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ABSTRACT 
 

The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic 

photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I 

(PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that 

is utilized as a driving force for photosynthesis. However, excess light energy may lead to 

formation of reactive oxygen species that cause damage to photosynthetic complexes, 

which subsequently need repair or replacement. To gain insight in the 

degradation/biogenesis dynamics of the photosystems, the lifetimes of photosynthetic 

proteins and chlorophyll were determined by a combined stable-isotope (15N) and mass 

spectrometry method. The lifetimes of PSII and PSI proteins ranged from 1-33 and 30-75 

hours, respectively. Interestingly, chlorophyll had longer lifetimes than the chlorophyll-

binding proteins in these photosystems. Therefore, photosynthetic proteins turn over and 

are replaced independently from each other, and chlorophyll is recycled from the 

damaged chlorophyll-binding proteins. 

In Synechocystis, there are five small Cab-like proteins (SCPs: ScpA-E) that 

share chlorophyll a/b-binding motifs with LHC proteins in plants. SCPs appear to 

transiently bind chlorophyll and to regulate chlorophyll biosynthesis. In this study, the 

association of ScpB, ScpC, and ScpD with damaged and repaired PSII was demonstrated. 

Moreover, in a mutant lacking SCPs, most PSII protein lifetimes were unaffected but the 

lifetime of chlorophyll was decreased, and one of the nascent PSII complexes was 

missing. SCPs appear to bind PSII chlorophyll while PSII is repaired, and SCPs stabilize 

nascent PSII complexes. Furthermore, aminolevulinic acid biosynthesis, an early step of 

chlorophyll biosynthesis, was impaired in the absence of SCPs, so that the amount of 

chlorophyll in the cells was reduced. 
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Finally, a deletion mutation was introduced into the sll1906 gene, encoding a 

member of the putative bacteriochlorophyll delivery (BCD) protein family. The Sll1906 

sequence contains possible chlorophyll-binding sites, and its homolog in purple bacteria 

functions in proper assembly of light-harvesting complexes. However, the sll1906 

deletion did not affect chlorophyll degradation/biosynthesis and photosystem assembly. 

Other (parallel) pathways may exist that may fully compensate for the lack of Sll1906. 

This study has highlighted the dynamics of photosynthetic complexes in their biogenesis 

and turnover and the coordination between synthesis of chlorophyll and photosynthetic 

proteins. 
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CHAPTER I. INTRODUCTION 

 

About the cyanobacterium Synechocystis — Cyanobacteria, also called “blue-green 

algae”, are photoautotrophic organisms capable of oxygenic photosynthesis similar to 

that in eukaryotic algae and plants. They are clearly separated from other bacteria, such 

as purple and green bacteria, because they utilize water as an electron donor for 

photosynthesis. Due to the ability to conduct oxygen-producing photosynthesis, it has 

generally been accepted that the ancestors of cyanobacteria in early stages of evolution 

gave rise to plastids in eukaryotes by endosymbiotic events. There are many properties, 

both in the structure and mechanism of photosynthesis, that are common to 

cyanobacteria, algae, and plants. Genetic engineering techniques facilitate studies of gene 

function and regulation and are applicable to cyanobacteria. Because of these factors, 

cyanobacteria are used as model organisms for studying photosynthesis in higher plants 

that have a more complex genetic system. 

Synechocystis sp. PCC 6803, a member of coccus-shaped Chroococcales, is a 

unicellular cyanobacterium isolated from fresh water. It has been used as a model 

cyanobacterium in the study of photosynthesis because of two main advantages: (1) 

naturally transformable characteristics that permit foreign DNA to integrate into the 

Synechocystis genome by homologous recombination, and (2) the ability to perform 

heterotrophic growth that allows characterization of mutants that lack photosynthetic 

function. In 1996, Synechocystis sp. PCC 6803 was the first photosynthetic organism for 

which its entire genome sequence was determined (Kaneko et al., 1996). With the DNA 

sequence information along with the advantages, Synechocystis has been studied 

extensively in the field of photosynthesis. 

 



 

2 

Photosystems in cyanobacteria — The signature of oxygenic photosynthesis is to extract 

electrons from water, producing protons and oxygen in the process. Light energy that is 

absorbed by chlorophylls in two pigment-binding protein complexes, photosystem I (PSI) 

and photosystem II (PSII), embedded in the thylakoid membrane, and by phycobilins in 

phycobilisomes at the periphery of the thylakoid membrane places the pigment molecules 

in their excited state. The excited state is transferred to an oxidizable chlorophyll in the 

reaction center. An electron is transferred to a nearby pigment, thereby putting into 

motion the light-driven electron transport chain. Then the oxidized pigment molecule is 

subsequently re-reduced. The electron transfer chain (ETC) in PSII consists of P680 (a 

special chlorophyll a molecule), pheophytin, plastoquinones and other components. The 

electron transfer is initiated with primary charge separation at P680, where the electron is 

extracted from, and the released electron travels along the ETC across the membrane. 

Oxidized P680 is re-reduced by an electron extracted from the water molecule via Tyrz, a 

residue in the D1 protein (Barber, 2002). In PSI, the primary charge separation is initiated 

by the chlorophyll dimer P700, and electron acceptors include A0 (Chl a), A1 

(phylloquinone) and Fx, FA, and FB, the Fe4S4 clusters. The electron is finally used in 

reduction of NADP+ by ferredoxin-NADP reductase via ferredoxin. Oxidized P700 is 

recovered by receiving an electron from plastocyanin that carries the electron from 

cytochrome b6f (cyt b6f) complexes. Overall, the electrons go through these two 

photosystem complexes via the ETC to form NADPH and to create a proton gradient that 

is utilized by ATP synthase to generate ATP.  

The structures of both PSI and PSII have been studied in detail by several groups 

(Jordan et al., 2001; Ferreira et al., 2004; Loll et al., 2005; Amunts et al., 2007; Guskov 

et al., 2009).  PSII in cyanobacteria consists of 20 protein subunits with 35 chlorophyll a 

molecules, 12 carotenoid molecules, 2 pheophytin molecules, 25 lipids, a heme molecule, 
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a chloride ion, and metal ions (Gustov et al., 2007). The membrane-intrinsic part of PSII 

comprises the antenna proteins CP47 and CP43, the reaction center subunits D1 and D2, 

and 13 small subunits including cytochrome (cyt) b-559 (PsbE and PsbF). In addition, 

there are three extrinsic proteins (PsbO, PsbU, and PsbV) located at the lumenal side. The 

antenna proteins and reaction center proteins bind all 35 chlorophyll a molecules in PSII 

(Muh et al., 2008). PSI complexes consist of 12 protein subunits and 127 cofactors 

including 96 chlorophylls, 2 phylloquinones, 3 Fe4S4 clusters, 22 carotenoids, and 4 lipids 

(Jordan et al., 2001). The multi-protein complex is composed of nine intrinsic proteins 

including the two largest subunits among the photosynthetic proteins, PsaA and PsaB, 

and three cytosolic proteins (PsaC, PsaD, and PsaE).  

Even though the PSI and PSII reaction center complexes are conserved in higher 

plants and cyanobacteria, their light-harvesting antennae are very different. Unlike higher 

plants that have integral membrane light-harvesting complexes (LHC) primarily 

consisting of LHC proteins containing three transmembrane helices and binding 

chlorophyll a and b, cyanobacteria possess water-soluble peripheral phycobilisomes as 

their primary light-harvesting antenna. These supramolecular complexes are primarily 

composed of phycobiliproteins that are covalently attached to phycobilins, open-chain 

tetrapyrroles derived from the heme biosynthesis pathway (Bryant, 1994). The absorption 

wavelengths of the phycobilins range from 565 nm (phycoerythrins), 575 nm 

(phycoerythrocyanins), 615 nm (phycocyanins) to 650 nm (allophycocyanins); 

Synechocystis possesses phycocyanins and allophycocyanins. The absorbed energy is 

transferred to the chlorophylls (absorption wavelength about 665 nm) in reaction center 

complexes by excitation transfer. 

 



 

4 

PSII biogenesis and repair — In oxygenic photosynthesis, PSII is easily damaged 

irreversibly by overexcitation; this leads to photoinhibition of PSII activity. In order to 

retain PSII homeostasis, PSII biogenesis and repair operate to maintain a level of 

functional PSII in the thylakoid membrane. The cyanobacterium Synechocystis sp. PCC 

6803 has been used extensively to study PSII biogenesis and repair. 

Upon construction and characterization of various PSII mutants lacking different 

sub-units of the PSII complex, a number of specific PSII sub-complexes in various PSII 

mutants are evidence of the stepwise assembly of PSII complexes in PSII biogenesis 

(Figure I-1). During PSII biogenesis, cytochrome b-559 proteins (PsbE and PsbF) and D2 

proteins (PsbD) together form a sub-complex (Komenda et al., 2004; Komenda et al., 

2008). Then, this sub-complex is assembled with the pD1-PsbI sub-complex to become a 

PSII reaction center-like complex (RC) (Dobakova et al., 2007; Komenda et al., 2008).  

Figure I-1: Proposed scheme for assembly of the PSII complex in Synechocystis sp. 
PCC 6803. The PsbE, PsbF, PsbH, PsbI, and PsbK subunits and the extrinsic PsbO, 
PsbU, and PsbV subunits are designated by the appropriate upper case letter, and the 
small CAB-like proteins by SCPs. Cytochrome b-559 (cyt b-559) is composed of a 
heterodimer of the PsbE and PsbF subunits. Types of PSII complex: RC, PSII reaction 
center-like complexes containing either mature D1, intermediate D1 (iD1) or precursor 
D1 (pD1) but lacking CP47 and CP43; RC47, PSII core complexes lacking CP43; RCC1, 
monomeric PSII core complex; RCC2, dimeric PSII core complex. (From Nixon et al., 
2010) 
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The D1 protein (PsbA) in the pD1-PsbI sub-complex has not yet been processed to its 

mature form; this precursor (pD1) carries a 16-residue extension at the C-terminus that is 

cleaved by CtpA to leave an intermediate eight-amino-acid extension as intermediate D1 

(iD1) or to lead to mature D1 (total 344 amino acid residues) in this RC (Komenda et al. 

2007; Inagaki et al., 2001). The cleavage of the C-terminal extension of pD1 is required 

for assembly of a functional CaMn4 cluster (Nixon et al., 1992; Anbudurai et al., 1994). 

Then, the RC-like sub-complex associates with the CP47 (PsbB)-PsbH sub-complex to 

form RC47. Subsequently, CP43 (PsbC) and PsbK are associated with RC47. PSII 

biogenesis is completed with assembly of the CaMn4 cluster and attachment of the 

extrinsic subunits (PsbO, PsbU, and PsbV) of the oxygen-evolving complex to the PSII 

intrinsic protein complex. Using Blue Native/PAGE (BN/PAGE) of Synechocystis 

complexes, mature PSII is found as two forms: the PSII monomer (RCC1) and the PSII 

dimer (RCC2) (Herranen et al., 2004). 

The D1 protein is the main PSII subunit damaged during PSII photoinhibition. 

Rapid turnover of D1 has been observed in vivo in radioactive pulse-chase labeling 

experiments (Ohad et al., 1984). In order to degrade the damaged D1 protein, partial 

disassembly of PSII may be required by detachment of the oxygen-evolving complex and 

CP43 may become loose from the PSII complex. The damaged D1 protein is likely to be 

degraded by members of the FtsH protease families. However, some of the FtsH 

proteases have shown to play a more crucial role in D1 degradation: impaired rates of D1 

degradation were observed in mutants lacking FtsH2 in Synechocystis sp. PCC 6803 

(Silva et al., 2003; Komenda et al., 2006) and FtsH2 and FtsH5 in A. thaliana (Bailey et 

al., 2002; Kato et al., 2009). After degradation of the damaged D1 protein, the 

replacement of the newly synthesized D1 protein occurs co-translationally into the RC47 
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complex (Zhang et al., 1999). CP43 reattaches to form a PSII core complex, which then 

reassembles the CaMn4 cluster and extrinsic proteins into a functional PSII. 

During PSII assembly in the PSII biogenesis and repair cycle, there are PSII 

assembly factors that aid and/or regulate PSII assembly. These PSII assembly factors 

make sure that PSII assembles properly. For example, Ycf48 (Hcf136 in plants) binds to 

and stabilizes unassembled pD1 and aids formation of the PSII RC (Plucken et al., 2002; 

Komenda et al., 2008). Psb27 is an assembly factor at the lumenal side that is mainly 

associated with CP47 and CP43 of monomeric PSII and non-oxygen-evolving PSII 

complexes and prevents binding of the oxygen-evolving complex (Kashino et al., 2002; 

Nowaczyk et al., 2006; Cormann et al., 2009).  Psb28 and Psb29 are important assembly 

factors for the CP47 protein (Dobakova et al., 2009; Keren et al., 2005). 

 

Chlorophyll biosynthesis and its regulation — Chlorophyll is the most abundant cofactor 

in PSII complexes and may play important roles in synthesis and folding of the PSII 

chlorophyll-binding proteins and assembly of the PSII complexes. In a chlorophyll-

depleted mutant, the PSII complex is hardly detected (Wu and Vermaas, 1995) and 

chlorophyll availability may be a major factor in the accumulation and assembly of PSII 

(Kuttkat et al., 1997; Reinbothe et al., 2006). The chlorophyll biosynthesis process has 

been studied by biochemical analyses, labeling experiments, and the use of numerous 

mutants lacking chlorophyll, and has been extensively reviewed (Beale, 1999; Grimm, 

1999; Eckhardt et al., 2004; Tanaka and Tanaka, 2007). The chlorophyll molecule is 

made up of chlorophyllide and phytyl groups. The phytyl tail derives from the isoprenoid 

biosynthetic pathway, through which also carotenoids are synthesized. Chlorophyllide, a 

macrocycle structure with Mg at the center, is synthesized through the tetrapyrrole 

biosynthesis pathway (Figure I-2). 
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Figure I-2: Chlorophyll biosynthetic pathway. (From Blankenship, 2002) 
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The initial steps in tetrapyrrole biosynthesis, from the biosynthesis of 5-

aminolevulinic acid (ALA) to protoporphyrinogen IX, take place in the cytosol or stroma 

of the plastid in plants, whereas the subsequent steps are membrane-bound (Joyard et al., 

2009; Mochizuki et al., 2010). ALA is the first major intermediate in the tetrapyrrole 

biosynthetic pathway and its synthesis occurs in three enzymatic steps from glutamate 

(the C5-pathway) (Beale, 1999). Glutamyl-tRNA synthetase ligates glutamate with 

tRNAGlu. The reaction is followed by the one catalyzed by the glutamyl-tRNA reductase 

(GluTR) that reduces the carboxyl group of glutamyl-tRNA to produce glutamate-1-

semialdehyde. Subsequently, glutamate-1-semialdehyde is transaminated by glutamate-1-

semialdehyde aminotransferase to form ALA. ALA is a universal precursor of 

tetrapyrrole biosynthesis in all organisms, but this ALA biosynthetic pathway is only 

present in plants, algae, most bacteria including cyanobacteria, and archaea. The other 

eukaryotic organisms and some bacteria including non-sulfur purple bacteria have an 

alternative pathway (Shemin pathway) to synthesize ALA by condensation of succinyl-

CoA with glycine (Mayer and Beale, 1992). 

The enzymatic reactions converting ALA to protoporphyrin IX start with 

condensation of two ALA molecules to form a pyrrole molecule, porphobilinogen (PBG). 

Subsequently, four PBGs are polymerized and ligated to form the first closed tetrapyrrole 

ring, uroporphyrinogen III. Protoporphyrin IX is synthesized from oxidation of 

protoporphyrinogen IX derived from a series of decarboxylations of uroporphyrinogen 

III. Uroporphyrinogen III also can be utilized to produce vitamin B and siroheme via the 

siroheme biosynthetic branch. 

Protoporphyrin IX can incorporate either Mg2+ or Fe2+, leading molecules into 

the chlorophyll branch and heme branch of the tetrapyrrole biosynthesis pathway, 

respectively (Vavilin and Vermaas, 2002; Tanaka and Tanaka, 2007). The first step of the 
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chlorophyll branch is catalyzed by Mg-chelatase, a heterotrimer of three subunits, ChlH, 

ChlI, and ChlD, that inserts Mg2+ into protoporphyrin. This reaction requires ATP 

hydrolysis. The next couple of reactions are catalyzed by methyltransferase and cyclase 

to produce protochlorophyllide. Reduction of protochlorophyllide to divinyl-

chlorophyllide is performed by protochlorophyllide oxidoreductase (POR). There are two 

types of structurally unrelated PORs, the light-dependent protochlorophyllide reductase 

(LPOR) and light-independent protochlorophyllide reductase (DPOR). LPOR contains 

only one protein subunit without a cofactor, and NADPH is required for the reaction. 

DPOR consists of three subunits, ChlL, ChlN, and ChlB, whose amino acid sequences 

show significant similarities to those of NifH, NifD, and NifK in nitrogenase, 

respectively (Burke et al., 1993). The enzyme carries two FeS clusters, and the reduction 

reaction is ATP-dependent (Sarma et al., 2008; Muraki et al., 2010). Due to lack of 

DPOR in angiosperms, protochlorophyllide is accumulated when angiosperm seedlings 

are grown in the dark (Griffiths, 1975). The 8-vinyl group of the B ring of divinyl-

chlorophyllide is reduced by divinylchlorophyllide a reductase to form chlorophyllide. 

The final step of chlorophyll a synthesis is to esterify chlorophyllide with phytyl 

pyrophosphate by chlorophyll synthase. 

In order to produce a sufficient amount of chlorophyll to meet the demands of the 

chlorophyll-binding proteins but at the same time to prevent accumulation of excess 

chlorophyll and its precursors in the cell, the chlorophyll biosynthetic pathway is highly 

regulated. Glutamyl-tRNA reduction by GluTR in ALA synthesis is a most important 

regulation point in the tetrapyrrole pathway (Beale, 1990). This regulation point is 

reasonable because of most of the tetrapyrrole intermediates may cause damage to the 

cells in the light and the presence of oxygen. Controlling the GluTR activity is mainly 

achieved through feedback regulation by the end products such as heme, and Mg-
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protoporphyrin IX and its later intermediates (Rieble and Beale, 1991). FLU has been 

identified as a regulatory protein to repress GluTR activity as protochlorophyllide is 

accumulated in higher plants (Meskauskiene et al., 2001). The other regulation step is at 

the major branchpoint where protoporphyrin IX is directed toward either the chlorophyll 

or heme branches. The concentration of substrates for the formation of Mg-

protoporphyrin IX such as ATP and Mg2+ affects Mg-chelatase activity. Also, GUN4, a 

regulatory protein in plants, functions in enhancing substrate binding and/or product 

release of Mg-chelatase (Adhikari et al., 2009; Peter and Grimm, 2009). For the heme 

branch, an increase in ferrochelatase activity resulting in increased production of heme 

could inhibit synthesis of ALA (Srivastava and Beale, 2005; Beck and Grimm, 2006). 

However, the deletion of the C-terminal extension of ferrochelatase that contains one 

transmembrane helix with a CAB domain (called ScpA in Synechocystis) reduces its 

activity, which results in upregulated ALA synthesis (Sobotka et al., 2008). 

 

Chlorophyll — The chlorophyll a molecule contains five rings (A through E), and is 

classified as a chlorin rather than a porphyrin because of the reduction of ring D by 

protochlorophyllide reductase (Figure I-3). Chlorophyll a has maximal absorption at 430 

(Soret), 578 (Qx), and 662 (Qy) nm in diethyl ether and fluoresces at 670 nm 

(Blankenship, 2002). All eukaryotic photosynthetic organisms and cyanobacteria have 

chlorophyll a. There are the other types of chlorophylls in photosynthetic organisms. For 

example, higher plants have chlorophyll b in their light-harvesting complexes, and purple 

bacteria possess bacteriochlorophylls that contain bacteriochlorins, where the B ring is 

reduced, instead of chlorins. 
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Figure I-3: Chlorophyll a structure and its absorption (left) and fluorescence 
spectra (right) in diethyl ether. (From Blankenship, 2002) 
 

Chlorophyll is very efficient in absorbing light energy and has long-lived excited 

states (up to a few nanoseconds) to allow the conversion of the excitation energy into an 

electrochemical potential via charge separation. However, if the excitation energy is not 

used, the excited chlorophyll may drop its energy state to a lower-energy excited state, 

the chlorophyll triplet state, that has an even longer lifetime (a few µs). 3O2 can react with 

triplet-state chlorophyll to produce 1O2 that is a reactive oxygen species and can damage 

cells if there are no efficient quenchers nearby (Triantaphylides and Havaux, 2009). 

