2, . . . , p] contains p lists of dominant matches and p is the length of the LCS. Each

list dm[i],1 ≤ i ≤ p, consists of all dominant matches in Di. According to the definition of

template and Theorem 1, the algorithm starts by marking the root-root match in Dp as the

template match and then backtracks to D1 to identify template matches. At Line 9, a

match (A[i′], B[j′]) is removed from the head of dm[k]. If (A[i′], B[j′]) is already a

template match, then we just update boundaries up,left,right and bottom (Line 11-15). If

(A[i′].parent,B[j′.parent]) is a template match, we check if (A[i′], B[j′]) satisfies the

current boundary conditions. If it is true, mark (A[i′], B[j′]) as template match and update

current boundary conditions(Line 18-24). Otherwise, we find non-dominant matches which

are within the boundaries (Line 26-28). If (A[i′].parent,B[j′.parent]) is not a template

match, but at least one of A[i′].parent and B[j′.parent] is marked, there could be

non-dominant matches qualifying for template match. Line 32 to Line 43 shows how to find

an alternative non-dominant matches. Without loss of generality, let us assume

A[i′].parent is not marked and B[j′.parent] is marked. Since B[j′.parent] is mapped to

some node A[k], current boundary conditions are defined by B[j′.parent],A[k] and

current template match. After we have the boundary conditions, we check to see if there is

a non-dominant match (A[l], B[j′]) within the boundaries. Finding one l which satisfies the

boundary conditions would be enough since according the Theorem 2, all A[l] within the

boundaries represent the same node in the tree. Finding l is similar to Algorithm 2. l can

be obtained efficient by running binary search on the σ-OCC list of A[i′].label.

Figure 4.5 gives an example showing a step-by-step template match identification

based on Prüfer sequence. The input trees are T8 and T9 given in Figure 4.4a. In figure

4.5, entries circled by solid lines are the dominant matches obtained in the subsequence

matching phase. In Figure 4.5a, the root-root match (S8[8], S9[5]) is initialized as template

match which is denoted by the dash circle. Since root node appears twice in S8,

boundaries left = 4,up = 1,right = 7 and bottom = 4. The rectangle indicates the

26

current boundary conditions. In Figure 4.5b, (S8[7], S9[4]) is within the boundaries and

neither S8[7] nor S9[4] is mapped to other nodes. Thus, (S8[7], S9[4]) is marked as the

template node and boundary conditions are updated. Similarly, (S8[6], S9[3]) in Figure

4.5c is marked. Since (S9[2].parent, S8[2].parent) is a template match, current

boundaries left = S8[2].parent.bd = 4,up = S9[2].parent.bd = 1,right = 5 and

bottom = 2.(S8[2], S9[2]) is not within the boundaries. Thus it is not marked as template

and alternative non-dominant match (S8[5], S9[2]) is selected. Similarly, for (S8[1], S9[1]),

current boundaries left and up are defined by S8[5].bd = 4 and S9[2].bd = 1. Thus

(S8[1], S9[1]) is discarded and (S8[4], S9[1]) is marked template match in Figure 4.5e.

Figure 4.5f shows all node mapping pairs indicated by template matches.

Let d denote the number of dominant matches. During the template match

identification phase, at most 3d matches are visited and d matches are marked as

template match. When a match is marked as a template match, its boundaries are

computed. The time complexity of boundary-computation operation is dependent on how

many times a σ ∈ Σ appears in a sequence, the upper bound is log n+ logm, where n

and m are the size of Prüfer sequences. In the preprocess phase, it takes linear time to

construct Prüfer sequences. In the subsequence matching phase, the LCS used in our

work has a time complexity of O(n+min{pm log s, p(n− p) log s}), where p is the size of

a LCS and s is the size of the alphabet. Thus the time complexity of Prüfer

sequence-based tree template detection algorithm has a upper bound

O(m+ 2n+min{pm log s, p(n− p) log s}+ d+ 2d(log n+ logm)). In [31], it has been

proved that d ≤ p(m+ n− 2p+ 1). Thus, this algorithm is fast when n ≈ m and the p is

expected to long or short. In the situation of template detection, since the given web pages

are supposed to be generated from the same template, their DOM trees are similar and

thus their Prüfer sequences are similar. This makes the Prüfer sequence-based algorithm

suitable for template detection.

One drawback of the Prüfer sequence-based tree template detection algorithm is

that sizes of sequences may be larger than sizes of trees. According to the construction

rules of the Prüfer sequence, a node in the tree may appear multiple times in the

27

B
1

A
2

R
6

B
3

A
5

E
4

A
5

R
6

B
1 1 1

A
3 2 2

E
2 3

A
3 3 4

R
4 3 5

Prüfer sequence S8 of T8

Pr
üf
er

se
qu

en
ce

S9
 o
f T

9

(a)

B
1

A
2

R
6

B
3

A
5

E
4

A
5

R
6

B
1 1 1

A
3 2 2

E
2 3

A
3 3 4

R
4 3 5

Prüfer sequence S8 of T8

Pr
üf
er

se
qu

en
ce

S9
 o
f T

9

(b)

B
1

A
2

R
6

B
3

A
5

E
4

A
5

R
6

B
1 1 1

A
3 2 2

E
2 3

A
3 3 4

R
4 3 5

Prüfer sequence S8 of T8

Pr
üf
er

se
qu

en
ce

S9
 o
f T

9

(c)

B
1

A
2

R
6

B
3

A
5

E
4

A
5

R
6

B
1 1 1

A
3 2 2

E
2 3

A
3 3 4

R
4 3 5

Prüfer sequence S8 of T8
Pr
üf
er

se
qu

en
ce

S9
 o
f T

9

(d)

B
1

A
2

R
6

B
3

A
5

E
4

A
5

R
6

B
1 1 1

A
3 2 2

E
2 3

A
3 3 4

R
4 3 5

Prüfer sequence S8 of T8

Pr
üf
er

se
qu

en
ce

S9
 o
f T

9

(e)

R

A A

B B E

2

3 4

5

1

6
R

A

B E

3

4

1 2

T8 T9
Mappings indicated by match(S8[8],S9[5]) ,(S8[7],S9[4]),

(S8[6],S9[3]) , (S8[5],S9[2]) and (S8[4],S9[1])

(f)

Figure 4.5: Step by step template match identification based on Prüfer sequence

28

sequence depending on how many children it has. If a tree has a large fanout, then the

size of its Prüfer sequence could be very large. This will has a negative impact on the

performance of the Prüfer sequence-based tree template detection algorithm.

