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ABSTRACT  

   

One necessary condition for the two-pass risk premium estimator to be 

consistent and asymptotically normal is that the rank of the beta matrix in a 

proposed linear asset pricing model is full column.  I first investigate the 

asymptotic properties of the risk premium estimators and the related t-test and 

Wald test statistics when the full rank condition fails.  I show that the beta risk of 

useless factors or multiple proxy factors for a true factor are priced more often 

than they should be at the nominal size in the asset pricing models omitting some 

true factors.  While under the null hypothesis that the risk premiums of the true 

factors are equal to zero, the beta risk of the true factors are priced less often than 

the nominal size. The simulation results are consistent with the theoretical 

findings.  Hence, the factor selection in a proposed factor model should not be 

made solely based on their estimated risk premiums.  In response to this problem, 

I propose an alternative estimation of the underlying factor structure.  Specifically, 

I propose to use the linear combination of factors weighted by the eigenvectors of 

the inner product of estimated beta matrix.  

I further propose a new method to estimate the rank of the beta matrix in a 

factor model.  For this method, the idiosyncratic components of asset returns are 

allowed to be correlated both over different cross-sectional units and over 

different time periods.  The estimator I propose is easy to use because it is 

computed with the eigenvalues of the inner product of an estimated beta matrix.  

Simulation results show that the proposed method works well even in small 

samples. The analysis of US individual stock returns suggests that there are six 
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common risk factors in US individual stock returns among the thirteen factor 

candidates used.  The analysis of portfolio returns reveals that the estimated 

number of common factors changes depending on how the portfolios are 

constructed.  The number of risk sources found from the analysis of portfolio 

returns is generally smaller than the number found in individual stock returns. 
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CHAPTER 1 

TWO-PASS TESTS FOR RISK PREMIUMS IN LINEAR FACTOR MODELS 

 

1.1  Introduction 

The two-pass cross-sectional regression method, developed by Black, 

Jensen, and Scholes (1972) and Fama and MacBeth (1973), has been widely used 

in testing asset pricing models relating risk premiums to betas, in particular, 

testing whether the beta risk of a proposed factor is priced or not.  In the two-pass 

regression, the betas are first estimated using asset-by-asset time-series 

regressions, and then the risk premiums are estimated by the cross-sectional 

regression of the individual means of asset returns on the estimated betas.  

Whether the beta risk of a proposed factor is priced or not is determined by the 

significance of the estimated risk premium.  The risk premium test statistics used 

are the t-test and Wald test for the null hypothesis that the risk premiums for some 

factors are equal to zero.  The properties of the test statistics with two-pass cross-

sectional regression have been well developed under the assumptions that the 

asset pricing model is correctly specified.  The study of Shanken (1992) reveals 

large sample properties of the two-pass risk premium test for the correctly 

specified model with conditionally homoskedastic returns.  Jagannathan and 

Wang (1998) generalize the large sample results of Shanken (1992) to the cases in 

which returns are conditionally heteroskedastic and/or autocorrelated.  However, 

if the beta matrix in the asset pricing model fails to have full column rank, the 

two-pass risk premium test statistics of the risk premium are unreliable.  
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In this paper, we study the asymptotic properties of the t-test and Wald test 

statistics of the estimated risk premiums when the rank of beta matrix is not full 

column.  There are generally two cases where beta matrix fails to have full 

column rank.  The first is that some proposed factors are useless factors 

(following the definition in Kan and Zhang (1999b)), useless in the sense that they 

are not correlated with asset returns.  The second is the case in which some 

proposed factors are multiple proxy factors for a true factor (e.g., two proxy 

factors for one true factor).  In a proposed factor model failing to include all the 

relevant true factors, we can show analytically that the useless factors and the 

multiple proxy factors for a true factor are priced more often than they should be 

at the nominal size (significance level); in the meanwhile, under the null 

hypothesis that the risk premiums of the true factors are equal to zero, we find that 

the beta risk of the true factors are priced less often than the nominal size.  If the 

proposed factor model includes all the relevant true factors, the risk premium of 

the problematic factors (useless factors or multiple proxy factors) will be priced 

less often than the nominal size.  Our Monte Carlo simulation results are 

consistent with these theoretical findings.  Hence, we could not select factors 

based on the relative significance of their estimated risk premiums.  In response to 

this problem, we propose an alternative estimation of the underlying factor 

structure in a proposed factor model.  Specifically, we propose to use linear 

combination of factors weighed by the eigenvector of the inner product of the beta 

matrix. 
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There is an extensive literature on the properties of asset pricing models 

for the cases in which models are misspecified.  One form of misspecification is 

that the proposed factors in an asset pricing model are proxy factors for the 

unobservable true factors.  Nawalkha (1997) points out that proxy factors could 

be used in place of true factors without loss of pricing accuracy.  In contrast, 

Lewellen, Nagel and Shanken (2010) convey a different message by studying the 

effect of using no more than the correct number of proxy factors, which are 

correlated with asset returns only through the true factors. They argue that asset 

pricing tests using cross-sectional 2R  and pricing errors are often highly 

misleading, in the sense that apparently strong explanatory power (high 2R  and 

low pricing errors) does not indicate that the asset pricing model is correct. All 

these results are derived under the assumption that beta matrix has full column 

rank.  

Another form of misspecifications is useless factors, which mean the ones 

independent of all the asset returns.  Kan and Zhang (1999b) investigate the 

asymptotic properties of the two-pass estimators for a beta pricing model with 

only one factor, which is a useless factor.  They show that the beta risk of the 

useless factor is more likely to be priced than it should be at the nominal size, and 

the increasing time series observations exacerbates the problem.  Similar issues in 

context of stochastic discount factor models are studied by Kan and Zhang 

(1999a).  A more related study is presented in Burnside (2010), which focuses the 

power of the Wald tests of rejecting the stochastic discount factor models when 
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the covariance matrix of asset returns with proposed factors has less than full 

column rank.   

The study in this paper contributes to the literature in the following way.  

First, we provide a comprehensive analysis of the two-pass t-test and Wald test 

statistics of the estimated risk premiums when the beta matrix fails to have full 

column rank.  We generalize the asymptotic results of Kan and Zhang (1999b) to 

models containing multiple proxy factors for a true factor, useless factors, and 

true factors. We show that in a proposed model omitting some relevant true 

factors, the risk premiums of the useless factors and the multiple proxy factors for 

a true factor are always significant with EIV unadjusted standard errors. In the 

meanwhile, with the existence of either useless factors or multiple proxy factors 

for a true factor, the risk premiums of true factors are priced less often than the 

nominal size, when the EIV adjusted standard errors are used. 

Second, we emphasize that it is important to check whether the 

corresponding beta matrix has full column rank.  Moreover, we provide a 

consistent estimation of the underlying true factors in a proposed factor model 

using the eigenvector of the inner product of beta matrix. 

The rest of the paper is presented as follows.  Section 2 discusses the 

properties of the risk premium test statistics in a proposed factor model when the 

rank condition fails.  Section 3 shows the simulation design and results.  Section 4 

presents the consistent estimation of the underlying factor structure in a proposed 

factor model.  Section 5 concludes. 

 



  5 

1.2  Model and Risk Premium Test Statistics 

1.2.1 Model Setup and Two-Pass Tests 

The basic asset pricing model we consider is a multifactor model in which 

asset returns are a linear function of k  common factors: 

1 1 ,t t k kt t t tR f f f               

Where 1, ,t T , 1 2( , , , )t t t NtR R R R  , and itR  is the gross return on asset i  at 

time t , 1( , , )t t ktf f f   is a vector of k  common factors, 1( , , )k   ,  

1 2( , , , )j j j Nj     , ij  is the factor loading of asset i  corresponding to factor 

j , 1 2( , , , )N     , i  is the intercept of asset i , 1 2( , , , )t t t Nt     , and 

it  is the idiosyncratic error for asset i  at time t . 

 For analytical convenience, we adopt the same assumptions that are used 

in Shanken (1992) and Kan and Zhang (1999b) for the two-pass estimators: 

 

i) Factors are independently and identically distributed over time. That is, 

~ (0, )t ff N  , for all t . 

ii) Factors and idiosyncratic errors are not correlated. 1( ) 0t s kNE f    , for 

all t  and s . 

iii) Conditional on the factors, the idiosyncratic errors are assumed to be 

independent and identically distributed over time. That is, 

1( | , , ) 0t s T N NE f f  
  , for all t s , and 1( | , , )t TVar f f    , for 

any t , where   is the unconditional variance matrix of t  .  
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 Under the k-factor beta pricing model, for some scalar 
0  and 1k  vector 

 , we have  

 0( ) 1t NE R    ,  

where ( )tE R  is the 1N   vector of expected returns on the assets, 
0  is the zero-

beta returns, 1N  is a 1N   vector of ones, 1( , , )k    , and j  is the risk price 

corresponding to the risky factor , 1, , .j j k  

 Under the assumption that ( )rank k  , the standard two-pass estimation 

of the risk premium 1( , , )k    is conducted in two steps.  In the first step, 

each row of the beta matrix is estimated by the time-series regression of 

individual returns on common factors tf .  Let 1( , , )kb b b  be the N k  vector 

of estimated betas.  In the second step, a cross-sectional regression of 

( , , )t it NtR R R   on (1 ,N b ) is run for each period t  to obtain the time varying 

estimates of risk premium, defined as ˆ
t , and the estimated risk premium over T  

periods is defined as 1
ˆ ˆ(1 / ) T

t tT   . 

In the cross-sectional regression, we focus on the OLS and the GLS 

estimation of ̂ .  For each period t ,  the OLS estimate of ˆ
t  is given as 

1ˆ ( )OLS

t tb b b R   ,  

and the GLS estimate is given as  

 1 1 1ˆ ˆˆ ( )GLS

t tb b b R        ,  
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where ˆ
  is a consistent estimation of the covariance matrix of the idiosyncratic 

errors  . 

The t-test statistic for the null hypothesis 0 : 0, 1, ,jH j k    is given: 

ˆ
ˆ( )

ˆ( ) /

j

j

j

t
s T





 . 

Using the Frisch-Waugh Theorem (Frisch and Waugh (1993)), we have the mean 

of the estimated risk premium of factor , 1, ,j j k , given as  

1ˆ ( )OLS

j j j j j jb M b b M R 

 
  ,   

where  

 1( )j N j j j jM I b b b b

    
   ; 

 1 1 1( , , , , , )j j j kb b b b b   ,  

and 1(1/ ) T

t tR T R  ; the OLS standard error of the estimated risk premium ˆ
j  is 

given as  

2 1 1ˆˆ( ) ( ) ( )OLS

j j j j j j j j j j js b M b b M VM b b M b  

   
   ,  

where 1
ˆ 1/( 1) ( )( )T

t t tV T R R R R
      is the estimated covariance matrix of 

cross-sectional asset returns.  Given ( ) ( )t t tR R f f       , we have 

ˆ ˆˆ ˆ ˆ
fV     , where ˆ

f  is a consistent estimation of the covariance matrix of 

the factors f . 

Using the GLS estimation, we have the mean of the estimated risk 

premium as  
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1/2 1/2 1 1/2 1/2ˆ ˆ ˆ ˆˆ ( )GLS GLS GLS

j j j j j jb M b b M R        

 
      ,  

where  

 1/2 1 1 1/2ˆ ˆ ˆ( )GLS

j N j j j jM I b b b b  

   

    
     .  

The GLS standard deviation of estimated risk premium is given as 

 

2 1/2 1/2 1

1/2 1/2 1/2 1/2 1

ˆ ˆˆ( ) ( )

ˆˆ ˆ ˆ ˆ( ) .

GLS GLS

j j j j

GLS GLS GLS

j j j j j j j

s b M b

b M VM b b M b

 

   

   



    

  

  

     
 

The Wald test for the joint hypothesis that, for simplicity, 0 1 2: 0H     

is as follows: 

1

12 12 12 12
ˆ ˆ ˆ ˆ( ) [ ( ) / ]W Cov T    , 

where 12 1 2
ˆ ˆ ˆ( , )    .  The mean of the OLS estimated risk premium can be 

calculated as   

1

12 1 2 12 12 12 12 12
ˆ ˆ ˆ( , ) ( )OLS OLS OLS b M b b M R   

 
    ,  

where  

 1

12 12 12 12 12( )NM I b b b b

    
   ; 

 12 3( , , )kb b b  . 

The OLS covariance matrix of the estimated risk premium is given as  

1 1

12 12 12 12 12 12 12 12 12 12 12
ˆˆ( ) ( ) ( )OLSCov b M b b M VM b b M b  

   
   ,  

where V̂  is defined the same as above.  

Using the GLS estimation, we have the estimated risk premium as 

1/2 1/2 1 1/2 1/2

12 12 12 12 12 12
ˆ ˆ ˆ ˆˆ ( )GLS GLS GLSb M b b M R        

 
      ,  

where  
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 1/2 1 1 1/2

12 12 12 12 12
ˆ ˆ ˆ( )GLS

NM I b b b b  

   

    
     . 

The GLS estimated covariance matrix is given as: 

 

1/2 1/2 1

12 12 12 12

1/2 1/2 1/2 1/2 1

12 12 12 12 12 12 12

ˆ ˆˆov( ) ( )

ˆˆ ˆ ˆ ˆ( ) ,

GLS GLS

GLS GLS GLS

C b M b

b M VM b b M b

 

   

   



    

  

  

     
 

where all the parameters are defined the same as above.  

 

Since betas are estimated with errors in the first step regression, following 

Shanken (1992), we can adjust the Error-In-Variable (EIV) problem using the 

correct covariance matrix: 

1ˆ ˆ ˆˆ ˆ ˆ ˆ( ) (1 )( ( ) ) ,EIV f f fCov Cov         

where ̂  and ˆ( )Cov   can be estimated using OLS and GLS estimation, 

respectively, and we define the corresponding estimated EIV adjusted covariance 

matrix as ˆ( )OLS

EIVCov   and ˆ( )GLS

EIVCov  .  So the EIV adjusted t-test and Wald test 

statistics are the same as above except substituting the variance/covariance matrix 

with the EIV adjusted variance/covariance matrix. 

 

1.2.2 Test Statistics when Rank Condition Fails 

The validity of the t-test and Wald test statistics of risk premiums could be 

shown if the rank condition ( )rank k   holds.  However, if the rank condition 

fails, the inferences from the t-test and Wald test statistics are unreliable.  In this 

subsection, we will derive the properties of the risk premium test statistics when 

the rank condition fails.  There are generally two cases when the rank of beta 
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matrix is less than full column.  The first case is that some proposed factors are 

useless factors, which are not correlated with asset returns.  The other case is 

some proposed factors are multiple proxy factors for a true factor.  

Whether or not the failure of the full rank condition causes serious 

problems depends on whether the proposed model includes all the relevant true 

factors.  If the proposed model omits some relevant true factors, then the useless 

factors and multiple proxy factors for a true factor might be priced more often 

than they should be at the nominal size.  We consider three representative cases 

for a proposed k-factor model with ( )rank k  , from Case 1 to Case 3, and we 

name these models as under-identified k-factor models. 

If the proposed factor model includes all the relevant true factors and, in 

addition, includes useless factors or multiple proxy factors for a true factors, it is 

less likely to find the problematic factors (useless factors or multiple proxy factors 

for a true factor) are priced. We name these models as fully-identified k-factor 

models, and we consider an example in Case 4. 

 

Case 1: A proposed k-factor model omits some true factors and one of the 

proposed factor is a useless factor, for example, 1tf , where 
11 ~ (0, )t ff N  , and 

1tf  is correlated with neither asset returns nor other factors.  In this case, 

( ) 1rank k   .  This is a generalized case of Kan and Zhang (1999b), where 

they suppose that the model has only one factor, which is a useless factor.  
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For case 1, we first study the asymptotic properties of the risk premium 

estimator for the useless factor 1tf  in Lemma 1. 

 

Lemma 1: Under Case 1, the estimated risk premium of the useless factor 1tf  has 

the asymptotic property that 1̂ / T  is a random variable, with OLS and GLS 

estimation.  

 

The proof of Lemma 1 is in the appendix. This is the key property that we 

use study the t-test statistics. The asymptotic properties of the t-statistic for testing 

the null hypothesis that the risk premium of the useless factor is equal to zero are 

given in Proposition 1.     

 

Proposition 1:  Under Case 1, when ( ) 1rank k    in a proposed under-

identified k  factor model where one factor is a useless factor, the EIV unadjusted 

OLS and GLS estimated t-statistics of testing the null hypothesis that the risk 

premium of the useless factor is equal to zero goes to infinity as T  .  Based 

on the EIV adjusted OLS or GLS standard error, the risk premium of the useless 

factor is still priced more often than it should be at the nominal size. 

