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ABSTRACT 

Bridging semantic gap is one of the fundamental problems in multimedia computing and 

pattern recognition. The challenge of associating low-level signal with their high-level 

semantic interpretation is mainly due to the fact that semantics are often conveyed 

implicitly in a context, relying on interactions among multiple levels of concepts or low-

level data entities. Also, additional domain knowledge may often be indispensable for 

uncovering the underlying semantics, but in most cases such domain knowledge is not 

readily available from the acquired media streams. Thus, making use of various types of 

contextual information and leveraging corresponding domain knowledge are vital for 

effectively associating high-level semantics with low-level signals with higher accuracies 

in multimedia computing problems. 

In this work, novel computational methods are explored and developed for 

incorporating contextual information/domain knowledge in different forms for 

multimedia computing and pattern recognition problems. Specifically, a novel Bayesian 

approach with statistical-sampling-based inference is proposed for incorporating a special 

type of domain knowledge, spatial prior for the underlying shapes; cross-modality 

correlations via Kernel Canonical Correlation Analysis is explored and the learnt space is 

then used for associating multimedia contents in different forms; model contextual 

information as a graph is leveraged for regulating interactions among high-level semantic 

concepts (e.g., category labels), low-level input signal (e.g., spatial/temporal structure).  

Four real-world applications, including visual-to-tactile face conversion, photo tag 

recommendation, wild web video classification and unconstrained consumer video 

summarization, are selected to demonstrate the effectiveness of the approaches. These 

applications range from classic research challenges to emerging tasks in multimedia 

computing. Results from experiments on large-scale real-world data with comparisons to 

other state-of-the-art methods and subjective evaluations with end users confirmed that 
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the developed approaches exhibit salient advantages, suggesting that they are promising 

for leveraging contextual information/domain knowledge for a wide range of multimedia 

computing and pattern recognition problems. 
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Chapter 1 

1. INTRODUCTION 

1.1. Background and Motivation 

With a rapid increase of accumulating digital media collections, content processing and 

semantic analysis have emerged as an important yet challenging problem in multimedia 

computing and pattern recognition. However, there exists a huge data-meaning gulf from 

low-level computational representation (e.g., pixels) towards high-level semantic 

interpretation of the perceived contents which users are expecting. This is well known as 

semantic gap. Unfortunately, semantics are often conveyed implicitly in the context (i.e., 

information surrounding the object/event that helps to determine its interpretation), 

relying on interactions among multiple levels of concepts or low-level data entities. 

Without a constraint of context, associations between low-level features and high-level 

semantic concepts are often unrecoverable or ambiguous. For example, in a face image, 

there is no way to tell from any single pixel that this image depicts a human face; In 

video understanding, if the temporal order of frames is randomly scrambled, it is difficult 

to distinguish “stand up” and “sit down” actions. Also, additional domain knowledge may 

often be indispensable for uncovering the underlying semantics, but in most cases such 

domain knowledge is not readily available from the acquired media streams. For 

example, presence of red roses and white candles in an image is a strong indication of a 

wedding. However, even roses and candles can be successfully detected (which is non-

trivial in reality), associating the concept “wedding” to the image is not an easy task 

without knowing the semantic connections between such an abstract word and visual 

appearances of the physical objects. 

In the past few decades, much effort has been made for closing semantic gap in 

multimedia computing. Existing techniques can be mainly divided into three categories: 
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generating computational representations (i.e., features) of perceived contents, measuring 

similarities/distances between visual objects and establishing associations between the 

obtained data representation and the targeted description (i.e., semantics). All of these 

three tasks can be performed on hierarchical layers towards different semantic levels 

(e.g., region, object, scene, event, etc.). We briefly review the related work in the below. 

While the following review is by no meaning to be exhaustive due to space limitation, we 

attempt to cover those research activities or existing systems that are closely related to the 

proposed approaches.  

Feature detection is a fundamental issue for any pattern recognition problems. A large 

variety of features have been investigated for interpreting low-level multimedia data 

[133-134]. Popular features include local/regional features, such as color, texture, which 

usually forms a bag-of-word representation of raw data for further processing; global or 

accumulating features computed from the entire object, such as histogram or 

concatenated local/regional features, which reflects global statistics or spatial/temporal 

layout conveyed in the original data. In addition, middle-level shape and object features, 

such as straight lines, human faces, are often extracted for specific applications.  

With an appropriate computational representation of raw data, similarity measures are 

then used for further comparison, grouping and discrimination. Widely employed metrics 

include basic distance measures (e.g., Euclidean distance, cosine distance, Mahalanobis 

distance etc.) which are typically used for vectorized features; more complicated metrics 

for shape/object features (such as Scale Hausdorff distance [1], context based shape 

matching [2]); and advanced structural features in which numerical descriptors are 

hierarchically ordered and the order is taken into consideration in computing the 

similarities/distances, such as edit distance [3], graph-based matching method [4], etc.  

For finally linking a feature representation to the corresponding semantics, rule-based 

methods and learning based approaches are applied. Statistical learning algorithms have 
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become the main trend to this problem in recent years. Prevalent methods include 

Bayesian approaches (e.g., Naïve Bayesian approach [5]), probabilistic graphical models 

(e.g., Conditional Random Fields [76]), latent space analysis methods (e.g., Canonical 

Correlation Analysis [57], Sparse Coding techniques [94]), kernel-based learning and 

inference framework, etc.  

The above techniques provide us with basic tools for mining semantics from low-level 

observables. However, in order to make real-world problems tractable, models are often 

under assumptions of independencies among data or semantic concepts. As mentioned 

previously, multimedia data exhibit strong spatial and temporal structures and the 

corresponding semantic concepts are rarely independent as well. Thus, leveraging the 

widely existing contextual information and related domain knowledge is crucial to 

achieve good performance in interpreting low-level signals from high level. 

Efforts have been devoted to modeling and utilizing contextual information/domain 

knowledge in different forms [75, 76, 126-132]. Media streams (e.g., image, videos) 

often exhibit long-range dependencies. However, direct modeling of global 

constraints/interactions becomes computationally intractable even for a small piece of 

media object (e.g., a small image/shot video). This paradox can be resolved to a large 

extent by graphical models [75, 76, 128, 132], as it is relatively easier to encode the 

structure of local dependencies from which we would be able to achieve global 

consistencies. When modeling contextual interactions/domain knowledge for media 

objects, it is important to take into consideration data variations and other uncertainties 

due to noises. This naturally leads to a probabilistic framework of computational 

algorithms, in which the final predictions of high-level semantics can be seen as inference 

with respect to some cost function. Graphic models are often combined with a 

probabilistic framework, which is known as Probabilistic Graphic Models. However, not 

all contextual information/domain knowledge can be inferred in a parametric way; 
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sometimes, it cannot be explicitly conveyed as a graph. In these cases, non-parametric 

methods and numerical analysis are often utilized. For example, in multi-tasking learning 

[126-131], connections among different tasks can be leveraged via imposing a 

regularization term or a low-rank constraint on a joint objective function [129, 131] or 

combined multiple pre-specified kernel matrices [130]. 

1.2. Proposed Approaches 

In this work, we propose to leverage contextual information/domain knowledge in a 

single modality or between different modalities for effectively associating high-level 

semantics with low-level signals with higher accuracies in multimedia computing 

problems. Given contextual information/domain knowledge R, we seek a mapping f 

which associates low-level signals and high-level concepts of media objects: 

( ),  subject to C f X R=                                               (1.1) 

where X ∈X  refers to low-level features of media objects O, e.g., image, video, text and 

X is the feature space; C ∈C  denotes high-level semantic concepts and their 

configurations e.g., a set of category labels and their semantic relationships, and C is the 

space of semantics; RR∈  denotes a variety of contextual information/domain 

knowledge in X, C or in-between, such as cross-modality correlations, hierarchical 

taxonomy, spatial structure, temporal order and other domain-specific priors. 

In this work, we consider three ways of incorporating contextual information/domain 

knowledge R in uncovering the mapping f, including incorporating R as statistical prior 

under a Bayesian framework, capturing and formulating R by exploring correlations 

between different modalities, and modeling R as a graph for regulating interactions 

among X or C. These three methods are briefly introduced in the following subsections. 
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1.2.1 Incorporate contextual infromation as statistical prior under a Bayesian 

framework 

If contextual information/domain knowledge RR∈  can be formulated as a probability 

of the occurrence of high-level concepts C ∈C , such as 

( )R p C=                                                           (1.2) 

it can be naturally incorporated as a statistical prior under a Bayesian framework in 

inferring the association between low-level observations X and high-level semantic 

concepts C: 

( ) ( | )
( | ) ( ) ( | )

( )

p C p X C
p C X p C p X C

p X
= ∝                               (1.3) 

ˆ arg max ( | )
CC

C p C X
∈

=                                                 (1.4) 

 

Figure 1: Proposed statistical sampling algorithm. 

For real-world applications, the density is typically multi-modal and the dependency 

model on observations X is highly nonlinear. Thus using a parametric form for the 

density would be challenging. Consequently, we propose to use a statistical-sampling-

based algorithm for the estimation problem, as done in [33]. At the beginning, the 

samples are drawn around the parameters initialized from prior p(C). The samples will 

then be updated iteratively based on the given observations, which leads to a particle-

filtering-like scheme as summarized in Figure 1.  Random sampling process involved in 

this approach alleviates the risk of local optimum and the prior information provides 

(1) Generate L random samples based on p(C), C1,…, CL 

(2) Loop until a certain stop criterion fulfilled: 

  (2.1) Compute likelihood for each sample p(X|Ci), i = 1,…L; 

      (2.2) Re-sample proportional to the likelihood. 

(3) Compute the final model from the weighted samples. 
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effective constraints for regulating the ranges of sampling, which contributes to a more 

efficient learning process and more accurate results. 

1.2.2 Model and capture correlations between different modalities via KCCA 

Contextual information is often implicitly conveyed in the input data, for example, the 

underlying correlations between two sets of observations from different modalities of the 

same media objects. Canonical Correlation Analysis (CCA) [57] attempts to find basis 

vectors for the two sets of variables such that the correlation between the projections of 

the variables onto these basis vectors is mutually maximized. The correlation between the 

two sets of variables may not be visible in their original coordinate system. CCA finds a 

linear transformation for two sets variables such that in the transformed space they are 

maximally correlated. The canonical correlation between any two sets of variables (e.g., 

from different modalities) is defined as 

,
max ( , )

x y

x x y y
R R

corr F R F Rρ = ⋅ ⋅                                          (1.5) 

where Fx and Fy are the two sets of variables, and Rx and Ry are the basis vectors onto 

which Fx and Fy are projected, respectively. The problem of finding ρ  is therefore an 

optimization problem with respect to Rx and Ry. This optimization problem can be 

formulated as a standard eigen analysis problem [56] which can be solved with standard 

methods. Since Rx and Ry are always calculated to maximize the correlation of the 

projections, CCA is independent of the original coordinate system unlike other 

correlation analysis techniques. There may be more than one canonical correlation, each 

representing orthogonally separate pattern of relationship between the two sets of 

variables. The canonical weights represent the unique positive or negative contribution of 

each variable to the total correlation. 

When two sets of multi-dimensional variables from different modalities are available 

for the same media objects, for example, low-level features 
1 2[ , ,..., ]nX X X X=  and 
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high-level semantic concepts 
1 2

[ , ,..., ]
n

C C C C=  can be viewed as two sets of variables 

from different modalities for n training media objects 
1 2[ , , ..., ]nO O O O= . The 

projections found by CCA can be thought of as capturing the underlying correlations 

between the two modalities  

,

ˆ ˆ[ , ] arg max ( , )
X C

X C X C
R R

R R R corr X R C R= = ⋅ ⋅                             (1.6) 

The obtained R can be further used to infer the associations between low-level features 

and their high-level semantics concepts of a new media object O0 by selecting the 

concepts Ci from the training set whose corresponding features Xi is closest to the 

features X0 of the input object O0: 

0
1,...,

ˆ ˆ ˆ, arg min ( , ) 
i X i X

i n

C C i dist X R X R
=

= = ⋅ ⋅                               (1.7) 

To captured non-linear correlations, input variables can be first mapped onto a pre-

defined kernel space, in which CCA is then performed. 

1.2.3 Model contextual infromation as graph for regulating interactions among 

low-level features, high-level semantic concepts or in-between. 

Other than utilizing the underlying correlations between different modalities, it is also 

possible to model contextual information/domain knowledge among low-level features, 

high-level concepts as graphs. Such information is powerful for improving accuracies in 

interpreting multimedia data if it is utilized in a proper way. In this work we explore a 

parametric graph model -- Tree- Discriminative Random Field (Tree-DRF) and a non-

parametric method -- Sparse Representation based on Weighted-Sequence Distance 

kernel (WSD kernel) for incorporating graphs of domain knowledge in inferring the 

mapping from low-level signals to high-level semantic concepts. 
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1.2.3.1 Tree- Discriminative Random Field (Tree-DRF) 

Conditional Random Fields (CRFs) are graph-based models that are popularly used for 

labeling structured data such as text [76] and were introduced in computer vision by [75]. 

We denote the observations as X and the corresponding concepts as C. Given knowledge 

as a graph R = {S, N}, where S is the set of nodes and Ni is the set of neighbors of node i, 

the conditional distribution over concepts given the observations is defined as a Gibbs 

field: 

 
1

( | ) exp( ( , ) ( , , ))
i

i i ij i j

i S i S j N

p C X A C X I C C X
Z ∈ ∈ ∈

= +∑ ∑∑                     (1.8) 

where Z is a normalizing constant called partition function. Terms Ai and Iij are the unary 

and pariwise potentials sometimes referred to as association potential and interaction 

potential respectively. 

                 

                                 (a)                                                                 (b) 

Figure 2: Possible graphs used in DRF (Red node—current node; blue nodes—neighbors 

of the current node): (a) Grid structure considered in [75]; (b) Tree structure used in this 

work. 

In [75], the graph is built on images, which forms a symmetric grid (as illustrated in  

Figure 2-(a)), so that the weighs for neighbors are homogeneous. In this work, we 

impose the graph on the taxonomy of high-level semantic concepts, which follows a 

hierarchical tree structure. Numbers of neighbors for each node may vary, thus the 

weights for different neighbors become non-homogeneous. 
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Standard maximum likelihood method is used for parameter learning in Tree-DRF. 

Since the graphical structure is a tree, exact unary and pariwise marginals were computed 

using Belief Propagation (BP). Given a training set which consists of n samples, optimal 

parameters can be computed as 

( ) ( )

, 1

ˆ ˆ[ , ] arg max ( | )
n

k k

A I k

A I p C X
=

= ∑                                       (1.9) 

For inference, we used sitewise Maximum Posterior Marginal (MPM), again using BP. 

Concepts of test sample X0 can be inferred with the learnt parameters as 

0 0 0

1ˆ ˆ ˆarg max ( | ) arg max exp( ( , ) ( , , ))
C C

i

i i ij i j
C C i S i S j N

C p C X A C X I C C X
Z∈ ∈ ∈ ∈ ∈

= = +∑ ∑∑  (1.10) 

1.2.3.2 Sparse Representation Based on Weighted-Sequence Distance Kernel 

In addition to the parametric approach, it is also possible to incorporate contextual 

information in a non-parametric way. In this work, we propose to represent, compare and 

reconstruct video sequences under a sparse representation framework in which global 

temporal order of the sequence is incorporated. Obtained sparse coefficients can be 

further used to extract high-level semantics from the input videos, e.g., extract a 

temporally-compressed summary video with respect to both of the visual contents and 

sequential order of the original sequence. The proposed approach is briefly introduced in 

the below. 

Sparse representation aims at computing linear sparse coefficients with respect to an 

over-complete dictionary of a set of basis elements [94]. Suppose we have an 

underdetermined system of linear equations:  

y A α= ⋅                                                      (1.11) 

where my R∈  is the target signal to be approximated,   
nRα ∈  is the vector for unknown 

reconstruction coefficients, and 
m nA R ×∈ (m<n) is the over-complete dictionary with n 

bases. Generally, a sparse solution is more robust and efficient for coding and 



10 

reconstructing the target signal and has been widely used for various vision related 

applications, such as image restoration [95], The sparsest solution can be obtained by 

solving a L1 optimization problem in polynomial time by standard linear programming 

method [96]: 

1min || || ,  . . s t y A
α

α α= ⋅                                                (1.12) 

In this work, the input video sequence y that is to be analyzed (i.e., the target signal) is 

represented as 

1 2[ , , ..., ]Tny f f f=                                                    (1.13) 

in which fi (1 ≤ i ≤ n) is a short snippet (defined as a group, e.g., 5-10, of consecutive 

frames from the original video). For the sake of simplicity, here we call it a snippet. The 

contextual information R is the original sequential order of the frames, which is retained 

in the short snippets and among the relative order of all snippets as well. 

For reconstructing a video by a small set of frames/snippets from the input video with 

the original order, we first generate a dictionary A of M elements 

1 2[ , , ..., ]MA a a a=                                                       (1.14) 

in which each dictionary element aj is a subset of snippets selected from y  

1 2[ , ,..., ]Tj na x x x= , 1 j M≤ ≤                                           (1.15) 

and ai contains exactly l non-zero entries (i.e., l snippets from the original video), 

,  

0,  otherwise

i j

i

f i S
x

∈
= 


, 1 i n≤ ≤ ,  | |jS l=                                     (1.16) 

where Sj denotes the set of l indices derived from the input video y to construct j
th
 

dictionary element aj. We represent 
ky as a sparse linear combination of dictionary 

elements as shown below:  

 0, , || ||  ky A m m Mα α= ⋅ = <<                                        (1.17) 

where α  is an m-sparse coefficient vector, i.e., only m non-zeros entries are allowed in 
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α . 
k
y  is a linear combination of all dictionary elements in A with non-zeros coefficients 

while retaining their temporal order (i.e., contextral constraint). 

The sparse coefficient vector, α , is estimated by minimizing the error between y  and 

ky as given below: 

0
ˆ arg min ( , ), || || kErrFn y y mα α= <                                 (1.18) 

where ( , )ErrFn ⋅ ⋅  compares the two inputs and estimates the error. Typically, L2-norm is 

used in such cases. But, in this case, ( , )ErrFn ⋅ ⋅ needs to be selected carefully as y  and 
ky  

are sequences of different lengths rather than regular vectorized data points, standard L2 

norm is no longer applicable for computing the reconstruction error here.  

To solve this problem, we propose Weighted-Sequence Distance kernel (WSD kernel), 

a generalized version of classical Levenshtein Distance (also known as String Edit 

Distance [120]), which computes the distance of two sequences of different lengths as the 

total cost for converting one sequence into the other with editing operations, such as 

Insert, Delete, Copy/Substitute. Global order of the sequences is imposed in the process 

of searching for the optimal operation procedure by using dynamic programming. Due to 

the fact that frames in video sequences are not distinct, classical edit distance which was 

designed for characters does not applicable since each character is treated equally in the 

original formulation. To compensate for this drawback, we first cluster raw video frames 

and create a codebook of representative frames (e.g., cluster centroids); the original 

sequences are then coded as a sequence of codeword-weight pairs (denoted as super-

frames) in which the weight is the normalized number of consecutive frames which are 

assigned to the same codeword. The coded weighted-sequences are further used for 

computing edit distance from one sequence to the other. In the proposed formulation, not 

only the codeword, but also the weights and the pariwise similarities between codewords 

contribute to the total cost of edit operations. We shall discuss more details in Section 

5.3.3. 
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The obtained sparse coefficients α̂ , which best reconstruct the input video based on 

dictionary A given sparsity m, capture the underlying semantics of the video including 

salient snippets  ˆ
ja  and sequential order of frames in or between snippets.  

ˆ ˆˆ{ | 0, 1 } j jC a j Mα= ≠ ≤ ≤                                         (1.19) 

where ˆ
ja , which are corresponding to the non-zeros ˆ

jα coefficients, are kept (respecting 

the original order of the indexes) as high-level semantics for describing the major 

contents of the entire video. 

1.2.4 Selecting Appropriate Methods for Different Scenarios 

The above methods can be applied when different types of contextual 

information/domain knowledge are available. Specifically, when contextual 

information/domain knowledge can be expressed in a probabilistic form, it can be 

naturally incorporated as prior under a Bayesian framework; when multiple types of 

observations are available for the same source of multimedia objects, the underlying 

correlations can be uncovered by using KCCA and further used as contextual information 

for predicting high-level semantics for new data entities; in addition, if contextual 

information/domain knowledge can be represented as a graph, parametric or non 

parametric methods based on graph mode can be considered for leveraging such 

information. 

