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ABSTRACT 

In the last few years, significant advances in nanofabrication have allowed 

tailoring of structures and materials at a molecular level enabling nanofabrication 

with precise control of dimensions and organization at molecular length scales, a 

development leading to significant advances in nanoscale systems. Although, the 

direction of progress seems to follow the path of microelectronics, the 

fundamental physics in a nanoscale system changes more rapidly compared to 

microelectronics, as the size scale is decreased. The changes in length, area, and 

volume ratios due to reduction in size alter the relative influence of various 

physical effects determining the overall operation of a system in unexpected 

ways.  

One such category of nanofluidic structures demonstrating unique ionic 

and molecular transport characteristics are nanopores. Nanopores derive their 

unique transport characteristics from the electrostatic interaction of nanopore 

surface charge with aqueous ionic solutions.   

In this doctoral research cylindrical nanopores, in single and array 

configuration, were fabricated in silicon-on-insulator (SOI) using a combination 

of electron beam lithography (EBL) and reactive ion etching (RIE). The 

fabrication method presented is compatible with standard semiconductor 

foundries and allows fabrication of nanopores with desired geometries and precise 

dimensional control, providing near ideal and isolated physical modeling systems 

to study ion transport at the nanometer level.  
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Ion transport through nanopores was characterized by measuring ionic 

conductances of arrays of nanopores of various diameters for a wide range of 

concentration of aqueous hydrochloric acid (HCl) ionic solutions. Measured ionic 

conductances demonstrated two distinct regimes based on surface charge 

interactions at low ionic concentrations and nanopore geometry at high ionic 

concentrations. Field effect modulation of ion transport through nanopore arrays, 

in a fashion similar to semiconductor transistors, was also studied. Using ionic 

conductance measurements, it was shown that the concentration of ions in the 

nanopore volume was significantly changed when a gate voltage on nanopore 

arrays was applied, hence controlling their transport.  

Based on the ion transport results, single nanopores were used to 

demonstrate their application as nanoscale particle counters by using polystyrene 

nanobeads, monodispersed in aqueous HCl solutions of different molarities. 

Effects of field effect modulation on particle transition events were also 

demonstrated.  
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1. INTRODUCTION 

1.1 Introduction 

In the last few years, significant advances in nanofabrication technologies 

have led to the beginning of a new era where materials and structures are designed 

at a molecular level and then fabricated with control of composition and 

dimensions at molecular length scales. This drive to design, manipulate and build 

structures with dimensions in the molecular range has immensely contributed to 

advances in nanoscale analysis systems. Although, the direction of progress of 

nanoscale analysis systems or nanofluidic structures seems to follow the path of 

microelectronics, it differs in one important aspect from microelectronics that the 

fundamental physics in nanoscale analysis systems, changes more rapidly as the 

size scale is decreased. When a system is reduced in size the changes in length, 

area, and volume ratios alter, often in unexpected ways, the relative influence of 

various physical effects that determine the overall operation of a system. In the 

past, understanding of various transport processes was targeted at size scales 

where the continuum description of a fluid could be employed to understand the 

observed phenomena. Due to the confined geometries at the nanometer level as 

well as significant decrease in the mass and the volume of analytes and reagents 

used for analysis, the continuum assumption often presents an incomplete picture 

of the physical phenomena observed. Independent of the type of driving force, the 

novel attributes of nanofluidic structures ensure ionic and molecular transport 
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characteristics that are fundamentally different from those in larger micrometer 

and millimeter scale structures. One such category of nanofluidic structures 

demonstrating unique ionic and molecular transport characteristics are nanopores. 

The characteristics of ionic and molecular transport often observed in nanopores 

are pronounced influence of surface charge density, coupled and enhanced mass 

and ion transport, nanostructure size and shape, mobile phase ionic strength, large 

mass-to-charge ratio of ionic species in an ionic solution, ion 

depletion/enrichment, ion current rectification, and diminished background 

signals [1-21]. An important feature of these nanopores also is their high surface-

to-volume ratio [4, 5, 21], leading to enhanced electrostatic interaction between 

ions in the bulk of the electrolyte solution filling the nanopore and charges on the 

inner surface of the nanopore itself. This interaction will completely dominate the 

transport of ions when the channel dimensions are comparable to the Debye 

screening length of the ionic solution [4, 5]. These myriad phenomena, point to a 

simple fact that the molecular characteristics can dominate the ionic and 

molecular transport behavior of a nanostructure. Thus, these nanopores are an 

ideal platform to study electrolyte transport properties on the nanometer scale [1, 

3-7, 10, 12-19, 21, 24-44], to control the ion transport by modulation of the 

surface potential [5, 7-9, 12, 13, 16, 17, 20, 29, 31, 33, 36, 37, 39, 44-54], similar 

to the control mechanism present in field effect transistors.   
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Researchers have just started to realize the challenges and possibilities 

associated with nanopores, yet it is clear that the ability and understanding to 

achieve efficient and intelligent control of molecular and ionic transport within 

these nanofluidic structures will enable the construction of new devices that can 

address fundamental problems in molecular and ionic transport as well as open 

vistas for efficient and intelligent control of nanoscale analytes. Efficient and 

intelligent control of the nanoscale analytes implies materials and geometries 

which can sense size, charge, and molecular shape of the target analyte and 

generate signals that control transport on the basis of those characteristics. Both, 

artificial and biological nanopores have emerged as one of the popular choices for 

detection, confinement, and transport of nanoscale analytes allowing an 

opportunity to study nanometer level interactions which are typically lost in bulk 

measurement methods.  

The rest of the chapter is organized as follows. Next section describes the 

basics of main application of nanopores as nanoscale Coulter counters. The 

chapter then briefly describes the application of biological nanopores and the 

challenges associated with them. The discussion then proceeds to artificial 

nanopores fabricated in a variety of substrates using various nanofabrication 

techniques. The chapter concludes with an overview of the work presented in this 

study and brief explanation of organization of the rest of the dissertation 

document.  
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1.2 Resistive Pulse Sensing 

Although, there are many applications of nanofluidic structures, a promising 

approach which has gathered momentum among researchers is the use of 

nanopores for nanoscale analyte detection. For the past decade nanometer-scale 

pores have been investigated as sensing platforms, especially with an application 

towards sensing biological macromolecules. In general, two types of nanopores 

have been presented for application as sensing devices. The first type of 

nanopores used are naturally existing biological nanopores, called ion channels, 

such as α-Hemolysin, whereas the second type of nanopores used are artificial 

nanopores which have been developed using numerous conventional and non-

conventional fabrication techniques and substrates. The fundamental principle 

employing the use of nanopores as nanoscale analyte sensors is simple. 

Nanopores act as Coulter counters or resistive pulse sensors when molecules are 

electrophoretically driven through the pore by applying an electric potential. 

Coulter counting or resistive pulse sensing technique was originally developed by 

Wallace H. Coulter of Coulter Electronics Corporation [55]. In resistive pulse 

sensing method a membrane consisting of a single nanopore is mounted between 

chambers filled with an ionic solution. An electric potential is applied across the 

membrane and the resultant ionic current flowing through the nanopore is 

recorded as a function of time. When an analyte with dimensions comparable to 
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diameter of a nanopore passes through, a momentary blockade of ionic current is 

observed, leading to a downward current pulse. The concentration of the target 

analyte in the solution is correlated with the frequency of downward spikes in the 

current vs. time trace and the magnitude and the duration of the downward spike 

becomes the electric signature of the target analyte[25-27, 32, 41, 47, 56-80]. The 

nanopore geometry can be tailored for the target analyte and then can be used to 

determine analyte size, concentration and electrophoretic mobility[25-27, 32, 41, 

47, 56-80].  Figure 1.1 shows the concept of the above method. 

 

 

Figure 1.1 Graphical depiction of Coulter counting principle. While applying a bias across a 

nanopore of diameter, D the ionic current, Io through the nanopore is measured. When an analyte 

of diameter, d passes through the nanopore (left pane), it results in a drop, ΔIo in the measured 

ionic current (right pane). 

 

Single most important application of nanopores has been in DNA analysis. The 

initial approach for DNA analysis used well-known cell membrane protein such 

as α-Hemolysin [56, 57, 60, 61, 75] which was later extended for use with other 
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membrane bound proteins of various sizes and functionalities [81-86] which is 

explained in the next section. Even though bulk of DNA analysis work still 

focuses on the use of biological nanopores, researchers have developed artificial 

nanopores using conventional or non-conventional fabrication techniques which 

have been summarized in these extensive review papers [14, 21, 79, 87-89]. Over 

a period of time researchers have used nanopores to discriminate between single 

stranded DNA (ssDNA) and double stranded DNA (dsDNA) [90-93], to 

distinguish between RNA and DNA molecules [75, 94], to assess  nucleic acid 

preparation [95], and to discriminate between modified, single and poly- 

nucleotides [74, 96-98]. This application of this method has been expanded and it 

has been successfully used for detection, characterization, and size distribution of 

molecules, viruses, ions and biopolymers [19, 25, 26, 59-65, 69, 72, 73, 99-105]. 

 

1.3 Biological Nanopores 

A major impetus for studying ionic and molecular transport at nanoscale also 

came in part because of important roles played by biological nanopores in many 

physiological processes of living organisms [106]. A cell membrane offers an 

impermeable barrier for any type of ionic or molecular transport in and out of a 

cell. The transport of ions and molecules is then facilitated by different types of 

membrane proteins, called ion channels, embedded in the cell membrane and 

spanning across the thickness of the cell membrane (~4nm), employing myriad of 
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transfer mechanisms such as facilitated diffusion, active transport and 

concentration gradients. Transport of ions and neutral molecules through ion 

channels also forms the backbone of intracellular communication [106]. The 

process of ionic and molecular transport through the membrane proteins is highly 

controlled and selective because biological ion channels are selective for only 

certain type of ions. Often, opening and closing of ion channels, called gating 

behavior, occurs in response to a stimulus such as deformations in the cell 

membrane, presence of a ligand or a specific signaling molecule, or changes in 

voltage potential, temperature or pressure across the cellular membrane.  In the 

open or ‘on’ sate of an ion channel, the ions are allowed to pass through the 

channel and in closed or ‘off’ state, ion transport is blocked [106]. An extensive 

characterization of these transmembrane proteins and understanding of their   

respective transfer and gating mechanisms is a prolific research field [106]. 

The dimensions and the geometry of ion channels make them suitable 

candidates for nanometer scale resistive pulse sensing applications. Initial 

attempts to use biological nanopores for nanoscale analyte detection were made 

with α-Hemolysin, a single 2nm diameter transmembrane protein toxin from the 

bacterial species Staphylococcus aureus, inserted in a lipid bilayer [90, 94]. 

Kasionowicz et al. [90] found that α-Hemolysin pore allows ionic conduction at 

higher ionic strength solution and neutral pH. In addition to this, it was found that 

α-Hemolysin is also capable of passing steady current in a measureable range 



 

8 

ensuring low level of background noise, a benefit over other membrane ion 

channels which exhibit fluctuating current levels as a result of high sensitivity and 

spontaneous gating.   In order to produce a nanopore, α-Hemolysin subunits are 

introduced into a buffered ionic solution which is in contact with a lipid bilayer 

spanned over two solution filled compartments. The head of the mushroom 

shaped α-Hemolysin nanopore is referred to as the cis side and the stem as the 

trans side. The lipid bilayer in which the α-Hemolysin subunits self insert also 

affect its operation as an ion channel. Such a setup is often used for single channel 

recording of ionic current and has been incorporated onto a silicon chip for 

miniaturization [107-109].  In the work reported, Kasianowicz et al. [90] were 

able to observe ionic current changes when DNA passed through the pore. They 

also concluded from the results observed that the duration of drop in current was 

proportional to the length of the passing DNA strand. Meller et al. [75] used α-

Hemolysin to distinguish between purines and pyrimidines. Six polymers with the 

same lengths but different sequences were measured and the results were 

statistically analyzed. Since then α-Hemolysin has been explored and tailored to 

specific applications [59], due to its ideal pore size, low levels of noise in the 

electrical measurements and fairly well established preparation protocols. 

Apart from α-Hemolysin other membrane bound proteins with suitable 

structure and properties have also been explored. Such proteins have been isolated 

and reconsitituted in a lipid bilayer for DNA analysis based on DNA 
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translocation. One such protein channel which has been used is the voltage 

dependent mitochondrial ion channel which is located in mitochondrial outer 

membrane [83, 84, 92]. Similarly, bacterial protein pores have also been studied 

in addition to α-Hemolysin [85]. OmpF porins from the outer membrane of E. 

Coli have also been employed in transport studies [82, 84, 110]. Another 

application of biological pores for analyte detection has used gramicidin pores 

[111]. Primary reasons to explore proteins other than α-Hemolysin are exploration 

of biological pores of varying sizes, ease of preparation procedures and structural 

modification as well as possibility of simpler structure, robustness, and better 

reproducibility [111].  

Although, successfully employed in nanoscale resistive pulse sensing, many 

of the transport properties of biological ion channels are not well understood. 

Investigation of these properties becomes a challenge because of inherent 

shortcomings of biological systems as lipid bilayer embedded protein nanopores 

have limitations due to size, variation, and most importantly stability. Lipid 

bilayer membranes are fragile in nature and protein nanopores are metastable. In 

addition to this, biological nanopores have fixed pore diameter, allow a narrow 

range of safe electrical operation, and are susceptible to thermal, chemical, and 

physical variations in the environment leading to restrictions on experimentation 

possibilities [69, 112, 113]. Biological nanopores, due to their requirement of 

operating at a specific solution pH, are not suitable to study ionic and molecular 
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transport at wider range of solution pH. The complexity of ion selective transport 

coupled with the susceptibility of ion channels to the external factors presents a 

challenge to a thorough understanding and control of ionic and molecular 

transport. Thus, the innate shortcomings of biological nanopores coupled with the 

need to understand molecular and ionic transport in extensive detail force 

researchers to develop options which can serve as isolated and near ideal systems. 

 

1.4 Artificial Nanopores 

In these challenges lies the opportunity for use of artificial nanopores. 

Fabricating artificial nanopores mimicking the ionic and molecular transport 

properties of biological ion channels have the potential to provide a better 

understanding of the physical and chemical principles of operation of biological 

ion channel themselves. Move towards replacing biological nanopores with 

artificial nanopores to study ionic and molecular transport offers immense 

benefits. Artificial nanopores offer ease of fabrication, precise control of 

geometry, are chemically, mechanically, electrically and thermally robust and 

stable, and can be integrated with electronic circuits. Due to the advantages listed 

above artificial nanopores are ideal isolated physical modeling systems to 

understand the complexities of ionic transport at nanometer scale. Artificial 

nanopores also allow tailoring the nanopore surface chemistry for different 

applications thereby giving versatility of use. These benefits make solid state 
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nanopores suitable candidates for extensive ionic and molecular transport studies 

[4, 21-23, 25, 26, 65, 66, 69, 79, 89, 100, 104, 114-118]. 

Seeing the emerging opportunities researchers are coming up with newer ways 

and substrates to fabricate nanopores. Nanopores have been fabricated using 

polyimide thin films [119, 120], polystyrene [64, 121], carbon nanotubes [70, 72, 

73, 122], silicon-on-insulator [19, 22, 23, 25, 26, 101-103, 115], glass capillaries 

[123], PDMS [80, 105], silicon nitride [35, 65, 71, 99, 100, 116, 124-126] , and 

graphene [41, 76, 127]. 

One of the prominent methods of fabricating nanopores is the use of ion beam 

milling process. A beam of massive ions with energies in several thousand 

electron volts (eV) is directed at the surface of the material under use causing 

nanometer scale atomic rearrangements. When a high energy beam of ions is 

focused on the surface of the material being used, atoms coming under the impact 

of the high energy ions are knocked off from the surface leading to formation of a 

nanometer scale aperture. This process was employed by Li et al. [99, 125] on a 

silicon nitride (Si3N4) membrane with a flat surface on one side and a bowl 

shaped cavity on the other. The flat surface was bombarded with high energy 

argon (Ar) ion beams removing material from the flat surface and creating a 

nanometer scale aperture in the process. By using a feedback-controlled ion beam 

system, the researchers could stop the ion beam as soon as breakthrough was 

achieved, leading to a nanopore of 1.8 nm diameter [99, 125, 126].   In another 
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innovative application of ion beam, the ion beam can be used to stimulate lateral 

transport of matter which can then be used shrink pre fabricated nanopores in a 

given substrate [65, 100, 126, 128]. Researchers have reported sample 

temperature, ion beam parameters, surface electric field, and geometry of the pore 

wall as some important parameters for shrinking of a pre fabricated nanopore 

using this method [65, 91, 100, 126, 128-130].  In an another approach, Chen et 

al. [27, 131] suggested using atomic layer deposition (ALD) for fine tuning the 

sizes of nanopore fabricated using ion beam sculpting [131]. Vapor phase atomic 

layer deposition (ALD) provides a uniform coating to all exposed surfaces [49, 

131-133]. Since, the layer is deposited only inside the nanopore, ALD allows to 

maintain the initial geometry of the pore and only reducing nanopore diameter. 

The uniformity of ALD process allows the side wall lining of nanopore with 

atomic precision, leading to a reduction of nanopore diameter to desired 

dimension. Depending on the choice of material used for atomic layer deposition, 

this method can also be used for tailoring the surface properties of a nanopore [49, 

131-133]. 