Therefore, in order to avoid the formation of 1O2 generated from chlorophyll, cooperation 

between chlorophyll biosynthesis and synthesis of chlorophyll-binding proteins during 

PSII biogenesis and accommodation of chlorophyll during the PSII repair cycle are 

critically important as free chlorophyll in the thylakoid membrane and chlorophyll in a 

non-functional reaction center, where excitation energy can not be used in charge 

separation and where close association with a triplet quencher may not exist, are 

considered to be very dangerous. 
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Small CAB-like proteins — The cyanobacterium Synechocystis sp. PCC 6803 possesses 

five small CAB-like proteins (ScpA, ScpB, ScpC, ScpD, and ScpE; SCPs refers to all 

five proteins), which are predicted to have a single membrane-spanning helix. The 

sequence of the helices is similar to the first and third membrane-spanning region of the 

Cab protein family in higher plants (Dolganov et al., 1995). Pigment-binding regions of 

Cab proteins are conserved in the SCPs, and SCPs appear to bind chlorophyll in vitro 

(Funk and Vermaas, 1999; Storm et al., 2008). However, unlike CAB proteins in higher 

plants that function in light harvesting or photoprotection, SCPs appear to transiently 

bind chlorophyll in the supply of chlorophyll to photosynthetic proteins and to regulate 

the tetrapyrrole biosynthesis as a function of chlorophyll availability (Xu et al., 2002; Xu 

et al., 2004). Therefore, SCPs may play an important role as a bridge in communication 

between chlorophyll and photosynthetic proteins. 

 

Aims of this study — Chapter II discusses the association of a member of the family of 

Small Cab-like Proteins (SCPs) with PSII. Because of this association, chlorophylls can 

be temporarily stored while PSII components are being replaced. In Chapter III, the 

lifetimes of PSII components are studied. The lifetime data give insight regarding the 

requirement and correlation between PSII protein synthesis and chlorophyll biosynthesis, 

and show that SCPs play important roles in reutilization of chlorophyll and in the stability 

of nascent PSII proteins and complexes. The SCP-less mutants also show a significant 

decrease in ALA biosynthesis. The fourth chapter addresses the lifetimes of PSII and PSI 

proteins in the wild-type strain. Based on a previous study that suggested that SCPs also 

stabilize the trimeric PSI complex (Wang et al., 2008), the lifetime of photosynthetic 

proteins in the SCP-less mutant is also examined. As of results, there are no changes in 
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the lifetimes of most photosynthetic proteins, except the extrinsic proteins, upon removal 

of the SCPs. The last chapter is to characterize the sll1906 gene that is a member of the 

putative bacteriochlorophyll delivery (BCD) protein. In this work, the Δsll1906 mutant 

was created. However, the chlorophyll biosynthesis/degradation and photosystem 

assembly are not affected in the mutant. There may be other pathways fully compensating 

for the lack of Sll1906. 
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CHAPTER II. LOCALIZATION OF THE SMALL CAB-LIKE PROTEINS IN 

PHOTOSYSTEM II 

 

Abstract 

The cyanobacterial SCPs consist of one-helix proteins that resemble transmembrane 

regions of the light-harvesting proteins of plants. To determine whether these proteins are 

associated with protein complexes in the thylakoid membrane, an abundant member of 

the SCP family, ScpD, was marked with a His tag, and proteins co-isolating with His-

tagged ScpD were identified. These proteins included the major PSII components as well 

as FtsH, which is involved in degradation of the PSII complex. To ascertain specific 

interaction between ScpD and the PSII complex, the His-tagged protein fraction was 

subjected to two-dimensional blue native/SDS-PAGE. Again, PSII components were co-

isolated with ScpD-His, and ScpD-His was found to interact most strongly with CP47. 

ScpD association was most prominent with the monomeric form of PSII, suggesting 

ScpD association with PSII that is being repaired. Using antibodies that recognize both 

ScpC and ScpD, we found the ScpC protein, which is very similar in primary structure to 

ScpD, to also co-isolate with the PSII complex. In contrast, ScpE did not co-isolate with a 

major protein complex in thylakoids. A fourth member of the SCP family, ScpB, could 

not be immunodetected, but was found by mass spectrometry in samples co-isolating 

with ScpD-His. Therefore, ScpB may be associated with ScpD as well. No association 

between SCPs and PSI could be demonstrated. On the basis of these and other data 

presented, we suggest that members of the SCP family can associate with damaged PSII 

and can serve as a temporary pigment reservoir while PSII components are being 

replaced. 

(Published in J. Biol. Chem. 282, 267-276, 2007) 
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Introduction 
 
In organisms performing oxygenic photosynthesis, sunlight is absorbed by chlorophylls 

and other pigments, and absorbed excitation energy is transferred to the reaction centers, 

where the photochemical process of converting excitation energy to chemical (redox) 

energy takes place. These pigments are bound to proteins to keep them in their proper 

location and orientation so that the energy transfer is efficient and rapid and so that toxic 

triplet states can be quenched effectively. In plants, the vast majority of pigments, 

including chlorophylls a and b and various carotenoids, are bound to a family of integral 

membrane proteins called the light-harvesting complex (LHC). Most abundant is LHCII, 

the main light-harvesting complex of PS II, which has been crystallized and is known to 

consist of three transmembrane helices (B, C, and A), each of which is composed of 20–

34 amino acids (Kuhlbrandt et al., 1994; Liu et al., 2004). The sequences of helices A 

and B are very similar and comprise the CAB (chlorophyll a/b-binding) motif, which is 

composed of about 25 amino acid residues and includes the domain involved in 

chlorophyll binding (Jansson, 1999). Each individual LHCII apoprotein molecule binds 

an array of about eight chlorophylls a, six chlorophylls b, three to four carotenoids, and 

two lipids (Standfuss et al., 2005). Several other closely related chlorophyll a/b-binding 

polypeptides function as light-harvesting antenna for PSII and PSI in plants. Together, 

these proteins are known as CAB proteins (Jansson, 1999). The CAB proteins in plants 

display a high degree of sequence similarity and are believed to share a common 

evolutionary origin (Durnford et al., 1999; Heddad and Adamska, 2002). Their 

corresponding nuclear encoded genes belong to an extended cab family that includes also 

the genes coding for early light-inducible proteins, which are stress-induced (Adamska, 

2001) and probably bind chlorophyll a and lutein (Adamska et al., 1999). The CAB 
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family also includes the PsbS protein (Funk, 2001), which has an important function in 

non-photochemical quenching (Li et al., 2000). PsbS is predicted to have four thylakoid 

membrane-spanning regions, and it binds chlorophylls a and b as well as carotenoids 

(Funk et al., 1994). Moreover, related genes coding for polypeptides with one or two 

transmembrane α-helices have been detected in the genomes of Arabidopsis thaliana 

(Heddad and Adamska, 2000; Jansson et al., 2000), rice and poplar (Klimmek et al. 

2006), Chlamydomonas reinhardtii (Teramoto et al., 2004), and the red alga 

Cyanidioschyzon merolae (Ohta et al., 2003).  

In contrast to plants, cyanobacteria lack the multihelix CAB proteins. The major 

peripheral LHC in some cyanobacteria is the phycobilisome, which is in the cytoplasm, is 

bound to the thylakoid membrane, and contributes to the deep blue-green color of 

cyanobacteria. However, small CAB-like proteins of <8 kDa have recently been 

identified in the genomes of marine and freshwater cyanobacteria (reviewed in Ref. 

Bhaya et al., 2002). These proteins are predicted to have a single membrane-spanning α-

helix, which shows significant sequence similarity to the first and third membrane-

spanning regions of the green plant CAB proteins, giving them the name small CAB-like 

proteins (SCPs) (Funk and Vermaas, 1999). They were also designated high light-

inducible proteins because their RNA level was found to increase after transfer of cells to 

high light and many other stress conditions (He et al., 2001; Mikami et al., 2002). In the 

small genome of the cyanobacterium Prochlorococcus marinus MED4, as many as 23 

scp or hli genes were identified (Bhaya et al., 2002), and these genes have recently been 

detected in the genomes of Prochlorococcus cyanophages (Lindell et al., 2004; Sullivan  

et al., 2005), where they are believed to maintain the photosynthetic activity of the host  
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during an infection (Lindell et al., 2004). Although the function of the SCPs is not fully 

understood, these findings indicate their importance.  

In the cyanobacterium Synechocystis sp. PCC 6803, five SCPs were identified 

(Funk and Vermaas, 1999); four of them (ScpB-E) encode proteins of ~ 6 kDa, whereas 

the fifth (ScpA) is the C-terminal extension of the ferrochelatase. The genes coding for 

ScpB–E are induced under various different stress conditions, including very high light 

intensity (>500 µmol m–2 s–1), low temperature, and nitrogen and sulfur starvation (He et 

al., 2001; Mikami et al., 2002). A mutant with these four genes inactivated is sensitive to 

high intensity illumination and shows alteration in pigmentation and in the ability to 

perform non-photochemical dissipation of absorbed light energy (Havaux et al., 2003). 

The enhanced expression of the scp genes in response to high intensity illumination is 

consistent with the putative function of SCPs in protection against light stress (He et al., 

2001). It was suggested that SCPs play a role in energy dissipation that is analogous to 

the process of non-photochemical quenching of higher plants (Havaux et al., 2003), but 

the absence of scp genes does not affect fluorescence characteristics (Xu et al., 2004). On 

the other hand, a carotenoid closely associated with phycobilin energy transfer is now 

recognized to be involved with energy transfer regulation (Mullineaux and Emlyn-Jones, 

2005; Rakhimberdieva et al., 2004; Wilson et al., 2006). It also has been hypothesized 

that SCPs prevent the formation of reactive oxygen species by serving as transient 

carriers of chlorophyll (Xu et al., 2002; Xu et al., 2004).  

The presence of the CAB motif in SCPs suggests that SCPs bind chlorophyll 

molecules in a similar way as the LHCII of plants. Furthermore, the SCPs seem to 

participate in tetrapyrrole biosynthesis and regulate pigment availability. The chlorophyll 

synthesis rates in the PSI-less/ΔchlL/ΔscpB, PSI-less/ΔchlL/ΔscpE, and PSI-

less/ΔchlL/ΔscpC/ΔscpD strains decrease when these three mutants are transferred from 
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darkness to light (Xu et al., 2002; Xu et al., 2004). Interestingly, ScpC and ScpD seem to 

be functionally complementary (Xu et al., 2004). These two protein sequences are most 

similar (87.1% identity) (He et al., 2001), indicating a rather recent gene duplication 

(Bhaya et al., 2002) or a reasonably strict primary structure requirement. 

ScpD was immunologically detected in thylakoid membranes of Synechocystis 

sp. PCC 6803 (Hao et al., 2001). To understand the function of this and other SCPs, it is 

important to know which complexes in the membrane they interact with. Here, we used 

His-tagged ScpD proteins to identify the main complexes with which ScpD is associated. 

After two-dimensional PAGE (blue native (BN) PAGE followed by SDS-PAGE), ScpD 

was found to be associated with monomeric PSII, its closest neighbor being CP47. CP43 

and Psb28 were also found to interact with ScpD. Although ScpC could be identified in 

the PSII fraction and ScpB was found to co-fractionate with ScpD to some degree, ScpE 

was found in thylakoids, but did not seem to be associated with PSII. 

 

Materials and Methods 

Growth conditions — Synechocystis sp. PCC 6803 strains (wild-type, the PSI-less 

strain (ΔpsaAB) (Shen et al., 1993), the PSII-less strain (ΔpsbDIC/ΔpsbDII) (Carpenter 

et al., 1990), the PSI-less/PSII-less strain (ΔpsaAB/ΔpsbDIC/ΔpsbDII) (Ermakova-

Gerdes et al., 1996), the CP47-His-tagged HT-3 strain (Bricker  et al., 1998), and the 

ScpD-His strain (see below)) were cultivated at 30 °C in BG-11 medium (Rippka et al., 

1979). The PSI-less and PSII-less mutants were provided with 15 mM glucose. All 

strains except the PSI-less strain were grown at normal (50 µmol photons m–2 s–1) or high 

(500 µmol photons m–2 s–1) light intensity as indicated. Because of its light sensitivity, the 

PSI-less strain was cultured at 4 µmol photons m–2 s–1. To induce the SCPs, the wild-type  
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and PSII-less strains were grown at high light intensity for 7 h. In the PSI-less/PSII-less 

and PSI-less strains, SCPs are induced also at light intensities of 50 and 10 µmol photons 

m–2 s–1, respectively (Funk and Vermaas, 1999).  

 

Mutant construction — To generate the ScpD-His strain, a plasmid construct was made 

to tag the ScpD protein in Synechocystis with an His6 epitope on its N terminus and to 

express the corresponding gene construct under the control of the psbAII promoter. To 

construct this plasmid, the scpD gene was amplified by PCR using a mixture of Taq and 

Pfu DNA polymerases and gene-specific primers (forward, 5′-

TTATACATATGCATCATCATCATCATCATGGAACTAGCCGCGGATTTCGCCT-

3′; and reverse, 5′-TCGGATCCTTAGAGAGGAGAGCAACCAACCC-3′) with 

artificially generated restriction sites for NdeI and BamHI and containing six histidine 

codons (CAT) in the forward primer. After restriction, the PCR fragment was cloned into 

the NdeI and BamHI sites of the pPSBA plasmid; the resulting plasmid contains the 

scpD-His gene construct right behind the psbAII start codon (Lagarde et al., 2000) and 

retains the upstream and downstream regions of the Synechocystis psbAII gene. The 

ligation mixture was amplified by PCR using pPSBA primers amplifying the entire 

psbAII/scpD-His region, and DNA of the desired size was selected. Amplification by 

PCR was chosen because transformation of Escherichia coli with the ligation mixture 

yielded no colonies, presumably reflecting toxicity of the plasmid to E. coli. The PCR 

product containing the scpD-His gene was transformed into the Synechocystis psbAII-

KS strain, in which the psbAII gene was replaced with a kanamycin resistance/sacB 

cartridge (Lagarde et al., 2000). The sacB gene codes for a levan sucrase, leading to 

sucrose sensitivity of this strain (Ried and Collmer, 1987). After transformation, 

Synechocystis cells were grown on BG-11 plates for 4 days. Transformants were then 
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transferred to plates with 5% sucrose, and sucrose-resistant colonies were checked for 

kanamycin sensitivity. The resulting strain expressing both wild-type and His-tagged 

forms of the ScpD protein was subsequently transformed with chromosomal DNA from a 

scpD- strain carrying a spectinomycin resistance cassette insertion (Prentki and Krisch, 

1984), and spectinomycin-resistant transformants were selected (Xu et al., 2002). 

Insertion of the scpD-His gene at the desired location was confirmed by DNA 

sequencing, and deletion of the wild-type scpD gene was confirmed by PCR.  

 

Biochemical preparations — Total membranes from the different Synechocystis strains 

were isolated as described (Funk and Vermaas, 1999). Radioactive labeling of cells using 

a mixture of L-[35S]methionine and L-[35S]cysteine (>1000 Ci/mmol, final activity of 400 

µCi/mL; Tran35S-label, ICN Biomedicals) and isolation of membranes were performed as 

described (Komenda et al., 2004). Isolated membranes were solubilized with n-dodecyl 

β-maltoside (n-dodecyl β-maltoside/chlorophyll ratios were 20 and 100 (w/w) in the PSI-

containing and PSI-less strains, respectively), and extracted complexes were separated by 

BN gel electrophoresis (Schagger and von Jagow, 1991).  

 

Isolation of His-tagged complexes — Cells from Synechocystis sp. PCC 6803 strains 

carrying a His tag were pelleted after 4 h of exposure to high light intensity (500 µmol 

photons m–2 s–1), resuspended in Buffer A (50 mM MES-NaOH (pH 6.0), 10 mM MgCl2, 

5 mM CaCl2, and 25% glycerol), and broken. Thylakoids were prepared as described 

(Bricker et al., 1998). The cell homogenate (at 1 mg/mL chlorophyll) was brought to 

1.28% β-dodecyl maltoside and incubated for 25 min at 4 °C. The sample was then 

loaded onto a Ni2+ metal affinity column. The column was washed with 9 column 

volumes (45 ml) of Buffer A containing 0.04% β-dodecyl maltoside and 10 mM 
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imidazole. Subsequently, the column was washed with 10 mL of Buffer A with 0.04% β-

dodecyl maltoside and 30 mM imidazole. Bound ScpD-His was eluted with 0.04% β-

dodecyl maltoside and 100 mM imidazole in Buffer A. The eluate was precipitated by the 

addition of an equal volume of 25% polyethylene glycol 8000 in 50 mM MES-NaOH 

(pH 6.0) and then resuspended in Buffer A containing 0.04% β-dodecyl maltoside.  

 

PAGE — To the resuspended Ni2+ column eluate was added 0.1 volume of loading 

solution containing 750 mM aminocaproic acid and 5% Coomassie Brilliant Blue G-250. 

Protein complexes in the eluate were separated by BN-PAGE at 4 °C as described 

(Schagger and von Jagow, 1991) using a 5–14% polyacrylamide gradient gel. For the 

second dimension, the BN gel lane of interest was incubated for 20 min in a solution 

containing 25 mM Tris-HCl (pH 7.5) and 1% SDS and then placed on top of an SDS-12–

20% polyacrylamide gel containing 7 M urea (Komenda et al., 2002). After 

electrophoresis, gels were either stained with silver nitrate (Bjellqvist et al., 1993) or 

transferred onto polyvinyl difluoride membrane for further analysis by Western blotting. 

 

Immunoblotting — For immunoblotting, the proteins were transferred onto polyvinyl 

difluoride membrane (Towbin et al., 1979). Anti-ScpC antibody raised in rabbits against 

residues 1–17 of the ScpC protein (MTTRGFRLDQDNRLNNF) was a gift from Dr. A. 

Sokolenko (University of Munich). A peptide-directed antibody against a region near the 

N-terminus of ScpE (ELQPNQTPVQEDPKFG) was made commercially by Innovagen 

AB (Lund, Sweden).  

 

Pigment analysis — Chlorophyll content was determined in 80% acetone and was 

calculated as described (Porra et al., 1989).  
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Protein analysis by matrix-assisted laser desorption ionization time-of-flight 

(MALDI-TOF) mass spectrometry — Protein identification by peptide mass 

fingerprinting and post-source decay tandem mass spectrometry (MS/MS) analysis was 

carried out using a Voyager-DE STR mass spectrometer (Applied Biosystems, 

Stockholm). In-gel digestion to produce peptides for analysis by mass spectrometry was 

carried out essentially as described (Shevchenko et al., 1996) using sequencing-grade 

modified trypsin (Promega/SDS Biosciences, Falkenberg, Sweden) or sequencing-grade 

chymotrypsin (Roche Diagnostics, Bromma, Sweden). Silver-stained protein bands were 

destained prior to in-gel digestion using the method previously described (Gharahdaghi et 

al., 1999). To analyze the in gel-digested proteins by MALDI-TOF mass spectrometry, 

dried droplet preparations were applied as described (Kussmann et al., 1997). The 

matrices used were readymade solutions of α-cyano-4-hydroxycinnamic acid (G2037A) 

and 2,5-dihydroxybenzoic acid (G2039A) from Agilent Technologies (Stockholm). 

Samples were concentrated and desalted as needed using homemade Stop-and-Go 

extraction columns as described (Rappsilber et al., 2003). Data base searches were 

carried out on an in-house Mascot server that was licensed to Umeå University by Matrix 

Science (www.matrixscience.com) using the current version of the NCBInr Database and 

the Synechocystis Protein Database of the European Bioinformatics Institute. The data 

bases were searched using peptide mass fingerprint spectra and post-source decay 

MS/MS spectra. If appropriate, proteins were identified by sequence queries that included 

both types of data. The search parameters restricted the error for peptide masses to 50 

ppm and for MS/MS fragments to 0.5 Da. The instrument type specified for MS/MS ion 

searches was MALDI-TOF/TOF. By default, the search parameters permitted one missed 
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cleavage site and variable oxidation states of methionine. If appropriate, two or more 

missed cleavage sites were allowed. 

