
Query Expansion For Handling Exploratory And Ambiguous Keyword Queries

by

Sivaramakrishnan Natarajan

A Thesis Presented in Partial Fulfillment
Of the Requirements for the Degree

Master of Science

Approved April 2011 by the

Graduate Supervisory Committee:

Yi Chen, Chair
Selcuk Candan
Arunabha Sen

ARIZONA STATE UNIVERSITY

May 2011

i

ABSTRACT

Query Expansion is a functionality of search engines that suggest a set of

related queries for a user issued keyword query. In case of exploratory or

ambiguous keyword queries, the main goal of the user would be to identify

and select a specific category of query results among different categorical

options, in order to narrow down the search and reach the desired result.

Typical corpus-driven keyword query expansion approaches return popular

words in the results as expanded queries. These empirical methods fail to

cover all semantics of categories present in the query results. More

importantly these methods do not consider the semantic relationship between

the keywords featured in an expanded query. Contrary to a normal keyword

search setting, these factors are non-trivial in an exploratory and ambiguous

query setting where the user’s precise discernment of different categories

present in the query results is more important for making subsequent search

decisions.

In this thesis, I propose a new framework for keyword query

expansion: generating a set of queries that correspond to the categorization

of original query results, which is referred as Categorizing query expansion.

Two approaches of algorithms are proposed, one that performs clustering as

pre-processing step and then generates categorizing expanded queries based

on the clusters. The other category of algorithms handle the case of

generating quality expanded queries in the presence of imperfect clusters.

ii

DEDICATION

To my thatha, amma, appa, my brother and bhuvan.

iii

ACKNOWLEDGMENTS

I would like to acknowledge the enthusiastic supervision of Dr. Yi Chen

for her guidance, encouragement and for providing the opportunity to work

on several challenging research project including this thesis work. I would

also like to extend my sincere gratitude to her for guiding me through the

process and providing me with some great opportunities of being a significant

part of many of her research projects by believing in my potential. It is

difficult to truly express by words, how thankful I am for the motivation I

received from her and the transformation it had in my character.

I also thank my committee members, Dr. Selcuk Candan and Dr. Arun

Sen, for their time and effort to point out potential improvements and help

me fulfill the degree requirements. I would like to thank my lab mate and

friend Ziyang Liu for his inspirational presence, continuous support and

guidance through the project.

This document would be incomplete if I forget to mention how grateful

I am to my friends at Arizona State University for making my stay in Tempe,

Arizona particularly enjoyable - my ASU friends, Ganesh Jayachandran, Rohit

Raghunathan, Kumaraguru Paramasivam, Rajagopalan Ranganathan,

Dananjayan Thirumalai, my lab mate Yichuan Cai, my friend since childhood,

Vijayendran Gurumoorthy and my new roommate Madhan Kumar

Kuppusamy.

Finally, I am indebted to my girlfriend Bhuvana Kannan and my

parents for their encouragement, understanding and belief in my potential.

This work would have not been possible without their patience and warmth.

iv

v

TABLE OF CONTENTS

CHAPTER Page

LIST OF FIGURES ... viii

CHAPTER 1 INTRODUCTION ... 1

MOTIVATION ... 1

CONTRIBUTION .. 4

CHAPTER 2 PROBLEM DEFINITION .. 5

QUERY EXPANSION USING CLUSTERS (QEC) 5

CATEGORIZING QUERY EXPANSION (CQE) 7

CHAPTER 3 ALGORITHMS FOR QEC PROBLEM ... 10

ITERATIVE SINGLE KEYWORD REFINEMENT (ISKR) 10

PARTIAL ELIMINATION BASED CONVERGENCE(PEBC) 15

 Generating queries based on benefit-cost. 17

 Generating queries based on randomly selected result. 19

CHAPTER 4 ALGORITHMS FOR CQE PROBLEM ... 21

ITERATIVE CLUSTER REFINEMENT (ICR) .. 22

BISECTING QUERY GENERATION (BQG) ... 28

CHAPTER 5 EXPERIMENTS ... 32

EXPERIMENT SETUP .. 32

QUALITY OF QUERY EXPANSION ... 35

 User Study. .. 35

 Scores of expanded queries (using eq. 4). 43

 Effect of cluster quality on expanded queries. 46

 Scores of expanded queries (using eq. 8). 50

 Match@K ... 56

 Noise Resistance ... 59

vi

CHAPTER Page

EFFICIENCY OF QUERY EXPANSION ... 65

RELATED WORK ... 66

REFERENCES ... 72

APPENDIX A TEST QUERIES .. 76

APENDIX B PSUEDOCODE .. 77

APPENDIX C APX-HaRDNESS OF QEC PROBLEM .. 80

APPENDIX D EXPANDED QUERIES ... 83

vii

LIST OF TABLES

Table Page

1. Values Of Keywords Computed By ISKR ... 16

2. Updated Values Of Keywords .. 17

3. Updated Values Of Keywords .. 17

viii

LIST OF FIGURES

Figure Page

1 Effect Of Undesirable Clusters. ... 8

2 Distribution Of Data Points Of Imperfect Clusters 23

3 Average Individual Query Score ... 36

4 Percentage Of Users Choosing A, B, or C For Individual Queries 37

5 Collective query scores for each set of expanded queries 40

6 Percentage of users choosing A, B, C for each set of expanded queries ... 41

7 Scores of expanded queries (Eq. 4) .. 45

8 Effect Of Cluster Quality On Expanded Query Score 47

9 Scores of expanded queries (Eq. 8) .. 51

10 Match@K Values .. 58

11 Noise Resistance for Query QW10 "Jaguar" ... 61

12 Noise Resistance For Query QW5 "Eclipse" .. 62

13 Noise Resistance For Query "Canon Products" 63

14 Query expansion time .. 65

1

CHAPTER 1 INTRODUCTION

1.1 MOTIVATION

Web search engines typically make query suggestion based on similar and

popular queries in the query log [Chirita et al. 2007; Bar-Yossef and Gurevich

2008]. To handle a bootstrap situation where the query log is not available,

there are works on query result summarization [Xu and Croft 1996; Carpineto

et al. 2001; Cao et al. 2008; Tao and Yu 2009; Koutrika et al. 2009; Sarkas

et al. 2009], where popular words in the results are identified and suggested

to the user for query refinement. The popularity of words are typically

measured by factors such as term frequency, inverse document frequency,

ranking of the results in which they appear, etc.

Result summarization based approaches using popular words cannot

effectively capture multiple classifications of results. The problem becomes

especially severe when the popular words are obtained from top k results,

which is typically the case for efficiency reasons. In such cases, one type of

results may have higher ranks and may suppress other result types to be

reflected in the expanded queries. For instance, when searching “Tennis” on

Bing, top 50 results are about the “game Tennis”, but there are also other

interpretations of “Tennis” such as a “place in Egypt” or a “music album” of

the same name. These results never appear as part of the top k results.

Result summarization based approaches thus cannot effectively handle

ambiguous or exploratory queries [Broder 2002] where the users don’t have a

specific search target, but would like to navigate the space of possibly

2

relevant answers and iteratively find the most relevant ones by refining the

results.

To handle ambiguous and exploratory queries, ideally query expansion

should provide a categorization of different interpretations of the original

query and thus guide the user to refine the query in order to get more results

of the desired type. One typical way to approach this problem is by clustering

the result set online and generating cluster labels by cluster summarization

based methods [Carmel et al. 2009, Cutting et al. 1992]. Typically these

approaches give labels to each cluster by adopting differential or internal

cluster labeling techniques. This includes techniques such as mutual

information based term selection methods [Geraci et al. 2007, Manning et al.

2008] which select terms that commonly occur in results of the same cluster

in contrast with other clusters and frequency based term selection methods

[Carmel et al. 2009, Cutting et al. 1992] which select highly frequent terms in

the same cluster in contrast with other clusters.

However these works overlook several problems associated with query

expansion. One problem is that, they may find keywords that occur frequently

in fewer documents in the cluster and thus may not cover many results in the

cluster. Another problem with such approaches is that, they don’t consider

the semantic relationship between the keywords in an expanded query. An

expanded query generated by cluster summarization based approaches may

be composed of keywords from disparate topics which may have low co-

occurrence together. For example: A suggested expanded query such as

“Canon Cameras, Printer: Type: InkJet Color” for a user issued query “Canon

3

Products” may be of little help to the user, especially when the user is trying

to explore the results and narrow down the search to find a desired result.

This problem becomes a more common occurrence when the clustering

quality is poor and when results corresponding to multiple semantics is

grouped into same cluster. Since cluster summarization based approaches

completely ignore clustering quality into consideration, they generate labels

that may reflect the cluster composition but yet have semantically poor

quality. While using sophisticated clustering methodology to improve cluster

quality would be a direction to follow, it nevertheless guarantees the

consistent generation of quality expanded queries.

Therefore, this problem illustrates a unique challenge in generating

queries for clustered results; the interaction of keywords must be considered.

Moreover, a potentially large number of results, and a large number of

distinct keywords in the results add further challenges to the problem.

Exhaustively searching for the optimal query for each cluster will be

prohibitively expensive in practice. The problem of generating optimal set of

expanded queries given the ground truth of query results is shown to be NP-

hard and also APX-hard (i.e., it does not have a constant approximation).

In this work, I propose two categories of algorithms to generate

expanded queries that are comprehensive and diverse in covering different

classifications in the results. The first category of algorithms, as an initial step

clusters the results and then generates expanded queries for each cluster that

can retrieve maximal results from the same cluster and minimal results from

other clusters. If we consider the cluster of results as the ground truth, the

4

goal is then to generate a query whose results achieve both a high precision

and a high recall. This category of algorithms proposed is named as “Query

Expansion using clusters (QEC)”.

If the clustering quality is good enough, the expanded queries should

provide a good categorization of the original query results. However, this may

not be the case since the clustering algorithms often generate imperfect

clusters, e.g., the clustering quality of k-means method can be sensitive to

the initial set of “means”. Unless the initial means are chosen carefully to

represent results from different classifications, the clusters might not aid

towards generating diverse expanded queries. For example, suppose k = 2

and if 99% of results are about Apple company and only 1% is about apple

fruit, unless one of the initial means is the apple fruit result, k-means will

never put the apple fruit result into a single cluster. The second category of

algorithms proposed has two approaches, one which extracts comprehensive

and diverse expanded queries even in the presence of noisy or imperfect

clusters and another approach which directly generates expanded queries

given the original query results. This category of algorithms is named as

“Categorizing Query Expansion (CQE)”.

1.2 CONTRIBUTION

The contributions of this work include:

- A new problem for query expansion is proposed which aims at providing a

categorization of query results dynamically based on query results. This

especially has its application on handling exploratory and ambiguous

queries.

5

- Different from the empirical methods of cluster/result summarization, this

work proposes a new philosophy of considering interactions between

keywords for generating meaningful categories of expanded queries.

- Two kinds of approaches are proposed; generating expanded queries

based on result clusters and in the presence of noisy clusters. Two

algorithms are proposed for each approach, which generate meaningful

expanded queries efficiently.

- Evaluation measures to quantify the quality of a set of expanded queries

are proposed.

- The quality and efficiency of the proposed approaches have been verified

in the experiments using real datasets. Comparison experiments with

some of the main body of existing works and a large scale user study has

also been performed.

CHAPTER 2 PROBLEM DEFINITION

As mentioned earlier, the goal of this work is to generate a set of expanded

queries that provides a classification of possible interpretations of the original

user query. The input includes a user query and a set of query results where

the results are optionally ranked.

2.1 QUERY EXPANSION USING CLUSTERS (QEC)

To generate a set of expanded queries corresponding to a classification of the

original query, a natural way is to first cluster the query results using an

existing clustering method. Then one expanded query is generated for each

6

cluster, which maximally retrieves the results in the cluster, and minimally

retrieves the results not in the cluster. In this way, considering the cluster as

the ground truth, the quality of an expanded query can be measured using

precision, recall and F-measure. Precision measures the correctness of the

retrieved results, recall measures the completeness of the results, and F-

measure is the harmonic mean of them.

Let denote the set of result clusters, denote the query

generated for cluster , denote the set of results of . The

precision, recall and F measure of are computed as,

 (1)

 (2)

To handle the general case where the results are ranked, weighted version of

precision and recall is used. Let denote the total ranking score of a set of

results, then

 (3)

7

The F measure defined above serves as an evaluation measure for individual

expanded queries. For evaluating the overall quality of the set of expanded

queries generated, the harmonic mean of the F-measures is used, while other

aggregation measures (e.g., algebraic mean) can also be used.

 (4)

To summarize, the problem of generating expanded queries based on

clustered results with the assumption that clusters would be reliable is defined

as follows:

Definition 2.1: Given a set of clusters of query results, , the Query

Expansion with Clusters problem (QEC) is to find a set of queries, one for

each cluster, such that their score (Eq. 4) is maximized.

Note that the QEC problem is APX-Hard. [Appendix C]

2.2 CATEGORIZING QUERY EXPANSION (CQE)

There is an inherent disadvantage of the cluster based approach of section

3.1: it considers the clustering algorithm as a black box, thus the quality of

that method will be much dependent on the quality of the clustering. The

following example shows how undesirable clusters may prevent us from

getting desirable results.

8

Consider the above example figure, where there could be 2 ways to cluster

the result set R using classical K means, based on different initial means. The

clusters C3 and C4 allow generating desirable queries Q3 and Q4 achieving

maximum score as per Eq. 4. With clusters C1 and C2, the best queries that

could be generated are Q1 and Q2, which have bad recall although the

precision is good. Note that with clusters C1 and C2, it is not possible to

generate queries Q3 and Q4 as they have both bad precision and bad recall in

this case according to the goal function defined in Eq. 4.

From the above example, it could be seen that the clusters which are

considered as ground truth in case of Eq. 4, can no longer serve as ground

truth. In this case, an optimal set of expanded queries should cover maximal

results in the result set and should have minimal overlap with one another.

For the above example, the optimal queries could be Q5 and Q6 that cover all

the results in the result set contrary to Q1 and Q2 that misses out some

results and also have no overlap between them.

R

C1 C2

C3

C4

Q1
 Q2

Q3

Q4

Q5

Q6

Figure 1. Effect Of Undesirable Clusters.