A similar process to fabricate nanopores uses fine tuning of the nanopore 

substrate using an electron beam. The high intensity and high energy electron 

beam is typically produced by transmission electron microscope (TEM) or field 

emission scanning electron microscope (FESEM). Electron beam lithography and 

standard cleanroom fabrication steps such as reactive ion etching, chemical vapor 
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deposition and wet etching are used to prepare the substrates [69, 102, 103, 114, 

116, 124]. The method of fine tuning of nanopore diameter by using electron 

beam was pioneered by Storm et al. [102, 103] to shrink nanopores fabricated in 

silicon dioxide (SiO2) membrane. Since then, it has become one of the most used 

solid state nanopore fabrication method. Storm et al .[102, 103] used silicon-on-

insulator (SOI) wafers with top single-crystal silicon layer being 340 nm thick as 

a starting material to fabricate free standing silicon membranes. Thermal 

oxidation of the SOI wafers produced a 40nm thick SiO2 masking layer on either 

side of the membrane. A large aperture is etched in the handle silicon wafer using 

the buried oxide layer as the etch stop layer. Then using a combination of electron 

beam lithography and reactive ion etching, square holes greater than 500 nm were 

etched in the top SiO2 masking layer; subsequently pyramid shaped holes were 

etched in the top single-crystal silicon layer using wet potassium hydroxide 

(KOH) chemical anisotropic etch. KOH etches silicon faster along the <100> 

lattice plane compared to <111> lattice plane leading to truncated nanopores. The 

buried oxide separating the top single crystal silicon layer and the bottom handle 

silicon layer is the wet etched using hydrofluoric acid giving a thin silicon 

membrane with nanopore. The wafer is then thermally oxidized again to form a 

SiO2 layer. Storm et al. [102, 103] used a commercial transmission electron 

microscope (TEM) to fine tune the size of pores at nanometer precision. The high 

energy, high electron intensity distorts the material surface thereby changing the 
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nanopore dimensions of the silicon dioxide nanopore in a controlled fashion. With 

the optimum electron beam intensity and pore diameter, nanopores start to shrink 

due to the lateral flow of the material. This whole process can be done in real time 

by observing the nanopore diameter change using the imaging mechanism of the 

microscope and can be switched off as soon as the desired diameter is reached, 

letting the material to quench off and retain its shape [103]. A similar strategy 

independently was used by researchers Heng et al., Keyser et al., and Ho et al. 

[35, 69, 71, 114, 116-118, 124, 134] to fabricate nanopores in ultra-thin 

membranes. Heng et al. [69, 114, 116, 124] employed a narrowly focused high 

energy electron beam from a transmission electron microscope to fabricate 1nm 

diameter nanopores with sub-nanometer precision in metal-oxide-semiconductor 

(MOS)-compatible membranes. Ho et al. [35, 71, 134] with a combination of 

standard nanofabrication techniques and electron beam fine tuning were able to 

fabricate a single nanopore in free-standing Si, SiO2 and Si3N4 membranes. 

Similarly, Keyser et al. [117, 118] fabricated a 4nm diameter single nanopore in 

low-stress silicon nitride membrane. Recently, TEM electron beam was also used 

to fabricate nanopores in graphene [41, 76, 127]. In a minor variation of the 

electron beam fine tuning, Chang et al. [25, 26, 115] used a field emission 

scanning electron microscope (FESEM) to shrink a nanopore.  

Another method of fabricating nanopores which is as prevalent as ion beam 

sculpting or electron beam tuning is the ion track-etch method. In order to 
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fabricate nanopores using ion track etching in polymer membranes, a polystyrene 

or polyimide membrane is first bombarded with a beam of high energy particles 

(>1MeV/ nucleon) from a nuclear reactor or a cyclotron. Every ion that penetrates 

the membrane creates a linear damage track that spans the entire thickness of the 

membrane, which is often around 5-10μm. The damage tracks were then 

controllably wet etched or electrochemically etched. The exposure time to the 

beam determines the number of latent damage tracks formed in the membrane, 

corresponding to the pore density, after chemical etching of the membrane. The 

nanopores created using this method are conical in geometry and are created in a 

polymer substrate [62-64, 68, 119, 121, 135, 136]. Important parameters such as 

size and axial uniformity of a pore can be controlled by manipulating the 

concentration of etchant, temperature and the duration of etching. 

Nanopores were also fabricated in non-conventional methods and substrates. 

Saleh et al. [105] fabricated nanopores using micromolding techniques, a method 

fundamentally different from solid state nanopore fabrication. Standard 

cleanroom fabrication techniques were used to create a negative master of the 

pore and reservoirs which was subsequently cast into a poly(dimethylsiloxane) 

PDMS slab producing nanopore 3μm in length and 200nm in diameter.  A similar 

method was also used by Sen et al. [80] to fabricate 200-500nm diameter 

nanopores in PDMS. On the other hand, Schmid et al.  [137] have reported 

fabricating a nanopore with a diameter as small as 80nm in PDMS. Carbon 



 

16 

nanotubes were also used to fabricate nanopores in a fabrication procedure 

developed by Sun et al. [122] [70, 72, 73]. Carbon nanotubes are fabricated by 

stretching a multi-wall carbon nanotube and gluing it to a TEM grid using epoxy. 

The TEM grid and the multi-wall carbon nanotube are then encased in a two 

component epoxy, resulting in a polymer block which is then microtomed into 

thin membranes which are then immobilized on silicon support structure for 

measurements. The membrane sheets often end up with a thickness of 0.6-1.0μm. 

Carbon nanotubes (CNTs) offer benefit of providing smooth surface geometry. As 

reported by Henriquez et al. [70] a 400μm long CNT can provide with a 

substantial number of identical nanopore devices as they all come from a single 

polymer block. Another approach towards fabrication of nanopores by Zhang et 

al. [123] used glass capillaries. Glass nanopore is fabricated by sealing an 

atomically sharp platinum wire in a glass capillary, polishing the capillary 

terminal until a nanometer wide platinum disk is exposed. The platinum is then 

electrochemically etched away to produce a truncated cone shaped nanopore in 

glass. The platinum disk at the bottom of the pore serves as an electrode [123].  

The nanopore fabrication methods and substrates presented above outline 

great research efforts. Unfortunately, these methods do suffer from serious 

drawbacks. Most of the processes outlined above are capable of producing 

nanopore with diameters as small as 1nm, all the processes suffer from a serious 

drawback in terms of high throughput mass fabrication of nanopores. Methods 
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employing electron beam, ion beam, and carbon nanotubes are tedious and time 

consuming in nature and necessitate the presence of skilled technician for 

fabrication of nanopores and therefore cannot be automated. The problem 

compounds when nanopores arrays are required for an application. Polyimide, 

Polystyrene, PDMS, and carbon nanotube substrates do not allow on chip 

integration of detection circuitry. Also, these substrates do not offer any capability 

for precise positioning of a nanopore on a substrate.  

 

1.5 Summary of Work 

The conceptual framework behind this doctoral research work is (i) to 

fabricate single and an array of nanopores of varying diameters in silicon-on-

insulator (SOI) substrate using standard microfabrication techniques, (ii) 

characterize and understand ionic transport through the SOI nanopores as a 

function of ionic solution concentration to shed a light on the fundamental physics 

occurring at the nanometer scale due solid/ ionic solution interaction, (iii) to 

explore the possibility of field effect modulation of ionic transport through the 

nanopore and (iv) to assess the feasibility of application of nanopores as a 

nanoscale Coulter counters. 

Chapter 2 presents in detail the microfabrication process capable of reliably 

producing single as well as an array of nanopores of cylindrical geometry with 

silicon dioxide surface on silicon-on-insulator substrate.  
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Chapter 3 describes the methodology, the measurement set up and the 

experimental protocol used to study ion transport through nanopores.  

Chapter 4 presents the results of ion transport experiments performed on 

nanopores. This chapter also discusses the results of field effect modulation of ion 

transport.  

Chapter 5 presents the results of resistive pulse sensing experiment 

demonstrating application of nanopores as nanoscale Coulter counters. 
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2. FABRICATION PROCESS FLOW OF SILICON-ON-INSULATOR 

NANOPORES 

2.1 Substrates and Techniques for the Fabrication of Nanopores 

Nanopores derive their unique functionality not only due to the new physics at 

the nanoscale, but also because of the technological advances in nanoscale 

fabrication that allow precise control over geometry and dimensions of the 

nanopores. As modern microfabrication techniques are advanced and optimized, 

pores can be fabricated to have dimensions, composition and surface properties 

tailored to suit individual experiments. Nanopores have been fabricated using 

polyimide thin films [119, 120], polystyrene [64, 121], carbon nanotubes [70, 72, 

73, 122], silicon-on-insulator [19, 22, 23, 25, 26, 101-103, 115], glass capillaries 

[123], PDMS [80, 105], silicon nitride [35, 65, 71, 99, 100, 116, 124-126] , and 

graphene [41, 76, 127]. 

Nanopores were fabricated in polyimide [119, 120] and polystyrene [64, 121], 

substrates by using ion track etch methods. The ion track etch method is a 

fabrication process which uses bombardment of accelerated uranium ions through 

either a polyimide or polystyrene substrate. The accelerated uranium ions leave 

damage tracks in the polymer substrate which are then controllably wet etched to 

provide nanopores. Although, the process produces pores as small as 2nm, it is 

presents major challenges in terms of mass fabrication, integration of 

microfluidics for solution delivery, integration of on chip electronic circuitry and 
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diameter and position control of the nanopores on the substrate. The use of 

uranium ions in the fabrication process discourages mass fabrication in a standard 

semiconductor cleanroom. Since the high energy uranium ions are bombarded on 

the substrate, the process offers no control on the positioning of nanopores on the 

substrate, thus making it unusable for ordered nanopore array fabrication for 

application towards high throughput Coulter counters. Lastly, the polymer 

substrates rule out the possibility of field effect manipulation of ion transport 

through the nanopores.  

Unlike polymer substrates, silicon-on-insulator and silicon nitride substrates 

allow the fabrication of nanopores in a standard cleanroom environment. Silicon-

on-insulator substrates are engineered multilayered substrates having a layer of an 

insulator, generally silicon dioxide, sandwiched between a top layer of 

monocrystalline silicon and a handle silicon wafer [138]. In one approach for the 

fabrication of nanopores on silicon-on-insulator substrates, the handle silicon 

wafer is wet etched along specific crystal planes, stopping at the buried oxide 

layer, leading to a large opening in the handle silicon wafer [102, 103]. The top 

silicon layer is patterned with an opening of the order of 500nm, which also is wet 

etched using potassium hydroxide (KOH) along the lattice planes of silicon, 

providing a nanopore. The nanopore is then shrunk to the desired diameter by 

growing a thin layer of silicon dioxide. The pores can be further reduced after 

oxidation by using an electron beam from a transmission electron microscope 
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(TEM) or field emission scanning electron microscope (FESEM) to cause 

“reflow” of the silicon dioxide at the nanometer level [25, 26, 102, 103, 115]. 

Although, the fabrication process and the silicon-on-insulator substrate are 

compatible with the standard cleanroom techniques, and allow the possibility of 

integration of on chip electronic circuitry and microfluidics, the challenge lies in 

fabricating an array of the nanopores. The use of transmission and field emission 

electron microscopes renders this process unusable for mass fabrication as well as 

fabrication of an array of nanopores, due to the requirement of a skilled personnel 

and amount of time involved in fabricating a nanopore. In addition to this, the use 

of a wet etch in the process often leads to loss of process and dimensional control.  

Silicon nitride substrates are also used in a similar fabrication procedure to 

fabricate nanopores. The nanopores in silicon nitride were made using a process 

called focused ion beam (FIB) milling [35, 65, 71, 99, 100, 116, 124-126] . In 

focused ion beam milling, a heated liquid metal ion source is used to ionize metal 

and cause a field emission of ions. The ions are then accelerated to an energy of 

5-50keV and focused on the substrate using electromagnetic lenses. The focused 

ion beam then allows local milling of the substrate leading to fabrication of 

nanopores. The nanopore size is shrunk to the desired diameter by the use of 

transmission electron microscope. As with the silicon-on-insulator substrate 

nanopores, silicon nitride also poses challenges in reliable fabrication of an 

ordered nanopore array.  Silicon nitride thin films are prone to mechanical 
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stresses and pose a serious concern for the device robustness. Focused ion beam 

milling of nanopores is a slow process and creates atomic level debris which 

make it unfit for fabrication of ordered high packing density nanopore arrays.  

The fabrication process flow developed in this research and presented in this 

chapter addresses all the drawbacks of the above substrates. The fabrication of 

nanopores in silicon-on-insulator using electron beam lithography and dry etching 

processes allows fabrication of precise, reliable definition of nanopores as well as 

an ordered array of nanopores. The process flow is compatible with standard 

cleanroom facilities for a high throughput fabrication of single as well as an array 

of nanopores.  The process flow also permits precise dimensional as well as 

process control. 

 

2.2 Design Parameters 

This section describes the main design parameters which were taken into 

accountprior to the fabrication of nanopores. These parameters were chosen in 

order to explore the application of nanopores towards a study of field effect 

modulation of ion transport through the nanopores and application of nanopores 

as nanoscale Coulter counters. 
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2.2.1 Diameter of Nanopores 

The most important parameter for the studies of field effect modulation of 

ion transport as well as nanoscale particle translocation is the diameter of the 

nanopore. When a solid surface comes in contact with an ionic solution, it 

influences the distribution of nearby ions in the solution. Ions of charge opposite 

to that of surface, called counterions, are attracted to the interface in order to 

screen the planar layer of charge on the surface of the solid. This results in high 

local concentration of counterions next to the interface. The ions of the same 

charge as the surface, called coions are repelled from the interface, leading to a 

low local concentration of coions. This resulting arrangement of charges on the 

solid/solution interface is known as the electric double layer (EDL) [139]. The 

overall width of the EDL is typically described by a characteristic length scale 

called the Debye length, which ranges from a few nanometers for high ionic 

concentration electrolyte solutions to a few hundreds of nanometers for low ionic 

concentration electrolyte solutions [139]. When the nanopore diameter falls in this 

range (1-300nm), the electric double layer extends across the entire pore diameter 

where counterions dominate and coions are excluded from the nanopores. This 

overlap of electric double layers, critically dependent on the aperture diameter, 

creates a unique unipolar environment which not only affects the ion transport 

through the aperture but also opens up the possibility of ion transport 

manipulation by applying a voltage bias to the substrate [4, 5, 14].  
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Similarly, in the detection of nanoscale particles translocating through the 

nanopore, the nanopore diameter plays an important role. When a nanoparticle 

passes through a nanopore, a decrease in the magnitude of ionic current is 

observed because part of the liquid volume that carries the ionic current is 

occupied by the nanoparticle. The drop in the magnitude of the ionic current is 

given by the following equation [70]: 

ΔI = IBaseline * (d3/ L*D2)                                                       (2.1) 

Where, d is the spherical particle diameter, D is the pore diameter, L is the 

length of the nanopore and IBaseline is the ionic current measured through the 

nanopore for a given applied voltage and electrolyte solution. The smaller the 

pore diameter, that larger the ΔI for an observed particle.  In this manner, 

nanopores can be designed to have different diameters to detect specific 

individual analytes of interest. 

 

2.2.2 Silicon-on-insulator as a Substrate of Choice 

Silicon-on-insulator (SOI) wafers are precisely engineered multilayer 

semiconductor/ dielectric structures. SOI substrates consist of a thin layer of a 

single crystalline Si separated by a layer of SiO2 from the bulk substrate.The SOI 

substrate material and nanopore device geometry was decided upon based on two 

primary considerations. The first one being the field effect modulation of ion 

transport through the nanopores which requires fabrication of nanopore arrays to 
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enhance the signal to noise ratio and the second being the study of nanoscale 

particle translocation through nanopores which requires fabrication of single 

nanopores on the device chip. SOI substrates are chosen for fabrication of 

nanopores because of multiple advantages offered in the fabrication process, as 

well as for conductance measurements due to the presence of the buried oxide 

(BOX) layer. During fabrication, the buried oxide plays the critical role of etch 

stop layer due to high etch selectivity between silicon and silicon dioxide. The 

presence of the thick insulating BOX layer provides a high DC isolation 

resistance between the silicon device layer containing the nanopores and the 

handle wafer, thereby significantly reducing current leakage paths. The 

sandwiched BOX layer also lowers the overall capacitance of the chip, which 

leads to reduced noise floor in the conductance measurement. The SOI substrate 

also offers the benefit of being compatible with standard cleanroom fabrication 

processes which allow for mass fabrication of nanopores. Choice of SOI substrate 

also offers the critical benefit of directly applying the biasing voltage to the 

nanopore chip for field effect modulation of ion transport through the nanopores. 

Another benefit of SOI substrates is that the top silicon layer can be thermally 

oxidized to give an atomically smooth and well characterized, hydrophilic layer of 

SiO2, making nanopores suitable for biological applications as well.   

The Smart Cut TM process is Soitec's proprietary technology, used to 

manufacture the company's UNIBOND SOI wafers by wafer bonding and ion 
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implantation induced weakening or splitting. A ‘seed’ wafer, from which a layer 

of Si will be removed, is oxidized to a desired thickness. This oxide will become 

the buried oxide after wafer bonding. The next step is hydrogen ion implantation 

through the oxide and into Si. After implantation, the seed wafer and the handle 

wafer are carefully cleaned in order to eliminate any particle and surface 

contaminants and to make both surfaces hydrophilic. Wafer pairs are aligned and 

contacted so that the fusion wave can propagate across the entire interface 

bonding the two wafers together. A batch of bonded wafer pairs is loaded into a 

furnace and heated to a temperature of 400-600°C, at which point the wafers split 

along the hydrogen implanted plane. A final CMP touch polish brings the surface 

roughness of a SOI wafer to the same level as standard bulk Si wafers [138].   

The approach described above makes it possible to reuse the seed wafer 

several times, thus reducing the final cost of a SOI wafer. It is the premium seed 

wafer that defines the quality of the SOI film, whereas the handle wafer only 

serves as a mechanical support and can have lower quality. Defining film 

thickness by implantation energy leads to a much better thickness control than is 

possible with either mechanical or chemical thinning [138]. 

The thickness of the silicon film and/or buried oxide can be adjusted in the 

Smart Cut™ process by tuning the implant energy and oxidation time in a wide 

range. The thickness of the silicon in current applications typically runs from 
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about 5 nm to 1.5 µm. The thickness of the silicon dioxide in current applications 

runs from about 5 nm to 5 µm [138]. 

