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ABSTRACT

The theme for this work is the development of fast numerical algorithms for

sparse optimization as well as their applications in medical imaging and source local-

ization using sensor array processing. Due to the recently proposed theory of Compres-

sive Sensing (CS), the `1 minimization problem attracts more attention for its ability

to exploit sparsity. Traditional interior point methods encounter difficulties in compu-

tation for solving the CS applications. In the first part of this work, a fast algorithm

based on the augmented Lagrangian method for solving the large-scale TV-`1 regular-

ized inverse problem is proposed. Specifically, by taking advantage of the separable

structure, the original problem can be approximated via the sum of a series of simple

functions with closed form solutions. A preconditioner for solving the block Toeplitz

with Toeplitz block (BTTB) linear system is proposed to accelerate the computation.

An in-depth discussion on the rate of convergence and the optimal parameter selection

criteria is given. Numerical experiments are used to test the performance and the ro-

bustness of the proposed algorithm to a wide range of parameter values. Applications of

the algorithm in magnetic resonance (MR) imaging and a comparison with other exist-

ing methods are included. The second part of this work is the application of the TV-`1

model in source localization using sensor arrays. The array output is reformulated into

a sparse waveform via an over-complete basis and study the `p-norm properties in de-

tecting the sparsity. An algorithm is proposed for minimizing a non-convex problem.

According to the results of numerical experiments, the proposed algorithm with the aid

of the `p-norm can resolve closely distributed sources with higher accuracy than other

existing methods.
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Chapter 1

Introduction

In this work, we generally focus on the inverse problem using sparse regularization, es-

pecially in the application to sparse MR imaging and the source localization problems.

We present a new approach based on the sparse representation paradigm. The purpose

of this chapter is to introduce the problems addressed in the thesis, motivate the need

for a new approach, and describe our main contributions as well as the organization of

the paper.

1.1 Overview of the problems addressed in the thesis

The core of this work is a numerical scheme for solving a large scale sparsity enforcing

regularized inverse problem and its applications in both sparse MR imaging and source

localization problems.

Inverse problems have a wide range of important practical applications in the

areas of signal/image processing including radar imaging, digital photography, astro-

nomic imaging, topographic imaging, etc.[A.K91][HB77][MP98]. Image restoration

is one of the earliest and most classical linear inverse problem which dates back to the

1960s [HB77]. The goal is to recover an image from a small number of linear mea-

surements. In many fields of science and technology, one can only collect a limited

number of measurements about an object of interest, because of some physical con-

straints on the equipment or the highly cost in collecting the full data sets. That means

we have to use a small proportion of data to estimate the overall data, which indicates

a linear inverse problem. For instance, recovering a single MR image commonly in-

volves collecting a series of data, called acquisitions, and reconstructing the image by

solving an inverse problem with certain regularization. In the acquisition, a strong mag-

netic field and a radio frequency (RF) pulse are directed to a section of the anatomy,
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causing the protons to become aligned along the magnetic direction and spin with a

certain frequency. After the RF is turned off and the protons return to their natural

state, a RF signal is released and captured by the external coils in the form of phases.

That is, the data is collected along a particular trajectory, such as straight lines from a

Cartesian grid, in spatial frequency space or k-space. We can just reconstruct the im-

age from such acquisitions by the inverse fast Fourier transform (IFFT). Traditionally,

the k-space sampling pattern is designed to meet the Nyquist criterion: the number of

samples needed to reconstruct the image without error is dictated by its bandwidth. Im-

age resolution depends on the size of the sampled region of k-space and the supported

field of view depends on the sampling density within the sampled region, so when the

number of the sampling violates the Nyquist rate, artifacts appear in the process of the

linear reconstruction.

In many practical MR image applications, the sampling speed is fundamentally

limited by the physical constraints of the equipment and usually the scanning is a long

and uncomfortable process. Many researchers are striving to reduce the amount of

acquired data without degrading the image quality. The recently proposed theory of

Compressive Sensing (CS) [D.L06][E.C06] is a good approach to reduce the redun-

dancy of the required MR data. A successful application of CS is composed of two

key steps: the encoding process and the decoding process. In the encoding process, the

underlying image must have a sparse representation under a known transform domain;

in the decoding process, the image is recovered by solving a nonlinear optimization

model which can preserve the sparsity of the image and the consistency of the recon-

struction with the sampled data. Aliasing artifacts caused by k-space undersampling

must be incoherent in the sparse transform domain. Some natural properties of MRI

make it fit the assumptions of CS theory very well. As we know, natural images can of-

ten be compressed with little loss of information [DM02], and medical images are also

compressible, such as the JPEG-2000 standard. Some MR images are simply sparse
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in pixel domain, such as angiograms, which are the images of contrast enhanced blood

vessels in the body. Furthermore, the sparsity of general MR images is evident by the

fact that the images can be represented under an appropriate transform domain by just a

few large coefficients and many small coefficients [S.M99], which indicates a well ap-

proximated sparsity. In this context, we will focus on some popular transform encoding

operators in MR imaging, such as wavelet, finite difference, etc. Sparsity is a valuable

property to have and we pose the MR image reconstruction as a linear inverse problem

with sparsity enforcing regularization. The observed data undersampled in k-space in

terms of an overcomplete basis is not unique and we impose a penalty to regain the

uniqueness, and more importantly, to obtain the solution with sparse structure.

The ideal penalty to enforce sparsity is to minimize the number of nonzeros in

the underlying spectrum (which is referred to as the `0-norm of the spectrum). How-

ever,the resulting problem is combinatorial in nature, and generally NP-hard [B.K95].

We use a more tractable `1-norm penalty instead, which is well known in signal pro-

cessing and has been proposed as a convex alternative to the `0-norm. Actually, the

solution of a noiseless signal representation problem using `0 penalty has a close con-

nection to solutions using `1 penalties. In the `1-norm, many small coefficients tend

to carry a larger penalty than a few large coefficients, therefore small coefficients are

suppressed and the sparsity is preserved. Solving `1-norm regularized inverse problems

is much simpler, but this does not mean trivial, since the image processing problem is

of a large scale in general and usually a strong background noise is present in the un-

dersampled frequency data. We use a quadratic term to preserve the consistency and

do the denoising.

In the MR imaging application, other types of sparse transformations and their

numerical solutions are of our interest. For instance, the Total Variation [LE92] op-

erator has been widely used in image deblurring, and its numerical solution has a long

term interest because of its high nonlinearity and non-differentiability in the compu-
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tation. We want to adapt the MR image reconstruction problem to a CS application

by following the assumptions of CS. And the algorithm for minimizing the inverse

problem with `1-norm or other nonlinear regularization should be both accurate and

efficient. However, to balance this tradeoff for the large scale problems is still a chal-

lenge.

In this thesis, we propose an algorithm based on the augmented Lagrangian

method which is fast and robust to the regularization parameters. In our framework, we

first introduce the new variables into the original sparsity enforcing operator-regularized

inverse problem to get an approximated problem which can be solved by using the two

dimensional shrinkage formula, and then form a quadratic problem to penalize the dis-

crepancy between the original terms and the approximated terms, as well as the fidelity

term. In each iteration, the solution of the original problem is calculated from two sub-

problems utill the final result satisfies the stopping criteria. The main computation is

in the process for solving a conjugate gradient routine and we can apply a precondi-

tioner to accelerate it by taking advantage of the block Toeplitz structure of the iteration

matrix.

In the second part of this work, we mainly focus on adapting our proposed

sparsity enforcing algorithm to solve the inverse problem with multiple measurements,

especially derived from the problems of detecting the source localization using sen-

sor arrays [IB97][MA05]. As a natural extension of the single measurement case, the

sparse reconstruction based on multiple measurement data has wide application in sig-

nal processing. When the data are not sufficient to make a convincing estimation, the

easy and cheap way to increase the volume of the data is to keep collecting from the

temporal domain, instead of from the spatial domain due to the physical limit of the

underlying object or some constraints of the equipment. In this case, the measurement

data is a time series and finally our estimation can be made based on more information

than only from the spatial domain. Generally, we use this procedure to increase the
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volume of data in the problem of detecting the source location using sensor arrays.

The source localization methods have been actively investigated for years, and

they play a fundamental role in many applications, such as acoustic, electromagnetic

and seismic sensing. The goal of source localization methods is to be able to find the

location of closely distributed sources from noisy data collected from the sensor ar-

ray. To improve the estimation performance and the robustness of the sensor network,

in the presence of noise over classical maximum likelihood and subspace methods,

sparsity based localization have been slowly gaining popularity [MA05][DM06][IB97]

[VG08][VR08]. The localization problem can be formulated as the sparse approxi-

mation of the measured signals in a specific dictionary of atoms, which is produced by

discretizing the space with a localization grid and then synthesizing the signals received

at each sensor from a source located at each grid point. Since the possible number of

sources is much less than the size of the relative discretized localization grids, it is

reasonable to view the structure of the possible localization of the sources as sparse

in terms of the localization grids. In this context, the search of the sparsest approxi-

mation to the received signals that minimizes the data error implies that the received

signals were generated by a small number of sources located within the localization

grid. Hence our algorithm detects the location of the sources successfully by exploiting

the relationship between the small number of sources present and the corresponding

sparse representation of the received signals.

As in numerous non-parametric source localization techniques, we estimate the

energy of the signal as a function of location and this perfectly contains the dominant

peaks of the sources at the place where they are detected by the sensor array. We

exploit the signal field through the sensor observation which is obtained through the

sensing matrix synthesizing the known information: the geometry of the sensor array,

the parameters of the medium where the signal propagates, and the measurements of

the sensors. So the sparse signal structure in the underlying spatial spectrum can be
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reconstructed from solving an ill-posed inverse problem by applying proper sparsity

enforcing regularization. In this thesis, we first show how to formulate the source

localization problem into an inverse problem using a sparsity enforcing regularization

framework. Then we propose an efficient and robust sparse reconstruction algorithm

for detecting the source locations from single time snapshot processing to multiple time

snapshot processing. A series of theoretical analysis is constructed in order to guarantee

the convergence of the algorithm. We conduct several numerical experiments to make

a comprehensive comparison between the proposed algorithm and some other current

frameworks for source localization.

1.2 Outline and contributions

Before we introduce the content of this thesis chapter by chapter, we want to briefly

summarize our main contributions. The first contribution in this thesis is the develop-

ment of a sparse reconstruction framework for `1-norm and Total Variation regular-

ized inverse problems. In this framework, we reformulate the objective function via

the augmented Lagrangian methods such that the original large scale problem can be

separated into several subproblems which can be solved alternatively via 2D shrinkage

and conjugate gradient methods. We adapt the model and apply it to the MR imag-

ing; we argue that the model matches the assumptions of compressive sensing theory

very well. We discuss the incoherence between the different sampling patterns and

the sparse transformation, as well as the relationship between the sampling density

and the reconstruction error. An efficient preconditioning scheme and the convergence

analysis of the algorithm as well as the optimal parameter selection are discussed in

depth; sufficient numbers of numerical simulations are conducted, in order to widen

the range of the applications of the proposed algorithm in MR imaging and for testing

its robustness. The processing time and reconstruction accuracy is greatly enhanced.

In the second part, we focus on another application of the sparse reconstruction in the

problem of source localization with sensor arrays. We reformulate our algorithm to fit
6



the data sampled from both the spatial domain and the temporal domain, but we only

pursuit the sparsity in the spatial domain. The results of several numerical experiments

are included for comparing our routine with some other current packages.

Chapter 2: A Brief Survey of Existing Sparse Optimization Algorithms

We start by giving an overview on the general discrete ill-posed inverse problem and

motivate the need for the regularization as well as show its shortcomings in enhancing

the sparsity. We introduce the recently developed theory of Compressive Sensing which

motivates a large amount of research in sparse optimization algorithm development.

Then a summary on several current popular sparse optimization algorithms is given.

Chapter 3: The TV-`1 Sparsity Enforcing Algorithm In this chapter, we first

reformulate the TV-`1 objective with linear equality constrain into a separable structure.

Then a fast multi-splitting algorithm based on the augmented Lagrangian method is

presented. An in depth discussion of theoretical issues including the optimality of the

algorithm, the convergence rate, the effects of the parameters on the convergence and

the stopping criteria are given in the following. Furthermore, a preconditioner for a

BTTB matrix is presented for accelerating the proposed algorithm.

Chapter 4: Numerical Results and Application to MRI We mainly present

the numerical experiments and show the performance of the proposed algorithm. First,

we test the robustness of the proposed algorithm w.r.t. regularization parameters, show

how the parameters affects the convergence rate and some practical issues on imple-

menting the BCCB preconditioner. Next, we show the basic MR imaging principles

and the application of CS in sparse MRI, then the numerical comparison with other ex-

isting packages for reconstructing the real MR images are presented in the following.

Chapter 5: Source Localization Detection with Sparse Reconstruction This

chapter is devoted to the analysis of the techniques in developing methods for source

location detection. We first reformulate the sensor output into a sparse representa-
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tion under a modified overcomplete basis. The advantages of the TV-`1 model and

the `p norm in detecting the source location is discussed. Then an efficient algorithm

for minimizing a non-convex objective is presented. In the last part, the numerical

results show that the proposed algorithm has better performance in resolving closely

distributed sources than existing methods.

Chapter 6: The future work We mainly summarize this work and point out

some of our future approaches for extending the current work.
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Chapter 2

A Brief Survey of Existing Sparse Optimization Algorithms

In this chapter, we consider the general linear ill-posed inverse problems of solving

the underdetermined system Ax = b and the optimization algorithms for reconstructing

sparse objectives. The uniqueness of the solution of an underdetermined system re-

lies on a regularization term that is determined by prior information on the underlying

objectives. On the one hand, although the traditional Tikhonov regularization is well

known and has been widely used in image processing, it shows that it is not suited

for preserving the sparse feature of the objectives; on the other hand, since the theory

of Compressive Sensing was proposed, the optimization algorithms for solving the `1-

norm related problems receive much attention. In this context, our discussion covers

the regularized inverse problems and the current progress on the optimization methods

for reconstructing the sparse or transformed sparse objectives.

2.1 The ill-posed inverse problem and regularization

Since the theory of Compressive Sensing (CS) was proposed in 2005, it attracts much

attention in signal processing and optimization communities. The CS theory states

that a minimum `1-norm solution to an underdetermined linear system is the sparsest

possible solution under quite general conditions. Specifically, suppose x ∈ RN is an

unknown signal, b ∈ RM is the measurement vector (M < N), and the measurement

matrix A ∈ RM×N is of full rank. Generally, the underdetermined system Ax = b forms

a linear inverse problem. If x is sufficiently sparse and the sensing matrix A is inco-

herent with the basis under which the signal x has a sparse representation, then x can

be reconstructed from a much smaller measurement b via minimizing the `1-norm of x

such that it satisfies the underdetermined system Ax = b.

Traditional ways of solving the linear inverse problem Ax = b are by linear
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least squares, in which, one finds the minimum `2-norm solution to the system, or

by Tikhonov regularization. Since the solution of the underdetermined system is not

unique, to solve for x from a finite number of measurement y can be approached via the

singular value decomposition (SVD) of the measurement matrix A. Suppose A∈RM×N

is full rank. Its SVD can be represented as:

A =Udiag(σi)V T =
m

∑
i=1

uiσivT
i , (2.1)

where ui and vT
i are the i-th column of the orthogonal matrix U and V T respectively,

σi are the singular values of A aligned in the diagonal matrix diag(σi) and ordered as

a dereasing of its magnitude. Then the solution x can be represented via the Moore-

Penrose pseudo inverse as:

xtrue = A†b = ∑
i

viσ
−1
i uT

i b = ∑
i

uT
i b
σi

vi. (2.2)

However, instability arises from dividing by the small singular values. In practice, the

observation measurements often involve strong background noise. Mathematically the

underdetermined system with additional noise can be rephrased as

b = Ax+n, (2.3)

where n denotes the additional noise. In this case, theoretically the solution to this

system can be represented via pseudo inverse as

A†b = xtrue +A†n (2.4)

= xtrue +∑
i

uT
i n
σi

vi,

because of the randomness in the noise and the division by small singular values, the

last term in the second line of the above formula becomes unbounded, and the so-

lution becomes highly sensitive to perturbation in the error term. To overcome the

ill-posedness in inverse problem, filters are widely used to counterbalance the effects
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of the small singular values to the solution. For instance, the Tikhonov filter function

[A.N63b][A.N63a] is given as:

ωλ (σi) =
σ2

i

σ2
i +λ

. (2.5)

Then plugging (2.5) into (2.2), the filtered solution can be expressed as:

xλ = ∑
i

viωλ (σi)σ
−1
i uT

i b = ∑
i

σi(uT
i b)

σ2
i +λ

vi (2.6)

= (AT A+λ I)−1AT b,

where the positive parameter λ is called the regularization parameter. It determines the

threshold level for the Tikhonov filter. The Tikhonov filtered solution xλ given in (2.6)

is equivalent to the minimizer of `2-norm regularized least squares problem:

min
x

1
2
||Ax−b||2 +λ ||x||2 (2.7)

The selection of the parameter λ controls the tradeoff between the noise level and feasi-

bility of the solution in the ell2 ball. So if its value is too small, the solution xλ becomes

highly sensitive to the noise. The filtering is not adequate. On the other hand, if λ is a

large value, the noise term will be filtered out and some components of the solution will

also be cut off at the same time. Selection of the regularization parameter is essential.

Many methods have been proposed, such as, the L-Curve method, discrepancy princi-

ple, generalized cross validation (GCV) and many other methods based on the statistics

of the background noise. However, the selection of the regularization parameter is still

an open problem, especially when the objective function is nonlinear or the statistics

of the background noise is unknown. In the following chapters, we will give a detailed

discussion on this issue from both the aspects of the effects of the parameter value to

numerical performances and the robustness of the solutions.

For large scale problem, it is often not practical to solve for the solution via

SVD since it requires a large matrix, and is numerically inefficient. The alternative
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variational representation of the Tikhonov regularization (2.7), equivalent to (2.6), is

much easier to solve. The regularization parameter λ in (2.7) balances the noise level

and the fitness of the data, and here we want to find a solution to the undetermined

system with minimum `2-norm via minimizing the `2-norm regularized problem (2.7).

This method has been widely used in image denoising and proved to be efficient. But

it is worth to point out that using the `2-norm tends to penalize the large entries in x

more than the smaller ones, so the `2-norm is not suited for the underlying objective

with sparse structure, such as the spike data in geophysics [SP81]. Alternatively, the

`1-norm regularization is getting more attention because of its good properties in en-

hancing the sparsity and numerical tractability. In our work, we mainly work with two

regularization terms: the `1-norm and total variation (TV). In the following, we will

discuss the total variation regularization, and place the discussion on `1-norm regular-

ization in the next section together with the introduction of idea of sparse optimization

and Compressive Sensing.

The total variation (TV) is first introduced into image processing by Rudin,

Osher and Fatami (ROF) [LE92] in 1992. A discrete version of unconstrained ROF

model can be expressed as a TV regularization term plus a `2-norm fidelity term:

min
x

λ

2
||Ax−b||2 +TV (x). (2.8)

Although the ROF model is first introduced for image denoising, this methodology can

be easily extended to restore blurred images by adapting A in (2.8) into a known linear

blurring kernel. Over the years, it has been widely used and proved to be successful in

dealing with image denoising and deblurring problems, image imprinting problem and

image decomposition problems as well as CT and MR imaging. The main advantage

of the TV formulation is its ability to preserve sharp edges of the image, due to its

piecewise smoothness property. Generally, the TV norm is defined as the sum of the

Euclidean norm of the finite differences of each pixel in the underlying image.
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We assume that the image domain Ω is square, and define a regular N ×N

grid of pixels, indexed as (i, j), for i = 1,2, · · · ,N, j = 1,2, · · · ,N. The images can be

represented as two-dimensional matrices of dimension N×N, where ui, j represents the

value of the function u at pixel (i, j). To define the discrete total variation, we introduce

a discrete gradient operator, whose two components at each pixel (i, j) are defined as

follows:

D(1)u =


ui+1, j−ui, j i < N,

0 i = N.

(2.9)

D(2)u =


ui, j+1−ui, j i < N,

0 i = N.

(2.10)

So D(1) and D(2) are N2×N2 matrices. If the 2D difference operator D is denoted

as D = [D(1);D(2)] and the square image u is vectorized as a column vector, then the

discrete TV of the image u is defined as:

TV (u) = ∑
i
||Du||, (2.11)

where || · || is the Euclidean norm, and the index i goes through all pixels of u. We use

this notation of TV in all through out this work.

One of the major reasons for the ongoing research into TV deblurring prob-

lems is that the non-differentiability and the non-linearity of the TV norm makes it

difficult to find a fast numerical method. The first order derivative of the TV norm

involves the term 5u
|5u| , and it is degenerate when |5 u| = 0. Currently, a number of

numerical methods have been proposed for unconstrained TV denoising or deblurring

models, and they include partial differential equation based methods, such as explicit

[LE92], semi-implicit [DXC06] or operator splitting schemes [MXC04], and fixed

point iterations [CM96]. Optimization oriented techniques include Newton-like meth-
13



256 by 256 Cameraman Total variation norm

Figure 2.1: From left: (1) The 256 by 256 Cameraman; (2) The Isotropic total variation
norm of the ’Cameraman’.

ods [TK06][KK99][YF96][TP99], second order cone programming [DW05], interior-

point methods [EJ05][HJ06], and conjugate gradient methods [MJ07a]. In this work,

we propose a fast algorithm based on the method of augmented Lagrangian multipliers

for minimizing the TV and `1-norm regularized inverse problem as well as its appli-

cation in sparse MR imaging. In the proposed algorithm, we split the TV norm into

several subproblems with closed form solutions and process each one in parallel such

that in this way the proposed algorithm is much faster than most of the existing meth-

ods.

2.2 The sparse optimization and compressive sensing

Our main objective is to find a sparse solution to an underdetermined inverse problem,

that is the solution with minimum number of nonzero components. Mathematically the

problem can be expressed as:

min
x

||x||0 (2.12)

s.t. Ax = b,

where A∈RM×N is a full rank matrix with M�N, the l0-norm || · ||0 counts the number

of nonzero entries and b ∈ RM is the given observation which may or may not involve
14



additional background noise. Apparently this problem can be solved in finite time.

Denote A = [A1, · · · ,AN ] with each Ai representing the i-th column vector in A. We

can form a sequence of square matrices AT ∈ RM×M by exhausting any combinations

of M linearly independent columns of A. Then solve for z from each linear system

AT z = y and set the one with the smallest number of nonzero entries as the sparsest

solution to the linear system (2.12). Theoretically for finding the sparse solution, we

could have to solve N choose M (
(N

M

)
) linear equations at most. However this way

is computationally impractical, since the quantity of
(N

M

)
grows exponentially fast as

N,M→ ∞. For instance, for the problem of N = 2M = 1024, it is necessary to solve

2512 linear systems of 512×512, which can not be done using current computing tools.

So (2.12) can not be solved within polynomial time and is a NP-hard problem.

Alternatively, we may consider to solve the problem (2.12) in another way us-

ing the `1-norm. Minimizing `1-norm now attracts more and more attention for its

tractability in computation, and this problem can be represented as:

min
x

||x||1 (2.13)

s.t. Ax = b,

where ||x||1 = ∑
N
i=1 |xi| for x = (x1, · · · ,xN)

T , and the `1-norm minimization problem

is equivalent to a linear programming and compared to the `0 problem, (2.13) is more

computationally tractable. The above model is also called basis pursuit (BP) prob-

lem [S.S99]. Unlike the energy norm minimization problem which tends to penalize

the large components more, the minimizing the `1-norm preserves the large compo-

nents while penalize the smaller entries much more so that the sparsity structure of the

underlying objective can be enhanced. Applying the `1-norm to restore the sparse ob-

jective has been well known since 1970’s when it was first applied to restore the spike

train signal in geophysics. Since then the `1-norm is widely used in signal processing.

Recently, the theory of Compressive Sensing extends its applications and some theo-
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retical issues are also addressed. As a potential alternative of `0-norm are considered,

one of the most important question to be clarified is under what conditions the solution

to (2.13) is unique and equivalent to the solution to (2.12).

There are mainly two types of concepts for depicting the properties of sensing

matrix A in order to state the situation of the equivalence of the l0-norm and `1-norm,

one is the mutual coherence (MC), the other is the restricted isometric properties

(RIP). Donoho and others provide ground-breaking work and a show a series of papers

[D.L06][DA92][D.L95][DM03][DX01] are the exact conditions of the equivalence of

the l0 and `1 minimization using the concept of MC. It states that for the case with

sensing matrix A ∈ RN/2×N obtained by concatenation of two orthonormal bases, the

solutions to both (2.12) and (2.13) are unique and identical provided that in the most

favorable cases, the sparsity level K (# of nonzero entries) of the vector x is at most

.914N/2. Candes, Tao and Romberg [E.C05][E.C06][E.C04] use a very different way

and proved the equivalence holds with overwhelming probability for various types of

random matrices provided that the number of nonzero entries K in the underlying vec-

tor x be of the order of N/logN with the aid of the concept of RIP. For the sake of

completeness of our discussion, we simply recall some of the key points in the theory

developed by Candes.

