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ABSTRACT  
   

The purpose of this study was to investigate the effect of complex 

structure on dimensionality assessment in compensatory and  noncompensatory 

multidimensional item response models (MIRT) of assessment data using 

dimensionality assessment procedures based on conditional covariances (i.e., 

DETECT) and a factor analytical approach (i.e., NOHARM). 

The DETECT-based methods typically outperformed the NOHARM-

based methods in both two- (2D) and three-dimensional (3D) compensatory 

MIRT conditions. The DETECT-based methods yielded high proportion correct, 

especially when correlations were .60 or smaller, data exhibited 30% or less 

complexity, and larger sample size. As the complexity increased and the sample 

size decreased, the performance typically diminished. As the complexity 

increased, it also became more difficult to label the resulting sets of items from 

DETECT in terms of the dimensions. DETECT was consistent in classification of 

simple items, but less consistent in classification of complex items. Out of the 

three NOHARM-based methods, ��/��  and ALR generally outperformed RMSR. 

��/��  was more accurate when N = 500 and complexity levels were 30% or lower. 

As the number of items increased, ALR performance improved at correlation of 

.60 and 30% or less complexity. 

When the data followed a noncompensatory MIRT model, the NOHARM-

based methods, specifically ��/��  and ALR, were the most accurate of all five 

methods. The marginal proportions for labeling sets of items as dimension-like 
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were typically low, suggesting that the methods generally failed to label two 

(three) sets of items as dimension-like in 2D (3D) noncompensatory situations.  

The DETECT-based methods were more consistent in classifying simple 

items across complexity levels, sample sizes, and correlations. However, as 

complexity and correlation levels increased the classification rates for all methods 

decreased. In most conditions, the DETECT-based methods classified complex 

items equally or more consistent than the NOHARM-based methods. In 

particular, as complexity, the number of items, and the true dimensionality 

increased, the DETECT-based methods were notably more consistent than any 

NOHARM-based method. Despite DETECT’s consistency, when data follow a 

noncompensatory MIRT model, the NOHARM-based method should be preferred 

over the DETECT-based methods to assess dimensionality due to poor 

performance of DETECT in identifying the true dimensionality. 
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Chapter 1 

INTRODUCTION 

Dimensionality Defined 

Dimensionality in assessment concerns the number of abilities or 

constructs assessed by a test or a set of items. Dimensionality can be viewed in 

many different ways, such as through the lens of aspects of assessment design in 

terms of the dimensions intended to be assessed (e.g., Mislevy, Almond, & Lukas, 

2003) or the analysis of observed responses to test items. The current work 

focuses on analyses of the latter type. Within this area, some researchers define 

dimensionality as the number of traits that underlie a set of test item responses 

and which account statistically for variances and covariances among the items 

(e.g., Hattie, Krakowski, Rogers, & Swaminathan, 1996; Stout, Froelich, & Gao, 

2001; Stout, 1990; Zhang 2007). Others further characterize dimensionality as 

being influenced by the interaction between the test items and the examinees, or 

understand dimensionality in the context tied to the purpose of a test (e.g., Gierl, 

Leighton, & Tan, 2006; Reckase, 2009). Few scholars extend these definitions to 

emphasize the patterns of dependency of the items to their respective dimensions, 

suggesting that the number of underling dimensions or factors may not be 

sufficient in understanding dimensionality of data (e.g., Levy & Svetina, in press).  

Even though test dimensionality is defined and understood in several 

different contexts, there seems to be an agreement among the contemporary 
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researchers that investigation of the dimensional structure of a test is a "requisite 

part of a comprehensive validation process" (Jang & Roussos, 2007, p. 2).  

Dimensional structure can be defined as the relationship between the items 

on the test and the latent proficiencies believed to be measured by the test. In 

other words, the internal structure of the test indicates which items are associated 

with what dimensions, where a dimension is defined as a latent proficiency that 

accounts for performance on the items and therefore the associations among them.  

Often, a dimension is substantive in nature. For example, on a science test, 

several proficiencies might be measured, including proficiency in life, physical, 

and earth sciences. If the test ought to measure examinee proficiency in these 

aspects of science, we might seek evidence to support a three-dimensional 

structure of items responses via dimensionality assessment.  

The Importance of Assessing Dimensionality of the Data 

Over the last few decades, researchers have provided arguments for 

supporting dimensionality assessment and understanding the structure of a test, as 

an important step in testing (Hambleton, Swaminathan, & Rogers, 1991; Jang & 

Roussos, 2007; Tate, 2003; Zhang, 2007). The process of developing, evaluating, 

and maintaining of (large-scale) testing program requires dimensionality 

assessment as it contributes to providing empirical support for the content and 

cognitive process aspects of test validity (e.g., AERA, APA, & NCME, 1999; 

Hattie, 1985; Tate, 2003). By examining the dimensionality, researchers are able 

to link the substantive interpretation with the statistical outcomes for the purpose 
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of better understanding examinee-by-item interactions (Gierl, et al., 2006). In 

broad terms, dimensionality assessment contributes to providing evidence for 

various aspects of the validity argument. 

Assessing the internal structure of the item responses on a test is crucial 

because it forms the basis of statistical analysis of the data (Hambleton, et al., 

1991; Zhang, 2007). Through psychometric modeling of the data, researchers 

gather evidence for making inferences about students. In order to make such 

inferences, psychometric models used in the analysis ought to be technically 

sound and aligned with the data from the tests. For example, in traditional 

psychometric models of item response theory (IRT; e.g., 1-, 2-, or 3-parameter 

logistic models), the assumptions that a test measures a single ability and that the 

item responses "obey the principle of local independence" are explicitly made 

(Jang & Roussos, 2007, p. 2). Within a classical test theory framework, the same 

can be expressed through the existence of “homogeneous” items on the test 

(McDonald, 1999).  

In educational tests, it is often the case that multiple proficiencies are 

present, which leads to multidimensionality of the data. Therefore, understanding 

the structure of the data is paramount if we are to make appropriate inferences 

about the scores based on a test. In other words, if a researcher is to draw 

meaningful inferences about examinee’s standing on the construct(s) of interest, it 

is essential to assess the (uni)dimensionality of data (Stout, 1987; Stout, et al., 

1996). Stone and Yeh (2006) summarized it well in saying that the investigation 
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of the internal structure of a test allows one “to identify what domains are being 

measured, identify the relationship between those domains, provide support for 

the hypothesized multidimensionality and test score interpretations, and identify 

construct-irrelevant variance” (p. 194). Examination of the relationships between 

the constructs allows us to find support for the alignment with the intended 

constructs and to control for the unintended constructs (e.g., by using 

multidimensional IRT; MIRT). Both of these are essential if we are to maintain 

consistent measurement and score interpretations across tests.  

Negligence in dimensionality assessment or misalignment of the 

psychometric model and the data may lead to severe consequences in various 

aspects of testing. These consequences include inaccurate and imprecise item and 

person parameter estimates, issues in test linking and equating of the tests, item 

bias and test assembly, and score reporting (e.g., Ackerman, 1989, 1994; Chen & 

Thissen, 1997; Reckase, Carlson, Ackerman, & Spray, 1986; Walker & Beretvas, 

2003; Way, Ansley, & Forsyth, 1988; Yen, 1985).  

For instance, Reckase and his colleagues (1986) demonstrated that when 

multidimensionality and difficulty were confounded, a unidimensional scaling 

produced different meanings at various points on the scale. Way, Ansley, and 

Forsyth (1988) examined the effects of using the unidimensional model to 

estimate two-dimensional data. They found that for data generated by 

compensatory MIRT model the estimated discrimination parameters were best 

considered as a complex combination of the discrimination parameters along the 
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two dimensions, while item difficulty parameter estimates and the ability 

estimates were close to the average of the their respective values on the two 

dimensions.  Similar findings were obtained in Ackerman (1989), where the 

author found even stronger relationship between the ability estimate under the 

unidimensional model and the complex combination of the two abilities (or 

discrimination) that are approximated by the dimension of best measurement. 

 In addition to the inaccurate estimates as a result of the inappropriate 

application of the psychometric model to the data, there also exists a potential 

concern regarding the score comparability. In situations where equating is 

important (such as for the purpose of providing a developmental scale across 

grades), the tests’ structures ought to be equitable in order to maintain comparable 

scores. Changes in test structures from grade to grade could threaten validity such 

that scale changes artificially increase or decrease the within grade variability 

(e.g., Yen, 1985). In other words, the invariance structure of the test needs to be 

preserved (Yeh, 2007, p. 2), and utilizing tools for dimensionality assessment may 

prove helpful in assuring that such needs are met. 

Dimensionality assessment may also provide support for meaningful and 

appropriate score reporting. According to the legislation of No Child Left Behind 

(NCLB, 2001), states must report both scale and subscale scores (Goodman & 

Hambleton, 2004). Through understanding the dimensionality, evidence may be 

gathered for appropriate score reporting. For example, in a mathematics test, five 

content areas might be evaluated, including number properties and operations, 
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measurement, geometry, data analysis, and algebra. If information in the data are 

consistent with the hypothesis of five distinguishable proficiencies corresponding 

to the five content areas, subscale score reporting, in addition to the overall 

mathematics score, may indeed be appropriate. However, if the dimensionality 

assessment supports an alternative interpretation of the number of dimensions 

underlying the data, such subscale reporting might not be appropriate. 

An added motivation leading to dimensionality assessment, related to the 

issue of fairness, is raised through the potential presence of bias in the items. This 

can be understood as the result of a multidimensional test structure that could be 

related to construct-irrelevant factors (Tate, 2002). Examining the dimensionality 

of the test and understanding why some items are biased may help avoid such bias 

in the future constructions of the items.  

In summary, by assessing dimensionality of the item responses on a test 

one can examine and deal with potential threats to various aspects of validity, 

including substantive and structural, as well as other issues related to testing. By 

examining the (multi)dimensionality of the data, construct-irrelevant proficiencies 

potentially measured by some of the items on the test can be found, items with 

differential item functioning can be examined, and potentially improper equating 

of the new test forms can be avoided. The above scenarios point to some of the 

main concerns and potential motivations for assessing the dimensionality of a test 

(e.g., Tate, 2002, 2003).  
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It is thus argued that given the role of dimensionality assessment in 

supporting a variety of psychometric endeavors, assessing dimensionality should 

be a prerequisite to applying most commonly used IRT models (Childs & Oppler, 

2000; Jang & Roussos, 2007; Nandakumar & Yu, 1996; Nandakumar, Yu, Li, & 

Stout, 1998; Seraphine, 2000).  

A fair number of techniques have been developed across various modeling 

paradigms to assess dimensionality of the structure of responses (Levy & Svetina, 

2010; Tate, 2003). The techniques may be grouped based on a variety of 

elements, including approaches to analysis (exploratory, confirmatory), the 

modeling paradigm within which they are commonly applied (e.g., factor analytic, 

item response, etc.), and distributional assumptions (parametric, nonparametric). 

The variety of methods commonly used today offer researchers the flexibility to 

make appropriate choices about how to determine the number of dimensions 

present in the data.  

Previous research has shown that to a large degree, commonly used 

methods today perform well under certain conditions (Finch & Habing, 2005; 

Froelich & Habing, 2008; Gierl, et al., 2006; Hattie, et al., 1996; Nandakumar, 

1991, 1993; Nandakumar & Stout, 1993; Nandakumar & Yu, 1996; Nandakumar, 

et al., 1998; Stout, 1987; Stout et al., 1996; van Abswoude, van der Art, & 

Sijtsma, 2004; Zhang, 2007; Zhang & Stout, 1999b). These conditions are 

typically those that align well with the principles upon which the tools were built. 

However, relatively little research has been conducted on the extent to which 
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these methods are robust to departures from their assumptions. The current study 

focuses on how well some of the more commonly used methods work under 

conditions that do not align with the foundational principles of the tools. 

For example, DETECT (Dimensionality Evaluation To Enumerate 

Contributing Traits; Kim, 1994; Stout et al., 1996; Zhang, 2007; Zhang & Stout, 

1999b) is a procedure that seeks dimensionally distinct clusters of items based on 

the conditional covariances among the item pairs. Dimensionality distinct clusters 

are sought such that approximate simple structure is preserved under a generalized 

compensatory MIRT model (Zhang & Stout, 1999b). A common 3-parameter 

compensatory normal-ogive MIRT model expresses the probability of a correct 

response of person i to item j as:  

���	
 � 1�	,�
 , �
 , �
� � �
 �  �1 � �
�Φ��
��	 � �
�, 1.1 

where, Φ is a cumulative normal distribution function, �� � ���, ��, … , ���� is a 

vector of M latent variables for examinee i, �
 � � 
�,  
�, … ,  
!�� is a vector of 

M parameters related to discriminating power of the item j, �
 is a lower 

asympotote parameter for item j, and �
 is the intercept related to the marginal 

difficulty for item j (e.g., McDonald, 1997). Following McDonald (1999), an item 

is referred to as factorially simple if it has only one nonzero coefficient in its �
 

vector. Conversely, and item is factorially complex if it has more than one 

nonzero coefficients in its �
 vector.  

A model for a set of items exhibits simple structure if, according to the 

model, all of the items are factorially simple. In other words, in simple structure, 
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each item is associated with only one latent variable. Moving away from simple 

structure, approximate simple structure refers to situations in which any one item 

is primarily associated with only one dimension, although trivial but nonzero 

coefficients in the item’s �
 vector allow items to be associated with multiple 

latent examinee variables. Complex structure further extends any one item’s 

association with multiple latent examinee variables; however, those associations 

are now nontrivial.  

These concepts are discussed in more detail in Chapter 2. For the present 

purposes, it is sufficient to note that DETECT is grounded in principles of simple 

structure. Therefore, the performance of DETECT in situations where complex 

structure exists might suffer. More generally, there seems to be a lack of research 

and support for most, if not all, of the commonly used methods for dimensionality 

assessment in realistic situations where the principles of the methods and 

conditions of the data are not aligned. It will be argued that while methods for 

dimensionality assessment have shown great promise, further research, 

particularly with respect to complex data, is needed. 

Purpose of the Study 

Popular methods for dimensionality assessment assume that items simple 

or approximately simple. Furthermore, these methods are typically applied in the 

context where a compensatory multidimensional model is assumed. This study 

seeks to go beyond the present practices.  
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The purpose of this study is to investigate the effect of complex structure 

on dimensionality assessment data that follow both compensatory and 

noncompensatory MIRT models using dimensionality assessment procedures 

based on conditional covariances (i.e., DETECT) and factor analytical approaches 

(i.e., NOHARM). The procedures of DETECT and NOHARM, discussed in 

greater detail in Chapter 2, are chosen because these methods embody the two 

most common and popular approaches to dimensionality assessment (i.e., 

conditional covariance and factor analytical). Additionally, both of these methods 

allow for exploratory nature of dimensionality assessment, have been shown to 

perform rather well under a variety of conditions, and are to some extent flexible 

in their application.  

The following research questions are addressed in this study: 

a) How well do methods based on DETECT and NOHARM perform in 

estimating the dimensional structure of the data that exhibit complex 

structure? This includes their performance in estimating the number of 

dimensions that underlie the data, and the interpretability of the resulting 

groupings of items. 

b) Do the underlying MIRT models (compensatory and noncompensatory), 

correlations among latent variables, sample size, and/or the number of 

items influence the performance of these dimensionality assessment 

methods? 
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In order to investigate the effects of the complex data on the performance 

of these two procedures, this study will be carried out via a simulation study using 

a Monte Carlo approach. By using Monte Carlo, the “true” dimensionality 

structure is known and thus can be compared to the estimated dimensional 

structure. 

The motivation for this study stems in part from the fact that the literature 

on issues related to dimensionality assessment typically focuses on examining the 

procedures to assess (i.e., detect departures from) unidimensionality (Hattie et al., 

1996; Nandakumar, 1993, 1994; Nandakumar & Stout, 1993; Nandakumar & Yu, 

1996; Nandakumar, et al., 1998; Roussos, Stout, & Marden, 1993; Stout, 1987; 

Stout et al., 2001). The evaluation of dimensionality is no less important when it 

comes to multidimensional models (Levy & Svetina, in press). This is particularly 

important, given a recent rise of development and applications in MIRT models 

such as modeling of multidimensional data, applications in adaptive testing, or 

equating (e.g., Ackerman, 1996, Bolt & Lall, 2003; De Champlain, 1996; 

Embretson 1997; McDonald, 1997; Walker & Beretvas, 2003; Yao & Boughton, 

2007, etc.). These studies recognize and point to the need for supporting data-

model fit procedures, including dimensionality analysis. 

The literature on multidimensional item response data primarily models 

situations where (approximate) simple structure exists (e.g., Finch & Habing, 

2007; Gierl, et al., 2006, etc.). Rarely are exploratory methods assessed in the 

context of complex data, which is partially due to the fact that several of the 
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commonly used methods, including DETECT, are based on the principles of 

simple structure. The only study found to date addressing performance of 

DETECT in the context of multidimensional data with complex structure is Gierl 

et al.’s (2006) study. The results of the Gierl’s study, reviewed in more detail 

later, provided important evidence of DETECT’s performance. Several important 

issues were left unexamined, which motivated this study. 

The current study attempts to examine issues related to dimensionality 

assessment when a researcher has no a priori hypothesis of the structure of the 

data, when in fact the data exhibit complex structure. In particular, this study 

focuses on examining the performance of the procedures when 

multidimensionality is present and where several items on a test are related to a 

multiple rather than just a single dimension; that is when some items on a test are 

factorially complex. In addition to the methods based on the popular, conditional 

covariance based DETECT procedure, the performance of methods based on the 

output from a factor-analytical procedure, NOHARM, is examined for 

comparison purposes. 
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Chapter 2 

BACKGROUND LITERATURE 

Definition of Dimension 

Though there seems to be an agreement of the importance of assessing 

dimensionality, the definition of dimensionality of data may vary depending on 

the adopted modeling paradigm. Traditionally, in defining dimensionality of the 

data, a researcher tries to address the question of how many latent variables 

(factors) are thought to underlie data on a set of test items. Often, the analyst is 

interested in understanding and (statistically) explaining the variances and 

covariances among the items on a test. In assessment settings, we might ask how 

complex is the latent space needed to adequately represent students’ performance 

on a particular test. 

Some of the more recent definitions and references to dimensionality 

include Camilli, Wang, and Fesq (1995), who defined test dimensionality as “the 

number of latent variables that account for the correlations among item responses 

in a particular data set” (p. 80). McDonald (1981) echoed Lord and Novick 

(1968), when suggesting that the proper quantification of dimensionality in the 

data ought to be based on the strong local independence principle. That is, the 

dimensionality of the data is that which is needed to achieve strong local 

independence. In this line of reasoning, Hattie, et al. (1996) suggested that, when 

the dimensionality is correct, then “[o]nce trait values are fixed at a given value 

(i.e., conditioned on), the responses to items become statistically independent. 
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Thus, in order to determine the dimensionality of a set of items it is necessary and 

sufficient to identify the minimal set of traits such that at all fixed levels of these 

traits the item responses are independent” (p. 1).  

Relaxing the assumption of the strong local independence, a number of 

researchers (e.g., Junker, 1993; Stout, 1990; Stout et al., 2001; Zhang, 2007), 

operationalized the definition of the dimensionality of data by describing it in 

terms of a minimum number of (dominant) dimensions necessary to achieve (pair-

wise) local independence and monotonicity (discussed in further detail in the next 

section).  

Others suggested that the issue of dimensionality involves more than 

(successfully) arriving to a number proficiencies or dimensions that account for 

the item responses (Levy & Svetina, in press; McDonald, 2000). These authors 

point that in addition to arriving to the number of dimensions that underlie the 

item responses, the relationship between the items and dimensions play a crucial 

role in dimensionality assessment. One could be successful in identifying the 

number of dimensions that underlie the data, however, if the relationships 

between the items and dimensions are incorrectly identified, problems in the 

appropriate estimation and score reporting may occur. Thus, it is important to not 

only arrive to the correct number of dimensions but to also appropriately account 

for the patterns of the relationships as well.  

A related but slightly different understanding of dimensionality has 

emerged from the recent growth of cognitive diagnostic models characterized by 
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their use of discrete latent variables (Rupp & Templin, 2008). In the binary skills 

model (Haertel, 1989), latent classes are identified with a distinct pattern of 

dichotomous skills. Rather than thinking about a single (or multiple) continuous 

dimension(s), one might think about dimensionality in terms of how skill 

combinations define classes of students and their proficiency within a specified 

skill space. The multidimensional nature of the models, as suggested by Rupp and 

Templin (2008), can be described as “the number of latent variables depends on 

the number of skills that researchers hope to numerically separate in a reliable 

manner with the assessment” (p. 228).  

Unlike in the typical factor analytical or IRT analyses, where multiple 

dimensions operationalize different constructs (or different aspects of the same 

construct), in applications of such latent class models Rupp and Templin (2008) 

suggest that dimensionality be broken down even further to elementary 

components and their interaction (p. 228). DiBello, Roussos, and Stout (2007) add 

that it is the purpose of the assessment that will have “significant impact on 

whether the targeted latent attribute of skill space will be modeled with one or 

more than one variable…” (p. 981).  

Substantively, “a decision about dimensionality…inevitable rests partly on 

a substantive basis, and should constitute a conclusion about the detailed structure 

of the relationships – not merely the number of dimensions” (McDonald, 2000, p. 

103). In other words, dimensionality assessment should be a process of both 

statistical and substantive investigations of the relationships between the items 
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and/or latent, unobservable, traits, and the pattern of relationships between the 

items and dimensions. 

Though substantive considerations are important, this work focuses on the 

notions of dimensionality that resemble those of Stout (1990) and others. In 

particular, statistical investigations meant to account for associations among the 

items are meant to partially provide support for determining a number of 

dimensions in a set of items. As seen from a few examples above, the term 

“dimensionality” has been defined and used in multiple ways. Although often 

referred to dimensionality of the test, one should really discuss dimensionality of 

the observed item responses that represent the interaction between examinees and 

items.  

The remainder of this chapter is divided in the following sections. First, 

concepts related to dimensionality assessment are discussed, including the 

concepts related to local independence. Next, to motivate a discussion about 

current dimensionality approaches, parametric and nonparametric based 

approaches to dimensionality assessment are presented. Each of these approaches 

is followed by a discussion of commonly used procedures and software for 

dimensionality assessment. The chapter concludes with current research on 

dimensionality assessment, with a primary focus on the research evaluating the 

two methods used in this study; NOHARM and DETECT.  
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Concepts Related to Dimensionality 

Stout (1990) defined the dimensionality of a test as the minimal 

dimensionality required for a possibly vector-valued latent variable,�, to produce 

a model that is both locally independent and monotone. The (increasing) 

monotonicity is achieved when the probability of a correct response increases as 

the ability increases. Local independence (LI), also known as strong local 

independence (SLI) states that the joint probability of the responses to the set of 

items comprising the test is equal to the product over items of conditional 

probabilities for all the item responses on a test given � (Hattie, et al., 1996; 

Stout, 1990). This is can be formulated as:  

��Χ�, Χ�,…,Χ#|�%� � & ��Χ
|�%�,
#


'�
    2.1

where Χ�, Χ�, … , Χ# are scores for items 1, 2,… up to J, typically scored as 0 for 

an incorrect and 1 for a correct response in dichotomously scored items, and J is 

the total number of items on a test. Equation 2.1 states that a joint probability for 

all item responses on a test given θ is a product of each conditional probability 

separately. In other words, if we condition on θ, the response to any item is 

independent of the response to any other item.  

In practice SLI is difficult to investigate. Thus, weak local independence 

(WLI), which deals with item pairs rather than joint distribution of all items, is 

typically used in investigating local independence. WLI is the condition that for 

all unique item pairs and for all θ, the covariance between the item pairs, 

conditional on θ is zero: 
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�()�Χ
 , Χ
*|�%� � 0, 2.2

where Χ
 is a scored response to item j and Χ
*  is a scored response to item j ’; j ≠ 

j ’, and cov stands for covariance between the items in question. From Equation 

2.2, we can see that WLI implies that each item pair has zero covariance once the 

latent trait(s) has been accounted for.  

McDonald (1994) and others argue that in cases of real data for which 

WLI holds, SLI holds approximately (Stout, et al., 1996). Note that higher-order 

dependencies are allowed among the items, although if WLI holds, it is unlikely 

that SLI would not (e.g., Zhang, 2007). Thus, if one accepts that in cases where 

WLI holds, SLI will also hold approximately (and monotonicity is assumed), then 

evaluating WLI is sufficient for evaluating SLI and dimensionality.  

Here, a cautionary note needs to be made; though LI and dimensionality 

assumption are related, the two are not identical. For example, if the data follow a 

model with a particular dimensional structure, and we employ that model, LI will 

hold. If the data follow a multidimensional structure, and we employ a 

unidimensional model, LI will not hold. However, if the data follow a 

unidimensional structure, and we employ a multidimensional model, LI will also 

hold. Nevertheless, evidence that LI does not hold is prima facie evidence that the 

dimensional structure, and possibly the number of dimensions, is incorrectly 

specified. 

Even in cases where tests are designed to measure a single construct (i.e., 

to be unidimensional), “minor” or “nuisance” proficiencies are likely to account 
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for some inter-item dependencies, in addition to a single dominant construct 

(Goldstein, 1980). These minor proficiencies or dimensions may be functions of 

the testing environment, characteristics of instruments, or instructional effects 

(Seraphine, 2000). Further, even when we do have the correct number of 

dimensions, we still might not have LI if the pattern dependencies of the items on 

the dimensions are incorrectly specified (Levy & Svetina, in press). In order to 

take into account minor latent nuisance trait(s), Stout (1987, 1990) broadened 

conceptualization of dimensionality based on essential independence.  

The responses to items are essentially independent if the average of all 

inter-item covariances conditioned on correctly specified (multiple) dimensions 

approaches zero as the number of items approaches infinity (Nandakumar & 

Stout, 1993; Stout, 1987; Stout et al., 1996), 

∑ �()�Χ
 , Χ
*|�%��/
0
*/# �#�� 1 0  2 3 1 ∞. 2.3 

Concepts related to dimensionality can be illustrated graphically. Figure 1 

illustrates three data structures that are relevant for discussion of dimensionality. 

In panel (a) of Figure 1, an exact simple structure is shown. All of the items on a 

test are associated with one dimension only. Some of the items are influenced by 

θ1, while others by θ2. In panel (b), an approximate simple structure is shown. We 

can see that there is a potential influence of θ2 on some items primarily influenced 

by θ1 and vice versa. Dashed lines indicate that such influence is weak in strength 

and magnitude. A complex structure, as presented in panel (c), suggests that some  
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items are influenced by both θ1 and θ2, while others by a single dimension only.  

 

 

 

 

 

 

Figure 1. Geometric representation of exact simple (a), approximate simple (b), 
and complex (c) structure.  

 

An alternative way to represent a two-dimensional latent space and items 

is given in Figure 2. Such a graphical representation is useful in visualizing 

structural features, where the coordinates in multidimensional space represent the 

latent abilities measured by the test (e.g., Ackerman, 1996; Stout et al., 1996). 
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Analogous to panel (b) of Figure 1, Figure 2 illustrates a two-dimensional 

test (represented by θ1 and θ2), with an approximate simple structure. Note that in 

Figure 2, the two axes (θ1 and θ2) are shown to be orthogonal to each other. While 

this does not have to be the case; for simplicity purposes, the two dimensions 

pictured here are uncorrelated. The lines coming out from the origin represent 

item vectors – a single line represents an item on this two-dimensional test. The 

direction/location and the length of the item communicate its characteristics. The 

direction (angle) of the item vector is the direction in multidimensional space that 

the item provides maximal discrimination, and reflects the relative amount of 

information that the item provides about the dimensions (i.e., in terms of whether 

the item vector is closer to θ1 or θ2). The length of that item vector illustrates 

multidimensional discrimination of that item (i.e., longer lines indicate higher 

discrimination values). 

 

Figure 2. Two-dimensional test displaying approximate simple structure. 
Note: Stout at el., 1996.  
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In Figure 2, the location and direction of the item vectors suggest there are 

two groups (or clusters) of items: one cluster of items that mostly relate to θ1, and 

another cluster of items mostly related to θ2. We can also see that the strength of 

the relationship between the items and their respective dimensions is relatively 

comparable for all items (i.e., the lengths of the lines are somewhat similar).  

Relating back to the concepts of conditional covariance previously 

discussed, we describe this set of items using ΘC1, ΘC2, and ΘTT. Here, ΘC1 and 

ΘC2 represent the cluster’s unidimensional latent variables best measured for that 

cluster scores, and ΘTT is a unidimensional latent dimension of best measurement 

for the total test score. ΘTT can be thought of as a dimension in a 

multidimensional space consisting of θ along which a set of items maximally 

discriminates (i.e., rough average of all item vectors, Stout et al. 1996). 

Importantly, ΘTT is analogous to the direction of the latent variable in this 

multidimensional space that would be obtained by fitting a unidimensional model 

(Stout, et al., 1996).  

Similarly, on a subtest level, there is a unidimensional latent variable best 

measured for any one subtest (in this case ΘC1 and ΘC2). Although not illustrated 

here, the representation of the simple and complex structures using example in 

Figure 2, would be as following. For simple structure, all item vectors would fall 

on either θ1 or θ2 axis. For complex structure, at least some item vectors would be 

closely located around the ΘTT (between 35° and 55° from θ1, Gierl et al. 2006). 
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As presented in Figure 2, two clusters are formed, and all item vectors lie 

closely to one of the two axes (i.e., two dominant dimensions exist). Zhang and 

Stout (1999b) illustrated that within each cluster, items appear relatively 

homogeneous (i.e., more similar), and their conditional covariance given ΘTT will 

be positive. For item pairs whose vectors come from different clusters, the 

conditional covariances given ΘTT will be negative.  

Zhang and Stout (1999a) also showed that the angles and lengths of the 

item vectors project the magnitude of the item’s association with dimension, with 

respect to the direction of best measurement. They showed that as an item 

“moves” away from the ΘTT, the covariance with items in the cluster (which 

remain fixed) increases, given ΘTT. For example, consider a different two-

dimensional case (Figure 3), where four items vectors of equal length are 

represented by U1 through U4, and where angles and discrimination vectors 

(lengths) are fixed. 

 

Figure 3. Direction of best measurement for four items in two-dimensional space. 
Note: Stout at el., 1996. 
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Zhang and Stout (1999a) illustrated that cov(U1,U2|ΘTT) < cov(U2,U3|ΘTT) 

< cov(U3,U4|ΘTT). In addition, the authors illustrated that as the angle between the 

items decreases and as either of the items increase its angle with ΘTT, their 

conditional covariance, given ΘTT, increases. Similarly, the conditional 

covariance between the items increases as the lengths of the item vectors increase 

(i.e., increase in magnitude of item discrimination vectors). These concepts are 

important in that they provide building blocks for many of the current 

dimensionality assessment procedures described next.  

Dimensionality Assessment Approaches and Methods 

There are many ways to organize dimensionality assessment methods. One 

such way is to think about methods and tools used to examine dimensionality 

through the lenses of parametric and nonparametric approaches. Another grouping 

may be based on the methodological nature (e.g., exploratory or confirmatory) or 

modeling paradigm (e.g., factor analytic or IRT). For the following discussion, a 

grouping based on parametric and nonparametric approaches will be adopted. 

Within each of these approaches, various methods have been developed to assess 

dimensionality. Some methods have factor analytical (FA) roots, while others 

grew out of IRT traditions. Similarly, some methods are purely exploratory or 

confirmatory, while others can handle both. Current, commonly used, procedures 

associated with both parametric and nonparametric approaches are discussed next. 

Parametric approach to dimensionality assessment. Within the 

parametric approach to dimensionality assessment, one of the two frameworks is 
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typically adopted: FA based methods and MIRT based methods. In this section, 

the FA and MIRT frameworks are presented fist. Next, the relationship between 

the two approaches is noted. Lastly, current methods based on parametric 

approaches to assessing dimensionality are discussed. 

Factor analytic (FA) framework. Traditionally, a common approach to 

testing dimensionality has been through factor analysis methods. In classical 

linear factor analysis, a researcher seeks to identify a set of factors (dimensions) 

that can account for the observed pattern of correlations among the scores (Kane, 

2006). The relationship between the factor(s) and observed measures is expressed 

through factor loadings. In the common FA model, each variable is a linear 

combination of one or more common factors and one unique factor. A unique 

factor is unobserved and is composed of two parts: the latent factor component 

that represents unexplained variance and the measurement error due to 

unreliability of the measured variable. The common factor model for linear factor 

analysis can be mathematically presented as: 

�	
 � 6
��	� � 6
��	� � 7 �  6
��	� �  8	
 , 2.4

where λjm is the loading (weight) for item j on factor (dimension) m, �	� is the 

factor score for examinee i on factor m, and eij is a term that carries a residual (or 

unique) information for examinee i on item j.  

In a common factor model, variables are assumed to be continuous. In 

educational data, variables are often scored dichotomously, causing the assumed 

linear relationship between the items and factors to become nonlinear. This 
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nonlinear relationship led to occurrences of spurious “difficulty” level factors 

based on the observed-item correlations (Green, 1983; McDonald & Ahlawat, 

1974).  