 

Proposition 1 is similar to the result of Kan and Zhang (1999b), but 

obtained under a more generalized setting, in which we include a useless factor 

and true factors in the proposed k-factor model.  For this case, the EIV unadjusted 
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t-statistics are not credible, because one will always find the useless factors are 

priced even when large samples are used.  We define it as an over-rejection 

problem, when the null hypothesis that the risk premium of a factor is equal to 

zero is rejected more than it should be at the nominal size.  With EIV adjusted 

standard errors, the over rejection problem still exist when t-test is performed, but 

the properties of the OLS t-statistic are different from those using GLS estimation.  

The difference is shown in the proof of Proposition 1. 

Proposition 1 is derived for the cases with only one useless factor.  If the 

proposed factor model contains more than one useless factor, we can not make the 

strong conclusion that over rejection problems of useless factors with EIV 

adjusted standard errors always exist.  This point is illustrated in Case 2.  We also 

consider the case of multiple proxy factors for a true factor in Case 3. Since the 

properties of the t-tests and Wald tests are similar under these two cases, we 

derive the results of these two cases together.  

 

Case 2: A proposed k-factor model omits some true factors but includes 

two useless factors, say, 1tf  and 2tf , where 
11 ~ (0, )t ff N  , 

22 ~ (0, )t ff N  , and 

121 2( , ) ~ (0, )t t ff f N  . Factors 1tf  and 2tf  are not correlated with either asset 

returns or other factors.  In this case, ( ) 2rank k   . 

 

Case 3: A proposed k-factor model omits some true factors but includes 

two proxy factors, 1tf  and 2tf , for a true factor.  Consider a general form that 
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*

1 1 2 2t t t tf c f c f u   , where 1| ( , , ) (0, )t t kt uu f f N  , *

tf  is a true factor but not 

in the proposed factor model, 
121 2( , ) ~ (0, )t t ff f N  ,  and 1tf  and 2tf  are not 

correlated with either asset returns or other factors.  In this case, ( ) 1rank k   . 

 

For Case 2 and Case 3, we first study the asymptotic properties of 

estimated risk premiums for the two factors 1tf  and 2tf  in the Lemma 2, where 

1tf  and 2tf  stand for either two useless factors or two proxy factors for a true 

factor. 

 

Lemma 2: Under Case 2 and Case 3, the estimated risk premiums for factors, 1tf  

and 2tf , have the asymptotic property that 1̂ / T  and 2
ˆ / T  are two random 

variables, with OLS and GLS estimation.  

 

The proof of Lemma 2 is in the appendix. Since we have two factors in the 

proposed factor model with the estimated risk premiums converging to infinite, 

the properties of the EIV adjusted t-statistics are different from those in Case 1. 

The asymptotic properties of the t-statistics for testing the null hypothesis that the 

risk premium of factor 1tf  or 2tf  is equal to zero and the Wald test statistics for 

the joint hypothesis that the risk premiums of factors, 1tf  are 2tf , are both equal 

to zero are given in Proposition 2.   
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Proposition 2:  Under Case 2 and Case 3, if ( ) 1rank k    in a proposed under-

identified k  factor model where two factors, 1tf  are 
2tf , are two useless factors 

or two proxy factors for a true factor, the EIV unadjusted OLS and GLS estimated 

t-statistics and Wald statistics of testing the single and joint null hypothesis that 

the risk premiums of the factors 1tf  are 
2tf  are equal to zero goes to infinity as 

T  .  Based on the EIV adjusted OLS and GLS estimated covariance matrix, 

the risk premiums of the factors 1tf  are 2tf  might still be priced more often than 

they should be at the nominal size. 

 

For Case 2 and Case 3, the EIV unadjusted t-statistics and Wald statistics 

are not credible, because one will always find two useless factors or two proxy 

factors for a true factor are priced, even when the risk premium of the true factor 

is equal to zero.  But with EIV adjusted variance matrix, we can not make the 

strong conclusions that the t-statistics and Wald statistics will always reject the 

null hypothesis that the risk premiums of the useless factors or two proxy factors 

are equal to zero more often than the nominal size, using either OLS or GLS 

estimations. The results in Proposition 2 are weaker than those in Propostion 1. In 

Proposition 1, we can show that the EIV adjusted risk premium of one useless 

factor will always be priced more often than it should at the nominal size.  

 

For more general cases in which 0 ( ) 1rank k   , the results from 

Proposition 2 still hold.  The EIV unadjusted t-statistics or Wald test statistics of 
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testing the null hypothesis that the risk premiums of useless factors or multiple 

proxy factors for a true factor are equal to zero go to infinity as T  .  Based 

on the EIV adjusted estimated covariance matrix, the risk premiums of the useless 

factors or multiple proxy factors might still be priced more often than they should 

be at the nominal size. 

 

Now let us consider the properties of t-test statistics of one proposed true 

factors in the under-identified k-factor model with ( )rank k  .  For example, 

under Case 1, Case 2, or Case 3, suppose ktf  is a true factor and 10k N  .  Based 

on the Central Limit Theorem, we have the OLS and GLS estimated ˆ
k  

converges to k . Since the rank of beta matrix is not of full column, there exist 

either useless factors or multiple proxy factors for a true factor. We have at least 

one estimated risk premium converging to infinite.  The asymptotic properties of 

the t-statistic for testing the null hypothesis that the risk premium of the true 

factor ktf  is equal to zero are given in Proposition 3.  

 

Proposition 3: Under Case 1, Case 2, and Case 3, if ( )rank k   in a proposed 

under-identified k  factor model where exist either useless factors or multiple 

proxy factors for a true factor, under the null hypothesis that the risk premium of a 

proposed true factor is equal to zero, the EIV adjusted OLS and GLS estimated t-

statistics tend to rejected less than its nominal size.  
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Proposition 3 shows the EIV adjusted t-test tends to reject the null 

hypothesis that the risk premium of a proposed true factor is priced less often than 

it should be at the nominal size.  However, this problem does not happen using 

EIV unadjusted standard error. Similar analysis could be applied to other true 

factors.  Proposition 3 further demonstrates the importance of the full rank 

condition.  If rank is not full column, we not only tend to accept the problematic 

factors (useless factors or multiple proxy factors for a true factor), but also reject 

the true factors. 

 

Case 4:  A proposed fully-indentified k-factor model contains all the 

relevant true factors and, in addition, useless factors or multiple proxy factors for 

a true factor.  In this case, ( ) 1rank k   . 

 

The difference between models containing all the relevant true factors and 

those omitting some true factors lies in the second step cross-sectional regression 

of risk premium. When the proposed model contains all the relevant true factors, 

we can see, in Lemma 3, that the properties of the estimated risk premiums for the 

useless factors and multiple proxy factors are different from those in Lemma 1 

and Lemma 2. 

 

Lemma 3: Under Case 4, the estimated risk premium of the factor 1tf , which is 

either a useless factor or one of the multiple proxy factors for a true factor, has the 

asymptotic property that 1̂  is a random variable, with OLS and GLS estimation.  
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The proof of Lemma 3 is in the appendix. When the proposed factor model 

contains all the relevant true factors, the estimated risk premiums of the useless 

factors or multiple proxy factors for a true factor do not converge to infinite. This 

is the main difference between Case 4 and the previous three cases.  

Then the asymptotic properties of the t-statistic for testing the null 

hypothesis that the risk premium of the factor 1tf  is equal to zero are given in 

Proposition 4.  

 

Proposition 4: Under Case 4, if ( )rank k   in a proposed fully-identified k  

factor model where exists either useless factors or multiple proxy factors for a 

true factor, the EIV adjusted OLS and GLS estimated square of t-statistics of 

testing the null hypothesis that the risk premium of a useless factor or one of the 

multiple proxy factors is equal to zero is stochastically dominated by a 2

1 -

distributed random variable.  

 

Proposition 4 states that with EIV adjusted standard error, we will find 

that useless factors or multiple proxy factors for a true factor with a zero risk 

premium are priced less often than the nominal size. This means the problems 

caused by useless factors or multiple proxy factors for a true factor are less 

harmful in a fully-identified factors model than in an under-identified model.  
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In practice, it is very hard to incorporate all the relevant true factors. 

Hence, it is important to check whether the corresponding beta matrix has full 

column rank.  

 

1.3 Simulations 

The objective of our Monte Carlo experiments is to evaluate the finite 

sample properties of t-test statistics in the models where the rank of beta matrix is 

not full column. Since we do not know the data generating process for the actual 

asset returns, we use the simulated returns with the same mean and variance as 

those from the actual data.  Furthermore, to control the factor structure in 

proposed factor models, we also generate proposed factors based on the average 

of the estimated means and variances of actual Fama-French three factors. The 

real return data in our consideration are the monthly returns of Fama-French 25 

portfolios during the period 1970 and 2004. We conduct the two-pass t-tests using 

1000 simulations.  

Specifically, the base specification is given as follows. We generate the 

4T   matrix of factors 1 2 3 4( , , , )f f f f f , and each factor 1( , , )j j jTf f f , 

1, ,4j  , is drawn from 2( , )f fN u  , where fu  and 2

f   are the average of the 

mean and variance estimated from Fama-French three factors, and we choose 

*

2 3( ) / 2f f f  . The simulated returns are obtained in the following equation: 

* *

4 4r f f        , 
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where    is a  T N  matrix with each element drawn from 2(0, )N  , where 2

  

is the variance of the estimated error terms from regressing real returns on the 

Fama-French three factor model; * * *

0 4 4 41 ( ) ( )N f f          , where 

* *

11/ T

t tf T f  , 4 1 41/ T

t tf T f  , * 0  , and 4  is the average of the estimated 

risk premiums from Fama-French three factor models; also we generate the 1N   

matrix 4  and *  from 2( , )N u  , where 2

  are the average of the variance of 

estimated beta matrix from regressing real returns on Fama-French three factors. 

We choose the value of 0  and u to generate data mimicking the actual returns 

as much as we can. 

 The two-pass t-tests are conducted on the different subsamples of 

proposed factors 1 2 3 4( , , , )f f f f f , where 1f  is useless factor, 2f  and 3f  are two 

proxy factors for the true factor *f , and 4f  is a true factor.  The significance 

levels considered are 1%, 5%, and 10%, respectively.  If the model is correctly 

specified, under the null hypothesis, the percentage of rejecting the null 

hypothesis should be equal to the significance level.  The sample sizes contain all 

the combinations of cross-sectional observation {10,25,100,200}N   and the 

time-series observation {100,300,500,1000}T  .  These combinations allow us to 

fix one dimension and study the effect of the other dimension. 

 In Table 1, we report the probability of rejecting the null hypothesis that 

0i  , for 1,2,3i  , based on the subsample of the proposed factors 1 2 3( , , )f f f . 

This is the case where the model of estimation does not contain all the relevant 
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true factors. Panel A of Table 1 reports the EIV unadjusted OLS estimated t-test 

statistics of the risk premiums of the three proposed factors.  Given that we 

generate factor 
1f  as a useless factor, and factors 

2 3( , )f f  are two proxy factors 

for a true factor with risk premium * 0  , the rejection rate of the null hypothesis 

that the risk premium is equal to zero should be equal to the significance level. 

However, we can see that the t-tests over-reject the null hypotheses for the useless 

factor and multiple proxy factors for a true factor. Now consider the effects of the 

sample size on the t-test statistics. The larger the number of time series 

observations, the more likely we will find that the risk premiums of the useless 

factor and two proxy factors for a true factor are incorrectly significant. Using 

large number of time series observations increases probability of rejecting the null 

hypothesis of the problematic factors. Given the number of time series 

observations T , the larger the cross-sectional observations, the more likely to 

reject null hypothesis for the problematic factors.  Panel B of Table 1 reports the 

results for the t-tests with EIV adjusted standard errors.  Similar to the EIV 

unadjusted results in Panel A, there are over-rejection problems related to the risk 

premiums of useless factor and the two proxy factors for a true factor, especially 

when T  is large.  In the small samples, especially when N is small, the t-tests 

with EIV adjusted standard errors are much less likely to reject the incorrect null 

hypothesis than those without EIV adjusted errors. 
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Table 1: Test statistics for a useless factor and multiple proxy factors for a true 

factor in an under-identified factor model 

 

1% 5% 10%

N T r1          r2         r3 r1          r2          r3 r1          r2         r3

100 0.003    0.002    0.004 0.027    0.022    0.020 0.084    0.068    0.064

300 0.023    0.020    0.019 0.181    0.180    0.174 0.352    0.331    0.331

500 0.106    0.113    0.113 0.391    0.385    0.382 0.549    0.546    0.539

1000 0.445    0.469    0.472 0.639    0.632    0.639 0.714    0.712    0.711

100 0.002    0.001    0.000 0.024    0.007    0.009 0.059    0.038    0.039

300 0.019    0.011    0.010 0.218    0.207    0.207 0.486    0.449    0.447

500 0.154    0.136    0.138 0.581    0.554    0.558 0.697    0.684    0.689

1000 0.651    0.677    0.673 0.766    0.799    0.803 0.817    0.836    0.842

100 0.000    0.000    0.000 0.003    0.000    0.000 0.011    0.001    0.003

300 0.007    0.005    0.004 0.193    0.187    0.192 0.648    0.600    0.606

500 0.155    0.131    0.133 0.754    0.754    0.755 0.827    0.832    0.837

1000 0.833    0.833    0.831 0.910    0.900    0.901 0.924    0.917    0.921

100 0.000    0.000    0.000 0.000    0.000    0.000 0.004    0.001    0.001

300 0.000    0.001    0.002 0.219    0.173    0.176 0.707    0.669    0.670

500 0.135    0.105    0.103 0.825    0.795    0.797 0.883    0.851    0.849

1000 0.884    0.843    0.847 0.927    0.902    0.902 0.940    0.924    0.925

1% 5% 10%

N T     r1         r2         r3     r1         r2          r3     r1          r2          r3

100    0.000    0.000    0.000    0.001    0.000    0.000    0.005    0.007    0.007 

300    0.000    0.000    0.000    0.003    0.000    0.001    0.018    0.017    0.018 

500    0.000    0.000    0.000    0.009    0.005    0.005    0.049    0.050    0.048 

1000    0.000    0.000    0.000    0.015    0.022    0.025    0.084    0.108    0.107 

100    0.000    0.000    0.000    0.005    0.001    0.001    0.019    0.005    0.008 

300    0.000    0.000    0.000    0.015    0.007    0.006    0.061    0.038    0.042 

500    0.000    0.000    0.000    0.019    0.020    0.023    0.161    0.128    0.137 

1000    0.002    0.004    0.003    0.069    0.081    0.082    0.286    0.300    0.298 

100    0.000    0.000    0.000    0.001    0.000    0.000    0.005    0.000    0.000 

300    0.000    0.001    0.001    0.008    0.007    0.006    0.047    0.053    0.053 

500    0.001    0.003    0.003    0.029    0.033    0.030    0.230    0.235    0.233 

1000    0.007    0.006    0.006    0.155    0.150    0.151    0.513    0.530    0.527 

100    0.000    0.000    0.000    0.000    0.000    0.000    0.002    0.000    0.001 

300    0.000    0.000    0.000    0.001    0.005    0.004    0.077    0.042    0.045 

500    0.002    0.000    0.000    0.044    0.021    0.023    0.258    0.234    0.232 

1000    0.008    0.009    0.009    0.194    0.170    0.170    0.629    0.592    0.597

Panel A Test statistics from OLS unadjusted standard errors

significance

10

25

100

200

Panel B Test statistics from EIV adjusted errors

significance

10

25

100

200

 
 
Note: The results reported in the table are the percentage from 1000 simulations of rejecting the 

null hypothesis that the risk premium of each factor is equal to zero. If the model is correctly 

specified, under the null hypothesis, the percentage should be equal to the significance level.  
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To further investigate the properties of t-test statistics with the useless 

factor and the two proxy factors for a true factor separately, we conduct two 

independent simulations with the existing of one kind of the problematic factors.  

First, we keep the same data generating process as the base specification, defined 

in the beginning of the simulation, but consider the proposed factor model with 

only two factors, 
2 3( , )f f , which are two proxy factors for a true factor.  The 

results are reported in Table 2.  Since we omit one true relevant factor 4f  in the 

estimation, we can see that the two proxy factors for a true factor are priced more 

often than they should be at the nominal size.  Again the EIV adjusted t-test 

statistics over reject the null hypothesis, and the large sample size T even worsens 

the over rejection problem.  This table tells us again that if the model omits some 

relevant true factors, the risk premiums of the multiple proxy factors for a true 

factor will be significant, even when the risk premium of the true factor is zero. 

This over rejection problem is severe when the sample size T is large. 

