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ABSTRACT  
   

The purpose of this study is to demonstrate that stable lipid bilayers can be 

set up on an array of silicon micropores and can be used as sites for self-inserting 

ion-channel proteins which can be studied independently of each other.  

In course of this study an acrylic based holder was designed and machined 

to ensure leak-free fluidic access to the silicon micropores and physical isolation 

of the individual array channels. To measure the ion-channel currents, we 

simulated, designed and manufactured low-noise transimpedance amplifiers and 

support circuits based on published patch clamp amplifier designs, using currently 

available surface-mount components. This was done in order to achieve a 

reduction in size and costs as well as isolation of individual channels without the 

need for multiplexing of the input.  

During the experiments performed, stable bilayers were formed across an 

array of four vertically mounted 30 µm silicon micropores and OmpF porins were 

added for self insertion in each of the bilayers. 

 To further demonstrate the independence of these bilayer recording sites, 

the antibiotic Ampicillin (2.5 mM) was added to one of the fluidic wells. The 

ionic current in each of the wells was recorded simultaneously. Sub-conductance 

states of Ompf porin were observed in two of the measurement sites. In addition, 

the conductance steps in the site containing the antibiotic could be clearly seen to 

be larger compared to those of the unmodified site. This is due to the transient 

blocking of ion flow through the porin due to translocation of the antibiotic.  
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Based on this demonstration, ion-channel array reconstitution is a potential 

method for efficient electrophysiological characterization of different types of 

ion-channels simultaneously as well as for studying membrane permeation 

processes. 
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Chapter 1 

INTRODUCTION 

 

1.1  Single – Channel Ion channel reconstitution 

A key method to study the structure-function relationship of a biological 

ion channel is to reconstitute isolated channel proteins into planar lipid bilayer 

membranes separating two aqueous compartments [22]. Theoretically it is 

possible for these ‘artificial’ membranes to mimic their natural counterparts and 

hence a study of the channel proteins under question can be undertaken in a 

controllable environment.  

Principal strategies for such reconstitution experiments include the formation 

of lipid bilayer membranes using bulk solutions or monolayers [5] followed by a 

thinning process [23].  Both these methods can be employed for the incorporation 

of ion channels into the bilayers requiring a site across which the bilayers can be 

hosted. In this regard, several methods based on a two compartment setup have 

been proposed. The materials used as supports include glass [5], Teflon [20], and 

Silicon [9] [25] [32]. All these methods allow free access to the channel of 

interest and formation of Giga-seals [11].  
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1.2  Multi – Channel Ion channel reconstitution: 

The single channel ion channel reconstitution has been proven to be a reliable 

method in which bilayers are formed and ion channel proteins are self-inserted to 

observe and study their properties [9] [12] [27] [32].  

In the traditional method of ‘painting’, the thinning process of the bilayers 

that are formed is often unpredictable and the resulting bilayers may be fragile. In 

other cases the lipids may clump together forming a blob.  In addition, the large 

scale of the system with bath volumes of several milliliters asks for a smaller 

sized system where the use of biological materials will not be excessive. This 

necessitates the use of smaller systems and a reliable method where lesser trials 

will be required to obtain a stable bilayer. 

 

Figure 1. Stochastic Sensing with Engineered pores [4] 
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Applications of Nanopore Stochastic Sensing such as High Throughput 

Screening and ‘Electronic Nose’ require high sensitivity and discrimination with 

different affinities for analytes of interest [34]. This can be achieved by an array 

of specific single channel sensors. The events are detected as transient blockades 

in the current that is recorded. The frequency of the event reveals the 

concentration of the analyte. The duration and amplitude reveal the identity of the 

element.  

 

Figure 2. Conceptual Rendition of a Stochastic Array Sensor [4] 

A number of platforms have been proposed for the arrangement of such an array 

and the recording of such signals in parallel. In most of these platforms an array 

of microholes is fabricated, which is used as the support for the lipid bilayer 
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membranes that are formed. Ion channels are self-inserted into the bilayer 

membranes and the ionic current signal from these parallel sensors are recorded 

and then processed by DSPs.  

Even if more than one ion channel is active in each bilayer formed, it still enables 

recording of single channel events in a parallel fashion, assuming that the 

amplifier resolution is sufficient.  

 

Figure 3. Parallel assay using α-Hemolysine nanopores [24] 

A model of such a configuration is shown in Figure 3. In this case a parallel assay 

is made simultaneously in chambers C with lipid bilayers B, containing the ion 

channels A and A’ in the absence and presence of a translocating molecule D 

respectively. In such a case it is important that each component sensor works 

independently of each other and is measured independently but also 

simultaneously.  
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Figure 4. Illustration of a stochastic sensor with four sensing sites [34] 

1.3 Anti-biotic translocation through OmpF membrane channels: 

Several studies have described permeation processes in porins by antibiotics, such 

as ampicillin and amoxicillin. The outer membrane protein F, OmpF, is 

considered a major porin in the antibiotics pathway. [16] 

The OmpF is a non-specific transport channel present in the outer 

membrane of E.Coli. While the outer membrane protects and separates the cell 

from the environment, OmpF is used for passive translocation of vital molecules 

and ions between the cell and the environment and allows the diffusion of 

molecules with molecular weights up to 600–700 Da. [16] 
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Figure 5. Potential Energy profile of OmpF [1] 

The OmpF protein is constituted by three monomers forming a trimer. Each 

monomer consists of 16 β-strands anti-parallel that span the outer membrane and 

form a barrel with short turns at the  periplasmic side and large loops at the 

outside of the cell. The porins have been shown to play a major role in the 

bacterial resistance against antibiotics. 