Due to this nonlinear nature of item responses in educational data, 

researchers developed tools to accommodate the nonlinear relationship between 

the items and the factors by using tetrachoric (rather than Pearson or phi) 

correlations in the analysis (Jang & Roussos, 2007). Unfortunately, using 

tetrachoric correlation matrices could be problematic since they are often not 

positive definite (Cook, Dorans, & Eignor, 1988; Knol & Berger, 1991; Lord & 

Novick, 1968). The issue of not positive definite matrices presents the problems 

in estimation, as typically maximum likelihood (ML) or generalized least square 

(GLS) estimation procedures are used. Further, tetrachoric matrices may be 

inappropriate when the distribution of the latent ability is nonnormal (Jang & 

Roussos, 2007; van Abswoude, et al., 2004) and when a potential for guessing 

(e.g., in multiple-choice items) is present (Jang & Roussos, 2007; Hattie, et al., 

1996; Mislevy, 1986). Therefore, the appropriateness of using linear methods in 

cases where item responses are nonlinear (as often the case with educational data) 

may be challenged. 

As alternatives, parametric nonlinear factor analytic (NLFA) methods 

have been proposed. Such methods have been incorporated in procedures 

including the limited-information, covariance-based method, NOHARM (Fraser 

& McDonald, 1988) and the full-information based method implemented in 
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TESTFACT (Wilson, Wood, & Gibbons, 1991). More detail on the NLFA 

procedure of NOHARM as a dimensionality assessment tool is provided in the 

subsequent section. 

For either linear or nonlinear factor analytic approaches, the 

dimensionality of item responses can be achieved by appropriate factor 

identification and examination of the patterns of loadings. Identifying an 

appropriate number of factors will reflect the dimensionality of the data. It is 

desirable that the most parsimonious test structure is obtained while at the same 

time adequate account for the relationships between the items and factors is 

produced. The issue of proper identification of the number of factors has been 

debated in the literature. Because the FA approaches were developed originally 

for continuous data, there has been limited research on their use with 

dichotomously scored data. 

Determining the number of factors. Empirical criteria are frequently used 

to determine the number of factors that should be extracted, including 

eigenvalues-greater-than-one criterion (eigenvalues > 1; Guttman, 1954; Kaiser, 

1960) based on eigenvalues from a correlation matrix, the scree test (Cattell, 

1978), as well as the less commonly applied techniques of the minimum average 

partial test (MAP; Velicer, 1976) and parallel analysis (PA; Horn, 1965). Other 

methods could also be applied in determining the number of factors, including 

decisions based on setting a priori desired amount of variance to be accounted for 

(i.e., selecting the fewest number of factors that reach that amount) and using ML 
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estimation procedure to estimate the model and compare it to models of higher 

dimensionality (i.e., nested models comparison via a χ
2 difference test). 

The four methods for determining the number of factors (eigenvalues >1, 

scree test, PA, and MAP) are introduced next. For a review of widely used 

procedures for determining the number of factors and recommendations for use, 

see Velicer, Eaton, and Fava (2000). 

The eigenvalues > 1 rule is one of the most commonly used methods in 

determining the number of factors (Zwick & Velicer, 1986), and it is often a 

default in common statistical packages (e.g., SPSS, SAS). This rule suggests that 

the number of factors to be retained from the data should reflect the number of 

eigenvalues from a correlation matrix that are larger than 1. Research has shown 

that this rule tends to extract too many factors (i.e., over-extraction), especially in 

small to moderate sample size in sample data due to capitalization on chance (e.g., 

Cliff, 1988; Fabrigar, Wegener, MacCallum, & Strahan, 1999; Horn, 1965; 

Hubbard & Allen, 1987; Preacher & MacCallum, 2003; Revelle & Rocklin, 1979; 

Zwick & Velicer, 1982, 1986). It is also noteworthy to say that the research has 

shown that an over-extraction is typically more favorable than under-extraction 

when it comes to determining the number of factors using any of the extraction 

methods (Fava & Velicer, 1992, 1996; Wood, Tataryn, & Gorsuch 1996). 

The scree test (Cattell, 1966) is another criterion that can be utilized in 

determining the number of extracted factors. The scree plot is a graphical 

representation of the plotted eigenvalues in descending order. The number of 
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factors (components) retained using the scree plot is done such that the number of 

factors above the “elbow” is retained. In other words, graphically, as the 

eigenvalues tend to level off factors above that leveling point should be retained. 

Given its subjective nature, a problem in determining the number of 

factors via scree plot could arise when there is no clean break between the plotted 

eigenvalues (i.e., several eigenvalues around the elbow point). The method was 

also found to be less accurate in smaller sample size and complex patterns (Zwick 

& Velicer, 1982).  Even with its subjective nature, scree plots have shown to yield 

more accurate results than the eigenvalue > 1 rule, especially with large sample 

size and strong factors (e.g., Zwick & Velicer, 1982). Further, the scree plot has 

been recommended to be used in conjunction with other procedures rather than a 

standalone method (Crawford, et al., 2009, Velicer, et al., 2000).  

The minimum average partial (MAP; Velicer, 1976) method is based on 

the matrix of partial correlations. In this approach, after each of the m factors 

(components) is partialed out, the average of the squared correlations of the off-

diagonal partial correlation matrix is computed (Velicer, 1976, developed this 

method for use with principal components analysis, although factors and 

components can be used interchangeably to represent a dimension). The number 

of components retained is determined by the point where the average squared 

partial correlation reaches a minimum. This occurs when the residual matrix most 

closely resembles the identity matrix.  
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MAP can be applied to any covariance matrix, and as an exact method, it 

yields results where at least two variables have high loadings on each retained 

component; and it directly relates to the concept of factors representing more than 

one variable (Zwick & Velicer, 1986). MAP method has been shown to be more 

accurate in determining the number of factors than eigenvalues > 1 rule (e.g., 

Zwick & Velicer, 1982, 1986). MAP is not a standard procedure in major 

software packages, although some programs have been written to implement 

MAP procedure (e.g., Gorsuch, 1991; Reddon, 1985). 

Lastly, parallel analysis (PA) has shown to be an accurate procedure for 

determining the optimal number of factors (Fabrigar, et al., 1999; Horn, 1965; 

Hubbard & Allen, 1987; Preacher & MacCallum, 2003; Zwick & Velicer, 1986). 

The process of conducting PA begins with generation of a number of correlation 

matrices of random variables based on the same sample size (N) and number of 

variables (J) used in the real dataset. Factor analysis is then performed on the 

random data and the average (or some percentile of; e.g., 95th or 99th) eigenvalues 

from the random data (i.e., random eigenvalues) are compared to the eigenvalues 

from the real data (i.e., observed eigenvalues). The development and 

implementation of the programs for conducting PA have been traditionally done 

for the continuous data. This presents problems when dealing with categorical and 

binary data often find in educational settings.  

Recent limited literature on PA for binary data provides inconclusive 

results and recommendations for conducting PA on binary data. For example, 
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Cheng and Weng (2005) found that using large sample size and high loadings, 

using 95th (or 99th) percentile, closer proportions in the categories result in 

adequate PA performance. The authors examined performance of phi and 

tetrachoric correlation matrices and found that in the two-dimensional cases, if PA 

erred it tended to incorrectly extract too many factors (especially with tetrachoric 

matrices). Further, poor PA performance was noted in small sample sizes (< 200) 

and extreme distributional proportions, and when low loadings were present 

regardless of the sample size.  

Other research, however, suggests that PA should not be conducted on 

binary data due to the problematic nature of the method originally developed for 

continuous data (e.g., difficulty factors, Tran & Forman, 2009). Further, as noted 

above, indefinite positive correlation matrices often occur in binary data, thus 

present problems in conducting PA (e.g., Tran & Formann, 2009). Programs 

currently available to conduct PA are based on the notion of continuous data, and 

although the observed data can be in a form of phi, tetrachoric, or polychoric 

matrix, the random datasets generated for comparison are not.  

Multidimensional item response theory (MIRT) approach. MIRT has 

received a lot of attention beginning in the 1970s and 1980s, when traditional IRT 

models were expanded to realistically represent various educational assessment 

experiences where any one person’s response to an item was assumed to be 

influenced by multiple latent traits (Yeh, 2007). The link between the factor 

analysis for dichotomous variables and the normal-ogive model helped further the 
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development of MIRT. In 1972, Reckase first proposed an extension of the Rasch 

model to the multidimensional case. A number of general Rasch models with the 

growth of the logistic form of the MIRT model followed (McKinley & Reckase, 

1982), which further led to developments of two- and three-parameter MIRT 

models. All of these models, both normal-ogive and logistic, could be 

characterized as compensatory (linear) models.  

Another set of models developed concurrently in the seventies and eighties 

was known as noncompensatory or (partially) conjunctive MIRT models (e.g., 

Sympson, 1978; Whitely, 1980). The key difference between these two sets of 

models resides in how the latent traits interact with each other to produce the item 

responses.  

Compensatory MIRT model. In compensatory MIRT, if an item on a test 

requires two different proficiencies (i.e., can be modeled with a two-dimensional 

space), a person’s high proficiency on the first latent trait may compensate the 

lack of proficiency on the second (or vice versa); thus making it still somewhat 

probable that a person will respond correctly to the item. For example, two 

dimensions may underlie a mathematics word problem. The first dimension might 

reflect mathematics proficiency, while the second dimension could reflect the 

reading proficiency. If a person has high reading proficiency, he or she may be 

able to compensate, to some extent, for his or her lower mathematics proficiency. 

The multidimensional compensatory 3-parameter logistic (MC3PL) model can be 
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represented by (Reckase, 1985, 1997; McDonald, 1997; Spray, Davey, Reckase, 

Ackerman, & Carlson, 1990): 

��Χ	
 � 1��, �9 %, �
 , �
� �  �
 � �1 � �
� :;< �=>?@?A=>B@B,…,A=>C@DAE>�
�A:;< �=>?@?A=>B@B,…,A=>C@DAE>�, 2.5 

where the only difference between 1.1 and 2.5 is only in the metric of the model; 

in Equation 1.1, a normal density function is used (i.e., normal-ogive model), 

while in 2.5, a logistic function is applied to determine the scale; other terms are 

defined above.  

When cj is set to 0, the MC3PL becomes a multidimensional compensatory 

2-parameter logistic (MC2PL) model. Further, when all of the discrimination 

parameters are set to 1, the model becomes a multidimensional 1-parameter 

model. The interpretation of the item parameters is similar to interpretation of the 

unidimensional IRT models. The person parameters in the model are represented 

as the elements of the �� vector. The number of dimensions that adequately model 

the data matrix is open to debate and the subject of this research.  

Noncompensatory MIRT model. In noncompensatory MIRT, if an item on 

a test requires two different proficiencies, knowledge or mastery of one may not 

be able to compensate for the lack of the other. In other words, all underlying 

proficiencies need to be sufficiently high for an item to be solved correctly. For 

example, on a verbal analogy item, mastery of two components (proficiencies), 

rule construction and rule evaluation, may be required for a successful outcome 

(i.e., correct answer to an item). If a person has high ability on rule construction, 

but has low ability on rule evaluation, the probability of favorable outcome may 
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not be high. This kind of relationship is the reason why often these models are 

referred as nonadditive or multiplicative. 

The noncompensatory multidimensional three-parameter logistic 

(MNC3PL) model (Sympson, 1978; Whitely, 1980) can be represented by the 

following function: 

��Χ	
 � 1��, �9 %, F9, �
� � �
 � �1 � �
� & 1
1 � expJ 
��θLM � N
��O

!

�'�
  , 2.9 

where, N
� is the location for item j along dimension m, and other terms were 

previously defined. The noncompensatory nature of this model is derived from the 

fact that the probability of the correct response cannot be greater than the 

minimum value of the product terms (Spray, et al., 1990). As the number of 

dimensions increase, the probability of the correct response decreases. 

The noncompensatory (conjunctive) multidimensional models are less 

commonly used, possibly due to the increased number of estimated parameters 

they require when compared to their compensatory counterparts (Knol & Berger, 

1991). Furthermore, it may not be always clear which model should be used. 

Often this is the case when the relationship between the abilities is unclear.  

For example, some may suggest that math word problems should be 

modeled using the compensatory MIRT, suggesting that even if an examinee is 

not a good reader, his or her high ability level in mathematics could compensate 

poor reading skills, resulting in a high likelihood of favorable outcome. On the 

other hand, some might understand (and treat) the relationship between the 
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abilities of reading comprehension and mathematics to be noncompensatory, 

suggesting that if an examinee does not know how to read well, a favorable 

outcome will be very unlikely. This low probability of a correct response may be 

present despite having a high ability in mathematics, because without being able 

to read and understand what the question asks, knowledge of mathematics might 

not be applied. Both of these scenarios are plausible, and it is up to the researcher 

to decide which model represents the believed hypothesized relationship among 

the multiple abilities. 

Relationship between FA and MIRT. Several researchers have shown 

formally the mathematical equivalence between the FA and compensatory MIRT 

models (e.g., Knol & Berger, 1991; Takane & De Leeuw, 1987). A typical FA 

model presented in Equation 2.6 assumes that the response variable for item j, Χ
, 

is governed by a continuous, latent variable P
, and threshold Q
which 

dichotomizes an item into a “1” for correct and “0” for incorrect response (i.e., if 

the probability of a correct response is greater than the threshold, Χ
 = 1). 

Equation 2.4 can be thus rewritten as a normal distribution function Φ for a 

correct response (McLoad, Swygert, & Thissen, 2001): 

��Χ
 � 1|�%� � Φ RλT�θ� � λT�θ��, … , λTMθM � γTσT W, 2.10 

where,  θM represents the mth latent trait and σT� is unique variance. If we let 

 
� � XYDZY   and �
 � [\YZY , where σT � ]1 � ∑ λTM�  , 2.11

 then Equation 2.10 can be rewritten as a normal-ogive MIRT: 



 

  36 

 

��Χ
 � 1|�%� � ΦJ 
�θ� �  
�θ�, …  
�θM �  �
O. 2.12 

Note that Equations 1.1 and 2.12 are equivalent when �
 is fixed to zero.  

Due to equivalency of the Equations 2.10 and 2.12, MIRT parameters can be 

derived from FA model (see Equation 2.11) and FA parameters can be derived 

from MIRT parameters as following: 

λTM � =>C
]�A∑ =>CB    and  γT � [E>

]�A∑ =>CB  . 2.13

It is then at no surprise that the model identification in multidimensional 

item response model carries directly from the factor theory (e.g., Bollen, 1989); at 

a minimum, for any model to be estimated, the number of parameters estimated 

cannot exceed the amount of information contained in the variance/covariance 

matrix.  

Parametric approaches. Mplus (Muthén & Muthén, 1998-2006) is one of 

the most diverse and flexible software programs when it comes to modeling and 

dimensionality assessment as it can handle both continuous and dichotomous data 

and it supports both exploratory and confirmatory approaches to FA. Furthermore, 

missing data can be handled within Mplus. In exploratory FA, Mplus employs the 

least-squares based estimators.  

Both orthogonal and oblique rotations are permitted and output produced 

by the program relevant to dimensionality assessment includes eigenvalues for the 

polychoric correlation matrix, residual correlation matrix, the root mean squared 

residual (RMSR), ��statistic, and the root mean square error of approximation 
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(RMSEA). The inclusion of the lower asymptote, however, is not permitted in 

either the computation of the correlation matrix or the parameter estimation. 

Similar to exploratory FA, Mplus in the confirmatory FA may use least squares 

estimation. Alternatively, it may use full-information maximum likelihood 

techniques to marginalize over the latent variables. 

TESTFACT (Bock, et al., 1999) has capabilities for both exploratory and 

confirmatory modeling, although confirmatory modeling is limited to bifactor 

structures, where a single common factor is modeled with one or more orthogonal 

“group” factors (Version 3.0; Tate, 2003). TESTFACT is considered a full-

information based method as it uses full item response vectors in applying the 

item factor analysis (the program can also apply tetrachoric correlations and use 

them in a limited-information approach to conduct the analysis).  

In TESTFACT, least square or marginal maximum likelihood procedures 

can be used for parameter estimation. In situations where the tetrachoric 

correlation matrix is not positive definite, a “smoothing” procedure is applied by 

using all positive roots of the original tetrachoric matrix in order to arrive at a 

positive definite matrix (Tate, 2003). Though the program does not estimate the 

lower asymptote parameters, it does allow for their input by the user (once 

estimated outside the program using for example BILOG; Mislevy & Bock, 

1982). TESTFACT produces a �� statistic for model fit, and in order to assess 

dimensionality of exploratory solution in TESTFACT, Tate (2003) suggests 
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conducting the test of the difference of the �� fit statistic by sequential inclusion 

of additional factors. 

Normal Ogive Harmonic Analysis Robust Method (NOHARM; Fraser & 

McDonald, 1988) is a parametric nonlinear factor analytic (NLFA) method which 

can be used in either exploratory or confirmatory analysis. Item responses are 

represented by a nonlinear factor analytic model (i.e., normal-ogive), such as the 

one represented in Equation 1.1. As a method, NOHARM allows for various 

rotations (e.g., oblique, orthogonal) in exploratory analysis to provide 

approximate independent clusters (McDonald, 2000). The estimation procedure 

employed in NOHARM is unweighted least squares (ULS), which allows for 

analysis of large number of items and high dimensionality (Fraser & McDonald, 

1988; McDonald, 2000; Reckase, Thompson, & Nering, 1997).  

Like TESTFACT, NOHARM does not estimate the lower asymptotes; 

however, it does allow for user input of these values. NOHARM provides 

covariance residuals and root mean square residuals to summarize the lack of fit. 

As originally developed, NOHARM does not produce a formal statistic for the 

model fit. Tate (2003) suggests evaluating model fit by a degree of improvement 

as dimensionality increases. Specifically, if the higher dimensional model 

produces 10% or more decrease in RMSR over the preceding model, that 

dimensional model should be retained.  

As is the case with other factor analytic methods, NOHARM produces 

various fit measures for a given factor model or solution. NOHARM produces a 
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residual matrix of differences between observed and expected proportions and 

RMSR (Stone & Yeh, 2006, p. 196). Additionally, factor loadings are provided 

for each factor solution and they also can be used in evaluating the structure. A 

formal test the goodness-of-fit of a particular dimensionality solution based on 

NOHARM output was introduced by Gessaroli and De Champlain (1996) as a 

^� type statistic. This statistic is based on testing the null hypothesis that the off-

diagonal elements in the residual correlation matrix produced by the factor 

analysis equal zero (Finch & Habing, 2005, 2007). If the null hypothesis is not 

rejected, it can be concluded that the fitted model adequately approximates the 

observed correlations among the items (Finch & Habing, 2005). The approximate 

� � statistic can be computed as: 

��/�� � �_ � 3� a a b

*��c�

[�


*'�

#


'�
, 2.14

where N is the number of examinees, J is the total number of items,  j and j ′ serve 

to index the items to define the unique pairings of items, and 

b

*�c� � .5 log�1 � h

*�c�� �  .5 log�1 � h

*�c�� 2.15

is the Fisher’s z transformation of the residual correlation for a given item pairing, 

and 

h

*�c� � i

*�c�

]i
�j��1 � i
�j��i
*�j��1 � i
*�j�� , 2.16 



 

  40 

 

where  is the observed proportion of examinees getting item j correct and 

 is the residual covariance between items j and j ′. The resulting statistic is 

compared to the reference �� distribution with degrees of freedom, df = 0.5J(J – 

1) – t, where t is the number of independent parameters estimated in fitting the 

model; in exploratory models, t = (1+m) x J and m is the number of dimensions 

(Finch & Habing, 2005, 2007).  

An alternative to the ��/��  statistic for model fit based on NOHARM 

output is an approximate likelihood ratio (Gessaroli, De Champlain, & Folske, 

1997): 

klm � a a n

* ,�
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*'�

#


'�
 2.17 

where 

n

*� � �2 a a ip>p>*
�

p>*'j

�

p>'j
ln qîp>p>*ip>p>*

s, 2.18 

where ip>p>*  and  îp>p>*  are the observed and expected (model-implied) 

proportions of examinees with scores of t
 and t
* for items j and j’  (0 or 1), 

respectively. Given the dichotomous scoring of items, ip>p>*  and îp>p>*  yield four 

combinations: proportion of both items being correctly answered (i��), proportion 

of both items being incorrectly answered (ijj), proportion where item j  is 

correctly answered but item j ′is not (i�j), and the proportion where item j is 

incorrectly answered but item uvis correctly answered (ij�).  
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)(r
jjp
′



 

  41 

 

NOHARM produces the expected proportions of examinees who receive 

1s for both items j and j’ (î��); the remaining expected proportions need to be 

determined outside the program using the formula for the expected marginal 

proportion of examinee answering the item correctly as given by McDonald 

(1997). McDonald (1997) originally provided formulas for calculations of the 

expected proportions in unidimensional case, the extension to multidimensional 

case is straightforward. The ALR statistic is compared to the reference �� 

distribution with the same degrees of freedom as ��/�� .  

In addition to evaluating dimensionality of item responses on a test level, 

assessing dimensionality can be conducted at the item-pair level. Methods such as 

the model-based covariance (MBC; Reckase, 1997) and Yen’s (1984) Q3 can be 

used to assess the assumed dimensionality. To date, most applications and 

software for assessing LD in item pairs (Chen, 1993) have been confined to 

assessing the fit of unidimensional models. Research on the performance of many 

of these indices in unidimensional conditions suggests that the assumed reference 

distributions (e.g., normal distributions for Fisher’s r-to-Z transformation of Q3) 

do not hold (Chen & Thissen, 1997). Thus, most applications employ cutoff 

values; for Q3, values greater than 0.20 can be interpreted as evidence of 

sufficient positive LI to warrant concern for the adequacy of the model.  

While the form of MBC or Q3 does not prevent them from being applied to 

multidimensional models, the problems in defining the appropriate reference 

distributions are likely present if not exacerbated when fitting multidimensional 
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models. An alternative approach to constructing reference distributions invokes a 

Bayesian approach to model-checking. These approaches to using LI indices have 

been studied in unidimensional modeling contexts by Levy, Mislevy, and 

Sinharay (2009) and in multidimensional modeling contexts by Levy and Svetina 

(in press).  

Nonparametric approach to dimensionality assessment. Unlike their 

parametric counterparts, nonparametric approaches do not impose any 

distributional assumptions. In this section, current commonly used methods and 

procedures to assess dimensionality based on conditional covariance theory are 

described.  

DETECT (Dimensionality Evaluation to Enumerate Contributing 

Traits). DETECT (Kim, 1994; Zhang & Stout, 1999a, 1999b) is an estimation 

procedure typically used as an exploratory tool for dimensionality assessment. 

The goal of DETECT is to describe the structure of the multidimensional item 

dispersion relative to the test composite ΘTT. In other words, DETECT partitions 

the items into clusters such that within a cluster, items are most homogeneous, 

and clusters themselves are widely separated reflecting an assumption of 

approximate simple structure. For a given partition of items into clusters, P, the 

theoretical DETECT index is calculated as: 

w��, Θyy� � 23�3 � 1� a z

*���
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0
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*|Θyy %�O , 2.20

where, 
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z

*��� � }1, if X
  and X
*are in the same cluter of �  �1, otherwise                                                    .% 2.21 

Given a cluster P, the  manipulates the expected conditional 

covariance such that its value is added if items j and j’  are in the same cluster, or 

subtracted, if items j and j’  belong to different clusters. The nonparametric nature 

of DETECT is expressed through ΘTT, which represents an estimate of the 

composite ability best measured by the exam (Finch & Habing, 2005). The 

advantage of using observed score as conditioning variable is that the composite 

score does not need to be estimated (this advantage pertains to nonparametric 

methods in general).  

In DETECT, the direction of best measurement is approximated by using 

the observed (raw) score. DETECT uses two estimators to approximate the 

conditional covariance. The first estimator uses a total score to approximate the 

expected covariance among the item pairs. The second estimator uses a rest score 

(total score minus the two items in question) to approximate the expected 

covariance. Research has shown that using a total score, the estimator is 

negatively biased, and that using a rest score, the estimator is positively biased 

(e.g., Zhang 2007; Zhang & Stout, 1999a). Thus, the final estimator of expected 

conditional covariance is the average of the two estimators; this average was 

shown to be optimal in minimizing the bias (Yang & Zhang, 2001). 

Thus, if approximate simple structure exists, the theoretical index D will 

be maximized at the correct dimensionality-based cluster partition D*  (i.e. when 

the partition matches approximate simple structure). 

δ jj '(P)
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The maximum possible value of D, denoted as D* , indicates the amount of 

multidimensionality the test displays (i.e. departure from being perfectly fitted by 

an unidimensional model; Zhang & Stout, 1999b) and is given by: 

w���, Θyy� � 23�3 � 1� a |
�/
0
*/#

{J�()�X
 , X
*|Θyy %�O| . 2.22

That means that when the partition matches approximate simple structure the 

maximum value of DETECT will be obtained because all of the within-cluster 

conditional covariances will be positive and all between-cluster conditional 

covariances will be negative (Zhang & Stout, 1999b). The space for all possible 

partitioning P is large, thus in order to search the space intelligently, the DETECT 

procedure employs a generic algorithm in addition to hierarchical cluster analysis 

to limit the search (Roussos, et al., 1998; Zhang & Stout, 1999b).  

Under the assumptions of unidimensionality, all conditional covariances 

have an expected value of zero, which is why dimensionality assessment may be 

thought of as searching for violations of LI in terms of local item dependence 

(LID; Roussos & Ozbek, 2006). Because the DETECT index estimates the 

average item-pair conditional covariances, the DETECT value can be thought of 

as an estimate of the average size of the violation of pairwise LI given a 

unidimensional model (i.e., an effect size for the amount of multidimensionality 

or average size of LID). 

Research provides some guidelines for the interpretation of the value of 

DETECT index. Zhang and Stout (1999b) recommended interpreting the 

DETECT index value of > 1.00 as strong evidence of multidimensionality, values 
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.40 to 1.00 indicating moderate to large multidimensionality, values between .20 

and .40 suggesting weak multidimensionality, and values less than .20 suggesting 

unidimensionality. Other recommendations are slightly more liberal in 

interpretation, such that such that values less than .20 indicate weak 

multidimensionality or approximate unidimensionality, values from .20 to .40 

indicate moderate multidimensionality, .41 to 1.00 indicates moderate to large 

multidimensionality, and > 1.00 values indicate strong multidimensionality 

(Roussos & Ozbek, 2006).  

If the test exhibits the approximate simple structure, the ratio of D and D* 

will equal 1. Values less than one indicate divergence from the approximate 

simple structure.  

h � w��, Θyy�w���, Θyy� . 2.23

In practice values of h (sometimes referred to as h�=� ) greater than or 

equal to 0.8 are interpreted as indicative of approximate simple structure (Jang & 

Roussos, 2007; Stout et al., 1996). Additionally, if multidimensionality is present, 

another index produced by DETECT may be considered. IDN is the index which 

reports the percentage of the signs of the conditional covariances that achieve the 

goal of having all within-cluster conditional covariances be positive and all 

between-cluster signs be negative. Similar to the r ratio, higher values of IDN 

constitute more support for the hypothesis of approximate simple structure.  

If the hypothesis of approximate simple structure is supported, the solution 

may be interpreted in terms of the number of homogeneous item clusters as the 
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number of dominant dimensions. This is possible because DETECT procedure 

outputs the number of non-overlapping clusters and items associated with each of 

the clusters. To the extent where there are clusters with few items or if 

approximate simple structure does not hold, inferring the number of dominant 

dimensions should be done with caution (Jang & Roussos, 2007; Zhang & Stout, 

1999b).  

Although DETECT can be used in a confirmatory mode, where the 

DETECT index is calculated for a partition pre-specified by a researcher, to date 

the primary use of DETECT in dimensionality assessment has been in exploratory 

analyses. Thus exploratory DETECT is utilized in the current study.  

Within the exploratory DETECT, both exploratory and cross-validated 

DETECT indices can be calculated. The exploratory DETECT index is calculated 

based on the entire sample. The cross-validated DETECT index can be obtained 

by partitioning the dataset into two subsets, running the DETECT procedure on 

one (training) subset, obtaining the optimal partition, and reading in that optimal 

partition to be imposed on the second subset. If the dataset is not previously 

subsetted, DETECT can randomly split the data file for training and validation 

samples (the user can specify the number of examinees for each of the samples).  

For example, in Monahan, et al. (2007), the cross-validated DETECT 

index was calculated such that a 50%/50% split was indicated for each sample. 

This choice dictates DETECT software to randomly select 50% of the examinees 

to belong to the training sample, and the remaining 50% to serve as the validation 
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subsample for each condition. Previous research suggests that cross-validated 

DETECT index may be useful in overcoming the bias found in the exploratory 

DETECT index when the number of items on the test is 20 or fewer (Jang & 

Roussos, 2006).  

DIMTEST. DIMTEST (Stout, 1987, 1990) is a nonparametric, 

confirmatory procedure that detects departures from essential unidimensionality, 

where the null hypothesis tested states Ho: de =1. The first step in applying the 

DIMTEST procedure is to select a subset of items for the assessment subtest 

(AT). Items chosen for the AT should be selected based on their substantive 

analysis of item content, expert opinions or exploratory statistical analyses (e.g., 

factor analysis, cluster analysis, DETECT). To provide a meaningful test of the 

null hypothesis assessing essential unidimensionality, AT subtest items should be 

dimensionally maximally distinct from the direction of best measurement of the 

remaining items. The remaining items on the test are referred to as the partitioning 

subtest (PT).For a detailed presentation of earlier and current versions of 

DIMTEST, see Froelich and Habing (2008), Froelich and Stout (2003), and Stout 

et al. (2001).  

The strength of the DIMTEST procedure lies in its power to detect 

departures from unidimensionality (Nandakumar & Yu, 1996; Stout et al., 2001). 

Similarly, DIMTEST is successful in discriminating between essentially 

unidimensional and multidimensional tests. DIMTEST was found to be robust 

with respect to minor secondary traits (Nandakumar, 1993), especially in studies 
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that fitted a compensatory MIRT (Hattie el al., 1996; Nandakumar, 1991; 

Nandakumar & Stout, 1993; Stout, 1987), where primary and secondary abilities 

followed standard normal distributions. As with DETECT, the DIMTEST 

procedure uses raw scores as the conditioning variable, and thus it does not 

support missing data. Unlike DETECT, however, DIMTEST does allow for the 

inputting of a single estimate of a guessing parameter applied to all 

dichotomously scored items. 

Although DIMTEST is framed for assessing essential unidimensionality, it 

can be used to provide dimensionality assessment information in confirmatory 

multidimensional models with approximate simple structure. Stout et al. (1996) 

suggested assessing the multidimensional simple structure by using the assumed 

groupings of items to correspond to hypothesized structure. For example, if we 

are fitting a two-dimensional model with simple structure, the set of items that are 

associated with one factor serves as AT while the rest of the items serve as PT.  

As discussed above, there are many methods and procedures currently 

available to assess a set of item responses on an exam. A researcher’s choice of 

some or any of these methods may depend on accessibility, familiarity with the 

method(s), and the type of data at hand. For this project, DETECT and NOHARM 

procedures are selected because they are both current and popular methods used 

in dimensionality assessment. As discussed next, both procedures have been 

shown to work well at counting the number of dimensions when the underlying 

model is a compensatory with approximate simple structure.  
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More importantly, these methods are built on two different building 

blocks: the DETECT procedure is rooted in conditional covariance theory and the 

NOHARM method uses a factor analytical approach in assessing dimensionality. 

The inclusion of both methods will thus enable a comparative investigation of the 

procedures.  

In their study, Finch and Habing (2005) undertook a quest in addressing 

the challenge set by McDonald (2000), who stated: 

These procedures [including DETECT] might result in useful 

applications, although a considerable amount of critical 

theoretical work, simulation, and empirical studies are needed to 

determine how they compare with the application of the well-

known classical strategies [NOHARM] for dealing with these 

problems, and to establish their suitability for applications. (p. 99) 

The current study seeks to extend this quest by paying particular attention to the 

data structure (exact simple versus complex) and the underlying MIRT model 

(compensatory versus noncompensatory). Prior to description of the design of the 

current study, the existing research on DETECT and NOHARM is summarized 

next. 

Research Related to DETECT and NOHARM 

Several researchers have investigated the performance of dimensionality 

assessment procedures. As argued above, many of the methods currently 

developed for dimensionality assessment perform well under certain conditions. 



 

  50 

 

Research on the performance of DETECT, including addressing the issue of bias 

in the DETECT index, and NOHARM-based statistics, such as ��/��  and ALR, 

have shed light into the workings of these procedures. Studies relevant to the 

current project are discussed next.  

Research on DETECT. Zhang and Stout (1999b) provided the theoretical 

foundation for DETECT. In addition to the theoretical underpinnings of the 

procedure and building on previous work of Kim (1994), the authors 

demonstrated DETECT’s performance via two simulation studies. In the first 

simulation study, Zhang and Stout (1999b) manipulated the number of 

dimensions (2, 3, or 4), the number of items (20 or 40), and the number of 

examinees (400 or 800) to generate the item-response data. Each of the conditions 

was replicated 100 times. Using a multidimensional compensatory model, data 

exhibiting approximate simple structure was generated. The authors found that as 

the number of examinees increased, the performance of DETECT improved. 

Holding the number of examinees and item constant and increasing the number of 

dimensions resulted in poorer performance of DETECT, especially with 20 items, 

400 examinees, and 4 dimensions.  