1.3. Contributions 

In this dissertation, we explore three different ways of incorporating contextual 

information/domain knowledge for multimedia computing and pattern recognition 

problems. Four applications were selected for demonstrating the effectiveness of the 

proposed approaches. Major contributions of this work are summarized in the below. 
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We propose a novel Bayesian Active Shape Model (BASM) with a statistical sampling 

based parameter learning scheme for 2D face shape alignment, in which domain 

knowledge (i.e., anthropometric face statistics) is incorporated over an anchor point based 

2D face model. The imposed prior information effectively regulates sampling ranges of 

the model parameters, which contributes to improved accuracies of face alignment over 

existing approaches. 

We propose to uncover the underlying semantic correlations between visual contents 

and text tags of Flickr photos and use the obtained information for recommending tags 

for new images. Compared to state-of-the-art work from Yahoo, this approach does not 

rely on any tag from the user and the resulted accuracies on real Flickr photos are 

superior.  

We propose novel Tree-DRF fusion approach for categorizing wild web videos in 

which a predefined taxonomy tree (i.e., a graph) is incorporated in the process of 

predicting multi-class category labels for web videos. This approach is effective for 

combining training data from multiple sources and is robust for filtering out noises. It 

supports multi-class classification for single videos and is able to achieve global optimal 

category label assignments over all categories. It significantly outperforms commonly 

used fusion strategies based on SVM and iterative co-training approaches on a large-scale 

data set of 80K Youtube videos of unconstrained contents. 

We propose a novel approach for analyzing video contents via sparse representation 

based on novel Weighted-Sequence Distance kernel (WSD kernel). Different from 

regular sparse representation methods, we explicitly retain the temporal order of the input 

sequence in forming the dictionary, computing reconstruction errors and obtaining sparse 

coefficients for reconstructing the original video. Application to content-based consumer 

video summarization confirms the effectiveness of leveraging sequential structure in such 

a non-parametric way. 
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Experiments were performed on four applications ranging from classic research 

challenges to emerging tasks in multimedia computing.  These applications are highly 

correlated in the challenge of bridging a persistent gap between low-level signals and 

high-level semantics through leveraging the contextual information/domain knowledge, 

which shows the broad impact of the topic and the generality of the proposed solutions. 

1.4. Thesis Organizations  

In this dissertation, we explore three ways and develop specific algorithms to incorporate 

contextual information/domain knowledge in solving real-world multimedia computing 

problems. The remainder of this dissertation is organized as follows.  

In Chapter 2, a novel Bayesian Active Shape Model (BASM) is proposed for 

leveraging anthropometric face statistics in 2D face shape alignment. Both domain priors 

and spatial constraints are considered for extracting high-level semantic and repurposing 

the information in an alternative form (i.e., tactile representation).  

In Chapter 3, we capture cross-modality correlations between visual images and their 

corresponding textual tags via KCCA and make use of the underlying connections for 

automatically recommending tags for Flickr photos.  

We further explore parametric and non-parametric approaches for modeling contextual 

information/domain knowledge as graphs. Chapter 4 describes a novel Tree-DRF 

approach, in which a pre-defined taxonomy structure of high-level concepts is used for 

regulating multi-label multi-class classification of YouTube videos. Chapter 5 presents a 

novel sparse representation approach based on Weighted-sequence Distance Kernel 

(WSD kernel) for consumer video summarization, where temporal order of video frames 

is naturally incorporated in sequence comparisons and sparse representation using 

subsequences. 

Chapter 6 summarizes the dissertation with conclusions drawn from our current work 

and potential possibilities of future researches along the direction.  
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Chapter 2 

2. USING SPATIAL PRIOR UNDER A BAYESIAN FRAMEWORK FOR 

VISUAL-TO-TACTILE FACE CONVERSION 

Portrait photos (facial images) play important social and emotional roles in our life. This 

type of visual media is unfortunately inaccessible by users with visual impairment. This 

section proposes a systematic approach for automatically converting human facial images 

into a tactile form that can be printed on a tactile printer and explored by a user who is 

blind. We propose a deformable Bayesian Active Shape Model (BASM), which 

integrates anthropometric priors with shape and appearance information learnt from a 

face dataset. We design an inference algorithm under this model for processing new face 

images to create an input-adaptive face sketch. Further, the model is enhanced by input-

specific details through semantic-aware processing. We report experiments on evaluating 

the accuracy of face alignment using the proposed method, with comparison with other 

state-of-the-art results. Furthermore, subjective evaluations of the produced tactile face 

images were performed by seventeen persons including six visually-impaired users, 

confirming the effectiveness of the proposed approach in conveying via haptics vital 

visual information in a face image. 

2.1. Background and Overview of the Proposed Approach 

Digital visual information in graphical forms (e.g., digital images, maps, diagrams, etc.) 

has become prevalent in the information era and the sighted people can easily enjoy the 

added value of graphical contents. Unfortunately, people with visual impairment are 

partially or totally deprived of this benefit. Although modern computer technologies have 

provided various text-to-Braille/audio solutions that enable convenient access to text, 

computer users with visual impairment still cannot access graphical contents without the 

assistance of sighted people. The typical procedures for manually producing tactile 
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graphics by sighted professionals are in general time-consuming and labor-intensive, and 

hence the coverage is extremely limited. Further, there is no on-demand and independent 

availability if the production has to be done by third-party professionals. What are still 

missing are automatic approaches that support real-time and independent access to 

graphical contents by users with visual impairment. 

Studies along this direction typically need to first address the fundamental issue of 

image simplification, due to the extremely limited bandwidth of tactile perception 

compared with that of vision. Existing work relies on either computer-aided manual 

processing (e.g., using drawing software) or simple image processing steps such as edge 

detection. Despite the existence of some initial attempts [11-13], this fundamental step 

towards automating the creation of tactile graphics from images remains to be largely 

unsolved. One prominent challenge is that low-level image processing techniques such as 

edge detection cannot ensure to retain semantically meaningful information, especially if 

the techniques are expected to work for any types of graphics. For example, broken and 

scattered edge segments may serve only to confuse a blind user if they are directly 

mapped to tactile lines; and attempts to clean up the edges, such as linking short ones to 

form a long contour, may do harm if those processing steps are purely driven by the data.  

In this work, we limit the scope of our study to a special type of graphic, human facial 

images, for the special value that they have in a person’s social and emotional life. We 

aim at developing a systematic approach to automatic conversion of a human face image 

into its tactile form. Limiting the scope to this special type of images enables us to 

introduce higher-level semantics for guiding lower-level image processing steps in 

designing robust algorithms for automated visual-to-tactile conversion. Exploiting the 

constraints imposed by knowing that the image contains a face, we first propose a 

deformable Bayesian Active Shape Model (BASM), which integrates anthropometric 

facial priors with both shape and appearance information learnt from a face dataset, for 
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modeling human faces. Then a statistical-sampling-based inference procedure is 

introduced under the model, for obtaining a data-adaptive version of the model for any 

given face image. Serving as a starting point, this model enables additional semantic-

aware processing steps that are designed to enrich the sketchy face model with more 

input-specific details, resulting in the final tactile face images. As such, the proposed 

approach combines anthropometric prior knowledge, learnt model generality and given 

data specificity to automatically create an informative tactile representation of the 

original face image. Such a tactile representation can be readily rendered by a tactile 

printer, and thus potentially provide a desired solution to the problem of creating on-

demand tactile faces independently by a user with visual impairment. Figure 3 illustrates 

the overall processing flow of the proposed approach.  

 

Figure 3: Overall processing flow of the proposed approach (corresponding section 

number are specified in the parentheses). 

In the following subsections, we review related work in Section 2.2. In Section 2.3, 

then present the proposed visual-to-tactile face conversion approach based on a novel 

Bayesian Active Shape Model, followed by details of obtaining anthropometric face 

priors in Section 2.4 and computing of the shape likelihood in Section 2.5. Semantic-

aware enrichment steps for creating the final tactile face images are described in Section 
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2.6. We present face alignment results with comparisons to other state-of-the-art methods 

and report systematic user evaluation of the outputs produced by our approach in Section 

2.7. Section 2.8 concludes the section with brief discussion on future work. 

2.2. Related Work 

Conventional approaches to manual creation of tactile graphics involve many tedious 

tasks [14] that are time-consuming and labor-intensive. Automated approaches to visual-

to-tactile conversion have been the focus of some recent studies. Some existing work can 

only handle simple line-drawing graphics (e.g., [15, 16]), with little effort dealing with 

acquired images such as portrait images that we attempt to address in this work. For 

acquired images, the work of [11] relied on simple image processing steps such as 

negation and edge detection, and Way et al [12, 13] proposed to simplify images mostly 

by edge detection. The system developed in [17] resorts to Photoshop for image 

simplification, which still requires some manual efforts from a sighted person and thus 

does not address the need of an automated solution. In [18], a multi-modal approach was 

proposed to present digital graphics. Although the concept of semantics-aware processing 

was introduced to modulate the edge detection step, refined solutions to handle specific 

types of graphics remain to be developed. 

Since we focus on human face images in this work, we also briefly review recent face 

alignment work in the below, which is a key component in our approach. Face alignment 

is an active research area with many research papers in recent years. In the pioneering 

work of Active Shape Model (ASM) [19], the contours of major facial features are 

represented by a set of feature points, and in matching a model to a given image, feature 

points are updated iteratively by searching along profiles around the current positions and 

fitting to a set of model parameters. Bayesian Tangent Shape Model (BTSM) [20] is 

another derivation of ASM proposed to infer shape parameters by the EM algorithm. 

While being useful, ASM may suffer from the local minima problem if the optimization 
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of shape points is based on a gradient decent search scheme [21]. To alleviate this 

problem, a hierarchical CONDENSATION approach was discussed in [22] to search the 

MAP estimates of shape configurations.  

Deformable model based approaches often encounter difficulties in achieving desired 

specificity to a particular instance while retaining enough model generality. A common 

remedy is to impose prior knowledge on possible shape deformation. Typical prior 

information utilized is linear shape deformation subspace learnt from training images 

(e.g., [29, 30]). Nevertheless, it often strongly restricts the deformation and biases 

towards the training set. A number of approaches have been proposed to remedy this 

problem. Kernel PCAs were proposed to extend the linear PCA subspace in order to 

retrieve more shape variations [23, 24]. Huang et al [21] created separated deformable 

models for each face component and use a probability distribution function to encode the 

interrelationship among parameters of all modeled components by constrained Gaussian 

Process Latent Variable Model. Liang et al [25] integrated the Markov Network search 

with the global shape prior to improve the alignment. Gu et al proposed a shape 

regularization model, which incorporates non-linear shape prior from a mixture of 

constrained Gaussian components with extra noises [26]. While improved robustness for 

exaggerating expressions and large occlusions was shown, shape priors in the work are 

still purely built upon the training set. Other forms of prior information include generic 

properties of local curves (e.g., continuity and smoothness) [27]. There also approaches 

that use fewer number of features points (10 to 20) [39, 41], which do not provide desired 

level of detail for tactile conversion. Other contributions to the face alignment problem 

include [28-32], which are less relevant to the focus of our task.  

   In our recent work [33] along the same direction of this study, we reported preliminary 

results with a simpler approach which did not take into consideration the anthropometric 

priors in the modeling. Consequently, the results were not as good as desired albeit 
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encouraging. Also, the evaluation of [33] was preliminary, with only one blind user. In 

this work, we propose to use domain knowledge of the shape, i.e., anthropometric face 

constraints, as the prior in developing the Bayesian Active Shape Model. Such a prior 

reflects common biological features of human faces and thus is potentially useful for 

providing desired constraints in generating physically-meaningful shapes from a generic 

model. We also report experiments of more comprehensive evaluation with 17 people 

including 6 visually-impaired persons. 

2.3. The Proposed Approach 

In this section, we present the proposed approach for creating tactile facial images 

automatically. This approach consists of three major steps. We first model human faces 

using a novel Bayesian Active Shape Model (BASM), in which a deformable shape 

model of human faces is first learnt from a training set, with prior anthropometric 

constraints incorporated in the model. Then, given a test face image, the set of model 

parameters that best explains the image data is estimated through Bayesian inference with 

statistical sampling approach. With the face model and the input image aligned, we 

further employ a semantic-aware processing step to enrich the sketchy model in 

producing the final tactile face image. These three steps are described in the following 

subsections A to C respectively, with elaborated details presented in Sections 2.4, 2.5 and 

2.6. 

2.3.1 BASM for Face Modeling 

Active Shape Model (ASM) is widely used for modeling landmark-based shapes. 

However, traditional ASM suffers from two major drawbacks. First of all, ASM shape 

model is purely built on training images. Furthermore, in ASM, all variations are jointly 

captured by eigen vectors and eigen values of the training data, which makes it difficult 

to manipulate parameters to generate desired shapes corresponding to specific facial 
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expressions and/or poses. 

Although human face shape varies among different people, the variations are bounded 

by biological constraints that can be estimated by anthropometric measures of the head 

and face. Such strong domain knowledge can be used as prior information for 

constraining shape generalization. Based on this, we propose a novel Bayesian Active 

Shape Model (BASM) that embeds prior knowledge of anthropometric face 

measurements into an active shape model. Further, separate parameters for scaling, 

rotation and local shape variations are explicitly defined in the proposed BASM so that 

the deformable model can be more accurately controlled with parameters that are 

physically intuitive.  

                  

Figure 4: Left: Anchor point based face model; Right: Point-paths and corresponding key 

points. 

We start with an anchor points based face shape model as in [19], where human faces 

are characterized by N anchor points, pi=(xi, yi), i=1,...N. Specifically, we adopt the 58-

anchor point model from [34], where major facial contours are captured by 58 landmarks 

around the eyebrows, the eyes, the nose, the mouth, and the chin/jaw (Figure 4-Left). 

Coordinates of all facial landmarks are denoted as fi = [xi1,yi1,xi2,yi2,...,xiN,yiN]. The 

objective of shape modeling is to form a parameterized model for representing any face 

shape f from a basic shape f0 by varying a limited number of parameters, i.e., 

0( , )ψ=f θ f                                                          (2.1) 
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where θ  is the set of parameters of the shape model. 

In traditional ASM [19, 34], Principle Component Analysis (PCA) is directly applied 

on the training data matrix 
1 2

{ , ,..., }
M

=F f f f (with proper alignment), which consists of the 

coordinates of landmarks of all the M training images. Then each shape in the training set 

can be approximated using the mean shape and a weighted sum of the first t largest eigen 

vectors: 

= + Φf f b                                                         (2.2) 

where f  is the mean shape and 
1 2[ , ,..., ]tϕ ϕ ϕ=ΦΦΦΦ is the matrix of the first t eigen vectors 

and b=[b1, b2, ..., bt]
T
 is given by ( )T= −b f fΦΦΦΦ . Vector b defines the set of parameters of 

a deformable model and Eq. (2.2) allows us to generate new shapes by varying the 

elements of b within suitable limits. In such modeling, all possible deformations are 

based on the variations in the training data and are jointly controlled by b without 

intuitive correspondence between the parameters and specific shape deformations. 

In the proposed BASM, we define a key point for each of the seven point-paths shown 

in Figure 4. Instead of applying PCA on the training data matrix directly, we first 

normalize the face shape by scaling the eye distances to a fixed value, and then align each 

point-path by moving the key points to the prior positions that are determined from 

anthropometric face measurements (normalized to the fixed eyes distance). Then each 

face shape can be represented as 

  '( ( ))rγ= +f f l                                                         (2.3) 

in which γ  is the scaling factor, l is the offsets of path alignments, ( )r l  is a mapping 

from 7 key points to 58 anchor points by duplicating the offset of each key point for all 

the anchor points in the corresponding point-path, and f’ is the shape after the 

adjustments. 

Further, we form matrix ' ' ' '

1 2[ , , ..., ]
T

M=F f f f  for all adjusted training shapes and perform 
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PCA on this matrix. Now each original face shape can be further formulated by 

'( ' ' ( ))rγ= + Φ +f f b l                                                   (2.4)  

where 
' '

1

1 M

i

iM =

= ∑f f  is the mean of F’, 'Φ and b’ are the eigen vector matrix and eigen 

values respectively. Note that, 'Φ and b’ are obtained from F’ instead of the original F, 

thus they are only responsible for local shape variations of each component (the 

corresponding key point of the component is fixed), which is different from that in ASM. 

For convenience, we use Φ and b for 'Φ and b’ in the rest of this section. 

In order to further generalize this deformable model, we introduce two more 

parameters: s to control the aspect ratio of the key point set, and α to control the 

horizontal off-plane rotation. This gives us: 

( ' ( ) )f f b l srγ α= +Φ + ⊗ ⊙                                        (2.5) 

where ⊙   indicates horizontal off-plane rotation and ⊗  denotes the net effect the 

parameter s has on r(l). 

With Eq. (2.5), we can generate new shapes by varying the parameter { , , , , }γ α=θ b l s . 

Figure 5 illustrates the respective effects of the parameters on shape deformations. 

Intuitively, b is for deforming all the component shapes with their corresponding key 

points fixed, l is computed from prior knowledge of human face shape and is used for 

adjusting the positions of each face component, s corresponds to the aspect ratio of the 

face region, γ controls the scale of the shape, and α  controls horizontal off-plane 3D 

rotation. Specifically, given a 2D shape g, horizontal off-plane 3D rotation of angle α is 

defined as 

cos 0 sin

[ ( )] 1 1 1 ( )

sin 0 cos

g G G Gr C r C

α α
α

α α

− 
 = − ⋅ + 
  

⊙                            (2.6) 

in which G is the 3D version of g with additional depth d, [   ]=G g d , CG is the rotation 
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center, and r is a 1-to-58 duplication mapping of the 3D coordinates. For simplicity, we 

assume a single face depth model that was obtained from averaging 330 3D face scans 

from 111 different people [25]. The rotation center is assumed to be located at half of the 

face width behind the tip of the nose.  

 

Figure 5: Effects of varying different parameters in BASM. 

Compared with Eq. (2.2), Eq. (2.5) incorporates prior shape information by introducing 

parameter l (the offsets of each point-path from the positions of prior key points). 

Furthermore, Eq. (2.5) explicitly employs separate parameters for different deformations, 

making it possible for imposing appropriate constraints on each parameter so as to 

generate more physically-meaningful shapes. Prior key points are computed based on the 

face position (obtained from a face detection step) and anthropometric face constraints. 

More will be discussed in Section 2.4. 

2.3.2 Bayesian Parameter Update with Statistical Sampling 

For a given face image, the generic face model obtained above needs to be updated to 

best match to the input. This requires the update of the model parameter { , , , , }γ α=θ b l s

given the input image as observation. We formulate this process as a Bayesian estimation 

problem, i.e., the estimation of the posterior density of θ given an input image I: 
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( | ) ( )
( | ) ( | ) ( )

( )

p I p
p I p I p

p I
= ∝

θ θ
θ θ θ                                       (2.7) 

 

Figure 6: Proposed statistical sampling algorithm. 

In general, the above density is multi-modal and the dependency model on I will be 

highly nonlinear. Thus using a parametric form for the density would be challenging. 

Consequently, we propose to use a statistical-sampling-based algorithm for the estimation 

problem, as done in [33]. Essentially, ( | )p Iθ  is approximated by a set of samples of θ 

with proper weights. At the beginning, the samples are drawn around the parameters 

initialized by face detection and a generic face model. The samples will then be updated 

iteratively based on the given image. This leads to a particle filtering scheme as 

summarized in Figure 6. 

Proper constraints need to be imposed in generating random samples in the parameter 

space since many samples correspond only to implausible configurations (i.e., invalid 

facial structures). A hyper-rectangle based on the eigen values of the training data matrix 

or more complex constraints can be set for b in ASM (e.g., as done in [33]). However, the 

nature of ASM (in which all variations are jointly controlled by b) prevents accurate 

constraints from being applied for generating physically-meaningful shapes. In the 

proposed BASM, parameters are separated for different deformations, thus it provides a 

Initialize { , , , , }γ α=θ b l s   as 
0 0 0 0 0 0( , , , , )γ α=θ b l s  

0 (1, )zeros t=b , 
0 (7,2)zeros=l , 

0 (1,1)=s , 
0 1γ = ,

0 0α =  

(1) Generate L random samples , 1,...,i i L=θ ; 

(2) Loop until a fixed number of iterations completed 

  (2.1) Compute the likelihood for each sample; 

  (2.2) Re-sample proportional to the likelihoods. 