9

From the above intuition, the below definitions of coverage and

overlap are derived and finally the score of the set of expanded queries that

should be maximized for handling imperfect clusters is defined.

 (5)

 (6)

 (7)

Considering large coverage and small overlap as desirable, the overall score

of set of expanded queries is defined as:

 (8)

Definition 2.2: Given a set of results R, retrieved by a user query, the

Categorizing Query Expansion problem (CQE) is to find a set of queries, such

that their score (Eq. 8) is maximized.

Note that the problem of CQE is challenging than QEC problem, since

in the QEC problem, each expanded queries can be generated independently.

This is because maximizing the overall score (Eq. 4) is equivalent as

maximizing the F-measure of each query. On the other hand, an algorithm for

the CQE problem needs to determine the number of expanded queries, as

well as consider the interactions of different queries during the generation of

expanded queries.

10

CHAPTER 3 ALGORITHMS FOR QEC PROBLEM

As mentioned before, the algorithms proposed for QEC problem is based on

clustered query results. Incremental K means [Manning et al. 2008] is used

as the clustering algorithm, which dynamically determines K based on best

cluster quality evaluated by a goal function. Specifically, the algorithm

increments the value of K in each iteration and terminates when the rate of

change of goal function flattens. Here, the goal function is a linear function of

(1) benefit, determined by the sum of intra cluster similarity of each result to

its cluster centroid and (2) cost, determined by weighted function of the

number of clusters. The reason for choosing K means is mainly due to its

efficient linear time complexity. Since the clustering needs to be done online

based on user’s query, the clustering algorithm needs to be simple, faster and

should not affect the efficiency of overall time taken to generate expanded

queries.

3.1 ITERATIVE SINGLE KEYWORD REFINEMENT (ISKR)

The first algorithm is named as Iterative Single-Keyword Refinement (ISKR).

Given the user query and a cluster of results, the ISKR algorithm iteratively

refines the input query until it cannot further refine the query to improve the

F-measure of the query result (considering the cluster as the ground truth).

Then, it outputs the refined query as the expanded query for the cluster.

Specifically, the algorithm quantifies a value for each keyword appearing in

the results, and refines the query by choosing the keyword with the highest

value found in each iteration.

11

There are several challenges that need to be addressed to make this

approach work: (1) How to quantify and compute the value of each keyword,

(2) Keywords interact with each other, as one keyword is added to the

expanded queries, the values of other keywords may change based on the

results retrieved by the added keyword. How to identify the keywords that are

affected and update the values of these keywords? (3) Starting with a user

query, the algorithm iteratively adds keywords to it, while doing so, it could

be possible that the F-measure might improve by removing some already

added keywords, how to handle such cases? (4) Since there can be potentially

large number of results, there can be a large number of distinct keywords,

how can we ensure efficiency in picking the right keywords and maintaining

the values of each keywords?

Value of a keyword: As each keyword is added to the expanded query the F-

measure of the expanded query increases or decreases. Ideally, the effect of

adding a keyword can be measured by the delta F-measure of the keyword.

But the disadvantage of delta F-measure is that it is hard to maintain as each

time when a keyword is added, the delta F-measure of every keyword needs

to be updated. Note that, as each keyword is added, two things happen:

Results are eliminated from other clusters which is a positive effect, and

results are also eliminated from the same cluster which is a negative effect.

Therefore the value of a keyword can be measured by the number of results

eliminated from inside and outside the cluster. It is to be noted that, this

measure is relatively easier to maintain as we only have to update the values

of a subset of keywords.

12

Example 4.1.1: Let “D” denote the set of results eliminated by adding

keyword k to the current expanded query q. If a keyword k’ is present in all

results in D, then it cannot eliminate any results in D. Therefore, the delta

results of k’ with respect to q are the same as delta results of k’ with respect

to , since the number of results eliminated by k’ never gets affected

when k gets added to q. From this example, we can observe that in each

iteration as a new keyword is added to the expanded query; only a subset of

keywords that can eliminate results retrieved by the current expanded query

has to be updated with a new value.

With these observations, we measure the value of a keyword by benefit and

cost. Benefit (k, q) is the total score of the results eliminated in other clusters

U, and cost (k, q) is the total score of results eliminated from the same

cluster C.

 (9)

 (10)

The value of a keyword k with respect to q is measured by the ratio of benefit

and cost.

 (11)

Example 4.1.2: The following example illustrates the steps involved in the

ISKR algorithm, psuedocode for all algorithms are provided in appendix B.

Suppose, the user’s query is “Apple”, the example below shows the

process involved in ISKR when it tries to generate expanded query for one of

the clusters C having results The results in other clusters U are

13

 . The table below shows the various keywords and the results they

eliminate from the same cluster C and from other clusters U. The algorithm

iteratively adds each keyword with the goal of maximizing the number of

results eliminated from other clusters and minimizing the results eliminated

from the same cluster by choosing the keywords by their benefit cost ratio.

Table 1

Values of Keywords Computed By ISKR:

 Benefit Cost Value

Job 8 6 4

Store 5 4 1

Location 5 4 1

Fruit 3 3 0

Since keyword “Job” has the highest value, it is first added. As a result, the

values of other keywords get affected, for example: the keyword “store” no

longer eliminates the results in C and in U. The updated

table looks like below:

Table 2

Updated Values Of Keywords:

 Benefit Cost Value

Job 6 8 -2

Store 1 0 1

Location 1 0 1

14

Fruit 0 0 0

After multiple iterations, the keywords “store” and “location” also gets added

to the expanded query and the updated table looks like below:

Table 3

Updated Values Of Keywords:

 Benefit Cost Value

Job 1 0 1

Store 0 1 -1

Location 0 1 -1

Fruit 0 0 0

Necessity for keyword removal:

It is possible that sometimes, removing an already added keyword will be

beneficial, for instance, in the above example, removing the keyword “Job” is

now beneficial, as the current expanded query {“apple”, ”job”, ”store”,

”location”} retrieves two results from C. Removing “job” would retrieve one

more result in C, without involving any cost. Therefore the keyword “job” is

removed leading to the expanded query of {“apple, “store”, “location”}.

The benefit and cost of removing a keyword is computed based on the

number of results that will be added back to D (k), when a keyword is

removed, as given below:

 (12)

15

 (13)

Note that, in contrast to the addition case, removal of keyword increases the

number of results in both U and C. Thus the removal of a keyword increases

recall (measured by benefit) and decreases precision (measured by cost). The

value of the keyword is computed similar to the addition case by the benefit

cost ratio. The ISKR algorithm stops when the best value keyword has a value

of zero or below.

In the implementation, in order to efficiently retrieve the best value

and to update the values of other keywords often, the keywords and their

values are stored in balanced binary search tree.

3.2 PARTIAL ELIMINATION BASED CONVERGENCE(PEBC)

ISKR algorithm iteratively adds/removes keywords because of which the

values of many other keywords need to be maintained which is cumbersome.

Intuitively, all we need to find is an expanded query that maximizes the F-

measure of precision and recall. The second algorithm tries to find directly the

set of keywords that has the best F-measure. However, since the space of all

possible queries is exponential to the data size, finding such a query is

challenging. In this algorithm, I propose to first select a set of sample data

points in the search space, and choose the most promising set of points

among them and continue to search for more data points within this range

with the goal of further improving the f-measure.

 Specifically, given a set of queries and their f-measure, set of queries

with highest average f-measure is chosen and then the algorithm proceeds by

16

finding a better query within the f-measure range of these chosen set with

the assumption that optimal queries may exist in this range. This method is

closely related to interpolation in numerical analysis, which helps in

constructing new data points within the range of a set of discrete known

points. Now two questions need to be answered, what kind of sample points

should we use to converge to optimal solution and how do we obtain such

points?

Type of sample queries: To answer the first question, a set of sample queries

can be used, each of which maximizes the number of results to be retrieved

in C, given a percentage of results in U to be eliminated. This is in the spirit of

maximizing the recall given a fixed precision. If result ranking is not present,

the approach aims at eliminating x% of U’s results; otherwise, it aims at

eliminating a set of U’s results, such that their total ranking score is x% of the

total ranking score of all the results in U. In the following, I use “x% of the

results in U” to refer in general to both cases.

Example 4.2.1: Consider that the algorithm generates five queries, q1 to q5,

to eliminate 0%, 25%, 50%, 75% and 100% of the results in U respectively,

and maximize the number of results in C to be retrieved. Suppose the F-

measures of these queries are: 0.5, 0.6, 0.8, 0.4 and 0.1 respectively. The

algorithm takes the two adjacent queries whose average F-measure is the

highest, which are q3 and q4 and zooms in this interval between 50% and

75% further dividing them to several intervals and repeating the process.

Generating sample queries: The key challenge of PEBC algorithm is how can

we eliminate roughly x% of the results in U and maximize the number of

17

retrieved results in C. This problem is referred to as Partial Elimination. This

problem bears some similarity to weighted partial set cover problem, which

aims at finding a set of subsets with the lowest total weight to cover at least

x% of the elements in the universal set. However, in contrast to the partial

weighted set cover problem which requires to cover at least x% of the

elements, the goal is to eliminate as close to x% of the elements as possible.

Some of the methods studied for generating sample queries are discussed

below.

3.2.1. Generating queries based on benefit-cost.

One intuitive method is to apply the greedy algorithm commonly used in

weighted set cover for keyword selection: each time, select the keyword with

the largest value based on benefit-cost, until approximately x% of the results

in U are eliminated. Benefit and cost are defined in the same way as in ISKR:

benefit is the total weight of the un-eliminated results in U that a keyword can

eliminate, and cost is the total weight of the un-eliminated results in C that a

keyword can eliminate.

However this method has an inherent problem. The keyword values

based on benefit and cost do not change with varying x; the keywords are

always selected in the same order. Specifically, let the list of keywords

selected when x = 100 be K = k1,…,kp. Now we want to select keywords to

generate a query for each point in a range of possible values of x. No matter

which point it is, the set of keywords selected will be a prefix of K. This “fixed-

order” selection of keywords makes it very difficult to control the percentage

of results being eliminated.

18

Example4.2.1.1: Consider a total of 10 results in U, , and 4 keywords

k1=”job”, k2=”store”, k3=”location”, k4=”fruit”. Suppose the set of results

eliminated in U by each keyword (benefit) and the number of results

eliminated in C by each keywords (cost) are:

Also if in this example, the set of results in C that is eliminated by a keyword

does not intersect with the set eliminated by another keyword.

In this approach, the keywords are always selected in the decreasing

order of their benefit-cost values, that is: (recall that after a

keyword is selected, the benefit/cost of other keywords may change, as

discussed in Section 3.1). Having the order of keyword selection fixed, there

is a slim chance to achieve the goal of x% elimination. For instance, in order

to eliminate 7 results with the fixed order keyword selection, we will have to

either use which eliminates 5 results, or eliminating all 10

results. This poses a lot of restriction. Note that in this example, if we do not

select keywords in this order, we can choose which eliminates exactly

7 results.

As we can see, always selecting keywords based on their benefit-cost

values makes it hard to eliminate a given percentage of the results. Next we

discuss the approaches that overcome this problem using a randomized

procedure.

19

3.2.2 Generating queries based on randomly selected subset.

Since selecting keywords in a fixed order is undesirable, this section

introduces a randomized procedure. First, a subset of x% of the results in U is

randomly selected. Then keywords are selected, aiming at eliminating these

randomly selected results. In this way, since the set of results to be

eliminated is randomly selected, the keywords will not be selected in fixed

order. If the randomly selected set of results is “good”, we may be able to

eliminate exactly this set of results.

Given the randomly selected results, selecting a set of keywords that

eliminate these results with minimal cost is NP-hard, as the weighted set

cover problem is a special case of it. To see this, assume that each keyword

eliminates part of the selected set of results in U, and their costs are

independent (i.e., they eliminates distinct sets of elements in C). Then, each

keyword is equivalent to a subset in the weighted set cover problem. To

choose a set of keywords that covers the randomly selected results, we can

use some greedy approaches, e.g., let S be the randomly selected set of

results, at each time we choose a keyword which covers the most number of

results in S with minimal cost. Other methods can also be used.

 As can be seen here, this approach has two problems. First of all,

given a set of randomly selected results, selecting a set of keywords that

eliminate exactly this set of results with minimal cost is an NP-hard problem.

Second, as illustrated in the above example, the quality of the algorithm

highly depends on the selected subset, thus the chance that it can get the

optimal answer is still slim.

20

3.2.3 Generating queries based on randomly selected result.

This section proposes a randomized procedure that has a much better chance

to eliminate as close to x% of the results in U as possible. In this method, a

result is selected randomly from U that is not yet eliminated, and then a

keyword is selected that (1) can eliminate the selected result, (2) and has the

highest benefit cost ratio over all such keywords. In case of a tie, the keyword

that eliminates fewer results is chosen to minimize the risk of eliminating too

many results. The iteration continues until the percentage of results

eliminated is smaller than x%.

Example4.2.2.1: Continuing the example, to eliminate all 7 results, we may

get the correct solution if we first choose one of the following five

results: }. Suppose that we choose , and choose to

eliminate it. After is used, we have the set eliminated. Then

we can get optimal solution if the next randomly selected result is

either . To eliminate , we choose , which additionally

eliminates results , totaling 7 results eliminated. As we can see, the

approach has a much higher chance to achieve the optimal solution (i.e.

removing x% of results) than the one discussed before.

3.2.4 Choosing clusters for result elimination

Note that, given the problem definition in section 2.1, expanded queries are

generated independently for each cluster. In each iteration, an expanded

query is generated for a cluster, with the goal of maximally retrieving the

21

results in the cluster and minimally retrieving the results outside the cluster

according to goal function in Eq. 4. Given this goal, keywords are chosen to

eliminate results from U (outside current cluster C) irrespective of which

cluster in U, the result belongs to. It could be possible that with this

approach, the algorithm may run into the risk of eliminating all results from a

single cluster C’ in U and therefore resulting in high overlap between results

covered by current expanded query for C and subsequent expanded queries

that will be found for clusters U-C. This is especially possible, when the

clusters are imperfect and have high overlap of similar results. However, the

goal function to be optimized in Eq. 4 is mainly set assuming that the clusters

are mostly perfect and may not share many similar results.