The second simulation study concerned unidimensional cases, with 

manipulated factors of test length (20 or 40), sample size (400 or 800), and the 

value of guessing parameter (.00 or .20). Zhang and Stout (1999b) found 

DETECT to be successful in verifying that the simulated tests were 

unidimensional in all cases. In summary, the authors found that, when 
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approximate simple structure held, DETECT performed well in identifying the 

dominant latent dimensions and estimating the amount of multidimensionality 

present in the test. Even when the approximate simple structure failed to hold, 

they argued that DETECT could still be informative, because it still could locate 

relatively dimensionally homogenous clusters. There would be no “best” partition 

among the clusters though, because there would be little separation between some 

clusters (i.e., an item pair from two clusters that are close to each other could have 

similar directions of best measurement and hence should be similar substantively, 

Zhang & Stout, 1999b, p. 215). 

Van Abswoude, van der Ark, and Sijtsma (2004) investigated the 

effectiveness of Mokken Scaling procedure (MSP; Mokken, 1971), DETECT, and 

HCA/CCPROX (Roussos, et al., 1998) for dimensionality assessment in 

multidimensional data exhibiting simple structure. In their simulation study, they 

manipulated the MIRT model (extension of 2-PL model like the one in Equation 

2.5 where cj is fixed to 0, or a five parameter acceleration model), the number of 

dimensions (2 or 4), the correlations among the traits (.00, .20, .40, .60, .80, or 

1.00), the number of items per trait (7, 21, or a combination), and the 

discrimination levels of the items (high or low). General findings suggested that 

DETECT and HCA/CCPROX outperformed MSP in retrieving the simulated 

dimensional structure. This was the case even when the correlation between the 

traits was high (.80). DETECT performed poorer in situations with low 
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discriminating items and longer tests, and in conditions where the number of 

items per trait was unequal.  

The efficacy of DETECT depends greatly on the minimally biased 

estimation of conditional covariances for all item pairs (Roussos & Ozbek, 2006); 

thus understanding the extent to which the DETECT index is biased, is important. 

Specifically, bias has implications in describing magnitudes of 

multidimensionality present in data, as the theoretical DETECT index under 

unidimensionality equals zero. Thus, empirical bias, defined as the mean of the 

DETECT index over replications (Monahan, et al., 2007), can have an effect 

wherein researchers potentially (falsely) conclude the data are multidimensional 

when in truth they are unidimensional. The effect of bias might not directly 

impact the number of clusters DETECT finds, however, it certainly plays a role in 

evaluation of the magnitude of multidimensionality present in the data. Monahan 

and his colleagues (2007) caution that:  

Bias could lead one to conclude that item responses come from 

multiple dimensions, when in fact this result is simply due to statistical 

bias. Likewise, inflated standard error implies instability in the estimate of 

the DETECT indices. Such instability could lead one to conclude 

unidimensionality with one sample and multidimensionality with another 

sample. (p. 496)  

The existing research, summarized next, has shed some light on the 

presence of bias in DETECT. While most research primarily focused on 
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unidimensional cases, Roussos and Ozbek (2006) generalized further to 

address multidimensional simulated item response data (see below).  

Monahan, et al. (2007) examined the issue of bias in DETECT index with 

respect to the type of index (exploratory versus cross-validated) under the 

conditions of unidimensionality. In the simulation study, the authors manipulated 

the test length (5, 10, 15, 20, 40, and 80 items), the sample size (100, 500, 1000, 

and 5,000), and the IRT model used (1-PL, 2-PL, and 3-PL). For each of the 500 

replications per condition, the authors calculated the exploratory and cross-

validated DETECT index.  Monahan et al. (2007) found the only significant 

interaction to be sample size by type of index, resulting in running separate 

analysis for each of the indices.  

The authors found that bias was strongly related to the number of items for 

both indices. As the number of items decreased, the bias increased, especially in 

the exploratory index. Similarly, as the sample size decreased, the bias increased. 

Furthermore, at every combination of the test length and sample size, the 

exploratory index showed more bias than the cross-validated index. In terms of 

the IRT model underlying the item responses, the authors found little difference 

between bias found in the exploratory and cross-validated DETECT indices.  

In addition to examining bias of the indices, the authors examined the 

standard errors and root mean squared errors for both exploratory and cross-

validated DETECT indices. With respect to the standard errors, the cross-

validated index showed greater amount of errors for all levels; differences in the 
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standard errors from exploratory and cross-validated approaches increased as the 

sample size and the number of items decreased. For example, for a sample size of 

1000, the standard error of the DETECT index became problematic for 5 or fewer 

items for the exploratory index, and 10 or fewer items for the cross-validated 

index. The larger standard errors for the cross-validated index across these 

conditions are the result of fewer data (items or people). Little difference in the 

average standard error was found across the IRT models for either index.  The 

results of the RMSE were opposite of those found for the standard errors. The 

RMSEs were greater for the exploratory than the cross-validated DETECT index 

for all levels of all factors, particularly in conditions with fewer examinees.  

In summary, Monahan et al. (2007) found that bias in exploratory 

DETECT index appeared to be strongly related to both the sample size and the 

test length, while bias in the cross-validated index appeared to be influenced 

largely by the test length. Standard errors in cross-validated DETECT index were 

affected by both the sample size and the test length, while in exploratory 

DETECT index, only the test length seemed significant.  Overall, Monahan and 

his colleagues (2007) agreed with previous research by Zhang and Stout (1999b) 

when suggested that cross-validated index should always be preferred over the 

exploratory index when DETECT is utilized. 

Roussos and Ozbek (2006) evaluated the amount of statistical bias present 

in the DETECT index using very large sample size (120,000). The authors 

simulated data to follow a variety of dimensionality structures. The authors 
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manipulated the following factors: the number of dimensions (1, 2, or 3), 

correlations among dimensions (.50, .70, or a combination), the number of items 

per dimension (ranged from 5 to 40 in unidimensional, and 20 or 40 in 

multidimensional case), and the data structure (simple or approximate simple).   

The authors found that the DETECT estimator had some statistical bias in 

unidimensional cases, particularly in conditions with 10 or fewer items. Based on 

these results, the authors suggested not to use DETECT with fewer than 20 items. 

In multidimensional cases, the authors found that the large-sample DETECT 

index showed “remarkably small bias for all simulated conditions (Roussos & 

Ozbek, 2006, p. 237). Furthermore, the authors found that DETECT had a high 

accuracy rate in forming clusters. Only three out of 45 multidimensional cases 

had less than perfect accuracy rate (i.e., 100%), with the lowest classification rate 

being 91% for the two-dimensional condition with test length of 20 items, 

approximate simple structure, and .7 correlations between the traits. Additionally, 

Roussos and Ozbek (2006) found some bias in the estimator of the conditional 

covariance (IDN). Similar to bias in the DETECT index, bias in the estimator of 

the conditional covariance decreased as the test length increased. 

In an extensive simulation study, Finch and Habing (2005) compared the 

performance of exploratory DETECT and NOHARM-based statistics, ��/��  

(Equation 2.14) and ALR (Equation 2.17) where two- and six-dimensional 

datasets were generated. The authors manipulated the following factors: the type 

of the MIRT model (2PL or 3PL), the number of items (15, 30, or 60) and 
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subjects (1000 or 2000), the skewness of the latent traits (-1.5, -.5, 0, .5, 1.5), and 

correlations among the traits (.00, .30, .80, or .95). It is noteworthy that the 

authors also included two different sets of item parameters; one set reflecting a 

rather easy test (basic skill), while the other set of item parameters reflecting a 

more difficult exam. Each condition was replicated 500 times.  

The authors used four criteria to evaluate the performance of the two 

methods: a) the ability to perfectly recreate the dimensional structure; b) the 

proportion of items falsely separated; c) the proportion of items that were falsely 

grouped into the same cluster; and d) the number of dimensions found. While 

DETECT outputs the number of clusters it finds, making the identification of the 

number of dimensions straight forward process, NOHARM does not. Finch and 

Habing (2005) recommend using a sequential procedure in determining the 

number of factors.  

First, for each K-dimensional fitted model, ��/�� or ALR is calculated. The 

sequential testing begins by subtracting the calculated statistic from the K-

dimensional model from the statistic from the (K-1)-dimensional model. The 

difference is treated as a χ2 variate with degrees of freedom equal to the difference 

in the number of estimated parameters. If this difference is larger than the critical 

value based on the appropriate χ
2 distribution, it is inferred that the K-dimensional 

model is favored and selection stops. Alternatively if this difference is less than 

the critical value based on the appropriate χ
2 distribution, then it is inferred that 

the models fit equally well and the procedure is repeated, comparing the (K-1) -
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dimensional model to the (K-2)-dimensional model. Once the preferred model is 

selected, NOHARM output for that model (i.e., the estimated factor loadings) is 

used in reporting of the results.  

Finch and Habing (2005) found that in two-dimensional case, the two 

procedures performed similarly well. In the case where the parameters reflected a 

basic skills test, the DETECT procedure was more likely to achieve perfect 

matches (i.e., perfectly recreate dimensionality structure) when the correlation 

among dimensions was low, and the two procedures performed equally when the 

correlation was .80 or higher. This difference at lower correlations was less 

pronounced in the conditions with parameters that reflected the more difficult test, 

where DETECT and ALR performed similarly in selecting the number of 

dimensions. The number of subjects did not seem to have a great impact on the 

ability for either approach to identify the number of underlying dimensions and to 

group the items correctly. The number of items and the skewness, however, 

seemed to result in the shift of the rates of the perfect matches: ALR and DETECT 

performed similarly under 15 and 60 item conditions, but not for conditions with 

30 items. For 30 items, performance of both declined with respect to the perfect 

match rates in both sets of item parameters and for models with and without 

guessing.   

The results for the six-dimensional conditions suggested that the ALR type 

statistic outperformed the DETECT in the perfect match rates, most notably due 

to the deterioration of performance of DETECT (as compared to the two-
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dimensional cases).1 As in the two-dimensional conditions, the number of subjects 

did not seem to have an impact for either ALR or DETECT; however, in terms of 

the items, opposite effects were found. For ALR, an increase in the number of 

items resulted in higher rates of the perfect matches. In DETECT, increase in the 

number of items resulted in worse performance.  

In addition, when errors occurred, ALR appeared to group items that 

should have been kept separate, while DETECT separated items that should have 

been grouped together. This pattern generally held for both two- and six-

dimensional conditions, regardless of the number of items and the number of 

examinees.  

Finch and Habing (2005) suggested that the relative performance of the 

two methods was dependent on the number of dimensions; where DETECT 

outperformed ALR for two-dimensional case, while the opposite was true for the 

higher, six-dimensional conditions. Furthermore, regardless of the number of 

dimensions, when the methods erred, DETECT tended to overestimate the 

number of clusters and falsely separate the items, while ALR tended to falsely 

combine the items into clusters. Unlike Finch and Habing (2003), Finch and 

Habing (2005) found that guessing had little effect on either of the methods. 

Perhaps the most relevant study involving DETECT for the current project 

is the Gierl, et al.’s (2006) study. They evaluated the performance of DETECT in 

                                                 
1 Due to superior performance of ALR over ��/�� , the authors only reported results 

for ALR in comparison to DETECT. 
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terms of its classification accuracy and consistency in situations where the data 

displayed various degrees of complex structure (i.e., item pattern structures 

differed). In their simulation study, Gierl and his colleagues examined datasets 

with 40 items that followed two-dimensional structures and manipulated three 

variables: degree of complexity (0%, 10%, 30%, or 50% of items display complex 

structure where items have angular direction between 35° and 55° relative to 

dimension 1), correlations between dimensions (.00, .30, .60, .75, or .90), and the 

sample size (500, 1000, or 1500). Each condition was replicated 100 times. 

The authors were interested in examining the classification accuracy 

(defined as the number of times that an item was correctly assigned to a cluster by 

DETECT when compared to its true cluster membership) and the classification 

consistency (defined as the number of times that an item was classified in the 

same cluster for two randomly equivalent samples). They considered 

classification rates to be acceptable when the agreement between true dimension 

and DETECT classification met or exceeded .90 (90%).  

Overall results for classification suggested that DETECT was very 

successful in accurately recovering the dimensional structures in conditions where 

the correlation between traits was .60 or lower for all sample sizes and across all 

structures. An exception was found in a condition with small sample size (i.e., N 

= 500), correlation of .60 between dimensions, and highly complex data structure 

(i.e., 50%), where the accuracy rate was .84. As the correlation increased and the 
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degree of items exhibiting complex structure increased, the performance of 

DETECT was diminished. 

Classification results for the complex structure items alone showed that 

DETECT was able to successfully classify complex items in conditions with 

uncorrelated latent traits regardless of the sample size. In the remaining 

conditions, the correlations between the latent traits and sample size became more 

noteworthy. For complex structures where the correlation between the dimensions 

was .30, DETECT obtained high classification rates for both 1000 and 1500 

examinees. However, accuracy rates fell below 90% when the sample size 

dropped to 500. At correlations of .60, a sample size of at least 15000 was 

required to yield satisfactory classification rates. DETECT failed to recover 

satisfactory the dimensional structure for any sample size when correlation 

between the traits was .75 or .90. 

With respect to the consistency of the DETECT's performance, the authors 

found that in conditions of all sample sizes and correlations between the latent 

traits of .60 or below, high consistency rates were obtained. In only four 

conditions, the consistency rate was below the desired .90, including the .60 

correlation, 30% complex, and N = 500; .30 correlation, 50% complex, and N = 

500; and .60 correlation, 50% complex with N = 500 and N = 1000. The 

consistency rates exceeded .90 for all sample sizes when correlation was .75 and 

simple structure was present. However, as the amount of complexity increased, 
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larger sample sizes were required for satisfactory performance. At .90 correlation, 

none of the conditions produced high consistency rates. 

In summary, Gierl et al. (2006) found that DETECT produced high 

classification and consistency rates for most conditions where the correlation 

between latent traits was .60 or lower. Further, the authors concluded that 

DETECT can adequately classify items in two-dimensional space for some 

complex structures, particularly when 30% or less items are complex, correlation 

between the traits is ≤ .75, and N ≥ 1000. The authors recommend that in cases 

when large numbers of items are expected to display complex structure, DETECT 

should be used for dimensionality analysis with large sample size, N ≥ 1500 and 

in situations where latent traits are correlated up to .60.  

Research on NOHARM-based statistics. Researchers have suggested 

that NOHARM “model provides a sound theoretical framework on which indices 

as well as statistics could be developed to determine the number of dimensions 

which are adequate for item response modeling” (Gessaroli & De Champlain, 

1996, p. 157). To that extent, Gessaroli and De Champlain (1996) investigated 

usefulness of the NOHARM-based ��/��  and Stout’s T statistic (implemented in 

DIMTEST, here after referred to as DIMTEST) in identifying unidimensional and 

two-dimensional structures.  

In generating unidimensional simulated data, the authors manipulated the 

sample size (500 or 1000), the test length (15, 30, or 45 items), and test reliability 

expressed by using varying means and standard deviations for discrimination 



 

  62 

 

parameter (weak, moderate, or strong).  For two-dimensional cases, they added an 

additional factor: dimension dominance. While each of the multidimensional 

structures displayed simple structure (i.e., each item only relates to one 

dimension), the balance of items belonging to a dimension varied (equal or 

unequal number of items associated with each dimension). Both the empirical 

Type I error rates (α = .05) based on unidimensional dataset and the rejection rates 

based on the multidimensional datasets were obtained; each condition was 

replicated 100 times. 

The ��/��  statistic correctly identified unidimensional model in most of the 

unidimensional conditions, with a maximum number of rejections being four (out 

of 100) in any one condition. Further, ��/��  correctly rejected unidimensionality in 

two-dimensional datasets 95 out of 100 times in any one condition. The authors 

concluded that for the studied conditions, the ��/��  statistic had both good control 

of the Type I error and good power. Gessaroli and De Champlain (1996) further 

suggested that the performance of the statistic improves as the test length, sample 

size, and test reliability increase. Test structures with unequal number of items per 

dimension resulted in poorer performance, although that performance was still 

largely satisfactory.  

In terms of the DIMTEST, when unidimensional data were simulated, the 

Type I error rates came very close to the nominal levels in all conditions. In two-

dimensional cases, DIMTEST performed well for conditions with larger sample 

size (N = 1000) and test lengths of at least 30 items.  
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Comparing the performance of the two statistics, the authors concluded 

that the major differences in performance were found in conditions with fewer 

items (i.e., 15) and a sample size of 500, where ��/��  clearly outperformed 

DIMTEST. With respect to the Type I error rates, ��/��  was more conservative 

than DIMTEST. The performance of ��/��  in rejecting the false null hypothesis 

was very comparable to DIMTEST in conditions where DIMTEST was known to 

perform well, and much higher in other conditions (i.e., smaller sample size and 

fewer items). Overall, the authors concluded that ��/�� performed well under the 

studied conditions, although the authors recognized that the set of conditions was 

limited (e.g., uncorrelated factors, no lower asymptote parameter).  

In a different study, De Champlain and Gessaroli (1998) examined the 

usefulness of the ��/��  statistic by comparing it to the performance of two other 

statistics: likelihood-ratio χ2 statistic provided in TESTFACT and the χ
2 goodness-

of-fit statistic provided in LISREL8. In this simulation study, both unidimensional 

and two-dimensional structures were examined. In unidimensional cases, the 

authors generated data employing a 3PL model, by manipulating the number of 

examinees (250, 500, or 1000) and the number of items (20 or 40). Two-

dimensional datasets were generated via compensatory model using the same 

factors as in unidimensional case, with two added factors; correlation between 

traits (.00 or .70), and item pattern structure (simple versus complex), where 

complex datasets included 50% of items to load on both dimensions equally 
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strong (i.e., same loadings on both dimensions). Each condition was replicated 

100 times. 

In examining the statistics, De Champlain and Gessaroli (1998) found that 

in comparison to other indices, ��/��  had desirable characteristics: near the 

nominal Type I error rates (α = .05)  in unidimensional cases (largest error rate of 

.07 was found in condition of 40 items and 1000 examinees) and high power rates 

to reject the multidimensional models. Further, ��/��  was successful in identifying 

true multidimensional nature of the simulated datasets, for both correlated and 

uncorrelated conditions. 

Most importantly, initial results from this study suggested that ��/��  was 

relatively unaffected by the sample size, the number of items, the item parameter 

structure, and correlations between the traits considered in the study. The authors 

cautioned that the results while encouraging pertained to only the restricted set of 

conditions as outlined in the study design and called for further investigations to 

include more complex, multidimensional, models.  

Finch and Habing (2007) further examined the performance of the 

goodness-of-fit statistics based on NOHARM by comparing them to DIMTEST in 

detecting the violations of unidimensionality. The three NOHARM-based 

statistics included in the study were ��/��  , ALR, and Ts, a goodness-of-fit statistic 

proposed by Maydeu-Olivares (2001). 

Via a simulation study, the authors examined both the Type I error rates 

and the power of the procedures. The manipulated factors included: the 
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underlying model (2-PL or 3-PL), the number of items (15, 30, or 60), the sample 

size (1000 or 2000), skewness (-1.5, -.5, 0, .5, or 1.5), the value of c parameter 

(constant for all items versus varying), and for two-dimensional sets, the 

correlation between the traits (.00, .30, .80, or .95). Two-dimensional data were 

generated following the compensatory MIRT described by Reckase (1997, see 

Equation 2.5).  

In addition, the authors used two sets of item parameters. The first set 

represented a basic skill test, with the mean (standard deviation) of discrimination 

and difficulty +.97 (.32) and -.92 (.76), respectively. The second set approximated 

parameters on a test representing non-basic skills, such that the mean (standard 

deviation) of discrimination and difficulty were 0.00 (.35) and 0.00 (1.00), 

respectively. Each of the conditions was replicated 500 times, and Type I error 

rates and power rates were calculated for each of the procedures. 

In models with no guessing, ��/��  seemed to display Type I error rates that 

were lower than those of other statistics for both sets of item parameters (the only 

exception was found in the 15-item condition where the ALR and Ts had lower 

Type I error rates based on α = .05). ALR had lower Type I error rates than 

DIMTEST for most of the conditions, and also lower Type I error rates than Ts for 

conditions with 30 and 60 items. In shorter exams and larger sample sizes, both 

ALR and DIMTEST displayed increased Type I error rate, while Ts tended to have 

elevated rates for larger sample size and more items. Skewness seemed to affect 

ALR more than either ��/��  or DIMTEST, particularly when negative skew 
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existed in either set of parameters. Skewness also impacted Type I error rates of 

the Ts, although here both the positive and the negative skew made an impact. 

In models with guessing, the NOHARM-based statistics best performed 

when the actual (varying) c parameters were provided, as opposed to situations in 

which the c parameters were constrained to be at a constant value for all items or 

were not provided at all. The difference in performance, however, was not large 

(differences in Type I error rates were never > .02). Unlike the conditions 2-PL 

conditions, in 3-PL conditions, DIMTEST had lower Type I error rates than the 

NOHARM-based statistics across all other manipulated factors. Out of the three 

NOHARM-based statistics, Ts, had Type I error rates closest to the nominal value 

and was most comparable to the DIMTEST results. The Ts statistic had elevated 

Type I error rates for larger sample sizes and more items than DIMTEST. Neither 

ALR nor ��/��  maintained the error rate at the nominal levels for the 3-PL, with 

one exception (ALR in the condition with 15 items, no skew, and basic skill item 

parameters). 

ALR and ��/��  had slightly higher power rates than DIMTEST across all 

levels for both sets of parameters in conditions where no guessing was introduced; 

except when the correlation between the dimensions was .95. Ts had generally 

lower power rates than the other statistics, although the pattern was not uniform. 

In conditions with present pseudo-guessing parameter, due to high Type I error 
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rates, the empirical power for all four statistics was calculated.2 ALR statistic had 

the highest empirical power in the 3PL conditions using the non-basic item 

parameters than the other statistics for the most situations. In conditions where the 

data were generated using the basic skills parameters, in most study conditions, 

��/��  had comparable power to ALR and DIMTEST, whereas the Ts again showed 

slightly lower power. Overall, the power for all four statistics was higher for 

longer tests, especially for DIMTEST with basic skills set of parameters, and no 

skew in the latent abilities. Further, as the correlation between the traits increased, 

the power rates decreased in the statistics.  

Finch and Habing (2007) concluded that the relative performance of the 

DIMTEST and NOHARM-based statistics depended on the model underlying the 

item responses. If the guessing is known not to be present in the data, one of the 

NOHARM-based statistics should be used; however, if guessing is present, 

DIMTEST might be more appropriate as it maintains the nominal Type I error 

rate (and has comparable power to the NOHARM-based statistics). Furthermore, 

the authors warn that if the data are skewed, power of any of the studied statistics 

will decrease and the Type I error rate will likely increase. 

The recent literature outlined above suggests that performance of 

DETECT and NOHARM-based procedures show promise in dimensionality 

                                                 
2 Empirical power was calculated such that first the empirical .05 critical value for 

all four statistics was determined.  Then, based on those values, the power rates 

were recalculated using the new values of the statistics. 
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assessment. In particular, the NOHARM-based and DETECT methods generally 

perform well under conditions with larger sample sizes and lower correlations 

between dimensions, with simple and approximate simple structures, and when 

the underlying multidimensional model is compensatory. However, NOHARM-

based statistics did not perform well in situations with nonnormal data and higher 

correlations between dimensions, and DETECT was found to perform poorly with 

large number of dimensions, low discriminating items, and smaller sample sizes. 

Broadly stated, more is to be learned about the efficacy of the procedures, 

particularly in situations that depart from foundations upon which the procedures 

(or associated statistics) are built upon, as the performance of either method is 

limited to the conditions examined in the current studies. Aspects of inclusion of 

the c parameter or complex structure have been investigated in only a few studies, 

and under a limited set of conditions. To date, compensatory models have been 

used almost exclusively to generate data that are then used in methodological 

research on dimensionality assessment. Thus, the performance of these methods 

when data are generated using noncompensatory model is largely unknown.  

In order to provide additional utility and generalizability to the statistics 

and procedures, conditions that include different models (e.g., noncompensatory), 

data structures (e.g., complex), or estimation procedures are needed. This work 

attempts to contribute to the literature on the performance of the procedures from 

an exploratory perspective, primarily focusing on the issue of complex data 
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structure in a multidimensional space (> 2 dimensions) using two different 

underlying models (compensatory and noncompensatory), described next. 



 

  70 

 

Chapter 3 

METHODOLOGY 

This study is primarily motivated by the general lack of research in the 

area of dimensionality assessment in complex data structures. The purpose of this 

study is to investigate the effect of complex structure in dimensionality 

assessment by using current, easily accessible tools; specifically, NOHARM and 

DETECT procedures are used in this study. Five methods are considered in the 

study: DETECT-based exploratory (DETECTe), DETECT-based cross-validated 

(DETECTcv), NOHARM-based ��/�� , NOHARM-based ALR, and NOHARM-

based RMSR.3 In the simulation study, manipulated factors are selected such that 

they address previously established hypotheses that reflect a number of different, 

yet plausible, testing situations, and build off existing research, including Gierl et 

al. (2006).  

Study Design 

The following factors are manipulated in the study: a) number of 

dimensions, b) structure type of data, c) correlations between dimensions, d) 

MIRT model type, e) sample size, and f) number of items per dimension. In Table 

1, the study design is presented in a tabulated form for a quick review.  

                                                 
3 Here and throughout the study, when discussing performance of ��/�� , ALR, and 

RMSR methods, it is implied that these methods are obtained using NOHARM 

output and are being evaluated as such. Thus, it is the methods based on the 

output that are being evaluated, as opposed to the NOHARM procedure itself. 
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Table 1.  

Manipulated Factors For Data Generation  

Factors Levels Total # Levels 

Dimensions 2 or 3 2 

Data Structure 0%, 10%, 30%, or 50% 4 

Correlations .00, .30, .60, .75, or .90 5 

MIRT Model Compensatory or noncompensatory 2 

Sample Size 500, 1000, or 2000 3 

Items/dimension 10 or 20 per dimension 2 

 Total # of Conditions 480 

 

Number of dimensions. Two different multidimensional data structures 

are examined: 2- (2D) and 3-dimensional (3D) structures are considered in the 

study. Gierl et al. (2006) considered 2D structures; the current includes the 2D 

structure, and also includes 3D structures. Typically, research in dimensionality 

assessment includes two to three levels of dimensional space (e.g., two- and six-

dimensional spaces were simulated in Finch & Habing, 2005; one- and two-

dimensional data were simulated in De Champlain & Gessaroli, 1998). 

Structure type of data. In order to investigate the effect of complex data, 

the percent of items in the data that are factorially complex is manipulated. 

Following Gierl et al. (2006), the percent of items in the data modeled as complex 

included: 0%, 10%, 30%, or 50%. The amount of complexity is held constant 

with respect to dimensionality that is modeled. For example, in a condition with 

2D, 10 items per dimension, and 10% of complex items, one item associated with  
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each dimension is modeled as complex, for a total of 2 complex items on the test.  

Correlations between dimensions. Correlations among dimensions in the 

population include the values of .00, .30, .60, .75, and .90. Within 3D conditions, 

the three correlations were constant. The aim is to cover a range of possible 

correlations for generalizability purposes. Similar values of correlations were 

examined in previous studies (see Literature Review section). Further, 

correlations such as these are often found in empirical studies of educational tests 

(Jang & Roussos, 2007). 

Model type. Multidimensional data are simulated from either a 2-

parameter compensatory or noncompensatory MIRT model (see equations 2.5 and 

2.9, respectively). To date, little work has been done utilizing noncompensatory 

models. Further, both NOHARM and DETECT are grounded on the 

compensatory models, making the inclusion of noncompensatory important for 

evaluating the generalizability of these approaches to analyzing data that follow 

noncompensatory models. 

Sample size. Recent studies examining the performance of either 

DETECT or NOHARM typically investigated a range of sample sizes, including 

500 and 1000 (e.g., Finch & Habing, 2005, 2007; Gessaroli & De Champlain, 

1996). This study examines sample sizes of 500, 1000, and 2000.  

Number of items per dimension. In order to investigate the effect of the 

number of items on the performance of the two methods, the number of items per 

dimension is manipulated. The number of items associated with each dimension is 
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set to be either 10 or 20. The choice of 10 or 20 items per dimension yields 

different test lengths to be examined: for 2D tests, the test length is 20 or 40 

items, and for 3D tests, the test length is 30 or 60 items. The choice of examining 

these test lengths comes from surveying the current literature, where similar test 

lengths were employed (e.g., Gierl, et al., 2006; van Abswoude, et al., 2004).  

Data Generation 

All item responses are generated using R (R Development Core Team, 

2010) such that each item response conforms to the conditions outlined above. 

The above presented study design yields a total of 480 conditions, and each 

condition is replicated 500 times (Finch & Habing, 2007; Harwell, et al., 1996). 

Item parameters used to generate the data are presented in Tables 2 

through 7. For both compensatory and noncompensatory models, the literature 

was surveyed to determine typical parameter values found in realistic testing 

scenarios (e.g., Bolt & Lall, 2003; Embretson, 1983; Gierl, et al., 2006). The 

selected item parameters are fixed across all conditions and they range in values to 

approximate a typical educational assessment. For conditions with 20 items per 

dimension, the item parameters presented in the tables are doubled (tripled) for 

the 2D (3D) conditions. In order to avoid confounding of difficulty and 

dimensionality (as shown in Reckase, et al., 1986), item parameters are balanced 

across dimensions for all conditions. The lower asymptote parameter for all 

conditions is fixed to 0.  
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Little is known about the performance of dimensionality assessment 

methods in cases of complex structure, and therefore other factors that optimize 

the performance are preserved as much as possible. Person parameters are 

generated from multivariate normal distributions with an appropriately sized 

mean vector of 0 and covariance matrix Σ, where the diagonal elements of Σ are 

all 1 and the off-diagonal elements are given by the correlation for the associated 

condition. 

Estimation Methods 

For the purpose of examining (and comparing) their performance in 

conducting dimensionality assessment, exploratory DETECT and NOHARM 

methods are utilized with their default options. For DETECT, this means that the 

MINCELL option is set at its default value of 2, where the value indicates the 

minimum number of examines required to be present in any one cell when 

calculating the conditional covariances. The MUTATIONS option allows for 

specification of the number of vectors that are mutated in the genetic algorithm, 

and per Monahan, et al. (2007), it is set to equal the recommended value that 

ranges between one fifth to one tenth of the total number of items (e.g., 2 for 20 

item test, 4 for 40 item test). Additionally, the maximum number of extracted 

clusters is set to 5.  

Further, as indicated above, DETECT can be run in exploratory or cross-

validated modes. Research showed that bias in the exploratory DETECT index 

can be substantial in conditions with fewer items and smaller sample size 
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(Monahan, et al., 2007; Zhang, et al., 2003), thus both exploratory and cross-

validated DETECT index are included in this study. For cross-validated DETECT 

index, the training sample calculation is obtained by setting a 50%/50% split in 

each sample, dictating DETECT software to randomly select 50% of the 

examinees to belong to the training sample, and the remaining 50% to serve as the 

validation subsample for each condition (Monahan, et al., 2007).  
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Table 2.  

Item Parameters for 2D Compensatory MIRT Model for 10 Items per Dimension  for all Types of Structures 

 
  Exact Simple 

Structure 
 10% Complex 

Structure   
30% Complex 

Structure  
50% Complex 

Structure  
Item d  a1 a2  a1 a2  a1 a2  a1 a2 

1 -1.50  0.60 0.00 

 

0.60 0.00 

 

0.60 0.00 

 

0.60 0.80 
2 -0.75  0.60 0.00 0.60 0.00 0.60 0.00 0.60 0.00 
3 0.00  0.90 0.00 0.90 1.10 0.90 1.10 0.90 1.10 
4 0.75  0.90 0.00 0.90 0.00 0.90 0.00 0.90 0.00 
5 1.50  1.20 0.00 1.20 0.00 1.20 1.00 1.20 1.00 
6 -1.50  1.20 0.00 1.20 0.00 1.20 0.00 1.20 0.00 
7 -0.75  1.50 0.00 1.50 0.00 1.50 0.00 1.50 1.30 
8 0.00  1.50 0.00 1.50 0.00 1.50 0.00 1.50 0.00 
9 0.75  1.80 0.00 1.80 0.00 1.80 1.60 1.80 1.60 
10 1.50  1.80 0.00 1.80 0.00 1.80 0.00 1.80 0.00 
11 1.50  0.00 0.60 0.00 0.60 0.00 0.60 0.00 0.60 
12 0.75  0.00 0.60 0.00 0.60 0.80 0.60 0.80 0.60 
13 0.00  0.00 0.90 0.00 0.90 0.00 0.90 0.00 0.90 
14 -0.75  0.00 0.90 0.00 0.90 0.00 0.90 1.10 0.90 
15 -1.50  0.00 1.20 0.00 1.20 0.00 1.20 0.00 1.20 
16 1.50  0.00 1.20 1.00 1.20 1.00 1.20 1.00 1.20 
17 0.75  0.00 1.50 0.00 1.50 0.00 1.50 0.00 1.50 
18 0.00  0.00 1.50 0.00 1.50 1.30 1.50 1.30 1.50 
19 -0.75  0.00 1.80 0.00 1.80 0.00 1.80 0.00 1.80 
20 -1.50  0.00 1.80 0.00 1.80 0.00 1.80 1.60 1.80 
M 0.00  0.60 0.60  0.65 0.66  0.76 0.79  0.89 0.89 
SD 1.09  0.69 0.69  0.68 0.68  0.65 0.67  0.63 0.63 



 

77 

 

Table 3.  