(3) Compute the final model from the weighted samples. 
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more natural framework for imposing appropriate constraints. These are defined in the 

below: 

b: Uniform distribution within the hyper-rectangle as defined in [33], which is learnt 

from the training data. (The reason we choose uniform distribution is that b is for 

controlling detailed shape variations which are mostly related to appearance and 

expression. It is not meaningful to assume any specific distribution on a limited number 

of face images obtained from random subjects.) 

l and s: Gaussian distributions for s and each element in l, with means and variances 

obtained from anthropometric face priors. Details will be discussed in Section 2.4 

γ : Rough face scale can be estimated by the bounding box of the detected face region. 

The range of uniform random sampling γ  is set according to the assumed performance 

of face detector to compensate for its inaccuracy.  

α :  Uniform distribution within the allowed rotation range. We use [ 40 ,40 ]− � �  in our 

experiments. 

The likelihood of each generated sample will be computed and used to update the 

weight of this sample. This is largely based on the comparison of the gradient patterns in 

the input image and the learnt profiles of the training images. (Details of Step 2.1 are to 

be presented in Section 2.5.) The iterative algorithm terminates when reaching the 

predefined number of iterations.  

2.3.3 Semantic-aware Model Enrichment 

Although aligned facial landmarks and the connected paths are able to retain the major 

shape contours of a human face, they are still too simplistic for final tactile 

representation. With obtained semantic information of the face (i.e., the positions of the 

face components), we employ a set of processing steps to further enrich the components 

of the sketchy model depending on their respective semantics. For example, we enrich 

the model by adding more details, using edge segments from edge detection. We also use 
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the strength of the gradient on a major contour to modulate the tactile pattern (e.g., line 

width) in rendering this contour. Further, Braille annotations can be added to facilitate 

understanding. More details on these strategies will be described in Section 2.6.  

2.4. Anthropometric Face Priors 

As discussed in Section 2.3.1, one essential difference between the proposed BASM and 

ASM is the incorporation of anthropometric prior information into the model. The book 

Anthropometry of the head and face by Farkas [36] describes elegant methods and results 

for measuring human head and face based on thousands of human subjects. The 

measurements of human face and head are approximately described by Gaussian 

distributions with means and standard deviations. In our work, we adopt model priors 

including reference key point set (used for computing l in Eq. (2.5)) and the sampling 

constraints for s and l (Section 2.3.2) from anthropometric statistics provided by this 

book. In the below, we first describe the chosen landmarks and distances in Section 2.4.1, 

and then the computation of the priors for BASM in Section 2.4.2. 

 

Figure 7: Anthropometric landmarks. 

2.4.1 Anthropometric Face Measures  

From [36], we select 13 landmarks and 7 distances which are relevant to the 7 point-paths 

in the 58-anchor-point model. We add a virtual landmark o as a reference point. Figure 7 

illustrates all the landmarks. The 7 distances adopted from [36] include en_en↔, ex_ex
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↔, sci_orվ, p_orվ, en_gnվ, sto_gnվ, sn_gnվ. (“↔” and “վ” denote horizontal and 

vertical distances respectively.)  

2.4.2 Anthropometric Face Priors for BASM 

Based on the statistical data from [36], we first compute 4 ratios that are scale and 

position invariant. These ratios are computed based on the distances D0, D1, D2, D3, D4 as 

defined below and illustrated in Figure 8. The distance D0 between the two eyes is used as 

a reference, and all the ratios are computed with respect to D0.  

 

 

  Figure 8: Anthropometric distances. 
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The ratios D1/D0, D2/D0, D3/D0 and D4/D0 are recorded as anthropometric constraints. 

With these constraints, we can further compute the prior key points of face components 

(Section 2.3.1) and parameter constraints for sampling (Section 2.3.2) as shown in the 

below. 
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Prior Key Points 
k
B: Given the pre-calculated anthropometric face constraints, 

k
B can 

be computed by using the following equations: 

Basis:  18 26 18 26,  
2 2

h h v v
h v

p p p p
o o

+ +
= =  

Chin/Jaw: 1k

h hB o= , 1 4
0

0

k

v v

D
B o d

D
= + ×  

Left eye: 2

18

k

h hB p= , 2

18

k

v vB p=  

Right eye: 3

26

k

h hB p= , 3

26

k

v vB p=  

Left eyebrow: 4 34 30

2

k h h
h

p p
B

+
= , 

                        4 1
18 0

0

k

v v

D
B p d

D
= − ×  

Right eyebrow: 5 35 39

2

k h h
h

p p
B

+
= , 

                          5 1
26 0

0

k

v v

D
B p d

D
= − ×  

Mouth: 6k

h hB o= , 6 3
0

0

k

v v

D
B o d

D
= + ×  

Nose: 7k

h hB o= , 7 2
0

0

k

v v

D
B o d

D
= + ×  

In the training stage, average eye distance 
0d  and average positions of all training data

18p , 
26p , 

30p , 
34p , 

35p  and 
39p  are used as inputs. In the test stage, 

18p , 
26p , 

30p , 
34p , 

35p  

and 
39
p  are also set as the mean values of the training data by approximation in our 

experiments. 

Prior Distributions for Random Sampling: For sampling s and l in Eq. (2.5), we use 

Gaussian distributions (illustrated in Figure 9 for l) with variances calculated by 

combining the standard deviations of the anthropometric distance measurements used in 

computing D1~D4. 
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2 2~ ([0,0],[ ,0;0, ])h vG σ σs                                                            (2.8) 

                 2 2~ ([ , ],[ ,0;0, ]),  {1,4,5,6,7}i ik ki i i

h v h vG B B iσ σ ∈l                                    (2.9) 

The distributions defined in Eq. (2.9) are for face components except the eyes. To 

compensate for the inaccurate eye positions (since we used an approximation discussed 

earlier), we define the following Gaussian distributions to capture the possible 

inaccuracy, leading to probabilistic prior key points for the eyes,  

2 2~ ([0,0],[ ,0;0, ]), {2,3}i i i

h vG iσ σ ∈l                                         (2.10) 

(Since we have normalized the eye distance and aligned the eyes to fixed positions, the 

referred distributions are of zero mean.) In this case, the random parameter sampling step 

consists of two stages: sample prior eye positions according to the distributions in Eq. 

(2.10) first and then sample the aspect ratio s and other prior path positions by using 

distributions in Eq. (2.8) and Eq. (2.9) respectively. 

 

Figure 9: Key point and their prior distributions. 

2.5. Computing the Shape Likelihood 

The likelihood computation for a sample in Step 2.1 of the algorithm of Figure 6 is an 

essential step for the statistical sampling procedure. In this section, we describe the 

details of estimating the likelihood of the generated random samples, ( | )p I θ . We use 

both local gradient profile [19] and edge in this evaluation. Let gj denote the gradient 
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pattern computed along the line perpendicular to the boundary of a shape instance fi 

through landmark point pj. And EI represents the edge map of image I. We define the 

likelihood as   

1

1

( | ) ( , , | ) (1 ) ( | ) = ( | ) (1 ) ( | )θ θ θ θ θ
N

i N i I i j i I i

j

p I p g g p E p g p Eη η η η
=

 
= ⋅ + − ⋅ ⋅ + − ⋅ 

 
∏⋯

   

(2.11) 

The likelihood consists of two terms: model-driven term 
1( , , | )N ip g g θ⋯ , which is the 

joint probability of the gradient profiles at the N  local landmarks given the shape 

configuration 
i

θ ; and data-driven term ( | )I ip E θ , which measures how well a generated 

face shape matches the detected edges on the face. These will be discussed in more detail 

in the below after the introduction of an illumination invariant feature in Section 2.5.1. 

2.5.1 Illumination Invariant Feature 

To ensure the computed gradient profiles to be more or less invariant to illumination, we 

first preprocess the image by adopting the method from [21]: the image is first divided 

into patches and then normalized with respect to local illumination conditions, which are 

approximated by a low-pass version of the local patch, as shown in Eq. (2.12) 

* l

O
R

O F
=                                                              (2.12) 

where O is the original image patch, Fl is a low pass filter and R is the image patch after 

this “normalization”. A smoothing step follows to eliminate the “blocky artifacts” (We 

use Gaussian low-pass filter for smoothing in our experiments). Figure 10 shows two 

examples, where the images on the right would lead to more balanced gradient 

computation for both sides of the faces. 
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Figure 10: Two examples of illumination invariant feature. 

2.5.2 Pose-dependent Local Gradient Profile 

The local appearance models, which describe local image features around each landmark, 

are modeled as the first derivative of the intensity pattern, gj, computed along the line 

perpendicular to the boundary of a shape instance fi through landmark point pj. As 

illustrated in Figure 11, for landmarks on the chin path, only patterns on the inward side 

are considered (length = 15 pixels in our experiments); for all other landmarks, gradient 

patterns lie on both sides of the point are extracted (length = 31 pixels in our 

experiments). Note that, in the training set, the gradient profiles at each anchor point vary 

from image to image, and from pose to pose. For instance, the mean gradient profile of p1 

computed over faces that turn left could dramatically differ from the mean gradient 

profile of p1 computed over faces that turn right, as illustrated in Figure 12.  

 

Figure 11: Illustration of local normal lines. 

   

                     (a)                                  (b)                                   (c)                                   (d)  
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Figure 12: The mean gradient profile is very sensitive to pose. Mean gradient profile at p1 

computed over all the training images (a), over the nearly frontal pose set (b), over the 

turning-right pose set (c) and over the turning-left pose set (d) look quite different from 

each other. (Right/left is in terms of the face in the image.) 

                  

                          (a)                                               (b)                                                 (c) 

 

Figure 13: (a) The mean gradient profile at p51 computed over all the training images in 

subset Γ. (b) The gradient profile at p51 for a testing image. (c) The 5 cluster centroids 

obtained from clustering in subset Γ. The score of matching (b) to (a) would be very low, 

whereas (b) matches well to the 5
th
 cluster centroid in (c), indicating that k-means 

clustering can capture more appearance variations in the training set than simply using 

the mean gradient profile. 

Therefore, using the mean profile averaged across all poses, as done in [9], may not 

give a good template for the corresponding anchor point. To remedy this, we propose a 

pose-dependent local appearance model. Specifically, we divide the entire training image 

set into three subsets based on the pose variations: 

: 15 15 , frontal

( ) : 15 , turn left

: 15 , turn right

I

α

α α

α

Γ − ≤ ≤


∈ Θ >
Λ < −

� �

�

�

                                        (2.13) 

For each landmark pj, we first apply k-means clustering (with 5 clusters) to all the 

gradient profiles of pj in set Γ, Θ and Λ respectively, and then record the 5 cluster 

centroids for each set as the templates, denoted as ( ( )), 1, ..., 5vjg I vα =  for pj. Figure 13 

illustrates that this scheme with 5 templates for each pose can better capture appearance 

variations in the training set than simply using the mean gradient profile. 
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2.5.3 Matching Using Weighted Bhattacharyya Distance 

Given a configuration { , , , , }i i i i i iγ α=θ l sb , the shape will be compared to its corresponding 

training set dependent on the value of 
iα  (see Eq. (2.13)). And the model-driven 

likelihood term is defined as 

1 2

1,...,

( , ,..., | ) exp( ( , ))N i j j

j N

p g g g D g g
=

= − ∑θ                                (2.14) 

in which, N is the number of landmarks and ( , )j jD g g  is the distance between the sample 

gradient pattern for landmark pj and the average gradient pattern among training data for 

pj. If pose specified by Eq. (2.13) is taken into consideration, Eg. (13) can be rewritten as  

1 2

1,...

( , ,..., | ) exp( ( , ( ( ))))N i j j i

j N

p g g g D g g I α
=

= − ∑θ                          (2.15) 

To define the distance metric D(p,q) between two gradient patterns p and q, we use the 

Bhattacharyya distance [37] 

( , ) ln( )x x

x X

D p q
∈

= − ⋅∑p q                                          (2.16) 

which was found empirically to be better than simple Euclidean distance in our 

experiments.  

 

Figure 14: Partitions of landmarks: yellow-S1, red-S2 and green-S3. 

For a hypothesized face shape with horizontal off-plane rotation angleα , the algorithm 

chooses the corresponding template set to compute a matching score at testing landmark 

pj as the minimum distance between gj and one of the 5 centroids: 
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1,...,5
( , ( ( ))) min { ( , ( ( )))}j j j vj

v
D g g I D g g Iα α

=
=                            (2.17) 

We also observed that when the face turns left/right, the collection of landmarks 

located on the left/right side of the face would have smaller contribution to the likelihood 

computation. Given the rough orientation of a shape instance, the likelihood model can 

be further improved such that the image measurements of different set of landmarks are 

weighted differently. To implement this idea, we partition the N landmarks into three 

sets, S1, S2 and S3, corresponding to the set of right-side, middle and left-side landmarks 

(see Figure 14). If a sample model parameter 
iθ tells that the face turns to the right, the 

landmarks in set S1 will be assigned smaller weights than those in S2 and S3 in computing 

the distance of Eq. (2.16); similar for other poses. This yields the following enhanced 

likelihood model: 

1

2

3

1,...,5
1

1 2 2
1,...,5

3

1,...,5

min{ ( , ( ( )))}

( , ,..., | ) exp(  min{ ( , ( ( )))} )
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   = − ⋅   
    

  
 

∑

∑

∑

θ                 (2.18) 

where { , , , , }i i i i i iγ α=θ l sb  and 
1 2 3[ , , ]Tc c c  contains the weights for the three landmark sets 

respectively. 

2.5.4 Data-driven Likelihood Term  

As mentioned in the beginning of this section, the data-driven term in likelihood 

estimation measures how well a face shape sample fits to the detected edges on the face. 

This is formally achieved by computing the term as 

( | ) i
I ip E

β
β

=θ                                              (2.19) 

In Eq. (2.19),
iβ  denotes the total number of edge pixels encompassed by all the 3 3×  

windows centered at each point located on the facial feature contour that fall inside of the 
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bounding box of the true face obtained by face detection; β  denotes the total number of 

edge pixels that fall inside of the bounding box of the true face obtained by face 

detection. Such ( | )I ip E θ  gives us the ratio of the model edge pixels to the true face edge 

pixels. As illustrated in Figure 15, the face shape in the left image matches the edge map 

better than that in the right one, thus  ideally,
1 2( | ) ( | )I Ip E p E>θ θ . 

                           

Figure 15: Illustrations of data-driven part: Face shapes in left and right images are 

specified by configuration 
1

θ  and 
2

θ  respectively (Two edge maps are the same).  

2.6. Semantic-aware Processing for Multi-model Tactile Rendering 

To evaluate the effectiveness of the proposed approach, we performed both objective 

evaluation on the proposed BASM-based face alignment algorithm (Section 2.7.1) and 

subjective evaluation on the usefulness of the tactile faces produced by the approach 

(Section 2.7.2).  

2.6.1 Component-specific Enrichment 

In tactile representation, in addition to the contours of the major facial features like eyes, 

mouth, and nose, it is also critical to keep other informative edges in final tactile 

rendering. To achieve this goal, we enrich the basic face model obtained from the face 

alignment algorithm with the edges detected by a Canny edge detector. An adaptive edge 

refining step is used to filter out the redundant details. This process is semantic-aware in 

the sense that the refining step varies depending on where on the face the algorithm is 

applied to. Specifically, we perform the following processing: 

• Eyes, eyebrows, jaw and nose: We keep their shape contours and the nearby edge 
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segments to render some details such as wrinkles in the original image.  

• Mouth: We keep the edges in the mouth region which is defined as an enlarged 

bounding box centered at the aligned mouth contour.  

• Chin and face region: We define the face region by mirroring the aligned contour of 

the chin up and use the projected curve as the upper bound of the face region. In order to 

make the major face components salient for tactile sensing, edge details within this region 

(except those retained by other steps) are cleaned up.     

• Hair, ears, neck and shoulders: We estimate the outer region of the portrait based on 

the aligned face shape and retain the edge/texture details if these components exist in the 

image. 

2.6.2 Other Enhancements 

The edge-enriched face sketch can be transformed to tactile form by printing it out 

through a tactile embosser or a thermal enhancer. In this stage, we exploit the strength of 

the gradient to modulate the tactile patterns in generating the tactile graphics. For 

example, we use denser dot patterns for areas with strong gradients, thicker lines for 

major facial features, and thinner lines for the secondary features including wrinkles, fine 

edges around the eyes and the mouth.  

It is also possible to insert Braille annotations to the final tactile graphics to further 

assist the blind user in comprehending the tactile printout. These annotations may come 

from the face alignment step (e.g., Braille text “nose” placed close to the aligned nose 

contour), or may even be extracted from the metadata of the underlying image. These 

types of annotations, if combined with a multimodal system such as an interactive tactile 

touchpad (e.g., IVEO touchpad [38], may convey more information than the tactile lines 

alone). 
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                     (a)                                (b)                                  (c)                                   (d) 

Figure 16: The visual-tactile conversion process: (a) Original image; (b) Result of face 

alignment; (c) Edge-enriched and gradient enhanced representation; (d) Tactile printout 

from a thermal enhancer. 

                                

                            (a)                                                                            (b) 

Figure 17: Results without semantic-aware processing: (a) Using only the matched face 

shape of Figure 16-(a); (b) Using the edge map of Figure 16-(a) generated from Canny 

edge detector with default parameters. 

Figure 16 illustrates the results of the tactile conversion process with an example, in 

which (a) is the input image, (b) the face alignment result overlaid on the original image, 

(c) the edge-enriched and gradient enhanced face shape, and (d) the final actual tactile 

printout from a thermal enhancer.  

Figure 17 illustrates the results of using two alternative ways for generating tactile 

faces without the semantic-aware processing technique. Obviously, simple sketch of a 

face without hair, neck, shoulder, etc. (Figure 17-(a)) is not a desired representation of the 

human face in Figure 16-(a).  And generating a tactile face by using simple edge 

detection without high-level guidance (e.g. how to set the parameters for edge detector) is 

not able to produce a desired result as well. Figure 17-(b) is an edge map of Figure 16-(a) 

generated from Canny edge detector with default parameters, in which the face region is 



39 

completely messed up by small line segments. In addition, due to the binary property of 

swell-paper (either flat or raised which is thermal sensitive), any attempt to generate a 

tactile face directly from a gray-scale image would typically fail, since the entire face 

region which is non-white would be raised and all the face components would be 

unrecognizable. 

2.7. Experiments and Evaluations 

To evaluate the effectiveness of the proposed approach, we performed both objective 

evaluation on the proposed BASM-based face alignment algorithm (Section 2.7.1) and 

subjective evaluation on the usefulness of the tactile faces produced by the approach 

(Section 2.7.2). 

2.7.1 Objective Evaluation on Face Alignment  

We used four face image databases to evaluate the performance of the BASM face 

alignment algorithm. The first database, IMM [34], comprises 240 images from 40 

different subjects. We used 200 images from all subjects (5 images of different scenarios 

from each subject). The different scenarios are listed in the below and sample images 

with our alignment results are presented in Figure 18: (1) Full frontal, neutral expression, 

diffuse light; (2) Full frontal, “happy” expression, diffuse light; (3) Rotated 

approximately 30 degrees to the right, neutral expression, diffuse light; (4) Rotated 

approximately 30 degrees to the left, neutral expression, diffuse light; (5) Full frontal, 

neutral expression spot light added at the person’s left side. (Currently we only handle 

horizontal off-plane rotations in the current system, thus the 6th scenario of each subject 

with arbitrary head rotations were not included in our experiments.) Images of first 30 

persons were used for training (150 in total); the remaining 50 images for testing. We do 

not include any off-frontal images in creating the deformable model. In other words, off-

frontal shapes generated in the sampling stage are obtained by applying 3D horizontal 
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off-plane rotation with approximated depth and rotation axis on the built frontal model. 

Off-frontal image of the first 30 persons (60 images, right part of Figure 18 (a)) are only 

used in extracting the local gradient patterns of each landmark, which are taken into 

account in calculating pose-dependent shape likelihood. The major reason of using such 

an approximation is that anthropometric face constraints are not available for off-frontal 

faces with arbitrary rotation angles. This reveals one limitation of our approach that it is 

not able to handle off-frontal rotations with large angle. 