 In the next section, we will see that this assumption is not always true

and learn how to consider the interaction between expanded queries

generated in each iteration in the presence of imperfect clusters.

The psuedocode for PEBC is available in the appendix.

CHAPTER 4 ALGORITHMS FOR CQE PROBLEM

As mentioned before, the main goal of this work is to generate expanded

queries that are comprehensive in covering all results of the user’s query and

are also diverse. To achieve this goal, clustering served as a helper tool for

generating expanded queries in the earlier approaches.

This section introduces two algorithms, one is Iterative Cluster

Refinement (ICR) that minimizes the effect of imperfect clusters and

generates quality expanded queries. The other algorithm is Bisecting Query

22

Generation (BQG) that tries to generate expanded queries directly without the

help of clusters.

4.1 ITERATIVE CLUSTER REFINEMENT (ICR)

The algorithms discussed so far, considered retrieving results from other

clusters as undesirable and confined the search to finding queries that can

retrieve maximal results from its own cluster. In a situation where the

clusters are imperfect, this strategy may concede to the imperfectness of the

clusters. In case of imperfect clusters, it is very much possible that the

optimal queries may cover results from different clusters. In contrast with the

earlier approaches, it would be desirable to consider retrieving results from

other clusters that are not retrieved by other expanded queries, since we

know that the clusters are imperfect and it is baseless to confine the queries

to the cluster boundaries. Imperfect clusters are illustrated in the following

figure, where the results points are plotted in the keyword space.

23

Figure 1: Distribution Of Data Points Of Imperfect Clusters

Two things can be inferred from the above figure: (1) Clustering is not

completely bad, it helps in separating highly dissimilar points, example:

cluster C1 and C3. (2) However some clusters can be bad, for which the right

expanded queries are difficult to generate using approaches discussed in

section 4. The experiments reported in section 6.2.3 shows that the cluster

quality indeed affects the quality of expanded queries. It can be seen from

the experiment results, that even if one cluster has poor quality due to low

intra cluster similarity of documents within the cluster and/or high inter

cluster similarity with documents in other clusters, the quality of expanded

queries tends to be low. Further, it is also seen from these experiments that

high quality clusters generally tend to generate quality expanded queries.

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

C3C1 C2

24

The ICR algorithm generates expanded queries by iteratively refining the

clusters, so that the effect of imperfect clustering is minimized. Suppose we

want to find k expanded queries. The algorithm works in the following steps:

1. Generate an initial set of k expanded queries using either ISKR or

PEBC.

2. Pick one expanded query q.

3. Re-cluster the results in into clusters. Generate

expanded queries.

4. Repeat from step 2 until expanded queries are picked.

Coherent with the intuition that the clustering cannot be completely bad, in

step 2, the algorithm tries to pick and finalize expanded queries that can

correspond to instantly recognizable clusters. In this step, queries that have

better alignment with its clusters are picked and made permanent. The

strategy for picking these queries is explained below, wherein the basic

assumption is that the clusters for which quality expanded queries can be

found should be better clusters that may not need much refinement.

In subsequent steps, the results not covered by the finalized query q

are considered for re-clustering. This is coherent with the intuition of

disregarding the imperfectness seen in the clusters. As the results covered by

q are removed, the relationship between the data points might change, and

there could be a different set of clusters most relevant to the currently

available points after re-clustering.

Choice of queries: Now we discuss how to pick the query in step (2). For the

convenience of presentation, I refer to the queries that have been chosen in

25

step (2) as finalized queries, and the queries that have just been generated in

step (3) as candidate queries. First, since the queries already picked are

finalized, it is desirable to avoid choosing the queries that overlap with the

finalized queries. Besides, a query is a good candidate to be chosen as

finalized query, if it has good precision and recall with respect to its own

cluster. Therefore, if the F-measure of a query is too low, it should not be

chosen as a finalized query.

Based on the above intuition the following desirableness score is used

to measure the quality of a candidate query q.

 (14)

Where, is the set of finalized queries, is the overlap of results

retrieved by . is the relative importance of not overlapping with

finalized queries, compared to achieving a good F-measure. p is set

empirically to 0.7 in the current implementation. A linear combination of

overlap and recall is used instead of weighted harmonic mean just to facilitate

easier adjustment of weights between 0 and 1.

 It would be beneficial to learn the value of “p” based on observed

intra cluster and inter cluster similarity over a range of training queries. The

value of p can be set based on a threshold value of the lowest intra cluster

similarity and the threshold value of highest inter cluster similarity

 among the clusters. Since the values of these internal measures may

largely depend on the underlying data, it is not reasonable to use a static

function of these measures to compute the value of “p”. Rather, the threshold

26

values must be learned over a set of training queries on the underlying data

in order to deduce the value of “p”.

Generating Candidate Queries:

In step 3, the algorithm re-clusters the remaining uncovered results and

generates expanded queries using PEBC or ISKR. Note that while selecting

keywords to be added to the expanded queries using PEBC/ISKR, extra

weight can be given to keywords that do not retrieve results that are already

covered by the finalized queries. The benefit factor computed in ISKR/PEBC

while picking keywords is changed to accommodate this weight:

 (15)

 is the set o results in other clusters, which is the same as U in Equation 9.

 is the reasults covered by the finalized queries. p2>1 is the importance

weight for not retrieving such results. We empirically set p2=3. The cost

factor remains the same, and the value of the keyword is still computed as

ratio of benefit and cost.

ICR thus tries to improve the quality of expanded queries by taking an

aggressive approach to improve coverage, and a cautious approach to

maintain low overlap. It tries to be aggressive in covering results not

retrieved by other expanded queries even though they may correspond to

other clusters, at the same time it tends to be cautious in not retrieving

results already covered by finalized queries. The experiment results show that

27

this methodology significantly improves upon the quality of expanded queries

generated by ISKR and PEBC.

The following example illustrates the steps in ICR algorithm:

Example 5.1.1: Consider the following clusters obtained for the user’s query

“Columbia” and the results covered by some of the keywords:

album

city

district

university

The algorithm first processes the clusters and picks {university}, {Indiana}

and {album} as the expanded queries for corresponding clusters. Given the

three clusters, these are the best queries that can be obtained by the

approaches discussed in section 4. As can be seen, many results are left

uncovered by the above expanded queries. ICR picks “university” and

finalizes it as one of the expanded queries. It then takes the rest of the

uncovered results and re-clusters them. Let’s suppose the clusters obtained

by re-clustering are C1: {R3, R4, R5, R6, R7}, C2: {R8, R1, R2}. ICR picks

“district” as the next finalized query, which leaves out only one cluster of

uncovered results, {R3, R8, R1, R2}, ICR finally outputs the final set of

28

expanded queries as, {university}, {district} and {album}. As can be seen,

these queries have better coverage than the previous set of queries.

4.2 BISECTING QUERY GENERATION (BQG)

Although ICR tries to minimize the effect of bad clusters on expanded queries,

clustering always incurs some amount of loss on the quality of expanded

queries. This section discusses an algorithm that tries to directly generate

expanded queries without the help of clusters.

 The problem of query expansion can be seen as feature selection

problem, where the query results are represented in N dimensional space of

keywords/terms. Now the problem is to find a subset of diverse term

dimensions that can represent the documents comprehensively. Various

feature selection methods such as term frequency based [Cutting et al.

1992], centroid [Radev et al. 2004], document frequency based or mutual

information based [Manning et al. 2008] can be applied to solve this problem.

However, all these methods suffer from the various problems of cluster

labeling methods mentioned in section 1.

 Closely connected with works on mapping multimedia objects in N

dimensional space to K-d space [Faloutsos et al. 1995, Torgerson 1952], this

section presents an algorithm named as Bisecting Query Generation (BQG)

that exploits the information about distances between query results on the

basis of term composition to directly find K expanded queries.

The BQG algorithm proceeds in following steps:

29

1. Generate initially two single keyword queries q1={k1} and q2={k2},

such that among all single keyword queries, q1 and q2 has the

maximum score per equation 8.

2. If the number of queries has reached the threshold K, terminate.

Otherwise:

a. Find another expanded query, If the F-measure score as per

equation 8 can be improved by doing so; Else:

b. Pick one of the already found expanded query q, split q into two

queries q’ and q’’, each having one additional keyword than q,

such that these two queries maximize the F-measure score for

the results retrieved by q.

In each iteration step 1 and 2(a) tries to find orthogonal term dimensions that

can improvise the F-measure score until K dimensions of expanded queries

are found. Considering the result documents are points in N dimensional

space of terms, step 2(b) considers a (N-1) dimensional hyper-plane H, and

continues to find orthogonal term dimensions within this hyper-plane until K

dimensions are found. The strategy for picking this hyper-plane H is

explained below, the basic intuition is to pick the one that can be further

naturally divided into more orthogonal dimensions.

Choosing the query to refine:

There are several ways to choose the query for further refinement in step

2(b). For example: (1) Picking the query based on least number of keywords;

(2) Picking the query which has most number of results. However these

approaches may not work in many cases, because different categorization of

30

the original query may have different number of results, and may be best

described by different number of keywords. For example, when we search

“java”, the two initial queries may be “java, language” and “java, location”.

Although they both have the same number of keywords, and “java, language”

retrieves much more results than “java, location”, yet it might be desirable to

refine query “java, location” since “java” matches many locations, e.g., an

island in Indonesia, a town in Georgia, etc.

As we can see, which query we use to refine the results should not

depend on the number of keywords or the number of results it retrieves, but

on whether its results can be naturally divided into multiple categories.

Therefore, to decide a query to refine, the query whose results have the

minimum average similarity is selected. The standard metric in IR, the cosine

similarity of two vector is used as the similarity measure of two results. If the

results are text documents, each component of the vector is a keyword and

its value is the TF of the keyword. If the results are structured documents,

each component is a feature, and the value is the TF of the feature. The

desirableness of choosing query q to refine is defined as:

 (16)

To compute similarity of every pair of documents in the result set of q would

be expensive. One heuristic alternative is to find the centroid of the result set

and find the average similarity of all documents with the centroid. Also note

that, In step 1 and 2(b), finding best pair of keywords that can maximize the

31

F-measure is a operation, where N is specifically the number of dimensions

or terms in the result set. However feature reduction strategies such as

considering only keywords with high term frequency and/or high document

frequency can be applied to improve the efficiency. In the current

implementation, keywords that appear in at least two documents with a term

frequency of 3 are chosen, based on best results obtained compared with

other strategies.

The following example illustrates the working of BQG algorithm.

Example 5.2.1

Given below are some of the keywords and their result coverage of the results

of original query “Columbia”.

"Indiana" - {R1, R2, R3, R4}

"Album" - {R1, R5, R6}

"City"- {R3}

"District"- {R3, R4}

"University"- {R2, R6}

The ICR algorithm can generate good expanded queries if in each iteration, at

least one expanded query is good (i.e., at least one cluster is good) and this

query is the one selected to be the finalized query. Therefore, it is still

dependent on the quality of clustering to certain extent. On the other hand,

the BQG algorithm completely eliminates the dependency on clustering by

generating two initial queries, and splitting one queries into two at each step.

The BQG algorithm first enumerates every pair of keywords and find the pair

with the highest score per Eq. 8. Among these six keywords, “Indiana” and

32

“Album” have the highest scores: queries {“Indiana”} and {“Album”} has a

coverage of 1 and an overlap of 0.33, thus their score is the harmonic mean

of 1 and 0.67, i.e., 0.80. The current expanded queries are thus q1 =

{“Indiana”} and q2 = {“Album”}.

 Now, we pick a query to split. Among the current expanded queries,

we choose the one whose result has the minimum average similarity, which is

“Indiana”. Again, we enumerate every pair of keywords and find the pair of

keywords k and k′, such that queries {“Indiana”, k} and {“Indiana”, k’} have

the largest score with respect to the results retrieved by query {“Indiana”}.

The best pair of keywords are “University” and “District”, since {“Indiana”,

“University”} and {“Indiana”, “District”} have good coverage and zero

overlap. Now we have three queries with full coverage and no overlap.

Therefore, the BQG algorithm will output: q1={“Album”}, q2={“Indiana”,

“University”} and q3={“Indiana”, “District”}.

CHAPTER 5 EXPERIMENTS

In this section, a set of experimental evaluations are presented on the quality

of expanded queries generated by the current approach, and the efficiency

and scalability of query generation.

5.1 EXPERIMENT SETUP

Environment: All experiments were performed on a machine with AMD Athlon

64 X2 Dual Core Processor 6000+ CPU with 3GHz, 4GB RAM, running

Windows Server 2008.

33

Dataset: Two datasets are used for evaluation: shopping and Wikipedia.

Shopping is a data set that contains information of electronic products

crawled from circuitcity.com. Each product has a title, a category, and a set of

features. Wikipedia is a collection of document-centric XML files used in INEX

2009.

Query Set: 10-12 queries are tested on each data set, as shown in Appendix

A. The queries on Wikipedia dataset are composed of ambiguous words. The

queries on shopping dataset are to search for specific products.

Result Clustering: Each result is modeled as a vector whose components are

features in the results and the weight of each component is the TF of the

feature. The similarity of two results is the cosine similarity of the vectors.

Feature reduction is applied to reduce the number of dimensions for

improving efficiency, specifically only the terms with document frequency of 2

and above and term frequency of 3 and above are selected. The clustering

algorithm used is K means with varying-K approach, for determining the

number of clusters dynamically. The algorithm iteratively generates clusters

with incremental K values and stops when rate of change of goal function

flattens. The goal function is set as benefit-cost, where benefit is the sum of

intra cluster similarity of documents with their respective centroids and cost is

the weighted function of the number of clusters [Manning et al. 2008].

Comparison System: Following are some of the search systems providing

query expansion service on which the test queries are evaluated for

comparison.

34

(1) Data Clouds [Koutrika et al. 2009], which takes a set of ranked results,

and returns the top-k important words in the results. The importance of a

word is measured by its term frequency in the results it appears, inverse

document frequency, as well as the ranking score of the results that contain

the word. Data Clouds is a representative method for returning important

words in the search results, without clustering the results.

(2) Google. For each test query, the first 3-5 related queries suggested by

Google (the number of which is the same as the number of queries generated

by other approaches) are chosen. Google is a representative work of

suggesting related queries using query logs.