 

Results 

Proteins co-purifying with ScpD-His — Based on two-phase separation experiments, 

ScpD is a prevalent SCP member in the thylakoid membrane (Hao et al., 2001), but its 

association with protein complexes in this membrane system remains unknown. To learn 

about the function of the SCPs, we decided to tag ScpD with His, to determine its 

interaction partners, and to analyze the SCP composition of thylakoid complexes. As 

described under “Materials and Methods” we created a Synechocystis mutant in which 

scpD had been deleted and replaced with a His-tagged scpD copy, the expression of 

which was under the control of the psbAII promoter. After harvesting and rupturing the 

cells, the total membranes were solubilized using β-dodecyl maltoside, and ScpD-His-

containing complexes were isolated via nickel column chromatography (Bricker et al., 

1998). Subsequently, the proteins were separated by SDS-PAGE and analyzed by 

MALDI-TOF mass spectrometry.  

To test the validity of this protocol, we also isolated PSII complexes via CP47-

His using the HT-3 mutant (Bricker et al., 1998) and analyzed them by SDS-PAGE (data 

not shown). They were composed of essentially the same subunits as shown in originally 

(Bricker et al., 1998; Kashino et al., 2002).  

The SDS gel in Figure II-1 shows the washed off fractions and eventual eluate 

resulting from the affinity purification of the ScpD-His complex (lanes C–E) and similar 

fractions of a chromatography control using wild-type ScpD (lanes A and B). Although 

the wild-type fraction collected upon washing the column (lane A) showed no 

recognizable pattern, the corresponding fraction from the ScpD-His strain showed a 
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Figure II-1: Proteins co-purifying with ScpD-His. This Coomassie Blue-stained SDS-
polyacrylamide gel displays total membrane fractions purified via nickel 
chromatography. Fractions from wild-type cells (control) are shown in lanes A and B, 
and fractions from the ScpD-His mutant strain are shown in lanes C–E. Lanes A and C, 
fractions obtained during the second washing step (0.04% β-dodecyl maltoside and 30 
mM imidazole in Buffer A); lanes B, D, and E, fractions obtained in the elution step 
(0.04% β-dodecyl maltoside and 100 mM imidazole in Buffer A). Lanes D and E show 
the results of two separate experiments, and the protein bands shown in lane E were 
analyzed by MALDI-TOF mass spectrometry, resulting in identification as indicated to 
the right (also see Table II-1). Cytb559, cytochrome b559. 
 
pattern of components resembling that of PSII (lane C). Indeed, upon elution with 100 

mM imidazole, such components co-eluted with ScpD-His (lanes D and E; representing 

results from two independent preparations). The presence of two distinct bands with 

apparent masses of 47.3 and 6 kDa was clearly visible in these lanes, and fainter bands 

migrating with apparent masses between 4 and 6, 30 and 45, and 70 and 80 kDa could be 

observed. The only visible differences between the PSII complexes washed off the 

column at 30 mM imidazole (lane C) and at 100 mM imidazole (lane D) were the  
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presence of ScpD-His and an enrichment of CP47 in the latter fraction. It therefore seems 

that most of the PSII complexes were washed off the column and that only a minor 

fraction was bound to ScpD. The corresponding eluent fraction from the wild-type 

control in lane B did not display protein bands, demonstrating the specificity of retention 

of the proteins in lanes D and E by ScpD-His.  

To identify the proteins that co-purified with ScpD-His, the individual bands in 

Figure II-1 (lanes D and E) were digested with trypsin and analyzed by MALDI-TOF 

mass spectrometry. If the peptide mass fingerprint spectra of the individual bands were 

not sufficient for unequivocal protein identification, post-source decay MS/MS spectra of 

individual peptides were acquired for protein identification by sequence queries (Mann 

and Wilm, 1994; Perkins et al., 1999). Table II-1 summarizes the results of this analysis. 

As expected, the mass spectra showed the presence of ScpD (Ssr2595) in the major band 

at an apparent mass of 6 kDa; ScpD was identified with high confidence by its peptide 

mass fingerprint spectrum in combination with an MS/MS analysis of the peptide 

GFRLDQDNR. The major band at an apparent mass of 47.3 kDa was found to contain 

CP47 (Slr0906) and the hypothetical protein Slr0909. Mass spectrometry analysis also 

identified CP43 (Sll0851) with an apparent mass of 39.8 kDa, and D2 (Sll0849/Slr0927) 

and D1 (Sll1867; two bands) with apparent masses of 36.7 kDa, 34.3 kDa, and 33.5 kDa, 

respectively. The band of the D2 protein also contained Slr1128, annotated as a 

hypothetical integral membrane protein. In the high mass range, the FtsH proteases 

Sll1463 and Slr0228 were present at an apparent mass of 77 kDa, and the FtsH protease 

slr1604 was found at an apparent mass of 71 kDa. Furthermore, Sll1021 and Slr0798 

(both annotated as hypothetical proteins) were found at apparent masses of 88.1 and 95.1  
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Table II-1: Mass spectrometry identification of proteins apparently forming a 
complex with ScpD-His (data shown in Figure II-1) 

 
Experimental
/theoretical 
mass 
 

 
ORFa 
 

 
Gene 
product 
 

 
Mascot 
search and 
scoreb 
 

 
Sequence 
coverage 
 

 
r.m.s. 
error 
 

    % ppm 
95.1/76.8 kDa Slr0798 Hypothetical 

protein 
SQ 193 35 14 

88.1/74.3 kDa Sll1021 Hypothetical 
protein 

PMF 249 44 7 

76.7/68.1 kDa Sll1463 FtsH SQ 190 32 14 
76.7/68.4 kDa Slr0228 FtsH PMF 150 39 17 
70.8/67.1 kDa Slr1604 FtsH PMF 83 24 23 
47.3/55.8 kDa Slr0906 CP47 SQ 228 39 15 
47.3/52.4 kDa Slr0909 Hypothetical 

protein 
SQ 142 40 11 

39.8/51.8 kDa Sll0851 CP43 SQ 143 17 25 
36.7/39.4 kDa Sll0849/Slr0927 D2 SQ 157 22 15 
36.7/35.6 kDa Slr1128 Hypothetical 

protein 
PMF 173 51 13 

34.3/39.6 kDa Sll1867 D1 SQ 78 13 11 
33.5/39.6 kDa Sll1867 D1 SQ 132 20 10 

6.9/7.7 kDa Ssr2595 ScpD SQ 112 50 13 
6.0/7.7 kDa Ssr2595 ScpD SQ 131 50 32 
4.8/7.7 kDa Ssl1633 ScpB MIS 105 18  
4.8/4.8 kDa Smr0006 Cytochrome 

b559 
MIS 109 
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a ORF, open reading frame; r.m.s., root mean square; SQ, sequence query including 
peptide mass fingerprint (PMF) and MS/MS ion search (MIS) data. 
b Identified by a search in the NCBInr Database. 
 
kDa, respectively. In the low mass range, ScpB (Ssl1633) and the small subunit of 

cytochrome b559 (Smr0006) were identified at an apparent mass of 4.8 kDa.  

 

ScpD-His associates with PSII subunits — The composition of the affinity-purified 

ScpD-His complex indicated that ScpD associated with PSII components. However, 

fractions that are isolated by a one-step affinity purification may contain contamination 

by nonspecifically bound proteins. For this reason, we subjected the purified ScpD-His  
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Figure II-2: ScpD-His is associated specifically with PSII. ScpD-His and copurified 
proteins were separated by two-dimensional BN/SDS-PAGE after nickel chromatography 
and solubilization with 0.04% β-dodecyl maltoside. Proteins were identified by mass 
spectrometry (see Table II-2). 
 
complex to two-dimensional BN/SDS gel electrophoresis. This technique is an accepted 

approach to separate protein complexes and their subunits, and it has been successfully 

used to study protein complexes from the thylakoid membranes of higher plants 

(Thidholm et al., 2002; Aro et al., 2005). Figure II-2 shows an example for the analysis 

of the ScpD-His complex at ~200 kDa by two-dimensional BN/SDS gel electrophoresis.  
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Table II-2: Mass spectrometry identification of proteins that co-purified with ScpD-
His upon separation by two-dimensional BN/SDS-PAGE after nickel 
chromatography and solubilization with 0.04% β-dodecyl maltoside 

 
Experimental/ 
theoretical 
mass 
 

 
ORFa 
 

 
Gene 
product 
 

 
Mascot 
search and 
scoreb 
 

 
Sequence 
coverage 
 

 
r.m.s. 
error 
 

    % ppm 
52.2/55.8 kDa Slr0906 CP47 PMF 213 38 12 
38.9/51.8 kDa Sll0851 CP43 SQ 107 15 9 
33.5/39.4 kDa Sll0849/Slr0927 D2 PMF 73c 20 17 
27.5/39.6 kDa Sll1867 D1 PMF 77c 20 20 
7.8/12.2 kDa Slr1645 PsbZ PMF 74c 29 11 
7.8/7.0 kDa Ssl2598 PsbH MIS 50 21  
7.8/7.7 kDa Ssr2595/Ssl2542 ScpD/ScpC MIS 24c 12  
5.8/7.7 kDa Ssr2595/Ssl2542 ScpD/ScpC MIS 25c 12  

a ORF, open reading frame; r.m.s., root mean square; SQ, sequence query including 
peptide mass fingerprint (PMF) and MS/MS ion search (MIS) data. 
b Identified by a search in the NCBInr Database. 
c Identified by a search in the Synechocystis sp. PCC 6803 Protein Database of the 
European Bioinformatics Institute. 
 
The pattern of BN gel separation in the first dimension showed two main bands (Figure 

II-2). Upon SDS-PAGE in the second dimension and silver staining of the gel followed 

by MALDI-TOF mass spectrometry of bands, the corresponding proteins could be 

identified. The results are summarized in Table II-2. In the high mass region, we found 

the PSII core subunits CP47, CP43, D1, and D2 at apparent masses of 52, 39, 33, and 32 

kDa, respectively. In the low mass region, we detected PsbH, PsbZ, and ScpC/ScpD as a 

broader band spanning the 6–8 kDa range. It is interesting to note that only the band with 

faster migration in the first dimension provided clear evidence for small subunits (Figure 

II-2). The slower migrating band may represent PSII dimers at 500 kDa (Thidholm et al., 

2002). The relatively strong affinity of the putative PSII dimer on BN gel for the dye 

Coomassie Blue (as seen by the intense coloration of this band relative to the more 

rapidly migrating PSII fraction that represents PSII monomers) was unexpected. Equally 
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unexpected was the depletion of ScpD and other low mass polypeptides in this fraction, 

as this fraction was isolated by retention on a nickel-nitrilotriacetic acid column, 

indicating the association with ScpD-His at the time of isolation. We hypothesize that 

ScpD (and possibly ScpC) is associated with monomeric PSII in a way that affects 

Coomassie Blue affinity (which would place the SCPs around the PSII monomer) and 

that the PSII monomers and dimers/multimers are in dynamic exchange. Another 

interesting feature of Figure II-2 is the heavy staining of low mass proteins in the more 

rapidly migrating band. Although quantitation of proteins based on silver staining is 

tenuous, the high staining intensity of these proteins suggests the association of multiple 

polypeptide copies with PSII. 

The limited amount of the ScpD-His complex material on the BN gel shown in 

Figure II-2 made the analysis of the low mass proteins difficult. Although the 

identification of PsbH and PsbZ was unambiguous, MS/MS analysis identified the 

peptide GFRLDQDNR, which matches the sequence of ScpD and of its close homolog 

ScpC. For this reason, our mass spectrometry data do not allow us to distinguish between 

these two SCPs. The purification of the protein complex using His-tagged ScpD implies 

that ScpD is present. However, on the basis of the mass spectrometry data, we can neither 

confirm nor exclude the presence of ScpC.  

 

Nearest neighbors of ScpD — The purification of ScpD-His complexes by nickel 

affinity chromatography and BN gel electrophoresis showed a clear association of ScpD 

with PSII, but did not provide evidence regarding the localization of ScpD within the 

PSII complex. To obtain information regarding the neighbors of ScpD-His in the PSII 

complex, we used a higher β-dodecyl maltoside concentration (0.8% rather than 0.04%)  
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Figure II-3: Closest neighbors of ScpD. ScpD-His and co-purified proteins were 
separated by BN/SDS-PAGE after nickel chromatography and solubilization with 0.8% 
β-dodecyl maltoside. The lower panel shows immunostaining of ScpD-His after two-
dimensional PAGE using an antibody directed against the His tag. Proteins were 
identified by mass spectrometry (see Table II-3). Note that Psb28 does not correspond to 
the sharp dot on the gel, but rather is an underlying band. 
 
for solubilization of the ScpD-His complex before separation by two-dimensional 

BN/SDS gel electrophoresis. The BN/SDS gel in Figure II-3 shows that the stronger 

solubilization of the purified ScpD-His complex resulted in the formation of smaller 

subcomplexes. To monitor the separation of different ScpD-His complexes, the SDS gel 

was probed by immunoblotting using antibodies directed against the His tag. To make 

sure no ScpD-His was overlooked, the antibody concentration used was high, and 

therefore, the signal was not linear with the amount of His tag. The composition of the 
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ScpD-containing complexes was analyzed by MALDI-TOF mass spectrometry. Table II- 

3 shows the results from the analysis of two different gels and corresponds to protein 

bands as indicated in Figure II-3.  

ScpD-His was found to be prominently associated with CP47, which was 

consistently detected to co-purify with ScpD-His. The weak band below that of CP47 in  

Figure II-3 was assigned to CP43 (Table II-3). The diffuse band in the 7–8-kDa region 

contained ScpD-His (see immunoblot in the lower panel of Figure II-3), and as this band 

was more diffuse than that of the immunoblot, it also might contain ScpC, as our mass 

spectra do not allow us to exclude the presence of this protein. A smaller complex toward 

the right in Figure II-3 clearly contained ScpD in the diffuse band in the 7–8-kDa range. 

In addition, we found Psb28 in a band at an apparent mass of 12.4 kDa. The distinct spot 

close to Psb28 is probably an artifact and does not seem to display this protein.  

 

ScpC co-migrates with PSII — As indicated, the detected mass fragment of ScpD is 

exactly identical to that of ScpC. Indeed, the primary structures of ScpD and ScpC are 

87% identical, and the compelling similarity between these two SCPs indicates that they 

may have not only a similar function, but also similar binding partners. Therefore, it was 

important to determine the location of ScpC in the thylakoid membrane.  

Toward this goal, Synechocystis wild-type cells were pulse-labeled with L-

[35S]Met/Cys for 30 min while growing at 500 µmol photons m–2 s–1, and subsequently, 

thylakoid membranes were isolated and analyzed by two-dimensional BN gel 

electrophoresis in combination with autoradiography. The autoradiogram of the wild-type 

strain in Figure II-4A (first panel) displayed a strong band in the ScpC/ScpD region at 6 

kDa that was present in two complexes. The first complex, RCC1, was identified  
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Table II-3: Mass spectrometry identification of proteins that co-purified with ScpD-
His upon separation by two-dimensional BN/SDS-PAGE after nickel 
chromatography and solubilization with 0.8% β-dodecyl maltoside. The results from 
the analysis of two different gels shown in Figure II-3 are presented. ORF, open reading 
frame; r.m.s., root mean square; SQ, sequence query including peptide mass fingerprint 
(PMF) and MS/MS ion search (MIS) data. 

 
Mascot searcha 

 

Sequence 
coverage 

 

r.m.s. 
error 

 

Experimental/ 
theoretical 
mass 

 

 
ORF 

 

 

Gene 
product 

 Exp 1 Exp 2 Exp 
1 

Exp 
2 

Exp 
1 

Exp 
2 

       ppm 

Experiment 1         

    Middle lane         

47.3/55.8 kDa Slr0906 CP47 PMF167 PMF142 40 33 7 4 

39.8/51.8 kDa Sll0851 CP43 SQ50b SQ39b 9 7 21 14 

6.9/7.7 kDa Ssr2595 ScpD SQ64b SQ85 50 42 20 22 

    Right lane         

12.4/12.5 kDa Sll1398 Psb28 N.D. SQ136  53  26 

8.0/7.7 kDa Ssr2595 ScpD SQ84 MIS65 42 12 12  

7.1/7.7 kDa Ssr2595 ScpD SQ97 MIS72 42 12 20  

a Identified by a search in the NCBInr Database. 
b Identified by a search in the Synechocystis sp. PCC 6803 Protein Database of the 
European Bioinformatics Institute. 
 
previously as monomeric PSII consisting of the CP47, CP43, D2, and D1 proteins 

(Komenda et al., 2004). The second complex, termed RC47, was smaller and was 

depleted in CP43. A comparison with SCP deletion mutants showed that the band with a 

molecular mass of 6 kDa was reduced in the ΔscpC/ΔscpD strain (second panel), but 

present in the ΔscpB and ΔscpE strains (third and fourth panels, respectively). These  
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Figure II-4: ScpC co-migrates with PSII. A, autoradiograms of thylakoid membrane 
proteins from the high light-treated wild-type (WT) strain (whole gel) and mutant strains 
ΔscpC/ΔscpD, ΔscpB, and ΔscpE (only the PSII region is shown) after pulse 
radiolabeling with L-[35S]Met/Cys for 30 min. Proteins were separated by two-
dimensional BN/SDS-PAGE prior to autoradiography. B, immunodetection of 
ScpC/ScpD in the wild-type strain (whole gel) and mutant strains ΔscpD and 
ΔscpC/ΔscpD (only the PSII region is shown) using anti-ScpC/ScpD antibody. C, 
immunoblot using anti-ScpC/ScpD antibody after one-dimensional SDS-PAGE of 
thylakoid membrane proteins from high light-induced cells. The loaded samples 
contained 4 µg of chlorophyll/lane and correspond to the wild-type strain, ΔscpC/ΔscpD, 
ΔscpC, ΔscpD, and ΔscpB as indicated. 
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observations indicate that the high light-induced 6-kDa band of the RCC1 and RC47 

complexes contained ScpD and/or ScpC, but most likely not ScpB or ScpE.  

To distinguish between ScpD and ScpC in the 6-kDa band of the RCC1 and 

RC47 complexes, an antibody was raised against the N terminus of ScpC  

 (MTTRGFRLDQDNRLNNF), which is identical to that of ScpD except for the third 

residue (S in ScpD). Indeed, immunostaining of high light-induced wild-type cells 

identified the bands in the 6-kDa region as ScpC and ScpD (Figure II-4B, left panel). 

The bands were absent in thylakoids of the high light-induced ΔscpC/ΔscpD strain 

(right panel). Therefore, the minor band with a molecular mass of 6 kDa seen in the 

autoradiogram of the ΔscpC/ΔscpD strain (Figure II-4A, second panel) belongs to 

other co-migrating proteins. In the ΔscpD deletion mutant, the antibody unambiguously 

identified ScpC co-migrating with RCC1 and RC47 (Figure II-4B, middle panel). 

Interestingly, after applying the same procedure to a PSII-less mutant, ScpC and ScpD 

were found to co-migrate with small complexes or as free proteins (data not shown), 

suggesting that these SCPs do not readily associate with large complexes such as PSI. 

Separation of thylakoid preparations from high light-induced ΔscpC and ΔscpD strains 

by one-dimensional SDS electrophoresis made it possible to identify the lower migrating 

band as ScpD (Figure II-4C, third lane) and the upper band as ScpC (fourth lane). In 

the wild-type strain, the ScpD protein appeared to be dominant (Figure II-4C), but the 

ratio between ScpC and ScpD amounts was highly variable among various strains and 

conditions, suggesting that ScpC and ScpD are indeed functionally equivalent. 

