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ABSTRACT

Most existing approaches to complex event processing over streaming data rely on

the assumption that the matches to the queries are rare and that the goal of the system is to

identify these few matches within the incoming deluge of data. In many applications, such

as stock market analysis and user credit card purchase pattern monitoring, however the

matches to the user queries are in fact plentiful and the system has to efficiently sift through

these many matches to locate only the few most preferable matches. In this work, we pro-

pose a complex pattern ranking (CPR) framework for specifying top-k pattern queries over

streaming data, present new algorithms to support top-k pattern queries in data streaming

environments, and verify the effectiveness and efficiency of the proposed algorithms. The

developed algorithms identify top-k matching results satisfying both patterns as well as ad-

ditional criteria. To support real-time processing of the data streams, instead of computing

top-k results from scratch for each time window, we maintain top-k results dynamically as

new events come and old ones expire. We also develop new top-k join execution strategies

that are able to adapt to the changing situations (e.g., sorted and random access costs,

join rates) without having to assume a priori presence of data statistics. Experiments show

significant improvements over existing approaches.
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Chapter 1

INTRODUCTION

Complex event processing systems usually deal with the examination of interesting event

patterns that occur within data arriving in the form of a stream. This problem is also known

as the pattern matching problem: given a pattern of interest (represented in different forms

under different models), the system needs to discover all matching event instances of the

query within the stream.

Most existing approaches to complex event processing (e.g., [26, 7, 17, 9]) rely on

the assumption that the matches to the pattern queries are rare and that the goal of the

system is to identify these rare matches within the incoming deluge of data. In many

applications, such as credit card purchase pattern monitoring, however the matches to the

user queries are in fact plentiful and the system has to efficiently sift through these many

matches to locate only the few most preferable matches.

Figure 1.1 presents a sample query for an application tracking shoppers for

expensive brand goods. In this example, the input is a stream of credit card purchase

transactions. The query aims to identify the heavy brand shoppers: more specifically, the

query seeks individuals who purchase three goods from brand-A, brand-B, and brand-C in

sequence within 10 hours and meanwhile two other goods from brand-D and brand-E

within 8 hours; among all the matches, we are interested in identifying 10 matches with the

highest overall shopping expenditure and the smallest shopping span between purchase

of brand-A and brand-C.

Despite extensive work in complex event processing (see Chapter 2), there has

been very limited previous work that focuses on challenges that involve processing such

top-k pattern queries over data streams. Many works, such as [6, 13, 14], assume that the

tuples to be ranked or aggregated arrive in the stream that are already materialized in the

form of sensor readings or documents. We on the other hand focus on pattern matches:

the patterns to be ranked need to be discovered on the fly and we want to avoid the cost of

enumerating all pattern matches.
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SEQ S1 = A;B; C
WITH A=(purchases in Brand-A),

B=(purchases in Brand-B),

C=(purchases in Brand-C)

WITHIN 10 hours

WHERE A.CCID = B.CCID AND B.CCID = C.CCID

PREF MAX[S1.exp = A.exp + B.exp + C.exp] AND

MIN[S1.t = C.t − A.t]

RETURN 10

SEQ S2 = D;E
WITH D=(purchases in Brand-D),

E=(purchases in Brand-E)

WITHIN 8 hours

WHERE D.CCID = E.CCID

PREF MAX[S2.exp = D.exp + E.exp]

SEQ P1 & P2

WITH P1 = (sequence pattern S1),

P2 = (sequence pattern S2)

WITHIN 10 hours

UPDATE 5 hours

WHERE S1.A.CCID = S2.D.CCID

PREF MAX[S1.exp+S2.exp] AND MIN[S1.t]

Figure 1.1: An example shopping pattern query on credit card purchasing data

1.1 Contributions

In this thesis we propose a complex pattern ranking (CPR) framework for specifying top-k

pattern queries over streaming data, present new algorithms to support top-k pattern

queries in data streaming environments and verify the effectiveness and efficiency of the

proposed algorithms. The proposed framework lets the user specify pattern queries

including user specified preference functions on event attributes. The algorithms we

develop identify top-k matching results satisfying both the pattern query as well as

additional criteria. The following is the list of our salient contributions:

• We first present a language for top-k complex event processing and pattern ranking

over data streams.

• We show that top-k sequence pattern matching problem can be posed in the form of

a shortest path problem on so called stratified stream graphs. We propose a novel

stratified-graph based k-shortest path algorithm (k-SSP) that leverages the stratified

nature of the data graphs to locate best sequence match results quickly and

incrementally. We then extend the algorithm to handle dynamically evolving data

2



graphs without wasting resources for redundant re-computations as data graph

evolves over time (k-DSSP).

• We propose an adaptive join scheduling strategy for TA and NRA top-k join

processing algorithms [11] to combine sequence pattern match results. The

proposed strategy is designed to tackle run-time variations in the data streams (e.g.,

variations in sorted and random access costs, join rates) without having to assume a

priori presence of reliable data statistics (which are often impossible to assume in

data streams). In particular, when dealing with a top-k join query with varying costs

for sorted- and random-accesses for different data queues, the proposed waste

avoiding boundary selection (WABS) approach adapts and re-schedules access

orders to minimize the overall join cost.

• We develop a system with a dynamic mechanism to maintain top-k joined results for

complex queries, avoiding the costs of re-computing the previous results.

• We experimentally evaluate the algorithms and compare against existing solutions

under various scenarios.
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Chapter 2

EXISTING WORK

2.1 Complex Event Processing

Early works on complex event processing were motivated by the limitations of DBMSs to

scale to the performance requirements of publish/subscribe applications [9]. One of the

earliest complex event processing works is SASE [26], which combines a series of

optimization strategies to deal with classic sequence pattern queries on large scale of

stream data. SASE includes plan based query monitoring and takes advantage of an

extended NFA scheme to handle multiple queries at the same time. Later improvements

on this work include [2, 27]. [7] presents Cayuga, another general purpose event

monitoring system. Similar to the SASE, Cayuga focuses on pattern monitoring over large

data sets and provides an automata-based pattern matching engine. The query language

syntax used in Cayuga is similar to relational database query languages and, compared to

SASE, is able to express more general queries.

These two automata-based works have been followed by many other approaches

to large scale pattern matching. For instance, in [17], a petri-net based query model is

proposed. Recent work in complex event processing also focused on out-of-order and

uncertain events. proposed a K-Slack algorithm with K-delayed purging; i.e,.an

out-of-order event is discarded if it is beyond a K boundary. [21] also deals with

out-of-order events but proposes a stack-based mechanism to manage the events.

Instead of focusing on patterns, [6, 13, 14] focus on ranking and aggregation of tuples in

the input stream. [24] considers uncertainties that exist in timestamps and event attributes

and focus on efficient evaluation of aggregates and joins under accuracy requirements.

In this work, we note that most existing mechanisms (including the automata

based approaches) are suitable for scenarios where one needs to retrieve all matches to

the user’s query. For top-k queries, where only a select few matches are required, these

approaches would be highly inefficient due to their need to first retrieving all matches.

Therefore, we present k shortest paths and top-k join based scheme which can handle

4



top-k CEP queries efficiently, without enumerating all matches.

2.2 Top-k Join Processing

Ranked join algorithms, including [10, 11] and others, rely on weight-sorted input streams

for pruning unpromising matches when identifying top matches to the users query. In one

of the earlier works, Fagin [10] proposed an algorithm, known commonly as the FA, which

assumes the availability of both the sorted and random accesses to the data. FA considers

data from the sources in (progressively) descending order of desirability and, with the help

of random accesses, enumerates top-k join results without having to access all the data

from these sources. Later improvements to FA include the threshold algorithm (TA), which

pro-actively schedules random accesses when they are cheap, and the no-random access

algorithm (NRA), which is applicable when random-accesses are either unavailable or

extremely costly [11].

Among these and other variants to the top-k join processing problem, a key

challenge is to identify an appropriate schedule which states in which order the incoming

data queues will be considered and how sorted and random accesses will be alternated.

[12] attempts to leverage a greedy gradient based heuristic for reaching the threshold

condition earlier. [4] assumes a priori knowledge of the distribution for each join queue and

predicts the potential costs and rewards for expanding each queue. [25] addresses

scenarios where different predicates have different costs. The algorithm collects statistics

and picks an appropriate schedule in the runtime. In contrast, in this thesis, we focus on

situations (common in distributes scenarios) where reliable statistics about incoming

streams are hard to obtain and that access costs and join rates can change over time.

2.3 K Shortest Paths

In this thesis, we rely on graph-based techniques to enumerate sequence patterns. The

k-shortest paths problem dates back to early 1950s. Early solutions include Yen’s

algorithm [18], which is known to have a computational complexity of O(kv3), where v is

the number of vertices. Later works by Lawler [20] and Katoh et al. [19] improved the basic

Yen’s algorithm, but the worse case complexity stays O(kv3). A recent improvement on

5



Yen’s approach can be found in [15]. Another approach to the k-shortest paths, differing

significantly from Yen’s work, with worst running complexity of O(m + vlog(v) + klog(k)),

where m is the number of edges, has been proposed by Eppstein in [8] and a lazy version

of this algorithm has been presented in [16]. While approaches similar to Yen’s work on

undirected graphs, Eppstein’s algorithm works on directed graphs. Secondly, while Yen’s

algorithm returns only simple paths, Eppstein’s algorithm can also identify paths with

repeated nodes. However, while Yen’s algorithm can work incrementally, Eppstein’s

approach is unable to obtain k-shortest paths in an incremental manner. Other approaches

to this problem includes [3], an A-* search based approach that is able to deal with

situations where only partial graphs can be loaded into the main memory. This also has

the same worst case complexity as Eppstein’s algorithm and, similarly, is not incremental.

In this thesis, we propose k shortest paths algorithms that leverage the stratified

nature of the data graphs that need to be considered during CEP processing for improved

efficiency and that incrementally maintain the list of top-k shortest paths in the presence of

dynamically evolving graphs.