 

2.3 Nanopore Fabrication Main Processes 

The nanopores fabricated for the research described in this dissertation used a 

two mask, 12 step process and standard cleanroom processes. The two main 

processes which are instrumental in the successful fabrication of nanopores are 

patterning of nanopores using electron beam lithography and etching of the SOI 

substrate using reactive ion etching and deep reactive ion etching. These two 

important processes form the basis of nanopore fabrication. The following section 

briefly provides an overview of electron beam lithography and reactive ion 

etching and proceeds to the nanopore fabrication process flow in detail. 

 

2.3.1 Etching Processes 

Etching in nanofabrication implies pattern transfer by chemical/physical 

removal of a material from a substrate, often in a pattern defined by a protective 

mask layer. There are two types of etching process employed, called dry etching 

and wet etching, in order to etch different materials and layers. In wet etching, the 

sample is immersed in a liquid etchant. The ensuing chemical reaction dissolves 

the material from the substrate isotropically, keeping the mask layer intact. Wet 

etching is a faster and low cost etching process predominantly employed for bulk 
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material removal, cleaning, and removing surface damage. The major factors 

which control the rate of etching are etchant composition, temperature and 

crystallographic orientation of the substrate or the material to be removed. 

Although, useful for bulk material etching, wet etching often uses toxic chemicals 

leading to disposal issues, excessive particle contamination,  undercutting and 

broadening of photoresist features, and to poor control of the process as well as 

dimensions of the device features. In addition to the above factors, a wet etching 

process is unsuitable for fabrication at the sub-micron level because of the role of 

surface tension in preventing the etchant from reaching between the photoresist 

features.  

In the light of above listed issues with wet etching, dry etching, has 

evolved as the process of choice for precision pattern transfer. Dry etching is a 

collection of processes by which a solid surface is etched in the gas or vapor 

phase, physically by ion bombardment, chemically by chemical species at the 

solid surface, or by combined physical and chemical mechanisms. In dry etching, 

a combination of high energy electric and magnetic fields disintegrate an 

appropriate gas etchant to form energetic ions, neutrals, photons, electrons and 

highly reactive radicals. The solid surface to be etched is exposed to these reactive 

species leading to physical, chemical and physical/chemical etching of the 

surface.  Reactive ion etching (RIE) and deep reactive ion etching (DRIE) are the 

processes from the family of dry etching processes used to fabricate nanopores. 
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Typically in reactive ion etching and deep reactive ion etching, chemical reactions 

between the solid surface and ion bombardment combine to etch the silicon 

surface. Reactive ion etching, although slow in etch rates compared to wet 

etching, provides numerous other benefits suitable for nanofabrication such as, 

critical dimensional and process control, fewer disposal problems, less 

undercutting and broadening of photoresist features, better selectivity of the 

etching between mask and the surface, and the choice of isotropic or anisotropic 

profiles.  

Deep reactive ion etching (DRIE) was developed to address the issues 

faced in reactive ion etching such as, low etch rates, inability to maintain high 

aspect ratios and complete etching of masking layers during long etches. In deep 

reactive ion etching, a high density, low pressure and low energy plasma is 

generated by coupling ion producing electrons to the magnetic field arising from 

the RF voltage at 13.556MHz. In order to prevent creation of high energy 

electrons through capacitive coupling, the plasma is shielded from the electric 

field of the RF voltage. Using deep reactive ion etching, it is possible to attain 

etch rates in the range of 4-8µm/min [140] and high aspect ratio structures, such 

as a silicon to photoresist etch selectivity of 50:1. Deep reactive ion etching 

employs a specific technique, especially developed for obtaining vertical 

sidewalls, called the ‘Bosch process,’ which alternates between etch and 

passivation cycles to produce vertical sidewalls. The process starts with dry 



 

30 

etching silicon using sulfur hexafluoride (SF6) as the source gas. The resulting 

high density plasma is generated above the substrate and is rich with fluorine (F) 

radicals which then isotropically etch the silicon surface. To assist the etching, a 

phase locked bias at 13.56MHz is applied to the platen holding the substrate, 

directing the ions towards the surface of the sample.  In the second step, a 

passivation layer of polytetrafluoroethylene (PTFE, Teflon) using C4F8 is 

deposited. Deposition of PTFE using plasma leads to conformal coating of the 

silicon surface [141, 142]. The passivation layer at the bottom of the etched 

silicon is immediately destroyed by the downward ion bombardment in the next 

cycle of etching using sulfur hexafluoride (SF6), but the sidewall coating of PTFE 

remains intact and prevents undercutting of the mask by protecting it from the 

ionic species and allows vertical sidewalls. 

The nanopores used for this work were fabricated using an Oxford 

Instruments Plasmalab 80+ reactive ion etching tool and a Surface Technology 

Systems (STS) Advanced General Etch (ASE) and Advanced Silicon Etch (ASE) 

tools available in the Center for Solid State Electronics Research (CSSER) class 

100 cleanroom at Arizona State University. The complete fabrication process 

flow is discussed later in the chapter. 

 
2.3.2 Electron Beam Lithography 

Electron beam lithography is a high resolution patterning technique which 

focuses high energy (10 to 100keV) electrons into a narrow beam in order to 
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expose electron sensitive resists. Electron beam lithography allows precise control 

of the energy and dose of electrons delivered to the resist coated wafers. Since the 

electron beam employed is deflected and modulated with ease using a series of 

electrostatic and magnetic fields, this process eliminates the need for a physical 

mask set and also lowers defect densities. Another advantage offered by electron 

beam lithography is that it can register accurately over small areas of a wafer 

allowing the precise definition of nanopores.     

An important challenge in using electron beam lithography is that the 

resolution of the focused electron beam in e-beam writers is affected by the 

scattering of the electron beam inside the resist and substrate and also due to the 

backscattering of electrons from the substrate. This often leads to exposing of the 

substrate over a greater area than the beam spot size. Proximity effects such as 

partially exposing the resist far beyond the point of impact are also created by the 

scattering electrons. 

The JBX-6000FS/E electron beam lithography system in the Center for 

Solid State Electronics Research (CSSER) is equipped with a thermal field 

emission electron gun with ZrO/W emitter, and was used to pattern nanopores 

using PMMA as the electron beam resist. It is used for research that requires ultra 

fine pattern exposure with resolution down to 10nm routinely achieved in PMMA 

resist. PMMA electron beam resist was used to pattern the nanopores due to its 
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high resolution capability; moderate glass transition temperature (114°C) and high 

dry etch resistance [143]. 

 

2.4 Nanopore Fabrication Process Flow 

The fabrication process involves two mask sets and 12 steps overall, not 

counting the cleaning steps, to fabricate a 4 inch wafer with nanopore devices. 

The steps remain the same for fabrication of single nanopores, as well as arrays of 

nanopores, with only a minor change in one of the steps of the process. All the 

steps use standard cleanroom fabrication processes and were completed in a class 

100 cleanroom at the ASU Center for Solid State Electronics Research (CSSER). 

In a nutshell, the fabrication process commences by defining the nanopores using 

electron beam lithography and then etching the nanopores using reactive ion 

etching in the top silicon layer, also called the device layer or top side, of a SOI 

wafer. The process then proceeds to the handle silicon wafer, or backside of a SOI 

wafer, to fabricate a 100µm pore in the handle wafer, directly under the nanopore 

etched in the top layer, using deep reactive ion etching. The 100 μm diameter 

opening in the handle wafer meets the nanopore in the top silicon layer at the 

buried oxide (BOX) layer. The buried oxide layer is then wet etched using 

buffered oxide etchant (BOE) and in the final step, the top layer is oxidized using 

thermal oxidation to shrink the nanopores to the desired diameter. Nanopores 

were fabricated on a double sided polished 100mm diameter p-type SOI 
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UNIBOND wafer purchased from Soitec, Bernin, France, with a 340nm top 

silicon layer, 450 µm thick p-type handle wafer and a 1µm buried oxide layer 

sandwiched between the two silicon layers (Figure 2.1.A). Prior to electron beam 

patterning of the nanopores, a 60nm thick layer of silicon dioxide is thermally 

grown in a dry oxygen atmosphere at 1000°C for 60 minutes  and is  used as the 

mask layer in order to etch the nanopores in the top silicon layer. SiO2 is used as a 

mask layer because it is easy to grow and etches ten times more slowly than the 

silicon (Figure 2.1.B).  

The next step in the fabrication process flow is electron beam patterning of 

the nanopores on the topside SiO2 surface. The wafer is cleaned after the thermal 

oxidation and the topside is spin coated with 3% polymethyl methacrylate 

(PMMA) in Anisole® (methoxybenzene) at 5000 RPM. This provides a nominal 

thickness of 100nm of PMMA on the wafer (Figure 2.1.C). PMMA electron beam 

resist is used to pattern the nanopores due to its high resolution capability; 

moderate glass transition temperature (114°C) and most importantly high dry etch 

resistance, a critical factor as the PMMA acts as the mask layer during the 

reactive ion etching of the nanopores in the top silicon dioxide layer [143]. After 

the spin coating of PMMA, the wafer is baked at 175°C for 15 minutes on a level 

hotplate to ensure uniform solvent evaporation. The wafer was then ready for 

electron beam patterning of either single or an array of nanopores using the JEOL 

JBX-6000FS/E electron beam lithography system. Along with the patterning of 
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nanopores in the top silicon layer, the alignment markers for the backside 

processing are also patterned. The alignment markers serve as the reference point 

for backside lithography to etch the 100µm pore in the handle wafer. The area 

dose used for patterning was 460µC·cm-2 (Figure 2.1.D).   

After the electron beam patterning session, the wafer is developed in a 

proprietary developer solution comprising of eleven parts of methyl isobutyl 

ketone: isopropanol (1:3), ten parts 2-ethoxyethanol: methanol (3:7) and one part 

methyl ethyl ketone:ethanol (26.5:73.5). The wafer was developed in the above 

mentioned developer for 20 seconds at 23°C, rinsed with isopropanol and dried 

using nitrogen gas. This completes the electron beam patterning of the nanopores 

in the 100nm thick PMMA electron beam resist. The next step is the transfer of 

the defined nanopore patterns from the PMMA to the SiO2 hard mask and then to 

the top silicon layer of the SOI wafer using reactive ion etching.  

An Oxford Instruments Plasmalab 80+ reactive ion etching system was 

used with CHF3:Ar etch chemistry to dry etch the SiO2 layer using PMMA as the 

mask layer. A CHF3:Ar chemistry provided favorable etch rates for oxide and 

PMMA. In order to make sure that the pattern is completely transferred from the 

PMMA to the SiO2, the top side was over etched for a total 20 minute etch run 

time (Figure 2.1.E). An STS AGE etch tool was used to transfer the pattern from 

the SiO2 layer to the topside silicon layer using 500W of coil power and 50W of 

platen power to direct the plasma towards the wafer. In order to achieve 



 

35 

anisotropic profiles, chlorine (Cl) etch chemistry was explored and used instead of 

fluorine (F) as chlorine is inert and prevents lateral etching of silicon thereby 

giving vertical sidewalls [144]. The SiO2 layer served as the mask layer in this 

step, providing an etch selectivity ratio of 1:10 for SiO2:Si layers. The wafer was 

over etched to ensure the complete pattern transfer from SiO2 to silicon layer 

(Figure 2.1.F).     

After the completion of the above step, the top silicon layer of the SOI 

wafer has nanopores. Now the fabrication process flow moves towards the 

backside of the SOI wafer where a 100µm diameter pore is photolithographically 

patterned directly underneath the electron beam patterned nanopores and etched 

using deep reactive ion etching such that it contacts the buried oxide (BOX) layer 

of the SOI wafer. When the SiO2 layer was grown before electron beam 

patterning of the nanopores, the backside of the wafer also ended up having a 

60nm thick oxide layer. It is required to remove that 60nm thick SiO2 layer from 

the backside before proceeding with the patterning and etching of the 100 µm 

pore. Prior to the removal process of the backside SiO2 layer, the topside of the 

SOI wafer which contains etched nanopores is protected by using an 8 µm thick 

layer of AZ 4620 positive photoresist spun at 2500 RPM and then baked at 120°C 

for 5 minutes in an oven (Figure 2.1.G). After the application of the protective 

photoresist coating on the topside of the wafer, it is then immersed in diluted 

hydrofluoric acid, 1:4 HF 49%  to water, to remove the 60nm thick backside SiO2 
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(Figure 2.1.G). The next step after the removal of the 60nm thick backside SiO2 

layer is the removal of the protective photoresist coating from the topside of the 

SOI wafer. To accomplish this task, the wafer is then immersed for 5 minutes in 

AZ 400T photoresist stripper heated to 150°C. Once the wafer is a thoroughly 

cleaned, a fresh spin coat of AZ 4620 positive photoresist is applied to the topside 

of the SOI wafer, using 2500 RPM spin speed for the spin coater and baked at 

120°C for 5 minutes in an oven, this time to protect the topside during the 

subsequent backside processing of the wafer. 

Backside photolithography of the SOI wafer starts with spin coating 

hexamethyldisilazane (HMDS), an organosilicon compound at 2500 RPM. The 

application of HMDS prior to spin coating of the photoresist helps in adhesion of 

the photoresist with the silicon surface. This step is followed by the spin coating 

of AZ 4620 positive photoresist at 2500 RPM spin speed. The wafer is then soft 

baked at 90 °C on a level hot plate for 90 seconds. This results in an 8.1µm thick 

layer of AZ 4620 positive photoresist. Once the photoresist spin coat step is 

completed, optical lithography is done using an EV group 620 mask aligner on the 

SOI wafer with the help of the electron beam patterned alignment markers from 

the topside of the wafer. This alignment of the backside of the SOI wafer using 

the alignment markers from the topside ensures that when exposed the 100µm is 

directly beneath the nanopores etched on the topside of the SOI wafer. After the 

exposure, the SOI wafer is developed in 300MIF developer for 5 minutes (Figure 
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2.1.H). The developer is always maintained at 30°C in a water bath to avoid 

temperature dependent developing rate variations. This step is followed by the 

baking of the SOI wafer in a convection oven maintained at 120°C for 30 minutes 

to harden the photoresist layer (Figure 2.1.I). This bake step is done to further 

evaporate the solvent from the photoresist and increase the cross linking resulting 

in hardening of the photoresist. This is done because this photoresist layer is 

going to be the protective masking layer when the SOI wafer is processed in the 

deep reactive ion etcher for etching of the 100µm pore through the handle silicon 

wafer. An STS ASE tool was employed to etch the handle wafer using the 

previously described Bosch process with a typical cycle time of 14 seconds for 

etch and 7 seconds for passivation cycles for a total of 435 cycles. The etch rate of 

4.2µm/ min at the surface was achieved in the beginning which dropped to about 

< 2 µm/ min as the etching went deeper. Due to the etch selectivity between SiO2 

and Si, the etching stopped at the buried oxide layer (Figure 2.1.J). To etch the 

handle wafer the SF6 etch cycles were run at 600W coil power, 12 W platen 

power using 136 sccm of SF6. Similarly for the passivation cycles the tool was 

run at 600W coil power, 2W platen power and 90 sccm of C4F8.  Once the etch 

was complete, the SOI wafer was cleaned in AZ 400T photoresist stripper for 5 

minutes at 150°C to clean the protective photoresist layer on the topside as well as 

the patterned layer on the backside. The SOI wafer was then cleaned in 1:1 ratio 
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of H2SO4 and H2O2 piranha solution for 5 minutes to clean the wafer of organic 

residuals from the photoresist or photoresist stripper.  

After the completion of the backside etch of the handle wafer, the 

nanopores etched in the top silicon layer of the SOI wafer remain separated from 

the backside 100µm pore by the 1 µm buried oxide layer. The buried oxide layer 

plays an important role not only in the electrical measurements, as described in 

the beginning of this chapter, but also in the fabrication steps by providing a 

convenient etch stop layer for the etching of the backside handle wafer. The 

buried oxide (BOX) layer also serves as a support structure for the thin membrane 

that supports the nanopore in the top silicon layer, enhancing the mechanical 

robustness of the top silicon membrane. Since, the presence of the buried oxide 

layer is critical, it is desired to keep most of the layer intact and open a relatively 

smaller pore, preferably underneath the nanopores on the topside of the silicon 

layer to connect with the 100µm backside pore in the handle wafer. Thus, 

allowing a continuous path for the ionic current to flow through the nanopore 

chip. The approach taken to meet this goal was to protect the backside of the SOI 

wafer and wet etch the buried oxide layer using buffered oxide etchant, BOE 

(20:1). Since, the backside is protected, the buffered oxide etchant will flow 

through the nanopores etched in the topside layer and etch the buried oxide 

underneath. This was achieved by using a fixture called a single side etcher. The 

resulting etch of the buried oxide was a self selective, self aligned wet etch, 
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directly underneath the nanopores in the top silicon layer of the SOI wafer. The 

etch rates typically encountered for bulk wet etching of SiO2 are approximately 

30nm/min, but in this case the etch rate of the buried oxide is considerably slower 

than the bulk etch rate. This is attributed to the mass transport limitations arising 

because of the constricted flow passage offered by the nanopores. Another 

important factor to take into account for the wet etch of the buried oxide is the 

isotropic nature of the etching. The etching of the buried oxide starts at the 

interface between Si/SiO2 and propagates forward in a hemispherical fashion. 

This results in a hemispherical cavity in the buried oxide underneath the 

nanopores. The SOI wafer was immersed in buffered oxide etchant solution for an 

etch time of 60 minutes to ensure that buried oxide is completely etched 

underneath the nanopore resulting in a continuous path of the ionic current to 

flow. This resulted in a 2µm cavity (Figure 2.1.K). Once the buried oxide etch 

was complete, the SOI wafer was then cleaned in a 1:1 H2SO4 and H2O2 piranha 

solution for 5 minutes. 

The last step of the fabrication of nanopores was thermal growth of a SiO2 

layer using dry oxidation. This layer serves the role of passivation layer for the 

nanopores and also reduces the diameter of the nanopore. Dry thermal oxidation 

of the nanopores is highly reliable, conformable, and a well controlled process, 

which allows the capability to reduce the diameter of the nanopores to any desired 

value and to achieve an atomically smooth surface. A 60 nm thick layer of SiO2 
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was thermally grown at 1000°C for 60 minutes in a dry oxygen atmosphere 

(Figure 2.1.L). 