Experiments have shown that the current analysis of the OmpF protein 

corresponds to a trimeric conductance, which have been verified from other 

studies [7] [16]. At high voltages, the porins exhibit monomeric gating. In 

addition, sub-conductance states have also been studied, which are much smaller 

than monomeric conductance states.  

The effect of polyamines and antibiotics on OmpF activity have been 

studied and well documented. It has been shown that polyamines inhibit processes 
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such as chemotaxis by interaction with the L3 loop and barrel of OmpF [7] [33]. 

These studies are important as the presence of polyamines increases the ability of 

bacteria to maintain its potential when antibiotics are applied.  

 

Figure 6. Simulated model of molecular dynamics of Ampicillin binding [7] 

The presence of Ampicillin has been shown to cause current fluctuations 

in the ion current [7] [19]. This has been shown to be due to the translocation of 

the antibiotic through the protein. Additionally the residence time of the antibiotic 

inside the channel has been shown to strongly decay with temperature [19]. 
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1.4 Multi-channel low-noise instrumentation amplifier and support circuit 

  The advancement of ion channel recording from multiple sites is 

heavily dependent on the availability of high throughput low noise multi channel 

amplifiers. The basic patch clamp amplifier is essentially a sensitive low-noise 

current to voltage convertor that can measure currents in the pA range that can be 

observed on an oscilloscope or sampled by a computer [27].  The headstage 

design usually consists of a pre amplifier stage with a dual JFET and an Op amp 

[11] [14]. JFETs offer a low voltage noise and input capacitance with low gate 

currents [10]. A number of commercial patch clamp amplifiers are available in the 

market; however, the number of available channels is limited. 

 

Figure 7. Structure of a system used for parallel recording of Ion channels [29] 
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 It has been experimentally demonstrated that the presence of various 

parasitic capacitances such as electrode parasitic capacitance [13] [14] [17] [28] 

and parasitic capacitance across the feedback path [21] can affect the step 

response of the applied command voltage signal. Thus, the advantage of using a 

capacitance compensation circuit has been demonstrated by comparing 

uncompensated current recordings with compensated readings [15]. In addition 

the presence of junction potentials necessitates the need for pipette offset 

compensation. 

 In order to recover fast switching responses of the ion channel proteins, 

either the bandwidth of the resistive-feedback headstage has to be increased or a 

subsequent analog or digital correction circuit can be employed [21]. The former 

is a practically difficult solution to achieve, relying on wide-gain-bandwidth 

components which might have a negative impact on the Signal to noise ratio.  For 

the latter, a frequency boost circuit is required to correct the frequency response 

of the headstage. This stage “replaces” the corner frequency due to the headstage 

with a new roll off at a much higher frequency.  
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Chapter 2 

MATERIALS AND METHODS 

 
2.1 Silicon Micropores: 
 

Micropores can be created with the help of electrical spark discharges or 

mechanical drilling or fabricating in silicon. It offers the possibility to generate 

pores ranging from several hundred micrometers down to tens of nanometers. The 

process of forming bilayers is repeatable over a single substrate. 

Silicon is a very well characterized material in the semiconductor industry, 

with the benefit of being biocompatible. It also allows the monolithic integration 

of electronic components on the same sensor chip. The process steps needed for 

silicon micro fabrication are well-established and thus readily available and cost 

effective. However, Silicon faces some issues which hinder the process of 

forming bilayers effectively. Silicon dioxide is hydrophilic, thus preventing high 

resistance bilayer seal formation. To remedy this situation, the silicon dioxide 

surface is made hydrophobic by chemical vapor deposition of a 

polytetrafluoroethylene (PTFE) layer.  Another issue is that the capacitance of 

oxidized silicon is higher than that of other substrates, e.g. glass or plastics. This 

matter can be resolved by adding passivation layers made of SU-8 which lowers 

the substrate capacitance.  

 Double-sided polished Si (100) wafers with a thickness of 380-420 µm 

were used for our experiments. A recess etch was performed to thin down the area 
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around the central aperture. This enables thinning of lipid bilayer. The area for the 

back-side etch was photolithographically defined. A deep reactive ion etch (Bosch 

process) to prepare the recess. Using back side alignment, bilayer apertures in the 

range 5 µm and 50 µm were defined photolithographically and etched using the 

deep reactive ion etch process again. The back side of the wafer was coated with 

SU-8 of a thickness of 40 µm respectively, with a central area of 100 µm removed 

around the final aperture. Then, the surface was coated with a plasma-

polymerized PTFE layer using the ICP tool. Thereafter, the wafer is diced into 

individual pieces each holding a single aperture.  

 

 

Figure 8. Illustration of the cross-section of a silicon micropore 

 The reactive ion etch used in this design is very precise and allows for 

close spacing of pores. As shown in figure, SU-8 does not need to cover the edge 

of the back side pore. A thick PTFE layer enables high seal resistance and 

smoothens out micro-roughness. A disadvantage of reactive ion etching is a 
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conflict between etching rate and anisotropic profile. An increase in etching rate 

leads to increase in concentration of reactive species thereby generating higher 

gas pressure and more collisions – implying a weaker anisotropic profile. 

Therefore, dry backside etch shows depth and feature size dependent etch rate 

decrease. 

 For our experiments 4 silicon micropores with aperture diameters of 30 

um were used. 