6



Chapter 3

PROPOSED FRAMEWORK

3.1 Overview of the Complex Pattern Ranking Framework (CPR)

Notation and Query Language

As is common in complex event processing literature, we use E to represent event classes

and e for event instances belonging to event class, E. Each event class, E, has certain

associated attributes (E.A) and different event instances may have different values for

these attributes. The timestamp, t, represents arrival time associated to each event

instance. Then we define a sequence pattern (SEQ) as follows:

SEQ Si

WITH Event classes

WITHIN Window constraints

UPDATE window update constraints

WHERE Additional constraints

PREF Preference specification

RETURN Number of results to be returned

Where, a sequence pattern (Si) consists of a series of event classes defined in the

WITH clause. In WITHIN and UPDATE clauses, we define the time window and

corresponding window update constraints for Si. We only consider event instances within

the time window as valid and shift the window at the time frequency defined by UPDATE.

UPDATE is adopted here to reflect the freshness requirement for a given sequence query.

In addition to these patterns, users can specify predicates on the attributes of involved

events; we refer to these as additional constraints. The user can also provide a preference

specification stating how the sequence matches should be ranked, where a sequence

match is the combination of event instances that satisfy the sequence pattern. The

RETURN is an optional clause, which specifies how many matches to return. In complex

pattern queries shown later, each sub-query is one component and the RETURN clause is

omitted, since user only needs to the number of top complex query matches and

7



PATTERN Sequence/Conjunction/Disjunction

WITH Sequence Patterns (SEQs)

WITHIN Window constraints

UPDATE Window update constraints

WHERE Additional constraints

PREF Preference specification

RETURN Number of results to be returned

Figure 3.1: Top-k query pattern

sequence matches will be produced as needed.

For complex pattern queries, we consider three patterns over different sequence

pattern: Sequence, (Si ; Sj)w, means all event instances of a sequence match of Si occur

before that of Sj within a time window w. Disjunction, (Si || Sj)w, means a sequence

match of either Si or Sj occurs within w. Conjunction, (Si & Sj)w, means sequence

matches of both Si and Sj must occur within w. More complex patterns can be

constructed by replacing Si and Sj above with other patterns. We do not support the

kleene closure and negation patterns discussed in SASE [1].

The overall structure of a complex query statement is given in Figure 3.1. The

PATTERN clause includes the pattern specification statements on sequences specified in

the WITH clause. Similar to the sequence pattern, the WITHIN clause defines the time

window within which we consider sequence matches as still being valid. Note that the

window defined here provides a further constraint for each window defined by a sequence

query. If one sequence query has a current window wi beyond the overall window w, we

only consider the part wi overlapping with w as valid. The UPDATE clause specifies how

often we update the overall match results. In the WHERE part, additional constraints on

attributes of events cross different sequence patterns are provided. The preference

specification is provided within a PREF clause, which decides how scores from different

sequence patterns are merged. The RETURN clause specifies the number of target

results. An example was provided in Figure 1.1.

8



Architectural Overview

We propose to tackle the problem of top-k pattern detection over data streams by splitting

it into three sub-problems:

• Top-k sequence detection and maintenance: The first problem we tackle in this

thesis work is to detect and maintain top-k sequence matches. Unlike the

automata-based approaches to pattern detection, in this thesis, we propose a

graph-based approach. In particular, we show that given a sequence pattern, related

events in the current window can be modeled as a stratified graph. We then develop

efficient top-k shortest path algorithms for the detection and dynamic maintenance

of top-k sequences over stratified graphs.

• Top-k complex pattern detection: As we mentioned earlier, complex patterns can be

seen as combinations of simpler sequence patterns. Therefore, top-k complex

patterns can be enumerated by joining matches for sequence patterns. The

challenge, of course, is to perform this combination efficiently and obtaining top-k

complex pattern matches without having to enumerate too many matches for the

constituting simple sequence patterns.

• Dynamic Top-k complex pattern match maintenance: In addition to dynamic

maintenance of each individual top-k sequence matches across neighbor time

windows, we also want to maintain the top-k complex pattern matches dynamically.

The challenge here is how to utilize the previous computed results so that the

re-computation costs can be avoided.

As can be seen in Figure 3.2, our CPR framework consists of three modules: (a)

an event processing module (EPM), (b) a sequence ranking module (SRM), and (c) a

top-k merge module (TMM). EPM handles query registration and event dispatching. In

SRM, we have one data structure for each sequence pattern in the query. SRM exposes

access interfaces for sorted and random accesses for the next TMM module that

combines partial results it pulls from its input queues into complex pattern rankings.

9
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Figure 3.2: Architectural overview of CPR framework

Since the costs of sorted access and random accesses to different pattern queues

can be drastically different (and may depend on the incoming data), it is the responsibility

of TMM to decide in which order the partial results will be pulled from the input queues and

when random accesses (as opposed to sorted accesses) will be scheduled. The SRM

module operates on an on-demand basis and incrementally produces additional sequence

matches (in decreasing order of preference) as requested by TMM.

The output of the system is the list of top-k matches to the CEP query within the

current window, ordered by the preference function, and maintained current as the stream

evolves. When the time window moves, the top-k results are updated dynamically: this

involves dynamically updates to the sequence matches by SRM and dynamically updates

to the top-k merged matches by the TMM.

Example: Let us reconsider the query in Figure 1.1, where we have two sequence queries

S1 and S2. The first sequence query S1 can be considered as two sub sequence queries

s1,1 and s1,2, where s1,1 queries “A;B;C” sequence with Max[A.exp+B.exp+C.exp] and

“A.CCID” = “B.CCID” = “C.CCID”. s1,2 ranks “A;C” sequence with “A.CCID” = “C.CCID”

based on [C.t − A.t]. The “WINDOW” constraint for both of them stays the same as in S1.

Together in s1,1 and s1,2, we seek to find instances of the sequence "A;B;C" with the

highest total purchase expense and the shortest time span between A and C. In S2, we

simply look for sequence matches of “D;E” with highest total purchase expense. Overall,

we try to find the person that has highest expenditure sum over “A;B;C” and “D;E”, and the

shortest time span over purchase of “A” and “C”. Suppose the events in current window are

“a1 d2 b3 e4 a5 c6 e7 c8”. EPM picks events “a1 b3 a5 c6 c8” and forwards them to SRM

in the form of a stream. Simultaneously, EPM also picks “a1 a5 c6 c8” and forwards them
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to another instance of SRM as a different stream. SRM enumerates “A;B;C” sequence

matches in decreasing order of total expenditure and makes these available to TMM. The

second instance of SRM enumerates the “A” and “C” pairs in decreasing order of span and

makes these available to TMM. For S2, similarly, EPM picks “d2 e4 e7” to another SRM

instance, where matches are presented in decreasing order of total expenditure by SRM.

Finally, TMM performs rank-joins on the “A;B;C” and “A;C” sequence matches based on

the IDs of “A” and “C” events, simultaneously rank-joins on the “A;B;C” or ”A;C” with

matches of “D;E” based on the IDs of “A” and ”D” to identify the top results best satisfying

both the overall preference requirements. Since the overall preference specification in

Figure 1.1 includes an “AND” operator, in this case TMM will use an appropriate score

merge function (such as “min” [10]) that can represent fuzzy conjunction.

3.2 Sequence Ranking

In this section, we propose a graph-based approach to discover highly ranked sequences

within an input stream. This algorithm forms the core of the sequence ranking module

(SRM) and operates when the preference function is linear1. When the preference function

is nonlinear, the enumeration process is handled directly by the top-k merge module.

Stratified Stream Graph

Given a sequence pattern, S, and a finite stream window, str, we represent the input

pattern and the data in the stream, in the form of a stratified graph.

Definition 1 (Stratified Graph). An acyclic directed graph G(V,E) is a p-stratified graph if

the set of vertices V can be partitioned into p non-overlapping sets, V1 through Vp, such

that the vertices in partition (or stratum) Vi have incoming edges only from the vertices in

Vi−1 and have outgoing edges to only those vertices in Vi+1.

The stratified graph is constructed as follows: Firstly, for each event type in the

sequence pattern, we initialize a set (or stratum) of vertices. Then, for each event instance

1In fact, any monoid function would be admissible. For simplicity, in this thesis, we only

consider linear preference functions for sequence ranking by SRM.
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(c) Stratified stream graph

Figure 3.3: Stratified graph example

in the input data stream, we create one new vertex for each corresponding event type in

the sequence pattern and insert these vertices into the corresponding vertex strata. Then,

for each pair of event instances in strata Vi and Vi+1, we check if they satisfy the same

order in the data stream and if so, we add a directed edge from the vertex in stratum Vi to

the vertex in Vi+1. We also create two dummy vertices, “start vertex” and “end vertex”

denoted as s and d, such that s points to all vertices in strata V1 and d is pointed by all

vertices in strata Vp. Figure 3.3 shows an example.

Note our constructed stratified graph is similar to the stack based match buffer in

existing automata based approach (e.g. SASE [1]), which enables our algorithms

described below to be easily incorporated into existing approaches.

Theorem 1. Let S be a sequence pattern and let str be a finite data stream (e.g.,

constrained by a window). There exists a stratified graph, GS,str, that corresponds to the

pattern S and the stream str.

The proof follows trivially from the construction process.

Preference Function and Vertex Weights

In a given stratified stream graph, each vertex corresponds to an event instance and these

event instances can have associated attribute values. Given a linear preference function,

f(), on these attribute values, we can then encode the contribution of each event-attribute

to the preference function in the form of vertex weights: Let ei of type Ej be an event

instance in vertex stratum Vj and let the contribution of Ej to the linear preference
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function, f(), be (c × Ej .ak) for attribute, ak. Then,

• if we seek to minimize f(), we annotate the vertex corresponding to ei with weight

(c × ei.ak);

• if, on the other hand, we seek to maximize f(), we annotate the vertex weight

(−c × ei.ak);

For example, in the query given in Figure 1.1, we want to find a sequence with the

largest total expenditure. Thus, each event instance, ei, will be annotated with −ei.exp.