Interestingly, in the ΔscpB strain, the level of ScpD was decreased, and ScpC appeared 

to be absent altogether (fifth lane). ScpC/ScpD immunodetection by two-dimensional  
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BN/SDS-PAGE of extracts from the ΔscpB strain showed that ScpD remained associated 

with PSII complexes (RCC1 and RC47) as in the wild-type control (data not shown).  

 

ScpE is not associated with PSII — Now that ScpD and ScpC have been positively 

correlated with PSII complexes, we set out to determine the location of the other two 

small SCPs as well (ScpB and ScpE; ScpA is a C-terminal extension of ferrochelatase). 

We were unable to generate antibodies against ScpB. However, we could elicit antibodies 

against the peptide ELQPNQTPVQEDPKFG, which is a sequence that is part of the N- 

terminal region of ScpE. These antibodies were used for detection of ScpE on SDS-

polyacrylamide gels of membrane preparations from the wild-type and PSII-less strains  

(Vermaas et al., 1990) that were grown at 500 µmol photons m–2 s–1 (high light) for 7 h to 

induce the expression of ScpE from the PSI-less/PSII-less strain (Ermakova-Gerdes et 

al., 1995), in which SCPs are induced also at light intensities of 50 µmol photons m–2 s–1 

(Funk and Vermaas, 1999), and from the PSI-less strain that, because of its light 

sensitivity, was grown at 10 µmol photons m–2 s–1. As negative controls, membranes from 

the wild-type strain grown at normal light intensity (50 µmol photons m–2 s–1) and from 

the ΔscpE strain grown at 500 µmol photons m–2 s–1 were included (Figure II-5A and D). 

Although no ScpE was detected in membranes from the ΔscpE strain or the wild-type 

strain grown at 50 µmol m–2 s–1, the antibody immunostained ScpE in the other strains 

and in the wild-type strain grown at high light intensity.  

To further localize ScpE, the total membrane fraction of the wild-type strain 

grown at high light intensity was separated into fractions enriched in thylakoid 

membranes, plasma membranes, and outer membranes using two-phase partitioning 

(Norling et al., 1998). In these fractions, ScpE was immunodetected exclusively in the 
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Figure II-5: ScpE is located in the thylakoid membrane. The subcellular location of 
ScpE was detected by immunoblotting. After breaking the cells, the total membranes 
were separated by one-dimensional SDS-PAGE and analyzed using anti-ScpE antibody. 
A, wild-type (WT), PSI-less (PSI–), PSII-less (PSII–), and PSI-less/PSII-less mutant cells 
were grown at 50 (Control), 500 (HL), and 10 (PSI-less mutant) µmol m–2 s–1. B, 
thylakoid (TM), cytoplasmic (PM), and outer (OM) membranes were purified by two-
phase partitioning (Aro et al., 2005); separated by SDS-PAGE; and analyzed by 
immunoblotting using anti-ScpE antibody. C, total membranes of high light-treated wild-
type and nickel chromatography-purified PSII complexes (CP47-His) (Bricker et al., 
1998) and ScpD-His complexes were analyzed by immunoblotting using anti-ScpE 
antibody. D, shown is the accumulation of ScpE in the high light-induced wild-type, 
ΔscpB, ΔscpC/ΔscpD, and ΔscpE strains. Equal amounts of cells were loaded in each 
lane. The proteins were separated by denaturing SDS-PAGE, transferred onto polyvinyl 
difluoride membrane, and probed with anti-ScpE antibody. 
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thylakoid membrane fraction (Figure II-5B). To investigate whether ScpE is associated 

with PSII, oxygen-evolving PSII was isolated from the HT-3 mutant (Bricker et al., 

1998), which contains a hexahistidine tag at the C terminus of the CP47 protein. Also the 

ScpD-His fraction eluted after nickel column purification (Figure II-1) was analyzed. 

Although an immunoreaction was obtained from the positive control (total membranes 

isolated from high light-stressed wild-type strain), ScpE could not be detected in either 

PSII or the ScpD-His fraction (Figure II-5C). Deletion of ScpB or ScpC and ScpD did not 

alter the presence of ScpE, even though the ScpE abundance was decreased in the 

ΔscpC/ΔscpD strain (Figure II-5D).  

To determine the potential association of ScpE with membrane complexes, a 

two-dimensional BN/SDS-polyacrylamide gel was challenged with anti-ScpE 

antibodies.As indicated in Figure II-6, ScpE was not stably associated with one of the 

photosystems, but instead was present in small complexes and in free form in the wild-

type strain as well as in the PSI-less mutant. This is in agreement with the fact that no 

ScpE protein was detected in isolated PSII (Figure II-5).  

 

Discussion 

In various plant genomes, one-helix proteins with high similarity to the first and third 

helices of the plant chlorophyll a/b-binding antenna proteins have been detected (Heddad 

and Adamska, 1999; Jansson et al., 2000; Klimmek et al., 2006; Teramoto et al., 2004; 

Ohta et al., 2003). However, their function still remains enigmatic. In this work, we have 

shown that ScpC–E of Synechocystis sp. PCC 6803 are found in thylakoid membranes. 

ScpC and ScpD are associated with PSII, whereas ScpE is not associated with larger 

membrane complexes.  
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Figure II-6: ScpE is not associated with PSII. Shown is the localization of ScpE after 
two-dimensional BN/SDS-PAGE analysis of thylakoid membrane proteins from the PSI-
less and high light-induced wild-type (WT) strains. Thylakoid membrane proteins were 
separated in the first dimension by BN-PAGE and in the second dimension by denaturing 
SDS-PAGE using a 12–20% linear gradient polyacrylamide gel, blotted onto polyvinyl 
difluoride membrane, and immunostained using anti-ScpE antibodies. 
 

Plant one-helix proteins (Jansson et al., 2000) are apparently involved in 

pigment-related processes other than light harvesting, and a light-harvesting function can 

also be excluded for the SCPs of Synechocystis sp. PCC 6803 (Xu et al., 2002; Xu et 

al., 2004). The whole cab gene family has been suggested to have originally evolved to 

serve a function in photoprotection, and the role in light harvesting may be a derived 

function (Jansson, 2005).  

Instead, the SCPs affect steps in the chlorophyll biosynthesis pathway (Xu et al., 

2002) and chlorophyll stability in the cell, even in darkness (Xu et al., 2004). 

Interestingly, the one-helix CAB-like proteins in different organisms exhibit regulatory 

responses opposite to those of their relatives, the light-harvesting proteins: at high light 

intensity, when the expression of the LHC proteins is repressed, the one-helix 
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proteins/SCPs are up-regulated. Also, the SCPs are up-regulated under many stress 

conditions (He et al., 2001). This indicates a function in protection in a broad sense; they 

might provide either direct protection (for example, as a pigment carrier) or indirect 

protection by regulating pigment metabolism. From a sequence perspective, it is likely 

that they bind pigments (chlorophylls and carotenoids), as chlorophyll-binding residues 

in the CAB family are conserved in SCPs, and deletion of SCPs leads to a decrease in 

chlorophyll and carotenoid content of cells (Xu et al., 2004).  

According to the results of this study, ScpD is clearly associated with PSII. PSII 

core proteins co-purified with ScpD-His and formed a complex that was retained during 

BN-PAGE, at least when PSII was monomeric. Association of SCPs with PSII has not 

been observed thus far in crystallography studies of PSII (Zouni et al., 2001; Kern et al., 

2005; Ferreira et al., 2004) or in proteomic PSII association studies (Kashino et al., 

2002), as SCPs are apparent only under conditions of high light exposure. In PSII, ScpD 

seems to be associated most closely with CP47; CP47 was the most prominent band after 

purification of ScpD-His. However, after solubilization in the presence of increased 

detergent concentration, also Psb28 was detected in association with ScpD. Psb28 

(Sll1398) has been found to be a substoichiometric subunit of PSII (Kashino et al., 2002) 

and is thought to have a regulatory function. As it is considered to reside on the stromal 

side of PSII, it might stabilize the complex between ScpD and CP47 (Figure II-7).  

Another interesting association of the light-stressed ScpD-His/PSII complex is 

that with several FtsH proteases. Deletion analysis of single FtsH protease in 

Synechocystis has shown that Slr1604 is crucial for the survival of cells, a phenotype 

that also has been observed in the deletion of Slr0228 (Nixon et al., 2005). However, 

deletion of Sll1463 does not show a phenotype. Our mass spectrometry analysis showed  
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Figure II-7: Model of ScpD binding to PSII. Stress conditions cause PSII 
monomerization. ScpD and probably also ScpC bind to the monomers and are located 
close to CP47. Substoichiometric Psb28 might stabilize the binding between CP47 and 
ScpC/ScpD. 
 

that this gene was expressed and that its product was apparently associated with PSII. 

Therefore, it is most likely involved in repair of light-stressed PSII. The co-purification 

of PSII and FtsH with ScpD-His suggests that ScpD is associated with the PSII repair 

process. This provides an explanation for the fact that ScpD was found to be associated 

with monomeric PSII (Figure II-2), which is often correlated with PSII repair processes. 

Indeed, the relatively weak Coomassie Blue staining of the monomeric PSII band 

suggests that ScpD forms a protective shield around PSII, most prominently interacting 

with the chlorophyll-binding protein CP47, which is near the periphery of the complex.  

As ScpD has chlorophyll-binding potential but does not contribute to light 

harvesting (Xu et al., 2004), an attractive hypothesis is that ScpD polypeptides serve as a 

chlorophyll storage device while PSII is repaired and components are replaced. Indeed, 

the rate of turnover of chlorophyll is much lower than that of the PSII protein 
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components with which it is associated (Vaviline et al., 2005). Multiple ScpD and/or 

ScpC proteins may be associated with PSII, thus providing an explanation for the high 

level of SCPs relative to PSII (Figure II-2).  

ScpC is part of PSII as well. Upon BN/SDS-PAGE of complexes from a PSII-

less mutant, ScpC and ScpD migrated as low molecular mass complexes or as free 

proteins (data not shown). After denaturing PAGE, ScpC migrated at a slightly higher 

molecular mass compared with ScpD. ScpC and ScpD substitute for each other's function 

(Xu et al., 2004) and have been hypothesized to form a complex (He et al., 2001). 

Although ScpD is generally more abundant than ScpC in light-stressed wild-type cells, 

the ScpC/ScpD ratio may vary. ScpB was found by mass spectrometry analysis in the 

fraction co-isolating with ScpD-His (Figure II-1). Although this suggests that ScpB is 

associated with ScpD, the pulse-labeling pattern of PSII in the absence of scpB was 

similar to that of the control (Figure II-4). ScpE is present in thylakoids, but is not found 

to be associated with ScpD. Interestingly, ScpB and ScpE have the strongest influence on 

chlorophyll biosynthesis (Xu et al., 2002). ScpA is the C-terminal part of ferrochelatase. 

In this study, we did not include ScpA, suggested to have an important function in 

regulating the tetrapyrrole pathway at the branch point between chlorophyll biosynthesis 

versus heme/phycobilin biosynthesis. It has been shown that decreased ferrochelatase 

activity improves photoautotrophic growth of a PSII mutant because of increased supply 

of chlorophyll (Sobotka et al., 2005) and that the ScpA domain is important for the 

ferrochelatase function. 

Based on the considerations provided here, the most plausible explanation 

regarding the function of ScpC and ScpD in light-stressed PSII is pigment storage during 

protein turnover. As such pigments may not be able to transfer energy to functional 
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photosystems and as there is no evidence for high chlorophyll fluorescence from 

pigments while photosystems are being repaired, excitations of pigments associated with 

SCPs should be quenched efficiently. However, these pigments should not be in 

excitation transfer contact with PSII pigments so that they do not decrease light-

harvesting efficiency under conditions in which light is not in excess. There may be 

parallels between PSII interaction with SCPs versus the interaction between IsiA and 

PSI. IsiA has been found to form a ring around PSI, which is functional in light 

harvesting, but also empty rings that are effective energy dissipaters have been detected 

(Kouril et al., 2005). Similarly, ScpD and ScpC may form a ring around damaged PSII 

centers, aid in repair, and dissipate absorbed energy as needed.  
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CHAPTER III. PHOTOSYSTEM II COMPONENT LIFETIMES IN THE 

CYANOBACTERIUM SYNECHOCYSTIS SP. PCC 6803: SMALL CAB-LIKE 

PROTEINS STABILIZE BIOSYNTHESIS INTERMEDIATES AND AFFECT EARLY 

STEPS IN CHLOROPHYLL SYNTHESIS 

 

Abstract 

In order to gain insight in the lifetimes of PSII chlorophyll and proteins, a combined 

stable-isotope labeling (15N) / mass spectrometry method was used to follow both old and 

new pigments and proteins. PSI-less Synechocystis cells were grown to exponential or 

post-exponential phase and then diluted in BG-11 medium with 15N-ammonium and 15N-

nitrate. PSII was isolated, and the masses of PSII protein fragments and chlorophyll were 

determined. Lifetimes of PSII components ranged from 1.5 h to 40 h, implying that at 

least some of the proteins and chlorophyll turned over independently from each other. 

Also, a significant amount of nascent PSII components accumulated in thylakoids when 

cells were in post-exponential growth phase. In a mutant lacking small Cab-like proteins 

(SCPs), most PSII protein lifetimes were unaffected but the lifetime of chlorophyll and 

the amount of nascent PSII components that accumulated were decreased. In the absence 

of SCPs one of the PSII biosynthesis intermediates, the monomeric PSII complex without 

CP43, was missing. Therefore, SCPs may stabilize nascent PSII protein complexes. 

Moreover, upon SCP deletion the rate of chlorophyll synthesis and the accumulation of 

early tetrapyrrole precursors were drastically reduced. When 14N-aminolevulinic acid 

(ALA) was supplemented to 15N-BG-11 cultures, the mutant lacking SCPs incorporated 

much more exogenous ALA into chlorophyll than the control demonstrating that ALA 

biosynthesis was impaired in the absence of SCPs. This illustrates the major effects that 
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non-stoichiometric PSII components such as SCPs have on intermediates and assembly, 

but not on the lifetime of PSII proteins. 

 

Introduction 

Cyanobacteria, algae, and plants can use sunlight and water to carry out oxygenic 

photosynthesis. In these organisms, linear photosynthetic electron transfer is catalyzed by 

the thylakoid-embedded protein complexes PSII, cyt b6f, and PSI. Linear electron transfer 

provides electrons to NADP producing NADPH and transfers protons across the 

thylakoid membrane leading to a proton gradient that is used for ATP synthesis. NADPH 

and ATP can be used for carbon fixation producing organic compounds. These organic 

compounds, along with oxygen produced in water splitting in PSII, enable heterotrophic, 

aerobic life on Earth. 

The photosystems are multi-protein subunits that non-covalently bind different 

cofactors, including chlorophyll a, carotenoids, quinones, lipids, and several inorganic 

ions. During photosynthesis, components of PSII complexes turn over rapidly, at least in 

comparison to PSI complexes (Powles, 1984; Sonoike, 2006). Of the proteins in the PSII 

complex the PsbA (D1) protein turns over most rapidly in the light (Mattoo et al., 1984; 

Ohad et al., 1984). This rapid turnover presumably is due to redox chemistry at the water-

splitting complex and/or to reactive oxygen species that are generated from oxygen 

reacting with the triplet state chlorophyll formed upon charge recombination between the 

primary donor P680+ and the primary acceptor pheophytin (Phe)- (Vass et al., 1992; 

Macpherson et al., 1993; Krieger-Liszkay, 2005). According to pulse-chase experiments, 

the D1 protein has a half time of 30 min to 1 h under intense illumination (Prasil et al., 

1992). However, the other PSII components appear to have a much lower turnover rate. 

For example, the halftime of the PsbB (CP47) protein was estimated to be about 12 h 
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(Schuster et al., 1988; Mattoo et al., 1999), and the lifetime of total chlorophyll in 

Synechocystis cells is over a week (Vavilin et al., 2005). If this vast disparity in the 

lifetime of PSII components indeed is true, then careful orchestration of the synthesis, 

assembly, and repair of photosynthetic complexes is required as free chlorophyll in the 

cell would be harmful in the light and in the presence of oxygen and as PSII polypeptides 

that are not incorporated in a complex may not be stable in the membrane (Mullet et al., 

1990; Krieger-Liszkay, 2005; Triantaphylides and Havaux, 2009). 

In the cyanobacterium Synechocystis sp. PCC 6803, there are five small Cab-like 

proteins (ScpA-E), which are single-helix membrane proteins that are located in the 

thylakoid membrane (Funk and Vermaas, 1999). The presence of the CAB (chlorophyll 

a/b-binding) motif in SCPs suggests that SCPs bind chlorophyll molecules at motifs 

similar to those of LHCII in plants (Jansson, 1994; Jansson et al., 2000; Vavilin et al., 

2007; Storm et al., 2008). SCPs appear to play an important role in early stages of 

tetrapyrrole biosynthesis and may regulate chlorophyll availability (Xu et al., 2002). 

However, unlike CAB proteins that are associated with functional PSII in plants and are 

involved in light harvesting and non-photochemical quenching (NPQ), at least two of the 

SCPs (ScpC and ScpD) have been found to be associated with damaged and/or nascent 

PSII complexes (Yao et al., 2007). One SCP (ScpA) is fused with ferrochelatase, 

suggesting a regulatory role in tetrapyrrole biosynthesis (Sobotka et al., 2008). 

Furthermore, SCPs may prevent the formation of reactive oxygen species by serving as 

transient carriers of chlorophyll (Xu et al., 2004), and SCPs appear to be involved in PSII 

re-assembly or/and repair processes by temporarily binding chlorophyll while PSII 

protein components are being replaced (Vavilin et al., 2007). 

Here we expand on the role of SCPs and show that they stabilize nascent PSII 

complexes and increase the presence of early chlorophyll biosynthesis precursors in the 
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cell. Stable-isotope labeling and mass spectroscopy allow for a detailed analysis of 

lifetimes of components of the PSII complex and illustrate that while different 

components degrade at different rates, degradation of only chlorophyll and to some 

degree D1 is significantly affected by SCPs. 

 

Materials and Methods 

Growth conditions — Synechocystis sp. PCC 6803 strains, which included the PSI-less 

strain (ΔpsaAB) (Shen et al., 1993), the PSI-less/SCP-less (ΔscpABCDE) strain (Xu et al., 

2002, Xu et al., 2004), the CP47-His PSI-less strain carrying a His tag at the C-terminus 

of the CP47 (PsbB) protein (see mutant construction), and the CP47-His PSI-less/SCP-

less strain, were cultivated at 30°C in BG-11 medium (Rippka et al., 1979) with 5 mM 

glucose and buffered with 10 mM N-tris(hydroxymethyl)-2-aminoethanesulfonic acid 

(TES)-NaOH (pH 8.0). Because of the light sensitivity of PSI-less strains, cells were 

cultured at a light intensity of 4 µmol photons m-2 s-1. Cell growth was monitored by 

measuring the optical density at 730 nm in a 1-cm cuvette using a Shimadzu UV-160 

spectrophotometer. 

 

Mutant construction — To generate strains with His-tagged PsbB (CP47), a pUC19-

psbB-His6-gentamycin(Gm)R plasmid was constructed. A DNA region upstream of the 

His6-tag including part of psbB gene from the HT-3 strain (Bricker et al., 1998) and a 

DNA region of wild-type Synechocystis downstream of the psbB gene stop codon were 

amplified by PCR with artificially generated restriction sites for EcoRI right after the stop 

codon of psbB. These two PCR fragments were digested with EcoRI and ligated. The 

ligated DNA fragment containing natural KpnI sites at both ends was cloned into the 

KpnI site of the pUC19 plasmid. The GmR gene from the pHP45-GmR plasmid was 
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introduced into this plasmid by using the EcoRI restriction site. The plasmid was 

introduced into the PSI-less and PSI-less/SCP-less strains to create the CP47-His PSI-less 

and CP47-His PSI-less/SCP-less strains. Insertion of the psbB-His gene at the desired 

location, replacing the native psbB gene, was confirmed by DNA sequencing, and 

segregation of the mutant genome in Synechocystis was confirmed by PCR. 

