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ABSTRACT 
   

CMOS technology is expected to enter the 10nm regime for future integrated 

circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a 

grand challenge to robust IC design. Variations in CMOS are often divided into two 

types: intrinsic variations and process-induced variations. Intrinsic variations are 

limited by fundamental physics. They are inherent to CMOS structure, considered as 

one of the ultimate barriers to the continual scaling of CMOS devices. In this work 

the three primary intrinsic variations sources are studied, including random dopant 

fluctuation (RDF), line-edge roughness (LER) and oxide thickness fluctuation (OTF). 

The research is focused on the modeling and simulation of those variations and their 

scaling trends. Besides the three variations, a time dependent variation source, 

Random Telegraph Noise (RTN) is also studied. Different from the other three 

variations, RTN does not contribute much to the total variation amount, but 

aggregate the worst case of Vth variations in CMOS. In this work a TCAD based 

simulation study on RTN is presented, and a new SPICE based simulation method 

for RTN is proposed for time domain circuit analysis. Process-induced variations 

arise from the imperfection in silicon fabrication, and vary from foundries to 

foundries. In this work the layout dependent Vth shift due to Rapid-Thermal 

Annealing (RTA) are investigated. In this work, we develop joint thermal/TCAD 

simulation and compact modeling tools to analyze performance variability under 

various layout pattern densities and RTA conditions. Moreover, we propose a suite 
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of compact models that bridge the underlying RTA process with device parameter 

change for efficient design optimization. 
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Chapter 1 INTRODUCTION 

CMOS scaling is advancing towards 10nm regime [1]. Such aggressive scaling 

inevitably leads to vastly increased variability, posing a grand challenge to future robust 

IC design. Based on the underlying mechanisms, variations in CMOS can be divided 

into intrinsic variations and manufacturing-induced variations. The manufacturing 

induced variations arise from the imperfection in the fabrication process, and vary 

from foundries to foundries. Moreover, it exhibits the strong dependence on layout 

patterns, such as layout-dependent stress effect. The process-induced variations could 

be reduced or eliminated by a better control of the process. On the other hand, 

intrinsic variations are limited by fundamental physics. They are inherent to CMOS 

structure, considered as one of the ultimate bottlenecks during the scaling of CMOS.  

The primary intrinsic variations include random dopant fluctuation (RDF), random 

telegraph noise (RTN), line-edge roughness (LER) and oxide thickness fluctuation 

(OTF). Those variation sources greatly impact all aspects of circuit performance and 

pose a grand challenge to future robust circuit design. 

Random dopant fluctuation and random telegraph noise result from the charge 

fluctuation at the atom level. Among all the intrinsic variations RDF has been 

considered as the most significant variation source in device scaling since 70s [2]. RDF 

is caused by the random discrete placement of dopant atoms that follow a Poisson 

distribution in the channel region [3]. As the device size scales down, the total number 

of channel dopants decrease, resulting in an elevated variation of dopant numbers, and 
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significantly impacting threshold voltage (Vth). RDF can be slightly reduced by channel 

engineering such as retrograde doping or delta doping [4], yet the general trend of 

RDF goes up in CMOS scaling. RTN is attributed to the capture and emission of 

charged carriers in a single oxide trap [5]. The trapped charge affects the electrostatic 

and transport properties in the channel, causing additional Vth shift. The magnitude of 

the Vth shift due to RTN depends on oxide capacitance, and meanwhile affected by 

RDF. It follows a lognormal distribution [6]. Therefore, as feature size keeps scaling, 

the impact of RTN induced Vth variation is of increasing importance. However due to 

the small appearance probability of large amplitude RTN, the amount of variation 

CMOS is not significantly affected. The main impact of RTN on CMOS is on the 

worst case Vth shift and the performance in time domain.  

In addition to the charge-based fluctuation, variations also arise from the physical 

randomness of geometry in a scaled device.  For example, line-edge roughness and 

oxide thickness fluctuation result in significant variations in the scaled devices. LER is 

the random distortion of the gate edge, which is inherent to gate material and the 

etching process. Although the etching technology has been improved, the trend of 

LER induced Vth variation does not scale accordingly. The impact of LER on Vth 

variation is mainly contributed by the fluctuation of channel length in the gate width 

direction, which is also called gate line-width roughness (LWR) [7]. LER is perhaps the 

second significant variations in CMOS [3]. The channel length fluctuation combined 

with severe short channel effect contributes to a large Vth variability. OTF is induced 
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by the atom level surface roughness of the Si-SiO2 interface [8]. Such a surface 

roughness causes the fluctuation of gate voltage drop across oxide layer, and further 

results in Vth variation. This effect becomes pronounced during the scaling because the 

height of the atomic layer at oxide surface does not scale with the oxide thickness. 

Therefore, the average fluctuation becomes larger as the area of gate oxide scales. 

Figure 1.1 shows the four kinds of variations 

Figure 1.1 The primary variation sources at the atom level: (a) Doping for 

a device with RDF. (b) Top view of a channel with LER gate. (c) 3D view 
of oxide layer with surface roughness. (d) Impact on electrostatic 

potential of a trap in untrapped/trapped state. 
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In this work, we first develop such a methodology for SPICE simulation of RDF and 

LER, which are the most significant variations sources in CMOS. Given gate geometry, 

we propose to split a non-uniform device into slices, which have an appropriate slice 

width (d). Each slice is then modeled as a sub-transistor with correct assignment of 

narrow-width and short-channel effect. Such a representation maps a nonuniform 

transistor into an array of transistors which can easily be implemented in SPICE. It 

well captures the statistical characteristics of a transistor under RDF and LER with 

sufficient simulation efficiency. Moreover the interaction with Non-Rectangular Gate 

effect, which is a systematic variation arise from gate edge distortion, is studied. The 

compact model is derived based on the simulation results. With the proposed method 

a projection from 65nm to 22nm technology node is projected.  

As CMOS devices continuing scaled down, OTF and RTN becomes profound 

eventually. To incorporate those variations together, an atom-level TCAD simulation 

is performed to develop the compact models and to explore the scaling trend. From 

the simulation we find that the Vth variability due to those variation sources is 

independent to each other. The RTN induced Vth variability contribute only a little to 

the total variation amount but make large impact on the worst-case Vth variability. With 

the TCAD simulation result and the understanding of fundamental physics, a new set 

of predictive compact models are developed to capture the intrinsic Vth variability. 

Moreover, the predictive model suggests the trend of Vth variations in scaling, and 

possible minimization method.  
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Difference with other three variation sources, RTN is a time dependent effect. To 

determine its impact on circuit performance and optimize the design, it is essential to 

physically model RTN effect and embed it into the standard simulation environment. 

In this work, a new simulation method of time domain RTN effect is proposed to 

benchmark important digital circuits. The method can correctly reproduce RTN. It is 

compatible with SPICE, and is easy for implementation.  

There are many manufacturing induced variations sources such as Stress, Rapid 

Thermal Annealing (RTA), and etc. In this work the layout dependent RTA is studied. 

We develop joint thermal/TCAD simulation and compact modeling tools to analyze 

performance variability under various layout pattern densities and RTA conditions. 

With the new simulation capability, we recognize two major variation mechanisms 

under RTA: the change of effective channel length (Leff) induced by lateral dopant 

diffusion, and the fluctuation of equivalent oxide thickness (EOT) due to incomplete 

dopant activation. We perform device simulations to quantify transistor performance 

shift due to Leff and EOT variations. Moreover, we propose a suite of compact models 

that bridge the underlying RTA process with device parameter change for efficient 

design optimization. 

The paper is organized as the following. Section 2 presents the simulation and 

modeling work of intrinsic CMOS variations. In section 3, the variability analysis of 

layout dependent RTA process is presented. Section 4 proposes the future work. 

Section 5 concludes this work. 
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Chapter 2 SIMULATION AND MODELING OF CMOS INTRINSIC 

VARIATIONS 

In this section we present the simulation and modeling work on CMOS intrinsic 

variations. Section 2.1 present an overview of the four major intrinsic variations. 

Section 2.2 introduces a simulation method considering RDF, LER and NRG effect, 

and the compact modeling of those variations. Section 2.3 present the TCAD 

simulation and modeling for more deeply scaled devices. In section 2.4 a new SPICE 

based simulation method is proposed to reproduce RTN. 

 2.1 Overview of Intrinsic Variations 

2.1.1 Random Dopant Fluctuation 

RDF is caused by the random placement of the dopant atoms that follow a Poisson 

distribution in the channel region. This effect has been predicted as the one of the 

fundamental challenges to device performance control since early seventies [3][15]. 

The scaling trend of the RDF effect is shown in Fig. 2.1.1, using the nominal device 

parameters projected by PTM [16]. As the device size scales down, the total number 

of channel dopants decreases as shown in Fig. 2.1.1; such a decrease results in an 

dramatic increase in threshold variation [17]. To better understand this effect, [2], [18] 

and [19] characterized the statistical variations from regular transistor array; 2D and 

3D simulations were further applied to investigate the dependence of RDF induced 

variation on transistor parameters [20][21][22]. From the measurement data and 

simulations, analytical models are proposed to quantify the RDF effect in 
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[4][9][17][23]. Moreover, 3D atomistic simulation was adopted in order to achieve a 

high accuracy in extremely scaled CMOS devices [24][25][26]. However, these works 

only considered an ideal rectangular gate shape, while recent devices have suffered 

from the increasingly severe distortion of gate edge. 

The RDF induced Vth variations are classified into body RDF and source/drain 

(S/D) RDF. The body RDF, which is induced by fluctuation of substrate body 

dopants, is the commonly studied one, and has been regarded as the dominant 

variation source in device scaling. Different from body RDF, S/D RDF, which arise 

from source/drain dopants, does not contribute to gate voltage drop. As the device 

size scales to sub 25nm regime, the fluctuation of S/D dopants leads to fluctuation 

of effective channel length [26] and overlap capacitance [3]. Our study indicates that 

Figure 2.1.1 The scaling trend of Vth variance due to RDF, following 

the prediction by PTM [1][16].  
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S/D RDF is the secondary effect compared to body RDF, which will be mentioned 

in Section 2.3. An interesting phenomenon in CMOS is that RDF induced Vth  

variability in NMOS is 1.58 time larger than the theoretical value as well as the 

variability PMOS [9][23]. The source of this mismatch is yet not very clear. The most 

possible reason may be the clustering of boron in NMOS channel region [27][28]. 

This phenomenon is taken into account in the modeling part of this work. 

2.1.2 Line Edge Roughness 

LER is the distortion of gate shape along channel width direction as shown in Fig. 1.1 

This variation is mainly induced by gate etching, as well as the tools used in lithography 

process [29][30][31][32][33]. The arising concern to LER comes from the fact that its 

variance does not scale accordingly with the technology; the improvement in the 

lithography process does not effectively reduce such an intrinsic variation either, as 

shown in Fig. 2.1.2 [1][26]. Some emerging techniques, such as self-aligned double 

Figure 2.1.2. The amplitude of line-edge roughness under various 
lithography technologies [26]. 
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patterning, is able to reduce the 1σ LER down to the range of <1nm. Nevertheless, the 

LER is still a big problem as device scaled into sub-22nm region [41][42][43]. 

Numerical simulations and silicon data further indicate that the LER effect 

significantly increases the leakage and threshold variations [32][33][34][35]. It interacts 

with RDF, profoundly impacting all aspects of circuit performance, especially in the 

design of SRAM cells which are extremely sensitive to Vth mismatch [38][39][40].  

Figure 2.1.3(a) is a demonstration of printed lines with LER [25]. The detected edge 

shows low frequency and high frequency component as Fig. 2.1.3(b) shows. Low 

frequency LER, which is shown in red line in Fig. 2.1.3(b), has longer autocorrelation 

length and larger variation amplitude, and may result in big impact on device 

performance. While the high frequency part of LER, which has very small amplitude, 

can be ignored. The high frequency LER is shown as the fuzzy like blue curve in Fig. 

2.1.3(b). In our study we mainly focus on the low frequency LER.  