Theorem 2 (Ranked Sequence Enumeration). Given a stratified graph, G(V,E), whose

vertices are weighted according to a linear preference function, f(), (a) each sequence

match corresponds to a path from the special node s ∈ V to the node d ∈ V ; and (b) the

smaller the overall weight of the path is, the better its rank with respect to the target

preference function and the given maximization/minimization criterion.

The proof of the theorem follows from the associativity of the linear preference functions

and acyclicity of the stratified stream graphs. This theorem enables us to reformulate the

ranked sequence enumeration problem in the form of the ranked shortest path

enumeration (or k-shortest path, KSP) problem over the given weighted stratified stream

graph. While there are a number of solutions to the KSP problem, including Yen’s [18, 23]

and Eppstein’s [8, 16] algorithms, a straight-forward adoption of existing algorithms KSP

algorithms is not appropriate for ranked sequence enumeration over data streams: (a)

firstly, existing KSP algorithms are not designed to take advantage of the stratified and

vertex-weighted nature of the stream graphs; (b) secondly (and more importantly) existing

KSP algorithms are not able to deal with dynamically evolving graphs (due to shifting of

the data window) efficiently. Therefore, we first develop a KSP algorithm that leverages the

stratified nature of the stream graphs and then discuss how to extend this algorithm to

dynamically evolving graphs.

Stratified K Shortest Paths Algorithm

In this subsection, we develop an efficient k-shortest path algorithm for static stratified

graphs. We note that stratified stream graphs are (a) acyclic and directed, (b) edges exist
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only between neighboring strata, (c) (assuming that events are indexed such that the

earlier an event, the lower its in-stratum index) if there exists an edge between vertex pair

from vi,j , (i.e. vertex vi in stratum Vj), to vertex vi′,j+1, (i.e. vertex v′i in stratum Vj+1),

there exist edges between all pairs vm,j , and vi′,j+1, 1 ≤ m ≤ i, and (d) the graph is

vertex-weighted (as opposed to edge weighted).

We leverage the stratified nature of the input graph to construct a pattern query

array (PQ-Array) data structure2: For each stratum, Vj , we create an array Aj ; then, for

each vertex, vi,j ∈ Vj (i.e. the ith vertex of Vj), we insert a triple

〈minWeight, hP tr, vP tr〉 into Aj :

• minWeight stores the best known total vertex weight (i.e. shortest path weight) from

s to any vi′,j , i′ ≤ i;

• hPtr points (horizontally) to the latest vertex in the previous stratum that has an edge

to vi,j ; and

• vPtr points (vertically) to the vertex that is before or identical to vi,j in stratum Vj and

has the smallest minWeight. If two events before or identical to vi,j have the same

smallest minWeight, then vPtr points to the later event (i.e. event with larger

in-stratum index).

Initially, for each vertex, minWeight is set to ∞ and vPtr is set to null (⊥). The start

tuple, s, has both its hPtr and vPtr as ⊥ and its minWeight is set to 0.

Finding a Shortest Path on a Stratified Graph

We first develop an algorithm for finding the shortest path from a given source

vertex vs to d (the dummy end vertex) in a stratified graph (Figure 3.4), which is later used

as a sub-module in the k-shortest paths algorithm. The stratified shortest path algorithm

2Note that PQ-Array data structure is reminiscent of the pathstack [5] used in XML path

matching, though it is structured, constructed, and used differently.
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Algorithm: Stratified-Shortest-Path

Input:

PQ-Array; vs /* vs is the vertex where the shortest path starts */;

Output:

the shortest-path p from vs to end vertex d

Procedure:

V1 = {vs} ;

minWeight(vs) = weight(vs)
vP tr(vs) = vs;

hP tr(vs) = s /*s is the dummy start vertex*/

for each stratum Vj (j= 2,3,. . . ,|V |) do

for each vertex vi,j in stratum Vj do

vp = hP tr(vi,j);
wp = weight(vi,j)+ minWeight(vp); /*smallest sum path

with vi,j */

wc = minWeight(vi−1,j); /*smallest sum path without

vi,j */

if wp ≤ wc then

minWeight(vi,j) = wp;

vP tr(vi,j ) = vi,j ;

else

minWeight(vi,j) = wc;

vc = vP tr(vi−1,j );
vP tr(vi,j ) = vc;

end if

end for

end for

follow hP tr and vP tr from the end vertex d to start vertex s and

best path p consists of vertices from each stratum pointed by vP tr ;

return p;

Figure 3.4: Stratified shortest path algorithm (SSP)

uses dynamic programming on the PQ-Array data structure. The algorithm works by

finding the shortest sub-path from the given source vertex vs to the current stratum at each

iteration and increasing the stratum in the following iteration. Once the algorithm

completes, we can enumerate the shortest path by moving backwards among the strata

from d: this is achieved by following hPtr from one stratum to the previous one and then

following the vPtr within the current stratum (to locate the vertex on the shortest path in the

current stratum). Note that the use of two pointers to track backwards (as opposed to only

one) leverages the properties of the stratified stream graphs to enable the algorithm to

compute in O(|v|) time, and, as we will see later, enables efficient dynamic updates on the

graph.

Correctness proof of SSP: We first present two theorems and based on the two

theorems, we show the correctness of SSP.

Theorem 3. By following SSP, we ensure that the minWeight of each vertex vi,j in
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stratum Vj stores the smallest weight sum reachable from vs (including vs) to any vertex

vi′,j in Vj , where i′ ≤ i.

Proof: To prove the correctness of Theorem 3, we use mathematical induction. Since there

is only one vertex vs in the first stratum V1, the weight of vs is the smallest weight sum

from vs to any vertex with a smaller or equal index to vs in stratum V1. Hence, the theorem

is correct for case j = 1. Assume for case j = k, Theorem 3 holds. Then when j = k + 1,

for each vertex Vi,j from bottom up in stratum Vj , we consider two values wp and wc.

Since by assigning wp as weight(vi,j) + minWeight(vp), we actually make wp store the

total weight of the shortest sub-path from vs to vi,j . In addition, since the algorithm

enforces to process vertex in stratum Vj from the bottom up, when dealing with vi,j , we

already set the minWeight values and corresponding pointer in vi−1,j . By assigning wc

with minWeight of vi−1,j , we ensure that wc stores the total weight of shortest sub-path

from vs to any vi′,j where i′ < i. Then when we set the minWeight with the smallest of

wp and wc, we guarantee that minWeight stores the smallest weight sum reachable from

s to any vertex vi′,j , i′ ≤ i. Hence for j = k + 1, Theorem 3 also holds. Therefore, we

prove that Theorem 3 is correct.

Lemma 1. By following SSP, we also ensure that vP tr of each vertex vi,j correctly points

to the vertex as its definition.

Proof: First, by definition we know that the vP tr of a vertex vi,j only points to either itself

or a vertex below it in the same stratum Vj . In the procedure of SSP, we ensure that vP tr

always points to the smaller one. Or in the case that two vertices are equal in terms of

minWeight, we assign vP tr to the vertex vi,j itself, which is later event than all events

below vi,j . Therefore, we prove the correctness of Lemma 1.

Theorem 4. In SSP, the found path by following hPtr and vPtr backwards from d until it

reaches s is indeed the shortest path from vs to d.

Proof: First, from Lemma 1 and the initial stratified graph construction process, it can be

seen that vPtr and hPtr indeed store the value as defined. Then by definition, we know
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vPtr points to the vertex that is before or identical to vi,j in stratum Vj and has the smallest

minWeight. For any given vertex vi,j , by following its vPtr, we can find the vertex in stratum

Vj that makes up the shortest path until vi,j . Also, we know hPtr points to the latest vertex

v in the previous stratum that has an edge to vi,j . By following vPtr of v, again we can find

the vertex in stratum Vj−1 that the shortest path goes through. Therefore, when we start to

follow hPtr and vPtr from end vertex d to vs, it guarantees the vertex pointed by each vPtr

form the shortest path from vs to d

Relying on Theorem 3 and 4, we can see that the shortest path can indeed be

found by following hPtr and vP tr backwards from end vertex d until vs based on SSP.

Complexity of SSP: The SSP algorithm works in O(|v|) time, where |v| represents

number of vertices, because each vertex is considered only once and for each vertex only

one incoming edge is investigated

K Shortest Paths on a Stratified Graph

Once the shortest path in the stratified stream graph is found, we locate the k

shortest paths incrementally (Figure 3.5) : to find the ith shortest path, we use the

previously discovered (i − 1) shortest paths stored in L. We create a min-heap to store

potential candidates for the ith shortest path. For each vertex v of the (i − 1)th shortest

path (denoted as plast), we check if there is a path p ∈ L sharing the sub-path from the

start event, s, to current vertex, v. If so, we set the value of the vertex following v on p to

∞. After this resetting of the vertex value, we re-apply the shortest path algorithm

described above to find the shortest path psub from v in this revised stratified graph,

combine psub with the sub path from s to v in plast, and store it in the candidate heap. After

this, we pick the path with the smallest value from the candidate heap and mark it as the

ith shortest path. Then in Figure 3.6, we continue this process until all required k shortest

paths are found; the algorithm completes in O((|s|k)2 + |v|sk), where |v| is the number of

vertices (i.e., events in the current window), |s| is the number of strata (i.e., the sequence

pattern length), and k is the number of shortest paths required. Note that the complexity of

the algorithm is significantly lower than that of conventional KSP algorithms (see
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Algorithm: Next-Stratified-Shortest-Path

Input:

PQ-Array;

Output:

next shortest path in current PQ-Array

Procedure:

L = PQ-Array.getCurSPList(); /*get the list of previous found shortest

paths stored in PQ-Array*/

if L.size() = 0 then

p = Stratified-Shortest-Path(PQ-Array, s) ; /*shortest path from s*/

L.add(p);

return p

end if

get the last added path plast from the L
for the jth vertex vj in plast, j = 0, 1, 2, . . . , |plast| /*v0 = s*/ do

restore the original PQ-Array;

weight(vj+1) = ∞;

for each path pi, i = 1, 2, ..., |L| − 1 in l do

if pi shares the same sub-path psub,1 from start vertex s to

vj with plast then

set the weight of next vertex of vj in pi as ∞;

end if

end for

psub,2 = Stratified-Shortest-Path(PQ-Array’, vj ); /* shortest path

from vj to the end */

combine psub,1 and psub,2 to obtain p′

insert the combined path p′ into candidate heap Hcand;

end for

remove top ptop from Hcand and insert it to L
PQ-Array.setCurSPList(L);

return ptop

Figure 3.5: Next stratified shortest path algorithm (NSSP)

Algorithm: k-Stratified-Shortest-Path

Input:

PQ-Array; k;

Output:

k shortest paths

Procedure:

L = φ;

i = 1;

while i ≤ k do

p = Next-Stratified-Shortest-Path(PQ-Array);

L.add(p);
end while

return L;

Figure 3.6: k stratified shortest path algorithm (k-SSP)

Chapter 2) for small k and s.