(3) F-measure, which is an alternative ISKR algorithm that considers the

value of a keyword k with respect to a query q as the delta F-measure of q

after adding k to q or removing k from q. As discussed in Section 4, since the

goal function is to maximize the F-measure of a query, the delta F-measure

more accurately reflects the value of a keyword than the benefit-cost values.

However, in this approach, after a keyword is added to or removed from the

current query, the values of all keywords will need to be updated, which

potentially leads to a low efficiency.

(3) TFICF, a frequency based feature selection method representing term

frequency based Cluster Summarization [Carmel et al. 2009]. It first clusters

the results, then generates a label for each cluster. The label of a cluster is

selected based on the term frequency (tf) and inverse cluster frequency (icf)

of the words in the cluster. This is a representative method for cluster

summarization and labeling.

35

(5) Mutual Information based feature selection [Carmel et al. 2009, Manning

et al. 2008], selects terms for each cluster based on the measure of how

much information – in the information theoretic sense – a term contains

about the corresponding cluster. MI reaches its maximum value if the term is

a perfect indicator for cluster membership, that is, if the term is present in a

result if and only if the result is in the cluster.

(6) Chi Square based feature selection [Tseng et al. 2006, Liu et al. 2003,

Carmel et al. 2009, Manning et al. 2008, Yang et al. 1997], where terms are

selected for each cluster based on the measure of independence between the

occurrence of the terms and the occurrence of corresponding cluster. Since,

Chi square considers both positive and negative correlation of terms with

clusters and may tend to output some negative terms that are indicative of

non-membership in the cluster, square root of Chi square is considered which

is nothing but “correlation co-efficient” [Tseng et al. 2006]. It outputs only

the positive terms that are highly indicative of membership in a class.

(7) The algorithms discussed in the current work namely, ISKR, PEBC, ICR

and BQG are evaluated and compared with the above systems.

For both the datasets, all systems consider top 100 results to generate

expanded queries.

5.2 QUALITY OF QUERY EXPANSION

5.2.1 User Study.

An extensive user study on Amazon Mechanical Turk [1] was performed with

50 public web user participating in the study. The user study consists of three

36

parts. In the first part, the users gave ratings to each individual expanded

query, in the second part the users rated the queries considering collectively

the set of expanded queries generated by a search system. In the third part,

a general question was asked to the web users in order to verify the intuition

of the approaches.

Part 1: Individual Query Score.

In the first part of the user study, the users were asked to rate each

individual expanded query in a 1(low)-5(high) scale, based on how they feel

about the expanded queries. The users were also asked to choose the

following justification options to reason their ratings.

A – The expanded query is highly related to the search and helpful.

B – The expanded query is related to the search, but there are better ones.

C – The expanded query is not related to the search.

Figure 2: Average Individual Query Score

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

A
ve

ra
ge

 In
d

iv
id

u
al

 Q
u

er
y

Sc
o

re
 (1

-5
)

37

Figure 3 : Percentage Of Users Choosing A, B, or C For Individual Queries

The average score of all 22 queries given by all users for each approach is

shown in Figure 3, and the percentage of users choosing each option in this

part of the user study is shown in Figure 4. As can be observed, the current

work’s approach is rated better than other approaches. Also as can be seen

from figure 4, many users found the current work’s approaches produce

highly related and helpful expanded queries compared to other approaches.

 BQG iteratively finds terms that can cover more results of the original

query and has less overlap with already discovered terms. In general users

have rated individual queries of BQG on par with other cluster based

approaches. For some individual expanded queries (For example: Original

queries QW5 “Eclipse”, QW9 “Mouse” etc) which are discovered at the last

just before the iteration ends, the users have given low rating. One reason for

this trend could be that, these queries/terms make lesser semantic sense to

0%

20%

40%

60%

80%

100%

120%

P
e

rc
e

n
ta

ge
 O

f
U

se
rs

 C
h

o
o

si
n

g
A

, B
 a

n
d

C

.
(C)The expanded query is not
related to the search.

(B) The expanded query is
related to the search but
there are better ones

(A)The expanded Query is
highly related to the search
and helpful

38

the users as they cover less number of results in the cluster although adding

such terms to the expanded query set improves the goal function. This

situation can be handled by carefully selecting the condition to stop the

iteration. In the current implementation, various factors lead to the

termination of the iteration, such as the upper bound on the number of

expanded queries, the non-availability of any terms to further improve the

goal function, the threshold on rate of increase in the goal function etc. These

factors are hard to be set arbitrarily, and rather needs to be set by periodic

learning and techniques such as relevance feedback.

The TFICF approach chooses keywords that are popular in the current

cluster in contrast with other clusters, but however it does not considers the

interaction between the keywords featured in an expanded query, thus may

tend to pick keywords hat have high occurrence (TF), but with low co-

occurrence in the cluster results. Thus the users mostly found such expanded

queries less desirable. For example, for query “Jaguar”, TFICF approach

generated expanded query “Jaguar, OS, nova”, for query “Rockets”, it

generated “Rockets, games, artillery” etc.

Google chooses keywords based on query log, thus it often returns

meaningful and popular keywords, which is desirable. For example, for QW6

“Java”, Google returns the expanded queries “Java, Tutorials”, “Java, Games”

etc., which are generally very popular with the users. However, for some

queries Google may return keywords that do not occur in the results. For

example, Consider QS1 “Canon, products”, Google returns a query “Olympus

products”, “Nikon products” etc. While this could be useful for some users,

39

the user rating has indicated that many the users prefer the expanded queries

to be results oriented.

Part 2: Collective Query Score.

In the second part of the user study, the users were asked to rate each set of

expanded queries generated for a user query in a 1-5 scale, based on how

they feel about the collective set of expanded queries returned by a search

system given a original query. The users were also asked to choose from the

following justification options:

A - Not comprehensive and not diverse.

B - Either not comprehensive or not diverse.

C - Comprehensive and diverse.

40

Figure 4: Collective query scores for each set of expanded queries

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
o

lle
ct

iv
e

 Q
u

e
ry

 S
co

re

Wikipedia Test Queries

ISKR

PEBC

ICR

BQG

TFICF

F-measure

DataClouds

Google

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
o

lle
ct

iv
e

Q
u

er
y

Sc
o

re

Shopping Test Queries

ISKR

PEBC

ICR

BQG

TFICF

F-measure

DataClouds

Google

41

Figure 5: Percentage of users choosing A, B, C for each set of expanded
queries

For all 20 queries, the collective score of each user query for each approach is

shown in Figure 5, and the percentage of users that chose each option is

shown in Figure 6.

 For may queries such as, “Domino”, most of the current work’s

approaches generated expanded queries covering comprehensive and diverse

topics such as For query QW4 “Domino”: “pizza”, “album”, “company”, “lotus

notes database” etc.; For QW5 “eclipse”: “software”, “solar eclipse”, “car”,

“album”; For “Java”: “Indonesia”, “Software”; For QW10 “Jaguar”: “animal”,

“car”, “apple system” etc. All such queries gained higher ratings from the

users when compared to other approaches. Since the “Frequency ” approach

also aims at finding keywords that differentiate clusters, the users found

TFICF generate diverse expanded queries for many test queries. For some of

0%

10%

20%

30%

40%

50%

60%

P
e

rc
e

n
ta

ge
 o

f
u

se
rs

 c
h

o
o

si
n

g
A

, B
 a

n
d

 C

(A)Not Comprehensive and
Not Diverse

(B)Either not comprehensive
or not diverse

(C)Comprehensive and
diverse

42

the queries such as “Eclipse”, TFICF found terms that occurred in fewer

results with high frequency, such as “Eclipse astronomical mathematics”. The

users should have found such queries too specific to serve as a label for a

broad topic related to Eclipse. For some cases, where the clusters are noisy

TFICF is not found to be comprehensive and diverse, such as for the query

“Domino”, “Eclipse” etc. For such cases, ISKR and PEBC also received

relatively lower rating compared to ICR and BQG. ICR and BQG succeed at

covering comprehensively all topics maintaining the diversity even in the

presence of noisy clusters, and therefore received better collective ratings

from users.

Data cloud returns the top ranked keywords in the results for which

the expanded queries often lack comprehensiveness and diversity. For

example, consider QS1 “Canon, products”. All the current work’s approaches

return camera, printer and camcorder. However, Data Clouds returns all

expanded queries related to camcorders, as there are many results that

correspond to camcorders. The users mainly chose option A or option B for

Data Clouds.

For many queries in Shopping data such as “HP Products”, “Canon

Products”, “Memory” etc., TFICF received better ratings on par with other

approaches. This is because the shopping data is more structured and results

in the same cluster are highly coherent and share many common features.

Therefore, even though the TFICF approach does not consider the relationship

of keywords, the keywords it selects in an expanded query likely co-occur in

many results. On the other hand, on the Wikipedia data, it may choose a set

43

of keywords, such that each of them has a high occurrence but they do not

necessarily co-occur. Such a query will not retrieve many results which lowers

its recall.

Part 3: User opinion about expanded queries.

The users were asked about their general opinion about a good set of

expanded queries, in order to gain an understanding of whether the

assumptions made in the current work are aligned with the need of a web

user. Following are some of the responses received:

“A best expanded query has the power to decide what the user wants.”

“The expanded query should be short and precise.”

“A good expanded query should be specific enough for what the person is

looking for but also general enough so that it doesn't get too specific.”

“It should contain different areas of relations to the searched words/phrases.”

“Comprehensive, useful, with options.”

 “Need some of the options as different from other options.”

These responses mostly indicate comprehensiveness and diversity as

desirable features.

5.2.2 Scores of expanded queries (using eq. 4).

As defined in Eq. 4, the score (goal function) of a set of expanded queries is

the harmonic mean of their F-measures. In this section, the scores of

expanded queries of ISKR, PEBC and TFICF approaches are shown in the

figure 7. Since the queries generated by Data Clouds and Google are not

44

based on clusters, this score is not applicable to them. The ICR and BQG

approaches are not comparable here as they are evaluated using a different

score measure given in Eq. 8 and moreover all the approaches tested in this

part consider clusters as ground truth and use Eq. 4 as the evaluation

measure. The comparison with the ICR approach is provided in the next

section.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q
u

er
y

Sc
o

re

Wikipedia Test Queries

Scores of expanded queries (Eq. 4)

ISKR

PEBC

Fmeasure

TFICF

MI

Chi^2

45

Figure 6: Scores of expanded queries considering clusters as ground truth
(Eq. 4)

As we can see, in general both ISKR and PEBC algorithms achieve similar and

good scores. On the shopping data, both algorithms achieve perfect score for

many queries. This is because on the shopping data, products of different

categories usually have different features. Thus for queries whose results

contain several different product categories (e.g., QS1 “Canon” whose

products contain camcorders, printers, and camera), each category forms a

cluster. Therefore, it is usually possible to achieve a perfect precision and

recall.

The TFICF based approach as discussed before selects keywords

having high frequency, but does not takes into account the number of results

in which the keywords are present and their co-occurrence in the data. As a

0

0.2

0.4

0.6

0.8

1

1.2

Q
u

e
ry

 S
co

re

Shopping Test Queries

Scores of expanded queries (Eq. 4)

ISKR

PEBC

Fmeasure

TFICF

MI

Chi^2

46

result they have poor scores for the wiki dataset. Since in shopping data,

many results in the shopping data usually have common keywords, TFICF

tends to have better scores for shopping data.

5.2.3 Effect of cluster quality on expanded queries.

The main motivation for the algorithms described in section 5 is to minimize

the effect of bad clusters on the quality of expanded queries. However, the

precise relationship between cluster quality and quality of expanded queries is

not yet discussed. This section studies the effect of cluster quality on the

generation of quality expanded queries. Specifically since the algorithms in

section 4 aims to generate expanded queries which cover maximal results

from the same cluster and minimal results outside the cluster, we will see in

this section, how even one bad cluster may affect the overall score of the

expanded queries. Internal cluster evaluation measures [Manning et al. 2008]

such as Intra cluster Similarity and Inter Cluster Similarity are used to

determine the quality of the clusters.

 Intra cluster similarity of a cluster is the average similarity of

document results within the cluster, Inter cluster similarity between two

clusters is the average similarity between document results of the two

different clusters.

 (16)

 (17)

47

For each of the test queries, the lowest intra cluster similarity and the highest

inter cluster similarity values found among the clusters is compared with the

overall score of expanded queries in Figure 8. Both these internal measures

indicate the level of poor quality of the clusters.

Figure 7 Effect Of Cluster Quality On Expanded Query Score

As can be observed from the above figure, high inter cluster similarity

generally results in low expanded query scores. Intuitively, this is plausible as

it becomes increasingly difficult for the algorithms to find terms that can

eliminate maximal results from other clusters when the clusters are similar.

The above figure shows a general trend of inverse correlation between inter-

cluster similarity and query score.

0

0.2

0.4

0.6

0.8

1

1.2

n
ew

to
n

m
er

cu
ry

b
an

jo

d
ra

m
a

Ye
llo

w
st

o
n

e

ce
ll

tu
rk

ey

ro
ck

et
s

co
lu

m
b

ia

gr
ee

k

m
o

u
se

Ja
va

p
ro

gr
am

m
in

g

P
ri

n
te

r

m
em

o
ry

 in
te

rn
al

m
em

o
ry h
p

C
an

o
n

 P
ro

d
u

ct
s

Sc
o

re
s

Test Queries

Intra Cluster Similarity

Inter Cluster Similarity

Query Score

48

In case of intra cluster similarity, high intra cluster similarity in a

cluster should intuitively help the algorithms to find expanded query terms

that can maximally retrieve results from the cluster. This can be observed by

looking at the query “newton”, “turkey” and “rockets”. For query “rockets”,

the inter-cluster similarity is higher than “newton”, but yet with the support of

high intra cluster similarity, the algorithm generates high query score. The

same phenomenon can be observed when comparing the query “turkey” and

“newton”. However, sometimes when the intra-cluster similarity is low, i.e,

when results in the same cluster share less number of terms, the algorithm

still manages to find a few shared terms that can cover the cluster well, for

example: query “hp”, “memory” etc. In general, it is desirable to have high

intra cluster similarity and low inter cluster similarity to get better quality

expanded queries.