Once the final oxidation step was complete, the topside of the SOI wafer 

was then spin coated with AZ 4620 at 2500 RPM and baked on a level hot plate 

for 90 second at 90°C temperature and then in an oven at 120°C for 5 minutes. 

After this step, the backside of the SOI wafer was spin coated with HMDS, 

followed by spin coating of AZ 4620 at 2500 RPM and a soft bake for 90 seconds 

at 90°C giving a resist thickness of 8.1µm. Using the EV group mask aligner, grid 

lines are patterned on the backside of the SOI wafer to allow for accurate scribing 

of the SOI wafer into 1cm x 1cm die containing either a single nanopore or an 

array of nanopores which could then be mounted on measurement fixtures for ion 

transport experiments. One SOI wafer resulted in 49 die from the fabrication. 

Once the individual die were ready, they were cleaned in pre heated AZ 400T 

photoresist stripper at 150°C for 15 minutes followed by cleaning in 1:1 solution 

of H2SO4 and H2O2 for 15 minutes, resulting in pristine die. The individual 1cm x 

1cm nanopore die were then stored in 1:1 isopropyl alcohol and water solution to 

prevent contamination and microbial growth. The nanopores were now ready for 

ion transport and nanoscale particle translocation experiments. 
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Figure 2.1 Complete process flow for the fabrication of a single cylindrical nanopore. (a) The 

process begins with a SOI wafer that is then (b) thermally oxidized to grow 60 nm of SiO2. (c) The 

wafer is then spin coated with PMMA and (d) patterned using EBL to open a 100 nm diameter 

aperture. (e) The SiO2 is then etched in a RIE with CHF3:Ar, (f) followed by etching of the device 

layer in an ICP RIE with Cl2. Processing then shifts to the backside of the wafer, (g) where AZ4620 

is spin coated and (h) patterned with 100 lm openings. The handle wafer is then etched in a DRIE 

with SF6 and C4F8 using the Bosch process. (j) The backside is then spin coated with AZ4620 and 

soft baked to fill the 100 lm aperture, (k) after which the wafer is immersed in BOE 20:1 to etch the 

buried SiO2 through the topside aperture. (l) The wafer is then thermally oxidized to reduce the 

pore diameter [22, 23]. 
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2.5 Results of Nanopore Fabrication 

Using the fabrication process above, single nanopores as well as an array of 

cylindrical nanopores were fabricated. Shown in Figure 2.2 is a cross-sectional 

scanning electron image of a typical single nanopore structure. The layer 

containing the nanopores is the device silicon layer. The cavity is the buried oxide 

layer. The handle wafer is left intact for manual scribing. The pore has an ‘hour-

glass’ profile and the diameter varies approximately 10-20% across its length. The 

picture was taken by Dr. Leo Petrossian.  

 

 
 

Figure 2.2: Cross sectional scanning electron image of a typical single 40nm cylindrical 

nanopore structure. The layer containing the nanopore is device silicon layer. The cavity is the 

buried oxide layer. The handle wafer is left intact for manual scribing [23]. 

 
The geometry of the pores in this array was defined to be a nominal 

100nm in diameter by electron beam patterning. The inset picture is a zoomed in 

view of the nanopore which clearly demonstrates the cylindrical profile with 
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rounded edges at the top and bottom due to the thermal oxidation.  The close to 

vertical sidewalls of the nanopore allow for a uniform electric field to be 

developed throughout the nanopore which is then used in manipulating the ion 

transport.  

 

 
 
Figure 2.3: Partial view of a 5x5 95nm single pore diameter array. The fuzzy edges are the 

silicon dioxide grown in the last step of the fabrication. 

 
Figure 2.3 is a field emission scanning electron microscope picture of a 

fabricated 5x5 nanopore array. In order for the clarity of the picture only the 

center three pores are shown. The nanopores in the array are uniformly spaced 

demonstrating the precise positional control afforded by the fabrication process 

flow presented in this chapter. The nanopores patterned in the array shown have a 

center to center distance of 500nm and have maintained their circular definition 

and demonstrate the high packing density that this fabrication process flow can 
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achieve. This high packing density and the cylindrical form of the nanopores is 

achievable because of the use of anisotropic chlorine reactive ion etching. This is 

the advantage of this process flow compared to the wet etching fabrication 

processes using potassium hydroxide (KOH). In wet etching processes the initial 

patterned area is much larger compared to the pore diameter to account for the 

preferential etch of silicon along the lattice planes which leads to loss of 

important silicon real estate. The process flow presented in this study is free from 

constraints in the horizontal direction.  The electron beam lithography can be 

further optimized to pattern features as small as 20nm which in turn allows for 

further increase in packing density. The major limitations which would be 

encountered in increasing the packing density would be the robustness of the 

silicon membrane and proximity effects in the electron beam lithography. The 

fuzzy edges are the silicon dioxide grown in the last step of the fabrication.   

 
2.6 Conclusion 

This chapter presents a detailed description of a nanopore fabrication process 

flow capable of reliably producing cylindrical nanopores in silicon-on-insulator 

substrates using standard cleanroom fabrication processes. The detailed 

description of the fabrication process flow started with an overview of major 

semiconductor cleanroom processes which form the crux of the complete process 

flow. The description continued with presenting the results of the fabrication and 
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discussing the benefits of the process flow presented in this study compared to 

other established processes.  

The nanopore fabrication process flow utilizing a combination of electron 

beam lithography and reactive ion etch steps presented in this study allows to 

mass fabricate on a wafer level nanopore arrays and single nanopores of desired 

diameter using standard semiconductor cleanroom fabrication processes. The 

process allows a precise definition of nanopores diameters and a high packing 

density with reproducible results. 
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3. MEASUREMENT METHODOLOGY AND EXPERIMENTAL SETUP 

3.1 Introduction 

This chapter describes in detail the experimental protocol, measurement 

methodology and instruments used in ion transport characterization as well as 

field effect modulation of ion transport through the nanopores. The experimental 

protocol is comprised of cleaning and mounting of nanopore chips for 

measurements, electrolyte solution preparation, electrode preparation for ion 

transport characterization as well as field effect manipulation of ion transport, 

signal transduction and amplification, and data acquisition hardware as well as 

software. 

 

3.2 Preparation of Nanopore chip for Measurements 

After the fabrication, the nanopore chips were stored in 70% IPA and 

nanopore water solution to prevent nanopore chip surface contamination as well 

as blocking of pores due to dust particles in ambient air. The nanopore chips, prior 

to mounting on the Teflon holders for measurements were cleaned in 1:1 solution 

of sulfuric acid and hydrogen peroxide for 15 minutes in a cleanroom 

environment. 
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3.2.1 Mounting of Nanopore Chip on Holders 

In order to perform the ion transport experiments the nanopore chip was 

sandwiched between two custom made Teflon chambers filled with electrolyte 

solution using threaded metal rods with screws. The rectangular Teflon chambers 

were machined from solid Teflon blocks. One of the walls of the Teflon chamber 

was made up of a glass cover slip for mounting and aligning the nanopore chip 

and the chamber wall parallel to the glass cover slip had a 1.5mm diameter hole 

for mounting the nanopore as shown in Figure 3.1.  

 

 

Figure 3.1: Teflon Holder fabricated from solid Teflon Block before gluing the glass cover slip at 

the back wall. 

The glass cover slip was glued to the Teflon chambers using two different 

adhesives. The first layer of adhesive consisted of alcohol resistant epoxy EP5347 

(Eager Polymers, Chicago, IL) and the second layer of adhesive consisted of 

water resistant silicone adhesive (DAP Products Inc., Baltimore, MD) as shown in 

Figure 3.2. 
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Figure 3.2: Teflon Holder with Glass cover slip. 
 

Due to the involvement of liquid solutions in the experiment it became 

imperative to make sure that the seal between the nanopore chip and the Teflon 

chamber is leak proof. Different types of materials were used to test the 

measurement set up seal resistance. The materials tested for the purpose of 

making the set up leak proof were PDMS gaskets, rubber gaskets and silicone O-

rings (McMaster Carr, Santa Fe Springs, CA). It was found out that silicone O-

rings provided a leak proof seal for the set up. Figure 3.3 shows silicone O-rings 

glued to the Teflon holders. 

 

 

Figure 3.3: Silicone O-rings glued to the Teflon holders using solvent resistant epoxy ensuring a 

leak proof assembly. 
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Figure 3.4 (A) shows the Teflon holder placed with the threaded metal rods 

already in place so that the second Teflon chamber could be slid onto the metal 

rods completing the assembly, once the nanopore chip is in place. Figure 3.4 (B) 

shows the device mounted in such a way so as to ensure that the nanopore was 

placed approximately centrally within the silicone O-rings. By looking through 

the glass cover slip window the second chamber was aligned with the first 

chamber using the threaded metal rods as guiding rails. Once the assembly was in 

place the final metal screws were put in place to secure the assembly. Figure 3.4 

(C) shows completed assembly with the nanopore chip sandwiched between the 

silicone O-rings and Teflon holders held in place with the help of metal rods. 

Figure 3.4 (D) shows the close up of the mounted nanopore between the silicone 

O-rings. Once the chip was mounted dry nitrogen was blown in the gap between 

the Teflon holders where the nanopore chip is visible to ensure that the silicone 

O-ring, exterior walls of the Teflon chambers and exposed parts of the mounted 

nanopore chip are completely dry. The last step of the mounting procedure is the 

degassing of the nanopore assembly for up to 12 hours in a desiccator to remove 

any residual bubbles that were present. 
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Figure 3.4: Nanopore chip mounting procedure. (A) Teflon holder in place with threaded metal 

rods. (B) Nanopore pore chip aligned with the bottom O-ring. (C) Completed assembly with the 

nanopore sandwiched between the O-rings. (D) Close up of the mounted nanopore chip. 

 
3.2.2 Electrodes 

Platinum and Ag/AgCl electrodes were used in ion transport 

characterization through the nanopores. The Platinum electrodes were purchased 

from Goodfellow, Cambridge, UK and the silver wire for the Ag/AgCl electrodes 

was purchased from Alfa Aesar, Ward Hill, MA. The Ag/AgCl electrodes were 

made by soldering a silver wire to a proprietary copper pin from Molecular 

Devices, Sunnyvale, CA, which plugs into the headstage of the low noise current 

amplifier. The Ag silver wire was then sanded to remove any residual grease, 

rinsed with deionized water and then soaked in 5% sodium hypochlorite (NaOCl, 

Bleach) solution for 20 minutes to form a surface coating of AgCl. A change in 
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color of the silver wire surface from metallic silver to white served as a visual 

confirmation of the chloridization process. The chloridization step was performed 

prior to every run of the experiment because of continual loss of Cl- ions from the 

electrode surface into the solution due to passing of charge through the electrode 

during the measurements.  

 

3.2.3 Preparation of Ionic Solutions 

Ion transport characterization and field effect experiments were performed 

using aqueous HCl solutions. To minimize any type of contamination in the 

solutions a set of glassware (measuring cylinder and beakers) was dedicated for 

the purpose of electrolyte solution preparation and was stored in an airtight plastic 

bag. Before preparing solutions, the glassware was cleaned in 1:1 solution of 

sulfuric acid and hydrogen peroxide for 15 minutes and rinsed with nanopore 

deionized water. After the rinse the glassware was baked for 15 minutes in an 

oven at 80°C. The glassware was then left in a closed hood for cooling down to 

room temperature. A total of 12 different nominal electrolyte concentrations were 

prepared and the process was always started by preparing the solution of the least 

electrolytic concentration first. Nanopure water from a Cascada Bio water 

purification system (Pall Corporation, Ann Arbor, MI) was used in the 

preparation of all solutions. Table 1 shows the concentrations prepared and 

volume of HCl required for that concentration. 
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Concentration (M) Volume of 36.5% HCl (in mL) 

3.16µM 0.00006693 

10µM 0.0004236 

31.6µM 0.0006693 

100µM 0.004236 

316µM 0.006693 

1mM 0.04236 

3.16mM 0.06693 

10mM 0.4236 

31.6mM 0.6693 

100mM 4.236 

 

Table 3.1: Volume of 36.5 % assay hydrochloric acid (HCl) acid required for preparing broad 

range ionic solution. Typically concentrations below 316 μM were prepared by diluting higher 

concentrations of solution in appropriate ratios while measuring solution conductivity using an 

Accumet XL50 multiparameter meter. 

Aqueous HCl solutions were prepared using electronic grade HCl (Assay 

36.5%, Columbus Chemical Industries, Columbus, Ohio) was used. The desired 

volume of HCl, for a given concentration was poured into the measuring cylinder 

and added to the beaker filled with NanoporeTM water. The process of making 

dilute aqueous solutions was done in a chemical hood due to safety reasons. Once 
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the solutions were prepared their conductivity was measured using the Accumet 

XL-50 conductivity meter (Fisher Scientific, Pittsburgh, PA) which was then used 

to calculate the actual concentration of the electrolytes in the solution. The 

measured conductivity and concentration values are plotted in Figure 3.5. 

 

Figure 3.5: Electrical conductivity of aqueous HCl solution as a function of concentration of HCl. 

 

The electrolyte solution bottles were then topped off with Argon gas, 

capped and sealed with three layers of Parafilm®. Argon was used because being 

heavier than air it can form a protective layer on top of the solution. Also, Argon 

is inert therefore it will not dissolve into the solution and not adversely affect the 
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pH and conductivity of the electrolyte solution over a long period of time. The 

bottles were then labeled with the measured conductivity value, nominal 

concentration and measured concentration values before storage. The bottles were 

then refrigerated at 5°C to prevent any kind of microbial growth in the solutions. 

Prior to each experiment run the solution was allowed to come to room 

temperature. At room temperature the conductivity of the electrolyte solutions 

was measured again and recorded. As stated before, the measured conductivity 

value was then used to back calculate the concentration of electrolyte in the 

solution.  This was done to keep track of the variation of electrolyte concentration 

in the solution over a period of time. The solutions with higher concentrations, 

10mM or higher, did not show large variations in conductivity but the solutions in 

the concentration range less than 1mM displayed significant variation in 

conductivity with time, even after all the precautions. Due to this gradual 

variation in concentration of low electrolyte concentration solutions, the lower 

concentration solutions were discarded after every three days and new solutions 

were prepared for the experiments.  

 

3.3 Electrical Set up  

In a nutshell, the measurement methodology for ion transport through the 

nanopores is as follows. An ionic solution filled nanopore acts as a variable 

resistor whose resistance is directly proportional to the electrolyte concentration 
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in the solution. For a nanopore of given diameter, at high electrolyte 

concentration, the resistance of the nanopore is in few tens of MΩs due to the 

presence of large number of ionic charge carriers in the solution. At low 

electrolyte concentrations, the nanopore resistance is measured in ~GΩs. The 

electrodes submerged in the opposing baths act as signal transducers between the 

electronic and ionic current. The low noise current amplifier monitors the current 

flowing between the two electrodes while keeping the applied voltage between 

the two electrodes constant, a process known as voltage clamping. The measured 

current flowing between the electrodes is amplified and converted back to a 

voltage signal and is output to a data acquisition system which collects the data. 

The data then can be processed to calculate various parameters characteristics of a 

given system. 

 
3.3.1 Low Noise Patch Clamp Amplifier 

A low noise patch clamp amplifier is the primary instrument used in 

electrophysiology for measuring ion transport through lipid bilayers and 

membrane ion channel. Electrophysiologists are especially interested in the 

activity of membrane proteins that provide conductive pathways through 

biological membranes: ion channels, transmitter receptors, and ionic pumps. Ion 

channel activity results in changes of membrane conductance. Membrane current, 

of the order of a few picoamps is measured because there is no direct way of 

measuring membrane conductance. One of the primary modes in which a path 
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clamp amplifier is operated is called voltage clamp mode [145]. In this mode, the 

amplifier keeps the applied voltage, also called the holding potential, constant and 

measures the resulting ionic current. The constant holding potential across the 

membrane ensures that the membrane current measured is linearly proportional to 

the conductance being studied. Due to the nature and sensitivity of the ion 

channels measurements patch clamp amplifiers have two important attributes 

which allow its usage in nanopore ion transport characterization. These attributes 

are maximum speed of the response and minimum noise in the measurements. 

Another advantage of using a voltage clamp amplifier is that as the electrode 

potential drifts, the amplifier continues to clamp the voltage applied across the 

device to specified value. The drift in electrode potential will be recorded as an 

offset current in the actual recording and can be taken into consideration.  

Measuring ion transport through nanopores specifically at low ionic 

solution concentrations poses similar challenges as ion channel measurements. At 

lower electrolyte concentrations the number of ionic charge carriers passing 

through a nanopore is very low. Due to this, the nanopore acts as a high resistor 

connected in series between the electrodes placed in the opposite baths. This high 

resistance imposes a limit on the speed with which voltage changes can be applied 

across a nanopore and it also limits the time resolution of current recordings. 

Also, due to the low number of ions available for ion transport through nanopores 

at low concentration electrolyte solution, the current measured is very sensitive to 
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noise. Thus, to have accurate results of ion transport through the nanopores a 

current amplifier with high bandwidth and low noise is a necessity.  

A patch clamp amplifier is basically a sensitive current-to-voltage 

converter, converting small currents into voltage signals which then can be 

sampled by a computer. The workings of a patch clamp amplifier operating in 

voltage clamp mode can be explained by using a simple resistive feedback 

operational amplifier circuit. The electrodes complete the circuit by connecting 

the Teflon chamber + electrolyte solution + nanopore chip system with the 

outside electronics. The operational amplifier’s positive and negative inputs are 

forced to the same potential in order to keep the applied potential VApp across the 

chip constant. Also, the current flowing into the operational amplifier, IIn is equal 

to the current flowing out of it (IOut). All the current flowing through the 

operational amplifier is going through the feedback resistor Rf such that (Figure 

3.6): 

 

                                                                         (3.1) 
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Figure 3.6: A simple operational amplifier circuit depicting the voltage clamp configuration used 

to hold the constant potential across a nanopore chip and measure the resulting current.  