Consolidated Prüfer sequence-based Template Match Identification

The Consolidated Prüfer sequence-based algorithm is based on the similar idea as the

previous Prüfer sequence-based algorithm. The size of a Consolidated Prüfer sequence is

exactly the same as the size of the corresponding tree. So the Consolidated Prüfer

sequence has shorter sequence length compared with the classical Prüfer sequence. The

Consolidated Prüfer sequence-based algorithm can take less time to compute dominant

matches and retrieve the template.

Theorem 3. Let p denote to the length of an LCS of sequence A and B. A and B are

Prüfer sequences of trees T1 and T2. Then Dp ,the set of dominant p-matches has only

one match (A[i], B[j]) and nodes A[i] and B[j] are roots of tree T1 and T2.

Theorem 3 is obvious since each node of a given tree appears exactly once in its

corresponding Consolidated Prüfer sequence and root node is always the last node to be

visited. So, similar to Prüfer sequence-based algorithm, we start from Dp and backtrack to

D1 to identify template matches.

For each A[i] ∈ A and B[j] ∈ B, we also add a boundary attribute to it. This

boundary attribute is defined the same as in the previous section.

If current template match is (A[i], B[j]) and (A[i], B[j]) ∈ Ck, (A[s], B[t]) ∈ Ck′ is

picked as next template match if it satisfy the following conditions:

1. (A[s].parent,B[t].parent) is a template match

2. s < i and t < j

3. A[s].parent.bd ≤ s and B[t].parent.bd ≤ t

4. k′ < k and the value of k′ is closest to k

29

Algorithm 3 identifyTemplateMatches-PS(dm[1, 2, . . . , p])
1: (A[i], B[j])← remove the first match from dm[p]
2: mark (A[i], B[j]) as a template match
3: mapping[A[i]]← B[j],rmapping[B[j]]← A[i]
4: right← j,bottom← i
5: computeBoundaries((A[i], B[j]))
6: for k ← p− 1 to 1 do
7: found← false
8: while found = false AND dm[k] 6= ∅ do
9: (A[i′], B[j′])← remove the first match from dm[k]

10: if i′ ≤ right AND j′ ≤ bottom then
11: if (A[i′], B[j′]) is already a template match then
12: right← j′,bottom← i′
13: computeBoundaries((A[i′], B[j′]))
14: found← true
15: continue
16: end if
17: if (A[i′].parent,B[j′].parent) is a template match then
18: if A[i′].parent.bd ≤ i′ ≤ bottom AND B[j′].parent ≤ j′ ≤ right then
19: mark (A[i′], B[j′]) as a template match;
20: right← j′,bottom← i′
21: mapping[A[i′]]← B[j′],rmapping[B[j′]]← A[i′]
22: computeBoundaries((A[i′], B[j′]))
23: found← true
24: continue
25: end if
26: if either i′ or j′ is not in the boundaries then
27: getAlternative← true
28: end if
29: if at least one ofA[i′].parent andB[j′].parent is mapped to some node then
30: getAlternative← true
31: end if
32: if (A[i′], B[j′]) is dominant match AND getAlternative = true then
33: if i′ is not in the boundaries then
34: parent_A← rmapping[B[j′].parent]
35: find l,l← min{k | A[k].label = A[i′].label∧k ∈ [parent_A.bd, bottom]}
36: append non-dominant match (A[l], B[j′]) to dm[k]
37: end if
38: if j′ is not in the boundaries then
39: parent_B ← mapping[A[i′].parent]
40: find l,l← min{k | B[k].label = B[j′].label ∧ k ∈ [parent_B.bd, right]}
41: append non-dominant match (A[i′], B[l]) to dm[k]
42: end if
43: end if
44: end if
45: end if
46: end while
47: end for

30

Condition 1, and 2 ensure that identified template matches can form a mapping

which is consistent with the definition of restricted top-down tree mapping. Different from

previous Prüfer sequence-based algorithm, the boundary attribute of a node A[i] here

does not give the exact range of the subtree rooted at A[i]. However, matches satisfy

Condition 1, and 2 still give a mapping which is consistent with the definition of restricted

top-down mapping for labeled, rooted and ordered trees. Because each node of a given

tree appears exactly once in its corresponding Consolidated Prüfer sequence, each node

would be visited at most once. Backtracking from Dp and following Condition 2 is similar to

do top-down and right to left traversal on both trees. This guarantees that mapping found

is consistent with the definition of the restricted top-down mapping. Since all template

match are dominant matches, Similar to previous section, Condition 3 and 4 Condition 3

can be used to find potential non-dominant template matches.

Algorithm 4 gives the procedure of finding template matches. The input array

dm[1, 2, . . . , p] contains p lists of dominant matches and p is the length of the LCS. Each

list dm[i],1 ≤ i ≤ p, consists of all dominant matches in Di. The algorithm starts by

marking the root-root match in Dp as the template match. Then the boundary attributes of

root nodes are computed and the the root-root match is set as current match. Then the

algorithm backtracks to D1 to identify template matches. At Line 9, a match (A[i′], B[j′]) is

removed from the head of dm[k]. (A[i′], B[j′]) satisfying boundary conditions is marked

as the template match if (A[i′].parent,B[j′].parent) is a template match (Line 11-18). In

other cases, we find alternative non-dominant matches that satisfy boundary conditions

(Line 26-37). This is the same as Algorithm 3 does.

Figure 4.6 gives an example showing a step-by-step template match identification

based on Consolidated Prüfer sequence. The input trees are T8 and T9 given in Figure

4.4a. In figure 4.6, entries circled by solid lines are the dominant matches obtained in the

subsequence matching phase. In Figure 4.6a, the root-root match (CS8[6], CS9[4]) is

initialized as template match which is denoted by the dash circle. Since CS8[6] and

CS9[4] are root nodes, CS8[6].bd = 1 and CS9[4].bd = 1. The current boundary

conditions are indicated by the rectangular. In Figure 4.6b, (CS8[5], CS9[3]) is within the

31

boundaries and (CS8[5].parent, CS9[3].parent) is a template match. Thus,

(CS8[5], CS9[3]) is marked as the template match. Since CS8[2].label = CS8[5].label

and 2 > CS[5].parent.bd = 1, one boundary left = 3. CS9[3].label appears only once in

CS9, thus another boundary up = 1. Since (CS8[5], CS9[3]) is current template match,

current boundary conditions are left = 3,up = 1,right = 4 and bottom = 2. Boundary

conditions are denoted by the rectangular in Figure 4.6b. Similarly, (CS8[4], CS9[2]) in

Figure 4.6c is marked. Since CS9[1].parent = CS9[3] is marked and

CS8[1].parent = CS8[2] is not marked, CS8[1] can not be a template node because its

parent is not a template node. Thus the algorithm checks the first row to see if there is any

non-dominant match satisfying the requirement of template match. Non-dominant match

(S8[5], S9[2]) is selected and marked as template match in Figure 4.6d. Figure 4.6e

shows all node mapping pairs indicated by template matches.

