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ABSTRACT  
   

Query Expansion is a functionality of search engines that suggest a set of 

related queries for a user issued keyword query. In case of exploratory or 

ambiguous keyword queries, the main goal of the user would be to identify 

and select a specific category of query results among different categorical 

options, in order to narrow down the search and reach the desired result.  

Typical corpus-driven keyword query expansion approaches return popular 

words in the results as expanded queries. These empirical methods fail to 

cover all semantics of categories present in the query results. More 

importantly these methods do not consider the semantic relationship between 

the keywords featured in an expanded query. Contrary to a normal keyword 

search setting, these factors are non-trivial in an exploratory and ambiguous 

query setting where the user’s precise discernment of different categories 

present in the query results is more important for making subsequent search 

decisions.  

In this thesis, I propose a new framework for keyword query 

expansion: generating a set of queries that correspond to the categorization 

of original query results, which is referred as Categorizing query expansion. 

Two approaches of algorithms are proposed, one that performs clustering as 

pre-processing step and then generates categorizing expanded queries based 

on the clusters. The other category of algorithms handle the case of 

generating quality expanded queries in the presence of imperfect clusters.  
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CHAPTER 1 INTRODUCTION 

 
1.1 MOTIVATION  

Web search engines typically make query suggestion based on similar and 

popular queries in the query log [Chirita et al. 2007; Bar-Yossef and Gurevich 

2008]. To handle a bootstrap situation where the query log is not available, 

there are works on query result summarization [Xu and Croft 1996; Carpineto 

et al. 2001; Cao et al. 2008; Tao and Yu 2009; Koutrika et al. 2009; Sarkas 

et al. 2009], where popular words in the results are identified and suggested 

to the user for query refinement. The popularity of words are typically 

measured by factors such as term frequency, inverse document frequency, 

ranking of the results in which they appear, etc.  

Result summarization based approaches using popular words cannot 

effectively capture multiple classifications of results. The problem becomes 

especially severe when the popular words are obtained from top k results, 

which is typically the case for efficiency reasons. In such cases, one type of 

results may have higher ranks and may suppress other result types to be 

reflected in the expanded queries. For instance, when searching “Tennis” on 

Bing, top 50 results are about the “game Tennis”, but there are also other 

interpretations of “Tennis” such as a “place in Egypt” or a “music album” of 

the same name. These results never appear as part of the top k results. 

Result summarization based approaches thus cannot effectively handle 

ambiguous or exploratory queries [Broder 2002] where the users don’t have a 

specific search target, but would like to navigate the space of possibly 
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relevant answers and iteratively find the most relevant ones by refining the 

results. 

To handle ambiguous and exploratory queries, ideally query expansion 

should provide a categorization of different interpretations of the original 

query and thus guide the user to refine the query in order to get more results 

of the desired type. One typical way to approach this problem is by clustering 

the result set online and generating cluster labels by cluster summarization 

based methods [Carmel et al. 2009, Cutting et al. 1992]. Typically these 

approaches give labels to each cluster by adopting differential or internal 

cluster labeling techniques. This includes techniques such as mutual 

information based term selection methods [Geraci et al. 2007, Manning et al. 

2008] which select terms that commonly occur in results of the same cluster 

in contrast with other clusters and frequency based term selection methods 

[Carmel et al. 2009, Cutting et al. 1992] which select highly frequent terms in 

the same cluster in contrast with other clusters. 

However these works overlook several problems associated with query 

expansion. One problem is that, they may find keywords that occur frequently 

in fewer documents in the cluster and thus may not cover many results in the 

cluster. Another problem with such approaches is that, they don’t consider 

the semantic relationship between the keywords in an expanded query. An 

expanded query generated by cluster summarization based approaches may 

be composed of keywords from disparate topics which may have low co-

occurrence together. For example: A suggested expanded query such as 

“Canon Cameras, Printer: Type: InkJet Color” for a user issued query “Canon 
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Products” may be of little help to the user, especially when the user is trying 

to explore the results and narrow down the search to find a desired result.  

This problem becomes a more common occurrence when the clustering 

quality is poor and when results corresponding to multiple semantics is 

grouped into same cluster. Since cluster summarization based approaches 

completely ignore clustering quality into consideration, they generate labels 

that may reflect the cluster composition but yet have semantically poor 

quality. While using sophisticated clustering methodology to improve cluster 

quality would be a direction to follow, it nevertheless guarantees the 

consistent generation of quality expanded queries.  

Therefore, this problem illustrates a unique challenge in generating 

queries for clustered results; the interaction of keywords must be considered. 

Moreover, a potentially large number of results, and a large number of 

distinct keywords in the results add further challenges to the problem. 

Exhaustively searching for the optimal query for each cluster will be 

prohibitively expensive in practice. The problem of generating optimal set of 

expanded queries given the ground truth of query results is shown to be NP-

hard and also APX-hard (i.e., it does not have a constant approximation). 

In this work, I propose two categories of algorithms to generate 

expanded queries that are comprehensive and diverse in covering different 

classifications in the results. The first category of algorithms, as an initial step 

clusters the results and then generates expanded queries for each cluster that 

can retrieve maximal results from the same cluster and minimal results from 

other clusters. If we consider the cluster of results as the ground truth, the 
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goal is then to generate a query whose results achieve both a high precision 

and a high recall.  This category of algorithms proposed is named as “Query 

Expansion using clusters (QEC)”.  

If the clustering quality is good enough, the expanded queries should 

provide a good categorization of the original query results. However, this may 

not be the case since the clustering algorithms often generate imperfect 

clusters, e.g., the clustering quality of k-means method can be sensitive to 

the initial set of “means”. Unless the initial means are chosen carefully to 

represent results from different classifications, the clusters might not aid 

towards generating diverse expanded queries. For example, suppose k = 2 

and if 99% of results are about Apple company and only 1%  is about apple 

fruit, unless one of the initial means is the apple fruit result, k-means will 

never put the apple fruit result into a single cluster. The second category of 

algorithms proposed has two approaches, one which extracts comprehensive 

and diverse expanded queries even in the presence of noisy or imperfect 

clusters and another approach which directly generates expanded queries 

given the original query results. This category of algorithms is named as 

“Categorizing Query Expansion (CQE)”. 

1.2 CONTRIBUTION 

 
The contributions of this work include: 

- A new problem for query expansion is proposed which aims at providing a 

categorization of query results dynamically based on query results. This 

especially has its application on handling exploratory and ambiguous 

queries. 
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- Different from the empirical methods of cluster/result summarization, this 

work proposes a new philosophy of considering interactions between 

keywords for generating meaningful categories of expanded queries. 

- Two kinds of approaches are proposed; generating expanded queries 

based on result clusters and in the presence of noisy clusters. Two 

algorithms are proposed for each approach, which generate meaningful 

expanded queries efficiently. 

- Evaluation measures to quantify the quality of a set of expanded queries 

are proposed. 

- The quality and efficiency of the proposed approaches have been verified 

in the experiments using real datasets. Comparison experiments with 

some of the main body of existing works and a large scale user study has 

also been performed. 

 

CHAPTER 2 PROBLEM DEFINITION 

 

As mentioned earlier, the goal of this work is to generate a set of expanded 

queries that provides a classification of possible interpretations of the original 

user query. The input includes a user query and a set of query results where 

the results are optionally ranked. 

2.1 QUERY EXPANSION USING CLUSTERS (QEC) 

 
To generate a set of expanded queries corresponding to a classification of the 

original query, a natural way is to first cluster the query results using an 

existing clustering method. Then one expanded query is generated for each 
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cluster, which maximally retrieves the results in the cluster, and minimally 

retrieves the results not in the cluster. In this way, considering the cluster as 

the ground truth, the quality of an expanded query can be measured using 

precision, recall and F-measure. Precision measures the correctness of the 

retrieved results, recall measures the completeness of the results, and F-

measure is the harmonic mean of them. 

Let         denote the set of result clusters,    denote the query 

generated for cluster           ,       denote the set of results of   . The 

precision, recall and F measure of    are computed as, 
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To handle the general case where the results are ranked, weighted version of 

precision and recall is used. Let      denote the total ranking score of a set of 

results, then 
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The F measure defined above serves as an evaluation measure for individual 

expanded queries. For evaluating the overall quality of the set of expanded 

queries generated, the harmonic mean of the F-measures is used, while other 

aggregation measures (e.g., algebraic mean) can also be used. 
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To summarize, the problem of generating expanded queries based on 

clustered results with the assumption that clusters would be reliable is defined 

as follows: 

Definition 2.1: Given a set of clusters of query results,        , the Query 

Expansion with Clusters problem (QEC) is to find a set of queries, one for 

each cluster, such that their score (Eq. 4) is maximized. 

Note that the QEC problem is APX-Hard. [Appendix C] 

 

2.2 CATEGORIZING QUERY EXPANSION (CQE) 
 
There is an inherent disadvantage of the cluster based approach of section 

3.1: it considers the clustering algorithm as a black box, thus the quality of 

that method will be much dependent on the quality of the clustering. The 

following example shows how undesirable clusters may prevent us from 

getting desirable results. 
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Consider the above example figure, where there could be 2 ways to cluster 

the result set R using classical K means, based on different initial means. The 

clusters C3 and C4 allow generating desirable queries Q3 and Q4 achieving 

maximum score as per Eq. 4. With clusters C1 and C2, the best queries that 

could be generated are Q1 and Q2, which have bad recall although the 

precision is good. Note that with clusters C1 and C2, it is not possible to 

generate queries Q3 and Q4 as they have both bad precision and bad recall in 

this case according to the goal function defined in Eq. 4.  

From the above example, it could be seen that the clusters which are 

considered as ground truth in case of Eq. 4, can no longer serve as ground 

truth. In this case, an optimal set of expanded queries should cover maximal 

results in the result set and should have minimal overlap with one another. 

For the above example, the optimal queries could be Q5 and Q6 that cover all 

the results in the result set contrary to Q1 and Q2 that misses out some 

results and also have no overlap between them. 

R 

C1       C2 

C3 

 
C4 

Q1 
      Q2 

Q3 

 

Q4 

Q5 
  

 
Q6 

Figure 1. Effect Of Undesirable Clusters. 
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From the above intuition, the below definitions of coverage and 

overlap are derived and finally the score of the set of expanded queries that 

should be maximized for handling imperfect clusters is defined. 
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Considering large coverage and small overlap as desirable, the overall score 

of set of expanded queries is defined as: 
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Definition 2.2: Given a set of results R, retrieved by a user query, the 

Categorizing Query Expansion problem (CQE) is to find a set of queries, such 

that their score (Eq. 8) is maximized. 

Note that the problem of CQE is challenging than QEC problem, since 

in the QEC problem, each expanded queries can be generated independently. 

This is because maximizing the overall score (Eq. 4) is equivalent as 

maximizing the F-measure of each query. On the other hand, an algorithm for 

the CQE problem needs to determine the number of expanded queries, as 

well as consider the interactions of different queries during the generation of 

expanded queries. 
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CHAPTER 3 ALGORITHMS FOR QEC PROBLEM 

 
As mentioned before, the algorithms proposed for QEC problem is based on 

clustered query results. Incremental K means [Manning et al. 2008] is used 

as the clustering algorithm, which dynamically determines K based on best 

cluster quality evaluated by a goal function. Specifically, the algorithm 

increments the value of K in each iteration and terminates when the rate of 

change of goal function flattens. Here, the goal function is a linear function of 

(1) benefit, determined by the sum of intra cluster similarity of each result to 

its cluster centroid and (2) cost, determined by weighted function of the 

number of clusters. The reason for choosing K means is mainly due to its 

efficient linear time complexity. Since the clustering needs to be done online 

based on user’s query, the clustering algorithm needs to be simple, faster and 

should not affect the efficiency of overall time taken to generate expanded 

queries. 

 
3.1 ITERATIVE SINGLE KEYWORD REFINEMENT (ISKR) 

 

The first algorithm is named as Iterative Single-Keyword Refinement (ISKR). 

Given the user query and a cluster of results, the ISKR algorithm iteratively 

refines the input query until it cannot further refine the query to improve the 

F-measure of the query result (considering the cluster as the ground truth). 

Then, it outputs the refined query as the expanded query for the cluster. 