Let 0 < K < M be an integer and let the submatrix AT be obtained by extracting

the columns of A corresponding to the indices in T ⊂{1,2, · · ·N}. Then the K restricted

isometry constant δK of A is the smallest quantity such that

(1−δK)||x||22 6 ||AT x||22 ≤ (1+δK)||x||22 (2.14)

for all subsets T with Cardinality card(T ) 6 K. Hence if a matrix A has such a con-

stant δK > 0 for some K, then A possesses the RIP. This property essentially requires

that every set of columns with cardinality less than K approximately behaves like an

orthonormal system, and if the sensing matrix A is RIP, then exact recovery is possible.
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When sensing matrix A possesses the RIP, it is very easy to show that under

the condition δ2K < 1 then the K sparse solution of (2.13) is unique. Actually if the

solution to (2.13) is not unique, we can assume both x1 and x2 are its solution, that is

the discrepancy satisfies that

A(x1− x2) = 0, (2.15)

apparently (x1−x2) has 2K nonzeros at most. We can choose the index set T containing

the indices of the nonzero entries in x1− x2 such that

(1−δ2K)||x1− x2||22 ≤ ||AT (x1− x2)||22 = 0, (2.16)

for all subsets of T , then (2.16) implies the uniqueness of the solution. The follow-

ing theorem given by Candes, Romberg and Tao in 2006 gives the conditions on the

sensing matrix implying the uniqueness of the solution and equivalence of the l0 and `1

minimization.

Theorem 2.2.1. (Candes, Romberg and Tao 06)

Suppose that K > 1 is such that

δ3K +3δ4K < 2 (2.17)

and let x ∈ RN be a vector with ||x||0 ≤ K. Then for the inverse problem Ax = b, the

solution of (2.13) is unique and equal to x.

The prove of the above theorem is given in [E.C06] and we omit it here. But

it is worth to point out that although the above theorem explains when the solution to

problem (2.13) and (2.12) are equivalent and has already been used as an fundamental

theorem for reconstructing the sparse signals using `1-norm minimization, there is no

explicit construction of matrices of any size that possess the RIP. Candes, Romberg

and Tao proved that a matrix with RIP can be found with positive probability as long

as M > cKln(N(1+2/ε)/e)/ε2.
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Theorem 2.2.2. (Candes, Romberg and Tao 06)

Suppose the random matrix A = [ai j]1≤i≤M,1≤ j≤N is iid with mean zero and variance

1/
√

m, then the probability that A possesses RIP:

Prob(|||Ax||22−||x||22|6 ε||x||22)> 1−
(

N
K

)
(1+2/ε)Ke−Mε2/c (2.18)

for any vector x ∈ RN with ||x||0 = K, where c > 2 is a constant.

We need to point out that since
(N

K

)
6 (N/e)K , then(

N
K

)
(1+2/ε)Ke−Mε2/c 6 e−Mε2/c+Kln(N/e)+Kln(1+2/ε),

so when M > cKln(N(1+2/ε)/e)/ε2, we have

Prob(|||Ax||22−||x||22|6 ε||x||22)> 0,

and the probability of a matrix possessing RIP is positive. The RIP can also be verified

using the MC of the sensing matrix A defined as

χA = max
1≤i, j≤N,i6= j

|[AT A]i j|, (2.19)

D.Donoho [DM03] points out that the RIP constant δK 6 χA(K − 1) via the Gersh-

gorin circle theorems, and it is common that when MC(A) ' 1√
M

, we have the non-

trivial RIP bounds for K '
√

M. Unfortunately, no known deterministic matrix yields

a substantially better RIP. The RIP holds for Gaussian and Bernoulli matrices, when

K 'M/log(N/M); for more structured matrices, such as the random section of discrete

Fourier transform (DCT), RIP often holds when K 'M/(logN)p for a small integer p

[E.C04]. This fact explains the benefit of randomness in `1 compressive sensing.

The `1-norm is well known in preserving the sparse features, and some of its

early application can be found in the area of geophysics [HJ79][JF73][SW86][SP81]

where sparse spike train signals with large sparse errors are of interest. In the last

two decades much research has been aimed at finding a sparse solution of an `1-norm
18



regularized inverse problem, and its applications are extended to many areas, such as

the wavelet based image deconvolution and reconstruction, the least absolute shrinkage

and selection operator (LASSO), the low rank matrix approximation and compressive

sensing. We will show some examples motivating the research of sparse optimization.

Example 1: Sparse Signal Reconstruction

The most direct application of `1 minimization is the reconstruction of a sparse sig-

nal. Suppose y ∈ RM represented via a tight frame (orthonormal matrices) A ∈ RM×N

(M << N) is an observation of unknown sparse signal x ∈ RN . One reconstructs x via

solving the problem:

min{||x||1,s.t.||Ax− y|| ≤ ε}, (2.20)

where ε > 0 represents the noise level of the observation.

Example 2: Low Rank Matrix Approximation

The low rank matrix approximation problem arises from the principle component anal-

ysis (PCA) having wide range of applications in the engineering and statistics, where

one tries to use a matrix with lower rank to approximate an original data matrix with-

out affecting the fitness of the data. Mathematically, suppose D ∈RM×N represents the

collection of the data and the data in each column of D represents a property of the ob-

jective, then we try to find a low rank matrix A such that the discrepancy is minimized,

which leads to the problem:

minA,E ||E||F (2.21)

s.t. rank(A)≤ r,

D = A+E.

where || · ||F is the Forbenius norm corresponding to the assumption that the data are

corrupted by the Gaussian i.i.d. noise. r ≤ min{M,N} is the target dimension of the

subspace. However, one still needs a way to efficiently and accurately recover A from
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a corrupted data matrix D = A+E, since in model (2.21), some entries of the additive

errors E may be arbitrarily large and may lead to A being far from the true value.

Recently, [EB08][JY09] show that the exact recovery of A is achievable as long

as the noise matrix E is sufficiently sparse with respect to A, by solving the following

convex optimization problem:

minA,E ||A||∗+λ ||E||1 (2.22)

s.t. D = A+E,

where the nuclear norm || · ||∗ represents the sum of the magnitudes of the singular

values, and λ is a positive weighting parameter for balancing the `1-norm and nuclear

norm. Due to the ability to exactly recover underlying low-rank structure in the data,

even in the presence of large errors or outliers, this optimization is referred to as robust

PCA (RPCA), and it has been widely used in background modeling and for removing

shadows, peculiarities from face images, etc.

Example 3: Wavelet based Image Reconstruction

Most natural or man-made images are compressible through a well defined basis, that

is the coefficients of the signal represented by an appropriate basis possess only a few

large components and others are close to zero. In this context, if we threshold the

small coefficients, the overall quality of the image will not be damaged. The way

of representing the image in a new basis to have sparse coefficients is the so called

transform encoding [S.M99]. For example, the JPEG2000 standard 2 uses the fact that

the representation of natural images using Daubechies [I.D92] maxflat wavelet bases is

considerably sparser than the original representation.

This application benefits from the sparse transform using wavelet. Suppose an

image u ∈ RN×N has a sparse representation under the transformation Ψ which can

be one involving wavelet transforms or a redundant dictionary. In this context, the

coefficients of the unknown image x = ΨT u are sparse under this basis. Then the
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sensing matrix has the form A = ΘΨ, where Θ is an observation operator which could

be a blur kernel, a tomorgraphic projection or Gaussian random projection or others.

Hence, the original image u can be reconstructed by solving the problem:

min
u

||ΨT u||1 (2.23)

s.t. ||Θu−b||2 ≤ δ ,

where δ > 0 is the noise level, and in this application TV regularization can also be

involved.

�

Compressive Sensing (CS) is a popular new application utilizing sparse opti-

mization using `1-norm. Recent results show that a relatively small number of random

projections of a sparse signal can contain most of its salient information. Accurate

approximations can be obtained by finding a sparse signal that matches the random

projections of the original signal. Generally speaking, there are two main steps in CS,

the so called encoding and decoding. In the encoding step, one allocates a M×N

(M << N) linear transformation Φ to the underlying unknown x ∈ RN such that the

information about the unknown x is compressed in a data vector y = Φx whose dimen-

sion is relatively much smaller than that of the unknown x. In the decoding step, let4

denote a decoder which is usually a nonlinear transformation, then an approximation

x̃ provided by the decoder 4 can be expressed as 4y = x̃ ≈ x. These encoding and

decoding steps lead to an economical way of recording the information and restoring

the unknown by using prior knowledge and partial data. The core question in CS is

to find an appropriate pair of encoder and decoder (Φ,4) such that the approximation

x̃ fits the accuracy. A series of research paper [D.L06][DA92][E.C05][E.C06][E.C04]

have shown that when the sensing matrix meets a quite general condition, the decoder

that is related with minimizing a `1-norm related problem (2.13) is also the sparsest

possible solution to the underdetermined system.
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The `1 minimization problem (2.13) can be recast into a linear program (LP)

and conventional methods, such as interior point methods, are applicable. However,

the computational complexity of these general-purpose algorithms is too high for many

real world large-scale applications. Alternatively, motivated by finding a more efficient

algorithm for solving the problem, many new algorithms have been proposed, such as

Gradient Projection (GP), Homotopy, Iterative Shrinkage-Thresholding (IST), ect. The

main contribution of our thesis is that we propose a fast algorithm based on the Aug-

mented Lagrangian Multiplier (ALM) for solving the `1 and TV regularized problem as

well as its real world application in sparse MRI. In the following, we summarize some

existing algorithms and compare them from different prospectives.

2.3 Review of some existing sparse reconstruction algorithms

The traditional algorithms for solving the `1-norm sparse optimization problem tend to

be slow in large scale CS application. This is mainly because the sensing matrix that

is composed of random matrices and matrices whose rows are taken from orthonormal

matrices, such as a partial Fourier matrix, are invariably dense. Besides, because of the

size and density of the data involved, one should take advantage of the techniques need-

ing only a matrix vector multiply, instead of a matrix factorization. In practice, many

natural or man made signals are compressible with respect to dictionaries constructed

using principles of harmonic analysis, such as the wavelet. So this type of structured

dictionary often comes with a fast transformation algorithm. Thus it is necessary to

develop an algorithm which is fast and robust for the compressed sensing signal re-

construction. In this section, we provide an overview of some existing algorithms for

solving the `1-norm minimization problem (2.13).

2.3.1 Primal dual interior point methods

The Primal Dual Interior Point Methods (PDIPM) [N.M89][N.K84][RI84] is a standard

way for solving linear programs. As the `1-norm minimization problem (2.13) can be
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recast as a linear programming, the PDIPM becomes a natural choice for solving this

problem. Suppose under usual standard assumptions, (2.13) is converted into a standard

linear program denoted as the primal problem (P) below:

(P) min
x

cT x (2.24)

s.t. Ax = b, x> 0,

where for `1 minimization c = I ∈ RN , and its dual problem is given as:

(D) max
y, z

bT y (2.25)

s.t. AT y+ z = c, z> 0,

where y ∈ RM,z ∈ RN are the dual variables. The PDIPM updates the variable (x,y,z)

via solving the (P) and (D) simultaneously.

Let us assume the problem is strictly feasible, this means that there exist dual

variables y ∈ RM,z ∈ RN and x ∈ RN satisfying the KKT condition as below:

F(x,y,z) =


AT y+ z− c

Ax−b

XZe

= 0, (2.26)

where X= diag(x1, · · · ,xN), Z= diag(z1, · · · ,zN) and (x,z)> 0. Then Newton’s method

forms a linear model for F(x,y,z) and the search direction (M x,M y,M z) can be gener-

ated as below:

J(x,y,z)


M x

M y

M z

=−F(x,y,k), (2.27)
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where J(x,y,z) is the Jacobian of F . For the strictly feasible current point (x,y,z), the

Newton equation (2.27) can be expanded as:
0 AT I

A 0 0

Z 0 X



M x

M y

M z

=


0

0

−XZe

 . (2.28)

One performs a line search along the Newton direction so that the new iterate is

(x,y,z)+α(M x,M y,M z). (2.29)

In practice, it is very hard to find a strictly feasible starting point. So we may consider

to relax the feasibility and linear complementarity condition and improve them step

by step, and this leads to the infeasible interior point methods, which only require the

components of the initial points (x0,z0) to be strictly positive. To improve the feasibility

in each iteration, we can use the complementary slackness condition xizi = 0 to xizi = τ ,

and set the primal, dual, and central residuals quantifying how close a point (x,y,z) is

to satisfy the KKT (2.26):

rpri = Ax−b,

rdual = AT y+ z− c,

rcent = XZe− τe,

An inexact Newton direction can be generated from the equation given by:


0 AT I

A 0 0

Z 0 X



M x(τ)

M y(τ)

M z(τ)

=


−rdual

−rpri

−rcent

 . (2.30)

Then we can form a path depending on the parameter τ as:

(x,y,z)+(M x(τ),M y(τ),M z(τ)). (2.31)
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Algorithm 1 PDIPM Framework

Require: A full rank matrix A ∈ RM×N , M < N, a vector b ∈ RM , initialization
(x(0),y(0),z(0)). Initial slack variable τ and decreasing factor ξ ∈ (0,1], Iteration
k← 0.

1: Repeat
2: k← k+1, τ ← ξ τ .
3: Solve (2.30) for (M x(τ),M y(τ),M z(τ)).
4: Update x(k)← x(k−1)+ M x(τ), y(k)← y(k−1)+ M y(τ) and

z(k)← z(k−1)+ M z(τ).
5: Until stopping criteria is satisfied.

Output x∗← x(k).

We can summarize the framework of PDIPM as:

Algorithm 1 requires a total of O(
√

N) iterations, and each iteration can be

executed in O(N3) operations for solving the linear system (2.30). We can also solve

the `1-minimization problem by converting (2.24) into a family of log-barrier problems

[EJ06] as:

min
x

cT x− τ

N

∑
i=1

logxi, (2.32)

s.t. Ax = b, x≥ 0.

Assuming that the above sets are non-empty, and applying the PDIPM framework we

can also solve (2.32). Besides it can be shown that (2.32) has a unique global optimal

solution x(τ) for all τ > 0, and as τ → 0, x(τ,y(τ),z(τ)) converges to the optimal

solution of problems (P) and (D) respectively [RI84]. Here we need to point out that

PDIPM is computationally expensive mainly because at each iteration, we need to solve

a large scale linear system (2.30). For instance, to restore a 1024× 1024 image, it is

impossible to store the iteration matrix explicitly, and solving such huge linear systems

is very expensive.
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2.3.2 Iterative Shrinkage Thresholding Methods and FIST methods

We point out that, in most applications, e.g. in image deblurring, the sensing matrix

A = RW is often composed of a wavelet transform W and a blurring operator R,and

it is not only large scale (millions variables) but also involves dense matrix data. Al-

though it is known that the convex program (2.13) can be cast as a LP or SOCP, it often

precludes the use and potential advantage of sophisticated interior point methods be-

cause of the high computational cost. Hence, this motivates the search for fast gradient

based algorithms for solving (2.13) and algorithms only involving simple operations

such as vector algebra and matrix vector multiplications.

The Iterative Shrinkage Thresholding (IST) Methods are well known as fast

algorithms [IM04][EY07][AB98][SM08][M.E06] utilizing operator splitting methods.

Initially IST was presented as an EM algorithm in the context of image deconvolution

problems [MR03]. Generally, the IST method is aimed at solving the problem as:

min
x

F(x) = f (x)+λg(x), (2.33)

where f (x) : RN → R is a smooth and convex function, the regularization term g(x) :

RN → R is bounded below and not necessarily smooth, and λ is the regularization

parameter. For the `1 minimization problem (2.13), the regularization term g(x) is

expressed as:

g(x) = ∑
i

gi(xi),

where gi(xi) = |xi| and f (x) = 1
2 ||Ax− b||2 is the quadratic term reflecting the noise

level. Then the recursion for updating x can be derived by using the second order

approximation of the function f (x) as well as a proper approximation of its Hessian
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matrix:

xk+1 = arg min
x
{ f (xk)+(x− xk)

T
O f (xk)+

1
2
(x− xk)TO2 f (xk)(x− xk)+λg(x)}

= arg min
x
{(x− xk)

T
O f (xk)+

αk

2
||x− xk||2 +λg(x)}

= xk− 1
αkO f (xk)− λ

αkOg(x)

⇔ arg min
x

1
2
||x− γ

k||2 +λg(x), (2.34)

where γk = xk− 1
αkO f (xk), the vector αk in the second line is an approximation of the

diagonal entries in the Hessian matrix O2 f (xk). When the separable `1 regularization

term g(x) = ||x||1 is plugged in, x in (2.34) can be processed component wisely via

solving each problem:

xk+1
i = arg min

xi
Si(xi) =

1
2
(xi− γ

k
i )

2 +
λ

αk |xi|, i = 1, · · ·N, (2.35)

and each xk+1
i in (2.35) has the closed form solution expressed as:

xk+1
i =


γk

i −
λ

αk , if γk
i > λ

αk

γk
i +

λ

αk , if γk
i <− λ

αk

0, otherwise

(2.36)

and equivalently, the closed form solution (2.36) can expressed in terms of soft thresh-

olding or shrinkage [D.L95]:

xk+1
i = so f t(γk

i ,
λ

αk ) = sgn(γk
i )max(|γk

i |−
λ

αk ,0). (2.37)

Hence the solution of (2.13) can be obtained component wise. IST methods take

advantage of operator splitting and each component in the solution can be processed

in parallel, so this structure is especially suited for the large scale problem and much

faster than the traditional PDIPM. The parameters αk, λ in (2.37) play an important

role and a sophisticated strategy for determining them is required. Matrix αkI is an

approximation of the Hessian matrix O2 f (x) and there are many strategies for updating
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it. For instance, the αk can be defined as the minimizer of the discrepancy between αkI

and the Hessian matrix as:

α
k+1 =arg min

α
||αI−O2 f (xk)||2

≈arg min
α
||α− O f (xk)−O f (xk−1)

xk− xk−1 ||2

=
(xk− xk−1)T (O f (xk)−O f (xk−1))

||xk− xk−1||2
, (2.38)

whereO2 f (x)≈ O f (xk)−O f (xk−1)
xk−xk−1 is the first order approximation of the Hessian obtained

by using the values from the previous two steps. This strategy is also referred to as

Barzilai Borwein (BB) equation [BB88]. The parameter λ in (2.37) is the regularization

parameter for balancing the Euclidean norm fidelity term and the `1 regularization.

Then the optimal `1 regularized solution can be reached as λ → 0. In practice, λ can

be initialized with a relative large value and be reduced in each step to let it approach

to zero gradually, instead of assigning a small value to it and this may degrade the

convergence. This so called warm start strategy has been widely used and it is also

referred to as continuation [EY07][MS07a]. The algorithm of IST can be summarized

as the Algorithm 2.

Algorithm 2 IST Framework

Require: A full rank matrix A ∈ RM×N , M < N, a vector b ∈ RM , initialize x(0),α0,
warm start λ , and the decreasing factor ξ ∈ (0,1], Iteration k← 0.

1: Repeat
2: k← k+1, λ ← ξ λ .
3: xk

i is updated from (2.37), where i = 1, · · · ,N
4: αk is updated from (2.38)
5: Until stopping criteria is satisfied.

Output x∗← x(k).

It is worth to point out that the IST method possesses simplicity and it only

requires the function value and the gradient valuation, so this method belongs to the

first order methods which is ideal for the large scale problem in practice, however,

the sequence {xk} generated by the IST algorithm may converge quite slowly. On the
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one hand, this is mainly because of the limitations of the first order method, on the

other hand, the highly dependence on the dense sensing matrix may also lead to slow

convergence. Theoretically, the IST algorithm possesses a sub-linear global rate of

convergence, and behaves like:

F(xk)−F(x∗)≈ O(
1
k
). (2.39)

Hence this motivates finding a fast iterative soft shrinkage (FIST) [AM09] method that

combines the simplicity of IST with a faster global rate of convergence both theoreti-

cally and computationally.

A new attempt for accelerating the IST is to use the sequential subspace opti-

mization techniques [AM09][JDM98][MM07][Y.E07] and to generate the new itera-

tion by minimizing a function over an affine subspace spanned by two previous itera-

tions and the current gradient value. A new proposed two-step IST algorithm, namely

TwIST [JDM98], shows better convergence results; recently an unpublished work writ-

ten by Nesterov [Y.E07] reveals that a multi-step version of an accelerated first order

method that solves (2.33) is proven to converge in function values as O( 1
k2 ).

Algorithm 3 FIST Framework

Require: Given a full rank matrix A ∈ RM×N , M < N and a vector b ∈ RM ,
1: Set x0 = 0,x1 = 0, t0 = 1, t1 = 1, k← 1.
2: Initialize λ 0, β ∈ (0,1) and λ̄ > 0.
3: Repeat
4: Update yk+1 via (3.9).
5: Update Lk+1 via (2.44) for given yk+1.
6: Update xk+1← so f t(uk, λk

Lk
), where uk = yk− 1

Lk ∇ f (yk).

7: Update tk+1 =
1+
√

(tk)2+1
2 .

8: Update λ k+1← max(βλ k, λ̄ ).
9: k← k+1.

10: Until stopping criteria is satisfied.
Output x∗← x(k).

The principle of the FIST method is that we apply second order expansion of

f (x) in (2.33) around a well defined point y that could be defined via a linear combina-
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tion of the points obtained in the previous two iterations to approximate f (x). Suppose

∇ f (x) is Lipschitz continuous with Lipschitz constant L, then (2.33) can be approxi-

mated as:

Q(x,y)≈ f (y)+(x− y)T
∇ f (y)+

L
2
||y− x||2 +λg(x), (2.40)

and F(x)6Q(x,y) for all y. Similar to the derivation in (2.34), the minimizer of (2.40)

in terms of y value can be solved via soft thresholding as:

arg min
x

Q(x,y) = arg min
x

L
2
||x−u||2 +λg(x), (2.41)

where u = y− 1
L∇ f (y) Then its closed form solution can be expressed through the soft

thresholding as:

arg min
x

Q(x,y) = so f t(u,
λ

L
) (2.42)

and y can be updated by using the previous two iterations as

yk = xk +
tk−1−1

tk (xk− xk−1), (2.43)

where {tk} is a positive sequence satisfying (tk)
2− tk ≤ tk−1 such that the convergence

rate reaches O( 1
k2 ) [AM09]. For the large scale problem, a backtracking line search

scheme [AM09] can be used to generate the Lipschitz constant sequence {Lk} by find-

ing the smallest nonnegative integers ik such that for η > 1 with Lk = η ikLk−1 the

following inequality holds:

F(PLk(yk))≤ QLk(PLk(yk),yk), (2.44)

where PLk(y) , minx QLk(x,y) = so f t(u, λ

Lk ) and u = y− 1
Lk

∇ f (x). Hence the rate of

convergence has been proved and given in [AM09] as:

F(xk)−F(x∗)≤ 2L||x0− x∗||2

(1+ k)2 . (2.45)

The FIST algorithm is summarized in Algorithm 3, the proof and detailed theoretical

analysis is available in [AM09].
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2.3.3 Gradient Projection Method

The Gradient Projection for Sparse Reconstruction (GPSR) [MS07a] is used to detect

a sparse representation of the objective along a certain gradient direction, which shows

a fast convergence speed and robustness in computation. GPSR solves the `1-norm

regularized linear problem (2.13) by reformulating it into a quadratic programming

(QP).

We can start to discuss the GPSR from the equivalent unconstrained problem of

(2.13):

min
x

1
2
||Ax−b||2 +λ ||x||1, (2.46)

where λ > 0 is the regularization parameter and as λ → 0, the solution of (2.46) con-

verges to the optimal solution. First we introduce vectors u and v and make the substi-

tution

x = u−v, u> 0,v> 0. (2.47)

Thus ||x||1 = 1Tu+1Tv, where 1 = [1, · · · ,1]T , and the problem (2.46) can be refor-

mulated as:

min
u,v

1
2
||b−A(u− v)||2 +λ1T u+λ1T v, (2.48)

s.t. u> 0, v> 0.