Thus the time complexity of Prüfer sequence-based tree template detection

algorithm has a upper bound

O(m+ 2n+min{pm log s, p(n− p) log s}+ d+ 2d(log n+ logm)). n and m are the size

of two input trees. Like in the previous algorithm, p is the length of the LCS, s is the size of

the alphabet and d is number of dominant matches. The upper bound on d is

p(m+ n− 2p+ 1)[31].

Template Retrieval

Once template matches are identified, the template tree structure can be easily obtained

by traversing an input tree and removing nodes which are not marked. Algorithm 5

presents the complete procedure of template detection.

Discussion

One potential limitation of our sequence-based algorithms is that they may return a much

smaller template structure than the one returned by the top-down template detection

algorithm under certain situations. Figure 4.8 and Figure 4.9 give an example. Two input

trees T10 and T11 are shown in Figure 4.7a. In Figure 4.7b, gray nodes of T10 and T11

32

B
2

A
6

B
5

E
5

A
6

R
‐

B
3 1 1

E
3 2

A
4 2 3

R
‐ 4

Consolidated Prüfer sequence CS8 of T8
Co

ns
ol
id
at
ed

 P
rü
fe
r
se
qu

en
ce
 C
S9
 o
f T

9

(a)

B
2

A
6

B
5

E
5

A
6

R
‐

B
3 1 1

E
3 2

A
4 2 3

R
‐ 4

Consolidated Prüfer sequence CS8 of T8

Co
ns
ol
id
at
ed

 P
rü
fe
r
se
qu

en
ce
 C
S9
 o
f T

9

(b)

B
2

A
6

B
5

E
5

A
6

R
‐

B
3 1 1

E
3 2

A
4 2 3

R
‐ 4

Consolidated Prüfer sequence CS8 of T8

Co
ns
ol
id
at
ed

 P
rü
fe
r
se
qu

en
ce
 C
97

 o
f T

9

(c)

B
2

A
6

B
5

E
5

A
6

R
‐

B
3 1 1

E
3 2

A
4 2 3

R
‐ 4

Consolidated Prüfer sequence CS8 of T8

Co
ns
ol
id
at
ed

 P
rü
fe
r
se
qu

en
ce
 C
S9
 o
f T

T 9

(d)

R

A A

B B E

2

3 4

5

1

6
R

A

B E

3

4

1 2

T8 T9
Mappings indicated by match(CS8[6],CS9[4]) ,(S8[5],CS9[3]),

(CS8[4],CS9[2]) , (CS8[3],CS9[2]) and (CS8[2],CS9[1])

(e)

Figure 4.6: Step by step template match identification based on Consolidated Prüfer se-
quence

33

Algorithm 4 identifyTemplateMatches-CPS(dm[1, 2, . . . , p])
1: (A[i], B[j])← remove the first match from dm[p]
2: mark (A[i], B[j]) as a template match
3: mapping[A[i]]← B[j],rmapping[B[j]]← A[i]
4: right← j,bottom← i
5: computeBoundaries((A[i], B[j]))
6: for k ← p− 1 to 1 do
7: found← false
8: while found = false AND dm[k] 6= ∅ do
9: (A[i′], B[j′])← remove the first match from dm[k]

10: if i′ ≤ right AND j′ ≤ bottom then
11: if (A[i′].parent,B[j′].parent) is a template match then
12: if A[i′].parent.bd ≤ i′ < bottom AND B[j′].parent ≤ j′ < right then
13: mark (A[i′], B[j′]) as a template match;
14: right← j′,bottom← i′
15: mapping[A[i]]← B[j],rmapping[B[j]]← A[i]
16: computeBoundaries((A[i′], B[j′]))
17: found← true
18: continue
19: end if
20: if either i′ of j′ is not in the boundaries then
21: getAlternative← true
22: end if
23: if at least one ofA[i′].parent andB[j′].parent is mapped to some node then
24: getAlternative← true
25: end if
26: if (A[i′], B[j′]) is dominant match AND getAlternative = true then
27: if i′ is not in the boundaries then
28: parent_A← rmapping[B[j′].parent]
29: find l,l← min{k | A[k].label = A[i′].label∧k ∈ [parent_A.bd, bottom]}
30: append non-dominant match (A[l], B[j′]) to dm[k]
31: end if
32: if j′ is not in the boundaries then
33: parent_B ← mapping[A[i′].parent]
34: find l,l← min{k | B[k].label = B[j′].label ∧ k ∈ [parent_B.bd, right]}
35: append non-dominant match (A[i′], B[l]) to dm[k]
36: end if
37: end if
38: end if
39: end if
40: end while
41: end for

34

Algorithm 5 PS/CPS-TD(T1, T2)
1: S1 ← Prüfer/Consolidate Prüfer sequence of T1

2: S2 ← Prüfer/Consolidate Prüfer sequence of T2

3: dominan_matches← computeLCS(S1, S2)
4: identifyTemplateMatches(dominant_matches)
5: TS ← traverse T1 and remove nodes which are not marked
6: return TS

indicate the template nodes and dash lines are mapping pairs found by TD-TD. The

template structure found by PS-TD and CPS-TD are shown in Figure 4.8 and Figure 4.9.

If a match (A[i], B[j]) ∈ Ck, this means that the length of the longest common

subsequence between A[1]A[2] . . . A[i] and B[1]B[2] . . . B[j] is k. As we discussed in

Chapter 4, k can be treated as the upper bound of the size of the common forests of the

forests represented by A[1]A[2] . . . A[i] and B[1]B[2] . . . B[j]. In our sequence-based

algorithms, (A[i], B[j]) ∈ Ck is chosen as a template match if it qualifies for a template

match and k is the largest possible value. However, this may not lead to an optimal result.

k only gives the upper bound of the size of the possible common forest between the

remaining unvisited parts of input trees. For instance, in Figure 4.8b and Figure 4.9b, if we

choose (S11[3], S10[3]) instead of (S11[5], S10[6]) in Figure 4.8b and (CS11[3], CS10[3])

instead of (CS11[3], CS10[5]) in Figure 4.9b, we could find the same result shown in

Figure 4.7b. Of course, we can try all matches which qualify for template matches and

return the template structure having the largest size. This would be impractical since it is

similar to enumerating all possible LCSs, which is very costly.