Specifically, the algorithm quantifies a value for each keyword appearing in 

the results, and refines the query by choosing the keyword with the highest 

value found in each iteration. 
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There are several challenges that need to be addressed to make this 

approach work: (1) How to quantify and compute the value of each keyword, 

(2) Keywords interact with each other, as one keyword is added to the 

expanded queries, the values of other keywords may change based on the 

results retrieved by the added keyword. How to identify the keywords that are 

affected and update the values of these keywords? (3) Starting with a user 

query, the algorithm iteratively adds keywords to it, while doing so, it could 

be possible that the F-measure might improve by removing some already 

added keywords, how to handle such cases? (4) Since there can be potentially 

large number of results, there can be a large number of distinct keywords, 

how can we ensure efficiency in picking the right keywords and maintaining 

the values of each keywords? 

Value of a keyword: As each keyword is added to the expanded query the F-

measure of the expanded query increases or decreases. Ideally, the effect of 

adding a keyword can be measured by the delta F-measure of the keyword. 

But the disadvantage of delta F-measure is that it is hard to maintain as each 

time when a keyword is added, the delta F-measure of every keyword needs 

to be updated. Note that, as each keyword is added, two things happen: 

Results are eliminated from other clusters which is a positive effect, and 

results are also eliminated from the same cluster which is a negative effect. 

Therefore the value of a keyword can be measured by the number of results 

eliminated from inside and outside the cluster. It is to be noted that, this 

measure is relatively easier to maintain as we only have to update the values 

of a subset of keywords.  
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Example 4.1.1: Let “D” denote the set of results eliminated by adding 

keyword k to the current expanded query q. If a keyword k’ is present in all 

results in D, then it cannot eliminate any results in D.  Therefore, the delta 

results of k’ with respect to q are the same as delta results of k’ with respect 

to       , since the number of results eliminated by k’ never gets affected 

when k gets added to q. From this example, we can observe that in each 

iteration as a new keyword is added to the expanded query; only a subset of 

keywords that can eliminate results retrieved by the current expanded query 

has to be updated with a new value. 

With these observations, we measure the value of a keyword by benefit and 

cost. Benefit (k, q) is the total score of the results eliminated in other clusters 

U, and cost (k, q) is the total score of results eliminated from the same 

cluster C. 

                                        (9) 

                                      (10) 

 

The value of a keyword k with respect to q is measured by the ratio of benefit 

and cost. 

                                                                                     (11) 

Example 4.1.2: The following example illustrates the steps involved in the 

ISKR algorithm, psuedocode for all algorithms are provided in appendix B.  

Suppose, the user’s query is “Apple”, the example below shows the 

process involved in ISKR when it tries to generate expanded query for one of 

the clusters C having results          The results in other clusters U are 
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          . The table below shows the various keywords and the results they 

eliminate from the same cluster C and from other clusters U. The algorithm 

iteratively adds each keyword with the goal of maximizing the number of 

results eliminated from other clusters and minimizing the results eliminated 

from the same cluster by choosing the keywords by their benefit cost ratio. 

Table 1 

Values of Keywords Computed By ISKR: 

                   Benefit Cost Value 

Job                   8 6 4 

Store                       5 4 1 

Location                        5 4 1 

Fruit                   3 3 0 

 

Since keyword “Job” has the highest value, it is first added. As a result, the 

values of other keywords get affected, for example: the keyword “store” no 

longer eliminates the results         in C and           in U. The updated 

table looks like below: 

Table 2 

Updated Values Of Keywords: 

   Benefit Cost Value 

Job 6 8 -2 

Store 1 0 1 

Location 1 0 1 
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Fruit 0 0 0 

 

After multiple iterations, the keywords “store” and “location” also gets added 

to the expanded query and the updated table looks like below: 

Table 3 

Updated Values Of Keywords: 

   Benefit Cost Value 

Job 1 0 1 

Store 0 1 -1 

Location 0 1 -1 

Fruit 0 0 0 

 

Necessity for keyword removal: 

It is possible that sometimes, removing an already added keyword will be 

beneficial, for instance, in the above example, removing the keyword “Job” is 

now beneficial, as the current expanded query {“apple”, ”job”, ”store”, 

”location”} retrieves two results from C. Removing “job” would retrieve one 

more result in C, without involving any cost. Therefore the keyword “job” is 

removed leading to the expanded query of {“apple, “store”, “location”}. 

The benefit and cost of removing a keyword is computed based on the 

number of results that will be added back to D (k), when a keyword is 

removed, as given below: 

                                 (12) 
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                               (13) 

Note that, in contrast to the addition case, removal of keyword increases the 

number of results in both U and C. Thus the removal of a keyword increases 

recall (measured by benefit) and decreases precision (measured by cost). The 

value of the keyword is computed similar to the addition case by the benefit 

cost ratio. The ISKR algorithm stops when the best value keyword has a value 

of zero or below. 

In the implementation, in order to efficiently retrieve the best value 

and to update the values of other keywords often, the keywords and their 

values are stored in balanced binary search tree. 

 

3.2 PARTIAL ELIMINATION BASED CONVERGENCE(PEBC) 

ISKR algorithm iteratively adds/removes keywords because of which the 

values of many other keywords need to be maintained which is cumbersome. 

Intuitively, all we need to find is an expanded query that maximizes the F-

measure of precision and recall. The second algorithm tries to find directly the 

set of keywords that has the best F-measure. However, since the space of all 

possible queries is exponential to the data size, finding such a query is 

challenging. In this algorithm, I propose to first select a set of sample data 

points in the search space, and choose the most promising set of points 

among them and continue to search for more data points within this range 

with the goal of further improving the f-measure. 

 Specifically, given a set of queries and their f-measure, set of queries 

with highest average f-measure is chosen and then the algorithm proceeds by 
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finding a better query within the f-measure range of these chosen set with 

the assumption that optimal queries may exist in this range. This method is 

closely related to interpolation in numerical analysis, which helps in 

constructing new data points within the range of a set of discrete known 

points. Now two questions need to be answered, what kind of sample points 

should we use to converge to optimal solution and how do we obtain such 

points? 

Type of sample queries:  To answer the first question, a set of sample queries 

can be used, each of which maximizes the number of results to be retrieved 

in C, given a percentage of results in U to be eliminated. This is in the spirit of 

maximizing the recall given a fixed precision. If result ranking is not present, 

the approach aims at eliminating x% of U’s results; otherwise, it aims at 

eliminating a set of U’s results, such that their total ranking score is x% of the 

total ranking score of all the results in U. In the following, I use “x% of the 

results in U” to refer in general to both cases. 

Example 4.2.1: Consider that the algorithm generates five queries, q1 to q5, 

to eliminate 0%, 25%, 50%, 75% and 100% of the results in U respectively, 

and maximize the number of results in C to be retrieved. Suppose the F-

measures of these queries are: 0.5, 0.6, 0.8, 0.4 and 0.1 respectively. The 

algorithm takes the two adjacent queries whose average F-measure is the 

highest, which are q3 and q4 and zooms in this interval between 50% and 

75% further dividing them to several intervals and repeating the process. 

Generating sample queries:  The key challenge of PEBC algorithm is how can 

we eliminate roughly x% of the results in U and maximize the number of 
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retrieved results in C. This problem is referred to as Partial Elimination. This 

problem bears some similarity to weighted partial set cover problem, which 

aims at finding a set of subsets with the lowest total weight to cover at least 

x% of the elements in the universal set. However, in contrast to the partial 

weighted set cover problem which requires to cover at least x% of the 

elements, the goal is to eliminate as close to x% of the elements as possible. 

Some of the methods studied for generating sample queries are discussed 

below. 

3.2.1. Generating queries based on benefit-cost.  

 
One intuitive method is to apply the greedy algorithm commonly used in 

weighted set cover for keyword selection: each time, select the keyword with 

the largest value based on benefit-cost, until approximately x% of the results 

in U are eliminated. Benefit and cost are defined in the same way as in ISKR: 

benefit is the total weight of the un-eliminated results in U that a keyword can 

eliminate, and cost is the total weight of the un-eliminated results in C that a 

keyword can eliminate. 

However this method has an inherent problem. The keyword values 

based on benefit and cost do not change with varying x; the keywords are 

always selected in the same order. Specifically, let the list of keywords 

selected when x = 100 be K = k1,…,kp. Now we want to select keywords to 

generate a query for each point in a range of possible values of x. No matter 

which point it is, the set of keywords selected will be a prefix of K. This “fixed-

order” selection of keywords makes it very difficult to control the percentage 

of results being eliminated. 
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Example4.2.1.1: Consider a total of 10 results in U,        , and 4 keywords 

k1=”job”, k2=”store”, k3=”location”, k4=”fruit”. Suppose the set of results 

eliminated in U by each keyword (benefit) and the number of results 

eliminated in C by each keywords (cost) are: 

                                            

                                                   

                                         

                                            

Also if in this example, the set of results in C that is eliminated by a keyword 

does not intersect with the set eliminated by another keyword. 

In this approach, the keywords are always selected in the decreasing 

order of their benefit-cost values, that is:             (recall that after a 

keyword is selected, the benefit/cost of other keywords may change, as 

discussed in Section 3.1). Having the order of keyword selection fixed, there 

is a slim chance to achieve the goal of x% elimination. For instance, in order 

to eliminate 7 results with the fixed order keyword selection, we will have to 

either use          which eliminates 5 results, or             eliminating all 10 

results. This poses a lot of restriction. Note that in this example, if we do not 

select keywords in this order, we can choose         which eliminates exactly 

7 results. 

As we can see, always selecting keywords based on their benefit-cost 

values makes it hard to eliminate a given percentage of the results. Next we 

discuss the approaches that overcome this problem using a randomized 

procedure. 
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3.2.2 Generating queries based on randomly selected subset. 

Since selecting keywords in a fixed order is undesirable, this section 

introduces a randomized procedure. First, a subset of x% of the results in U is 

randomly selected. Then keywords are selected, aiming at eliminating these 

randomly selected results. In this way, since the set of results to be 

eliminated is randomly selected, the keywords will not be selected in fixed 

order. If the randomly selected set of results is “good”, we may be able to 

eliminate exactly this set of results. 

Given the randomly selected results, selecting a set of keywords that 

eliminate these results with minimal cost is NP-hard, as the weighted set 

cover problem is a special case of it. To see this, assume that each keyword 

eliminates part of the selected set of results in U, and their costs are 

independent (i.e., they eliminates distinct sets of elements in C). Then, each 

keyword is equivalent to a subset in the weighted set cover problem. To 

choose a set of keywords that covers the randomly selected results, we can 

use some greedy approaches, e.g., let S be the randomly selected set of 

results, at each time we choose a keyword which covers the most number of 

results in S with minimal cost. Other methods can also be used. 

 As can be seen here, this approach has two problems. First of all, 

given a set of randomly selected results, selecting a set of keywords that 

eliminate exactly this set of results with minimal cost is an NP-hard problem. 

Second, as illustrated in the above example, the quality of the algorithm 

highly depends on the selected subset, thus the chance that it can get the 

optimal answer is still slim. 
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3.2.3 Generating queries based on randomly selected result. 

This section proposes a randomized procedure that has a much better chance 

to eliminate as close to x% of the results in U as possible. In this method, a 

result is selected randomly from U that is not yet eliminated, and then a 

keyword is selected that (1) can eliminate the selected result, (2) and has the 

highest benefit cost ratio over all such keywords. In case of a tie, the keyword 

that eliminates fewer results is chosen to minimize the risk of eliminating too 

many results. The iteration continues until the percentage of results 

eliminated is smaller than x%. 

Example4.2.2.1: Continuing the example, to eliminate all 7 results, we may 

get the correct solution if we first choose one of the following five 

results:                  }. Suppose that we choose   , and choose    to 

eliminate it. After    is used, we have the set             eliminated. Then 

we can get optimal solution if the next randomly selected result is 

either         . To eliminate         , we choose    , which additionally 

eliminates results         , totaling 7 results eliminated. As we can see, the 

approach has a much higher chance to achieve the optimal solution (i.e. 

removing x% of results) than the one discussed before. 

 

3.2.4 Choosing clusters for result elimination 

Note that, given the problem definition in section 2.1, expanded queries are 

generated independently for each cluster. In each iteration, an expanded 

query is generated for a cluster, with the goal of maximally retrieving the 
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results in the cluster and minimally retrieving the results outside the cluster 

according to goal function in Eq. 4. Given this goal, keywords are chosen to 

eliminate results from U (outside current cluster C) irrespective of which 

cluster in U, the result belongs to. It could be possible that with this 

approach, the algorithm may run into the risk of eliminating all results from a 

single cluster C’ in U and therefore resulting in high overlap between results 

covered by current expanded query for C and subsequent expanded queries 

that will be found for clusters U-C. This is especially possible, when the 

clusters are imperfect and have high overlap of similar results. However, the 

goal function to be optimized in Eq. 4 is mainly set assuming that the clusters 

are mostly perfect and may not share many similar results. 