Therefore, these results support our motivation to negate the effect of

poor clusters for generating better expanded queries. However, in order to

substantiate this intuition, I did the following case study to find out how the

expanded queries look semantically when the cluster quality is high/low.

Specifically, this case study helps in understanding whether a semantically

better query actually corresponds to a high f-measure score. The semantic

meanings are cross verified with Wikipedia’s disambiguation pages [28] for

wiki queries and with the help of domain knowledge for Shopping queries.

Case Study Example 1: Query “Mercury” has lot of results mainly about

albums and magazines of the name Mercury. ISKR generates expanded

queries “Mercury, center”, “Mercury, album” and “Mercury, century”. Thus

49

ISKR is able to identify only one main cluster in its expanded queries. This is

because except for one cluster, the other clusters are impure with a mix of

results from various topics like “Magazines”, “Cars”, “TV Series” and “news

articles about planets” etc. ISKR does not selects “magazine” as one of the

expanded keywords because it tries to avoid overlap with other cluster which

also contains results about journals and magazines. Therefore, the expanded

queries tend to have low recall and therefore low f-measure. The internal

evaluation measure also indicates poor quality for these clusters.

Case Study Example 2: Query “Banjo” also suffers from similar problem, as a

majority of result distribution corresponds to the topic “Guitar and albums”.

Other results do not correspond to any bigger classification, as a result only

one expanded query generated by ISKR looks meaningful (“Banjo, album”).

Query “Yellowstone” has about 80% of result distribution corresponding to

“Parks”, as a result its clusters have high inter cluster similarity, subsequently

ISKR generates two expanded queries having the keyword “Park” such as

“Yellowstone, glacier, park” and “Yellowstone, park, pass”. As a result it fails

to identify topics corresponding to smaller distributions such as “Montana

county”, “volcano” etc.

Case study example 3: Pure clusters whose internal measure quality is high

generally resulted in semantically meaningful expanded queries. For example:

Test queries like “Canon Products”, “HP”, “Memory” etc. have meager inter

cluster similarity and ISKR is able to find optimal classifications for these

queries, for example: For “Memory”, ISKR generates expanded queries

50

“ddr3”, “flash memory” and “hard drive”, which are meaningful and

correspond to distinct classifications.

5.2.4 Scores of expanded queries (using eq. 8).

In this section, experiment results of comparing the ICR and BQG approaches

with other approaches are presented. Since ICR ad BQG needs to be

evaluated based on a different score given in Eq. 8, all approaches are

evaluated for the same score and compared with each other.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ex
p

an
d

ed
 Q

u
er

y
Sc

o
re

s
(E

q
. 8

)

Wikipedia Test Queries

ISKR

PEBC

ICR

BQG

CS

DataClouds

Fmeasure

51

0

0.2

0.4

0.6

0.8

1

1.2

QS1 QS2 QS3 QS4 QS5 QS6 QS7 QS8 QS9 QS10

Ex
p

an
d

e
d

 Q
u

e
ry

 S
co

re
s(

Eq
. 8

)

Shopping Test Queries

ISKR

PEBC

ICR

BQG

CS

DataClouds

Fmeasure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ex
p

an
d

ed
 Q

u
er

y
Sc

o
re

s(
Eq

. 8
)

Wikipedia Test Queries

ISKR

PEBC

ICR

BQG

MI

Chi^2

52

Figure 8: Scores of expanded queries (Eq. 8)

In general the Mutual information and Chi^2 feature selection methods

generate meaningful expanded queries with terms representing one cluster

and contrasting other clusters. One problem with these methods is that, they

consider terms independently without considering the effect of adding a term

to an expanded query on the optimization goal. As a result, they tend to pick

terms for an expanded query that independently may have high occurrence in

a cluster, but together as an expanded query have less co-occurrence,

resulting in poor recall. For example: For the original query QW8 “Cell”, one

of the expanded queries generated by MI is “Cell, wall, table”, resulting in

recall of 0%. Semantically, it is true that “Cell, wall” and “Cell, table” are

completely different topics, and this query is not useful as a categorizing

expanded query for query refinement. Another example of this problem is for

0

0.2

0.4

0.6

0.8

1

1.2

Ex
p

an
d

e
d

 Q
u

e
ry

 s
co

re
s(

Eq
. 8

)

Shopping queries

ISKR

PEBC

ICR

BQG

MI

Chi^2

53

QW5 “Eclipse”, one of the expanded queries generated by Chi^2 is “Eclipse,

solar, fiction”, which has a low recall. The overall score of almost all the

expanded queries is low for MI and Chi^2 approaches when compared to the

current work’s approaches.

The expanded queries of each approach corresponding to the above

scores are provided in Appendix D. Given below is detailed case study

analysis on the results:

Case Study Example 1 – Query “San Jose”, many results of San Jose are

about San Jose Location, with a very small group of results about local NHL

team based on San Jose. Clustering dependent approaches do not identify

this classification, and form clusters which are both about location. As a result

the cluster labels are not diverse (“San Jose, California”, “San Jose,

province”). Whereas, ICR and BQG are able to identify this classification (“San

Jose, Santa”, “San Jose, team”, “San Jose, players” and “San Jose, California”

etc.). According to cluster metrics, the average Intra cluster similarity of

documents is around 0.48, and the average inter cluster similarity is 0.30,

which indicates that the clusters share a lot of common keywords and

therefore have a lot of overlap. Therefore ISKR and PEBC approaches find it

difficult to extract words having high f-measure; the expanded queries

generated by these approaches have high overlap of 31%. ICR is able to

identify diverse classifications of “team” and “location”, which reduces the

overlap to about 6% maintaining same coverage of 81% as other approaches,

and therefore resulting in high f-measure score.

54

Case Study Example 2 – Query “Domino”, although most of the queries

generated by ISKR and PEBC are meaningful and corresponds to main

classifications of the results such as “domino, album”, “domino database”,

“domino products”, they still miss at least one classification due to formation

of a bad cluster in the presence of outliers. For example, one of the queries

generated by PEBC is about “domino, California, border” etc. This does not

correspond to any meaningful classification related to the query “Domino”.

The cluster corresponding to these expanded queries have very few results

and is mainly formed due to some outliers selected as initial centroids.

ICR helps in eliminating the effect of such bad clusters formed due to

outliers, and extracts meaningful classifications such as “Domino pizza”,

which was missed out by naturally formed clusters.

Case Study Example 3 – Query “Rockets”, TFICF can sometimes generate

queries that can belong to two different topics in the same query. This is

because; clusters can be bad and may contain more than one topic. And also

since TFICF just outputs most frequent terms in the whole cluster and does

not considers their interaction(results retrieved), it generates keywords from

multiple topics in the same cluster. This can be misleading to the users. For

example: For Rockets, one of the queries by TFICF is “Rockets, games,

artillery” which does not make much sense as “artillery” and “games” do not

retrieve any results together.

55

Case Study Example 4 – Query “Jaguar”, ISKR and PEBC approaches,

although they generate meaningful expanded queries like “Jaguar, tiger”,

“Jaguar, car” etc., due to imperfect clusters, the queries are not highly

diverse. For example: Since there are many results about “Jaguar Car”, two

of the clusters are very close to each other in terms of inter cluster similarity

sharing results about Jaguar cars. Since ISKR and PEBC aim to cover maximal

results from the same clusters and minimal results from other cluster, they

end up generating queries which either have low coverage and low overlap or

high coverage and high overlap in the presence of imperfect cluster, where

satisfying both the desired criteria is difficult. In this case, PEBC generates

expanded queries “Jaguar, Car” and “Jaguar, Season” which has moderate

coverage and high overlap, whereas ISKR generates queries “Jaguar,

Production, Car” and “Jaguar, Season” which has low overlap and low

coverage.

ICR with its adjustable clustering scheme tends to satisfy both the

desired criteria of maximal coverage and minimal overlap by identifying

hidden classifications like “Jaguar apple system” which is not obviously found

from the naturally formed cluster. In fact “Jaguar apple system” makes the

query set more meaningful, comprehensive and diverse.

Case Study Example 5 – For Query “Mouse”, In general all approaches

generate meaningful queries. ICR surprisingly misses out one of the

classifications “Mouse, Mickey”. This is mainly because, since ICR is also

partially based on clusters, ICR restricts itself to find only K clusters. For

mouse, the true clusters have 5 clusters which are about “computer mouse”,

56

“album”, “cartoons”, “results describing experiments with mouse & human

gene” and “mouse species family”. But since ICR restricts itself to find only 4

clusters, it misses to find one of the classifications. In fact, this is a problem

with ICR and all other cluster based approaches, and all of them fail to

identify at least one classification if the number of clusters is not properly set.

Case Study Example 6 – For Query “Networking”, there are basically 3

classifications of documents namely, Camcorders, Camera and Switches.

Although the query quality in general is comprehensive and diverse, ISKR and

PEBC does not achieve optimal f-measure due to noises in clusters. ICR and

BQG overcome the noises and generate queries with perfect f-measure.

Also, note that since TFICF does not considers keyword interaction and

cluster quality into account, it generates keywords corresponding to different

classification in the same query, for example: One of the expanded queries

generated by TFICF is, “Networking, Products:category:routers,

Switches:leds:port”. Although it reflects that the cluster contains a mix of

switches and routers, the user may not find it helpful as it does not aid the

user in narrowing down the search.

5.2.4 Match@K

In order to verify the relevance and diversity of topics covered by the

expanded queries, this section compares the Match@K [Carmel et al. 2009,

Treeratpituk et al., 2006] query values of different systems. Match@K is used

by some of the earlier works to compare the cluster labels against a ground

57

truth of knowledge base. Match@K is defined as the relative number of

clusters for which the expanded queries generated are correct. In this

framework, an expanded query for a given original query is considered to be

correct if it matches any of the labels or description of the labels listed in the

Wikipedia’s disambiguation page [28] corresponding to the original query. It

is more reasonable to consider this as the ground truth because (1) the

dataset and test queries used are from Wikipedia, and also (2) Wikipedia’s

disambiguation pages provide a knowledge repository for different human

interpretations of ambiguous queries. The Match@K values are normalized by

the number of clusters to maintain the range between [0, 1].

58

Figure 9 Match@K Values

Note that, for many of the queries, the current work’s approaches were able

to identify correct labels. For some of the queries such as QW4 “Domino” and

QW5 “Eclipse”, ISKR and PEBC are not able to generate correct labels for all

0

0.2

0.4

0.6

0.8

1

1.2

M
at

ch
@

K

Test Queries

Match@K(Precision)

ISKR

PEBC

ICR

BQG

CS

Data Clouds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
at

ch
@

K

Test Queries

Match@K(Recall)

ISKR

PEBC

ICR

BQG

CS

Data Clouds

59

clusters because of imperfect clustering. For such cases, ICR and BQG

succeed in identifying correct labels for all clusters. TFICF does not produces

consistent results mainly because in some cases it generates too specific

cluster labels that may not correspond to broad topic occurring in many

documents, for example: For query QW5 “Eclipse”, it generates “Eclipse,

Java, IBM”. Also for some cases, it generates labels with less co-occurrence

and thus losing its relevance, for example: For query QW3 “San Jose”, it

generates “San Jose, team Colorado”. Data Clouds most often generates less

comprehensive results that manages to cover very few topics.

5.2.5 Noise Resistance

This section discusses the evaluation done to verify the stability of each

approach with respect to resistance to noise induced on to the clusters. Noisy

clusters are produced by the methods suggested in [Carmel et al. 2009,

Treeratpituk et al., 2006]. First, for a given query q, a set of manually

classified clusters U is taken which represent the true clusters of the original

query results with 0% noise. Then for inducing N% of noise on to the clusters,

each result in a cluster C is reassigned to another random cluster in U-C with

a probability N(Noise %); with the probability 1-N, the result remains in the

same cluster C.

The below figures report the F-measure values (Eq. 8) and Match@K

values of three queries, “Jaguar”, “Eclipse” and “Canon Products” for different

noise levels. The systems compared are ISKR, PEBC, ICR and TFICF as all

them involve clustering. ISKR and PEBC tries to generate one expanded query

60

for each cluster such that the number of results retrieved from the same

cluster is maximized and the number of results retrieved from other cluster

are minimized. TFICF is a differential cluster labeling algorithm that outputs

most frequent term in the cluster in contrast with other clusters as cluster

label. ICR tries to minimize the effect of imperfect clusters, by adaptively re-

clustering depending on the quality of expanded queries generated. It aims at

generating expanded queries that can maximize the coverage of original

query results and minimize the overlap of results between expanded queries.

61

Figure 10 Noise Resistance for Query QW10 "Jaguar"

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0% 10% 20% 30% 40% 50% 60%

O
ve

ra
ll

Q
u

e
ry

 s
co

re
(E

q
. 8

)

Noise Levels

Test Query - "Jaguar"

ISKR

PEBC

ICR

TFICF

MI

Chi^2

0

0.2

0.4

0.6

0.8

1

1.2

0% 10% 20% 30% 40% 50% 60%

M
at

ch
@

K

Noise Levels

Test Query - "Jaguar"

ISKR

PEBC

ICR

TFICF

MI

Chi^2

62

Figure 11 Noise Resistance For Query QW5 "Eclipse"

0

0.2

0.4

0.6

0.8

1

1.2

0% 10% 20% 30% 40% 50% 60%

O
ve

ra
ll

Q
u

e
ry

 S
co

re
 (

Eq
. 8

)

Noise Levels

Test Query - "Eclipse"

ISKR

PEBC

ICR

TFICF

MI

Chi^2

0

0.2

0.4

0.6

0.8

1

1.2

0% 10% 20% 30% 40% 50% 60%

M
at

ch
@

K

Noise Levels

Test Query - "Eclipse"

ISKR

PEBC

ICR

TFICF

MI

Chi^2

63

Figure 12 Noise Resistance For Query "Canon Products"

0

0.2

0.4

0.6

0.8

1

1.2

0% 10% 20% 30% 40% 50% 60%

O
ve

ra
ll

Q
u

e
ry

 S
co

re
(E

q
. 8

)

Noise Levels

Test Query - "Canon Products"

ISKR

PEBC

ICR

TFICF

MI

Chi^2

0

0.2

0.4

0.6

0.8

1

1.2

0% 10% 20% 30% 40% 50% 60%

M
at

ch
@

K

Noise Levels

Test Query - "Canon Products"

ISKR

PEBC

ICR

TFICF

MI

Chi^2

64

As can be observed from the results above, for all the approaches except ICR,

the quality of expanded queries measured by Overall Query Score(Eq. 8) and

Match@K values degrade with increasing noise levels. ICR with its adaptive

re-clustering scheme tries to maintain the quality of expanded queries and

thus achieving better stability even at higher noise levels.