Correctness proof of k-SSP: First, we show that algorithm NSSP is correct. To show the

correctness of NSSP, we first present the following proposition.

Proposition 1. In a given stratified stream graph, the ith shortest path pi must coincide

with the (i − 1)th shortest path pi−1 until some jth vertex, j = 1, 2, ...|s|, where |s| is the
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number of strata.

Proof of Proposition 1: Since we synthetically create the start vertex s, any two paths at

least will share the same vertex s, hence the proof.

Then, based on the Proposition, suppose we have previously found the first i − 1

shortest paths and we are looking for the ith shortest path pi by NSSP. When i = 1, i.e.

we are looking for the first shortest path, we can simply call our previous SSP, which

returns the shortest paths in the current PQ-Array. When i > 1, we assume pi and pi−1

coincide until the jth vertex. The algorithm sets the weight of the next vertex of all top

(i − 1) paths that share first jth vertex with pm as ∞. This ensures that no new discovered

shortest path will be the same as the previous (i − 1) shortest paths from the (j + 1)th

vertex. Note that If the next shortest path is a deviation of previous found shortest paths,

we would have found that in previous searching and stored it in the candidate heap. The

algorithm considers all vertices in pi−1 (except the last dummy end vertex) and, for each

case, it identifies a candidate shortest path (maintaining at most k candidates). The

Proposition 1 ensures that the ith shortest path will be among the candidates that have

been enumerated.

Finally, to search for k shortest paths, we simply call the NSSP k times and return

the results.

Complexity of k-SSP: When we compute the ith shortest path pi, we need to investigate

the graph for each vertex v in the (i − 1)th path pi−1 and find the shortest path from v in it.

Since this includes setting values for each of the previous shortest paths in their first i

vertices coinciding with pi−1 and performing a shortest path search, the worst case time

complexity of this step is O(|s|i + |v|), which is O(|s|k + |v|). Since each vertex in each of

the |s| strata of the (i − 1)th shortest path needs to be considered, this step takes

O((|s|k + |v|)|s|) time. Then, computing k results takes in the worst case

O((|s|k + |v|)sk) or O((|s|k)2 + |v||s|k) time.
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Figure 3.7: Sharing of top k results between moving windows

K Shortest Paths on Dynamic Graphs

The algorithm described above leverages the stratified nature of the stream graphs to

significantly reduce the cost of shortest path enumeration. However, when used naively, it

would need to recompute paths from scratch each time the window shifts over the data

stream. In Figure 3.7, we illustrate the scenario when the time window shifts from Wi to

Wi+1. Among all top-k matches corresponding to Wi, the dashed lines (the ones with

cross marks next to it) represent expired matches. And among all top-k matches in Wi+1,

the bold black lines (the ones with check marks next to it) represent new added matches.

Potentially many matches are shared between Wi and Wi+1. Therefore, it is desirable to

devise dynamic algorithms to reuse previous matches.

In Figure 3.8, we show the dynamic algorithm for keeping the top-k pattern

matches up-to-date as the PQ-Array data structure changes over time. Suppose we

already have k results for the current window. When the window shifts, some of the

events, Eold will expire and some new events new events Enew will need to be considered.

We first consider the expired events. The first step of the algorithm removes

out-dated events from the PQ-Array. In the second step, any path that contains any event

in Eold is dropped from the set, L, of current top-k paths. Before we consider newly arriving

events, we copy the remaining events in the PQ-Array and denote the copied PQ-Array as

PQ-Arrayexist. Then we move remaining paths from L to Lexist. We next consider the new
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Algorithm:

k-Dynamic-Stratified-Shortest-Path

Input:

PQ-Array, k, L, Eold, Enew /*L is the list of existing k shortest paths,

Eold denotes the set of expired events, and Enew denotes the set of

new events */

Output:

updated k shortest paths L
Procedure:

1. update PQ-Array by removing out-dated events;

2. remove paths with out-dated events from existing k shortest paths

list L;

3. move remaining shortest paths from L into a list Lexist

4. copy PQ-Array as PQ-Arrayexist; /*used to produce further short-

est paths */

5. set weights of each non-expired vertex v in the last stratum of

PQ-Array as ∞;

6.

for each vertex vi,j corresponding to a new event ordered by time

do

insert vi,j into stratum Vj ;

hP tr(vi,j) = vl,j−1 /*vl,j−1 is the latest vertex in stratum

Vj−1*/

minWeight(vi,j) = ∞; vP tr(vi,j ) = ⊥;

end for

7. pull and put into L the shortest k paths from PQ-Arrayexist and

PQ-Array by calling Next-Stratified-Shortest-Path() correspondingly:

when pulling from PQ-Arrayexist, we consider paths from Lexist

first.

8. restore weights of vertices previously set as ∞ in the last stratum

return L

Figure 3.8: k dynamic stratified shortest paths algorithm (k-DSSP)

events in the window. First we update the PQ-Array with the new events. We then identify

new candidate shortest paths by constraining the new paths to pass through at least one

of the new events in the window (by setting remaining events in the last stratum as ∞).

The final results are obtained by pulling the shortest paths from PQ-Arrayexist

(storing all old paths, i.e. the path that exists before window moves and is still valid now)

and PQ-Array (storing all new paths, i.e. the path with at least one new event). From

PQ-Array, we call NSSP each time to obtain the next shortest path (among all new paths).

From PQ-Arrayexist we first use the remaining shortest paths from Lexist and if all paths in

Lexist are part of final top-k shortest paths, to further obtain next path, we call NSSP on

PQ-Arrayexist. Each time we put the shorter path pulled from PQ-Array and PQ-Arrayexist

into L and continue this process until k paths have been found.

The worst case complexity of the algorithm is O((|s|k)2 + |v||s|k) as before;

however, as the experiments in Chapter 4 show, the worst case rarely happens.
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Correctness proof of k-DSSP: First, in Steps 1 and 2 of k-DSSP, we simply remove

vertices corresponding to outdated events from the PQ-Array and out-dated paths from the

current k-shortest paths list L. In Steps 3 and 4, we copy existing PQ-Array into a

PQ-Arrayexist and move matches to Lexist. So far, only removal and copy operations are

performed. In Step 5, the algorithm temporarily sets the weights of all remaining vertices in

the last stratum V|s| of PQ-Array to ∞. We observe that any remaining vertex v in V|s|

cannot be part of a new path, since all new vertices are later than v in terms of their

corresponding timestamps. Other remaining vertices, on the other hand, can be part of

new paths and, thus, we need to further consider them. Step 5 ensures that each of the

new discovered paths will go through at least one new event in the last stratum. Step 6

revises the PQ-Array. Since new coming events are ordered by time, we can insert event

one by one into PQ-Array in their time order. Each time we insert one event vi,j (i.e. the ith

vertex in stratum Vj), we set its hPtr as the current last vertex vl,j−1 in its previous stratum

Vj−1, since events inserted later into Vj−1 will have no edge to vi,j . Once the k-SSP

algorithm is executed on the revised PQ-Array data structure, due to the careful placement

of ∞ weights, the newly discovered shortest paths are guaranteed to go through at least

one new event, ensuring that no paths are redundantly discovered. In Step 8, we each

time choose one shorter path from shortest paths obtained from PQ-Array and

PQ-Arrayexist. Since we have previously demonstrated the correctness of NSSP, we

ensure that by calling NSSP on PQ-Array, each time we obtain the next shortest new path.

Also, in PQ-Arrayexist, we only have removal operation, the remaining paths in Lexist

would still be the shortest paths in PQ-Arrayexist. When further paths are required, by

calling NSSP we can produce more shortest path incrementally. Finally in Step 8, we

restore the weight of each vertex whose weight was temporarily set as ∞ in Step 5. This is

because some of the previous paths containing such a vertex but not in the earlier top-k

shortest paths list are now possible to be in top-k after the update of PQ-Array. By

restoring the weights in Step 8, we ensure that those paths can still be considered.

Complexity of k-DSSP: Since the revision of the PQ-Array data structure takes only

O(|v|) time, the worst case complexity of k-DSSP is similar to that of k-SSP.
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Algorithm:

Dynamic-top-k-nonlinear-pref-sequence-

maintenance

Input:

qi, k, L, Eold, Enew /* qi is the event queue corresponding to the ith

event in the sequence query, L is the list of existing top-k sequence

matches, Eold denotes the set of expired events, and Enew denotes

the set of new events */;

Output:

top-k sequence matches in L
Procedure:

1. remove out-dated events from each qi;

2. insert each event e from Enew into corresponding queue qi; /*i.e.

event e has the same event class as the one qi corresponds to in

the sequence query*/

3. sort each qi;

4. build two index for each queue qi, one for existing events and the

other for new inserted events.

5. remove out-dated sequence matches from L;

6. perform rank-join on each queue with any arbitrary scheduling

strategy and update L until top-k matches found.