2.2 Preparation of Electrolyte solution 

 Potassium chloride (KCl) buffer at concentrations of 1 M and 0.5 M was 

used for the bilayer measurements without and with Ampicillin respectively. 

These were buffered with 10mM N-(2-hydroxyethyl) piperazine-N’-(2 

ethanesulfonic acid) (HEPES). The molecular weight of KCl is 74.55 g/mol while 

that of HEPES is 238.31 g/mol. Thus, the amounts of KCl and HEPES required 

for preparation of 1.0 M KCL solution were 18.638 g and 4.766 g respectively. 

Since the HEPES added makes the solution acidic, the pH of the solutions needs 

to be increased. The final solution was titrated to a pH of 7.4 using 1.0M 

potassium hydroxide (KOH) solution. 

2.3 Device Mounting: 

A device was designed for mounting the Silicon micropores in a vertical array.  

The holder was designed using Solidworks and machined using acrylic and has 

two main compartments.  
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Figure 9. Design of the 4 well silicon chip holder 

 

 

Figure 10. Acrylic based 4 well holder mounted with 4 silicon micropores 

 

The front compartment where the micropores are painted with lipids are divided 

into four sub compartments, thus making an array of four compartments for 
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mounting four silicon micropores  vertically. The back compartment is common 

to all four micropores. 

 Both compartments have four equally spaced 5 mm countersunk holes to fit 

Viton ® fluoropolymer elastomer gaskets. The countersunk holes serve as 

windows to paint the micropores easily. The silicon micropores are sandwiched 

between the gaskets to obtain a watertight assembly. The whole assembly is then 

tightened with acrylic screws. 

 

2.4 Low Noise Amplifier: 

The amplifier used is basically a current- voltage converter. The most important 

property of such an I-V converter is to maintain a high gain (approximately 80 

dB) while maintaining low noise amplification from DC to around 100 kHz. The 

designed amplifier has four channels that measure the current through the ion-

channels parallel at the same time. The amplifier is designed to do a voltage 

clamp measurement, in which case the transmembrane potential is kept constant 

and the current through the ion-channel is measured. 
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Figure 11. A simple arrangement depicting a patch clamp arrangement 

The positive and negative inputs of the op amp are forced to the same 

potential so the applied potential (VA) is held constant across the membrane. The 

current flowing out of the op-amp (Iclamp) is equal to the current flowing into it 

(Iin). All the current flowing through the feedback resistor Rf can be determined 

such that: 

fclampout RIV =
            (1)                                            

Where Vout is the measured output voltage and Rf is the feedback resistor 

determining the gain of the circuit. The current flowing through the membrane 

can then be easily using the known value of the feedback resistor and the 

measured voltage output. The strategy employed is to use a high gain-bandwidth 

amplifier and to limit the stray capacitance to an acceptable value. Nevertheless, 

due to the high gain requirement in the first stage to limit the noise, the bandwidth 

will be limited. With the amplifier having a well-defined frequency characteristic, 
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it is possible to correct for a gain roll-off at a later stage, using a frequency boost 

circuit. In all designs and revisions of the PCB that were fabricated, the Sigworth 

design was adapted. [27]  

 

Figure 12. Schematic diagram of a current to voltage converter [27] 

All components used in the designed board are currently in production. All 

JFETs, BJTs and Op amps used in the board are surface mount components, 

minimizing the parasitic influence of inductance, capacitance and dielectric noise 

at feedthroughs. In this design a dual JFET Q2 is used in a differential 

preamplifier, the output of which is amplified by the Op amp A1. Transistor Q1 

acts as current source for the JFET amplifier. The transistors Q3 and Q4 set the 

drain voltages and isolate the load resistors R5 and R6 from the drains.  
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Figure 13.  Four channel headstage amplifier (version 1) 

The design was implemented using a two layer PCB. All four amplifiers were on 

the same board in the first design, with connectors for five Silver/Silver Chloride 

electrodes.  

2.5 Electrode Properties 

A common method for measuring transmembrane currents is to use reversible 

silver/ silver chloride (Ag/AgCl) electrodes which follow the reaction:  

AgCl(s) + e- ⇄ Ag(s) + Cl-(aq)               (2)        

This reaction is a redox reaction because at the cathode the AgCl electrode is 

reduced and the anode the electrode is oxidized. The standard reduction potential 

of the half cell reaction in equation (7) is +0.2223 V. Thus, the standard reaction 

potential of the system would be:  

VVVEEE oxidizedreducedcell 02223.02223.0000
=−=−=

(3)        
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Thus, the concentrations of both baths are the same, in this case 1M, the Nernst 

potential of the system is 0V: 

V
n

V
Q

n

V
EE cellcell 0

1

1
log

0592.0
0log

0592.00
=−=−=

  (4) 

where Q is the reaction quotient.  

In our experiments, silver wires were commonly used to make the 

Ag/AgCl electrodes. The Teflon insulation from the ends of silver wires was 

stripped and then the silver ends were inserted into common household bleach 

(5% NaOCl) until a thick layer of AgCl formed on the wires (usually for ~15 

minutes).  

AgCl forms a white colored salt that is oxidized in light and changes to a 

black color. It is important that the ends of the wires are completely chloridized or 

covered with the Teflon insulation so that no bare silver is in contact with solution 

otherwise electrode potential would drift [27].  