The (2.48) can be rewritten in standard QP form as:

min
z

Q(z), cT z+
1
2

zT Bz, (2.49)

s.t. z> 0,

where z = [u,v]T , y = AT b, c = λ1+[−y,y]T and

B =

 AT A −AT A

−AT A AT A

 . (2.50)
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The gradient of Q(z) is ∇zQ(z) = c+Bz, and the variable zk is updated in each itera-

tion by a steepest descent algorithm which moves along the negative gradient direction

−∇zQ(z) with a certain step length αk from each iteration zk as:

zk+1 = zk−α
k
∇Q(zk). (2.51)

Specifically, we define the vector gk by

Algorithm 4 GPSR Framework

Require: Given the full rank matrix A ∈RM×N , M < N, a vector b ∈RM and z(0),α0,
warm start λ , and the decreasing factor ξ ∈ (0,1], Iteration k← 0.

1: Repeat
2: k← k+1, λ ← ξ λ .
3: Update αk via backtracking (2.53)
4: zk is updated from (2.51), where i = 1, · · · ,N
5: Until stopping criteria is satisfied.

Output x∗← x(k).

gk
i =

 (∇Q(zk))i, if zk
i < 0 or ∇Q(zk))i < 0,

0, otherwise
(2.52)

The step length αk can be determined by αk = arg minα F(zk−αgk) which can be

computed explicitly as

α
k =

(gk)T gk

(gk)T Bgk . (2.53)

The GPSR framework can be summarized in Algorithm 4 with a warm start scheme on

λ . We need to point out that the dimension of the problem is doubled when we convert

the problem into a QP and the computational complexity and rate of convergence still

have no explicit estimation [MS07a].

In this section, we first reviewed the recently developd theory of compressive

sensing as well as some of its applications; secondly several current widely used ef-

ficient sparse optimization algorithms are discussed. In next section, we will propose

our algorithm, which is based on a complete different method with efficient accelerat-

ing schemes, for solving the large scale sparse optimization especially for the compres-
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sive sensing applications; an in-depth discussion on the convergence properties of the

proposed algorithm are covered.
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Chapter 3

The TV and `1-norm Regularized Sparsity Enforcing Algorithm

In this chapter, we present a decomposition algorithm for solving the convex program-

ming problem which can be extended to solve the TV and `1 regularized inverse prob-

lem for restoring the sparsity features. The proposed algorithm is motivated by the

wide range of applications of the sparse optimization techniques supported by the re-

cent developed theory of compressive sensing [E.C06][E.C04][E.C05][D.L06][DA92]

as well as the relative computational issues encountered when the large scale data set

and dense matrix are involved. The proposed algorithm is based on an augmented

Lagrangian mutiplier methods. By taking the advantage of separable structure in the

objective function, the proposed algorithm is fit for large scale problems and has a par-

allel processing feature. Besides, under the assumptions that both the primal and dual

problems have at least one solution and the solution of the primal problem is bounded,

the global convergence of the algorithm is established.

Decomposition of problems is an efficient way to process the large scale prob-

lem and these methods attract the interest of researchers. As in the context of im-

age processing, the sparse optimization problems arising in compressive sensing and

wavelet imaging are naturally large scale. Since the block structure and the sharp jumps

in the images need to be restored precisely, and since large dense matrices and `1-norm

are involved, the traditional interior point methods and some current first order meth-

ods may encounter the problems of large matrix storage, high computational load and

slow convergence. Therefore, it is necessary to develop a new algorithm that is satis-

fied for the natural of `1-norm related sparse optimization and its relative applications

in wavelet imaging and compressive sensing.

The proposed algorithm is based on an augmented Lagrangian framework for

solving a TV and `1-norm regularized inverse problem. In this method, we first refor-
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mulate the objective as an unconstrainted problem by using the augmented Lagrangian

method. Next we update the primal variables by taking advantage of the separable

structure in the TV and `1-norm objective. We introduce slack variables to split the

problem into several blocks where each block involves the sum of a component of

primal variables or its functional and a quadratic discrepancy between the primal vari-

ables and the slack variable. Then the augmented Lagrangian function is minimized by

solving the primal variables with fixed slack variables and doing this alternatively in

the inner iteration to update the slack variables. The whole computation for updating

each component of the slack variable only requires some simple scalar products and

can be processed in parallel, and the primal variables are calculated via preconditioned

conjugate gradients taking advantage of the block Toeplitz iteration matrices. Finally

the dual variable is updated by solving the dual problem with fixed primal variables,

and the augmented Lagrangian multiplier is updated at outer iteration to accelerate the

convergence. This gives us the multi splitting augmented Lagrangian method.

Our contributions are as follows. we present a fast algorithm for solving the

TV and `1-norm regularized inverse problem and the implementation is tested in MR

imaging application with clinic data. We compare our method with some current sparse

optimization methods to show that our method is generally comparable with other pack-

ages and in some sides our method shows better numerical performance. Moreover,

some simple proof for the global convergence and convergence speed is shown. We

also construct a preconditioned for the blocky Toeplitz matrices and finally we test it

with numerical experiments.

This chapter is organized as follows. We first present the general framework

of the proposed algorithm based on the augmented Lagrangian methods and then we

prove its global convergence and discuss the calibration of parameters in the algorithms.

Next we extend our discussion onto the practical issues related to the design of the

preconditioner and how the regularization parameters affect the rate of convergence.
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Some theoretical and experimental analysis is presented to demonstrate the robustness

and efficiency of our algorithms.

3.1 A multi-splitting method based on augmented Lagrangian function for separable

convex problem

Consider a separable convex problem:

min
x∈RN ∑

i
fi(xi) (3.1)

s.t. A (x) = b,

xi ∈ x⊂ RN , i = 1, · · ·N,

where fi : R→R are convex functions, x is nonempty closed convex subsets of RN , the

linear map A (·) : RN → RM is defined as:

A (x) := ∑
i

A(i)xi, i = 1, · · · ,N, (3.2)

the matrix A and the vector b ∈ RM are given, x ∈ RN is the unknown vector. Note that

equation A (x) = b is equivalent to Ax = b, where A is defined as:

A := [A(1), · · · ,A(N)] ∈ RM×N .

We make the following assumption throughout our presentation in this work:

Assumption 3.1.1. The matrix A is of full row rank and the Slater’s condition is satis-

fied for (3.1), that is there exist a vector x̃ such that A (x̃) = b.

Let y ∈ RM be a vector of Lagrangian multipliers. The augmented Lagrangian

function of the primal problem Lr : RN×RM→ R is given by:

Lr(x,y) = ∑
i

fi(xi)+ yT (Ax−b)+
r
2
||Ax−b||2, (3.3)

where r > 0 is a positive parameter for penalizing the additional quadratic term. We

note that by adding an additional quadratic term to the traditional Lagrangian function,
36



the so-called augmented Lagrangian function (3.3) becomes a strictly convex function

and this improves the convergence of the algorithm.

Starting from the initial value of the dual variable y0, the augmented Lagrangian

method solves in the k-th iteration

min
x∈RN

Lr(x,yk), (3.4)

for xk+1, and then updates the dual variable yk+1 by

yk+1 = yk +ρ(Axk+1−b). (3.5)

Since solving the problem (3.4) is very expensive, by taking advantage of the sepa-

rable structure of the objective function, we introduce slack variables into (3.4) such

that it can be separated into several subproblems. At the k-th iteration the augmented

Lagrangian function (3.4) can be reformulated into:

min
x,w∈RN

Lr(x,w,yk) = ∑
i

wi +
r
2 ∑

i
(wi− fi(xi))

2 + yk(Ax−b)+
r
2
||Ax−b||2, (3.6)

where w∈RN is the slack variable. Then starting from the initial value of the primal and

dual variables x0 and y0, at the k-th iteration we update w,x and y by first minimizing

Lr(x,w,y) with respect to w to obtain wk+1 with x = xk and y = yk fixed; then minimize

Lr(x,w,y) with respect to x to obtain xk+1 with w = wk+1 and y = yk fixed; and finally

the dual variable y = yk+1 is updated via (3.5) with x = xk+1 fixed. Hence we can

express these as:

wk+1 = arg min
w

Lr(xk,w,yk) (3.7)

xk+1 = arg min
x

Lr(x,wk+1,yk) (3.8)

yk+1 = yk +ρ(Axk+1−b). (3.9)

So far we can summarize the proposed general framework of the proposed multi-

splitting method for solving a separable objective function with linear constraint as:
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Algorithm 5 The General Framework of the Proposed Multi-Splitting Method Based
on Augmented Lagrange

1: Set x0 and y0 > 0.
2: for k = 0,1, · · · do
3: Compute wk+1 according to (3.7).
4: Compute xk+1 according to (3.8).
5: Compute yk+1 according to (3.9).
6: end for

The Algorithm 5 is motivated by the problems raising in image processing and now

we extend it to solve the TV and `1 regularized inverse problem:

min
u

α||ΨT u||`1 +βTV (u) (3.10)

s.t. Au = b,

where u ∈ RN is obtained by vectoring the pixels in a
√

N square image along each

column, Ψ is an orthogonal sparse transformation such that u = Ψa = ∑i Ψiai has a

sparse representation under it. α and β are positive weight coefficients of the relative

TV and `1 terms. A partial observation b ∈ RM is obtained via a sensing matrix A ∈

RM×N (M� N). In practice, the sensing matrix A has various versions, such as partial

Fourier, partial DCT ect., which depends on the specific problem and it should also

meet the RIP conditions in the context of compressive sensing. We need to point out

that the objective function in (3.10) possesses a separable structure, such as:

TV (u) = ∑
i
||Dui||, (3.11)

||ΨT u||`1 = ∑
i
|ΨT

i ui|, (3.12)

where || · || denotes the Euclidean norm, D = [D1;D2] is the finite difference operator

to the i-th pixel in u, D1,D2 represents the relative row and column difference operator,

and ΨT
i is the i-th column in the sparse transformation Ψ. Hence the problem (3.10)
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can be expressed as:

min
u

α

N

∑
i

hi(ui)+β

N

∑
i

gi(ui) (3.13)

s.t. Au = b,

where hi(ui) = |ΨT
i ui| and gi(ui) = ||Dui||. Then we can adapt the Algorithm 5 to solve

model (3.13) by the augmented Lagrangian function based multi-splitting method as

follows. We start from the augmented Lagrangian function of (3.13) and write it as:

Lr(u,y) = α

N

∑
i

hi(ui)+β

N

∑
i

gi(ui)+ yT (Au−b)+
r
2
||Au−b||2. (3.14)

Given the initial value of u0 and y0, at the k-th iteration uk+1 = arg minu Lr(u,yk) is

updated with fixed yk, and similarly we can split this problem into several subproblems

by introducing the slack variables w and v as follows:

Lr(u,w,v,yk) = ∑
i

Gi(ui,wi,vi)+ ykT
(Au−b)+

r
2
||Au−b||2, (3.15)

where Gi(ui,wi,vi)=αwi+
r
2(wi−hi(ui))

2+βvi+
r
2(vi−gi(ui))

2. Hence starting from

the initial u0 and y0, the variables u,w,v,y are updated as follows:

wk+1
i = argmin

wi
Lr(uk

i ,wi,vi,yk), (3.16)

vk+1
i = argmin

vi
Lr(uk

i ,wi,vi,yk), (3.17)

uk+1 = argmin
u

Lr(u,wk+1,vk+1,yk), (3.18)

yk+1 = yk +ρ(Auk+1−b) (3.19)

The subproblems (3.16) and (3.17) are processed component-wise and the closed form

solutions are expressed via soft thresholding as:

wk+1
i = so f t(|ΨT uk

i |,
α

r
), max{|ΨT uk

i |−
α

r
,0}sgn(ΨT uk

i ),

vk+1
i = so f t(||Duk

i ||,
β

r
), max{||Duk

i ||−
β

r
,0}sgn(Duk

i ),
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and in this way the slack variable w,v play an important role in splitting the large

scale problem into simple subproblems that have the closed form solutions updated

via simple scalar multiplication in terms of soft-thresholding. The subproblem (3.18)

reduces to a quadratic problem with positive definite block Toeplitz Hessian matrix and

it can be solved quickly via the preconditioned conjugate gradient method which will

be discussed in the following sections. Moreover, the regularization parameter r in

augmented Lagrangian formula (3.3) balances the fidelity and the regularization terms,

an appropriate choice on its value can accelerated the convergence of the routine. A

common and efficient scheme is a so call warm start strategy for updating r, that is

initially we assign a relative small value to it and update it in the outer-loop till the

solution converges along a path of r. We summarize the algorithm of multi-splitting

method for solving the TV and `1 regularized problem as follow:

Algorithm 6 Multi-Splitting Methods for TV-`1 Regularized Inverse Problem

Require: A,b,u0,y0,α,β ,r > 0,ρ > 0
1: for Outterloop = 0,1, · · · do
2: Set u0 and y0 > 0.
3: for k = 0,1, · · · do
4: Compute wk+1 according to (3.16).
5: Compute vk+1 according to (3.17).
6: Compute uk+1 according to (3.18).
7: Compute yk+1 according to (3.19).
8: end for
9: Update r.

10: end for

3.2 The optimality and convergence analysis

In this section, we present some theoretical analysis on the proposed algorithms. We

will show the optimality conditions and prove the convergence of the proposed algo-

rithm. Moreover we will discuss the optimal choice of the parameters and show how

their values affect the convergence rate.
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3.2.1 The optimality

The Algorithm 5 is based on the general augmented Lagrangian function, where the

primal variables are updated by fixing the dual variables obtained in previous iteration

and in practice, this step can be decomposed into several simple subproblems with

closed form solutions by taking the advantage of the separable objective. Finally the

dual variable is updated by using the updated primal variables. Since the problem (3.1)

has a convex objective with linear constraint and the augmented Lagrangian with an

additional quadratic term is a strict convex function, the KKT condition becomes a

necessary and sufficient condition on the optimal solution when the Assumption 3.1.1

is satisfied.

Theorem 3.2.1. Suppose (3.1) has a nonempty and bounded solution set, and Slater’s

condition is satisfied, that is the feasiable solution exits. Then the sequence {xk} gen-

erated via (3.7)-(3.9) in Algorithm 5 is bounded and every limit point limk→∞ xk = x∗

is the solution of problem (3.1).

Proof. Given x0,y0 > 0,r > 0, and suppose the sequence {xk,yk,wk} generated via

Algorithm 5 has a unique limit point {x∗,y∗,w∗} as k→ ∞. Then from (3.9) we have:

y∗ = y∗+ρ(Ax∗−b)⇔ Ax∗ = b, (3.20)

and from (3.7), we have wk+1
i = fi(xk

i )−
1
r . Since x∗ minimizes (3.8) and the solution

set is nonempty, we have

0 ∈ ∂ Lr(x,wk+1,yk)

⇔ 0 ∈ −diag(r( fi(xk
i )−

1
r
− fi(x∗)))∂ f (x∗)+AT yk + rAT (Ax∗−b),

and this implies that

⇒ ∂ f (x∗)+AT yk = 0, as k→ ∞, (3.21)
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where f (x) = ( f1(x1), · · · , fN(xN))
T . Hence from (3.20) and (3.21), the primal-dual

pair {x∗,y∗} satisfies the KKT condition of (3.1).

3.2.2 The convergence proof

As in the context of the TV and `1 regularized inverse problem (3.10), we are interested

in the convergence of the proposed splitting algorithm. In (3.19), we have the freedom

of the choice of the parameter ρ when updating the dual variable y. The ρ value plays

an important role in determining the rate of convergence and an optimal choice of its

value is determined via studying the dual problem. We will present the convergence of

Algorithm 6 and study how parameter values affect its convergence rate.

Suppose the optimal primal dual pair {u∗,y∗} in (3.14) is a saddle point of the

augmented Lagrangian function Lr(u,y), that is at the k-th iteration if the current value

is given as {uk,yk}, then its value should satisfy:

Lr(u∗,yk)≤ Lr(u∗,y∗)≤ Lr(uk,y∗). (3.22)

Therefore the primal dual pair (uk,yk) generated via Algorithm 6 is characterized by Lr(uk+1,yk)≤ Lr(uk,yk)

yk+1 = yk +ρ(Auk+1−b)
(3.23)

Then for the fixed slack variable values w and v, the saddle point (x∗,y∗) satisfies

(I +DT D+AT A)u∗+
1
r

AT y∗ = Ψw+DT v+AT b, (3.24)

Au∗ = b ⇔ y∗ = y∗+ρ(Au∗−b), (3.25)

where (3.24) is equivalent to the normal equations derived from (3.18).

Theorem 3.2.2. For all y0 ∈RM and u0 ∈RN , the sequence {uk} generated via Algorithm 6

converges to the solution of (3.10) u∗ if and only if 0 < ρ 6 2r as k→ ∞.
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Proof. Let us define the difference as ûk , uk−u∗ and ŷk , yk− y∗.

Then we have ŷk+1 = ŷk +ρAûk+1, by squaring this quantity and rearranging ŷk to left

side, we have:

(ŷk+1)2− (ŷk)2 = 2ρ < Aûk+1, ŷk >+ρ
2 < Aûk+1,Aûk+1 > . (3.26)

From equation (3.22), we have

(I +DT D+AT A)ûk+1 +
1
r

AT ŷk = 0. (3.27)

We multiply by ûk+1 on both sides of (3.27) and rewrite it as:

< AT Aûk+1, ûk+1 >=−< (I +DT D)ûk+1, ûk+1 >−1
r
< AT ŷk, ûk+1 > (3.28)

By plugging (3.26) into (3.28) we have:

⇒ (ŷk+1)2− (ŷk)2 = ρ(2− ρ

r
)< Aûk+1, ŷk >−ρ

2 < (I +DT D)ûk+1, ûk+1 > .

It follows from (3.27) that

< Aûk+1, ŷk >=−r < (I +DT D+AT A)ûk+1, ûk+1 > .

Then we have

(ŷk+1)2− (ŷk)2 =−2rρ < (I +DT D)ûk+1, ûk+1 >

−ρ(2r−ρ)< AT Aûk+1, ûk+1 > . (3.29)

Hence for any 0 < ρ 6 2r, the sequence {ŷk} decreases and is bounded below by zero

because matrix AT A is positive definite, and the right hand side implies that ûk+1→ 0

as k→ ∞.

Comments: 0 < ρ 6 2r is the necessary condition for the convergence of Algorithm 6,

and when the sensing matrix A is orthonormal in the compressive sensing application,

the convergence condition in T heorem 3.2.2 on ρ can be relaxed as 0 < ρ 6 2r(4+ γi)
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where γi represents the i-th eigenvalue of matrix DT D. When AT A = I, (3.29) can be

rewritten as:

(ŷk+1)2− (ŷk)2 =−ρ(ûk+1)
T{2r(I +DT D)+(2r−ρ)I}ûk+1 (3.30)

=−ρ(ûk+1)
T{(4r−ρ)I +2rDT D}ûk+1.

Then the system (4r−ρ)I +2rDT D is positive definite when 4r−ρ +2rγi > 0, that is

ρ 6 2r(2+ γi).

By the Theorem 3.2.2 we prove the global convergence of the proposed algo-

rithm and we found that the convergence is satisfied under a general condition. Next we

will study the rate of convergence and show how the optimal choice of ρ is achieved.

3.2.3 The convergence rate and optimal parameter selection

The dual problem of (3.14) is

g(y) = inf
u

Lr(u,y),

and from (3.22), the optimal primal variable x∗ can be expressed in terms of the dual

variable y for fixed w and v values as:

x∗ = (I +DT D+AT A)−1(Ψw+DT v+AT b− 1
r

AT y). (3.31)

Then the dual variable can be solved from the problem given as below:

y = arg max
y

inf
x

Lr(x,y), (3.32)

or equivalently solve y from the linear equation determined by the problem miny−Lr(x∗,y)

as:

1
r

A(I +DT D+AT A)−1AT y = A(I +DT D+AT A)−1(Ψw+DT v+AT b)−b. (3.33)
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Figure 3.1: The optimal choice of ρ .

More precisely, by eliminating uk from (3.9) in the proposed algorithm and updating

the dual variable yk via:

yk+1 = yk− ρ

r
H −1AT yk

−ρ(AH −1(Ψw+DT v+AT b)+b), (3.34)

where

H , I +DT D+AT A. (3.35)

The formula (3.34) derived from the dual problem is only used for theoretical analysis,

but in practice, the advantage of the formula (3.9) comparing with (3.34) is that it does

not depend on the explicit expression of the inverse matrix of H and in some practical

application it is impossible to calculate H −1 since it is usually large scale.

Let ŷk , yk− y∗ where y∗ stands for the optimal dual variable, then from (3.34)

we have:

ŷk+1 = ŷk− ρ

r
AH −1AT ŷk = (I− ρ

r
AH −1AT )ŷk, (3.36)
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and if we multiply AT on both sides (3.36) becomes:

AT ŷk+1 = AT (I− ρ

r
AH −1AT )ŷk

= (I− ρ

r
AT AH −1)AT ŷk. (3.37)

Denote Ȳ k+1 , AT ŷk+1 and rewrite the above formula as

Ȳ k+1 = (I− ρ

r
(H (AT A)−1)−1)Ȳ k, (3.38)

where the sequence {Ȳ k}k>0 plays an important role in proving the linear convergence

of the dual variable. The convergence of the primal variable {uk} is also linear related

to {Ȳ k}k>0. Next we are trying to express the rate of convergence in terms of the

eigenvalues of matrix H (AT A)−1 and study the behavior of ρ to show how it affects

the convergence rate such that a optimal choice of it can be deduced.

Let λi denote the eigenvalue of H (AT A)−1, and

λm = λ1 6 λ2 6 · · · · · ·6 λN = λM,

where λM and λm denote its max and min eigenvalues respectively. Then according

to the eigenvalue decomposition, there exist the orthonormal matrix H such that the

symmetric matrix can be expressed as:

H (AT A)−1 = HT
ΛH,

where Λ, diag(λ1, · · · ,λN), then the Euclidean norm of ||Ȳ k+1
i || in (3.38) can be writ-

ten in terms of eigenvalues of H (AT A)−1 and satisfies that:

||Ȳ k+1
i ||6 Λi(ρ)||Ȳ k

i ||, i = 1, · · · ,N, (3.39)

where Λi(ρ) , |(1− ρ

rλi
)|. Figure (3.1) is a plot of Λi(ρ) as a function of ρ , and

according to this plot, we find that its max and min x-intercept is reached at ρ = rλM

and ρ = rλm, and the optimal choice of ρ should be reached at a point that the value
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of the function Λr(ρ) w.r.t. each λi should not be increased. Then from the graph the

optimal point ρopt is reached when

ρopt

rλm
−1 = 1−

ρopt

rλM
, (3.40)

and ρopt is solved from (3.40) as:

ρopt = 2r
λmλM

λM +λm
,

and combining the result of Theorem 3.2.2 on 0 < ρ 6 2r, the optimal choice of ρ is

expressed as:

ρopt =


2r λmλM

λM+λm
, if λmλM

λM+λm
6 1

2r, if λmλM
λM+λm

> 1

and the optimal linear convergence rate is given as:

||Ȳ k+1|| ≤ Λ(ρopt)||Ȳ k||.

It is worth noting that that when A is a tight frame, that is AT A = I, we can simply have

a similar result on the rate of convergence based on the spectral distribution of matrix

H , which is important in the compressive sensing application.

3.2.4 The stopping criteria

The stopping criteria is not mentioned in Algorithm 6. Although we proved the global

convergence of the framework, a wisely designed stopping criteria can accelerate the

convergence and enhance the accuracy. But it is difficult to make the decision about

when an approximate solution is of sufficiently high precision to terminate the routine.

We wish the the approximated solution u to be reasonably close to the optimal one while

avoid the expensive computational load involved in finding an overly accurate solution.

In general, the proposed algorithm is of first order and possess a simple structure and a

global convergence properties. But its convergence speed maybe slow as compared to

others.
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In problem (3.10), after the slack variables w and v are introduced, it is separated

into several subproblems (3.16)-(3.19) and the solution of each subproblem w,v and u

is derived via taking the sub-differentiation [Roc70] as:

v
||v||

+ r(v−Du) = 0, (3.41)

sgn(w)
||w||

+ r(w−Ψ
T u) = 0, (3.42)

DT (Du− v)+(u−Ψw)+
1
r

AT y+AT (Au−b) = 0. (3.43)

The decision of the stopping criteria suggested in [YY08] is motivated by evaluating

the sub-differentiation of (3.41)-(3.43) in each iterations. At k-th iteration as:

τ1 ,
vk

||vk||
+ r(vk−Duk), (3.44)

τ2 ,
sgn(wk)

||wk||
+ r(wk−Ψ

T uk), (3.45)

τ3 , DT (Duk+1− vk)+(uk+1−Ψwk)+
1
r

AT yk +AT (Auk+1−b). (3.46)

Then the routine is terminated when τ , max{||τ1||, ||τ2||, ||τ3||} ≤ tol, where tol > 0

is a user decided value.