 

Isotope labeling and isolation of His-tagged complexes — CP47-His PSI-less cultures 

were grown to OD730~0.65 (exponential phase) or 0.9 (post-exponential phase) and were 

diluted four-fold in BG-11 medium containing 4.5 mM Na15NO3 and 2 mM 15NH4Cl. Cell 

samples were collected at 1, 3, 9, 24 and 48 hours after the dilution. Cell pellets were 

resuspended in Buffer A (50 mM 2-(N-morpholino) ethanesulfonic acid hydrate (MES)-

NaOH (pH 6.0), 10 mM MgCl2, and 25% glycerol), and broken by Bead Beater (BioSpec 

Products, Bartlesville, OK). Cell homogenates were prepared as described (Bricker et al., 

1998). The cell homogenate (at 0.2 mg/mL chlorophyll) was brought to 1% β-dodecyl 

maltoside and incubated for 35 min at 4°C and centrifuged. The supernatant was then 

loaded on an affinity column with 3 ml of Ni-NTA agarose (Qiagen). The column was 

washed with 10 bed (Ni matrix) volumes of Buffer A containing 0.04% β-dodecyl 

maltoside and 10 mM imidazole. CP47-His and its associated proteins were eluted with 

0.04% β-dodecyl maltoside and 100 mM imidazole in Buffer A. The eluted samples were 

precipitated with an equal volume of 50 mM MES-NaOH and 25% PEG 6000 (pH 6.0) 

and centrifuged. Isolated CP47-His complex samples were resuspended in Buffer A with 

0.04% β-dodecyl maltoside. 

 

Pigment and protein analysis — Isolated CP47-His complexes corresponding to 2 µg of 

chlorophyll were resuspended in 10 volumes of ice-cold 100% acetone with 0.1% NH4Cl, 
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and then incubated at -80 °C for 2 h and centrifuged. Chlorophyll from the supernatant 

was purified by HPLC using a Waters Spherisorb S10ODS2 semi-prep column (250 X 10 

mm) eluted with a water/methanol-acetone gradient, and the mass distribution was 

determined by MALDI-TOF (Vavilin et al., 2005). The pellet, which contained proteins, 

was dissolved in SDS sample buffer (86 mM Tris-HCl (pH 8.0), 2.5% SDS, 20 mM 

dithiothreitol, and 0.25 M sucrose) and loaded on an SDS/12-20% polyacrylamide 

gradient gel containing 7 M urea (Komenda et al., 2002). The gel was stained with 0.15% 

Coomassie Brilliant Blue R-250 in a solution of 50% methanol and 10% acetic acid. In-

gel digestion to produce peptides for analysis by mass spectrometry (LC-MS/MS) was 

carried out essentially as described (Shevchenko et al., 1996) using sequencing-grade 

modified trypsin (Promega/SDS Bioscience). For Blue Native (BN)-2D gels, isolated 

CP47-His complex samples corresponding to 2 µg chlorophyll were loaded.  BN-PAGE 

was performed on a 5-14% polyacrylamide gradient gel as described (Schagger and von 

Jagow, 1991). For separation of proteins in the second dimension, the lanes of the BN gel 

were excised and incubated with 25 mM Tris/HCl, pH 7.5 containing 1% SDS (v/v) for 

30 min at room temperature. The lanes were then layered onto 1.5-mm-thick SDS-PAGE 

gels. SDS-PAGE and gel staining were performed as described above. 

Peptides in trypsin digests were separated using a Dionex Ultimate 3000 liquid 

chromatography system equipped with both a HPG 3400M high pressure gradient pump 

and a LPG 3400 MB low pressure gradient pump together with a WPS300TB 

autosampler and a FLM 3100B column compartment. Solvents used for peptide 

chromatography were X: water with 0.1% formic acid and Y: acetonitrile with 0.1% 

formic acid. The LPG 3400 MB pump supplied 5% Y and 95% X at a constant flow rate 

of 5 µL/min and was used to load 3 µL trypsin-digested samples onto a Dionex Acclaim 

PepMap 100 C18, 5 µm, precolumn cartridge (300 µm ID x 5 mm length).  Sample 
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loading proceeded for 6 min, after which a valve in the column compartment placed the 

precolumn cartridge in line with a Dionex Acclaim PepMap 100 C18, 3 µm, capillary 

column (75 µm ID x 15 cm length) operated at a flow rate of 300 nL/min.  Tryptic 

peptides were then separated using the following linear gradient: 0 to 4 min, 5% Y; 4 to 

11.5 min, 5 to 20% Y; 11.5 to 51.5 min, 20 to 50% Y; 51.5 to 59 min, 50 to 65% Y; 59 to 

69 min, 65 to 95% Y; 69 to 72 min, 95% Y; 72 to 74 min, 95 to 5% Y, with the 

remainder at each time being solvent X. 

  Peptides eluting from the column were analyzed using a Bruker MicrOTOF-Q 

mass spectrometer equipped with an online nanospray source. Calibration was performed 

prior to running the first sample using sodium iodide clusters sprayed from a 200 µM 

solution in acetone.  The inlet capillary of the mass spectrometer was set at -1500 V 

relative to the spray needle, and nitrogen drying gas was supplied at 180 oC and a flow 

rate of 3 L/min. Spectra were acquired over an m/z range of 50 to 1800. Automatic 

MS/MS analysis with argon as the collision gas occurred at peak intensities greater than 

2000 counts, with doubly charged precursors preferred. Collision energy settings for 

doubly charged ions were 16 eV at m/z = 350, 28 eV at m/z = 800, and 44 eV at m/z = 

1200 and beyond. Collision energy settings for triply charged ions were 14 eV at m/z = 

350, 24 eV at m/z = 800, and 45 eV at m/z = 1200 or greater. Data were acquired with a 

digitizer rate of 2 GHz with a spectra summation rate of 2 Hz. After summation of two 

spectra, acquisition of MS/MS spectra on each precursor was excluded for one minute.  

 Data analysis, including deconvolution, was performed using Bruker Data 

Analysis 3.4 or 4.0 software and compound mass lists exported to Biotools 3.1 as Mascot 

Generic (mgf) files. Peak lists were then submitted online to the Matrix Science website 

(www.matrixscience.com) to search databases for peptide identification using the Mascot 

search engine. 
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The percentage of unlabeled protein remaining as a function of time was 

corrected for growth of the culture (OD730) during the time of labeling in order to be able 

to compare all data to those at time 0. For example, if cells doubled every 24 h and 

unlabeled protein at 24 h was 30% of the total intensity for that protein fragment (the 

remaining 70% of the protein being labeled), the % of unlabeled protein (relative to the 

amount at time 0) was entered as 2×30%=60% in Figure III-3 and III-4. 

 

Chlorophyll synthesis upon illumination — PSI-less/ΔchlL and PSI-less/SCP-less/ΔchlL 

strains were grown in regular BG-11 medium with 5 mM glucose and 10 mM TES/NaOH 

(pH 8.0) in darkness for a week (Wu and Vermaas, 1995). Subsequently, cells were 

diluted four-fold in BG-11 medium with 5 mM glucose and 10 mM TES/NaOH (pH 8.0) 

and also containing 4.5 mM Na15NO3 and 2 mM 15NH4Cl. Cells were then exposed to 

continuous illumination at an intensity of 4 µmol photons m-2 s-1.  Culture samples were 

collected after 1, 3, 6, 9, 12, and 24 hours. Pigments were extracted from the cells with 

100% methanol. Chlorophyll was purified by HPLC and analyzed by MALDI-TOF. 

 

Oxygen evolution — Oxygen evolution measurements were performed on intact cells at 

30 °C using a Clark-type electrode (Hansatech, Cambridge, UK). Electron acceptors were 

2.0 mM K3Fe(CN)6 and 0.4 mM 2,5-dimethyl-p-benzoquinone. The light intensity (after 

filtering through a water filter and a filter transmitting >550 nm light) was saturating 

(2,500 µmol photons m-2 s-1). 

 

Fluorescence spectroscopy — Fluorescence emission spectra of intact cells were 

measured at 77 K using a SPEX Fluorolog 2 instrument (SPEX Industries, Edison, NJ). 

Measurements were carried out with excitation and emission slit widths of 1 and 0.25 
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mm, respectively, which correspond to bandwidths of 4 and 1 nm. The excitation 

wavelength was 435 nm. 

 

Aminolevulinic acid (ALA) supplementation — PSI-less and PSI-less/SCP-less strains 

were propagated for 2 weeks in 15N BG-11 medium lacking unlabeled nitrate but 

containing 9 mM Na15NO3, 10 mM TES-NaOH (pH 8.0), and 5 mM glucose. As needed, 

cell cultures were diluted from OD730=0.9 to an OD730 of about 0.3 with fresh 15N BG-11 

medium. After two weeks, 4 mM ALA (14N) was added to the culture. After cells were 

grown for an additional 24 h, pigments were extracted from the cells with 100% 

methanol. Chlorophyll was purified by HPLC and analyzed by MALDI-TOF. 

 

Results 

Identification of PSII components — In order to determine the lifetime of PSII 

components, CP47-His PSI-less Synechocystis cells were grown in the presence of 15NO3
- 

and 15NH4
+ for a specific time period. After harvesting and breaking the cells, the total 

membrane fraction was solubilized using β-dodecyl maltoside, and PSII complexes were 

isolated via Ni-column chromatography. Subsequently, PSII proteins were separated by 

SDS-PAGE and analyzed by LC-MS/MS mass spectrometry. The PsbA (D1), PsbB 

(CP47), PsbC (CP43), PsbD (D2), PsbE and PsbF (cytochrome b559), PsbH, PsbO, and 

Psb27 proteins were identified in the gel (Figure III-1) and their identity was confirmed 

by mass spectrometry analysis. Mascot scores for PSII proteins are indicated in Table III-

1. All proteins were identified reliably, but the score for PsbF was rather low as only a 

single peptide was identified for this component. In addition, Slr0909, a protein of 

unknown function whose gene is located 3.5 kbp downstream of the psbB gene in the 

Synechocystis genome, and the translation elongation factor Tu (Sll1099) were identified 
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in the fraction purified on the Ni column. The pattern of proteins co-isolating with the 

His-tagged CP47 was identical in the PSI-less strain and the PSI-less/SCP-less strain 

(Figure III-1). 

 
Figure III-1: CBB-stained SDS-PAGE gel of components co-isolating with CP47-His 
purified via nickel affinity chromatography. A. Fraction from PSI-less cells obtained 
during the washing step (0.04% β-dodecyl maltoside and 10 mM imidazole in Buffer A). 
B. Protein ladder. C and D. Fractions from PSI-less cells (C) and PSI-less/SCP-less cells 
(D) obtained in the elution step (0.04% β-dodecyl maltoside and 100 mM imidazole in 
Buffer A). Proteins were identified by LC-MS/MS. TEF (translation elongation factor-
Tu, Sll1099) and Slr0909 co-purified with the PSII proteins. 
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Table III-1: Average Mascot scores of mass spectrometric identification of tryptic 
peptides of PSII proteins. The average Mascot score for each protein was calculated 
from the individual Mascot scores of each sample collected within 9 hours of the start of 
15N-labeling for all proteins except the PsbA protein; for PsbA, only samples collected 
within 3 hours of the start of 15N-labeling were used. Longer labeling times had 
insufficient unlabeled peptides that are used for determining the Mascot score. 

 

PSII dynamics — When using a stable isotope (15N) rather than traditional pulse-chase 

labeling with a radiolabeled tracer, both old (unlabeled) and new (labeled) peptides can 

be monitored at the same time using mass spectrometry. In Figure III-2, an example of 

the analysis is shown for D1 and CP43 peptides. In Figure III-2A the peptides are from 

close to the N-terminus (residues 65-85 of D1, unlabeled base mass of 2,057; and 123-

139 of CP43, unlabeled base mass of 2,052).  These masses increase to 2,080 and 2,071, 

respectively, if these peptides are fully 15N labeled. Figure III-2A shows LC-MS mass 

spectra of the D1 peptide after 1 h of 15N-labeling and of the CP43 peptide after 9 h of 

labeling. The group of peaks on the left side of the spectra represents old peptides 

(unlabeled); slightly heavier molecules are due to natural abundance of isotopes. The 

group of peaks to the right side of the spectra consists of newly synthesized peptides 

(fully and partially 15N-labeled). The m/z values are half the theoretical mass due to the 

double charge of the peptide: (M+2H)2+. The spectra of these peptides at 0 h labeling 

time (Figure III-2, inserts) show a distribution of peaks contributed mainly by the natural 

abundance of 13C. The distinction between peaks with 15N-label and isotope peaks due to 

natural isotope abundance is clear (Figure III-2). By comparing the summed amplitude of  

Protein PsbA PsbB PsbC PsbD PsbE PsbF PsbH PsbO Psb27 

Average 
Mascot 
Score 

245±93 689±222 540±152 382±131 191±45 40±14 72±28 330±114 169±87 
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Figure III-2: LC-MS/MS spectra of peptides from near the N-terminus (A) and C-
terminus (B) of PsbA (D1) that was 15N-labeled for 1 h (1) and of PsbC (CP43) that 
was 15N-labeled for 9 h (2) in PSI-less cells. The inserts show controls that were labeled 
for 0 h. All peptides were detected as doubly charged (z=2) molecules. 
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the peaks of old vs. new peptides, the ratio between the two can be determined.  The N-

terminal peptide of the D1 protein had only 46% unlabeled peptides left after 1 h of 15N 

labeling, indicating rapid turnover of this protein even at low light intensity (4 µmol 

photons m-2 s-1) (Figure III-2A). In contrast, CP43 peptides still were 59% unlabeled after 

9 h of 15N labeling (Figure III-2A).  

Ribosome pausing has been postulated to occur upon translation of psbA message 

(Zhang and Aro, 2002). If so, then the labeling rate of a C-terminal region of the D1 

protein is expected to have a delay relative to that of the N-terminal region. In order to 

test whether significant ribosome pausing occurs that would delay the labeling of C-

terminal regions of the D1 protein, the labeling of a D1 peptide near the C-terminus 

(Figure III-2B) was compared with that shown in Figure III-2A. After 1 h of labeling the 

amount of labeled D1 near the C-terminus was 52%, whereas it was 54% near the N-

terminus. This suggests that if ribosome pausing occurs, it is no more than a couple of 

minutes. A similar observation was made for labeling of a CP43 peptide near the C-

terminus: after 9 h the amount of labeling (41%) was identical for a peptide near the C-

terminus vs. near the N-terminus (Figure III-2).  

Labeling of the PSII proteins as well as chlorophyll was followed over time 

(Figure III-3). The cell number increased during the 15N-labeling period, and therefore 

the total amount of PSII proteins increased as well.  What is indicated in Figure III-3A is 

the amount of remaining unlabeled protein in the cells over the labeling period relative to 

the amount of unlabeled protein at time 0. Interestingly, the amount of unlabeled material 

initially increased in the first 6-9 hours for many of the PSII proteins (except PsbA and 

PsbD) as well as for chlorophyll. This increase in the amount of unlabeled protein largely 

was absent in the PSI-less/SCP-less strain (Figure III-3B). The half-lives of PSII 

components were determined by monitoring the disappearance of old (unlabeled)  
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Figure III-3: Turnover of PSII components from PSI-less (A) and PSI-less/SCP-less 
(B) cells that were harvested in post-exponential growth phase (OD730~0.9). The 
amount of unlabeled proteins and chlorophyll in these strains was followed during a 48-h 
period after the start of 15N-labeling. 100% indicates the amount present at the start of 
labeling. PsbA:  with solid line; PsbB:  with solid line; PsbC:  with solid line; 
PsbD:  with solid line; PsbE:  with solid line; PsbF:  with solid line; PsbH:  with 
dashed line; PsbO:  with dashed line; Psb27:  with dashed line; and chlorophyll 
(Chl):  with dashed line. Numbers on the y-axis represent the percentage of unlabeled 
proteins/chlorophyll relative to time 0. Shown are the average results of two independent 
experiments ± S.D. 
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peptides in the time period between 9 and 48 hours after the start of labeling, whereas for 

PsbA and PsbD the time range starting at time 0 h was used (Table III-2). Table III-2 

shows that the half-life time of most PSII proteins is independent of the presence of SCPs 

and that the various PSII proteins have greatly different lifetimes. The half-life of the D1 

protein was 1.5 h in the PSI-less strain whereas the D2 protein was 5-fold more stable 

with a half-time of 7.5 h. The CP47 and CP43 proteins and the PsbH protein that 

participates in the binding of chlorophyll together with CP47 (Muh et al., 2008) are about 

2-fold more stable than D2, with half-times of 13-15 h. The cytochrome b559 proteins 

(PsbE and PsbF proteins), which are the anchor proteins for PSII (Stewart and Brudvig, 

1998), are the most stable intrinsic PSII proteins with half times of about a day. The two 

luminal proteins, PsbO and Psb27, have lifetimes similar to that of some of the slower-

degrading integral membrane proteins.  PsbO, the Mn-stabilizing protein in the oxygen-

evolving complex, has a particularly long half-life (24-33 hours), presumably because it 

can be dissociated from damaged PSII and reused for repaired/new PSII. The Psb27 

protein, which is an assembly factor mainly associated with CP47 and CP43 of 

monomeric PSII and non-oxygen-evolving PSII complexes (Kashino et al., 2002; 

Cormann et al., 2009), had a 13-15 h halftime. Interestingly, in the PSI-less background 

strain chlorophyll had a half-life time of about 40 h, longer than any of the PSII proteins.  

This illustrates that chlorophyll is largely reutilized when chlorophyll-binding proteins 

turn over. 

Absence of SCP has been shown to reduce the lifetime of chlorophylls (Vavilin 

et al., 2007). Removal of SCPs does not greatly alter the half-life time of most PSII 

proteins. In the PSI-less/SCP-less mutant, the lifetimes of the CP43, PsbE, PsbF, and 

Psb27 proteins were slightly shorter compared to those in the PSI-less strain (Table III-1), 
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Table III-2: Comparison of half-lives and lag time of PSII components in PSI-less 
and PSI-less/SCP-less strains. The half-life times were calculated from the decrease in 
the percentage of unlabeled protein correcting for the increase in unlabeled protein that 
occurred for the longer-lived polypeptides and the chlorophyll, particularly in PSI-less 
cells in post-exponential phase (OD730~0.9). Listed are the average results of two to five 
independent experiments ± S.D. 
 

 Half-life time (h) / lag time (h) 

Strains PSI-less PSI-less/SCP-less 

PsbA (D1) 1.5±0.5a < 1 2.5±0.5 < 1 

PsbB (CP47) 15±1 6 15±2 1 

PsbC (CP43) 13±1 3 11±2 1 

PsbD (D2) 7.5±1 < 1 7±0.5 < 1 

PsbE 28±2 7 25±2 2 

PsbF 23±3 6 20±2 2 

PsbH 14±1 3 15±1 1 

PsbO 33±4 6 24±2 1 

Psb27 15±1 3 13±1 1 

Chlorophyll 40±2 9 20±1 3 
 

a In exponential growth phase (OD730~0.65) the half-life time of the D1 protein is 1 h. 
This difference is due to a small contribution of unlabeled D1 that is incorporated into 
PSII complexes in cells at higher density (OD730~0.9). 
 
and the PsbO lifetime seemed to have been affected a little more. However, the biggest 

effect of the SCP deletion was on the lifetime of chlorophyll, which was about 50% 

shorter relative to that in the PSI-less strain. The fact that absence of SCPs affects the 

lifetime of PSII-associated chlorophyll more than that of PSII proteins confirms the 

notion that SCPs aid in chlorophyll stabilization and recycling upon PSII degradation and 

reassembly (Vavilin et al., 2007).  However, as the chlorophyll lifetime in the PSI-

less/SCP-less strain exceeds that of the main chlorophyll-binding PSII proteins, CP47 and 

CP43, some chlorophyll recycling occurs even in the absence of SCPs. 
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A pool of nascent PSII components — As indicated in Figure III-3 and Table III-2, in the 

PSI-less strain there was a 3 to 9 h period after the start of labeling during which the 

amount of unlabeled PSII proteins (except D1 and D2) as well as chlorophyll continued 

to increase.  This cannot be due to a slow incorporation of label into amino acids as 

otherwise we should also have observed a significant lag for the D1 and D2 polypeptides. 