 For example: For the query “Jaguar”, with noise level 50%, ICR

manages to generate expanded queries “Jaguar, Cars”, “Jaguar, species”,

“Jaguar, apple” which correspond to the same three classified clusters at

noise level 0%. Thus it shows zero degrade in quality even when the noise

levels are as high as 50%. Whereas, ISKR generates queries such as “Jaguar,

immediate final”, “Jaguar, class” and “Jaguar, automotive UK” at 50% noise

level with a quality degrade of 37% in its Overall Query Score, and a quality

degrade of 66% in its Match@K score. Similarly, PEBC and TFICF also show

quality degrades with increasing noise levels. From the experiments it is

observed that, ICR shows greater stability to noise consistently for many

queries.

65

5.3 EFFICIENCY OF QUERY EXPANSION

In the efficiency test, the time taken by each approach is evaluated.

Figure 13: Query expansion time

0

1

2

3

4

5

6

7

8

9

10

Ti
m

e
in

 s
e

co
n

d
s

Wikipedia Test Queries

ISKR

PEBC

ICR

BQG

CS

DataClouds

Fmeasure

0

1

2

3

4

5

6

7

8

9

10

QS1 QS2 QS3 QS4 QS5 QS6 QS7 QS8 QS9 QS10

Ti
m

e
in

 s
ec

o
n

d
s

Shopping Test Queries

ISKR

PEBC

ICR

BQG

CS

Data Clouds

Fmeasure

66

The time taken includes the clustering time for all approaches except the Data

Clouds approach that does not involve any clustering. For each query the

number of results selected for processing is 100. For the wiki dataset, each

result roughly has about 8000-10000 words, and for the shopping dataset the

result size is relatively smaller with about 100 words each. The time taken for

the wiki dataset is usually higher than shopping, and ICR takes more time

due to the iterative re-clustering that happens in it. Recall that BQG takes

more time due to its complexity, where K is the number of term

dimensions. Dimensionality reduction techniques as mentioned in Section 5

have been used to improve the efficiency, and the current implementation

scales within 2 seconds for most of the queries for a reasonably larger dataset

such as the wiki. As mentioned before, since F-measure approach needs to

access every term in the result set and update its value whenever a keyword

is added or removed from the query, it takes longer time especially when the

size of the result set is large. ISKR prunes this search space and achieves

better efficiency by considering only a subset of the terms to update.

Chapter 6 RELATED WORK

Query expansion has been widely studied in literature; the main classes of

methods are discussed below.

Query expansion: Expanded queries can be generated based on query log

[BarYossef and Gurevich 2008; Chirita et al. 2007], general or domain-

specific ontology [Baziz et al. 2005; Grootjen and van der Weide 2006; Fu et

al. 2005], user profile and collaboratively filtering [Fu et al. 2005]. Since such

67

information may not always be available, there are also works that generate

expanded queries only based on the information contained in the corpus, i.e.,

the results retrieved by the user query and/or the entire data repository. As

the current work falls into this category, the focus is mainly on discussing

corpus-driven query expansion.

There are works that generate new queries based on popular words in

the original query result [Cutting et al. 1992, Xu and Croft 1996; Carpineto et

al. 2001; Cao et al. 2008; Tao and Yu 2009; Koutrika et al. 2009; Sarkas et

al. 2009], considering factors like term frequency, inverse document

frequency, ranking of the results in which they appear, etc. In particular,

[Koutrika et al. 2009; Tao and Yu 2009] exploit relational databases instead

of text documents. [Vechtomova et al. 2003] additionally considers the

proximity to the original query keywords when selecting words from results or

corpus to compose new queries. As discussed in Section 1 and shown in

Section 5, these approaches emphasize on result summarization, and are not

suitable for handling exploratory and ambiguous queries.

Relevance Feedback: In relevance feedback, the expanded/refined query aims

to retrieve a set of results that are similar to the relevant results, where the

relevant results are specified by the user in explicit feedback or are

considered to be the top ranked results in pseudo relevance feedback. To

generate new queries, various approaches have been proposed to select and

rank terms from relevant results, including TFIDF based methods [Koutrika et

al. 2009; Xu and Croft 1996], probabilistic language model based methods

68

[Robertson 1990], vector space model based methods [Xu et al. 2009], etc.

However, since users typically provide feedback to top ranked results only,

top ranked results are most likely reinforced and the diversity of the results

are compromised. Furthermore, the pseudo feedback approach assumes that

relevant documents are similar to each other, and are quite different from

irrelevant ones. Moreover, relevance feedback approaches do not aim at

displaying refined queries to the users and help the users in decision making.

These approaches mainly concentrates on refining the results based on the

inference obtained from feedback. As a result relevance feedback approaches

associate weights with the new queries to fetch appropriate results which

cannot be used as expanded queries as these weights are not easily

explicable.

Faceted Search: Faceted search provides a classification of the data and

enables effective data navigation. There are several approaches for

automatically constructing faceted navigation interfaces given the set of query

results, which aim at reducing the user’s expected navigational cost in finding

the relevant results [Chakrabarti et al. 2004; Kashyap et al. 2010; Li et al.

2010]. The current work mainly has the advantage of generating topics from

unstructured text documents where it would be difficult for faceted search

approaches.

Cluster Labeling / Summarization: The goal of cluster labeling is to find a set

of descriptive words for each cluster, which summarizes the content of the

cluster, and meanwhile differentiates it from other clusters. Some

representative works include [Carmel et al. 2009; Muhr et al. 2010]. A typical

69

way of measuring the desirableness of a term is TFICF, i.e., term frequency

and inverse cluster frequency. Finding cluster representatives for structured

data has also been studied. [Jagadish 2009] assumes each result to be a

tuple in a relational database with numerical attributes, and uses the k-

medoids method to generate a representative for each cluster. Unlike cluster

labeling, the interaction of the terms needs to be considered in query

expansion, making it a lot more challenging. Furthermore, while cluster

labeling quality is typically judged empirically, in this work I propose a

quantitative measure of query expansion (i.e. the harmonic mean of the F-

measures of the expanded queries).

Relevance feedback can be related to finding expanded queries for each

cluster, by considering the current cluster as a set of relevant documents and

documents from other clusters as irrelevant documents. Based on this

intuition, the original query is refined with more weighted terms that can

ideally retrieve only documents corresponding to the relevant set. Some

approaches adopt relevance feedback based measures to extract terms.

[Cataldi et al. 2009] groups a set of documents described by

“concepts” derived from a known domain taxonomy. Then for each concept, a

set of keywords are extracted by considering all documents associated with a

concept as relevant and other documents as irrelevant, and then applying

probabilistic relevance feedback approach to find terms. This could be related

to the current work by considering each concept as a cluster of results and

then the problem is to extract terms to represent each cluster.

70

However, there are several challenges in directly applying this strategy

to find representative terms in the current problem setting. Since in the

earlier approach, the documents are clustered based on a known taxonomy of

concepts, such semantic clustering may be more effective when compared to

clustering purely based on distance measures between results as in the

current work. As a result, it is more challenging task to find meaningful terms

to represent clusters that may not be clearly associated to a concept.

Moreover, for describing a concept the earlier approach extracted terms

independently without considering the effect of adding other terms on an

optimization goal. Our experiments shows that, such approaches generally

lead to low recall as two terms may independently dominate a cluster, but

together as an expanded query, these terms may not retrieve many results.

Semantically also, such expanded queries are less meaningful as they may

correspond to multiple categories (For example: “Cell, Cell wall, Cell table”)

and the users will find it difficult to narrow down the search to a desired

result. The current approach decides to add/remove more terms from an

expanded query with the aim of optimizing the goal function further, thus

following a more systematically guided approach.

[Kim et al. 2009] proposed methods to automatically tag blogs, such that the

tags are general and shared by other related blogs as well as discriminating in

order preserve the differences between the blogs. This philosophy can be

related to the current work’s goal to find expanded queries that are general in

retrieving more results from the cluster as well as specific to ensure not

retrieving results from other clusters.

71

Advances in the works on automatic image annotations/tagging also

have some relation to the current work. For example, the approach of block

based image tagging model [Mori et al. 1999, Jeon et al. 2003], extract

feature vectors from a given image and cluster these features to separate out

the visual objects found in the image. These visual objects are then mapped

to representative set of visual words by making use of an Image object

keyword library. Recent developments in this field improve the quality of

annotations by considering the correlation between keywords. The

Progressive image annotation model [Wang et al. 2007], pick the best word

to add to the annotation at each stage based on the joint probability of words

already in the annotation, which can lead to the greatest increase in the

objective function.

Compared with existing work, there is several uniqueness of the

current work. First, compared with existing query expansion approaches, in

this work expanded queries are generated with the aim of presenting a

classification of the original query results. This is especially useful for handling

exploratory queries and ambiguous queries. Second, the technical

contributions focus on how to generate queries with high F-measure given the

ground truth of query result. To the best of my knowledge, this is the first

study on this problem. Furthermore, unlike existing work that addresses the

query expansion problem using heuristics; this work formalizes the problem

and quantifies the quality of an approach.

72

REFERENCES

[1] Amazon Mechanical Turk: https://www.mturk.com/mturk/welcome

[2] B. L. and Jagadish, H. V. 2009. Using Trees To Depict A Forest. PVLDB 2,
1, 133–144.

[3] Bar-Yossef, Z. and Gurevich, M. 2008. Mining Search Engine Query Logs
Via Suggestion Sampling. PVLDB 1, 1, 54–65.

[4] Baziz, M., Boughanem, M., and Aussenac-Gilles, N. 2005. Conceptual
Indexing Based On Document Content Representation. In CoLIS. 171–186.

[5] Broder, A. Z. 2002. A Taxonomy of Web Search. SIGIR Forum 36, 2, 3–
10. Cao, G., Nie, J.-Y., Gao, J., and Robertson, S. 2008. Selecting Good
Expansion Terms For Pseudo-Relevance Feedback. In SIGIR. 243–250.

[6] Carmel, D., Roitman, H., and Zwerdling, N. 2009. Enhancing Cluster
Labeling Using Wikipedia. In SIGIR. 139–146.

[7] Carpineto, C., de Mori, R., Romano, G., and Bigi, B. 2001. An
Information-Theoretic Approach to Automatic Query Expansion. ACM Trans.
Inf. Syst. 19, 1, 1–27.

[8] Cataldi, M., Schifanella, C., Candan, K.S., Sapino, M.L., Caro, L.D.,

CoSeNa: a context-based search and navigation system. MEDES 2009:
218-225

[9] Chakrabarti, K., Chaudhuri, S., and won Hwang, S. 2004. Automatic

Categorization of Query Results. In SIGMOD Conference. 755–766.

[10] Chirita, P.A., Firan, C. S., and Nejdl, W. 2007. Personalized Query
Expansion for the Web. In SIGIR. 7–14.

[11] Cutting, D.R., Karger, J.O. Pedersen, and J.W.Tukey. Scatter/gather: a
cluster-based approach to browsing large document collections. In SIGIR ’92,
pages. 318–329, New York, NY, USA, 1992. ACM

https://www.mturk.com/mturk/welcome
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cataldi:Mario.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schifanella:Claudio.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sapino:Maria_Luisa.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Caro:Luigi_Di.html
http://www.informatik.uni-trier.de/~ley/db/conf/medes/medes2009.html#CataldiSCSC09

73

[12] Faloutsos, C., and Link, K.I. FastMap: A Fast Algorithm for Indexing,
Data-Mining and Visualization of Traditional and Multimedia Datasets. In

SIGMOD ’95, San Jose, CA, USA, 1995. ACM

[13] Fu, G., Jones, C. B., and Abdelmoty, A. I. 2005. Ontology-Based Spatial
Query Expansion in Information Retrieval. In OTM Conferences (2). 1466–
1482.

[14] Fu, L., Goh, D. H.-L., and Foo, S. S.-B. 2005. Evaluating the
Effectiveness of a Collaborative Querying Environment. In ICADL. 342–351.

[15] Geraci, F., Pellegrini, M., Maggini, M., Sebastiani, F. Cluster Generation
and Cluster Labelling for Web Snippets: a Fast and Accurate Hierarchical

Solution, Internet Mathematics, 2007.

[16] Grootjen, F. A. and van der Weide, T. P. 2006. Conceptual Query
Expansion. Data Knowl. Eng. 56, 2, 174–193.

[17] Huang, Y., Liu, Z., and Chen, Y. 2008. Query Biased Snippet Generation
in XML Search. In SIGMOD Conference. 315–326.

[18] Jeon J., Lavrenko V., and Manmatha R., Automatic Image Annotation

and Retrieval using Cross-Media Relevance Models In Proceedings of the 26th

Intl. ACM SIGIR Conf., pages 119–126, 2003

[19] Kashyap, A., Hristidis, V., and Petropoulos, M. 2010. FACeTOR: Cost-
Driven Exploration of Faceted Query Results. In CIKM. 719–728.

[20] Kim, J.K., Candan, K.S., Tatemura, J. Organization and Tagging of Blog

and News Entries Based on Content Reuse. Signal Processing Systems
58(3): 407-421 (2010)

[21] Koutrika, G., Zadeh, Z. M., and Garcia-Molina, H. 2009. Data Clouds:
Summarizing Keyword Search Results over Structured Data. In EDBT. 391–

402.

http://www.informatik.uni-trier.de/~ley/db/journals/vlsisp/vlsisp58.html#KimCT10
http://www.informatik.uni-trier.de/~ley/db/journals/vlsisp/vlsisp58.html#KimCT10

74

[22] Li, C., Yan, N., Roy, S. B., Lisham, L., and Das, G. 2010. Facetedpedia:
Dynamic generation of query-dependent faceted interfaces for wikipedia. In
WWW. 651–660.