However evaluating (3.44)-(3.46) is expensive, and actually we can simply

calculate the discrepancy of the variable v,w and u in each iteration, and decide to

terminate the routine when the decease becomes not striking. Specifically, we set

τk
1 = ||vk−vk−1||

||vk|| , τk
2 = ||wk−wk−1||

||wk|| and τk
3 = ||uk−uk−1||

||uk|| and terminate the routine when

τk 6 tol, where τk ,max{τk
1 ,τ

k
2 ,τ

k
3} and we set tol = 1e−2 in practice. This scheme

works well for the cases we test. Besides the warm start [EY07][MS07a] strategy can

be set up as assign a relative small initial r0 and a cap r̄ such that let r approach to r̄

gradually till converge. Now we can revise the Algorithm 6 by adding the stopping

criteria and the warm start strategy. This is summarized in Algorithm 7.
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Algorithm 7 Multi-Splitting Methods for TV-`1 Regularized Inverse Problem

Require: A,b,u0,y0,α,β ,r > 0,ρ > 0, tol > 0
1: Set k← 0,
2: for r = r0 < r1 · · ·< r̄ do
3: while ”not converge” do
4: Compute wk+1 according to (3.16).
5: Compute vk+1 according to (3.17).
6: Compute uk+1 according to (3.18).
7: Compute yk+1 according to (3.19).
8: if τ ≤ tol then
9: Return uk+1

10: else
11: Set k← k+1
12: end if
13: end while
14: end for

3.3 Preconditioning for ill-conditioned BTTB matrices

The major computation in Algorithm 7 is in updating u via problem (3.18), which is

equivalent to solving for u at the k-th iteration from the problem given as below:

Φ(u), min
u∈RN

||ΨT u−wk+1||22 + ||Du− vk+1||22 + ||Au−b||22 +
1
r
(Au−b)T yk. (3.47)

Solving the quadratic problem (3.47) is equivalent to solving for u from its normal

equation given as:

Tu− f = 0, (3.48)

where the matrix T ∈ RN×N and vector f ∈ RN are defined as:

T =DT D+ΨΨ
T +AT A, (3.49)

f =Ψv+DT w+AT b− 1
r

AT yk. (3.50)

Here we need to point out that in (3.47), the matrix T is a Hermitian matrix and com-

posed of the sum of three parts, where DT D = D(1)T
D(1) + D(2)T

D(2), Ψ is an or-

thogonal transformation and ΨΨT = I and the sensing matrix A is a tight frame in the
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applications of our interest. Hence the matrix T is a block Toeplitz with Toeplitz block

(BTTB) matrix.

We use the conjugate gradient (CG) method to solve (3.48) for u, then a well

designed preconditioner is required since the distribution of the eigenvalues of T trend

to distributed equally and this structure makes the CG method converges slowly and we

prefer a clustered distribution of the eigenvalues. T. Chan [T.F88] proposed a specific

circulant preconditioner called the optimal circulant preconditioner which works well

for solving the Toeplitz systems. The T. Chan’s optimal circulant preconditioner cF(Tn)

for a general Toeplitz matrix Tn as shown in (3.51) is defined as:

min
Wn∈ℑF

||Tn−Wn||Fro, (3.51)

where || · ||Fro is the Frobenius norm, ℑF , {F∗ΛnF | Λn is any n×n diagonal matrix}

denotes a collection of all circulant matrices where Fj,k =
1√
n

e
2πi jk

n , i ≡
√
−1 is a

Fourier matrix. Suppose a Toeplitz matrix is defined as:

Tn =



t0 t−1 · · · t2−n t1−n

t1 t0 t−1 · · · t2−n

... t1 t0
. . . ...

tn−2 · · · . . . . . . t−1

tn−1 tn−2 · · · t1 t0


, (3.52)

then the diagonal entry ck in T. Chan’s optimal circulant preconditioner cF(Tn) are

given by [T.F88] as:

ck =


(n− k)tk + ktk−n

n
, 0≤ k ≤ n−1

cn+k, 0 <−k ≤ n−1,
(3.53)

or equivalently express this process as:

cF(Tn) = FT
δ (FTnFT )F, (3.54)
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where the operator δ (A) denotes the diagonal matrix whose diagonal entries are the

diagonal of the matrix A.

As for our case, we are interested in finding a preconditioner for the BTTB

system:

Tmnu = f, (3.55)

where Tmn is partitioned into m blocks along its column and each block Tl for |l| ≤

m− 1 is a n square Toeplitz matrix such as (3.52). A natural choice of the precon-

ditioner for BTTB matrix Tmn should be cF(Tmn), which is obtained by applying the

T. Chan’s optimal circulant preconditioner showed in (3.54) to each Toeplitz block in

Tmn. Mathematically, this process is equivalent to firstly applying the two FFTs to each

block in Tmn and take the diagonal entries in each block as:

4≡ δblock((I⊗F)Tmn(I⊗F)∗), (3.56)

where the operator δblock(·) denotes taking the diagonal entries in each block and can

be expressed as:

δblock(·), (I⊗ I)(·)(I⊗ I),

and then the best circulant approximation cF(Tmn) for the BTTB matrix Tmn is obtained

via using two FFTs to4 block wisely:

cF(Tmn) = (I⊗F)∗4 (I⊗F). (3.57)

It is worth to noting that in the PCG routine, we need to solve the linear system

cF(Tmn)x̃ = ỹ for x̃ given cF(Tmn) and ỹ in each iteration. This requires the precondi-

tioning matrix cF(Tmn) to be well structured. Let (Tmn)i, j;k,l = (Tk,l)i, j be the (i, j)-th

entry of the (k, l)-th block in BTTB matrix Tmn, then define P be the permutation matrix

that satisfies

(P∗TmnP)k,l;i, j = (Tmn)i, j;k,l,
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Algorithm 8 Multi-Splitting Methods for TV-`1 with Preconditioning

Require: A,b,u0,y0,α,β ,r > 0,ρ > 0, tol > 0
1: Set T via (3.49), f via (3.50)
2: Set k← 0,
3: while ”not converge” do
4: Compute wk+1 according to (3.16).
5: Compute vk+1 according to (3.17).
6: while ”not converge” do
7: Compute uk+1 according to (3.55) via PCG

with preconditioner cF(Tmn) given in (3.57).
8: end while
9: Compute yk+1 according to (3.19).

10: if τ ≤ tol then
11: Return uk+1

12: else
13: Set k← k+1
14: end if
15: end while

where 1≤ i, j ≤ n, 1≤ k, l ≤ m. Note that

P∗4P =



T̃1,1 0 · · · 0

0 T̃2,2 · · · 0
... . . . . . . ...

0 0 · · · T̃m,m


, (3.58)

where (̃Tk,k)i j = (δ (FTi, jF∗))kk = (δ (FT(i− j)Fk))kk, for 1≤ i, j ≤ n, 1≤ k ≤ m. Thus

(cF(Tmn))
−1 = [(I⊗F∗)P](P∗∆P)−1[P∗(I⊗F)] and the solution x̃ can be expressed as

x̃ = (cF(Tmn))
−1ỹ. (3.59)

Now we can add the PCG feature to the proposed algorithm and summarize

it as Algorithm 8. However, in practice, solving the linear system (3.59) or finding

(cF(Tmn))
−1 is also expensive, since cF(Tmn is a block circulant with circulant block

(BCCB) matrix and still expensive for computing its inverse. However, in this case, we

can still take its advantage in the circulant block structure to implement a fast matrix

vector product to accelerate the computation, instead of solving the (3.59) system or

finding its inverse directly.
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Chapter 4

Numerical Results and Application in MRI

In this chapter, we demonstrate the effectiveness of Algorithm 8 for the case of im-

age reconstruction with partial Fourier data as well as its performance in the applica-

tion of sparse MR imaging comparing it with the existing packages SparseMRI V.02

[MJ07a] and RecPF V.1.1 [YY08]. We mainly solve the model (3.10) where the under-

determined system Ax= b is the constraint condition that forces the underlying variable

to fit the fidelity requirement. b is generated from an image u which possesses trans-

formed sparsity in wavelet domain. In particular, the sensing matrix A ∈ RM×N , where

M < N, K is the sparsity level of the transformed image, and

b = A(u+n1)+n2, (4.1)

where n1 and n2 are the additive Gaussian noise vectors whose component’s are i.i.d

distributed as N(0,σ2
1 ) and N(0,σ2

2 ). Both the original image and the measurement b

can be corrupted by noise.

The sensing matrix A in our case is a partial Fourier matrix, composed by a

selection operator and Fourier matrices, that is A = PF , where F is an N×N Fourier

matrix and the M rows in the selection operator P are chosen randomly from N rows

of an N×N identity matrix I or from the rows of I indicated by the indices generated

along a particular sampling trajectory. Both two types of matrices are good matrices

for Compressive Sensing. While the partial Fourier matrix A is stored implicitly, fast

matrix vector multiplication is applicable via the fast Fourier transform (FFT) with the

cost of O(N logN) flops. Furthermore, the partial Fourier matrix A has orthonormal

rows such that AT A = I.

This chapter is organized as follows. We first test the numerical performance

of our proposed algorithm with a series of numerical experiments, which include a
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test of robustness to the choice of the regularization parameter r, show the role of

the parameters r and ρ in determining the convergence rate, demonstrate the BTTB

preconditioning and the recoverability of the proposed algorithm. In the second part,

we mainly focus on the application of the proposed algorithm in MR imaging and show

the results of a comparison with existing packages in reconstructing the MR images by

using real clinical MR data.

4.1 A test on the proposed algorithm

The performance of compressive sensing algorithms varies with the change of the pa-

rameters, such as, the number of measurements M, the size of the image N and the

sparsity level K of the image under the transformed domain. In this section, we test the

numerical performance of Algorithm 8 and record the results under various parameter

combinations of interest. The numerical results confirm the theoretical analysis in the

performance of BTTB preconditioning and the convergence rate with respect to vari-

ous ρ values; besides, the robustness of the results under various r values can also be

determined from to its numerical performance in numerical experiments.

We set the initial iterate to u0 = AT b, since this value contains the problem spe-

cific information and is easy to calculate. Further, u0 is also a feasible point that mini-

mizes the Euclidean norm of the equality constraint 1
2 ||Au−b||2 when A is orthonormal.

Although all nonnegative values of the Lagrangian multiplier y ∈ RM works for the

problem, we initialize y0 = [1, · · · ,1]T for simplicity. In all the experiments, the ratio

of weights of `1 and TV regularization in (3.10) is denoted as η = α

β
, the sampling rate

is denotes as δ = M
N , these parameter combinations will be tested in our experiments.

Our code is written in MATLAB (Release 7.11.0), and all experiments were per-

formed on a Lenovo Think Pad T61p workstation with Intel dual core T7300 2.0GHZ

CPU and 2GB RAM. The objective of our interest in this section is restoring the Shepp-

Logan phantom. The partial Fourier data are collected in the frequency domain along
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Figure 4.1: From left: (1) The sampling pattern of 22 radial lines in K-space; (2) The
256 by 256 Shepp-Logan phantom.

radial lines Figure 4.1. Other sampling patterns and more complicated images will be

considered in the numerical experiments in next section.

4.1.1 The choice of ρ and rate of convergence

The choice of ρ in Algorithm 8 depends on the eigenvalue distribution of the ma-

trix operator H (AT A)−1, where H , I +DT D+AT A. When ρopt = 2r λmλM
λM+λm

and

λmλM
λM+λm

6 1, the optimal linear convergence rate is reached at ρopt . Particularly, in Com-

pressive Sensing applications the sensing matrix A is orthonormal, that is AT A = I.

Then the relative convergence rate depends on the spectrum of the matrix 2I +DT D.

The necessary condition of convergence 0 < ρ 6 2r implied by Theorem 3.2.2 can be

relaxed to 0 < ρ 6 2r(2+γi), where γi , eig(DT D)i, i = 1, · · · ,N. Hence ρ is bounded

by ρmax = 2r(2+ γmax), and (3.38) is equivalent to:

Ȳ k+1 = (I− ρ

r
(2I +DT D)−1)Ȳ k, (4.2)

Since the matrix 2I+DT D is symmetric and its eigenvalue decomposition can be writ-

ten as:

2I +DT D = Qdiag{2+ γ1, · · ·2+ γN}QT ,
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Table 4.1: The eigenvalue of DT D

16×16 100×100 400×400 1600×1600
γmax 8 8 8 8
γmin 0 0 0 0

where Q is an orthonormal matrix. By multiplying AT at both side of (4.2) and rear-

ranging the orthonormal matrices A and Q we have that:

QAT Ȳ k+1 = Λγ(ρ)QAT Ȳ k,

where Λγ(ρ), I− ρ

r diag{ 1
2+γ1

, · · · 1
2+γN
}. Then define Ỹ k+1 , QAT Ỹ k, then we have

|Ỹ k+1
i |6 |Λγi(ρ)||Ỹ

k
i |,

where the growth factor Λγi(ρ) , |1−
ρ

r(2+γi)
|. Then the optimal choice of ρ can be

determined in a similar way as we showed in (3.40), that is

ρopt = 2r
(2+ γmin)(2+ γmax)

4+ γmin + γmax
. (4.3)

According to the numerical results in Table (4.1), γmax = 8 and γmin = 0 for any ma-

trices DT D with even number of columns and rows, that is ρopt = 2r 2(2+8)
4+8 w 3.3r

and ρ ∈ (0,20r]. So far we present a perfect theoretical analysis on how the value of

ρ affects the convergence rate, but how does it perform in practical computation? In

the following, we test the algorithm 8 and present the numerical results to support the

theoretical results.

To test the role of ρ on how it affects the rate of convergence, we solve the image

reconstruction problems using 19% and 27% partial Fourier data in various dimensions

for a wide range of ρ ∈ (0,20r] with respect to the fixed r = 1e2. We set the stopping

tolerance τ = 10−2 and fix the regularization parameter r = 1e2. The experiments are

conducted for the combination of four sizes of problems and the various ρ values from
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Table 4.2: The rate of convergence w.r.t various ρ values against each dimensionality

r = 1e2, δ = 0.19, η = 0.5, τ = 10−2

ρ = 0.5r ρ = r ρ = 1.5r ρ = 2r
H

HHH
HHN Iter Err Time Iter Err Time Iter Err Time Iter Err Time

642 57 0.162 5.32 55 0.160 5.18 54 0.160 5.12 54 0.159 4.70
1282 41 0.040 8.98 38 0.038 8.16 37 0.038 8.25 37 0.036 7.92
2562 35 0.023 29.34 30 0.020 25.58 28 0.020 24.44 27 0.019 22.59
5122 32 0.016 92.18 27 0.015 83.63 25 0.014 77.51 23 0.013 71.36

ρ = 3r ρ = 6r ρ = 15r ρ = 20r
642 53 0.162 5.27 53 0.160 5.17 52 0.164 5.44 – – –

1282 36 0.038 8.26 35 0.040 7.76 35 0.041 8.29 – – –
2562 26 0.018 20.58 25 0.019 20.35 24 0.021 20.02 – – –
5122 22 0.012 68.64 20 0.012 64.28 19 0.014 61.94 – – –

r = 1e2, δ = 0.27, η = 0.5, τ = 10−2

ρ = 0.5r ρ = r ρ = 1.5r ρ = 2r
HH

HHHHN Iter Err Time Iter Err Time Iter Err Time Iter Err Time

642 45 0.049 4.23 44 0.044 4.03 43 0.045 3.36 42 0.047 3.87
1282 29 0.033 6.10 27 0.022 5.67 26 0.019 5.30 26 0.018 4.65
2562 26 0.021 19.7 22 0.020 16.20 21 0.017 15.26 20 0.014 15.72
5122 25 0.015 72.04 21 0.016 62.08 20 0.014 61.39 19 0.012 57.71

ρ = 3r ρ = 6r ρ = 15r ρ = 20r
642 44 0.050 4.47 43 0.054 4.26 43 0.054 4.38 – – –

1282 25 0.018 5.44 24 0.020 5.55 24 0.002 5.25 – – –
2562 19 0.011 14.47 18 0.012 14.26 43 0.013 30.79 – – –
5122 19 0.008 59.5 15 0.008 50.28 37 0.009 108.37 – – –

0.5r to 20r and we record the number of iterations to converge, the relative error and

the CPU time.

The numerical results in Table 4.2 show that when ρ = 20r the algorithm 8

diverges since. But on the other hand, we ρ is too small, such as when ρ = .5r, the

convergence rate becomes slowe and keep increasing as ρ approaches to 15r. In this

work we suggest the optimal ρ ∈ [3r,6r], since as we may read from the table the con-

vergence rate does not keep increasing as we assign larger ρ value to it. For example,

in the 5122 reconstruction case, when ρ is greater than 6r, the processing time get in-

creased dramatically. Actually according to our theoretical analysis results ρopt = 3.3r,

and this result matches our numerical resluts shown in the table very well.
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4.1.2 The sensitivity to r

Intuitively, we know that r should be proportional to 1
2 ||Au− b||2 and the method of

continuation [YY08] for updating r proves to be an efficient way of updating the regu-

larization parameter. On the one hand, r is used as a penalty of the fidelity and a large

r is preferred to reduce the noise. On the other hand, a large r may lead to a longer

computation to reach the desired stopping criteria. In this part, we study the sensitivity

of r to the accuracy of the solution. Furthermore, we show how algorithm 8 performs

for all r values of interest via a series of numerical experiments.

Table 4.3: The sensitivity to r values

N = 642, δ = 0.31, η = 0.5, τ = 1e−3, SNR = 4.5dB, ρ = 2r
HHH

HHH

r
23 24 25 26 27 1e2 2e2 5e2 8e2 1e3 2e3

Iter 49 55 51 52 61 62 87 200 312 386 598
Err 0.306 0.163 0.088 0.046 0.021 0.029 0.014 0.007 0.007 0.007 0.008
Obj 924.4 816.4 760.7 730.5 719.1 719.8 713.7 707.0 705.4 705.6 704.7

Time 4.27 4.88 4.58 4.63 5.56 5.39 8.17 18.15 28.48 35.69 55.03
Fid 0.031 0.028 0.028 0.032 0.052 0.029 0.042 0.031 0.028 0.027 0.027

N = 1282, δ = 0.31, η = 0.5, τ = 1e−3, SNR = 7dB, ρ = 2r
HH

HHHH

r
23 24 25 26 27 1e2 2e2 5e2 8e2 1e3 2e3

Iter 39 37 37 36 39 35 48 86 132 162 309
Err 0.150 0.081 0.043 0.022 0.012 0.015 0.008 0.004 0.004 0.004 0.005
Obj 2632.6 2323.9 2157.8 2067.2 2018.8 2032.6 2003.4 1992.8 1989.8 1989.2 1990.7

Time 7.75 7.80 7.78 7.58 8.26 6.93 10.00 17.90 26.91 33.42 64.73
Fid 0.059 0.058 0.059 0.063 0.064 0.070 0.06 0.06 0.05 0.05 0.05

The value of r controls the fitness of the data and balances the tradeoff between

the fidelity and sparsity level. In [SD07], the author suggests a lower bound on r,

r > 1
||AT b||∞

, since when r < 1
||AT b||∞

, 0 becomes an unique optimal value of the `1 least

squares problem. In the context of our algorithm, r controls the shrinkage level in

(3.16) and (3.17), that is all the components less than 1
r are shrunk to zero. A small r

value may make the estimation lose fidelity, but an overly large r value may lead to a

huge computation and increased CPU time, since only a few components are shrunk to

zero in each iteration and many more steps are required such that the solution reaches

a desired sparsity level.
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Figure 4.2: The relative error ||x−x∗||
||x∗|| , number of iterations to converge, CPU time and

value of objective function versus various r for reconstructing 1282 image using 31%
partial data via Algorithm 8.

To test the robustness of r, we solved the partial reconstruction problem for a

wide range of values of r. We set ρ = 2r and use δ = 31% partial Fourier data to

reconstruct the 642 and 1282 phantom Shepp-Logan image by varying the r value from

23 up to 2e3. The experiments compare the performance of algorithm 8 with respect to

various regularization parameters. All data points of the numerical experiments listed

in Table 4.3 represent an average over 5 runs.

A representative sample of experimental results are shown in Figure 4.4, which

depicts the relative error, CPU time, number of iterations to convergence and and the

value of the objective function for reconstructing the 128×128 Shepp-Logan phantom

image using 31% partial Fourier data under all r values of interest.

Several conclusions may be drawn from this figure. First, the Algorithm 8 is
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Figure 4.3: against the CPU time for reconstructing 128×128 phantom by using 25%
partial Fourier data

robust to r and produces accurate reconstructions with respect to a wide range of r. But

the CPU time and number of iterations are increasing almost linearly as with r, such as

when r changes from 27 to 2e2, the CPU time increased by 20%.

Second, we are interested in finding an optimal r value from the experimental

data. A desired r value should be able to bring enough accuracy within an economic

computational effort. According to Table 4.3 and Figure 4.4, we find that r = 1e2 is

an ideal one since comparing with other columns in the table, r = 1e2 provides a high

accuracy with an acceptable computational work.

4.1.3 The BTTB preconditioning and its implementation

As we know, we can accelerate the conjugate gradient method by improving the eigen-

value distribution of the iteration matrix via applying a preconditioner. Instead of solv-

ing the linear system Hx = b directly, we need to solve the rescaled system Ĥx̂ = b̂,

where Ĥ =C−T HC−1, b =C−1b, x̂ =Cx and C is the so called preconditioner. A well

designed preconditioner C should be able to make the spectrum of C−T HC−1 clustered,

and possess a simple structure such that Cx = x̂ is easy to solve.
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Actually, the preconditioning process PCG used in Algorithm 8 require to solve

a linear system for x̃ depicted in (3.59) in each iteration. However, in practical im-

plementation, we can take advantage of the block circulant structure in the circulant

block preconditioner cF(Tmn), and apply a fast matrix vector multiplication to acceler-

ate the computation, instead of using the inverse of the preconditioner cF(Tmn) shown

in (3.59). Specifically, the j-th n×n block in the first block column of BCCB cF(Tmn)

is a circulant matrix, denoted as C j, where j = 0, · · · ,m−1. C j can be diagonalized by

two FFTs, Λ=FC jF∗, where F is the n×n Fourier matrix, λk =Λkk is an eigenvalue of

C j. The product of C jv and C−1
j v can be computed easily via FFTs as C jv= FΛF∗v and

C−1
j v = FΛ−1F∗v, respectively, within O(n logn) operations. The product of cF(Tmn)v

can also be processed in a similar way with respect to each block. Here we need to

point out that there are at most m different blocks in the BCCB matrix cF(Tmn) which

has m×m blocks. Thus cF(Tmn)v can be computed with O(mn logmn) operations. Fig-

ure 4.3 shows a comparison of the CPU time between a preconditioned system and a

system without preconditioning.

4.2 The MR imaging application

Compressive Sensing (CS) aims to reconstruct a signal or image by using fewer mea-

surements than required in traditional way while not degrading the quality. This feature

is attractive and the CS application has rapidly spread to many areas which are related

with restoring the sparsity. Magnetic Resonance Imaging (MRI) becomes one of the

most important tools used in modern clinical diagnosis, and the imaging speed is an ob-

stacle is MRI due to some fundamental limits in physical and physiological constraints

[MJ07b]. CS becomes a potential way to reduce the scanning time without reducing

the quality of the image by using less data.

In this section, we mainly discuss the application of Compressive Sensing in

MR image reconstruction. Some early works on the CS application in MRI are found
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in [MJ07a][MJ07b][SD07][WY08]. In the following, we first state the principles of

MR imaging and CS applications in MRI and this part is mainly based on M.Lustig’s

work [MJ07b]; in the second part, we show the application of our algorithm in recon-

structing MR images and compare the numerical performance with other packages:

RecPF [YY08], and SparseMRI [MJ07a].

4.2.1 MR imaging principles and CS in sparse MRI

The MRI signal is generated by the frequency response of tissues in the body, mostly

those in water molecules. First a strong static magnetic field is applied and the protons

are polarized while yielding a net magnetic moment oriented in the direction of the

static field. Then a radio frequency (RF) pulse is applied and a magnetization compo-

nent is produced transverse to the static field. At the same time, the protons in the area

where the RF is applied get aligned along the magnetic field direction and spin with a

certain frequency. When the RF pulse is turned off, the protons return to their natural

state and release a signal. Here the transverse magnetization at position l is represented

by the complex quantity

m(l) = |m(l)|e−iφ(l),

where |m(l)| is its magnitude and φ(l) represents the phase which indicates the di-

rection of the magnetization pointing in the transverse plane. The MR image we are

interested in is m(l) depicting the spatial distribution of the transverse magnetization.