Our interpretation of the increase in unlabeled complexes is that there is a significant 

amount of PSII proteins and chlorophyll in thylakoid membranes that is not incorporated 

into mature PSII complexes, and that provides parts for PSII assembly and repair. 

 
Figure III-4: Turnover of PSII components from PSI-less cells that were harvested 
in the exponential growth phase (OD730~0.65). The amount of unlabeled proteins and 
chlorophyll in the strain is followed during a 48-h period after the start of 15N-labeling. 
100% indicates the amount present at the start of labeling. PsbA:  with solid line; 
PsbB:  with solid line; PsbC:  with solid line; PsbD:  with solid line; PsbE:  with 
solid line; PsbF:  with solid line; PsbH:  with dashed line; PsbO:  with dashed line; 
Psb27:  with dashed line; and chlorophyll (Chl):  with dashed line. Numbers on the 
y-axis represent the percentage of unlabeled proteins/chlorophyll relative to time 0. 
Shown are the average results of three independent experiments ± S.D. 
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To test our interpretation of the increase in unlabeled polypeptide being due to a 

reservoir of unfinished PSII complexes in the cell, the labeling experiment with PSI-less 

cells was repeated with cells from exponential phase (OD730~0.65) instead of post-

exponential phase (OD730~0.9) as in exponential phase the reservoir may be expected to 

be smaller due to a faster de novo PSII biosynthesis (Figure III-4). The lifetimes of the 

PSII components were similar to those measured in cells in post-exponential phase. 

However, the increase in the amount of unlabeled protein is much less and the time over 

which an increase is observed is much shorter. These results support our interpretation 

and demonstrate that cells in the post-exponential growth phase tend to accumulate PSII 

proteins and chlorophyll to be ready for later use. 

 

The role of SCPs — As indicated in Figure III-3B, the increase in the amount of 

unlabeled PSII protein in cells in the post-exponential phase is much smaller in the PSI-

less/SCP-less strain relative to in the PSI-less control, whereas the half-life time of the 

PSII proteins is not much affected.  This is very much comparable to what was shown 

above for cells in exponential phase.  These data suggest that pools of nascent PSII 

proteins and protein-bound chlorophyll may be stabilized by SCPs. 

In order to test the interpretation that SCPs are involved with stabilization of 

nascent PSII complexes and/or intermediates, isolated PSII samples from the PSI-less 

strain and the PSI-less/SCP-less strain were run on BN-SDS PAGE.  As indicated in 

Figure III-5, the main difference between PSII complexes from the PSI-less and PSI-

less/SCP-less strains was that the RC47(1) complex, corresponding to the PSII monomer 

form without the CP43 protein, was missing in the PSII preparation from the PSI-

less/SCP-less strain. However, the RC47(2) band, corresponding to the RC47 dimer, was 
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Figure III-5: BN-PAGE followed by SDS-PAGE gel for PSII complexes co-isolating 
with CP47-His from the PSI-less strain (A) and the PSI-less/SCP-less strain (B). The 
bands on BN-PAGE (top) are unstained and are colored by the native chlorophyll and 
Coomassie Brilliant Blue. The SDS-PAGE gel was stained with Coomassie Brilliant 
Blue. RCC(2): mature PSII dimer; RCC-RC47: PSII dimer lacking CP43 in one of the 
monomers; RC47(2): PSII dimer lacking CP43 in both monomers; RCC(1): PSII 
monomer; and RC47(1): PSII monomer lacking CP43. 
 
present in preparations from both strains. In PSII biogenesis, RC47 complexes are 

assembled from RC complexes (D1, D2, cytb559 and PsbI proteins) and sub-CP47 

complexes (CP47, PsbH and SCP proteins) (Promnares et al., 2006, Nixon et al., 2010). 

SCP association could aid the stability of the RC47 complex before dimerization occurs.  
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These observations suggest that our interpretation of SCPs stabilizing intermediates in 

formation of the mature PSII complex is reasonable. 

Another role of the SCPs involves chlorophyll binding and stabilization, and 

earlier work has shown that deletion of SCPs in the PSI-less background strain also 

affects the chlorophyll content per cell and the accumulation of chlorophyll precursors 

(Xu et al., 2002; Xu et al., 2004). However, the location of this SCP effect has not yet 

been pinpointed. The stability of PSII is not affected by SCPs as shown in Table III-2. In 

line with earlier observations (Vavilin et al., 2007), we do not see evidence of SCPs 

stably binding a large amount of chlorophyll as the oxygen evolution rate in the PSI-less 

strain was 2480±80 µmol O2 (mg Chl)-1 h-1 whereas in the PSI-less/SCP-less strain this 

rate was 2730±180 µmol O2 (mg Chl)-1 h-1. Thus, the number of PSII reaction centers on 

a per-chlorophyll basis is similar regardless of the presence of SCPs.  

Earlier work had indicated the lack of accumulation of chlorophyll precursors in 

SCP-less strains (Xu et al., 2004) suggesting an early block in chlorophyll biosynthesis in 

the absence of SCPs. The 15N-labeling approach provides an opportunity to monitor the 

effects of the absence of SCPs in more detail. After growth of the PSI-less/ΔchlL and 

PSI-less/SCP-less/ΔchlL strains in darkness for 5 days, the strains had little chlorophyll 

left as ChlL is required for light-independent protochlorophyllide reduction and 

chlorophyll synthesis (Figure III-6). After incubation in darkness, the culture was diluted 

four-fold with medium containing 4.5 mM Na15NO3 and 2 mM 15NH4Cl and the culture 

was transferred to continuous illumination at 4 µmol photons m-2 s-1.  As indicated in 

Figure III-6, during the first 6 hours of illumination, the PSI-less/ΔchlL strain synthesized 

primarily labeled (15N) chlorophyll along with some unlabeled (14N) chlorophyll. 

Unlabeled chlorophyll may have been synthesized in part from accumulated  
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Figure III-6: Unlabeled (14N) and labeled (15N) chlorophyll from the PSI-less/ΔchlL 
and PSI-less/SCP-less/ΔchlL strains upon illumination. Cells were grown in the dark 
for 5 days. The cultures were illuminated after they had been diluted with three volumes 
of BG-11 medium containing Na15NO3 and 15NH4Cl. Chlorophyll was extracted from the 
cells for analysis at the times indicated. Open and closed symbols represent unlabeled 
(14N) and labeled (15N) chlorophyll, respectively, in the PSI-less/ΔchlL (squares) and PSI-
less/SCP-less/ΔchlL (triangles) strains. Shown are the average results of two independent 
experiments ± S.D. 
 
protochlorophyllide or other available precursors. However, in the PSI-less/SCP-

less/ΔchlL strain the amount of unlabeled chlorophyll decreased, and labeled (15N) 

chlorophyll was synthesized very slowly (about 20-fold slower than in the PSI-less/ΔchlL 

strain). The decrease in unlabeled chlorophyll and the slow increase in labeled 

chlorophyll suggest that in the SCP-less mutant the amount of chlorophyll precursors is 

greatly diminished, and tetrapyrrole biosynthesis is impaired.  

A very slow synthesis of PSII in the PSI-less/SCP-less/ΔchlL strain was 

confirmed by 77 K fluorescence emission spectra after 24 hours of illumination (Figure 

III-7). A peak at 695 nm corresponds to CP47-associated chlorophyll and reflects intact  
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Figure III-7: 77 K fluorescence emission spectra of Synechocystis sp. PCC 6803 cells 
lacking PSI and ChlL. Cells had been grown in darkness for one week and were then 
transferred to continuous light (4 µmol photons m-2 s-1) for 0 h (PSI-less/ΔchlL: dotted 
line; PSI-less/SCP-less/ΔchlL: dashed line) or 24 h (PSI-less/ΔchlL : solid line; PSI-
less/SCP-less/ΔchlL: dashed/dotted line). The spectra were normalized to 100 at 683 nm, 
where phycobilisomes and some chlorophylls emit maximally. The excitation wavelength 
was 435 nm. a.u., arbitrary units. 
 
PSII complexes. While in the PSI-less/ΔchlL strain a significant amount of PSII 

complexes was present after 24 h of illumination, in the PSI-less/SCP-less/ΔchlL strain 

only very little 695 nm emission was observed. 

The very slow chlorophyll biosynthesis and the lack of a large amount of 

unlabeled chlorophyll synthesis upon illumination of the PSI-less/SCP-less/ΔchlL strain 

suggest that early intermediates in chlorophyll biosynthesis may have been depleted. 

Therefore, we wished to determine whether aminolevulinic acid (ALA), an early 

intermediate in tetrapyrrole biosynthesis, was depleted in strains lacking SCPs. As  
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Figure III-8: MALDI-TOF mass spectra of chlorophyll isolated from 15N-grown 
PSI-less cells with (left) or without (right) SCPs that were supplemented with 14N-
ALA for 0 (top) or 24 (bottom) hours. Prior to the experiment, cells were grown in 15N 
medium, containing Na15NO3, for 10 days, and the culture was diluted with 15N BG-11 to 
OD730=0.35 at time 0. Unlabeled (14N) aminolevulinic acid (ALA) was added at time 0 to 
a final concentration of 4 mM. 
 
labeled ALA was not readily available, PSI-less and PSI-less/SCP-less strains, carrying 

normal ChlL, were grown in 15N medium for two weeks (the culture was diluted with 

fresh medium as needed) so that chlorophyll in the cells was fully labeled. The cultures 

were then supplemented with 4 mM 14N-ALA, and cells were grown for 24 hours with 

added ALA. If cells can readily make their own ALA, then ALA and thereby chlorophyll 

will be 15N-labeled, whereas if cells are limited in their ALA supply and need to utilize 

exogenous ALA, then newly synthesized chlorophyll will be mostly unlabeled. Pigments 

were extracted from both strains, chlorophyll was purified by HPLC, and chlorophyll was 

analyzed by MALDI-TOF. As shown in Figure III-8, chlorophyll from both strains was 

fully 15N-labeled at 0 h before the ALA supplementation, as expected. After 24 h of ALA 

supplementation, during which time the chlorophyll amount in the culture virtually 

doubled, the mass spectrum of chlorophyll from the PSI-less strain showed that the ALA 
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used for chlorophyll synthesis primarily was 15N-ALA, which cells had synthesized 

themselves. In contrast, newly synthesized chlorophyll from the PSI-less/SCP-less strain 

was primarily unlabeled as the amounts of labeled (original) and unlabeled (newly 

synthesized) chlorophyll were about the same. These results suggest that the ALA 

amount is limiting as a consequence of the SCP deletion and that therefore SCPs appear 

to play an important role in the very early steps of tetrapyrrole biosynthesis (ALA 

formation). 

 

Discussion 

PSII protein and chlorophyll turnover — Previous work with radioisotopes had indicated 

that different PSII polypeptides differed in their lifetimes (Schuster et al., 1988; Mattoo 

et al., 1999), and work from our group had indicated that the chlorophyll lifetime in the 

cell was very long (Vavilin et al., 2005; Vavilin et al., 2007). It is clear that careful 

orchestration of the synthesis, assembly, and repair of photosynthetic complexes is 

required, but until now very few data were available on the lifetimes of longer-lived 

protein components, and there is little known about how this orchestration may occur and 

how it is regulated.  Using stable-isotope labeling combined with mass spectrometry, 

both labeled (new) and unlabeled (old) peptides can be detected. The rate of 

disappearance of unlabeled peptides over time determines the turnover rate of the 

proteins, and this approach allowed an accurate and comprehensive determination of 

lifetimes of PSII components. 

PSII complexes were isolated from PSI-less Synechocystis cultures grown at a 

light intensity of 4 µmol photons m-2 s-1, making use of a His-tag attached to the PsbB 

(CP47) protein.  Therefore, only polypeptides and complexes associated with PsbB with 

an exposed C-terminal His tag will be detected.  The fraction obtained after His-tag 
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affinity purification contained at least nine PSII proteins (seven intrinsic proteins 

including the reaction center proteins PsbA and PsbD, the chlorophyll-binding proteins 

PsbB and PsbC, the cytochrome b559 proteins PsbE and PsbF, and PsbH, and two lumenal 

proteins (PsbO and Psb27)). Other PSII proteins may not have stained sufficiently well to 

be detected. Moreover, a translation elongation factor, Tu (Sll1099), and Slr0909 co-

isolated with the PSII complex. In a previous study, Sll1099 was also seen from co-

isolating with PSII-associated His-ScpB (Kufryk et al., 2008). Slr0909 is a protein of 

unknown function, but it is encoded about 3 kbp downstream from psbB and slr0909 

could possibly be co-transcribed with psbB and an intervening gene of unknown function. 

As indicated in Table III-2, PSII proteins have very different half-life times 

ranging from 1.5 hours up to 33 hours. Therefore, PSII proteins (or groups of such 

polypeptides) turn over and are replaced independently from each other, and remaining 

PSII proteins appear to be reused for assembly into a functional PSII complex. Our 

results confirm the radiolabeling-based interpretations of other groups (Mattoo et al., 

1984; Ohad et al., 1984) that rapidly synthesized D1, the PSII protein with the shortest 

lifetime, is actually incorporated into PSII complexes.  The fast turnover of D1 in the 

PSII complex (5 to 20 times faster than turnover rates of the other PSII proteins) poses a 

challenge for the PSII complex as D1 is a central rather than a peripheral part of the 

complex. However, the lipids around the reaction center may facilitate the replacement of 

damaged D1 proteins (Loll et al., 2007). The other PSII proteins from the damaged 

complex may stay together and be re-assembled around a new D1 polypeptide, or 

subcomplexes may form a pool from which new complexes are formed (Smith and 

Howe, 1993; Zak et al., 2001; Nixon et al., 2005).  In the latter case, PSII complexes may 

be assembled from “old” polypeptides originating from different PSII complexes. 
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The lifetime of chlorophyll in various mutant strains has been studied earlier by 

means of stable-isotope labeling, and because chlorophyll is much more stable than 

chlorophyll-binding proteins according to the lifetimes of chlorophyll-binding proteins 

estimated from the pulse-chase method, we have suggested that chlorophyll is recycled 

upon degradation of chlorophyll-binding PSII components (Vavilin et al., 2007). In this 

study, we experimentally support the earlier interpretations by comparing the half-life 

times of the main chlorophyll-binding proteins in PSII (D1, D2, CP47, and CP43) 

(t1/2=1.5-15 h) with the half-life time of chlorophyll extracted from isolated PSII (t1/2=40 

h) (Table III-2). Therefore, chlorophyll in damaged chlorophyll-binding proteins can be 

re-utilized. 

 

SCPs and chlorophyll reutilization — In cyanobacteria the SCP proteins bind 

chlorophyll, may associate damaged PSII centers, and serve as a temporary pigment 

reservoir while PSII components are being replaced (Storm et al., 2008, Promnares et al., 

2006, Yao et al., 2007, Xu et al., 2004). We have now analyzed how SCPs affect the 

lifetimes of PSII polypeptides and chlorophyll. In line with earlier observations (Vavilin 

et al., 2007), the lifetime of PSII chlorophyll was reduced by half in the PSI-less/SCP-

less strain compared to the PSI-less strain. However, the lifetimes of the chlorophyll-

binding proteins in PSII (D1, D2, CP47, and CP43) and of PsbH that participates in the 

binding of chlorophyll remained essentially unchanged (Table III-2). This indicates that 

SCPs function primarily in reutilization of chlorophyll and do not affect the stability of 

chlorophyll-binding proteins.   

Interestingly, whereas the lifetimes of PSII proteins were not changed or were 

decreased slightly in the SCP-less strain, the lifetime of D1 was increased (Table III-2 

and Figure III-3). The longer lifetime of D1 may have been caused by slower assembly of 
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PSII due to the lack of chlorophyll availability, which affects D1 translation and 

processing in Synechocystis (He and Vermaas, 1998). Chlorophyll availability is thought 

to be lower in the absence of SCPs as the rate of chlorophyll synthesis was decreased 4-

fold in the PSI-less/SCP-less strain, and the chlorophyll content per cell was almost 4-

fold less than in the PSI-less strain (Figure III-6) (Vavilin et al., 2007, Xu et al., 2004). 

Therefore, during the replacement of the D1 protein in the PSII repair cycle, the proteins 

may be waiting for available chlorophylls to assemble PSII, which appears to take longer 

in the absence of SCPs. 

 

SCPs stabilize nascent PSII protein complexes — As shown in Figure III-3, unlabeled 

PSII proteins (except D1 and D2) increased for the first 3 to 9 hours of 15N-labeling if 

late-log cultures are used and SCPs are present. The D1 and D2 proteins did not show 

this increase in unlabeled protein, excluding the possibility that there is an extensive pool 

of unlabeled amino acids that remains available for many hours after the start of labeling.  

Instead, the most plausible explanation is that the increase in unlabeled protein originates 

from PSII proteins that were present at time 0 but that were not associated with PsbB 

with an exposed C-terminal His-tag at that time. Figure III-5 shows that the His-tag-

isolated samples consist of mature PSII complexes in monomer and dimer forms as well 

as RC47 (PSII without CP43) dimers and RC47/mature PSII dimers.  These complexes 

are in line with what was observed previously (Herranen et al., 2004; Komenda et al., 

2006).  However, RC47 monomers were found to occur only in the presence of SCPs, 

suggesting that SCPs can stabilize biosynthetic intermediates of PSII complexes. Indeed, 

even when cells are in late-log stage, in the PSI-less/SCP-less mutant very little synthesis 

of unlabeled PSII components is observed after the start of labeling (Figure III-3B), 
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suggesting that no significant accumulation of such PSII biosynthesis intermediates 

occurs if SCPs are absent.  

SCPs have been found to be associated with PSII (Yao et al., 2007; Kufryk et al., 

2008). Analysis of isolated His-tagged ScpD complexes suggests that ScpD binds to 

CP47 proteins in the vicinity of PsbH, and SCPs have been found to be associated with 

PSII throughout its biogenesis, from just CP47 proteins to monomeric PSII complexes 

(Promnares et al., 2006; Yao et al., 2007). Therefore, even though SCPs do not stabilize 

PSII components in mature PSII complexes (Table III-2), there is significant SCP-

induced stabilization of nascent PSII complexes. 

 

SCPs and ALA biosynthesis — In addition, SCPs also appear to be involved, directly or 

indirectly, in ALA biosynthesis. This effect results in slow chlorophyll biosynthesis in the 

absence of SCPs (Figure III-6) and in slow generation of PSII complexes (Figure III-7). 

In contrast to the PSI-less strain that does not use much exogenous ALA and that 

therefore can generate and utilize sufficient internal ALA, the PSI-less/SCP-less mutant 

readily uses exogenous ALA for chlorophyll biosynthesis (Figure III-8). The most 

straightforward interpretation of these results is that deletion of SCPs in the PSI-less 

background strain severely impairs the ALA biosynthesis pathway.  However, ALA 

synthesis is thought to occur in the cytoplasm (Joyard et al., 2009), and SCPs are 

transmembrane proteins located in thylakoid membranes. This suggests that the SCP-

mediated regulation of ALA synthesis is not a direct effect but rather may be influenced 

by intermediate events.   

ALA synthesis is a tightly regulated step that is negatively regulated by, for 

example, protochlorophyllide that accumulates in darkness in plants (Richter et al., 

2010).  However, based on results of earlier studies, there is no accumulation of 
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protochlorophyllide or earlier intermediates such as Mg-protoporphyrin IX in PSI-less 

and PSI-less/SCP-less strains if chlorophyll biosynthesis has not been impaired (Xu et al., 

2004). However, chlorophyllide, which is chlorophyll without the phytyl tail, 

accumulates as the chlorophyll biosynthesis rate and chlorophyll content per cell decrease 

in the PSI-less/SCP-less strain (Xu et al., 2004). It is possible that chlorophyllide, which 

is more hydrophilic than chlorophyll, may serve as a signal for ALA biosynthesis 

enzymes to negatively regulate the output of ALA, thus reducing overall chlorophyll 

biosynthesis in the PSI-less/SCP-less strain (Figure III-8). Indeed, in plants reduced 

expression and activity of chlorophyll synthase also has been shown to cause a feedback-

controlled inactivation of ALA synthesis (Shalygo et al., 2009). 