2.6 Syringe Pump for Automatic Bilayer Formation: 

In order to show that bilayers can be automatically formed in all four apertures at 

the same time, a proof of concept was performed using a programmable syringe 

pump (Harvard PHD 2000). The method used in this case is the Montal – Mueller 

method, where the solution of lipids with the buffer solution is raised and lowered 

repeatedly in the chamber. The lipids at the air – water interface then form a 

bilayer across the aperture. 
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Figure 14. Harvard PHD 2000 programmable syringe pump 

The pump employs a microcontroller that controls a small step angle stepping 

motor that drives a lead screw and a Pusher Block. Data can be entered using the 

keypad or via the RS 232 connector located on the rear panel. The 

microcontroller, using the internal Syringe Look-Up Table, calculates the cross-

sectional area of the syringe selected and calibrates the flow rate and volume 

accumulation [26].  

The pump operates in three modes of operation: Pump, Volume and Program 

modes. In pump mode the motor runs continuously in infuse or refill directions 

until stopped. In the volume mode the pump runs until a particular volume has 

been pumped or refilled. In the program mode the pump follows a specified 

sequence of instructions.  
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2.7 Measurement Setup and Noise considerations 

 Since the current signal to be measured is on the order of picoamperes, the 

signal-to-noise ratio has to be sufficiently large so that signal does not get buried 

under noise. Experimental measurements are conducted in the same frequency 

range as equipment power supplies and general lighting in the room. The 

measurements are also affected by mechanical vibrations of the system. To carry 

out low noise measurements, it is of utmost importance to build a measurement 

setup that is electrically isolated, properly grounded and mechanically stable. 

 

 

Figure 15. Acrylic holder with headstage amplifier, inside the Faraday cage. 

These low voltage measurements are sensitive to 60 Hz noise. With no 

shielding, one would see periodic 60 Hz noise spikes in the output current signal; 

thereby distorting it.   Hence, a Faraday cage was used in shielding the bilayer 
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system from electromagnetic radiation. A metal locker which was properly 

grounded served as an effective Faraday cage. The noise sources include overhead 

lighting system in the room, computer monitors, amplifier power supplies, 

transformers, switch mode power supplies and any switching elements in the 

vicinity of the bilayer system. 

Mechanical vibrations are also detrimental to measurements. Major 

sources of mechanical vibration include people walking near the setup, audible 

conversations, people working on the same lab bench on a different area, cooling 

systems, small stir bar used in bilayer experiments and opening and closing of 

Faraday cage.  An active isolation vibration table from Halcyonics was employed 

in removing effects of mechanical vibrations. In an active vibration control set-up, 

the signals acquired by extremely sensitive vibration detectors are analyzed by 

electronic circuitry driving electro-dynamic actuators which instantaneously 

produce a counter-force to compensate for the vibration. The active damping 

system has no resonance and no amplification of vibrations at any frequency. 

A single ground point is also important to prevent noise due to ground 

loops between different parts of the setup [13]. All metal equipment including the 

patch clamp amplifier headstage, the Faraday cage and the anti-vibration table 

should be electrically connected to a single point to prevent ground loops due to 

different paths to ground. A ground loop would enable a magnetic field to induce 
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a potential difference between different points, for example, the bilayer ground 

and the electronics ground, resulting in a large excess noise current [28]. 

2.8 Forming the bilayers: 

Lipid bilayers are formed across the apertures using two methods. In the bubble 

collapse method, each aperture was individually painted by bubble collapse at the 

tip of a pipette containing the lipid solution. Care is taken in painting an aperture 

that the bilayers already formed in the other apertures are not destroyed. Forming 

parallel bilayers by this method requires a lot of time as each pore has to be 

individually painted. In addition, there is a chance of damaging the PTFE layer on 

the front face due to scratching by the pipette tip. 

The second method based on the Montal-Mueller method provides an automatic 

way of forming bilayers using a syringe pump. 
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Chapter 3 

EXPERIMENTAL SETUP 

3.1 Designing the array mounting device 

The biggest hurdle in the past for performing ion channel reconstitution 

experiments using multiple silicon chips in parallel was the lack of availability of 

leak-proof holders to sandwich the silicon microchips between the cis and trans 

chambers without having to use silicone glue. In order to overcome this, a four 

channel holder was designed using Solidworks as described in Chapter 3. As the 

holder has been fabricated from an 18mm x18 mm solid acrylic rod there is no 

possibility of leakage between the individual channels. The Viton ® 

fluoropolymer elastomer gaskets ensure leak-proof seal between the cis and trans 

sides of the holder. This eliminates the possibility of “cross-talk” between 

individual channels due to solution leakage.  

 

 

Figure 16. Top view of design of multi-well chip holder in Solidworks 
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Figure 17.  Side view of acrylic holder showing the groove for the gasket  

Another aspect that was taken into consideration was the mounting of the chips. 

Mounting can be done horizontally [6] or vertically. In this design a vertical 

configuration was adopted because of the ease of forming lipid bilayers using 

either the bubble painting or the Montal-Mueller method. A horizontal 

configuration would require the design of a microfluidic system or the use of 

vesicle fusion.  

3.2 Headstage amplifier design 

The new headstage PCB design is based upon an earlier design that has 

been improved upon to allow a more compact and modular setup. One important 

design requirement was the bandwidth of the headstage. The bandwidth should be 

wide enough to observe the gating signals of ion channels that are being studied. 