Second, we modify the data generating process with *

4  , and use only 

1 4( , )f f  as proposed factors. In this case, we have a proposed two factor model 

containing one useless factor, one true factor, and omitting one true factor *f  

with a positive risk premium * .  Kan and Zhang (1999a) study a similar problem 

with stochastic discount factor model, and they find that the estimated risk 

premium of a true factor is priced less often than that of a useless factor.   
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Table 2: Test statistics for multiple proxy factors for a true factor in an under-

identified factor model 

 

1% 5% 10%

N T r2          r3 r2          r3 R2         r3

100 0.003    0.003 0.016    0.017 0.048    0.045

300 0.015    0.012 0.218    0.215 0.433    0.448

500 0.164    0.154 0.576    0.580 0.728    0.724

1000 0.685    0.684 0.798    0.792 0.842    0.842

100 0.000    0.001 0.005    0.006 0.030    0.025

300 0.011    0.009 0.246    0.238 0.587    0.595

500 0.175    0.175 0.729    0.739 0.828    0.827

1000 0.822    0.811 0.889    0.891 0.910    0.917

100 0.000    0.000 0.000    0.000 0.002    0.004

300 0.002    0.001 0.198    0.212 0.754    0.755

500 0.153    0.150 0.866    0.864 0.914    0.921

1000 0.910    0.910 0.949    0.949 0.955    0.954

100 0.000    0.000 0.000    0.000 0.001    0.001

300 0.001    0.001 0.193    0.189 0.832    0.833

500 0.115    0.114 0.897    0.898 0.931    0.928

1000 0.929    0.927 0.959    0.954 0.967    0.970

1% 5% 10%

N T r2         r3 r2         r3 R2         r3

100 0.000    0.000 0.000    0.000 0.009    0.008

300 0.000    0.000 0.001    0.001 0.037    0.037

500 0.000    0.000 0.011    0.013 0.092    0.096

1000 0.000    0.000 0.067    0.070 0.258    0.251

100 0.000    0.000 0.001    0.004 0.008    0.007

300 0.000    0.000 0.012    0.009 0.052    0.046

500 0.000    0.000 0.036    0.039 0.237    0.237

1000 0.006    0.005 0.176    0.181 0.531    0.536

100 0.000    0.000 0.000    0.000 0.000    0.001

300 0.000    0.000 0.011    0.012 0.071    0.076

500 0.005    0.005 0.080    0.083 0.375    0.375

1000 0.040    0.039 0.312    0.312 0.711    0.708

100 0.000    0.000 0.000    0.000 0.000    0.001

300 0.000    0.000 0.010    0.011 0.074    0.077

500 0.001    0.001 0.097    0.100 0.379    0.383

1000 0.089    0.089 0.359    0.355 0.786    0.790

OLS standard errors

significance

10

25

100

200

100

200

EIV Adjusted errors

significance

10

25

 
 
Note: The results reported in the table are the percentage from 1000 simulations of rejecting the 

null hypothesis that the risk premium of each factor is equal to zero. If the model is correctly 

specified, under the null hypothesis, the percentage should be equal to the significance level.  
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Table 3: Test statistics for a useless factor and a true factor in an under-identified 

factor model 

 

1% 5% 10%

N T r1         r4 r1         r4 r1         r4

100 0.011    0.000 0.087    0.008 0.196    0.061

300 0.184    0.078 0.454    0.377 0.590    0.575

500 0.459    0.347 0.638    0.633 0.712    0.768

1000 0.704    0.736 0.777    0.869 0.818    0.913

100 0.009    0.000 0.060    0.000 0.190    0.010

300 0.268    0.034 0.653    0.400 0.770    0.710

500 0.655    0.352 0.798    0.814 0.847    0.924

1000 0.810    0.894 0.864    0.974 0.887    0.989

100 0.000    0.000 0.021    0.000 0.169    0.000

300 0.388    0.000 0.811    0.351 0.869    0.869

500 0.827    0.289 0.912    0.967 0.936    0.998

1000 0.905    0.996 0.928    1.000 0.942    1.000

100 0.000    0.000 0.014    0.000 0.178    0.000

300 0.462    0.001 0.871    0.280 0.912    0.918

500 0.851    0.239 0.915    0.991 0.932    1.000

1000 0.939    1.000 0.958    1.000 0.963    1.000

1% 5% 10%

N T r1         r4 r1         r4 r1         r4

100 0.000    0.000 0.003    0.002 0.025    0.042

300 0.000    0.038 0.039    0.288 0.170    0.502

500 0.000    0.225 0.083    0.547 0.307    0.701

1000 0.010    0.574 0.252    0.785 0.484    0.854

100 0.000    0.000 0.011    0.000 0.049    0.008

300 0.002    0.015 0.144    0.357 0.479    0.673

500 0.019    0.277 0.406    0.777 0.722    0.906

1000 0.114    0.840 0.668    0.957 0.847    0.982

100 0.000    0.000 0.003    0.000 0.041    0.000

300 0.013    0.000 0.304    0.320 0.797    0.851

500 0.101    0.253 0.796    0.958 0.931    0.997

1000 0.417    0.989 0.916    1.000 0.938    1.000

100 0.000    0.000 0.001    0.000 0.030    0.000

300 0.023    0.001 0.416    0.256 0.902    0.908

500 0.176    0.219 0.847    0.991 0.932    1.000

1000 0.494    1.000 0.956    1.000 0.962    1.000

OLS standard errors

significance

10

25

100

200

100

200

EIV Adjusted errors

significance

10

25

 
 
Note: The results reported in the table are the percentage from 1000 simulations of rejecting the 

null hypothesis that the risk premium of each factor is equal to zero. If the model is correctly 

specified, under the null hypothesis, the percentage should be equal to the significance level.  
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Table 3 shows the t-test statistics in the two-pass estimation in the beta 

pricing model process the same properties as those in the stochastic discount 

factor model Kan and Zhang (1999a).  When the model does not include all the 

relevant true factors, the risk premium of a useless factor is priced more often 

than it should be at the nominal size.  As T increases, the over rejection problem 

becomes even severer. With the EIV adjusted t-tests, the over rejection problem 

with the useless factor still exists, in the meanwhile, the null hypothesis for the 

risk premium of the true factor 4f  is priced less often, given that the true risk 

premium is larger than zero.  In the sample with small T, we find that the useless 

factor 1f  is priced more often than the true factor 4f . 

 

In the last part of simulations, we consider the case that the factor model 

we use contains all the relevant true factors.  We use the data generating process 

from the base specification, and the proposed factors include all the four factors 

1 2 3 4( , , , )f f f f f . The results are reported in Table 4.  We can see that in Table 4 

there is no over rejection with the useless factor or two proxy factors for a true 

factor, once all the relevant factors are included.  Furthermore, the EIV adjusted t-

tests statistics are more likely to be smaller than the size of the test.  This is 

consistent with the results in the proposition 4. 
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Table 4: Test statistics in a fully-identified factor model with a useless factor and 

multiple proxy factors for a true factor 

 

1% 5%

N T r1         r2         r3         r4 r1         r2         r3         r4

100 0.010    0.008    0.006    0.000 0.041    0.038    0.035    0.002

300 0.008    0.006    0.005    0.017 0.053    0.038    0.040    0.293

500 0.007    0.010    0.011    0.188 0.054    0.044    0.046    0.760

1000 0.008    0.011    0.010    0.911 0.043    0.047    0.046    0.991

100 0.004    0.002    0.003    0.000 0.040    0.018    0.022    0.000

300 0.008    0.005    0.005    0.001 0.046    0.044    0.041    0.304

500 0.010    0.005    0.007    0.199 0.051    0.033    0.036    0.972

1000 0.014    0.004    0.004    1.000 0.049    0.040    0.039    1.000

100 0.000    0.000    0.000    0.000 0.005    0.000    0.000    0.000

300 0.002    0.002    0.002    0.000 0.016    0.013    0.013    0.251

500 0.006    0.002    0.002    0.128 0.032    0.013    0.014    1.000

1000 0.012    0.006    0.005    1.000 0.037    0.041    0.043    1.000

100 0.000    0.000    0.000    0.000 0.002    0.000    0.000    0.000

300 0.000    0.000    0.000    0.000 0.013    0.002    0.002    0.200

500 0.001    0.000    0.000    0.090 0.020    0.009    0.010    1.000

1000 0.008    0.002    0.002    1.000 0.038    0.022    0.020    1.000

1% 5%

N T r1         r2         r3         r4 r1         r2         r3         r4

100 0.000    0.000    0.000    0.000 0.003    0.001    0.001    0.001

300 0.000    0.000    0.000    0.007 0.002    0.000    0.000    0.233

500 0.000    0.000    0.000    0.134 0.001    0.002    0.002    0.708

1000 0.000    0.000    0.000    0.866 0.003    0.004    0.004    0.977

100 0.000    0.000    0.000    0.000 0.019    0.006    0.011    0.000

300 0.000    0.001    0.001    0.001 0.018    0.018    0.017    0.297

500 0.001    0.001    0.001    0.191 0.028    0.013    0.014    0.971

1000 0.002    0.000    0.000    1.000 0.023    0.012    0.012    1.000

100 0.000    0.000    0.000    0.000 0.005    0.000    0.000    0.000

300 0.001    0.002    0.002    0.000 0.012    0.013    0.010    0.248

500 0.003    0.002    0.001    0.127 0.025    0.012    0.011    1.000

1000 0.008    0.004    0.004    1.000 0.031    0.035    0.032    1.000

100 0.000    0.000    0.000    0.000 0.002    0.000    0.000    0.000

300 0.000    0.000    0.000    0.000 0.012    0.002    0.002    0.198

500 0.001    0.000    0.000    0.090 0.018    0.008    0.008    1.000

1000 0.006    0.002    0.002    1.000 0.034    0.016    0.016    1.000

Panel A Test statistics from OLS unadjusted standard errors

Significance

10

25

100

200

Panel B Test statistics from EIV adjusted errors

significance

10

25

100

200

 
 

Note: The results reported in the table are the percentage from 1000 simulations of rejecting the 

null hypothesis that the risk premium of each factor is equal to zero. If the model is correctly 

specified, under the null hypothesis, the percentage should be equal to the significance level.  
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1.4 Consistent Estimation of Factor Structure 

From the above analysis and simulations, we can see that with non-full 

rank betas, the t-tests are not credible.  Hence we can not select the factors based 

on the relative significance of their estimated risk premium.  In order to obtain the 

underling factor structure in a proposed factor model, we need to use eigenvector 

from the estimated beta matrix to form the linear combinations of the proposed 

factors.  

Now consider a generalized model 0R FB E  , where R  is a T N  

matrix of asset returns, F  is a T k  matrix of proposed factors, 0B  is a N k  

matrix of  true factor loadings, and E  is a T N  matrix of idiosyncratic errors.  

For any N k  beta matrix, we can rewrite it as 0 0 0B A C  , where 0A  and 0C  are 

N r  and k r  matrix, respectively,  0( )rank B  = 0( )rank C  = r , and r k .   

The model could be rewritten as  

0 0 0( )R FB E FC A E     , 

where 0 0 0B A C  . For any estimated N k  beta matrix, we can also rewrite it as 

B̂ AC , where A  and C  are N r  and k r  matrix, respectively.  Hence, we 

have ˆ ( )R FB E FC A E     .  To find the consistent estimation of C , note 

that 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )Nvec B AC vec B vec AC vec B C I vec A       . 

Consider the following minimization problem: 

ˆ ˆmin [ ( ) ( ) ( )] [ ( ) ( ) ( )]N Nvec B C I vec A vec B C I vec A     . 
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Suppose NkI  , then the minimization problem equals 2

1 1
ˆmin ( )N k

i j ij i jB AC    . 

The solution is given by ( )C k r , where C  is k  times the eigenvectors 

corresponding to the first r  largest eigenvalues of the k k  matrix ˆ ˆB B .  We 

claim that C  is a consistent estimation of a linear transformation of  0C , and 

hence FC  is a consistent estimation of a linear transformation of real 0FC .  We 

summarize the results in Proposition 6, and the proof is shown in the appendix. 

 

Proposition 6:  In a generalized model 0 0 0( )R FB E FC A E     , where 

0 0( ) ( )rank B rank C r  , define  C  is k  times the eigenvectors corresponding 

to the first r  largest eigenvalues of the k k  estimated matrix ˆ ˆB B .  Then C  is a 

consistent estimation of a linear transformation of  0C , and FC  is a consistent 

estimation of a linear transformation of real 0FC . 

 

1.5 Conclusion 

In this paper, we study the properties of the t-test and Wald test statistics 

of risk premiums when the beta matrix in the proposed asset pricing model is not 

of full column rank.  There are generally two cases where the full rank condition 

fails.  The first is that some proposed factors are useless factors, which are not 

correlated with asset returns.  The second is the case in which some proposed 

factors are multiple proxy factors for a true factor.  In a factor model omitting 

some relevant true factors, with proposed factors in either of the above two cases, 



  29 

we can show analytically that the useless factor is priced more often than it should 

at the nominal size, and the same problem might happen to the multiple proxy 

factors for a true factor; in the meanwhile, we find that the risk premiums related 

to true factors in the under-identified factor models are tend to be priced less often 

than the nominal size with EIV adjusted standard errors.  If the proposed factor 

model includes all the relevant true factors, the risk premiums of the problematic 

factors will be priced less often than they should be at the nominal size with the 

EIV adjusted standard errors.  Our Monte Carlo simulation results are consistent 

with the theoretical findings.  

Moreover, if the beta matrix from the proposed model fails to have full 

column rank, we propose that a consistent estimation of a linear transformation of 

true factors can be obtained by using the linear combinations of the proposed 

factors weighted by the eigenvectors of the inner product of estimated beta matrix.  
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CHAPTER 2 

DETERMINING THE RANK OF THE BETA MATRIX  

IN LINEAR ASSET PRICING MODELS
1
 

 

2.1 Introduction 

Jack Treynor (1962), William Sharpe (1964), John Lintner (1965) and Jan 

Mossin (1966) developed the Capital Asset Pricing Model (CAPM).  The model 

laid out the foundations of modern asset pricing theory.  Since the advent of the 

CAPM, it has become an important question whether a small number of economic 

or financial variables can capture the sources of non-diversifiable risk.  If the 

answer is affirmative, then the variables should be priced and the information 

contained in them is crucial for the agents’ portfolio strategies. 

Determining whether a factor is priced or not became more important with 

the development of multifactor asset pricing models, like Merton’s Intertemporal 

CAPM (1972) and the Arbitrage Price Theory (APT) of Ross (1976).  These 

multifactor models tell us that if there exist multiple (r) factors determining non-

diversifiable sources of risks, then the factors should properly price the risky 

assets.  However, these models do not tell us what the factors are.   

In the empirical asset pricing literature many time-series variables have 

been proposed as possible risk factors (see  Chapter 6 of Campbell, Lo and 

MacKinlay (1997), Chen, Roll, and Ross (1986), and Fama and French (1992)), 

which we call factor-candidate variables. Several important questions arise with 

                                                 

1 This Chapter is written with Seung Ahn and Alex Horenstein. 
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respect to these factor candidates. Which ones should be included in the pricing 

equation? Are they capturing different risk sources?  By estimating the rank of the 

beta matrix, we can answer these questions.  If we add one factor which does not 

explain asset returns, we add a column of zero to the corresponding beta matrix, 

and the rank will not increase.  If we add one factor which captures the same risk 

as the existing factors, we add a column of betas that can be spanned by the 

existing betas, and the rank will not increase.  Hence, by choosing factors that 

increase the rank of the beta we will find the ones that capture different risk 

sources. 

Estimating the rank of beta matrix is also a necessary condition for the 

two-pass (TP) risk premium estimation.  The two-pass estimation developed by 

Fama and MacBeth (1973) has been widely used to estimate the risk premium of 

each factor-candidate variable.  Using this method, the betas of candidate 

variables are first estimated using asset-by-asset time-series regressions, and then 

the risk premiums related to the variables are estimated by the cross sectional 

regression of the mean asset returns on the estimated betas.  Whether a factor-

candidate variable is priced or not is determined by the significance of the 

estimated risk premium. 

An important condition for the consistency of the TP estimator is that the 

matrix of the true beta values has full columns.  However, there are two cases in 

which the beta matrix may fail to have full columns.  The first case is the true 

betas related to a factor are all zeros.  Kan and Zhang (1999b) name such a factor 

“useless” factor.  For a one-factor model in which the factor is useless, Kan and 
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Zhang (1999b) have investigated the asymptotic properties of the TP estimator.  