During the join process:

if the current visiting event has been visited before then

join it with only the new inserted events in other queues;

else

join it with all events in other queues;

end if

return L;

Figure 3.9: Dynamic top-k sequence match maintenance for nonlinear preference se-

quence queries

Nonlinear Preference Sequence Ranking

For sequence queries with nonlinear preference functions, we process them with

our top-k merge module directly. Since the preference function here works as the merge

function during the rank join, as commonly assumed [10, 11], we require that the

preference function is monotonic on the score of each joined event class. We consider

event instances of each event class in the sequence query to form a queue and pull from

each queue to obtain the sequence matches that have the top score value according to

the given preference function. This found sequence matches can be used for further

complex query matching the same way as previous introduced stratified-graph based

approach. To efficiently maintain top-k sequence matches at runtime, we use the dynamic

procedure shown in Figure 3.9. In the first four steps, for each queue, we update them by

first removing out-dated events, and then inserting new events. After sorting each queue,

we build two indices for the existing events and new inserted events respectively. In Step
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5, we remove obsolete matches from existing top-k sequence match list L. To complete

the top-k matches, we do ranked-join in Step 6 on each updated queue by adopting any

existing join algorithm (e.g. TA [22]). When performing the join, if the current accessed

event instance has been visited previously, we only consider to join it with new event

instances in other queues, otherwise, we join it as normal with both new inserted events

and existing events. In this manner, we ensure that no previous computation is repeated.

Correctness proof of algorithm in Figure 3.9: In Steps 1 and 2, we remove expired

events and insert new events. This ensures that events stored currently are only valid and

all valid events are included. In Steps 3 and 4, we preprocess each queue for later rank

join. In Step 5, we remove out-dated events, which still leaves the valid matches in the

same order. Step 6 performs the join. In the process, since all event visited in previous

window has been joined with all events from previous window, we don’t need to join them

again in the current window. Also, as having been approved in previous join

algorithms [10, 11], the threshold based algorithms can correctly produce the top-k

matches. Therefore, the proposed procedure in Figure 3.9 is indeed correct.

Complexity: Since operations except the join process require constant time, the worse

case complexity only depends on the joining algorithm selected.

3.3 Top-k Merge Module (TMM)

When a complex query pattern includes combinations of multiple sequence patterns or

when we need to deal with nonlinear preference functions, the top-k merge module (TMM)

is used for producing and ranking combined results. Since disjunction can be handled by

picking the highest scoring entries from the input queues, in this section, we focus on

conjunctive patterns which require top-k joins.

Thresholds, Boundaries, and Scheduling

As discussed in Chapter 2, there are many top-k join algorithms, differing in the way the

sorted and random accesses are scheduled and how the stopping condition is sought.

The TA algorithm [22], for example, maintains the lower bound, lb, of the candidate results
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Figure 3.10: Two alternative termination boundaries that provide the same threshold (0.5)

needed to commit top-3 candidates

discovered so far and also computes an upper bound, ub, on the best value of the

undiscovered objects; i.e., a threshold that the value of lb has to pass to declare the

candidate objects as the top ones. When lb ≥ ub, TA stops and returns the results found

so far. NRA algorithm [11] also works similarly, but unlike TA which aggressively schedules

random accesses to keep the lower bound as high as possible, the NRA algorithm does

not schedule any random accesses. Consequently, the lb and ub cross later than in TA. In

other words, NRA trades-off random accesses for sorted accesses as a scheduling

strategy.

Even when TA or NRA is selected a priori, there is still room for improving the

number of accesses to the input queues. The difficulty in both cases is that there can be

different ways to reach the termination boundary (where the lower bound of seen and

upper bound of unseen objects cross – Figure 3.10). Thus, the goal of any scheduling

strategy would be to access the queues in an order in which the stopping condition is

reached as early as possible. This requires the ability, at any given point in time, to predict

the distance –in terms of execution time– to the termination condition for each alternative

access option. [11] relies on a round-robin based strategy that does not give preference to

any of the input queues. [12] attempts to reach the termination condition by always

accessing to the data queue that has the steepest current core gradient. This, however,

fails to account for the differences in the sorted and random access costs for different input

queues. [25] addresses situations where different queues have different costs by collecting

statistics and picking an optimized schedule in the runtime. The algorithm, however, needs
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Figure 3.11: Execution process of waste-avoiding boundary selection (WABS)

statistics that can properly represent the whole data set (obtained through sampling of the

whole data set), and as we will see in the experiments, when joining set of sequences that

have not even been enumerated, effective samples are not always available.

Waste-Avoiding Boundary Selection

When searching for the kth best result after the (k − 1)th is located, the ideal strategy

would be the one that requires the least amount of time to locate the next termination

boundary. We refer to this as the waste-avoiding strategy and the corresponding boundary

as the waste-avoiding boundary. Prior work tries to predict the score gradient, data/score

distribution, join selectivity, and/or access costs to seek the waste-avoiding boundary.

These are neither trivial tasks, nor (as the experiments in Chapter 4.4 show) work very

well for combining dynamically generated sequences. In this work, we propose to tackle

this difficulty by a continuously adaptive boundary targeting strategy which relies on the

following simple assumption: “the best scheduling strategy to locate the termination

boundary for the (i + 1)th result will have changed less drastically since the (i− 1)th result

than since the (i − j)th result, for j > 1”. This implies that we can reduce the waste in the

search for the (i + 1)th boundary if we could find the best strategy for the (i − 1)th

boundary in the light of the most recent inputs (possibly revising any boundary found

earlier) and use this to guide the search.

The overall execution process of waste-avoiding boundary selection is shown in
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Algorithm:

Waste-Avoiding-Boundary-Selection

Input:

data queues, dq; k;

Output:

Top-k results R;

Procedure:

apply existing approach (e.g. round-robin) to find the top-2 results.

put top-2 results into R
if k > 2 then

while i <= k − 1 do

for each alternative termination boundary, β∗

i−1
among the

newly discovered data entries between the discovery of (i −
1)th and the ith results do

/*lbi−1 is the score of βi−1*/

if score(β∗

i−1
) ≤ lbi−1 && cost(β∗

i−1
) < minCost then

minCost = cost(β∗

i−1
); /*initially, minCost = ∞*/

for h = 1, 2, . . . , |q| do

ah = access-ratio(β∗

i−1
,h); /*access-ratio(β∗

i−1
,h)

is the overall ratio of accesses to queue qh accord-

ing to β∗

i−1
*/

end for

end if

end for

while TRUE do

∀ h = 1, 2, . . . , |q|, schedule ah accesses to qh

/*let u be the number of results found*/

put the new u results into R;

i = i+u;

if u > 0 then

break;

end if

end while

end while

end if

return R

Figure 3.12: Waste-avoiding boundary selection strategy (WABS)

Figure 3.11. As can be seen in this figure, when searching for the best boundary for the

first two results, we adopt basic round-robin access scheduling strategy due to the lack of

priori knowledge. Then for the (i + 1)th result, where 2 ≤ i ≤ k − 1, we analyze the

objects discovered between the recent two results (i.e (i − 1)th and ith results) and locate

the best accessing strategy for the (i − 1)th result and use this as the accessing strategy

for the searching of the (i + 1)th result. This process continues until we successfully

determine the top k matches.

We provide the pseudo-code for the waste-avoiding boundary selection (WABS)

strategy in Figure 3.12. In a given window, the strategy proceeds stepwise seeking the

stopping conditions for 1st, 2nd, . . ., and kth results incrementally. The strategy is revised

between each consecutive pair of results. Let σi denote the access strategy (i.e., access
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ratios for each queue) used for identifying the boundary βi, for the ith result, with

combined score, lbi. The boundaries for the first two results are sought using an existing

technique, such as round-robin or gradient-based approaches. Let us assume that we

already have reached the ith (i ≥ 2) boundary and we are seeking the boundary for the

(i + 1)th result (Figure 3.13(a)). In order to revise the access strategy for this boundary,

we search for alternative ways to achieve the boundary βi−1 (the boundary for the

(i − 1)th result) and also take into account the data entries accessed between the

enumeration of (i − 1)th and ith results.

We achieve this by considering newly discovered data entries (in increasing order

of score) and see if they would lead to a boundary combination with score ≤ lbi−1 with all

the data entries discovered so far. For each alternative combination whose overall score is

≤ lbi−1, we assess (based on the actual access times that have been observed) how long

it would have taken the algorithm to reach to that particular combination of entries and

locate the cheapest boundary among all alternatives (Figure 3.13(b)). Once located, we

use the relative ratios of entries in each queue for this boundary combination as the

revised access strategy, σ′
i−1.

Since it represents the most locally-informed and least wasteful boundary decision

available, WABS then uses strategy σ′
i−1 to seek the threshold for the next result (i.e., as

the strategy σi+1). Let us assume that there are m queues and between the (i − 1)th and

ith results, ∆j data entries are accessed on the jth queue. The cost of strategy adaptation

depends on the sizes of ∆j and how far one has to go back to discover a combination with

threshold τi−1. As we will see in the experiments Chapter, the cost of this process is

smaller than other techniques and, especially within the context of complex event

processing, negligible with respect to the gains in access time.

3.4 Dynamic Maintenance of Top-k Complex Query Matches

Since event streams evolve in the real-time, it is desirable to reuse previous results and

dynamically maintain results instead of computing the top-k results from scratch each

time. For top-k sequence pattern match maintenance, we have described the algorithms in
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Figure 3.13: Revision of the (i − 1)th boundary
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Figure 3.14: Overall Process for Dynamic Complex Query Maintenance

previous Chapter 3.2. In this section, we focus on top-k complex pattern query matches

maintenance. The whole dynamic process can be separated into two phases: 1. dynamic

maintenance of previous found sequence matches from each sequence pattern query

component; 2. dynamic maintenance of top-k complex pattern query matching results. By

the first phase, we ensure that when time windows move forward, we do not repeat

enumerating the same sequence match (which has been computed and buffered in TMM

previously). By the second phase, we make sure that previously joined complex matches

are not processed again, which reduces the re-computation costs of join process. As can

be seen in the experimental evaluation in Chapter 4, when windows shift in relatively small

steps, the gain of dynamic maintenance is quite significant, as many existing matches
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Algorithm:

Dynamic-PQ-Array-Update

Input:

PQ-Array, Eold, Enew /* Eold denotes the set of expired events, and

Enew denotes the set of new events */

Output:

PQ-Arrayexist and PQ-Arraynew

Procedure:

1. update PQ-Array by removing out-dated events and denote it as

PQ-Arrayexist;

2. remove paths with out-dated event from existing k shortest paths

list L;

3. create a new PQ-Arraynew and copy all events except those in

the last stratum from PQ-Arrayexist.