[23] Liu, Z., Sun, P., and Chen, Y. 2009. Structured Search Result
Differentiation. PVLDB 2, 1, 313–324.

[24] Liu T., Liu S., Chen Z., Ma W.Y., An Evaluation on Feature Selection for
Text Clustering, ICML 2003, Washington DC, 2003.

[25] C. D. Manning, P. Raghavan, and H. Schutze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[26] Mori Y., Takahashi H., and Oka R., Image-to-word transformation based

on dividing and vector quantizing images with words. In MISRM’99: First

International Workshop on Multimedia Intelligent Storage and Retrieval

Management, 1999.

[27] Muhr, M., Kern, R., and Granitzer, M. 2010. Analysis of Structural
Relationships for Hierarchical Cluster Labeling. In SIGIR. 178–185.

[28] D. R. Radev, H. Jing, M. Sty´s, and D. Tam. Centroid-based
summarization of multiple documents. Information Processing Management,
40(6):919–938, 2004.

[29] Robertson, S. E. 1990. On Term Selection for Query Expansion. Journal
of Documentation 46, 359–364.

[30] Sarkas, N., Bansal, N., Das, G., and Koudas, N. 2009. Measure-driven

keyword-query expansion. PVLDB 2, 1, 121–132.

[31] Tao, Y. and Yu, J. X. 2009. Finding Frequent Co-occurring Terms in
Relational Keyword Search. In EDBT. 839–850.

[32] W. S. Torgerson. Multidimensional scaling: I. theory and method.
Psychometrika, 17:401–419, 1952.

75

[33] Treeratpituk, P., Callan, J. Automatically Labeling Hierarchical Clusters.
In DG.O ’06, pages 167–176, NewYork, NY, USA, 2006. ACM.

[34] Tseng Y.H, Lin C.J, Chen H.H, Lin Y.I. Toward Generic Title Generation
for Clustered Documents, AIRS 2006.

[35] http://en.wikipedia.org/wiki/Wikipedia:Links_to_(disambiguation)_pages

[36] Wang B., Li Z., Yu N., Li M., Image annotation in a progressive way. In

In proc. ICME, pages 811–814, 2007.

[37] Vechtomova, O., Robertson, S. E., and Jones, S. 2003. Query Expansion
with Long-Span Collocates. Inf. Retr. 6, 2, 251–273.

[38] Xu, J. and Croft, W. B. 1996. Query Expansion Using Local and Global
Document Analysis In SIGIR. 4–11.

[39] Xu, Y., Jones, G. J. F., and Wang, B. 2009. Query Dependent Pseudo-
Relevance Feedback based on Wikipedia. In SIGIR. 59–66

[40] Yang Y., Pederson O.J, A Comparative Study on Feature Selection in Text
Categorization. In ICML 1997, pp. 412-420.

http://en.wikipedia.org/wiki/Wikipedia:Links_to_(disambiguation)_pages

76

APPENDIX A

TEST QUERIES

Wikipedia

QW1 CVS

QW2 Columbia

QW3 San Jose

QW4 Domino

QW5 Eclipse

QW6 Java

QW7 Cell

QW8 Rockets

QW9 Mouse

QW10 Jaguar

QW11 Greek

QW12 Drama

Shopping

QS1 Canon Products

QS2 Networking Products

QS3 Routers

QS4 TV

QS5 TV Plasma

QS6 HP Products

QS7 Memory

QS8 Memory 8GB

QS9 Memory Internal

QS10 Printer

77

APENDIX B

PSUEDOCODE

Algorithm 1 – Iterative Single keyword Refinement

78

Algorithm 2 – Partial Elimination Based Convergence

Algorithm 3 – Iterative Cluster Refinement

79

Algorithm 4 – Bisecting Query Generation

80

APPENDIX C

APX-HARDNESS OF QEC PROBLEM

In this section, the QEC problem is shown to be as hard as the Independent

Set problem in terms of approximation. Recall that, the Independent Set

problem is to find the maximum Set of nodes in an undirected graph, such

that no two nodes are connected by an edge. The Independent Set problem

has been proved to be APX-Hard, i.e., it has no constant approximation ratio.

It will be shown in this section that if the QEC problem has an approximation

ratio of K, then the Independent Set problem has an approximation Ratio of

4k-3.

 Given any instance of the independent set problem: an undirected

graph, , create an instance of the QEC problem as

follows. Assume that each node in G has at least one edge (otherwise it can

be directly added to the independent set).

1. Create n+1 keywords,

2. Create two clusters C1 and C2. C1 has n results, and C2 has

results. In C2, let the first results be in group 1, the second

results be in group 2 and the be in group m.

3. Let keyword K0 appear in all results in C2 but none of the results in

C1.

4. Let keyword appear in all results in C1 except the

result.

5. For each node , if it has x edges, then let keyword not appear in

the corresponding x blocks of results in C2. For example, if node has

edges e1, e3, e6, then does not appear in results in groups 1, 3, 6,

in C2, and appears in all other results in C2.

This is an instance of QEC. It is easy to see that the optimal query for C2 is

 , which means . Let q1 be the optimal query for

C1. First it will be proved that, must be 1, i.e., q1 cannot retrieve

any results in C2. In this case, q1 is a query such that it eliminates all results

in C2 using the least number of keywords (note that the more keywords q1

uses, the less results it retrieves in C1). It is important to notice that q1 must

not contain all keywords The reason is that, if we pick any edge

 , results in group i in C2 can be eliminated using either keyword

ka or keyword kb, thus either ka or kb does not need to be in q1. Therefore,

q1 at least retrieves one result in C1, and

81

On the other hand, if , q1 must retrieve some results in C2.

Since results in C2 has m groups, each group containing identical

results, q1 must retrieve at Least results in C2, thus:

Since

S2 cannot be the optimal score of q1 and q2, thus must be 1.

Next it will be shown that, for any arbitrary k-approximate solution for this

QEC instance, consisting of queries q1’ and q2’, where

 . Note that,

Thus unless , it cannot approximate the optimal solution

within k.

 Suppose we have an algorithm that can give a k-approximate solution

of the above instance in polynomial time, and then now we will see how to

get an approximate solution for the independent set problem with ratio 4k-3.

Let R, F and S denote and in the

optimal solution, and R’, F’ and S’ denote the corresponding values in the

approximate solution. We have . Since

 and

 , we have

82

And since

 AND

, we have , we have

Using same deduction above, we get

 (1)

Note that the optimal solution, q1 is the query which eliminates all results in

C2 using the minimum number of keywords. Let the number of keywords in

q1 be P. Since each keywords in q1 eliminates a result in C1, q1 retrieves

 results in C1, thus

 . According to Eq. 1 we have,

Now let us look at the Independent Set instance. Recall that each node in G

corresponds to a keyword in C1 in the QEC instance. Note that the set of

nodes corresponding to the keywords in P comprises the minimal vertex cover

of G. Because if an edge is not covered (i.e., neither), then

since results in only misses keywords , these results are

retrieved by q1, Which is contradictory with . Therefore, the

set of nodes corresponding to the keywords not in P comprises the maximal

independent set of G, whose size is . Similarly, the set of nodes

corresponding to the keywords not in p0 comprises an approximate

independent set of G, whose size if . According to equation 2, we have

obtained a 4k-3 approximate solution for this Independent Set instance. Since

this is an arbitrary independent set instance, it contradicts with the conclusion

that Independent Set instance is APX-hard. Therefore, the QEC problem is

APX-hard.

83

APPENDIX D

EXPANDED QUERIES

QW1: CVS QW2: Columbia

ISKR Query 1: CVS, member
Query 2: CVS, store
Query 3: CVS, software

ISKR Query 1: Columbia, new York
Query 2: Columbia, British

PEBC Query 1:CVS, member
Query 2:CVS, stores
Query 3:CVS software

PEBC Query 1: Columbia, new York
Query 2: Columbia, British

ICR Query 1:CVS, store
Query 2:CVS, software
Query 3:CVS, association

ICR Query 1: Columbia, British
Query 2: Columbia, new York

BQG Query 1: CVS, pharmacy
Query 2: CVS , support
Query 3: CVS, GNU
Query 4: CVS, member

BQG Query 1: Columbia, British
Query 2: Columbia, new York,
university
Query 3: Columbia, new York,
musical

TFICF Query 1: CVS ships aircraft
Query 2: CVS stores
convenience
Query 3: CVS software
Linux

TFICF Query 0: Columbia Sony actress
Query 1: Columbia provincial
British

Data
Clouds

Query1: CVS, town
Query2: CVS, blue
Query3: CVS, fire

Data
Clouds

Query 0: Columbia CBS
Query 1: Columbia blue

Google Query1: CVS, files
Query2: CVS, client
Query3: CVS, Wikipedia

Google Query 1: Columbia, country
Query 2: Columbia, facts
Query 3: Columbia, pictures

Measure Query 1: CVS member
Query 2: CVS store
pharmacy
Query 3: CVS software

F
measure

Query 1: Columbia new York
Query 2: Columbia British

84

QW3: San Jose QW4: Domino

ISKR Query 1: San José,
California
Query 2: San José,
province

ISKR Query 0:records album
Query 1:company
Query 2:products
Query 3:database

PEBC Query 1:Sanjose,
California
Query 2:Sanjose,
province

PEBC Query 0:domino, album records
Query 1:domino, companies
Query 2:domino, border
Query 3:domino, database

ICR Query 1: San José, Santa
Query 2: San José, team ,
players

ICR Query 1:domino, products
Query 2:domino, album
Query 3:domino, database notes
lotus
Query 4:domino, pizza UK

BQG Query 1: sanjose,team
Query 2: sanjose,santa,
players
Query 3: sanjose, santa,
california

BQG Query 0: Domino, album
Query 1: Domino, database
Query 2: Domino, products, Lexus
Query 3: Domino, products,
International

TFICF Query 0: sanjose bruno
avenue
Query 1: sanjose colorado
team

TFICF Query 1: domino, album squeeze
Query 2: domino, investment pizza
Query 3: domino, Lexus border
Query 4: domino lotus notes

Data
Clouds

Query 0: san José,
military
Query 1: san José, anti

Data
Clouds

Query 1: domino, playing
Query 2: domino, blue
Query 3: domino, operations
Query 4: domino, audio

Google Query 1: san José,
attractions
Query 2: san José, airport
Query 3: san José, sharks

Google q1: Domino, game
q2: Domino, movie
q3: Domino, rapper

F measure Query 1: san José,
California
Query 2: san José,
province

F
measure

Query 0: domino playing
Query 1: domino blue
Query 2: domino operations
Query 3: domino audio

85

QW5: Eclipse QW6: Java

ISKR Query 1:Eclipse,
software
Query 2: Eclipse, night
Query 3: Eclipse, solar

ISKR Query 1: Java, Indonesia
Query 2: Java, software

PEBC Query 1: Eclipse,
software
Query 2: Eclipse, night
Query 3: Eclipse, solar

PEBC Query 1: Java, Indonesia
Query 2: Java, software

ICR Query 1: Eclipse,
software
Query 2: Eclipse, solar
Query 3: Eclipse, car

ICR Query 1: Java, Indonesia
Query 2: Java, software

BQG Query 1: Eclipse, solar
Query 2: Eclipse,
software
Query 3: Eclipse, car
Query 4: Eclipse, albums
Query 5: Eclipse, derby

BQG Query 1: Java, software
Query 2: Java, Indonesia
Query 3: Java, implementation

TFICF Query 1: Eclipse, java
IBM
Query 2: Eclipse, horror
concert
Query 3: Eclipse,
Mathematics
astronomical

TFICF Query 1: Java, Indonesia
Query 2: Java, software

Data
Clouds

Query 1: Eclipse, points
Query 2: Eclipse, Indian
Query 3: Eclipse, ratio

Data
Clouds

Query 1: Java, Towns

Query 2: Java, JavaScript

Google Query 1: Eclipse, car
Query 2: Eclipse, book
Query 3: Eclipse, fan
subs

Google Query 1: Java, quote

Query 2: Java, script

86

F
measur
e

Query 1: Eclipse,
software
Query 2 Eclipse, night
Query : Eclipse, solar

F
measure

Query 0: Java, Indonesia
Query 1: Java, software

QW7: Cell QW8: Rockets

ISKR Query 1:Cell, human
gene
Query 2:Cell, biology
Query 3: Cell, anode
Query 4: Cell, wall

ISKR Query 1:launch
Query 2:league
Query 3:missiles
Query 4:band

PEBC Query 1:Cell, proteins

Query 2:cell, system
Query 3:cell, anode
Query 4:cell, wall

PEBC Query 1:rockets, weapon

Query 2:rockets, players
Query 3:rockets, fuel
Query 4:rockets, band

ICR Query 1:cell, wall
Query 2:cell, anode
cathode

Query 3:cell, tumor
Query 4:cell, human

ICR Query 1:rockets, missiles
Query 2:rockets, album
Query 3:rockets, league

Query 4:rockets, weapon
German

BQG Query 1: cell, system
Query 2: cell, molecular
Query 3: cell,
adenocarcinoma

Query 4: cell, solution
Query 5: cell, header

BQG Query 1: rockets, league
Query 2: rockets, launch
Query 3: rockets, band
Query 4: rockets, fire

Query 5: rockets, pc games

TFICF Query 1: cell carcinoma
entrez
Query 2: cell mantle
leukemia
Query 3: cell cathode

anode
Query 4: cell row table

TFICF Query 1: rockets games
artillery
Query 2: rockets coach
basketball
Query 3: rockets space system

Query 4: rockets Israeli launch

Data
Clouds

Query1: Cell, marrow
Query2: Cell, cluster
Query3: Cell, acid
Query4: Cell, primary

Data
Clouds

Query 1: rockets olajuan
Query 2: rockets German
Query 3: rockets launch
Query 4: rockets space

87

Google Query1: Cell, parts of a
cell
Query2: animal cell
Query3: plant cell

Query4: cell dbz

Google Query 1: model rockets

Query 2: toy rockets
Query 3: rockets rockettes
Query 4: rockets pictures

F
measur
e

Query 0: cell sites
Query 1: cell biology
Query 2: cell system
Query 3: cell wall