The second data set, denoted as “AR200” consists of 200 images of 40 randomly 

selected subjects (20 male and 20 female) under 5 scenarios (“Neutral expression”, 

“Smile”, “Anger”, “Left light on” and “Right light on”) from Section 1 of the AR face 

database [42].  

The third data set, denoted as “FERET100” consists of 100 images of 50 randomly 

selected subjects (33 male and 17 female) from Color FERET database [43]. Since in 

Color FERET database, different subjects have different numbers of images, we select 

two basic cases with suffix “fa” and “fb” in the titles (we skipped faces with left/right 

rotations since most off-frontal faces in FERET database are of nearly 90-degree rotation 

angle, which is beyond the scope we aim at in this work). Both cases are of large 

variations of lighting condition (e.g. with side-way lighting), face size and skin color (e.g. 

subject with very dark skin). We manually annotated these 300 images to obtain the 

ground-truth data. 

In addition, we also experimented with a 30-person face database (denoted “30-person 

data set”) that was independently captured in our lab with varying lighting conditions and 

poses. The resolution of the images in this data set is much lower than the first three data 

sets. 
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Figure 18: Sample results of images under five scenarios of IMM dataset. 

 

 

 

Figure 19: Face alignment results: 1
st
 row-frontal with some variations of expressions and 

lighting; 2nd row-turn right; 3rd row-turn left. 

Figure 18 shows the results of all five scenarios of one subject from the IMM test set 

and Figure 19 shows more results with varied expressions and lighting conditions from 

both training and testing sets of IMM database. We can see that, the BASM based face 

alignment algorithm works well with all scenarios of images (Results are slightly better 

for frontal images than for off-frontal cases, because off-frontal images were not used for 

creating the deformable model. It is worth pointing out that BASM is able to capture 

subtle variations of face components due to different expressions (e.g., the mouth regions 

of the images in the first row of Figure 19), which is helpful for conveying important 

information in the final tactile representation.  
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(a) IMM training set: 5 scenarios from the first 30 subjects. 

 

(b) IMM test set: 5 scenarios from the last 10 subjects. 

 

(c) AR200 data set: 5 scenarios from 40 random subjects. 
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(d) FERET100 data set: 2 frontal sets from 50 random subjects. 

Figure 20: Face alignment results on multiple data sets. (Point-paths: 1-chin, 2-left eye, 3-

right eye, 4-left eyebrow, 5-right eyebrow, 6-mouth, 7-nose.) 

We quantitatively analyzed the performance of the algorithm by computing the average 

matching errors for the anchor points based on the ground-truth. Figure 20 reports the 

average errors per anchor points in terms of point-paths (normalized to inner-eye-corner-

distance) and corresponding standard deviation over all samples for the above three data 

sets. (Due to the 58-anchor-point face model, the inner-eye-corner-distance instead of the 

iris-to-iris distance is used for normalization.) Comparing the accuracies among different 

point-paths, best performance is achieved on eyes; it is slightly better for eyebrows than 

for nose and mouth; the worst case occurs on chin. In terms of different scenarios, the 

algorithm works the best for frontal pose with neutral expression; errors increase when 

the subject is smiling or one side light is on. Worst cases occur on faces with horizontal 

rotations. This is not surprising since we did not include any off-frontal images in 

creating the deformable model. It is worth pointing out that, although the training was 

done using a subset of the IMM images, the  testing results for the AR200 and 

FERET100 images are equally good, despite the acquisition environments of the 

databases differ greatly. (The results for the AR200 and FERET100 images are actually 

slightly better on average but the IMM sets contain more challenging off-frontal images.) 
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This suggests that our method is very robust with respect to new databases that it never 

saw in the training stage. 

Table 1: Face alignment results of the proposed approach. 

Normalized Error 

per. Anchor Point 
≤ 10% ≤ 20% ≤ 30% 

IMM Training Set 1.3% 62.7% 93.3% 

IMM Test Set 2.0% 54.0% 94.0% 

AR200 0.5% 70.0% 97.5% 

FERET100 0.0% 72.0% 97.0% 

 

Overall, the average error per anchor point is about 8.6 pixels for the IMM training set, 

9.0 pixels for IMM test set, 8.8 pixels for AR200 and 7.8 for FERET100. Since the 

average height of face regions in the database is about 200 pixels, the error on average is 

less than 5% of the height of the face region and thus can be deemed as small. The results 

in terms of the percentage of images with average error per anchor point (normalized to 

the inner-eye-corner distance) within certain error bounds are summarized in Table 1 (the 

average inner-eye-corner distances of IMM, AR200 and FERET 100 are 46 pixels, 48 

pixels and 51 pixels, respectively). These results improve upon those reported in [33] and 

are at least comparable to what presented in [21], [26] and [40], although it is difficult to 

make direct comparison since the landmark model, test images and ground-truth are 

different. In [32], the best accuracy of errors no-greater-than 8 pixels was reported as 

63.9% while the average height of the faces for test is about 180 pixels; Gu et al. 

achieved an average mis-alignment error 3.49 pixels with all faced normalized to a width 

of 120 pixels [26]; Liang et. al reported 98.5% and 93.5% cases of errors less than 7.5 

pixels on two data sets with the entire images resized to 200-300 pixels [40]. Face sizes 

in these three papers are much smaller than the test samples we used (e.g. the average 

face size of IMM database is about 200 190 pixels and it is even slightly larger of AR200 
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and FERET100), thus the reported errors appear smaller than the results presented in this 

work. In addition, in our evaluation, we trained the model and the algorithm with a fixed 

set of images from the IMM database; then the trained model/algorithm was tested on 

other databases that are completely independent of the IMM database. However, in the 

experiments of the above three papers, the training and testing sets were formed in such a 

way that both sets contain images from all the underlying databases. Apparently, our 

evaluation protocol is much more demanding than that used in the above papers. We 

attribute the robustness and generalizability of our algorithm with respect to new image 

databases to the incorporation of the Bayesian prior. 

In addition, we also performed separated analysis on subjects who wear glasses or with 

beards/moustaches. For cases of wearing glasses, we analyzed all 13 subjects (65 images) 

with glasses in AR200 data set. Sample visual results and quantitative evaluations 

(including normalized mean errors and corresponding standard deviations over all 

samples, as shown in Figure 20) of the eyes and the eyebrows are illustrated in Figure 21. 

Compared to Figure 20-(c), no obvious degeneration happens for point-paths of eyes and 

eyebrows when subjects are wearing glasses. For subjects with beards and/or moustaches, 

we analyzed all 14 subjects with light to heavy beards and/or moustaches from IMM 

database. Figure 22-(a) illustrates two sample results, in which the bottom image is from 

the subject who might have the heaviest beards among all subjects in IMM database. The 

result is still reasonably good. More visual results can be found in Figure 19 (i.e. 2nd and 

6th column). Figure 22-(b) presents normalized average error plots for point-paths of the 

chin and the mouth and corresponding standard deviations over all samples. Compared to 

Figure 20-(a) and (b), accuracies for mouth and chin are comparable to the overall 

average results. 
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(a) 

 

(b) 

Figure 21: AR200-Cases of wearing glasses: (a) Visual results; (b) Quantitative results of 

eyes and eyebrows over all samples. 

Note that the ground-truth shapes labeled manually are not always precise. As 

illustrated in Figure 23-left, anchor point 48 and 58 (two top landmarks of the nose) are 

not aligned horizontally. This suggests that the so-called ground-truth is not perfect and 

thus a relatively large error computed based on the ground-truth needs not mean the 

matching is poor. For example, the anchor points 5-9 (lower part of the chin) in the two 

images of Figure 23 can be deemed as perfect fit to the image, but the corresponding 

anchor points are not exactly at the same positions. These observations explain part of the 

reasons that we got close-to-zero percentage for cases of “no greater than 0.1 inner-eye-

corner-distance”. 
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(a) 

 

 (b) 

Figure 22: IMM-Cases with beards and/or moustaches: (a) Sample visual results; (b) 

Quantitative results of chin and mouth over all samples. 

                  

Figure 23: Comparison between the ground-truth (left) and the obtained result (right) 

with 4.8 pixel error per anchor point. 

For the 30-person data set, a few sample results are shown in Figure 24, demonstrating 

the robust performance of the algorithm. Comparing the 1st row of Figure 24 from our 

previous approach presented in [33] and the 2nd row from the BASM approach for the 

same images, obvious improvements can be observed. 
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In terms of convergence of the iterative sampling process, in our experiments, we 

observed that it actually converges very fast if the center of the initial face model is 

placed reasonably close to the ground-truth center (i.e. when the face detection result is 

reasonably accurate). All reported results in this work were generated with 4 iterations 

and 200 random samples in each of the iterations. 

     

     

Figure 24: Face alignment results on the 30-person data set: Top row—our previous 

results presented in [33]; bottom row—BASM results. 

2.7.2 Subjective User Evaluation 

The ultimate goal of our work is to automatically generate tactile form of face images for 

visually-impaired people. In Section 2.7.1, we have shown the performance of the BASM 

based approach on face alignment. In this section, we will present user evaluations of the 

tactile images created by the proposed approach. The evaluation was done by both blind-

folded sighted users and visually-impaired users. 

6 visually-impaired users and 11 blind-folded sighted users participated in our 

experiments. The six visually-impaired users include 5 blind person and 1 low-vision 

person (who was blind-folded in the experiments). Five of them are Braille users (the 

other people uses screen reader) and only two of them have a little experience with tactile 

graphics (limited to simple geometric shapes, such as triangle, square, etc.)  Since most of 

the users do not have any experience with tactile graphics, a short training step was 

performed before the main evaluation experiment. In the training phase, the users were 
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given some sample tactile face images of the same format as all the experimental images 

to explore and to get with the layout of the image and various patterns for different face 

components. Assistances were provided upon request during the training phase. Blind-

folded users are people who did not have any experience with tactile graphics. They were 

also given the training beforehand. Although the end user of the technology will be 

people with visual impairment, at this stage of study, to verify that the approach does 

maintain key "visual" features, it was found that recruiting blind-folded sighted 

individuals for the evaluation was very helpful since they are able to compare what they 

feel by touching against what they have seen. 

Both groups of users were required to explore some tactile face images generated from 

our approach and answer the following questions: (1) Can you recognize each face 

component including the mouth, eyes, eyebrows, nose, chin/jaw? (2) Can you recognize 

the pose of the person, i.e. is he/she turning left or turning right? (3) Can you recognize 

the gender of the person? (4) Association: Can you identify two images that represent the 

same person? 

Images in Figure 25 were used for all the questions; Images in Figure 26 were used for 

association questions only. Table 2 and Table 3 present the resultant statistics of the 

visually-impaired group and the blind-folded group respectively. 

Observations from the above two tables are summarized below: 

(1) Major face components: They were successfully indentified by most of the users 

from both groups except the left eyebrow of Figure 25-(e) which is close to some curves 

of the hair. And in the same image, curves of clothes were misunderstood as chin/jaw by 

one of visually-impaired users. 

 



50 

   

            (a)                          (b)                             (c)                               (d)                                     (e) 

Figure 25: Tactile face images—Set I. 

 

       (a)                              (b)                          (c)                          (d)                                  (e) 

Figure 26: Tactile face images—Set II. 

(2) Pose: Both groups achieved high accuracies (only 1 user out of 6 or 11 users at 

most was wrong for each image). 

(3) Gender: This was found to be a tough question. Still, more than 50% of the users in 

each group got it right for most of the images. The blind/low vision group performed 

slightly better than the blind-folded group. Length of hair was the main feature used for 

distinguishing genders by most of the users. Some of them also used sizes of face and 

eyes for identifications. One of the blind users rejected to use the length of hair as a 

discriminative criterion, since she has short hair herself. Curves of the shoulder part, 

which are easily confused with women’s long hair, caused most of the mistakes. 

(4) Association: Most users found it is the most difficult task, but very interesting on 

the other hand. Criteria used by different users varied. Most of them relied on properties 

of hair, such as length, density of hair. Some of them used contours of neck and shoulder 

regions. In addition, shapes of the chin, mouth and eyes and width of the entire face 

contributed to some decisions as well. 
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Table 2: The resultant statistics (number of correct cases) obtained from 6 visually-

impaired users. 

Image 
Left eye, 

eyebrow 

Right eye,  

eyebrow 
Nose Mouth 

Chin/Ja

w 
Pose 

Gende

r 

a 6 6 6 6 6 5 4 

b 6 6 6 6 6 5 4 

c 6 6 6 6 6 6 3 

d 6 6 6 6 6 5 6 

e 6 6 6 6 5 6 3 

Set Association 

I 2 

II 5 

 

Table 3: The resultant statistics (number of correct cases) obtained from 11 blind-folded 

users. 

Image 
Left eye, 

eyebrow 

Right eye,  

eyebrow 

Nos

e 
Mouth 

Chin/Ja

w 
Pose 

Gende

r 

a 11 11 11 11 10 11 5 

b 11 11 11 11 11 10 7 

c 11 11 11 11 11 10 4 

d 11 11 11 11 11 10 9 

e 10 11 11 11 11 11 7 

Set Association 

I 2 

II 2 

 

(5) Other observations: Most users used eye positions as spatial references for locating 

other face components. However, it was very interesting that some of the users followed 

a different way. They started from chin and explored the face bottom-up. We did not 

observe any salient difference in performance for these two types of approaches. Overall, 

both groups achieved high accuracies on most of the tasks, while in general, not 

surprisingly, users from the blind/low vision group were much faster in interpreting the 

results. 
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Finally, we report an interesting experiment of human identity recognition based on 

tactile face images, which was performed with blind-folded participants only. The 

objective of this experiment is to test whether the proposed approach is able to retain the 

distinctive characteristics of the facial features. The participants were given two tactile 

face images generated from our approach and asked to give the identity of each person in 

the two tactile images respectively by choosing from five names of five persons that they 

know very well. For example, we asked the participants: “Can you tell who this person 

is, chosen from Cindy, Troy, Jessie, Michael, and Daniel?” The results were very 

encouraging: all of the participants were able to correctly recognize the identity of the 

persons on the two images. This suggests that the automatically created tactile 

representation indeed retains some distinctive visual features. 

2.8. Summary 

In this section, we proposed a systematic approach to automatic conversion of facial 

images into their tactile form. A novel modeling framework, BASM, was proposed, 

which enables the incorporation of anthropometric priors and facilitates the development 

of a Bayesian inference algorithm based on statistical sampling. Compared to our recent 

attempt [33] in addressing this challenging and practical problem, the proposed approach 

has achieved significant improvement in both accuracy and robustness. Further, 

comprehensive user evaluation has been reported, based on a group of twelve users 

including six blind individuals. The results suggest that the proposed approach provides a 

promising solution to the challenging problem of automatic creation of tactile face 

images. To our knowledge, this is the first symmetric study on the problem. Generalizing 

the approach to other types of graphics and building an end-to-end system using the 

current approach are among our future tasks.  
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Chapter 3 

3. MINING INTER-MODALITY CORRELATIONS VIA KCCA FOR 

FLICKR PHOTO TAG RECOMMENDATION 

Photo tag recommendation is related to automated image annotation, which has received 

significant attention in recent years. In many existing approaches, images are divided 

into sub-regions and a mapping between keywords and sub-regions are learnt. This and 

similar approaches are useful for images characterized by some key sub-regions but not 

so effective for generating tags with higher-level semantics that often link to the image 

as a whole. For example, given an image of the Great Wall, “China” may be one of 

commonly-used tags, which is unlikely to be directly predicted from purely visual 

features. To leverage the underlying correlations for compensating the semantic gap, we 

propose an automatic approach to tag recommendation for a given image without any 

annotations/tags. Our approach exploits the semantic correlation between image contents 

and text labels via Kernel Canonical Correlation Analysis (KCCA) [56]. In 

recommendation, the tags are ranked based on both the image-tag correlation and the 

input-independent tag popularity learnt from photos with user-created tags.  

3.1. Background and Overview of the Proposed Approach 

On-line services for archiving and sharing personal photos, such as Yahoo Flickr 

(www.flickr.com) and Google Picasa (picasa.google.com), have become more and more 

popular in recent years. Such services effectively provide a virtual social network or 

community for the users to share their memories, emotions, opinions, cultural 

experiences, and so on. Interaction among users in such a virtual community is largely 

enabled by information retrieval and exchange, e.g., photo retrieval and sharing, which 

are critically facilitated by tags or annotations of the photos. Tag recommendation 
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systems (e.g., [44]) target at assisting users to come up with good tags that are both 

descriptive for a photo and useful for supporting information retrieval/exchange. 

Photo tag recommendation is related to automated image annotation, which has 

received significant attention in recent years (e.g. [44-48]). For example, Duygulu et al. 

modeled annotation as machine translation [48], and Mori et al. used co-occurrence 

models [44]. In both cases, images are divided into sub-regions and a mapping between 

keywords and sub-regions are learnt. This and similar approaches are useful for images 

characterized by some key sub-regions but not so effective for generating tags with 

higher-level semantics that often link to the image as a whole. For example, given an 

image of the Great Wall, “China” may be one of commonly-used tags, which is unlikely 

to be directly predicted from purely visual features. Sigurbjornsson and Zwol proposed a 

tag co-occurrence algorithm for on-line photo tag recommendation [49], where the 

semantic relationship among tags is used for predicting new tags for a given image with 

some known tags. The limitation is that, the correlation analysis was purely based on text 

and thus at least one tag has to be present for the method to work. 

In this section, we propose an automatic approach to tag recommendation for a given 

image without any annotations/tags. Our approach exploits the semantic correlation 

between image contents and text labels via Kernel Canonical Correlation Analysis 

(KCCA) [56]. In recommendation, the tags are ranked based on both the image-tag 

correlation and the input-independent tag popularity learnt from photos with user-created 

tags. We performed experiments using a realistic database collected on-line to 

demonstrate the superior performance of the proposed approach. In the following 

subsections, we first introduce the proposed approach in Section 3.3. Experiments, 

results and comparisons are presented in Section 3.4 followed by a brief summary of the 

work in Section 3.5. 
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3.2. Semantic Image-Tag Correlation Analysis via KCCA 

We propose to utilize Kernel Canonical Correlation Analysis (KCCA) to learn the 

underlying semantic correlation between the visual content and the textual tags of on-line 

photos and then use the correlation in predicting labels for images without tags. We 

briefly review the CCA/KCCA algorithm in the below.  

CCA attempts to find basis vectors for two sets of variables such that the correlation 

between the projections of the variables onto these basis vectors is mutually maximized 

[57]. The canonical correlation between any two data sets is defined as 

,max ( , )
x yW W x x y ycorr F W F Wρ = ⋅ ⋅                                      (3.1)                                  

where Fx and Fy are the two sets of variables, and Wx and Wy are the basis vectors onto 

which Fx and Fy are projected, respectively. This optimization problem can be formulated 

as a standard eigen problem [56] which can be easily solved. There may be more than 

one canonical correlation, each representing orthogonally separate pattern of relationship 

between the two sets of variables. When extracting the canonical correlation the eigen 

values are calculated. The square root of the eigen values can be interpreted as the 

canonical coefficients. Corresponding to each canonical correlation the canonical 

weights for each of the variable in the data set are calculated. The canonical weights 

represent the unique positive or negative contribution of each variable to the total 

correlation. 

CCA has been used previously by researchers to find the semantic relationship 

between two multimodal inputs. In [58], CCA is used to find the language independent 

semantic representation of a text by using the English text and its French translation as 

set of variables. In this work, we model the semantic relationship between visual features 

of an image and the textual annotations/tags through CCA, and use available image 

features for predicting semantically-related texts in tag recommendation. 
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CCA is only able to capture linear correlations, while the actual correlation model in 

our application may be highly nonlinear. Therefore, we resort to the Kernel CCA, which 

has been used, e.g., in [56] for finding the correlation between image and text features in 

image retrieval. KCCA projects the data into a higher-dimensional feature space before 

performing CCA in the new feature space [50]: 

 1 1: ( ,..., ) ( ) ( ( ),..., ( ))m Nx x x x x xφ φ φ φ= =֏ , ( )m N<              (3.2) 

where
1( ,..., )mx x x= is a set a variables and φ  is a mapping from m dimensions to N 

dimensions. In this work, we use the implementation made available by the authors of 

[56], with a Gaussian kernel. 