 In the next section, we will see that this assumption is not always true 

and learn how to consider the interaction between expanded queries 

generated in each iteration in the presence of imperfect clusters.  

The psuedocode for PEBC is available in the appendix. 

CHAPTER 4 ALGORITHMS FOR CQE PROBLEM 

 
As mentioned before, the main goal of this work is to generate expanded 

queries that are comprehensive in covering all results of the user’s query and 

are also diverse. To achieve this goal, clustering served as a helper tool for 

generating expanded queries in the earlier approaches.  

This section introduces two algorithms, one is Iterative Cluster 

Refinement (ICR) that minimizes the effect of imperfect clusters and 

generates quality expanded queries. The other algorithm is Bisecting Query 
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Generation (BQG) that tries to generate expanded queries directly without the 

help of clusters. 

 

4.1 ITERATIVE CLUSTER REFINEMENT (ICR) 

The algorithms discussed so far, considered retrieving results from other 

clusters as undesirable and confined the search to finding queries that can 

retrieve maximal results from its own cluster. In a situation where the 

clusters are imperfect, this strategy may concede to the imperfectness of the 

clusters. In case of imperfect clusters, it is very much possible that the 

optimal queries may cover results from different clusters. In contrast with the 

earlier approaches, it would be desirable to consider retrieving results from 

other clusters that are not retrieved by other expanded queries, since we 

know that the clusters are imperfect and it is baseless to confine the queries 

to the cluster boundaries. Imperfect clusters are illustrated in the following 

figure, where the results points are plotted in the keyword space. 
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Figure 1: Distribution Of Data Points Of Imperfect Clusters 

 

Two things can be inferred from the above figure: (1) Clustering is not 

completely bad, it helps in separating highly dissimilar points, example: 

cluster C1 and C3. (2) However some clusters can be bad, for which the right 

expanded queries are difficult to generate using approaches discussed in 

section 4. The experiments reported in section 6.2.3 shows that the cluster 

quality indeed affects the quality of expanded queries. It can be seen from 

the experiment results, that even if one cluster has poor quality due to low 

intra cluster similarity of documents within the cluster and/or high inter 

cluster similarity with documents in other clusters, the quality of expanded 

queries tends to be low. Further, it is also seen from these experiments that 

high quality clusters generally tend to generate quality expanded queries. 
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The ICR algorithm generates expanded queries by iteratively refining the 

clusters, so that the effect of imperfect clustering is minimized. Suppose we 

want to find k expanded queries. The algorithm works in the following steps: 

1. Generate an initial set of k expanded queries using either ISKR or 

PEBC. 

2. Pick one expanded query q. 

3. Re-cluster the results in        into     clusters. Generate     

expanded queries. 

4. Repeat from step 2 until   expanded queries are picked. 

Coherent with the intuition that the clustering cannot be completely bad, in 

step 2, the algorithm tries to pick and finalize expanded queries that can 

correspond to instantly recognizable clusters. In this step, queries that have 

better alignment with its clusters are picked and made permanent. The 

strategy for picking these queries is explained below, wherein the basic 

assumption is that the clusters for which quality expanded queries can be 

found should be better clusters that may not need much refinement. 

In subsequent steps, the results not covered by the finalized query q 

are considered for re-clustering. This is coherent with the intuition of 

disregarding the imperfectness seen in the clusters. As the results covered by 

q are removed, the relationship between the data points might change, and 

there could be a different set of clusters most relevant to the currently 

available points after re-clustering. 

Choice of queries: Now we discuss how to pick the query in step (2). For the 

convenience of presentation, I refer to the queries that have been chosen in 
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step (2) as finalized queries, and the queries that have just been generated in 

step (3) as candidate queries. First, since the queries already picked are 

finalized, it is desirable to avoid choosing the queries that overlap with the 

finalized queries. Besides, a query is a good candidate to be chosen as 

finalized query, if it has good precision and recall with respect to its own 

cluster.  Therefore, if the F-measure of a query is too low, it should not be 

chosen as a finalized query. 

Based on the above intuition the following desirableness score is used 

to measure the quality of a candidate query q. 

                                                            (14) 

Where,    is the set of finalized queries,               is the overlap of results 

retrieved by         .   is the relative importance of not overlapping with 

finalized queries, compared to achieving a good F-measure. p is set 

empirically to 0.7 in the current implementation. A linear combination of 

overlap and recall is used instead of weighted harmonic mean just to facilitate 

easier adjustment of weights between 0 and 1. 

 It would be beneficial to learn the value of  “p” based on observed 

intra cluster and inter cluster similarity over a range of training queries. The 

value of p can be set based on a threshold value of the lowest intra cluster 

similarity         and the threshold value of highest inter cluster similarity 

        among the clusters. Since the values of these internal measures may 

largely depend on the underlying data, it is not reasonable to use a static 

function of these measures to compute the value of “p”. Rather, the threshold 
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values must be learned over a set of training queries on the underlying data 

in order to deduce the value of “p”. 

 

Generating Candidate Queries:  

In step 3, the algorithm re-clusters the remaining uncovered results and 

generates expanded queries using PEBC or ISKR. Note that while selecting 

keywords to be added to the expanded queries using PEBC/ISKR, extra 

weight can be given to keywords that do not retrieve results that are already 

covered by the finalized queries. The benefit factor computed in ISKR/PEBC 

while picking keywords is changed to accommodate this weight: 

 

                                                      (15) 

 

   is the set o results in other clusters, which is the same as U in Equation 9. 

   is the reasults covered by the finalized queries. p2>1 is the importance 

weight for not retrieving such results. We empirically set p2=3. The cost 

factor remains the same, and the value of the keyword is still computed as 

ratio of benefit and cost. 

ICR thus tries to improve the quality of expanded queries by taking an 

aggressive approach to improve coverage, and a cautious approach to 

maintain low overlap. It tries to be aggressive in covering results not 

retrieved by other expanded queries even though they may correspond to 

other clusters, at the same time it tends to be cautious in not retrieving 

results already covered by finalized queries. The experiment results show that 
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this methodology significantly improves upon the quality of expanded queries 

generated by ISKR and PEBC. 

The following example illustrates the steps in ICR algorithm: 

Example 5.1.1: Consider the following clusters obtained for the user’s query 

“Columbia” and the results covered by some of the keywords: 

                    

              

            

album         

city                        

district               

                

university          

The algorithm first processes the clusters and picks {university}, {Indiana} 

and {album} as the expanded queries for corresponding clusters. Given the 

three clusters, these are the best queries that can be obtained by the 

approaches discussed in section 4. As can be seen, many results are left 

uncovered by the above expanded queries. ICR picks “university” and 

finalizes it as one of the expanded queries. It then takes the rest of the 

uncovered results and re-clusters them. Let’s suppose the clusters obtained 

by re-clustering are C1: {R3, R4, R5, R6, R7}, C2: {R8, R1, R2}. ICR picks 

“district” as the next finalized query, which leaves out only one cluster of 

uncovered results, {R3, R8, R1, R2}, ICR finally outputs the final set of 
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expanded queries as, {university}, {district} and {album}. As can be seen, 

these queries have better coverage than the previous set of queries. 

 

4.2 BISECTING QUERY GENERATION (BQG) 

Although ICR tries to minimize the effect of bad clusters on expanded queries, 

clustering always incurs some amount of loss on the quality of expanded 

queries. This section discusses an algorithm that tries to directly generate 

expanded queries without the help of clusters. 

 The problem of query expansion can be seen as feature selection 

problem, where the query results are represented in N dimensional space of 

keywords/terms. Now the problem is to find a subset of diverse term 

dimensions that can represent the documents comprehensively. Various 

feature selection methods such as term frequency based [Cutting et al. 

1992], centroid [Radev et al. 2004], document frequency based or mutual 

information based [Manning et al. 2008] can be applied to solve this problem. 

However, all these methods suffer from the various problems of cluster 

labeling methods mentioned in section 1. 

 Closely connected with works on mapping multimedia objects in N 

dimensional space to K-d space [Faloutsos et al. 1995, Torgerson 1952], this 

section presents an algorithm named as Bisecting Query Generation (BQG) 

that exploits the information about distances between query results on the 

basis of term composition to directly find K expanded queries. 

The BQG algorithm proceeds in following steps: 
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1. Generate initially two single keyword queries q1={k1} and q2={k2}, 

such that among all single keyword queries, q1 and q2 has the 

maximum score per equation 8. 

2. If the number of queries has reached the threshold K, terminate. 

Otherwise: 

a. Find another expanded query, If the F-measure score as per 

equation 8 can be improved by doing so; Else: 

b. Pick one of the already found expanded query q, split q into two 

queries q’ and q’’, each having one additional keyword than q, 

such that these two queries maximize the F-measure score for 

the results retrieved by q. 

In each iteration step 1 and 2(a) tries to find orthogonal term dimensions that 

can improvise the F-measure score until K dimensions of expanded queries 

are found. Considering the result documents are points in N dimensional 

space of terms, step 2(b) considers a (N-1) dimensional hyper-plane H, and 

continues to find orthogonal term dimensions within this hyper-plane until K 

dimensions are found.  The strategy for picking this hyper-plane H is 

explained below, the basic intuition is to pick the one that can be further 

naturally divided into more orthogonal dimensions. 

Choosing the query to refine: 

There are several ways to choose the query for further refinement in step 

2(b). For example: (1) Picking the query based on least number of keywords; 

(2) Picking the query which has most number of results. However these 

approaches may not work in many cases, because different categorization of 
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the original query may have different number of results, and may be best 

described by different number of keywords. For example, when we search 

“java”, the two initial queries may be “java, language” and “java, location”. 

Although they both have the same number of keywords, and “java, language” 

retrieves much more results than “java, location”, yet it might be desirable to 

refine query “java, location” since “java” matches many locations, e.g., an 

island in Indonesia, a town in Georgia, etc.  

As we can see, which query we use to refine the results should not 

depend on the number of keywords or the number of results it retrieves, but 

on whether its results can be naturally divided into multiple categories. 

Therefore, to decide a query to refine, the query whose results have the 

minimum average similarity is selected. The standard metric in IR, the cosine 

similarity of two vector is used as the similarity measure of two results. If the 

results are text documents, each component of the vector is a keyword and 

its value is the TF of the keyword. If the results are structured documents, 

each component is a feature, and the value is the TF of the feature. The 

desirableness of choosing query q to refine is defined as: 

 

                                                                 (16) 

 

To compute similarity of every pair of documents in the result set of q would 

be expensive. One heuristic alternative is to find the centroid of the result set 

and find the average similarity of all documents with the centroid. Also note 

that, In step 1 and 2(b), finding best pair of keywords that can maximize the 
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F-measure is a    operation, where N is specifically the number of dimensions 

or terms in the result set. However feature reduction strategies such as 

considering only keywords with high term frequency and/or high document 

frequency can be applied to improve the efficiency. In the current 

implementation, keywords that appear in at least two documents with a term 

frequency of 3 are chosen, based on best results obtained compared with 

other strategies. 

The following example illustrates the working of BQG algorithm. 

Example 5.2.1 

Given below are some of the keywords and their result coverage of the results 

of original query “Columbia”. 

"Indiana" - {R1, R2, R3, R4} 

"Album" - {R1, R5, R6} 

"City"- {R3} 

"District"- {R3, R4} 

"University"- {R2, R6} 

The ICR algorithm can generate good expanded queries if in each iteration, at 

least one expanded query is good (i.e., at least one cluster is good) and this 

query is the one selected to be the finalized query. Therefore, it is still 

dependent on the quality of clustering to certain extent. On the other hand, 

the BQG algorithm completely eliminates the dependency on clustering by 

generating two initial queries, and splitting one queries into two at each step. 

The BQG algorithm first enumerates every pair of keywords and find the pair 

with the highest score per Eq. 8. Among these six keywords, “Indiana” and 
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“Album” have the highest scores: queries {“Indiana”} and {“Album”} has a 

coverage of 1 and an overlap of 0.33, thus their score is the harmonic mean 

of 1 and 0.67, i.e., 0.80. The current expanded queries are thus q1 = 

{“Indiana”} and q2 = {“Album”}. 

 Now, we pick a query to split. Among the current expanded queries, 

we choose the one whose result has the minimum average similarity, which is 

“Indiana”. Again, we enumerate every pair of keywords and find the pair of 

keywords k and k′, such that queries {“Indiana”, k} and {“Indiana”, k’} have 

the largest score with respect to the results retrieved by query {“Indiana”}. 