The useless factor cannot be priced; that is, the premium of the useless factor 

should be undefined.  However, Kan and Zhang show that the estimated 

coefficient of an undefined risk premium is asymptotically significant when using 

the TP estimator.  This happens because the estimated betas are not zeros 

although the true betas are.  The second case is when relevant factors are not the 

factor-candidate variables themselves, but rather a few linear combinations of 

them.  For such cases, the true beta matrix is not full column, but the estimated 

matrix may appear to be of full column.  Accordingly, some TP premium 

estimates could falsely appear to be statistically significant, although the 

corresponding premiums are in fact undefined.  Thus, when using the two-pass 

estimation method researchers need to check the rank of the beta matrix before 

continuing the second pass cross sectional regression. 

This paper proposes a new estimation method, called the Threshold 

estimation for the rank of the beta matrix in an approximate factor model. We 

allowed the idiosyncratic error terms for individual observations to be both auto 

and cross-sectional correlated.  Specifically, we estimate the rank using the 

eigenvalues of the inner product of the estimated beta matrix.    The Threshold 

method produces consistent estimations as the time series dimension T  goes to 

infinity.  For the number of cross sectional units (N) the only requirement is to be 

greater than or equal to the number of factor candidates used.   

A few papers in the literature have also considered the estimation methods 

for the rank of a matrix.  Zhou (1995) proposes a Wald test in samples with small 
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N to test the hypothesis of a given rank. Cragg and Donald (1997) provide the 

tests for the rank of a matrix based on a minimum chi-squared criterion.  Robin 

and Smith (2000) consider the tests based on certain estimated characteristic roots, 

and show that the limiting distributions of the test statistics are a weighted sum of 

independent chi-square variables.  Kleibergen and Paap (2006) propose a rank 

statistic using a consistent estimator of the unrestricted matrix, and the proposed 

rank statistic has a standard 2  limiting distribution.  However, all these methods 

are applicable only to data with small N.  When N is large, too many parameters 

need to be estimated. This is very restrictive for asset prcing applications in which 

the number of cross-sectional observations, N, is usually large. 

A method closely related to our method is proposed by Connor and 

Korajzcyk (1993).  Their method is designed to be appropriate for the analysis of 

the data with large N and relatively small T observations.  Autocorrelation is not 

allowed for the idiosyncratic components of stock returns.  For such data, the 

number of relevant factors is estimated by evaluating whether adding one more 

factor results in a significant decrease in the sum of the squares of estimated error 

terms.  To use this sequential method, one needs to determine the order of the 

factor variables to be tested in an arbitrary matter.  In contrast, the Threshold 

method we propose requires looser restrictions in data.  In addition, no ordering of 

the factors is necessary. 

Estimating the rank of the beta matrix is also related to estimating the 

number of factors.  They are related in the sense that the number of the common 

factors in return data equals to the rank of the beta matrix corresponding to the 
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factors.  Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein (2009) have 

developed formal statistical procedures to estimate the number of the true factors 

in approximate factor models.  Our approach is different from their approaches in 

one important aspect.  Our Threshold method is for the case in which the factor-

candidate variables are available, while their methods are designed for the cases 

in which factor-candidate variables are not observed.  Our interest is not to 

estimate the number of all common factors in asset return data, but to estimate the 

number of relevant factors contained in observed factor-candidate variables.  For 

this purpose, we estimate the number of relevant factors using the estimated betas 

corresponding to the candidate variables.   

The Threshold estimator we propose possesses several good properties.  

First, its consistency does not require any particular restriction on the relation 

between N  and T . Its consistency only requires data with large T.  Second, the 

Threshold estimator allows idiosyncratic error terms to have weak time-series and 

cross-sectional dependence.  Third, it has power to detect the weak factors which 

have only limited explanatory power.  Fourth, it can be applied to the zero factor 

case.  Finally, our simulation exercises indicate that the Threshold estimator has 

good finite sample properties. 

Application of the Threshold estimation is conducted first on the US 

individual stock returns.  We confirm that all of the Fama-French (1993) three 

factors have explanatory power.  In contrast, only one or two among the five 

factors of Chen, Roll, and Ross (1986) have explanatory power.  When we 

combine the three factors of Fama-French (FF) together with the five factors of 
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Chen, Roll, and Ross (CRR) we find that a factor not captured by FF is captured 

by CRR.  Furthermore, we find that momentum and reversal factors (MOM) 

capture a source of risk not captured by either FF or CRR. Similarly, the two 

factors proposed by Chen, Novy-Marx, and Zhang (2010, CNZ) capture an 

additional source missed by all the other factors. We find evidence for six factors 

in US individual stock returns among the thirteen factor candidates used.  When 

we use Industrial Portfolio returns, results remain the same. However, when we 

use portfolios that are better diversified such as the ones sorted on characteristics 

like Size and Book to Market, the FF factors seem to be enough to capture all the 

common sources of risk among the thirteen factor candidates, except for the 100 

Size and Book to Market portfolios in which an extra factor appears when adding 

the CNZ factors.  Overall, our analysis of portfolio returns reveals that the 

estimated number of common factors changes depending on how the portfolios 

are constructed.  The rank of the beta matrix found from the analysis of portfolio 

returns is generally smaller than the one found in individual stock returns, except 

for the industry portfolios.  This result suggests that some industry specific factors 

disappear when well diversified portfolios are used. 

The rank estimation proposed in the paper has two implications for the 

asset pricing literature.  First, it emphasizes the over-identification problem, 

where all the available factors may be simply throw into the asset pricing models.  

The rank estimation produces the number of independent sources of 

commovement that we should include from all the factor candidates when 

searching for priced risk premiums.  The estimator works very well even when 
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some important factors are not included in the set of factor candidates since we 

allow for a factor structure in the residuals.  Another implication is that the rank 

estimation method is free of the debate whether or not firm characteristics are 

priced risk factors.  Since we use the double demeaned data set, we exclude the 

effect of firm characteristics.  If priced, the risk sources captured by estimating 

the rank of the beta matrix can only be systematic risk. 

The rest of this paper is presented as follows.  Section 2 introduces the 

factor model we investigate and the assumptions imposed on it.  Section 3 derives 

the asymptotic properties of the Threshold estimator.  Simulation results are 

reported in section 4.  Section 5 shows the application to the Fama-French three 

factors, the five factors of Chen, Roll, and Ross (1986), three factors that capture 

momentum profits and the IA and ROA factors from Chen, Novy-Marx, and 

Zhang (2010).  Concluding remarks follow in section 6.  All of the proofs are 

given in the appendix. 

 

2.2  Model and Assumptions 

We begin by defining an approximate factor model as the one considered 

by Chamberlain and Rothschild (1983) and Bai and Ng (2002).  Let itx  be the 

response variable for the thi cross-section unit at time t , where 1,2, ,i N , and 

1,2, ,t T .  Explicitly, itx  can be the (excess) return on asset i  at time t .  The 

response variables itx  depend on the individual effect i , the time effect t  and 

the k  factor-candidate variables in 1 2( , ,..., )t t t ktf f f f  .  That is,  
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(1)       
it i t i t itx f        

where 1 2( , , , )i i i ik      is the beta vector for cross section unit i.  The 

product i tf   is the common component of 
itx , and the 

it  are idiosyncratic 

components or idiosyncratic risks.
2
 

Our interest for model (1) is to estimate rank of the beta matrix  , where 

1 2( , ,..., )N     .  However, because of the presence of the time effects 
t , we 

are unable to estimate i .  Instead we can estimate the demeaned betas, 

i i    , where 1

1

N

i iN 

  .  Use of the demeaned beta estimated instead 

of the raw beta estimates does not cause any technical problem.  As long as any 

ij  is varying over different cross-section units, ( ) ( )drank rank   , where 

1 2( , ,..., )d

N     .  In addition, the rank of d  matters more than the rank of 

  for the two-pass regression, because the risk premiums corresponding to the 

factors in tf  are estimated by the cross-section regression of the individual mean 

of itx  ( 1

1

T

i t itx T x

  ) on one and i .  If any beta in i  is constant over i, the risk 

premiums are undefined.  The premiums are identified only if the demeaned beta 

matrix d  has full column.  

The demeaned betas can be estimated by estimating the following double 

demeaned model,  

                                                 

2  In this model, we consider only the case of time invariant betas.  Our method 

can be easily extended to the case of time-varying betas since the rank estimation 

is based on the estimated beta matrix. 
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(2)       it i t itx f   , 

where 
it it t ix x x x x    , t tf f f  , it it t i        , 1

1

N

t i itx N x

  , 

1

1

T

i t itx T x

  , 1

1 1( ) N T

i t itx NT x

    , 1( ) /T

t tf f T  , and t , i , and   are 

similarly defined.  For each time period t , model (2) can be written as 

( 1) ( ) ( 1)( 1)

i ii
x F

T T k Tk

 

  
,  

where 1 2( , , , )i i i iTx x x x  , i  is similarly defined, and 1 2( , , , )TF f f f  .  For 

all data, we have 

( ) ( ) ( )( )

dX F

T N T k T Nk N

  

  
, 

where 1 2( , , , )NX x x x , , and 1 2( , , , )N    .  Then, the demeaned beta 

matrix d  can be estimated by the OLS estimator 1ˆ ( )d X F F F    . 

In what follows, we use ( )j A  to denote the thj  largest eigenvalue of a 

matrix A , and the norm of A  is denoted by 1/2[ ( )]A tr A A . We define c  as a 

generic positive constant.  With this notation, we make the following assumptions:  

 

Assumption A (factors): 1/ ( )( ) /T

t t t p fF F T f f f f T
       , and 

p ff  , where f  is finite and positive definite matrix and f  is a finite 

vector.  
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Assumption B (betas): (i) i c   for all 1,2, ,i N .  (ii) /d d N   is 

positive semi-definite and ( ) ( )d d drank rank r k       for all N r .  (iii) If 

N  , /d d N 
   , where   is finite. 

  

Assumption C (idiosyncratic errors): ( ) 0itE    and 
4

itE c   for all i  

and t , and  

2

1 1 1 1 1

1 1 1
( )

N T N T T

it it is

i t i t s

E E c
N NTT

  
    

 
  

 
 
   . 

 

Assumption D (weak dependence between factors and idiosyncratic 

errors): 

2

2

1 1 1 1 1

1 1 1 1
( ) ( ) ( )

N T N T T

t it it is t s

i t i t s

E F E f E f f c
NT N NTT

  
    

      . 

 

The four assumptions are a subset of the assumptions used in Bai and Ng 

(2002) and Ahn and Horenstein (2009).  Assumption A implies that the factors 

should be stationary.  Assumption B(i) ensures that each factor loading does not 

explode.  Assumption B(ii) allows that the rank of d  to be smaller than the 

number of the variables in tf .  Assumption B (iii) implies that for the cases where 

N  is large, /d d N   is asymptotically finite.  That is, the explanatory power of 

each factor increases at the rate of N.  The estimators we propose below do not 
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require large N.  Under Assumption B (iii), the estimators are consistent 

regardless of the size of N.  Under Assumption B, we treat the betas as fixed 

constants.  We can easily relax this assumption, but at the cost of more notation.    

Assumption C allows weak time-series correlations and does not impose 

any restrictions on the cross-sectional correlation among the error terms 
it .  Our 

asymptotic results obtained below depend not on the covariance among the errors, 

but on the dependence between the errors and factors.  Assumption C implies that 

1 /T

t it T   is a bounded random variable for all i.  This assumption is weaker 

than Assumption C of Bai and Ng (2002): 

1 1 1 1

1
( )N N T T

i j t s it jsE c
NT

         . 

Assumption D implies that the random vectors 1 /T

t it tf T  are bounded.  

This assumption is required for the consistency of the ordinary least squares (OLS) 

estimator of d .  Assumption D is essentially the same assumption as 

Assumption D of Bai and Ng (2002). 

Furthermore, Assumption D allows the errors it  to have a factor structure.  

To see why, consider a simple case in which the it  have an one-factor structure: 

it i tg   where ( ) 0tE g  , ( ) 0t tE g f  , 
4

( )tE g c , and 

1

1 1 ( )T T

t s s t t sT E g g f f c

 
    for all t, and i c   for all i.  For this case, the random 

variable 1 /T

t t tg f T  is bounded.  Thus, we can easily show that Assumption C 

holds.  In addition, 
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2 3

1 1 1 1

1 1
( ) ( )T T T T

t s it is t s i t s t s t sE f f E g g f f c
T T

     
       . 

Thus, Assumption D holds.  Given that the it  can have a factor structure, 

estimating the rank of  d  is not equivalent to estimating the number of all of the 

common factors in response variables.  The rank of d  is the maximum number 

of the common components in response variables among the factor candidate 

variables tf .  Hence, the rank estimation method works well even when the factor 

candidates do not include all the common underlying factors.  The missing 

information is captured in the error terms with a factor structure.   

 

2.3 Rank Estimation Using Eigenvalues 

The Threshold estimator we propose below uses the eigenvalues of 

ˆ ˆ /d d N  .  So, we begin this section by studying the asymptotic properties of the 

eigenvalues.  Below, we use the notation ,
ˆ ˆˆ ( / )d d

NT j j N       where j indicates 

that ,
ˆ

NT j is the j
th

 largest eigenvalue of the matrix ˆ ˆ /d d N  .  The following 

theorem presents the asymptotic properties of the eigenvalues. 

 

Theorem 1:  Under assumption A – D, (i) ,
ˆlim 0T NT jp    for 0 j r  ; 

and (ii) 
1

, ( )NT j pO T  , for 0 r j k   . 
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Theorem 1 shows that the first 0r   largest eigenvalues of ˆ ˆ /d d N   

have the same convergence rates, which are different from those of the other 

eigenvalues.  This difference in convergence rate is used to identify the rank of 

the matrix d , r .  Notice that the asymptotic properties of the eigenvalues do not 

require N  .  Theorem 1 holds for any fixed number N.  Therefore, the 

estimator we propose below does not require large N. 

The following theorem defines the consistent estimator that we call 

“Threshold” estimator. 

 

Theorem 2 (Threshold Estimator): For a given threshold function 

( ) 0g T   such that ( ) 0g T   and ( )Tg T   as T  , define 

,
ˆ ˆ#{1 : ( )}TH NT jr j k g T    , where #{ }  is the cardinality of a set .  Then, 

under Assumptions A – D, ˆlim Pr( ) 1T THr r   .  

 

The result of Theorem 2 is quite intuitive.  Observe that ( )g T  converges 

to zero at a lower rate than the last ( )k r  eigenvalues of ˆ ˆ /d d N   do.  The first 

r  eigenvalues converge to positive numbers.  Accordingly, for sufficiently large 

T , the value of ( )g T  is most likely to be smaller than the first r  eigenvalues and 

larger than the rest of the eigenvalues.  The threshold estimation procedure is 

similar to the methods suggested by Bai and Ng (2002) to estimate the number of 

unobservable common factors in an approximate factor model with a large 

number of response variables. 
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Note that we can also use the Threshold estimator proposed in Theorem 2 

for the cases in which (i) the data is not generated by a factor model and/or (ii) all 

the factor candidates are useless.  We will call this situation “no-factor” case.  For 

such a case, 0r  . 

 

A possible pitfall of the threshold estimator is that there are many possible 

choices for ( )g T .  Whenever a function is an appropriate choice for ( )g T , so is a 

finite multiple of the function.  If T is large, the estimation results would be 

insensitive to the choice of ( )g T .  However, for the data with relatively small T, 

the estimation result could change depending on the choice of ( )g T .  The optimal 

choice of the threshold function ( )g T  may depend on the data generating 

processes.  In the following paragraph we propose a specific function for ( )g T  

which provides reliable estimates for many different data generating processes we 

have considered in our Monte Carlo experiments.   

Let 2 1 2

1 1
ˆ [( 1)( 1)] N T

i t itN T e 

      , where the ite are the OLS residuals 

from the regression of the double demeaned model (2).  The estimator 2̂  is a 

consistent estimator of var( )it .  Also, let 2 2 2

1 1 1 11 [ ] / [ ]N T N T

i t it i t itR e x          be the 

R-square from the OLS regression of model (2).   Then, the threshold function we 

suggest to use for the Threshold estimator is given by: 

(3)       
2ˆ

( , )
d

d
g d T

T


 , 
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where 21d R   for 20.3 1 0.8R   , 0.3d   for 21 0.3R  , and 0.8d   for 

21 R  > 0.8.  

 The function ( , )g d T  is designed to be a non-decreasing function of 2R  

for sufficiently large T.  Specifically, for T > 28, g(d,T) is a monotonically 

decreasing function of d.  Because d is a non-increasing function of R
2
, g(d,T) is 

an increasing (specifically, non-decreasing) function of R
2
.  The use of g(d,T) is 

motivated by our findings from Monte Carlo simulations: when the data are 

generated by weak factors (that have low explanatory power), smaller threshold 

values are needed to better estimate the rank of d .   Since g(d,T) should satisfy 

the two conditions given in Theorem 2, we limit the range of d to be [0.3, 0.8].  