4.

for each vertex vi,j corresponding to a new event ordered by time

do

insert vi,j into stratum Vj ;

hP tr(vi,j) = vl,j−1 /*vl,j−1 is the latest vertex in stratum

Vj−1*/

minWeight(vi,j) = ∞;

vP tr(vi,j ) = ⊥;

end for

5. return PQ-Arrayexist and PQ-Arraynew

Figure 3.15: Dynamic PQ-Array update for linear preference sequence queries (dUpdate-

LP)

remain in the top-k lists.

In Figure 3.14, we illustrate the dynamic maintenance process for top-k complex

matches. After windows move, we remove expired sequence matches from each SRM

module. Then by using the dynamic mechanism in SRM, we only produce top sequence

matches that are not previously found. Finally, in TMM, we first remove expired matches

and then each new found sequence match is joined with previous discovered matches to

update the existing top-k results.

Dynamic Linear Preference Sequence Pattern Match Production

Potentially, a certain number of top-k sequence pattern matches discovered in the

previous window will remain valid in the current window. We don’t want to re-pay this costs

by enumerating them again. Therefore, we design the following mechanism in

Figures 3.15 and 3.16 to avoid the enumeration of previous found matches, while still

enable the sorted access for the TMM. Each time the time window moves, we first call the

procedure of the dynamically update for linear preference sequence pattern query

(dUpdate-LP) in Figure 3.15 once to update the current PQ-Array. Afterwards, each time
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Algorithm:

Incremental-Next-Stratified-Shortest-Path

Input:

PQ-Arrayexist, PQ-Arraynew

Output:

next shortest path pnext

Procedure:

L1 = PQ-Arrayexist.getCurSPList(); /*return current shortest paths*/

L2 = PQ-Arraynew .getCurSPList();

if L1.numNewPaths() = 0 then

p1 =Next-Stratified-Shortest-path(PQ-Arrayexist);

end if

if L2.numPaths() = 0 then

p2 =Next-Stratified-Shortest-path(PQ-Arraynew);

end if

p1 = L1.getLast(); /*get the last inserted shortest path from L1*/

p2 = L2.getLast(); /*get the last inserted shortest path from L2*/

if weight(p1) < weight(p2) then

pnext = p1;

Next-Stratified-Shortest-path(PQ-Arrayexist);

else

pnext = p2;

Next-Stratified-Shortest-path(PQ-Arraynew);

end if

return pnext;

Figure 3.16: Incremental next stratified shortest path(iNSSP)

the sorted access is requested, we call the incremental next stratified shortest path

algorithm (iNSSP) in Figure 3.16 to incrementally produce the next top sequence match.

To be specific, in Figure 3.15, when stream window moves forwards, we remove

all out-dated events from the existing PQ-Array(denoted as PQ-Arrayexist). Meanwhile,

given all previous visited sequence matches stored in list L, we update L by removing

paths with out-dated events. In addition, we copy all events from PQ-Arrayexist except the

ones from last stratum into a new PQ-Arraynew. Then according to the time order of new

events, we insert each of them into PQ-Arraynew and update its hPtr to point to the last

event in the previous stratum, minWeight as ∞, and vP tr as ⊥. After these updates, now

we can provide sorted-access by choosing the smallest path from PQ-Arrayexist and

PQ-Arraynew as described in Figure 3.16, where PQ-Arrayexist stores all potential paths

with only existing events, and PQ-Arraynew stores all new paths (paths with at least one

new event). Since in both of the PQ-Arrays, we incremental fetch the next shortest paths,

this saves us the costs of enumerating previous matches again.

Correctness Proof of Algorithms dUpdate-LP and iNSSP in Figures 3.15 and 3.16:

By the procedure shown in Figure 3.15, we maintain two PQ-Arrays: one holding all valid
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Algorithm:

Dynamic-Nonlinear-Pref-TMM-Update

Input:

event instance queues qi, Eold, Enew /* Eold denotes the set of

expired events, and Enew denotes the set of new events */

Procedure:

1. remove out-dated events from each qi;

2. insert each event e from Enew into corresponding queue qi; /*i.e.

event e has the same event class as the one qi corresponds to in

the sequence query*/

3. sort each qi;

4. build two index for each queue qi, one for existing events and the

other for new inserted events.

5. remove out-dated sequence matches from L;

Figure 3.17: Dynamic update for nonlinear preference sequence queries(dUpdate-NLP)

paths before new events inserted, and the other holding all new ones. The idea is similar

to our previous proof for the correctness of k-DSSP. By not copying any event from the

last stratum of PQ-Arrayexist, we make sure each path in PQ-Arraynew goes through at

least one new inserted event in the last stratum. In addition, it can be seen that

PQ-Arrayexsit and PQ-Arraynew together contain all potential paths in the current stream

window. Then in algorithm iNSSP (Figure 3.16), we pick the shortest path from

PQ-Arrayexsit and PQ-Arraynew by calling Next-Stratified-Shortest-Path (NSSP) on the

corresponding PQ-Arrays. Since any potential path only comes from either PQ-Arrayexsit

or PQ-Arraynew, by choosing the smallest one among the two PQ-Arrays, we guarantee

that the found shortest path is indeed the next shortest path.

Complexity: It can be seen that the updating of event in PQ-Array is only related to the

number of events stored, which means the time complexity would be O(|v|), where |v| is

the number of events (i.e. vertex in the corresponding stratified graph) stored. In addition,

we have shown previously that the Next-Stratified-Shortest-Path has a complexity of

O((sk + |v|)s) for a PQ-Array with v events, therefore, the complexity for algorithm in

Figure 3.16 would be max{O((sk + |v1|)s), O((sk + |v2|)s)}.

Dynamic Nonlinear Preference Sequence Pattern Match Production

When dealing with incremental production of nonlinear preference sequence

pattern match, we rely on the procedures of dUpdate-NLP shown in Figure 3.17 and
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Algorithm:

Incremental-Next-Nonlinear-Pref-Sequence

Input:

event instance queues qi; list of existing sequence matches L;

Output:

next best nonlinear preference sequence query match

Procedure:

1. k = getNumTopMatches(); /* return the number of current top

match results determined*/

2. k = k+1; /*the next top match to look for*/

3.

while True do

∀h = 1, 2, . . . , |q|,
curValueEachQueue[h] = qh.getCurrentAccessedValue();

if computerMergeScore(curValueEachQueue) ≤ getCurTop-

MatchScore(k) then

return the kth matching sequence;

else

perform rank-join and update L.

During the join process:

if the current visiting event has been visited before then

join it with only the new inserted events in other queues;

else

join it with all events in other queues;

end if

end if

end while

Figure 3.18: Incremental next nonlinear preference sequence (iNNLPS)

iNNLPS in Figure 3.18. In particular, each time the time window moves, we follow

dUpdate-NLP to update each queue qi and the existing matched sequence results. Then,

for event instances in each queue, we build two indices, which are used later for

incremental production of next top sequence match. To produce the next top sequence

match, we call module in Figure 3.18, which first queries its current top match list (i.e.

getNumTopMatches()) to determine what is the next top match to target for. Note that,

each time after time window is updated, the getNumTopMatches() method will return 0,

since the existing top matches do not necessarily remain in the top list. After that, the

current determined number of top matches will be recorded and returned by the

getNumTopMatches() method. If we have already determined the requested kth match,

we return it immediately. Otherwise, we perform rank-join on the each qi to find the next

top joined match and return it. Same as before, we can pick any arbitrary join scheduling

algorithm to determine how sorted access and random access are scheduled in each

round. If the current accessed event e has been used previously, since we maintain all

valid previous results, we only need to consider the joint results of e and the newly inserted
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Algorithm:

Dynamic-Top-k-Complex-Query-Match

Input:

sequence matching queues sqi, Eold /*sqi stores previous found se-

quence matches for each component sequence query, Eold denotes

the set of expired events*/

Output:

Top-k complex matching list L
Procedure:

1. remove out-dated sequence matches from each sqi;

2. remove out-dated complex matches from Lvisited;

while top-k not determined do

3. schedule sorted access according to WABS on each sequence

pattern query component by calling incremental sequence pro-

duction algorithm (i.e. iNSSP and iNNLPS)

4. perform rank-join on found sequence matches.

5. put all matched results in Lvisited.

end while

copy the top-k matches from Lvisited to L.

return L

Figure 3.19: Dynamic top-k complex pattern query match maintenance in TMM (dTMM)

events. For other events, we join it with all possible events from other queues as normal.

Correctness proof of algorithms iUpdte-NLP and iNNLPS in Figures 3.17 and 3.18:

In dUpdate-NLP, we perform necessary preprocess each time the time window moves.

This preprocess includes removing expired events and matches, as well as inserting new

events. This process ensures that our new top-k query processing only considers valid

events and all valid events are included. Clearly, this process won’t affect the correctness

of top-k results produced. Then in iNNLPS, we adopt a similar process as in the previous

top-k nonlinear preference sequence query match maintenance in Figure 3.9. Again the

correctness relies on the underlying join algorithms used. As long as we use a correct

top-k join algorithm, the correctness of dUpdate-NLP is guaranteed.

Complexity: Similar to complexity analysis in Chapter 3.2, the complexity depends on the

underlying top-k join algorithms.