Item Parameters for 3D Compensatory MIRT Model for 10 Items per 
Dimension for Exact Simple and 10% Complex Structures 

 
 Exact Simple 

Structure  
10% Complex 

Structure 
Item d a1 a2 a3  a1 a2 a3 
1 -1.50 0.60 0.00 0.00  0.60 0.00 0.00 
2 -0.75 0.60 0.00 0.00  0.60 0.00 0.00 
3 0.00 0.90 0.00 0.00  0.90 1.10 1.30 
4 0.75 0.90 0.00 0.00  0.90 0.00 0.00 
5 1.50 1.20 0.00 0.00  1.20 0.00 0.00 
6 -1.50 1.20 0.00 0.00  1.20 0.00 0.00 
7 -0.75 1.50 0.00 0.00  1.50 0.00 0.00 
8 0.00 1.50 0.00 0.00  1.50 0.00 0.00 
9 0.75 1.80 0.00 0.00  1.80 0.00 0.00 
10 1.50 1.80 0.00 0.00  1.80 0.00 0.00 
11 1.50 0.00 0.60 0.00  0.00 0.60 0.00 
12 0.75 0.00 0.60 0.00  0.00 0.60 0.00 
13 0.00 0.00 0.90 0.00  0.00 0.90 0.00 
14 -0.75 0.00 0.90 0.00  0.00 0.90 0.00 
15 -1.50 0.00 1.20 0.00  0.00 1.20 0.00 
16 1.50 0.00 1.20 0.00  1.00 1.20 1.40 
17 0.75 0.00 1.50 0.00  0.00 1.50 0.00 
18 0.00 0.00 1.50 0.00  0.00 1.50 0.00 
19 -0.75 0.00 1.80 0.00  0.00 1.80 0.00 
20 -1.50 0.00 1.80 0.00  0.00 1.80 0.00 
21 -1.50 0.00 0.00 0.60  0.00 0.00 0.60 
22 -0.75 0.00 0.00 0.60  0.00 0.00 0.60 
23 0.00 0.00 0.00 0.90  0.00 0.00 0.90 
24 0.75 0.00 0.00 0.90  0.00 0.00 0.90 
25 1.50 0.00 0.00 1.20  0.00 0.00 1.20 
26 -1.50 0.00 0.00 1.20  0.00 0.00 1.20 
27 -0.75 0.00 0.00 1.50  1.10 1.30 1.50 
28 0.00 0.00 0.00 1.50  0.00 0.00 1.50 
29 0.75 0.00 0.00 1.80  0.00 0.00 1.80 
30 1.50 0.00 0.00 1.80  0.00 0.00 1.80 
M 0.00 .40 .40 .40  .47 .48 .49 
SD 1.08 .63 .63 .63  .64 .65 .66 
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Table 4.  

Item Parameters for 3D Compensatory MIRT Model for 10 Items 
per Dimension for 30% and 50% Complex Structures 

 
 30% Complex 

Structure  
50% Complex 

Structure 
Item d a1 a2 a3  a1 a2 a3 
1 -1.50 0.60 0.00 0.00  0.60 0.80 1.00 
2 -0.75 0.60 0.00 0.00  0.60 0.00 0.00 
3 0.00 0.90 1.10 1.30  0.90 1.10 1.30 
4 0.75 0.90 0.00 0.00  0.90 0.00 0.00 
5 1.50 1.20 1.00 0.80  1.20 1.00 0.80 
6 -1.50 1.20 0.00 0.00  1.20 0.00 0.00 
7 -0.75 1.50 0.00 0.00  1.50 1.30 1.10 
8 0.00 1.50 0.00 0.00  1.50 0.00 0.00 
9 0.75 1.80 1.60 1.40  1.80 1.60 1.40 
10 1.50 1.80 0.00 0.00  1.80 0.00 0.00 
11 1.50 0.00 0.60 0.00  0.00 0.60 0.00 
12 0.75 1.00 0.60 0.80  1.00 0.60 0.80 
13 0.00 0.00 0.90 0.00  0.00 0.90 0.00 
14 -0.75 0.00 0.90 0.00  0.70 0.90 1.10 
15 -1.50 0.00 1.20 0.00  0.00 1.20 0.00 
16 1.50 1.00 1.20 1.40  1.00 1.20 1.40 
17 0.75 0.00 1.50 0.00  0.00 1.50 0.00 
18 0.00 1.30 1.50 1.10  1.30 1.50 1.10 
19 -0.75 0.00 1.80 0.00  0.00 1.80 0.00 
20 -1.50 0.00 1.80 0.00  1.60 1.80 1.40 
21 -1.50 1.00 0.80 0.60  1.00 0.80 0.60 
22 -0.75 0.00 0.00 0.60  0.00 0.00 0.60 
23 0.00 1.10 1.30 0.90  1.10 1.30 0.90 
24 0.75 0.00 0.00 0.90  0.00 0.00 0.90 
25 1.50 0.00 0.00 1.20  1.00 0.80 1.20 
26 -1.50 0.00 0.00 1.20  0.00 0.00 1.20 
27 -0.75 1.10 1.30 1.50  1.10 1.30 1.50 
28 0.00 0.00 0.00 1.50  0.00 0.00 1.50 
29 0.75 0.00 0.00 1.80  1.40 1.60 1.80 
30 1.50 0.00 0.00 1.80  0.00 0.00 1.80 
M 0.00 0.67 0.64 0.63  0.77 0.79 0.78 
SD 1.08 0.65 0.67 0.66  0.63 0.64 0.63 
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Table 5.  

Item Parameters for 2D Noncompensatory MIRT Model for 10 Items per Dimension  for all Types of Structures 

    
Exact Simple 

Structure  
10% Complex 

Structure  
30% Complex 

Structure 
 50% Complex 

Structure 
Item b1 b2  a1 a2  a1 a2  a1 a2  a1 a2 
1 -1.50 -1.00  0.60 0.00  0.60 0.00  0.60 0.00  0.60 0.80 
2 -1.00 -1.00  0.60 0.00  0.60 0.00  0.60 0.00  0.60 0.00 
3 0.00 -0.50  0.90 0.00  0.90 1.10  0.90 1.10  0.90 1.10 
4 1.00 -0.50  0.90 0.00  0.90 0.00  0.90 0.00  0.90 0.00 
5 1.50 0.00  1.20 0.00  1.20 0.00  1.20 1.00  1.20 1.00 
6 -1.50 0.00  1.20 0.00  1.20 0.00  1.20 0.00  1.20 0.00 
7 -1.00 0.50  1.50 0.00  1.50 0.00  1.50 0.00  1.50 1.30 
8 0.00 0.50  1.50 0.00  1.50 0.00  1.50 0.00  1.50 0.00 
9 1.00 1.00  1.80 0.00  1.80 0.00  1.80 1.60  1.80 1.60 
10 1.50 1.00  1.80 0.00  1.80 0.00  1.80 0.00  1.80 0.00 
11 -1.50 -1.00  0.00 0.60  0.00 0.60  0.00 0.60  0.00 0.60 
12 -1.00 -1.00  0.00 0.60  0.00 0.60  0.80 0.60  0.80 0.60 
13 0.00 -0.50  0.00 0.90  0.00 0.90  0.00 0.90  0.00 0.90 
14 1.00 -0.50  0.00 0.90  0.00 0.90  0.00 0.90  1.10 0.90 
15 1.50 0.00  0.00 1.20  0.00 1.20  0.00 1.20  0.00 1.20 
16 -1.50 0.00  0.00 1.20  1.00 1.20  1.00 1.20  1.00 1.20 
17 -1.00 0.50  0.00 1.50  0.00 1.50  0.00 1.50  0.00 1.50 
18 0.00 0.50  0.00 1.50  0.00 1.50  1.30 1.50  1.30 1.50 
19 1.00 1.00  0.00 1.80  0.00 1.80  0.00 1.80  0.00 1.80 
20 1.50 1.00  0.00 1.80  0.00 1.80  0.00 1.80  1.60 1.80 
M 0.00 0.00  .60 .60  .65 .66  0.76 0.79  0.89 0.89 
SD 1.17 0.73  .69 .69  .68 .68  0.65 0.67  0.63 0.63 
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Table 6.  

Item Parameters for 3D Noncompensatory MIRT Model for 10 Items per 
Dimension for Exact Simple and 10% Complex Structures 

 
    Exact Simple 

Structure  
10% Complex 

Structure 
Item b1 b2 b3  a1 a2 a3  a1 a2 a3 
1 -1.50 -1.00 1.20  0.60 0.00 0.00  0.60 0.00 0.00 
2 -1.00 -1.00 0.70  0.60 0.00 0.00  0.60 0.00 0.00 
3 0.00 -0.50 0.00  0.90 0.00 0.00  0.90 1.10 1.30 
4 1.00 -0.50 -0.70  0.90 0.00 0.00  0.90 0.00 0.00 
5 1.50 0.00 -1.20  1.20 0.00 0.00  1.20 0.00 0.00 
6 -1.50 0.00 -1.20  1.20 0.00 0.00  1.20 0.00 0.00 
7 -1.00 0.50 -0.70  1.50 0.00 0.00  1.50 0.00 0.00 
8 0.00 0.50 0.00  1.50 0.00 0.00  1.50 0.00 0.00 
9 1.00 1.00 0.70  1.80 0.00 0.00  1.80 0.00 0.00 
10 1.50 1.00 1.20  1.80 0.00 0.00  1.80 0.00 0.00 
11 -1.50 -1.00 1.20  0.00 0.60 0.00  0.00 0.60 0.00 
12 -1.00 -1.00 0.70  0.00 0.60 0.00  0.00 0.60 0.00 
13 0.00 -0.50 0.00  0.00 0.90 0.00  0.00 0.90 0.00 
14 1.00 -0.50 -0.70  0.00 0.90 0.00  0.00 0.90 0.00 
15 1.50 0.00 -1.20  0.00 1.20 0.00  0.00 1.20 0.00 
16 -1.50 0.00 -1.20  0.00 1.20 0.00  1.00 1.20 1.40 
17 -1.00 0.50 -0.70  0.00 1.50 0.00  0.00 1.50 0.00 
18 0.00 0.50 0.00  0.00 1.50 0.00  0.00 1.50 0.00 
19 1.00 1.00 0.70  0.00 1.80 0.00  0.00 1.80 0.00 
20 1.50 1.00 1.20  0.00 1.80 0.00  0.00 1.80 0.00 
21 -1.50 -1.00 1.20  0.00 0.00 0.60  0.00 0.00 0.60 
22 -1.00 -1.00 0.70  0.00 0.00 0.60  0.00 0.00 0.60 
23 0.00 -0.50 0.00  0.00 0.00 0.90  0.00 0.00 0.90 
24 1.00 -0.50 -0.70  0.00 0.00 0.90  0.00 0.00 0.90 
25 1.50 0.00 -1.20  0.00 0.00 1.20  0.00 0.00 1.20 
26 -1.50 0.00 -1.20  0.00 0.00 1.20  0.00 0.00 1.20 
27 -1.00 0.50 -0.70  0.00 0.00 1.50  1.10 1.30 1.50 
28 0.00 0.50 0.00  0.00 0.00 1.50  0.00 0.00 1.50 
29 1.00 1.00 0.70  0.00 0.00 1.80  0.00 0.00 1.80 
30 1.50 1.00 1.20  0.00 0.00 1.80  0.00 0.00 1.80 
M 0.37 0.27 -0.10  .40 .40 .40  .47 .48 .49 
SD 1.04 0.56 0.85  .63 .63 .63  .64 .65 .66 
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Table 7.  

Item Parameters for 3D Noncompensatory MIRT Model for 10 Items per 
Dimension for 30% and 50% Complex Structures 

 
    30% Complex 

Structure  
50% Complex 

Structure 
Item b1 b2 b3  a1 a2 a3  a1 a2 a3 
1 -1.50 -1.00 1.20  0.60 0.00 0.00  0.60 0.80 1.00 
2 -1.00 -1.00 0.70  0.60 0.00 0.00  0.60 0.00 0.00 
3 0.00 -0.50 0.00  0.90 1.10 1.30  0.90 1.10 1.30 
4 1.00 -0.50 -0.70  0.90 0.00 0.00  0.90 0.00 0.00 
5 1.50 0.00 -1.20  1.20 1.00 0.80  1.20 1.00 0.80 
6 -1.50 0.00 -1.20  1.20 0.00 0.00  1.20 0.00 0.00 
7 -1.00 0.50 -0.70  1.50 0.00 0.00  1.50 1.30 1.10 
8 0.00 0.50 0.00  1.50 0.00 0.00  1.50 0.00 0.00 
9 1.00 1.00 0.70  1.80 1.60 1.40  1.80 1.60 1.40 
10 1.50 1.00 1.20  1.80 0.00 0.00  1.80 0.00 0.00 
11 -1.50 -1.00 1.20  0.00 0.60 0.00  0.00 0.60 0.00 
12 -1.00 -1.00 0.70  1.00 0.60 0.80  1.00 0.60 0.80 
13 0.00 -0.50 0.00  0.00 0.90 0.00  0.00 0.90 0.00 
14 1.00 -0.50 -0.70  0.00 0.90 0.00  0.70 0.90 1.10 
15 1.50 0.00 -1.20  0.00 1.20 0.00  0.00 1.20 0.00 
16 -1.50 0.00 -1.20  1.00 1.20 1.40  1.00 1.20 1.40 
17 -1.00 0.50 -0.70  0.00 1.50 0.00  0.00 1.50 0.00 
18 0.00 0.50 0.00  1.30 1.50 1.10  1.30 1.50 1.10 
19 1.00 1.00 0.70  0.00 1.80 0.00  0.00 1.80 0.00 
20 1.50 1.00 1.20  0.00 1.80 0.00  1.60 1.80 1.40 
21 -1.50 -1.00 1.20  1.00 0.80 0.60  1.00 0.80 0.60 
22 -1.00 -1.00 0.70  0.00 0.00 0.60  0.00 0.00 0.60 
23 0.00 -0.50 0.00  1.10 1.30 0.90  1.10 1.30 0.90 
24 1.00 -0.50 -0.70  0.00 0.00 0.90  0.00 0.00 0.90 
25 1.50 0.00 -1.20  0.00 0.00 1.20  1.00 0.80 1.20 
26 -1.50 0.00 -1.20  0.00 0.00 1.20  0.00 0.00 1.20 
27 -1.00 0.50 -0.70  1.10 1.30 1.50  1.10 1.30 1.50 
28 0.00 0.50 0.00  0.00 0.00 1.50  0.00 0.00 1.50 
29 1.00 1.00 0.70  0.00 0.00 1.80  1.40 1.60 1.80 
30 1.50 1.00 1.20  0.00 0.00 1.80  0.00 0.00 1.80 
M 0.37 0.27 -0.10  0.62 0.64 0.63  0.77 0.79 0.78 
SD 1.04 0.56 0.85  0.64 0.67 0.66  0.63 0.64 0.63 
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For NOHARM, default options are utilized for model identification, i.e., 

factor variances are fixed to 1, and exploratory solutions are examined for 1-, 2-, 

3-, 4-, and 5-factors. The choice to model the 5-factor solution as the highest in 

exploratory NOHARM is such that it corresponds to DETECT’s allowance of 

maximum of 5 clusters extraction. Additionally Promax methods are used to 

obtain oblique transformations that are used in analysis.  

Outcome Variables 

Following the literature on DETECT and NOHARM, several variables are 

included in the current study to evaluate the performance of these methods (e.g., 

Finch & Habing, 2005, 2007; Gierl, et al., 2006; Monahan, et al., 2007; Tate, 

2003). Three main outcome variables reported in this study include: a) the 

proportion of correct selection of true dimensional structure, b) the ability to label 

sets of items as representing the true dimensions (dimension-like), and c) the 

classification consistency of items. As discussed next, these outcomes are 

operationalized somewhat differently for the different procedures. The final 

reported values for a condition are averaged across 500 successfully run 

replications.4  

                                                 
4 Possible convergence issues may be encountered while fitting models in 

NOHARM. In conditions with nonconvergence of replications, additional 

replications are run to arrive to a total of 500 successfully estimated replications 

per condition. 
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The proportion of correct selection of true dimensionality. The first 

outcome variable is operationalized as the proportion of times within each 

condition that a true dimensional space is found (i.e., 2 factors in conditions 

where data are generated using a 2D MIRT, and 3 factors in conditions where 

data follow a 3D MIRT). In DETECT, this is a straight forward procedure 

because DETECT outputs non-overlapping clusters, hence the number of 

dimensions found equals the number of clusters DETECT outputs. For purposes 

of this study, clusters that contain 3 items or less are still considered, although 

they might be considered nuisance dimensions (e.g., Zhang & Stout, 1999b). 

Furthermore, in reporting results, for consistency in the language used, when 

referring to a group of items that are associated together in a cluster, the term 

‘factor’ is used (although typically in DETECT we often refer to these groups of 

items as clusters). 

In NOHARM, three procedures are used to determine the optimal number 

of factors. Each of these procedures is performed and reported separately. The 

first procedure is based on the NOHARM output that yields the root mean square 

residual (RMSR). Here, based on Tate (2003), a sequential model fitting approach 

to determining the number of factors is adopted. This approach suggests that 

models are fitted with additional factors until the change in RMSR does not 

exceed 10%. For example, if RMSR for a model with a single (2-, 3-, and 4-) 

factor(s) is .00631 (.00512, .00457, and .00422), the resulting decreases in 

RMSRs from a single factor solution to the second, third, and fourth dimensional 
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solutions are 19%, 11%, and 8%, respectively. Following the recommended rule 

of 10% decrease, the result of adding the fourth factor (from 3 to 4) results in 

decrease of 8% in the RMSR, thus the conclusion is to retain a 3D solution.  

The second and third procedures used to determine the formal fit of the 

model and retain the optimal number of factors are based on ��/��  and ALR, 

respectively. Here, similar to a traditional factor analytic approaches to 

determining the number of dimensions using a χ
2 test for the difference in test 

statistics. This means that a researcher starts with the fewer dimensional model 

and asks whether a higher dimensional model is needed based on the difference 

test. If the higher dimensional model provides a better fit (i.e., p < .05 of the 

difference test), the procedure continues. The optimal factor solution is found 

when the higher dimensional model does not improve the fit significantly (i.e., p 

> .05).  

The ability to label sets of items as “dimension-like”. This outcome 

variable puts emphasis on answering the question of how many of sets of items 

could be labeled as dimension-like. In other words, once either of the methods 

groups a set of items together in a set, the question remains as to how often could 

that set of items be labeled as a dimension-like, meaning that they could be 

interpreted as adequately representing one of the true underlying dimensions. 

Prior to answering this question, items have to be grouped in some way. In 

DETECT, sets of items are determined and grouped automatically, as the 

procedure outputs non-overlapping clusters. Therefore, sets of items (clusters) are 
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determined by the procedure, and those sets of items that are then submitted to 

criteria for labeling sets of items as dimension-like.  

In NOHARM, prior to investigating how often a group of items be labeled 

as dimension-like, items have to be grouped.  In order to group items together, the 

following criteria are applied to the rotated factor solution from NOHARM. For 

an item to be grouped with a factor, the item must have an estimated loading > .40 

on that particular factor and the difference between that loading and all other 

loadings must be > .20. If the item has an estimated loading that is > .40 and the 

difference between its largest loading and at least one other loading is < .20, the 

item is grouped separately in a group that is interpreted as complex (note this 

complexity is with respect to the fitted factor model, which will not necessarily 

correspond to whether the item is truly a factorially complex item). Alternatively, 

if an item does not meet either criteria (i.e., its loadings are < .40 on all factors), 

the item is considered to be unexplained.    

For example, let us assume we have a condition that is originally 

generated as a true 2D condition with 10 items associated with each dimension. 

This condition therefore has 20 items in total. If a method based on NOHARM 

output determines an optimal factor solution to be 4 factors, a rotated factor 

loadings matrix from NOHARM output is obtained. This loading matrix is 20 

(items) by 4 (factor-solution) in size. Each items for each factor is then submitted 

to criteria in order to determine with which factor an item is mostly associated. In 

order for an item to be put in a set associated with factor one, for example, the 
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item's estimated loading has to be > .40 on factor one, and it has to be larger than 

its loading on factors two, three, and four (where those loadings are all ≤ .40). The 

difference of estimated loading between factor one and each of the remaining 

factors has to be larger than .20. If an item meets these two criteria, that item is 

then put in a group that belongs to factor one. Alternatively, if the item meets the 

criterion of having an estimated loading > .40 on multiple factors or the difference 

between its loading on that factor and at least one other factor is < .20, the item is 

grouped in a complex set. Alternatively, if the item does not meet either criteria 

(i.e., its loadings are < .20 on all factors), the item is considered to be 

unexplained. 

After all items are grouped, the labeling of these “item groups” or “item 

sets” as dimension-like begin. A set of items can be labeled as dimension-1-like 

set of items, dimension-2-like set of items, or dimension-3-like set of items, 

depending on what is the true dimensionality of the data. Additionally, each item 

is generated originally as factorially simple or factorially complex (see Tables 2 

through 7 for item parameters used in data generation). In order for a set of items 

to be called dimension-1-like set, it ought to meet the following criteria. First, at 

least 50% of items in the set must be items that were generated as factorially 

simple and reflecting (the true) dimension-1. Second, dimension-1 factorially 

simple items ought to occupy more than half of the set of items. If both of these 

criteria are met, then that set of items is labeled as dimension-1-like, and all items 

that belong to the set in question are considered as dimension-1-like items. 
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Classification consistency rates of items. In order to examine 

consistency of the methods, classification consistency is computed by taking each 

item’s classification (across 500 replications in each condition) and taking the 

proportion of times that the true classification is obtained. 

For example, each item is given a classification assignment. First, the item 

is tracked to see which set of items it is grouped with (based on the labeling 

criteria discussed above). If the item is grouped in a set of items that are labeled 

as dimension-1-like (e.g., items in that group are mostly designated as dimension 

1 items), all of the items in that set are assigned a classification of D1. 

Classification rates are computed for each item by taking the mean of the correct 

classification assignment over the 500 replications. In reporting classification 

rates, items of the same type (e.g., all factorially simple or all factorially complex) 

are pooled.  
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Chapter 4 

DATA ANALYSIS AND RESULTS 

In Chapter 4, results of the current study are reported. Nonconvergence 

issues are discussed at the beginning. Then, results are presented for conditions 

when methods selected a one-factor solution as being optimal. Results concerning 

the three main outcome variables are discussed next. Results for the number of 

factors extracted by each method are presented, followed by the marginal 

proportions of the methods’ ability to label a set of items associated with a factor 

or cluster as a dimension-like, given the pre-specified criteria. Finally, the 

consistency of the methods in classifying factorially simple and factorially 

complex items is examined via classification rates. Given the symmetry of the 

study’s design, in order to compute consistency rates for different types of items, 

items of the same type are pooled. Also, for the purposes of this study, when 

referring to a factor solution or a factor model, it is in reference to what the 

particular method yielded as an optimal or favorable solution.  

For clarity of presentation, the results are presented separately for 

compensatory and noncompensatory MIRT data, for different tests lengths of 10 

and 20 items per dimension, and for two- dimensional, 2D, and three-

dimensional, 3D, structures. Useful comparisons are made when appropriate 

throughout the results. Lastly, the effects of the number of items per dimension, 

used to organize most of the presentation were summarized. 
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Nonconvergence in NOHARM 

As stated in Chapter 3, NOHARM uses least squares estimation to arrive 

to the optimal estimates of item parameters. Recall that for each condition, when 

fitting exploratory models in NOHARM, a total of 2,500 replications were 

submitted to NOHARM for parameter estimation (i.e., 500 replications for fitting 

one-, two-, three-, four-, and five-factors). Additionally, two different levels of 

test lengths were considered. This resulted in a total of 480 conditions, 240 of 

which included 10 items per dimension and 240 of which included 20 items per 

dimension.  

In this study, 215 conditions encountered some degree of nonconvergence. 

The number of nonconvergent replications within a condition ranged from one to 

461. Over 90% of the conditions with failed convergence included cases with 20 

items per dimension.  

Nonconvergence issues were observed in several different ways. First, 

nonconvergent issues were found in cases with 10 items per dimension. Here, 

within a condition, replications that failed to converge appeared to be tied to the 

specific dataset. That is, if a particular replication did not converge for fitting a 

one-factor solution, then that same replication failed to converge for fitting 

subsequent two-, three-, four-, and five-factor models. If only one such instance 

occurred in a condition, a total of five nonconvergent runs would be counted (i.e., 

one for each of the five fitted models for that replication).  
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Second, for conditions with 20 items per dimension, nonconvergent 

replications occurred mostly when fitting four- or five-factor models,  although 

for a few replications, fitting one-, two, and three-factor models also appeared 

problematic. Third, problems occurred in estimation where there was a “perfect” 

response vector for an item in a dataset (e.g., an item was answered incorrectly by 

all simulees); this occurred only in conditions with 20 items per dimension and 

noncompensatory data-generating structures. The next sections describe the 

degree of nonconvergence problems as well as how each issue was resolved. 

Nonconvergence of datasets with ten items per dimension. 

Nonconvergence that occurred for all factor models fit to a particular dataset of 

appeared  in 21out of 240 conditions, where the number of nonconvergent 

replications varied in size from one dataset (5 total replications equaling 0.2% of 

total replications in that condition) up to 19 datasets (95 total replications equaling 

3.8% of total replications in that condition). Nineteen out of 21 nonconvergent 

conditions were conditions with N = 500 and 3D structures, with various 

correlation levels and complexity.  

In Figure 4, the total numbers of attempts needed to achieve 500 

convergent replications for 15 out of these 21 conditions are plotted. These 

conditions are all N = 500 and included three levels of complexity (0%, 10%, and 

30%) and five levels of correlations between dimensions (.00 through .90). Note 

that similar number of attempts to achieve successful 500 runs was required for 

any one of these conditions.  
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Six additional conditions (not plotted) with convergence issues included 

two conditions of 50% complexity with .30 and .90 correlation; two conditions 

with N = 1000 and correlation of .60, with 0% and 10% complexity levels, and 

two conditions of 10% complexity with .30 and .75 correlation for 2D structures. 

For any of these six conditions, only one extra replication was needed to achieve 

500 successful replications. 
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Figure 4. Summary of nonconvergent conditions with various complexity level and 
correlations among dimensions. Test length (10 items per dimension), small sample 
size (N = 500), and dimensional structure (3D) were held constant in the plotted 
conditions. Numbers associated with each data point represent the total number of 
attempts to achieve successful 500 replications. Colored lines represent various levels 
of correlations among dimensions. 
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For each nonconvergent replication, a new dataset with the same 

characteristics (as defined by the condition) was generated. As Figure 4 displays, 

the reruns using the additional replications were largely successful, such that vast 

majority of nonconvergent conditions required only a single additional 

replication. One exception to that was a condition with N = 500, 0% complexity, 

correlations of .90, and 3D structure, where in order to achieve 500 successful 

replications, two additional replications were required. Note that these newly 

created datasets used for reanalysis in NOHARM were then used in reanalysis in 

DETECT. 

Nonconvergence related to the fitted model with twenty items per 

dimension. NOHARM failed to successfully converge in 194 out of 240 

conditions in conditions with 20 items per dimension. The number of 

nonconvergent replications varied within conditions. Nonconvergence occurred 

primarily in replications when fitting a four- or a five-factor solution. Thus, in 

some cases, replications that converged while fitting a one- or two-factor model, 

failed to converge in fitting higher-dimension models. However, there were 

instances when fitting a one-, two-, or three-factor model that also resulted in 

nonconvergence.  

The number of nonconverging replications in those 194 conditions is 

plotted as a histogram in Figure 5. Out of 194 conditions, many conditions had 

fewer than 50 nonconvergent replications (interquartile range equaled 3.00 to 

40.75). There were, however, several conditions that had large numbers of 
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unsuccessful replications. The range of nonconvergent replications across these 

194 conditions was 1 to 461, with a mean (standard deviation) of 44.05 (83.92), 

and a median of 11.50. 
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Figure 5. Histogram of the nonconvergent replications in 194 conditions with 
longer test lengths (note that these are out of 2,500 runs due to fitting 500 
replications to five exploratory NOHARM models). 

 

The convergence issues in these conditions were dealt in the following 

manner. First, the nonconvergent replications within a condition for any of the 

five models were identified. Second, default options in NOHARM were changed 

such that maximum function cell was increased and the convergence criterion was 
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decreased.5 Lastly, the nonconvergent replications were rerun in NOHARM such 

that a successful 500 runs for any one model within a condition were achieved.  

Nonconvergence related to presence of perfect items. In addition to the 

nonconvergent replications discussed above, a total of 355 datasets across 30 

different conditions had one or more replications that contained at least one 

perfect item. All of these instances occurred in conditions with 20 items per 

dimension where data followed a noncompensatory MIRT model. Five of 30 

conditions were 2D conditions; the remaining 25 were 3D conditions. All 2D and 

most of the 3D (20 out of 25) conditions with perfect items were conditions with 

N = 500. The remaining five 3D conditions had N = 1000.  

Conditions in which problems with estimation due to perfect item(s) 

varied across complexity and correlation levels. In any one of the 30 conditions, 

the number of replications with perfect items varied from one to 33 replications 

(mean number of replications with perfect item equaled 11.83, with standard 

deviation of 11.46). This type of convergence issue was corrected by removing 

                                                 
5 The NOHARM user’s guide (Fraser & McDonald, 2003) recommends that in 

cases where nonconvergence is an issue, a user should change the default options 

for the maximum function cell and/or the criterion value. In this study, the 

number of maximum function cells was increased from default 2000 to 4000 and 

criterion was decreased from .000001 to .0001. This solved the convergence 

issues encountered in this study. 
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the perfect item(s) from the dataset, and refitting the exploratory models in 

NOHARM.6  

Unidimensional Solution in NOHARM 

The current study focused on examining the performance of methods in 

the presence of factorial complexity in multidimensional data. Heuristic and 

statistical methods based on the NOHARM output (RMSR, ��/�� , and the ALR,) 

resulted in favoring a single-factor solution in some replications for several 

conditions. DETECT analyses in exploratory or cross-validated modes never 

resulted in a single factor solution. Therefore, results and discussion of single-

factor solutions concern only the methods based on NOHARM. In the text below, 

only general trends in selected conditions are highlighted. In particular, conditions 

where the methods tended to favor unidimensional solution frequently are 

discussed. Tables 8 through 15 report proportions of replications (out of 500) that 

selected unidimensional solution for each method across the studied conditions. 

Compensatory multidimensional data. 

Tests with ten items per dimension. The proportions that the methods 

yielded unidimensional solutions for conditions with ten items associated per 

dimension were investigated for 2D and 3D. For each dimensional structure, there 

were a total of 60 conditions.  

                                                 
6 Conditions in which a perfect item was removed were not then rerun in 

DETECT. 
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2D structures. A complete tabulation of proportions for 2D compensatory 

conditions with 10 items per dimension is shown in Table 8. RMSR only selected 

a unidimensional solution in two conditions, where the complexity levels were 

30% and correlations of .90, for N = 500 and N = 1000.  ��/��  and ALR performed 

similarly to each other, yielding unidimensional solutions to one or more 

replications in 11 conditions and 17 conditions (respectively). Most of these 

replications appeared in conditions where complexity levels were 30% or 50%, 

and the correlation between dimensions was 90. Additionally, most of the one-

factor solution appeared in conditions with N = 500 and N = 1000. The highest 

proportions of replications within a condition that favored one-factor solution by 

��/�� and ALR were .89 (444 out of 500) and .49 (245 out of 500), respectively. 

Both of these high proportions were found in a condition with 30% complexity 

and N = 500. 
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Table 8.  

Proportion of Replications Across Complexity Levels for Conditions with Two-
dimensional Compensatory MIRT and 10 Items per Dimension 

  Method 

  ALR ��/��  RMSR 

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30% 50% 

N ρ             

500 

.00 - - - - - - - - - - - - 

.30 - - **  - - - - - - - - - 

.60 - - **  **  - - - - - - - - 

.75 - - .02 .05 - - **  .09 - - - - 

.90 .11 .21 .49 .20 .27 .47 .89 .55 - - **  - 

1000 

.00 - - - - - - - - - - - - 

.30 - - - - - - - - - - - - 

.60 - - - - - - - - - - - - 

.75 - - - **  - - - - - - - - 

.90 ** .01 .23 .06 **  .05 .59 .01 - - **  - 

2000 

.00 - - - - - - - - - - - - 

.30 - - - - - - - - - - - - 

.60 - - - - - - - - - - - - 

.75 - - - - - - - - - - - - 

.90 **  - .02 **  - - .03 - - - - - 

Note: Each condition has a total of 500 replications. “-” sign indicates that zero replications in a 

condition selected unidimensional solution.  “**” sign indicates that less than 1% of replications in 

a condition selected unidimensional solution. 
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3D structures. A complete tabulation of proportions for 3D compensatory 

conditions with 10 items per dimension is shown in Table 9. ALR favored a one-

factor solution in at least one replication for 36 out of 60 conditions. The 

unidimensional solutions were particularly favored as optimal in conditions with 

30% or 50% of complexity, for different sample sizes and correlation values. The 

other two methods, ��/�� and RMSR, favored one-factor solutions to a lesser 

extent. For both methods, a one-factor solution was selected for at least one 

replication in 9 conditions, only. These 9 conditions came primarily in cases when 

correlations were at .90, for a variety of the sample sizes and complexity levels.  