To be able to digitize the ion channel gating signals, the headstage amplifier has 

to be set to a gain of 90dB.  
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Figure  18. Schematic diagram of simulated headstage amplifier 

 

Figure 19. Front and back view of Headstage amplifier (version 2) 
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Based on the previous design, a smaller, more compact PCB was made 

and was tested. The frequency response was obtained using a Keithley 6220 AC 

Current source programmed using Labview, to generate a frequency sweep over 

the frequency range of 1 Hz up to 20 kHz. The Op amp used in the headstage 

amplifier has to be selected keeping in mind the Gain – Bandwidth product and 

noise considerations. For this purpose four Op-amps were chosen based on Gain – 

Bandwidth product, noise specifications, cost considerations and operating 

voltage. A selection of Op-amps used for testing the boards is listed in Table 1.  

The OPA 134 is an inexpensive FET input, audio Op amp also available in 

a quad configuration. The OPA 656 is a FET input ±5V Op amp with a high 

Gain-Bandwidth product. The OPA 827 is a JFET – input Operational amplifier 

and the TLE 2037 is a low noise high speed bipolar Op-amp. As a comparison, 

the values for the two amplifiers suggested in the design by Sigworth [27] are 

listed (NE 5534 with bipolar input and LF 356 with JFET input). 
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Table 1 

Typical values of Gain-Bandwidth and noise specifications of Op amps used in 

the Headstage Amplifier 

Op – Amp 

(Technology) 

Specified 

Operating 

Voltage 

(V) 

Gain – 

Bandwidth 

Product 

(MHz) 

Input Voltage 

Noise Density 

nV/√Hz 

Input Current 

Noise Density 

fA/√Hz 

OPA 134 

JFET 

±15 8 8 (at 1 kHz) 3 (at 1 kHz) 

OPA 656 

JFET 

±5 230 ( for 

Gain>10) 

7 (>100 kHz) 1.3 (>100 kHz) 

OPA 827 

JFET 

±4 to ±18 22 4 (at 1 kHz) 2.2 (at 1 kHz) 

TLE 2037 

Bipolar 

± 15 50 2.5 (at 1 kHz) 400 (at 1 kHz) 

NE 5534 

Bipolar 

± 15 10 3.5 (at 1 kHz) 400 (at 1 kHz) 

LF 356 

JFET 

± 15 5 12 (at 1 kHz) 10 (at 1 kHz) 
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3.3 Support Circuit Design 

Commercial patch-clamp amplifiers such as HEKA and Axopatch employ a 

“support circuit” after the headstage, which subtracts the command voltage from 

the output signal, provides offset and gain correction as well as a compensation 

for the frequency response of the headstage. In our case, it is desirable to have 

“support circuits” for each of the headstage amplifiers. Hence, such a control 

circuit was designed and simulated with the critical parameter being the gain 

equalization circuit.  

 

Figure 20.  Support circuit used with the headstage amplifier 

The support circuit is modeled after similar circuits found in commercial 

amplifiers and what has been published in [28] (Sigworth 1994, 1995. EPC9).  
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The support circuit provides two main functions: 1) Gain and Offset 

correction and 2) Frequency Boost. In addition to these functions, the circuit 

terminates with a Bessel filter so that the response rolls off at 10 kHz. This value 

was chosen to be around 10 kHz with the sampling rate being 100 kHz in 

accordance with the Nyquist criterion. A preceding stage includes a summing 

amplifier for Command voltage, Pipette Offset and Zap signals.  

 

Figure 21. Support circuits with capacitance compensation 
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3.4 Automatic Bilayer formation using Harvard Syringe Pump 

To accomplish automatic bilayer formation, a Harvard syringe pump is used, 

which is controlled via a LabView program. The pump is operated in the volume 

mode with the Target volume set as the volume of the chamber to be filled or to 

be emptied. While the front chamber is being filled with solution, a triangular 

voltage stimulus is applied and the amplifier monitors the current across the 

aperture, which is being acquired by the computer using a National Instruments 

board and processed to give a capacitance reading. This acts as feedback to 

operate the pump. If the bilayer has formed, the appropriate capacitance and 

resistance values are reached and the pump operation stops. If an electrical short 

between the chambers is detected, the pump reverses its motion, lowering the 

liquid level over the micropore until the level drops below the aperture and the 

electrical connection is removed. This concludes an iteration cycle at which end 

the direction of motion of the motion block reverses again. This cycle of 

repeatedly filling and emptying the chamber in which the bilayer is to be formed 

continues until a bilayer formation is detected. The infuse rate and refill rate are 

set to be synchronized with the time taken by the Labview program to perform a 

single iteration of capacitance and resistance measurements.  
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Figure 22. LABVIEW block diagram of Harvard syringe pump control 

3.5 Frequency Response Measurement Setup 

 The frequency response of the headstage is necessary to study the 

variation of gain across the operating frequency range with the four Op-amps 

(Table 1) under consideration and to compare their performance. This requires an 

AC current to be swept across the chosen frequency range at the input of the 

headstage. In the case of this transimpedance amplifier the input is a current while 

the output measured is a voltage.  
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The Gain of an amplifier is expressed as, 

���� �
���	�� ������ ���

��	�� ������ ���
 

In the case of the headstage transimpedance amplifier, 

���� �
���	�� ������ ���

��	��  ������� ���� ��	������ ������
 

However, the input impedance of the headstage is a sum of resistive and 

capacitive components. The capacitive component is frequency dependent which 

makes the Gain a frequency dependent quantity.  Hence, the Gain of the 

transimpedance headstage circuit is given by 

������� �
���	�� ������ ���

��	��  ������� ���� ��	������ ��� ������
 

This means that the input current is normalized by an impedance factor to express 

the gain of the circuit in dB.  