Actually the signal received by the external coil when the RF pulse is turned off can be

obtained as the integration over the entire volume:

s(t) =
∫

R
m(l)e−i2πk(t)ldl,

where the received signal s(t) is the Fourier transform of the object m(l) sampled at

the spatial frequency k(t). In other words, the MR image of spatial energy in recon-

structed from data acquired in the frequency domain or the so called K-space, and this

is different from traditional optical imaging where pixel samples are measured directly.
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Figure 4.4: The MRI machine

Constructing a single MR image commonly involves collecting a series of frames

of data along a trajectory in k-space, called data acquisitions. The image resolution is

mainly determined by the size of the sampled region in k-space. Generally a larger

sampling region gives higher resolution; the supported field of view (FOV) is deter-

mined by the sampling density in k-space, and generally a larger objects require a

denser sampling to meet the Nyquist rate. Violation of Nyquist rate will cause artifacts

in the reconstruction. The sampling pattern or the k-space trajectory for data acqui-

sition is also a source affecting the reconstruction quality. So far the most popular

trajectory used in clinical imaging the straight lines from a Cartesian grid. The recon-

struction for this sampling pattern is very simple and can be achieved via inverse Fast

Fourier Transform (IFFT). Besides other sampling patterns are also used, including the

sampling along the radial lines (Figure 4.1) and along the spiral trajectories. Radial

acquisition are less susceptible to motion artifacts than Cartesian trajectories [GJ92]

and can be significantly under-sampled [KJ98]. So this fits the CS features very well

and our partial reconstruction based on it. Spirals make efficient use of the gradient

system hardware, but such non Cartesian trajectories are more complicated, requiring

a k-space interpolation scheme, e.g. griding [JA91].

The data acquisition process becomes the main obstacle to imaging speed. And

since the sampling speed is limited by physical constraints, reducing the amount of
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Figure 4.5: The wavelet coefficients for 256×256 Cameraman image (left), the sparsity
zoom in a window (right)

required data becomes a possible way to reduce imaging speed. Therefore compressive

sensing application in MRI is a potential way to reduce the amount of data without

hurting the quality of the image. Basically, a successful CS application needs to meet

several requirements, which include sparsity or transformed sparsity structure in the

underlying objective, the incoherence sampling pattern to the sparsity transformation,

and an efficient nonlinear reconstruction algorithm which should be able to enforce the

sparsity and reconstruct the image in an economic way.

Actually, the MR imaging fits the CS requirements very well. First, the spar-

sity of most of MR images are successfully realized by representing the image in an

appropriate transform domain, such as wavelets (Figure 4.5). As we know, a natural

image can be mapped into a vector of sparse coefficients. The image can be approx-

imated by the linear combination of the most significant coefficients while ignoring

the smaller ones. Second, although the coherence is very low for the full random

sampling, sampling a truly random subset of k-space is generally impractical for the

hardware and physiological constrains. On the other hand, most of the energy in MR

images are concentrated around the center of k-space and rapidly decays towards the

periphery (Figure 4.7), and uniform random sampling does not take this into account.

So realistic sampling should be denser around the center in k-space, and the radial lines

trajectory matches this very well. For more detailed discussion on incoherence we re-
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Figure 4.6: Instead of taking the full set of sample in K-space, the partial sampling is
taken along the trajectory which has more density in center and less density at outside,
and use its back-projection as the observation and inputed into the nonlinear solver, and
by minimizing the wavelet coefficients and TV of the impinge we finally have an image
reconstructed via partial data without hurting the quality.
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fer [MJ07a]. Third, the main theme of this work is developing an efficient numerical

algorithm for preserving the sparsity of the underlying objective. In the following, we

will demonstrate the numerical performance of the proposed algorithm in reconstruct-

ing MR images. A fully numerical comparison with other existing packages is also

presented.

4.2.2 Comparison with RecPF and SparseMRI packages in reconstructing MR

images using partial Fourier data

For the convenience of our discussion, we give Algorithm 8 the name ALSR (Aug-

mented Lagrange Sparse Reconstruction). In this section, we present numerical simu-

lations on reconstructing the MR images with the ALSR as well as on the numerical

performance of two other existing algorithms: a nonlinear conjugate gradient method

based algorithm SparseMRI [MJ07a], and alternating direction method based algorithm

RecPF [YY08]. Both methods are regarded as efficient Compressive Sensing algo-

rithms for reconstructing MR images from partial Fourier data, specifically SparseMRI

is an early application of CS in MR imaging and RecPF is a fast algorithm possessing

the speed of FFTs. All three algorithms ALSR, SparseMRI and RecPF can be used to

solve the TV-`1 regularized model:

min
u

α||ΨT u||`1 +βTV (u) (4.4)

s.t. Fpu = b,

where Fu denotes an orthonormal partial Fourier operator, that is FT
u Fu = I.

SparseMRI aims to solve the equivalent unconstrained version of (4.4) with

regularization parameter r as:

f (u), α||ΨT u||`1 +βTV (u)+
r
2
||Au−b||2, (4.5)

with a nonlinear conjugate gradient method with backtracking line search, where the
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Figure 4.7: The energy in MR images are concentrated around the center of k-space
and rapidly decays towards the periphery

gradient of (4.5) is expressed as:

5 f (u) = α5||ΨT u||`1 +β5TV (u)+ rAT (Au−b),

In practical implementation the absolute value is approximated wit a smoothing param-

eter µ , for instance |x| ≈
√

x2 +µ and its gradient can be expressed as d|x|
x ≈

x√
x2+µ

,

where µ ∈ [10−15,10−6]. SparseMRI relaxes the non-differentiability of the TV and

`1 via a smoothing parameter and terminates when the Euclidean norm of the gradient

|| 5 f || 6 tol. The implementation enjoys a simple process, but this algorithm per-

forms much slower than the other two methods. RecPF is a fast algorithm for solving

the TV-`1 regularized problem (4.4) based on the alternating direction method. Start

from the UN-constraint problem (4.5), by introducing slack variables while penaliz-

ing the discrepancy between the slack variables and the TV and `1 terms respectively,

the unconstrained objective function is separated into several subproblems with closed

form solution that can be represented via 2D shrinkage. After each slack variable is

updated, u can be updated with respect to fixed values of slack variables. The rou-

tine will keep updating the slack variables and the objective variable u alternatively till

the stopping criteria is satisfied. Mathematically, denote the 2-D shrinkage as sr(y) =

y
||y|| .∗max{|y|− r,0}. The slack variables v,w can be updated via vk+1 = sr(DT uk) and

wk+1 = sr(|ΨT uk|) with fixed value of uk. Then one solves for u with the updated slack
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variables wk+1 and vk+1 from a quadratic problem uk+1 = argminu Qr(u ;vk+1,wk+1)

that minimizes the total discrepancy.

We need to point out that both RecPF and ALSR are operator splitting methods

in updating the variables alternatively and take advantage of the fast shrinkage operator

in computation. RecPF processes the image without breaking its structure so that it

can take advantage of fast 2D operations in Matlab implementation, especially uk+1

can be solved via three FFTs by taking the advantage of structured circulant iteration

matrix. But if the image is vectorized and processed as a one dimensional signal, RecPF

encounters difficulties and the circulant structure will not exist in this case. ALSR is

generally based on the augmented Lagrangian methods. The step for updating the

dual variable leads to a way for analyzing the convergence rate, and an optimal rate

of convergence can be obtained theoretically. Besides ALSR processes the image in

a more general way of vectorizing it as a one dimensional signal and each pixel can

be processed in parallel. In the step for solving for u, the iteration matrix is a BTTB

matrix and an optimal block wise circulant approximation is used as a preconditioner

in the conjugate gradient routine and a fast matrix vector multiplication is achieved

via a FFTs. Last, the choice of stopping criteria used in RecPF requires to evaluate

the sub-differential of each subproblem to terminate the routine when their maximum

value falls to a certain level, while ALSR simply terminates the routine if the function

can not bring any striking decrease.

Experiment 1: Brain reconstruction

Brain scans are the most common clinical application of MRI, which can detect a vari-

ety of conditions of the brain such as cysts, tumors, bleeding, swelling, developmental

and structural abnormalities, infections, inflammatory conditions, or problems with the

blood vessels. It can determine if a shunt is working and detect damage to the brain

caused by an injury or a stroke. MRI of the brain can also be useful in evaluating prob-
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lems such as persistent headaches, dizziness, weakness, and blurry vision or seizures,

and can help to detect certain chronic diseases of the nervous system, such as multiple

sclerosis. In some cases, MRI can provide clear images of parts of the brain that can not

be seen as well with an X-ray, CAT scan, or ultrasound, making it particularly valuable

for diagnosing problems with the pituitary gland and brain stem.

In this part, our main objective is to test the application of CS to brain images

collected in a clinic. Figure 4.8 (a) and Figure 4.9 (a) are the 256×256 and 512×512

brain images of a full Nyquist sampled data set. We compare the performance of three

packages sparseMRI, RecPF and ALSR on reconstructing the two brain images with

partial Fourier data collected in the k-space along the radial lines depicted in Figure

4.8 (b) and Figure 4.9 (b). As we know, CS can be used to reduce the amount of the

sampling without hurting the quality of the images when the requirements of the CS

are satisfied. For the applications here, the brain images shows a transformed sparsity

in wavelet domain as Figure 4.5. On the other hand, according to the result in Figure

4.8 (d)-(f) and Figure 4.9 (d)-(f), the sampling pattern of radial lines matches the char-

acteristics of k-space frequency distribution very well although the incoherence is hard

to prove.

From Figure 4.8 and Figure 4.9, the three packages works well on partial re-

construction, the last rows in both two figures focus on a special part of the brain in

the reconstructed images, and from the images in the second row from the last, we can

easily identify the improvement on the contrast of the tissues, the denoising as well as

the deblurring. These two figures are the reconstruction with 28% partial Fourier data,

although the quality of the reconstruction in each package is similar, the processing

times are significantly different. SparseMRI requires 48.3s for restoring a 256× 256

images and 152.3s for restoring a 512× 512 image, but ALSR and RecPF shows a

much better performance with respect to speed. These two require only around 6s for

restoring a 256×256 image and 24s for the 512×512 images. This is mainly because
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Figure 4.8: Figure (a)-(l) depicts a 256 × 256 Brain Imaging Reconstruction via the
packages ALSR, sparseMRI and RecPF. We take 28% partial Fourier data in the k-
space along radial lines as (b), the back projection image (c) has SNR = 9dB, and the
SNR in reconstructed images (d)-(f) are enhanced to SNR = 32dB within 6.1s, 48.3s
and 6.2s via ALSR, sparseMRI and RecPF respectively. Zoom in part of the back
projection of the brain with additional Gaussian background noise, we see that all three
packages reconstruct the image from partial data with comparable visual quality, the
contrast are enhanced the noise level is reduced to SNR = 32dB.
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Figure 4.9: Figure (a)-(l) depicts a 512 × 512 Brain Imaging Reconstruction via the
packages ALSR, sparseMRI and RecPF. We take 28% partial Fourier data in the k-
space along radial lines as (b), the back projection image (c) has SNR = 9dB, and the
SNR in reconstructed images (d)-(f) are enhanced to SNR = 28dB within 24.2s, 152.3s
and 23.1s via ALSR, sparseMRI and RecPF respectively. Zoom in part of the back
projection of the brain with additional Gaussian background noise, we see that all three
packages reconstruct the image from partial data with comparable visual quality, the
contrast is enhanced, and the noise level is reduced, yielding SNR = 28dB.
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the nonlinear conjugate gradient method converges much slower, and the high nonlin-

earity of the TV operator also slows down the gradient methods, while the operator

splitting methods show favorable properties for these large scale problems.

Experiment 2: 3D Angiography Reconstruction

Magnetic resonance angiography (MRA) is a technique based on Magnetic Resonance

Imaging (MRI) mainly used to image blood vessels, such as the images of the arteries

in order for evaluating them for stenosis, occlusion or aneurysms. MRA is often used to

evaluate the arteries of the neck and brain, the thoracic and abdominal aorta, the renal

arteries, those in arms and legs. Traditionally, to enhance the contrast of the vessels and

blood, before the MR scanning the patient needs to be injected a MRI contrast agent

and images are acquired during the first pass of the agent through the arteries.

The CS is particularly suitable for angiography. Since in angiography there are

only bright areas in blood vessels and a very low background signal, it appears to be

sparse in the image domain. Furthermore it also shows a well transformed sparsity

under the wavelet transformation and finite differences. On the other hand, since the

angiography often needs to cover a very large FOV with relative high resolution, this

will be a time consuming process and the amount of the collected data for reconstruct-

ing the images of this kind is huge. Hence MRA requires a scheme of under-sampling

to save scanning time and a fast sparsity enforcing algorithm to enhance the contrast

and preserve the sparsity within the acceptable time.

In this part, we mainly test the behavior of the proposed algorithm ALSR and

the CS applications in reconstructing the angiograms with respect to various under-

sampling rates. The numerical experiment aims to reconstruct an angiograms of the

peripheral legs via under-sampling a full Nyquist rate MR data set collected in k-space,

the data matrices was set to 128×128×64 with corresponding resolution of 1×0.8×

1 mm.
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Figure 4.10: The 128×128×64 3D Angiography reconstruction via 64 slices covering
1×1× .8mm region, the partial data is sampled via the trajectory that distributed along
the radial lines in each slice.

4.2.3 Conclusions

We have presented the details of the implementation of the proposed algorithm ALSR

for sparse optimization as well as its application for rapid MR imaging. We pre-

sented the numerical experiments for reconstructing 2D and 3D MR images via ALSR,

sparseMRI and RecPF, and the results show present that all three packages can exploit

the sparsity of the images and reduce the scanning time significantly via undersam-

pling in k-space. The brain imaging experiments demonstrate that the imaging speed

of ALSR and RecPF are comparable and these two are much faster than sparseMRI.
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Figure 4.11: Figure depicts an Angiograms of leg, reconstructed via the packages
ALSR, sparseMRI and RecPF. We test the behavior the packages under various under-
sampling rates. The first row is full Nyquist rate image of a slice and the whole scanned
section. The images from the second row to the last rows are the 3D angiograms recon-
structed via undersampling in k-space. The sparseMRI, ALSR and RecPF enhanced
the contrast, and as more sample are involved in the reconstruction, more tiny vessels
appear. This shows all three packages can enhance the contrast while preserving the
sparsity very well. But the imaging speed time varies a lot to reconstruct the images in
the last row, sparseMRI takes 96.2s, ALSR 67.1s, RecPF 65.2s.
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Besides, the undersampling in k-space will not hurt the quality of the images when the

conditions of CS are satisfied.
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Chapter 5

Source Localization Detection with Sparse Reconstruction

In this chapter, we present a general framework for the source localization detection

using sparse reconstruction. We first introduce the mechanics of the uniform linear ar-

ray (ULA) and the relative waveform. Next we develop a well designed over-complete

basis so that the problem can be reformulated as an inverse problem with sparse under-

lying variables. An efficient and robust algorithm using sparsity enforcing regulariza-

tion for both single time and joint time observations are proposed in the following. We

will carry out a series of numerical experiments to show how the proposed algorithm

works. Finally we compare the proposed algorithm with some existing packages. At

the same time some practical issues of the source localization will be covered.

5.1 Introduction to source localization detection and some existing non-parametric

methods

A major application of sensor arrays is the estimation of parameters of the impinging

signal. Parameters to be identified include number of signals, magnitudes, frequencies,

direction of arrival (DOA), distances and speeds of the signals. The source localization

detection has been active and playing a fundamental role in signal processing and the

DOA detection arises in many applications, including spectral estimation, signal recon-

struction, signal classification and tomography. In this paper, we mainly focus on the

detection of DOA [MA05] [IB97] [J.J01] for the narrow band signal in the far field with

the uniform linear array. In this case, the wavefront formed by the signal can be treated

as planar, that is the distance is irrelevant, and the relative simple array geometries can

easily pose the array signal representation as sparse [DD93] [S.N01].

The location of a point in three dimensional space is defined by range, azimuth

and elevation. The range is often measured by the return time of travel in active systems
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Figure 5.1: The result of Source localization detection with Lp-TV regularization based
on 200 joint time samples. Spatial spectra of three sources with DOA’s of 30◦,80◦,130◦

and SNR = 12dB

and the relative time of delay among a number of sensors. The azimuth and elevation

are obtained from the measurements of DOA by the sensor array [S.N01]. So the DOA

detection plays an important roles in signal processing. The goal of source localization

is to detect the DOA of wave-fields that impinge on an array consisting of a number of

sensors. This task can be approached by sampling the spatial and temporal wave-field,

which includes the variation of the time evolution of the sources’ energy locations.

Here we use the sensor array composed of multiple sensors instead of a single sensor

this mainly because the array can bring an apparent improvement in the signal to noise

ratio (SNR), the possibility of electronic steering and the robustness of the estimations.

After the required information is collected from the array, we can form an appropriate

mathematical model and detect the DOA of the impinging signal by solving this model

by an appropriate numerical method.

Generally speaking, the DOA estimation methods can be classified into two
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Figure 5.2: The uniform linear array consists of M equal spaced sensor with K imping-
ing narrowband signals. Our goal is to detect the unknown impinging degree of arrivals
(DOA) of the narrowband signals and the unknown number of sources K via the M
sensor output corrupted with strong background noise.

main categories, namely spectral-based (Non-parametric) approach and Parametric ap-

proach. The principle of the parametric methods is to maximize the power of the

beam-forming output for a certain given input signal. Different power definitions result

in different spectral-based algorithms, such as Capon [J.C69] and MUSIC [R.O81].

The parametric methods, which are known as maximum likelihood (ML) methods, are

based on the selection of the likelihood function obtained from the different models

to be estimated. The deterministic ML algorithm assumes that the signal waveform is

deterministic but unknown, while the stochastic ML algorithms assumes that the signal

waveform is a Gaussian random process. In our work, we follow a different approach

by posing the array signal representation as sparse under an overcomplete basis, and

complete the detection by solving a regularized inverse problem.

The approach to DOA detection by exploiting the sparsity of the underlying

signal under a specific overcomplete basis, is made by taking advantage of the geometry

of the ULA. We define the signal impinging on the array as zero in all sampling grid

points except at the grid points where the energy is detected by the sensor array. In this

way, we actually pose the problem as the estimation of a sparse vector with 0−1 entries

under a specific atom of the limited data collected by the sensor array. This indicates
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that it is possible to reformulate the DOA detection problems as an inverse problem

with sparse underlying variables, and the underlying unknowns can be reconstructed

with the aid of regularization.

Using the sparse reconstruction [S.S99] and Compressive Sensing (CS) [D.L06]

[E.C06] to improve the estimation performance and robustness in sensor array process-

ing with presence of noise, are gaining more and more popularity. A signal is sparse

when it contains a small number of nonzero components, that is the `0-norm of the

underlying variables is minimized. But minimizing the number of nonzero leads to a

combinatorial problem that is NP-hard. It is well known that the `1-norm minimization

is an ideal alternative approach [S.S99] [WY08] to enforce the sparsity and is more

tractable computationally [E.C06] [E.C04] [EY07]. We found that under certain condi-

tions, the `p-norm, where 0 < p < 1, shows even better properties in restoring the sharp

features and can beat the `1 norm in the source localization application. A detailed

discussion on the DOA detection using the sparsity regularization will be given in the

following sections.

5.2 The uniform linear sensor array and waveform

The uniform linear array (ULA) is one of the most commonly used array geometries

in large military phased array systems, such as sonars and radars. A wavefront propa-

gating across the array is captured by the sensors, and each sensor can make an output

which is simply a delayed replica of the original waveforms. An array signal is formed

and the outputs can be combined in some optimal manner so that the coherent signal

emitted by the source is received and other additional inputs are discarded as much as

possible.

Consider a ULA consisting of M sensors placed on an equispaced linear grid

along the x-axis with distance d to each other. Let fm(t), m = 0,1,2, · · · ,M−1 denote

the outputs of the m-th sensor, and assume that the signal arrives at successive sensors
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with an incremental delay. Suppose the output of the first sensor is f0(t) = f (t). Then

the output of the m-th sensor is fm(t) = f (t −m M t), where M t denotes the relative

delay in each sensor. The m-th sensor output in the frequency domain can be obtained

via the Fourier transform:

fm(t) =
1

2π

∫ +∞

−∞

f̂ (ω)e jω(t−mMt)dω, (5.1)

where the frequency representation f̂ (ω) is given by the inverse Fourier transform

f̂ (ω) =
∫ +∞

−∞

f (u)e− jωudu.

Traditionally, the direction of arrival (DOA) of the impinging signal is measured

with respect to the normal to array aperture, and denoted by θ . Suppose the frequency

of a wavefront propagating in a certain medium is ω , and the relative speed is c, then

the delay time M t between consecutive sensors can be represented as M t = d
c sinθ .

Let w0,w1, · · · ,wM−1 be a set of weight coefficients for the beamformation. The beam

outputs of the array in terms of the weighted sum of each sensor output is given by

f (t) =
M−1

∑
i=0

wi fi(t) =
1

2π

∫ +∞

−∞

f̂ (ω)e jωtdω

M−1

∑
i=0

wie− jωm d sinθ

c , (5.2)

where R(θ), ∑
M−1
i=0 wie− jωm d sinθ

c is the so called array response function defined only

by the nature of the ULA. As we know, a narrow-band signal fnb(t) can be represented

as

fnb(t) = A(t)cos(ωt +ϕ(t)), (5.3)

where the envelope A(t) and phase ϕ(t) are slowly varying. cos(ωt) is a rapidly varying

sinusoid (here we only take the cos(ωt) case as an example, actually it also can be

sin(ωt) or both) with carrier frequency ω . Then the narrow-band signal fnb(t) in (5.3)

can be defined as:

fnb(t) = fi(t)cos(ϕ(t))− fq(t)sin(ϕ(t))

where fi(t) = A(t)cos(ωt) and fq(t) = A(t)sin(ωt) are the inphase and quadrature

components, respectively. Suppose a general complex analytical signal is denoted as
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fc(t) = fi(t)+ j fq(t). Then a narrow-band signal delayed by a quarter period
T
4

can be

represented as the sum of inphase and quadrature components as follows:

fnb(t−
T
4
) = fi(t)cos(ω(t− T

4
))− fq(t)sin(ω(t− T

4
)) (5.4)

= fi(t)sin(ωt)+ fq(t)cos(ωt).

Hence a complex analytical narrow-band signal can be expressed through a process

referred to as quadrature filtering:

fnb(t)+ j fnb(t−
T
4
) = fi(t)+ fq(t)+ j( fi(t)sin(ωt)+ fq(t)cos(ωt))

= fi(t)e jωt + j fq(t)e jωt

= fc(t)e jωt ,

and the relative output of the ULA shown in (5.2) for the narrow-band case can be

expressed in a matrix format.

Suppose a beam output of the m-th sensor is represented via a quadrature filter

as:

fm(t) = fnb(t−m
d sinθ

c
)+ j fnb(t−m

d sinθ

c
− T

4
)

= fc(t)e jω(t−m d sinθ

c ),

In this case, the relative time delay in the m-th sensor {t−md sinθ

c } is measured with re-

spect to the distance from the first sensor to the m-th sensor and appears in the complex

sinusoid. If the the output of the first sensor is f0(t) = fc(t), then the phase correction

of the initial sensor jωt in each of the sensor can be dropped and the relative m-th

sensor response with respect to the initial sensor can be simplified as

e− jωm d sinθ

c ,m = 0,1, · · · ,M−1.

Therefore, the output of the m-th sensor for the narrow-band single source is given by:

fm(t) = fc(t)e− jωm d sinθ

c , where m = 0,1, · · · ,M−1, (5.5)
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Let us consider a snapshot vector f T (t) =< f0(t), f1(t), · · · , fM−1(t)>. Each of

its component fi(t) represents the output of each sensor taken at the same time instance

t. If there are N narrow-band sources radiating simultaneously, then the array output

can be expressed as a linear combination of the type (5.5) as follows:

f (t) =
M−1

∑
m=0

fm(t) =
M−1

∑
m=0

fci(t)e
− jωm d sinθ

c , i = 0,1, · · · ,N−1, (5.6)

where f T
c (t) =< fc0(t), fc1(t), · · · , fc(N−1)(t) > is a complex signal associated with the

N narrow-band sources. Mathematically, we can rewrite the array representation (5.6)

into a compact format:

f (t) = a(θ0) fc(t) (5.7)

where a(θ0) = e− jωm d sinθ0
c ,m = 0,1, · · · ,M− 1 is the array response representing the

propagation effect of the medium on a wavefront across the array. Generally we can

rewrite equation (5.7) into a more compact form as:

y(t) = A(θ)u(t)+N(t) (5.8)

where A(θ) = [a(θ0),a(θ1), · · · ,a(θN−1)] is the array response matrix representing the

underlying DOA of the impinging narrow-band signal, and each of its column a(θi) is

referred as the steering vector which steers the array to the direction θi, y(t)∈CM×1 is a

snapshot of the array output and used as the observation, N(t) ∈CN×1 is the additional

noise and u(t) ∈ N×1 is an underlying complex signal reflecting the the source among

the N possible directions.