In conclusion, stable-isotope labeling (15N), mass spectrometry and well-defined 

mutants are a powerful combination to provide insights in assembly and synthesis of PSII 

polypeptides and associated cofactors; chlorophyll already is associated with 

subcomplexes that are intermediates in PSII synthesis. SCPs aid the stability of nascent 

PSII complexes in PSII biogenesis and also affect the flux from ALA through the 

tetrapyrrole biosynthesis pathway to chlorophyll. This work illustrates the multiple levels 

of control and regulation that pigments and SCPs have in PSII synthesis and assembly. 
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CHAPTER IV. LIFETIMES OF PHOTOSYSTEM I AND PHOTOSYSTEM II 

PROTEINS IN THE CYANOBACTERIUM SYNECHOCYSTIS SP. PCC 6803 

 

Abstract 

In order to study the dynamics of photosystem II (PSII) and photosystem I (PSI), the 

lifetimes of photosynthetic proteins were determined by a combined stable-isotope 

labeling (15N) / mass spectrometry method. Upon labeling, newly synthesized proteins 

and chlorophyll were heavier due to isotope incorporation, and old and new pew proteins 

in the two photosystems could be distinguished. The lifetimes of PSI and PSII proteins 

ranged from 30 to 75 h and from less than 1 h to 11 h, respectively, and nascent PSI 

proteins accumulate in the thylakoid membrane. PSI complexes indeed were much more 

stable than PSII complexes, and the lifetimes of PSII proteins at higher light intensity 

were decreased from those determined at lower light intensity in a previous study. 

However, the lifetime of chlorophyll was longer than that of chlorophyll-binding 

proteins, implying that chlorophyll is recycled. Moreover, the dynamics of PSI and PSII 

complexes showed that the interchange between monomeric and multimeric forms of PSI 

and PSII, if multimers indeed are not artifacts, occurs on a timescale of about an hour or 

less. In the SCP-less mutant, the lifetimes of most PSI proteins and the amount of nascent 

PSI proteins in the membrane were not affected. Also, from an earlier study, the rate of 

chlorophyll biosynthesis and the lifetime of chlorophyll did not change. These results 

indicate that the function of SCPs might not involve the PSI complex and its proteins. 



 

73 

Introduction 

Oxygenic photosynthesis in cyanobacteria, algae, and plants is catalyzed mainly by two 

multisubunit complexes, photosystem I (PSI) and photosystem II (PSII). PSI and PSII are 

embedded in the thylakoid membrane and are composed of multiple protein subunits that 

bind chlorophyll, carotenoids, and other cofactors. Electrons provided by PSII originate 

from water, and PSI provides additional energy from light to produce NADPH. A proton 

gradient established across the thylakoid membrane upon electron transfer is used for 

ATP synthesis, and NAPDH is utilized for cellular processes including carbon fixation 

leading to the synthesis of organic compounds. 

In cyanobacteria, the PSII complex consists of 20 protein subunits, together 

binding 35 chlorophylls; moreover, extrinsic proteins are located on the lumenal side 

(Guskov et al., 2009). According to BN gel results and PSII crystal structures, 

cyanobacterial PSII complexes are present in dimeric and monomeric forms (Guskov et 

al., 2009; Herranen et al., 2004). However, the composition and structure of PSI 

complexes is very different than that of PSII complexes. Compared with PSII, PSI has 

less protein subunits (12 of them) but a lot more chlorophyll (96 of them), and its 

extrinsic proteins are located on the cytosolic side (Jordan et al., 2001). Cyanobacterial 

PSI complexes were found in trimeric and monomeric forms in vitro (Herranen et al., 

2004; Jordan et al., 2001), but trimeric PSI was never observed in the crystal structure 

and BN protein gels so far in plants (Jensen et al., 2003; Amunts et al., 2007). However, 

the most interesting difference between the two photosystems is their stability. The major 

challenge that PSII complexes face is the photodamage that is caused by oxidizing 

species. Some components of PSII complexes show a high turnover rate; in particular the 

D1 protein that binds many cofactors including part of P680 turns over on the timescale 
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of about an hour (Ohad et al., 1984). In contrast to PSII, PSI is more stable. Therefore, 

the dynamics of PSII and PSI complexes may be different. 

From previous studies, in the cyanobacterium Synechocystis sp. PCC 6803 the 

lifetimes of PSII components at low light intensity (4 µmol photons m-2 s-1) had been 

determined to range from 1.5 h for the D1 protein up to 40 h for PSII-associated 

chlorophyll (Yao et al., submitted). However, the lifetime of chlorophyll extracted from 

whole cells in wild type is over 200 h (Vavilin et al., 2007). As most chlorophyll is 

associated with PSI in cyanobacteria (Guskov et al., 2009; Jordan et al., 2001), this 

would suggest that PSI-associated chlorophyll is more stable than PSII chlorophyll. In 

order to gain comprehensive knowledge in the lifetimes of PSI and PSII proteins and 

their associated chlorophyll, stable-isotope labeling (15N), BN/SDS-PAGE, and mass 

spectrometry were applied to monitor the fate of old and newly synthesized proteins over 

time. In addition, Small Cab-like proteins (SCPs), single transmembrane helix proteins, 

have shown to be involved in PSII chlorophyll recycling. There is also evidence that 

SCPs stabilize PSI complexes (Wang et al., 2008). In this study, the lifetimes of PSII and 

PSI proteins and chlorophyll will be determined with and without SCPs, and the 

dynamics of PSII and PSI complexes between their different forms will be discussed. 

 

Materials and Methods 

Strains and growth conditions  The wild-type (WT) and ΔscpABCDE (SCP-less) 

strains (Xu et al., 2002, Xu et al., 2004) of Synechocystis sp. PCC 6803 were grown 

photoautotropically in liquid BG-11 medium (Rippka et al., 1979) at 30 °C at a light 

intensity of 75 µmol photons m-2 s-1. Cell growth was monitored by measuring the optical 

density at 730 nm in a 1-cm cuvette using a Shimadzu UV-160 spectrophotometer. 
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Isotope labeling and membrane preparation  Cell cultures were grown to an 

OD730~0.65 and were diluted four-fold in BG11 medium containing 4.5 mM Na15NO3 

and 2 mM 15NH4Cl. Cell samples were collected at 3, 9, 24 and 48 hours after the 

dilution. Cell pellets were resuspended in a mixture of 50 mM 2-(N-morpholino) 

ethanesulfonic acid hydrate (MES)-NaOH (pH 6.0), 10 mM MgCl2, and 25% glycerol, 

and broken by Bead Beater (BioSpec Products, Bartlesville, OK). Cell membranes were 

prepared exactly as described (Bricker et al., 1998) and were stored at -80°C. 

 

PAGE  Wild type and SCP-less membrane samples corresponding to 10 µg of 

chlorophyll were solubilized in 1% β-dodecyl maltoside for 45 min on ice in darkness; 

subsequently 0.1 volume of loading solution containing 750 mM aminocaproic acid and 

5% Coomassie Brilliant Blue G-250 were added. Protein complexes in the membrane 

were separated in the first dimension by blue-native (BN) electrophoresis at 4 °C in a 5-

14% polyacrylamide gel according to Schagger and von Jagow (1991). For the second 

dimension, the BN gel lanes were incubated for 45 min at room temperature in a solution 

containing 25 mM Tris-HCl (pH 7.5), 2% SDS, and 10% mercaptoethanol. The lanes 

were then layered onto a 1.5-mm-thick SDS/12-20% polyacrylamide gradient gel 

containing 7 M urea (Komenda et al., 2002). The gel was stained with 0.15% CBB R-250 

in a solution of 50% methanol and 10% acetic acid. In-gel digestion to produce peptides 

for analysis by mass spectrometry (LC-MS/MS) was carried out essentially as described 

(Shevchenko et al., 1996) using sequencing-grade modified trypsin (Promega/SDS 

Bioscience).  

 

Protein analysis  Peptides in trypsin digests were separated using a Dionex Ultimate 

3000 liquid chromatography system equipped with both a HPG 3400M high pressure 
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gradient pump and a LPG 3400 MB low pressure gradient pump together with a 

WPS300TB autosampler and a FLM 3100B column compartment. A Bruker MicrOTOF-

Q mass spectrometer equipped with an online nanospray source was used for protein 

identification. Instrumental setups for HPLC and mass spectrometer and data analysis 

were described earlier (Yao et al., submitted) 

 

Results 

Identification of photosynthetic protein complexes and photosynthetic proteins  

Membrane protein complexes from wild-type Synechocystis sp. PCC 6803 cells were 

separated by blue native (BN)-PAGE and then proteins from each individual protein 

complex were separated by SDS-PAGE (Figure IV-1). Various PSI complexes (PSI 

supercomplex, and trimeric and monomeric PSI complexes) and PSII complexes (dimeric 

and monomeric complete PSII complexes, and the CP43-less PSII monomer (RC47)) 

were identified in membranes from both the wild-type and SCP-less strains. Protein 

complexes other than photosynthetic complexes, such as NDH complexes, were seen as 

well. The profile of membrane proteins and complexes were very similar to that in a 

study from Herranen et al. (2001). In order to determine the lifetimes of PSII and PSI 

proteins, 2D BN/SDS-PAGE as performed with membrane protein samples from wild-

type and SCP-less cells grown in the presence of 15NO3
- and 15NH4

+ for a specific time 

period (0 h, 3 h, 9 h, 24 h, and 48 h). PsaA, PsaB, PsaD, PsaF, PsaL, and PsaE from 

protein spot 1-6 (respectively) in trimeric PSI and PsbB, PsbC, PsbD, and PsbA from 

protein spot 11-14 (respectively) in monomeric PSII were identified and used to 

determine their labeling. 
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Figure IV-1: BN-PAGE followed by SDS-PAGE gel using membrane proteins from 
the wild-type (A) and SCP-less (B) strains. The bands on BN-PAGE were visualized by 
the native chlorophyll and Coomassie Brilliant Blue. SDS-PAGE was stained with 
Coomassie Brilliant Blue. Protein spots 1-6 were due to the PSI proteins: PsaA, PsaB, 
PsaD, PsaF, PsaL, and PsaE, respectively, and spots 11-14 were due to the PSII proteins: 
PsbB, PsbC, PsbD, and PsbA, respectively. The proteins were identified by LC-MS/MS. 
Marker proteins are to the left. Protein ladder is in kDa. 
 
Dynamics of photosystem I and photosystem II  Labeling and disapprearance of 

unlabeled PSI and PSII proteins were followed over time (Figure IV-2).  The cell number  
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Figure IV-2: Turnover of photosynthetic proteins from the wild-type (A) and SCP-
less (B) cells. The amount of unlabeled proteins in the wild-type strain is followed during 
a 48-h period after the start of 15N-labeling. 100% indicates the amount present at the 
start of labeling. PSI proteins are in dashed line, and PSII proteins are in solid line. PsaA: 
 with dashed line; PsaB:  with dashed line; PsaD:  with dashed line; PsaE:  with 
dashed line; PsaF:  with dashed line; PsaL:  with dashed line; PsbA:  with solid 
line; PsbB:  with solid line; PsbC:  with solid line; and PsbD:  with solid line. 
Numbers on the y-axis represent the percentage of unlabeled proteins/chlorophyll relative 
to time 0. Shown are the average results of two independent experiments ± error. 
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increased during the 15N-labeling period, and therefore the total amount of proteins 

increased as well.  What is indicated in Figure IV-2A is the amount of unlabeled protein 

in the culture volume relative to the amount in the same volume at time 0.  Interestingly, 

the amount of unlabeled material increases initially in the first 3 hours for all of the PSI 

proteins (Figure IV-2A dashed lines) in the wild-type strain. In contrast to PSI proteins, 

PSII reaction center proteins (D1 and D2) do not show such an increase, and PSII antenna 

proteins (CP47 and CP43) have a minor lag in the exponential decrease of unlabeled 

protein (Figure IV-2A solid lines). The half-lives of PSI and PSII components (Table IV-

1) were determined by monitoring the disappearance of old (unlabeled) peptides in the 

time period between 9 and 48 hours after the start of labeling, whereas for PSII proteins 

PsbA and PsbD half-lives were calculated from time 0 and for PsbB and PsbC starting at 

3 hours after labeling. In wild type, the half-lives of PSI reaction center proteins (PsaA 

and PsaB) are 40 h whereas the other intrinsic PSI proteins, PsaF, which is involved in 

docking of plastocyanin, and PsaL, which plays a role in formation of the PSI trimer in 

cyanobacteria (Chitnis and Chitnis, 1993; Fischer et al., 1998; Karapetyan et al., 1999), 

have half-life times of 50 and 30 h, respectively. The extrinsic proteins (PsaD and PsaE) 

have longer half-lives (70-75 h) presumably because they can be dissociated from 

damaged PSI and be reused for repaired or new PSI. The fact that extrinsic proteins have 

longer half-lives than the intrinsic proteins also has been seen for PSII (Yao et al., 

submitted). PSII proteins have much shorter half-lives than PSI proteins. Compared with 

the lifetimes of PSII proteins in the earlier study (Yao et al., submitted), the lifetimes of 

PSII proteins are much shorter in this experiment, presumably due to the higher light 

intensity during culture conditions. The unlabeled D1 protein had largely disappeared at 

the 3-h timepoint. The D2 protein was more stable but had a halftime of a little over 3 h. 



 

80 

Table IV-1: Comparison of half-lives of PSI and PSII components in the wild-type 
and SCP-less strains. The half-life times were calculated from the decrease in the 
percentage of unlabeled protein correcting for the increase in unlabeled protein that 
occurred for the longer-lived polypeptides. Listed are the average results of two 
independent experiments ± error. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
The CP43 and CP47 proteins, the chlorophyll-binding proteins, have halftimes of 6.5 and 

11 h, respectively. These results are in line with the concept that PSII complexes turn 

over much faster than PSI complexes. 

As indicated in Figure IV-2A, in the wild-type strain there was a 3 h period after 

the start of labeling during which the amount of unlabeled PSI proteins continued to 

increase.  This cannot be due to a slow incorporation of label into amino acids as D1 

polypeptides were almost fully labeled after 3-h period. Therefore, our interpretation of 

the increase in unlabeled complexes is that there are nascent PSI proteins in thylakoid 

membranes that are not incorporated into mature PSI complexes. For the PSII proteins, 

the PsbB and PsbC proteins show only very small lags in the exponential decrease of 

unlabeled proteins 3 hours after the start of labeling. 

 Half-life time (h) 

Strains Wild-type SCP-less 

PsaA 40±7 50±4 

PsaB 40±7 50±4 

PsaD 75±7 50±7 

PsaE 70±7 53±4 

PsaF 50±7 40±2 

PsaL 30±1 30±6 

PsbA (D1) < 1 < 1 

PsbB (CP47) 11±2.5 10.5±1 

PsbC (CP43) 6.5±1.5 6±0.5 

PsbD (D2) 3.3±1 3±0.3 
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Table IV-2: Comparison of percentage of unlabeled PSI proteins in trimeric and 
monomeric forms and PSII proteins in dimeric and monomeric forms at 3, 9, 24, 
and 48 h of labeling. Listed are the average results of one to ten peptides. 

  3 h 9 h 24 h 48 h 

Trimer 96±1 78±2 46±3 14±1.5 
PsaA 

Monomer 95±1 78±1 46±2 13±0.5 

Trimer 91±1 75±2 43±2 13±1.5 
PsaB 

Monomer 91±2 74±2 43±1  

Trimer 94±1 80±1 55±1 18.5±0.1 
PsaE 

Monomer 92±1 78±1 57±1  

Trimer 94±0 79±3 51±2 16.5±1.5 
PsaF 

Monomer 93±2 78±3 54±2 11.5 

Trimer 94±1 76±2 45±1 10±0.5 
PsaL 

Monomer 93±1 78±1   

Dimer 2.5    
PsbA 

Monomer 4.0±1.5    

Dimer 80±2 50±3 16±2 3.0±1.5 
PsbB 

Monomer 77±1 47±1 15±2 3.5±1.0 

Dimer 72±2 37±1 5.5±0.5 1.1±0.2 
PsbC 

Monomer 69±2 34±1 5.5±0.5 1.1±0.1 

Dimer 59 16±2 0.9±0.1  
PsbD 

Monomer 58±2 16±1 0.8±0.1  
 

PSI is thought to exist in both trimeric and monomeric forms, and PSII is thought 

to exist in dimeric and monomeric forms, based on results of crystal structures and 

separation of isolated complexes under non-denaturing conditions. In order to get insights 

in the conversion dynamics of PSI between trimeric and monomeric forms and of PSII 

between dimeric and monomeric forms, the percentage of labeled and unlabeled PSI and 

PSII proteins from different forms was monitored upon different times of labeling. Table 

IV-2 shows the percentage of unlabeled proteins at different times of labeling. Each PSI 

or PSII protein had a similar lifetime when the complex was in monomeric vs. multimeric 
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form. These results demonstrate that the different forms of PSI or PSII, if relevant under 

in vivo conditions, are in equilibrium, and the dynamics of PSI and PSII switching 

between the different forms occurs on a timescale of about an hour or less. 

 

Role of SCPs in the photosystems  In a previous study (Yao et al., submitted), deletion 

of SCPs in a PSI-less background strain did not change the lifetimes of PSII proteins 

except of the PsbO protein. This is consistent with current results showing that deletion 

of SCPs in the wild-type background strain had little effect on the lifetimes of the PSII 

proteins (Table IV-1, Figure IV-2B solid lines). The half-life time of the intrinsic PSI 

proteins was not much affected by removal of the SCPs either while the half-life time of 

the extrinsic PSI proteins (PsaD and PsaE) decreased (Table IV-1). Also, the amount of 

nascent PSI proteins accumulating in the membrane was not significantly changed upon 

the removal of SCPs (Figure IV-2). These results indicate that SCPs might not influence 

the PSI proteins. 

 

Discussion 

Pulse-chase methods using radioisotopes have been widely used to estimate the lifetimes 

of polypeptides. However, this method is difficult for relatively stable proteins as other 

proteins may be labeled much faster and more intensely. PSI proteins were known to be 

long-lived proteins, but their lifetimes have not been specifically determined. Using 

stable-isotope labeling combined with mass spectrometry, we can determine the lifetimes 

of PSI (long-lived) and PSII (short-lived) proteins in parallel.  

 

Turnover of PSII and PSI proteins  Photosystem complexes and proteins were 

separated by the BN/SDS-PAGE and identified by LC-MS/MS (Figure IV-1). The 



 

83 

lifetimes of PSII proteins including the reaction center proteins D1 and D2 and the 

chlorophyll-binding proteins CP47 and CP43 were determined (Table IV-1). However, 

compared with the lifetime of the PSII proteins in the PSI-less background strain grown 

at 4 µmol photons m-2 s-1 in a previous study (Yao et al., submitted), the lifetimes of the 

PSII proteins in the wild-type strain were decreased by 50% except for the CP47 protein 

whose lifetime was only decreased by 30%. In the current experiments, the wild-type 

strain was cultured at a light intensity that was almost 20 times stronger than that used for 

the PSI-less strain in the previous study. Light intensity is a main factor to determine the 

length of the lifetimes of PSII core proteins although PSII in the PSI-less strain may 

easily occur in the acceptor side of photoinhibition under the same light condition 

compared with the wild-type strain because of over-reduction of plastoquinone pool due 

to the lack in PSI complexes. The lifetimes of four PSII core proteins showed a logical 

progression: the D1 protein, where the processes of water oxidation and charge 

separation take place, appears to experience the most photodamage (Aro et al., 1993); the 

further the other PSII proteins are from the D1 protein, the longer is their lifetime. 

In contrast to PSII proteins, PSI proteins are stable. PsaA and PsaB, the reaction 

center proteins, had similar lifetimes to the other intrinsic proteins, PsaF and PsaL (Table 

IV-1). This result demonstrates that the processes of charge separation and electron 

transport in PSI are very stable and do not rapidly induce protein damage. The PSI 

extrinsic proteins, PsaD and PsaE, exhibit longer lifetimes than the PSI intrinsic proteins. 