3.3. Tag Recommendation: the Proposed Approach 

We formulate tag recommendation as a tag ranking problem. We propose a novel 

approach for ranking all possible tags by weighting image-tag correlation and input-

independent tag popularity. An image-tag correlation score is obtained from KCCA and 

a tag popularity score is defined as the normalized tag frequency in the training set. The 

weights for the two scores can be used to control the relative contributions from the two 

parts. Details of the approach are presented in the below. 

3.3.1 Tag Ranking 

We first collect a training set of photos with corresponding tags. The vocabulary of 

possible tags is defined as a collection of all tags appearing in the training set: 

{ },  1,...,jt j m= . We define a ranking score for each tag in the vocabulary as below: 

(1 )
j j j

corr pop

t t tS a S a S= − ⋅ + ⋅                                               (3.3) 

where 
jt is a possible tag from the vocabulary; 

j

corr

t
S and 

j

pop

t
S denote the semantic image-

tag correlation score and the tag popularity score respectively, and [0,1]a∈  is a constant 

for weighting these two scores.  
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Compared to existing work this new approach has some advantages. For example, all 

existing tags from the training set can be recommended. In addition, the weight a 

provides a flexible control of the contributions from the two terms, allowing for example 

the recommendation to rely more on visual contents or on the tag popularity.  

3.3.2 Semantic Image-Tag Correlation Score 

We compute the image-tag correlation score Scorr based on KCCA as 

1...
max{ }i

j t j

corr

t Ii n
S corr

=
=                                                   (3.4) 

where tj is a tag from the vocabulary of all possible tags; 
j

i

tI is the i
th
 training instance (an 

image with corresponding tags) that tj belongs to, and 
t j
Icorr is the normalized correlation 

coefficient between this instance and the input instance. Conceptually, we use the 

maximum correlation coefficient between the input image and one of the training 

instances as the semantic image-tag correlation score (correlation coefficients are 

normalized in Eq. (3.4)). In our experiments, definitions of text and image features are 

defined in the below.  

Text view: In natural language processing (NLP) and text based information retrieval, 

bag-of-word is one of the most powerful models for describing text [52]. In a bag-of-word 

model, text is represented as an unordered collection of words disregarding interpunctions 

and grammar and typically simplified as a Document-Term (DT) matrix, in which each 

entry of the matrix records the appearance frequency of a specific term in a particular 

document. To avoid dimension explosion and eliminate noises, terms are carefully 

selected from a dictionary or from the vocabulary of all available documents using feature 

selection algorithms.  

In this work, we use the bag-of-word model for all text based views in our experiments. 

Since both of our experiments are category related, we select key words by adopting 
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TFICF algorithm [60]. Stemming [61] and removing stop [62] words steps are taken 

before TFICF. 

( , ) ( , ) ( )k i k i kTFICF T C TF T C ICF T= ×                                        (3.5) 

          ( ) log(| | / ( ))
k k

ICF T C CF T=                                                        (3.6) 

where ( , )
k i

TF T C  refers to term frequency of term 
kT  in category 

i
C ; | |C  is the number 

of categories in the collection and ( )
k

CF T is the category frequency of term kT . TFICF 

essentially ranks each term by achieving high inner-category frequency and low inter-

category existence. Top-k terms are used as key words for each category.  

Image view: There are various image features available, serving different purposes in 

pattern recognition and computer vision problems. For image tag recommendation 

problem, image features are required to be able to describe both global and local visual 

information. HSV histograms and image gradient from Gabor filtering are commonly-

used local color and texture features of an image. In the meantime, spatial pyramid 

technique [63] captures the spatial layout information of the image. In this work, we use 

spatial-pyramid-based HSV histograms and Gabor gradients as the features. Specifically, 

given an image, we first divide it into blocks. (As shown in Figure 27, we use three layers 

with 1, 4 and 16 blocks for each layer respectively.) Then, three normalized 8-bin 

histograms for the HSV channels are computed for each block as the color feature, and 12 

gradient energy values from 12 Gabor filters (3 orientations with 4 frequencies) are 

computed as the texture feature. Gradient energy is calculated by using following 

equation [45]: 

1 2

( , )
| | | ( , ) |

fn m P
P I n m−

∈∑                                             (3.7) 

in which, P denotes the input image block; 
fI is the convolution of image block I and a 

Gabor filter ( , )G fθ  with specified orientation and frequency.  
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In summary, we have 756-d feature vector for image view, including 504-d 

((1 4 16) 3 8)+ + × × for color and 252-d ( (1 4 16) 12+ + × ) for texture. Both color features 

and textures are normalized to [0,1] respectively before further calculations. 

 

Figure 27: An example of image spatial pyramid. 

Assume that we have a training set which contains n instances of images with 

corresponding tags. The training procedure is described as follows:  

1. Extract text and image features from all instances in the training set and form 

feature matrices 1[ ,..., ]n T

x x xF f f= and 1[ ,..., ]n T

y y yF f f= , where each row represents the 

feature vector of one instance.   

2. Project Fx and Fy to a higher dimensional space by kernel mapping. The projected 

feature matrices are denoted as Fx’ and Fy’. 

3. Perform KCCA between Fx’ and Fy’ and find the basis vectors: 

' '[ , ] ( , )x y x yW W KCCA F F=                                           (3.8) 

in which Wx and Wy are the found KCCA basis matrices. 

4. Project Fx’ and Fy’ onto the obtained basis: 

'' ' k

x x xF F W= ×                                                    (3.9) 

'' ' k

y y yF F W= ×                                                  (3.10) 

where k

xW and k

yW are obtained by selecting top k  basis vector from 
xW and 

yW

respectively. 
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In the test stage, given a new test image, we first extract its image feature 
0y

f  and obtain 

0

'

yf  by projecting 
0y

f  to a higher dimensional space using the same kernel mapping as 

used in Step 2 of the training procedure. We further project 
0

'

yf  onto k

yW  as we did for all 

training images and get
0

''

yf as a result. Then, the instance level correlation score 
iI

corr  of 

this image to the training instance i  can be computed as a normalized Pearson correlation 

between
0

''

yf and ''

iy
f : 

0

0

'' ''

'' ''

1...

( , )

max( ( , ))

i

i

i

y y

I
y y

i n

correlation f f
corr

correlation f f
=

=                                  (3.11) 

where ''

iy
f  is the i

th
 row of ''

yF .  

3.3.3 Tag Popularity Score 

The tag popularity score is an input-independent score for tags, which describes how 

likely a word is used as a tag based on the training set. This is defined as: 

1...
/ max{ }

=
=

j j k

pop

t t t
k m

S c c                                              (3.12)    

where tj is a tag from the vocabulary of all possible tags and 
jt

c indicates the counts of 

appearances of tj in the training set. 

3.4. Experiments and Results 

According to a Yahoo study [49], the most frequent classes of tags for Yahoo Flickr 

photos are locations, artifacts/objects, people/groups and actions/events. In our work, we 

selected two popular topics for each class except people/groups (which will be included 

in future study due to its complexity). Specifically, we picked “office” and “stadium” as 

location, “pyramid” and “Greatwall” for artifacts/objects, and “skiing” and “sunset” for 

actions/events. For each topic, we crawled a few thousand images for each topic from 

Flickr using the FlickrAPI tool. Photos with too few tags (e.g. less than 5) were removed 
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(For training, images with too few tags may lead to an extreme sparse matrix of text 

features, which can cause numerical issues to KCCA; for testing, images with too few 

tags are not appropriate for objective evaluation.) And in order to mitigate user bias 

(images from the same user are visually very similar in many cases), we keep no more 

than 15 images from the same Flickr ID. Finally, we used 300 images for each topic, in 

which 200 images were used for training and 100 images for testing. The training and 

testing sets were defined by random selections. Obviously, real on-line data is more 

challenging than research databases (e.g. the databases used in [47]) due to the varying 

sources of images and the uncontrollable usage of vocabulary in the user-provided tags. 

In order to show the improvements of the proposed approach, we use the same dataset 

which was used in our previous work [53]. 

3.4.1 Evaluation Metrics 

Both objective evaluation and subjective evaluation have been performed for validating 

and assessing the proposed method. For objective evaluation, we compared the 

recommended tags generated by our approach to the tags provided by the original owners 

of the photos. If one of user tags is among the recommended tag list, we call it a hit. And 

we use ≥k-HitRate for showing the performance, which gives the percentage of images 

out of all test images that achieve ≥ k hit.  

For subjective evaluation, human evaluators were asked to visually check the images 

and mark on those tags which they deem as semantically relevant. In addition to ≥k-

HitRate, we also adopted the following statistical metrics from [49] for evaluating the 

performance: Mean Reciprocal Rank (MRR), which measures where in the ranking the 

first relevant tag occurs; Success at rank k (S@k), defined as the probability of finding a 

relevant tag among the top k recommended tags; Precision at rank k (P@k), defined as 

the proportion of retrieved tags that is relevant, averaged over all photos. 
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3.4.2 Results and Analysis 

We ran ten trials with random selections for the training and test sets in order to avoid 

data selection bias. All experiments were based on these ten trials from the dataset.  

 

Figure 28: Comparisons of ≥k-HitRate between different field ranking methods based on 

objective evaluations: red cross--a=0.2; blue circle--a=0.5. 

Table 4: Tag hit rate of objective evaluation on test sets. 

Figure 28 and Table 4 show the results of objective evaluation of the proposed approach 

when a is set as 0.2 and 0.5 respectively (a indicates relative contribution of tag 

popularity score to the overall ranking score. It can be selected based on knowledge of 

the data source. In our experiments, a=0.5 gives relatively best results.). For k=1 and 2 

cases, both achieved a hit rate close to 100% and above 70% respectively, which are 

superior to what we achieved in [53] (there is no objective evaluation results reported in 

[49]). For k=1 case, our result is even better than that in [47], with such a much more 

challenging dataset with high sparsity in tag occurrence. For each selected topic, only a 

few words appear more than 5 times in the user-provided tags for all the training images. 

This explains why the rate becomes lower when k increases to 2 and 3. 

≥k-HitRate (%) 

Average over 10 fixed random rounds 
k=1 k=2  k=3  

a=0.2 97.0 71.8 37.1 

a=0.5 99.9 71.8 34.7 

k=1 

 

k=2 

 

k=3 
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Objective evaluation alone cannot sufficiently evaluate the real performance since 

many recommended tags are actually good choices for tagging the images although the 

original users did not use them. If users are offered those recommended tags, they may 

likely select and use these tags. This is exactly what our tag recommendation system 

targets at. Therefore, a subjective evaluation is necessary.  

In subjective evaluations in this work, three participants were asked to tick all relevant 

tags in the recommended list for a given image. In order to avoid evaluator bias, each 

evaluator evaluates only 4 topics (400 test images) from the same random set and only 

two topics from the same user can be used in one user set. Thus we can have two user 

sets for this random test set. Except the ≥k-HitRate metric, we also employ MRR, S@1-

5, P@5, P@10 and P@15 metrics as well. Average results for one of the ten random sets 

under different metrics are listed in Table 5 and Table 6.  

Table 5: Tag hit rate of subjective evaluation on one of the test sets. 

≥k HitRate (%), a=0.5 k=1 k=2 k=3 k=4 k=5 

User Set 1 99.2    86.2    64.3    44.0    26.2 

User Set 2 99.8    88.7    72.5    48.5    25.0 

Table 6: Subjective evaluation on one of the test sets. 

S@k (%), a=0.5 MRR S@1 S@2 S@3 S@4 S@5 P@5 P@10 P@15 

User Set 1 1.87 71.5   81.7    88.3    91.8   93.2 64.0    35.7    23.8 

User Set 2 1.66 78.3   84.8   90.5    93.7    95.3 66.9    35.2    23.5 

The subjective evaluation results are statistically better than those of the objective 

evaluation, which supports our previous argument that, although many generated tags are 

not listed by the original user, they are good recommendations for the given image. 

Compared with the state-of-the-art performance in [49], our result is better than the best 

cases reported. Further, in [49], tag recommendation is purely based text and thus at least 
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one tag from the user must be available; while in our experiment, tags can be 

recommended based on only images. 

We further propose a coarse metric to verify the consistency of subjective evaluation 

among different users. Consistent rate c between two users based on their selections of 

relevant tags on the same set of images and the recommended tags is computed as: 

1

m

i

ic
m

δ
==
∑

                                                        (3.13) 

in which m indicates the number of recommended tags. If the two users agree with each 

other on the i
th
 tag (i.e., both/neither of them believe the current tag is relevant to the 

given image), 1iδ = ; otherwise 0iδ =  (this can be easily extended to multiple users). In 

our experiments, two different users provided their selections of reverent tags on the m 

recommended tags (m=15 in our experiments). We picked three topics (i.e., “office”, 

“Greatwall”, “sunset”) and computed the consistency rates of the two users who 

provided their selections. The consistent rates of “office”, “Greatwall”, “sunset” topics 

are 0.94, 0.88 and 0.95 respectively, which indicates high consistency of subjective 

evaluation among different users. The consistency score of “Greatwall” is relatively 

lower than those of the other two topics. This is mainly due to the reason that many 

specific names of locations, such as “simatai”, “mutianyu”, who are not the original 

author of the pictures could only give their guess about the relevance of a given tag. This 

reveals a limitation of subjective evaluation with non-author users for photo tag 

recommendation.  

Both objective and subjective evaluation results demonstrate that the proposed 

approach is capable of capturing the underlying semantic correlation between image 

contents and text tags. 



65 

3.5. Summary 

We propose a novel approach for tag recommendation for on-line photos, in which tag 

recommendation is formulated as a tag ranking problem. All tags from a training set are 

ranked by a weighted combination of semantic image-tag correlation and tag popularity 

learnt from the training set. Experimental results based on realistic on-line photos 

demonstrated the feasibility and effectiveness of the proposed method. 

There are many other aspects that can be taken into consideration for further improving 

the work. For example, other available information of photos, such as title, description, 

comments, meta-data, etc., can be added as separated features for making tag 

recommendations, and the image-tag correlation score can be computed by combining 

the pariwise top correlated instances obtained using these features. In addition, 

performing semantic grouping on tags before creating the document-term matrix, 

combining tag co-occurrence strategies proposed in [49], analyzing users’ tagging 

history and social network/activities for providing customized recommendations are also 

promising directions. 
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Chapter 4 

4. INCORPERATING PRE-DEFINED TAXONOMY WITH TREE-DRF 

FORMULATION FOR LARGE-SCALE YOUTUBE VIDEO 

CLASSFICATION 

Automatic categorization of videos in a Web-scale unconstrained collection such as 

YouTube is a challenging task. A key issue is how to build an effective training set in the 

presence of missing, sparse or noisy labels. We propose to achieve this by first manually 

creating a small labeled set and then extending it using additional sources such as related 

videos, searched videos, and text-based webpages. The data from such disparate sources 

has different properties and labeling quality, and thus fusing them in a coherent fashion is 

another practical challenge. We propose a fusion framework in which each data source is 

first combined with the manually-labeled set independently. Then, using the hierarchical 

taxonomy of the categories, a Conditional Random Field (CRF) based fusion strategy is 

designed. Based on the final fused classifier, category labels are predicted for the new 

videos. Extensive experiments on about 80K videos from 29 most frequent categories in 

YouTube show the effectiveness of the proposed method for categorizing large-scale 

wild Web videos. 

4.1. Background and Overview of the Proposed Approach 

On-line services for archiving and sharing personal videos such as YouTube have 

become quite popular in recent years. Automatic categorization of videos is important for 

indexing and search purposes. However, it is a very challenging task for such a large 

corpus of practically unconstrained (wild Web) videos. A lot of efforts have been devoted 

to video analysis in the past, but most existing works use very limited number of videos 

or focus on specific domains such as news, sports etc. Due to practically unbounded 

diversity of Web videos in both content and quality (as illustrated in Figure 29, analysis 
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of such data is much more challenging than relatively clean videos expected by most 

existing techniques. A recent study by Zanetti et al. showed that most existing algorithms 

did not perform well on general Web videos [90]. It also pointed out that one of the major 

challenges in Web video categorization is the lack of sufficient training data. Manually 

labeling videos is both time-consuming and labor intensive -- on one hand one has to 

watch part of a video before (s)he can suggest labels; on the other, web videos are 

extremely diverse in nature, thus even for human experts, summarizing the video content 

by using a few keywords is not an easy task. 

 

Figure 29: Examples of wild YouTube videos showing extremely diverse visual content. 

In this work, we propose a novel approach that combines multiple data sources for wild 

YouTube video categorization. Starting from a small number of manually labeled 

samples (as few as 50 per category), we expand the training set by propagating labels to 

their co-watched videos, collecting data by using internet video search engines (such as 

Google video search), and even incorporating data from other domains (e.g., text-based 

webpages). These additional data sources are first pariwise combined with manually-

labeled data and a classification model is trained for each combination. For fusing these 

trained models, we propose a CRF-based tree-DRF fusion approach, which views the 

taxonomy tree as a random field. Each node (i.e. a category) is associated with a binary 

label and the output likelihoods of the trained models (applied on the training data) are 
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used as local observations for the nodes. Unlike a traditional fusion strategy that treats 

each category independently, tree-DRF makes the final labeling decision as a whole by 

explicitly taking the hierarchical relationships among the categories into consideration. 

This is crucial to achieve good performance since the data from additional sources is 

usually quite noisy. The hierarchical relationships among categories provides powerful 

context for alleviating the noise. Results from extensive experiments on 80K YouTube 

videos demonstrate that the proposed solution outperforms existing methods that either 

use just a single data source or traditional data fusion strategy. The main contributions of 

this work can be summarized as follows: First, to the best of our knowledge, this is the 

first work that deals with categorization of unconstrained Web videos at such a large 

scale. Second, we propose a novel approach for integrating data from multiple disparate 

sources for classification given insufficient training data. Finally, we introduce a tree-

DRF based fusion strategy that exploits the hierarchical taxonomy over categories and 

effectively deals with noise in multiple data sources. It significantly outperforms other 

commonly used fusion strategies based on SVM and iterative co-training [67, 68, 73].  

The rest of this section is organized as follows. We first review the related literature in 

Section 4.2 followed by the description of multiple data sources we use in Section 4.3. 

The proposed solution with pariwise data combination and tree-DRF based fusion 

strategy is presented in Section 4.4. Extensive experimental results, comparisons and 

analysis are reported in Section 4.5. We conclude in Section 4.6 with a brief discussion 

on future work. 

4.2. Related Work 

Compared to image analysis, research on video analysis has been relatively recent. Most 

existing approaches are either limited to some specific domains (e.g. movies [69, 77], TV 

videos [70, 86, 89] etc.) or focus on certain predefined content such as human face [70, 

84] and human activities [79]. However, large scale categorization of wild Web videos 
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still remains an unsolved problem. The works of Schindler et al. [85], VideoMule [82] 

and Zanetti et al. [90] are among the initial efforts in this direction. Schindler et al. tried 

video categorization on 1500 user uploaded videos from 15 categories using bag-of-

words representation. However, the classification performance is very poor on this 

general video set (best classification accuracy is 26.9%). Ramachandran et al. proposed 

VideoMule, a consensus learning approach to multi-label YouTube videos classification 

using YouTube categories. Specific amount of data and categories were not reported in 

their work. Zanetti et al. explored existing video classification methods on about 3000 

YouTube videos in their recent work [90]. They pointed out that a major difficulty in 

Web video analysis is the lack of enough labeled training data. Semi-supervised machine 

learning approaches [92] are useful for expanding training data in general. However, 

graph-based methods are used commonly for semi-supervised learning e.g., [93] and 

semi-supervised SVM [66] are inefficient for large amounts of data with high-

dimensional features. Popular co-training/self-training approaches [67, 68, 73] are also 

typically expensive and their performance is quite sensitive to the amount and quality of 

the initial training set. Another possible way of collecting more training data is to make 

use of data from other sources including different domains. It is worth noting that 

combining multiple data sources is more challenging than combining multiple views of 

the same data [67, 68, 73], since properties of different data sources are typically more 

diverse. Multiple data sources can be combined with either early fusion or late fusion 

strategies [87]. Typically, early fusion assumes that all the features are available for each 

video, which is not valid in our case (e.g. webpage data has only text features). In late 

fusion, classifier models are first trained separately; then the trained models are applied to 

the training set. At the fusion stage, obtained likelihoods from different models are 

concatenated for each sample and used as a feature vector. Another round of training is 

then carried out on the new 'features'. Traditional fusion methods are based on regular 
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learning algorithms (such as SVM, AdaBoost), which treat each category independently. 