It is worth to point out that in (5.8) θ = [θ0,θ1, · · · ,θN−1] is an unknown signal

parameter reflecting the DOA of N narrow-band sources, and each component of the

vector s(t) reflects the signal in the direction pointing to θ . However, for the broadband

source we have to work in the frequency domain instead of the temporal domain and

the array output can be represented as a function fm(ω,θ) (5.1) via Fourier transform,

and (5.8) becomes y(ω) = A(ω,θ)s(ω)+N(ω). In this work we mainly focus on the
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development of the DOA estimation method in the narrow-band case and the model

(5.8) plays a core role in DOA estimation.

5.3 The overcomplete basis and sparse signal representation

In last section, we reformulated the array output of N narrow-band signals into a com-

pact matrix format (5.8). In this section, we will modify the setting of the ULA and

form an overcomplete basis by redefining some parameters of the array and the im-

pinging signals, such that the underlying signal coming from the N sources has a trans-

formed sparsity under this basis. We will also deal with the joint time problem, which

is a natural generalization of the source localization problem, to process the multiple

measurements in the temporal domain.

We notice that the manifold matrix A(θ) in equation (5.8) is parameterized

by the DOA, which is going to be determined by the measurements collected from the

ULA, and the relative complex variable u(t) reflects the signal coming from the specific

direction indexed with θis. Here we can consider to adapt the definitions of parameters

in model (5.8) to make u(t) sparse under a deterministic under-determined basis, and

finally get an inverse problem as well as an efficient numerical solution that can lead to

a robust estimation of the degree of arrival.

Traditionally, the degree of arrival θ is measured with respect to the normal

to array aperture, and it uses the first sensor along the positive x-axis as the phase

center. Then the associate output delay from the following consecutive sensors can be

expressed by M t = d
c sinθ , where θ ∈ [−π

2 ,
π

2 ]. Now suppose the aperture of the array

can receive the impinging signal from all directions it faces to, then we can change

the definition of the impinging angle θ and redefine it as the angle from the array

aperture along the positive x-axis to the impinging signal. In this way, the range of

θ becomes [0,π] and the relative delay of each consecutive sensor becomes M t =

d
c cosθ . Let us take θ̃ = {θ̃0, θ̃1, · · · , θ̃N−1} as all possible source locations that the
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aperture of the sensor can cover, and use each θ̃i as grid points from which sensors

in ULA collect the data. Then the signal u(t) impinging on the aperture are not zero

at a few griding points θ̃i when the true DOA coincident the griding point, otherwise

it is zero. Since the number of the sources is small compared with the number of

gird points N, this indicates that u(t) has only a few nonzero components comparing

with the total number of the sampling points. Hence, in this way, the sensing matrix

A(θ̃)= [a(θ̃0), · · · ,a(θ̃N−1)] becomes deterministic, denoted by A, and each it’s column

a(θ̃i) are the so called steering vectors reflecting the signal steered in the direction θi.

Represented under this basis, the underlying N× 1 signal field, denoted by u(t), is k-

sparse. Therefore the single time model (one snapshot vector indexed by time t) can be

expressed as:

y(t) = A(θ̃)u(t)+n, (5.9)

where the N× 1 vector u(t) is the underlying variable which is sparsely represented

under the deterministic manifold matrix A(θ̃) ∈ CM×N . It needs to be pointed out

that M is the number of sensors in ULA and N the number of the grid points which is

naturally much greater than M. Then the steering vectors in A(θi) form an overcomplete

basis. In practical implementations, we can shift the phase center to the midpoint of the

ULA such that the sensor outputs are symmetric at the both sides of the phase center,

and the relative distance from the pth sensor to the phase center is (p− M−1
2 )d, the

associate time delay of the consecutive sensor are measured in terms of the distance

from the each sensor to the phase center. In this setting, we can rewrite the relative

sensing matrix A(θ̃) in (5.9) as:

A(θ̃)pq = a(θ̃q)p =e− jω(p−M−1
2 ) d

c cos θ̃q, (5.10)

where p = 0,1, · · · ,M−1,

q = 0,1. · · · ,N−1.

Here it is worth to point out that, since the sensor position is symmetric to the array
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center, the associated sensing matrix A(θ̃) in (5.10) is hermitian, that is AH = A, and

it’s eigenvalues λ (A) are real valued.

The model (5.9) treats the underlying signal energy as the function of the hy-

pothesized source location, and the energy spectrum of the underlying signal u(t) is

sparse. A similar philosophy of transforming the underlying signal into a sparse rep-

resentation under a deterministic overcomplete basis to estimate the signal parameters

is presented in [MA05][IB97][J.J96][S.S99]. This application is application was get-

ting more and more popular in sensor array processing. In our work, we mainly focus

on developing numerical algorithms based on the sparse reconstruction techniques and

compressive sensing for solving the inverse problem (5.9) for both the single time data

(when T = 1) and the multiple time data (when T ≥ 1).

5.4 The inverse problem with multiple measurement vectors and its numerical

solution

We formulate the DOA detection model as a classic linear inverse problem (5.9) with

sparse underlying unknowns. Although the single snapshot processing may have its

own applications, usually in sensor array processing the multiple snapshot observation

data is of more practical importance. In this case, the multiple time measurement

Y = [y(t0),y(t1), · · · ,y(tT−1)]

collected by the sensor array is a time series of the impinging signals, and the compo-

nents in each column y(ti) ∈ CM×1 are the spectrum in each grid point in the spatial

domain, the data in each row are the outputs of the associated sensor with respect to

the moments t0, t1, · · · , tT−1 of collecting the data. Mathematically, the model of DOA

estimation with multiple measurement can be expressed as:

Y = AS+N, (5.11)
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where the deterministic M×N steering matrix A determined by the physics of the array

is the same as the one defined in (5.9), but the measurement Y = {y(t0), · · · ,y(tT−1)}

is the observation of multiple snapshots taken at each moment {t0, t1, · · · , tT−1}, and

N ∈ CM×T is the additive Gaussian white noise whose elements in each column are

the noise in the snapshot of the relative moment. In this multiple snapshot problem,

the underlying unknowns S ∈CN×T become 2-D and reflect the impinging signal from

the DOA θ̃i at each time ti. Our main goal in this section is to exploit the numerical

solution of the source localization with joint time model (5.11) through the idea of

sparsity enforcing regularization and compressive sensing.

5.4.1 The joint measurement model and compressive sensing

Naturally we may think of treating each time index ti ∈ {1,2, · · · ,T} separately and

transform the joint time model (5.11) into T single time models (5.9). Then we would

have a set of T solutions {ŝ(ti)|y(ti) = Aŝ(ti)+ n(ti), i = 0, · · · , tT−1} by solving each

of T single time models. Using all the information brought by the solution of each

single time model ŝ(ti) and remove the redundancy in temporal domain by statistic

methods or other ways to form an estimator representing the unique estimation on the

source locations of the impinging signal. Usually there are several ways to reduce

the redundancy and form an efficient estimation on the source locations from the T

solutions ŝ(ti), such as, taking the mean and find out the peaks, using cluster analysis

or some other ways in statistics. Apparently treating each time index separately is not

practical, inefficient and not robust numerically. Especially, when the observation data

has high noise level or is large scale in the temporal domain, the computation load

of this scheme is dominated by the cost of solving each T inverse problems and is

linearly proportional to the dimension in temporal domain; on the other hand, since

the data collected at different time ti are processed separately, the final estimation will

become highly sensitive to the additional noise in the observation y(ti). Alternatively,
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we may consider to reduce the redundancy of data Y in the temporal domain first, and

then find out a robust way of estimating the source locations from (5.9) while avoid

processing the data collected in different time separately. In this work we propose a

simple way of reducing the redundancy of the joint time observation, leading to a new

robust estimation on the source locations utilizing Compressive Sensing (CS) and the

application of the sparsity enforcing regularization.

CS [D.L06][E.C06][E.C04] is a way of reconstructing an underlying unknown

which has potential sparsity or transformed sparsity under a overcomplete basis. The

whole process of the CS consist mainly of the encoding and decoding steps. In the en-

coding step, let the vector u denote a signal of interest. Ψ denotes a known sparsifying

basis such that u = Ψs has a sparse representation under Ψ. Here sparse means that

there are only a small number of nonzero entries in s and the others are zero. Then

we can solve for s by minimizing a `1-norm related problem in the decoding process

such that the underlying unknown u can be reconstructed by using the measurement y

of a linear projection of u onto Φ, that is the linear measurement y is obtained from

y = Φu = ΦΨs, and usually y is the partial sampling of the whole underlying ob-

ject. The main result of CS states that when the matrix ΦΨ possesses the of restricted

isometric property (RIP) [E.C06], then u can be reconstructed exactly with high prob-

ability by solving an l1-norm related linear programming

min
s

||s||`1 (5.12)

s.t. y = As,

where A = ΦΨ, (5.12) is known as the basis pursuit [S.S99]. The model (5.12) can be

easily extended to the joint time case: the relative unknowns becomes S ∈CN×T , which

is a matrix with each row representing the estimation of the spectrum at one grid point

with respect to all the moments, and each column of S representing the estimation of the

source location for the specific one snapshot. So we may pursuit the sparsity of S along
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each of its columns, but the row vector reflecting the spectrum in the temporal domain

is not sparse necessarily. Let si = ∑ j ||Si j||22 denote the Euclidean norm of the i-th row

of S. This leads to a scheme of minimizing ||s||`1 = ∑i |si| = ∑i

√
∑ j ||Si j||22 such that

the error is minimized. Mathematically, we can write this joint sparse reconstruction

model as:

min
S

∑
i

√
∑

j
||Si j||22 (5.13)

s.t. Y = AS.

The joint sparsity reconstruction model and related numerical algorithms are discussed

in [JX06][E.B09][J.J04][MY08][SKD05]. In our work, we will try to use a different

way to reduce the redundancy of the data in the temporal domain and a different func-

tional to detect the source localization.

The source localization problem can be formulated into a problem with sparse

underlying unknowns represented under the adapted overcomplete basis (5.10), the CS

is suitable for solving this problem. Since A ∈CM×N in (5.12) is determined by the re-

sponse of the ULA as well as the physics of the sensor array, the sensing matrix A does

not change as the dimensionality in temporal domain increases. So for the stationary

source, both the single time and joint time measurement problems have the same sens-

ing matrix. Our goal is to find out a sparse vector representing an aggregate estimation

of the source locations of the impinging signals such that the error of the detection is

minimized based on the given joint time measurement Y and the array response. In

this case, all the snapshots {y(ti), i = 0, · · ·T −1} imply the same spectrum distribution

in the spatial domain. Then instead of solving the joint measurement problem (5.16),

we can consider to minimize the number of nonzeros of the spectrum of the source

locations, while minimizing the level of the mean square error of the estimated source

locations regarding to the measurement of each snapshot

MSE =
1
T

T−1

∑
i=0
||As− y(ti)||22.
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This approach is more robust with respect to noise, more economical in the compu-

tational effort compared with the model (5.16) and more suited to the physics of the

source localization problem. Let the N×1 vector s denote the spectrum of the source

in the spatial domain. Then the sparse joint measurement model (5.16) can be rewritten

as:

min
s

Hreg(s) (5.14)

s.t.
1
T

T−1

∑
i=0
||As− y(ti)||22 ≤ ε,

where ε → 0 is a small positive value controlling the noise level, the functional Hreg(·)

is the regularization determined by the prior knowledge of the underlying objective, and

in practice, it is not limited to the `1-norm. Other regularization, such as Total Variation

or `p-norm may even perform better in some circumstances. We need to point out that

the dimension of the underlying variable s in (5.14) does not increase with increasing

measurements in the temporal domain, but the dimension of the underlying variable S

in (5.16) will increase as more data in the temporal domain get involved. On the other

hand, the model (5.14) controls the noise level by using the mean square error of the

sample from each time ti with equal weight as the constraint, and the relative compu-

tational load does not increase with increasing numbers of temporal samples. Besides,

using different regularization or their combinations Hreg(s) as the objective function

leaves more freedom to the user, and the specific regularization can be determined

based on the prior knowledge of the underlying object, and the relative computational

issues for dealing with various regularization also raised at the same time. Therefore,

an efficient and robust numerical algorithm is needed, and in the following section, we

mainly focus on the development of numerical methods for solving model (5.14) with

respect to various conditions of the DOA detection problem.
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5.4.2 The regularization

We want to find a sparse solution satisfying the constraint condition by solving the

model (5.14) with the regularization Hreg(s), which is a functional of the underlying

variable. Naturally, minimizing the `0-norm of s may be a possible way to pursue the

optimal solution.The `0-norm is defined as:

||s||0 , lim
p→0

∑
i
|si|p,

however, using the `0 regularization to minimize the number of nonzero entries is an

integer program and this will lead to a NP-hard problem [B.K95][MD79], its numer-

ical solution is practically untractable. Alternatively, we may consider to use other

norms which permit a reliable numerical solution in place of the `0-norm. The `1-norm

(when p = 1) has been widely used as an alternative of the `0-norm for its convexity

and tractability in computation. Many algorithms for solving the `1-norm regularized

inverse problem have been proposed, such as [dBM07][EY07][J.A06][JA05][MS07b]

[MS07a][RM01] .etc.

From the definition of the `p-norm, we notice that as p approaches 0 the optimal

solution becomes the sparsest. Although the `1-norm approximation performs better in

numerical computation, generally the solution derived from the `1-norm regularization

is not as sparse as in the `0 case. Here we may think of a norm with 0 < p < 1 in the

hope that this `p-norm can provide a solution that is sparser than the `1-norm case and

more tractable in computation than for the `0-norm. Actually, it is reasonable to expect

the solution derived from the `p-norm to be sparser, since it is a tighter approximation

to the `0 norm. It must be pointed out that `p-norm is not a true Euclidean norm

since the triangle inequality is not satisfied. The `p-norm regularization is non-convex,

and we can only expect to obtain a local optimum, instead of the global one. But

according to our numerical experiments, the non-convexity is not an obstacle in our
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Figure 5.3: The optimal solution x̂ = (x1,3− 3
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T of the underde-
termined linear system (5.12) under the lp norm regularization. When p = 2, the x̂ is
not sparse; when p = 1 the solution is sparse; but when p = 0.5 the solution x̂ is even
sparser than the case p = 1.

source localization problem.

Next, we give an intuitive example to state how `p-norm performs in exploiting

the sparsity of the solution of a full row rank linear system. By comparing with other

norms (p = 1,2) we can easily see that the lp-norm implies a sparser solution. Let us

consider an underdetermined linear system:


0.4

2
3

0 0

0.4 0 4 0

0.4 0 0 8





x1

x2

x3

x4


=


2

2

2

 (5.15)

and its solution:

x̂ = (x1,3−
3
5

x1,
1
2
− 1

10
x1,

1
4
− 1

20
x1)

T .

We notice that the solution of this system is not unique, and when x1 = 5, the solution
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x̂ = (5,0,0,0)T attains the sparsest form. Let us define the p-th power of the `p-norm

of the solution to this linear system (5.15) as:

||x̂||pp , |x1|p + |3−
3
5

x1|p + |
1
2
− 1

10
x1|p + |

1
4
− 1

20
x1|p. (5.16)

We can try to choose various p values to compare the sparsity of the solution regularized

under each norm. When p = 2, the minimum energy of this linear system is reached at

x1 = 1.357, and the relative `2-norm regularized solution is

x̂`2 = (1.357,2.1858,0.3643,0.2432)T ,

apparently this is not sparse. Figure 5.3 depicts the solutions of the linear system (5.15)

regularized by various norms and from it we notice that: when p = 1, the optimal

solution is of the linear system is reached at x1 = 0, and the relative solution

x̂`1 = (0,3,0.5,0.25)T ,

is sparser than x̂l2; if we set p = 0.5, the `p-norm regularized solution of the solution of

this linear system is reached at x1 = 5, and the relative solution

x̂`p = (5,0,0,0)T ,

is the sparsest one, which is the sparsest case according to theory. As a closer approx-

imation to the `0-norm, `p-norm regularization shows a better properties on exploiting

the sparsity than the `1-norm.

Another regularization of our interest is the Total Variation [LE92], which has

been widely used in many areas of image sciences for its nice properties of enhancing

sharp edges and restoring discontinuities. Let u(x,y) denote the observed intensity

function of a pixel value in a noisy image, where x,y ∈Ω. The TV-norm of this image

can be expressed as:

TV (u) =
∫

Ω

√
u2

x +u2
ydxdy, (5.17)
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and its related discretized version is given by

TV (u) = ∑
i, j

√
u2

x(xi,y j)+u2
y(xi,y j) (5.18)

where (xi,y j) ∈ Ω are the grid points in the image domain. In signal precessing, the

TV-norm of the 1-D signal is equivalent to the l1-norm of the finite difference of the

underlying variables along the grid points:

TV (s) = ∑
i∈Ω

|si+1− si|, (5.19)

in this way, the magnitude of the jump is not penalized by the denoising. The Figure

(5.4) shows how the TV-norm works on preserving the jump: let f (x) and g(x) represent

two piecewise smooth functions with g(x) having a sharper discontinuity. Then the

value of the TV-norm of the function f is equal to the magnitude of the jump,

TVf =
∫ b

a
| h
b−a

|dx = |h|. (5.20)
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As the jump size g(x) gets sharper as a approaching b, the limit value of this TV-norm

approaches the jump size of the function f (x),

TVg = lim
ε→0

∫ a+ε

a
|h
ε
|dx = |h|. (5.21)

So the TV-norm preserves the magnitude of the jump while removing the aliasing.

Motivated by the comparison of `1 and `p norms, we may also consider redefine the

TV norm by using the `p norm and expect to penalize the noise more while preserving

more tiny sharp features in the underlying objects. Some of the related work can be

found in [Cha07].

In the DOA detection problem, since the number of the sources are sparse com-

pared with the number of all potential ones that we check, and the jump discontinuity

with strong background noise also appears, we can consider to use the TV-norm to pre-

serve this block structure. Besides, minimizing the finite differences of sensor response

of the consecutive grid points makes the magnitude of the sensor responses between

two sources as small as possible, so that the TV-norm is very helpful to identify close

distributed sources. Hence based on prior knowledge of the underlying signal we may

consider to use a combination of the `p-norm and TV-norm as the regularization to

pursue a desired estimation.

5.4.3 The joint measurement reconstruction algorithm using Lp-TV regularization

In the joint time source localization problem, the observation Y = {y(t1), · · · ,y(tT )} is a

time series of the sample collected from the spatial domain. It is preferable to combine

the samples covering up to time T and form one aggregated observation on the source

location by taking the benefit of all the samples of the stationary source y(ti) reflecting

the the location of the same sources. In practice, we use the average of Y over the time

index ti as the observation:

Ȳ =
1
T

T

∑
i=1

y(ti), (5.22)
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to avoid processing T snapshots individually and the complexity of the problem is

reduced greatly. We will show this way is robust and efficient by a number of numerical

experiments in the following section. Besides, we know that the underlying DOA is

sparse represented under the overcomplete basis (5.10), and both the `p and TV-norm

are well suited for improving the sparsity and enhancing the resolution while removing

the noise and preserving the jump magnitude. Therefore we use the weighted sum

of the `p-norm and TV-norm as our objective function and detect the DOA through

minimizing this function represented as:

min
s

w1||s||pp +w2TV (s) (5.23)

s.t. ||As− Ȳ ||22 ≤ ε,

where w1, w2 are the weight coefficients of the `p and TV terms, and these fixed co-

efficients leave the freedom for the user to customize the parameter values. These

parameters can be used to adapt characteristics of specific problems such that make

the reconstruction reach an ideal quality. It is known that the problem (5.23) can be

converted into an unconstrained problem as:

min
s

F(s), w1||s||pp +w2TV (s)+
λ

2
||As− Ȳ ||22, (5.24)

where 0 < p < 1, λ is a penalty parameter, and we know that as λ → ∞ the problem

(5.24) is equivalent to (5.23).

The 1D discretized total variation term TV (s) in (5.24) can be rewritten as:

TV (s) = ∑
i

√
(Dis)2, (5.25)

where D ∈ RN×N is the finite difference operator, where Dis , si− si−1 denotes the

forward finite difference on the i-th entries in s, it can also be viewed as the ith row of

the matrix D. However, the TV-norm is not suitable for numerical computation because

of its non-differentiability. So we can add a slack variable and make the TV-norm a
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smooth function as below:

ψ(t) =
√

t + ε,

where the constant ε → 0+ is the smoothing parameter, and ψ(t) ≈ |t|. Then in this

way, the discretized TV norm can be approximated as:

TV (s)≈∑
i

ψ([Dis]2), (5.26)

in practice, we can choose the smoothing parameter ε ∈ (10−10,10−5). Now the deriva-

tive of the approximated TV norm (5.26) with respect to the si can be expressed as:

∂TV (s)
∂ si

=
Dis

ψ([Dis]2)
− Di+1s

ψ([Di+1]2)
, (5.27)

and the gradient of the TV term can be rewritten in a matrix form as:

∇TV (s) = DT
Λ(s)Ds. (5.28)
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where the diagonal matrix Λ(s) ∈CN×N is defined as

Λ(s), diag{ψ
′
([Dis]2)}, where i = 1, · · ·N.

It is worth to point out that the TV-norm can also be implemented by using the lp-norm

as:

TVp(s) = ∑
i
||si− si−1||p.

We can also use a similar technique as we introduced above to remove the non-differentiability

in TVp(s), and since the `p-norm performs even better in exploiting the sparsity than

`1-norm, we would expect the jump to be even sharper with the aid of TVp(s).

Next we can in a similar way make the `p term in (5.24) smooth such that its

derivative is approachable. We insert an additional slack variable to smoothen the `p-

norm (0 < p < 1). Mathematically the approximated `p term can be written as:

||s||pp ,∑
i
|si|p ≈∑

i
(s2

i + ε)
p
2 , (5.29)

where ε → 0+ is the smoothing parameter and the approximated `p-norm becomes

differentiable. Hence, the derivative of the smoothened `p term in (5.24) is expressed

as:
∂ ||s||pp

∂ si
≈ p

(s2
i + ε)1− p

2
si. (5.30)

If we define λi =
p

((si)2 + ε)1− p
2

, then the gradient of the `p term (0 < p < 1) is ex-

pressed in matrix formate as:

∇||s||pp , Qε(s)s, (5.31)

where the N×N iteration matrix Qε(s) is diagonal, and defined as

Qε(s) =



λ1

λ2

. . .

λN


.
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Now we are ready to introduce our algorithm for minimizing the unconstrained

problem (5.24). We can find the minimizer of the unconstrained problem by finding

the zeros of its gradient. Since the underlying variable s ∈ CN×1 can not be isolated

from its derivative in both the TV part and `p part, we can consider to approximate

the iteration matrix by using the current value sk and leaving the separable s as the

unknown and solving this system to update sk and iteratively bring it to the next round

of computation till the discrepancy ||sk+1− sk|| reaches the stopping tolerance. In this

way, the gradient of the TV term at the k-th iteration can be expressed as:

∇TV (sk) = DT
Λ(sk)Dsk+1 , Hε(sk)sk+1, (5.32)

where the iteration matrix is defined as Hε(sk), DT Λ(sk)D. Similarly, the underlying

variable s ∈ CN×1 can be separated from the gradient of the `p term. The gradient of

the fidelity term is expressed as:

∇Fid(sk+1) = ∇||Ask+1− Ȳ ||22 (5.33)

= AT Ask+1−AT Ȳ ,

Now we define the derivative of each part in the objective function (5.23). At the k-th

step, the iteration matrix of the gradient of the unconstrained problem (5.24) is given

by:

Φε(sk) = Hε(sk)+Qε(sk)+λAT A, (5.34)

and the first order necessary optimality condition of the problem (5.24) is given by:

∇F(sk+1) = Φε(sk)sk+1−λAT Ȳ = 0. (5.35)

So minimizing (5.24) is equivalent to solving the equation (5.35) for sk+1 in the k-th

iteration. We can summarize our algorithm as below:

It is worth to point out that the linear equation (5.35) can be solved by the

conjugate gradient method. We can simply form a diagonal matrix whose diagonal
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Algorithm 9 The Framework of Source Localization for the joint time data

Require: A ∈CM×N ,Y = y(t1), · · · ,y(tN),s0 ∈CN×1,w1,w2,λ ,ε
1: Set the parameter values w1, w2, λ , ε

2: Set Ȳ = 1
T ∑i y(ti)

3: Initialize: s0 = AT Ȳ
4: Set k← 0
5: while not converge do
6: Solve equation (5.35): Φε(sk)s = λAT Ȳ
7: Set {sk+1|Φε(sk)sk+1 = λAT Ȳ}
8: Update k← k+1
9: end while

are the diagonal entries of the Jacobian matrix Φε(sk), and use it as the preconditioner

of the CG method, since this matrix is diagonally dominant and the preconditioned

iteration matrix may have eigenvalue close to one. The value of penalty parameter

λ can be a fixed appropriate value which ensures the convergence of the routine. In

practice a warm start scheme [EY07] for updating the value of this penalty parameter

are suggested. Besides, a similar way of linearizing the gradient of the total variation

was used by Vogel and Oman in [CM96][CM98] and this method was referred as the

lagged diffusive fixed point iteration, and several proofs of the convergence of this

algorithms appear in [APL97][DC97][G.A94].