Figure 2.1.3. (a) Printed lines with LER. (b) Demonstration of high 
frequency and low frequency component of LER.[26] 

(a) (b) 
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2.1.3 Oxide Thickness Fluctuations 

The OTF arise from the atomic scale roughness at the Si-SiO interface [44]. OTF 

leads to the geometric fluctuation of the average oxide thickness, and further affect 

gate voltage drop across the oxide layer. Similarly to LER, OTF is attracting more 

attention due to the surface roughness does not scale accordingly with the thickness 

of dielectric. The fluctuation magnitude of oxide surface roughness typically is the 

height of one silicon atom layer, which is 2.71Å [46]. Figure 2.1.4 is a demonstration 

of the cross-section view of a MOS. In the plot the one layer atomic scale fluctuation 

can be find at both Gate/Oxide surface and Oxide/Si surface. The fluctuations from 

both surfaces together contribute to the total fluctuation of the oxide thickness. Such 

a variation is independent with the nominal oxide thickness. As the gate dielectric 

thickness is approaching sub-1nm regime [16][25], the variations of the variability 

due to OTF could be severe. The OTF variation is also dependent on the 

autocorrelation of the oxide surface. A larger autocorrelation length will lead to 

larger variations. 

Figure 2.1.4.  A demonstration of OTF[46] 
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2.1.4 Random Telegraph Noise 

Random Telegraph Noise (RTN) is attracting more attention in recent years. The 

reason is that the device variations due to RTN increase drastically as device shrinks. 

Recent studies show that the variation of RTN grows more rapidly than Random 

Dopant Fluctuation (RDF) induced variation. The RTN variation level at 3σ may 

dominate the device variation under 22nm node [47].  

Figure 2.1.5. Origin and the PSD of 1/f noise and RTN. The upper plots 

show large device case, and the lower plots show small device case. 
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RTN is induced by the charge trapping/de-trapping in the oxide layer as shown in 

Fig. 2.1.5. The upper plots exhibit the case of large devices. In large devices there are 

many oxide traps. Each trap gives a Lorenztian shaped power spectral density (PSD), 

and the cut-off frequency depends on the distance to the Si-SiO2 interface. The sum 

of the PSDs from all the traps shows a 1/f shape as Fig. 2.1.5 demonstrates. The 

emerging CMOS technology has scaled down to sub-50nm regime. In this scale there 

are only a few traps in a transistor. As a result the PSD of trapping/de-trapping 

induced noise is no longer a 1/f shape but Lorenztian shape. In time domain, 1/f 

noise is continuous and has Gaussian distributed amplitude [48], while RTN has 

discrete levels and discontinuous waveform (Fig. 2.1.6). RTN is particularly 

important in digital design because of the extra small transistor size. Previous studies 

on RTN mainly focus on the frequency domain. However the time domain behavior 

is more important to the small cell circuit such as SRAM. 

RTN of drain/source current has been commonly observed in small devices [47][48]. 

It is also well established that RTN can be modeled by the gate bias change as Fig. 

2.1.6 shows [49]. The magnitude of single trap induced Vth shift is inverse dependent 

on the channel area. Because of the dependence, the magnitude of single trap RTN 

sharply goes up as device shrinks. In recent studies for 22nm tech node, RTN 

induced threshold voltage (Vth) variation at 2σ level can reach 50mV~100mV [47], 

leading to severe impact on the operation point of the design, particularly in low 

power designs. 
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2.2 SPICE Based Statistical Simulation of Threshold Variation under Random 

Dopant Fluctuation and Line-Edge Roughness. 

2.2.1 Introduction 

Random Dopant Fluctuation (RDF) and Line-Edge Roughness (LER) are two 

variations that attracted most attentions. RDF has been considered as the major barrier 

of the CMOS scaling. The researches on RDF started from 70s. LER then come to 

researcher’s sight as device scales into sub-100nm regime. The threshold voltage (Vth) 

of a nanoscale transistor is severely affected by RDF and LER.  

Traditional method to quantify these random variations relied on TCAD simulation 

and compact models in circuit analysis [17][18][19][20][21][22][23][34][35][36][37]. But 

such methods become incorrect as the minimum feature size of a transistor is 

approaching the characteristic length of these atom-level effects. Instead, 3D Monte-

Figure 2.2.1. LER increases the variation of Vth, in addition to RDF. 

Results are predicted from SPICE simulation using 65nm PTM [16].  
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Carlo atomistic simulations become necessary in order to achieve adequate accuracy. 

For example, [22] and [26] demonstrated the need for and accuracy of atomistic 

simulations in the prediction of transistor variations under RDF and LER. However 

atomistic simulation is not efficient for statistical circuit analysis, such as the 

optimization of SRAM cells, since it is too computationally expensive to integrate it in 

circuit-level analysis and statistical optimization. To alleviate this problem, we need a 

methodology that enables the compact modeling and SPICE simulation of these 

random variations with sufficient efficiency, accuracy, and scalability in transistor 

topology. This modeling and simulation methodology should keep the physicality of 

atomistic simulation, correctly represent the statistical characteristics, and capture the 

interaction between RDF and LER in the prediction of threshold voltage changes. 

We develop such a methodology [40] based on the understanding of the underlying 

physics, particularly the principles of atomistic simulations and short-channel device 

physics. Although RDF and LER are caused by different manufacturing processes, 

both effects change the output current of a transistor by modifying the threshold 

voltage [16][50][51]; they further interact with each other, resulting in a significant 

increase in leakage current [52], and leading to additional Vth variation. Based on our 

newly developed simulation method, we illustrate in Fig. 2.2.1 that in addition to the 

well-known relationship between Vth variation and gate width (W) [50], LER further 

exacerbates the standard deviation of Vth (σVth). The increase in the standard deviation 
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of Vth is more pronounced when the transistor width is small, which is the typical 

condition in SRAM design.  

We systematically validate the proposed method with available atomistic simulation 

results under various conditions, including different amount of LER variations and 

various transistor sizes. This part is organized as follows: Section 2.2.2 presents the 

new gate slicing method, as well as the theoretical background from atomistic 

simulation and device physics, identifying the appropriate slice width and transistor 

operating region for gate slicing and Vth extraction, respectively. As verified with 

atomistic simulations, the new SPICE simulation method is shown to accurately 

predict the variability of saturation current (Ion), leakage (Ioff), and Vth. Based on the 

method, we investigate the interaction of RDF and LER on Vth variation in Section 

2.2.3 and show that while the high spatial-frequency component of LER only slightly 

affects the mean value of Ioff, low frequency LER has a significant impact on both the 

average and the distribution of the leakage and Vth. We propose a compact model to 

directly calculate σVth from RDF and LER and further illustrate the interaction with 

NRG and RNWE. Finally, we project the trend of Vth variation toward future 

technology generations. 
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2.2.2 Gate-Slicing Method  

In this section, we present the theoretical background and the flow of the proposed 

method. The practicality and limitations of gate slicing are explained from the 

physical principles. To handle the random effects of RDF and LER and predict Vth 

variation from a given gate geometry, we split a non-uniform device into slices, 

which have an appropriate slice width (d) that is larger than the correlation length of 

RDF, but small enough to track the low frequency LER. Each slice is then modeled 

as a sub-transistor with correct assignment of narrow-width and short-channel 

effects, as shown in Fig. 2.2.2 [52][53]. Such a representation maps a non-uniform 

transistor into a column of transistors which can easily be implemented in SPICE. It 

well captures the statistical characteristics of a transistor under RDF and LER with 

sufficient simulation efficiency. 

After splitting the original non-uniform transistor into a column of rectangular ones, 

the gate slicing method assigns different Vth values to different slices, and then sum the 

drive current from each slice to analyze the total output characteristics. In order to 

Figure 2.2.2. The flow to divide a non-uniform gate into slices. Each 

slice has a unique Vthi and Li due to RDF and LER.  

d 
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perform the linear superposition of currents, it requires that the drive current should 

be a linear function of Vth. We satisfy this condition by extracting Vth from the strong-

inversion region, rather than the sub-threshold region. Because of the pronounced 

velocity saturation effect, the output current in the strong-inversion region is a linear 

function to Vth [16]. Therefore, it provides a correct mathematical basis to partition the 

channel dopant under RDF, and then linearly superpose them together to monitor the 

overall change in Vth. Combining this approach with the Equivalent Gate length (EGL) 

model that describes the nominal device behavior under non-rectangular gate effect 

[53], we are able to predict the amount of Vth variation under any given transistor 

characteristics (e.g., non-rectangular gate, reverse narrow-width effect, etc.). The 

section below further discusses the limitations of the new method in details. 

Limitation on parallel slicing 

By partitioning the non-uniform gate into parallel slices along the source-to-drain 

direction (Fig. 2.2.2), the first underlying assumption is that the current in each slice 

maintains the same direction from source to drain, i.e., there is no significant 

distortion of the electrical field along the channel direction. Otherwise, there would 

be a pronounced amount of current across the slice boundary and the slicing method 

is not able to provide a correct prediction under LER [52][54]. To validate this 

assumption, a 3D TCAD simulation using Sentaurus [55] is performed in Fig. 2.2.3, 

with a typical 65nm device (gate length at 41nm and gate width at 50nm). From the 

simulated result, the direction of the current density is not severely affected under 
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the LER effect. The current deviated to the width direction is much smaller than the 

primary current along the channel direction and thus, can be ignored in the analysis.  

With the aggressive scaling of both channel length and channel width, more 

physical effects, such as DIBL and the fringe field from the gate edge, will affect the 

channel region. The distortion of the electric field may be exacerbated in the extreme 

case. If the current along the width direction becomes comparable to the current 

along channel direction, then the gate slicing method has to be corrected. 

Limitation on slice width 

Even if the assumption of parallel slicing is true, there are still fundamental 

limitations on slice width in this approach, especially when we consider the effect of 

random dopant fluctuations, which usually requires atomistic simulation to provide 

sufficient accuracy: 

Figure 2.2.3. Simulated current density of a 65nm gate 
under severe LER (Vds=Vgs=1.1V). 
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Upper bound of slice width: the spatial frequency of LER. There are many factors to 

cause LER during the sub-wavelength lithography and the etching process. These 

different factors lead to different spatial frequencies and amplitudes of the distortion 

of gate edge. Figure 2.2.4  illustrates the silicon data of gate length change under 

LER [33]. The data clearly shows two regions of LER with distinct spatial 

frequencies: the high-frequency region (HF) that has a characteristic length smaller 

than 5nm and a low-frequency one (LF) that has a characteristic length larger than 

10nm [33]. The exact values of their characteristic lengths depend on the fabrication 

technology. When we split a non-uniform gate under LER, the width of each slice 

needs to be smaller than the characteristic length in order to track the change in gate 

length with adequate accuracy. For instance, to model a typical LER gate, the slice 

width should be smaller than 20nm, as shown in the right side of Fig. 2.2.4 [33][53]. 

This phenomenon defines the upper bound of d during the slicing. 

Lower bound of slice width: random dopant fluctuations. Due to the random position of 

dopants in the channel, Vth exhibits an increasing amount of variations with 

continuous scaling of transistor size [26]. For a relatively long channel device, this 

behavior is well recorded in the Pelgrom’s model [50]. However, as the channel 

length is approaching the length scale of the fluctuation, such atom-level randomness 

can no longer be represented by Vth model in the sub-threshold region, which is the 

statistical average of the potential in the channel. Such an average is not able to track 

the atomistic change [26][50]. In order to apply the slicing approach with compact 
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Vth-based device model, the slice width must be larger than the correlation length of 

random channel potential near the threshold. This length is typically around several 

nanometers, depending on the doping concentration [14]. The left side of Fig. 2.2.4 

shows this lower bound of d during the slicing. If d is smaller than the correlation 

length, then Vth model is not a correct representation of the statistical device 

behavior under the RDF effect, particularly for the sub-threshold current [26].  

Considering these two limits, Fig. 2.2.4 illustrates the appropriate region of d where 

the slicing approach is applicable. Only when d satisfies both limits (i.e., the middle 

region in Fig. 2.2.4), the partition of a single LER transistor is meaningful in physics 

to predict the current in all regions. Note that the lower region, which is limited by 

RDF, usually overlaps with that of the HF component of LER. Therefore, the slicing 

method may work well for RDF and LF LER, but not RDF and HF LER. Since the 
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L distribution under LER approximately follows the Gaussian function [33][53], we 

use the correlation length of LER (Wc) as the slice width in the experiments 

[56][57][58]. 

With the limitation, the slicing method is only valid in the case that the correlation 

length of LER is larger than the correlation length of random potential due to RDF. 

If people improve the etching process to reduce the LER correlation length, the 

method to track LER shape should be revised. 

Limitation on operation region 

After appropriately slicing the gate with a non-rectangular shape, we can describe the 

characteristic of each slice using compact device model. The summation of all the 

slices provides the behavior of the original LER gate. For the nominal condition, 

each slice has different Vth from the deterministic effects of narrow-width and DIBL. 