On the contrary, given a hierarchical taxonomy over categories, it is desirable to exploit 

such relationships to achieve robust classification. In this work, we propose tree-DRF to 

handle the category structure while doing late fusion and empirically show the benefits of 

such approach.  

4.3. Multiple Data Sources 

As mentioned earlier, lack of labeled training data is a main bottleneck for general Web 

video categorization. To alleviate this problem, we first manually labeled 4345 videos 

from all the 29 categories as initial seeds. This set is further expanded by including 

samples from related videos, searched videos and cross-domain labeled data (i.e. text 

webpages), as illustrated in Figure 30. Details of each data source are given below. 

 

Figure 30: Multiple data sources for YouTube videos including a small set of manually 

labeled data, related (e.g. co-watched video data), searched data collected by using a 

video search engine with categories as queries, and cross-domain data (e.g. webpages) 

which are labeled with the same taxonomy structure. 

4.3.1 Manually-labeled Data 

To collect the initial seeds for training, we first build a category taxonomy with the help 

of professional linguists. About 1000 categories are defined using a hierarchical tree of 5 

vertical levels (Depth-0 to Depth-4 from top to bottom, Depth-0 is the root). Randomly 

selected YouTube videos that have been viewed more than a certain number of times are 

labeled by professionally-trained human experts based on the established taxonomy. Each 
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video is labeled from Depth-0 to the deepest depth it can go. For example, if a video is 

labeled as Pop Music, it must be associated with label Music & Audio and Art & 

Entertainment as well. Note that this is a general taxonomy instead of being designed for 

YouTube videos specifically. Thus, it is not surprising that the distribution of manually-

labeled videos over all categories is extremely unbalanced. For example, the Art & 

Entertainment category contains close to 90% of all the labeled videos, and categories 

such as Agriculture & Forestry have only a few videos. In fact, such imbalance reflects 

the real distribution of videos in the entire YouTube corpus. In this work, we work on 29 

categories that had a reasonable amount of manually-labeled samples, i.e., more than 200 

for Depth-1 categories and more than 100 for Depth-2 to 4 categories. Manually-labeled 

samples from these 29 categories (4345 samples in total) cover close to 80% of all the 

data we labeled, roughly implying that the categories we are working with cover 80% of 

all possible videos on YouTube. To the best of our knowledge, this is the first work 

which deals with general Web video classification on such diverse categories. In our 

experiments, 50% randomly selected samples are used as initial seeds for training 

(denoted as “M”) and the remaining 50% are used for testing. 

4.3.2 Related (Co-watched) Data 

To increase the training samples for each category, we considered co-watched videos, 

i.e., the next videos that users watched after watching the current video. We empirically 

noticed if a video is co-watched more than 100 times with a certain video, they tend to 

have the same category. Of course, such labels can be noisy but our tree-DRF based late 

fusion method is able to handle such noise robustly. So, in our experiments, co-watched 

videos (denoted as “R”) of all the initial seed videos with co-watch counts larger than 100 

(3277 video in total) are collected to assist training. 
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4.3.3 Searched Data 

Another possibility for expanding the training set is by searching for videos using online 

video search engines using a category label as a text query. For example, returned videos 

by submitting query “soccer” may be used as training samples for the “soccer” category. 

Constrained by the quality of existing search engines, searched videos may be noisy. In 

our work, we keep about top 1000 videos returned for each category. Since the categories 

form a hierarchical structure, the videos returned for categories at lower levels are 

included for their ancestors as well. Querying Google video search gave us a set of about 

71,029 videos (denoted as “S”).  

4.3.4 Cross-domain Labeled Data 

Compared to video labeling, assigning labels to other types of data (e.g. text-based 

webpages) is usually easier. Although such data comes from a completely different 

domain, it can be helpful for video classification as long as the samples are labeled using 

the same taxonomy. This is because we also use text-based features to describe each 

video as explained in Section 4.1. We collected 73,375 manually-labeled webpages 

(denoted as “W”) as one of the additional data sources in our experiments. 

4.4. Learning from Multiple Data Sources 

In Section 4.3, in addition to the manually-labeled data, we introduced several auxiliary 

sources which may be useful for boosting the video classification accuracy. The main 

challenge is how to make use of such diverse set of data with different properties (e.g., 

video content features are not available for web pages) and labeling quality (e.g., labels 

of searched and co-watched data are fairly noisy). In this work, we propose a general 

framework to integrating data from mixed sources. As illustrated in Figure 31, each 

auxiliary data source is first pariwise combined with the manually-labeled training set. 

Initial classifiers are trained on each such pair. For each pair, two separate classifiers are 
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learned, one with text-based and another with content-based features. For example, in 

Figure 31 MSc is a content-based and MSt is a text-based model for the combination of 

manually-labeled data and searched data. Trained models are then fused using a tree-DRF 

fusion strategy. Different from traditional methods that fuse models for each category 

independently, the proposed tree-DRF incorporates the hierarchical taxonomy structure 

exploring the category relationships effectively. Next we introduce the features used for 

training individual classifiers followed by the description of our tree-DRF fusion method. 

 

Figure 31: General framework of the proposed solution: Additional data sources are first 

combined with manually-labeled data independently and classifier models are trained 

based on either text or content features for each combination. Individual classifiers are 

further fused to form the final classifier M. 

4.4.1 Features 

It is well known that designing good features is perhaps the most critical part of any 

successful classification approach. To capture the attributes of wild Web videos as 

completely as possible, state-of-the-art text and video content features are utilized in our 

experiments as briefly summarized below.  

Text features: For each video, the text words from title, description and keywords are 

extracted. Then, all these words are weighted to generate text clusters. The text clusters 

are obtained from Noisy-Or Bayesian Networks [81], where all the words are leaf nodes 

in the network and all the clusters are internal nodes. An edge from an internal node to a 
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leaf node means the word in the leaf node belongs to that cluster. The weight of the edge 

means how strongly the word belongs to that cluster.  

Video content features: color histogram computed using hue and saturation in HSV 

color space, color motion defined as cosine distance of color histograms between two 

consecutive frames, skin color features as defined in [74], edge features using edges 

detected by Canny edge detector in regions of interest, line features using lines detected 

by probabilistic Hough Transform, histogram of local features using Laplacian-of-

Gaussian (LoG) and SIFT [80], histogram of textons [78], entropy features for each 

frame using normalized intensity histogram and entropy differences for multiple frames, 

face features such as number of faces, size and aspect ratio of largest face region (faces 

are detected by an extension of AdaBoost classifier [88]), shot boundary detection based 

features using difference of color histograms from consecutive frames [91], audio 

features such as audio volume and 32-bin spectrogram in a fixed time frame centered at 

the corresponding video frame, adult content features based on a boosting-based 

classifier in addition to frame-based adult-content features [83]. We extract the audio and 

visual features in the same time interval. Then, a 1D Haar wavelet decomposition is 

applied to them at 8 scales. Instead of using the wavelet coefficients directly, we take the 

maximum, minimum, mean and variance of them as the features in each scale. This 

multi-scale feature extraction is applied to all our audio and video content features except 

the histogram of local features [72]. Note that features are not the main contribution of 

this work. Due to space limitation, we skip the details of the features and refer the reader 

to the respective references. For fair comparisons, all the experimental results reported in 

this work are obtained based on the same set of features. 

4.4.2 CRF-based Fusion Strategy 

Conditional Random Fields (CRFs) are graph-based models that are popularly used for 

labeling structured data such as text [76] and were introduced in computer vision by [75]. 
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In this work, we use outputs of discriminative classifiers to model the potentials in CRFs 

as suggested in Discriminative Random Field (DRF) formulation in [75]. We denote the 

observations as y and the corresponding labels as x. According to CRFs, the conditional 

distribution over labels given the observations is defined as a Gibbs field: 

1
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where S is the set of all the graph nodes, Ni is the set of neighbors of node i, and Z is a 

normalizing constant called partition function. Terms Ai and Iij are the unary and pariwise 

potentials sometimes referred to as association potential and interaction potential 

respectively. 

4.4.3 Tree-DRF 

As discussed earlier, in this work we use multiple data sources that are combined by a 

late fusion step. We want a fusion strategy that can combine the classifier outputs from 

different sources while respecting the taxonomy over categories. The DRF framework 

described above gives a natural way of achieving that. Formally, Ai learns to fuse the 

outputs of independent classifiers while Iij enforces the category relationships defined by 

the hierarchical taxonomy. In [75], DRF is used for image classification, in which a graph 

is built on image entities, i.e., pixels or blocks. On the contrary, in our case, the graph is 

defined over the hierarchical taxonomy (i.e., a tree over categories) and a node represents 

a category. Each node i is associated with a binary label variable xi, i.e., { 1,1}ix ∈ −  

implying whether i
th 

category label should be assigned to the input video or not. The 

scores from different classifiers for the i
th
 category on a given video are concatenated in a 

feature vector, which serve as the observation yi. Figure 32 illustrates the proposed tree-

DRF. 
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is a parameter vector and hi(y) is a feature vector at site i.  W

include the classifier scores and their quadratic combinations. Note that unlike the 

homogeneous form used in [75], the association potential in our tree

inhomogeneous. There is a separate association parameter w for each node. The

that since a different set of classifiers is learned for each category (i.e., a node), forcing 

defining combinations of such disparate sets of classifiers to be the 

all the nodes is too harsh. Thus, we allow the model to choose a 

vector for each category. Of course, it leads to more parameters in the model but since 

ph is fairly small (just 29 nodes), and the size of observation vector, i.e., the 

DRF. For each input video, a tree-structure 
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(yi) is simply the 
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number of classifiers, is also small, the computational overhead was negligible. 

Moreover, overfitting is also not a concern since we have enough training data for such 

small number of parameters.  

The interaction potential in tree-DRF is defined as, 

( , , ) ( )T

ij i j i j ijI x x x x µ=y v y , 
ij N∈                                        (4.3) 

where v are the model parameters and ( )ijµ y  is a pariwise feature vector for nodes i and 

j. In this work, we only explored data-independent smoothing by forcing ( )ijµ y  to be a 

constant. Similarly, the parameter v was kept to be the same for all the node pairs. One 

can easily relax this to allow directional (anisotropic) interactions between parents and 

children which can provide more powerful directional smoothing. We plan to explore this 

in the future.  

We used the standard maximum likelihood method for parameter learning in tree-DRF. 

Since the graph structure is a tree, exact unary and pariwise marginals were computed 

using Belief Propagation (BP). For inference, we used sitewise Maximum Posterior 

Marginal (MPM), again using BP. Results of tree-DRF fusion and comparisons to regular 

fusion strategy based on SVM and Co-training are presented in Section 4.5. 

4.5. Experiments and Results 

In order to verify the effectiveness of the proposed solution, we performed extensive 

experiments with about 80K YouTube videos and about 70K webpages. We first 

introduce the experimental data and settings in the next section followed by a brief 

description of the evaluation metric.  

4.5.1 Experimental Data and Setting 

As described in Section 4.3, four different data sources and 29 major categories are used 

in our experiments. The categories followed by their path in the taxonomy tree are: “Arts 
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& Entertainment” (1), “News” (2), “People & Society” (3), “Sports” (4), “Celebrities & 

Entertainment News” (1, 5), “Comics & Animation” (1, 6), “Events and Listings” (1, 7), 

“Humor” (1, 8), “Movies” (1, 9), “Music & Audio” (1, 10), “Offbeat” (1, 11), 

“Performing Arts” (1, 12), “TV & Video” (1, 13), “Team Sports” (4, 14), “Anime & 

Manga” (1, 6, 15), “Cartoons” (1, 6, 16), “Concerts & Music Festivals” (1, 7, 17), “Dance 

& Electronic Music'' (1, 10, 18), “Music Reference” (1, 10, 19), “Pop Music” (1, 10, 20), 

“Rock Music” (1, 10, 21), “Urban & Hip-Hop” (1, 10, 22), “World Music” (1, 20, 23), 

“TV Programs” (1, 13, 24), “Soccer” (4, 14, 25), “Song Lyrics & Tabs” (1, 10, 19, 26), 

“Rap & Hip-Hop” (1, 10, 22, 27), “Soul & R&B” (1, 10, 22, 28), and “TV Reality 

Shows” (1, 13, 24, 29). In our experiments, binary classifiers are trained for each 

category respectively. Content features and text features are trained separately by using 

AdaBoost and SVM, respectively. LibLinear [71] is used to train SVMs when training 

samples exceed 10K. Trained models are then integrated using regular SVM based late 

fusion strategy [87]. Since webpage data has only text features (no content features), only 

a single model is learned for this set. The training data from two sources (i.e., manually-

labeled data plus one additional data source) is combined before training the classifiers. 

After all the data sources are leveraged, fusion is performed for content and text features 

for three pariwise combinations, represented by five individual classifiers. In the training 

process, negative training samples for each category are randomly selected from other 

categories with a negative-positive ratio of 3:1. 

4.5.2 Evaluation Metrics 

While testing, since binary classifiers are trained for each category, each test sample 

receives 29 classification decisions (either “yes” or “no”). Multiple labels for a single 

sample are allowed. As the category labels form a taxonomy structure, predicted 

categories/labels are also propagated to their ancestors as done while generating ground-

truth labels for the training data. For example, if a test sample has a ground-truth label 
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“Art & Entertainment” / “TV & Video” / “TV Programs”, it is treated as a true positive 

sample for “Art & Entertainment” category if it is classified by any of these three 

classifiers. For the quantitative evaluation, we compute Precision, Recall and F-score. To 

perform aggregate assessment of the classification performance, we also compute F-

scores for each depth level of the taxonomy. 

4.5.3 Results and Analysis 

The objective of the proposed approach is to improve video classification performance by 

making use of data from multiple sources of varied quality. Table 7 lists classification 

accuracy of each data source (due to space limitation, we only show F-score in all tables 

and figures). Performance with just the related videos (R) or the searched videos (S) is 

much worse than that from manually-labeled data (M). It shows that neither related 

videos nor searched videos are sufficient for training a reliable classifier. Webpage data 

(W) obtained from a completely different domain, which does not even contain video 

content, works better than manually-labeled data for most taxonomy depths. This is 

possible since even noisy text based features for videos are usually more reliable than 

video content features. 

In order to achieve better results, we combine each of the additional data sources 

pariwise with manually-labeled training data. As shown in Table 8, for related video 

source, pariwise combination achieves significant improvements over just using related 

videos and even better than training on manually-labeled data. For the searched videos, 

performance of pariwise combination is also better than that for just the searched data, 

but worse than that of the manually-labeled data. In terms of the webpage data, pariwise 

combination is not always superior to the single sources. Overall, there are two 

observations: 1) Pariwise combination with manually-labeled data can improve 

classification accuracy of any single additional source in most cases; 2) Introducing 

additional data sources by simply merging them with the manually-labeled data does not 
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guarantee improvement for all cases over the baseline configuration, i.e., using just the 

manually-labeled data for training. 

Table 7: Classification accuracies of single data sources. 

F-scores Depth 1 Depth 2 Depth 3 Depth 4 

M 0.80 0.60 0.45 0.41 

R 0.74 0.53 0.37 0.34 

S 0.73 0.51 0.37 0.31 

W 0.84 0.54 0.48 0.45 

Table 8: Classification accuracies of each single data sources combined with manually-

labeled data. 

F-scores  Depth 1 Depth 2 Depth 3 Depth 4 

M + R 0.86 0.63 0.47 0.49 

M + S 0.78 0.57 0.43 0.37 

M + W 0.84 0.55 0.45 0.39 

 

Table 9: Classification performance of fusing pariwise combinations of data using 

different fusion strategies. 

F-scores Depth 1 Depth 2 Depth 3 Depth 4 

All, SVM 0.84 0.65 0.46 0.49 

All, Tree-DRF 0.87 0.72 0.57 0.52 

M+R, Tree-DRF 0.85 0.66 0.48 0.45 

 

 

Next, we fuse the single classifier models trained from pariwise combinations to further 

boost the classification performance. First row of Table 9 shows the results of using 

regular SVM late fusion strategy. Compared to the best cases in Table 8, fusing all data 

sources does not achieve any obvious improvement (for Depth-1 and Depth-3, results are 

even worse). It is because, for SVM, when the feature dimension increases but not the 

amount of training data, the test performance may degenerate due to over-fitting. This 
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observation underscores our previous assertion that an inappropriate fusion strategy for 

adding unreliable data sources may even harm the classification accuracy.  

Results of the proposed tree-DRF fusion strategy are reported in Table 9-second row. 

For all taxonomy depths, tree-DRF outperforms regular SVM fusion. Especially for 

Depth-2 and Depth-3, in which the categories can benefit from both parent categories and 

child categories, it achieves 0.07 (11%) and 0.11 (24%) improvements in F-scores. 

Compared to the baseline performance (Table 7-first row), it gains 0.07 (9%), 0.12 

(20%), 0.12 (27%), 0.11 (27%) F-score improvements for Depth-1 to Depth-4 

respectively. Such significant improvements are due to the taxonomy tree based learning 

of tree-DRF. In other words, since interactions between parent and child nodes are 

considered, noise in the additional data sources can be largely filtered. This is because 

useful information is typically consistent for neighboring nodes and thus can be 

emphasized by the interaction potential in tree-DRF.  

For analyzing the effectiveness of including additional data sources, we applied tree-

DRF on the pair of manually-labeled data and related data (which gave the best results 

among all pariwise combinations with regular fusion of content models and text models) 

in the third row of Table 9. Compared to tree-DRF on all data (second row in Table 9), 

results are worse, which demonstrates the gain from multiple data sources by using tree-

DRF. For easy comparison, accuracies from all experiments are summarized in Figure 

34.  

To analyze the results for individual categories, we illustrate F-scores for the baseline 

method (i.e., using only manually-labeled data for training), and SVM and tree-DRF 

based fusion with all data sources in Figure 35. For most of the categories, tree-DRF 

outperforms the other two methods, especially for the categories with small amount of 

training samples but relatively large number of neighbors.  



82 

In addition to SVM and tree-DRF based fusion, we also conducted experiments with 

co-training on different combinations of the four data sources with different settings (e.g. 

by varying the number and weights of new training samples added in each iteration, and 

the stopping criteria). In the best case, F-scores for Depth-1 to Depth-4 were 0.82, 0.61, 

0.44 and 0.40 respectively, which are much lower than the proposed tree-DRF method 

and even lower than regular SVM fusion strategy. Regarding computational complexity 

of tree-DRF, since the graph is built on the taxonomy, it results in a very small graph 

having just 29 nodes connected with very sparse edges. Also, since the outputs of 

individual classifiers are used as features, it leads to very low-dimensional features. 

Hence, overall the tree-DRF is extremely fast in training as well as testing. 

 

Figure 34: Comparison of classification accuracies from different data sources and 

combinations. Tree-DRF with all pariwise data combinations achieved the best 

performance. M: Manually-labeled data, R: Related Videos, S: Searched Videos, W: 

Webpage data. 
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Figure 35: F-scores of 29 categories on manually-labeled data (M), all data with SVM 

fusion and all data with tree-DRF fusion. Tree-DRF performed better than the other two 

methods for most categories. 

4.6. Summary 

In this work, we proposed a novel solution to wild web video categorization on a large-

scale dataset (more than 80 thousand YouTube videos). Our approach provides an 

effective way of integrating data from diverse sources, which largely alleviates a major 

problem of lack of labeled training data for general web video classification. Tree-DRF 

was proposed for fusing models trained from individual data sources when combined 

with small amount of manually-labeled data in a pariwise fashion. Compared to 

traditional fusion strategies, the proposed tree-DRF takes the taxonomy tree of category 

labels into account, resulting in significant improvement in classification performance. 

Experimental results on a large-scale YouTube dataset show that the proposed approach 

is effective for categorizing wild videos on the Web. 

Currently we only consider undirected relationships between parent and child 

categories in tree-DRF. More sophisticated anisotropic formulations of interaction 

potential for parent or child neighbors, and siblings may further improve the labeling 

performance. In addition, it is also possible to make use of unsupervised learning 

methods (e.g. clustering) for assigning weights to noisy labeled samples and adjusting 

their contributions accordingly while training classifiers. Integrating an iterative co-
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training framework of incrementally adding additional unlabeled data is also a possible 

way of further expanding the training data set and improving the classification 

performance. 