The choice of the range is somewhat arbitrary.  However, this range is the best 

choice we have found from simulations.  

 

 

 

 

 

 

 

 

Figure 1. The value of g(d,T) with different R_square and T 
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The property of g(d,T) could be stated from Figure 1. When R
2
 is low, 

factors have low explanatory power, we need a small value of g(d,T) to detect the 

weak factors. When R
2
 is high, factors are stronger and a relative larger threshold 

function is needed. When T increases, the last ( )k r  eigenvalues of ˆ ˆ /d d N   

converges to zero faster, and a smaller  g(d,T) is needed. 

 

2.4 Simulations 

2.4.1 The Basic Simulations 

Our simulation data are drawn by the same model used in Bai and Ng 

(2002) and Ahn and Horenstein (2009): 

1

k

it i t j ij jt itx f u      ; 
21

1 2
it itu v

J









, 

where 1 min( , )

, 1 max( ,1) 1

i i J N

it i t it h i J ht h i htv v v v    

        , and the it  (1 )i N   and 

the  factor candidate variables jtf  are randomly drawn from (0,1)N .  In this setup, 

the variance of itu is roughly equal to one. 

For simplicity, we set 0i   for all i , and 0t   for all t .  The beta 

matrix   is drawn by the following way.  We draw a N r  random matrix A , 

each entry of which is (0,1)N .  We also draw a random k k  positive definite 

matrix, compute the first r  orthonormalized eigenvectors of the matrix, and set a 

k r  matrix C  using the eigenvectors.
3
  Then, we set 1/2A C   , where 

                                                 

3 We first generate a N k  matrix M whose entries are drawn from N(0,1), and 

then compute the r  eigenvectors of M M .   
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1( ,..., )rdiag    .  This setup is equivalent to the case in which the true factors 

are * 1/2

t tf C f   with *( )tVar f    and the beta matrix corresponding to 

* * *

1( ,..., )t t rtf f f   is A .   

The parameter   controls the signal to noise ratio of each of the true 

factors (SNR, ratio of the variances of a factor and the idiosyncratic error, itu ).  

When the j
th

 true factor, *

tjf , has the variance of 1/j r  , its SNR equals 1/ r , 

where 1r  . In case of 0r  , we present the table separately.  For benchmark 

simulations, we use 1/j r  , for 1 j r  .  In other simulations we try different 

j ’s. 

For the error terms, we consider four cases: (i) the cases with i.i.d. errors 

( 0J    ), (ii) with both cross-sectional and auto-correlated errors ( 0.2  , 

0.5  , 8J  ), (iii) with only cross-sectional correlated errors ( 0  ), and (iv) 

with only auto-correlated errors ( 0J   ).  For each case, we try 25 different 

combinations of N and T, where N, T    {50, 100, 200, 500, 1000}.  1,000 

samples are drawn for each combination of N and T. 

Tables 5 – 7 report the results from our benchmark simulations 

( 1 ... 1/r r    ).   

Table 5 shows the estimation results from the cases with i.i.d. 

idiosyncratic errors and both cross-sectional and auto-correlated errors.  

Specifically, for the correlated error cases, we set  0.5  , 0.2  , 8J  .   
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Table 5  

 

Results of Threshold Estimation from the Simulated Data with I.I.D. Errors and 

Both Cross- and Auto-Correlated Errors 

 

r =1 r =2 r =3 r =1 r =3 r =5 r =1 r =2 r =3 r =1 r =3 r =5

1.00 2.00 3.00 1.00 3.00 5.00 1.01 2.00 3.00 1.06 3.00 5.00

[0.00] [0.00] [0.00] [0.04] [0.00] [0.06] [0.10] [0.03] [0.00] [0.24] [0.06] [0.04]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.03 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.05] [0.00] [0.00] [0.17] [0.03] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.03] [0.00] [0.00] [0.05] [0.03] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.05] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

500

1000

1000 200

50

100

500

1000

200

100

500

50

100

500

1000

200

50

200

100

50

100

200

500

1000

50

50

100

200

500

1000

T N k =3 k =5 k =3 k =5

0J    0.2, 0.5, 8J   

 
Note: Data are generated with 1/j r   for 1 j r  .  The value reported in each cell is the mean 

of the rank estimates from 1,000 simulations, and the value in the bracket is the standard deviation 

of the estimates. 
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Table 6 

 

Results from the Simulated Data with only Cross-Correlated errors and 

Only Auto-Correlated Errors 

 

r =1 r =2 r =3 r =1 r =3 r =5 r =1 r =2 r =3 r =1 r =3 r =5

1.00 2.00 3.00 1.08 3.00 5.00 1.00 2.00 3.00 1.01 3.00 5.00

[0.08] [0.03] [0.00] [0.27] [0.08] [0.03] [0.00] [0.00] [0.00] [0.08] [0.00] [0.06]

1.00 2.00 3.00 1.02 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.13] [0.03] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.05] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.03] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.00 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

T N k =3 k =5 k =3 k =5

100

500

50

50

100

200

500

1000

100

50

100

200

500

1000

1000

200200

1000

100

500

50

200

500

50

1000 200

50

100

500

1000

0.2, 0, 8J    0, 0.5  

 
Note: Data are generated with 1/j r   for 1 j r  .  The value reported in each cell is the mean 

of the rank estimates from 1,000 simulations, and the value in the bracket is the standard deviation 

of the estimates. 
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All factors have the SNRs of 1/ r , where 1r  .  The Threshold estimator 

performs very well, even in the case of small sample size (e.g., 50T  ). 

For every case, the mean of the rank estimates is almost equal to the true rank.  

Also, only for a few cases, the standard deviation of the estimates is larger than 

zero. The results with correlated errors are not noticeably different from those 

with i.i.d. errors. 

Tables 6 shows the results from the cases of cross-sectional correlation 

only ( 0  , 0.2  , 8J  ) and auto-correlation only ( 0.5  , 0.2  ).  The 

factors are generated with 1/j r  , for 1 j r  .  For all cases, the Threshold 

estimator performs very well even if T is small. 

Table 7 shows the results for the cases in which all factors are weak with 

the same SNRs.  The left part of the table reports the results from the cases with 

i.i.d. errors, while the right part presents the results from the cases with both 

cross-sectionally and auto-correlated errors.  For small T (T = 60), the Threshold 

estimator does not perform well when the SNRs of the factors are as low as 0.025.  

But it works well in the cases with the SNRs  larger than 0.05.  For the case in 

which 100T  , the Threshold estimator performs very well even in the cases with 

the SNRs of 0.025.  The estimation results from the data simulated with i.i.d. 

errors are more reliable than those from the data with correlated errors, especially 

when T is small and factors are weak.  In fact, we can add one more dimension of 

the SNR to the threshold function. If the weak factors defined as important factors 

need SNRs at least larger than 1/5, we can adjust the threshold function with the 
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simulated data to make our estimation capturing al the factors with SNRs larger 

than 1/5. 

 

 

Table 7 

 

Results from the Simulated Data with Weak Factors 

 

r =1 r =2 r =3 r =1 r =3 r =5 r =1 r =2 r =3 r =1 r =3 r =5

1.00 1.93 2..74 1.22 2.94 4.45 1.13 1.96 2.79 1.56 2.99 4.45

[0.15] [0.26] [0.44] [0.42] [0.30] [0.55] [0.35] [0.28] [0.42] [0.56] [0.39] [0.57]

1.01 2.00 3.00 1.26 3.02 4.99 1.17 2.04 3.00 1.64 3.13 4.99

[0.12] [0.06] [0.00] [0.44] [0.15] [0.08] [0.38] [0.19] [0.00] [0.55] [0.34] [0.08]

1.02 2.00 3.00 1.28 3.00 5.00 1.18 2.03 3.00 1.67 3.03 5.00

[0.12] [0.04] [0.00] [0.45] [0.04] [0.00] 0.38 [0.18] [0.00] [0.55] [0.18] [0.00]

1.01 2.00 3.00 1.19 3.00 5.00 1.14 2.01 3.00 1.50 3.00 5.00

[0.10] [0.00] [0.00] [0.39] [0.00] [0.00] [0.35] [0.08] [0.00] [0.52] [0.05] [0.00]

1.00 2.00 3.00 1.06 3.00 5.00 1.06 2.00 3.00 1.28 3.00 5.00

[0.05] [0.00] [0.00] [0.23] [0.00] [0.00] [0.25] [0.04] [0.00] [0.45] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.02 2.00 3.00 1.08 3.00 5.00

[0.00] [0.00] [0.00] [0.07] [0.00] [0.00] [0.12] [0.00] [0.00] [0.26] [0.00] [0.00]

1.00 1.99 2.98 1.01 2.99 4.93 1.04 2.01 2.99 1.34 3.03 4.96

[0.00] [0.06] [0.13] [0.11] [0.08] [0.24] [0.20] [0.11] [0.08] [0.48] [0.18] [0.20]

1.00 2.00 3.00 1.01 3.00 5.00 1.05 2.01 3.00 1.37 3.06 5.00

[0.00] [0.00] [0.00] [0.11] [0.03] [0.00] [0.22] [0.12] [0.00] [0.49] [0.24] [0.00]

1.00 2.00 3.00 1.01 3.00 5.00 1.05 2.01 3.00 1.38 3.01 5.00

[0.00] [0.00] [0.00] [0.11] [0.00] [0.00] [0.22] [0.11] [0.00] [0.49] [0.11] [0.00]

1.00 2.00 3.00 1.01 3.00 5.00 1.04 2.00 3.00 1.30 3.00 5.00

[0.00] [0.00] [0.00] [0.11] [0.00] [0.00] [0.20] [0.04] [0.00] [0.46] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.02 2.00 3.00 1.12 3.00 5.00

[0.00] [0.00] [0.00] [0.05] [0.00] [0.00] [0.13] [0.00] [0.00] [0.33] [0.00] [0.00]

1.00 2.00 3.00 1.00 3.00 5.00 1.00 2.00 3.00 1.01 3.00 5.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.10] [0.00] [0.00]

100

0.1

k =3

0.025

0.05

0.1

0.2

0.3

0.5

0.025

0.2

k =3

0.5

0.3

SNR k =5 k =5

60

T

0.05

0J    0.2, 0.5, 8J   

 
 

Note: All simulated data are drawn with 100N  .  The value reported in each cell is the mean of 

the estimated ranks from 1,000 simulations, and the value in the bracket is the standard deviation 

of the estimates.  
 

 

Table 8 is designed to investigate the performances of the Threshold 

estimator when both weak and strong factors coexist.  As in table 7, the left part 

of the table reports the results from the cases with i.i.d. errors, while the other part 

presents the results from the cases with cross-sectionally and auto-correlated 

errors.  We conduct the test with two different factor-candidates models, both of 
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them with 3k  .  In each of these models we study three different possible SNRs 

for the weak factor.  In one model we construct a factor structure with 2r  , 

where the first true factor is strong with 1  fixed at one and the second true factor 

is weak with three different 2  values: 2  = 0.1, 0.2, and 0.3.  In the other model 

we study the case with 3r   where the first two true factors are strong with 

1 2 1   , the last one is weak with three different 3  values: 3  = 0.1, 0.2, and 

0.3.  From the table, we can see that the Threshold estimator performs very well 

in small samples even if the weak factor’s SNR is ten times smaller than the 

SNRs of the strong ones ( 2 0.1  , in the first model and 3 0.1  , in the second 

model).  The structure of the error terms does not show significant difference in 

the results.  

 

Table 8 

Results from the Simulated Data with Strong and Weak Factors 

 

λ 2=0.1 λ 2=0.2 λ 2=0.3 λ 3=0.1 λ 3=0.2 λ 3=0.3 λ 2=0.1 λ 2=0.2 λ 2=0.3 λ 3=0.1 λ 3=0.2 λ 3=0.3

1.99 2.00 2.00 2.91 3.00 3.00 1.99 2.00 2.00 2.96 3.00 3.00

[0.10] [0.00] [0.00] [0.30] [0.00] [0.00] [0.08] [0.04] [0.04] [0.20] [0.00] [0.00]

2.00 2.00 2.00 2.93 3.00 3.00 1.99 2.00 2.00 2.98 3.00 3.00

[0.04] [0.00] [0.00] [0.25] [0.00] [0.00] [0.03] [0.00] [0.00] [0.15] [0.00] [0.00]

2.00 2.00 2.00 2.98 3.00 3.00 2.00 2.00 2.00 2.99 3.00 3.00

[0.00] [0.00] [0.00] [0.14] [0.00] [0.00] [0.00] [0.00] [0.00] [0.05] [0.00] [0.00]

2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 3.00 3.00 3.00

[0.00] [0.00] [0.00] [0.04] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 3.00 3.00 3.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 3.00 3.00 3.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 3.00 3.00 3.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 3.00 3.00 3.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

100

N T

100

40

60

150

200

300

500

1000

r  = 3,  λ 1 = λ 2 = 1 r  = 2,  λ 1  = 1 r  = 3,  λ 1 = λ 2 = 1r  = 2, λ 1  = 1

0J    0.2, 0.5, 8J   

 
Note: Data are generated with three factor candidate variables ( 3k  ).  The value reported in each 

cell is the mean of the rank estimates from 1,000 simulations, and the value in the bracket is the 

standard deviation of the estimates.  
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Table 9 is designed to investigate the performances of the Threshold 

estimator for the data generated without true factors.  That is, all of the factor 

candidate factors used for Table 9 are “useless.”  We consider the cases with 

different numbers of useless factors.  Table 9 shows that the Threshold estimator 

correctly detects the cases in which all factors are useless, if the number of factor 

candidate variables is small (e.g., 1k  ), or T is large, or errors are only weakly 

correlated.  When the errors are highly correlated, the estimator has relatively low 

power to detect useless factors unless T is sufficiently large. 

 

Table 9 

 

Threshold Estimation Results for the Data Simulated without Factors 

 

k =1 k =3 k =5 k =1 k =3 k =5

0.00 0.14 0.81 0.05 0.48 1.12

[0.00] [0.35] [0.51] [0.21] [0.52] [0.60]

0.00 0.01 0.05 0.01 0.16 0.59

[0.00] [0.04] [0.21] [0.10] [0.39] [0.54]

0.00 0.00 0.00 0.00 0.05 0.23

[0.00] [0.00] [0.00] [0.05] [0.22] [0.43]

0.00 0.00 0.00 0.00 0.01 0.03

[0.00] [0.00] [0.00] [0.00] [0.10] [0.18]

0.00 0.00 0.00 0.00 0.00 0.01

[0.00] [0.00] [0.00] [0.00] [0.03] [0.08]

0.00 0.09 0.72 0.02 0.40 1.07

[0.00] [0.29] [0.51] [0.15] [0.50] [0.55]

0.00 0.00 0.01 0.00 0.08 0.38

[0.00] [0.03] [0.10] [0.04] [0.28] [0.50]

0.00 0.00 0.00 0.00 0.01 0.05

[0.00] [0.00] [0.00] [0.00] [0.08] [0.22]

0.00 0.00 0.00 0.00 0.00 0.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

0.00 0.00 0.00 0.00 0.00 0.00

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

200

100

200

500

1000

100

500

200

1000

50

100

N T

50

0J    0.2, 0.5, 8J   

 
Data are generated with the factors with the SNRs of zero ( 0r  ).  The value reported in each cell 

is the mean of the rank estimates from 1,000 simulations, and the value in the bracket is the 

standard deviation of the estimates. 
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Our simulation results can be summarized as follows.  First the Threshold 

estimator provides quite reliable inferences on the rank of the beta matrix even if 

the sample size is small.  The SNR of each factor, the degrees of correlations 

among the errors, and the number of cross section units do not substantially 

influence the performances of the estimators.  Second, the Threshold estimator 

can be used to check the possibility of all factor candidates’ being “useless.”  The 

Threshold estimator is relatively less precise, if the number of the factor 

candidates analyzed is too large, or if the errors are highly correlated.  However, it 

performs reasonably well even under such cases if the number of the time series 

observations is sufficiently large. 

 

2.4.2 The Additional Comparison 

In this subsection, we analyze the choice of the threshold function (TH) 

proposed in this paper. We compare its performance with different threshold 

candidates under three simulation setups. 

We consider two sets of threshold candidates for the Monte Carlo exercise. 

The first set of threshold candidates we consider come from three penalty 

functions discussed in Bai and Ng (2002). These are 1AIC , 3BIC  and 1PC : 

2

1

2
ˆ ( )AIC

T
 ; 

2

3

( ) ln( )
ˆ

N T k NT
BIC

NT


  
  

 
; 
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2

1
ˆ ln

N T NT
PC

NT N T


   
    

   
. 