They lead to the increase in the leakage current and the reduction in the effective 

gate length. The changes of Ion and Ioff under these effects are well captured through 

the Equivalent Gate Length (EGL) model [53], i.e., a smaller Lmin for Ioff and a larger 

Lmax for Ion. In this work, we follow the same modeling approach to formulate the 

nominal transistor model. 

However, the situation becomes much more complicated when we incorporate 

statistical variation due to random dopant fluctuation into each slice. Since Ioff is an 

exponential function of Vth (Fig. 2.2.5), which is very non-linear, the linear 

superposition of Ioff from each slice is not applicable and thus, the mean and 
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distribution of Vth cannot be extracted from the statistical analysis in the sub-

threshold region:  
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To overcome this barrier and still maintain the correctness in mathematics, we 

leverage the linearity of Ion to study the statistics of Vth. For a short-channel device, 

Ion has a linear dependence on Vth, due to strong velocity saturation [16]. This 

behavior is illustrated in Fig. 2.2.5 for PTM 65nm technology. The linearity of Ion is 

even stronger in scaled CMOS devices [16]. As a result, the limitation that fails the 

statistical Vth extraction from Ioff (Eq. (2.2.1)) is removed. The strong linearity of Ion 

provides a well-behaved basis to study Vth variation under RDF in all cases of LER. 

Therefore, we propose to use an Ion-based method to extract Vth variation, embed it 

into the nominal device model, and then predict Ioff change.  

Figure 2.2.5.The linear and exponential dependence of Ion and 
Ioff on Vth change, respectively.  
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Finally, we should note that the inaccuracy of Ioff-based extraction method also 

depends on the size of the transistor: the smaller the slice is, the larger Vth variation 

will be; the error caused by the non-linearity (Eq. (2.2.1)) is then more pronounced. 

On the other hand, if the slice size is large enough, then the difference in Vth among 

slices becomes smaller and the Ioff-based modeling error is reduced. 

Saturation Current (Ion)-Based Method 

Based on the discussion above on the limitations of gate slicing method, we propose 

Figure 2.2.6. The flow to generate a single device model 
for statistical analysis of a LER gate. 

Statistical single transistor model by 
integrating new σVth and EGL models 
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the saturation current (Ion) based method to investigate the interaction of RDF and 

LER induced variations in circuit simulation. 

 Figure 2.2.6 summarizes this flow that supports the development of a single device 

model for statistical analysis under RDF and LER. The method starts from the 

distorted gate shape with LER. With the given shape, the statistical channel length 

variations and the correlation length of the gate edge is extracted for circuit 

simulation. Then we divide it into slices with a suitable width, following the guidance 

in Fig. 2.2.4. Next, the model of EGL is produced for the nominal case under the 

non-uniform gate [53]. To investigate the interaction with RDF on Vth variation, we 

assign Vth to each slice as a statistical variable. While its mean value is determined by 

the width and length of the slice (i.e., RNWE and DIBL effect) [53], its standard 

deviation also depends on the size of the slice [22][50][51]: 

WLthV
1

��                                                          (2.2.2)          

The exact value of σVth due to RDF is technology dependent [3]. From the 

summation of Ion, we finally extract the variation of the threshold voltage of the 

entire transistor under LER and RDF. Since the length of each slice is different 

under LER, such non-linear relation between σVth and L (Eq. (2.2.2)) leads to an 

increase in Vth variation of the entire transistor, as demonstrated in Fig. 2.2.1. With 

the extracted threshold voltage variation, we apply the Equivalent Gate Length 

model [53] for the sub-threshold region to obtain the Ioff variations, with the 

validated assumption that the sub-threshold slope can be treated as a constant for 
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typical LER variation in the nanometer regime [34]. The outcome is a single device 

model with EGL and a new σVth, which supports efficient statistical performance 

analysis for any given LER and RDF. 

2.2.3 Validation with Silicon Data 

We implement this method into the SPICE environment and validate its prediction 

with available 3D Monte-Carlo atomistic simulation results. Figure 2.2.7 compares 

the prediction of Ion and Ioff variations under random dopant fluctuations [26]. It 

indicates that under normally distributed RDF, the variation of Ion follows the 

Gaussian distribution due to its linear dependence on Vth. Meanwhile, the variation 

of Ioff follows the log-normal distribution because of the exponential dependence of 

Ioff on Vth.  Both mean and sigma of Ion and Ioff are well predicted from the Ion-based 

extraction method. Figure 2.2.7b further shows that if we directly sum the leakage 

16 18 20 22 24 26 28 30
0

5

10

15

20

25  

 Atomistic simulations
 SPICE method

Ion (�A)

PD
F  

Figure 2.2.7. Validation of Ion and Ioff variations under RDF with 
atomistic simulations [26].  

(a) Prediction of Ion (b) Prediction of Ioff 

-10 -9 -8 -7 -6
0

5

10

15

20

25

30  

 Atomistic simulations
 SPICE method

Log10(Ioff)

PD
F  

 

Mis-prediction from 
Ioff-based method 



26 

current from every slice to estimate Vth variation, it results in a significant error, as 

indicated by Eq. (2.2.1).  

In addition to the verification of the Ion-based method under RDF, Fig. 2.2.8 

evaluates the prediction of σVth under different conditions of gate length variations 

due to LER, assuming a uniform channel doping concentration (i.e., no RDF) [26]. 

Two devices are studied, with both gate width at 50nm, and gate length at 30nm and 

50nm, respectively. The correlation length of the LER effect (Wc) is 20nm [26]. For 

the low-frequency component of LER, the increase of σL results in a larger amount 

of threshold variation, due to the interaction between σVth and L, as shown in Eq. 

(2.2.2). This interaction is more pronounced when gate length is shorter, in which 

case the threshold voltage of each slice is more strongly coupled with L through 

DIBL effect [53]. 

As shown in Fig. 2.2.8, for a gate with the width of 50nm and the physical length of 

30nm, which is typical for a SRAM transistor at the 65nm node, threshold variance 

can be more than 20mV, purely due to the LER effect. Meanwhile, the nominal 

Figure 2.2.9. Validation of σVth under 
both RDF and LER effects [26]. 
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leakage current may increase by more than 15x due to LER at the same condition 

[53]. Combining the information together, such effect will be a dominant factor to 

impact the leakage and circuit stability at the worst case corner. Therefore, it is 

crucial to incorporate accurate and efficient modeling capability into circuit 

optimization, in order to mitigate the impact of LER. Our proposed approach 

captures this complicated dependence very well, as compared to time-consuming 

atomistic simulations. It is also ready to be integrated with circuit design tools. While 

LER has a pronounced effect on Vth variation, the high-frequency component of 

LER only has a marginal interaction with Vth variation. Since its spatial frequency is 

quite high, its impact is averaged out across the slice [26]. Instead, it mainly affects 

the mean value of Ioff, which has been well modeled in the EGL model[53]. 

Finally Fig. 2.2.9 verifies the prediction of threshold variation in the presence of both 

RDF and LER effects. The variation of Vth is evaluated through the distribution of 

Ioff, which is very sensitive to Vth change due to its exponential dependence. Three 

sets of experiments are carried out: LER only with σL at 2nm, RDF with a 

rectangular gate (i.e., no LER), and RDF with the LER shape. Again, gate width is 

fixed at 50nm. Since Vth depends on L through the DIBL effect [16][53]: 

 �
�
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where Vth0 is a function of channel doping, the change of Vth due to L variation and 

RDF can be derived as: 
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Therefore, the total variation of Vth follows the relationship below, as long as σL and 

RDF are independent: 

 222
LERRDFtotal ��� ��                                                  (2.2.5)                   

where σRDF, σLER, σtotal are Vth variations due to RDF only, LER only, and the total 

amount, respectively. The contributions of LER and RDF are independent to the 

statistics of Vth. The relationship is well verified with atomistic simulations, as shown 

in Fig. 2.2.9.  

Figure 2.2.9 indicates that when L is large, RDF is the dominant factor in threshold 

variation. As gate length decreases, the importance of LER rapidly increases in the 

calculation of Vth variation. Again, the main reason is the strong DIBL effect, which 

is an exponential function of L, as shown in Eq. (2.2.3). Overall, our Ion-based 

simulation method provides excellent predictions of Vth variation under all situations, 

as compared to 3D Monte-Carlo atomistic simulation results. It significantly 

enhances the simulation efficiency, with fully compatibility to circuit simulators. 

2.2.4 Interaction with Non-Rectangular Gate and Reverse Narrow Width 

Effects 

The Ion-based gate slicing method is general to study different types of gate distortion, 

including the non-rectangular gate (NRG) effect due to sub-wavelength lithography 

[53]. This section investigates the variations under NRG and RNWE effects at 65nm. 
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Different from statistical LER and RDF effects, NRG is relatively deterministic: the 

gate shape under NRG can be predicted from the layout and lithography 

specification. In reality, systematic NRG and random LER effects exist together in 

the post fabrication process, as shown in Fig. 2.2.10. They change the nominal Ion 

and Ioff values, as well their variations; the exact shift depends on the shape, 

especially when RNWE is pronounced.   

The RNWE effect non-uniformly reduces the threshold voltage in different locations: 

the closer a gate slice is to the gate end, the larger Vth drop is. Such non-uniformity 

along the width direction interacts with NRG and varies the output current 

[52][53][54]. For instance, when the minimum channel length is close to the gate 

extension, the threshold drop due to DIBL will strength the drop due to RNWE, 

leading to the worst leakage increase; on the other hand, if the maximum channel 

length locates closely the gate end, then DIBL and RNWE compensate each other 

Figure 2.2.10.  The illustration of NRG plus LER in a gate. 

(a) Ideal layout (b) NRG (c) NRG plus 
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on Vth change. Figure 2.2.11a shows these two representative conditions of gate 

shape distortion, in which both shapes have the same nominal L and the same 

magnitude of NRG and LER; but one is convex and the other is concave and thus, 

they are different in RNWE.  

Based on the RNWE model [52][53] and the new Ion-based method, the impact of 

NRG and RNWE on Vth variation is investigated in the presence of LER and RDF. 

Figure 2.2.11 shows Vth variations under various LER amplitudes and spatial 

frequencies, covering three types of transistors, i.e., an ideal rectangular gate and two 

NRG shapes in Fig. 2.2.11a. While NRG and RNWE significantly affect the nominal 

value of Ioff [53][52], σVth is relatively insensitive to RNWE, since RNWE only shifts 

Figure 2.2.11. Threshold variation under NRG and RNWE. 
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the mean value of Vth, but does not induce any variations. Figure 2.2.11 confirms this 

result as there is no difference in σVth between shape 1 and shape 2. On the other 

hand, the magnitude of NRG impacts both DIBL and σVth (Eq. (2.2.2)).  Therefore, 

it interacts with LER on Vth variation, although the exact NRG shape does not 

matter because of the insensitivity to RNWE. 

2.2.5 Predictive Modeling of Threshold Variation 

Based on the underlying physical mechanisms, we successfully develop the SPICE 

simulation method from gate slicing to the extraction of Vth variation in the strong 

inversion region. In this section, we further propose a compact model that directly 

predicts Vth variation from RDF and LER. This model updates traditional Pelgrom’s 

model with additional consideration of the LER effect. Using this model, we 

extrapolate the variation of Vth towards future technology nodes, helping shed light 

on robust circuit design with scaled CMOS technology. 

Modeling of Threshold Variation 

For traditional long-channel device, Vth mismatch is mainly induced by random 

effects, such as the dopant fluctuation. This consideration is the basis for the well 

known Pelgrom’s model and other Vth variation models, in which σVth is inversely 

proportional to the square root of the transistor size [3][22][50].However, as shown 

in Figs. 2.2.9, the impact of LER on Vth variation becomes pronounced with further 

scaling of L, and can no longer be ignored in the calculation of threshold mismatch. 
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These two effects superpose each other in the statistical property of Vth, as shown in 

Fig. 2.2.9 and Eq. (2.2.5). 