For ��/�� , the largest number of replication within a condition that favored 

a one-factor solution occurred in the condition with 30% complexity, N = 500, 

and .90 correlations (385 out of 500 replications). The maximum number of 

replications within a condition for RMSR was 268 (out of 500), in the condition 

with 50% complexity, N = 500, and correlations of .90.  
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Table 9.   

Proportion of Replications Across Complexity Levels for Conditions with Three-
dimensional Compensatory MIRT and 10 Items per Dimension 

  Method 

  ALR ��/��  RMSR 

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30% 50% 

N ρ             

500 

.00 .02 - **  **  - - - - - - - - 

.30 - - .10 .09 - - - - - - - - 

.60 - - .29 .37 - - - **  - - - **  

.75 - - .28 .14 - - - - - - **  - 

.90 .05 .15 .22 .10 .12 .33 .77 .03 .03 .05 .54 **  

1000 

.00 .02 - - **  - - - - - - - - 

.30 - - .06 .03 - - - - - - - - 

.60 - - .34 .36 - - - - - - - - 

.75 - - .29 .13 - - - - - - - - 

.90 **  .02 .09 .05 - **  .50 - - - .50 - 

2000 

.00 **  - **  - - - - - - - - - 

.30 - - .01 **  - - - - - - - - 

.60 - - .42 .42 - - - - - - - - 

.75 - - .30 .15 - - - **  - - - **  

.90 **  - .06 .03 - - .10 - - - .34 - 

Note: Each condition has a total of 500 replications. “-” sign indicates that zero replications in a 

condition selected unidimensional solution.  “**” sign indicates that less than 1% of replications 

in a condition selected unidimensional solution. 
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Tests with twenty items per dimension. The frequencies that the methods 

yielded unidimensional solutions for conditions with twenty items associated per 

dimension were investigated for 2D and 3D. For each dimensional structure, there 

were a total of 60 conditions.  

2D structures. A complete tabulation of proportions for 2D compensatory 

conditions with 20 items per dimension is presented in Table 10. ALR yielded a 

unidimensional solution as preferred in 19 out of 60 conditions. Most of these 19 

conditions had a correlation of .90 and various complexity levels. Three of the 19 

conditions yielded a nontrivial proportion of replications that favored a 

unidimensional solution when the dimensions were uncorrelated and no 

complexity was present in the data. These conditions reported a one-factor 

solution in proportions of .18, .19, and .20 for N = 500, N = 1000, and N = 2000, 

respectively. ��/��  and RMSR yielded a unidimensional solution in only one and 

five conditions, respectively.  
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Table 10.   

Proportion of Replications Across Complexity Levels for Conditions with Two-
dimensional Compensatory MIRT and 20 Items per Dimension 

  Method 

  ALR ��/��  RMSR 

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30% 50% 

N ρ             

500 

.00 .18 - - - - - - - - - - - 

.30 - - - - - - - - - - - - 

.60 - - ** - - - - - - - - - 

.75 - - .02 .13 - - - - - - - - 

.90 .21 .36 .78 .34 - - .07 - - **  .20 .21 

1000 

.00 .19 - - - - - - - - - - - 

.30 - - - - - - - - - - - - 

.60 - - - - - - - - - - - - 

.75 - - **  .01 - - - - - - - - 

.90 .01 .06 .43 .05 - - - - - - **  .01 

2000 

.00 .20 - - - - - - - - - - - 

.30 - - - - - - - - - - - - 

.60 - - - - - - - - - - - - 

.75 - - - - - - - - - - - - 

.90 - **  .10 **  - - - - - - - - 

Note: Each condition has a total of 500 replications. “-” sign indicates that zero replications in a 

condition selected unidimensional solution. “**” sign indicates that less than 1% of replications in 

a condition selected unidimensional solution. 
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3D structures. A complete tabulation of proportions for 3D compensatory 

conditions with 20 items per dimension is presented in Table 11. ALR yielded a 

unidimensional solution as preferred in 58 out of 60 conditions with 3D 

compensatory models with 20 items per dimension. The highest proportions of 

replications were found in conditions with highly correlated dimensions or in 

conditions where data exhibited higher complexity. ��/��  and RMSR yielded a 

unidimensional solution in only two and six conditions, respectively.  
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Table 11.   

Proportion of Replications Across Complexity Levels for Conditions with Three-
dimensional Compensatory MIRT and 20 Items per Dimension 

  Method 

  ALR ��/��  RMSR 

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30% 50% 

N ρ             

500 

.00 .13 .13 .08 .06 - - - - - - - - 

.30 .03 .03 .15 .16 - - - - - - - - 

.60 .01 .02 .38 .38 - - - - - - - - 

.75 .03 .05 .28 .12 - - - - - - - - 

.90 .35 .42 .11 .06 - - .06 - .25 .46 .94 - 

1000 

.00 .14 .12 .06 .05 - - - - - - - - 

.30 .01 .03 .12 .08 - - - - - - - - 

.60 ** .01 .41 .39 - - - - - - - - 

.75 .01 .02 .27 .09 - - - - - - - - 

.90 .21 .32 .09 .04 - - .02 - - .01 .79 - 

2000 

.00 .12 .10 .05 .03 - - - - - - - - 

.30 .01 .01 .06 .03 - - - - - - - - 

.60 ** ** .45 .48 - - - - - - - - 

.75 - - .34 .12 - - - - - - - - 

.90 .20 .17 .06 .02 - - - - - - .45 - 

Note:  Each condition has a total of 500 replications. “-” sign indicates that zero replications in a 

condition selected unidimensional solution.  “**” sign indicates that less than 1% of replications in 

a condition selected unidimensional solution. 
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Noncompensatory multidimensional data. 

Tests with ten items per dimension. The frequencies that the methods 

yielded unidimensional solutions for conditions with ten items associated per 

dimension were investigated for 2D and 3D. For each dimensional structure, there 

were a total of 60 conditions.  

2D structures. A complete tabulation of proportions for 2D 

noncompensatory conditions with 10 items per dimension is presented in Table 

12. RMSR selected one-factor solution in at least one replication in only 9 out of 

total of 60 conditions. Within any condition, no more than six replications 

selected one factor. ALR and ��/��  methods tended to favor unidimensional 

structures more often than RMSR. ALR selected one factor in at least one 

replication in 35 conditions; 32 of which were conditions with correlation of .60 

or larger, and 25 of which were in conditions where N = 500 and N = 1000 (12 

and 13, respectively). When N = 500, one-factor solutions were selected across all 

levels of complexity, although larger number of such replications within a 

condition increased as complexity levels reached 30%. For example, with N = 500 

and correlations of .60 or larger, ��/��  had a considerable number of replications 

that favored one-factor solution. 
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Table 12.   

Proportion of Replications Across Complexity Levels for Conditions with Two-
dimensional Noncompensatory MIRT and 10 Items per Dimension 

  Method 

  ALR ��/��  RMSR 

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30% 50% 

N ρ             

500 

.00 - - - - - - - - - - - - 

.30 - - .04 ** - - ** ** - - - - 

.60 .02 .05 .32 .26 **  **  .29 .27 - - ** - 

.75 .23 .26 .45 .46 .21 .21 .48 .50 - - ** - 

.90 .47 .42 .40 .40 .46 .36 .40 .43 .01 **  **  **  

1000 

.00 - - - - - - - - - - - - 

.30 - - - - - - - - - - - - 

.60 - ** .07 .03 - - .05 .02 - - - - 

.75 .03 .04 .19 .17 .01 .01 .16 .16 - - - **  

.90 .32 .14 .17 .12 .32 .09 .07 .07 ** - - **  

2000 

.00 - - - - - - - - - - - - 

.30 - - ** - - - - - - - - - 

.60 - - .01 - - - - - - - - - 

.75 ** .01 .05 .02 - - **  **  - - - - 

.90 .11 .01 .04 .01 .08 - ** - - - - - 

Note: Each condition has a total of 500 replications. “-” sign indicates that zero replications in a 

condition selected unidimensional solution. “**” sign indicates that less than 1% of replications in 

a condition selected unidimensional solution. 
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A similar pattern was found when N = 1000. Fewer conditions and 

replications within a condition yielded a one-factor solution as the preferred 

solution. ��/��  chose one factor in at least one replication in 28 out of 60 

conditions. The types of conditions as well as the number of replications within 

those conditions were very similar to that of ALR. Conditions with largest number 

of replications with one-factor solutions tended to be those with N = 500.  

3D structures. A complete tabulation of proportions for 3D 

noncompensatory conditions with 10 items per dimension is presented in Table 

13. The RMSR method found one-factor solution in conditions across all levels of 

complexity, particularly when N = 500. The condition with largest proportion of 

replications (50 out of 500 replications) with preferred unidimensional solutions 

had a complexity level of 50%, N = 500, and correlations of .60. ALR and ��/��  

selected the one-factor model as optimal more frequently than RMSR. ALR 

selected the unidimensional solution for at least one replication in 56 out of 60 

total conditions. In many of these conditions, however, the number of replications 

was much higher than one (median of 75). Conditions with 0% of complexity and 

correlations of .75 and .90 across all three sample sizes contained the highest 

numbers of replications that ALR chose the one-factor solution.  
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Table 13.   

Proportion of Replications Across Complexity Levels for Conditions with Three-
dimensional Noncompensatory MIRT and 10 Items per Dimension 

  Method 

  ALR ��/��  RMSR 

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30% 50% 

N ρ             

500 

.00 .09 .06 .39 .35 **  **  .25 .09 - - .01 ** 

.30 .18 .17 .52 .39 .06 .08 .44 .16 - - .03 .07 

.60 .47 .47 .56 .40 .34 .30 .38 .13 **  **  .04 .10 

.75 .57 .47 .45 .27 .52 .29 .30 .09 .02 .01 .02 .03 

.90 .68 .41 .32 .14 .53 .17 .14 .01 .05 **  **  - 

1000 

.00 .01 ** .18 .14 - - .06 .02 - - - ** 

.30 .04 .05 .37 .25 - ** .33 .09 - - ** .03 

.60 .27 .32 .39 .20 .21 .19 .23 .05 - ** .01 .03 

.75 .48 .33 .25 .08 .50 .17 .09 **  **  - **  **  

.90 .62 .16 .08 ** .63 .02 ** - .04 - - - 

2000 

.00 - - .04 .02 - - ** - - - - - 

.30 **  **  .19 .10 - - .07 ** - - **  **  

.60 .07 .11 .13 .05 .02 .02 .04 .01 - - **  **  

.75 .37 .10 .04 ** .36 .02 - - - ** - - 

.90 .60 .01 - - .69 - - - .04 - - - 

Note: Each condition has a total of 500 replications. “-” sign indicates that zero replications in a 

condition selected unidimensional solution. “**” sign indicates that less than 1% of replications in 

a condition selected unidimensional solution. 

 



 

108 

 

The results for ��/��  method followed a similar pattern to that of ALR, 

although to a slightly lesser degree (��/�� had fewer replications within conditions 

that selected one-factor). In conditions with 0% of complexity when the 

correlation was .60 or larger, the number of replications within conditions that 

favored a one-factor solution increased. In a condition with 0% of complexity and 

sample size of 2000, almost 70% of replications favored one-factor solution.  

Tests with twenty items per dimension. The frequencies that the methods 

yielded unidimensional solutions for conditions with twenty items associated per 

dimension were investigated for 2D and 3D. For each dimensional structure, there 

were a total of 60 conditions.  

2D structures. A complete tabulation of proportions for 2D 

noncompensatory conditions with 20 items per dimension is presented in Table 

14. ALR chose a one-factor solution in at least one replication in 44 out of 60 

conditions. Large numbers of replications that favored unidimensional solution 

were found in conditions with N = 500 and N = 1000 and correlation levels of .60 

across all levels of complexity. On average, in these conditions, ALR selected a 

one-factor solution almost 300 times (median number of replications across these 

conditions was 186.5). ��/��  and RMSR selected one-factor solution in fewer 

conditions than ALR. 
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Table 14.   

Proportion of Replications Across Complexity Levels for Conditions with Two-
dimensional Noncompensatory MIRT and 20 Items per Dimension 

  Method 

  ALR ��/��  RMSR 

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30% 50% 

N ρ             

500 

.00 .39 .13 ** .03 - - - - - - - - 

.30 ** - .11 .16 - - - - - - - - 

.60 .11 .13 .74 .81 - - - - - - .02 ** 

.75 .71 .74 .89 .93 - - **  **  .01 .02 .17 .10 

.90 .95 .92 .88 .85 .02 **  **  - .70 .22 .05 .05 

1000 

.00 .41 .04 - - - - - - - - - - 

.30 - - - ** - - - - - - - - 

.60 - - .40 .49 - - - - - - - - 

.75 .27 .35 .69 .72 - - - - - - .01 - 

.90 .90 .71 .63 .53 - - - - .34 ** - - 

2000 

.00 .41 ** - - - - - - - - - - 

.30 - - - - - - - - - - - - 

.60 - - .02 .06 - - - - - - - - 

.75 ** .02 .35 .32 - - - - - - - - 

.90 .73 .21 .14 .05 - - - - ** - - - 

Note: Each condition has a total of 500 replications. “-” sign indicates that zero replications in a 

condition selected unidimensional solution. “**” sign indicates that less than 1% of replications in 

a condition selected unidimensional solution. 
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The ��/�� method identified at least one replication with a preferred 

unidimensional solution in only 5 out of 60 conditions, with a maximum of 9 

replications within any of the five conditions. These conditions all had N = 500, 

correlation of .75 or .90, across the levels of complexity. The RMSR method 

resulted in selection of 14 out of 60 conditions that yielded preferred one-factor 

solutions to at least one replication. Large numbers of replications that favored 

one-factor solutions were found in conditions with .90 correlation and complexity 

levels of 0% and 10%, with N = 500 and N = 1000 (mean and median number of 

replications in those conditions were 158 and 140, respectively).  

3D structures. A complete tabulation of proportions for 3D 

noncompensatory conditions with 20 items per dimension is presented in Table 

15. ALR yielded at least one replication that favored a unidimensional solution in 

all of 60 conditions. A large number of replications within conditions that favored 

one-factor solution were found across sample sizes and complexity levels. With 

only a few exceptions, the same trend was observed across all levels of 

correlation; as correlation among dimensions increased, the number of 

replications also increased. RMSR method selected one-factor model in 27 out of 

60 conditions; most of which were with N = 500 and N = 1000.  

The largest proportions of unidimensional selection within a condition 

were found in conditions with .90 correlations and no complexity, although large 

proportions were also found in conditions with N = 500 and complexity level of 

50%. ��/��  favored a one-factor model in 15 out of 60 conditions; the fewest out 
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of the three NOHARM-based methods. Additionally, many of these 15 conditions 

contained few replications that favored unidimensional solution.  
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Table 15.   

Proportion of Replications Across Complexity Levels for Conditions with Three-
dimensional Noncompensatory MIRT and 20 Items per Dimension 

  Method 

  ALR ��/��  RMSR 

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30% 50% 

N ρ             

500 

.00 .40 .35 .71 .70 - - ** - - - ** .03 

.30 .47 .54 .92 .83 **  **  .01 - - - .36 .57 

.60 .85 .85 .95 .87 - **  .01 - .10 .23 .58 .54 

.75 .96 .92 .93 .81 .06 **  - - .65 .50 .14 .14 

.90 .98 .92 .84 .54 .12 **  **  - .94 .12 - ** 

1000 

.00 .27 .24 .47 .39 - - - - - - - - 

.30 .36 .32 .75 .65 - - - - - - .04 .13 

.60 .65 .68 .85 .67 - - ** - - .01 .17 .15 

.75 .89 .80 .73 .38 .02 - - - .22 .07 - - 

.90 .98 .73 .42 .11 .21 - - - .95 ** - - 

2000 

.00 .19 .16 .31 .20 - - - - - - - - 

.30 .25 .24 .48 .39 - - - - - - - - 

.60 .39 .41 .55 .24 - - - - - - ** - 

.75 .78 .61 .24 .02 - - - - ** - - - 

.90 .96 .27 .04 ** .25 - - - .92 - - - 

Note: Each condition has a total of 500 replications. “-” sign indicates that zero replications in a 

condition selected unidimensional solution. “**” sign indicates that less than 1% of replications in 

a condition selected unidimensional solution. 
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Synthesis. Generally, the investigation of unidimensional solutions 

revealed that ALR and ��/��  tended to favor one-factor solution more often than 

RMSR. It was also generally found that an increase in either the correlation or 

complexity resulted in a more frequent selection of one-factor model, particularly 

for ��/��   and ALR, and in conditions where the generating 3D MIRT model was 

noncompensatory (one exception was in conditions with 3D noncompensatory 

MIRT and 20 items per dimension conditions using ��/�� , where fewer conditions 

and lower proportions within a condition were observed). 

Multidimensional Solutions to Multidimensional Data 

The following section discusses in depth results with a focus on the three 

main outcome variables: a) the proportions of selection of the correct dimensional 

solution, b) the ability to label sets of items as dimension-like, and c) the 

consistency of the methods in classifying items according to their generating 

assignment (see Chapter 3 for details on criteria used to label sets of items as 

dimension-like and classify items). Most of the results are presented in graphical 

form for easier identification of the main patterns. Results presented in a tabular 

form for proportions correct across conditions can be found in Appendix A.  

Compensatory multidimensional data. 

Tests with ten items per dimension in 2D structures.  

The proportion of correct dimensional selection. Figure 6 plots the 

proportions of times within a condition that a method selected the correct 2D 

solution across complexity levels. The figure contains 15 graphs, which represent 
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various combinations of the sample size and correlations between dimensions. In 

each graph, five lines represent the five methods: DETECTe, DETECTcv, RMSR, 

��/�� , and ALR. Rows represent five levels of correlations, while columns 

represent three different sample sizes. Within each graph, the y-axis represents the 

proportion correct and ranges from 0 to 1 and the x-axis represents the complexity 

levels, and includes 0%, 10%, 30%, and 50% complexity. 

As observed in Figure 6, the methods had different rates of success in 

recovering the correct 2D solutions. The RMSR method performed very poorly; it 

maximally selected the correct solution less than four percent of time; in all 

conditions, 70% or more of replications yielded a five-factor solution. The 

performance of other methods depended on the complexity levels, sample size, 

correlation levels, or some combination thereof.  

��/��  performed quite well, particularly with when N = 500 and N = 1000 

with 30% or less complexity in the data and correlation of .75 or less. Its 

performance tended to diminish at 50% of complexity, with more extreme drop 

off when N = 2000 and increased correlation. An extreme result was obtained in 

the condition with N = 2000 and correlation of .75 when data exhibited 50% 

complexity. Here, ��/��  selected incorrectly a three-factor solution 100% of the 

time. Another interesting observation was made for conditions with .90 

correlation where across all levels of sample size, ��/��  tended to be more 

accurate at lower (0% and 10%) and higher (50%) levels of complexity than at the 
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middle 30%. ALR performed worse than ��/�� method in most occasions; however, 

its pattern of performance was very similar to that of the ��/��  method.  

 
Figure 6.  Proportion correct across complexity levels when the data follow a 
compensatory 2D MIRT model with 10 items per dimension. 

 

DETECTe accurately selected the two-factor solution almost every time 

for all complexity levels and sample sizes when correlation was .60 or less. 
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DETECTe was less accurate at correlation of .75 and N = 500; particularly when 

data exhibited 50% complexity. This was true to a lesser extent for N = 1000 and 

N = 2000. At correlation levels of .90, DETECTe was performing above .90 in a 

condition with N = 2000 and at 0% of complexity. In all other cases, as 

complexity in the data increased, DETECTs ability to identify the 2D solution 

diminished. Similar patterns were found for DETECTcv, with noticeable 

differences in deterioration for DETECTcv with N = 500 and when the correlation 

was .75. Generally, DETECTe was more accurate than DETECTcv. 

The proportion of dimensional labeling. In order to examine the 

performance of the methods further, marginal proportions of the methods’ ability 

to label a set of items as dimension-like were computed. This variable does not 

condition on correct selection of the true dimensionality. Results for the 

dimensional recognition address the question of how often a particular method 

yields a group of items that facilitate an interpretation of the groups as reasonably 

representing a true underlying dimension (see Chapter 3 for more details 

regarding the criteria used to define a set of items as dimension-like).  

In 2D conditions, a method could label two (both), (any) one, or none of 

the sets of items as dimension-like, regardless if the selection of optimal factor 

solution was correct (i.e., 2), or incorrect (3, 4, or 5). The marginal proportions 

were calculated across different factor solutions and plotted for easier 

identification of patterns. Note that in some conditions and for some methods, 

marginal proportions do not add up to 1. This occurs when a method selected a 



 

117 

 

unidimensional factor solution as optimal (see section on Unidimensional 

solutions at the beginning of the chapter). 

Figures 7 and 8 present the marginal proportions that each method 

identified sets of items as dimension-like for 30% and 50% complexity levels 

across the sample sizes and correlations. The results for 0% and 10% complexities 

were quite similar to the results for 30% complexity, thus only a graph for 30% is 

shown (see Appendix B for 0% and 10% complexity graphs). As seen from 

Figure 7, when data exhibited 30% complexity or less, the methods were highly 

successful at labeling two sets of items as dimension-like across sample size with 

correlation levels of .75 or less (note the “L” shaped lines for most of the 

conditions). An exception was found with RMSR and N = 500 at .75 correlation, 

where the method had fewer instances of selecting two sets as dimension-like. 

At a correlation of .90, the methods' abilities to group items in terms of 

sets that can be labeled as the underlying dimensions diminished, particularly at N 

= 500. When N = 500, the methods had more success labeling one or none of the 

sets of items as dimension-like than two. As the sample size increased, marginal 

proportions for two and none sets of items as dimension-like increased, while 

labeling only one set as dimension-like decreased. 
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Figure 7.  Marginal proportions across 500 replications that a method identified 
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 
the data exhibit 30% complexity and follow a compensatory 2D MIRT model 
with 10 items per dimension. 

 

At 50% of complexity, the patterns of performance varied for DETECT-

based and NOHARM-based methods (see Figure 8). ��/�� , ALR, and RMSR were 

generally more likely to label either two or none sets of items as dimension-like 

N = 500

.0
0

.4
0

.8
0

N = 1000 N = 2000

co
r =

 .0
0

co
r =

 .3
0

.0
0

.4
0

.8
0

co
r =

 .6
0

co
r =

 .7
5

Both Any 1 None

.0
0

.4
0

.8
0

Both Any 1 None

co
r =

 .9
0

Both Any 1 None

ALR Chi-square DETcv DETexp RMSR



 

119 

 

when correlations were .75 or less (note the “V” shapes for orange, black, and red 

lines). An exception to this occurred at N = 500 for ALR and RMSR. At a 

correlation of .90, however, the NOHARM-based methods were more likely to 

label one set of items as being like one of the dimensions. The DETECT-based 

methods generally failed to label two sets of items as dimension-like across 

correlation levels and sample size. In only a few conditions did the DETECT 

methods, particularly DETECTe, have success in labeling any one set as 

dimension-like. This most often occurred in conditions with N = 2000 and a 

correlation of .30 or less. 
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Figure 8.  Marginal proportions across 500 replications that a method identified 
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 
the data exhibit 50% complexity and follow a compensatory 2D MIRT model 
with 10 items per dimension. 

 

The consistency of item classification. Figure 9 plots the classification 

consistencies for factorially simple items across complexity levels (x-axis) when 

the data follow a compensatory 2D MIRT model with 10 items per dimension.  
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Figure 9.  Consistency of factorially simple items across complexity levels when 
the data follow a compensatory 2D MIRT model with 10 items per dimension. 
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correlation was .90. At a correlation of .90, only ��/�� , DETECTe, and ALR had 

rates of above .80 for N = 1000 and N = 2000.  

Although higher rates were found at lower levels of complexity, when data 

exhibited 50% of complexity, the methods varied in how consistently they 

classified factorially simple items. At 50% complexity and lower level of 

correlation (0 or .30), the most successful methods were ��/�� , ALR, and RMSR. 

DETECTe was the least consistent, particularly with N = 2000 when its rates were 

.05 and .16, respectively. Though DETECTcv performed slightly better than 

DETECTe with N = 500 and a correlation of .60, as the correlation increased to 

.75 or .90, DETECTe became more consistent than DETECTcv for all sample 

sizes. 

Figure 10 plots the classification consistencies for factorially complex 

items across complexity levels (x-axis) when the data follow a compensatory 2D 

MIRT model with 10 items per dimension. Note that on these graphs, only 

conditions with complexity were plotted, hence, the x-axis included only levels of 

10%, 30%, and 50%.  
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Figure 10. Consistency of factorially complex items across complexity levels 
when the data follow a compensatory 2D MIRT model with 10 items per 
dimension. 

 

In Figure 10, two interesting patterns were noted. First, the classification 

rates of factorially complex items for the NOHARM methods were quite similar, 
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differences were noted at correlation levels of .60 and .75, where ��/��  and ALR 

outperformed the RMSR at 30% complexity (on average by 10% to 12%). A 

second interesting pattern was observed at 50% complexity. Although NOHARM 

based methods were more successful than DETECT-based methods in 

classification at complexity levels of 10% and 30%, the opposite was found for 

50% complexity levels across all correlation levels and sample sizes.  

When data exhibited 50% complexity, DETECTe and DETECTcv had 

higher classification rates, ranging from .72 to .96 for various sample sizes and 

correlation levels. At a correlation level of .90, this type of switch was noted even 

earlier; for N = 500, The DETECT-based methods at correlation level of .90 had 

comparable or higher classification rates than NOHARM-based methods. At N = 

1000 and N = 2000, notable differences occurred at 30% complexity. 

Tests with ten items per dimension in 3D structures.  

The proportion of correct dimensional selection. Figure 11 plots the 

proportions of times within a condition that a method selected the correct 3D 

solution across different complexity levels (x-axis).  
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Figure 11. Proportion correct across complexity levels when the data follow a 
compensatory 3D MIRT model with 10 items per dimension. 

 

RMSR tended to perform poorly across conditions when the data followed 

a compensatory 3D MIRT model with 10 per dimension (Figure 11). A slight 
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perform the best out of the methods examined across all levels of complexity and 

sample sizes when correlation levels were .75 or less. Similar behavior was 

observed for DETECTcv, with larger discrepancies noted in smaller sample size 

and correlation of .75.  

��/��  tended to select the correct factor solution for N = 500 and N = 1000, 

correlations of .75 or less, for complexity levels of 30% or lower. ALR also 

performed well for complexity levels of 30% or less but only for correlation of 

.30 or lower. An increase in the correlation resulted in ALR performing less 

accurately (selecting the correct solution only half of the time) even when the data 

exhibited 30% of complexity. When correlation was at .90, all methods performed 

less accurately especially as the complexity levels increased. 

The proportion of dimensional labeling. In 3D conditions, a method could 

label three, any two (both), (any) one, or none of the sets of items as dimension-

like, regardless whether the optimal factor solution was a two-, three-, four-, or 

five-factors. As in 2D conditions, marginal proportions were calculated across 

different factor solutions and were plotted. Figures 12 and 13 present the 

proportions of times that each method identified sets of items as dimension-like 

for 30% and 50% complexity level across sample size and correlation (note that 

0% and10% complexity conditions had similar patterns to 30% conditions; see 

Appendix B for 0% and 10% complexity graphs).  

Beginning with Figure 12, it was observed that the methods were highly 

successful in labeling three sets of items as dimension-like when the data 



 

127 

 

exhibited 30% complexity or less, and the correlations were .30 or smaller for all 

sample sizes. As complexity or the correlations increased, the methods were less 

successful in identifying three sets of items as dimension-like, but identified any 

one set as dimension-like more often.  

As illustrated in Figure 12, when data exhibited 30% of complexity, the 

methods tended to identify three sets of items as dimension-like more often when 

correlations were lower and sample sizes were larger. At correlations of .60 or 

larger, the NOHARM-based methods were more likely to identify three sets as  

dimension-like, but were less likely to label any two or one set. The DETECT-

based methods on the other hand tended to successfully label any one set as 

dimension-like most often. The DETECT-based methods' ability to label any one 

set of items as dimension-like particularly increased as the sample size and 

correlations increased; more so for DETECTe than DETECTcv (note the inverted 

“V” shapes of blue and green lines). 
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Figure 12. Marginal proportions across 500 replications that a method identified 
(all) three, (any) two, (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 30% complexity and follow a compensatory 3D MIRT 
model with 10 items per dimension. 

 

In Figure 13, a somewhat opposite pattern was observed for lower values 

of the correlations compared to conditions with 30% of complexity. The 
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as dimension-like, while the NOHARM-based methods labeled three sets or any 

one set as dimension-like more often. As the correlation increased to .60 and 

particularly with N = 2000, the methods behaved more similarly, increasing the 

relative frequency of labeling any one of the sets of items as dimension-like. 

When correlation was at .90, the methods were most likely not to label any of the 

sets as dimension-like, and only the DETECT-based methods were likely to label 

three, any two, or any one set.  

Note that DETECTe labeled any one set as dimension-like more often 

than any other method when the correlations were .90 across sample size, while 

DETECTcv labeled any two sets more often than any other method when N = 

1000 or N = 2000. In conditions with .90 correlation, the NOHARM-based 

methods did not successfully label any of the sets as dimension-lie (i.e., large 

marginal proportions in the last category “none” on x-axis in the figure). 
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Figure 13. Marginal proportions across 500 replications that a method identified 
(all) three, (any) two, (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 50% complexity and follow a compensatory 3D MIRT 
model with 10 items per dimension. 

 

The consistency of item classification. Figure 14 plots the classification 

consistencies for factorially simple items across complexity levels (x-axis) when 

the data follow a compensatory 3D MIRT model with 10 items per dimension. 
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DETECTe and DETECTcv generally were more successful in classification of 

factorially simple items in 3D structures than their NOHARM counterparts. This 

was particularly true when N = 500 across correlation levels and complexity 

levels of 30% or less. 

Figure 14. Consistency of factorially simple items across complexity levels when 
the data follow a compensatory 3D MIRT model with 10 items per dimension. 
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Similar patterns were observed in conditions with N = 1000 and N = 2000; 

with an exception of RMSR, for which classification rates improved as the 

complexity levels increased for correlations of .60 or smaller. ALR classification 

rates were around .67 for correlation of .00 and all sample sizes; however, rates 

decreased with the increase of complexity. At correlations of .90, only DETECTe 

had acceptable classification rates (particularly with N = 2000). Its rates were 

close to 1 at 0% and 10% of complexity; however, the rates dropped down to 

around .65 as complexity increased to 30% and 50%. Similar observations were 

noted in cases where N = 500 and N = 1000 for DETECTe at correlation of .90. 

The classification of factorially complex items in 3D structures when data 

follow a 3D compensatory MIRT with 10 items per dimension is plotted across 

complexity levels in Figure 15. It was noted that the NOHARM-based methods 

tended to classify complex items better for complexity levels of 30% or less for 

correlation levels of .00 and .30. However, at 50% complexity, DETECT-based 

methods strictly outperformed ALR, RMSR, and ��/�� .  

The largest differences were found at correlation levels of .60 or higher for 

all sample sizes. When the correlations were.90, differences in classification rates 

were notable even at N = 500, and at lower levels of complexity. For example, at 

30% complexity and N = 500 and N = 1000, DETECTe reported .93 and .95 

classification rates, while NOHARM methods were all at around zero. Between 

the two DETECT methods, most notable differences in classification rates were 

observed in following conditions. DETECTe performed better at 30% complexity 
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and correlation of .60 and .75 when N = 1000 and N = 2000; the difference was of 

.28. DETECTcv however outperformed DETECTe in 10% complexity, N = 500 

when correlation was .90, where its classification rate was at .58 and DETECTe 

was at .09. 

Figure 15. Consistency of factorially complex items when the data follow a 
compensatory 3D MIRT model with 10 items per dimension. 

 

N = 500

.0
0

.4
0

.8
0

N = 1000 N = 2000

co
r =

 .0
0

co
r =

 .3
0

.0
0

.4
0

.8
0

co
r =

 .6
0

co
r =

 .7
5

10 30 50

.0
0

.4
0

.8
0

10 30 50

co
r =

 .9
0

10 30 50

ALR Chi-square DETcv DETexp RMSR



 

134 

 

Tests with twenty items per dimension in 2D structures.  

The proportion of correct dimensional selection. Figure 16 plots the 

proportions that the methods correctly selected a two-factor model when the data 

follow a compensatory 2D MIRT model with 20 items per dimension. DETECTe 

outperformed the other four methods in most of the cases. Good performance was 

noted across various levels of complexity. DETECTe selected the correct 

dimensional structure virtually always when N = 2000, and correlation was .75 or 

smaller. When N = 500 or N = 1000, DETECTe performed somewhat well; 

however, at N = 500 and correlation of .90, the DETECT-based methods suffered. 

In all of the conditions, DETECTe selected the correct solution in larger 

proportions that DETECTcv across all levels of complexity. Both methods 

seemed to improve with the increase in sample size, but suffer as the correlations 

increased. 
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Figure 16. Proportion correct across complexity levels when the data follow a 
compensatory 2D MIRT model with 20 items per dimension.  
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output performed well for complexity levels of 30% or less when the correlations 

between dimensions did not exceed .60. As the correlations increased to .75 or 

.90, RMSR performed somewhat satisfactory only for 0% and 10% complexity 

levels. ALR did not perform well in conditions with larger correlation levels; at 

.75 the degradation in performance occurred at 50% complexity, while at .90, 

ALR seemed to have performed better at the extreme ends of complexity (0% and 

50%).  