35

R

A A

C

D

B

R

A

C B

T10 T11

D

(a) Two input trees T10 and T11

R

A A

C

D

B

R

A

C B

T10 T11

D

(b) Optimal template found by TD-TD

Figure 4.7: Example of limitations of sequence-based algorithms:Input trees and optimal
template

R

A A

C

D

B
2

3

4

1

6 R

A

C B

4

5

2 3

T10 T11

D
1

5

(a) Input trees

D
1

C
2

A
3

R
6

B
4

A
5

R
6

D
1

1

C
2

2

A
4

3

B
3

4

A
4

5

R
5

4 6

Prüfer sequence S10 of T10

Pr
üf
er

se
qu

en
ce
 S
11

 o
f T

11

(b) Template matches detected by Algorithm 3

R

A A

C

D

B
2

3

4

1

6 R

A

C B

4

5

2 3

T10 T11

D
1

5

(c) Template found by PS-TD

Figure 4.8: Example of limitations of sequence-based algorithms:Template found by PS-TD

36

R

A A

C

D

B
2

3

4

1

6 R

A

C B

4

5

2 3

T10 T11

D
1

5

(a) Input trees

D
2

C
3

A
6

B
5

A
6

R
‐

D
2

1

C
4

2

B
4

3

A
5

3 4

R
‐

5

Consolidated Prüfer sequence CS10 of T10

Co
ns
ol
id
at
ed

 P
rü
fe
r
se
qu

en
ce
 C
S1
1
of
 T

11

(b) Template matches detected by Algorithm 4

R

A A

C

D

B
2

3

4

1

6 R

A

C B

4

5

2 3

T10 T11

D
1

5

(c) Template found by CPS-TD

Figure 4.9: Example of limitations of sequence-based algorithms:Template found by CPS-
TD

37

Chapter 5

EXPERIMENTAL EVALUATION

For simplicity, in this section, the restricted top-down template detection algorithm, the

restricted bottom-up template detection algorithm, the Prüfer sequence-based template

detection algorithm and the Consolidated Prüfer sequence-based template detection

algorithm are denoted by TD-TD,BU-TD,PS-TD and CPS-TD accordingly.

Experimental Setup

Our dataset consists of 10 sets of web pages from 5 web sites. Web pages in each set are

from the same category of a web site. Table 5.1 shows a brief description of the data set.

For all web pages, we applied the CyberNeko HTML parser to obtain the DOM

tree and to fix common HTML errors.

Effectiveness Evaluation

In the effectiveness evaluation, we conducted two types of evaluations.

In the first type of effectiveness evaluation, templates returned by TD-TD were

used as the reference set because they were optimal in terms of tree size. We then

compared templates detected by other methods with the reference set. In this evaluation,

Site Category No. of pairs Published dates Name of test set
CNET Latest News 91 6.4,2010-6.7,2010 CNET-Latest News
CNN Money 120 3.10,2011-3.28,2011 CNN-Money
CNN Travel 91 3.25,2011-4.6,2011 CNN-Travel
CNN Entertainment 120 3.1,2011-3.29,2011 CNN-Entertainment
BBC Entertainment 21 5.24,2010-5.28,2010 BBC-Entertainment
BBC Economics 91 5.20,2010-5.25,2010 BBC-Economics
MSN Business 55 6.2,2010-6.7,2010 MSN-Business
MSN InGame Blog 105 3.24,2011-3.29,2011 MSN-InGame Blog
Yahoo News 55 3:00AM-7:30PM,3.29,2011 Yahoo-News
NPR Music 91 3.16,2011-3.29,2011 NPR-Music

Table 5.1: Brief description of data set

38

the order of nodes was not considered. In other words, we only evaluated how many

overlaps there were between the optimal results and results returned by PS-TD,CPS-TD

and BU-TD. There was no penalty if a returned result was not actually a common subtree.

In this evaluation, we first ran the TD-TD on each test pair to generate the

reference set R containing the nodes in the template. Then we applied PS-TD,CPS-TD

and BU-TD, on the same pair to generate corresponding result sets TPS ,TCPS , and TBU .

Each set of TPS ,TCPS , and TBU is compared with R using precision, recall and the

F-score.

Figure 5.1 shows the average precision, recall and the F-score of BU-TD, PS-TD

and CPS-TD for each set. As we can see from Figure 5.1b and Figure 5.1c, in all cases,

PS-TD and CPS-TD achieved precision and recall which were both close to 1. This means

that the template nodes detected by the sequence-based algorithms were almost identical

to the optimal results obtained by TD-TD.

Between two sequence-based algorithms, the Consolidated Prüfer

sequence-based algorithm achieved better results than the classical Prüfer

sequence-based algorithm in general. One explanation could be that the dominant

matches found in the subsequence matching phase is more close to the optimal restricted

top-down node mapping pairs, since all nodes of a tree appear only once in the

Consolidated Prüfer sequence.

Since we were trying to find a common subtree of DOM trees, in the second type

of effectiveness evaluation, penalties were given if results were not common subtrees. In

this evaluation, results of PS-TD,CPS-TD and BU-TD were also compared with results of

TD-TD using precision, recall and F-score. Different from the first evaluation, penalty was

assigned if a result returned by PS-TD, CPS-TD or BU-TD was not a common subtree

between two input trees. If one method gave a result which was not a common subtree of

input trees, for that test case, the precision, recall and F-score of that method were

assigned 0.