Dynamic Top-k Complex Query Matching Results Maintenance

In Figure 3.19, to maintain top-k complex query matches as windows evolve, we

first update the list of previously found sequence matches from each sequence queue.

Then we delete all previous found complex query matches that are obsolete from the
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visited list Lvisited. After all these update process, we do as before to access each

candidate queue with our proposed WABS strategy. The sorted access to each

component sequence pattern is provided by our incremental production algorithm (i.e.

iNSSP and iNNLPS for linear and nonlinear preference sequence pattern respectively). All

newly found matches will also be added into Lvisited. Since by using our incremental

production approach in assessing each sequence matching queue, we make sure that

previous found sequence pattern matches would not be accessed again. In this way, we

manage to reuse the previous results and dynamically maintain the top-k results.
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Chapter 4

EXPERIMENT EVALUATION

In this Chapter, we evaluate the proposed top-k complex pattern ranking framework and

the underlying algorithms. We describe three sets of experiments: first, we evaluate the

stratified graph based k shortest algorithms underlying the sequence ranking module

(SRM). Second, we assess the effectiveness of the waste-avoiding boundary selection

strategy underlying the top-k merge module (TMM). Finally, we show the performance of

the proposed mechanism for dynamic top-k maintenance on top of TMM.

4.1 Data Set Specification

For the experiments in this Chapter, we use the ‘‘Intel Berkeley Research lab1” data set

containing ∼ 2.3 million sensor readings with the following schema:

date:yyyy-mm-dd time:hh:mm:ss.xxx epoch:int moteid:int

temperature:real humidity:real light:real voltage:real

Here, epoch is an integer corresponding to a time stamp obtained approximately every 30

seconds and is monotonically increasing. There are readings with the same epoch, but

with different moteid ; the epoch attribute uniquely determines the epoch and time.

Temperature is in degrees Celsius. Humidity is temperature corrected relative humidity,

ranging between 0-100. Light is in Lux and Voltage in volts. Also, we have the 2D location

information corresponding to each moteid. In particular, we use each sensor’s distance

from the point, (0, 0), as an additional attribute value.

In our evaluation scenarios, we focus on the following three attributes: epoch,

moteid, and temperature. We also consider the location information associated to the

sensor. We convert epochs to unique timestamps by randomly perturbing the epoch

values. For each temperature reading, we compute the temperature change from the

1Available at: http://db.csail.mit.edu/labdata/labdata.html
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EA: [-160, -140) EB: [-140,-120) EC: [-120, -100)

ED: [-100, -80) EE: [-80,-60) EF: [-60, -40)

EG: [-40, -20) EH: [-20, 0) EI: [0]

EJ: (0, 20] EK: (20,40] EL: (40, 60]

EM: (60, 80] EN: (80,100] EO: (100, 120]

EP: (120, 140] EQ: (140,160]

Table 4.1: Value ranges represented by each event class

Parameters for the top-k sequence match experiments

k number of results to be returned

ref relative event frequency

sl sequence length

ws window size

step window shift length

Additional parameters for top-k joins on sensor data

mf merge function

rss relative sensor selectivity

q number of input queues

qp query pattern

Table 4.2: Experiment parameters

previous reading on the same moteid and split the overall range (from -150 to 160) evenly

into following subranges, each corresponding to a different event class as shown in 4.1:

4.2 Setup

Table 4.2 lists the key experiment parameters. While most parameters are

self-explanatory, the relative event frequency (ref) and relative sensor selectivity (rss)

require explanations: (a) ref is proportional to the frequency of the last event class in the

sequence pattern (we experimented with three event class with frequencies 1 × fbase,

10 × fbase, and 89 × fbase, where fbase is ∼ 3 × 10−3); (b) rss is proportional to the join

likelihood of the sequences in the input queues to the top-k join module (rss = 1

corresponds to the case where sequences match can be joined if the sensors that

generate them are within id range +/- 1; in rss=0.1 and rss=0.01, the join conditions are 10

times and 100 times more strict, respectively).

In addition, we introduce two synthetic event classes: ESTART and EEND to represent the

start and end event.

Sequence patterns used in the experiments are listed in Table 4.3. For sequence
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Sequence queries used for the top-k sequence match experiments

S1: sequence with ref=1X EG EH EN

S2: sequence with ref=10X EG EH EO

S3: sequence with ref=89X EG EH EJ

S4: sequence with length 2 EG EH

S5: sequence with length 3 EG EH EJ

S6: sequence with length 4 EG EH EJ EI

Sequence queries used for top-k joins on sensor data

S7 EG EH EJ

S8 EK EL EM

S9 EI EN EO

S10 EG EH

S11 EJ EK EL EM

Table 4.3: Sequence patterns used in the experiments

matching experiments, we pick sequences with varying relative occurrences in the last

event class (i.e. S1, S2 and S3). To evaluate the effects of sequence length, we choose

three sequences (i.e. S4, S5, S6) with different lengths varying only the last event classes.

For sequences used in top-k joins, we choose S7, S8, S9 shown in Table 4.3. For the

experiments in which we evaluate the effects of divergent sequence lengths in the join, we

used S10 (lenght=2) and S11 (length=4), also shown in Table 4.3

Experiments were run on a Windows XP box with Intel dual-core CPU @2.33GHz

and 1.95GB RAM.

4.3 Evaluation of Top-k Sequence Enumeration on Dynamic Stratified Graphs

We compare our k stratified shortest path algorithm against the following schemes: (a)

Enum-All, an exhaustive algorithm which enumerates all matches before picking the top-k;

(b)D-Yen, an dynamic version of Yen’s algorithm [23] based on the code available at

http://code.google.com/p/k-shortest-paths/ modified to eliminate redundant work in

dynamically evolving graphs. To implement D-Yen, we follow an approach similar to the k

dynamic stratified shortest path algorithm shown in Figure 3.8; we essentially replace the

calls to the k stratified shortest paths algorithm with calls to Yen’s k shortest paths

algorithm. Figure 4.1 verifies under various parameter settings that our modification of the

Yen’s algorithm is indeed working more efficiently in the case of dynamically evolving

graphs than a naive application of the Yen’s algorithm. Here we do not consider Eppstein’s
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(a) k (ws=50, step=20) (b) ws(k=10, step=20)

Figure 4.1: Performance of the original Yen’s algorithm vs. D-Yen over dynamically evolving

graphs
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Figure 4.2: Comparison of top-k sequence matching approaches (k=10, sl=3, ws=50,

step=20, ref=89)

non-incremental algorithm [8] which cannot be used to supply TMM with on-demand

sequence matches.

In Figure 4.2, we compare the time costs of processing top-k sequence matches

(for patterns of length 3 – the scoring of the events is based on the distance of the sensors

from a given point in space). As can be seen here, the proposed approach outperforms

both exhaustive and dynamic Yen approaches by almost 3 orders of magnitude.

Figure 4.3(a) shows that the proposed algorithm scales well as k increases from

10 to 40 and the difference between the dynamic Yen’s and the proposed approach gets

larger when k increases. Figure 4.3(b) shows that, for larger window sizes, the event graph

tends to be denser which results in more time to enumerate the top-k results. The speedup

provided by the proposed approach also increases as the amount of needed work

increases. This is also confirmed in Figure 4.3(c) which varies the target sequence length.

Figure 4.3(d) evaluates the impact of the window shift size: A larger step implies a bigger
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(e) ref

Figure 4.3: Comparisons of D-Yen and k-DSSP for different parameter settings (Default:

k=10, sl=3, ws=50, step=20, ref = 89X)

change in the stratified graph and less of the top-k results remain in the next window. As

expected, the speedup lowers, but the proposed algorithm remains > 100× faster. Finally,

Figure 4.3(e) compares three sequence queries which differ only in the frequencies of the

last event class. As before, the speedup increases with the graph complexity.

4.4 Evaluation of Waste-Avoiding Top-k Joins

In this section, we evaluate the proposed waste-avoiding boundary selection strategy

(WABS) underlying the top-k merge module with both sensor data and synthetic data. In

the experiment with sensor data, when joining sequences on sensor IDs, random

accesses (to fetch the best matching sequence with the given sensor ID in a given queue)
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Figure 4.4: Different top-k join strategies (mf=avg, rss=1, q=2, ws=step=100, qp=[S7;S8])
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(c) merge function (d) sequence lengths

Figure 4.5: Performance evaluation on two-sequence join queries on sensor data (Default:

k=20, mf=avg, rss=1, q=2, ws=step=100, qp=[S7;S8], sl = 3 for both queues)

are very expensive. Thus we adopt the WABS strategy with NRA. Performance of WABS

on TA based algorithms are shown in experiments on synthetic data, together with more

diverse parameter settings.

Waste-Avoiding Boundary Selection Strategy on Sensor Data

To evaluate WABS, we compare it to round-robin, gradient-based (Güntzer [12]), and

statistics-based (Hwang [25]) strategies. For the latter, statistics are collected based on

data that have already been seen.
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The key experiment parameters are listed in Table 4.2. Queries involve sequence

patterns and their combinations. For example, the pattern qp = {[S7&S8];S9} would state

that (a) sequences S7, S8 and S9 (all generated by the same sensor mote) should occur

in the same window and (b) both S7 and S8 must occur before S9. Unless specified

otherwise, we consider sequence patterns each with three event classes and linear sum of

each event score as the overall sequence score.

Also, in this section, we consider the impact of the waste-avoiding strategies

assuming that the TMM recomputes matches from scratch at each iteration. Later in

Chapter 4.5, we investigate the impact of the fully dynamic operation of TMM.

Figure 4.4 shows that the proposed WABS strategy performs the best among the

alternatives for different k. Curiously, the gradient-based and statistics-based scheduling

strategies perform worse than round-robin, indicating that they in fact lead to misleading or

out-of-date plans. Therefore, in the rest of the experiments, we compare WABS directly to

the round-robin strategy.