The best pair of keywords are “University” and “District”, since {“Indiana”, 

“University”} and {“Indiana”, “District”} have good coverage and zero 

overlap. Now we have three queries with full coverage and no overlap. 

Therefore, the BQG algorithm will output: q1={“Album”}, q2={“Indiana”, 

“University”} and q3={“Indiana”, “District”}. 

CHAPTER 5 EXPERIMENTS 

 

In this section, a set of experimental evaluations are presented on the quality 

of expanded queries generated by the current approach, and the efficiency 

and scalability of query generation. 

 

5.1 EXPERIMENT SETUP 

Environment: All experiments were performed on a machine with AMD Athlon 

64 X2 Dual Core Processor 6000+ CPU with 3GHz, 4GB RAM, running 

Windows Server 2008. 
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Dataset: Two datasets are used for evaluation: shopping and Wikipedia. 

Shopping is a data set that contains information of electronic products 

crawled from circuitcity.com. Each product has a title, a category, and a set of 

features. Wikipedia is a collection of document-centric XML files used in INEX 

2009. 

Query Set: 10-12 queries are tested on each data set, as shown in Appendix 

A. The queries on Wikipedia dataset are composed of ambiguous words. The 

queries on shopping dataset are to search for specific products.  

Result Clustering: Each result is modeled as a vector whose components are 

features in the results and the weight of each component is the TF of the 

feature. The similarity of two results is the cosine similarity of the vectors. 

Feature reduction is applied to reduce the number of dimensions for 

improving efficiency, specifically only the terms with document frequency of 2 

and above and term frequency of 3 and above are selected. The clustering 

algorithm used is K means with varying-K approach, for determining the 

number of clusters dynamically. The algorithm iteratively generates clusters 

with incremental K values and stops when rate of change of goal function 

flattens. The goal function is set as benefit-cost, where benefit is the sum of 

intra cluster similarity of documents with their respective centroids and cost is 

the weighted function of the number of clusters [Manning et al. 2008]. 

Comparison System:  Following are some of the search systems providing 

query expansion service on which the test queries are evaluated for 

comparison. 
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(1) Data Clouds [Koutrika et al. 2009], which takes a set of ranked results, 

and returns the top-k important words in the results. The importance of a 

word is measured by its term frequency in the results it appears, inverse 

document frequency, as well as the ranking score of the results that contain 

the word. Data Clouds is a representative method for returning important 

words in the search results, without clustering the results. 

(2) Google. For each test query, the first 3-5 related queries suggested by 

Google (the number of which is the same as the number of queries generated 

by other approaches) are chosen. Google is a representative work of 

suggesting related queries using query logs. 

(3) F-measure, which is an alternative ISKR algorithm that considers the 

value of a keyword k with respect to a query q as the delta F-measure of q 

after adding k to q or removing k from q. As discussed in Section 4, since the 

goal function is to maximize the F-measure of a query, the delta F-measure 

more accurately reflects the value of a keyword than the benefit-cost values. 

However, in this approach, after a keyword is added to or removed from the 

current query, the values of all keywords will need to be updated, which 

potentially leads to a low efficiency. 

(3) TFICF, a frequency based feature selection method representing term 

frequency based Cluster Summarization [Carmel et al. 2009]. It first clusters 

the results, then generates a label for each cluster. The label of a cluster is 

selected based on the term frequency (tf) and inverse cluster frequency (icf) 

of the words in the cluster. This is a representative method for cluster 

summarization and labeling. 
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(5) Mutual Information based feature selection [Carmel et al. 2009, Manning 

et al. 2008], selects terms for each cluster based on the measure of how 

much information – in the information theoretic sense – a term contains 

about the corresponding cluster. MI reaches its maximum value if the term is 

a perfect indicator for cluster membership, that is, if the term is present in a 

result if and only if the result is in the cluster.   

(6) Chi Square based feature selection [Tseng et al. 2006, Liu et al. 2003, 

Carmel et al. 2009, Manning et al. 2008, Yang et al. 1997], where terms are 

selected for each cluster based on the measure of independence between the 

occurrence of the terms and the occurrence of corresponding cluster. Since, 

Chi square considers both positive and negative correlation of terms with 

clusters and may tend to output some negative terms that are indicative of 

non-membership in the cluster, square root of Chi square is considered which 

is nothing but “correlation co-efficient” [Tseng et al. 2006]. It outputs only 

the positive terms that are highly indicative of membership in a class. 

(7) The algorithms discussed in the current work namely, ISKR, PEBC, ICR 

and BQG are evaluated and compared with the above systems. 

For both the datasets, all systems consider top 100 results to generate 

expanded queries.  

 

5.2 QUALITY OF QUERY EXPANSION 

5.2.1 User Study. 

An extensive user study on Amazon Mechanical Turk [1] was performed with 

50 public web user participating in the study. The user study consists of three 
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parts. In the first part, the users gave ratings to each individual expanded 

query, in the second part the users rated the queries considering collectively 

the set of expanded queries generated by a search system. In the third part, 

a general question was asked to the web users in order to verify the intuition 

of the approaches. 

Part 1: Individual Query Score. 

In the first part of the user study, the users were asked to rate each 

individual expanded query in a 1(low)-5(high) scale, based on how they feel 

about the expanded queries.  The users were also asked to choose the 

following justification options to reason their ratings. 

A – The expanded query is highly related to the search and helpful. 

B – The expanded query is related to the search, but there are better ones. 

C – The expanded query is not related to the search. 

 

 

Figure 2: Average Individual Query Score 
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Figure 3 : Percentage Of Users Choosing A, B, or C For Individual Queries 
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shown in Figure 3, and the percentage of users choosing each option in this 

part of the user study is shown in Figure 4. As can be observed, the current 

work’s approach is rated better than other approaches. Also as can be seen 

from figure 4, many users found the current work’s approaches produce 

highly related and helpful expanded queries compared to other approaches. 
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the users as they cover less number of results in the cluster although adding 

such terms to the expanded query set improves the goal function. This 

situation can be handled by carefully selecting the condition to stop the 

iteration. In the current implementation, various factors lead to the 

termination of the iteration, such as the upper bound on the number of 

expanded queries, the non-availability of any terms to further improve the 

goal function, the threshold on rate of increase in the goal function etc. These 

factors are hard to be set arbitrarily, and rather needs to be set by periodic 

learning and techniques such as relevance feedback.   

The TFICF approach chooses keywords that are popular in the current 

cluster in contrast with other clusters, but however it does not considers the 

interaction between the keywords featured in an expanded query, thus may 

tend to pick keywords hat have high occurrence (TF), but with low co-

occurrence in the cluster results. Thus the users mostly found such expanded 

queries less desirable. For example, for query “Jaguar”, TFICF approach 

generated expanded query “Jaguar, OS, nova”, for query “Rockets”, it 

generated “Rockets, games, artillery” etc. 

Google chooses keywords based on query log, thus it often returns 

meaningful and popular keywords, which is desirable. For example, for QW6 

“Java”, Google returns the expanded queries “Java, Tutorials”, “Java, Games” 

etc., which are generally very popular with the users. However, for some 

queries Google may return keywords that do not occur in the results. For 

example, Consider QS1 “Canon, products”, Google returns a query “Olympus 

products”, “Nikon products” etc. While this could be useful for some users, 
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the user rating has indicated that many the users prefer the expanded queries 

to be results oriented. 

 

Part 2: Collective Query Score. 

In the second part of the user study, the users were asked to rate each set of 

expanded queries generated for a user query in a 1-5 scale, based on how 

they feel about the collective set of expanded queries returned by a search 

system given a original query. The users were also asked to choose from the 

following justification options: 

A - Not comprehensive and not diverse. 

B - Either not comprehensive or not diverse. 

C - Comprehensive and diverse. 
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Figure 4: Collective query scores for each set of expanded queries 
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Figure 5: Percentage of users choosing A, B, C for each set of expanded 
queries 

For all 20 queries, the collective score of each user query for each approach is 
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the queries such as “Eclipse”, TFICF found terms that occurred in fewer 

results with high frequency, such as “Eclipse astronomical mathematics”. The 

users should have found such queries too specific to serve as a label for a 

broad topic related to Eclipse. For some cases, where the clusters are noisy 

TFICF is not found to be comprehensive and diverse, such as for the query 

“Domino”, “Eclipse” etc. For such cases, ISKR and PEBC also received 

relatively lower rating compared to ICR and BQG. ICR and BQG succeed at 

covering comprehensively all topics maintaining the diversity even in the 

presence of noisy clusters, and therefore received better collective ratings 

from users. 

Data cloud returns the top ranked keywords in the results for which 

the expanded queries often lack comprehensiveness and diversity. For 

example, consider QS1 “Canon, products”. All the current work’s approaches 

return camera, printer and camcorder. However, Data Clouds returns all 

expanded queries related to camcorders, as there are many results that 

correspond to camcorders. The users mainly chose option A or option B for 

Data Clouds. 

For many queries in Shopping data such as “HP Products”, “Canon 

Products”, “Memory” etc., TFICF received better ratings on par with other 

approaches. This is because the shopping data is more structured and results 

in the same cluster are highly coherent and share many common features. 

Therefore, even though the TFICF approach does not consider the relationship 

of keywords, the keywords it selects in an expanded query likely co-occur in 

many results. On the other hand, on the Wikipedia data, it may choose a set 
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of keywords, such that each of them has a high occurrence but they do not 

necessarily co-occur. Such a query will not retrieve many results which lowers 

its recall.  

Part 3: User opinion about expanded queries. 

The users were asked about their general opinion about a good set of 

expanded queries, in order to gain an understanding of whether the 

assumptions made in the current work are aligned with the need of a web 

user. Following are some of the responses received: 

“A best expanded query has the power to decide what the user wants.” 

“The expanded query should be short and precise.” 

“A good expanded query should be specific enough for what the person is 

looking for but also general enough so that it doesn't get too specific.” 

 

“It should contain different areas of relations to the searched words/phrases.” 

“Comprehensive, useful, with options.” 

 “Need some of the options as different from other options.” 

These responses mostly indicate comprehensiveness and diversity as 

desirable features.  

 

5.2.2 Scores of expanded queries (using eq. 4). 

As defined in Eq. 4, the score (goal function) of a set of expanded queries is 

the harmonic mean of their F-measures. In this section, the scores of 

expanded queries of ISKR, PEBC and TFICF approaches are shown in the 

figure 7. Since the queries generated by Data Clouds and Google are not 
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based on clusters, this score is not applicable to them. The ICR and BQG 

approaches are not comparable here as they are evaluated using a different 

score measure given in Eq. 8 and moreover all the approaches tested in this 

part consider clusters as ground truth and use Eq. 4 as the evaluation 

measure. The comparison with the ICR approach is provided in the next 

section. 
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Figure 6: Scores of expanded queries considering clusters as ground truth 
(Eq. 4) 

 
As we can see, in general both ISKR and PEBC algorithms achieve similar and 

good scores. On the shopping data, both algorithms achieve perfect score for 
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contain several different product categories (e.g., QS1 “Canon” whose 

products contain camcorders, printers, and camera), each category forms a 

cluster. Therefore, it is usually possible to achieve a perfect precision and 

recall. 
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result they have poor scores for the wiki dataset. Since in shopping data, 

many results in the shopping data usually have common keywords, TFICF 

tends to have better scores for shopping data. 

 

5.2.3 Effect of cluster quality on expanded queries. 

The main motivation for the algorithms described in section 5 is to minimize 

the effect of bad clusters on the quality of expanded queries. However, the 

precise relationship between cluster quality and quality of expanded queries is 

not yet discussed. This section studies the effect of cluster quality on the 

generation of quality expanded queries. Specifically since the algorithms in 

section 4 aims to generate expanded queries which cover maximal results 

from the same cluster and minimal results outside the cluster, we will see in 

this section, how even one bad cluster may affect the overall score of the 

expanded queries. Internal cluster evaluation measures [Manning et al. 2008] 

such as Intra cluster Similarity and Inter Cluster Similarity are used to 

determine the quality of the clusters.  

 Intra cluster similarity of a cluster is the average similarity of 

document results within the cluster, Inter cluster similarity between two 

clusters is the average similarity between document results of the two 

different clusters. 

                                                            (16) 

                                                           (17)  
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For each of the test queries, the lowest intra cluster similarity and the highest 

inter cluster similarity values found among the clusters is compared with the 

overall score of expanded queries in Figure 8. Both these internal measures 

indicate the level of poor quality of the clusters. 

 

 

Figure 7 Effect Of Cluster Quality On Expanded Query Score 

 

As can be observed from the above figure, high inter cluster similarity 

generally results in low expanded query scores. Intuitively, this is plausible as 

it becomes increasingly difficult for the algorithms to find terms that can 

eliminate maximal results from other clusters when the clusters are similar. 