From Figure 5.2 and Figure 5.1, we can see that precision, recall and F-socre of

39

BU‐TD PS‐TD CPS‐TD
CNET‐Latest News 0.907 0.968 0.977
CNN‐Money 0.985 0.995 0.997
CNN‐Travel 0.951 0.993 0.994
CNN‐Entertainment 0.977 0.993 0.994
BBC‐Entertainment 0.884 0.964 0.96
BBC‐Economics 0.891 0.935 0.948
MSN‐Bussiness 0.963 0.993 0.998
MSN‐InGame Blog 0.978 0.994 0.995
Yahoo‐News 0.939 0.995 0.998
NPR‐Music 0.951 0.982 0.988

(a) F-scores

BU‐TD PS‐TD CPS‐TD
CNET‐Latest News 0.905 0.988 0.992
CNN‐Money 0.981 0.998 0.998
CNN‐Travel 0.94 0.997 0.998
CNN‐Entertainment 0.973 0.994 0.995
BBC‐Entertainment 0.874 0.968 0.975
BBC‐Economics 0.877 0.952 0.964
MSN‐Bussiness 0.982 0.996 0.999
MSN‐InGame Blog 0.989 0.995 0.996
Yahoo‐News 0.967 0.997 0.998
NPR‐Music 0.929 0.99 0.994

(b) Precision

BU‐TD PS‐TD CPS‐TD
CNET‐Latest News 0.915 0.95 0.963
CNN‐Money 0.989 0.993 0.996
CNN‐Travel 0.962 0.989 0.99
CNN‐Entertainment 0.982 0.992 0.993
BBC‐Entertainment 0.899 0.96 0.947
BBC‐Economics 0.91 0.923 0.934
MSN‐Bussiness 0.946 0.991 0.998
MSN‐InGame Blog 0.968 0.993 0.994
Yahoo‐News 0.913 0.994 0.997
NPR‐Music 0.975 0.974 0.983

(c) Recall

Figure 5.1: Effectiveness evaluation without penalty

40

BU‐TD PS‐TD CPS‐TD
CNET‐Latest News 0 0.968 0.977
CNN‐Money 0.008 0.995 0.997
CNN‐Travel 0 0.993 0.994
CNN‐Entertainment 0 0.993 0.994
BBC‐Entertainment 0 0.964 0.96
BBC‐Economics 0 0.935 0.948
MSN‐Bussiness 0 0.993 0.998
MSN‐InGame Blog 0.022 0.994 0.995
Yahoo‐News 0 0.995 0.998
NPR‐Music 0 0.982 0.988

(a) F-scores

BU‐TD PS‐TD CPS‐TD
CNET‐Latest News 0 0.988 0.992
CNN‐Money 0.008 0.998 0.998
CNN‐Travel 0 0.997 0.998
CNN‐Entertainment 0 0.994 0.995
BBC‐Entertainment 0 0.968 0.975
BBC‐Economics 0 0.952 0.964
MSN‐Bussiness 0 0.996 0.999
MSN‐InGame Blog 0.022 0.995 0.996
Yahoo‐News 0 0.997 0.998
NPR‐Music 0 0.99 0.994

(b) Precision

BU‐TD PS‐TD CPS‐TD
CNET‐Latest News 0 0.95 0.963
CNN‐Money 0.008 0.993 0.996
CNN‐Travel 0 0.989 0.99
CNN‐Entertainment 0 0.992 0.993
BBC‐Entertainment 0 0.96 0.947
BBC‐Economics 0 0.923 0.934
MSN‐Bussiness 0 0.991 0.998
MSN‐InGame Blog 0.022 0.993 0.994
Yahoo‐News 0 0.994 0.997
NPR‐Music 0 0.974 0.983

(c) Recall

Figure 5.2: Effectiveness evaluation with penalty

41

PS-TD and CPS-TD are the same. It means that PS-TD and CPS-TD guarantee to give a

common subtree of two input trees. On the other hand, we can see from Figure 5.2 that for

10 test sets, BU-TD could hardly return common subtrees of input trees. The main reason

for BU-TD to achieve very poor results was that results violated the order constraints

mensioned in the Background section. Figure 5.3 and Figure 5.4 shows an example.

Figure 5.3a and Figure 5.3b are parts of 2 Web pages from test set “CNN-Money”. Both

pages have tables showing “US Indexes”. Figure 5.4a and Figure 5.4b give parts of

corresponding DOM structures of tables. Since the “change” of “Nasdaq” in Figure 5.3a

and the “change” of “Treasuries” in Figure 5.3b have the same value and both are the first

ones having the value “0.00” in the tables, BU-TD mapped the corresponding node of

“change” of “Nasdaq” in Figure 5.3a to the corresponding node of “change” of “Treasuries”

in Figure 5.3b. Due to the same reason, “Nasdaq” in Figure 5.3a was mapped to “Nasdaq”

in Figure 5.3b and “2,730.68” in Figure 5.3a was mapped to “2,730.68” in Figure 5.3b. As

shown in Figure 5.4a and Figure 5.4b, gray nodes denote to the template nodes marked by

BU-TD. Obviously, the subtree consisted of template nodes in Figure 5.3a was not a

common subtree of two DOM fragments in Figure 5.4.

Efficiency Evaluation

In this section, the efficiency of TD-TD, BU-TD, and our sequence-based algorithms is

evaluated. Similar to the effectiveness evaluation, for each test set, all algorithms were ran

on every pair of pages in that set. The top-down mapping algorithm, TD-TD, is usually the

slowest. It also showed quadratic running time behaviors on test sets like

“CNN-Entertainment”, “MSN-InGame Blog”,“NPR-Music”, and “CNET-LatestNews”. The

execution time of BU-TD, grew linearly as the size of trees increases. PS-TD took more

time than BU-TD in most cases, but it took much less time than TD-TD in all cases. For

CPS-TD, the running time grew almost linearly.

From the results, we can see that the sequence-based algorithms were much

faster than TD-TD. CPS-TD was even better than the bottom-up mapping algorithm in

terms of execution time. One explanation for this is that BU-TD visited each node at least 6

times and sequence-based algorithms visited each node at most 3 times. As we expected,
42

(a) A page from CNN-Money

(b) Another page from CNN-Money

Figure 5.3: An example of BU-TD result

43

TBODY

TR

TD

A SPAN

TD TDTD

“Nasdaq”
“2,730
.68”

SPAN

“0.00”

SPAN

“0.00%”

TR

TD

A SPAN

TD TDTD

“Treasurie
s”

“3.45”

SPAN

“0.00”

SPAN

“0.12%”

(a) Part of DOM trees of Figure 5.3a

TBODY

TR

TD

A SPAN

TD TDTD

“Treasurie
s”

“3.45”

SPAN

“0.00”

SPAN

“0.12%”

TR

TD

A SPAN

TD TDTD

“Nasdaq”
“2,730
.68”

SPAN

“‐
12.38”

SPAN

“‐
0.45%”

(b) Part of DOM trees of Figure 5.3b

Figure 5.4: Part of Template nodes identified by BU-TD

44

the CPS-TD had a better performance than PS-TD since Consolidated Prüfer sequence of

a given tree is shorter than the corresponding Prüfer sequence.