The proportion of dimensional labeling. Figure 17 illustrates the marginal 

proportions of labeling sets of items as dimension-like for conditions where the 

data exhibit 30% of complexity, following a true 2D compensatory structure with 

20 items per dimension (note that figures for 0% and 10% look very similar to 

30% complexity and are included in Appendix B).  
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Figure 17. Marginal proportions across 500 replications that a method identified 
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 
the data exhibit 30% complexity and follow a compensatory 2D MIRT model 
with 20 items per dimension. 
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where the methods tended to label two dimensions less often (note the “L” shaped 

lines in the graphs).When correlations were .90, an increase in sample size 

resulted in the DETECT-based methods (particularly DETECTe) to label two sets 

of items as dimension-like more frequently, while NOHARM methods resulted in 

increases in labeling none of the sets as dimension-like. Generally in conditions 

with high correlation, the methods were either identifying two sets or none as 

dimension-like (marginal proportions for labeling any one set as dimension-like 

were low or zero throughout the conditions with up to 30% complexity). 

Figure 18 illustrates the marginal proportions of labeling sets of items as 

dimension-like for conditions where the data exhibit 50% of complexity, 

following a true 2D structure with 20 items per dimension. As seen in Figure 18, 

when complexity was at 50%, the NOHARM-based methods were much more 

likely to label either two or none of sets of items as dimension-like when the 

correlation was zero. As the correlation levels increased to .60, the marginal 

proportions for labeling two sets of items as dimension-like for the NOHARM-

based methods increased, while at the same time the marginal proportions for 

labeling none of the sets as dimension-like decreased. A similar effect was found 

for increases in sample size.  

In all of these conditions, the DETECT-based methods were rather 

unlikely to label two sets of items as dimension-like. As the correlation increased, 

the DETECT-based methods yielded higher marginal proportions for identifying 

both sets of items as dimension-like; however, those never rose above .27. At a 
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correlation of .90 and N = 500, all the methods tended to label one set of items as 

dimension-like.  

Figure 18. Marginal proportions across 500 replications that a method identified 
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 
the data exhibit 50% complexity and follow a compensatory 2D MIRT model 
with 20 items per dimension. 
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The consistency of item classification. Figure 19 plots the classification 

consistencies for factorially simple items across complexity levels (x-axis) when 

the data follow a compensatory 2D MIRT model with 20 items per dimension. 

The methods were successful in classifying factorially simple items across 

different sample sizes and correlation levels of .75 or less, when 30% of less 

complexity existed. Additionally, the NOHARM-based methods yielded high 

classification rates even for 50% of complexity and correlations of .60 and .75. 

DETECTe yielded high classification rates when N = 2000 and correlation of .90 

for complexity levels of 0%, 10%, and 30% of .99, .97, and .89, respectively. 
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Figure 19. Consistency of factorially simple items when the data follow a 
compensatory 2D MIRT model with 20 items per dimension. 
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classification rates never exceeded .62 (note mostly horizontal orange, red, and 

black lines), and were largely at .45 or below.  

Figure 20. Consistency of factorially complex items when the data follow a 
compensatory 2D MIRT model with 20 items per dimension. 
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the levels of sample size and correlations. For example, when the correlation was 

.90 and N = 1000, DETECTcv classification rates increased as the level of 

complexity increased from .40 to .92 in conditions with N = 500, and from .22 to 

.84 in conditions with N = 1000. Similar classification rates of factorially complex 

items and associated increases were noted in other conditions for DETECT-based 

methods. 

Tests with twenty items per dimension in 3D structures.  

The proportion of correct dimensional selection. Figure 21 plots the 

proportions of correct dimensional selection across complexity levels when the 

data follow a compensatory 3D MIRT model with 20 items per dimension. 

Overall, the DETECT-based methods outperformed the NOHARM-based 

counterparts in correctly identifying the number of dimensions across all levels of 

complexity, sample size, and correlation. DETECTe was particularly robust in 

conditions with the high correlations among the dimensions, where it only 

suffered to larger extent at 50% complexity with any sample size.  

ALR suffered in accuracy of selection as early as .60 correlation and 30% 

of complexity for all sample sizes. ��/��  tended to correctly identify the true 

dimensional structure only in conditions with correlation of .30 or lower and 30% 

or lower complexity levels. As the sample size increased, within the correlational 

level, ��/��  generally yielded lower proportions correct. 
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Figure 21. Proportion correct when the data follow a compensatory 3D MIRT 
model with 20 items per dimension.  
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dimension (conditions with 0% and 10% complexity yielded similar results to 

30% complexity; for the remaining with 0% and 10%, see Appendix B).  

In conditions across sample size and with correlation of .75 or smaller, the 

NOHARM-based methods were most likely to label three sets of items as 

dimension-like, while the DETECT-based methods tended to have somewhat 

lower rates for labeling three sets of items as dimension-like. The DETECT-based 

methods had higher proportions of labeling one set of items as dimension-like 

than the NOHARM-based methods. Generally, all methods were successful in 

identifying three sets of items as dimension-like when the data exhibited 30% or 

less complexity across sample size and correlation levels of .75 or less (except 

ALR, whose performance diminished at .75 correlation and N = 500). With 

correlations of .90, the methods had some success in labeling mostly either two or 

one set of items as dimension-like. 
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Figure 22. Marginal proportions across 500 replications that a method identified 
three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 30% complexity and follow a compensatory 3D MIRT 
model with 20 items per dimension. 
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dimension-like (x-axis) when the data exhibit 50% complexity and follow a 

compensatory 3D MIRT model with 20 items per dimension.  

Figure 23. Marginal proportions across 500 replications that a method identified 
three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 50% complexity and follow a compensatory 3D MIRT 
model with 20 items per dimension. 
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In conditions with N = 500 and correlation of .75 or lower, the NOHARM-

based methods tended to successfully label one set of items as dimension-like and 

the DETECT-based methods tended to label any two sets of items as dimension-

like. Within a correlation level, as the sample size increased, ��/�� and RMSR (and 

to some extent ALR) yielded higher marginal proportions for labeling of three sets 

of items as dimension-like. DETECT methods failed to label three sets as 

dimension-like across all correlation and sample size levels. 

The consistency of item classification. Figure 24 plots the classification 

consistencies for factorially simple items across complexity levels (x-axis) when 

the data follow a compensatory 3D MIRT model with 20 items per dimension. 

From Figure 24, it was observed that classification of factorially simple items 

with 20 items per dimension resulted in DETECT-based methods obtaining high 

classification rates (above .95) for complexity levels of 30% or less. However, at 

50% complexity in the data, DETECTe and DETECTcv reported lower 

classification rates. This was observed consistently across both the sample size 

and correlation levels of .75 or lower. 
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Figure 24. Consistency of factorially simple items when the data follow a 
compensatory 3D MIRT model with 20 items per dimension. 
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however, was notably affected by the correlation level and complexity, as its 

classification rates decreased greatly at correlations of .60 and complexity levels 

beyond 10%.  

Figure 25 plots the classification consistencies for factorially complex 

items across complexity levels (x-axis) when the data follow a compensatory 3D 

MIRT model with 20 items per dimension. The DETECT-based methods had 

higher consistency rates for complex items than methods based on NOHARM 

output only at complexity levels of 50% for all sample sizes and correlation levels 

of .75 or lower. They also more consistently classified items at .90 correlations 

across sample size levels at 30% and 50% complexity. DETECTcv had notably 

higher classification rates in at 50% complexity and N = 500 at .96, while 

DETECTe performed similarly when N = 2000 with classification rate of .89. 
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Figure 25. Consistency of factorially complex items when the data follow a 
compensatory 3D MIRT model with 20 items per dimension. 
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although those rates were never higher than .60, As complexity of data increased 

to 50%, the NOHARM-based methods were unable to consistently classify items 

across conditions, and their rates dropped to essentially zero. 

Effects due to the number of items on determining correct 

dimensionality. The preceding presentation has displayed results separately by 

the number of items associated with each dimension. Additional plots were 

conducted to illustrate the effects of the number of items on the method's abilities 

to obtain the correct number of dimensions. Figures 26 through 31 correspond to 

analyses of the effects for varying the number of items for all sample size levels 

and dimensional structures. The figures plot the proportion of times within a 

condition (i.e., out of 500 replications) that each method accurately selected the 

correct dimensional structure in compensatory models.  

In the graphs, the y-axis ranges from 0 to 1 and represents the proportion 

of replications that the method correctly identified the true number of dimensions. 

The x-axis denotes having 10 and 20 items per dimension. Connected lines on the 

graphs (from 10 to 20 items per dimension) are drawn only for illustration 

purposes, not to imply any function between the two categories. Within a graph, 

different colors represent the five methods of interest.  

Conditions that follow a 2D compensatory MIRT model were plotted for 

all sample sizes. Figure 26 plots the proportion correct when the data follow a 

compensatory, 2D MIRT model for 10 and 20 items per dimension for N = 500. It 

was observed that the differences in methods' performance to identify the correct 
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dimensional structure when items per dimension increased from 10 to 20 were 

found in NOHARM-based methods, particularly for RMSR. RMSR reported very 

low proportions in all conditions with 10 items per dimension. Increasing the 

number of items resulted in RMSR to perform better, as proportions of correct 

selection increased greatly. This improvement was found in almost all conditions 

across all complexity and correlation levels. RMSR did not improve as much or at 

all in conditions with 50% complexity and correlation ranging between .30 and 

.75.  

An increase in the number of items when N = 500 had the opposite effect 

on ��/��  in some conditions. When complexity was at 30% or less and correlation 

was .60 or smaller, ��/��  seemed not to be affected by the increase in the number 

of items. However, at complexity levels of 50%, with correlations between .00 to 

.75, an increase in the number of items resulted in worse performance for ��/�� . 

When the correlation was .90, ��/��  showed improvement from 10 to 20 items 

across all levels of complexity, although the largest differences in improvement 

were found at higher levels of complexity.  

ALR showed only slight improvement as the number of items increased for 

conditions with correlations of .75 or less, with most notable improvement in 

conditions with 50% complexity. When the correlation was .90, ALR did not seem 

to benefit from the increase in items (in fact, with 30% complexity, an increase in 

items resulted in a decrease in proportion correct). The DETECT-based methods 
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seemed not to be affected much by the increase in the number of items when N = 

500. 

Figure 26. Proportion correct when the data follow a compensatory 2D MIRT 
model for 10 and 20 items per dimension for N = 500. 

 

Figure 27 plots the proportion correct when the data follow a 

compensatory, 2D MIRT model for 10 and 20 items per dimension for N = 1000. 
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In Figure 27, RMSR had patterns similar to those for the previously discussed 

conditions when N = 500. Within a complexity level, RMSR yielded better 

performance with 20 items per dimension than with 10 items. This was noted 

across all correlation levels in conditions with 0%, 10%, and 30% of complexity.  

Figure 27. Proportion correct when the data follow a compensatory 2D MIRT 
model for 10 and 20 items per dimension for N = 1000. 
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When complexity was at 50%, RMSR performance was poor for both 10 

and 20 items per dimension. When N = 1000, an increase in items per dimension 

resulted in poorer performance of ��/�� , particularly when complexity or 

correlation levels increased. ALR as well as the DETECT methods seemed to be 

only slightly affected by the increase in the number of items. 

Figure 28 plots the proportion correct when the data follow a 

compensatory, 2D MIRT model for 10 and 20 items per dimension for N = 2000. 

Here, RMSR generally improved in selecting the correct 2D factor solution as the 

number of items increased; this was particularly found at complexity levels of 0% 

or 10%. As the complexity level increased to 30%, an increase in the number of 

items seemed to affect RMSR performance only at low levels of the correlation.  
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Figure 28. Proportion correct when the data follow a compensatory 2D MIRT 
model for 10 and 20 items per dimension for N = 2000. 
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most notable improvements were found for ALR with 30% complexity when 

correlations were .60 or larger. DETECTcv also showed some improvement when 

complexity was 30% or larger, and correlation was at .90. RMSR for conditions 

with low complexity tended to benefit most from the increase in the number of 

items.  

Similar analyses were conducted for conditions in which the data follow a 

3D MIRT. Figures 29 through 31 illustrate the effects of increase in the number of 

items across all levels of complexity and correlation for all sample sizes in 3D 

cases.  

Figure 29 plots the proportion correct when the data follow a 

compensatory, 3D MIRT model for 10 and 20 items per dimension for N = 500. 

RMSR seemed to be positively affected by the increase in items in 3D conditions 

as it was in 2D conditions previously discussed. The increase in proportion 

correct for RMSR was mostly observed when complexity levels were 30% or less. 

When correlations were at .90, RMSR performed slightly worse when the number 

of items increased and complexity was at 30% or 50%. 
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Figure 29. Proportion correct when the data follow a compensatory 3D MIRT 
model for 10 and 20 items per dimension for N = 500. 
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performance. However, when complexity was low (e.g., 0% or 10%) and the 

correlations were .90, an increase in items led to decrease in proportion correct for 

ALR. ��/�� performed slightly worse in conditions with more items when 

correlations were at .75 or smaller. The degree of degradation in performance 

increased as the complexity levels increased. Increase in the number of items 

when correlation was .90 however resulted in ��/��  obtaining higher proportion 

correct (the opposite effect than in conditions with .75 or smaller correlations). 

The DETECT-based methods were mostly unaffected by the increase in 

items when N = 500 in the 3D compensatory conditions; DETECTe reported 

somewhat higher proportion correct in conditions with 20 items when complexity 

was at 30% and 50%  and correlations were .90.  

Figure 30 plots the proportion correct when the data follow a 

compensatory, 3D MIRT model for 10 and 20 items per dimension for N = 1000. 

Similar effects of increase in the number of items were observed in conditions 

with N = 1000 as were noted for the conditions with N = 500. For example, 

DETECT-based methods and ALR tended to be only slightly impacted by the 

increase in the number of items. RMSR tended to be positively impacted by the 

increase in the number of items for conditions with correlations of .75 or less and 

complexity levels of 30% or less.  

Most notable effects of increased number of items were noted for 

��/�� method. When N = 1000, an increase in items from 10 to 20 per dimension 

did not result in ��/��  to improve in conditions with low complexity and high 
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correlations (as it did when N = 500). Similarly, with N = 1000, at 50% 

complexity and correlation of .00, ��/��  did not perform worse with the increase 

in the number of items (as it was the case when N = 500).  

Figure 30. Proportion correct when the data follow a compensatory 3D MIRT 
model for 10 and 20 items per dimension for N = 1000. 
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Figure 31 plots the proportion correct when the data follow a 

compensatory, 3D MIRT model for 10 and 20 items per dimension for N = 2000. 

The effects of the number of items in 3D compensatory conditions were again 

similar to those in the previously discussed smaller sample sizes. Generally, 

increases in the number of items per dimension led to increases in proportion 

correct for RMSR. This was observed for complexity levels of 30% or less. Just 

the opposite was found for ��/�� ; an increase in the number of items led to worse 

performance across the levels of the correlations and for complexity levels of 30% 

or less.  
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Figure 31. Proportion correct when the data follow a compensatory 3D MIRT 
model for 10 and 20 items per dimension for N = 2000. 
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proportion correct. The other exception involved DETECTe in condition with 

50% complexity and .90 correlations, where again, the increase of number of 

items positively impacted DETECTe performance. Both of these trends however, 

were previously noted in conditions when N = 1000. 

Effects due to the number of items on methods’ ability to label sets of 

items as dimension-like. A comparison of results for 2D conditions where data 

follow compensatory MIRT model suggests that the number of items per 

dimension did not meaningfully affect the methods proportions of labeling sets of 

items as dimension-like across all levels of complexity and sample size (e.g., 

Figure 7 and Figure 17 were compared, as were remaining matching figures for 

10 and 20 items per dimension for each complexity level). 

A comparison of results for 3D conditions where data follow 

compensatory MIRT model suggested that the number of items per dimension did 

not meaningfully affect the proportions of labeling sets of items as dimension-like 

for the NOHARM-based methods. However, the DETECT-based methods 

seemed to be positively affected by the increase in items when complexity level 

was at 30%. In conditions where data exhibited 30% complexity, as correlations 

and sample size increased, DETECT-based methods increased in proportions of 

labeling three sets of items as dimension-like in conditions with 20 items per 

dimension compared to conditions with 10 items per dimension. These effects, 

again, were only noted in conditions with 30% complexity. 
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Effects due to the number of items on methods’ ability to consistently 

classify items. A comparison of results for conditions where data follow a 2D 

compensatory MIRT model suggests that the number of items per dimension did 

not meaningfully affect the methods constancy rates for factorially simple items. 

Only two slight effects were noted; RMSR and DETECTe increased their 

consistency rates for factorially simple items when items per dimension increased 

from 10 to 20, in conditions with correlation of .90 and N = 500 and N = 1000 

(see Figures 9 and 19). Effects of the increase in number of items on consistency 

rates for factorially complex items in 2D conditions were very slight (only at .90 

correlation and N = 2000) and not meaningful. In other words, the methods were 

not meaningfully affected by the increase in number of items per dimension in 

conditions with a 2D compensatory MIRT model, across levels of complexity, 

sample size, and correlations (see Figures 10 and 20). 

A comparison of results for conditions where data follow a 3D 

compensatory MIRT model suggest that increase in number of items did not 

meaningfully affect methods in their ability to classify factorially simple items. 

An exception was ALR, which yielded lower classification rates of factorially 

complex items with 20 items per dimension in conditions with correlation levels 

of .75 or .90 (see Figures 14 and 24). A comparison of classification results for 

factorially complex items suggested that increase in the number of items had a 

negative effect on classification rates of DETECT-based methods. Namely, in 

conditions with a 3D compensatory MIRT model, the DETECT-based methods 
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yielded higher classification rates when 10 items were associated with each 

dimension than when there were 20 items per dimension. NOHARM-based 

methods tended not to be affected by the number of items per dimension when it 

came to classification of factorially complex items (as seen by comparing Figures 

15 and 25). 

Noncompensatory multidimensional data. 

Tests with ten items per dimension with 2D structures.  

The proportion of correct dimensional selection. Figure 32 plots the 

proportions of times within a condition that a method selected the correct 2D 

solution across complexity levels. In Figure 32, a strong pattern of performance 

for the methods emerged. In all but one condition, ��/��  and ALR outperformed 

the other three methods. Large discrepancies in performance were particularly 

noted when N = 500 and N = 1000 across all levels of complexity and 

correlations. While maintaining larger proportions of correct selection of the 

dimensional structure, in N = 2000, the performance of ALR and ��/��  shifted 

downward across all levels of correlation, except when correlation was .90.  

In conditions with a correlation of .90, increases in complexity resulted in 

better performance of the NOHARM-based methods, particularly ��/�� . Within a 

sample size, ��/��  and ALR had somewhat uniform performance; ��/��  yielded 

slightly higher proportions correct in some of the conditions with N = 500 and N = 

1000.  
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Figure 32. Proportion correct across complexity level when the data follow a 
noncompensatory 2D MIRT model with 10 items per dimension.  
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except it erred even more often. The two DETECT-based methods and the RMSR 

method failed to correctly select 2D factor solution in most conditions (note the 

flatness of the green, blue, and red lines when correlation levels were .30 or larger 

across complexity and sample size). 

The proportion of dimensional labeling. In order to examine performance 

of the methods further, we computed the marginal proportions of the methods’ 

rates of labeling a set of items as dimension-like. Here again, in 2D conditions, a 

method could label two, one, or none of the sets of items as dimension-like, 

regardless of the selection of optimal factor solution. The marginal proportions 

are calculated across different factor solutions and are plotted for easier 

identification of patterns. Figures 33 through 36 plot the marginal proportions of 

the methods' ability to label two (both), (any) one, or none of the sets of items as 

dimension-like for various levels of complexity when data follow a 2D 

noncompensatory MIRT with 10 items associated with a dimension.  

Figure 33 plots the marginal proportions that each method labeled sets of 

items as dimension-like for 0% complexity across the sample sizes and 

correlations. It was observed that when correlation levels were .60 or lower, all 

the methods except RMSR yielded high marginal proportions for identifying two 

sets of items as dimension-like, across different sample sizes. Additionally, when 

N = 2000, ALR and ��/��  reported somewhat lower marginal proportions than the 

DETECT-based methods for these correlation levels. Note that the conditions of 

correlation of .60 or lower (across sample sizes), are marked by the “L” shaped 
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lines in the graphs suggesting high proportion for labeling the two sets of items as 

dimension-like. 

At a correlation of .75, the DETECT-based methods, particularly when N 

= 2000, also yielded high marginal proportions for labeling two sets of items as 

dimension-like (DETECTe yielded higher means that DETECTcv across most 

conditions). However, the DETECT-based methods had less success in labeling 

any one of the sets of items as dimension-like in conditions with correlations of 

.90. As the sample size increased, DETECTcv and DETECTe reported higher 

marginal proportions for labeling none of the sets of items as dimension-like.  

When the correlation was at .75 or .90, RMSR method yielded the highest 

marginal proportions for identification of one set of items as dimension-like; a 

pattern that was noted with the other two NOHARM-based methods (��/��  and 

ALR) at .90 correlation and N = 1000 and N = 2000. 
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Figure 33. Marginal proportions across 500 replications that a method identified 
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 
the data exhibit 0% complexity and follow a noncompensatory 2D MIRT model 
with 10 items per dimension. 

 

Figure 34 plots the marginal proportions that each method identified sets 

of items as dimension-like for 10% complexity across the sample size and 

correlations.  
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Figure 34. Marginal proportions across 500 replications that a method identified 
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 
the data exhibit 10% percent complexity and follow a noncompensatory 2D 
MIRT model with 10 items per dimension. 

 

From Figure 34, it was observed that ALR and ��/��  recorded large 

marginal proportions for identifying two sets of items as dimension-like, in 
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shaped lines represented in the graphs). However as the correlation levels 

increased, the proportions that ��/�� and ALR identified two sets of items as 

dimension-like decreased; more so when N = 2000 than when N = 500.  

Generally, the DETECT-based methods (especially DETECTe) identified 

the two sets of items as dimension-like most often in conditions across sample 

size and correlation of .75 or smaller. RMSR tended to identify two sets of items 

as dimension-like seldom; it was most successful in labeling any one set as 

dimension-like in conditions with .60 correlation or higher.  

The overall effect of an increase in correlation was observed as well; for 

all methods, increases in the correlation (up to .75) led to an increase in marginal 

proportions for none of the sets of items to be labeled as dimension-like. At a 

correlation of .90, all methods tended to successfully label any one set as 

dimension-like; marginal proportions increased as the sample size increased (note 

higher inverted “V” shapes for the conditions in N = 2000). 

Figure 35 plots the marginal proportions of labeling sets of items as 

dimension-like for 30% complexity across the sample sizes and correlations. In 

these conditions, RMSR tended to be the most successful in labeling any one set 

as dimension-like across all correlation and sample size levels. The DETECT-

based methods reported high marginal proportions for identifying two or none of 

the sets of items as dimension-like in conditions with .00 or .30 correlation across 

all sample sizes. At correlation of .60, however, the DETECT-based methods 

decreased in their ability to identify two or any one sets as dimension-like. As the 
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correlation increased (for all sample sizes, but more so in the conditions with N = 

2000), the methods tended to yield higher marginal proportions for identifying 

only one set as dimension-like (note the inverted "V" shapes particularly in 

conditions with high correlation). 

Figure 35. Marginal proportions across 500 replications that a method identified 
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 
the data exhibit 30% percent complexity and follow a noncompensatory 2D 
MIRT model with 10 items per dimension. 
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Figure 36 plots the marginal proportions that each method identified sets 

of items as dimension-like for 50% complexity across the sample sizes and 

correlations. All methods, yielded low marginal proportions for labeling two sets 

of items as dimension-like. The highest marginal proportions were observed for 

labeling any one set of items as dimension-like. A couple of exceptions were 

found for the DETECT-based methods, which did not report as high of marginal 

proportions as the other methods in conditions with high correlations and N = 

1000 and N = 2000. Lastly, it was observed that as correlations increased, 

methods typically reported lower marginal proportions for identifying none of the 

sets of items as dimension-like.  
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Figure 36. Marginal proportions across 500 replications that a method identified 
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 
the data exhibit 50% percent complexity and follow a noncompensatory 2D 
MIRT model with 10 items per dimension. 

 

The consistency of item classification. Figure 37 plots the classification 

consistencies for factorially simple items across complexity levels (x-axis) when 

the data follow a noncompensatory 2D MIRT model with 10 items per dimension.  
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Figure 37. Consistency of factorially simple items across complexity levels when 
the data follow a noncompensatory 2D MIRT model with 10 items per dimension. 
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classification to DETECTe, however, larger differences were found in conditions 

with N = 500 between the two methods.  

Figure 38 plots the classification consistencies for factorially complex 

items across complexity levels (x-axis) when the data follow a noncompensatory 

2D MIRT model with 10 items per dimension. DETECT-based methods yielded 

higher classification rates of factorially complex items across sample size 

correlation levels in conditions with 30% and 50% complexity. At 10% 

complexity, NOHARM-based methods tended to yield higher classification rates 

when correlations were .60 or lower. However, as correlations increased, the 

DETECT-based methods tended to be as or more consistent than the NOHARM-

based methods. 
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Figure 38. Consistency of factorially complex items across complexity levels when 
the data follow a noncompensatory 2D MIRT model with 10 items per dimension. 

 

Tests with ten items per dimension in 3D structures.  

The proportion of correct dimensional selection. Figure 39 plots 
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noncompensatory 3D MIRT with 10 items per dimension. It was observed that 

ALR and ��/��  tended to perform better than other methods. In 3D 

noncompensatory conditions, the methods generally performed better in when N = 

2000 across different levels complexities and correlations. Generally, low 

proportions correct were noted for all the methods across different complexity and 

correlation levels, except ��/��  and ALR at 0% and 10% complexity in conditions 

with N = 1000 and N = 2000 when correlations were .30 or smaller. 
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Figure 39. Proportion correct across complexity levels when the data follow a 
noncompensatory 3D MIRT model with 10 items per dimension. 
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conditions, Figure 40 plots the marginal proportions that each method identified 

sets of items as dimension-like for 50% complexity levels across the sample sizes 

and correlations (plots for 0%, 10%, and 30% of complexity look very similar and 

with only a few minor deviations; thus plots for 0%, 10%, and 30% are included 

in Appendix B). 

From Figure 40, it was observed that methods generally reported low 

marginal proportions for labeling three sets of items as dimension-like. This was 

noted across the sample sizes, although conditions with N = 500 generally 

reported lower marginal proportions. When N = 1000 and N = 2000, the highest 

reported marginal proportions for labeling three sets  of items as dimension-like 

was .49 (DETECTe in a condition with correlation of .00 and N =2 000). 
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Figure 40. Marginal proportions across 500 replications that a method identified 
three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 50% percent complexity and follow a 
noncompensatory 3D MIRT model with 10 items per dimension. 

 

Typically, the methods tended to report higher marginal proportions for 
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N = 500

.0
0

.4
0

.8
0

N = 1000 N = 2000

co
r =

 .0
0

co
r =

 .3
0

.0
0

.2
0

.4
0

.6
0

.8
0

co
r =

 .6
0

co
r =

 .7
5

All 3 Any 2 Any 1 None

.0
0

.4
0

.8
0

All 3 Any 2 Any 1 None

co
r =

 .9
0

All 3 Any 2 Any 1 None

ALR Chi-square DETcv DETexp RMSR



 

183 

 

found for DETECTe, in conditions with correlations of .60 or lower and when N 

= 2000. 

In conditions with N = 500, DETECTe reported higher marginal 

proportions (compared to other four methods) for labeling any two set of items as 

dimension-like across all correlation levels. In conditions with N = 1000 and N = 

2000, DETECTe was able to label any one set as dimension-like, while other 

methods were most successful in identifying any two sets of items as dimension-

like (up to .75 correlation). Overall, it was observed that methods generally did 

not report high marginal proportions for labeling sets of items as dimension-like 

for any level of complexity. 

The consistency of item classification. Figure 41 plots the classification 

consistencies for factorially simple items across complexity levels (x-axis) when 

the data follow a noncompensatory 3D MIRT model with 10 items per dimension. 

For all methods, the classification rates at any level of complexity were somewhat 

low, particularly as the correlations increased. The two highest classification rates 

obtained were DETECTe rates in conditions with 0% and 10% complexity, N = 

2000 with correlation of .00 (.73 and .76, respectively). Also, that the lines within 

each graph are nearly horizontal, suggests that complexity levels did not have 

much impact.  

The DETECT-based methods reported higher classification rates than the 

NOHARM-based methods across all conditions, with DETECTe yielding higher 

rates than DETECTcv. The difference between the DETECT-based methods 
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decreased as the correlation increased. To some extent, the rates also increased as 

the sample size increased; particularly for DETECTcv. 

 
Figure 41. Consistency of factorially simple items across complexity levels when 
the data follow a noncompensatory 3D MIRT model with 10 items per dimension. 

 

Figure 42 plots the classification consistencies for factorially complex 
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3D MIRT model with 10 items per dimension. A distinct behavior for both types 

of methods was found when it came to classification of the factorially complex 

items. The DETECT-based methods obtained higher classification rates than the 

NOHARM-based methods across all sample sizes and correlation levels.  

Figure 42. Consistency of factorially complex items across complexity levels 
when the data follow a noncompensatory 3D MIRT model with 10 items per 
dimension. 
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With a few minor exceptions at 0% complexity and lower levels of 

correlation (i.e., .00 and .30) for the DETECT-based methods, classification rates 

were stable across the levels of complexity (note the mainly horizontal lines in the 

graphs). ALR, ��/�� , and RMSR reported similar classification rates to each other; 

across all levels of complexity, these rates never rose above .19. 

Tests with twenty items per dimension with 2D structures.  

The proportion of correct dimensional selection. Figure 43 plots the 

proportion of times within a condition that a method selected the correct 2D 

solution across different complexity levels (x-axis) when the data follow a 

noncompensatory 2D MIRT model with 20 items per dimension. 

As illustrated in Figure 43, ALR and RSMR had larger proportions of 

correct selection than either of DETECT-based methods in most conditions. 

Exceptions were found in conditions with correlation of .00 and N = 1000 and N = 

2000, where DETECTe performed equally well or better than other methods 

across 0% and 10% complexity. DETECTe also had higher proportions correct 

than DETECTcv although in many of the conditions, both methods performed 

poorly. Particular poor performance was noted in conditions with increased 

correlation levels or when more complexity was modeled into the data.  
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Figure 43. Proportion correct across complexity levels when the data follow a 
noncompensatory 2D MIRT model with 20 items per dimension.  
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ALR's performance improved as the sample size increased. ��/��  performed poorly 

across all complexity levels and the three sample size when correlations were .75 

or lower. Only in the conditions with .90 correlation did ��/��  show some 

improvement; the highest proportion correct observed for ��/��  was in a condition 

with N = 500 and 50% complexity (72% correct). 

The proportion of dimensional labeling. Figure 44 plots the marginal 

proportions of labeling sets of items as dimension-like for conditions where the 

data exhibit 30% complexity, following a true 2D noncompensatory structure 

with 20 items per dimension (note that figures for 0% and 10% look very similar 

to 30% complexity, thus only one figure is included in the text; figures associated 

with 0% and 10% can be found in Appendix B).  

When the correlation was .00 or .30, RMSR, ALR, and the DETECT-based 

methods were generally successful in labeling two set of items as dimension-like. 

However, as the correlation increased, marginal proportions for labeling two sets 

of items as dimension-like tended to decrease for all methods across sample size. 

Further, it was noted that ��/�� was most successful in labeling any one set as 

dimension-like; particularly in conditions with N = 2000 (across all correlation 

levels) or across all sample size conditions when correlation was .60 or larger. 

Interestingly, at a correlation of .60, both DETECT-based methods tended to have 

higher marginal proportions for labeling two or none of the sets as dimension-

like. At a correlation .75 or above, the NOHARM-based methods tended to have  
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higher marginal proportions for labeling any one set of items as dimension-like, a 

pattern noted particularly in cases with N = 2000  (note the inverse "V" shaped 

lines).  

Conditions whose lines created the inverse "V" shape (i.e., N = 1000 and 

N = 2000 conditions with .90 correlation), suggested that high marginal 

proportions for labeling any one set of items as dimension-like for all methods 

were obtained. These types of patterns were largely observed across all conditions 

with 50% complexity (see Appendix B), suggesting that at 50% complexity, all 

methods tended to label only one set of items as dimension-like more often than 

either two or none of the sets as dimension-like. 
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Figure 44. Marginal proportions across 500 replications that a method identified 
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 
the data exhibit 30% percent complexity and follow a noncompensatory 2D 
MIRT model with 20 items per dimension. 

 

The consistency of item classification. Figure 45 plots the classification 

consistencies for factorially simple items across complexity levels (x-axis) when 

the data follow a noncompensatory 2D MIRT model with 20 items per dimension.  
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Classification rates of factorially simple items in these conditions were 

highest for conditions with lower levels of correlations. The DETECT methods 

reported higher classification rates than their NOHARM counterparts, with larger 

differences found in conditions with smaller correlations and larger sample sizes. 

Classification consistency rates for all methods tended to drop as the complexity 

levels increased; particularly in conditions of .60 or less correlation for 

complexity levels of 30% and 50%.  