None of these three functions satisfy the two convergence rate required by 

Theorem 2. Although 1 0AIC   as T  , it fails the second convergence 

condition since 1T AIC  does not converge to infinite as T  ; 3BIC  and 1PC  

do not converge to zero as T  . 

The second set of threshold functions we use for comparison satisfy the 

two convergence rates in Theorem 2 but take a different form than TH. They are 

listed as 1F , 2F , and 3F : 

2

1

ln
ˆ

T
F

T
 ; 

2

2 2/5

1
ˆF

T
 ; 

2

3

1
ˆ

d
F

T
 , 

where d is defined in the same way as in the threshold function (TH) we proposed. 

1F , 2F , and 3F  satisfy the two convergence rates, but they do not (fully) include 

the potential effect of 2R . We expect them to perform well when factors are 

strong, but not in the case of weak factors.  

The comparison of our threshold function (TH) and the above six 

candidates are conducted under three simulation setup: i) data generated with i.i.d. 

errors, ii) both cross-sectional and auto-correlated errors, and iii) weak factors. 

For each case, we set the number of factor candidates equal to 5 (k=5) and try 
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different combinations of N and T where , {50,100}N T  . 1000 samples are 

drawn for each combination of N and T. 

The simulation results are reported in Table 10. 

Panel A of Table 10 shows the results from the case with i.i.d. errors and 

the signal-to-noise ratios (SNRs) of all factors take the benchmark level of 1/r. 

Comparing with the threshold estimation (TH) we propose, we can see that 1AIC  

tends to overestimate the rank of the beta matrix, especially when the true rank is 

small. The overestimation decreases as T increases. 3BIC  underestimates the rank 

when the true rank is large, especially the full rank case (r = 5). We can see the 

underestimation still exists when N and T are as large as 100. There is a slightly 

underestimation problem with 1PC  and 1F  in the full rank case, and the 

underestimation decreases as long as T is large. For functions 2F  and 3F  we 

observe an underestimation problem when the true rank is large. 

Panel B of Table 10 shows the results with auto and cross-correlated errors 

with the SNRs of all the candidate factors taking the benchmark level of 1/r. We 

set 0.5  , 0.2  , and 8J  . The correlated errors increase the values of rank 

estimation from all thresholds. Hence for the factor, like 1AIC , with 

overestimation problem in the case of i.i.d. errors, the problem gets worse. The 

threshold function we propose, TH, and also 1PC  and 1F  have a slight 

overestimation problem when the true rank is small. The tests so far consist of 

data with all the factors’ SNRs taking the benchmark level of 1/r. Among all the 

candidate threshold functions we find that 1F  performs almost as well as TH. 
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Table 10 

Comparison of the estimation results using proposed threshold function (TH) and other threshold functions 

r=1 r=3 r=5 r=1 r=3 r=5 r=1 r=3 r=5 r=1 r=3 r=5 r=1 r=3 r=5 r=1 r=3 r=5 r=1 r=3 r=5

1 3 5 1.32 3.05 5 1 2.16 1.43 1 3 4.47 1 3 4.98 1 2.84 2.85 1 2.99 3.65

[0.04] [0.00] [0.06] [0.47] [0.22] [0.00] [0.00] [0.63] [0.70] [0.00] [0.04] [0.57] [0.03] [0.00] [0.13] [0.00] [0.38] [0.71] [0.00] [0.11] [0.52]

1 3 5 1.24 3.04 5 1 2.84 2.24 1 3 4.99 1 3 5 1 2.97 3.16 1 3 4.15

[0.00] [0.00] [0.00] [0.43] [0.09] [0.00] [0.00] [0.37] [0.78] [0.00] [0.00] [0.11] [0.00] [0.00] [0.00] [0.00] [0.18] [0.73] [0.00] [0.03] [0.51]

1 3 5 1.07 3.07 5 1 2.45 1.71 1 3 4.76 1 3 5 1 2.98 3.57 1 3 4.68

[0.00] [0.00] [0.00] [0.25] [0.08] [0.00] [0.00] [0.56] [0.67] [0.00] [0.00] [0.44] [0.00] [0.00] [0.00] [0.00] [0.15] [0.66] [0.00] [0.00] [0.47]

1 3 5 1.02 3 5 1 3 3.49 1 3 5 1 3 5 1 2.99 4.09 1 3 4.99

[0.00] [0.00] [0.00] [0.13] [0.03] [0.00] [0.00] [0.06] [0.67] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.03] [0.62] [0.00] [0.00] [0.12]

1.06 3 5 1.68 3.22 5 1 2.72 2.43 1.01 3 4.86 1.09 3.1 5 1 2.98 3.79 1 2.99 3.68

[0.24] [0.06] [0.04] [0.54] [0.41] [0.00] [0.00] [0.46] [0.77] [0.09] [0.00] [0.36] [0.28] [0.09] [0.00] [0.00] [0.16] [0.71] [0.03] [0.10] [0.51]

1.03 3 5 1.64 3.19 5 1 2.95 3.02 1.01 3 5 1.03 3.01 5 1 2.99 3.84 1 3 4.14

[0.17] [0.03] [0.00] [0.53] [0.39] [0.00] [0.00] [0.22] [0.81] [0.07] [0.00] [0.07] [0.16] [0.07] [0.00] [0.00] [0.08] [0.70] [0.00] [0.00] [0.50]

1 3 5 1.49 3.11 5 1 2.86 2.75 1 3 4.96 1.01 3 5 1 3 4.36 1 3 4.61

[0.03] [0.06] [0.00] [0.52] [0.31] [0.00] [0.00] [0.35] [0.71] [0.00] [0.00] [0.19] [0.08] [0.00] [0.00] [0.00] [0.03] [0.60] [0.00] [0.00] [0.50]

1 3 5 1.38 3.08 5 1 3 4.12 1 3 5 1 3 5 1 3 4.59 1 3 4.98

[0.00] [0.00] [0.00] [0.50] [0.28] [0.00] [0.00] [0.03] [0.63] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.52] [0.00] [0.00] [0.15]

1 3.01 4.24 1.32 3.03 4.21 1 0.01 0 1 1.78 0.11 1 2.87 1.65 1 0.32 0 1 2.97 3.23

[0.04] [0.07] [0.53] [0.47] [0.19] [0.060] [0.00] [0.10] [0.00] [0.00] [0.63] [0.32] [0.03] [0.34] [0.67] [0.00] [0.48] [0.00] [0.00] [0.17] [0.51]

1 3 4.79 1.24 3.03 4.74 1 0.02 0 1 2.63 0.25 1 2.98 1.55 1 0.19 0 1 3 3.67

[0.00] [0.05] [0.41] [0.43] [0.18] [0.45] [0.00] [0.14] [0.00] [0.00] [0.50] [0.44] [0.00] [0.14] [0.68] [0.00] [0.40] [0.00] [0.00] [0.03] [0.50]

1 3 4.96 1.07 3 4.96 1 0.01 0 1 1.97 0.02 1 3 2.82 1 0.61 0 1 3 4.71

[0.00] [0.00] [0.21] [0.25] [0.06] [0.19] [0.00] [0.07] [0.00] [0.00] [0.61] [0.15] [0.00] [0.03] [0.66] [0.00] [0.56] [0.00] [0.00] [0.00] [0.47]

1 3 5 1.02 3 5 1 0.14 0 1 2.93 0.23 1 3 3.14 1 0.45 0 1 3 4.99

[0.00] [0.00] [0.00] [0.13] [0.03] [0.00] [0.00] [0.35] [0.00] [0.00] [0.25] [0.44] [0.00] [0.00] [0.69] [0.00] [0.53] [0.00] [0.00] [0.00] [0.12]

100

50

100

100

50

100

Panel C: Results of different threshold estimations from simulated data with weak factors

50

50

100

Panel B: Results of different threshold estimations from simulated data with both cross- and auto-correlated errors

50

50

100

T

100

50

100

Panel A: Results of different threshold estimations from simulated data with I.I.D errors

50

50

100

N
TH AIC1 F3BIC3 PC1 F1 F2

 

 

5
6
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However, since 
1F  does not include the explanatory power from the factor 

candidates, we do not expect it to perform well in the presence of weak factors.   

Panel C shows the case with i.i.d. errors and weak factors. We define a 

weak factors as one with signal-to-noise ratio equal to 21/ r . Note that in the case 

of 1r  , the results are the same as those in the Panel A. The SNRs decrease as r 

increases. We find that 3BIC , 1PC , and 2F  have no power to identify weak 

factors when the true rank equals to three or five. 1F  can not identify the full rank 

case even in large samples. In comparison, 1AIC  and 3F  perform well in large 

samples, but not as well as TH.  

Overall, we have shown that the threshold function (TH) we proposed in 

this paper is the most robust threshold, providing quite reliable inferences on the 

rank of the estimated beta matrix in both small and large samples and in all the 

studied scenarios. 

 

In addition, we also compare the performance of our threshold estimation 

with the estimation methods considered in Cragg and Donald (1997).  

The simulations are conducted in two models, named large model and 

small model. In the large model, there are 45 cross-sectional observations and 17 

independent variables, which mean that we have 45N   and 17k  . In the small 

model, we have 10N   and 6k  . All the independent variables and the error 

terms are generated as i.i.d. (0,1)N .  
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The beta matrix is generated as C , where C  is a N k  matrix with each 

element from i.i.d. (0,1)N , and   is a k k  diagonal matrix with the diagonal 

value of 2  equal to {0, ,0,0.21,0.24,0.32,0.41,1.81} . In this case, we have the 

rank of beta matrix 5r  . 

The number of time-series observation T takes the value of 128, 256, and 

1024. Each experiment consisted of 2526 independent replications. We report the 

results from Cragg and Donald (1997) and our threshold estimation in Table 11. 

The four estimation criterions considered in Cragg and Donald (1997) are 

AIC, BIC, MSC, and TC. One prominent features are the weak performance of all 

the four methods in the large model with 128T  . In contrast, our threshold 

estimation points 100% to the correct rank (which is 5) when the large model is 

estimated with 128 observations. The serious underestimation of the rank occurs 

in the large sample with 256 observations when BIC and MSC are used. While 

with 1024 observations, the underestimation still occurs. On the opposite, AIC 

and TC point towards a higher rank, but the overestimation is lowered when large 

value of T is used. Our threshold estimation in the large sample produces the 

correct estimation of the rank with small or large time-series observations. 

Comparing the performance in the small model, our threshold estimation 

has underestimation problem with 128 observations. When the observation T gets 

larger, for example, 1024T  , the threshold estimation points to the correct 

estimation more than 60% of the cases, and otherwise points to a lower estimation, 

usually rank 4.  
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Table 11 

Estimates of the rank r =5, frequencies (%) of different rank estimates 

  Large sample   Small sample 

Rank AIC BIC MSC TC Threshold   AIC BIC MSC TC Threshold 

T=128                       

0 0.0  0.0  100.0  0.0  0.0   0.0  0.0  5.4  0.0  0.0  

1 0.0  63.1  0.0  0.0  0.0   0.0  5.5  94.4  0.0  0.0  

2 0.0  34.9  0.0  0.0  0.0   0.0  33.1  0.2  0.0  0.0  

3 0.0  1.9  0.0  0.0  0.0   0.4  38.9  0.0  0.5  7.8  

4 1.1  0.0  0.0  0.0  0.0   12.3  18.8  0.0  24.1  67.5  

5 14.3  0.0  0.0  2.4  100.0   83.4  3.7  0.0  72.3  24.7  

6 43.6  0.0  0.0  24.9  0.0   3.9  0.0  0.0  3.0  0.0  

7 33.5  0.0  0.0  43.9  0.0        

8 6.9  0.0  0.0  24.5  0.0        

9 0.4  0.0  0.0  4.0  0.0        

10 0.0  0.0  0.0  0.2  0.0              

T=256                       

0 0.0  0.0  100.0  0.0  0.0   0.0  0.0  0.0  0.0  0.0  

1 0.0  98.6  0.0  0.0  0.0   0.0  0.0  92.4  0.0  0.0  

2 0.0  1.4  0.0  0.0  0.0   0.0  0.3  7.6  0.0  0.0  

3 0.3  0.0  0.0  0.0  0.0   0.0  4.3  0.1  0.0  4.3  

4 13.7  0.0  0.0  6.0  0.0   0.0  26.0  0.0  0.2  60.2  

5 59.3  0.0  0.0  46.8  100.0   93.4  69.4  0.0  95.8  35.5  

6 24.8  0.0  0.0  39.5  0.0   6.6  0.0  0.0  4.0  0.0  

7 1.9  0.0  0.0  7.2  0.0        

8 0.0  0.0  0.0  0.5  0.0              

T=102

4                       

0 0.0  0.0  100.0  0.0  0.0   0.0  0.0  0.0  0.0  0.0  

1 0.0  0.4  0.0  0.0  0.0   0.0  0.0  0.0  0.0  0.0  

2 0.0  38.4  0.0  0.0  0.0   0.0  0.0  0.0  0.0  0.0  

3 0.0  58.8  0.0  0.0  0.0   0.0  0.0  0.0  0.0  0.7  

4 0.0  2.3  0.0  0.0  0.0   0.0  0.0  0.0  0.0  38.6  

5 91.3  0.0  0.0  93.2  100.0   92.7  100.0  100.0  97.3  60.7  

6 8.7  0.0  0.0  6.5  0.0   7.3  0.0  0.0  2.7  0.0  

7 0.0  0.0  0.0  0.4  0.0        

8 0.0  0.0  0.0  0.0  0.0              
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All the four methods in Cragg and Donald (1997) perform better in the 

small sample than in the large sample, but the good performance also need large 

number of time-series observations. With 128 observations, BIC and MSC 

perform worse. Even when the number of observation is 256, MSC still fail to 

point to the correct rank even once. 

Overall, the threshold estimation we proposed in this paper performs 

relatively well, especially in the large models. To further clarify the effect of the 

model sizes on the threshold estimation, we also consider two middle-sized 

models.   

In the case that 28N   and 12k  , which values we pick between the 

large and small models in Cragg and Donald (1997). The other parameters stay 

the same as reported in Table A2. Our threshold estimation points to the correct 

rank more than 99% of the time with the each of the three observations of 128, 

256, and 1024. 

Also with the model of 45N   and 7k  , the threshold estimation points 

to the correct rank 100% of the time with the each of the three observations of 128, 

256, and 1024. 

To sum up, we suggest using the threshold estimation in estimating the 

rank of the beta matrix in relatively large models ( 28N  ).  

 

2.5 Application 

In this section we estimate the rank of the beta matrix using different 

factor-candidates as regressors.  More specifically, we use the three factors 
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proposed in the model of Fama and French (1992, FF), the five factors of Chen, 

Roll, and Ross (1986, CRR),
4
 the momentum and reversal factors (MOM) 

available on Kenneth French webpage: momentum, short-term reversal and long-

term reversal, and the two new factors developed in Chen, Novy-Marx, and 

Zhang (CNZ, 2010): Investment to Asset (IA) and Return on Asset (ROA). 
5
 

As response variables we use the US monthly individual stock returns and 

portfolio returns.
6
 Returns are calculated in excess over the risk free rate.  The 

individual stock returns are downloaded from CRSP.  The returns include 

dividends.  The risk free rate is the one-month Treasury bill rate, which is 

available from Kenneth French’s webpage.  For the individual stock returns, we 

exclude REITs (Real Estate Investment Trusts), ADRs (American Depositary 

Receipts) and the stocks that do not have information for every month over a 

sample period.  We also exclude stocks that show more than 300% excess returns 

in a given month since we are trying to capture common variation.  Excessively 

high or low returns are most likely to be idiosyncratic risks.  US Stock portfolio 

                                                 

4 While the FF model may be more related to the APT, the CRR model is more 

related to Merton’s (1972) Intertemporal CAPM, in the sense that they try to find 

the macroeconomic (state) variables that may influence future investment 

opportunities.  The factors proposed by CRR are industrial production (MP), 

unexpected inflation (UI), change in expected inflation (DEI), the term premium 

(UTS), and the default premium (UPR).  Each of these factors is available from 

Laura Xiaolei Liu’s webpage from January 1960 to December 2004 

(http://www.bm.ust.hk/~fnliu/research.html).  For detailed information on how 

these factors have been constructed, see Liu and Zhang (2008).  The FF factors 

are the proxy for the market risk premium, SMB and HML. 