The relationships between running time and F-score obtained without penalization

are shown in Figure 5.10a and Figure 5.10b. Figure 5.10a shows for each test set, the

average F-score and average execution time of all four approaches. From Figure 5.10a,

we can see that sequence-based algorithms achieved F-score which was over 0.9 in a

relatively short time. Figure 5.10b shows for all test pairs, the average F-score and

average execution time of all four approaches. Figure 5.10b shows that on average,

PS-TD and CPS-TD took about 1/4 and 1/10 running time of TD-TD to obtain near optimal

results. Although BU-TD was also fast, the quality of its results were not as good as PS-TD

and CPS-TD. Thus, CPS-TD could be a better choice for time-sensitive applications.“Time

vs F-score with penalization” are showed in Figure 5.11. From Figure 5.11, we can see

that BU-TD was also fast, but it could hardly identify common subtrees of input DOM trees.

As we can see from Figure 5.10 and Figure 5.11, TD-TD could return optimal

results at the cost of much more time than PS-TD and CPS-TD. On the hand, PS-TD and

CPS-TD could give results of good quality with much less time than TD-TD. Though BU-TD

was efficient, it can not guarantee to give common subtrees of input DOM trees.

Discussion

In this section, we investigate how changes between DOM tree could have impact on the

running time behaviors of TD-TD, BU-TD, PS-TD and CPS-TD. Theoretically, the running

time of each of the four algorithms is related to the number of nodes of input DOM trees. In

addition, according to Vieira, the running time performance of TD-TD could be

downgraded if most of changes between DOM trees are at leaf nodes [2]. Thus, we

investigated the correlations between the running time and the following six parameters:

tree size, leaf size, total changes, leaf changes, total-change ratio and leaf-change ratio.

45

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000

Ti
m
e(
m
ill
is
ec
on

ds
)

Average size of DOM trees

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(a) BBC-Entertainment

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000

Ti
m
e(
m
ill
is
ec
on

ds
)

Average size of DOM trees

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(b) BBC-Economics

Figure 5.5: Efficiency evaluation results-1

46

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

Ti
m
e(
m
ill
is
ec
on

ds
)

Average size of DOM trees

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(a) CNN-Entertainment

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

Ti
m
e(
m
ill
is
ec
on

ds
)

Average size of DOM trees

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(b) CNN-Travel

Figure 5.6: Efficiency evaluation results-2

47

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000

Ti
m
e(
m
ill
is
ec
on

ds
)

Average size of DOM trees

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(a) MSN-InGame Blog

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000

Ti
m
e(
m
ill
is
ec
on

ds
)

Average size of DOM trees

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(b) MSN-Business

Figure 5.7: Efficiency evaluation results-3

48

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000

Ti
m
e(
m
ill
is
ec
on

ds
)

Average size of DOM trees

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(a) NPR-Music

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000

Ti
m
e(
m
ill
is
ec
on

ds
)

Average size of DOM trees

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(b) Yahoo-News

Figure 5.8: Efficiency evaluation results-4

49

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

Ti
m
e(
m
ill
is
ec
on

ds
)

Average size of DOM trees

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(a) CNN-Money

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1000 2000 3000 4000 5000 6000

Ti
m
e(
m
ill
is
ec
on

ds
)

Average size of DOM trees

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(b) CNET-Latest

Figure 5.9: Efficiency evaluation results-5

50

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 200 400 600 800 1000

av
er
ag
e
F‐
sc
or
e

average Time (milliseconds)

Time‐F (no penalty)

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(a) Average Time vs average F-score for each test set

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250

av
er
ag
e
F‐
sc
or
e

average Time(milliseconds)

Time‐F (no penalty)

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(b) Average Time vs average F-score for all test sets

Figure 5.10: Average Time vs F-score

51

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 200 400 600 800 1000

av
er
ag
e
F‐
sc
o
re

average Time(milliseconds)

Time‐F (with penalty)

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(a) Average Time vs average F-score for each test set

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 50 100 150 200 250

av
er
ag
e
F‐
sc
o
re

average Time(milliseconds)

Time‐F (with penalty)

TD‐TD

PS‐TD

BU‐TD

CPS‐TD

(b) Average Time vs average F-score for all test sets

Figure 5.11: Average Time vs F-score

52

The six parameters were defined as following:

tree size = number of DOM tree nodes

leaf size = number of leaf nodes

total changes = number of non-template nodes

leaf changes = number of non-template nodes which are leaf nodes and

parents are template nodes

total-change ratio =
total changes

tree size

leaf-change ratio =
leaf changes
total changes

Figure 5.12 - 5.15 shows correlations between the above six parameters and the

running time of a specific method. For a given method and a given data set, we computed

Pearson’s correlation coefficients between six parameters and the running time.

From Figure 5.12 - 5.15, we noticed that “tree size” and “leaf size” showed very

similar behaviors in terms of their impacts on running time of TD-TD,PS-TD,BU-TD and

CPS-TD. For all methods and all data sets, “tree size” and “leaf size” were positively

related to the running time. For a given data set and a given method, the correlation

coefficient between “tree size” and the runnng time was almost the same as the correlation

coefficient between “leaf size” and the running time. Thus, we could consider only one of

them as a potential parameter that may determine the running time. Similar to “tree size”

and “leaf size”, “total-change ratio” and “total changes” had similar behaviors which are

shown in Figure 5.12 - 5.15. Similarly, only one of them could be considered as a potential

parameter that may determine the running time. In addition, we observed that, for a given

method, correlations between “leaf-change ratio” and the running time were sometimes

opposite to correlations between the running time and “leaf changes”. For example, as

shown in Figure 5.12, the Pearson’s correlation coefficients between the running time of

TD-TD and “leaf change” were all positive while there were some negative correlation

coefficients between the running time of TD-TD and “leaf-change ratio”. Thus,

“leaf-change ratio” and “leaf changes” may have different impacts on the running time. So,

the running time behaviors of all four approaches could be related to the following four

parameters: tree size,total changes,leaf changes and leaf-change ratio.
53

Though we know the running time behaviors of TD-TD,BU-TD,PS-TD and CPS-TD

could be related to above four parameters, the problem of finding which parameters are

more important to a specific approach still needs to be furthur studied.