Figure 4.5 compares the WABS strategy against the round-robin strategy for

two-queue top-k joins under different settings. Figure 4.5(a) shows that the more

restrictive the join condition is the higher the speedup provided by WABS: this is because

more work needs to be done to identify the k results and WABS helps prune redundant

work. This is confirmed in Figure 4.5(b), where a more restrictive temporal order constraint

([S7;S8]), and in Figure 4.5(c), where a harder to commit merge function (min), provide

larger speedups. Figure 4.5(d) shows that when there is a marked difference between the

complexities (thus enumeration costs) of the sequence patterns being combined, WABS is

able to identify and leverage this difference to boost the speedup it provides.

Figure 4.6 compares the results for more complex queries combining three

sequence patterns. This figure also confirms the observation that the speedups provided

by WABS increases as the pattern becomes more restrictive and, consequently, as it

becomes harder for the NRA to identify the target k matches to the query.
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Figure 4.6: Performance evaluation on three-sequence join queries on sensor data (k=20,

rss=0.01, mf=avg, q=3, sl=3 , ws=step=100)

Parameters for top-k join experiments on synthetic data

k top results to be returned

mf merge function

rjs relative join selectiviy

q number of queues to be joined

dist. uniform, normal or zipfian

cost ratio (cs1 : . . . : csi, cr1 : . . . : csi), for the ith queue

Table 4.4: Experiment parameters

Waste-Avoiding Boundary Selection Strategy on Synthetic Data

Due to the important limitation of joining sequences (as opposed to events) that random

accesses to the different queues are expensive to enumerate, in the previous evaluation

with sensor data, we applied WABS and NRA. In this section, we evaluate WABS using

synthetic data; this provides more diverse parameter settings, including different value

distributions as well as random accesses. Thus, this also enables us to evaluate WABS

strategy in the case of TA-based top-k joins.

For each experiment reported in this section, we generate five sets of data and

report the average performance. Each queue has 10K inputs and each input has a unique

ID occurring once in one queue. Table 4.4 lists the experiment parameters used in this

section. As before, k is the target number of results, mf denotes the merge function, and

q denotes the number of queues. The other parameters are described below:

• rjs denotes the relative join selectivity of each queue. To be specific, when rjs=1,
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(a) two-queue join
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(b) three-queue join

Figure 4.7: Comparison for varying access cost scenarios (Default: k=50, mf=min, rjs=1,

uniform)

each entry in a given queue joins with exactly one other entry (the one with the same

ID) on the other queues. When rjs=0.1, however, one of ten times entries with the

same ID can be joined. Similarly, when rjs=0.01, one of one hundred times entries

with the same ID can be joined. The later two cases provide 10 and 100 times more

strict relative join selectivity than the case rjs=1.

• dist indicates the distribution of the scores in each queue. Queues are assumed to

be independent.

• cost ratio indicates the relative access costs for different queues. For example,

(α1 : α2, β1 : β2) means the sorted access to the first queue has a cost of α1 units

and random access to it has a cost of β1 unit; in contrast for the second queue,

sorted and random accesses have α2 and β2 unit costs, respectively.

Figures 4.7(a) and (b) compare the top-k evaluation performance, under different

cost ratio scenarios, for two and three queues, respectively. As can be seen here, the
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(c) relative join selectivity (d) distribution

Figure 4.8: Performance comparison for varying parameter setting on synthetic data (De-

fault: k=50, q =2 , mf=min, rjs=1, dist=uniform, cost ratio=[10:1, 1:1])

WABS strategy is able to adjust to the differences in access cost ratios and provides the

best speedups (∼ 3×) as the complexity of the top-k join increases (e.g., when the

number of input queues increase or when the cost asymmetry among the queues is high).

Interestingly, even in the cases where the access costs are symmetric, WABS is able to

provide up to 2× gains.

Figure 4.8 studies the speedup provided by WABS strategy as for different

parameters. Figure 4.8(a) through (c) show that, as was the case for the experiments on

sensor data, the WABS provides ever increasing speedups as the top-k problem gets

harder: in Figure 4.8(a) higher speedup is observed for larger k, in Figure 4.8(b) higher

speedup is observed for the min merge function (which in general requires more accesses

than other merge functions), and in Figure 4.8(c) higher speedup is observed for

rjs = 0.01, which is the case where it is hardest to locate inputs that satisfy the join

condition. Finally, Figure 4.8(d) studies the speedup provided by WABS strategy as for

different score distributions. While, the speedups are similar, there are some noticeable

differences. As expected, Zipfian distribution, in which there are less high scoring inputs is
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(c) k (d) pattern

Figure 4.9: Comparison of Dynamic TMM (dTMM) and non-dynamic TMM(nTMM) (Default:

k=20, rss=1, mf=avg, q=2, q=[S7;S8], sl=3, ws=100, step=50)

able to complete with least number of accesses, therefore the speedup is the lowest

(∼ 2.25×); in contrast, the normal distribution where there are a large number of mediocre

(close to the mean) scores takes the most number of accesses and, consequently, the

speedup is the largest (∼ 2.35×) among the three distributions.

4.5 Evaluation of Dynamic Top-k Merge Module (dTMM)

In this section, we assess the effectiveness of proposed dynamic top-k complex match

maintenance mechanism with the sensor data. Figure 4.9 provides results showing the

performance gain of the dynamic version of TMM (dTMM), which reuses prior join

computations when the window moves, over the non-dynamic version (nTMM), which

recomputes top-k matches from scratch for each window2. Both versions of TMM adopt

WABS as the join scheduling strategy. As can be seen in this Figure 4.9(a), dynamic

2Note that, both dTMM and nTMM leverage dynamic computation of the shortest paths

on the stratified graph; their difference is in the computation of the join process.

46



���

�

���

�

�

�

�

�

�

	

�
�
�




�

��
�
�
��
�
	�
	�
�	
�
��

�

���

�

�

���� ���� ����

	

�
�
�




�

��
�
�
��
�
	�
	�
�	
�
��

���� ���� �
���



���

�

���

�

�

�

�

�	




�
�
	



��
�



�
�
��
�

��


��

��

�

��
�
�� �����

�	




�
�
	



��
�



�
�
��
�

��


��

���� ���� �	

��	

(a) k (b) pattern

Figure 4.10: Effect of nonlinear preference function in sequence query on Dynamic TMM

(dTMM) (Default: rss=1, mf=avg, q=2, q=[S7;S8], sl=3, ws=100, step=50, pref(S7)=sum,

pref(S8)=square root of sum of square)

operation of TMM provides significant amounts of savings (>1.5× speedups) under

different window update frequencies (i.e. step size). Since a smaller step enables more of

the previous matches to remain in the window, as expected the highest speedup in the

figure is achieved when step = 40. In Figure 4.9(b), we show the effects of different

window sizes (ws). As ws increases, the underlying stratified graphs get more complex,

which causes the increase of cost in accessing each sequence match. Consequently, the

join process gets more expensive. This explains why in Figure 4.9(b) time costs of both

approaches increase as ws gets larger. However, since dTMM benefits from the dynamic

maintenance of previously accessed results, it leads to a much smaller increase. Thus the

“speedup” of dTMM over nTMM gets higher with bigger window size. Figure 4.9(c)

evaluates the effects of varying number of results to return. When we seek more results

(i.e. higher k), as time window shifts, more previous results are likely to remain valid,

leading to less recurring accessing costs in dTMM. Therefore, larger k produces more gain

of dTMM over nTMM as shown by the “speedups”. We also evaluate the effects of varying

pattern relation between sequence queries in Figure 4.9(d). Since pattern [S7;S8]

enforces a stricter join condition than [S7&S8], as expected, the time costs of both nTMM

and dTMM are higher in pattern [S7;S8]. Besides, a stricter join condition implies more

costs in discovering the top matches, which enables the dynamic maintenance of top-k

approach (dTMM) to provide more gain. Hence the “speedup” is higher in pattern [S7;S8]

than [S7&S8].
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So far, we have considered the sum of each event weight as preference function of

a sequence query. Figure 4.10 shows the result of dTMM versus nTMM when one of the

sequence query has a nonlinear preference function. In this experiment, we still consider a

complex query pattern with two sequence queries. However, instead of using linear sum

as the preference score function for both sequences, we use linear sum on each event

weight for S7 and square root of sum of square on each event weight for S8. Note that as

described before in Chapter 3.4, when sequence queries have nonlinear preference

function, we handle it with an instance of TMM module. In Figure 4.10(a), we see that with

a nonlinear preference function, the proposed dTMM still maintains ∼ 1.4× speedup

compared to nTMM. Figure 4.10(b) again shows that in a query pattern of more strict join

condition (i.e. [S7;S8]), more accessing efforts are required and thus make dTMM more

rewarding in terms of “speedups”.
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Chapter 5

CONCLUSION

In this work, we introduced the problem of top-k pattern evaluation over event streams and

introduced a complex pattern ranking (CPR) framework. In order to efficiently identify the

top sequence matches, we proposed a graph-based sequence enumeration strategy. We

have first shown that events in a given window can be organized into what we refer to a

stratified stream graph and that the best matches can be identified within this graph using

a novel k-shortest path algorithm. We have also shown that within a streaming

environment data changes in shifting windows can be captured as dynamic evolutions of

stratified graphs and that shortest paths can be maintained without having to re-enumerate

all shortest paths for each window shift. Experiments show that the proposed algorithms

provide > 100× gains in execution times over alternatives. We next showed that in

streaming environments top-k joins for combining sequence matches into complex

patterns require new strategies that can adapt effectively (and cheaply) the changes. We

proposed a waste-avoiding boundary selection strategy (WABS) for scheduling accesses

to the input queues. Experiment results on the Intel-Berkeley sensor data showed that the

proposed strategy can reduce the amount of work needed to enumerate top-k complex

patterns using an NRA-based strategy up to 60%. TA-based experiments on synthetic

data showed up to 3× speedups when the access costs are highly asymmetric. In

addition, by adopting a new proposed dynamic top-k complex query match maintenance

mechanism, we avoid the re-computation of previous results, enabling the query

answering process to be much more efficient.
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