As correlations increased to .90, none of the methods reported rates higher 

than .55 (DETECTe classification rate in condition with 0% complexity and N = 

2000). Generally, at 50% complexity, none of the methods yielded high 

classification rates for any correlation level or sample size.  
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Figure 45. Consistency of factorially simple items across complexity levels when 
the data follow a noncompensatory 2D MIRT model with 20 items per dimension. 

 

Figure 46 plots the classification consistencies for factorially complex 

items across complexity levels (x-axis) when the data follow a noncompensatory 

2D MIRT model with 20 items per dimension. In conditions with 10% and 30% 
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more consistent in classifying factorially complex items than their DETECT-

based counterparts.  

 

 
Figure 46. Consistency of factorially complex items across complexity levels when 
the data follow a noncompensatory 2D MIRT model with 20 items per dimension. 
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observed between the classification rates of the two groups of methods. DETECT 

methods yielded higher classification rates across all three sample sizes, while 

NOHARM-based methods reported rates of .25 or less.  

Tests with twenty items per dimension with 3D structures.  

The proportion of correct dimensional selection. Figure 47 plots 

proportion correct across complexity levels when the data follow a 

noncompensatory 3D MIRT model with 20 items per dimension. From the figure, 

it was observed that both NOHARM- and DETECT-based methods performed 

generally poorly across sample size and correlation levels at complexity levels of 

10% or greater. One notable exception was the performance of RMSR, which 

yielded high proportion correct in a condition of correlation of .00, across all 

levels of complexity and sample sizes. 
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Figure 47. Proportion correct across complexity levels when the data follow a 
noncompensatory 3D MIRT model with 20 items per dimension.  
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lower. Its highest proportions correct were found in condition with N = 2000 and 

0% complexity across correlation levels.  

ALR and the two DETECT-based methods also tended to yield low 

proportions correct. Their respective proportions correct ranged between .38 and 

.46 across various sample size and correlation levels. Although neither of the 

DETECT-based methods performed well, it was observed that DETECTcv 

outperformed DETECTe.  

The proportion of dimensional labeling. In conditions where data follow a 

3D noncompensatory MIRT with 20 items per dimension, complexity levels had a 

somewhat small effect on how well the methods labeled sets of items as 

dimension-like. To illustrate the main findings in these conditions, Figure 48 plots 

the marginal proportions that each method identified sets of items as dimension-

like for 50% complexity levels across the sample sizes and correlations (plots for 

0%, 10%, and 30% of complexity looked very similar and with only a few minor 

deviations and are included in Appendix B). From Figure 48, it was observed that 

the methods generally reported low marginal proportions for labeling three set of 

items as dimension-like. This was noted across sample size and correlation levels. 
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Figure 48. Marginal proportions across 500 replications that a method identified 
three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 50% percent complexity and follow a 
noncompensatory 3D MIRT model with 20 items per dimension. 

 

DETECTe yielded higher marginal proportions for labeling any two set of 
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the lowest marginal proportions for labeling none of the set of items as 

dimension-like in N = 1000 and N = 2000 across all levels of correlation.  

RMSR and ��/��  yielded marginal proportions across conditions that were 

similar in magnitude to each other; the highest marginal proportions obtained 

from both methods were those that labeled none of the set of items as dimension-

like. ALR was similar to other NOHARM methods, however, out of the three 

NOHARM-based methods, it tended to have the smallest marginal proportions for 

labeling of any one set of items as dimension-like. 

The consistency of item classification. Figure 49 plots the classification 

consistencies for factorially simple items across complexity levels (x-axis) when 

the data follow a noncompensatory 3D model with 20 items per dimension. From 

the figure, it was observed that the DETECT-based methods reported higher 

classification rates than the NOHARM-based methods across all levels of 

correlation and sample size. These differences were noted particularly in 

conditions with smaller correlation levels across different sample sizes. 

NOHARM-based methods obtained low classification rates across conditions. 

Additionally, within a correlation level (except for .90 correlation), as the 

sample size increased, methods reported higher classification rates. In conditions 

with .90 correlation, however, none of the methods yielded high classification 

rates, regardless of sample size.  
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Figure 49. Consistency of factorially simple items across complexity levels when 
the data follow a noncompensatory 3D MIRT model with 20 items per dimension. 

 

Figure 50 plots the classification consistencies for factorially complex 

items across complexity levels (x-axis) when the data follow a noncompensatory 
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more consistent in classification of the factorially complex items than were 

NOHARM-based methods.  

The classification rates for DETECTe and DETECTcv were high for 

conditions with 30% and 50% complexity across all sample size and correlation 

levels. At 10% complexity, the DETECT-based methods performed better at 

higher levels of the correlations. Complex item classification rates for ALR, ��/�� , 

and RMSR were very low and similar to each other (never rising above .25.) 
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Figure 50. Consistency of factorially complex items across complexity levels 
when the data follow a noncompensatory 3D MIRT model with 20 items per 
dimension. 
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conducted to examine the effects of the number of items associated with each 

dimension and sample size in conditions with noncompensatory data. Figures 51 

through 56 correspond to analyses of the effects for varying the number of items 

for all sample size levels and dimensional structures. The figures plot the 

proportion of times within a condition (i.e., out of 500 replications) that each 

method accurately selected the correct dimensional structure in noncompensatory 

models. In the graphs, the y-axis ranges from 0 to 1 and represents the proportion 

of replications for which the method yielded the correct number of dimensions. 

Connected lines on the graphs (from 10 to 20 items per dimension) are drawn 

only for illustration purposes, not to imply any function between the two 

categories. Within a graph, different colors represent the five methods of interest.  

Figure 51 plots the proportion correct when the data follow a 

noncompensatory, 2D MIRT model for 10 and 20 items per dimension for N = 

500. RMSR showed improvement in proportion correct when the number of items 

increased in all conditions where data followed a 2D noncompensatory MIRT.  

For ��/�� , however, an increase in the number of items resulted in worse 

performance in most conditions in terms of lower proportions of correctly 

identifying the true number of dimensions. The decrease in performance was 

noted across various levels of complexity and correlation, with most notable 

decreases occurring at lower levels of complexity and correlations (in two 

conditions, both at correlation of .90, ��/�� showed no improvement when 
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complexity was 30%, and showed improvement of .17 when complexity was 

50%).  

ALR tended not to be affected by the increase in the number of items when 

correlations were .00 or .30 across all levels of complexity, or at a correlation of 

.60 and 0% and 10% of complexity. However, ALR's performance decreased as 

the number of items increased when the correlation was .60 and complexity was 

30% and 50%, as well as at all complexity levels for correlations of .75 and .90. 

This suggested that across the complexity and correlation levels, increase in the 

number of items affected ALR's performance negatively (i.e., smaller proportion 

correct) for only some conditions. 
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Figure 51. Proportion correct when the data follow a noncompensatory, 2D 
MIRT model for 10 and 20 items per dimension for N = 500. 
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overall performance of the DETECT-based methods was very poor across 

complexity and correlation levels in the conditions with N = 500 where data 

followed noncompensatory 2D MIRT model. 

Figure 52 plots the proportion correct when the data follow a 

noncompensatory, 2D MIRT model for 10 and 20 items per dimension for N = 

1000. From Figure 52, it was observed that four out of five methods (all but ��/�� ) 

yielded higher proportions correct when the number of items increased. Degrees 

of upward shifts however varied across the methods. The most notable upward 

shift in proportion correct going from 10 to 20 items per dimension was recorded 

by DETECTe in conditions with correlation of .00 and all levels of complexity, as 

well as 0% and 10% complexity with correlation of .30. It is also noteworthy that 

in those same conditions, DETECTe had somewhat large proportions correct. 
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Figure 52. Proportion correct when the data follow a noncompensatory, 2D 
MIRT model for 10 and 20 items per dimension for N = 1000. 
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was smaller than in DETECTe). For ALR, only slight shifts upward or downward 

were noted as the number of items increased; most notable shifts occurred in 

higher complexity conditions with correlations of .75. 

Figure 53 plots the proportion correct when the data follow a 

noncompensatory, 2D MIRT model for 10 and 20 items per dimension for N = 

2000. It can be noted that the methods tended to maintain the same relationship 

between the increase of items and their performance when N = 2000 as they did 

when sample size was 1000.  

Four out of five methods (all but ��/�� ) tended to be positively affected by 

the increase in the number of items when correlations were at .30 or lower. At 

correlations of .60 or higher, generally the methods’ performances stayed the 

same or decreased in moving from 10 to 20 items per dimension. Exceptions were 

found in ALR, which tended to benefit from the increase in the number of items at 

high correlations across complexity levels, and RMSR, which showed some 

improvement for complexity levels of 30% and 50% when correlation was .90. 

The DETECT-based methods once again showed an upward shift in moving from 

10 to 20 items per dimension only in conditions with lower correlation levels. 

Although, as noted earlier, at .60 or higher correlation, the DETECT methods 

performed suboptimal across any complexity level regardless of the number of 

items. 

 



 

208 

 

 
Figure 53. Proportion correct when the data follow a noncompensatory, 2DMIRT 
model for 10 and 20 items per dimension for N = 2000. 
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for N = 500. As suggested by Figure 54, RMSR was the only method that largely 

improved as the number of items increased; and that was not the case for all 

conditions.  

 
Figure 54. Proportion correct when the data follow a noncompensatory, 3D 
MIRT model for 10 and 20 items per dimension for N = 500. 
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The improvement in RMSR was only noted in conditions with correlation 

of .00 (across the levels of complexity) and in conditions with .30 or .60 

correlation and 0% or 10% complexity. ��/� �  and ALR generally performed worse 

as the number of items increased for conditions of low correlation. The DETECT-

based methods showed a slight upward shift in proportion correct in some 

conditions, however, as noted in the previous discussion of noncompensatory 

MIRT models, the DETECT-based methods yielded low proportions correct 

across conditions. 

Figure 55 plots the proportion correct when the data follow a 

noncompensatory, 3D MIRT model for 10 and 20 items per dimension for N = 

1000. It was observed that RMSR performed better when the number of items 

increased for conditions with correlation of .30 or less, across all levels of 

complexity. While the DETECT-based methods also yielded an upward shift from 

10 to 20 items per dimension for the same set of conditions (correlations of .30 or 

less and all complexity levels), the increase in proportion correct was much less 

pronounced compared to the RMSR. 
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Figure 55. Proportion correct when the data follow a noncompensatory, 3D 
MIRT model for 10 and 20 items per dimension for N = 1000. 
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The proportions of correct identification of dimensionality when the data 

follow a noncompensatory 3D MIRT model for 10 and 20 items per dimension 

for N = 2000 are plotted in Figure 56. General conclusions made about the impact 

of increase of the number of items echoed those previously discussed N = 500 and 

N = 1000. Most often, the increase in the number of items helped the RMSR 

method to obtain higher proportions correct in conditions with small correlations 

across complexity levels, and in conditions with 0% of complexity and 

correlations of .75 or smaller.  
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Figure 56. Proportion correct when the data follow a noncompensatory, 3D 
MIRT model for 10 and 20 items per dimension for N = 2000. 
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sample size or the number of items, it was observed that as complexity and 

correlation levels increased, performances for the methods generally worsened. 

Effects due to the number of items on methods’ ability to label sets of 

items as dimension-like. A comparison of results for 2D conditions where data 

follow noncompensatory MIRT model suggests that the number of items per 

dimension meaningfully affected RMSR proportions of labeling two sets of items 

as dimension-like when complexity was at 0% (Figure 33 and Figure B12 in 

Appendix B). In those conditions, RMSR increased in proportion of labeling two 

sets of items as dimension-like across the levels of correlation and sample size. 

The other methods remained somewhat unaffected by the increase in items in 

conditions with .60 or smaller correlation across sample sizes. Most notably, ALR 

decreased in proportion of labeling two or any one sets of items as dimension-like 

when the number of items increased, but the DETECT-based methods tended to 

improve in labeling sets of items as dimension-like as the number of items 

increased. 

As complexity increased to 10% (comparing Figure 34 and Figure B13 in 

Appendix B), an increase in number of items negatively affected ��/��  to label 

two sets of items as dimension like in conditions with correlation of .60 or lower 

(i.e., smaller proportions of labeling two sets of dimensions were observed). 

However, at correlations of > .60, ��/��  seemed to be positively affected by the 

increase in number of items, yielding larger proportions of labeling two or any 

one sets of items as dimension-like. Other methods tended to be only slightly 
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affected by the increase in number of items; when affected, methods did not yield 

always positive or negative shifts in proportions of labeling of sets of items. Often 

it was dependent on correlation level. 

Generally, in conditions with 2D and complexity of 30% when data follow 

a noncompensatory MIRT model, an increase in number of items positively 

affected methods in labeling sets of items as dimension-like when correlations 

were ≤ .60. However, opposite effect was found when correlations were > .60 

(comparing Figures 35 and 44). Comparison of results for 50% complexity when 

data follow a 2D noncompensatory MIRT model suggested that the number of 

items per dimension did not meaningfully affect the proportion of labeling sets of 

items as dimension-like for any of the methods (comparison of Figure 36 and 

Figure B14 in Appendix B). 

In conditions where data follow a 3D noncompensatory MIRT model, an 

increase in number of items per dimension meaningfully affected only the 

DETECT-based methods across sample sizes and correlation levels of .60 or 

lower. NOHARM-based methods did not seem to be meaningfully affected by the 

increase in number of items per dimension. These behaviors were noted across all 

complexity levels, however, as complexity increased, the positive effect (i.e., 

higher proportions of labeling sets of items as dimension-like) diminished. These 

comparisons were made based on Figures B9 and B15 in Appendix B for 0%, 

Figures B10 and B16 in Appendix B for 10%, Figures B11 and B17 in Appendix 

B for 30%, and Figures 40 and 48 for 50% complexity.  
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Effects due to the number of items on methods’ ability to consistently 

classify items. Comparison of results for conditions where data follow a 2D 

noncompensatory MIRT model suggests that the number of items per dimension 

somewhat affected the DETECT-based methods. Consistency rates for factorially 

simple items of in the DETECT-based methods were higher in conditions with 20 

items per dimension. These comparisons were based on a visual comparison of 

Figures 37 and 45. Effects of the increase in number of items on consistency rates 

for factorially complex items in 2D conditions were again somewhat meaningful 

for DETECT-based methods; however, the effects for factorially complex items 

were in downward direction. In other words, the increase in number of items per 

dimension in conditions with 2D noncompensatory MIRT model yielded lower 

classification rates of factorially complex items in the DETECT-based methods. 

As with factorially simple items, the NOHARM-based methods tended to be less 

affected by the increase in number of items in classification of factorially complex 

items (these comparisons were based on visual inspection of Figures 38 and 46). 

A comparison of results for conditions where data follow a 3D 

noncompensatory MIRT model suggest that an increase in number of items only 

affected the DETECT-based methods in their ability to classify factorially simple 

items. An increase in the number of items per dimension led to higher 

classification rates of factorially simple items from the DETECT-based methods 

across sample sizes and correlation levels of .75 or lower. The NOHARM-based 

methods’ classification rates were not meaningfully affected by the increase of 



 

217 

 

items per dimension (these conclusions were based on comparisons of Figures 41 

and 49). Comparison of classification results for factorially complex suggested 

that an increase in the number of items had no meaningful effect on classification 

rates of any of the methods. Only a slight decrease in consistency rates of 

factorially complex items was noted in conditions with 10% complexity and low 

correlations for DETECT-based methods (these comparisons were based on 

visual inspection of Figures 42 and 50). 
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Chapter 5 

DISCUSSION 

The primary purpose of this study was to investigate the performance of 

current, popular methods in determining test dimensionality when the data exhibit 

complex structure. Specifically, this study examined the performance of methods 

rooted in conditional covariance theory implemented in DETECT (exploratory 

and cross-validated), and methods based on the output from NOHARM (��/�� , 

ALR, and RMSR), a nonlinear factor analytic procedure. The data were generated 

such that varying degrees of complexity were introduced.  

 General Discussion of Methods’ Performances  

This research sought to answer the question of how well the methods 

perform in assessing dimensionality of the tests when the data exhibit complexity. 

The performance of five methods under consideration was evaluated using three 

main outcomes. A number of design factors were manipulated, including data-

generating model, sample size, true number of dimensions, correlation(s) between 

the dimensions, number of items per dimension, and the amount of complex 

items. The effects of these, broadly speaking, were as follows.  

A main effect for data-generating model was observed in this study. In 

compensatory conditions, the DETECT-based methods tended to outperform the 

NOHARM-based methods in correctly identifying the true dimensionality. In 

compensatory cases, the DETECT-based methods also tended to be more  
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consistent (than the NOHARM-based methods) in classifying the factorially 

simple items for lower levels of complexity and in classifying the factorially 

complex items for the highest level of complexity.  

In noncompensatory conditions, however, the NOHARM-based methods 

of ��/�� and ALR were more successful in correct identification of dimensional 

structure than DETECT-based methods. Classification of factorially simple and 

factorially complex items suffered greatly for the NOHARM-based methods in 

noncompensatory conditions. 

 As complexity levels increased, the NOHARM-based methods decreased 

in their accuracy to select correct dimensionality structure more so than the 

DETECT-based methods. An increase in complexity also affected the methods’ 

ability to label sets as dimension-like and item classifications. Methods tended to 

label more sets of items as dimension-like when complexity levels were 30% or 

lower, particularly in compensatory conditions.  

Sample size had somewhat divergent effect for the two types of methods. 

For the DETECT-based methods, generally, an increase in sample size either 

improved the performance of the methods, or did not affect it much. For the 

NOHARM-based method ��/�� , increases in sample size tended to hinder its 

performance more often than to improve it. For NOHARM-based ALR, increase 

in sample size contributed to better performance in conditions with higher 

dimensionality and 10 items per dimension (i.e., when the number of items per 

dimension was smaller and true dimensionality larger, increase in sample size 
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positively affected ALR’s performance). However, increase in sample size in other 

conditions tended to result in poorer performance of ALR (similar to what was 

observed with ��/�� ). 

The magnitude of the correlation(s) between dimensions particularly 

affected the performance of the methods in noncompensatory conditions, where 

increases in correlation generally yielded lower proportions correct and 

classification rates of the methods. It noteworthy that, as was the case with other 

design factors, the effects of manipulating the correlation effect on the method 

were not equal or consistent. 

Lastly, ��/�� , ALR, and  DETECTe methods tended to perform about the 

same under 3D as they did under 2D structures, while RMSR and DETECTcv 

performed better as the true dimensionality increased (particularly when 

complexity and correlations increased). 

While the above summaries concern broad summaries of main effects, the 

following subsections provide syntheses and recommendations for the 

compensatory and noncompensatory contexts.  

Data Following Compensatory Structures 

The DETECT-based methods typically outperformed the NOHARM-

based methods in terms of identifying the correct number of dimensions, 

especially when the correlations were .60 or smaller, and the sample size was 

larger. These findings are consistent with previous research on DETECT (e.g.,  
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Girl et al., 2006, Zhang & Stout, 1999b). Particularly good performance of 

the DETECT-based methods was noted in conditions with complexity levels of 

30% or less. As the complexity levels increased and the sample size decreased, 

the performance typically diminished. Between the two DETECT methods, 

DETECTe often outperformed DETECTcv, mostly when N = 500 and N = 1000 

and in conditions with longer tests (i.e., 20 items per dimension).  

The latter result was, however, not surprising. When conducting 

exploratory DETECT using a cross-validated mode (i.e., DETECTcv), a 

researcher decides how much of the whole sample is to be used as the training 

sample. In the current study, 50% of the sample was dedicated to the training 

sample. The amount of information for any one analysis of DETECT in the cross-

validated mode was less than in the exploratory mode. Therefore, it comes as no 

surprise that the largest differences in performance between DETECTe and 

DETECTcv were found in conditions with smaller sample sizes and longer tests 

(i.e., conditions with 20 items per dimension). Nonetheless, DETECT methods 

tended to perform better than their NOHARM-based counterparts in correctly 

identifying a true dimensionality in conditions with the compensatory MIRT 

across all complexity levels for various sample sizes and correlation levels. 

Of the three NOHARM-based methods, ��/��  and ALR generally 

outperformed RMSR. ��/��  was generally found to be most accurate in conditions 

with shorter tests, particularly when the sample size and/or complexity were  
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small. The performance of  ��/��  diminished as the correlation levels increased to 

.75 and the sample size was large, a finding consistent with the research on ��/��  

when 0% complexity conditions were considered (e.g., De Champlain & 

Gessaroli, 1998).   

The performance of ALR improved in conditions with the correlation of 

.60 and 30% or less complexity as the number of items increased; an opposite 

effect was found for ��/�� , particularly when N = 2000. This finding was 

consistent with the previous research on ALR, which suggested that an increase in 

the number of items improved the accuracy of ALR (Finch & Habing, 2005).7 

However, this finding was somewhat inconsistent with the research on ��/��  (De 

Champlain & Gessaroli, 1998), which suggested that the effects of the number of 

items as well as the correlation level had little or no effect on ��/�� . As in the 

current study, the performance was negatively affected by the increase in the test 

length. It should be noted, however, that De Champlain and Gessaroli (1998) 

acknowledged limitations of their findings, particularly with respect to 

considering more complex multidimensional models, such as those investigated in 

the current study.  

                                                 
7 It is noteworthy that in the same study, Finch and Habing (2005) found 

DETECT to perform worse with an increase in items. In the current study, it was 

observed that, typically, an increase in items did not affect DETECTe, but it did 

slightly affect DETECTcv. 
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In conditions where the data followed a compensatory MIRT model, all 

methods seemed to successfully label two sets of items as dimension-like for true 

2D structures when the data exhibited 30% or less complexity and the correlation 

was .75 or smaller. When the complexity increased to 50%, the DETECT-based 

methods tended to have success labeling only one dimension-like set in conditions 

with a small correlation and typically had high marginal proportions for not being 

able to label any sets of items as dimension-like. The NOHARM-based methods 

tended to label either two or none sets of items as dimension-like when 

correlation was .75.  

In true 3D conditions, the methods tended to label two sets as dimension-

like well up to 30% complexity as well; however, the effect of the correlation 

level was more notable in 3D than in 2D compensatory conditions. As the 

correlations rose above .30 in 3D conditions, larger sample sizes were needed to 

successfully label three dimension-like sets. 

All methods yielded high consistency rates of factorially simple items 

when the complexity levels were 30% or less and the correlation levels were .75 

or lower. ��/�� , ALR, and DETECTe tended to have higher rates than the 

DETECTcv and RMSR; however, in the low correlations and when N = 2000, 

those differences were only slight. An increase in true dimensionality (from 2D to 

3D) resulted in minor differences in classification rates for individual methods; 

the DETECT-based methods were most notable in improving classification rates  
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for factorially simple items when true dimensionality increased. For 

compensatory conditions in either 2D or 3D cases, an increase in the number of 

associated items per dimension did not seem to affect any of the methods’ 

classification rates. 

For factorially complex items from 2D compensatory conditions, the 

NOHARM-based methods yielded classification consistency rates around .50 

across all levels of complexity, sample sizes, and correlation. The DETECT-based 

methods were less consistent in situations with complexity levels below 50%, but 

more consistent with complexity levels of at 50%. An increase to 3D structures 

did not affect the NOHARM-based methods and their classification rates. The 

DETECT-based methods, however, yielded higher classification rates of 

factorially complex items at 30% complexity (compared to 50% in 2D). These 

DETECT results are somewhat similar to those found in Gierl et al. (2006) study. 

However, an exact comparison cannot be made due to different strategies for 

computing classification rates.  

Synthesizing the preceding discussion, the following recommendations 

can be drawn in compensatory MIRT situations. The DETECT-based methods, 

particularly DETECTe, performed the best in terms of identifying the number of 

dimensions. This was true even for high levels of complexity, a somewhat 

surprising result given that DETECT assumes simple structure. However, as the 

complexity increases, it becomes more difficult to label the resulting sets of items  
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from DETECT in terms of the dimensions. Moreover, DETECT is fairly 

inconsistent in its classification of complex items. These difficulties occur 

because DETECT assigns all the items to non-overlapping clusters, and so in 

situations where the correct number of clusters is supported, the complex items 

wind up being inconsistently assigned to the clusters, complicating the 

interpretations of the clusters. 

Thus, DETECTe can be recommended for determining the number of 

dimensions, when the MIRT models are compensatory in nature. There appears to 

be little difference between the exploratory and cross-validated DETECT 

methods. Where differences exist, the exploratory approach generally performed 

better. However, researchers should have caution when interpreting the clusters 

when simple structure does not hold. DETECT provides indices meant to indicate 

when approximate simple structure does not hold (e.g., r ratio or IDN index; 

Roussos & Ozbek, 2006, Zhang & Stout, 1999b). More research on DETECT's 

utility for identifying the presence of complex structure—and therefore alerting 

the researcher to have caution in interpreting the resulting clusters—is needed.  

Data Following Noncompensatory Structures 

The NOHARM-based methods χ�/��  and ALR most often correctly 

identified the true dimensional structure in 2D conditions with 10 items per 

dimension across all complexity levels. In 2D conditions where the number of 

items increased to 20 per dimension, ALR remained to be one of the most accurate  
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methods but χ�/��  performance diminished. Increase in the number of items 

helped RMSR and DETECTe methods to improve in accuracy, although 

DETECTe method was only accurate in N = 1000 and N = 2000 conditions with 

0% or 10% complexity and small correlations (.00 and .30).  

An increase in true underlying dimensionality (from 2D to 3D) resulted in 

ALR and  χ�/��  performing best, in particular with N = 2000 and lower 

correlations. An increase in the number of items in 3D conditions led to decreased 

accuracy in all methods except RMSR across all complexity levels. RMSR 

performed well in conditions with correlation of .00, as well as conditions with 

0% of complexity and .60 correlation (especially when N = 2000). 

Thus, recommendations for determining the number of dimensions in 

noncompensatory situations are somewhat dependent on the number of 

dimensions as well as number of items associated with dimensions. ALR and 

χ�/��  tended to be the most accurate methods in conditions that had 10 items per 

dimension and where true dimensionality was 2D rather than 3D. RMSR tended 

to benefit from the increase in both items and dimensions; however, given that 

RMSR method generally performed suboptimally, it is not recommended to use 

for most situations examined in this study. RMSR outperformed other methods 

only in a small number of conditions – conditions in which the data followed a 

noncompensatory 3D MIRT model with 20 items per dimension, 0% of 

complexity with low to moderate correlations, and across complexity levels when  
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correlations were .30 or less. The DETECT-based methods did not perform as 

well in noncompensatory condition, and therefore might also not be optimal 

methods to determine dimensionality.   

The marginal proportions for labeling sets of items as dimension-like were 

typically low, suggesting that the methods generally failed to label two (three) 

sets of items as dimension-like in 2D (3D) noncompensatory situations. In 2D 

conditions with 10 items per dimension, an increase in complexity resulted in the 

methods labeling two sets of items as dimension-like less often, and labeling one 

or none of the sets as dimension-like more often. Similar observation was made 

when the number of items increased to 20 per dimension, where RMSR and χ�/��  

had the most success in labeling one set of items as dimension-like (compared to 

the rest of the methods which yielded low marginal proportions for labeling any 

set of items as dimension-like). When true dimensionality increased to 3D, all 

methods failed to label three sets of items as dimension-like across the sample 

size and correlations.  

The DETECT-based methods were more consistent in classifying 

factorially simple items across complexity levels, sample sizes, and correlations. 

However, as complexity and correlation levels increased the classification rates 

for all methods decreased. An increase in the number of items did not affect the 

classification rates too much and patterns of behaviors of the methods remained 

consistent (i.e., the DETECT-based methods yielded higher consistency rates for  
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factorially simple items than NOHARM-based methods). 

In most conditions, the DETECT-based methods classified factorially 

complex items equally or more consistent than the NOHARM-based methods. In 

particular, as complexity, the number of items, and the true dimensionality 

increased, the DETECT-based methods were notably more consistent than any 

NOHARM-based method.  

Given the results of the noncompensatory conditions, if the researcher 

hypothesizes that the nature of the relationship between the constructs is indeed 

conjunctive, the methods of DETECT may not be appropriate. In those cases, the 

researcher should adopt other methods. As these results suggest, for 

noncompensatory situations, the NOHARM-based methods ALR or χ�/�� should 

almost always be employed. For the most part they were comparable, with a slight 

edge to ALR in some cases. However, it should be noted that neither ARL nor  

χ�/��  yielded high proportions of labeling the sets of items as dimension-like, and 

classification rates for both factorially simple and factorially complex items were 

low across conditions. Therefore, despite the recommendation to use the 

NOHARM-based methods of either ALR or  χ�/�� , the results of the current study 

should be taken as initial understanding of noncompensatory MIRT in 

dimensionality assessment. 

Where do we go from here? An exploratory approach to understanding 

the test dimensionality can be particularly useful in applications of newly  
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developed instruments, or in tests that measure a construct that invokes complex 

relationships between the examinees and the items where little is known about 

that complexity. Assumptions related to the nature of the relationship between the 

constructs also need to be determined by the researcher, because they may be 

important in the choice of the dimensionality method to assess the number of 

dimensions.  

The current study has shed some light onto the performance of the 

methods in assessing multidimensional item responses. It is suggested that the 

selection of tools by the researcher may have an impact on what optimal solution 

is obtained given a variety of factors. For example, RMSR is not recommended 

for assessing dimensionality in general. For other methods, given that the methods 

examined showed to be stronger in some conditions and weaker in others, the 

selection of the dimensionality assessment method is not simple. Rather, it might 

depend on a number of factors or characteristics of the data.  

Given the differences in the results for the compensatory and 

noncompensatory conditions, perhaps the most consideration should be given to 

understanding how the constructs combine in the item response process. If the 

researcher believes compensatory relationships hold, DETECTe should be used 

for assessing the number of dimensions, but should be used cautiously in 

interpreting the clusters of items if simple structure does not hold. If the 

researcher believes noncompensatory relationships hold, ALR should be used for 

assessing the number of dimensions. However, neither ALR nor any other method 
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is likely to yield groupings of items that can be accurately interpreted in terms of 

their true dimensional structure. Further, ALR resulted in selecting a 

unidimensional solution most often of the three NOHARM-based methods (recall 

that DETECT yielded no solutions that favored one factor). These results speak to 

ALR’s tendency to under-factor more often, particularly in situations where the 

correlation levels increased.8 

Thus, a general recommendation is that multiple sources be used in 

evaluating dimensionality of an assessment, particularly when the complexity in 

the item responses is present. Using multiple sources and triangulation of results 

might provide a firmer support for appropriate score interpretation. 

Although this work builds on the existing literature in dimensionality 

assessment for compensatory MIRT, it also presents first insights into 

performances of the studied methods in dimensionality assessment of 

noncompensatory data. As suggested in many of the conditions with a 

noncompensatory model, the investigated methods may have limits in their 

suitability. This may have larger implications, particularly with an increase in 

cognitive diagnostic assessments. These types of testing scenarios call for a need 

in better understanding of the procedures for noncompensatory data. Specifically, 

                                                 
8 As noted in the final section of future directions, further examination about 

performances of all methods when erring is warranted. 
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we need better tools to evaluate internal structures of instruments which we 

observe and measure that may assume relationships that are not compensatory. 

Impact and Contributions 

The results of this study contribute to a better understanding of how the 

exploratory approaches of methods based on DETECT and NOHARM perform in 

the evaluation of test dimensionality, specifically when the data exhibits 

complexity. The current study brings both methodological and practical 

contributions to the area of dimensionality assessment. Methodologically, there 

are two main contributions. One, the impact of complexity in dimensionality 

assessment is a relatively unexplored area. Two, there is a general lack of research 

on the NOHARM and The DETECT-based methods when the underlying MIRT 

model is noncompensatory, an issue addressed to some extent in the current study.  

In practice, this study’s results are meaningful in several ways. The topic 

of dimensionality assessment has explicit connections to the issues in practical 

assessment, such as design, scoring, and interpretation. In test design, a researcher 

may be concerned with specifications of the content domain, item format, as well 

as the process of item construction (Tate, 2002). In all of these processes, being 

aware of test dimensionality is important because potential consequences might 

arise if wrongful assumptions about test dimensionality are made.  

For example, let us assume that a new science test is developed where the 

assessment is viewed as multidimensional and complexities in the data responses  
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are expected (see Leighton, Gokiert, & Cui, 2007 for a detailed example of 

science assessment and multidimensional complexities within). During the item 

design process for a science reasoning assessment, an item writer may create a 

science item such that it taps into multiple aspects of proficiency in scientific 

reasoning (e.g., selective encoding and comparison processes in inductive 

reasoning and selective combination processes in deductive reasoning). 

For such an item, evidence supporting its complexity could be gathered by 

utilizing factor analytic techniques to dimensionality assessment. Using a 

nonlinear factor analytic procedure, such as NOHARM, may indeed be 

appropriate to investigate the (intended) item’s relationship with latent factors. 

However, before a technique is used to examine the item’s relationship to the 

constructs of interest (and thus providing evidence or lack thereof in the 

validation process), the method itself ought to be shown to perform well.  

This study’s results alert us to some circumstances where the methods 

performed suboptimally in selecting the correct dimensional structure. This, in 

turn, may implicate how the item’s relationship to the constructs is interpreted. If 

the methods err in identifying the true underlying number of constructs, the 

associations of items to those constructs may be questionable.  