 

5 We thank Long Chen for providing us the latest version of their factors. 

 

6 We do not use the daily returns since the data of some factor candidates are only 

available at monthly frequency. 

http://www.bm.ust.hk/~fnliu/research.html
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returns are downloaded from Kenneth French’s webpage.  The portfolios used are 

100 portfolios based on Size and Book to Market, 25 portfolios based on Size and 

Book to Market, 25 portfolios based on Size and Momentum, 49 Industrial 

portfolios and 30 Industrial portfolios.  We use monthly returns in every data set.  

Response variables are always double-demeaned as suggested in the 

Equation (2).  We also use standardized factors for the following reason.  The beta 

values corresponding to each factor change depending on the scale of the factor.  

For example, if we rescale a factor by multiplying 10, the (absolute) beta values 

corresponding to the factor are scaled down by the order of 0.1.  In this case, even 

if the factor has a high explanatory power, the estimated betas obtained with the 

rescaled factor would not reflect the factor’s true explanatory power. 

 

2.5.1 Rank Estimation Using Individual Stock Returns 

The time span included in the analysis is from 1972 to 2004.  We divide 

the individual stock returns into three samples: the entire time span (1972-2004), 

two subsamples (1972 – 1987 and 1988 – 2004) and three subsamples (1972 – 

1978, 1979 – 1992, and 1993 – 2004).  Under both subdivisions, we could fit a 

polynomial trend to the value weighted market portfolio to estimate the up and 

down cycles.  We do so to examine how the estimation results may change 

depending on time intervals.  We keep the time span T at around 100 or more 

since the simulation exercises show that the estimators are very accurate in this 

case.  The number of cross-sectional observations N changes as T changes in 

order to maintain a balanced panel.  The value of N depends on the available 
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observations with complete data on CRSP for each sample period after the data 

has been cleaned.  

 The results from the estimation of the rank of the beta matrix for 

individual stock returns are shown in Table 12.  Each line of the table represents a 

different estimated model.  For each model we report the number of factor 

candidates used (k), the estimated number of factors among the factor candidates 

( r̂ ) and the average R
2
 of the regressing the response variables on the factor-

candidates. 

   The first line of table 12 shows that the Threshold estimator predicts that 

the rank of the beta matrix equals three when using the three FF factors in 

different sample periods.    

 The second line of table 12 shows the results from the estimation of the 

five CRR factors.  For any period, the estimated rank does not exceed two.  This 

means that only one or two common sources of comovement in individual stock 

returns are explained by the CRR factors.  This result provides strong evidence 

that the risk premiums of some factors in the CRR model are undefined. 

 Given that the CRR factors can identify one or two common factors in 

individual stock returns, a question we wish to answer is whether the CRR factors 

capture some sources of comovement that the FF factors fail to do.  If the CRR 

factors capture different information from what the FF factors do, we could 

expect that the rank of the beta matrix from the joint model of CRR and FF would 

be equal to the sum of the ranks from the CRR and FF models separately.  Indeed, 

the Threshold estimation results are consistent with this expectation in the entire 



  64 

sample and every subsample.  In the third line of result in table 12 the Threshold 

estimation suggests that the risks captured by the CRR and FF factors are 

different. 

Since the five CRR factors capture a common source of comovement that 

is not captured by the FF factors, an interesting question is which of the CRR 

factors contain the information missed by the FF factors.  For this purpose we add 

to the FF factors each CRR factor individually in order to estimate the rank of the 

beta matrix of at most four.  In unreported results we find that no individual CRR 

factor increases the rank of the beta matrix when combined with the FF factors.  

Then we use every possible combination of two CRR factors together added to 

the three FF factors.  In this case we found that adding UI (unexpected inflation) 

and DEI (changes in expected inflation) increases the rank of the beta matrix to 

four.  Results are shown in the 4
th

 line of table 12.  This shows that a factor 

related to inflation is missed by the FF factors. 

 Furthermore, we analyze if momentum factors (as constructed by Kenneth 

French) capture a different source of risk than the Fama-French factors.  Results 

of estimating the rank of the beta matrix of the three momentum factors and the 

FF factors are presented in the 5
th

 row of the table.  The Threshold estimator finds 

strong evidence for an extra factor contained in the three momentum factors in 

most samples.  However, if we add any one or any two possible combinations of 

the momentum factors to FF three factors, unreported results show that in most 

cases we find the rank equals three.  
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Table 12 

Rank Estimation Results from Different Factor Models Using Individual Stock Returns 

 

Note: This table reports the estimation of the rank of the beta matrix for U.S stock portfolio returns.  For every portfolio set the time span is January 

1972 - December 2004 (T=396).  Each line of the table represents a different estimated model.  For each model we report the number of factor 

candidates used (k), the estimated number of factors among the factor candidates ( r̂ ) and the average R
2
 of the regressing the response variables on the 

factor-candidates. 

6
5
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We conclude that there is evidence for a momentum factor among the 

three momentum factors during the period under analysis that is not captured by 

the FF factors when using individual stock returns.  

In the 6
th

 row of table 12 we test the rank of the beta matrix when using 

the three FF factors and the two new factors of CNZ and find four factors in 

almost every subsample.
7
  This is evidence that the CNZ factors capture one 

dimension missed by the FF factors. 

 Finally, the last row of the table show the results of using the ten factor-

candidates that seem to contain different information together: the three FF 

factors, UI and DEI from CRR, the three momentum factors and the two CNZ 

factors. The table shows that there is evidence for at least six factors among the 10 

factor candidates. 

However, an open and important question is whether we need to use 

individual stock returns or portfolio returns to estimate the beta matrix in order to 

perform asset pricing tests
8
.  For example, imagine a hypothetical situation in 

which half of the sample of the individual stock returns have betas of 0.5 with 

respect to a factor and the other half have betas of -0.5.  In this case the factor will 

add a dimension to the rank of the beta matrix when using individual stock returns, 

but this factor will disappear in properly diversified portfolios (because the beta of 

the diversified portfolio with respect to the factor will be zero).  In the next 

                                                 

7 Most of the time adding ROA to the FF factors is sufficient to get a rank equal 

to four while adding only IA never increases the estimated rank of the beta matrix. 

For this reason, we can conclude that ROA posses most of the information not 

captured by the FF factors.  

8 See Ang, Liu, and Schwarz (2008). 
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section we estimate the rank of the beta matrix using the same factor candidates as 

before but using portfolio returns as response variables. 

 

2.5.2 Rank Estimation Using Portfolio Returns 

In this section we use five sets of portfolios downloaded from Kenneth 

French website as response variables.  Since the number of portfolios is fixed in 

each different set, we use for every estimation the full time span from January 

1972 to December 2004 (T=396).  The cross-sectional dimension N equals to the 

number of portfolios in each set.  In table 13 we report the same statistics for 

portfolio returns as those in the previous table for individual stock returns. 

When using the FF factors we find all the time an estimated rank of three 

except for the 25 Size and Book to Market portfolio set where we find a rank of 

two.  When we use the five CRR factors we find the rank equals to one or two as 

in the case with individual stocks. When we test together the FF factors and the 

CRR factors (k=8), we do not find evidence of an extra factor except for the cases 

of the 49 and 30 Industrial Portfolios. 

A common pattern observed in table 13 is that when testing the number of 

factors in Industrial Portfolios the results are similar to those obtained using 

individual stock returns.  However, once we use portfolios based on Book to 

Market and Size or Size and Momentum, the rank of the beta matrix is at most 

four.  The maximum rank we find for 100 Size and Book to Market portfolios is 

four, and for 25 Size and Book to Market portfolios and 25 Size and Momentum 

portfolios is three.   
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Table 13 

Rank Estimation Results from Different Factor Models Using Stock Portfolio Returns 

 

 

Note: This table reports the estimation of the rank of the beta matrix for U.S stock portfolio returns.  For every portfolio set the time span is January 

1972 - December 2004 (T=396).  Each line of the table represents a different estimated model.  For each model we report the number of factor 

candidates used (k), the estimated number of factors among the factor candidates ( r̂ ) and the average R2 of the regressing the response variables on the 

factor-candidate. 

6
8
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This is evidence that the portfolios sorted based on these characteristics 

are better diversified (these portfolios also show less residual variance since their 

R
2
 is higher than the one of the Industrial portfolios).  A possible explanation is 

the existence of industry specific factors that are diversified away when 

constructing portfolios based on characteristics like Size and Book to Market.  

This is a useful result that can clarify the discussion of whether to use portfolios 

or individual stock returns when testing factors and also the discussion about 

which type of portfolios should be used.  It is known that industry portfolios tend 

to have positive abnormal excess returns (intercepts are significantly larger than 

zero).  According to our result this is because the existence of industry specific 

factors that disappear when well diversified portfolios are used. In other words, 

the positive  that appears in many of the Industry Portfolios should not be 

considered a models’ mispricing since it is exposure to a source of diversifiable 

risk. 

Our empirical results can be summarized as follows. When using 

individual stock returns we find evidence for the existence of six common factors 

among the thirteen factor candidates used. These factors are the three FF factors, a 

factor related to inflation from the CRR factors, a Momentum factor and a factor 

captured by the new CNZ factors. When we use Industrial Portfolio returns, 

results remain the same. However, when we use portfolios that are better 

diversified such as the ones sorted on characteristics like Size and Book to Market, 

the FF factors seem to be enough to capture all the common sources of risk 
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among the thirteen factor candidates, except for the 100 Size and Book to Market 

portfolios in which an extra factor appears when adding the CNZ factors. 

 

2.6 Conclusions 

In this paper, we have proposed a new rank estimator, called Threshold 

estimator, for the beta matrix from a factor model with observed factor-candidate 

variables.  Testing whether the beta matrix has full rank is important for the two-

pass estimation of the risk premiums in empirical asset pricing models.  The 

(demeaned) beta matrix needs to have full rank.  Otherwise, risk premiums are 

undefined.  The Threshold estimator is computed easily with the eigenvalues of 

the inner product of an estimated beta matrix.  Our simulation exercises provide 

promising evidence that the Threshold estimator has good finite-sample properties.  

Different from the existing methods, this proposed method can be used to analyze 

the data with a large number of cross-section units. 

In our empirical investigation we find that all of the Fama-French (1993) 

three factors have explanatory power when using US individual stock returns as 

response variables, In contrast, only one or two among the five factors of Chen, 

Roll, and Ross (1986) have explanatory power.  When we combine the three 

factors of Fama-French (FF) together with the five factors of Chen, Roll, and 

Ross (CRR) we find that a factor not captured by FF is captured by CRR.  

Furthermore, we find that momentum and reversal factors capture a source of risk 

not captured by either FF or CRR. Similarly, the two factors proposed by Chen, 

Novy-Marx, and Zhang (2010, CNZ) capture a source of risk missed by all the 



  71 

other factors. We find evidence for six factors in US individual stock returns 

among the thirteen factor candidates used.  When we use Industrial Portfolio 

returns, results remain the same. However, when we use portfolios that are better 

diversified such as the ones sorted on characteristics like Size and Book to Market, 

the FF factors seem to be enough to capture all the common sources of risk 

among the thirteen factor candidates, except for the 100 Size and Book to Market 

portfolios in which an extra factor appears when adding the CNZ factors. 

Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein (2009) have 

developed the estimators for the number of factors without using factor candidate 

variables.  Their studies have found one or two factors from US individual stock 

return data.  In contrast, our results provide evidence of at least six factors in 

individual stock returns.  All of the estimation methods proposed by the above 

three studies are based on the analysis of principal components of response 

variables.  Ahn and Horenstein (2009) found that principal components provide 

poor estimates of the true factors when the true factors are weak and the 

idiosyncratic errors are cross sectional correlated.  From their results, we can 

conjecture that the analysis of principal components might have limited power to 

detect weak factors.  In contrast, the Threshold estimator proposed in this paper 

utilizes observed factor candidate variables.  Factors need not be estimated.  Thus, 

we can expect that the new estimator would have a higher power to detect the 

weak factors hidden among the factor-candidate variables.  Our estimation results 

are consistent with this expectation. 
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Proof of Lemma 1: 

Since 1tf  is a useless factor, we have the corresponding factor loading 

vector 1 0  , based on the Law of Large Numbers and the Central Limit 

Theorem, we can easily show that 
11 ~ (0, / )fTb N   . We can rewrite  

1

1 1 1 1 1 1

1

1 1 1 1 1

ˆ ( )

( ) ,

OLS b M b b M R

T Tb M Tb Tb M R

 

 



 

 

 
  

then 1̂ /OLS T  is a random variable. Following the same logic, we can show that 

1̂ /GLS T  is also a random variable. 

 

Proof of Proposition 1:   

To show specifically that the null hypothesis that the risk premium of a 

useless factor is equal to zero will be rejected more often than it should be at the 

nominal size, we conduct the analysis with OLS estimation first, and generalize 

the results with GLS estimation.  

With EIV unadjusted standard error, we have  

2 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 1 1

ˆˆ( ) ( ) ( )

ˆ( ) ( ) .

s b M b b M VM b b M b

T Tb M Tb Tb M VM Tb Tb M Tb

  

   

 

   

  

  
 

Since 
11 ~ (0, / )fTb N   , we have 1̂( ) /s T  is a random variable. 

The t-test statistic for the null hypothesis 0 1: 0,H    is given: 

1 1
1

1 1

ˆ ˆ /
ˆ( )

ˆ ˆ( ) / ( ) /

T
t T

s T s T

 


 
   . 
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For this case, the EIV unadjusted t-statistics are not credible, because one 

will always find the useless factors are priced even when large samples are used. 

With the EIV adjusted standard error, following the methodology in Kan 

and Zhang (1999b), we have 

1

2 2
2 1 1

1 2 1 1 1

1 1 1 1 1 1 1 1 1 1 1

ˆ ˆ
ˆ( )

ˆ ˆ ˆˆ ˆ ˆ( ) / (1 )( ) ( )
EIV

EIV f f

T
t

s T b M b b M M b b M b

 


    

   

 
      

. 

Define 
1

2 1 1

1 1̂
ˆ ˆ/ (1 ) (1)f f pd O        , where ( )pO T means convergence at an 

exact order of T , then we have 
1 1

ˆ / ( ) (1/ )f pd T O T   and 

1

2

1 1 12

1 1 1

1 1 1 1

( )
ˆ( ) 0

p
f

EIV

T b M b
t d

b M M b






 


 

 
. 

Since ˆ
    and , 2

1̂( )EIVt   has the same limiting distribution as 

1

2

1 1 1 1 1 1 1 1( ) / ( )fd T b M b b M M b  
   .   

Now following the Proof of Proposition 6 in Kan and Zhang (1999b), 

given 
11 ~ (0, / )fb N T  , we define 

1

1/2 1/2

1 1(0, )f N kZ T H b N I



 
   , and H  

is defined by the eigenvalue decomposition that 1/2 1/2

1M H H 
    , where H  is 

an ( 1)N N k    orthonormal matrix and 1 1( , , )N kDiag       where 

1 1 0N k       are the 1N k   nonzero eigenvalue of 1/2 1/2

1M   .  Hence 

we have 

1 2 22 2
1 211 1 1 1

1 1 1 1 12 1 2 2

1 1 1 1 1 1

( )( ) ( )
N k

N ki i i i
i iN k

i i i

Zs b M b Z Z
d d d d Z

b M M b Z Z Z

 

 

 
 
 

  

  
   

   
. 
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Following the inequality that 1 2 2 1 2

1 1 1( )N k N k

i i i i i iZ Z     

    , then we have 

2 1 2

1 1 1 1
ˆlim ( ) ( / )N k

EIV i i it d Z   

  .  Given the estimated 2

1̂ ( )pO T  , and the 

estimated risk premium of the true factors have the property that ˆ (1),j pO   

2, ,j k . Hence, 1 1d   as T  . Then we have 

2 1 2 2

1 1 1 1
ˆlim ( ) ( / )N k

EIV i i it Z Z   

    using the OLS estimation.    

Using GLS estimation, it is easy to verify that we have similar results that 

1 1 1
ˆ ˆ ˆ( ) ( / ( ) )GLS GLS GLSt T s     and 2 1 2 2

1 1 1
ˆlim ( )GLS N k

EIV i it Z Z  

   , for some 

well defined 1N  vector 1(0, )N kZ N I   . 

In the correctly specified model, 2

1̂( )EIVt   should have limiting distribution 

of 2

1 .  When 2N  , over rejection problem with both OLS and GLS estimation 

occurs asymptotically. 

 

Proof of Lemma 2: 

For Case 2, since 1tf  and 2tf  are two useless factors, we have the 

corresponding two factor loading vectors 1 2 0   , based on the Law of Large 

Numbers and the Central Limit Theorem, we can show that 

12

1

1 2( , ) ~ (0, )fTvec b b N 

  .  Hence, for 1,2i  , we have 

1

1

ˆ ( )

( ) ,

OLS

i i i i i i

i i i i i

b M b b M R

T Tb M Tb Tb M R

 

 



 

 

 
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then ˆ /OLS

i T  is a random variable. Following the same logic, we can show that 

ˆ /GLS

i T  is also a random variable.   