As presented in [22][50][51], random dopant fluctuations induce the deviation of Vth 

as a linear function of (WL)-0.5. For a larger transistor, the random distribution of 

dopants is averaged out in the modeling of Vth. Akin to this effect, the random 

distribution of gate length under LER also leads to a linear function of W-0.5, and 

since the longer gate width is, the more the length distortion is averaged out. On the 

other hand, due to the DIBL effect, LER induced Vth variation has an exponential 

dependence on L (Eq. (2.2.4)). Therefore, we derive the following formula based on 

Eqs. (2.2.2), (2.2.4) and (2.2.5): 
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where Wc is the correlation length of LER, and C1, C2 and l’ are technology 

dependent coefficients. The coefficient l’ is the characteristic length of DIBL effect, 

and it can be extracted from equations from BSIM parameter lt0 and DSUB. For 

example, for 45nm technology, C1 is around 10-18V2·m2, C2 is around 1.5, and l’ is 

around 10nm. The first term describes conventional Pelgrom’s model under RDF. 

The second term is designated to the variation due to LER. The exponential 

dependence on L is demonstrated in Fig. 2.2.9. Figure 2.2.12 demonstrates the 

dependence of threshold variation on channel length variation and the correlation 

length of LER; Fig. 2.2.13 further verifies Eq. (2.2.6) at different gate width. Our 

model accurately captures the superposition of these two statistical components, as 

well as the inverse square root dependence on W. Traditional model only considers 

the RDF effect and thus, significantly underestimates the total amount of Vth 

variation, as shown in Fig. 2.2.13. Note that due to the exponential dependence on L 

of the second term in Eq. (2.2.6), the impact of LER diminishes at long gate length 

(Fig. 2.2.9). Yet the second term rapidly affects threshold variation for a device with 

short gate length and width. For instance, at W=50nm, it has a comparable influence 

as that of RDF. Therefore, its role cannot be neglected, particularly when we design 

the circuits with minimum size transistors in scaled technologies. 
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Projection to Future Technology Nodes 

With solid verifications with atomistic and SPICE simulations, the proposed 

compact model offers a scalable tool to explore threshold variation under LER and 

RDF effects. As shown in Fig. 2.2.9 and 2.2.11, this approach has the right sensitivity 

to the transistor definition, as well as the amount of variations. In this section, we 

extrapolate these models to future technology generations [16], with the goal to gain 

early stage insights to robust design under increased variations. 

Continuous scaling exacerbates both RDF and LER effects, as shown in Figs. 2.2.1 

and 2.2.2. With the scaling of transistor size, the total number of dopants in the 

channel significant reduces [75]. As a consequence, the amount of random RDF 

effect becomes more significant (Fig. 2.2.1). For line-edge roughness, the 

improvement is limited by the etching process, rather than the lithography process 

[26][34]. The emerging etching technology may reduce 3σ of LER amplitude down 

Figure 2.2.13. Validation of predictive modeling 

with SPICE simulation using gate slicing method. 
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to ~2nm [41][42][59][60] and the correlation length around 10~20nm [59][60]. Yet 

such improvements still lag behind the scaling rate of nominal channel length. 

Therefore, the sensitivity of device performance to LER dramatically increases at 

recent technology nodes. Finally, the situation of NRG is not optimistic due to the 

difficulty in photo-lithography. The distortion in gate length is expected to increase 

[57][61], even though lithography recipes and layout techniques, such as regular 

layout fabrics, may help improve the situation [57].  

Using the new method, we project the amount of threshold variation, under possible 

scenarios of RDF and LER. The nominal model file is adopted from PTM [16]. In 

this projection, new technology advances, such as high-k and metal gate, are not 

considered. Other potential variation sources, such as RDF induced mobility 

variation [62], have not been included. Upon the availability of atomistic simulation 

tools and experimental data, our SPICE-based method is extendable to those 

additional factors. Table 2.2.1 summarizes the results for various LER parameters of 

Table 2.2.1. Projection of threshold variation in traditional bulk CMOS devices 

 LER parameters Total σVth (mV) 

Wc (nm) σL (nm) 65nm 
(Vds=1.1V) 

45nm 
(Vds=1V) 

32nm 
(Vds=0.9V) 

22nm 
(Vds=0.8V) 

5 
0 19.4 27.5 37.9 55.7 

0.5 19.5 27.8 38.9 57.9 

1 19.9 28.8 42.1 63.7 

10 
0 19.4 27.5 37.9 55.7 

0.5 19.6 28.1 40.0 59.9 

1 20.3 29.9 45.8 71.3 
W/L=2    
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Wc and σL. Even under the same amount of LER, the variation of the threshold 

voltage keeps increasing due to the aggressive scaling of the feature size and the 

exacerbation of short-channel effects. As the trend goes, future design will suffer a 

dramatic amount of random Vth variation, leading to severe degradation in circuit 

matching property, memory stability, and the leakage control. While the 

improvement of process technology will continue, its effectiveness may be limited in 

the future; therefore, innovative circuit design and optimization techniques are 

critical to overcome these barriers.  

2.2.6 2-D Slicing Method for RDF 

As the device size continuous scales down. Compared to the device feature size, the 

correlation length of LER and RDF is becoming more severe. Usually to simulate 

such variations, 2-D or 3-D TCAD simulation is required. However, TCAD is time 

consuming, inflexible, and difficult to calibrate, while SPICE based model is more 

reliable and easier to calibrate. To increase the flexibility of the gate slicing method, it 

is desired to extend the gate slicing method to two dimensional. On the other hand, 

the 1-D gate slicing method we discussed in last chapter has limitations. For example, 

the width of each slice cannot be two small; the modeling of RDF is not based on 

potential profile so the method can only based on strong inversion region. If we can 

extend the 1-D slicing method to 2-D, then we are able to model random potential 

profile due to RDF, and we will not be limited by slice width and operating region. 

The basic idea of the 2-D gate slicing is demonstrated in fig. 2.2.14. In this method 
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the start point is a square mesh of the MOS channel. In a turned on MOS transistor, 

the square mesh is modeled by a black box with current coming in or going out 

through four edges. Then in order to model the black box a 4-terminal unit in 

SPICE is proposed as in fig. 2.2.14, inspired by the modeling method for substrate 

noise[63]. The unit is built up with 4 simplified MOS transistors. They have a 

common node connected, with other four nodes modeling the four direction current 

Figure. 2.2.14. Demonstration of 2-D gate slicing method 
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in/out. To model RDF the surface potential of each mesh is calculated according to 

the dopants distribution and the position of the mesh. Then with MONTE CARLO 

simulations, we are able to investigate the Vth variation induced by RDF.  

To model the transistor in a 4-terminal unit, a simplified BSIM IV model for DC 

Channel charge 
and sub-threshold 

swing models 

Long channel Vth 
model Bulk charge model 

Unified mobility 
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Velocity saturation 
model 

 
Simplified DC IV 
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Figure 2.2.15. Demonstration of (a) Simplified BSIM IV model for 

DC simulation and (b) Modeling of DIBL effect 
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simulation is introduced in the experiments. Only the first order effects are taken 

into account for the simplified mesh. The simplified transistor consists of channel 

charge and sub-threshold swing models, the unified mobility model, and the 

threshold voltage model without short channel/DIBL and Narrow width effect. To 

model the behavior in saturation region the velocity saturation is incorporated by 

introducing saturation voltage vdsat. If the voltage induced by drain bias is larger than 

vdsat, then the mesh change saturation region. Because the voltage across channel 

area increases monotonically along the source-to-drain direction, the saturation point 

can be automatically solved by the circuit simulator. Inside the saturation region the 

voltage and voltage drop is much larger than other region. To the first order we 

model this part by setting the electrical field a constant larger value than the 

saturation point.  

In this work Verilog-A is used to build the mesh for simulation. To model the short 

channel effect (SCE) and drain induced barrier lowering (DIBL) effect, the following 

equation is incorporated: 

� �
� �'sinh

'sinh)( / lL
lyVyV DS��                                (2.2.7) 
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where ∆V(y) is the surface potential change along the channel, VS/D is the voltage on 

source/drain side, including built-in voltage, l’ is characteristic length of DIBL, and L 

is channel length. DIBL effect cannot be modeled inside the mesh itself. We model 

the impact on each mesh by assigning the surface potential change according to its 

position. Figure 2.2.15 demonstrates the simplified BSIM model and the modeling 

strategy of DIBL effect. Figure 2.2.16 shows the validation of proposed method with 

45nm NMOS of PTM [16]. In this method the charge distribution is calculated by 

HSPICE automatically so the convergence and accuracy are very difficult to control. 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

200.0μ

400.0μ

600.0μ

800.0μ
 

 PTM 45nm NMOS
 2-D Gate Slicing

D
ra

in
 C

ur
re

nt
 (A

/�
m

)

Gate Voltage (V)

Vd = 0.05V
w/o Rdsw

0.0 0.2 0.4 0.6 0.8 1.0
1n

10n

100n

1μ

10μ

100μ

1m

 PTM 45nm NMOS
 2-D Gate SlicingD

ra
in

 C
ur

re
nt

 (A
/�

m
)

Gate Voltage (V)

Vd = 0.05V
w/o Rdsw

Figure 2.2.16. Validation of Id-Vg curve with PTM 

Figure 2.2.17. Validation of Id-Vd curve with PTM 
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However the low drain voltage region can achieve good accuracy. In fig. 2.2.17 the 

Id-Vd curves under low drain voltage and various gate biases are validated with PTM 

data.  

To do Monte-Carlo simulation with RDF, the coulomb potential (Eq. 2.2.8) is 

employed to get random potential of the simulation mesh, as expressed in the 

following: 

� �
r

qr
Si

1
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���
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�                                              (2.2.8) 

Figure 2.2.18. An example of a channel potential contour 
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where r is the distance to the center of atom. The coulomb potential can be splited 

into short range and long range. Short range potential accounts for scattering, while 

long rage part contributes to channel potential. Due to the singularity of the 

expression, usually people do not take into account the short range part to calculate 

channel potential. In this work, an empirical cut [26] is made to incorporate the long 

range coulomb potential in the simulation. Note that at this stage the mobility 

fluctuation due to RDF is not included. Figure 2.2.18 demonstrates an example of an 

extracted potential fluctuation due to RDF in channel area. By simply change BSIM 

parameter φs according to channel potential distribution we simulated the IV 

variability with the proposed 2-D SPICE based simulation method. Figure 2.2.19 

Figure 2.2.19. Simulated Id-Vg curves and corresponding Vth of 350 samples 
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shows the simulated Id-Vg curves and corresponding Vth distributions with 350 

iterations. 

2.2.7 Summary 

Random variation in the threshold voltage is prominent in scaled CMOS technology 

and severely affects circuit stability as well as performance distribution. The main 

contributors include random dopant fluctuations, line-edge roughness, and other 

non-idealities. Instead of using 3D Monte-Carlo atomistic simulations, we propose 

an efficient simulation method in the SPICE environment that accurately captures 

the impact of RDF and LER on Vth variation. The development of the new method 

is based on the physical understanding of the underlying principles. In our method, a 

non-uniform gate is first divided into appropriate slices; then threshold variation is 

assigned and extracted from the strong-inversion region, with the benefit from the 

linear dependence of Ion on Vth. The method significantly alleviates the computation 

cost, providing sufficient fidelity to atomistic simulations and scalability to process 

and design conditions. Based on this method, we further incorporate the impact of 

LER into traditional Pelgrom’s model, identifying the exponential dependence on 

gate length. With continuous scaling towards the 22nm node, the effect of RDF and 

LER on Vth variations becomes even more critical for future robust design 

exploration. Our method and compact model provide a physical and efficient tool 

for statistical circuit performance analysis and optimization. In the end the early 

exploration to extend the proposed gate slicing method from one dimensional to two 
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dimensional is presented. The proposed 2-D SPICE based slicing method works well 

in low drain current region. More efforts are needed to improve this method to work 

in all operating region and to capture the RDF induced mobility fluctuations.  

 2.3 Predictive Modeling of Fundamental CMOS Variations under Random 

Geometry and Charge Fluctuations 

2.3.1 Introduction 

As CMOS continue scales into sub-20nm regime, besides RDF and LER, OTF and 

RTN come to people’s sight due to its increasing impact on transistors. In this work, 

atom-level TCAD simulations incorporating the four intrinsic variations are performed. 

With the assistance of long range potential based equivalent charge density model [64], 

RDF effect is simulated in commercial TCAD device simulator [55]. RTN, which is 

from the trapping-detrapping of electron/hole, can be modeled as the occupation of a 

single charge near the Si-SiO2 interface. Moreover, the geometric roughness of LER 

and OTF are generated by Inverse Fourier Transform (IFT) from power spectrum 

[36][44], which are further implemented into device simulator. Figure 1 shows the four 

Preparation of Atomistic Simulation

Customized TCAD simulation under 
RDF, LER, OTF, and RTN 

Predictive Modeling of Vth variations 

Performance Projection and Optimization 

Figure 2.3.1. The simulation and modeling flow 
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variation sources and their simulation setup. With the TCAD simulation result and the 

understanding of fundamental physics, a new set of predictive compact models are 

developed to capture the intrinsic Vth variability. Moreover, the predictive model 

suggests the trend of Vth variations in scaling, and possible minimization method. 