The above figure shows a general trend of inverse correlation between inter-

cluster similarity and query score.  
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In case of intra cluster similarity, high intra cluster similarity in a 

cluster should intuitively help the algorithms to find expanded query terms 

that can maximally retrieve results from the cluster. This can be observed by 

looking at the query “newton”, “turkey” and “rockets”. For query “rockets”, 

the inter-cluster similarity is higher than “newton”, but yet with the support of 

high intra cluster similarity, the algorithm generates high query score. The 

same phenomenon can be observed when comparing the query “turkey” and 

“newton”. However, sometimes when the intra-cluster similarity is low, i.e, 

when results in the same cluster share less number of terms, the algorithm 

still manages to find a few shared terms that can cover the cluster well, for 

example: query “hp”, “memory” etc. In general, it is desirable to have high 

intra cluster similarity and low inter cluster similarity to get better quality 

expanded queries. 

Therefore, these results support our motivation to negate the effect of 

poor clusters for generating better expanded queries. However, in order to 

substantiate this intuition, I did the following case study to find out how the 

expanded queries look semantically when the cluster quality is high/low. 

Specifically, this case study helps in understanding whether a semantically 

better query actually corresponds to a high f-measure score. The semantic 

meanings are cross verified with Wikipedia’s disambiguation pages [28] for 

wiki queries and with the help of domain knowledge for Shopping queries. 

Case Study Example 1: Query “Mercury” has lot of results mainly about 

albums and magazines of the name Mercury. ISKR generates expanded 

queries “Mercury, center”, “Mercury, album” and “Mercury, century”. Thus 
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ISKR is able to identify only one main cluster in its expanded queries. This is 

because except for one cluster, the other clusters are impure with a mix of 

results from various topics like “Magazines”, “Cars”, “TV Series” and “news 

articles about planets” etc. ISKR does not selects “magazine” as one of the 

expanded keywords because it tries to avoid overlap with other cluster which 

also contains results about journals and magazines. Therefore, the expanded 

queries tend to have low recall and therefore low f-measure. The internal 

evaluation measure also indicates poor quality for these clusters.  

Case Study Example 2: Query “Banjo” also suffers from similar problem, as a 

majority of result distribution corresponds to the topic “Guitar and albums”. 

Other results do not correspond to any bigger classification, as a result only 

one expanded query generated by ISKR looks meaningful (“Banjo, album”). 

Query “Yellowstone” has about 80% of result distribution corresponding to 

“Parks”, as a result its clusters have high inter cluster similarity, subsequently 

ISKR generates two expanded queries having the keyword “Park” such as 

“Yellowstone, glacier, park” and “Yellowstone, park, pass”. As a result it fails 

to identify topics corresponding to smaller distributions such as “Montana 

county”, “volcano” etc.  

Case study example 3: Pure clusters whose internal measure quality is high 

generally resulted in semantically meaningful expanded queries. For example: 

Test queries like “Canon Products”, “HP”, “Memory” etc. have meager inter 

cluster similarity and ISKR is able to find optimal classifications for these 

queries, for example: For “Memory”, ISKR generates expanded queries 
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“ddr3”, “flash memory” and “hard drive”, which are meaningful and 

correspond to distinct classifications. 

 

5.2.4 Scores of expanded queries (using eq. 8). 

In this section, experiment results of comparing the ICR and BQG approaches 

with other approaches are presented. Since ICR ad BQG needs to be 

evaluated based on a different score given in Eq. 8, all approaches are 

evaluated for the same score and compared with each other.  
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Figure 8: Scores of expanded queries (Eq. 8) 
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QW5 “Eclipse”, one of the expanded queries generated by Chi^2 is “Eclipse, 

solar, fiction”, which has a low recall. The overall score of almost all the 

expanded queries is low for MI and Chi^2 approaches when compared to the 

current work’s approaches. 

The expanded queries of each approach corresponding to the above 

scores are provided in Appendix D. Given below is detailed case study 

analysis on the results: 

Case Study Example 1 – Query “San Jose”, many results of San Jose are 

about San Jose Location, with a very small group of results about local NHL 

team based on San Jose. Clustering dependent approaches do not identify 

this classification, and form clusters which are both about location. As a result 

the cluster labels are not diverse (“San Jose, California”, “San Jose, 

province”). Whereas, ICR and BQG are able to identify this classification (“San 

Jose, Santa”, “San Jose, team”, “San Jose, players” and “San Jose, California” 

etc.). According to cluster metrics, the average Intra cluster similarity of 

documents is around 0.48, and the average inter cluster similarity is 0.30, 

which indicates that the clusters share a lot of common keywords and 

therefore have a lot of overlap. Therefore ISKR and PEBC approaches find it 

difficult to extract words having high f-measure; the expanded queries 

generated by these approaches have high overlap of 31%. ICR is able to 

identify diverse classifications of “team” and “location”, which reduces the 

overlap to about 6% maintaining same coverage of 81% as other approaches, 

and therefore resulting in high f-measure score. 
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Case Study Example 2 – Query “Domino”, although most of the queries 

generated by ISKR and PEBC are meaningful and corresponds to main 

classifications of the results such as “domino, album”, “domino database”, 

“domino products”, they still miss at least one classification due to formation 

of a bad cluster in the presence of outliers. For example, one of the queries 

generated by PEBC is about “domino, California, border” etc. This does not 

correspond to any meaningful classification related to the query “Domino”. 

The cluster corresponding to these expanded queries have very few results 

and is mainly formed due to some outliers selected as initial centroids.  

ICR helps in eliminating the effect of such bad clusters formed due to 

outliers, and extracts meaningful classifications such as “Domino pizza”, 

which was missed out by naturally formed clusters.  

 

 
 

Case Study Example 3 – Query “Rockets”, TFICF can sometimes generate 

queries that can belong to two different topics in the same query. This is 

because; clusters can be bad and may contain more than one topic. And also 

since TFICF just outputs most frequent terms in the whole cluster and does 

not considers their interaction(results retrieved), it generates keywords from 

multiple topics in the same cluster. This can be misleading to the users. For 

example: For Rockets, one of the queries by TFICF is “Rockets, games, 

artillery” which does not make much sense as “artillery” and “games” do not 

retrieve any results together. 
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Case Study Example 4 – Query “Jaguar”, ISKR and PEBC approaches, 

although they generate meaningful expanded queries like “Jaguar, tiger”, 

“Jaguar, car” etc., due to imperfect clusters, the queries are not highly 

diverse. For example: Since there are many results about “Jaguar Car”, two 

of the clusters are very close to each other in terms of inter cluster similarity 

sharing results about Jaguar cars. Since ISKR and PEBC aim to cover maximal 

results from the same clusters and minimal results from other cluster, they 

end up generating queries which either have low coverage and low overlap or 

high coverage and high overlap in the presence of imperfect cluster, where 

satisfying both the desired criteria is difficult. In this case, PEBC generates 

expanded queries “Jaguar, Car” and “Jaguar, Season” which has moderate 

coverage and high overlap, whereas ISKR generates queries “Jaguar, 

Production, Car” and “Jaguar, Season” which has low overlap and low 

coverage. 

ICR with its adjustable clustering scheme tends to satisfy both the 

desired criteria of maximal coverage and minimal overlap by identifying 

hidden classifications like “Jaguar apple system” which is not obviously found 

from the naturally formed cluster. In fact “Jaguar apple system” makes the 

query set more meaningful, comprehensive and diverse. 

 

Case Study Example 5 – For Query “Mouse”, In general all approaches 

generate meaningful queries. ICR surprisingly misses out one of the 

classifications “Mouse, Mickey”. This is mainly because, since ICR is also 

partially based on clusters, ICR restricts itself to find only K clusters. For 

mouse, the true clusters have 5 clusters which are about “computer mouse”, 
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“album”, “cartoons”, “results describing experiments with mouse & human 

gene” and “mouse species family”. But since ICR restricts itself to find only 4 

clusters, it misses to find one of the classifications. In fact, this is a problem 

with ICR and all other cluster based approaches, and all of them fail to 

identify at least one classification if the number of clusters is not properly set. 

 

Case Study Example 6 – For Query “Networking”, there are basically 3 

classifications of documents namely, Camcorders, Camera and Switches. 

Although the query quality in general is comprehensive and diverse, ISKR and 

PEBC does not achieve optimal f-measure due to noises in clusters. ICR and 

BQG overcome the noises and generate queries with perfect f-measure.  

Also, note that since TFICF does not considers keyword interaction and 

cluster quality into account, it generates keywords corresponding to different 

classification in the same query, for example: One of the expanded queries 

generated by TFICF is, “Networking, Products:category:routers,  

Switches:leds:port”. Although it reflects that the cluster contains a mix of 

switches and routers, the user may not find it helpful as it does not aid the 

user in narrowing down the search. 

 

5.2.4 Match@K 

In order to verify the relevance and diversity of topics covered by the 

expanded queries, this section compares the Match@K [Carmel et al. 2009, 

Treeratpituk et al., 2006] query values of different systems. Match@K is used 

by some of the earlier works to compare the cluster labels against a ground 
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truth of knowledge base. Match@K is defined as the relative number of 

clusters for which the expanded queries generated are correct. In this 

framework, an expanded query for a given original query is considered to be 

correct if it matches any of the labels or description of the labels listed in the 

Wikipedia’s disambiguation page [28] corresponding to the original query. It 

is more reasonable to consider this as the ground truth because (1) the 

dataset and test queries used are from Wikipedia, and also (2) Wikipedia’s 

disambiguation pages provide a knowledge repository for different human 

interpretations of ambiguous queries.  The Match@K values are normalized by 

the number of clusters to maintain the range between [0, 1]. 
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Figure 9 Match@K Values 

 

Note that, for many of the queries, the current work’s approaches were able 
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clusters because of imperfect clustering. For such cases, ICR and BQG 

succeed in identifying correct labels for all clusters. TFICF does not produces 

consistent results mainly because in some cases it generates too specific 

cluster labels that may not correspond to broad topic occurring in many 

documents, for example: For query QW5 “Eclipse”, it generates “Eclipse, 

Java, IBM”. Also for some cases, it generates labels with less co-occurrence 

and thus losing its relevance, for example: For query QW3 “San Jose”, it 

generates “San Jose, team Colorado”. Data Clouds most often generates less 

comprehensive results that manages to cover very few topics.  

 

5.2.5 Noise Resistance 

This section discusses the evaluation done to verify the stability of each 

approach with respect to resistance to noise induced on to the clusters. Noisy 

clusters are produced by the methods suggested in [Carmel et al. 2009, 

Treeratpituk et al., 2006]. First, for a given query q, a set of manually 

classified clusters U is taken which represent the true clusters of the original 

query results with 0% noise. Then for inducing N% of noise on to the clusters, 

each result in a cluster C is reassigned to another random cluster in U-C with 

a probability N(Noise %); with the probability 1-N, the result remains in the 

same cluster C. 

The below figures report the F-measure values (Eq. 8) and Match@K 

values of three queries, “Jaguar”, “Eclipse” and “Canon Products” for different 

noise levels. The systems compared are ISKR, PEBC, ICR and TFICF as all 

them involve clustering. ISKR and PEBC tries to generate one expanded query 
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for each cluster such that the number of results retrieved from the same 

cluster is maximized and the number of results retrieved from other cluster 

are minimized. TFICF is a differential cluster labeling algorithm that outputs 

most frequent term in the cluster in contrast with other clusters as cluster 

label. ICR tries to minimize the effect of imperfect clusters, by adaptively re-

clustering depending on the quality of expanded queries generated. It aims at 

generating expanded queries that can maximize the coverage of original 

query results and minimize the overlap of results between expanded queries. 
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Figure 10 Noise Resistance for Query QW10 "Jaguar" 
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Figure 11 Noise Resistance For Query QW5 "Eclipse" 

 

  

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0% 10% 20% 30% 40% 50% 60%

O
ve

ra
ll 

Q
u

e
ry

 S
co

re
 (

Eq
. 8

)

Noise Levels

Test Query - "Eclipse"

ISKR

PEBC

ICR

TFICF

MI 

Chi^2

0

0.2

0.4

0.6

0.8

1

1.2

0% 10% 20% 30% 40% 50% 60%

M
at

ch
@

K

Noise Levels

Test Query - "Eclipse"

ISKR

PEBC

ICR

TFICF

MI

Chi^2



63 

 

 

 

 

 

Figure 12 Noise Resistance For Query "Canon Products" 
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As can be observed from the results above, for all the approaches except ICR, 

the quality of expanded queries measured by Overall Query Score(Eq. 8) and 

Match@K values degrade with increasing noise levels. ICR with its adaptive 

re-clustering scheme tries to maintain the quality of expanded queries and 

thus achieving better stability even at higher noise levels.  