54

‐1

‐0
.8

‐0
.6

‐0
.4

‐0
.20

0.
2

0.
4

0.
6

0.
81

tr
ee

 si
ze

le
af
 si
ze

to
ta
l‐c
ha
ng
e
ra
tio

le
af
‐c
ha
ng
e
ra
tio

to
ta
l c
ha
ng
es

le
af
 c
ha
ng
es

Pearson's correlation coefficient

TD
‐T
D

CN
N
‐E
nt
er
ta
in
m
en

t

CN
N
‐M

on
ey

CN
N
‐T
ra
ve
l

M
SN

‐In
Ga

m
e
bl
og

M
SN

‐B
us
in
es
s

BB
C‐
Ec
on

om
ic
s

BB
C‐
En

te
rt
ai
nm

en
t

Ya
ho

o‐
N
ew

s

N
PR

‐M
us
ic

CN
ET

‐L
at
es
tN
ew

s

F
ig

ur
e

5.
12

:
C

or
re

la
tio

ns
be

tw
ee

n
ru

nn
in

g
tim

e
of

T
D

-T
D

an
d

tr
ee

si
ze

,le
af

si
ze

,to
ta

l-c
ha

ng
e

ra
tio

,le
af

-c
ha

ng
e

ra
tio

,to
ta

l
ch

an
ge

s
an

d
le

af
ch

an
ge

s

55

‐1

‐0
.8

‐0
.6

‐0
.4

‐0
.20

0.
2

0.
4

0.
6

0.
81

tr
ee

 si
ze

le
af
 si
ze

to
ta
l‐c
ha
ng
e
ra
tio

le
af
‐c
ha
ng
e
ra
tio

to
ta
l c
ha

ng
es

le
af
 c
ha
ng
es

Pearson's correlation coefficient

BU
‐T
D

CN
N
‐E
nt
er
ta
in
m
en

t

CN
N
‐M

on
ey

CN
N
‐T
ra
ve
l

M
SN

‐In
Ga

m
e
bl
og

M
SN

‐B
us
in
es
s

BB
C‐
Ec
on

om
ic
s

BB
C‐
En

te
rt
ai
nm

en
t

Ya
ho

o‐
N
ew

s

N
PR

‐M
us
ic

CN
ET

‐L
at
es
tN
ew

s

F
ig

ur
e

5.
13

:
C

or
re

la
tio

ns
be

tw
ee

n
ru

nn
in

g
tim

e
of

B
U

-T
D

an
d

tr
ee

si
ze

,le
af

si
ze

,to
ta

l-c
ha

ng
e

ra
tio

,le
af

-c
ha

ng
e

ra
tio

,to
ta

l
ch

an
ge

s
an

d
le

af
ch

an
ge

s

56

‐1

‐0
.8

‐0
.6

‐0
.4

‐0
.20

0.
2

0.
4

0.
6

0.
81

tr
ee

 si
ze

le
af
 si
ze

to
ta
l‐c
ha
ng
e
ra
tio

le
af
‐c
ha
ng
e
ra
tio

to
ta
l c
ha

ng
es

le
af
 c
ha

ng
es

Pearson's correlation coefficient

PS
‐T
D

CN
N
‐E
nt
er
ta
in
m
en

t

CN
N
‐M

on
ey

CN
N
‐T
ra
ve
l

M
SN

‐In
G
am

e
bl
og

M
SN

‐B
us
in
es
s

BB
C‐
Ec
on

om
ic
s

BB
C‐
En

te
rt
ai
nm

en
t

Ya
ho

o‐
N
ew

s

N
PR

‐M
us
ic

CN
ET

‐L
at
es
tN
ew

s

F
ig

ur
e

5.
14

:
C

or
re

la
tio

ns
be

tw
ee

n
ru

nn
in

g
tim

e
of

P
S

-T
D

an
d

tr
ee

si
ze

,le
af

si
ze

,to
ta

l-c
ha

ng
e

ra
tio

,le
af

-c
ha

ng
e

ra
tio

,to
ta

l
ch

an
ge

s
an

d
le

af
ch

an
ge

s

57

‐1

‐0
.8

‐0
.6

‐0
.4

‐0
.20

0.
2

0.
4

0.
6

0.
81

tr
ee

 si
ze

le
af
 si
ze

to
ta
l c
ha

ng
e
ra
tio

le
af
 c
ha
ng
e
ra
tio

to
ta
l c
ha
ng
e

le
af
 c
ha
ng
e

Pearson's correlation coefficient

CP
S‐
TD

CN
N
‐E
nt
er
ta
in
m
en

t

CN
N
‐M

on
ey

CN
N
‐T
ra
ve
l

M
SN

‐In
G
am

e
bl
og

BB
C‐
Ec
on

om
ic
s

M
SN

‐B
us
in
es
s

BB
C‐
En
te
rt
ai
nm

en
t

Ya
ho

o‐
N
ew

s

N
PR

‐M
us
ic

CN
ET

‐L
at
es
tN
ew

s

F
ig

ur
e

5.
15

:
C

or
re

la
tio

ns
be

tw
ee

n
ru

nn
in

g
tim

e
of

C
P

S
-T

D
an

d
tr

ee
si

ze
,le

af
si

ze
,to

ta
l-c

ha
ng

e
ra

tio
,le

af
-c

ha
ng

e
ra

tio
,to

ta
l

ch
an

ge
s

an
d

le
af

ch
an

ge
s

58

Chapter 6

CONCLUSION

In this thesis, we presented new approaches to the problem of detecting templates of web

pages. Different from existing tree mapping algorithms, our algorithms first transform trees

to unique sequential representations apply longest common subsequence matching

algorithm on them. Then the template is obtained by finding a sequence of a subtree

which is common to all trees. Experimental evaluations showed that our sequence-based

template detection algorithms returned results which are almost identical to optimal results

in most cases. It is showed that sequence-based algorithms are faster than existing tree

mapping algorithms. Limitations of sequence-based algorithms are also discussed in this

thesis.

59

REFERENCES

[1] David Gibson, Kunal Punera, and Andrew Tomkins, “The volume and evolution of
web page templates,” in WWW ’05: Special interest tracks and posters of the 14th
international conference on World Wide Web, New York, NY, USA, 2005, pp.
830–839, ACM.

[2] Karane Vieira, Altigran S. da Silva, Nick Pinto, Edleno S. de Moura, ao M. B.
Cavalcanti, Jo and Juliana Freire, “A fast and robust method for web page template
detection and removal,” in CIKM ’06: Proceedings of the 15th ACM international
conference on Information and knowledge management, New York, NY, USA, 2006,
pp. 258–267, ACM.