Figure 2.3.1 concludes the modeling approach in this work. 

2.3.2 Atomistic Simulation of Fundamental Variations 

Simulation Setup 

The Monte Carlo simulations with 200 p-type MOSFETs are performed in this work. 

The nominal simulation is calibrated with 22nm Predictive Technology Model (PTM) 

[16]. The gate width is set to be 15nm. Moreover, to suppress the RDF as well as drain 

induced barrier lowering (DIBL) effect, a retrograde doping profile is applied. For 

RDF, both channel and source/drain dopants are taken into account. To simulate 

discrete dopants in silicon body, an equivalent doping density profile is applied [64]: 

32

3

)(
)sin(
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rk
rkqkr

c

cc

�
� �                                             (7)                  

where kc is the inverse of screening length, and r is the distance to the center of atom. 

The gate edge profile of LER is generated by using IFT. To track the trend of 

advanced technology, the correlation length of LER (Wc) is set as 10nm [42] and 

standard deviation (σLER) equals 0.5nm [1][42]. The correlation length (λ) of oxide 

surface roughness is 2nm [13], and the height of one Silicon atom layer (ΔH) is set to 

be 2.71Å [13][44] for Si-SiO2 interface. RTN is usually studied in both time and 
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frequency domain. However, for a large scale circuit, such as SRAM, the statistical Vth 

fluctuation due to RTN is also important because its lognormal distribution may 
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dominate the worse case of device performance. 

In the time domain RTN effect due to a single trap is a Poisson process as Fig. 2.3.2 

shows. To simulate the impact of RTN, we first model the characteristics of carrier 

trapping-detrapping behavior by external codes, which give the trap distribution, as 

well as the energy state for each trap. Then at any time point t from the simulated trap 

state, the occupied trap is modeled by assigning a charge near the interface in device 

simulation. Figure 2.3.2 shows examples of trap state in devices at time domain. 

Different In the simulation, we assume a uniform distributed trap density, and uniform 

distributed trap energy level around Ef [49]. The trap density is set to be 4e11 cm-2eV-1 

[65]. Because RTN induced Vth variation is coupled with RDF, in the experiments, the 

Vth variation solely induced by RTN is extracted from the same set of simulation with 

and without random distributed traps. 
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200 devices are simulated in each experiment. Figure 2.3.3 shows the simulated Id-Vg 

curves under various intrinsic variations. From first order we consider that σVth due to 

each variation source are independent, and then we have the total σVth is 

approximately a summation of each variation source as Eq. (8) shows.  

2
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2
)(,

2
)(,

2
)(,

2
)(, RTNthOTFthLERthRDFthtotalth VVVVV ����� ����                      (8)     

Figure 2.3.4 summarizes the simulation result. From the simulation results, RDF is still 

the major variation source. Note that RDF is contributed by both channel dopants and 

source/drain dopants, and the fluctuation of body dopant is a major part in RDF 

effect as Fig. 2.3.4 shows. LER induced variability is not that significant due to the 

advanced etching technique as well as the retrograde doping with high peak 

concentration, while OTF is the second important variation contributor. Moreover, 

the contribution of RTN to total σVth is marginal. However, the lognormal distribution 

Figure 2.3.5. Simulated ΔVth distribution and CDF due to 
a single occupied trap. 
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of RTN induced Vth shift may be a problem for high-yield design. Figure 2.3.5 shows 

the distribution and CDF of a single trap induced Vth shift, and it suggests that the 

RTN induced large Vth shift may dominant the worse case of threshold voltage. 

2.3.3. Predictive Modeling of Random Vth Variations 

Based on the customized 3-D atomistic simulation result, in this section a new suite 

of scalable models is derived. From first principles, the amount of Vth variation is 

modeled in respect of Nch and toxe. The σVth due to RTN is not taken into account in 

total Vth variation amplitude (Fig. 2.3.4). Because the RTN main dominant the worse 

case of Vth variation, the distribution function of RTN induced Vth shift is included. 

RDF 

The RDF induced Vth variations are classified into body RDF and source/drain (S/D) 

RDF. The body RDF, which is induced by fluctuation of substrate body dopants, is 

the commonly studied one, and has been regarded as the dominant variation source in 

device scaling. In our simulation of 22nm technology, the σVth due to body RDF is 

35.2 mV, which is indeed the dominant one among all variations (Fig. 2.3.4). Different 

from body RDF, S/D RDF, which arise from source/drain dopants, does not 

contribute to gate voltage drop. As the device size scales to sub 25nm regime, the 

fluctuation of S/D dopants leads to fluctuation of effective channel length [23] and 

overlap capacitance [3]. From simulation results S/D RDF is a secondary factor that 

contributes to Vth variation.  

The Vth variation due to body RDF is expressed as the following equation [10]: 
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where W, L, Nch, Wdep are the channel width, channel length, effective channel doping 

(Nch) and depletion width respectively. In this model the non-uniformity along lateral 

directions and fluctuation of Wdep are ignored, so there is a correction factor of 1.2. 

Expanding the Wdep term and ignoring the second order terms, we have a more 

explicit expression: 
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where C1 is a fitting parameter accounts for surface potential and the correction term, 

toxe, εSi, εox, and q are the equivalent oxide thickness, permittivity of Silicon, permittivity 

of oxide layer, and elementary charge respectively. Equation (10) suggests that the 

RDF induced Vth variation is proportional to toxe and Nch
0.25. Figure 2.3.6 shows the 

Figure 2.3.6. Nch and tox dependence of RDF induced σVth. 
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simulated result compared with Eq. (10).  

LER 

To the first order, the nominal Vth shift due to short channel effect can be expressed 

as in Eq. (11) and (6) [10]: 
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where Vbi is the built-in voltage of the source/drain junction, and η is a parameter to 

model the average depletion width along channel.  LER results in a fluctuation of 

channel length. Assuming the two edges of gate are uncorrelated, the channel length 

fluctuation due to LER is calculated by using the following equation [7]: 
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where σLER and Wc is the standard deviation and autocorrelation length gate edge 

respectively. Equation (13) suggests that for a scaled device, the device feature size is 

comparable or smaller than the spatial period of random gate edge, causing less 

sensitivity of channel length variation to the device size.  Differentiate Eq. (11), and 

substitute Eq. (13), yields the following expression: 
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where C2 is a fitting parameter in term of the voltage, which associated with junction 

built-in voltage induced short channel effect. C3 is a fitting parameter associated with 

surface potential, with the unit of V0.25. Figure 2.3.7 shows the comparison of model 

and TCAD simulated results. 

Figure 2.3.7. (a) Nch and tox dependence of LER induced σVth 

(b) Vds dependence of LER induced σVth. 
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OTF 

Similar to LER, OTF leads to the geometric fluctuation of the average oxide 

thickness, and further affect gate voltage drop across the oxide layer. From the first 

principle, Vth is expressed as the following: 

sSich
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sFBth qN
t
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The oxide thickness is dependent on surface roughness between Silicon and Silicon 

dioxide. The maximum fluctuation magnitude of oxide surface roughness is the 

height of one silicon atom layer (ΔH) = 2.71Å. The correlation length (λ) of oxide 

surface, which is typically from 1 to 3nm [23], is much smaller than gate length. With 

the assumption that the two oxide surfaces are uncorrelated the sigma of oxide 

thickness fluctuation is expressed in Eq. (17): 
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Figure 2.3.8. Nch and tox dependence of OTF induced σVth. 
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where λ denotes the correlation length of oxide surface roughness, and B is a fitting 

parameter. Moreover, from Eqs. (16) and (17), the sigma of OTF induced Vth 

variation is derived in Eq. (18): 
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where C4 is a fitting parameter in terms of V0.5. Figure 2.3.8 validates this result. 

From Fig. 2.3.8, OTF induced Vth is independent of oxide thickness. Moreover, the 

dependence OTF induced Vth variation on Nch is more sensitive than RDF induced 

variation, which suggest that as channel doping increasing in future CMOS device, 

the trend of OTF induced Vth variation may be worse and dominate the variations of 

device performance. 

RTN 

The interaction among RTN on RDF, LER, and OTF effects is investigated through 

atomistic simulations in this sub-section. The structure used to determine the effects 

of RDF, LER, and OTF are simulated with and without a single occupied trap in Si-

SiO2 interface. Figure 2.3.9 summarizes the comparison of Vth variation between 

untrapped and trapped state of a single trap. From the plot, the impact of one 

trapped carrier on σVth seems to be marginal. Therefore we assume that the Vth 

variations due to the other three effects are independent on RTN.  

The number of traps in a device follows the Poisson distribution with mean value 

NtWL, where Nt is the trap density around Ef. Assume P is the average probability 
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that a trap is occupied, then the average trapped carrier number in a device is PNtWL, 

and the probability density function of occupied trap number is: 
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A trapped carrier interacts with RDF effect will result in different amount of Vth shift. 

The Vth shift due to single trapped carrier is expressed as [6]: 
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where k is the Boltzmann constant, Cd is the depletion layer capacitance, and Vth’ is the 

equivalent threshold voltage of the channel region that impacted by a trapped carrier. 

From first order, Vth’ is induced by RDF, so according to Eq. (17) its variation is 

proportional to toxe·Nch
0.25. Regarding to Eq. (20), the ΔVth due to RTN of a single trap 

is a lognormal random variable, which follows: 
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where C5 is a fitting parameter with the unit of  V·cm-0.25, and flognormal is the lognormal 

distribution function: 
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The overall distribution of Vth should be the Gaussian distribution from RDF, LER 

and OTF, overlap the distribution of RTN induced ΔVth, which is given by both Eq. 

(19) and Eq. (21).  

2.3.4 Minimization and Projection of Vth Variability 

Nch Dependence and Optimization 

With derived compact model, we investigate the Nch dependence of Vth variation in 

Figure 2.3.9. Comparsion of the single source induced σVth 

with and without a single trapped carrier. 
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Fig. 2.3.10. In the plot the Vth variation first decrease with Nch, because at low doping, 

LER dominant the σVth.  As the Nch continue increasing, the increasing in Vth 

variation suggests that RDF and OTF dominates σVth in high doping region. From 

the Nch dependence, the minimum σVth is found to around 2e18 cm-3. This fact 

indicates that Nch optimization may be a possible method to minimize Vth variations.  

Effect of tox Tunning 

The tox dependence is shown in Fig. 2.3.11. Apparently, the Vth increase as the tox 

increase. σVth is very sensitive to tox. So the strategy to reduce tox will be very effective 

for suppressing threshold variation. 

Scaling Trend of Vth Variation 

Based on PTM HP model, a projection of Vth variation is illustrated in Fig. 2.3.12. 

From Fig. 2.3.12, we observe that if there is little improvement in the etching process, 

the LER induced Vth variation may approach the RDF induced Vth variation in 

Figure 2.3.12. The trend of σVth in device scaling. 
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future nodes. On the other hand, due to the square-root dependence of Nch, OTF 

induced Vth variation shows a faster increasing rate during the scaling, and may 

dominate the variability in future. 

2.3.5 Summary 

In this work, random Vth variation under RDF, LER, OTF and RTN is studied by 

using 3-D atomistic simulation with commercial TCAD device simulator. With the 

simulated result, a suite of scalable and predictive compact models are proposed. 

Furthermore, possible solutions to minimize Vth variations  are discussed, and a 

projection of Vth variation in advanced technology nodes is obtained from the 

modeling results. 

2.4 Simulation of Random Telegraph Noise with 2-Stage Equivalent Circuit 

2.4.1 Introduction 

Random Telegraph Noise (RTN) is attracting more attention in recent years. The 

reason is that the device variations due to RTN increase drastically as device shrinks. 