The results of the current study relate to scoring and interpretation 

processes of the test in a more straightforward way. Scoring and interpretation of 

the scores of an assessment are both tied to the process of comprehensive  
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validation. According to the AERA, APA, and NCME standards, if a test provides 

more than one score (e.g., subscores), “the interrelationships of those scores 

should be shown to be consistent with the construct(s) being assessed” (p. 20). 

This calls for providing evidence for the internal structure of the test, and the 

dimensionality assessment is precisely tasked to do so. In other words, as 

researchers and test developers, we seek to find evidence and support for a 

particular score interpretation of an assessment.  

One aspect of that is to examine and evaluate whether the internal 

structure of the test reflects the intended construct(s), which in turn informs how 

the test scores are reported. If a test is scored and reported using subscales, the 

interpretation of the multiple scores implies that multiple constructs are measured 

by the test. These interpretations are only meaningful if the internal structure of 

the assessment and intended construct(s) align (i.e., support for 

multidimensionality is gathered). 

The current study evaluated five popular methods currently used in 

dimensionality assessment that can provide support for this alignment. More 

specifically, the evaluation of the methods was conducted for situations that 

involve possibly factorially complex multidimensional assessments, the type of 

assessments that are becoming more popular in current educational settings.  

The results suggest that the methods of NOHARM and DETECT indeed 

may be useful and appropriate tools for dimensionality assessment in some of  
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these complex testing scenarios. In particular, the conditions that yield data with a 

simple structure and have assumed compensatory relationships among the 

constructs and items are well suited for the application of the procedures studied 

here. However, the results of the current study also suggest that these methods (as 

they currently operate) may not serve well in dimensionality assessment as our 

assessments become more complex and multi-layered.  

Limitations of the Study 

The current study has several limitations, some of which are related to the 

procedures themselves, while others are reflective of the design of the study.  

The limitation of the procedures mainly points to the estimation and 

nonconvergence issues related to NOHARM. As the number of items and/or 

examinees increased, the estimation time for NOHARM became rather lengthy, 

and it resulted in more occurrences of failure to obtain the reliable estimates (i.e., 

nonconvergence). 

Nonconvergence was also observed in particular datasets. As discussed in 

detail in the previous chapter, the estimator implemented in NOHARM cannot 

handle perfect item response vectors. This can be problematic in several testing 

scenarios, particularly, when the tests are short or the sample size is small. For 

instance, if a measure is short (e.g., as a screen test or in a pilot setting) and/or the 

population of interest is particular (e.g., a special population of severely depressed 

individuals), an endorsement of all (or none) of the items may be a plausible  
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event. For those cases, the NOHARM procedure cannot be used to assess 

dimensionality as the model estimates cannot be obtained. The DETECT-based 

methods do not suffer from the presence of perfect response vectors 

As with other factor analytical approaches and procedures, the application 

of NOHARM requires a researcher to determine the optimal number of factors to 

be extracted. Although three methods based on NOHARM output were 

investigated in the current study (��/�� , ALR, and RMSR), more research is 

needed to arrive to a consensus which of the three, if any, is most suitable. While 

the current results are consistent with previous research to some extent by finding 

support for ALR or ��/�� , both of these methods performed suboptimally in some 

scenarios (e.g., ��/��  tended to identify the true number of dimensions less often 

in conditions with a correlation between dimension of .75 and when N = 2000). 

The data characteristics contribute to the limitations of the procedures on 

two other fronts: completeness of the data and binary scoring of the item 

responses. Both DETECT and NOHARM, as standalone procedures applied in the 

current study, can only accommodate complete data. In other words, cases with 

missing item responses cannot be used in estimation. The effects of missing data 

techniques on the performance for either method are largely unknown. 

A more general limitation of the study pertains to the choice of item 

response scoring. Only dichotomously data were considered in the study, as is 

assumed in both NOHARM and DETECT. (An extension of DETECT for  
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polytomous data exists, but is currently not commercially available.) Current 

assessments, however, more frequently utilize different item formats, supporting 

dichotomous and polytomous scoring. 

Several other limitations pertain to the current study. In the current study, 

only the 2PL MIRT models for data generation were considered. Although a 

rationale to model data without the pseudo-guessing parameter present may be 

justified, omitting it limits the generalizability of the results.9  

Similarly, only one set of item parameters was chosen for all conditions; 

previous literature found differences in DETECT and NOHARM’s performance 

when different sets of item parameters were used (Finch & Habing, 2005). This 

implies that the generalizability of the results to other tests that pose different item 

parameter characteristics may be limited. 

Furthermore, in the current study, simple and complex structures were 

considered. One could argue that the approximate simple structure would be a 

more realistic choice, thus suggesting a limitation of the baseline use of the exact 

simple structure. In addition, only 2D and 3D structures were considered. 

                                                 
9 One justification is that not much is known about noncompensatory MIRT and 

dimensionality assessment of complex data. Thus, it was vital to first understand 

the performance of the methods in conditions that were “more” ideal, before 

introducing additional sources of complexity such as a pseudo-guessing 

parameter. 
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Although results for these dimensionality structures allow for some comparison 

with previous research, performance of the methods under in higher conditions 

when complexity in the data is present remains unknown (e.g., Finch & Habing, 

2005, study compared two- and six-dimensional structures when evaluating 

DETECT and the NOHARM-based methods). 

The choices for sample sizes and test lengths were largely based on the 

previous literature; however, they limit the generalizability of the results. For 

example, the situations with tests shorter than 20 total items or sample sizes of 

less than 500 were not considered, and thus, the conclusions for such testing 

scenarios cannot be provided, although such testing scenarios are very plausible in 

some settings (e.g., pilot studies, attitude measures, etc.).  

Future Directions and Conclusion 

Given the limitations of this study (and general constraints of the methods 

themselves), future research in dimensionality assessment is warranted. In 

addition to understanding how the methods performed, it will be important to 

further understand their performance through an investigation of errors they 

made. Thus, future directions of this line of research would involve examining 

over- and under-factoring of the methods when they erred. 

Additionally, future work may involve inclusion of the pseudo-guessing 

parameter often modeled in multiple-choice items. Furthermore, different sets of 

item parameters may influence the performance of the methods, thus for 
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generalizability purposes, it would be beneficial to compare the current results 

with the results based on a different set of item parameters. 

Future research should also focus on how to deal with different data, 

including polytomously scored and missing data, which are often found in 

educational assessments. A better understanding of how the current methods are 

impacted by various applications of missing data techniques may allow for more 

inclusion of data that are not complete when assessing multidimensionality.  

Although the scenarios considered in this study included only those when 

the researcher has no a priori hypotheses of test dimensionality, a confirmatory 

approach to examine the methods performance should also be considered, as both 

NOHARM and DETECT have confirmatory capabilities.  

The final and perhaps most important step forward is to continue research 

on how NOHARM, DETECT, and other methods used in dimensionality 

assessment perform under noncompensatory conditions. Given that most if not all 

methods are aligned with a compensatory nature of the relationship, it might be 

important to continue to investigate better options for dimensionality assessment 

in those conditions. Further developments in current and newly developed 

procedures that better align with the principles of noncompensatory relationships 

may be imperative as new complex assessments that assume such relationships 

get implemented. This issue needs to be addressed further, as we utilize 

dimensionality assessment as part of the comprehensive validation process that 

leads to appropriate score interpretations.
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Table A1 

Tabulated Results of Proportion Correct for Conditions where Data Follow 2D Compensatory MIRT with 10 Items per Dimension 

  0% Complexity 10% Complexity 30% Complexity 50% Complexity 

N ρ ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv 

                      

500 

.00 .93 1.00 .04 1.00 1.00 .93 1.00 .03 1.00 1.00 .93 1.00 .04 1.00 .99 .71 1.00 .02 1.00 .91 

.30 .89 1.00 .02 1.00 1.00 .91 1.00 .03 1.00 .98 .90 1.00 .02 1.00 .94 .41 .99 ** .99 .78 

.60 .87 1.00 .03 1.00 .92 .90 1.00 .03 1.00 .87 .84 1.00 .03 .98 .68 .22 .94 - .85 .50 

.75 .88 1.00 .03 .97 .71 .88 1.00 .02 .93 .59 .85 1.00 .01 .84 .37 .28 .84 ** .53 .23 

.90 .80 .73 .02 .50 .14 .70 .53 .01 .42 .18 .44 .11 .01 .12 .13 .63 .45 ** .08 .12 
 

1000 

.00 .91 1.00 .03 1.00 1.00 .91 1.00 .02 1.00 1.00 .95 1.00 .04 1.00 1.00 .25 .97 **  1.00 .99 

.30 .89 1.00 .04 1.00 1.00 .92 1.00 .04 1.00 1.00 .93 1.00 .03 1.00 1.00 .04 .75 - 1.00 .95 

.60 .89 1.00 .03 1.00 .99 .91 1.00 .03 1.00 .98 .83 1.00 .01 1.00 .92 .03 .26 - .96 .70 

.75 .89 1.00 .02 1.00 .90 .89 1.00 .02 .99 .84 .75 .99 - .96 .59 .05 .11 - .70 .36 

.90 .86 .99 .01 .67 .33 .85 .95 .01 .59 .29 .49 .40 - .23 .12 .58 .97 **  .06 .11 
 

2000 

.00 .83 1.00 .04 1.00 1.00 .85 .99 .04 1.00 1.00 .94 1.00 .03 1.00 1.00 **  .59 - 1.00 1.00 

.30 .82 1.00 .04 1.00 1.00 .82 1.00 .03 1.00 1.00 .81 1.00 .01 1.00 1.00 - .03 - 1.00 1.00 

.60 .82 .99 .02 1.00 1.00 .83 .99 .03 1.00 1.00 .48 .96 - 1.00 .99 - - - 1.00 .91 

.75 .78 .99 .04 1.00 .99 .79 .99 .01 1.00 .96 .23 .91 - 1.00 .89 **  - - .85 .55 

.90 .56 .95 ** .88 .57 .64 .93 .01 .77 .47 .14 .68 - .30 .14 .24 .75 - .02 .08 

Note: R stands for RMSR; a method based on NOHARM output. De stands for DETECT exploratory; a method based on DETECT procedure. Dcv stands for 

DETECT cross-validated; a method based on DETECT procedure. . “-” indicates actual zero correct; “**” indicates < .01 proportion correct. 
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Table A2 

Tabulated Results of Proportion Correct for Conditions where Data Follow 3D Compensatory MIRT with 10 Items per Dimension 

  0% Complexity 10% Complexity 30% Complexity 50% Complexity 

N ρ ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv 

                      

500 

.00 .94 .99 .64 1.00 1.00 .96 1.00 .69 1.00 1.00 .96 1.00 .56 1.00 .99 .58 .73 .02 1.00 .98 

.30 .96 1.00 .68 1.00 1.00 .96 1.00 .64 1.00 1.00 .74 1.00 .47 1.00 .98 .60 .16 - .99 .95 

.60 .99 1.00 .59 1.00 .98 .98 1.00 .61 1.00 .97 .47 1.00 .48 .99 .88 .24 .12 ** .94 .73 

.75 .97 1.00 .58 1.00 .90 .97 1.00 .56 .99 .90 .43 .89 .46 .97 .67 .40 .54 .25 .78 .55 

.90 .60 .21 .47 .80 .59 .44 .07 .37 .73 .59 .24 ** .12 .43 .54 .18 .02 .17 .34 .51 
 

1000 

.00 .95 .99 .75 1.00 1.00 .98 .99 .70 1.00 1.00 .97 1.00 .46 1.00 1.00 .62 .05 - 1.00 1.00 

.30 .99 1.00 .70 1.00 1.00 .97 1.00 .72 1.00 1.00 .85 1.00 .26 1.00 1.00 .65 - - 1.00 .99 

.60 .99 1.00 .69 1.00 1.00 .99 1.00 .65 1.00 1.00 .39 .97 .29 1.00 .98 .23 - - .97 .89 

.75 .99 .99 .61 1.00 .99 .98 .99 .52 1.00 .98 .45 .89 .30 .98 .87 .28 .26 .09 .80 .69 

.90 .87 .87 .46 .93 .68 .78 .64 .29 .87 .61 .45 .09 .16 .45 .44 .33 .14 .24 .23 .45 
 

2000 

.00 .95 1.00 .72 1.00 1.00 .98 .99 .74 1.00 1.00 .95 1.00 .19 1.00 1.00 .71 - - 1.00 1.00 

.30 .97 .99 .71 1.00 1.00 .98 1.00 .71 1.00 1.00 .88 .98 .02 1.00 1.00 .59 - - 1.00 1.00 

.60 .99 1.00 .71 1.00 1.00 .98 1.00 .56 1.00 1.00 .31 .71 .07 1.00 1.00 .22 - - .98 .95 

.75 .99 .97 .58 1.00 1.00 .99 .95 .32 1.00 1.00 .43 .38 .18 1.00 .96 .20 .02 .03 .83 .78 

.90 .84 .80 .18 .99 .85 .85 .66 .05 .95 .78 .58 .43 .26 .67 .42 .48 .32 .23 .09 .37 
Note: R stands for RMSR; a method based on NOHARM output. De stands for DETECT exploratory; a method based on DETECT procedure. Dcv stands for 

DETECT cross-validated; a method based on DETECT procedure. “-” indicates actual zero correct; “**” indicates < .01 proportion correct. 
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Table A3 

Tabulated Results of Proportion Correct for Conditions where Data Follow 2D Compensatory MIRT with 20 Items per Dimension 

  0% Complexity 10% Complexity 30% Complexity 50% Complexity 

N ρ ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv 

                      

500 

.00 .81 .91 .98 1.00 1.00 .99 .91 .97 1.00 .98 .99 .97 .98 1.00 .92 .96 .61 .54 1.00 .71 

.30 .99 .93 .98 1.00 .99 .99 .93 .97 1.00 .96 1.00 .97 .93 1.00 .84 .85 .14 .08 .99 .61 

.60 .99 .96 .98 1.00 .90 .99 .96 .98 1.00 .81 .98 .91 .81 .99 .65 .55 .01 - .91 .39 

.75 .98 .94 .97 .99 .63 .99 .96 .97 .97 .57 .97 .82 .63 .90 .38 .42 ** ** .64 .19 

.90 .79 .91 .95 .52 .15 .64 .87 .91 .46 .13 .22 .73 .46 .22 .06 .63 .80 .40 .11 .05 
 

1000 

.00 .80 .88 .98 1.00 1.00 .98 .87 .95 1.00 1.00 1.00 .95 .94 1.00 .99 .75 .05 .06 1.00 .96 

.30 .99 .89 .98 1.00 1.00 .97 .90 .97 1.00 1.00 .99 .89 .76 1.00 .97 .13 - - 1.00 .88 

.60 .98 .91 .97 1.00 .99 .98 .90 .97 1.00 .98 .98 .66 .44 1.00 .91 .02 - - .99 .72 

.75 .99 .85 .95 1.00 .94 .98 .82 .92 1.00 .88 .95 .36 .16 .99 .73 .03 - - .91 .41 

.90 .97 .59 .81 .79 .34 .93 .55 .69 .73 .30 .52 .09 .02 .45 .10 .75 .20 .05 .15 .05 
 

2000 

.00 .65 .54 .87 1.00 1.00 .83 .60 .87 1.00 1.00 1.00 .82 .71 1.00 1.00 .06 - - 1.00 1.00 

.30 .81 .60 .92 1.00 1.00 .84 .64 .90 1.00 1.00 .98 .46 .22 1.00 1.00 ** - - 1.00 1.00 

.60 .85 .66 .90 1.00 1.00 .88 .60 .84 1.00 1.00 .81 .03 ** 1.00 1.00 - - - 1.00 .95 

.75 .82 .48 .77 1.00 1.00 .81 .34 .61 1.00 .99 .57 ** - 1.00 .95 ** - - .99 .77 

.90 .77 .07 .29 .98 .65 .80 .06 .14 .95 .53 .36 - - .69 .31 .37 - - .26 .12 
Note: R stands for RMSR; a method based on NOHARM output. De stands for DETECT exploratory; a method based on DETECT procedure. Dcv stands for 

DETECT cross-validated; a method based on DETECT procedure. “-” indicates actual zero correct; “**” indicates < .01 proportion correct. 
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Table A4 

Tabulated Results of Proportion Correct for Conditions where Data Follow 3D Compensatory MIRT with 20 Items per Dimension 

  0% Complexity 10% Complexity 30% Complexity 50% Complexity 

N ρ ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv 

                      

500 

.00 .79 .83 1.00 1.00 1.00 .86 .87 1.00 1.00 .99 .91 .92 1.00 1.00 .97 .80 - .06 1.00 .88 

.30 .96 .85 1.00 1.00 1.00 .96 .87 1.00 1.00 .99 .74 .85 1.00 1.00 .93 .47 - - 1.00 .83 

.60 .98 .85 1.00 1.00 .97 .96 .87 1.00 1.00 .96 .41 .79 .99 1.00 .84 .35 - ** .98 .70 

.75 .83 .84 1.00 1.00 .88 .76 .79 1.00 1.00 .81 .35 .47 .93 .98 .62 .55 .11 .44 .88 .49 

.90 .08 .63 .42 .88 .46 .07 .58 .17 .82 .47 .16 .44 - .64 .43 .10 .13 ** .42 .39 
 

1000 

.00 .80 .77 1.00 1.00 1.00 .87 .79 1.00 1.00 1.00 .93 .80 .99 1.00 1.00 .70 - - 1.00 1.00 

.30 .98 .79 1.00 1.00 1.00 .97 .81 1.00 1.00 1.00 .85 .70 .95 1.00 .99 .34 - - 1.00 .96 

.60 1.00 .81 1.00 1.00 1.00 .99 .75 1.00 1.00 1.00 .45 .61 .91 1.00 .97 .33 - - 1.00 .92 

.75 .97 .72 1.00 1.00 .99 .95 .53 1.00 1.00 .99 .51 .35 .91 1.00 .91 .65 .01 .08 .97 .75 

.90 .31 .18 .99 .98 .74 .22 .10 .87 .96 .67 .44 .51 .02 .81 .50 .34 .28 ** .53 .39 
 

2000 

.00 .80 .48 1.00 1.00 1.00 .89 .51 1.00 1.00 1.00 .95 .11 .60 1.00 1.00 .76 - - 1.00 1.00 

.30 .99 .54 1.00 1.00 1.00 .99 .53 1.00 1.00 1.00 .92 .06 .20 1.00 1.00 .26 - - 1.00 1.00 

.60 .99 .53 1.00 1.00 1.00 .99 .45 1.00 1.00 1.00 .45 .49 .81 1.00 1.00 .28 - - 1.00 .99 

.75 .99 .21 1.00 1.00 1.00 1.00 .10 .95 1.00 1.00 .49 .04 .49 1.00 1.00 .70 - .01 .96 .91 

.90 .45 .00 .71 1.00 .92 .44 - .24 1.00 .89 .64 .15 .08 .92 .69 .62 .18 .02 .43 .46 
Note: R stands for RMSR; a method based on NOHARM output. De stands for DETECT exploratory; a method based on DETECT procedure. Dcv stands for 

DETECT cross-validated; a method based on DETECT procedure. “-” indicates actual zero correct; “**” indicates < .01 proportion correct. 
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Table A5 

Tabulated Results of Proportion Correct for Conditions where Data Follow 2D Noncompensatory MIRT with 10 Items per Dimension 

  0% Complexity 10% Complexity 30% Complexity 50% Complexity 

N ρ ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv 

                      

500 

.00 .71 .83 ** .32 .16 .72 .80 ** .28 .14 .76 .81 ** .06 .05 .77 .88 ** .13 .11 

.30 .72 .82 .02 .11 .07 .69 .78 ** .08 .06 .72 .81 ** .01 .04 .82 .88 ** .06 .08 

.60 .67 .76 ** .01 .02 .67 .70 ** **  .02 .55 .58 ** ** .01 .59 .62 ** ** .05 

.75 .58 .61 ** ** ** .54 .59 ** - .01 .49 .47 ** - .03 .44 .44 ** ** .07 

.90 .43 .46 .02 - .01 .48 .57 ** - .02 .53 .56 ** ** .03 .55 .55 .01 .01 .05 
 

1000 

.00 .72 .80 ** .61 .22 .67 .74 ** .49 .18 .67 .74 .01 .07 .09 .71 .81 ** .11 .14 

.30 .71 .76 ** .16 .08 .65 .71 ** .11 .08 .67 .74 ** .01 .02 .70 .81 ** .03 .09 

.60 .64 .72 .01 ** ** .54 .50 - ** ** .56 .58 ** - **  .53 .58 ** .01 .02 

.75 .65 .65 .01 - ** .40 .37 ** ** ** .52 .61 ** ** ** .49 .57 - - .03 

.90 .53 .56 .02 - ** .64 .78 ** - **  .68 .88 .01 - ** .75 .90 .01 **  .03 
 

2000 

.00 .56 .56 ** .84 .43 .59 .58 ** .68 .35 .55 .53 .01 .06 .06 .53 .61 **  .09 .12 

.30 .59 .58 - .25 .13 .48 .44 ** .14 .07 .46 .44 ** - .01 .50 .52 - .01 .05 

.60 .50 .45 - ** .01 .22 .15 ** - .01 .21 .14 - - ** .17 .15 - - .01 

.75 .36 .28 ** - - .08 .02 - **  - .27 .25 ** - ** .15 .13 - - **  

.90 .48 .55 ** - - .59 .68 **  - - .75 .91 ** - - .81 .96 **  - .01 
Note: R stands for RMSR; a method based on NOHARM output. De stands for DETECT exploratory; a method based on DETECT procedure. Dcv stands for 

DETECT cross-validated; a method based on DETECT procedure. “-” indicates actual zero correct; “**” indicates < .01 proportion correct. 
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Table A6 

Tabulated Results of Proportion Correct for Conditions where Data Follow 3D Noncompensatory MIRT with 10 Items per Dimension 

  0% Complexity 10% Complexity 30% Complexity 50% Complexity 

N ρ ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv 

                      

500 

.00 .65 .71 .03 .07 .10 .70 .66 .02 .10 .15 .17 .23 .06 .04 .16 .26 .33 .11 .11 .23 

.30 .42 .49 .03 .03 .11 .41 .36 .03 .07 .17 .08 .15 .08 .03 .23 .19 .32 .16 .11 .34 

.60 .13 .17 .06 .03 .15 .12 .24 .03 .06 .19 .07 .13 .11 .04 .25 .14 .33 .18 .15 .39 

.75 .07 .09 .07 .01 .13 .10 .20 .04 .04 .19 .11 .16 .13 .03 .32 .18 .34 .25 .12 .39 

.90 .05 .10 .08 .04 .16 .11 .22 .05 .05 .26 .13 .18 .14 .05 .32 .19 .31 .23 .15 .43 
 

1000 

.00 .87 .86 .02 .04 .08 .89 .79 .03 .02 .11 .49 .50 .04 ** .05 .59 .41 .11 .05 .16 

.30 .79 .79 .02 ** .06 .72 .62 .01 .04 .11 .21 .23 .06 ** .09 .32 .35 .16 .04 .20 

.60 .32 .30 .05 .00 .04 .28 .33 .00 .02 .12 .19 .20 .10 .00 .11 .30 .36 .24 .02 .27 

.75 .12 .08 .08 ** .06 .24 .27 .03 ** .09 .19 .18 .14 ** .10 .32 .30 .27 .03 .25 

.90 .10 .08 .09 .00 .07 .24 .19 .08 ** .09 .21 .16 .15 .00 .15 .32 .25 .26 .02 .30 
 

2000 

.00 .85 .89 .02 .02 .05 .86 .81 .04 .02 .05 .81 .78 .08 .00 .01 .87 .46 .13 .00 .07 

.30 .86 .85 .05 ** .02 .80 .47 **  ** .09 .44 .43 .04 .00 .03 .60 .27 .07 .00 .08 

.60 .62 .64 .03 .00 .02 .51 .24 .00 ** .04 .41 .35 .05 .00 .02 .56 .43 .11 .00 .09 

.75 .25 .14 .07 .00 .01 .48 .39 **  .00 .03 .32 .17 .13 .00 .01 .40 .34 .25 .00 .11 

.90 .09 .05 .12 .00 ** .34 .17 .07 **  .03 .25 .10 .18 .00 .01 .29 .24 .30 .00 .09 
Note: R stands for RMSR; a method based on NOHARM output. De stands for DETECT exploratory; a method based on DETECT procedure. Dcv stands for 

DETECT cross-validated; a method based on DETECT procedure. “-” indicates actual zero correct; “**” indicates < .01 proportion correct. 
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Table A7 

Tabulated Results of Proportion Correct for Conditions where Data Follow 2D Noncompensatory MIRT with 20 Items per Dimension 

  0% Complexity 10% Complexity 30% Complexity 50% Complexity 

N ρ ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv 

                      

500 

.00 .58 .21 .87 .65 .21 .85 .18 .87 .58 .20 .97 .23 .83 .26 .14 .95 .24 .84 .25 .17 

.30 .94 .19 .89 .29 .11 .97 .16 .83 .25 .13 .87 .20 .76 .10 .06 .81 .23 .74 .13 .15 

.60 .87 .16 .86 .02 .04 .85 .05 .62 .04 .06 .26 .09 .40 .01 .02 .19 .08 .40 .06 .06 

.75 .29 .13 .83 ** .03 .25 .02 .42 .01 .02 .11 .16 .41 ** .02 .07 .15 .27 .03 .04 

.90 .05 .22 .26 - .01 .08 .28 .64 ** .03 .12 .56 .87 ** .02 .15 .72 .83 ** .03 
 

1000 

.00 .54 .12 .81 .92 .44 .87 .11 .85 .92 .39 .92 .08 .78 .53 .18 .95 .09 .67 .52 .22 

.30 .89 .08 .83 .64 .15 .91 .04 .67 .50 .15 .94 .11 .56 .14 .09 .90 .04 .53 .17 .17 

.60 .92 .08 .76 .05 .05 .89 ** .18 .04 .04 .56 ** .06 ** .02 .43 - .06 .03 .09 

.75 .67 .02 .55 ** .01 .59 - .02 ** .02 .30 - .04 - ** .27 - ** ** .02 

.90 .10 .13 .45 - - .29 .20 .61 - ** .37 .58 .90 - ** .47 .63 .79 - ** 
 

2000 

.00 .41 .01 .55 1- .81 .67 ** .47 .99 .73 .77 ** .46 .81 .38 .73 - .19 .73 .37 

.30 .70 ** .54 .92 .42 .75 - .22 .82 .32 .66 - .07 .22 .11 .61 - .06 .28 .14 

.60 .64 ** .29 .10 .02 .52 - - .07 .05 .41 - - ** ** .29 - - .01 .05 

.75 .64 - .06 - ** .37 - - - ** .55 - - - - .48 - - - .01 

.90 .27 ** .12 - - .77 .01 .11 ** ** .86 .37 .79 - - .95 .32 .47 - ** 
Note: R stands for RMSR; a method based on NOHARM output. De stands for DETECT exploratory; a method based on DETECT procedure. Dcv stands for 

DETECT cross-validated; a method based on DETECT procedure. “-” indicates actual zero correct; “**” indicates < .01 proportion correct. 
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Table A8 

Tabulated Results of Proportion Correct for Conditions where Data Follow 3D Noncompensatory MIRT with 20 Items per Dimension 

  0% Complexity 10% Complexity 30% Complexity 50% Complexity 

N ρ ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv ALR ��/��  R De Dcv 

                      

500 

.00 .16 .39 .93 .20 .34 .16 .30 .95 .31 .34 ** .27 .92 .18 .25 .01 .08 .87 .34 .30 

.30 .04 .33 .96 .19 .25 .01 .15 .94 .27 .31 - .21 .26 .12 .24 **  .04 .11 .27 .34 

.60 - .27 .63 .10 .19 - .09 .35 .19 .24 - .28 .04 .08 .27 - .10 **  .16 .29 

.75 - .23 .07 .07 .15 - .24 .12 .08 .28 - .38 .02 .09 .30 **  .14 **  .18 .29 

.90 - .22 - .05 .20 ** .27 .03 .07 .26 - .34 ** .11 .31 **  .25 - .20 .35 
 

1000 

.00 .36 .60 .97 .16 .30 .37 .49 .98 .20 .36 .05 .34 .98 .05 .21 .10 .09 .99 .31 .32 

.30 .17 .52 .97 .07 .25 .16 .15 .90 .12 .33 - .12 .70 .03 .17 .01 **  .54 .22 .27 

.60 ** .47 .98 .08 .15 **  **  .25 .09 .21 - .32 .18 ** .20 **  .09 .10 .10 .28 

.75 ** .38 .43 .03 .13 **  .20 .33 .04 .17 ** .37 .07 ** .19 **  .23 **  .07 .30 

.90 - .23 ** .01 .12 - .36 .04 .01 .13 ** .40 - ** .21 **  .33 - .07 .27 
 

2000 

.00 .44 .76 .99 .17 .19 .50 .54 .98 .18 .29 .26 .33 .98 ** .07 .39 .06 .99 .16 .32 

.30 .44 .71 .99 .04 .13 .42 .03 .70 .07 .20 .06 .01 .29 - .07 .15 **  .26 .11 .25 

.60 .09 .58 .99 ** .11 .06 - - .03 .18 .02 .12 .20 - .04 .09 .01 .28 .01 .13 

.75 ** .51 .95 ** .05 .04 .05 .05 .01 .08 ** .43 .14 - .05 .02 .19 .02 **  .14 

.90 - .23 - - .03 .01 .39 .07 **  .04 .01 .29 ** - .05 .01 .33 - **  .17 
Note: R stands for RMSR; a method based on NOHARM output. De stands for DETECT exploratory; a method based on DETECT procedure. Dcv stands for 

DETECT cross-validated; a method based on DETECT procedure. “-” indicates actual zero correct; “**” indicates < .01 proportion correct. 
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APPENDIX B  

GRAPHICAL RESULTS FOR LABELING SETS OF ITEMS AS DIMENSION-

LIKE  
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Figure B1. Marginal proportions across 500 replications that a method identified 

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 

the data exhibit 0% complexity and follow a compensatory 2D MIRT model with 

10 items per dimension. 
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Figure B2. Marginal proportions across 500 replications that a method identified 

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 

the data exhibit 10% complexity and follow a compensatory 2D MIRT model 

with 10 items per dimension. 
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Figure B3. Marginal proportions across 500 replications that a method identified 

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-

axis) when the data exhibit 0% complexity and follow a compensatory 3D MIRT 

model with 10 items per dimension. 
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Figure B4. Marginal proportions across 500 replications that a method identified 

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-

axis) when the data exhibit 10% complexity and follow a compensatory 3D MIRT 

model with 10 items per dimension. 
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Figure B5. Marginal proportions across 500 replications that a method identified 

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 

the data exhibit 0% complexity and follow a compensatory 2D MIRT model with 

20 items per dimension. 

N = 500

.0
0

.4
0

.8
0

N = 1000 N = 2000

co
r =

 .0
0

co
r =

 .3
0

.0
0

.2
0

.4
0

.6
0

.8
0

co
r =

 .6
0

co
r =

 .7
5

Both Any 1 None

.0
0

.4
0

.8
0

Both Any 1 None

co
r =

 .9
0

Both Any 1 None

ALR Chi-square DETcv DETexp RMSR



 

265 

 

 

 
 

Figure B6. Marginal proportions across 500 replications that a method identified 

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 

the data exhibit 10% complexity and follow a compensatory 2D MIRT model with 

20 items per dimension. 
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Figure B7. Marginal proportions across 500 replications that a method identified 

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-

axis) when the data exhibit 0% complexity and follow a compensatory 3D MIRT 

model with 20 items per dimension. 
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Figure B8. Marginal proportions across 500 replications that a method identified 

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-

axis) when the data exhibit 10% complexity and follow a compensatory 3D MIRT 

model with 20 items per dimension. 
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Figure B9. Marginal proportions across 500 replications that a method identified 

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-

axis) when the data exhibit 0% complexity and follow a noncompensatory 3D 

MIRT model with 10 items per dimension. 
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Figure B10. Marginal proportions across 500 replications that a method identified 

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-

axis) when the data exhibit 10% complexity and follow a noncompensatory 3D 

MIRT model with 10 items per dimension. 
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Figure B11. Marginal proportions across 500 replications that a method identified 

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-

axis) when the data exhibit 30% complexity and follow a noncompensatory 3D 

MIRT model with 10 items per dimension. 
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Figure B12. Marginal proportions across 500 replications that a method identified 

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 

the data exhibit 0% complexity and follow a noncompensatory 2D MIRT model 

with 20 items per dimension. 
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Figure B13. Marginal proportions across 500 replications that a method identified 

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 

the data exhibit 10% complexity and follow a noncompensatory 2D MIRT model 

with 20 items per dimension. 
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Figure B14. Marginal proportions across 500 replications that a method identified 

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when 

the data exhibit 50% complexity and follow a noncompensatory 2D MIRT model 

with 20 items per dimension. 
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Figure B15. Marginal proportions across 500 replications that a method identified 

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-

axis) when the data exhibit 0% complexity and follow a noncompensatory 3D 

MIRT model with 20 items per dimension. 
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Figure B16. Marginal proportions across 500 replications that a method identified 

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-

axis) when the data exhibit 10% complexity and follow a noncompensatory 3D 

MIRT model with 20 items per dimension. 
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Figure B17. Marginal proportions across 500 replications that a method identified 

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-

axis) when the data exhibit 30% complexity and follow a noncompensatory 3D 

MIRT model with 20 items per dimension. 
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