In our case, we can express the Gain at DC or at a low frequency of 100 

Hz as a dimensionless quantity by using a normalization factor of 1 mV/pA (1 

GΩ).  

���� �
���	��������������

��	�� ������� �	��� 1 ��/	�
 

To supply 1 nA of current at the input of the headstage, a Keithley 6220 

AC/DC current source was used. Since the instrument does not have a built-in 

frequency sweep capability, it was programmed using LABVIEW to generate a 
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frequency sweep over a frequency range from 100 Hz to 10 kHz as shown in 

Figure 23.  

 

Figure 23.  Initial setup for Keithley 6220 AC/DC current source in LABVIEW 

The AC current source does not take into account the capacitive effects of 

the input impedance; it rather supplys a current of 1 nA irrespective of the phase 

relation between current and voltage. Since at high frequencies the capacitive 

component dominates, the source voltage will be lowered to maintain 1 nA of 

source current. In a practical application of voltage clamp, this is not the case, 

since the input only sees a constant voltage. To account for the difference in 

supply voltage for different frequencies, both the input and the output voltage are 

recorded simultaneously, using two synchronized lock-in amplifiers. The block 

diagram of the setup used is shown in Figure 24.  

The SRS 830 Lock-in amplifier uses the trigger link from the Keithley 

6220 AC current source as a reference input. The guard signal from the current 

source is fed to the input channel. Similarly, the trigger link from the current 

source is also used as a reference by the second lock-in amplifier (EG & G 5206), 

with the output voltage from the headstage at the input channel. The RMS 
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voltages from both lock-in amplifiers are then recorded and displayed in the 

Labview program. 

 
Figure 24. Block diagram of frequency response measurement setup 

 

Figure 25.  Front panel of the Labview VI for frequency response setup 
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The Labview program sweeps the frequency setting of the Keithley 6220 AC 

current source from 100 Hz to 10 kHz according to the number of points entered 

in the front panel. When the program reaches the end frequency of 10 kHz at the 

end of the first iteration, the program initiates a small delay and then starts the 

next iteration from start frequency. The delay is provided to ensure that the Lock-

in amplifiers lock-in to the signals being measured in spite of the sudden jump in 

frequency from 10 kHz to 100 Hz. (Figure 26) 

 

Figure 26. LABVIEW diagram for measuring the Frequency Response 
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Chapter 4 

RESULTS 

4.1 Array mounting device 

The array mounting device was designed keeping in mind the necessity to 

separate the four channels and avoid cross-talk between the channels. This was 

successfully demonstrated by using a machined device out of a single acrylic rod. 

However, the mounting device faces cracking due to stress at the screw joints.  

In order to prevent these problems the design was modified in Solidworks to 

make a physically isolated array in both the cis and trans sides of the holder. The 

design was also modified to accommodate two additional chambers making it a 6 

chamber array as shown in Figure 27. 

 

Figure 27. 3D model of cis side of the proposed 6 chamber silicon chip holder 
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4.2 Headstage Amplifier board 

4.2.1 Design 

The variable resistor VR2 offers a convenient way set the drain voltage of the 

JFET for the best noise performance. The simulation was performed by varying 

VR2, with the four Op-amps listed in Table 1 and the results are shown in Figures 

28 – 31. 

 

Figure 28. Simulated Frequency Response of Headstage amplifier with OPA 656 

In the case of the headstage amplifier with OPA 656 the variation in the frequency 

response is not huge, and no frequency “ringing” or oscillation is observed at 

higher frequencies. However the response starts to roll-off at frequencies in the 

order of 10 kHz with slight increases in bandwidth with increasing VR2. 
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Figure 29. Simulated Frequency Response of Headstage Amplifier with OPA 827 

In the case of the headstage amplifier with OPA 827 a wider bandwidth upto 10 

kHz could be achieved. However when VR2 is set at 8 kOhms or above, a 

frequency hump is observed, indicating oscillations in the circuit. Similarly in the 

case of the circuit employing OPA 134, a larger bandwidth in the order of 50 kHz 

could be achieved; however the circuit oscillates at VR2 set below 5kOhm. The 

TLE 2037 shows a bandwidth of around 50 kHz with oscillations setting in below 

a VR2 setting of 4 kOhm. 
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Figure 30. Simulated Frequency Response of Headstage Amplifier with OPA 134 

 

Figure 31. Simulated Frequency Response of Headstage Amplifier with TLE2037 
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Commercial resistors in the 1 GOhm range typically have a shunt capacitance in 

the order of 0.1pF [27] (Sigworth, 1995, p.97). It was assumed in the simulations 

that a parasitic capacitance of 8 fF exists across the 1GOhm feedback capacitance. 

The value of this capacitance affects the roll-off of the frequency response 

considerably. It was found that for values below 8 fF the roll-off disappears and 

response became unstable with a huge rise in the gain. 

 The simulated responses were compared with frequency response 

measurements on the fabricated headstage boards using the setup explained 

earlier. (Sec. 3.5, p.31) Figure. 32 – 35. 

 

Figure 32. Measured Frequency Response of Headstage Amplifier with OPA 656 

The measured frequency response of the Headstage amplifier with OPA 656 is 

flat up to 3 kHz, similar to the simulated response. However at the best noise 

performance setting, the circuit oscillates at frequencies above 4 kHz. The 
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increase in noise at high frequencies could be due to the reduced dynamic range 

of the Op amp because of lower operating voltage at 5 V. leading to lower signal 

to noise ratio. 