Recent studies show that the variation of RTN grows more rapidly than Random 

Dopant Fluctuation (RDF) induced variation. The RTN variation level at 3σ may 

dominate the device variation under 22nm node [1].  
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RTN is induced by the charge trapping/de-trapping in the oxide layer [66] as shown in 

Fig. 2.1.5.The upper plots exhibits the case of large devices. In large devices there are 

many oxide traps. Each trap gives a Lorenztian shaped power spectral density (PSD), 

and the cut-off frequency depends on the distance to the Si-SiO2 interface. The sum of 

the PSDs from all the traps shows a 1/f shape as Fig. 2.1.5 demonstrates. The 

emerging CMOS technology has scaled down to sub-50nm regime. In this scale there 

are only a few traps in a transistor. As a result the PSD of trapping/de-trapping 

induced noise is no longer a 1/f shape but Lorenztian shape. In time domain, 1/f 

Figure 2.4.1. (a) PSD of 1/f noise by traditional simulation method [67]. (b) 

The waveform generated by a single white noise-RC unit compared with 
RTN waveform. (c) SRAM read failure probability predicted by L-shaped 

circuit method and traditional white noise-RC unit method. 
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noise is continuous and has Gaussian distributed amplitude [48], while RTN has 

discrete levels and discontinuous waveform. RTN is particularly important in digital 

design because of the extra small transistor size. 

RTN of drain/source current has been commonly observed in small devices 

[1][48][66]. It is also well established that RTN can be modeled by the gate bias change 

[49]. In recent studies, RTN induced threshold voltage (Vth) variation at 2σ level can 

reach 50mV~100mV [1], leading to severe impact on the operation point of the design, 

particularly in low power designs. In this case the importance of noise simulation in 

frequency domain diminishes, while the analysis in time domain becomes necessary. 

Traditional method to model 1/f noise in large devices adopts a set of RC units in 

series to filter white noise [67]. In this method, each RC filter is connected with a white 

noise source. Such a white noise-RC unit generates a noise with Lorenztian shaped 

PSD. By serially connecting these white noise-RC units, the PSD dependence on 

frequency is modeled proportional to 1/f, as illustrated in Figure 2.4.1(a). The short 

dash represents the PSD of each white noise-RC unit. This method is efficient to be 

integrated with ideal components in commercial circuit simulators. Moreover, this 

approach provides a smooth transition from frequency domain to time domain 

waveform. Nevertheless, as the downscaling of the MOS device, the 1/f shape is not 

adequate any more. To model RTN, which has a Lorenztian shaped PSD, we first 

think about the single RC unit because it can produce the same PSD with RTN. But 

the waveform generated from a single white noise-RC unit cannot accurately describe 
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the RTN in time domain since it cannot give a discrete level waveform, as shown in 

Fig. 2.4.1(b). Such a difference will lead to different impacts on circuits. For example in 

Fig. 2.4.1(c) we perform a simulation of reading a 32nm SRAM cell for 100000 times, 

and record the failure times of reading. The simulations are performed under white 

noise-RC unit generated waveform and RTN (the red curve with τē / τc̄=1) waveform 

respectively. The simulated results are obviously different as Fig. 33(c) illustrates. 

In this work, discrete RTN signals are successfully reproduced by introducing white 

noise source passing through 2-stage L-shaped circuits. This new method is 

compatible with SPICE. The waveform produced by this method is validated in both 

frequency and time domain. With the assistance of the new simulation, the impact on 

a SRAM design and a 5-stage ring oscillator are investigated. Moreover, a 

comparison between the proposed sub circuit and the traditional RC model are 

comprehensively studied 

2.4.2 RTN Physics in Light of Scaling 

As demonstrated in Fig. 2.1.5, RTN is originated from the trapping/de-trapping in 

oxide traps. An example of single trap induced RTN waveform in NMOS is illustrated 

in Fig. 2.1.6. The low level of RTN corresponds to the emission state of trap, and the 

time in emission state represents the emission time τe. Accordingly the high level 

corresponds to the capture state, and τc represents the capture time. Both emission and 

capture time follow exponential distribution [68]. The ratio of mean emission time to 

mean capture time, τē / τc̄, has a exponential dependence on the difference between 
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trap energy level and Fermi level, therefore exponentially depends on gate bias [69]. 

Thus the τē / τc̄ does not have strong correlation to device scaling. Under a given bias 

condition, τē / τc̄ follows a lognormal distribution, and the typical value is from 10-

1~101 [70]. With τē and τc̄, the time constant of RTN, τ0, is defined as the following [69]: 

ce

ce

��
���

�
�

�0                                                          (2.4.1)   

And the cut-off frequency of the PSD is expressed as: 

02
1
��

�cf                                                           (2.4.2)   

τ0 exponentially depends on the distance from the trap to channel surface [66]. A 

large τ0 value indicates that the trap is far from channel surface. The typical value of 

τ0 ranges from 10-5~102s [68][69]. τ0 is also not obviously correlated to CMOS scaling. 

Form eq. (2.4.1) & (2.4.2), we see another need for time domain simulation: the RTN 

with different τē / τc̄  may have the same PSD in frequency domain, though their 

waveform are quite different, and will result in different impacts on circuit as Fig. 

2.4.1(c) shows. 

The difference between the two discrete levels, δV, is the magnitude of single trap 

induced RTN. Interacting with RDF effect, δV follows a lognormal distribution with 

median at [6]: 

WLC
qV
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where q is the elementary charge, Cox is the unit area capacitance, W and L are channel 

width and channel length respectively. Because of the dependence on the channel area 

(WL), the magnitude of single trap RTN sharply goes up as device shrinks.  

Overall the major difference of RTN between the large device and the small device are 

concluded in two aspects: 1. Waveform. In time domain the waveform changes from 

the continuous to discrete as device down scales. In frequency domain the Lorenztian 

shaped PSD substitute the 1/f shape. 2. In large device the noise from many oxide 

traps contributes to part of 1/f noise. The contribution from a single trap can be 

ignored due to the large WL term in eq. (2.4.3). Whereas in small device the δV from 

single device is much larger than the background noise, and dominate the time domain 

voltage/current fluctuations. 

2.4.3 Two Stage L-Shaped Circuit for RTN Simulation 

As discussed in previous sections, due to the need of time domain simulation and the 

inadequacy of the traditional method, a new time domain circuit simulation for small 

devices is strongly desired. In this section, we present a new method, which is called 

L-shaped circuit for time domain RTN simulation. 

L-Shaped Circuit Structure 
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The basic idea of the L-shaped circuit is to apply an ideal comparator to regulate the 

noise output from a single white noise-RC unit. The structure is shown in Fig. 2.4.2. 

The white noise is modeled as a random piecewise linear function with Gaussian 

distributed amplitude [67]. Note that the connection of RC (parallel/series) depends 

on the type of noise source (current/voltage). In this paper, we take current noise 

source and parallel connected RC unit circuits as examples. Since comparator detects 

the zero crossings and output two discrete levels, so all the zero crossings in the 

waveform at node 1 are kept at node 2. Then the waveforms at these two nodes have 

Figure 2.4.2. Basic structure of L-
shaped circuit 
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similar autocorrelations and thus have similar PSDs. The output at node 2 is 

analyzed and compared with Lorenztian shape in Fig. 2.4.3(a). From Fig. 2.4.3(a), we 

see that the cut-off frequency is correctly modeled at 1/2πRC. But in high frequency 

part, a mismatch is observed that the PSD does not show 1/f2 dependence. To 

explain the mismatch, an example is demonstrated in Fig. 2.4.3(b). At node 1, the 

part in red circle indicates many zero crossings due to small fluctuations near the 

threshold of comparator. These fluctuations have much higher frequency than the 

cutoff frequency, and have much smaller amplitude than low frequency part. 

However they are detected and outputted at node 2. The compare function 

equivalently amplifies these small fluctuations and result in a high frequency 

mismatch. 

To fix the problem we added one more L-shaped circuit with the same RC product 

as the first stage as illustrated in Fig. 2.4.4. The idea of this approach is to filter out 

very short pulses at node 2, meanwhile it does not bring in new cut-off frequency 

from RC unit. Nevertheless, filtering out short pulses equivalently increases the mean 

capture/emission time, and therefore lower the cut-off frequency. To tune the cut-

off frequency back, we introduce a fitting coefficient β for the capacitor at all stages 

as shown in Fig. 2.4.4. If the simulation accuracy is high enough, the ratio of 

removed short pulses to the RC value should be a constant so β will be a constant 

works for all cut-off frequency. In our experiments, β is around 0.67. Figure 2.4.5 

validates the simulated PSD from the two stage L-shaped circuit with Lorenztian 
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shape. Figure 2.4.6 illustrated the simulated capture/emission time distribution. The 

simulation setup for Fig. 2.4.7 is that τē = τc̄ = 2ms. From the simulated result and 

the exponential fit, we can see that though most parts follow the exponential 

distribution, there is still a minor error in short capture/emission time. In the L-

shaped circuit method the minor error is ignored. This is the first approximation in 

the simulation. 

RTN Time Constant Modeling 

From the discussion in last section, the time constant of simulated RTN follows the 

RC unit. So it is expressed as: 

RC�0�                                                      (2.4.4)       

Note that the C in eq. (2.4.4) is the value before multiplying β.  

With the correct τ0 the next step is to model the emission/capture time constant 

ratio τē/τc̄. First we look at an amplitude distribution of waveform at node 2, which is 
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demonstrated in Fig. 2.4.7. The simulated waveform is uniformly sampled, and then 

is plotted as histogram in Fig. 2.4.7. The result shows an approximate uniform 

distribution. To model τē /τc̄, we neglect the deviation from uniform distribution. 

This is the second approximation in the method. The threshold of the second stage 

comparator is given by:  

� � minminmax_ /1
/ VVVV

ce

ce
thresholdcomp ���

�
�

��
��

                             (2.4.5)         

where Vmax and Vmin are the maximum and the minimum output voltage at node 2. 

For example if  τē / τc̄=3/1, according to eq. (2.4.5) the threshold of comparator 

should be 0.5 in Fig.2.4.7.  

Note that at this stage, the impact of gate bias on τē/τc̄ is not taken into account. 

However the method can be applied to most circuits with a fixed operating point, or 

the case that τē/τc̄’s sensitivity to gate bias is low and can be neglected. 

Gate Bias Dependent Time Constant Ratio 
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RTN time constant ratio not only depends on the trap itself but also depends on the 

gate bias of the transistor. In researches people find that the time constant ratio 

exponentially depends on the gate voltage [5][68][70]. To model this phenomenon a 

sub-circuit structure is proposed in fig. 2.4.8(a). In fig. 2.4.8(a) a voltage controlled 

voltage source (VCVS) is introduced to detect the gate voltage change in time 

domain. By using the expression in circuit simulator (HSPICE), the exponential 
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Figure 2.4.8(a). VCVS to incorporate gate bias dependence. 
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dependence is incorporated in the sub-circuit to generate RTN. Figure 2.4.8(b) is a 

RTN waveform under a sinusoidal signal at gate. In the figure we see that the time 

constant ratio clearly changes with the gate bias.  

To test the impact of gate bias dependence on RO, the following structure in fig. 

2.4.9 is proposed in experiments. In the structure, suppose the p/n ratio is β. Then 

we tune the p/n ratio of all the even stages (red) to kβ, and the p/n ratio of all the 

odd stages (blue) to β/k. Subsequently the period of high level is: 

 dhtk
n+ �

�
�

	


� �11                         (2.4.6) 

And the period of low level is: 

 � �� � dltkn+ 11 �                     (2.4.7) 

where n is the number of total stages, tdh, tdl are high level per stage delay and low 

level per stage delay respectively. So the high-to-low period ratio is given below: 
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thus the duty cycle is expressed as the following: 

 
1

CycleDuty 
+γ
γ

�                                   (2.4.9) 

With such a structure, we then add RTN to one of the NMOS in the first stage. The 

experiments are under duty cycle of 20% and 80%, so the effective gate bias are 

different and should result in different time constant ratio. The results are 
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demonstrated in fig. 2.4.10 and we can see that the phase noise spectrum has two 

peaks with different values.  

RTN Magnitude Modeling 

In time domain the magnitude of RTN is modeled by assigning δV as the two levels 

difference of the second stage comparator. The δV can also be extracted from PSD. 

The PSD of RTN is expressed as [69]: 
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Figure 2.4.9. Test RO structure with non-symmetrical duty cycle. 
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where S0 is the PSD value below cut-off frequency. Then substitute eq. (2.4.4) into eq. 

(2.4.10) & (2.4.11), yields: 

RC
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��

�                                   (2.4.12)        

Figure 2.4.11 validates the simulated result under τē  / τc̄ =5/1, 1/1, and 1/5. 