85 

Chapter 5 

5. LEVERAGING VIDEO TEMPORAL ORDER IN SPARSE 

REPRESENTATION FOR CONSUMER VIDEO SUMMARIZATION 

Automatic video summarization is critical for facilitating fast browsing and efficient 

management of multimedia data. Compared to well-edited videos with predefined 

structures (e.g., movies) or constrained contents (e.g., news or sports videos), upon  

which existing methods focus, the main challenges of summarizing unconstrained 

amateur or consumer videos include dealing with extremely diverse contents without any 

pre-imposed structure and poor video quality due to camera shake. To address these 

challenges, we explore a signal-reconstruction based approach relying only on visual 

content. In particular, we propose a sequence-kernel-based sparse representation 

approach for directly summarizing consumer videos. A dictionary of subsequences is first 

constructed from clustered frames with importance ranking scores of extracted high-level 

semantics. Video summarization is formulated to seek an optimal combination of the 

dictionary elements that robustly represents the original video. Weighted-sequence 

distance is exploited to compute the approximation error, and the kernel-based feature-

sign algorithm is used to estimate the sparse coefficients. A linear combination over the 

dictionary with the obtained optimal sparse coefficients is output as the final summary 

video. Extensive experiments are performed on 71 videos with ratings from 7 evaluators. 

Results obtained by the proposed approach compare favorably with two existing methods 

both visually and quantitatively, validating its effectiveness.  

5.1. Background and Overview of the Proposed Approach 

With a rapid growth in the use of digital cameras and camcorders, personal or consumer 

videos from amateur users have become one of the major sources of multimedia contents. 

Automatic video summarization techniques are urgently needed for fast and efficient 
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browsing, managing and sharing the huge amount of video data. The video 

summarization problem has been investigated for years, while it mainly focused on 

structured and clean videos (e.g., news and sports videos). Compared to professionally 

shot and well-edited videos, unconstrained consumer videos record extremely diverse 

contents and are often referred to as videos “in the wild”. Also, such videos often lack a 

pre-imposed structure (see Figure 36) and may exhibit low quality due to factors such as 

camera shake and poor lighting (see Figure 37). 

 

Figure 36: Example – An unstructured home video. 

 

Figure 37: Example – A blurred home video. 

This work addresses the problem of automatically summarizing consumer videos based 

on visual contents (i.e., without sound track or other metadata). Given an unedited video 

clip with unconstrained content, the approach is expected to generate a summary video 

(with temporal compression only) of the user-specified length that covers the visual 

contents as completely as possible and maintain the temporal structure of the original 

video as well. Figure 38 illustrates an example, where (a) is the original video, and (b) 

and (c) are two summary videos of different lengths. Both videos retain the visual 

contents (to different extents) and preserve the temporal structure of the original video -  

panning from the street, to the crowd, to the bottom of the church, then going up to top of 

the church and finally back to the bottom. It is worth pointing out that bottom of the 

church appears twice in the summary video by intent, which reflects the importance of 

the temporal order of the scene changes (otherwise this scene would be redundant). 
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Existing approaches, such as [105, 106, 111-114], on video summarization typically 

follow a procedure of segmenting the original video into clusters of frames, rating the 

importance of the contents of each cluster and selecting representative key frames/short 

skims from each cluster to form the final video summary. Without any prior knowledge 

of the visual contents, such approaches share a significant challenge as to how to 

determine an appropriate number of segments. 

In this work, we propose an approach to directly generate video summaries for 

unconstrained videos. Given an input video, we first create a dictionary of subsequences 

(we define a subsequence as a subset of frames or short snippets from the original video 

with the original temporal order imposed) from the original video. Based on the sparse 

representation theory [94], the video summarization problem is formulated as seeking a 

set of sparse coefficients over the dictionary elements that constructs an optimal 

combination (i.e., a summary video) best representing the original video. Different from 

most existing applications of sparse representation in which each dictionary element is a 

vectorized data point, dictionary elements in this work are subsequences with temporal 

order imposed, which requires a new metric (other than the standard L2 norm) for 

measuring the reconstruction errors. We adopt edit distance based Weighted-sequence 

Distance (WSD) [101] with revised operation costs to measure the reconstruction errors, 

which reflects the quality of candidate summaries. A kernel representation of this 

measure is further used with the feature-sign algorithm [103, 104] to solve the optimal 

(approximated) sparse coefficients, which are used for generating the final summary 

video. To create a dictionary of practical size while well covering the subsequence space 

(i.e., all possible combinations of a given number of snippets from the original video), we 

perform over-clustering of the frames from the original video and select short snippets 

with high importance scores in terms of image quality, face detection, scene complexity, 

and motion change (details in later sections). 
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(a) Original video sequence. 

 

(b) A longe summary video. 

 

(c) A short summary video. 

Figure 38: Examples of desirable video summarization: (a) the original video; (b) and (c) 

two summary videos of different lengths. 

Advantages of the proposed approach can be summarized from the following four 

aspects: 1) This approach is designed to generate video summaries directly without key 

frame extraction and expansion, which avoids the problems of setting the key frame 

number and expanding key frames back to a summary video; 2) The proposed approach 

is adaptive to user-specified lengths of summaries via automatically adjusting the sparsity 

parameter; 3) Instead of using any single frame independently, dictionary elements are 

defined as subsequences and quality of candidate summaries are evaluated by using 

sequence-based distance measure, which well retains the temporal structure of the 

original video; 4) The proposed approach provides a general framework so that high-level 

semantic information can be incorporated naturally into the dictionary creation step of 

sparse representation, which is mostly built for signal reconstruction that is low-level in 

nature. 

To evaluate the performance of the proposed approach, we apply it on 71 real 

consumer videos depicting diverse contents. Rating scores from 7 evaluators on the 
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results generated using the proposed approach and comparisons with three other methods 

demonstrate the effectiveness and advantages of the proposed approach. 

In the remainder of this section, we first briefly review related work on video 

summarization in Section 5.2. Details of the proposed approach are elaborated in Section 

5.3. Experiments, user evaluations, and comparisons are presented in Section 5.4. We 

summarize the proposed approach, its limitations, and future work in Section 5.5. 

5.2. Related Work 

Generally, there are two ways to summarize video data: static key frames and dynamic 

video skims. The former is a set of key frames from the original video [105, 106] that can 

be printed or displayed as a slideshow; the latter is a condensed version of the original 

video [111-114] that consists of a series of short clips that concatenate to retain the 

dynamics and characteristics of the original sequence by some measure. Most existing 

work follows a procedure of segmenting the original video into clusters, then ranking the 

contents of each cluster, and further selecting representative frames or sub-skims from 

each cluster to form the final summary [105, 106, 111-114]. However, this type of 

approaches suffers from a big problem of having to set an appropriate number of 

segments, which is unknown in practice. Visual features have been used extensively for 

video summarization [117, 118], whereas methods exploiting audio [107], and video 

metadata such as camera motions (e.g., panning, zooming) [105] have also been reported. 

For videos generated in a controlled fashion (e.g., broadcasting sports and news), the 

underlying structure can be a strong cue, a case in point is most TRECVID systems 

[119], which rely significantly on the use of captions, audio, and the underlying structure 

of broadcast news/sports videos. However, these techniques are challenged by consumer 

videos in which pre-defined structures is lacking, camera motion information is hard to 

compute, and audio is often missing or noisy. Therefore, we choose to explore a signal-

reconstruction based approach that relies only on visual content.    
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To reduce redundancies, most prior works perform only temporal compression. Some 

recent work explore the possibility of summarizing videos both spatially and temporally 

[109, 115], which leads to a summary skim composed of synthesized images. However, 

these approaches require sophisticated analysis of the visual content at semantic level, 

e.g., object detection, image segmentation, and visual saliency detection, which remain 

open computer vision problems themselves. Furthermore, whether the synthesized frames 

are acceptable is another unsolved issue. In this work, we only consider removing 

temporal redundancies from the original video. 

For evaluations, subjective user evaluation is commonly followed by most existing 

works. Due to the time-consuming and labor-intensive nature of the task, most papers 

report evaluation results for only a few videos (often under 10) from several judges. Kang 

et al. perform experiments on 30 videos that are extremely short (i.e., 100 frames in total 

on average) [110], without reporting any quantitative results in the work. In this work, we 

apply the proposed approach on 71 real consumer videos and collect rating scores from 7 

evaluators. Statistics and significance of the ratings are presented and analyzed in the 

experiment section. 

5.3. Summarization with Sequence-Kernel-Based Sparse Representation 

Consider video summarization as a problem to select a subset of frames/short snippets 

(which forms a subsequence) from the original video sequence. If all possible 

subsequences can be enumerated and there exists a metric to compare each candidate 

with the original video quantitatively, optimal summary can be obtained by selecting the 

one with the highest evaluation score. For example, for the video sequence of Figure 38, 

a few sample candidate subsequences are shown in Figure 39. Each of the candidates is 

rated in terms of a criterion of how good it covers the visual content and the temporal 

structure of the original video. Intuitively, the third row is the best one among the four 

shown because it preserves the major scenes and the temporal order of the scene changes. 
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Figure 39: Candidate summaries of the video of Figure 38. The third row is the best 

subsequence among all the candidates to summarize the original video while preserving 

temporal order. 

5.3.1 Overview of the Proposed Approach 

Recently, much interest has been focused on computing linear sparse representation [94] 

with respect to an over-complete dictionary of a set of basis elements. Suppose we have 

an underdetermined system of linear equations:  

y A α= ⋅                                                            (5.1) 

where my R∈  is the target signal to be approximated,   nRα ∈  is the vector for unknown 

reconstruction coefficients, and 
m nA R ×∈ (m<n) is the over-complete dictionary with n 

bases. Generally, a sparse solution is more robust and efficient for coding and 

reconstructing the target signal and has been widely used for various vision related 

applications, such as image restoration [95]. The sparsest solution can be obtained by 

solving a L1 optimization problem in polynomial time by standard linear programming 

method [96]: 

1
min || || ,  . . s t y A

α
α α= ⋅                                             (5.2) 

In this work, the input video sequence y that is to be summarized (i.e., the target signal) 
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is represented as 

1 2[ , , ..., ]Tny f f f= .                                                (5.3) 

in which fi (1 ≤ i ≤ n) is a frame or a short snippet (defined as a group, e.g., 5-10, of 

consecutive frames from the original video). For the sake of simplicity, here we call it a 

snippet. 

In the proposed video summarization approach, we first generate a dictionary A of M 

elements 

1 2[ , ,..., ]MA a a a=                                                  (5.4) 

in which each dictionary element aj is a subset of snippets selected from y (we shall 

discuss the stragay of selection in Section 5.3.2) 

1 2[ , ,..., ]Tj na x x x= , 1 j M≤ ≤                                        (5.5) 

and ai contains exactly l non-zero entries (i.e., l snippets from the original video), 

,  

0,  otherwise

i j

i

f i S
x

∈
= 


, 1 i n≤ ≤ ,  | |jS l=                                  (5.6) 

where Sj denotes the set of l indices derived from the input video y to construct i
th
 

dictionary element aj. Construction of dicitionary elements is discussed in Section 5.3.2. 

Let 
ky be the desired (unknown) summary of the video y . We represent 

ky as a sparse 

linear combination of dictionary elements as shown below:  

0,  || || ,  ky A m m Mα α= ⋅ = <<                                         (5.7) 

where α  is an m-sparse coefficient vector, i.e., only m non-zeros entries are allowed in 

α . 
ky  is a linear combination of all dictionary elements in A with non-zeros coefficients 

while retaining their temporal order. 

Since the summary video should represent the salient contents of the input video, 

therfore, the sparse coefficient vector, α , is estimated by minimizing the error 
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between the the input video y  and the summary video 
ky as given below: 

( )0 1arg min , ,  || ||kErrFn y y mα α= <                                   (5.8) 

where ( , )ErrFn ⋅ ⋅  compares the two inputs and estimates the error. Typically, L2-norm is 

used in such cases. But, in this case, ( , )ErrFn ⋅ ⋅ needs to be selected carefully as y  and 

ky  are sequences rather than regular vectorized data points, standard L2 norm is no longer 

applicable for computing the reconstruction error here. 

 

Figure 40: An illustration of generating a candidate video summary from a dictionary of 

subsequences. 

Figure 40 illustrates an example, where y on the left is the original video which 

contains 9 snippets. A , in the middle, is a dictionary of subsequences (each dictionary 

element has 2 snippets from y). With 2-sparse (i.e., m=2) coefficients 
kα , a candidate 

summary yk is constructed on the right. 

There are three major problems involved in the above formulation: (1) How to create a 

good dictionary with a practical size of subsequences while well covering the 

subsequence space.  (2) How to quantitatively measure the reconstruction error in Eq. 
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(5.8) (i.e., quality of each candidate subsequence). (3) How to efficiently search for the 

optimal combination (i.e., sparse coefficients) of the dictionary elements which can be 

used for generating the final summary. We shall elaborate these three problems in the 

following subsections. 

5.3.2 Dictionary creation 

Given a video, enumerating all possible subsequences of frames or short snippets and 

evaluating their quality in terms of summarizing the original video is a problem of 

combinatorial complexity. In addition, based on the definition of the distance measure, 

there is no systematic way to directly construct an optimal summary without fully 

searching the candidate space.  

In this work, we propose to adopt a dictionary based approach, in which the final 

summary video is constructed by combining sparsely selected dictionary elements. 

However, to retain the temporal order of the snippets, dictionary elements must contain at 

least a few snippets. For a long original video, the subsequence space is still far from 

affordable. Thus, it is necessary to have an appropriate sampling scheme to reduce the 

search space that guarantees, to some extent, the quality of the representative candidates.  

Since a summary video is a fast skim of the original video, its temporal redundancy 

needs to be minimized. To this end, we proposed to generate dictionary elements through 

temporal over-clustering of frames/snippets. Representative frames/snippets from each 

cluster are used to construct a dictionary element. Intuitively, this strategy groups similar 

frames/snippets, which makes the constructed dictionary element cover as many different 

scenes as possible, leading to high-quality candidates. 

In this work, we first perform temporal over-segmentation of the original sequences by 

spectral clustering [98] of the frames/snippets while preserving the temporal order. To 

generate a dictionary element, clusters are first selected as sources. Within each cluster, 

frames/snippets with top importance scores are selected to construct the dictionary 
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element. Note that the number of clusters is a tradeoff between shrinking the search space 

and risking a loss of some scenes. In our experiments, it is specified based on the length 

of the original video (refer to the experiment section for details). We consider four 

aspects to define the overall importance score of frame/snippet fi. 

Face detection score is computed as an accumulated production of the size of the face 

(xj denotes the diagonal length of the j
th
 detected face region) and the relative position of 

the face center (dj indicates the distance of the center of the detected face region to the 

center of the frame (we used Viola and Jones’s human face detector [100] in our 

experiments) 

( )

1

J
F

i j j

j

a x d
=

= ⋅∑                                                       (5.9) 

Image quality score computes BIQI image quality score [99] (the larger the better 

image quality) 

( ) exp( ( ))Q

i ia BIQI f= −                                               (5.10) 

Scene complexity score of a single frame is defined as its Kolmogorov complexity 

measured by the normalized (to the frame size) length of its Bzip2 sequence [107]. 

( ) 2( ) / ( )C

i i ia BZIP f size f=                                          (5.11) 

Motion change score is defined as the Euclidean distance between the histograms of 

the motion magnitudes (i.e., Lucas-Kanade optical flow motion magnitudes estimated 

over a dense grid) of the current frame and the ( i τ+ )
th
 frame 

( ) 2|| ||M

i i ia H H τ+= −                                                (5.12) 

where τ is a temporal offset, set as 10 in our experiments. 

The above scores are normalized to [0, 1] for the giving video before further 

computation. Final frame important score is defined as a weighted summation of the 

above four scores 

( ) ( ) ( ) ( )
[ , , , ]

Q F C M T

i i i i ia a a a aη= ⋅                                         (5.13) 
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where η  is a vector of constant weights for balancing the four components (score of a 

representative frame is used for a snippet).  

In generating a dictionary element, clusters are first selected as sources. Within each 

cluster, frames/snippets with top importance scores are selected to construct the 

dictionary element. Number of clusters is a tradeoff between shrinking the search space 

and risking a loss of some scenes. In our experiments, it is specified based on the length 

of the original video (refer to the experiment section for details). 

Furthermore, these four scores are normalized to [0, 1] and the important score for a 

frame is computed by taking a linear combination of all the four normalized scores for 

that frame. In the current implementation, we assign equal weight to each score for 

simplicity. Due to space limitation, we omit detailed discussions of the four scores. 

5.3.3 Weighted-sequence Distance 

As we mentioned previously, in our formulation of sparse representation, the two signals 

for comparison (i.e., the original video y and a candidate summary yk) are sequences with 

dramatically different lengths (due to the nature of video summarization). Classic 

distance metrics, such as Euclidean distance, Cosine distance, etc, are obviously not 

applicable. In this work, we propose a generalized version of the classical Levenshtein 

Distance (also known as String Edit Distance [120]), which takes both the attribute and 

the character (codeword) distances into consideration.  

String distance/similarity problems widely appear in many areas of computer science. 

For example, in Web search, string matching/text comparison is one of the basic 

problems for text-based retrieval (e.g., [121, 122]); in computational biology, string 

matching techniques are often used for comparing biological patterns (e.g., [123]). Edit 

distance, a basic string similarity metric, is defined as the minimum number of operations 

(including Copy/Substitution, Insertion and Deletion) required for turning one string to 

the other [120]. Typically, fixed costs are assigned to each operation respectively in 
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computing the overall cost of a series of editing operations. This formulation assumes 

that characters are of equal importance and that distance between two characters is binary 

(either “same” or “different”).  

In our problem of comparing video sequences, we adopt an action coding scheme 

based on the (pose, attributes) couples, which is termed as super-frames. Formally, a 

super-frame f is defined as a 2-tuple (c, w) which consists of an atom scene c and its 

attributes w.  The set of atom poses form a codebook. Each frame of a video is first 

assigned a codeword c and then adjacent frames with the same codeword are merged with 

the attribute w denoting the duration of the same codeword. With this strategy, the coded 

sequence reflects the local spatial-temporal information through the codewords (which 

are based on frame differencing) while retaining the global temporal order of the original 

sequence. This results in a compact yet descriptive representation of the original video 

clip. 

For weighed-sequences of videos, the assumption of “equally important characters” is 

no longer applicable.  

 

Figure 41: An illustration of distances between two characters. 

Firstly, “characters” in a super-frame sequence are codewords with corresponding 

weights (which may reflect the significance of the codeword).  Intuitively, operations on 

a crucial codeword (e.g., a scene lasting for a longer period) should cost more than on a 

less important one. For example, deleting a scene of significant length during comparison 

should result in a large cost for a relative short video. 

Secondly, the similarity between the codeword varies and thus in operations, such as 

Substitution, the cost of the operation relies on what to use for the replacement. For 

example, in Figure 41, we assume that the distance between two characters equals the 
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color difference between the corresponding bars. Obviously, to substitute “B” in the 

“ABC” sequence, “D” would cost less than using “E”, since the color of “D” is much 

closer to “B” than “E”. As mentioned earlier, such information is kept in a distance 

matrix in the codebook creation step and thus we should be able to systematically address 

such issues. 