5.5 Implementation and numerical experiment

In this section, we take a series of numerical experiments and presents the numerical

results of our proposed `p-TV method for solving the source localization problem. The

discussion covers the regularization parameter selection, the comparison with other

algorithms, such as L1-SVD, and some other concerns on the numerical performance

of the algorithm such as the robustness of the proposed algorithm with respect to the

SNR, number of snapshots .ect.
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Figure 5.6: From the figure (a)-(i), we compare the detection results under different
parameter values and shows how the parameter selection affects the detection result. In
this experiment, there are three independent sources [35◦,100◦,120◦] and SNR= 22dB.
When λ = 0.2 the detection are completely failed since the regulation parameter is too
small and the noise is not penalized enough; when λ = 4.9e9, the true DOA is hardly
identified, in this case the parameter is too large and noise is over penalized such that
some tiny jump maybe brought by the noise become striking.
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5.5.1 Regularization parameter selection

In the unconstrained model (5.24), the regularization parameter λ balances the tradeoff

between the sparsity and the fidelity term ||As−Ȳ ||22. The choice of this parameter will

directly affect the numerical performance of the algorithm. Unfortunately, so far this

issue is still an open problem especially for the case when the statistics of the noise is

unknown. For the problem with quadratic objective function, such as the Tikhonov reg-

ularization, it is possible to express the error of the estimation explicitly in terms of the

regularization parameter λ , and the parameter value can be determined by certain opti-

mal principles [A.N63a][AV97][D.L62][R.V02]. However, for the problem with non-

quadratic objective function, it is not easy to find out such explicit formula to determine

how λ balances the tradeoff. Some well known numerical methods for determining the

optimal regularization parameter have been proposed [AD91][MP93][P.C98].

In practice, with too small parameter values the reconstruction is too smooth,

but with too large parameter value, the reconstruction shows highly oscillatory artifacts

due to noise amplification, as Figure (5.6) shows. If the statistics of the noise is known,

a method named discrepancy principle is applicable. The idea of this method is to seek

a regularization parameter λ such that

1
N
||Aŝλ − Ȳ ||2f ≈ E||N||2f = σ

2, (5.36)

the variance of the estimated error is minimized, where ŝλ is the solution of (5.24) for

a given value of λ . Solving the parameter λ from the equation (5.36) requires solving

the problem (5.24) for all possible λ s, which is rather difficult. On the other hand, if we

have no prior knowledge on the statistics of the noise, the choice of the regularization

parameter is still impossible via this method.

The L-Curve method [MP93][PD93][P.C92] is a more practical numerical way

to determine the optimal value of the regularization parameter. The L-Curve is the
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Figure 5.7: It shows that at the corner of the curve, that is, where the regularization
parameter λ = 3.4172, the tradeoff between minimizing the objective function and
fitting the fidelity condition is balanced optimally.

plot of the log of the squared norm of the regularized objective function against the

square norm of the relative residual for a range of values of the parameter λ . This

curve typically has a L shape, and if the parameter λ is too small, the solution ŝλ

may not fit the fidelity requirement, but if the value is too large, the algorithm will be

expensive and some unexpected and minor features in the noise will be amplified. So

the regularization parameter value corresponding to corner of this curve is the one that

balances the tradeoff optimally. Besides, this method does not depend on any prior

knowledge on the statistics of the noise and more practical.

The optimal choice of the regularization parameter given by the L-Curve method

is shown in Figure (5.7). This numerical experiment is based on the number of sensors

M = 18 and snapshots T = 200, and the weight of lp term is w1 = .6, the weight of TV

term is w2 = .4. Then a range values of the regularization parameter λ ∈ [0.2,7.4e9]

are tested and a L-Curve is formed by the relative path of the parameter value λ . In

Figure(5.7), a particular L-shape for the plot of the value of the objective function
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Figure 5.8: The experiments consist of M = 18 sensors, N = 180 1◦ grid points and
SNR = 22dB. Each case finally detects the true DOA [30◦,100◦,120◦] successfully, but
the computational load is affected by the regularization parameters, where the bad case
costs as three times as the good case.

against the fidelity with respect to various values of λ ∈ [0.2,7.4e9]. In this experiment,

60 trails are taken and around the corner of this plot where the parameter λ = 3.4721,

the tradeoff is balanced optimally. This Figure (5.6) gives an intuitive example about

how the parameter value affects the detection result and we notice that in some cases

with a bad value of the parameter, the detection fails.

Table 5.1: The convergence speed with various regularization parameter values.

SNR=22dB, w1 = 0.6, w2 = 0.4
Case λ TotaIter Obj RelErr(%)

1 5 2855 28.364 1.94
2 1e2 3282 37.300 1.94
3 1e3 4925 43.819 1.79
4 1e5 7900 42.514 1.85

The selection of the regularization parameter can affect the convergence speed.

If the parameter is too large, the convergence will be slow due to the amplification of
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the fidelity term. In the Figure (5.8) and Table (5.1), we tested four different parameter

values: λ = 5,1e2,1e3,1e5. All these four cases finally cease at the same noise level,

but apparently as the parameter value increases, more iterations are required, in other

words, the computational load is increased dramatically as λ increases. It is worth to

point out that, the case λ = 5 performs best according to the Table (5.1), and the value

λ = 5 is close to the optimal parameter value estimated from the L-Curve method as

Figure (5.7).

5.5.2 Comparison with L1-SVD

The L1-SVD is a method for solving the joint time source localization problem, and it

was proposed by D.Malioutov, M.Cretin and A.S.Willsky [MA05] in 2005. It applies

the principle component analysis to the joint time measurement and only keeps the

signal subspaces by using an user’s assumption on the number of the underlying the

sources. Then the redundancy introduced by the increased amount of the data in the

temporal domain is reduced. This way avoids the increased computational load as more

of the samples in the temporal domain are collected. However, on the other hand this

scheme requires a prior assumption on the underlying number of sources and this way

may not be practical, although the author claims that the algorithm is not so sensitive

to this prior guess.

The method L1-SVD contains three main steps: the dimensionality reduction,

forming the joint sparsity objective function, and detecting the implied sparsity via `1-

norm minimization. First the M×T observation matrix Y is decomposed into signal and

noise subspaces by the singular value decomposition (SVD). Next, a certain number of

dominant singular values are kept, and the remaining less important singular values are

dropped, where the amount of the so called important singular values is determined by

the user’s knowledge of the number of the sources or a simply a guess on it; Then the

reduced problem is reformulated into an inverse problem with joint sparsity underlying
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variables with much smaller dimensionality than the original one; Finally, the prob-

lem is reformulated into a second order cone programming and solve with a SOCP a

solver. Suppose Y ∈ CM×T denotes a joint time sample Y = [y(t1), · · · ,y(tT )] and is

decomposed via the SVD Y = ULV T , when there is no additional noise in the sensor,

the {y(ti)}T
i=1 lies in a K-dimensional subspace, where K is the number of sources de-

termined by the user in advance. Then it is reasonable to keep the K subspaces instead

of T , where K� T , to detect the right linear combinations of the column vectors in A,

such that the underlying sparse signal can be represented in this way. Mathematically,

this process can be expressed as

Ysv =ULDk = YV Dk, (5.37)

where Dk = [Ik 0] is composed by a K×K identity block and a K× (T −K) zero

block, the similar operation can also be applied to the M × T underlying matrix S

and the noise N, such as, Ssv = SV Dk and Nsv = NV Dk. Now the source localiza-

tion problem becomes Ysv = ASsv +Nsv. Since the underlying variable Ssv is sparse in

the spatial domain (the column), the `2-norm of the row vectors in Ssv is defined as

s(`2)
i = ∑

K
j=1

√
(Ssv

i j )
2, ∀i, and the sparsity of the N×1 vector s(`2) can be estimated via

minimizing the l1-norm regularized problem:

min
Ssv
||s(l2)i ||1 +λ ||ASsv−Ysv||2 (5.38)

In [MA05], the transforms posed the problem (5.38) into a second order cone program-

ming and solve with Sedumi. The key steps of the L1-SVD is summarized in Algorithm

10.

Algorithm 10 The L1−SV D procedure

Require: Given the joint time sample Y = [y(t1), · · · ,y(tT )]
1: Compute the SVD: Y =ULV ′

2: Reduce the dimensionality: Ysv , YV Dk, Ssv = SV Dk
3: Forming an `1-norm regularized inverse problem (5.38)
4: Reformulate (5.38) into second order cone programming and solve it via SeDuMi
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The robustness of the algorithms

The proposed algorithm shows more stability and robustness in numerical computation

than L1-SVD, and in this section we compare the proposed Lp-TV algorithm with L1-

SVD in the robustness with respect to the noise level, robustness to the number of

snapshots as well as the sensitivity of the two schemes with respect to various values

of the regularization parameter λ .

Experiment.1 : We compare the robustness of the two algorithms to the noise.

We consider a uniform linear array of M = 18 sensors. Three narrowband signals

with DOA [50◦,75◦,132◦] in the far field impinge on this array, and a total number

of snapshots T = 200 are taken. The noise level are measured as signal to noise ratio

(SNR) defined as

SNRdB = 10∗ log10(
||Y || f ro

Var(N)
), (5.39)

where ||Y || f ro is the Frobenius norm of the joint time sample, Var(N) is the variance

of the additive noise. This ratio measures the level of desired signal to the level of

the background noise. We run both two algorithms to detect the DOA with respect to

various SNR and compare the probability of successful detection of the same source lo-

cations. Here each of our data points is based on 20 independent trails. In Figure (5.9),

the Lp-TV performances more robust with respect to varying noise level, especially

in the case of high noise level. We notice that at SNR = −10dB, the Lp-TV still can

detect the DOA successfully with certain probabilities, but L1-SVD completely fails in

the detection when SNR≤ 2dB; at SNR =−5dB, the Lp-TV can detect the DOA suc-

cessfully with probability one, however the L1-SVD is still not working at this noise

level. Figure (5.9) shows that the proposed algorithm works much better especially

under extremely strong background noise, and the range of SNR that the L1-SVD can

work with is limited compared with Lp-TV. Although both algorithms work well under

mild noise level, we can conclude that the Lp-TV shows more robustness to the noise.
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Figure 5.9: The probability of correct detecting three source as a function of SNR,
where M = 18 sensors, T = 200 snapshots and the true DOA [50◦,75◦,132◦]

Experiment.2 : Next we compare the robustness of the two schemes to the num-

ber of snapshots. Intuitively the more snapshots we take, the more accuracy we should

have, but this will need more time and the relative cost for collecting the data maybe

also increased. In this experiment, we consider both problems for the mild noise level

such that the effects of the noise are not taken into account. Let’s consider a ULA with

M = 18 sensors, three narrowband signals from DOA [50◦,75◦,132◦] impinge the array,

and set SNR = 21dB since from Figure (5.9) both algorithms work well at this level of

noise. The experiment is accomplished by doing the detection on the impinging DOA

with varying the number of snapshots to compare the probability of success. Each data

is based on 20 independent trails. In Figure (5.10), both Lp-TV and L1-SVD show

poor ability of detection when a single snapshot is taken. But as more measurements

in the temporal domain are involved, at T = 5 snapshots, the probability of success in

Lp-TV get increases rapidly, while L1-SVD also increases but much slower; The L1-

SVD detection can not give a reliable detection until the number of snapshots is over

50, but the Lp-TV scheme can provide a reliable detection results when the number of

snapshots reaches T = 15.
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Figure 5.10: The probability of correct detecting three source as a function of num-
ber of snapshots, where M = 18 sensors, SNR = 21dB snapshots and the true DOA
[50◦,75◦,132◦]

Experiment.3 In this experiment, we test how the regularization parameter λ

affects both schemes. In the above discussion, we know that in some cases it is not

easy to find an optimal value, although this value plays a key role in the reconstruction.

In Figure (5.8), the Lp-TV shows the convergence with respect to a wide range values

of λ ∈ [3,1e5]. We set these two schemes in same situation and compare how they react

to various λ values. In Table (5.2), each entry is the averaged error based on 20 trials,

where the relative error with respect to the regularization parameter λ is defined as

RelErrλ =
||ŝλ − strue||
||strue||

.

At the mild noise level(SNR = 40dB or 20dB), for the Lp-TV scheme, the number of

snapshots becomes the major factor of affecting the error, such as when SNR = 40dB,

T = 200 snapshots, as the regularization parameter λ varies from 3 to 1e5, the relative

error of Lp-TV varies between [2.5%,3.5%], in other words, this scheme is robust to

the regularization parameter; on the other hand, the relative error of L1-SVD varies

between [4.8%,8.3%] and it performs more sensitively to the λ value than Lp-TV.

When the background noise becomes strong (SNR = 5dB), the λ brings more variation
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Table 5.2: The comparison of the sensitivity to the regularization parameter λ .

SNR = 40 dB, M = 18
Lp-TV L1-SVD

HHH
HHHT

λ
3 5 10 1e2 1e3 1e5 3 5 10 1e2 1e3 1e5

1 0.578 0.432 0.527 0.480 0.312 0.462 0.447 0.4191 0.4265 0.3772 0.4734 0.4221
10 0.121 0.131 0.112 0.129 0.127 0.122 0.119 0.1161 0.1308 0.1744 0.1573 0.1793
100 0.045 0.037 0.037 0.032 0.031 0.053 0.063 0.0494 0.0500 0.0774 0.0920 0.0935
200 0.027 0.025 0.028 0.030 0.029 0.035 0.083 0.0452 0.0487 0.0678 0.0856 0.0827

1000 0.013 0.015 0.013 0.016 0.018 0.021 0.033 0.0332 0.0359 0.0339 0.0477 0.0585
SNR = 20 dB, M = 18

Lp-TV L1-SVD
HH

HHHHT
λ

3 5 10 1e2 1e3 1e5 3 5 10 1e2 1e3 1e5

1 0.772 0.593 0.645 0.764 0.927 0.982 0.616 0.652 0.792 0.863 0.734 0.722
10 0.111 0.099 0.121 0.124 0.304 0.316 0.198 0.254 0.332 0.358 0.334 0.339
100 0.025 0.039 0.039 0.039 0.076 0.112 0.072 0.082 0.162 0.191 0.195 0.204
200 0.034 0.029 0.036 0.036 0.062 0.082 0.051 0.071 0.121 0.167 0.161 0.164

1000 0.013 0.015 0.019 0.019 0.040 0.053 0.039 0.056 0.054 0.111 0.120 0.112
SNR = 5 dB, M = 18

Lp-TV L1-SVD
H

HHH
HHT
λ

3 5 10 1e2 1e3 1e5 3 5 10 1e2 1e3 1e5

1 —– —– —– —– —– —– —– —– —– 0.983 —– —–
10 0.496 0.668 0.678 0.940 —– —– 0.704 0.836 0.922 0.852 0.931 0.885
100 0.032 0.039 0.049 0.299 0.591 0.631 0.446 0.420 0.446 0.431 0.458 0.454
200 0.024 0.028 0.033 0.134 0.404 0.652 0.329 0.365 0.360 0.394 0.372 0.386

1000 0.014 0.014 0.018 0.035 0.146 0.189 0.121 0.189 0.228 0.256 0.261 0.253

to the relative error, such as when T = 200 snapshots are taken, the relative error in

the Lp-TV scheme varies from 2.4% to 65.2%, and λ = 1e3,1e5 are bad options for

this case. But, the relative error in L1-SVD maintains at a high level around 32% for

all λ values; if we further increase the snapshots to T = 1000, both schemes perform

well for all λ values, and Lp-TV still has much lower relative error than L1-SVD in

this situation. General, according to the Table (5.2), Lp-TV shows more stability and

accuracy than L1-SVD with respect to all the λ values we considered in the problem.

5.5.3 The super-resolution in Lp-TV and L1-SVD

In this section we compare the ability of resolving the closely distributed sources with

the Lp-TV and L1-SVD. The proposed Lp-TV algorithm shows a good ability to re-

solve close sources over L1-SVD, due to the use of the Total Variation norm. Let us

consider a problem with a ULA consisting of M = 18 sensors, the SNR = 21dB and
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Figure 5.11: Lp-TV and L1-SVD resolve the DOA [65◦,75◦,132◦] successfully, where
M = 18, SNR = 21dB, T = 200
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Figure 5.12: Lp-TV and L1-SVD resolve the DOA [70◦,75◦,132◦] successfully, where
M = 18, SNR = 21dB, T = 200

T = 200 snapshots.

First we try to resolve the DOA [65◦,75◦,132◦], the two closely spaced sources

at 65◦ and 75◦ are 10◦ apart. Both Lp-TV and L1-SVD resolve the sources successfully

Figure (5.11). But in Figure (5.12), when we apply the two schemes to detect the

DOA [70◦,75◦,132◦] where the two closely spaced sources are just 5◦ apart, the Lp-TV
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Figure 5.13: Lp-TV and L1-SVD resolve the DOA [72◦,75◦,132◦] successfully, where
M = 18, SNR = 21dB, T = 200

resolves these 5◦ sources successfully, but a fat lobe appears in the L1-SVD detection

and the resolution is apparently not as good as Lp-TV.

Furthermore, we push the DOA of the sources even closer with 3◦ apart and

apply the two schemes to resolve the DOA [72◦,75◦,132◦]. The Figure (5.13) shows

the result: the Lp-TV can detect the two close spaced sources and one far source suc-

cessfully and accurately, but in this case the L1-SVD fails to resolve the two closely

spaced sources.

5.6 Conclusion

We present a simple but efficient algorithm using `p-norm and TV regularization for

source localization. We reformulate the ULA detecting problem into an expression of

sparsity, and propose a fast and efficient algorithm for detecting the source location.

The results of the numerical experiments show that the algorithm is robust to noise and

a wide range of regularization parameters. Besides, the comparison with the L1-SVD

demonstrates that the proposed algorithm has better properties in the robustness and

especially possesses the ability to resolve closely distributed sources.

111



Chapter 6

Future Work

The optimal regularization parameter selection is still an open problem for nonlinear al-

gorithms and this issue can not be ignored, although we have shown that ALSR is robust

to wide range value of r. Another issue is proof of incoherence when applying the CS

in sparse MR imaging. Actually, so far the incoherence issue has been proved perfectly

only for the random matrices, such as Gaussian random matrix and random Fourier

matrix [D.L06] [E.C06], but in MR imaging the random sampling may encounter some

difficulties because of the physical constraints and the limits of the equipment; on the

other hand, as we know an ideal sampling pattern should take denser samples in the

center of the k-space and less dense at the outer parts. The results of the our exper-

iments show that undersampling in k-space will not degrade the quality, but we still

need to find a way to show the incoherence theoretically when we use various sampling

patterns. The proposed source localization algorithm using TV and `p-norm results in

a high resolution and can identify closely distributed sources perfectly, but due to the

use of nonconvex programming we can not guarantee to find a global minimizer.
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A.1

%The demo f o r t h e s p a r s e r e c o n s t r u c t i o n
% demo ALSR .m
c l c ; c l e a r ;
f p r i n t f ( ’ P r e p a r i n g f o r t h e i n i t i a l da t a ’ )

%r e a d t h e phantom f o r s i m u l a t i o n
Im = phantom ( 1 2 8 ) ;
Im = Im . / max ( Im ( : ) ) ;
[m, n ] = s i z e ( Im ) ;

%G e n e r a t e t h e s a m p l i n g o p e r a t o r
i n d e x = f f t s h i f t ( MRImask (m, 3 0 ) ) ;
i n d e x = f i n d ( i n d e x ) ;
Mea = l e n g t h ( i n d e x ) ;
S e l e c = speye (m∗n ) ; S e l e c = S e l e c ( index , : ) ;
f p r i n t f ( ’\ n %i%% f o u r i e r d a t a a r e used ’ . . .
, round (100∗Mea /m/ n ) )

%g e n e r a t e t h e random sample i n k s p a c e
FIm= f f t ( Im ( : ) ) / s q r t (m∗n ) ;
f = S e l e c ∗FIm ;

%g e n e r a t e t h e w h i t e n o i s e
s igma = 0 . 0 0 1 ;
n o i s e =sigma ∗ ( r andn ( Mea , 1 ) + s q r t ( − 1 ) . . .
∗ r andn ( Mea , 1 ) ) ;
%random p a r t i a l f o u r i e r d a t a
f = f + n o i s e ;

%i n i t i a l g u e s s
u0 = r e a l ( i f f t ( Se lec ’∗ f )∗ s q r t (m∗n ) ) ;
% Wavele t t r a n s f o r m a t i o n o p e r a t o r
W = @( x ) Wavedb1Phi ( x , 1 ) ;
WT = @( x ) Wavedb1Phi ( x , 0 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%S e t up a l l t h e p a r a m e t e r s
aTV = 2 ; aL1 = 1 ; r =1 e2 ;
l a r g = ones ( l e n g t h ( f ) , 1 ) ;

%p a r a m e t e r f o r u p d a t i n g t h e l a r g
rho = 4∗ r ;
%t h e s o l v e r
[ u cg , ImEr ro r cg , T o t a l I t e r c g , Obj cg , F id cg , I m t c g ] . . .
= s o l v e r c g (m, n , r , Se lec ,W,WT, u0 , f , aTV , aL1 , l a r g , rho ) ;
[ u , ImError , T o t a l I t e r , Obj , Fid , I m t ] . . .
= s o l v e r P r e c o n (m, n , r , Se lec ,W,WT, u0 , f , aTV , aL1 , l a r g , rho ) ;
f p r i n t f ( ’\ n ’ ) ;
U cg= r e s h a p e ( u cg , [ m, n ] ) ; U= r e s h a p e ( u , [ m, n ] ) ;
U0= r e s h a p e ( u0 , [ m, n ] ) ;
S N R i n i t = s n r ( U0 , Im ) ;
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S N R f i n a l = s n r (U, Im ) ;
f p r i n t f ( ’ I n i t i a l SNR:% f dB ’ , S N R i n i t ) ;
f p r i n t f ( ’\ n Enhanced SNR:% f dB\n ’ , S N R f i n a l ) ;
f i g u r e ( 1 )
p l o t ( I m t c g , I m E r r o r c g / norm ( Im) , ’−− ’ , ’ LineWidth ’ , 2 )
ho ld on
p l o t ( Im t , ImEr ro r / norm ( Im ) , ’ LineWidth ’ , 2 )
t i t l e ( ’ R e c o n s t r u c t i o n E r r o r ’ )
x l a b e l ( ’CPU Time ’ )
y l a b e l ( ’MSE’ )
g r i d on
l e g e n d ( ’CG I t e r ’ , ’CG−Precon I t e r ’ )
s e t ( gca , ’ FontName ’ , ’ Times ’ , ’ Fon tS i ze ’ , 1 6 )
ho ld o f f
f i g u r e ( 2 ) ;
s u b p l o t ( 2 2 1 ) ; imshow ( Im , [ ] ) ;
t i t l e ( ’ O r i g i n a l ’ ) ;
s u b p l o t ( 2 2 2 ) ; imshow ( U0 , [ ] ) ;
t i t l e ( s p r i n t f ( ’ Back P r o j e c t i o n SNR:%ddB ’ . . .

, round ( S N R i n i t ) ) ) ;
s u b p l o t ( 2 2 3 ) ; imshow ( U cg , [ ] ) ;
t i t l e ( s p r i n t f ( ’CG−R e c o n s t r u c t e d SNR:%ddB ’ . . .

, round ( S N R f i n a l ) ) ) ;
s u b p l o t ( 2 2 4 ) ; imshow (U , [ ] ) ;
t i t l e ( s p r i n t f ( ’CG−Precon SNR:%ddB ’ . . .