δV=50mV and τ0=1ms. All the three PSDs are well consistent with the theoretical 

Lorenztian curves 
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2.4.4 Design Benchmarks 

This section studies the impact of RTN on SRAM and Ring Oscillator by using the 

proposed L-shaped circuit. The differences between L-shaped circuit and traditional 

RC unit are also investigated for the benchmark circuits.  

Impact on SRAM 

SRAM design is strongly constrained by size requirement so the transistors in the cell 

can be ultra small, leading to huge RTN. Figure 2.4.1(c) is an example illustrating the 

impact on SRAM. The simulated SRAM cell is based on 32nm Predictive 

Technology Model [16]. The width to length ratio (W/L) of drive transistors and 

load transistors are both 1/1, and the cell ratio is 1.2. An L-shaped circuit based 

RTN generation block is adopted in one of the drive transistors. The magnitude of 

RTN is 70mV, τ0=1ms, and τē /τc̄=1. To simplify the case, we assume that the trap is 

close to the Si-SiO2 interface, such that the impact of gate bias on τē /τc̄ can be 

ignored [69]. In the simulation 100000 reads operations are performed in 1s, and the 

failure times are recorded as nfailure. To compare the L-shaped circuit method with 

traditional method, a white noise-RC unit noise source with the same PSD is also 

simulated. The failure probabilities of SRAM cell are calculated by nfailure / 100000, 

and are plotted in Fig. 2.4.1(c). From Fig. 2.4.1(c) first we see that different from the 

continuous change of failure probability by traditional method, the RTN simulated 

by L-shaped circuit shows a two-step shape. Moreover, the read failure probability is 

a function of τē /τc̄. For example in Fig. 2.4.1(c) the mid level of simulated result with 
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Figure 2.4.12. Time domain read Vccmin behavior 

under L-shaped circuit and traditional method. 
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and for τē /τc̄=3, 1/(1+τē /τc̄)=25%. The simulation results well validate this. 

Besides the read failure probability, read Vccmin is also a very sensitive parameter to 

RTN. In the simulation, we first sample the threshold voltage shift due to RTN at a 

specific time point, and then Vccmin is detected by sweeping Vcc under the sampled Vth 

shift. Figure 2.4.12 demonstrates the simulated read Vccmin vs. time of the 32nm 

SRAM design under L-shaped circuit and traditional method. ~200mV shift due to a 

70mV RTN is observed. Also with traditional method a prediction error arise as the 

plot shows. 

Impact on Ring Oscillator (RO) 

The simulations of 5-stage RO with 4 fan-outs at each stage are performed in this 

section. The RO is a low power example under Vdd=0.2V. The simulated RO is 

based on 22nm PTM [16]. RTN is with τē /τc̄=1, τ0=10us, and δV=50mV. The width 

of NMOS and PMOS are 15nm and 30nm respectively. The nominal frequency of 

this RO is 27.36 MHz (T = 36.55ns).  

To compare the differences between L-shaped circuit and traditional method, both 

cases are studied. The simulation results are presented in Fig. 2.4.13. Figure 2.4.13(a) 

is the eye diagram under different simulation method. We clearly see a discrete 

waveform in L-shaped circuit simulated result from Fig. 2.4.13(a), whereas this is not 

observed in traditional method simulated result. The differences between the two 

methods are also presented in Fig. 2.4.13(b) of jitter distribution and Fig. 42(c) of 

phase noise. The jitter distribution should be discrete because the discrete level of 
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RTN gives discrete operation point of RO, which is mis-predicted by traditional 

method as Fig. 2.4.13 (b) shows. The jitter variation range is ~5% predicted by L-

shaped circuit, while the range simulated by white noise-RC unit is ~16%. The phase 

noises under two methods are also different. L-shaped circuit simulated result with 

RTN contributes two peak values near the nominal frequency as demonstrated in Fig. 

2.4.13(c). 

2.4.5 Summary 

In this work a new method is proposed to meet the needs of time domain RTN 

simulation for digital circuits with scaled CMOS technology. The method can 

correctly reproduce RTN waveform, and is comprehensively validated in both 

frequency and time domain. Assisted by the new method, the impacts of RTN on 

SRAM and low power RO are studied, and the advantages compared to traditional 

noise simulation are investigated. 
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Chapter 3 VARIABILITY ANALYSIS UNDER LAYOUT DEPENDENT 

RAPID THERMAL ANNEALING PROCESS 

3.1 Introduction 

The aggressive scaling of CMOS devices significantly improves the performance, but 

also leads to many undesirable effects. One of the most profound impacts is short-

channel effects, such as Drain Induced Barrier Lowering (DIBL) that sharply reduces 

threshold voltage at shorter channel length and leads to a dramatic increase in the 

leakage. To mitigate short-channel effects in scaled CMOS devices, advanced 

fabrication technology has to adopt rapid-thermal annealing (RTA) process in order 

to achieve ultra-shallow junction in the source/drain region. Different from 

traditional thermal annealing, the RTA process applies a much shorter pulse (e.g., 

Lamp RTA [71] or Laser Annealing [73][75]) to heat the silicon substrate to a much 

higher temperature (e.g., 4ms annealing at 1250oC) [72], such that dopants in the 

source/drain and gate regions receive sufficient energy to be activated, but only have 

the minimal period of time for the diffusion.  

The RTA process is a must for nanoscale CMOS fabrication, achieving ultra-shallow 

junction depth and low source/drain/gate resistance. On the other hand, one 

distinct property of RTA is that the entire silicon substrate does not reach thermal 

equilibrium due to the extremely short heating period. During this period, the exact 

amount of energy and thus, the annealing temperature, depends on the reflectivity of 

the silicon substrate: the reflectivity of the gate is usually lower than that of the 
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source/drain region, while the isolation region has the lowest reflectivity due to the 

STI structure. As a result, different layout pattern densities lead to different 

annealing temperature, transistor definition and performance. This phenomenon has 

been observed in threshold and delay shift in test circuits [71]. The length scale of 

such variations is determined by the thermal diffusion distance in the silicon 

substrate, which is proportional to (Dt)1/2, where D is the thermal conductivity of 

silicon, t is the annealing time. In the ms RTA process, this length is typically around 

hundreds of �m [71][74].  

Figure 3.1. RTA induced annealing temperature and threshold 
voltage variations under various pattern densities (45nm test chip, 

10ms annealing at 1300oC). 
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With such a thermal diffusion length, different silicon regions will have their own 

annealing temperatures, depending on local layout pattern. The fluctuation in T 

significantly affects transistor performance, such as Ion/Ioff ratio and Vth [73][75][76]. 

As an example, Fig. 3.1 illustrates the layout of a realistic 45nm test chip. Due to the 

layout style, various components have a pronounced difference in pattern density 

(Fig. 3.1a). With the proposed thermal simulation tool, Fig. 3.1b illustrates the 

fluctuation in the annealing temperature, which directly induces Vth variation by 

more than 30mV. The largest difference is observed close to the boundary of 

different components, such Points A and C, where the non-uniformity of circuit 

layout reaches the maximum.  

To minimize the variations, improvements in both process technology and physical 

design are necessary. In this work we develop a set of simulation and modeling 

capability, as shown in Fig. 3.2, to bridge the understanding of the underlying physics 

and circuit analysis under RTA, including (1) Transient thermal simulation to predict 

the dependence of the annealing temperature on layout pattern density; (2) Process 

simulation and modeling to analyze the primary impacts on equivalent gate oxide 

thickness and effective channel length; and (3) Device simulation and compact 

models to predict the change of device and circuit performance. 

Using thermal simulation codes, we first obtain an appropriate simulation window to 

define the pattern density. This helps us efficiently track the temperature profile in a 

large scale layout. Then we investigate two independent variation mechanisms under 
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RTA, i.e., dopant activation and lateral source/drain diffusion.  These two effects 

further influence several important device parameters, including EOT, Vth, and Leff. 

Based on TCAD simulation, we propose a set of analytical models that directly 

predict these parameter changes from RTA conditions and PD. The new models will 

enable efficient layout optimization in order to reduce the systematic variation due to 

RTA.  

We systematically validate the method with TCAD tools and published silicon data 

under various conditions, including different annealing time, annealing temperature, 

and doping in devices. This part is organized as follows: Section 3.2 presents the 

theoretical background and the development of thermal simulation capability. It 

defines an appropriate window size to extract pattern density under different RTA 

conditions. Section 3.3 integrates process and device simulations to analyze dopant 

activation lateral junction diffusion. Base on TCAD simulation results, we further 

develop compact models to predict the change of threshold voltage and other device 

Figure 3.2. The flow of joint thermal/TCAD simulation 
and compact modeling to investigate the RTA process. 
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parameters. Finally we apply the new models to benchmark the variability of circuit 

delay and leakage due to pattern-dependent RTA at 45nm node. 

3.2 Thermal Simulation of Pattern Dependent RTA Process 

In this section, we present the theoretical background and the code development of 

RTA thermal simulation. The study is performed with a representative 45nm 

technology. We use the equivalent emissivity in our thermal simulation in order to 

simplify the simulation. To further improve the simulation efficiency, we study the 

maximum window size that can be used to define local pattern density, as well as its 

dependence on RTA conditions. 

Thermal Simulation 

In a typical RTA process, the energy source, such as the lamp or laser, emits energy 

to the surface of the substrate. On the chip surface, different structures, e.g., gate, 

source/drain, and STI, have different emissivity [75][76] and thus, they absorb 

Figure 3.3. Layout thermal simulation. (a) simulation structure; 
(b) power profile in the experiment. 
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different amount of energy during the annealing. This is the origin that induces non-

uniform temperatures within a die. 

In order to investigate the interaction between pattern density and the annealing 

temperature, we develop transient thermal simulation on the cross section of the 

chip. Figure 3.3a illustrates the structure in thermal simulation. The initial condition 

of the full wafer is usually at a constant preheat temperature, e.g., 650oC [71]. A 

typical power profile of the annealing process is shown in Fig. 3.3b. Finite 

Difference Method (FDM) is applied to solve the initial value problem (IVP). Such a 

method is accurate, but not efficient enough if the chip size is large. To speed up the 

simulation in mm scale, we introduce the concept of the equivalent emissivity for the 

surface of the chip. The equivalent emissivity (�eq) is defined as the weighted average 

of the emissivity of each layout pattern within a simulation window, depending on 

the area density. The equivalent emissivity is given as the following: 

                      � ��
�

��
n

i
windowiieq AA

1
��                                      (3.1)       

where εi refers to the emissivity of a pattern, Ai is the area of the pattern in the 

window, and Agrid is the total area of the simulation window. When the simulation 

window is much smaller than the thermal diffusion distance, e.g. 1�m, a single value 

of �eq is a sufficient representation of the thermal characteristics within the 

simulation grid. For the vertical direction, since the active regions of study are much 

thinner than the wafer thickness (usually around hundreds of μm), we treat the cross 
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section of wafer as a homogenous material. Overall, the process of radiation heating 

based RTA has a much shorter ramp rate than traditional conduction based 

annealing process. The entire chip area does not reach thermal equilibrium during 

the annealing period [71].  

Simulation Window Size 

Using the newly developed thermal simulation tool, we are able to investigate the 

thermal conduction and temperature distribution inside the substrate. However, 

there is still a limitation on the window size we select to define the equivalent 

emissivity (Eq. 3.1) and calculate the pattern density. The window size is preferred to 

be large for fast simulation, but it should be small enough to track the change of the 

temperature profile for an accurate performance prediction.  

Figure 3.4.  The search of the maximum window size during 
thermal simulation of the RTA process. 
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To identify the appropriate window size, we simulate a sample 45nm design with 

various sizes of the simulation window. Within each window size, the emissivity of 

different patterns is averaged to the equivalent emissivity.  Figure 3.4 shows the 

results from several representative window sizes using 20 ms RTA at 1300oC. The 

maximum temperature error is defined as the maximum difference as compared to 

the result from the minimum window size (100nm). Under a larger window size, the 

components with higher spatial frequency are filtered out and therefore, the 

simulation error increases. To guarantee sufficient accuracy in device performance 

prediction, we define the threshold window size when the maximum T error reaches 

0.6oC, which corresponds to 0.8mV Vth shift in this 45nm technology. In the sample 

case, the appropriate window size is 22.4�m. The exact value depends on the RTA 

conditions, such as the annealing time and T.  