Specifically, we define a weighted character a (e.g., the super-frame f in our problem) 

as a 2-tuple (c, w) which consists of the label c (e.g., the codeword in our super-frame 

formulation) and its weight w. Then a weighted string can be written as  

1 2{ , ,..., },  ( , ),  1,...,n i i is a a a a c w i n= = =                                         (5.14) 

where n is the number of characters in s . Assume that we have two weighted strings s
(1)

 

and s
(2)

: 

1

(1) (1) (1) (1) (1) (1) (1)

1 2 1{ , ,..., },  ( , ),  1,...,n i i is a a a a c w i n= = =
                             

 (5.15) 

2

(2) (2) (2) (2) (2) (2) (2)

1 2 2{ , ,..., },  ( , ),  1,...,n j j js a a a a c w j n= = =                             (5.16) 

A 
1 2 1 2( ) ( )n n n n+ × +  symmetric matrix Dc (with zero elements on the diagonal) records 

pariwise distances of the vocabulary (range of values in Dc 
is [0, 1]): 

1 2

(1) (1) (1) (2) (2) (2)

1 2 1 2{ , ,..., , , ,..., }n nc c c c c c                                          (5.17)  

Then the weighted-sequence distance between s
(1)

 and s
(2)

 is defined as the sum of costs 

caused by operations for turning s
(1)

 to s
(2)

: 

(1) (2)

1,...,

( , )WSD

l

l L

D s s Cost
=

= ∑                                              (5.18) 

in which L is the number of operations involved; Costl denotes the required cost for the l
th 

operation. Three types of editing operations: Substitution, Insertion and Deletion and 

corresponding costs are defined as follows:  

Copy/Substitute: ( ) (1) (2)( , )S

c i jCost D c c=                                    (5.19) 

Delete: ( ) (1) (1) (1)

1 1( , )D

i c i iCost w D c c− +=                                             (5.20) 
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Insert: 
( ) (2) (1) (2)

1( , )I

j c i jCost w D t t−= ⋅                                           (5.21) 

where c is the codeword of a super frame and w is its weight. Dc denotes the matrix, 

which records pariwise distances of all of the codewords. 

With the above definitions, we propose an algorithm as shown in Figure 42 for 

computing the WSD by extending the conventional Edit Distance algorithm based on 

dynamic programming. Landau and Vishkin [124] have shown that classical edit distance 

problem can be solved in O(mn) time using dynamic programming. Since our generalized 

version does not change the structure of the original algorithm, it still maintains the same 

computational complexity. 

In this work, based on our proposed weighted-sequence distance, we define a WSD 

kernel function as 

(1) (2)
exp( ( , , )),  0

WSD

cD s s Dγ γ− ⋅ >                                   (5.22) 

in which γ
 
is a model parameter. Model parameter γ  is selected from an n-fold cross 

validation on the training set. Since the kernel matrix is not always positive semi-definite, 

to guarantee a global optimum in SVM, we revise the kernel matrix through shifting all 

the eigen values by a positive constant [125]. The constant is set as the absolute value of 

the minimum eigen value in our experiments. 
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Figure 42: Weighed-sequence distance (WSD) algorithm. 

5.3.4 Sequence-kernel-based Sparse Representation 

Different from the traditional way of using sparse representation, the candidate 

combination (i.e., a candidate summary yk) and the target signal (i.e., the original video y) 

in this application are ordered sequences, so that standard L2 norm is not applicable to 

measure the reconstruction error. In Section 5.3.3, we describe WSD kernel metric to 

Algorithm: Weighted-Sequence Distance (WSD) computes the 

weighed-sequence distance between two weighted-sequences s
(1)

 

and s(2) with given distance matrix Dc.  

     

      Input: Weighed-sequence s
(1)

 and s
(2)

 and distance matrix Dc. 
1     if n1 = 0 

2           return 
2

(2)

1,...,

j

j n

w
=
∑ ;  

3    end 

4     if n2 = 0 

5           return 
1

(1)

1,...,

i

i n

w
=
∑ ;  

6    end 

7    Construct an empty matrix M ; 

8    Initial the first row of M as 

1

1 1 1 1

1 1 2

1,...,

,( ),..., i

i n

w w w w
=

+ ∑ ; 

9    Initial the first column of M as 
2

2 2 2 2

1 1 2

1,...,

,( ),..., j

j n

w w w w
=

+ ∑ ; 

10  while  
1i n≤   do 

11             while  
2j n≤  do 

12                      Compute the following costs respectively: 

13                                                                              ;    

14                                                                         ; 

15                                                                         ; 

16                    Let ( 1, 1)M i j+ + =  

17                                 min{ ( , 1) ,
insertion

M i j Cost+ +

 
18                                         ( 1, ) ,deletionM i j Cost+ +  

19                                         /
( , ) }

copy substitution
M i j Cost+ ;  

20              end 

21   end 

22   1 2( 1, 1)
WSD

D M n n= + + ;  

23   return 
WSDD . 

/ (1) (2)( , )copy substitution S

i jCost Cost a a=
(1) (2)( , )insertion I

i jCost Cost a a=
(1) (2)( , )deletion D

i jCost Cost a a=
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measure the distance between two sequences with dramatically different lengths.  

Using the above kernel function, the quality of a candidate summary can be computed 

as a regular L2 norm in the WSD kernel space and the sparse representation formulation 

of Eq. (5.2) can be rewritten as 

2

0 1arg min || ( ) ( ) || ,  || ||y A m
α

α φ φ α α= − ⋅ <                                (5.23)  

where A α⋅  is a candidate summary according to Eq. (5.7). Eq. (5.23) can be solved as a 

kernel based L1 optimization problem 

   
2

0 1arg min || ( ) ( ) || + || ||y A
α

α φ φ α λ α= − ⋅ ⋅                                 (5.24) 

By rewriting the minimization term in Eq. (5.24), we have 

2

1

1

min || ( ) ( ) || + || ||

( ) 2 ( ) ( ) ( ) ( ) || ||

y A

y y A A A

φ φ α λ α

ψ φ φ α φ α φ α λ α

− ⋅ ⋅

= − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅

            (5.25) 

Considering only the terms containing α , Eq. (5.25) can be further written as 

2

1

1

min || ( ) ( ) || || ||

2 ( , ) ( , ) || ||T T

y A

y A A A

φ φ α λ α

α κ α κ α λ α

− ⋅ + ⋅

= − ⋅ + ⋅ ⋅ + ⋅

                          (5.26) 

By substituting ( )κ ⋅  with pre-computed kernel gram matrix ( , )K y A  and ( , )K A A , Eq. 

(5.26) can be solved by kernel based feature-sign search algorithm [103, 104].  

5.3.5 Recap of Video Summarization Using the Proposed Approach 

For better understanding, we recap the procedure of video summarization using the 

proposed approach in the below. Given a video clip, we first create a dictionary of 

subsequences by selecting frames/snippets with top importance scores from clusters of 

frames/snippets or the original video (discussed in Section 5.3.2). Then we compute the 

sparse coefficients over the obtained dictionary which gives the optimal approximation of 

the input video, in which WSD kernel (described in Section 5.3.3) is used to measure the 
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reconstruction errors and kernel-based feature-sign algorithm is utilized to solve the L1 

minimization problem (presented in Section 5.3.4). The final summary video is produced 

directly from the optimal combination of the dictionary elements based on the obtained 

sparse coefficients. 

5.4. Experiments, Evaluations and Analysis 

To verify the effectiveness of the proposed approach, we applied our solution and three 

other video summarization methods to 71 real consumer video clips. A subjective user 

evaluation was conducted to compare these results visually as well as quantitatively.  

5.4.1 Experimental data and preprocessing steps 

A total of 71 videos provided by the authors of [105] were originally selected from 3000+ 

home videos [108] with resolution 640-by-480 or 320-by-240, frame rates from 24 to 30 

and average length of 31 seconds. Contents of the videos range from natural sceneries, 

trips, sports, and outdoor activities to concerts, weddings, birthday parties, and card 

games, and therefore span reasonably the space of general consumer videos with each 

video clip containing a single shot. Note that this assumption is generally true for videos 

captured using digital or phone cameras, thus removing the need for shot boundary 

detection. Figure 43 shows thumbnails of sample experimental videos used in this work. 

For a given video, we first segment the sequences into frames according to their 

original frame rates. For spatio-temporal data reduction, extracted frames are further 

down-sampled to 320-by-240 (if the original resolution is 640-by-480) spatially and 

temporally with a step of 5 frames (i.e., each group of 5 consecutive frames is defined as 

a snippet and the first frames are used as representatives for each snippet). Dense SIFT 

descriptions [97] are then extracted on an image grid (GridSpacing=5, PatchSizes=8 and 

16 in our experiments) for H, S, V color channels of each frame and further quantized to 

100 dimensions by k-means clustering on randomly selected samples over the entire 
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video. Histograms of quantized features are then computed over a three-level spatial 

pyramid to yield a 2100-dimension feature vector for each frame. 

 

Figure 43: Thumbnails of sample videos used for experiments. 

In dictionary creation, the weights for combining different scores of semantics were set 

as [0.25, 0.25, 0.25, 0.25] and the number of non-zero snippets in each dictionary 

element, l, was set as 2, 4, or 6 depending on the length of the original video. The number 

of clusters in the over-segmentation step is set as Minimum{30, 

total_number_of_frames/5}). For our experimental videos, this number is typically much 

greater than the true number of the underlying “events”, which yields a result of over-

segmentation of the original video. The size of dictionary is set as 5000 in our 

experiments. 

The lengths for final summary videos are specified as 20% of the original lengths with 

lower and upper limits of 6 seconds and 12 seconds respectively (All summary videos are 

generated with the original frame rate). The appropriate sparsity parameter λ  is 

automatically obtained via a coarse-to-fine search (i.e., step=0.1 and 0.01 respectively) 

with an objective to generate a final summary sequence with a length (i.e., number of 

frames), which is closest to the expected length. We emphasize that the proposed 



104 

approach generates the final summary video directly and is adaptive to different 

compression rates of summaries, which is chosen by the user in real applications. We 

choose 3 relatively long videos from our experimental data set and generate three 

summary videos of different lengths (i.e., 10%, 20% and 30% of the original length) to 

show the flexibility of the proposed approach. 

5.4.2 Other methods for Comparisons 

As mentioned previously, in most existing work video summaries are generated typically 

from key frames. In this work, we select two different key frame extraction methods to 

generate video summaries for comparisons. Given extracted key frames, final summary 

videos consist of temporal segments centered at each key frame. Camera motion-based 

key frame extraction approach (MKFE) presented in [105] is used for comparisons 

(where the numbers of key frames were specified by human judges). 

In addition, we implemented a k-means clustering based key frame extraction approach 

(CKFE), in which the number of clusters are estimated by over-clustering (frames are 

first over clustered, e.g. with k=20 and the number of clusters with at least a certain 

amount of frames, e.g. 10 frames, is used as the cluster number for the second-round 

clustering). With obtained clusters, after merging small clusters (e.g., with less than 10 

frames) to their neighboring clusters, the frame at the temporal center of all the frames in 

each cluster are selected as key frames. For generating the final summary video, each key 

frame is further expanded to a temporal segment centered at the key frame with a length 

proportional to the size of the cluster. Since results from MKFE are only available for the 

first 18 videos, as reported in [105], the remaining 53 videos are only compared to CKFE 

method. 

5.4.3 Evaluations and Analysis 

To analyze the results qualitatively, we visualize an example in Figure 44. The original 
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video is manually segmented into several “events” with representative scenes (as shown 

on the left, where each row corresponds to an “event”, including a few representative 

scenes that shows the gradual “development” of the “event”). Corresponding “events” 

and their representative scenes, if exist, are then extracted from the summary video 

generated from our approach, as shown on the right. Comparing the “events” on both 

sides, the summary video completely covers all the “events” and for most of them, even 

the “development” of the “event” is well retained. 

For quantitative evaluation, subjective user evaluation is widely accepted for evaluating 

video summarization algorithms. In this work, we recruited 7 volunteers who had 

experience with capturing and sharing consumer videos and thus are the appropriate 

judges to evaluate such videos. Each of them evaluated all 71 original videos with two or 

three different versions of summary videos (with anonymous indexes) and rated the 

results in terms of how well the summary videos cover the contents of the original videos 

(from 0 -- extremely poor, to 10 -- extremely complete). Evaluators were free to choose 

different playback speeds as desired.  

 

Figure 44: Sample result from the proposed approach: Left—“Events” and representative 

scenes from the original video (25 seconds); Right—“Events” and representative scenes 

from the summary video (6 seconds). 
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(a) Scores from all the evaluators of the three methods averaged over the first 18 videos. 

 

(b) Scores from all the evaluators of the two methods averaged over the remaining 53 

videos. 

Figure 45: Average rating scores from all evaluators for different methods. 

Figure 45 illustrates the bar charts of the average (over the first 18 videos and the 

remaining 53 videos, respectively) rating scores from all evaluators for different methods. 

As we can see in the figure, except for the second evaluator in Figure 45-(a), the majority 

of evaluators in both cases consistently prefer the proposed approach over the other 

methods, although the absolute rating scores vary to some extent among different 

evaluators. To measure the statistical significance [116], we set the null hypothesis as 

“the proposed approach is not always better than the other methods for comparisons” and 

the test of statistic is “the number of evaluators rated the proposed approach to be the 

best”. Assuming that the distribution associated with the null hypothesis is a uniform 

distribution over different methods (i.e., each method has an equal chance to be rated as 

the best), the critical region are the cases when 6 or 7 (for the 18-video and 53-video 

cases respectively, as shown in Figure 45) evaluators rated the proposed approach as the 
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best, so the p-value equals (0.33)
6
 or (0.5)

7
, which is much lower than the conventional 

significance level 5%. Thus, the null hypothesis is rejected. In other words, the 

observation that the proposed approach is superior to the other methods is statistically 

significant (i.e., it is unlikely to have occurred by chance). 

Table 10: Mean rating scores for the first 18 videos. 

First 18 videos MKFE CKFE This work 

Mean scores 7.17 7.04 8.42 

 

Table 11: Mean rating scores for the remaining 53 videos. 

Remaining 53 videos CKFE This work 

Mean scores 7.75 8.66 

 

Table 10 and Table 11 present the mean of the average scores (as shown in Figure 45) 

from different evaluators for different methods. For the first 18 videos, our approach 

achieves 1.25 (17.4%) and 1.38 (19.6%) improvements over the motion-based approach 

(MKFE) and the k-means clustering based approach (CKFE), respectively, for the 

remaining 53 vides (MKFE results are not available), the proposed approach is 0.91 

(11.7%) better than CKFE. For a given summary length, there exists a tradeoff between 

temporal smoothness and content coverage, the latter is of higher priority in this work. 

Due to this reason, some of the videos in the supplementary material may display rapid 

shot change as the specified summary lengths for them caused significant temporal 

compression. Note that MKFE utilized metadata of camera motion in additional to visual 

contents and the number of key frames was specified by human judges; while our 

approach is solely based on visual features with no additional knowledge. 

Although the proposed approach was designed for unconstrained videos, we expect 

that it should be also applicable to structured or produced videos (such as news videos) 
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either as a stand-alone or in combination with other existing methods. 

5.5. Summary 

In this work, we propose a sparse representation based framework for summarizing 

unconstrained amateur or consumer videos. In contrast to conventional segmentation and 

key frame based video summarization methods, this approach directly produces the 

summary of the video without first estimating the key frames. For a wide range of 

summary lengths, the proposed approach achieves the desired results by naturally varying 

the sparsity parameter. Using the proposed formulation, subsequences instead of frames 

are used as dictionary elements while the temporal order is preserved. Furthermore, the 

proposed approach allows the incorporation of additional criteria such as video quality 

measures and high-level semantic information into a sparse representation framework 

that typically only addresses signal reconstruction errors. Extensive experimental results 

clearly indicate the feasibility of the proposed approach. Future work will focus on 

exploring additional ways to combine the individual scores for each frame. Also, the 

proposed approach will be validated on larger scale video datasets. 
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Chapter 6 

6. CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

This dissertation presents studies on exploring and developing novel computational 

methods for incorporating contextual information/domain knowledge in different forms 

for multimedia computing and pattern recognition problems. Specifically, we proposed a 

novel Bayesian approach with statistical-sampling-based inference for incorporating a 

special type of domain knowledge, spatial prior for the underlying shapes; We explored 

cross-modality correlations via Kernel Canonical Correlation Analysis and used the learnt 

space for associating multimedia contents in different forms; We also modeled contextual 

information as a graph for regulating interactions among high-level semantic concepts 

(e.g., category labels), low-level input signal (e.g., spatial/temporal structure). To 

demonstrate the effectiveness of the proposed approaches, we applied and  evaluated 

them on four real-world applications, including face shape alignment, Flickr photo tag 

recommendation, YouTube video classification, and general consumer video 

summarization.  

For face shape alignment, we proposed a deformable Bayesian Active Shape Model 

(BASM) for modeling human faces which integrates anthropometric facial priors with 

both shape and appearance information learnt from a face dataset under a Bayesian 

framework. A statistical-sampling-based inference procedure was then introduced under 

the model for obtaining a data-adaptive version of the model for any given face image. 

Serving as a starting point, this model enables additional semantic-aware processing steps 

that were designed to enrich the sketchy face model with more input-specific details, 

resulting in the final tactile face images. As such, the proposed approach combines 
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anthropometric prior knowledge, learnt model generality and given data specificity to 

automatically create an informative tactile representation of the original face image. 

In the application of photo tag recommendation, we used Kernel Canonical Correlation 

Analysis (KCCA) for capturing the underlying correlations between image features and 

text tags of Flickr photo and further used the uncovered relationships for ranking text 

terms from a dictionary and recommending tags for new photos. 

For classifying wild web videos from YouTube, we proposed a novel Tree-DRF fusion 

framework based on predefined taxonomy structure. Each data source of training samples 

is first combined with the manually-labeled set independently. Then, built upon a 

hierarchical taxonomy (i.e., a tree graph) of the categories, tree-DRF fusion strategy is 

designed for merging models trained from different data combinations. Based on the final 

fused classifier, category labels are predicted for the new videos.  

In addition, we explored a sparse-reconstruction approach which emphasizes on 

maintaining global temporal order of videos for consumer video summarization. In 

particular, we proposed a Weighted-Sequence-Distance-kernel (WSD kernel)-based 

sparse representation approach for directly summarizing consumer videos. A dictionary 

of subsequences is first constructed from clustered frames with importance ranking 

scores of extracted high-level semantics. Video summarization is formulated to seek an 

optimal combination of the dictionary elements that robustly represents the original 

video. Weighted-Sequence Distance kernel is exploited to compute the approximation 

error, and the kernel-based feature-sign algorithm is used to estimate the sparse 

coefficients. A linear combination over the dictionary with the obtained optimal sparse 

coefficients is output as the final summary video. 

For each of the above applications, extensive experiments were carried out on real-

world data. Objective/subjective evaluations were performed and compared to state-of-
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the-art methods. Results from our approaches are comparable or superior to those from 

existing work, which confirms the effectiveness of the proposed approaches. 

6.2. Future Work 

We have identified the following aspects that are of interest for future exploration. 

Although the proposed BASM with statistical sampling approach was designed for face 

shape alignment, the idea of incorporating domain knowledge as statistical prior over a 

predefined structure can be generalized to other types of graphs in different applications. 

For tag recommendation, there are many other aspects that can be taken into 

consideration for further improving the work. For example, other available information of 

photos, such as title, description, comments, meta-data, etc., can be added as separated 

features for making tag recommendations. In addition, performing semantic grouping on 

tags before creating the document-term matrix, combining tag co-occurrence strategies, 

analyzing users’ tagging history and social network/activities for providing customized 

recommendations are also promising directions. 

In Tree-DRF formulation, currently we only considered undirected relationships 

between parent and child categories in tree-DRF. More sophisticated anisotropic 

formulations of interaction potential for parent or child neighbors, and siblings may 

further improve the labeling performance. In addition, it is also possible to make use of 

unsupervised learning methods (e.g. clustering) for assigning weights to noisy labeled 

samples and adjusting their contributions accordingly while training classifiers.  

For video summarization, future work will focus on exploring additional ways to 

combine the individual scores for each frame so that the proposed approach can better 

cover high-level semantics in the video. 

In addition, in this dissertation, we assumed that semantic concepts and the mapping 

between low-level observations and high-level concepts are existing and static. However, 

emergent and evolutionary aspects [6-10] of semantics are among the fundamental 
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problems of multimedia computing. For example, the vocabulary of tags and the 

associations between text tags and visual images keep evolving. Modeling the dynamic 

nature of semantics and making computational algorithms adaptive to the changes are 

also among our future tasks. 

Furthermore, in this work, other than the KCCA approach, we assumed that domain 

knowledge/contextual information is pre-obtained and the approach used for uncovering 

the semantic mapping is application dependent. Sophisticated machine learning 

techniques can be used for extracting useful domain knowledge/contextual information 

and representing such information in a unified form so that general approaches which 

leverages domain knowledge/contextual information for uncovering the mapping from 

low-level signals and high-level semantics can be developed. 

Last but not least, for building real multimedia systems, studies on system integration 

and human-computer interaction (HCI) are also among our future work.  
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