, round ( S N R f i n a l ) ) ) ;
f i g u r e ( 3 )
p l o t ( I m t c g , F id cg , ’−− ’ , ’ LineWidth ’ , 2 )
ho ld on
p l o t ( Im t , Fid , ’ LineWidth ’ , 2 )
t i t l e ( ’ R e c o n s t r u c t i o n E r r o r ’ )
x l a b e l ( ’CPU Time ’ )
y l a b e l ( ’ Fid ’ )
g r i d on
l e g e n d ( ’CG I t e r ’ , ’CG−Precon I t e r ’ )
s e t ( gca , ’ FontName ’ , ’ Times ’ , ’ Fon tS i ze ’ , 1 6 )
ho ld o f f

A.2

%genData .m
%G e n e r a t i n g t h e TV o p e r a t o r and t h e
%BCCB p r e c o n d i t i o n e r
f u n c t i o n [ D1 , D2 , diagBTTB , T fco l row , BTTB fcolrow ] . . .
= genData (m, n , S e l e c )
% I n p u t
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% m, n : t h e s i z e o f t h e imamge
% S e l e c : t h e p a r t i a l f o u r i e r o p e r a t o r
% Outpu t
% D1 D2 : t h e row and column d i f f e r e n c e
%T f c o l r o w : t h e f i r s t c o l and row of each
%b l o c k i n BTTB
% diagBTTB : t h e d i a g n a l e n t r i e s o f BTTB
% BTTB fcolrow : t h e a p p r o x i m a t e d f r i s t
c o l and row of BTTB

% f o r g e n e r a t i n g t h e p r e c o n d i t i o n e r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f p r i n t f ( ’\ n P r e p a r i n g f o r t h e Data . . . . . . \ n ’ ) ;

% g e n e r a t e t h e TV o p e r a t o r
e= ones ( n ˆ 2 , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%D1 D2 a r e t h e column and row d i f f e r e n c e
%o p e r a t o r ( good f o r l a r g e s c a l e probem ) wi th
%p e r i d o i c boundary c o n d i t i o n
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%column d i f f e r e n c e o p e r o t e r
D1= s p d i a g s ([−e , e , e ] , [ 0 , n ,−( nˆ2−n ) ] , n ˆ 2 , n ˆ 2 ) ;
%row d i f f e r e n c e
D2= s p d i a g s ([−e , e , e ] , [ 0 , 1 , − ( n−1) ] , n , n ) ;
Mtemp=D2 ; MMtemp=D2 ;
f o r i =1 : n−1

%c o n c a t e n a t e t o b l o c k d i a g n a l
Mtemp= b l k d i a g ( b l k d i a g ( Mtemp ) , MMtemp ) ;

end
D2=Mtemp ;
%BTTB m a t r i x
D i f f O p e r = D1’∗D1+D2’∗D2 ;
d i a g D i f f = d i a g ( D i f f O p e r ) ;
diagBTTB = s p d i a g s ( d i a g D i f f , 0 ,mˆ 2 , n ˆ 2 ) ;
D i f f O p e r = D i f f O p e r − diagBTTB ;
MatEig = D i f f O p e r + speye (m∗n ) ;
t = z e r o s (2∗m, 2∗ n ) ;
f o r i = 1 : n

t ( 1 :m, i ) = MatEig ( ( i −1)∗m+1: i ∗m, 1 ) ;
t (2∗m:−1:m+2 , i ) = MatEig ( ( i −1)∗m+ 1 , 2 :m) ;

end
f o r i = 1 : n−1

t ( 1 :m, ( n +1)+ i ) = MatEig ( 1 :m,m∗ ( n−i ) + 1 ) ;
t (2∗m:−1:m+ 2 , ( n +1)+ i ) . . .

= MatEig ( 1 ,m∗ ( n−i ) + 2 :m∗ ( n−i + 1 ) ) ;
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end
AtA = Se lec ’∗ S e l e c ;
% t h e f i r s t colum and f i r s t row of F ’AF
i f f t c o l = sum ( AtA , 1 ) ;
i f f t c o l = f u l l ( i f f t c o l ) ;
f c o l = i f f t ( i f f t c o l ) ;%∗ (m∗n ) ;
f c o l = f c o l ( : ) ;
f row = c o n j ( f c o l ) ; %frow ( 1 ) = 0 ;
% t h e f i r s t colum and f i r s t row of F ’AF
f c o l r o w = r e a l ( [ f c o l , f row ] ) ;
w = z e r o s (2∗m, 2∗ n ) ;
f o r i = 1 : n

w( 1 :m, i ) = f c o l r o w ( ( i −1)∗m+1: i ∗m, 1 ) ;
i f ( i == 1)

w(2∗m:−1:m+2 , i ) = f c o l r o w ( 2 :m, 2 ) ;
e l s e

w(2∗m:−1:m+2 , i ) . . .
= f c o l r o w ( ( i −1)∗m: −1 : ( i −2)∗m+ 2 , 1 ) ;

end
end
f o r i = 1 : n−1

w( 1 :m, 2∗ n−i +1) = . . .
f c o l r o w ( i ∗m+1:−1:( i −1)∗m+ 2 , 2 ) ;

w(2∗m:−1:m+2 ,2∗n−i +1) = . . .
f c o l r o w ( i ∗m+ 2 : ( i +1)∗m, 2 ) ;

end
T f c o l r o w = r e a l ( t + w ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%BTTB : used f o r g e n e r a t i n g t h e p r e c o n d i t i o n e r
BTTB = D i f f O p e r + speye (m∗n ) ;
BTTB = BTTB + diagBTTB ;
t = z e r o s (2∗m, 2∗ n ) ;
f o r i = 1 : n

t ( 1 :m, i )=BTTB ( ( i −1)∗m+1: i ∗m, 1 ) ;
t (2∗m:−1:m+2 , i )=BTTB ( ( i −1)∗m+ 1 , 2 :m) ;

end
f o r i = 1 : n−1

t ( 1 :m, ( n +1)+ i ) = BTTB ( 1 :m,m∗ ( n−i ) + 1 ) ;
t (2∗m:−1:m+ 2 , ( n +1)+ i ) . . .

= BTTB( 1 ,m∗ ( n−i ) + 2 :m∗ ( n−i + 1 ) ) ;
end
%t h e f i r s t column and f i r s t row
%from each t o e p l i t z b l o c k i n BTTB
BTTB fcolrow = r e a l ( t + w ) ;
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A.3
f u n c t i o n y = MRImask ( n , beams )

% p r o d u c e s t h e f a n MRI mask , o f s i z e n∗n ,
% beams i s t h e number o f a n g l e s
m = c e i l ( s q r t ( 2 )∗ n ) ;
aux = z e r o s (m,m) ; ima = aux ;
aux ( round (m/ 2 + 1 ) , : ) = 1 ;
a n g l e = 180 / beams ;
a n g l e s = [ 0 : a n g l e :180− a n g l e ] ;
f o r a = 1 : l e n g t h ( a n g l e s )

ang = a n g l e s ( a ) ;
a = i m r o t a t e ( aux , ang , ’ crop ’ ) ;
ima = ima + a ;

end
ima = ima ( round (m/ 2 + 1 ) . . .
− n / 2 : round (m/ 2 + 1 ) + n / 2 − 1 , . . .
round (m/ 2 + 1 ) − n / 2 : round (m/ 2 + 1 ) + n /2−1) ;
y = ( ima > 0 ) ;

A.4
% S o l v e r

f u n c t i o n [ u , ImError , T o t a l I t e r , Obj , Fid , I m t ] . . .
= s o l v e r P r e c o n (m, n , r , Se lec , . . .
W,WT, u0 , f , aTV , aL1 , l a r g , rho )

% u0 : t h e i n i t i a l image
% W,WT: a r e t h e w a v e l e t t r a n s f o r m o p e r a t o r
% m, n : a r e t h e s i z e o f t h e imamge
% be ta , h : t h e p e n a l t y p a r a m e t e r s
% S e l e c : t h e s e l e c t i o n m a t r i x
% f : t h e random sample i n t h e k s p a c e
% l a r g : t h e l a r g r a g e m u l t i p l i e r
% rho : t h e p a r a m e t e r f o r u p d a t i n g
%u = u0 ;
N = l e n g t h ( u0 ) ;
[ D1 , D2 , diagBTTB , T fco l row , BTTB fcolrow ] . . .

= genData (m, n , S e l e c ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
T o t a l I t e r = 0 ;
S t o p C r i = 1e−2;
I n n e r T o l = 0 ;
I n n e r I t e r m a x = 8000 ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
f p r i n t f ( ’\ n Now t h e d a t a i s r e a d y . . . . . . ’ ) ;
f p r i n t f ( ’\ n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’);
f p r i n t f ( ’\ n−−−−−−−−−−−− I t s t a r t !−−−−−−−−−−−−’);
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f p r i n t f ( ’\ n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’);
t ime = cpu t ime ;
I n n i t e r = 0 ; w01 =0; w02 =0;
w h i l e ( I n n i t e r < I n n e r I t e r m a x ) && ( ˜ I n n e r T o l )
w1 = s i g n ( D1∗u0 ( : ) ) . ∗ max ( abs ( D1∗u0 ( : ) ) − aTV / r , 0 ) ;
w2 = s i g n ( D2∗u0 ( : ) ) . ∗ max ( abs ( D2∗u0 ( : ) ) − aTV / r , 0 ) ;
A = r e s h a p e ( u0 , [ m, n ] ) ;
PsiTU = WT(A ) ;
PsiTU = PsiTU ’ ;
v = s i g n ( PsiTU ) . ∗max ( abs ( PsiTU)−aL1 / r , 0 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% t h e c o n j u g a t e g r a d i e n t s o l v e r ( a l l 3 s o l v e r s work ! ! )
%u1 = cg ( r , w1 , w2 , v , Se lec , . . .
% D1 , D2 , u0 , f ,W, aTV , aL1 , r , l a r g ) ;
u1 = cgBTTB ( r , w1 , w2 , v , Se lec , . . .

D1 , D2 , u0 , f ,W, l a r g , diagBTTB , T f c o l r o w ) ;
%u p d a t e t h e l a r g a n g e m u l t i p l i e r
l a r g = l a r g + rho ∗ ( S e l e c ∗ f f t ( u1 ( : ) ) . / s q r t (N)− f ) ;
I n n i t e r = I n n i t e r +1 ;
ImEr ro r ( T o t a l I t e r + I n n i t e r ) = I m E r r o r ( u1 , n ) ;
I m t ( T o t a l I t e r + I n n i t e r ) = cput ime−t ime ;
[ Obj ( T o t a l I t e r + I n n i t e r ) , F id ( T o t a l I t e r + I n n i t e r ) ] . . .

= ObjEval ( D1 , D2 , u1 , Se lec ,WT, f , aTV , aL1 ) ;
f p r i n t f ( ’\ n In %i t h i t e r a t i o n t h e O b j e c t i v e f u n c t i o n %f \
, t h e e r r o r i s %f ’ , . . .

T o t a l I t e r + I n n i t e r , Obj ( T o t a l I t e r + I n n i t e r ) . . .
, ImEr ro r ( T o t a l I t e r + I n n i t e r ) ) ;

%check t h e s t o p p i n g c r i t e r i a
t a u = s t o p t o l ( w1 , w2 , w01 , w02 , u0 , u1 ) ;
I n n e r T o l = ( t a u <=S t o p C r i ) ;
w01 = w1 ; w02 = w2 ; u0 = u1 ;
end % end i n n e r i t e r a t i o n
T o t a l I t e r = T o t a l I t e r + I n n i t e r ;
u=u0 ;
%end %end o u t t e r i t e r
t ime = cput ime−t ime ;
f p r i n t f ( ’\ n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’);
f p r i n t f ( ’\ n−−−−−−−−−−− I t i s done!−−−−−−−−−−’);
f p r i n t f ( ’\ n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’);
f p r i n t f ( ’\ n The e l a p s e d t ime i s %f ’ , t ime ) ;
f p r i n t f ( ’\ n The t o t a l number o f . . .
i t e r a t i o n s :% i ’ , T o t a l I t e r ) ;
f p r i n t f ( ’\ n The o b j e c t i v e : %f ’ , Obj ( T o t a l I t e r ) ) ;
f p r i n t f ( ’\ n The f i d e l i t y : %f ’ , F id ( T o t a l I t e r ) ) ;
f p r i n t f ( ’\ n The r i s : %e ’ , r ) ;
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A.5

%t h e p r e c o n d i t i o n e d c o n j u g a t e g r a d i e n t s o l v e r
f u n c t i o n u = cgBTTB ( lambda , w1 , w2 , v , Se lec , . . .

D1 , D2 , u0 , f ,W, l a r g , diagBTTB , T co l row )
t e v = g e n t e v ( T co l row ) ;
m a x I t e r = 20000 ;
t o l = 1e−1;
u = u0 ;N = l e n g t h ( u ) ;
PsiV=W( v ) ; PsiV=PsiV ( : ) ;
b=D1’∗w1+D2’∗w2 ; b=b+PsiV ;
b=b+ r e a l ( i f f t ( ( Se lec ’∗ f ∗ s q r t (N ) ) ) ) ;
A t r a n s p = . . .
r e a l ( i f f t ( ( Se lec ’∗ l a r g ∗ s q r t ( l e n g t h ( f ) ) ) ) ) ;
b = b− (1/ lambda )∗ A t r a n s p ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r = b−t x 2 ( tev , diagBTTB , u ) ;
e ( 1 ) = norm ( r ) ;
i t e r = 1 ;
t 1 = 1 ;
d = z e r o s (N , 1 ) ;
w h i l e ( i t e r <m a x I t e r ) && ( e ( i t e r ) / e (1)> t o l )

z = r ;
t 1 o l d = t 1 ;
t 1 = z ’∗ r ;
b e t a = t 1 / t 1 o l d ;
d = z + b e t a ∗d ;
s = t x 2 ( tev , diagBTTB , d ) ;
suma = d ’∗ s ;
t a u = t 1 / suma ;
u = u + t a u ∗d ;
r = r − t a u ∗ s ;
i t e r = i t e r + 1 ;
e ( i t e r ) = norm ( r ) ;

end
i f ( i t e r == m a x I t e r )

f p r i n t f ( ’\ n Max i t e r a t i o n s reached ’ ) ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f u n c t i o n t e v = g e n t e v ( T co l row )
t e v = f f t 2 ( T co l row ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n y = t x 2 ( tev , diagBTTB , vec )
%The f a s t m a t r i x and v e c t o r p r o d u c t
y1 = diagBTTB ∗ vec ;
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[ n1 , m1] = s i z e ( t e v ) ;
m = m1 / 2 ;
n = n1 / 2 ;
v = r e s h a p e ( vec , n ,m) ;
ev = z e r o s ( n1 , m1 ) ;
ev ( 1 : n , 1 :m) = v ;
y = f f t 2 ( ev ) ;
y = t e v . ∗ y ;
y = i f f t 2 ( y ) ;
y = y ( 1 : n , 1 :m) ;
y = r e s h a p e ( y ,m∗n , 1 ) ;
y = r e a l ( y ) ;
y = r e a l ( y+y1 ) ;
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Appendix B

THE SOURCE CODE OF LPTV
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B1
% demo source .m
c l e a r ; c l c ;

M = 18;% number o f s e n s o r s
T = 200;% number o f t ime samples
[A, Y, t h e t a s , sourceAngle , s n r ] . . .
= modelGen (M, T ) ;
%dimens ion r e d u c t i o n
y av = sum (Y , 2 ) / T;% y av i s s i z e NX1
%s e t t h e r e g u l a r i z a t i o n p a r a m e t e r s
a l p h a = . 6 ;
b e t a = . 4 ;
lambda = 2 ;
t i c ;
e l p = c g s o l v e r s o u r c e (A, y av , a lpha , be t a , lambda , . 1 ) ;
t o c ;
m e l p = 1 / max ( abs ( e l p ) ) ;
e l p = e l p . ˆ 2 ∗ m e l p ˆ 2 ;
a n g l e s = t h e t a s ∗180 / p i ;
DOA = 10∗ l og10 ( abs ( e l p ) ’ ) ;
% p l o t t h e DOA
p l o t ( a n g l e s , DOA, ’ bx− ’ ) ;
t i t l e ( s t r c a t ( ’ a n g l e s : ’ , . . .
s p r i n t f ( ’%.1 f , ’ , 1 8 0∗ [ s o u r c e A n g l e ] / p i ) , . . .
s p r i n t f ( ’N=%d , SNR:%.3 f ’ ,M, s n r ) ) ) ;
l e g e n d ( ’ Lp−reg ’ ) ;
f i g u r e ( g c f ) ;

B2
%g e n e r a t i n g t h e a r r a y o u t p u t
f u n c t i o n [A, Y, t h e t a s , sourceAngle , s n r ] . . .
=modelGen (M, T )
%I n p u t :
%M: t h e number o f s e n s o r s i n t h e a r r a y
%T : number samples i n t e m p r o a l domain
%Outpu t :
% A: t h e s e n s i n g m a t r i x
% Y: t h e m u l t i p l e measurement sample
% s t r u e : t h e t r u e DOA ( r e f e r e n c e )
% D1 : t h e column d i f f e r e n c e o p e r a t o r
w = 2∗ p i ∗250 ;
c = 330;% Speed of t h e waves i n t h e medium
% g e n e r a t e t h e s i g n a l
sourceW ( 1 ) = w;
s o u r c e A n g l e ( 1 ) = 35∗ p i / 1 8 0 ;
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sourceW ( 2 ) = w;
s o u r c e A n g l e ( 2 ) = 100∗ p i / 1 8 0 ;
sourceW ( 3 ) = w;
s o u r c e A n g l e ( 3 ) = 120∗ p i / 1 8 0 ;
f p r i n t f ( ’ True a n g l e s : \n ’ ) ;
d i s p ( [ s o u r c e A n g l e ]∗1 8 0 / p i ) ;
f o r s i g = 1 : l e n g t h ( sourceW )
s o u r c e K z ( s i g ) = −sourceW ( s i g ) ∗ . . .
cos ( s o u r c e A n g l e ( s i g ) ) / c ;
end
%number o f s e n s o r s
a r rayN =M;
% s e n s o r d i s t a n c e t o a v o i d a l i a s i n g use max w
ar rayD =2∗ p i ∗c / ( 2 ∗max ( [ sourceW ] ) ) ;
%s e n s o r p o s i t i o n s
a r r a y P z = ( ( 0 : arrayN −1)−( arrayN −1) /2 )∗ a r rayD ;

% s e n s o r n o i s e
a r r a y S i g m a = . 1 ;
t s a m p l e s = T ;
d i s p ( ’ Zero Mean ’ ) ;

%f o r t ime−a v e r a g e v e r s i o n s
x = rand ( l e n g t h ( sourceW ) , t s a m p l e s ) ;
% i n c o h e r e n c e c a s e
K = eye ( l e n g t h ( sourceW ) ) ;
x=K∗x ;
f o r s i g = 1 : l e n g t h ( sourceW )

we ig h t ( : , s i g ) = exp ( j ∗ ( a r r a y P z ’ ) ∗ . . .
s o u r c e K z ( s i g ) ) ; %∗(1/ a r r a y .N ) ;

end
ar rayY = ( we igh t ∗x ) ’ ;
n o i s e = a r r a y S i g m a / s q r t ( 2 ) ∗ . . .

( r andn ( s i z e ( a r rayY ) ) + j ∗ r andn ( s i z e ( a r rayY ) ) ) ;
s n r = −10∗ l og10 ( a r r a y S i g m a ˆ 2 / ( norm ( [ r e a l ( a r rayY ) . . .

imag ( a r rayY ) ] , ’ f r o ’ ) ˆ 2 / ( 2 ∗ prod ( s i z e ( a r rayY ) ) ) ) ) ;
a r r a y Y c l e a n = ar rayY ; %%% f o r debugg ing
ar rayY = a r r a y Y c l e a n + n o i s e ;

%g e n e r a t e t h e s a m p l i n g g r i d
d t h e t a =1;
t h e t a s = ( 0 : d t h e t a : 1 8 0 )∗ p i / 1 8 0 ;
N = l e n g t h ( t h e t a s ) ; % t h e number o f s a m p l i n g g r i d s
k z s = −max ( sourceW )∗ cos ( t h e t a s ) / c ;
A=exp ( j ∗ ( a r r a y P z ’ ) ∗ k z s ) ; % t h e M by N s e n s i n g m a t r i x
Y = arrayY ’ ;
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B3

% c g s o l v e r s o u r c e .m
f u n c t i o n r e c = . . .
c g s o l v e r s o u r c e (A, y , a lpha , be t a , lambda , p )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% min s a l p h a | | s | | ˆ p p + b e t a ∗ TV( s ) +
%\ f r a c { lambda }{2} | | As−y | | ˆ 2 2
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% A: t h e s e n s i n g m a t r i x
% y : t h e sample
% a l p h a : p a r a m e t e r o f t h e lp−norm
% b e t a : p a r a m e t e r o f t h e f i n i t e d i f f e r e n c e te rm
% lambda : t h e p a r a m e t e r o f t h e f i d e l i t y te rm
% p : t h e l p norm

mu = 1e−7; %smooth p a r a m e t e r
s = A’∗ y ;
%g e n e r a t i n g t h e f i n i t e d i f f e r e n c e o p e r a t o r
n = l e n g t h ( s ) ;
e= ones ( n , 1 ) ;
Dcol = s p d i a g s ([−e , e ] , [ −1 , 0 ] , n , n ) ;
%Dcol : t h e f i n i t e d i f f e r e n c e o p e r a t o r

Dcol ( 1 , n )= −1;
Tol = 1e−3;
s t p c = 1 ;
o u t e r I t e r = 0 ;

w h i l e s t p c
%u p d a t e t h e i t e r a t i o n m a t r i x
CgMat = lambda ∗ (A’∗A ) ;
RHS = lambda ∗ (A’∗ y ) ;
CgMat = CgMat + b e t a ∗GradTV ( s , Dcol , mu ) ;
w = GradLp ( s , p , mu ) ;
LHS = CgMat + a l p h a ∗w;
objFun = o b j E v a l (A, Dcol , s , y , a lpha , be t a , lambda , p ) ;
f p r i n t f ( ’ a t t h e %d t h round o u t e r i t e r a t i o n

t h e o b j e c t i v e i s %e\n ’ , o u t e r I t e r +1 , objFun ) ;
r e c s = s e m i c g I t e r (LHS , RHS, s ) ;
i f norm ( r e c s − s , 2 ) < Tol

s t p c = 0 ;
end
s = r e c s ;
o u t e r I t e r = o u t e r I t e r + 1 ;
end
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r e c = s ;

f u n c t i o n grad TV = GradTV ( s , Dcol , mu)
D = Dcol ;
%grad TV = 2∗ (D’∗D ) ;
d i a g P s i = s q r t ( (D∗ s ) . ˆ 2 + mu ) ;
d i a g P s i = d i a g ( d i a g P s i ) ;
grad TV = D’∗ d i a g P s i ∗D;
%grad TV = (D’∗D ) / s q r t ( s ’ ∗ (D’∗D)∗ s ) ;

f u n c t i o n gradL p = GradLp ( s , p , mu)
% g e n e r a t i n g t h e i t e r a t i o n m a t r i x f o r l p norm
d i a g i = p . / ( ( abs ( s ) ) . ˆ 2 + mu) . ˆ ( 1 − p / 2 ) ;
s i z e d i a g = l e n g t h ( d i a g i ) ;
g radL p = s p d i a g s ( d i a g i , 0 , s i z e d i a g , s i z e d i a g ) ;

f u n c t i o n o b j = o b j E v a l (A, Dcol , s , y , a lpha , be t a , lambda , p )
o b j = sum ( ( abs ( s ) ) . ˆ p ) ;
o b j = a l p h a ∗ o b j + b e t a ∗ ( norm ( Dcol∗ s , 2 ) ) ˆ 2 ;
o b j = o b j + lambda∗norm (A∗ s−y , 2 ) ˆ 2 ;

f u n c t i o n r e s = s e m i c g I t e r (LHS , RHS, s )
r0 = LHS∗ s − RHS;
p0 = −r0 ;
I n n e r I t e r = 0 ;
m a x I t e r = 600 ;
s t o p i c = 1 ;
s t o p T o l = 1e−5;
w h i l e s t o p i c

a = ( r0 ’∗ r0 ) / ( p0 ’∗LHS∗p0 ) ;
s1 = s + a∗p0 ;
r1 = r0 + a∗LHS∗p0 ;
b e t a = ( r1 ’∗ r1 ) / ( r0 ’∗ r0 ) ;
p1 = −r1 + b e t a ∗p0 ;
I n n e r I t e r = I n n e r I t e r + 1 ;
normR1 = norm ( r1 ) ;
i f ( normR1 <= s t o p T o l )

s t o p i c = 0 ;
f p r i n t f ( ’ The i t e r a t i o n c o n v e r g e s

a t %d t h s t e p s wi th r e l a t i v e e r r %e\n ’ , I n n e r I t e r , normR1 ) ;
end
i f I n n e r I t e r >= m a x I t e r

s t o p i c = 0 ;
f p r i n t f ( ’ The max i t e r a t i o n
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i s r eached , n o t c o n v e r g e \n ’ ) ;
end
p0 = p1 ;
r0 = r1 ;
s = s1 ;

end
r e s = s ;
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