 

Figure 33.  Measured frequency response of headstage with OPA 827 

The measured frequency response of OPA 827 and OPA 134 are similar with 

bandwidths in the same order of 6 kHz. An oscillation is still observed near the 

roll-off point. However the response is not flat unlike that of the OPA 656. The 

roll-off, however is steep in both cases when compared to the OPA 656. 
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Figure 34. Measured frequency response of headstage with OPA 134 

 

Figure 35. Measured frequency response of headstage with TLE2037 

The TLE 2037 exhibits a flat response till frequencies up to 4 kHz. The roll off is 

steep when compared to the OPA 656, but shallower than that observed for the 
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OPA 134 and OPA 827. The roll-off also exhibits a second cut-off around 6 kHz. 

It is notable that the TLE 2037 does not oscillate at the best noise performance 

setting.  

 When comparing the results, it is also important to consider the setup, 

using which the Op-amps were mounted on to the headstage. The OPA 656 was 

soldered on to the headstage during measurements. However, all other three op-

amps were mounted in a ZIF socket for ease of testing. This arrangement 

introduces considerable parasitic capacitances that have to be taken into account.  

 At lower frequencies of measurement, the lock-in amplifiers take a finite 

time to lock-in to the measured signal, thereby distorting the measured output 

voltage.  

4.2.2 Noise analysis: 

A noise analysis was also performed on the simulated circuit with all four Op-

amps and the spectral density in A2/Hz was plotted respectively. The spectral 

density was obtained for the same settings of JFET drain bias used to plot the 

frequency response. (Figures 36-39). The noise analysis performed using PSPICE 

indicates noise characteristics that are similar to the frequency response for the 

respective drain bias settings.  
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Figure 36. Simulated headstage output noise with OPA 656 

The OPA 656 exhibits a flat spectral density of 4e-29 A2/Hz up to 3 kHz after 

which it starts to roll-off. In case of OPA 827, the spectral density maintains a flat 

profile up to 5 kHz. However when the circuit oscillates, the noise level increases 

as seen. Similarly a flat response is seen for OPA 134 up to 6 kHz with an 

increase in noise level up to a maximum of 2e-28 A2/Hz when the circuit 

oscillates. 
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Figure 37. Simulated headstage output noise with OPA 827 
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Figure 38. Simulated headstage output noise with OPA 134 
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Figure 39. Simulated headstage output noise with TLE 2037 

The headstage output was then connected to a HP 3562A Dynamic Signal 

Analyzer and the response was obtained with all four Op-amps listed in Table 1. 

(Figure 40 – 43). The measurement was done again with all four Op amps, with a 

1GOhm load connected across the output of the amplifier. This was done in order 

to model the gigaseal formed by a lipid bilayer across which the ionic current is 

measured by the headstage amplifier. It is seen that in case of OPA 134, OPA 827 

and TLE 2037 with the 1 GOhm, the spectral density reduces after 1 kHz in 

comparison to the open load condition. In all four cases a roll off in the noise 

level is seen starting in the 10-29 A2/Hz range and rolling off after 19 kHz. The 

measured spectral densities are in the same range as those that were simulated. 
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Figure 40. Spectral Density of headstage with OPA 827
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Figure 41. Spectral Density of Headstage with OPA 134 
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Figure 42. Spectral Density of headstage with TLE 2037 
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Figure 43. Spectral Density of headstage with OPA 656 
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In Figure 43, the spectral density of the Headstage amplifier with OPA 656 op 

amp and the HEKA EPC 8 is shown. The spectral density of the headstage 

designed with OPA 656 is higher than expected. This is because the ±12 V 

amplifier design [27] (Sigworth, 1995), is being operated at ± 5V. The reduced 

operating voltage has two implications on the noise levels. 1) Reduced operating 

voltage means reduction in the dynamic range of the circuit and reduction in 

signal to noise ratio. 2) The unmodified circuit is now operating at a lower supply 

voltage which shifts the JFET operating point. The operating point needs to be 

optimal for best noise performance and this optimization has to be done by re-

designing the circuit with respect to the new supply voltage. The roll-off at 10 

kHz can be achieved by connecting the control circuit at the output of the 

headstage. 

4.3 Support Circuit board: 

The support circuit was simulated and the frequency response was obtained 

without boost and with increasing values of the boost adjust resistor (Figure 44). 

The roll-off was maintained at 10 kHz. The input signal to the boost stage can be 

boosted by up to 10 dB in the 1 kHz to 10 kHz range. Thus, the corner frequency 

in the headstage can be replaced by a higher corner frequency by adjusting the 

frequency boost resistor. While maintaining the Frequency boost resistor at 30 kΩ 

the gain of the boost stage was varied and the response was plotted (Figure 45). 
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Figure 44. Frequency response of support circuit with frequency boost 

 

Figure 45. Frequency response of the boost circuit with variable gain 
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4.4 Switching of Ompf protein: 

Bilayers were formed on all four micropores and OmpF was added to each well 

for self-insertion. The self-insertion of OmpF porin can be seen in Channel 2 of 

Figure 46.  

 

Figure 46. OmpF self insertion in 30 µm bilayer membrane in well 2 

When self-insertion in a bilayer took place, the bilayers at the other three sites, 

stayed intact. It was also seen that “broken” bilayers or reforming the bilayers 

does not affect the bilayers at the neighbouring sites. 
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A simultaneous recording of OmpF gating at an apllied voltage of 200 mV can be 

seen in channel 2 and 3 in Figure 47. Observing the recorded events shows that, 

there is no crosstalk between the individual channels.  