 For example: For the query “Jaguar”, with noise level 50%, ICR 

manages to generate expanded queries “Jaguar, Cars”, “Jaguar, species”, 

“Jaguar, apple” which correspond to the same three classified clusters at 

noise level 0%. Thus it shows zero degrade in quality even when the noise 

levels are as high as 50%. Whereas, ISKR generates queries such as “Jaguar, 

immediate final”, “Jaguar, class” and “Jaguar, automotive UK” at 50% noise 

level with a quality degrade of 37% in its Overall Query Score, and a quality 

degrade of 66% in its Match@K score. Similarly, PEBC and TFICF also show 

quality degrades with increasing noise levels. From the experiments it is 

observed that, ICR shows greater stability to noise consistently for many 

queries. 

 

 

 

 

 

 

 

 



65 

 

5.3 EFFICIENCY OF QUERY EXPANSION 

In the efficiency test, the time taken by each approach is evaluated. 

 

 

 

Figure 13: Query expansion time 
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The time taken includes the clustering time for all approaches except the Data 

Clouds approach that does not involve any clustering. For each query the 

number of results selected for processing is 100. For the wiki dataset, each 

result roughly has about 8000-10000 words, and for the shopping dataset the 

result size is relatively smaller with about 100 words each. The time taken for 

the wiki dataset is usually higher than shopping, and ICR takes more time 

due to the iterative re-clustering that happens in it. Recall that BQG takes 

more time due to its    complexity, where K is the number of term 

dimensions. Dimensionality reduction techniques as mentioned in Section 5 

have been used to improve the efficiency, and the current implementation 

scales within 2 seconds for most of the queries for a reasonably larger dataset 

such as the wiki. As mentioned before, since F-measure approach needs to 

access every term in the result set and update its value whenever a keyword 

is added or removed from the query, it takes longer time especially when the 

size of the result set is large. ISKR prunes this search space and achieves 

better efficiency by considering only a subset of the terms to update. 

 

Chapter 6 RELATED WORK 

 
Query expansion has been widely studied in literature; the main classes of 

methods are discussed below. 

Query expansion: Expanded queries can be generated based on query log 

[BarYossef and Gurevich 2008; Chirita et al. 2007], general or domain-

specific ontology [Baziz et al. 2005; Grootjen and van der Weide 2006; Fu et 

al. 2005], user profile and collaboratively filtering [Fu et al. 2005]. Since such 
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information may not always be available, there are also works that generate 

expanded queries only based on the information contained in the corpus, i.e., 

the results retrieved by the user query and/or the entire data repository. As 

the current work falls into this category, the focus is mainly on discussing 

corpus-driven query expansion. 

There are works that generate new queries based on popular words in 

the original query result [Cutting et al. 1992, Xu and Croft 1996; Carpineto et 

al. 2001; Cao et al. 2008; Tao and Yu 2009; Koutrika et al. 2009; Sarkas et 

al. 2009], considering factors like term frequency, inverse document 

frequency, ranking of the results in which they appear, etc. In particular, 

[Koutrika et al. 2009; Tao and Yu 2009] exploit relational databases instead 

of text documents. [Vechtomova et al. 2003] additionally considers the 

proximity to the original query keywords when selecting words from results or 

corpus to compose new queries. As discussed in Section 1 and shown in 

Section 5, these approaches emphasize on result summarization, and are not 

suitable for handling exploratory and ambiguous queries. 

 

Relevance Feedback: In relevance feedback, the expanded/refined query aims 

to retrieve a set of results that are similar to the relevant results, where the 

relevant results are specified by the user in explicit feedback or are 

considered to be the top ranked results in pseudo relevance feedback. To 

generate new queries, various approaches have been proposed to select and 

rank terms from relevant results, including TFIDF based methods [Koutrika et 

al. 2009; Xu and Croft 1996], probabilistic language model based methods 
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[Robertson 1990], vector space model based methods [Xu et al. 2009], etc. 

However, since users typically provide feedback to top ranked results only, 

top ranked results are most likely reinforced and the diversity of the results 

are compromised. Furthermore, the pseudo feedback approach assumes that 

relevant documents are similar to each other, and are quite different from 

irrelevant ones. Moreover, relevance feedback approaches do not aim at 

displaying refined queries to the users and help the users in decision making. 

These approaches mainly concentrates on refining the results based on the 

inference obtained from feedback. As a result relevance feedback approaches 

associate weights with the new queries to fetch appropriate results which 

cannot be used as expanded queries as these weights are not easily 

explicable.  

Faceted Search: Faceted search provides a classification of the data and 

enables effective data navigation. There are several approaches for 

automatically constructing faceted navigation interfaces given the set of query 

results, which aim at reducing the user’s expected navigational cost in finding 

the relevant results [Chakrabarti et al. 2004; Kashyap et al. 2010; Li et al. 

2010]. The current work mainly has the advantage of generating topics from 

unstructured text documents where it would be difficult for faceted search 

approaches. 

Cluster Labeling / Summarization: The goal of cluster labeling is to find a set 

of descriptive words for each cluster, which summarizes the content of the 

cluster, and meanwhile differentiates it from other clusters. Some 

representative works include [Carmel et al. 2009; Muhr et al. 2010]. A typical 
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way of measuring the desirableness of a term is TFICF, i.e., term frequency 

and inverse cluster frequency. Finding cluster representatives for structured 

data has also been studied. [Jagadish 2009] assumes each result to be a 

tuple in a relational database with numerical attributes, and uses the k-

medoids method to generate a representative for each cluster. Unlike cluster 

labeling, the interaction of the terms needs to be considered in query 

expansion, making it a lot more challenging. Furthermore, while cluster 

labeling quality is typically judged empirically, in this work I propose a 

quantitative measure of query expansion (i.e. the harmonic mean of the F-

measures of the expanded queries). 

Relevance feedback can be related to finding expanded queries for each 

cluster, by considering the current cluster as a set of relevant documents and 

documents from other clusters as irrelevant documents. Based on this 

intuition, the original query is refined with more weighted terms that can 

ideally retrieve only documents corresponding to the relevant set. Some 

approaches adopt relevance feedback based measures to extract terms.  

[Cataldi et al. 2009] groups a set of documents described by 

“concepts” derived from a known domain taxonomy. Then for each concept, a 

set of keywords are extracted by considering all documents associated with a 

concept as relevant and other documents as irrelevant, and then applying 

probabilistic relevance feedback approach to find terms. This could be related 

to the current work by considering each concept as a cluster of results and 

then the problem is to extract terms to represent each cluster. 
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However, there are several challenges in directly applying this strategy 

to find representative terms in the current problem setting. Since in the 

earlier approach, the documents are clustered based on a known taxonomy of 

concepts, such semantic clustering may be more effective when compared to 

clustering purely based on distance measures between results as in the 

current work. As a result, it is more challenging task to find meaningful terms 

to represent clusters that may not be clearly associated to a concept. 

Moreover, for describing a concept the earlier approach extracted terms 

independently without considering the effect of adding other terms on an 

optimization goal. Our experiments shows that, such approaches generally 

lead to low recall as two terms may independently dominate a cluster, but 

together as an expanded query, these terms may not retrieve many results. 

Semantically also, such expanded queries are less meaningful as they may 

correspond to multiple categories (For example: “Cell, Cell wall, Cell table”) 

and the users will find it difficult to narrow down the search to a desired 

result. The current approach decides to add/remove more terms from an 

expanded query with the aim of optimizing the goal function further, thus 

following a more systematically guided approach. 

[Kim et al. 2009] proposed methods to automatically tag blogs, such that the 

tags are general and shared by other related blogs as well as discriminating in 

order preserve the differences between the blogs. This philosophy can be 

related to the current work’s goal to find expanded queries that are general in 

retrieving more results from the cluster as well as specific to ensure not 

retrieving results from other clusters. 
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Advances in the works on automatic image annotations/tagging also 

have some relation to the current work. For example, the approach of block 

based image tagging model [Mori et al. 1999, Jeon et al. 2003], extract 

feature vectors from a given image and cluster these features to separate out 

the visual objects found in the image. These visual objects are then mapped 

to representative set of visual words by making use of an Image object 

keyword library. Recent developments in this field improve the quality of 

annotations by considering the correlation between keywords. The 

Progressive image annotation model [Wang et al. 2007], pick the best word 

to add to the annotation at each stage based on the joint probability of words 

already in the annotation, which can lead to the greatest increase in the 

objective function. 

Compared with existing work, there is several uniqueness of the 

current work. First, compared with existing query expansion approaches, in 

this work expanded queries are generated with the aim of presenting a 

classification of the original query results. This is especially useful for handling 

exploratory queries and ambiguous queries. Second, the technical 

contributions focus on how to generate queries with high F-measure given the 

ground truth of query result. To the best of my knowledge, this is the first 

study on this problem. Furthermore, unlike existing work that addresses the 

query expansion problem using heuristics; this work formalizes the problem 

and quantifies the quality of an approach. 
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APPENDIX A    

TEST QUERIES 

 

Wikipedia 

QW1 CVS 

QW2 Columbia 

QW3  San Jose 

QW4  Domino 

QW5 Eclipse 

QW6 Java 

QW7 Cell 

QW8 Rockets 

QW9 Mouse 

QW10 Jaguar 

QW11 Greek 

QW12 Drama 

Shopping 

QS1 Canon Products 

QS2 Networking Products 

QS3  Routers 

QS4  TV 

QS5 TV Plasma 

QS6 HP Products 

QS7 Memory 

QS8 Memory 8GB 

QS9 Memory Internal 

QS10 Printer 
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APENDIX B  

PSUEDOCODE 

Algorithm 1 – Iterative Single keyword Refinement 
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Algorithm 2 – Partial Elimination Based Convergence 
                                                     
                                    
          
                        
            

 
                       
                                                               
                                          
                                                   
                     
                                          
                         
            
                                     
                    
                                           
                                                        
                              
                           
                                      
                                     

                                       
                        
                                     
                                                              
                                                              

 
 
Algorithm 3 – Iterative Cluster Refinement 
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Algorithm 4 – Bisecting Query Generation 
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APPENDIX C  

APX-HARDNESS OF QEC PROBLEM 

In this section, the QEC problem is shown to be as hard as the Independent 

Set problem in terms of approximation. Recall that, the Independent Set 

problem is to find the maximum Set of nodes in an undirected graph, such 

that no two nodes are connected by an edge. The Independent Set problem 

has been proved to be APX-Hard, i.e., it has no constant approximation ratio. 

It will be shown in this section that if the QEC problem has an approximation 

ratio of K, then the Independent Set problem has an approximation Ratio of 

4k-3.  

 Given any instance of the independent set problem: an undirected 

graph,                   , create an instance of the QEC problem as 

follows. Assume that each node in G has at least one edge (otherwise it can 

be directly added to the independent set).  

 

1. Create n+1 keywords,         

2. Create two clusters C1 and C2. C1 has n results, and C2 has       

results. In C2, let the first      results be in group 1, the second      

results be in group 2 and the          be in group m. 

3. Let keyword K0 appear in all results in C2 but none of the results in 

C1. 

4. Let keyword             appear in all results in C1 except the     

result. 

5. For each node  , if it has x edges, then let keyword    not appear in 

the corresponding x blocks of results in C2. For example, if node   has 

edges e1, e3, e6, then    does not appear in results in groups 1, 3, 6, 

in C2, and appears in all other results in C2. 

 

This is an instance of QEC. It is easy to see that the optimal query for C2 is 

        , which means                  . Let q1 be the optimal query for 

C1. First it will be proved that,               must be 1, i.e., q1 cannot retrieve 

any results in C2. In this case, q1 is a query such that it eliminates all results 

in C2 using the least number of keywords (note that the more keywords q1 

uses, the less results it retrieves in C1). It is important to notice that q1 must 

not contain all keywords            The reason is that, if we pick any edge 

             , results in group i in C2 can be eliminated using either keyword 

ka or keyword kb, thus either ka or kb does not need to be in q1. Therefore, 

q1 at least retrieves one result in C1, and                           
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On the other hand, if                 , q1 must retrieve some results in C2. 

Since results in C2 has m groups, each group containing       identical 

results, q1 must retrieve at Least       results in C2, thus: 
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S2 cannot be the optimal score of q1 and q2, thus               must be 1. 