 

where VOut is the measured output voltage and Rf is the feedback resistor and 

typically the gain of the circuit. Thus, in order to measure the current flowing 

through the nanopore all that is required is a resistor of known value and the 

measured voltage output. All the experiments performed in this study used an 

Axopatch 200B (Molecular Devices, Sunnyvale, CA) low noise current amplifier 

(Figure 3.7) in constant voltage or voltage clamp mode.  
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Figure 3.7: Axopatch 200B Low Noise Current Amplifier. 

 

The Axopatch 200B uses a cooled dual junction field effect transistor 

input headstage front end amplifier added with an operational amplifier with high 

gain as a current to voltage converter. The headstage front end amplifier is 

separate from the main instrument which allows the convenience of placing the 

headstage in the Faraday cage next to the device measured. This also serves the 

purpose of minimizing the induced current noise in cables before the first 

amplification of the system. The Axopatch 200B utilizes two resistive feedbacks 

and one capacitive feedback mode in the headstage amplifier. All of the 

experiments performed in characterizing ion transport through the nanopores used 

the resistive feedback mechanism of the Axopatch 200B in voltage clamp mode.  

The resistive feedback configurations in the Axopatch 200B are the 

“Whole Cell β = 1” and “Whole Cell β = 0.1”. The “Whole Cell β = 1” 

configuration has a parallel combination of a 500MΩ resistor and a 1pF capacitor 

as the feedback element and for the “Whole Cell β = 0.1” configuration a parallel 

combination of a 50MΩ resistor and a 1pF capacitor serve as feedback elements. 
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The overall gain of the amplifier, in voltage clamp mode, is given by I = α β 

mV/pA. α is the gain of the output gain of the amplifier and ranges from 0.5-100. 

The output gain is the gain of the second voltage amplifier after the headstage 

amplifier. The open circuit current noise for the Axopatch 200B is 0.45pA rms for 

the “Whole Cell β = 1” configuration and 1.45pA RMS for the “Whole Cell β = 

0.1” configuration. A couple of additional features in the Axopatch 200B also 

help in reducing the current noise further and make these measurements possible. 

The Axopatch 200B has an adjustable 4-pole low-pass Bessel filter which filters 

out all the higher frequency noise in the range of 1kHz-100kHz. The second 

feature boosting the low noise capabilities is the integration of a Peltier 

thermoelectric cooler into the headstage. This reduces the current noise by cooling 

the input stage to -20°C.  

 

3.3.2 Data Acquisition 

The Axopatch 200B can be externally controlled by a desktop computer 

using a DAQ system. Analog to digital (A/D) converters convert an analog 

voltage signal to a digital representation consisting of some quantized bit value. 

The input range (±10V) of the A/D converter must be matched to the output range 

of the current amplifier so that data is not lost by clipping i.e. amplifier voltage 

output exceeding ±10V. A Digidata 1322A from Molecular Devices, Sunnyvale, 

CA (Figure 3.8) was used for data acquisition. The Digidata 1322A is a high-
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resolution, low-noise digitizer intended for precision scientific applications. The 

Digidata 1322A digitizes at an aggregate speed of 500 kHz. It provides sixteen 

multiplexed, 16-bit analog inputs and two non-multiplexed, 16-bit analog outputs. 

The Digidata 1322A communicates with the host computer through the SCSI bus.  

 

 

Figure 3.8: Digidata 1322A data acquisition system.  

 

3.3.3 Measurement Methodologies 

There were two sets of experiments performed to study ion transport 

through the nanopores. The first set of experiments consisted of measuring the 

conductance of nanopores as a function of electrolyte concentration. By 

measuring the conductance one can observe the effects of interaction between the 

nanopore wall surface charge and the ions translocating through the nanopores. 

The conductance measurements were always started with the lowest electrolyte 

concentration solution first. To exchange the electrolyte solution, the solution 
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which was just used in the measurement was removed from the Teflon chambers 

using a pipette and rinsed with nanopure water, and then rinsed with the new 

electrolyte solution of higher concentration three times, and finally filled and 

measured on the fourth turn. This ensured that when the measurement for the next 

higher concentration solution was actually done, the solution in the nanopore was 

as close to the desired higher concentration electrolyte solution as possible. This 

step of rinsing the Teflon chambers prior to measurements was followed for the 

field effect measurements as well. The conductivity value of the electrolyte 

solution was also measured along with the ionic conductance. This constituted the 

first set of measurements. The results of these measurements will be discussed in 

next chapter. 

Having successfully performed the first set of measurements the second 

set of experiments involved field effect modulation of ion transport through the 

nanopores. The aim of this set of experiments was to explore the possibility of 

influencing the ion transport through the nanopore by applying a second electric 

field transverse to the flow of ions through the nanopore, a process similar to 

operation of MOSFETs in semiconductor devices.  

The electrodes for the electrostatic modulation of ion transport through the 

nanopores were made using standard jumper wire (Digikey, Thief River Falls, 

MN) and molded using a pair of pliers to resemble a paper clip. The top of these 

electrodes was then soldered to standard wire for connection to the instruments. 
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The nanopore chip was then clamped between electrodes ensuring a mechanically 

robust, as well as consistent, three dimensional electrical contact. To accomplish a 

well-controlled electric field established via an electrostatic gate in a nanopore 

chip, it was necessary to position the gate electrode in close proximity to the 

nanopore. The original intent was to use small alligator clips but it was found that 

these clips exerted too much force on the SOI chip creating a real danger of 

breaking the chip. The electrode, chip and Teflon holder assembly is shown in the 

Figure 3.9. 

 

 

Figure 3.9: Custom made electrodes attached to the nanopore chip mounted in teflon chamber 

assembly. (A) Top View. (B) Front View 

 

One of the electrodes was connected to a Keithley 236 source measure 

unit which supplied the constant DC voltage for biasing as well as measuring the 
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leakage current through the SOI substrate. The magnitude of the leakage current 

was continuously monitored in order to make sure that the current measured is 

due to the flow of ions through the nanopore. The second electrode was used to 

connect the Keithley 2182 nanovoltmeter. The nanovoltmeter was used to verify 

that there was no bias voltage drop due to high contact resistance. The ground 

connections from the Keithley 236 and Keithley 2182 were then connected to the 

Axopatch ground. The setup schematic is shown in Figure 3.10. 

 

 

Figure 3.10: Axopatch 200B is used to measure ionic current flowing through a nanopore. Keithly 

236 is used to apply gate bias to the nanopore chip for field effect modulation experiments. 

Keithley 2182 is used to monitor the gate bias applied to the nanopore as well as the leakage 

current flowing through the nanopore chip. 
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3.4 Noise Considerations 

A major challenge in characterizing ion transport through the nanopores 

by measuring the ionic conductance is the noise level of the surrounding 

environment. Experimental measurements pick up mechanical vibrations and 

random noise as the experiments are conducted in the same frequency range as 

power supplies. Thus, electrical isolation as well as mechanical stability of the 

measurement set up becomes paramount for successful low noise measurements. 

 

 

Figure 3.11: Faraday cage used to shield the nanopore chip and the electrodes from electrical 

noise. 

 

The measurements were carried out in a Faraday cage (Warner 

Instruments LLC, Hamden, CT), Figure 11, to electrically isolate the nanopore 

chip system by shielding it from electromagnetic radiation. A primary source of 

noise in experiments is the electrical power system operating at 60Hz. An 

unshielded cable can easily become a source of noise. In addition the system is 
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also exposed to electrical noises from computer power supplies and monitors, 

amplifier power supplies, transformers, switch mode power supplies, and any 

other electrical appliances plugged into the wall. The sensitivity of these 

measurements necessitates proper shielding of the nanopore chip assembly from 

these sources of noise. 

Ground-loop noise arises when shielding is grounded at more than one 

place. Magnetic fields may induce currents in this loop. Moreover, if the different 

grounds are at slightly different potentials, a current may flow through the 

shielding and introduce noise. A single common ground point for the whole 

electrical system is an important way to prevent spurious noise due to ground 

loops between different parts of the setup.  

Another source of noise which can affect the experimental results, in 

addition to electrical noises is mechanical noise. Building vibrations due to 

compressors in refrigerators and AC systems, high vacuum pumps or any other 

type of heavy machinery operating in the vicinity, people walking in the lab close 

to the area of the measurement set up can lead to mechanical vibrations in the 

system. An isolation air table (Warner Instruments LLC, Hamden, CT) was used 

to dampen the major vibrations. The air table uses a continuous supply of nitrogen 

at 30psi to maintain the integrity of the bellows inside the air table.  In 

conjunction with this, an active anti-vibration table from Halcyonics, as shown in 

Figure 12, was also used to dampen the mechanical vibrations. The active 
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vibration isolation system works by monitoring the absolute velocity of the mass 

to be isolated, and then generating a compensating movement from an actuator. 

The Nano 20 benchtop unit protects the instruments from vibrations  from about 

0.6 Hz to high frequency, providing 40 dB attenuation above 10 Hz. The actuator 

replaces the viscous damper of traditional passive isolation tables. The 

electromechanical sensors detect absolute motion in all 6 axes, and the actuators 

immediately counteract this motion. Another precaution taken to shield the 

system from mechanical vibrations was to keep the exposed surface of the 

electrodes completely submerged within the electrolyte solution. 

 

 

Figure 3.12: Halcyonics active anti vibration table.  
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3.5 Conclusion 

In this chapter the experimental platform set up and the measurement protocol 

established to characterize as well as manipulate ion transport through the 

nanopores was explained in detail. The instruments used in the measurements and 

their functionality were also discussed. The nanopore chip preparation, chip 

mounting, electrolyte solution preparation protocol and the measurement 

methodologies were also explained. 
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4. CHARACTERIZATION AND FIELD EFFECT MODULATION OF 

ION TRANSPORT THROUGH NANOPORES 

4.1 Introduction 

In the last few years, microfabrication technologies have contributed 

immensely to advances in microscale analysis systems. In particular, recent 

developments in design, patterning, and utilization of microfluidic devices have 

found many applications in transport, separation, identification, and synthesis of a 

wide range of chemical, biochemical, and biological species [21, 67, 88, 146-

153].  

In the past, understanding of various transport processes was targeted at size 

scales where the continuum description of a fluid could be employed to 

understand the observed phenomena. However, the drive for miniaturization has 

lead to a significant decrease in the mass and the volume of analytes and reagents 

used for analysis. In addition, due to advances in nanofabrication, materials and 

structures are designed at a molecular level and then fabricated with control of 

composition and dimensions at atomic length scales. Due to the confined 

geometries at the nanometer level, the continuum assumption often presents an 

incomplete picture of the physical phenomena observed. Independent of the type 

of driving force, the novel attributes of nanostructures in general, and nanopores 

in particular, ensure ionic and molecular transport characteristics that are 
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fundamentally different from those in larger micrometer and millimeter scale 

structures.  

The characteristics of ionic and molecular transport often observed in 

nanostructures are pronounced influence of surface charge density, coupled and 

enhanced mass and ion transport, nanostructure size and shape, mobile phase 

ionic strength, large surface-to-volume ratio, large mass-to-charge ratio of ionic 

species in an ionic solution, ion depletion/enrichment, ion current rectification, 

and diminished background signals [1-21]. These myriad phenomena, point to a 

simple fact that the molecular characteristics can dominate the behavior of a 

nanostructure.  

A major impetus to study these transport processes also comes from the study 

of nanometer sized pores formed by proteins, called ion channels, which are 

prevalent in biology where they regulate the flow of ions and molecules through 

the otherwise impermeable cell membrane [56-59]. In biology, the cell membrane 

presents an impermeable barrier to ion transport and nanometer pores formed by 

proteins, offer an easy conduit in order to facilitate molecular and ionic transport. 

Similarly, a few charge selective phenomena have previously been observed in 

membrane filtration studies which mainly contain nanopore and nanochannel with 

irregular geometries, often with high porosity [154, 155].  

The studies performed in membrane filtration research, although useful in 

providing insight into fluid transport at the nanometer level, often arrived at the 
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results after intricate statistical analysis. In case of biological nanopores, the 

complexity of ion selective transport as well as the susceptibility of the ion 

channels to the external factors such as temperature, solution pH and solution 

ionic concentration presents a challenge to a thorough understanding and control 

of ionic and molecular transport [4, 5]. Due to this the need to understand 

molecular and ionic transport in extensive detail in isolated and near ideal systems 

is further underscored. 

Researchers have just started to realize these challenges and possibilities, yet 

it is clear that the ability and understanding to achieve efficient and intelligent 

control of molecular and ionic transport within these nanostructures will enable 

the construction of new devices that can address fundamental problems in 

molecular and ionic transport as well as open vistas for efficient and intelligent 

control of nanoscale analytes. Efficient and intelligent control of the nanoscale 

analytes would enable materials and structures which can sense size, charge, and 

molecular shape of the target analyte and generate signals that control transport on 

the basis of those characteristics. 

Solid state nanopores have come up to fill the need for near ideal and isolated 

physical modeling systems to study and understand ion transport at the nanometer 

level. Solid state nanopores offer precise control of geometry, are chemically, 

mechanically, electrically and thermally robust and stable, and can be integrated 

with electronic circuits. Nanopores also facilitate the prospect of label-free single 
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molecule detection by exploiting ion transport modulation. These benefits make 

solid state nanopores suitable candidates for extensive ionic and molecular 

transport studies [21, 74, 89]. 

This chapter briefly discusses the physical phenomena typically observed at 

the nanometer level ionic and molecular transport and then presents the results of 

ion transport measurement through single as well as arrays of nanopores. The 

chapter also presents the results of control of ionic transport through the 

nanopores by applying a voltage to the SOI substrate, in a similar fashion as a 

semiconductor field effect transistor. 

 

4.2 Electric Double Layer 

When a solid surface comes in contact with an ionic solution, it typically 

acquires an electric charge which influences the distribution of nearby ions in the 

solution. Surface charge on a solid/ ionic solution interface is predominantly 

caused by the dissociation of surface groups and the specific adsorption of ions in 

solution to the surface. The solid surface acquires a positive or a negative charge 

depending on the number and type of the acid and base groups present in the 

solution. This results in the solid surface acquiring either a positive or a negative 

surface charge density. For ease of understanding, ions in the solution of the same 

charge as the surface charge are called coions and ions of opposite charge as the 

surface charge are called counterions. As a result of the fixed surface charge at 



 

73 

the solid/ ionic interface an oppositely charged region of counterions is formed in 

the ionic solution to maintain the electroneutrality of the solid/ ionic solution 

interface. The resulting arrangement of charges on the solid/ solution interface is 

known as the Electric Double Layer (EDL) [4, 5, 14, 139].  

The simplest representation of an electric double layer is a parallel plate 

capacitor, often attributed to Hermann von Helmholtz. Helmholtz proposed that 

the counterions in the electrolyte which are in the vicinity of the solid surface bind 

directly to the surface, in equal magnitude as the surface charge to neutralize it. 

The two layers of charges, the charged solid surface and the counterions in the 

ionic solution, then resemble the charge arrangement of a simple parallel plate 

capacitor. This idealistic arrangement of ions in the electrolyte solution is also 

called perfect shielding, since all of the other ions in the electrolyte solution are 

shielded from the surface charge. In this arrangement of charges the distance of 

approach of counterions is limited by their ionic radius. This simplistic model 

proposed by Helmholtz, also assumes that the electrostatic potential at the surface 

of the solid drops to the value of bulk electrostatic potential of the ionic solution, 

over the thickness of the layer of counterions [4, 5, 14, 139].   

In reality, at a solid/ ionic solution interface ions in the liquid do not lie in a 

single plane. Due to finite temperature of a system and thermal motion of ions 

associated with it, the ions are not fixed at their respective positions as Helmholtz 

had proposed. This effect of random motion of ions in an ionic solution due to 
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temperature was taken into account in a model independently proposed by Louis 

George Gouy and David Leonard Chapman [4, 5, 14, 139]. 

In the Gouy-Chapman model, not all of the ions are confined in a single sheet 

next to the solid surface, fixed in their respective positions. Instead, the 

distribution of ions in the ionic solution is such that the density of the charges 

decreases with distance from the surface.  The counterions in the immediate 

vicinity of a charged surface are under the constant influence of two competitive 

forces. On one hand is the attractive electrostatic force from the surface charges, 

pulling the counterions in the ionic solution towards the surface and on the other, 

is the random thermal motion of the ions. The mixing tendency resulting from the 

interaction of these two forces leads to a diffused distribution of the counterions. 

For this reason, only a few of the counterions are close to the surface due to 

electrostatic force, the remainder being distributed in a spatially probabilistic 

manner, the distribution of which is given by the Poisson-Boltzmann equation. 

The counterions in this distribution are diffused in a spatial region. The extent of 

this spatial region is defined, on one hand by the charged solid surface and on the 

other by a position in space, where the random thermal motion of the ions is 

strong enough to overcome the electrostatic attraction. At this ‘edge’ position the 

potential energy from the electrostatic attraction is approximately equal to the 

kinetic thermal energy of the counterions. Farther from this ‘edge’ position, the 

thermal energy is dominant and the anions and cations in the electrolyte solution 



 

75 

are in equal distribution. This ‘diffused’ arrangement of charges does not provide 

perfect shielding of the surface charge. Or in other words, if there were no random 

thermal motion of the ions there would be just as many counterions in the electric 

double layer as needed to balance the surface charge and the electric double layer 

would collapse to a thin layer, just as Helmholtz had proposed. The potential drop 

is exponential across this layer, as long as the system is in thermodynamic 

equilibrium. Although, much more descriptive than the Helmholtz model, even 

the Gouy-Chapman model is not able to capture the complete picture of electric 

double layer structure as the  Gouy-Chapman model neglects adsorbed ions on the 

surface, ion-ion interactions, and  constant dielectric constant in the interfacial 

region [4, 5, 14, 139].   