 

Figure 47. OmpF gating simultaneously in two separate membranes 

The current-amplitude histogram of the OmpF gating currents was obtained 

(Figure 48) at 200 mV. The current varies from around 2000 pA to more than 

2800 pA in steps which proves the increased gating activity of the trimer. The 

histogram plot shows that there are specific current levels at which the gating 

occurs. 
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Figure 48. Current – Amplitude Histogram of OmpF gating. 

The relative conductance steps, for the same recording is plotted in Figure 49 with 

the conductance at the lowest current as the reference. A number of sub 

conductance switching states with conductance less than monomeric conductance 

of, approximately 1.35 nS can be observed. 
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Figure 49. Conductance steps showing gating of the OmpF trimer 

4.5 Switching of Ompf protein in the presence of Ampicillin: 

Ampicillin (2.5 mM) was added to the second well and the effect of the antibiotic 

on the gating of OmpF was observed (Figure 50). In the figure, Channel 2 shows 

the effect of adding Ampicillin to a bilayer system with OmpF, channel 3 shows a 

bilayer system with no ampicillin added. The addition of ampicillin to well 2 does 

not affect the activity in the other wells. It can be seen that the current levels in 

the presence of Ampicillin are higher compared to the well not containing the 

antibiotic. This can be attributed to more than one trimeric porin channel being 

inserted in the open state. 
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Figure 50. OmpF gating in two separate membranes with Ampicillin in well 2 

 

Figure 51. Current amplitude histogram of OmpF in the presence of ampicillin 
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Figure 52. Conductance steps of OmpF gating in the presence of ampicillin 

 The relative conductance of the porin is shown in Figure 52 with reference 

to the conductance at lowest current measured. It can be seen that the conductance 

drops significantly after 4.5 s.  

Since the Ampicillin molecule permeates through the open porin channel, it 

temporarily blocks part of the channel, leading to a reduction in open channel 

current. This causes a broad current amplitude distribution as seen in Fig. 51, 

contrary to the discrete conductance levels of the porin itself (cf. Fig. 48). This 

can be seen as a large variation of conductance steps in Figure 52. 
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Chapter 5 

CONCLUSION 

5.1 Conclusion 

It has been demonstrated that stable lipid bilayers can be set up on an array of 

silicon micropores and can be used as sites for self-inserting ion-channel proteins 

which can be studied independently of each other. The 30 µm silicon pores used 

were vertically mounted in a fabricated acrylic holder with four wells and were 

painted with the lipid solution to form bilayers. 

 The need for simultaneous recording of currents in the four wells 

necessitated fabrication of inexpensive and small multi-channel headstage 

amplifiers. The frequency response and spectral density of the headstage was 

simulated and verified with measured frequency responses and spectral density. 

This was done with each of the four OPA and TLE Op amps from Table 1 to 

compare the performance of the circuit and to choose the best Op-amp for better 

noise response and Gain-Bandwidth product. The current design using an 

OPA656 op amp operating at ±5V and the discrete differential front end operating 

at ±12V was found to be an appropriate choice concerning noise and bandwidth. 

Alternatively, a design using a recently released high-voltage SiGe JFET Op-amp 

with a smaller gain bandwidth product (OPA827) can be used without affecting 

the noise performance or significant deterioration of the frequency response, but 

with the benefit of a larger dynamic range at ±12V supply voltage. Using 
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published designs, support circuits were constructed for the headstage to include a 

capacitance compensation circuit and a frequency boost circuit, including an anti-

aliasing filter designed for a roll-off at 10 kHz.  

 The complete arrangement was then used to demonstrate the independence 

of individual channels from each other, during simultaneous measurement of lipid 

bilayer membrane gigaseals, of ionic current flow through OmpF porin ion 

channels and as a tool for studying ion channel permeation processes. To further 

show the independence of channels, the permeation process of antibiotics was 

studied. Ampicillin (2.5 mM) was added to one of the fluidic wells and the ionic 

currents in both wells were recorded again. 

 By analyzing the recorded currents, it can be clearly seen that the 

conductance steps of the current recorded from the well containing ampicillin and 

OmpF are larger compared to the well that contains only OmpF and that the 

frequency of events increases. The levels indicate that ampicillin permeates 

through the porin thereby temporarily reducing the conductance of the porin.  

 

5.2 Future Work 

It would be practical to make a six chamber array in order to create a set of 

chambers near the screw joints in case of cracks due to stress. In addition, the 

back side of the holder is proposed to be divided into identical channels to achieve 
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total isolation of the individual channels, allowing individual voltage stimulation 

protocols.  

 An OPA656 Op-amp design with ±5V power supply is proposed to be 

simulated and used in the next revision of the headstage circuit with scaled 

current and voltage values. Steps towards integrating more of the support circuit 

onto the headstage board can be taken. The capacitance compensation circuit, for 

instance, can be incorporated within the headstage. The headstage and control 

circuit together provide an inexpensive method of simultaneous recording from 

different bilayer sites.  

 The Montal Mueller method using the syringe pump can be used with 

microfluidics and horizontally mounted silicon micropores and integrated 

electrodes to achieve contactless bilayer formation. The multi channel 

configuration can be used to conduct experiments on different types of ion-

channels with different sensitivities simultaneously.  
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