For Case 3, for the estimated betas, we have  

* 1/2

1 1 ( )pb c O T   ; 

* 1/2

2 2 ( )pb c O T   ,  

where *  is the nonzero coefficient of the true factor *

tf . Hence, 

1/2

1 1 2 2( / ) ( )pb c c b O T   , assuming 2 0c  .  Now define 

1

2 2 2 2 2( )NM I b b b b

    
    and 2 1 3( , , , )kb b b b  .  Given that 

2 1 0M b  , we have 1/2

2 2 ( )pM b O T 

  . Then 

1 1/2

2 2 2 2 2 2
ˆ ( ) ( )OLS

pb M b b M R O T 

 
   . Hence, we still have 2

ˆ /OLS T  is a random 

variable. Using the same logic, we can show that 1̂ /OLS T  is a random variable. 

The same results hold for GLS estimated risk premium. 

 

Proof of Proposition 2:  

The proof here is derived under Case 2, where we have two useless factors, 

1tf  and 2tf . Following the same proof in Proof 1, with EIV unadjusted standard 

error, we have OLS estimated t-test statistics ˆ ˆ ˆ( ) ( / ( ))i i it T s    , 1, 2i  . 

With EIV adjusted standard error, we can get 2 2ˆlim ( ) , 1, 2EIV i i it d Z i   . 

However, since 
2

1̂ ( )pO T  , 
2

2
ˆ ( )pO T  , and the risk premiums of the true 

factors ˆ (1), 3, ,j pO j k   , we can get 10 1d   asymptotically. Still the 
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over-rejection problem could happen depend on the realization of 
1̂  and 

2̂ , we 

can say one of the t-statistics of the useless factor will be larger than 

1 2

1

1

1

2

N k i
i iZ





 

 . 

Now consider the properties of the Wald statistics, with EIV unadjusted 

covariance matrix, we have the OLS estimation results of testing the joint 

hypothesis given as 1

12 12 12 12
ˆ ˆ ˆ ˆ( ) [ ov( ) / ]W C T     , using the fact that 

12
ˆ / T  is a vector of two random variables.  

With the EIV adjusted covariance matrix, we conduct the analysis as 

follows: 

12 12

1

12 12 12 12

1/2 1/2 1

12 12

ˆ ˆ ˆ ˆ( ) [ ov ( ) / ]

ˆ ˆ ˆ ˆ/ (1 )

EIV EIV

f f f

W C T   

    



  



     
,  

where 1

12 12 12 12 12 12 12 12 12 12( )( ) ( )T b M b b M M b b M b 

   
    .  

Given that  
12

1 1

12 12( ) ~ ( ), fvec b N vec T     , we define 
12

1/2 1/2

12 fy T H b

   , 

and H  is defined by the eigenvalue decomposition that 1/2 1/2

1M H H 
    , 

where H  is an ( 1)N N k    orthonormal matrix and 1 1( , , )N kDiag       

where 1 1 0N k       are the 1N k   nonzero eigenvalue of 1/2 1/2

1M   .  

Then we have 2 2( ( )) N NCov vec y I  , which means that each element of ( )vec y  is 

a noncentral 2

1 random variable. Then  

12 12

1/2 1 1/2

12 12 12 12 12 12 12 12 12 12

2 1

( )( ) ( )

( )( ) ( ).

f fT b M b b M M b b M b

y y y y y y

 

   



     

     
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For any 2 1  matrix R , we have 
1 1( ) /R R R y y R R Rc       , where 

1 2 1 2 1 2

1 1 1 1 2 1 1 2

1 1 1

1
min{ , , ( ) }

2

N k N k N ki i i
i i i i i i ic y y y y

  

  

     

       . 

Given that 
12

1 1

12 12
ˆ ˆ ˆ ˆ/ (1 ) 1f f         , hence we have 12 1

ˆ( )EIVW c  . 

 

The same analysis can be applied to GLS estimation. We have the EIV 

unadjusted t-test statistics ˆ ˆ ˆ( ) ( / ( ) )GLS GLS GLS

i i it T s    , for i=1,2, and one 

of EIV adjusted GLS estimation of the t-statistics of the useless factor, 

2 ˆ( ) , 1or 2GLS

i EIVt i  , will be larger than 1 2

1

1

2

N k

i iZ 

 , for some well defined 

1N  vector 1(0, )N kZ N I   . 

For the joint hypothesis that the risk premiums of the useless factors are 

equal to zero, we have the EIV unadjusted Wald test statistic as  

1

12 12 12 12
ˆ ˆ ˆ ˆ( ) [ ov ( ) / ]GLS GLSW C T     ,  

and with the EIV adjust covariance matrix, we have 12 2
ˆ( )GLS

EIVW c  , where  

1 2 1 2 1 2

2 1 1 1 2 1 1 2

1
min{ , , ( ) }

2

N k N k N k

i i i i i i ic y y y y     

       , 

and 1 2( , )y y y  are some well defined 2N   matrix with 2 2var( ( )) N Nvec y I  . 

 

It is easy to verify that the properties of the test-statistics under Case 3 are 

the same as those with two useless factors in Case 2, since the only difference is 

the nonzero mean of the estimated beta matrix.   
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Proof of Proposition 3: 

Under Case 1, Case 2, and Case 3, we will have 1ˆˆ ˆ /f T   is a random 

variable, because as shown in Case 1 to Case 3 that 1̂ / T  is a random variable. 

Also we have 2 ˆ( )ks   is a random variable, and the EIV adjusted standard error of 

the risk premium 

2 1 2

1 2

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) (1 )( ( ) )

ˆ ˆ ˆˆ ˆ ˆ(1/ / )( ( ) ) ,

k k

k k

k EIV f k f f

f k f f

s s

T T T s

   

  





    

    
 

then 2 ˆ( ) /k EIVs T  is a random variable. Under the null hypothesis 0 : 0kH   , we 

have 

ˆ ˆ
ˆ( ) 0

ˆ( ) ˆ( ) /

k k
EIV k

EIV k EIV k

t T
s s T

 


 
   . 

The analysis here holds for both the OLS and GLS estimations. 

 

Proof of Lemma 3: 

Under Case 4, consider the OLS estimated risk premium for 1tf , where 1tf  

is either a useless factor or one of the multiple proxy factors for a true factor, we 

have 1

1 1 1 1 1 1
ˆ ( )OLS b M b b M R 

 
  .  Since the proposed factor model contains all the 

true factors, the beta matrix 1 2( , , )k      could explain the expected returns 

quite well without 1 .  Then, 1T M R  is a random variable and centered at zero. 

Hence,  we have 

1

1 1 1 1 1 1

1

1 1 1 1 1

ˆ ( )

( ) .

OLS b M b b M R

Tb M Tb Tb T M R

 

 



 

 

 
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Then 1̂

OLS  is a random variable, which is the main difference from models 

omitting some true factors. The same results hold for GLS estimation. 

 

Proof of Proposition 4:   

The proof is conducted on factor 1, which is either a useless factor or one 

of the multiple proxy factors for a true factor. Given the proposed model contains 

all the true factors, we have 1/2

1 (1/ )pM R O T 

  , and 1 0T M R   as T  . 

The EIV unadjusted t-test statistic is given by:  

2 2
2 21 1 1

1 2

1 1 1 1 1

ˆ( ) ( )
ˆ( ) ( )

ˆˆ( )

T T b M R
t x y

s b M VM b







 


  


. 

Following the proof of Proposition 2(B) in Kan and Zhang (1999a), we define 

1/2 1/2

1 1 1 1 1
ˆ/ ( )x P b b M VM b 

    and 1/2y T P R   , where 1 1P P M VM 
  , and 

  is the matrix of corresponding nonzero eigenvalues. Since we have 

1/2 1/2

1 1 1 1 1 1 1 1 1 1 1
ˆ ˆ( ) ( ) / ( ) ( ) / ( ) 0E x y E Tb PP R b M VM b E Tb M R b M VM b    

        , 

1 1 1 1 1 1 1 1 1 1 1 1 1 1
ˆ( ) ( ) / ( ) / ( ) 1Var x y b PP VPP b b M VM b b M VM b b M VM b     

         .  

Then x y  is a 2

1  variable asymptotically.  Given  

1 1

2 1 2 2

1 1 1
ˆ ˆ ˆ ˆ ˆ( ) (1 )( ( ) ) ( )EIV f f fs s s          ,  

we know that 2 2

1̂( ) ( )EIVt x y  , which means the square of the EIV adjusted t-

statistics will be stochastically dominated by a 2

1  distribution. 

These results are derived with OLS estimation, and it also applies to GLS 

estimation. 
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Proof of Proposition 5:  

Now we are going to show that C  is the consistent estimation of a linear 

transformation of  0C , and hence FC  is a consistent estimation of a linear 

transformation of real 0FC .  Reconsider the minimization problem: 

2

1 1
ˆmin ( )N k

i j ij i jB AC    , with the normalization that / rC C k I  ,  C  is k  

times the eigenvectors corresponding to the first r  largest eigenvalues of the 

k k  matrix ˆ ˆB B .  Given C , define 1 ˆ ˆ( ) /A C C C B C B k       . 

Consider the minimization problem in the symmetric way, with the normalization 

that / rA A N I  , A  is constructed as N  times the eigenvectors corresponding 

to the r  largest eigenvalues of the N N  matrix ˆ ˆBB .  Given A , define 

1 ˆ ˆ( ) /C A A B A B A N    . 

 Now, define the consistent estimator of 0C : 1/ 2ˆ ( / )C C C C k .  Using the 

mathematical identity, we have ˆ ˆ /C B A N  and ˆ /A BC k .  Given that 

0 1ˆ ( )B B E F F F     and 0 0 1ˆ ( )B C A F F F E    , we have  

0 0 1 0 0 1

0 0 0 0 1 0

0 1 1 1

ˆ ˆ ˆ ˆ/ /

( ( ) )( ( ) ) /

[ ( )

( ) ( ) ( ) ] /

C B A N B BC Nk

C A F F F E A C E F F F C Nk

C A A C C F F F EB C

B E F F F C F F F EE F F F C Nk

 



  

  

      

     

      

 

Define 0 0 0( / )( / )H A A N C C k  , then, 

1/ 2 1/ 2
0 0 0 0/ / / (1)pH A A N C C k C C k O    . 
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The norm of a matrix A  is denoted by 1/2[ ( )]A tr A A . Hence, 

22 2
0 1 0 0 1

2
1 1

ˆ ( ) / ( ) /

( ) ( ) /

C C H F F F EB C Nk B E F F F C Nk

F F F EE F F F C Nk

 

 

     

   

 

Given 1( / ) (1)pF F T O   and / (1)pC k O , by Lemma 1 of AHW (2009), we 

have 

2
0ˆ (1/ ) (1/ ) (1/ ) (1/ )p p p pC C H O T O T O T O T     . 

Hence, we can see that  Ĉ  is the consistent estimation of a linear transformation 

of  0C , and it follows that FC  is a consistent estimation of a linear 

transformation of real 0FC . 
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APPENDIX B 

PROOF FOR CHAPTER 2 
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The following two Lemmas are used to prove Theorem 1. 

Lemma 1: Under Assumption B and D, for any k p  ( p k ) matrices A  and 

G such that (1)pA O , and (1)pG O , we have two conclusions:  

 (i)  1/21
( )d d

ptr A F G O T
NT

    ; 

 (ii) 1

2

1
( ) ( )ptr A F FA O T

NT

   . 

Proof:  Assumption B implies 

 

2

2 2 2 2

2 2 2

1

1 1 1 1
1 1 / 1 1 /

2 2
2

d

N N N N

N

i

i

N N
N N NN

c
N N




 
         

 

   

; 

From Assumptions B – D, we obtain 

  

2
2

2

2

2 2
2 2

2

1 1

1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1
1 1 1 1

1 1 1
1 1 1 1

T T N N N N T T T T

T T N N N N T T

T T N N

N N T T

F F
NTNT

F F
NT T N NT T

F F F F
NT T N NT

F F F
NT NT T NT N

NT N T

     
 

                     
   

              

         

   

2

2
2

22
22

1 1

2 2 1
1 1

2 1 1
(1) 1 1 (1) 2 (1),

T T

N T

p T T p it p

i t

F

F F
NT NT T

O F O f O
NT T NT


 

     

 
       

 
 

 
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where 1T  is a 1T   vector of ones.  Thus, 1/2 (1)d

pN O    and 

1/2( ) (1)pNT F O   .  Then, we have (i), because 

 
1 1 1 1

( ) (1)

d

d

p p p

F
tr A FG A G O O O

NT T N NT T T

             
   

. 

We obtain (ii), because 

 
2

2

2 2

1 1 1 1 1
( )d

ptr A F F A AA F F A F O
NT NT T NT T

                
  

. 

 

Lemma 2: Suppose that two matrices A and B are symmetric of order p.  Then, 

1( ) ( ) ( )j k j kA B A B       , 1j k p   . 

Proof:  See Onatski (2010) or Rao (1973, p. 68). 

 

Proof of Theorem 1:  Observe that 

 

2 2

2

1 1
( )( )

.

d d

d d d d

F XX F F F F F
NT NT

F F F F F F F F F F F F

T N T T NT NT T NT

           

                    
          
       

 

Thus, we have  

 
2

ˆ ˆd d d d d d

T T T T

F F F F
A A A A

N N NT NT NT

              
     

 
, 

where 1( / )TA F F T   and (1)T pA O  by Assumption A.  
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 Now, let ˆ l  be the matrix of the eigenvectors corresponding to the first 

( )l k  largest eigenvalues ,1 ,2 ,
ˆ ˆ ˆ

NT NT NT l      of ˆ ˆ /d d N  .  Similarly, 

define l  for the matrix /d d N  .  For any l r , we have 

 

1 ,

2

1

1 ˆ ˆ ˆ ˆˆ

1 1ˆ ˆ ˆ ˆ2

1 ˆ ˆ

1 1 1

1

l l d d l

j NT j

l d d l l d l

T

l l

T T

l d d l

p p

d d
l

j j p

tr
N

tr tr FA
N NT

tr A F F A
NT

tr O O
N TT

O
N T









        
 

                   
   

        
 

               
    

   
       

1
,pO

T

  
  

 

 

by Lemma 1, because ˆ (1)l

pO   and ˆ ˆ (1)l l

T T pA A O    .  In addition, 

 

1 ,

2

1

1 1ˆ ˆ ˆ ˆ ˆ ˆˆ

1 1
2

1

1 1

l l d d l l d d l

j NT j

l d d l l d l

T

l l

T T

d d
l

j j p p

tr tr
N N

tr tr FA
N NT

tr A F FA
NT

O O
N TT









                   
   

                   
   

       
 

      
            

, 

Since these two results hold for any l r , we have 

 ,

1 1
ˆ

d d

NT j j p pO O
N TT

 
      

           

. 

Thus, for 1 j r  , we have 
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 ,
ˆlim 0

d d

T NT j jp
N

 

  
  

 
 

. 

Next, since we have ( )drank r  , we can rewrite d AC  , where A  and C are 

N r  and  k r  matrices, respectively, and ( ) ( )rank A rank C r  .  Let 

1( ) ( )P A A A A A  , and ( )Q A  = 1 ( )P A .  Using the fact that ( ) d dP A     and 

( ) 0dQ A   , we can easily show  

2

ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) ( )] ( ) ( )d d d d d d

T T

P A Q A P A F Q A F
A A

N N N NT

             
    

 
, 

Thus, for 1, ,j k r  , we have 

1 2

1

2 2

ˆ ˆ ˆ ˆ( ) ( )

1
0 ( ) ( ),

d d d d

r j r j T T

j T T T T p

P A F Q A F
A A

N N NT

F F
A A tr A F FA O T

NT NT

  



 



             
       

      
      

   
        

  

 

where the first inequality is due to Lemma 2.  Thus, for any1 1r j k    , 

 ,
ˆ 1/NT j pO T   . Notice that the second part holds even for 0r  , which is the 

“no-factor” case. 

 

Proof of Theorem 2:  For 1 j r  , ,
ˆlim 0T NT jp   , because 

( / )d drank N r   .  Since ( ) 0g T   , ,
ˆlim Pr[ ( ) | ] 1T NT j g T j r    .  For 

0 r j k   , ,
ˆlimT NT jp T   .  Thus, ,

ˆlim Pr( ( ) | 0 )T NT j g T r j k      
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= ,
ˆlim Pr( ( ) | 0 )T NT jT Tg T r j k     = 1, because ( )Tg T    and ,

ˆ
NT jT  

= (1)pO . 



 

 