The model suggested by Otto Stern and later further developed by David 

Grahame is more comprehensive and is widely used today. The Gouy-Chapman 

model reasonably explains the structure of the electric double layer as long as the 

system is simple and contains symmetric ions. These ions are mobile and will 

enter or depart the electric double layer owing to their thermal motion as long as 

the overall charge remains the same. The picture also incorporates the specific 

adsorption of ions on the solid surface. These ions are attracted to the solid 

surface by more than electrostatic forces. The driving force for these ions to be 

attracted to the electric double layer is specific to the surface in nature. The plane 

going through the center of the specifically adsorbed ions is defined as the inner 
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Helmholtz plane (IHP) and thus encloses an adsorbed layer of water molecules 

electrostatically attracted to the solid surface, as well as certain non hydrated 

surface active species present in the solution, and a few non hydrated counterions 

adsorbed onto the surface.  The spatial extent of this region is known as the inner 

Helmholtz layer (iHL). Next to the inner Helmholtz layer is another layer of 

hydrated counterions which are adsorbed to the solid surface.  In a similar 

fashion, the plane going through the mean geometric location of hydrated charge 

centers due to counterions adsorbed to the solid surface is known as the outer 

Helmholtz plane (OHP) and the spatial extent of these charge centers is called the 

outer Helmholtz layer (oHL). The region consisting of inner and outer Helmholtz 

planes is also called the Stern layer. The ions in the inner and outer Helmholtz 

layer still do not provide complete shielding of the surface charge. The Stern-

Grahame model also incorporates the diffuse layer of the counterions from the 

Gouy-Chapman model to present a comprehensive picture of the structure of 

electric double layer.  The Stern-Grahame model assumes a linear potential drop 

from the surface of the solid to the outer Helmholtz plane, as Stern recognized the 

fact that there is a finite distance from the solid surface to the center of the ion at 

which the electrical potential distribution starts, and an exponential decay of 

potential from the outer Helmholtz plane to the bulk electrolyte solution. In 

addition to this, Stern also understood that the assumption of treating ions as point 
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charges and the solvent as a structure of constant dielectric permittivity is quite 

unsatisfactory [4, 5, 14, 139].  

In summary, the comprehensive picture of the structure of the electric double 

layer which emerges from the Helmholtz-Gouy-Chapman-Stern-Grahame model 

is that it is separated into three layers. The first layer next to the solid surface is at 

the inner Helmholtz plane and bears the potential Φi, where coions and 

counterions are not hydrated and are specifically adsorbed to the solid surface. 

The second layer is defined at the outer Helmholtz plane with potential Φd, 

consisting of a layer of bound, hydrated and partially hydrated counterions. Since 

the shielding of the surface charges is still not perfect by these two layers, there is 

a third and an outermost layer, composed of ‘diffuse’ distribution of mobile 

counterions and coions in which resides the slip plane bearing the ζ potential 

(described next). The slip plane or hydrodynamic plane of shear is an imaginary 

plane separating the immobile charged species on the solid surface from the 

mobile charged species in the solution. Figure 4.1 summarizes the description of 

the electric double layer structure [14]. 
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Figure 4.1: Gouy-Chapman-Stern model of the electric double layer developed at the 

solid/ionic solution interface. The solid surface is illustrated with negative surface potential 

Φo. The figure also shows the inner Helmholtz plane (IHP), consisting of non-hydrated 

counterions and adsorbed water molecules. The outer Helmholtz plane (OHP) is built up of 

predominantly hydrated counterions. The inner Helmholtz plane and the outer Helmholtz 

plane combined form the Stern layer. The diffuse layer is defined beyond the outer Helmholtz 

plane. The figure also illustrates the slip plane or the hydrodynamic plane of shear which 

marks the transition between mobile and the immobile ions. Figure from [14].    
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4.2.1 Width of Electric Double Layer 

The overall width of the electric double layer is typically described by a 

characteristic length called the Debye Length λD, which is in the range of 1-300 

nm for aqueous electrolyte solutions and for symmetric binary electrolytes it is 

related to the ion concentration in the bulk solution , η, as follows: 

2                                                                        3.1  

where R is the gas constant, T is the temperature, z is the charge on the 

ion, εr is the relative permittivity of the solution, εo is the absolute permittivity and 

F is the magnitude of electric charge per mole of electrons [139]. At higher ionic 

concentration the Debye length is of the order of a few nanometers. Due to the 

large number of counterions next to the solid surface the surface charge is easily 

neutralized. The Debye length also decreases with increasing valency because 

fewer ions are required to equilibrate the surface charge. More importantly, the 

Debye length increases as the square root of absolute temperature which implies 

that without thermal agitation, the double layer would collapse to an infinitely 

thin layer. At low ionic concentrations, there are far fewer counterions in the 

immediate vicinity of the solid surface to neutralize the surface charge and the 

Debye length extends to hundreds of nanometers into the solution in order to have 

enough counterions to compensate for the surface charge.  In channels and pores 

with sizes in the  micron range the Debye length is significantly smaller than the 

channel dimensions and the bulk of the solution is shielded from the surface 
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charge, whereas, in the case of nanopores, the pore dimensions are often 

comparable to or smaller than the Debye length. Figure 4.2 shows Debye length 

as a function of molar concentration of aqueous HCl solution calculated using 

equation (3.1). 

 

Figure 4.2: Debye length as a function of concentration of aqueous HCl solution. For higher 

ionic concentration solutions the Debye length is a few nanometers, whereas for solutions 

with low ionic concentrations, the Debye length extends up to hundreds of nanometers. 
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4.2.2 Zeta Potential 

The picture of the electric double layer which emerges from the above 

discussion is that the electric double layer is comprised of fixed and mobile 

charges. Fixed charges are within the spatial region called the Stern layer, based 

on the Stern model, including the inner and outer Helmholtz layers. Adjacent to 

the Stern layer is the mobile part of the electric double layer with diffused charge 

distribution, as borrowed from the Gouy-Chapman model, and is composed of 

mobile counterions and coions. The spatial boundary between the immobile and 

mobile charges is an imaginary plane called the slip plane or hydrodynamic plane 

of shear. Although, neither a discrete slip plane nor a discrete interfacial plane 

exists, theory is usually based on infinitely sharp transitions. A vast amount of 

experimental data suggests that the slip plane is situated at some finite distance in 

the solution. The value of the surface potential measured at this slip plane is 

called the zeta (ζ) potential. In other words, the zeta potential is defined at the 

shear plane that identifies the closest region to the solid surface where the motion 

of ions is still hydrodynamic, as opposed to the outer Helmholtz plane, defining 

the interface region, where the majority of ions are bound to the surface, forming 

the fixed Stern layer, and are not expected to slip parallel to the surface. Also, the 

zeta-potential is defined with reference to an electrostatic zero which is defined as 

the potential of the region where the local ionic density is unaffected by the 

surface charge on the solid [1, 139, 156, 157].  
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4.2.3 Relationship Between Zeta Potential and Surface Charge Density 

When the SiO2 surface of a nanopore comes into contact with an aqueous 

HCl solution, the surface acquires negative surface charge density due to 

deprotonation of silanol groups [1]: 

                                                              3.2  

 

The calculation of ionic distributions in the vicinity of a charged solid 

surface requires solving the Poisson-Boltzmann equation [1, 4, 157]. The ionic 

distribution near a solid uniformly charged planar surface was studied by 

Grahame [3] and later the Debye-Huckel approximation was used to study the 

case of cylindrical geometry [1, 157]. Thus, applying the Poisson-Boltzmann 

equation and using Grahame’s approach for a planar charged surface, the surface 

charge density of a nanopore surface can be treated as a linear sum of the charge 

density due to a planar charged surface and a perturbation term due to the 

cylindrical curvature of the nanopore wall [1, 157]. Also, Behrens and Grier [156] 

derived a relationship between the zeta (ζ) potential and surface charge density (σ) 

for silica based on the surface reactivity. An analytical model combining the 

above two approaches was developed by our collaborators Dr. Alex Smolyanitsky 

and Dr. Marco Saraniti for the nanopores [157] and was used to obtain the values 

of zeta potential (ζ) and surface charge density (σ) as a function of HCl solution 

concentration and  are plotted in Figure 4.3. 
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Figure 4.3 shows the nanopore zeta potential (ζ) and the surface charge 

density (σ) as a function of HCl concentration. At low ionic concentrations the 

surface charge density is high due to deprotonated silanol groups, leading to a 

higher value of zeta potential as well. As the ionic electrolyte concentration starts 

to increase the surface charge density (σ) and zeta potential (ζ) both reach to zero 

[157]. At a specific pH, the solid surface is completely neutralized by the 

counterions from the solution and bears no net charge. This is known as point of 

zero charge or isoelectric point. The isoelectric point for silica is at a pH value of 

~2 [158]. 
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Figure 4.3: SiO2 Surface Charge Density, top plot, (σ) and Zeta Potential (ζ), bottom plot,  as a 

function of aqueous HCl concentration calculated using the analytical model from [157]. At 

low concentration of ionic solution the surface charge density and the resulting zeta potential 

is high due to the deprotonated silanol groups. As the concentration of ions in the solution is 

increased and the surface silanol groups are protonated the surface charge density and zeta 

potential start to decrease and reach a negligible value. 
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4.3 Electrical Characterization of Nanopores 

4.3.1 Ion Transport Measurements through Nanopores 

Nanopores derive their unique ion transport characteristics from the 

interaction of electric double layers with the nanopore wall surface charge. As 

noted in the previous section, the quantitative measure of the spatial extent of the 

‘spread’ of electric double layer is given by the Debye length, which depends on 

the bulk ionic concentration of an ionic solution. The higher the concentrations of 

ions in a solution, the smaller the electric double layer and shorter the Debye 

length. On the other hand, the lower the concentration of ions in a solution, the 

larger the electric double layer and longer the Debye length. This happens 

because as the bulk ionic concentration in an ionic solution is decreased, more and 

more counterions within the nanopore volume are required to shield the nanopore 

surface charge, leading to an extended spread of the counterions in the diffuse 

layer part of the electric double layer. This simple relationship between the ionic 

concentration of an ionic solution and the dimensions of an electric double layer, 

play a large role in understanding the ion transport through nanopores. 

For a nanopore of given dimensions, at optimum particular ionic 

concentration, the Debye length becomes equal to the nanopore radius. At that 

ionic concentration, the counterionic mobile charge due to the random thermal 

motion of the ions is practically smeared over the whole of the nanopore cross-

section, a process which is often referred to in the literature as electric double 
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layer overlap. Due to this phenomenon, the nanopore as a whole becomes 

selectively permeable, or ion permselective as it is called in literature, to the 

counterions i.e. the nanopore within its volume enriches and allows passing of 

counterions and excludes coions. This concurrent enrichment of counterions and 

exclusions of coions from within a nanopore volume due to the electrostatic 

interactions between the ions in the solution and surface charge is called the 

exclusion enrichment effect [4, 5, 13, 15].  

In a microfluidics channel, in comparison to the nanopores, the electric 

double layer with counterionic mobile charge is confined to a very thin layer at 

the surface, so that the fluid within a microfluidic channel is quasi-electroneutral.  

Hence, most of the fluid flowing through a microfluidics channel is charge non-

selective and does not discriminate between charge transport of counterions and 

coions. 

In order to study ion transport through nanopores, standard current-voltage 

measurements using an Axopatch 200B low noise amplifier were done because 

the current-voltage measurements do not require the use of often expensive 

fluorescent labels. Another benefit of electrical characterization is that these 

measurements can be integrated on the chip by fabricating the measurement 

circuitry on a nanopore chip. This allows portability for the whole detection and 

measurement system. In addition to this, the electrical characterization of the 
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nanopore systems can be easily parallelized giving a fast, high throughput system 

for rapid field application.    

The ion transport characterization and field effect measurements were 

performed on arrays of 25 cylindrical, silicon-on-insulator nanopores, with 

individual pore diameters of 34nm and 95nm because using an array provided 

enhanced signal to noise ratio of the measured current compared to a single 

nanopore. Single nanopores were used for the Coulter counting experiments 

which are discussed in the next chapter. The nanopore chips, prior to mounting on 

the Teflon holders for measurements were cleaned in 1:1 solution of sulfuric acid 

and hydrogen peroxide for 15 minutes in a cleanroom environment. In order to 

perform the ion transport experiments the nanopore chip was sandwiched between 

two custom-made Teflon chambers filled with electrolyte solution using threaded 

metal rods with screws. Once the nanopore chip was mounted, the complete 

holder-chip assembly was degassed in a dessicator to remove air bubbles present 

in the nanopore. Platinum electrodes used to measure the ionic current were 

rinsed with deionized water prior to every run of the experiment without any 

additional chemical treatment. There were two sets of experiments performed to 

study ion transport through the nanopores. In the first set of experiments, the 

conductance of a nanopore array as a function of ionic solution concentration was 

measured. In the second set of experiments, the conductance of a nanopore array 

was again measured as a function of ionic solution concentration but this time a 
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voltage bias was applied to the nanopore chip using a Keithly 236 source meter 

unit to study the modulation of ion transport by application of a chip bias voltage. 

By measuring the conductance one can observe the effects of interaction between 

the nanopore wall surface charge and the ions translocating through the 

nanopores. The conductance measurements were always started with the lowest 

electrolyte concentration solution first. To exchange the ionic solution, the 

solution which was just used in the measurement was removed from the Teflon 

chambers using a pipette and rinsed with nanopure water, and then rinsed with the 

new ionic solution of higher concentration three times, and finally filled and 

measured on the fourth turn. This ensured that when the measurement for the next 

higher concentration solution was actually done, the solution in the nanopore was 

as close to the desired higher concentration electrolyte solution as possible. This 

step of rinsing the Teflon chambers prior to measurements was followed for the 

field effect measurements as well. The conductivity values of ionic solutions were 

also measured along with the ionic conductances. 

Shown in Figure 4.4 is the log-log plot of the conductances of two 

nanopore arrays of individual pore diameter of 34nm (Black) and 95nm (Orange) 

respectively, while varying the HCl concentration from ~3 μM to 100mM. For all 

of the data points presented in Figure 4.4, five measurements were taken and the 

results averaged. The X- axis on a log scale displays the average values of the 

ionic concentrations calculated by using the measured conductivity of the ionic 
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solutions. Similarly, the Y-axis displays the conductance of the nanopore arrays 

measured using the Axopatch 200B low noise amplifier at different HCl 

concentrations. By examining this data it can be seen that nanopores of different 

diameters behave in a similar fashion. At high ionic concentration solutions, the 

conductance is predicted by the bulk approximation but it soon starts to divert at 

lower ionic concentration solutions. The larger pores follow the cylindrical theory 

for lower salt concentrations than the smaller pores. The 34nm pore diameter 

array starts to diverge from the linear behavior at approximately 300μM HCl 

concentration, whereas the 95nm pore diameter array deviates from the linear 

behavior approximately at 20μM HCl concentration.  For a given ion 

concentration, the Debye screening length is fixed, therefore the smaller 

nanopores will have overlapping double layers before the larger apertures, as can 

be seen from the earlier divergence in the conductances.  

At high ionic strength electrolytes, nanopore conductance can be 

explained using a simple model which is used to explain the conductance of a 

cylindrical resistance and is similar to the behavior exhibited by a microfluidics 

channel. This is because at higher ionic concentrations all the silanol groups at the 

nanopore wall surface are protonated because there are enough H+ ions present 

within the nanopore to shield the surface charge leading to an electric double 

layer having a Debye length of only a few nanometers. 
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At low ionic concentration solutions a conductance plateau is observed. 

When the ionic strength of the solution is low, the electric double layer overlaps 

inside of the nanopore and the effect of surface charge extends over the whole of 

the nanopore cross-section more and more and starts to affect the ion transport 

through the nanopore. This effect can be explained by considering the condition 

of overall charge neutrality within the nanopore. The surface charge inside a 

nanopore must be balanced by the counterions, present within the nanopore. The 

condition of charge neutrality necessitates that the number of mobile counterions 

far exceeds the number of mobile coions. The nanopore attracts H+ ions to satisfy 

the electroneutrality condition, whereas the Cl- ions are repelled from the 

nanopore. As the ionic strength of the electrolyte solution is further decreased the 

emerging unipolar conductance of the nanopore starts to exceed the corresponding 

bulk ion contribution in the solution.  This counterionic conductance reaches a 

plateau and is independent of the nanopore size as well as the bulk ionic 

concentration. As a result, at low ionic strength solutions, the presence of excess 

counterions in the nanopore explains the plateau in the conductance plot 

suggesting that the surface charge governs the ion transport in nanopores.  
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Figure 4.4: Nanopore array conductances as a function of HCl concentration ranging from 3μM 

to 100mM. The measured nanopore array conductances are shown as solid lines for a gate bias 

of 0V for 34nm pore diameter array (black) and 95nm pore diameter array (orange). The 

uncertainty in the conductance is shown as error bars for each measurement point. The vertical 

arrows mark the HCl concentrations where the Debye length is equal to the radius of a single 

nanopore. At high solution concentrations, to the right side of both the arrows, the conductivity 

of the solution in the nanopore is similar to that of the bulk and does not exhibit any nonlinearity 

due to surface charge effects. At low solution concentrations, to the left of both the arrows, the 

surface charge starts to affect the ion transportation through the nanopores. 
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It is clear that the nanopore array conductances display a significant 

change due to the effects of the nanopore surface charge interaction with the ion 

transport as the ionic concentration of the solution is gradually decreased. On one 

end of the observed nanopore conductance phenomena is the complete non charge 

selective behavior of the nanopores due to a negligible electric double layer with 

zero surface charge and zeta potential, when filled with high ionic strength 

solutions. On the other hand is the behavior displayed of unipolar ionic 

conductors, meaning that the ionic current through the nanopores is 

predominantly due to counterions, with extended electric double layer overlap, 

leading to high values of surface charge and zeta potential, when filled with low 

ionic strength solutions. The electric double layer overlap within nanopores also 

results in the presence of electric potential from the nanopore surface, over the 

whole of the nanopore cross-section, allowing the possibility of modulating the 

surface potential by applying a voltage bias to the nanopore substrate, in a fashion 

similar to a semiconductor field effect transistor, which is discussed next. 