Next it will be shown that, for any arbitrary k-approximate solution for this 

QEC instance, consisting of queries q1’ and q2’, where            

                 . Note that, 

 

      
  

     
  

  

     
 

 

   
        

 

Thus unless                  , it cannot approximate the optimal solution 

within k. 

 Suppose we have an algorithm that can give a k-approximate solution 

of the above instance in polynomial time, and then now we will see how to 

get an approximate solution for the independent set problem with ratio 4k-3. 

Let R, F and S denote                           and              in the 

optimal solution, and R’, F’ and S’ denote the corresponding values in the 

approximate solution. We have       . Since   
  

   
 and    

   

    , we have 
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And since   
  

   
 AND   

   

      
, we have        , we have 

     

    
 

  

   
 

 

Using same deduction above, we get 

  

 
 

 

     
 

 

    
  (1) 

 

Note that the optimal solution, q1 is the query which eliminates all results in 

C2 using the minimum number of keywords. Let the number of keywords in 

q1 be P. Since each keywords in q1 eliminates a result in C1, q1 retrieves 

    results in C1, thus   
    

 
 . According to Eq. 1 we have, 

    

   
 

 

    
 

 

Now let us look at the Independent Set instance. Recall that each node in G 

corresponds to a keyword in C1 in the QEC instance. Note that the set of 

nodes corresponding to the keywords in P comprises the minimal vertex cover 

of G. Because if an edge           is not covered (i.e., neither          ), then 

since results in               only misses keywords          , these results are 

retrieved by q1, Which is contradictory with                  . Therefore, the 

set of nodes corresponding to the keywords not in P comprises the maximal 

independent set of G, whose size is    . Similarly, the set of nodes 

corresponding to the keywords not in p0 comprises an approximate 

independent set of G, whose size if     . According to equation 2, we have 

obtained a 4k-3 approximate solution for this Independent Set instance. Since 

this is an arbitrary independent set instance, it contradicts with the conclusion 

that Independent Set instance is APX-hard. Therefore, the QEC problem is 

APX-hard. 
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APPENDIX D  

EXPANDED QUERIES 

QW1: CVS QW2: Columbia 

ISKR  Query 1: CVS, member 
Query 2: CVS, store 
Query 3: CVS, software 

ISKR  Query 1: Columbia, new York  
Query 2: Columbia, British  
 

PEBC  Query 1:CVS, member  
Query 2:CVS, stores 
Query 3:CVS software  

PEBC  Query 1: Columbia, new York  
Query 2: Columbia, British  
 

ICR  Query 1:CVS, store  
Query 2:CVS, software  
Query 3:CVS, association  

ICR  Query 1: Columbia, British  
Query 2: Columbia, new York  
 

BQG Query 1: CVS, pharmacy  
Query 2: CVS , support  
Query 3: CVS,  GNU  
Query 4: CVS,  member  

BQG Query 1: Columbia, British  
Query 2: Columbia, new York, 
university  
Query 3: Columbia, new York, 
musical  
 

TFICF  Query 1: CVS ships aircraft  
Query 2: CVS stores 
convenience  
Query 3: CVS software 
Linux  

TFICF  Query 0: Columbia Sony actress  
Query 1: Columbia provincial 
British  
 

Data 
Clouds  

Query1: CVS, town 
Query2: CVS, blue 
Query3: CVS, fire 

Data 
Clouds  
 

Query 0: Columbia CBS 
Query 1: Columbia blue 
 

Google Query1: CVS, files 
Query2: CVS, client 
Query3: CVS, Wikipedia 

Google Query 1: Columbia, country 
Query 2: Columbia, facts 
Query 3: Columbia, pictures 
 

Measure Query 1: CVS member  
Query 2: CVS store 
pharmacy  
Query 3: CVS software  

F 
measure 

Query 1:  Columbia new York  
Query 2: Columbia British  
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QW3: San Jose QW4: Domino 

ISKR  Query 1: San José, 
California  
Query 2: San José, 
province  
 

ISKR  Query 0:records album  
Query 1:company  
Query 2:products  
Query 3:database  

PEBC  Query 1:Sanjose, 
California  
Query 2:Sanjose, 
province  
 

PEBC  Query 0:domino, album records  
Query 1:domino, companies  
Query 2:domino, border  
Query 3:domino, database  

ICR  Query 1: San José, Santa  
Query 2: San José, team , 
players 
 

ICR  Query 1:domino, products 
Query 2:domino, album  
Query 3:domino, database notes 
lotus  
Query 4:domino, pizza UK 

BQG Query 1: sanjose,team 
Query 2: sanjose,santa, 
players 
Query 3: sanjose, santa, 
california  
 

BQG Query 0: Domino, album  
Query 1: Domino, database  
Query 2: Domino, products, Lexus  
Query 3: Domino, products, 
International  

TFICF  Query 0: sanjose bruno 
avenue  
Query 1: sanjose colorado 
team  
 

TFICF  Query 1: domino, album squeeze  
Query 2: domino, investment pizza  
Query 3: domino, Lexus border  
Query 4: domino lotus notes  

Data 
Clouds  
 

Query 0: san José, 
military 
Query 1: san José, anti 
 

Data 
Clouds  

Query 1: domino,  playing 
Query 2: domino,  blue 
Query 3: domino,  operations 
Query 4: domino, audio  
 

Google Query 1: san José, 
attractions 
Query 2: san José, airport 
Query 3: san José, sharks 

Google q1: Domino, game  
q2: Domino, movie 
q3: Domino, rapper 

F measure Query 1: san José, 
California  
Query 2: san José, 
province  

F 
measure 

Query 0: domino  playing 
Query 1: domino blue 
Query 2: domino operations 
Query 3: domino audio  
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QW5: Eclipse QW6: Java 

ISKR  Query 1:Eclipse, 
software  
Query 2: Eclipse, night  
Query 3: Eclipse, solar  

ISKR  Query 1: Java, Indonesia  
Query 2: Java, software  

PEBC  Query 1: Eclipse, 
software  
Query 2: Eclipse, night  
Query 3: Eclipse, solar  

PEBC  Query 1: Java, Indonesia  
Query 2: Java, software  

ICR  Query 1: Eclipse, 
software  
Query 2: Eclipse, solar  
Query 3: Eclipse, car  

ICR  Query 1: Java, Indonesia  
Query 2: Java, software  

BQG Query 1: Eclipse, solar  
Query 2: Eclipse, 
software  
Query 3: Eclipse, car  
Query 4: Eclipse, albums  
Query 5: Eclipse, derby  

BQG Query 1: Java, software  
Query 2: Java, Indonesia  
Query 3: Java, implementation  

TFICF  Query 1: Eclipse, java 
IBM  
Query 2: Eclipse, horror 
concert  
Query 3: Eclipse, 
Mathematics 
astronomical  

TFICF  Query 1: Java, Indonesia  
Query 2: Java, software  

Data 
Clouds  

Query 1: Eclipse, points 
Query 2: Eclipse, Indian  
Query 3: Eclipse, ratio 

Data 
Clouds 

Query 1: Java, Towns 

Query 2: Java, JavaScript 

Google Query 1: Eclipse, car 
Query 2: Eclipse, book  
Query 3: Eclipse, fan 
subs 

Google Query 1: Java, quote 

Query 2: Java, script 
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F 
measur
e 

Query 1: Eclipse, 
software  
Query 2 Eclipse, night  
Query : Eclipse, solar  

F 
measure 

Query 0: Java, Indonesia  
Query 1: Java, software 

 
 
 
 

QW7: Cell QW8: Rockets 

ISKR Query 1:Cell, human 
gene  
Query 2:Cell, biology  
Query 3: Cell, anode  
Query 4: Cell, wall  

ISKR Query 1:launch  
Query 2:league  
Query 3:missiles  
Query 4:band  

PEBC Query 1:Cell, proteins  

Query 2:cell, system  
Query 3:cell, anode  
Query 4:cell, wall 

PEBC Query 1:rockets, weapon  

Query 2:rockets, players  
Query 3:rockets, fuel  
Query 4:rockets, band  

ICR Query 1:cell,  wall  
Query 2:cell, anode 
cathode  

Query 3:cell, tumor  
Query 4:cell, human 

ICR Query 1:rockets, missiles  
Query 2:rockets, album  
Query 3:rockets, league  

Query 4:rockets, weapon 
German  

BQG Query 1: cell, system  
Query 2: cell, molecular  
Query 3: cell, 
adenocarcinoma  

Query 4: cell, solution  
Query 5: cell, header  

BQG Query 1: rockets, league  
Query 2: rockets, launch  
Query 3: rockets, band  
Query 4: rockets, fire  

Query 5: rockets, pc games  

TFICF Query 1: cell carcinoma 
entrez  
Query 2: cell mantle 
leukemia  
Query 3: cell cathode 

anode  
Query 4: cell row table  

TFICF Query 1: rockets games 
artillery  
Query 2: rockets coach 
basketball  
Query 3: rockets space system  

Query 4: rockets  Israeli launch  

Data 
Clouds 

Query1: Cell, marrow 
Query2: Cell, cluster 
Query3: Cell, acid 
Query4: Cell, primary 

Data 
Clouds 

Query 1: rockets olajuan  
Query 2: rockets German  
Query 3: rockets launch  
Query 4: rockets space 
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Google Query1: Cell, parts of a 
cell 
Query2: animal cell 
Query3: plant cell 

Query4: cell dbz 

Google Query 1: model rockets 

Query 2: toy rockets  
Query 3: rockets rockettes  
Query 4: rockets pictures 

F 
measur
e 

Query 0: cell sites  
Query 1: cell biology  
Query 2: cell  system  
Query 3: cell wall  

F 
measure 

Query 1: rockets launch  
Query 2: rockets league  
Query 3: rockets missiles  
Query 4: rockets band 

QW9: Mouse QW10: Jaguar 

ISKR  Query 1:Mouse, family  
Query 2:Mouse, Disney  
Query 3:Computer mouse  
Query 4:Mouse, album  

ISKR Query 1: Jaguar tiger  
Query 2: Jaguar season  
Query 3: Jaguar production 
car  

PEBC  Query 1:mouse, family  

Query 2:mouse, Disney  
Query 3:mouse, computer  
Query 4:mouse, album  

PEBC Query 1:jaguar, tiger  

Query 2:jaguar, season  
Query 3:jaguar, car  

ICR  Query 1:mouse, computer  
Query 2:mouse, album  
Query 3:mouse, gene 

human  
Query 4:mouse, species 
family  

ICR Query 1:jaguar, production 
car  
Query 2:jaguar, apple  

system  
Query 3:jaguar, species  

BQG  Query 1: mouse, computer  
Query 2: mouse, family  
Query 3: mouse, Mickey  

Query 4: mouse, singles  

BQG Query 1: jaguar, engine  
Query 2: jaguar, species  
Query 3: jaguar, studio  

TFICF  Query 1: mouse human 
species 

Query 2: mouse Mickey 
Disney  
Query 3: mouse input 

computer  
Query 4: mouse modest 
guitar  

TFICF Query 1: jaguar os nova  
Query 2: jaguar flag ret  
Query 3: jaguar lexus mg  

Data 
Clouds 

Query 1: mouse , cdna  
Query 2: mouse , blue  
Query 3: mouse , 
multimammate  
Query 4: mouse , domain 

Data 
Clouds 

Query 1: jaguar MAC  
Query 2: jaguar industry 
Query 3: jaguar design  
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Google Query 1: mouse , house  
Query 2: pictures of mice  
Query 3: Logitech mouse  
Query 4: mouse  pictures 

Google Query 1: jaguar models  
Query 2: jaguar car 
Query 3: jaguar animal  
 

F 
measure 

Query 1: mouse family  
Query 2: mouse Disney  
Query 3: mouse computer  
Query 4: mouse album 

F 
measure 

Query 1: jaguar tiger  
Query 2: jaguar season  
Query 3: jaguar production 

 
 

QW11: Greek QW12: Drama 

ISKR  Query 0: Greek, ancient  
Query 1: Greek, 
mythology  
Query 2: Greek, Greece  

ISKR Query 0: drama, television  
Query 1: drama, love  
Query 2: drama, film  
Query 3: drama, arts  

PEBC  Query 0: Greek, ancient  
Query 1 Greek, 
mythology  
Query 2: Greek, Greece  

PEBC Query 0:drama, television  
Query 1:drama, play  
Query 2:drama, film  
Query 3:drama, short  