[3] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera, “Page-level template
detection via isotonic smoothing,” in WWW ’07: Proceedings of the 16th international
conference on World Wide Web, New York, NY, USA, 2007, pp. 61–70, ACM.

[4] Ziv Bar-Yossef and Sridhar Rajagopalan, “Template detection via data mining and its
applications,” in WWW ’02: Proceedings of the 11th international conference on
World Wide Web, New York, NY, USA, 2002, pp. 580–591, ACM.

[5] Karane Vieira, André Luiz Costa Carvalho, Klessius Berlt, Edleno S. Moura,
Altigran S. Silva, and Juliana Freire, “On finding templates on web collections,” World
Wide Web, vol. 12, no. 2, pp. 171–211, 2009.

[6] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet Wiener, “A large-scale study
of the evolution of web pages,” in Proceedings of the 12th international conference on
World Wide Web, New York, NY, USA, 2003, WWW ’03, pp. 669–678, ACM.

[7] Eytan Adar, Jaime Teevan, and Susan T. Dumais, “Resonance on the web: web
dynamics and revisitation patterns,” in Proceedings of the 27th international
conference on Human factors in computing systems, New York, NY, USA, 2009, CHI
’09, pp. 1381–1390, ACM.

[8] Shian-Hua Lin and Jan-Ming Ho, “Discovering informative content blocks from web
documents,” in KDD ’02: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, New York, NY, USA, 2002, pp.
588–593, ACM.

[9] Lan Yi, Bing Liu, and Xiaoli Li, “Eliminating noisy information in web pages for data
mining,” in KDD ’03: Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, New York, NY, USA, 2003, pp. 296–305,
ACM.

[10] Ruihua Song, Haifeng Liu, Ji-Rong Wen, and Wei-Ying Ma, “Learning block
importance models for web pages,” in WWW ’04: Proceedings of the 13th
international conference on World Wide Web, New York, NY, USA, 2004, pp.
203–211, ACM.

60

[11] Hung-Yu Kao, Jan-Ming Ho, and Ming-Syan Chen, “Wisdom: Web intrapage
informative structure mining based on document object model,” IEEE Trans. on
Knowl. and Data Eng., vol. 17, no. 5, pp. 614–627, 2005.

[12] Sandip Debnath, Prasenjit Mitra, Nirmal Pal, and C. Lee Giles, “Automatic
identification of informative sections of web pages,” IEEE Trans. on Knowl. and Data
Eng., vol. 17, no. 9, pp. 1233–1246, 2005.

[13] W3C, “Document object model (dom) level 2 html specification,”
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109.

[14] Sudarshan S. Chawathe, “Comparing hierarchical data in external memory,” in
Proceedings of the 25th International Conference on Very Large Data Bases, San
Francisco, CA, USA, 1999, VLDB ’99, pp. 90–101, Morgan Kaufmann Publishers Inc.

[15] Davi de Castro Reis, Paulo Braz Golgher, Altigran Soares da Silva, and Alberto H. F.
Laender, “Automatic web news extraction using tree edit distance,” in WWW, 2004,
pp. 502–511.

[16] Wuu Yang, “Identifying syntactic differences between two programs,” Software -
Practice and Experience, vol. 21, pp. 739–755, 1991.

[17] Gabriel Valiente, “An efficient bottom-up distance between trees,” in SPIRE, 2001,
pp. 212–219.

[18] Paul F. Dietz, “Maintaining order in a linked list,” in Proceedings of the fourteenth
annual ACM symposium on Theory of computing, New York, NY, USA, 1982, STOC
’82, pp. 122–127, ACM.

[19] Quanzhong Li and Bongki Moon, “Indexing and querying xml data for regular path
expressions,” in Proceedings of the 27th International Conference on Very Large
Data Bases, San Francisco, CA, USA, 2001, VLDB ’01, pp. 361–370, Morgan
Kaufmann Publishers Inc.

[20] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and Shunsuke
Uemura, “Xrel: a path-based approach to storage and retrieval of xml documents
using relational databases,” ACM Trans. Internet Technol., vol. 1, pp. 110–141,
August 2001.

[21] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman, “On
supporting containment queries in relational database management systems,” in
Proceedings of the 2001 ACM SIGMOD international conference on Management of
data, New York, NY, USA, 2001, SIGMOD ’01, pp. 425–436, ACM.

61

[22] Praveen Rao and Bongki Moon, “Prix: Indexing and querying xml using prüfer
sequences,” in ICDE ’04: Proceedings of the 20th International Conference on Data
Engineering, Washington, DC, USA, 2004, p. 288, IEEE Computer Society.

[23] Shirish Tatikonda, Srinivasan Parthasarathy, and Matthew Goyder, “Lcs-trim:
dynamic programming meets xml indexing and querying,” in VLDB ’07: Proceedings
of the 33rd international conference on Very large data bases. 2007, pp. 63–74,
VLDB Endowment.

[24] Robert A. Wagner and Michael J. Fischer, “The string-to-string correction problem,”
J. ACM, vol. 21, pp. 168–173, January 1974.

[25] William J. Masek and Mike Paterson, “A faster algorithm computing string edit
distances,” J. Comput. Syst. Sci., vol. 20, no. 1, pp. 18–31, 1980.

[26] Eugene W. Myers, “An o(nd) difference algorithm and its variations,” Algorithmica,
vol. 1, pp. 251–266, 1986.

[27] Esko Ukkonen, “Algorithms for approximate string matching,” Inf. Control, vol. 64, pp.
100–118, March 1985.

[28] S. Wu, U. Manber, G. Myers, and W. Miller, “An o(np) sequence comparison
algorithm,” Inf. Process. Lett., vol. 35, pp. 317–323, September 1990.

[29] Daniel S. Hirschberg, “Algorithms for the longest common subsequence problem,” J.
ACM, vol. 24, pp. 664–675, October 1977.

[30] James W. Hunt and Thomas G. Szymanski, “A fast algorithm for computing longest
common subsequences,” Commun. ACM, vol. 20, pp. 350–353, May 1977.

[31] Claus Rick, “New algorithms for the longest common subsequence problem,” Tech.
Rep., 1994.

[32] Alberto Apostolico and Concettina Guerra, “The longest common subsequence
problem revisited,” Algorithmica, vol. 2, pp. 316–336, 1987.

62