 

4.3.2 Field Effect Modulation of Ion Transport through Nanopores 

A metal-oxide-semiconductor field effect transistor is a transistor that uses 

a control electrode, the gate, to capacitively modulate the conductance of a 

semiconductor surface channel joining two contacts, the source and the drain. 

The gate is separated from the semiconductor body or substrate, underlying the 
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gate by a thin layer of insulator, typically silicon dioxide. When a voltage is 

applied to the gate electrode it modifies the distribution of charges in the 

semiconductor substrate. Depending on the polarity of the voltage applied and the 

type of inherent charge carriers within the semiconductor, a surface channel is 

formed at the interface between the semiconductor body and the gate insulator 

consisting of unipolar charge carriers which then can be modulated by varying the 

gate voltage [159].  This concept is called field effect modulation and is applied 

here towards the study of ion transport through the nanopore arrays. 

Typically, there are three types of charges that can affect the ion transport 

or ionic conductance in nanopores: 

• The charged ions from the ionic solution in the nanopore. 

• The localized surface charges at the nanopore walls, either due to 

adsorption of ions from the electrolyte or due to the dissociation of 

surface groups. 

• Charges external to the system, such as those induced by the field 

effect. 

In the previous section, the effects of interaction surface charge with the 

ions within the nanopore were discussed. It should be noted again that the effects 

of the surface charge interaction with the ions within the nanopore are pronounced 

at low ionic concentration solutions, the first signs of which appear when the 

Debye length of an electric double layer becomes comparable to the radius of a 
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nanopore. At that point, the electric double layer starts to overlap resulting in the 

prevalence of electric potential, of the same sign as the surface potential, over the 

whole nanopore cross-section. Due to this the nanopore as a whole becomes ion 

permselective i.e. enriches the counterions within the nanopore volume and 

excludes the coions. It is this counterion rich unipolar environment within the 

nanopore with prevalent surface potential in the nanopore that raises the 

possibility of exploring field effect modulation of ion transport through the 

nanopores. 

The exclusion enrichment effect or permselectivity, as it is referred to in 

membrane filtration studies [154, 155] was first experimentally investigated using 

polymer nanoporous membranes. Researchers worked on exploring the possibility 

of modulating the ion transport through such synthetic sieves. Nishizawa et al. 

[50]., Lee and Martin [39] and Martin et. al.[10] developed a gold plating 

technique to control the size as well as the surface chemistry of the nanopores 

etched in polycarbonate membranes. These nanopores were etched in 

polycarbonate substrates using track etch method. The permselectivity of these 

membranes for anions or cations increased when the Debye length was 

comparable to the nanopore diameter. The ion permselectvity also depended on 

the surface charge of the nanopores. Nanopores with positive surface charge 

demonstrated increased anion flux compared to negatively charged pores while 

the opposite was true for cations. This further strengthened the idea that the 
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exclusion enrichment effect was leading to the ion permselectivity of the 

nanopores and can be successfully exploited to manipulate the ion transport at the 

nanometer scale. Similar results of the field effect modulation of ion transport 

through nanochannels using external electrodes were also demonstrated by other 

researchers [17]. Karnik et al. [8, 9] and Fan et al. [2] demonstrated that a gate 

electrode on nanochannels can be used to change their surface charge, enabling 

field effect control of the ions.  

Despite the significant number of studies on the control of the ionic 

current via an external field, little is known about the efficiency of the modulation 

of the ionic current via the electrostatic gate. Although a transconductance value 

is reported by Nam et al. [49], it would be interesting to directly determine the 

change in surface charge on the inside of the channel versus the applied gate 

voltage. Such an effort requires both a simulation of the expected change in 

surface charge as well as an experimental study on the efficiency of the 

electrostatic gate control.  

To establish a well-controlled electric field via an electrostatic gate in a 

nanopore structure, it is necessary to position the gate electrode in close proximity 

to the nanochannel and ensure that the electrode has the same symmetry as the 

channel itself. An electrode geometry like this was first demonstrated by Nam et 

al.[49], however, without a dielectric insulator between gate electrode and 

channel itself, the capacitance between the gate and the ion-conducting channel is 
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substantial, as is the leakage current. In the approach undertaken in this study 

thermal oxidation was employed to create an insulating layer that separates the 

conductive top silicon layer from the pore volume. By using the top silicon layer 

as the electrostatic gate, the surface charge inside the nanopore could be 

controlled via the potential applied directly to the silicon. Using an array of 

nanopores for the experiments the total conductance could be substantially 

increased with improvement in the signal-to-noise ratio compared to using single 

nanopores, which is especially beneficial when measuring ionic currents at low 

ionic concentration solutions. The experimental observations are complemented 

by a numerical model for the ion transport though the pore based on Brownian 

dynamics (BD). This allows us to correlate the bias voltage required in the 

experiments with the theoretical value that is necessary to accomplish a change in 

the nanopore array conductance for a given electrolyte concentration. 

Furthermore, the BD model provides valuable insight into the dominant current 

transport mechanisms at low electrolyte concentrations while taking into account 

the electric field fringing effects at the nanopore extremities. The BD model is 

scalable, allowing it to be applied to nanopores with smaller dimensions and 

different ionic concentrations. 
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Figure 4.5: Field effect modulation of nanopore array conductances as a function of HCl 

concentration. The measured array conductances are shown as solid lines for gate bias of 0V for 

34nm pore diameter (black), and 95nm pore diameter (Orange). For  +10V bias the 

conductances are in green for 95nm pore diameter and purple for 34nm pore diameter. 

Conductance of 34nm pore diameter array was also measured at a bias of -1V (grey). The 

uncertainty in the conductance is shown as error bars for each measurement point. The vertical 

arrows mark the HCl concentrations where the Debye length is equal to the radius of a single 

nanopore.  

 
Figure 4.5 shows the conductance of the arrays as a function of HCl 

concentration for the different bias voltages for both the 34nm diameter pore array 
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and the 95nm pore array. For all of the data points presented in Figure 5, five 

measurements were taken and the results averaged. The error bars indicate the 

typical standard deviation between nominally identical measurements. To 

investigate the influence of surface charge as well as the effect of a DC voltage 

bias applied to the substrate on the ionic conductance, a voltage of VSOI, of 0V, 

+10V and –1V was applied to the SOI layer on both of the nanopore arrays.  

At higher bulk ionic concentrations, concentrations greater than 10-4M, the 

EDL is thin and the ionic conductance depends only on the cylindrical volume 

nanopore geometry and the bulk concentration i.e. the concentration of electrolyte 

filling the baths. Also, the conductance in this concentration range (> 10-4M) is 

unaffected by the bias applied to the SOI substrate. 

On the other hand, at low bulk ionic concentrations, concentrations less 

than 10-4M, the conductance of the nanopores starts to deviate from the bulk 

behavior. This deviation can be explained by a unipolar conduction model based 

on the effect of nanopore surface charge.  As the counter-ions accumulate in the 

nanopores, the EDL becomes comparable to the nanopore dimensions and starts 

to overlap. In this regime the surface charge governed transport dominates the 

conduction mechanism and significantly influences the conductance of the 

nanopore array. The oxide-covered inner surface of the nanopores in the array are 

negatively charged due to the presence of dissociated silanol groups which repel 

Cl- ions from within the nanopores, leaving H+ ions as the majority ions 
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contributing to the ionic current flow at low HCl concentration and for VSOI=0V.  

When a positive bias is applied to the nanopore SOI layer, at low electrolyte 

concentrations, it depletes the H+ ions within the array and effectively decreases 

the ionic current. Likewise, a negative substrate bias attracts additional H+ ions 

and the pore conductance is increased. A +10 V bias reduces the conductance at 

low HCl concentration by a factor of two while the conductance can be increased 

by a factor of 2-3x with just a -1V bias. This asymmetry is attributed to the 

rectifying nature of the current flowing between the substrate and the HCl 

electrolyte, with a negative substrate bias being much more effective at modifying 

the surface potential at the interface between the electrolyte and the Si:SiO2.  

In order to prevent the substrate bias voltage reaching the breakdown 

voltage of oxide in the SOI substrate, the leakage current through the substrate 

was also monitored. At low electrolyte concentrations, the leakage current 

flowing from the SOI layer to the HCl electrolyte can exceed the current flowing 

through the nanopore itself. Figure 4.6 shows the absolute value of the leakage 

current flowing out of the SOI substrate as a function of the applied substrate bias.  
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Figure 4.6: The leakage current flowing into the SOI substrate as a function of substrate bias at 

10µM HCl. 

 

Positive gate biases of up to +10V can be applied to the substrate before 

the substrate current exceeds the current flowing through the nanopore array 

itself. In contrast, the substrate current grows rapidly when a negative bias is 

applied and we are therefore limited to small magnitude negative bias voltages up 

to -1V. This asymmetry in leakage current is attributed to the applied voltage 

dependent conductivity of SiO2 [54].  

To identify the transport mechanisms contributing to the ionic 

conductance of the nanopore arrays, a 3D Brownian dynamics (BD) simulation 

has been performed [157]. The use of BD, being a particle-based simulation 
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framework, is motivated by its accuracy, compared to continuum-based models, 

such as Poisson-Nernst-Planck (PNP) formalism [157, 160], and numerical 

efficiency compared to Molecular dynamics. Also, Brownian dynamics is capable 

of reproducing excluded ionic volume effects on complex, non-periodic 

computational domains (as compared to continuum-based models). Electric field 

fringing effects at the nanopore extremities are also taken into account. Brownian 

dynamics furthermore allows simulating the ionic distribution in nanopores and 

nanochannels with smaller diameters than those used in this study. This is of 

relevance if pores are being studied that have diameters that approach the Debye 

length of electrolytes in physiologically relevant concentrations. 

The surface charge density was obtained from the model mentioned in , 

with the assumption that the gate bias does not modify its value significantly. This 

value was then used as an input parameter to the Brownian dynamics simulation, 

setting a constant charge density on the wall of the simulated nanopore for each 

HCl concentration. The pore conductances extracted from the BD simulations are 

compared with the experimental data in Figure 4.7. 
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Figure 4.7: Field effect modulation of nanopore array conductances as a function of HCl 

concentration. The measured array conductances are shown as solid lines for gate bias of 0V for 

34nm pore diameter (black), and 95nm pore diameter (Orange). For  +10V bias the 

conductances are in (green) for 95nm pore diameter and purple for 34nm pore diameter. 

Conductance of 34nm pore diameter array was also measured at a bias of -1V (grey). The 

uncertainty in the conductance is shown as error bars for each measurement point. The vertical 

arrows mark the HCl concentrations where the Debye length is equal to the radius of a single 

nanopore. The simulated nanopore array conductances are shown as scatter points. For 95nm 

diameter pores the simulated biases are floating ~0V (Orange circles) and +0.5V (Green Stars). 

For 34nm diameter pores the simulated biases are floating ~0V (Black circles), -0.5V (Grey 

Triangles) and +0.3V (purple). 
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BD simulations reproduce the saturation in conductance at low HCl 

concentrations and the gating effect of substrate bias. The substrate bias used in 

the BD simulations to reproduce the measured data is significantly lower than the 

values used for the measurements. This is attributed to the fact that the BD 

simulations modify the Fermi potential within the silicon by the amount of the 

applied bias, while the bias applied to the electrodes on the silicon layer is being 

partially screened by charges present in the volume of the SiO2 layer as well as by 

the surface states present at the oxide-electrolyte interface [157]. By comparing 

the bias applied in the BD simulation to that used in the experiments, an 

efficiency of the applied potential can be  derived, which enables us to predict the 

controllability of the electrolytic current through the nanopore array. 

The BD simulations allow visualization of the pore characteristics that 

may provide useful insight into their behavior for example as biosensors. Figure 

4.8 shows the cation and anion concentration distribution along a plane at the 

midway point of the nanopore when the substrate is floating and when it is raised 

to a bias of +0.5V. It is clear from Figure 4.8 that for a bulk concentration of 50 

µM the H+ concentration in the pore is reduced by the applied bias, but any 

change in the anion concentration is less apparent.  

  



 

104 

 

 

 
Figure 4.8: Distribution of the ion concentration across a 100 nm diameter pore for a bulk HCl 

concentration of 50 µM, corresponding to the floating gate (top) and the gate bias of +0.5 V 

(bottom). 

To further improve the numerical statistics the anion and cation 

concentrations were averaged across the pore diameter from all 32 cross-sections 

along the pore that are far enough away from the openings that fringing fields to 
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do not play a role. The results are shown in Figure 4.9, as radial ionic distributions 

across a 100 nm diameter pore. The larger diameter has been chosen to improve 

the statistics of the ionic trajectories within the pore. The qualitative aspects of the 

discussion that follows are equally applicable to smaller diameter nanopore 

arrays. The accumulation of cations inside the nanopore is attributed to the 

surface charge, causing the nanopore to act like an electrostatic pump.  At 5.0µM 

of HCl, the value of surface charge is calculated to be -0.23mC/m2 [157] giving a 

Debye screening length of ~136 nm, and the pore is expected to be filled by 

protons only, as supported by the simulation results in Figure 4.9 (a). For 50µM in 

Figure 4.9 (b), the surface charge is -0.16 mC/m 2 , and the Debye length is ~40 

nm, which is comparable to the nanopore radius, and the ionic population is 

expected to be mostly cationic, although the anion population is non-zero (unlike 

the case at 5 μM) and peaks in the center of the pore. At an HCl bath 

concentration of 500µM in Figure 4.9 (c) the population of anions and cations is 

equal and uniformly distributed across the pore. 

 Applying a positive gate bias modifies the nanopore surface potential, 

causing the cationic population to decrease and the population of anions to 

marginally increase at low concentrations. For a bulk HCl concentration of 50 μM 

a bias of +0.5 V reduces the H+ concentration at the  surface of the nanopore by 

approximately a factor of two while the concentration at the center of the pore 

does not change noticeably with bias. For a bulk HCl concentration of 5 μM the 
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H+ concentration is reduced by a factor of ~2 across the entire diameter of the 

pore reflecting the complete overlap of the double layers.  At a bulk concentration 

of 50 μM the application of a +0.5V bias increases the anionic population, 

however, this does not contribute considerably to the conductance, as the Cl- 

mobility is about 25% of the H+ mobility in water [161], resulting in the overall 

decrease of nanopore conductance. Toward higher bulk HCl concentration, the 

nanopore surface in absence of a bias voltage is close to neutral, causing both 

anions and cations to equally contribute to the conduction process, and applying a 

gate voltage does not noticeably modify the ionic populations, or the pore 

conductance, as shown in Figure 4.9 (c). 
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Figure 4.9: The simulated radial ionic distributions across a 100 nm diameter pore for 5µM, 50µM 

and 500µM HCl concentration. The solid squares (■) show the cationic distribution while the solid 

triangles (▲) show the anionic distribution for floating gate electrode whereas the open squares 

(□) and open triangles (∆) show the cationic and anionic distribution, for a gate bias of +0.5V, 

respectively. At the concentration of 5µM, the nanopore has a unipolar environment due to double 

layer overlap and is filled with cations only, leading to pronounced field effect modulation of 

cation distribution. The anion polpulation in the pore at an HCl concentration of 5 mM is zero and 

hence only the cation distribution is shown in the pane (A). At the concentration of 500µM, the 

electric double layers are small compared to the pore diameter, resulting in equal distributions of 

cations and anions and an absence of field effect modulation of ionic distribution within the 

nanopores. 
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4.4 Conclusion 

In summary, this chapter discusses the main physical phenomena which affect 

the ion transport through the nanopores and the field effect modulation of ionic 

conductance of 25 cylindrical, high aspect ratio nanopores with diameters of 

34nm and 95nm fabricated in silicon-on-insulator substrates. Field effect 

modulation of the conductance of both pore arrays was observed for HCl 

concentrations below ~ 0.1 mM. A 3D Brownian dynamics simulation of the 

pores reproduced the trends in order to identify the transport mechanisms 

contributing to the ionic conductance of the nanopore arrays as well as the bias 

potential needed to accomplish a change in the pore conductance. 
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5. COULTER COUNTING 

5.1 Introduction 

The Coulter counter is a commercially available device used to count red 

blood cells and other particles suspended in a conducting fluid. The device was 

invented by Wallace H. Coulter in 1948 and was subsequently patented in 1953 

[55]. Coulter counters operate on a simple principle of resistive pulse sensing and 

are capable of detecting particles with diameters in the wide range of 0.4μm to 

1200μm by using apertures of different sizes. The attributes offered by fabricated 

solid state nanopores such as precise control of geometry, chemical, mechanical, 

electrical and thermal robustness and stability, and the ease of integration with 

standard electronic circuits have made them a viable candidate for usage in high 

throughput nanoscale Coulter counting applications.  

The fundamental operating principle of Coulter counters relies on using a 

small aperture to connect two fluidic chambers filled with conducting liquid. 

When a voltage is applied across an aperture the ions in the solution move 

towards cathode or anode depending on their charge, due to the electric field 

resulting from the applied voltage. This movement of ions through the aperture 

due to applied voltage constitutes ionic current through the aperture. When a non 

conducting particle flows through the ionic solution filled aperture, it displaces a 

volume of electrolyte equivalent to its own volume. This leads to a drop in the 

measured ionic current through the aperture for the duration of the particle 
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passing through the aperture. The drop in current or increase in the electrical 

voltage drop across the aperture leads to an increase in the electrical resistance of 

the aperture temporarily which then can be measured and used to sense a particle 

of given type. This is called as Resistive Pulse Sensing or Coulter principle, or 

Coulter counting.  

A previous chapter of this document presented the effect of biasing on the ion 

transport through nanopore arrays. This chapter presents the results of Coulter 

counting experiments through a single nanopore with and without the effects of 

biasing.  

 

5.2 Theoretical background 

To calculate the expected increase in resistance due to the presence of an 

additional particle, initial approximations were developed that were sufficient in 

specific conditions, but insufficient overall.   The first approach towards these 

approximations was taken by James Clarke Maxwell and was presented in his 

seminal work, A Treatise on Electricity and Magnetism published in 1873 [70]. In 

his work Maxwell approximated change in resistance due to addition of a 

spherical particle, referred to as particle here after, in an aperture, as a change in 

the effective resistivity of the solution as a function of the volume fraction. 