ICR  Query 1: Greek, 
mythology  

Query 2: Greek, Greece  
Query 3: Greek, ancient  

ICR Query 1:drama, film  
Query 2:drama, radio  

Query 3:drama, plays  
Query 4:drama, television 
cast  

BQG  Query 0: Greek, ancient  
Query 1: Greek, Greece  
Query 2: Greek, 

mythology  

BQG Query 0: drama, television  
Query 1: drama, plays  
Query 2: drama, director, 

movie  
Query 3: drama, director, 
theatre  

TFICF  Query 0: Greek, church 
ancient  
Query 1: Greek, 

mythology ancient  
Query 2: Greek,  team 
league  

TFICF Query 0: drama 
achievement role  
Query 1: drama records cd  

Query 2: drama horror 
comedy  
Query 3: drama poetry tvb  

Data 
Clouds 

Query 0: Greek 
mythology 
Query 1: Greek museum  

Query 2: Greek 
company 

Data 
Clouds 

Query 0: drama artists 

Query 1: drama writing  
Query 2: drama cuba 

Query 3: drama perform 



89 

 

Google Query 0: Greek show 
Query 1: Greek wiki  
Query 2: Greek 
translation 

Google  Query 0: drama plays 

Query 1: types of drama  
Query 2: korean drama 

Query 3: drama definition 

F 
measure 

Query 0: Greek ancient  
Query 1: Greek 
mythology  
Query 2: Greek Greece 

F measure Query 0: drama television  
Query 1: drama single  
Query 2: drama film  
Query 3: drama arts 
members 

 

 

QS1: Canon Products 

ISKR  Query 0:canonproducts:category:camera  
Query 1:canonproducts:category:camcorders  
Query 2:canonproducts:category:printer  

PEBC  Query 0:canonproducts:category:camera  
Query 1:canonproducts:category:camcorders  
Query 2:canonproducts:category:printer  

ICR  Query 0:canonproducts:category:camera  
Query 1:canonproducts:category:camcorders  
Query 2:canonproducts:category:printer  

BQG Query 0:canonproducts:category:camcorders 

Query 1:canonproducts:category:camera 

Query 2:canonproducts:category:printer 

TFICF  Query 0:canonproducts:category:camera  
Query 1:canonproducts:category:camcorders  

Query 2:canonproducts:category:printer  

Data 
Clouds 

Query0: memory:category:flashmemory  
Query1: flashmemory:name:epsd/2gb 
Query2: flashmemory:name:sd  

Google Query0: “Olympus Products” 

Query1: “Canon Electronics” 

Query2: “Nikon Products” 

F 
measur
e 

Query 0:memory:category:harddrive  
Query 1:memory:category:flashmemory  
Query 2:memory:category:ddr3  
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QS2: Networking 

ISKR  Query 0:networking products:category:routers  
Query 1:networking products:category:firewalls  
Query 2:switches:name:*switch*    
networking products:category:switches  

PEBC  Query 0: networking products:category:routers  
Query 1: firewalls:name:*firewall * 

Query 2: networking products:category:switches  

ICR  Query 1:networking products:category:switches  
Query 2:networking products:category:firewalls  

Query 3:networking products:category:routers  

BQG Query 0:networking products:category:firewalls  
Query 1:networking products:category:switches  
Query 2:networking products:category:routers  

TFICF  Query 0:  networking products:category:routers 
switches:leds:port  

Query 1: firewalls:name:*firewall* 
firewalls:throughput:mbps  
Query 2: switches:name:*hp * 

networking products:category:switches  

F-
measur

e 

Query 0: networking products:category:routers  
Query 1: firewalls:name:*firewall * 

Query 2: networking switches:name:switch  

Data 
Clouds 

Query 0: firewalls:name:d-link 

Query 1: firewalls:vpn tunnels:8 

Query 2: firewalls:name:dir-130 

Google q1:   "Social Networking products"  
q2:   "Computer Networking products"  

q3:   "Networking products price 
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QS3: Routers 

ISKR Query 0:routers:features:filtering routers:rj-5 
ports:4  
Query 1:routers:name:cisco * 

Query 2:routers:name:10/100 *  

PEBC Query 0:routers, routers:features:mac  
Query 1:routers, routers:name:cisco*  
Query 2:routers, routers:name:10/100 *  

ICR Query 1:routers, routers:name:10/100 * 

Query 2:routers, routers:name:band * 
routers:name:rangemax * 

Query 3:routers, routers:features:filtering  

BQG Query 0: routers, routers:device type:router  
Query 1: routers,routers:device type:vpn  
Query 2: routers,routers:device type:wireless  

TFICF Query 0: routers routers:name:rangemax  dual*  
Query 1: routers routers:name:cisco* 

routers:name:integr* 

Query 2: routers routers:name:10/100  mbps* 

F-measure Query 0: routers:features:filtering routers:rj-5 
ports:4  
Query 1: routers routers:name:cisco * 

Query 2: routers routers:name:10/100 * 

Data Clouds Query0 : routers:name:lkr-604 

Query1: routers:features:mac  
Query2: routers:name:broadband  

Google q1:   "Networking, wireless, routers"  
q2:   "Network, routers"  
q3:   "Wood routers 
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QS4: TV 

ISKR  Query 0:tv:compatibility:720p  
Query 1:tv:resolution:1920 x1080  

PEBC  Query 0:tv:compatibility:720p  
Query 1:tv:resolution:1920 x1080  

ICR  Query 0:tv:compatibility:720p  
Query 1:tv:resolution:1920 x1080 

BQG Query 0: tv,tv:compatibility:720p 

Query 1: tv,tv:compatibility:1080p, 
tv:resolution:1920x1080 

Query 2: tv,tv:compatibility:1080p,tv:outputs:optical 

TFICF  Query 0: tv:compatibility:720p 
tv:resolution:1366x768  
Query 1: tv:resolution:1920x1080 

F measure Query 0:tv:compatibility:720p  
Query 1:tv:resolution:1920 x1080 

Data 
Clouds 

Query0: tv:name:lcd* 

Query1: tv:name:26lg40* 

Query2:tv:outputs:audio 

Google q1:   "TV, guide, products"  
q2:   "TV, electronics"  
q3:   "TV, hair products 
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QS5: TV Plasma 

ISKR  Query 0:tv:brand:panasonic  
Query 1:tv:brand:samsung tv:name:samsung *  

PEBC  Query 0:tv:brand:panasonic  
Query 1:tv:brand:samsung  

ICR  Query 1:tvplasma, tv:brand:panasonic  
Query 2:tvplasma, tv:brand:samsung 
tv:name:samsung*  

BQG Query 0: tv:resolution:1366x768 

Query 1: tv:compatibility:1080p,tv:name:50ps60* 

Query 2: 
tvplasma,tv:compatibility:1080p,tv:name:plasma* 

TFICF  Query 0: tvplasma tv:brand:panasonic 
tv:name:panasonic * 

Query 1: tvplasma tv:brand:samsung 
tv:name:samsung * 

F-
measure 

Query 0:tv:brand:panasonic  
Query 1:tv:brand:samsung  

Data 
Clouds 

Query0: tv:condition:new  
Query1: tv:name:plasma  
Query2: tv:displaytype:plasma  

Google q1:   "TV Plasma vs lcd" 
q2:   "TV LCD"  

q3:   "TV, bestbuy plasma 
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QS6: HP Products 

ISKR Query 0:hpproducts:category:laptop  
Query 1:hpproducts:category:battery  
Query 2:hpproducts:category:printer  

PEBC Query 0:hpproducts:category:laptop  
Query 1:hpproducts:category:battery  

Query 2:hpproducts:category:printer  

ICR Query 1:hpproducts:category:laptop  
Query 2:hpproducts:category:battery  
Query 3:hpproducts:category:printer  

BQG Query 0:hpproducts:category:laptop 

Query 1:hpproducts:category:printer 

Query 2:hpproducts:category:battery 

TFICF Query 0: hpproducts:category:laptop 
laptop:platform:pc  
Query 1: hpproducts:category:battery 
battery:name:battery  
Query 2: hpproducts:category:printer 

printer:resolution:dpi  

F measure Query 0:hpproducts:category:laptop  
Query 1:hpproducts:category:battery  
Query 2:hpproducts:category:printer  

Data 
Clouds 

Query0: hpproducts:category:battery  
Query1: battery:name:hp  
Query2: battery:name:compaq  

Google q1:   "HP Products Corporation" 
q2:   "HP Printers"  
q3:   "HP Laptops" 
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QS7: Memory 

ISKR  Query 0:memory:category:harddrive  
Query 1:memory:category:flashmemory  
Query 2:memory:category:ddr3  

PEBC  Query 0:memory:category:harddrive  
Query 1:memory:category:flashmemory  
Query 2:memory:category:ddr3  

ICR  Query 1:memory:category:harddrive  

Query 2:memory:category:flashmemory  
Query 3:memory:category:ddr3 

BQG Query 0:memory:category:flashmemory 

Query 1:memory:category:harddrive 

Query 2:memory:category:ddr3 

TFICF  Query 0: memory memory:category:harddrive 

harddrive:dimensions:x  
Query 1: memory memory:category:flashmemory 
flashmemory:name:card  
Query 2: memory memory:category:ddr3 
ddr3:memory category:desktop  

F measure Query 0:memory:category:harddrive  

Query 1:memory:category:flashmemory  
Query 2:memory:category:ddr3  

Data 
Clouds 

Query0: memory:category:flashmemory  
Query1: flashmemory:name:epsd/2gb 

Query2: flashmemory:name:sd  

Google q1:   "Human memory" 

q2:   "Computer memory"  
q3:   "Memory game 
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QS8: Memory 8GB 

ISKR  Query 0:memory:category:harddrive  
Query 1:memory:category:ddr3  
Query 2:memory:category:flashmemory  

PEBC  Query 0:memory:category:harddrive  
Query 1:memory:category:ddr3  

Query 2:memory:category:flashmemory  

ICR  Query 1:memory:category:harddrive  
Query 2:memory:category:ddr3  
Query 3:memory:category:flashmemory 

BQG Query 0:memory:category:harddrive 

Query 1:memory:category:flashmemory 

Query 2:memory:category:ddr3 

TFICF  Query 0: Memory:category:harddrive 
harddrive:capacity:8gb  
Query 1: Memory:category:ddr3 
ddr3:memorysize:8gb  
Query 2: Memory:category:flashmemory 

flashmemory:memorysize:8gb  

F measure Query 0:memory:category:harddrive  
Query 1:memory:category:ddr3  
Query 2:memory:category:flashmemory  

Data 
Clouds 

Query0: memory:category:ddr3 

Query1: ddr3:memorysize:8gb 

Query 2:memory:category:flashmemory  

Google q1:   "Memory cards 8gb"  
q2:   "Laptop memory, 8GB"  
q3:   "Flash memory 
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QS9: Memory Internal 

ISKR Query 0:memory:category:harddrive  
Query 1:memory:category:flashmemory  

PEBC Query 0:memory:category:harddrive  
Query 1:memory:category:flashmemory  

ICR Query 0:memory:category:harddrive  
Query 1:memory:category:flashmemory  

BQG Query 0: memory:category:harddrive  
Query 1: memory:category:flashmemory, 

flashmemory:name:atech* 

Query 2: memory:category:flashmemory, 
flashmemory:name:internal* 

TFICF Query 0: harddrive:drivetype:internal 
memory:category:harddrive  
Query 1: memory:category:flashmemory 

flashmemory:name:internal  

F 
measure 

Query 0:memory:category:harddrive  
Query 1:memory:category:flashmemory  

Data 
Clouds 

Query0: flashmemory:name:xm-5u 

Query1: flashmemory:name:pro-gear 

Google q1:   "dell internal memory"  
q2:   "d internal dell 
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QS10: Printer 

ISKR  Query 0:printer:resolution:1200  dpi 
Query 1:printer:resolution:600  dpi  

PEBC  Query 0:printer, printer:resolution:1200  dpi 
Query 1:printer, printer:resolution:600 dpi  

ICR  Query 1:printer, printer:resolution:600 dpi 
Query 2:printer, printer:resolution:1200 dpi 

BQG Query 0: printer:printmethod:inkjet  
Query 1: printer:printmethod:laser, 
hpproducts:category:printer  
Query 2: printer:printmethod:laser, 
printer:name:q7816a 

TFICF  Query 0: printer printer:resolution:1200  dpi 

printer:resolution:optimized  
Query 1: printer printer:paperinput:150 
hpproducts:category:printer  

F 
measure 

Query 0:printer:resolution:1200  dpi 
Query 1:printer:resolution:600  dpi 

Data 

Clouds 

 Query0: printer:resolution:(color) 

 Query1: printer:networkready:no  

Google q1:   "Canon, Printer"  
q2:   "HP, Printer 

 