F
measure

Query 1: rockets launch
Query 2: rockets league
Query 3: rockets missiles
Query 4: rockets band

QW9: Mouse QW10: Jaguar

ISKR Query 1:Mouse, family
Query 2:Mouse, Disney
Query 3:Computer mouse
Query 4:Mouse, album

ISKR Query 1: Jaguar tiger
Query 2: Jaguar season
Query 3: Jaguar production
car

PEBC Query 1:mouse, family

Query 2:mouse, Disney
Query 3:mouse, computer
Query 4:mouse, album

PEBC Query 1:jaguar, tiger

Query 2:jaguar, season
Query 3:jaguar, car

ICR Query 1:mouse, computer
Query 2:mouse, album
Query 3:mouse, gene

human
Query 4:mouse, species
family

ICR Query 1:jaguar, production
car
Query 2:jaguar, apple

system
Query 3:jaguar, species

BQG Query 1: mouse, computer
Query 2: mouse, family
Query 3: mouse, Mickey

Query 4: mouse, singles

BQG Query 1: jaguar, engine
Query 2: jaguar, species
Query 3: jaguar, studio

TFICF Query 1: mouse human
species

Query 2: mouse Mickey
Disney
Query 3: mouse input

computer
Query 4: mouse modest
guitar

TFICF Query 1: jaguar os nova
Query 2: jaguar flag ret
Query 3: jaguar lexus mg

Data
Clouds

Query 1: mouse , cdna
Query 2: mouse , blue
Query 3: mouse ,
multimammate
Query 4: mouse , domain

Data
Clouds

Query 1: jaguar MAC
Query 2: jaguar industry
Query 3: jaguar design

88

Google Query 1: mouse , house
Query 2: pictures of mice
Query 3: Logitech mouse
Query 4: mouse pictures

Google Query 1: jaguar models
Query 2: jaguar car
Query 3: jaguar animal

F
measure

Query 1: mouse family
Query 2: mouse Disney
Query 3: mouse computer
Query 4: mouse album

F
measure

Query 1: jaguar tiger
Query 2: jaguar season
Query 3: jaguar production

QW11: Greek QW12: Drama

ISKR Query 0: Greek, ancient
Query 1: Greek,
mythology
Query 2: Greek, Greece

ISKR Query 0: drama, television
Query 1: drama, love
Query 2: drama, film
Query 3: drama, arts

PEBC Query 0: Greek, ancient
Query 1 Greek,
mythology
Query 2: Greek, Greece

PEBC Query 0:drama, television
Query 1:drama, play
Query 2:drama, film
Query 3:drama, short

ICR Query 1: Greek,
mythology

Query 2: Greek, Greece
Query 3: Greek, ancient

ICR Query 1:drama, film
Query 2:drama, radio

Query 3:drama, plays
Query 4:drama, television
cast

BQG Query 0: Greek, ancient
Query 1: Greek, Greece
Query 2: Greek,

mythology

BQG Query 0: drama, television
Query 1: drama, plays
Query 2: drama, director,

movie
Query 3: drama, director,
theatre

TFICF Query 0: Greek, church
ancient
Query 1: Greek,

mythology ancient
Query 2: Greek, team
league

TFICF Query 0: drama
achievement role
Query 1: drama records cd

Query 2: drama horror
comedy
Query 3: drama poetry tvb

Data
Clouds

Query 0: Greek
mythology
Query 1: Greek museum

Query 2: Greek
company

Data
Clouds

Query 0: drama artists

Query 1: drama writing
Query 2: drama cuba

Query 3: drama perform

89

Google Query 0: Greek show
Query 1: Greek wiki
Query 2: Greek
translation

Google Query 0: drama plays

Query 1: types of drama
Query 2: korean drama

Query 3: drama definition

F
measure

Query 0: Greek ancient
Query 1: Greek
mythology
Query 2: Greek Greece

F measure Query 0: drama television
Query 1: drama single
Query 2: drama film
Query 3: drama arts
members

QS1: Canon Products

ISKR Query 0:canonproducts:category:camera
Query 1:canonproducts:category:camcorders
Query 2:canonproducts:category:printer

PEBC Query 0:canonproducts:category:camera
Query 1:canonproducts:category:camcorders
Query 2:canonproducts:category:printer

ICR Query 0:canonproducts:category:camera
Query 1:canonproducts:category:camcorders
Query 2:canonproducts:category:printer

BQG Query 0:canonproducts:category:camcorders

Query 1:canonproducts:category:camera

Query 2:canonproducts:category:printer

TFICF Query 0:canonproducts:category:camera
Query 1:canonproducts:category:camcorders

Query 2:canonproducts:category:printer

Data
Clouds

Query0: memory:category:flashmemory
Query1: flashmemory:name:epsd/2gb
Query2: flashmemory:name:sd

Google Query0: “Olympus Products”

Query1: “Canon Electronics”

Query2: “Nikon Products”

F
measur
e

Query 0:memory:category:harddrive
Query 1:memory:category:flashmemory
Query 2:memory:category:ddr3

90

QS2: Networking

ISKR Query 0:networking products:category:routers
Query 1:networking products:category:firewalls
Query 2:switches:name:*switch*
networking products:category:switches

PEBC Query 0: networking products:category:routers
Query 1: firewalls:name:*firewall *

Query 2: networking products:category:switches

ICR Query 1:networking products:category:switches
Query 2:networking products:category:firewalls

Query 3:networking products:category:routers

BQG Query 0:networking products:category:firewalls
Query 1:networking products:category:switches
Query 2:networking products:category:routers

TFICF Query 0: networking products:category:routers
switches:leds:port

Query 1: firewalls:name:*firewall*
firewalls:throughput:mbps
Query 2: switches:name:*hp *

networking products:category:switches

F-
measur

e

Query 0: networking products:category:routers
Query 1: firewalls:name:*firewall *

Query 2: networking switches:name:switch

Data
Clouds

Query 0: firewalls:name:d-link

Query 1: firewalls:vpn tunnels:8

Query 2: firewalls:name:dir-130

Google q1: "Social Networking products"
q2: "Computer Networking products"

q3: "Networking products price

91

QS3: Routers

ISKR Query 0:routers:features:filtering routers:rj-5
ports:4
Query 1:routers:name:cisco *

Query 2:routers:name:10/100 *

PEBC Query 0:routers, routers:features:mac
Query 1:routers, routers:name:cisco*
Query 2:routers, routers:name:10/100 *

ICR Query 1:routers, routers:name:10/100 *

Query 2:routers, routers:name:band *
routers:name:rangemax *

Query 3:routers, routers:features:filtering

BQG Query 0: routers, routers:device type:router
Query 1: routers,routers:device type:vpn
Query 2: routers,routers:device type:wireless

TFICF Query 0: routers routers:name:rangemax dual*
Query 1: routers routers:name:cisco*

routers:name:integr*

Query 2: routers routers:name:10/100 mbps*

F-measure Query 0: routers:features:filtering routers:rj-5
ports:4
Query 1: routers routers:name:cisco *

Query 2: routers routers:name:10/100 *

Data Clouds Query0 : routers:name:lkr-604

Query1: routers:features:mac
Query2: routers:name:broadband

Google q1: "Networking, wireless, routers"
q2: "Network, routers"
q3: "Wood routers

92

QS4: TV

ISKR Query 0:tv:compatibility:720p
Query 1:tv:resolution:1920 x1080

PEBC Query 0:tv:compatibility:720p
Query 1:tv:resolution:1920 x1080

ICR Query 0:tv:compatibility:720p
Query 1:tv:resolution:1920 x1080

BQG Query 0: tv,tv:compatibility:720p

Query 1: tv,tv:compatibility:1080p,
tv:resolution:1920x1080

Query 2: tv,tv:compatibility:1080p,tv:outputs:optical

TFICF Query 0: tv:compatibility:720p
tv:resolution:1366x768
Query 1: tv:resolution:1920x1080

F measure Query 0:tv:compatibility:720p
Query 1:tv:resolution:1920 x1080

Data
Clouds

Query0: tv:name:lcd*

Query1: tv:name:26lg40*

Query2:tv:outputs:audio

Google q1: "TV, guide, products"
q2: "TV, electronics"
q3: "TV, hair products

93

QS5: TV Plasma

ISKR Query 0:tv:brand:panasonic
Query 1:tv:brand:samsung tv:name:samsung *

PEBC Query 0:tv:brand:panasonic
Query 1:tv:brand:samsung

ICR Query 1:tvplasma, tv:brand:panasonic
Query 2:tvplasma, tv:brand:samsung
tv:name:samsung*

BQG Query 0: tv:resolution:1366x768

Query 1: tv:compatibility:1080p,tv:name:50ps60*

Query 2:
tvplasma,tv:compatibility:1080p,tv:name:plasma*

TFICF Query 0: tvplasma tv:brand:panasonic
tv:name:panasonic *

Query 1: tvplasma tv:brand:samsung
tv:name:samsung *

F-
measure

Query 0:tv:brand:panasonic
Query 1:tv:brand:samsung

Data
Clouds

Query0: tv:condition:new
Query1: tv:name:plasma
Query2: tv:displaytype:plasma

Google q1: "TV Plasma vs lcd"
q2: "TV LCD"

q3: "TV, bestbuy plasma

94

QS6: HP Products

ISKR Query 0:hpproducts:category:laptop
Query 1:hpproducts:category:battery
Query 2:hpproducts:category:printer

PEBC Query 0:hpproducts:category:laptop
Query 1:hpproducts:category:battery

Query 2:hpproducts:category:printer

ICR Query 1:hpproducts:category:laptop
Query 2:hpproducts:category:battery
Query 3:hpproducts:category:printer

BQG Query 0:hpproducts:category:laptop

Query 1:hpproducts:category:printer

Query 2:hpproducts:category:battery

TFICF Query 0: hpproducts:category:laptop
laptop:platform:pc
Query 1: hpproducts:category:battery
battery:name:battery
Query 2: hpproducts:category:printer

printer:resolution:dpi

F measure Query 0:hpproducts:category:laptop
Query 1:hpproducts:category:battery
Query 2:hpproducts:category:printer

Data
Clouds

Query0: hpproducts:category:battery
Query1: battery:name:hp
Query2: battery:name:compaq

Google q1: "HP Products Corporation"
q2: "HP Printers"
q3: "HP Laptops"

95

QS7: Memory

ISKR Query 0:memory:category:harddrive
Query 1:memory:category:flashmemory
Query 2:memory:category:ddr3

PEBC Query 0:memory:category:harddrive
Query 1:memory:category:flashmemory
Query 2:memory:category:ddr3

ICR Query 1:memory:category:harddrive

Query 2:memory:category:flashmemory
Query 3:memory:category:ddr3

BQG Query 0:memory:category:flashmemory

Query 1:memory:category:harddrive

Query 2:memory:category:ddr3

TFICF Query 0: memory memory:category:harddrive

harddrive:dimensions:x
Query 1: memory memory:category:flashmemory
flashmemory:name:card
Query 2: memory memory:category:ddr3
ddr3:memory category:desktop

F measure Query 0:memory:category:harddrive

Query 1:memory:category:flashmemory
Query 2:memory:category:ddr3

Data
Clouds

Query0: memory:category:flashmemory
Query1: flashmemory:name:epsd/2gb

Query2: flashmemory:name:sd

Google q1: "Human memory"

q2: "Computer memory"
q3: "Memory game

96

QS8: Memory 8GB

ISKR Query 0:memory:category:harddrive
Query 1:memory:category:ddr3
Query 2:memory:category:flashmemory

PEBC Query 0:memory:category:harddrive
Query 1:memory:category:ddr3

Query 2:memory:category:flashmemory

ICR Query 1:memory:category:harddrive
Query 2:memory:category:ddr3
Query 3:memory:category:flashmemory

BQG Query 0:memory:category:harddrive

Query 1:memory:category:flashmemory

Query 2:memory:category:ddr3

TFICF Query 0: Memory:category:harddrive
harddrive:capacity:8gb
Query 1: Memory:category:ddr3
ddr3:memorysize:8gb
Query 2: Memory:category:flashmemory

flashmemory:memorysize:8gb

F measure Query 0:memory:category:harddrive
Query 1:memory:category:ddr3
Query 2:memory:category:flashmemory

Data
Clouds

Query0: memory:category:ddr3

Query1: ddr3:memorysize:8gb

Query 2:memory:category:flashmemory

Google q1: "Memory cards 8gb"
q2: "Laptop memory, 8GB"
q3: "Flash memory

97

QS9: Memory Internal

ISKR Query 0:memory:category:harddrive
Query 1:memory:category:flashmemory

PEBC Query 0:memory:category:harddrive
Query 1:memory:category:flashmemory

ICR Query 0:memory:category:harddrive
Query 1:memory:category:flashmemory

BQG Query 0: memory:category:harddrive
Query 1: memory:category:flashmemory,

flashmemory:name:atech*

Query 2: memory:category:flashmemory,
flashmemory:name:internal*

TFICF Query 0: harddrive:drivetype:internal
memory:category:harddrive
Query 1: memory:category:flashmemory

flashmemory:name:internal

F
measure

Query 0:memory:category:harddrive
Query 1:memory:category:flashmemory

Data
Clouds

Query0: flashmemory:name:xm-5u

Query1: flashmemory:name:pro-gear

Google q1: "dell internal memory"
q2: "d internal dell

98

QS10: Printer

ISKR Query 0:printer:resolution:1200 dpi
Query 1:printer:resolution:600 dpi

PEBC Query 0:printer, printer:resolution:1200 dpi
Query 1:printer, printer:resolution:600 dpi

ICR Query 1:printer, printer:resolution:600 dpi
Query 2:printer, printer:resolution:1200 dpi

BQG Query 0: printer:printmethod:inkjet
Query 1: printer:printmethod:laser,
hpproducts:category:printer
Query 2: printer:printmethod:laser,
printer:name:q7816a

TFICF Query 0: printer printer:resolution:1200 dpi

printer:resolution:optimized
Query 1: printer printer:paperinput:150
hpproducts:category:printer

F
measure

Query 0:printer:resolution:1200 dpi
Query 1:printer:resolution:600 dpi

Data

Clouds

 Query0: printer:resolution:(color)

 Query1: printer:networkready:no

Google q1: "Canon, Printer"
q2: "HP, Printer