Figure 3.5 illustrates the window size dependence on annealing temperature and time 

through thermal simulations. The criteria of post-annealing Vth shift is 1.1mV. The 

Figure 3.5. Simulation window sizes under different RTA 

conditions at 45nm node. 
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window size can be approximated as a linear function of T. It is also proportional to 

t1/2 due to the thermal diffusion process [77]. Therefore, we express the overall 

dependence as:  

� �� �2
2/1

121 BtBATALwindow ����� �                                (3.2)       

where t refers to the annealing time, and A1, A2, B1, B2 are fitting parameters. Within 

the simulation window, the pattern density and the equivalent emissivity are averaged 

for fast thermal simulation, in order to predict the value of the annealing temperature 

for further model calculations. Through this method, the simulation efficiency is 

high enough to support chip-scale thermal simulations.  

 3.3 Compact Modeling of Performance Variability 

There are two primary mechanisms that affect the threshold voltage in the RTA 

process (Fig. 3.6). The first one is dopant activation in the gate. We propose compact 

models to connect the annealing condition with dopant activation rate, equivalent 

oxide thickness and threshold voltage. The second factor is effective channel length 

defined by lateral thermal diffusion in the source/drain region. Due to the DIBL 

effect, Vth is highly sensitive to the change of Leff. We describe the impact of the two 

mechanisms in compact models and validate them against TCAD simulations and 

published silicon data. 

Dopant Activation 

One major purpose of the RTA process is to electrically activate the dopants in the 

gate and source/drain regions. Depending of the activation rate, the polysilicon gate 
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will have a finite doping level. When a suitable gate voltage is applied, it leads to the 

depletion close to the interface between the gate and the dielectric. This depletion is 

equivalent to the increase in oxide thickness and results in threshold voltage change. 

The concept of equivalent oxide thickness (EOT) is usually used to describe the 

phenomenon. The EOT is given as the following: 

                                 oxoxSipoly tWEOT ��� �� /                                          (3.3)        

Figure 3.7. Dopant activation rate depends on RTA conditions and is 
limited by solid solubility (2.2E20 at 1200oC and 1.4E20 at 1300oC). 
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where the Wpoly is the depletion width in polysilicon gate, tox is the gate oxide thickness, 

εSi and εox are dielectric constant for silicon and oxide respectively. If tox is large 

enough, the impact of poly-depletion can be ignored. However as technology scaling 

continues, the oxide thickness is as thin as 1nm and thus, the variation in poly-

depletion can no longer be neglected.  

In the RTA process, the dopants may not be completely activated due to the short 

time, even though T is high. Therefore the depletion width, which is inversely 

proportional to the square root of activated dopant concentration, becomes larger. 

The increase in EOT further leads to larger Vth after the annealing. 

Here we employ a simple model to connect the activated dopant concentration (Nact) 

to the RTA process [78]: 

                       �/
maxminmax )( efftact eNNNN �����                       (3.4)       

                       
1/

0

���� TkEae��                                                 (3.5)        

where Nmax refers to the maximum concentration of activated dopants; Nmin is the 

minimum activated doping concentration, which refers to the activated doping 

concentration before the annealing; τ refers to the activation time constant, which is 

defined at the time that 50% dopants activated; teff is the effective annealing time such 

that the activation rate is equivalent to that of the simulated temperature profile [78]. 

Their values are usually available from RTA process parameters. Figure 3.7 shows 

the matching between analytical models and TCAD simulation results.  
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With active doping concentration, we are able to compute the change of EOT. In 

order to achieve the same I-V characteristics, the electric field in the oxide-channel 

surface should be constant, i.e., the electric field in the interface of the gate and the 

dielectric is a constant. Since the electrical field is proportional to Wpoly�Nact, we 

Figure 3.8. EOT has linear dependence on 1/Nact. 
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obtain Wpoly~1/Nact. We can express the EOT dependence as: 

                             actoxpolyox NatttEOT /����                                 (3.6)        

where a is a fitting parameter. Figure 3.8 validates the equation as compared to 

TCAD simulations, which are extracted from the C-V characteristics [78]. By 

integrating Eqs. 34-36, we are able to analytically predict the change of EOT from a 

given RTA. 

Effective Channel Length 

A side effect of the annealing process is the lateral diffusion that changes the value of 

effective channel length (Fig. 3.6). In RTA process the variation in temperature may 

result in channel length variation in nm scale. Although the diffusion of source/drain 

is relatively small and has a marginal impact on the junction depth, Leff, which has a 

nominal value around 30nm at 45nm node, is very sensitive to the lateral junction 

change. Even with the change of several nanometers, threshold voltage is 

dramatically different,  due to the exponential dependence of Leff through the DIBL 

effect. We investigated the sensitivity of the junction change on annealing conditions 

by performing Tsuprem4 conditions and extracting compact models, as shown in Fig. 

3.9. As a characteristic of the diffusion process, the junction change is dependent on 

(Dt)1/2, where D is the diffusion coefficient, and t is the annealing time. We apply a 

polynomial equation to fit the dependence on the annealing temperature as the 

following: 

                                     � �  0
b

j TTaX ���                                            (3.7)       
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where ΔXj is the junction change after the annealing, T0 is a reference temperature 

where the junction move is zero in a typical RTA process and a, b are a fitting 

parameters. 

The TCAD simulations further confirms that the junction change is relatively 

insensitive to the doping level, as shown in the right figure in Fig. 3.9. Based on 

Fick’s Law, the junction move has a square root dependence on the annealing time. 

Extracted from our simulation, the dependence is described as: 

                                 00 )( DtttDX j ����                                             (3.8)       

The parameter t0 is the equivalent time before RTA to account for the preheat and 

other conditions, as well as to approximate the junction as an ideal abrupt shape for 

model derivation. Fig. 3.9 evaluates the model with Tsuprem4 results under various 

temperatures and the annealing time.   

Figure 3.10. The shift of Vth due to RTA, as a compound of 

changes in EOT and effect channel length. 
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Impact on Threshold Voltage 

With the models of Leff and EOT variations, we further investigate the impact on 

device parameter by performing device simulations. The typical variation of the RTA 

annealing temperature in a 45nm design ranges from several oC to tens of oC. Such a 

change results in the junction move within 2nm and the variation in Leff smaller than 

4nm. In this small range of variations, the shift of Vth is approximately linear to Leff, 

even though the DIBL effect is an exponential function of Leff. Figure 3.10 illustrates 

the matching between models and TCAD simulations. Within the reasonable range 

of EOT, we are also able to expand Vth as a linear function of EOT. We propose the 

following model for the threshold dependence on Leff and EOT: 

                            � � oxeffrefth tLBAVV �����                                          (3.9)        

Thermal Annealing 

Dopant Activation 
)/),(exp()(),( maxminmax �tTtNNNtTN effact �����  

� �� �dttTTkEt
t

aeff  �� ���
0

11 )('exp
 

S/D Lateral Diffusion (to define Leff) 
� �000 )()(),( DtttDTTatTX b

j �����  
),(2),(

0
tTXLtTL jeffeff ����  

Device Parameters 

),(/),( tTNaTTTtTEOT actoxpolyox ����  
� � ),(),(),( tTEOTtTLbaVtTV effrefth �����  

TTtTVtTV thth ��!!�� /),(),(  
 

Table 3.1. Compact models to predict Vth variation of a device under the RTA 

process. T is predicted by thermal simulations with a given layout pattern. 
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where the A, B, Vref are fitting parameters.  

Table II summarizes the entire set of models to calculate Vth variation from the 

effective annealing temperature and time, which are predicted from thermal 

simulation on a given layout with the appropriate window size. Based on these 

results, a physical designer will be able to efficiently diagnose and optimize layout 

pattern density to reduce performance variability. Figure 3.11 shows an example of 

Vth variation induced by the RTA for a 65nm technology. As shown in Fig. 53, the 

curve is not monotonic. This is because the threshold change is induced by both Leff 

change and EOT change. While the Leff change is proportional to t1/2 and Tb, the 

shift of EOT shift rate is only pronounced when the activation rate is larger than 

50%, as shown in Fig. 3.7. Such differences lead to the behavior in Fig. 3.11 that is 

well predicted by the new models. 
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Validation with Silicon Data 

We implement the models in SPICE simulator and validate its prediction with 

available published silicon data. Figure 3.12 shows the Vth shift vs. the sheet 

resistance of the gate, which is an index of the activation rate in polysilicon [75]. The 

silicon data are under different RTA annealing ramp rate, which is equivalent to 

different effective annealing time (Eq. 3.4). Furthermore, we evaluate the newly 

developed models the other set of 45nm silicon data. Figure 55 shows that at higher 

annealing temperature, Ion/Ioff can be improved by ~10%, benefiting from higher 

Figure 3.12. Compact models accurately predict the change 
of Vth and gate resistance under various RTA conditions.  

Figure 3.13. Higher annealing temperature improves Ion/Ioff. 
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dopant activation rate and therefore, thinner poly-depletion thickness in EOT. In 

both cases, our model well matches the published data using the same RTA 

conditions. 

 3.4 Impact on Circuit Performance Variability 

With the capabilities of compact modeling and circuit analysis, we benchmark the 

change of circuit performance change under different layout pattern densities. The 

Figure 3.14. Within-die variation of the leakage 

at different sampling points in Fig. 43. 

Figure 3.15. Within-die variation of RO frequency 

in the 45nm design in Fig. 43. 
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patterns are taken from the 45nm layout as shown in Fig. 3.1. We simulate the 

leakage current and the frequency of identical 11-stage ring oscillators at three 

representative locations, Point A, B, and C in Fig. 3.1. Depending on their unique 

pattern density, the annealing temperature is generated from thermal simulation and 

used for model calculation of Vth shift. Other technology specifications are from 

PTM 45nm technology [16].  Figs. 3.14 and 3.15 highlight the simulation results. 

About 20% variation in the leakage and 3% variation in the frequency are observed 

due to the non-uniformity in the layout. The leakage current becomes larger at the 

position with higher emissivity and thus, lower T. Within the increasing tight budget 

in power and timing, such an amount of variations need to be effectively reduced by 

joint process and design efforts. 

3.5  Summary 

In this work, we develop the capabilities of thermal simulation and compact models 

to analyze within-die variability due to pattern-dependent RTA process. The thermal 

simulation tool predicts the annealing temperature from the layout pattern. The new 

compact models further capture two major variations sources, EOT and Leff, during 

the RTA, and calculate the shift of device parameters. The results are validated with 

TCAD simulations and silicon data at 45nm and 65nm generations. They effectively 

close the gap between the process knowledge and circuit simulation in order to 

minimize transistor and circuit performance variability due to systematic RTA effects. 
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Chapter 4 CONCLUSION 

In this work the intrinsic and manufacturing induced variations in CMOS are studied. 

A SPICE based gate slicing method to simulate RDF and LER is presented. For 

deeply scaled CMOS, an atomistic TCAD simulation is performed to study RDF, 

LER, OTF and RTN all together. The compact models are proposed for those 

variations, to predict the future trend.  Moreover, the time domain simulation of 

RTN is developed. In manufacturing induced variations, the Vth shift under layout 

dependent RTA is studied. The change of effective oxide thickness and effective 

channel length are finding to be the two main reasons account for the Vth variability. 

Corresponding compact model suites are developed for future technology projection. 

4.2 Future Work 

4.2.1 Modeling and simulation of the interaction between RTN and NBTI 

The compact model for RTN is an important future work. Traditional models follow 

the theory that RTN is originated only from oxide traps, and the time constant is 

dependent on the distance and the material of dielectric layer. While recent research 

[81] indicates that interface traps may be another source of RTN. The traditional 

models for RTN cannot give a correct prediction of the time constant then. 

Moreover in recent research people find that RTN and NBTI are closely related [82]. 

Modeling and simulation on interaction between RTN and NBTI may help people to 

fully understand the two phenomenons. 
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4.2.2 Deep understanding of RDF and LER induced statistical variability 

In section 3 our study states that the Vth variation due to OTF will exceed the RDF 

induced Vth variation. However this case happens under the assumption that people 

keeps using Silicon dioxide as the material of dielectric layer. With the application of 

high-k materials, the OTF induced variability is significantly suppressed. In the future 

generations RDF and LER are still the main variation sources in CMOS. As device 

scales continuous shrink, more additional effects come up, such as the non-Gaussian 

Vth distribution [80], RDF induced mobility variations, and the Vth mismatch in 

different operating region due to RDF. New efficient, flexible and reliable simulation 

methods are desired. 2-D SPICE based slicing method may be a good candidate with 

more improvement. New models are also needed for those effects with the support 

from TCAD tools. 
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