Considering a cylindrical pore of length L and diameter D filled with an ionic 
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solution with resistivity ρ, the electrical resistance of the pore when it is 

completely filled with ionic solution can be calculated as follows: 

 

24 /R L Dρ π=    (5.1) 

 

where L>> D. To compensate for the addition of a particle with a diameter d to 

the system, the resistivity was modified to: 

 

3(1 ...)
2eff fρ ρ= + +   (5.2) 

 

where f  represents the volume fraction occupied by the particle. The volume 

fraction of the particle is given by the following equation: 

 

3 2/ 32 D Lf d=    (5.3) 

 

If the diameter of the particle is much smaller than the diameter of the pore i.e. d 

<< D (thus the pore surface is far from the particle), then Maxwell’s model can 

be applied and the electrical resistance of the pore containing a non-conducting 

sphere can be obtained as follows: 
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3
' 2

2(4 / )(1 ...)dL D
LD

R ρ π= + +    (5.4) 

 

Therefore, increase in resistance of the pore due to presence of a non conducting 

particle is then given by the following equation: 

 

' 3 4/4 DdR R R πρ=Δ = −    (5.5) 

 

In the above equation, the change in resistance ΔR is a function of the solution 

resistivity, diameter of the spherical particle and the diameter of the cylindrical 

pore. Therefore, for a solution of given resistivity either d or D can be found if 

one of the two variable is fixed.  

The relative change of pore resistance is therefore, 

 

3 2/ /R R d D LΔ =  (5.6) 

 

In normal operation of resistive pulse sensing, the ionic current through the 

aperture is continuously measured to observe the translocation of the particles 

suspended in the ionic solution. This current then serves as a baseline current Io 

for a given applied voltage bias and solution resistivity. When a particle passes 

through the aperture, the baseline ionic current through the aperture decreases and 

can be calculated as follows [70]: 
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∆ / )  (5.7) 

 

5.3 Experimental Procedure 

The procedure to prepare solutions of nanoparticles for use in Coulter 

counting experiment was followed using methods as reported by Sun and Crooks 

[122]. The main steps of the procedure are preparation of base ionic solution, 

addition of non-ionic surfactant in the solution and finally the addition of supplied 

nanoparticle solution.    

HCl solutions of concentrations 100mM and 10mM were prepared using 

NanoporeTM water. Typically, 125mL of nanoparticle bead solution was prepared 

at a time to prevent contamination of the ionic solution. In order to prepare the 

bead solution, NanopureTM   water was placed on a magnetic stirrer with a 

Teflon® stir rod at 1500RPM and required amount of hydrochloric acid added to 

achieve the desired ionic concentration in the solution. The conductivity of the 

solution was measured before adding surfactant. 125μL of Triton X-100 (Sigma 

Aldrich Chemical) was then added to the freshly prepared ionic solution. The non 

ionic surfactant prevents nanopartices from agglomerating within the solution. 

The final step in nanoparticle solution preparation was addition of polystyrene 

beads into the ionic solution. Before adding the beads to the ionic solution, the 

stock solution from Bangs laboratories was sonnicated for a minimum of five 

hours to ensure dispersion of polystyrene beads. The targeted final concentration 
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of nanoparticles in the solution was 5x1011 particles/ ml, to remain consistent with 

the procedure reported by Sun et al. [122] Nanoparticle solution was ordered from 

Bangs Laboratories, Fishers, IN  in 5ml dilution containing 1.050 g/ ml 

concentration of polystyrene beads with mean diameter of 60 nm ± 6 nm. 

Nanoparticle solutions were bottled and capped under argon and stored in 

refrigerator. Before running Coulter counting experiments, the nanoparticle 

solution was brought to room temperature and sonnnicate for a minimum of five 

hours to ensure monodisperse solution of nanoparticles.  

In order to assess the variation in diameter of the polystyrene beads, 

nanoparticle solution was analyzed using Nicomp 380 ZLS particle sizer. The 

particle sizer reported a mean diameter of 62 nm for the polystyrene beads used 

(data not shown). Another experiment performed with the particle sizer was to 

determine the duration of sonnication required to ensure monodispersion of 

polystyrene baeds. Based on these characterization experiments, the nanoparticle 

solution were sonnicated for a duration of a minimum of five hours prior to 

Coulter counting experiments.  

For Coulter counting application individual nanopore of diameter 105nm was 

used. The ionic transport through the nanopore was thoroughly characterized and 

was found to be in accordance with the results seen for nanopore arrays. The 

nanopore was then used for Coulter counting experiments. pClamp 9.0,  the 

proprietary software from Molecular devices to control Axopatch 200B and 
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Digidata 1320 was used for data acquisition. The applied potential waveform 

range was from 0mV-70mV with 5mV increments and current was sampled for 

20 seconds at 50 kHz for every voltage using the setup described in chapter 3.  

 

5.4 Experimental Results 

Presented are the results of translocation, referred to as Coulter counting 

here after, of 62 nm polystyrene beads through 105 nm diameter single nanopore. 

The purpose of this experimental sequence is to pass 62 nm polystyrene beads and 

quantify the magnitude of resulting ΔI. The 105nm diameter nanopore was 

mounted on the Teflon holder assembly as described elsewhere in the document. 

The Teflon chambers were then filled with monodispersed polystyrene bead 

solution prepared in 10mM HCl solution. Once filled the resistance of the 

nanopore was measured and compared to the previous values.  

Figure 5.1 (top panel) presents the current vs. time traces produced as a 

result of a complete voltage sweep from 0mV to 70mV with a voltage increment 

of 5mV for 105 nm nanopore filled with monodispersed polystyrene beads in 

10mM aqueous HCl solution. The nanopore chip in this case is not biased. The 

bottom panel of figure 5.1 focuses on the current traces generated by 50mV, 

55mV, 60mV, 65mV, and 70mV.   

The previous chapter analyzed the flow of ions in an array of nanopores in 

the presence of a voltage bias applied across the nanopore chip as well as applied 
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to the nanopore chip. A similar, albeit, more complicated scenario arises when a 

colloidal particle with a surface charge immersed in an aqueous ionic solution is 

subjected to an external electric field. In this case, the particle is also susceptible 

to move in response to the applied electric field, and a relative motion between 

the particle and the ionic solution is developed. When an electric field is applied 

to a suspension of charged particles, the particles migrate along the electric field 

lines owing to the presence of surface charge on the particles. When dispersed in 

an aqueous ionic solution polystyrene beads tend to acquire a surface charge due 

to dissociation of surface carboxyl –COOH groups as per the following reaction:  

 

leading to a negatively charged polystyrene surface. As the polystyrene beads 

come closer to the nanopore they are pushed into the nanopore due to the applied 

bias and as the polystyrene beads pass, their translocation is registered as a drop 

in the measured ionic current which is visible as downward spikes in the current 

vs. time trace.  
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Figure 5.1 shows the results of Coulter counting experiment at 0V gate bias. The voltage applied 

across the nanopore was swept from 0mV to 70mV and few Coulter counting events are seen. 

At a gate bias or nanopore chip bias of 0V very few Coulter events were 

seen in the voltage sweep. After doing Coulter counting experiments with 0V bias 

to the nanopore chip, the experiments were repeated with a +10V bias to the 

nanopore chip. Results are shown in Figure 5.2   
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Figure 5.2 Complete voltage sweep from 0mV-70mV at an increment of 5mV for 10V gate bias 

for 10mM HCl solution (top panel). Current traces for voltages 50mV, 55mV, 60mV, 65mV and 

70mV showing significantly higher number of bead translocation events compared to 0V bias case 

(bottom panel).  
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When positive gate bias voltage of +10V was applied more and more charged 

polystyrene beads were electrophoretically driven to the nanopore [75] leading to 

an increased number of charged polystyrene beads coming towards the nanopore.  

 The experiment was repeated for polystyrene beads monodispersed in 

100mM aqueous HCl solution with 0V bias and +10V bias. Results are shown in 

Figure 5.3. There were considerably more events for 0V bias at 100mM HCl 

solution compared to 10mM solution. In the beginning of the sweep very few 

Coulter events are seen but as the voltages in the sweep increase more and more 

polystyrene beads are attracted towards the nanopore resulting in translocating 

events. Figure 5.3 (middle panel) plots out current vs. time traces for 50mV, 

55mV, 60mV, 65mV, and 70m showing numerous events. In order to understand 

the nature of current spikes, the current trace resulting due to 70mV of applied 

bias is plotted separately in the following figure (Figure 5.3 bottom panel). 

  The figure reveals current spikes of different magnitudes. The larger 

current spikes correspond to the actual translocation events where a polystyrene 

bead passes through the nanopore. The smaller current pikes are generated 

because of the beads attempts to pass through the nanopore. As a polystyrene 

bead comes closer to the nanopore opening sometimes due to the motion the bead 

does not enter the nanopore right away. Instead, the bead ends up partially 

blocking the nanopore for a short duration and rebounding before it enters the 

nanopore. A similar plot for the case of +10V gate bias is also plotted Figure 5.4. 
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Figure 5.3 Complete voltage sweeps from 0mV-70mV at an increment of 5mV for 0V gate bias 

for 100mM HCl solution (top panel). Current traces for voltages 50mV, 55mV, 60mV, 65mV and 

70mV (middle panel). Current trace for 70mV showing numerous Coulter events (bottom panel). 



 

121 

 

Figure 5.4 Complete voltage sweeps from 0mV-70mV at an increment of 5mV for 10V gate bias 

for 100mM HCl solution (top panel). Current traces for voltages 50mV, 55mV, 60mV, 65mV and 

70mV (middle panel). Current trace for 70mV showing numerous Coulter events. Also, noticeable 

is the increase in the background peak-to-peak noise due to biasing the nanopore chip (bottom 

panel).  
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In order to understand the nature of translocation of polystyrene beads through a 

nanopopre, a single transition event from the current traces, Figure 5.3 (bottom 

panel) and Figure 5.4 (bottom panel), have been plotted in Figure 5.5.  

 

Figure 5.5 A single polystyrene bead translocation event at 0V gate bias (top panel) and 10V gate 

bias (bottom panel).  The voltage applied across the nanopore in both the cases was 70mV.   

 

The current stays at the baseline value until a bead passes through the 

pores. The passing of beads displaces the ionic liquid from the nanopores leading 
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to decrease in the measured current. The travelling of nanobeads through the 

nanopore is seen as a downward spike in the current trace. Once the beads have 

passed through the nanopore the measured current is back to its baseline value. 

This drop in current is then correlated with the diameter of the nanoparticle. The 

profile of the current drop dip resulting due to a bead translocation event was 

expected to be squarer in shape but instead it appears more triangular. The reason 

the dip has a triangular shape instead of a square one is because of the short 

duration of the bead translocation event. Another important feature to notice is the 

distinctive nature of the current spikes. The background noise on the current trace 

is 20pA peak-to-peak as measured by the low noise current amplifier and the 

current spikes generated by polystyrene beads passing through the nanopore 

create current spikes which are distinctive enough from the background noise.  

As was the case with the experiments with 10mM HCl solutions the 

number of Coulter events for +10V bias is much greater than the number for 0V 

bias. In order to understand the effects of nanopore chip biasing or gate biasing as 

it is referred to the data from the current traces obtained at 0V and 10V was 

analyzed by our collaborators Mr.  Prasanna Sattigeri and Dr. Andreas Spanias 

and the results of the data analysis is shown in Figure 5.6. The X-axis plots the 

value of the voltage applied across the nanopore. The Y-axis displays the number 

of Coulter events observed at a given applied across nanopore. 
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Figure 5.6 Coulter events as a function of voltage applied across the nanopore during a voltage 

sweep. A gate bias of +10V leads to a higher number of translocation events compared to a gate 

bias of 0V. 

 

Figure 5.6 shows the number of Coulter events observed as the voltage applied 

across the nanopore is swept from 0mV to 70mV. At low voltages very few 

Coulter events are seen in the case of 0V (red circles) and 10V bias (blue stars). 

As the voltage applied across the nanopore is increased the number of particles 

going through the start to increase.  

It is worthwhile to point out at this point of time that the polystyrene beads are 

negatively charged due to the –COO- group. Therefore, when a positive bias is 

applied to the nanopore chip a large number of polystyrene beads come in the 
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vicinity of the nanopore which leads to an increase in the bead translocation 

events.  

 

5.5 Conclusion 

In this chapter a brief introduction to the principle of Coulter counting was 

given. A theory to describe the magnitudes of current spikes observed due to bead 

translocation events was also presented.  In addition this, the results of Coulter 

counting experiments with 61nm mean diameter polystyrene beads using 105nm 

diameter single nanopore at different ionic concentrations are presented. Also, 

presented are the results of Coulter counting experiments with and without bias to 

the nanopore chip.  
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6. CONCLUSION 

Significant advances in nanofabrication technologies have led to the 

beginning of a new era where materials and structures are designed at a molecular 

level and then fabricated with control of composition and dimensions at molecular 

length scales. This drive to design, manipulate and build structures with 

dimensions in the molecular range has immensely contributed to advances in 

nanoscale analysis systems. Although, the direction of progress of nanoscale 

analysis systems or nanofluidic structures seems to follow the path of 

microelectronics, it differs in one important aspect from microelectronics that the 

fundamental physics in nanoscale analysis systems, changes more rapidly as the 

size scale is decreased. When a system is reduced in size the changes in length, 

area, and volume ratios alter, often in unexpected ways, the relative influence of 

various physical effects that determine the overall operation of a system. 

Independent of the type of driving force, the novel attributes of nanofluidic 

structures ensure ionic and molecular transport characteristics that are 

fundamentally different from those in larger micrometer and millimeter scale 

structures.  

One such category of nanofluidic structures demonstrating unique ionic 

and molecular transport characteristics are nanopores. The characteristics of ionic 

and molecular transport often observed in nanopores are pronounced influence of 

surface charge density, coupled and enhanced mass and ion transport, 



 

127 

nanostructure size and shape, mobile phase ionic strength, large mass-to-charge 

ratio of ionic species in an ionic solution, ion depletion/enrichment, ion current 

rectification, and diminished background signals. These effects of these 

phenomena are much more pronounced when the nanopore dimensions are 

comparable to the Debye screening length of the ionic solution. These myriad 

phenomena, point to a simple fact that the molecular characteristics can dominate 

the ionic and molecular transport behavior of a nanostructure. Thus, these 

nanopores are an ideal platform to study electrolyte transport properties on the 

nanometer scale to control the ion transport by modulation of the surface 

potential, similar to the control mechanism present in field effect transistors.  In 

addition to this nanopores have also emerged as one of the popular choices for 

detection, confinement, and transport of nanoscale analytes allowing an 

opportunity to study nanometer level interactions which are typically lost in bulk 

measurement methods.  

This doctoral study made an attempt to understand and influence the ion 

transport through the nanopores fabricated in silicon-on-insulator substrate using 

standard clean room fabrication techniques. The fabrication process flow 

developed in this research and presented in this research presents a novel 

approach compared to all other prevalent processes in the research field. The 

fabrication of nanopores in silicon-on-insulator using electron beam lithography 

and dry etching processes allows fabrication of precise, reliable definition of 



 

128 

nanopores as well as an ordered array of nanopores. The process flow is 

compatible with standard cleanroom facilities for a high throughput fabrication of 

single as well as an array of nanopores.  The process flow also permits precise 

dimensional as well as process control.  

The ion transport measurements through the silicon-on-insulator 

nanopores displayed a significant change due to the effects of the nanopore 

surface charge interaction with the ion transport as the ionic concentration of the 

solution is gradually decreased. On one end of the observed nanopore 

conductance phenomena is the complete non charge selective behavior of the 

nanopores due to a negligible electric double layer with zero surface charge and 

zeta potential, when filled with high ionic strength solutions. On the other hand is 

the behavior displayed of unipolar ionic conductors, meaning that the ionic 

current through the nanopores is predominantly due to counterions, with extended 

electric double layer overlap, leading to high values of surface charge and zeta 

potential, when filled with low ionic strength solutions. The electric double layer 

overlap within nanopores also results in the presence of electric potential from the 

nanopore surface, over the whole of the nanopore cross-section, allowing the 

possibility of modulating the surface potential by applying a voltage bias to the 

nanopore substrate, in a fashion similar to a semiconductor field effect transistor. 

In a microfluidics channel, in comparison to the nanopores, the electric double 

layer with counterionic mobile charge is confined to a very thin layer at the 
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surface, so that the fluid within a microfluidic channel is quasi-electroneutral.  

Hence, most of the fluid flowing through a microfluidics channel is charge non-

selective and does not discriminate between charge transport of counterions and 

coions. 

The above phenomenon was used in manipulating the ion transport by 

field effect modulation. A positive bias applied to the nanopore SOI layer, at low 

electrolyte concentrations, effectively decreased the ionic current. Likewise, a 

negative substrate bias increased the pore conductance significantly. A +10 V bias 

reduces the conductance at low HCl concentration by a factor of two while the 

conductance can be increased by a factor of 2-3x with just a -1V bias.  

Single nanopores were then used to demonstrate Coulter counting at 

nanometer scale using polystyrene beads at different ionic solution 

concentrations. Also, the effects of biasing the nanopore chip on Coulter counting 

were also presented.  

 

6.1 Future Work 

Nanopores offer a multitude of possibilities and applications and so does the 

fundamental physics at the nanometer level. One such study which could employ 

effective use of nanopores is the interaction of electrical double layers with 

nanopores of different surfaces. Also, to explore further application of field effect 
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modulation gold or platinum electrodes can be embedded within the nanopore 

structure. 

 An on growing field of application for nanopores is the passing of DNA 

molecules for DNA sequencing. Most of the nanopores which are used for DNA 

studies are not fabricated using standard cleanroom technologies and hence lack 

the potential of mass fabrication. Silicon-on-insulator nanopores can fill that gap. 

 In the end, nanopore research has a bright future!  
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