This phenomenon has also been seen in PSII in a previous study (Yao et al., submitted) 

as PsbO had a longer lifetime than any of the PSII intrinsic proteins. Extrinsic proteins 

presumably can be easily dissociated from damaged photosystems and reused for 

repaired/new photosystems. 
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As indicated in Table IV-2, the PSI and PSII proteins have the same percentage 

of unlabeled peptides in the monomeric vs. multimeric form of the photosystems 

throughout the period of the labeling. These results support the notion that the PSI and 

PSII complexes dynamically interchange between monomers and multimers. Although 

the PSII and PSI complexes in X-ray crystals always show up as multimers in 

cyanobacteria (Jordan et al., 2001; Ferreira et al., 2004; Loll et al., 2005; Guskov et al., 

2009), BN gels show both multimers and monomers of PSI and PSII complexes 

(Herranen et al., 2004), and freeze-fractured micrograph of plant thyakoids reveals PSII 

dimers and monomers in stacked and non-stacked regions of grana, respectively 

(Staehelin, 1976; Staehelin, 2003). A possible explanation is that the exchange between 

monomers and multimers in the thylakoid membrane may be highly dynamic in vivo. 

 

Chlorophyll in the photosystems  In the cyanobacterium Synechocystis sp. PCC 6803, 

PSI is an abundant membrane protein complex in the thylakoid membrane binding over 

90% of the chlorophyll in cells. Previous studies with 15N-labeling had demonstrated that 

the lifetime of chlorophyll in the wild-type cells was very long (>200 h), whereas it was 

much shorter (80 h) in PSI-less cells (Vavilin et al., 2007). This suggests that PSI-

associated chlorophyll has a long lifetime. Indeed, PSI proteins have a relatively long 

lifetime as well (Table IV-1). However, the lifetime of chlorophyll is more than 5 times 

longer than that of the PSI chlorophyll-binding proteins (PsaA and PsaB). This suggests 

that chlorophyll is recycled upon degradation of PSI chlorophyll-binding proteins and can 

be reincorporated into new or existing complexes. The recycling of chlorophyll is also 

seen in PSII (Vavilin et al., 2007; Yao et al., submitted). 
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SCPs, chlorophyll, and photosynthetic proteins  Based on previous studies (Vavilin et 

al., 2007; Yao et al., submitted), the lifetime of PSII chlorophyll is reduced in the PSI-

less/SCP-less strain. SCPs function in reutilization of PSII chlorophyll while PSII 

components are being replaced, and do not affect the lifetimes of PSII chlorophyll-

binding proteins. As shown in Table IV-1, the lifetimes of PSI chlorophyll-binding 

proteins were not affected by removal of SCPs either. In addition, the lifetime of 

chlorophyll in PSI-containing strains did not change or decreased slightly upon deletion 

of SCPs (Vavilin et al., 2007). As PSI complexes contain most of chlorophyll in 

Synechocystis cells, SCPs do not appear to play an important role in recycling of 

chlorophyll from PSI. 

The absence of SCPs led to a significant decrease in the amount of nascent PSII 

proteins/complexes in the PSI-less background strain (Yao et al., submitted). The loss of 

nascent PSII proteins in the PSI-less/SCP-less strain was interpreted to be due to decrease 

in the supply of chlorophyll and the reduction of the amount of the PSII complexes. 

However, as shown in Figure IV-2, there is a small increase in the amount of unlabeled 

PsbB proteins in the SCP-less strain relative to in the wild type. As SCPs stabilize the 

nascent PSII complexes such as RC47 complexes (Yao et al., submitted), the increase in 

unlabeled PsbB proteins in the thylakoid membrane may come from the destabilization of 

nascent PSII complexes in the SCP-less strain. However, the amount of nascent PSI 

proteins did not change much upon removal of SCPs as PSI proteins are predominant 

photosynthetic proteins in wild-type Synechocystis cells. Additionally, the lifetimes of 

PSI proteins and chlorophyll were not affected. SCPs may not function to stabilize 

nascent PSI proteins and complexes. 

In conclusion, the lifetimes of PSI proteins are much longer than the lifetimes of 

PSII proteins. However, recycling of chlorophyll occurs in both photosystems. PSII and 
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PSI complexes dynamically exchange between monomeric and multimeric complexes, if 

multimeric complexes indeed exist in vivo, on the order of an hour or less. Upon the 

removal of SCPs, SCPs have no effects on the lifetimes of most of the photosynthetic 

proteins, and the lifetime of chlorophyll is mostly unaffected as SCPs only recycle PSII 

chlorophyll but not PSI chlorophyll. Overall, SCPs do not seem to play an important role 

in PSI complexes and their components. 
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CHAPTER V. FUNCTION OF SLL1906, A MEMBER OF THE 

BACTERIOCHLOROPHYLL DELIVERY FAMILY, IN THE CYANOBACTERIUM 

SYNECHOCYSTIS SP. PCC 6803 

 

Abstract 

A deletion mutation was introduced into the sll1906 gene in the cyanobacterium 

Synechocystis sp. PCC 6803 to examine the function of Sll1906, the corresponding 

member of the bacteriochlorophyll delivery (BCD) family. The Sll1906 sequence 

contains possible chlorophyll-binding sites. The pigment profile indicated that the 

chlorophyll and carotenoids contents were not altered in the mutant, and no chlorophyll 

precursors accumulated. According to the oxygen evolution and 77 K fluorescence 

emission spectra, the PSII activity and PSII/PSI ratio remained the same upon deletion of 

the gene. The sll1906 deletion was also introduced into the ΔchlL background mutant 

strain, in which chlorophyll is synthesized in the light only. When grown in light-

activated heterotrophic growth (LAHG) conditions, the rate of chlorophyll degradation in 

the ΔchlL/Δsll1906 mutant was similar to that in the ΔchlL background strain. When cells 

were returned to continuous illumination after a week of growth under LAHG conditions, 

both the rate of chlorophyll synthesis and chlorophyll-dependent photosystem biogenesis 

were monitored. The deletion of the sll1906 gene affected neither. Although sll1906 

deletion did not affect chlorophyll degradation/biosynthesis and photosystem assembly, 

Sll1906 could still be involved in these processes as other pathways may compensate in 

the absence of Sll1906. 

(In press, Proc. Photosynth. Congress in Beijing 2010) 
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Introduction 

Chlorophyll is a key pigment in the process of photosynthesis and chlorophyll a is 

present in all oxygenic phototrophs. However, in the light chlorophyll may give rise to 

harmful reactive oxygen species if chlorophyll excitation would not be quenched 

efficiently. Therefore, the concentration of free chlorophyll (not bound to proteins and 

not close to carotenoids) is minimized in the cell. This is achieved by highly regulating 

chlorophyll synthesis in conjunction with synthesis of photosynthetic proteins. However, 

even though chlorophyll biosynthesis has been well studied, it is unknown how, for 

example, chlorophyll delivery from chlorophyll synthase to chlorophyll-binding proteins 

occurs. The existence of chlorophyll transfer proteins in oxygenic phototrophs may be 

expected but has not been demonstrated. However, members of a putative BCD family 

have been identified in purple bacteria (Saier et al., 1999). The BCD proteins have 12 

putative transmembrane segments and exhibit similar topological features. The topology 

of the PucC protein with 12 membrane-spanning segments has been examined in 

Rhodobacter capsulatus; both the N and C termini of the protein are located in the 

cytoplasm (LeBlanc and Beatty, 1996). The function of PucC is thought to be a 

shepherding activity that allows the light-harvesting complex (LH) 1 and 2 to assemble 

properly; the N terminus of the protein is important for its function (Jaschke et al, 2008; 

LeBlanc and Beatty, 1996). In the cyanobacterium Synechocystis sp. PCC 6803, a PucC 

homolog is found. This homolog, Sll1906, is also a member of the BCD family. In this 

work, the Δsll1906 mutant was created and analyzed in terms of chlorophyll transfer 

potential. 



 

89 

 Materials and Methods 

Growth conditions  Synechocystis sp. PCC 6803 wild type and mutant strains were 

grown photoautotrophically with air bubbling at 30 °C in BG-11 medium at a light 

intensity of 40 µmol photons m-2 s-1. When the strains were grown in liquid culture under 

light-activated heterotrophic growth (LAHG) conditions, cells were kept in complete 

darkness except for one 15-min light period (white light at 20 µmol photons m-2 s-1) every 

24 h, and the cultures were supplemented with 5 mM glucose. Cell growth was monitored 

by measuring the optical density at 730 nm in a 1-cm cuvette using a Shimadzu UV-160 

spectrophotometer. 

 

Construction of mutants and transformation of Synechocystis sp. PCC 6803  

Synechocystis sp. PCC 6803 Δsll1906 mutants were generated by transformation of 

Synechocystis cells with a plasmid containing the sll1906 gene with the section from 25 

bp (BamHI) downstream of the start codon to 306 bp (BclI) upstream of the stop codon 

replaced by a kanamycin (Km) resistance cassette from pUC4K. Transformants were 

selected by screening for kanamycin resistance and subcultured at increasing 

concentrations of antibiotics to allow segregation of wild-type and mutant genome copies 

to occur, thus leading to homozygous strains. Segregation was confirmed by PCR using 

Synechocystis sp. PCC 6803 DNA from transformants as a template and one forward 

primer (CTTACAACAGGCCCTACAAG) and two reverse primers: one is 

CATCGGATACGTCCACCAAG that hybridizes to the sll1906 gene, and the other is 

CATGAGTGACGACTGAATCC that is used to check insertion of the Kmr gene. 

Construction of the ΔchlL mutant was described earlier (Wu and Vermaas, 1995). 
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Pigments analysis  Pigments were extracted from Synechocystis cells with 100% 

methanol with 0.1% NH4OH. Chlorophyll content of the cells was measured by a 

Shimadzu UV-160 spectrophotometer. Total pigment content was analyzed by HPLC 

using a Waters Spherisorb S10ODS2 (250 mm × 10 mm) Semi-Prep column. The column 

was eluted with H2O, methanol, and acetone at a flow rate of 2.0 mL/min using the 

following gradient program: 0 to 1 min, 90% of methanol in water; 1 to 6 min, 90 to 

100% of methanol in water; 6 to 10 min, 0 to 25 % of acetone in methanol; 10-12 min, 25 

to 60% of acetone in methanol; 12 to 21 min, 60 to 100% of acetone in methanol; and 21 

to 25 min, 100% acetone. 

 

Oxygen evolution  Oxygen evolution measurements were performed at 30 °C using a 

Clark-type electrode (Hansatech, Cambridge, UK). Intact cells were used, and 2.0 mM 

K3Fe(CN)6 and 0.4 mM 2,5-dimethyl-p-benzoquinone were used as electron acceptors. 

The light intensity (after filtering through a water filter and a filter transmitting >550 nm 

light) was saturating (2500 µmol photons m-2 s-1). 

 

Fluorescence spectroscopy  Fluorescence emission spectra of intact cells were 

measured at 77 K using a SPEX Fluorolog 2 instrument (SPEX Industries, Edison, NJ). 

Measurements were carried out with excitation and emission slit widths of 1 and 0.25 

mm, respectively, which correspond to bandwidths of 4 and 1 nm. The excitation 

wavelength was 435 nm. 

 

Results 

Construction and characteristics of sll1906 deletion mutants  In order to examine the 

function of Sll1906, a Δsll1906 mutant was generated with an insertional deletion in the  
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Figure V-1: Segregation of the Δsll1906 strain of Synechocystis sp. PCC 6803. PCR 
samples applied in A were amplified from the primers for confirmation of existence of 
the native sll1906 gene (PCR product of about 1 kbp), and those in B were amplified 
from the primers indicating the insertion of the Kanamycin cassette. PCR products from 
wild type are in lanes 3 and 7, and from the Δsll1906 strain in lane 4 and 8. The results 
indicate complete segregation of the Δsll1906 strain. Lanes 1 and 5 are DNA ladders 
(sizes in kbp are indicated), and 2 and 6 are negative controls where no DNA was added 
in the PCR. 
 
 
sll1906 open reading frame. A kanamycin cassette was inserted in the sll1906 gene, and 

77% of sll1906 were replaced with the antibiotic resistance cassette. Complete 

segregation of the Δsll1906 mutant was achieved and was verified by PCR. Figure V-1 

illustrates the results for the Δsll1906 strain in comparison with the wild type. 
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Table V-1: Effects of the sll1906 deletion mutation on doubling time, chlorophyll 
content, and oxygen evolution rates of wild type and ΔchlL cells. Listed are the 
average results of two or three independent experiments ± S.D. ND: Not determined. 

 
Deletion of Sll1906 was found to have no significant impact on photoautotrophic 

growth, the amount of chlorophyll per cell, and PSII-driven oxygen evolution (Table V-

1). This lack of a significant difference between strains with or without the sll1906 gene 

was found also at a higher light intensity (110 µmol photons m-2 s-1) (data not shown) and 

in ΔchlL background (ΔchlL) strains. 

 

Pigment composition of the mutants  To determine the effect of deletion of Sll1906 in 

wild-type strains in terms of their content of pigments such as chlorophyll, chlorophyll 

precursors, and carotenoids, cells were extracted with 100% methanol, and the extracts 

were subjected to HPLC analysis. Chlorophyll and chlorophyll precursors such as Mg-

protoporphyrin IX, Mg-protoporphyrin 13-monomethyl ester, and protochlorophyllide 

would have been detected by HPLC by means of 410 nm absorbance if such precursors 

accumulated (Figure V-2A). However, no chlorophyll precursors accumulated in either 

strain. The chlorophyll (C) content was similar in the wild type and Δsll1906 mutant, 

consistent with the results reported in Table V-1. Pheophytin a (P) was found in both 

strains at equally low levels. As shown in Figure V-2B, there is no change in the  

Strain 
Cell doubling time 

(h) 
Chlorophyll content 
(µg chl/(ml⋅OD730)) 

Oxygen evolution 
(µmol O2/(mg chl⋅h) 

Wild type 12±2 3.55±0.21 424±36 

Δsll1906 13±2 3.63±0.25 442±31 

ΔchlL 12±1 2.60±0.14 ND 

ΔchlL/Δsll1906 13±1 2.65±0.21 ND 
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Figure V-2: HPLC spectra of cyanobacterial pigments. Each spectrum showed both 
wild type (solid line) and Δsll1906 (dashed line) samples that were extracted by 100% 
methanol from an equal amount of cells. Spectra were essentially overlapping. The 
absorption was monitored at 410 nm (A) and 480 nm (B) to indicate the presence and 
amount of chlorophyll (C), myxoxanthophyll (M), zeaxanthin (Z), echinenone (E), β-
carotene (β), and pheophytin (P). 
 
 
composition of carotenoids either. The amount of all four major carotenoids zeaxanthin 

(Z), echinenone (E), β-carotene (β), and myxoxanthophyll (M) were within 10% between 

the wild-type and Δsll1906 strains. 

 

Chlorophyll degradation and synthesis  In cyanobacteria, both LPOR and DPOR are 

present that convert protochlorophyllide to chlorophyllide, an immediate precursor of 

chlorophyll. When ΔchlL cells that have lost DPOR function were grown in darkness or 

under LAHG conditions, chlorophyll synthesis was inhibited, and existing chlorophyll 

was degraded or diluted by growth of the culture. Figure V-3A upon growth in LAHG 
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Figure V-3: Chlorophyll degradation and light-dependent chlorophyll synthesis. 
Chlorophyll levels (µg/ml-OD730) were monitored in the ΔchlL (triangle with dashed line) 
and ΔchlL/Δsll1906 (open square with solid line) strains upon transfer to LAHG 
conditions at time 0 (A) or upon transfer to continuous illumination (40 µmol photons m-2 

s-1) at time 0 after cells had been grown under LAHG conditions for 2 weeks (B). 
shows the chlorophyll content in the ΔchlL strains with and without the sll1906 gene  
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conditions for 6 days. No significant difference in chlorophyll degradation was observed. 

To examine whether the chlorophyll biosynthesis rate was affected by Sll1906, the cells 

were grown in LAHG conditions for at least about a week until the amount of chlorophyll 

was minimal, and subsequently the rate of synthesis of chlorophyll was determined upon 

continuous illumination at 40 µmol photons m-2 s-1. As shown in Figure V-3B, the 

Δsll1906 mutant exhibited the same rate of chlorophyll synthesis as the wild type. 

Therefore, deletion of Sll1906 did not affect the process of chlorophyll degradation and 

synthesis. 

 

Photosystem biogenesis  In order to study the effects of deletion of Sll1906 on PSI and 

PSII, 77 K fluorescence emission spectra of whole cells were measured upon excitation at 

435 nm. A major peak at 725 nm is characteristic for PSI-associated chlorophyll, and two 

smaller peaks at 685 and 695 nm correspond to phycobilisomes and chlorophylls, and 

CP47-associated chlorophyll, respectively (Figure V-4). Deletion of Sll1906 did not 

change the PSII/PSI ratio regardless of wild-type or chlL- backgrounds (Figure V-4A). 

However, the PSII/PSI ratio increased in the chlL- mutants. According to Table V-1, the 

chlorophyll content was reduced about 25% upon deletion of chlL. Therefore, it most 

likely is a decrease in amount of PSI that caused the increase of the PSII/PSI ratio. 

To see whether the absence of Sll1906 affected the biogenesis of PSII and PSI 

upon chlorophyll synthesis, the ΔchlL and ΔchlL/Δsll1906 strains were monitored by 77 

K fluorescence emission spectra at different stages of greening after a week of culturing 

under LAHG conditions. At time 0, there were no peaks at 695 and 725 nm, which means 

that very little or no PSII and PSI was present (Figure V-4B). During 24 hours of 

illumination, deletion of Sll1906 did not have an impact on the rate of PSII and PSI 
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Figure V-4: 77 K fluorescence emission spectra of Synechocystis sp. PCC 6803 cells. 
A. Spectra were recorded for the wild type (dotted line), Δsll1906 (solid line), ΔchlL 
(dashed line), and ΔchlL/Δsll1906 (dashed and dotted line) strains grown at a light 
intensity of 40 µmol photons m-2 s-1. The spectra were normalized to 100 at 725 nm, 
where PSI emits maximally. B. Spectra were recorded for the chlL- strain after growth at 
40 µmol photons m-2 s-1 for 0 h (solid line), 9 h (X), and 24 h (short dashed line), and the 
ΔchlL/Δsll1906 strain after growth at this light intensity for 0 h (), 9 h (long dashed 
line), and 24 h (dotted line) after a week of culturing under LAHG conditions. The 
spectra were normalized to 100 at 683 nm, where phycobilisomes and some chlorophylls 
emit maximally. The excitation wavelength was 435 nm. a.u., arbitrary units. 
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biogenesis upon chlorophyll synthesis. The results show that deletion of Sll1906 did not 

appear to alter the delivery of chlorophyll to chlorophyll-binding proteins or aiding 

photosystem assembly. 

 

Discussion 

The putative BCD family was introduced in an earlier study (Saier et al., 1999), and the 

BCD proteins in different organisms have been named as PucC or bacteriochlorophyll 

synthase. The function of the BCD family has been examined in Rhodobacter capsulatus, 

which contains three members of the BCD family, PucC, LhaA, and ORF428. The LhaA 

and PucC proteins were reported to enhance correct LH complex assembly (Young et al., 

1998; Jaschke et al, 2008).  The Sll1906 protein in Synechocystis has a 24-27% amino 

acid sequence identity with Rhodobacter BCD members and has a hydropathy profile 

similar to that of the LhaA/PucC proteins. The BCD family proteins sequences of purple 

bacteria (Rhodobacter capsulatus and Rhodopseudomonas palustris) and cyanobacteria 

(Synechocystis sp. PCC 6803, Prochlorococcus marinus 9211, and Synechococcus sp. 

CC9902) were analyzed. Transmembrane segments (TMSs) 1 and 2, and TMSs 7 and 8 

as well as their connecting loop regions are well conserved, and the loop region between 

TMSs 4 and 5 as well as TMS5 is also well conserved. These results are consistent with 

an earlier study (Saier et al., 1999). Interestingly, the rest of the protein sequence (over 

50%) has low or no similarity between BCD family of purple bacteria and cyanobacteria 

but is highly conserved within purple bacteria and moderately conserved within 

cyanobacteria. 

Sll1906 was suggested to be involved in tetrapyrrole delivery for assembly of 

chlorophyll-binding complexes (Young and Beatty, 1998). However, Synechocystis cells  
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Table V-2. Protein sequence alignments and possible chlorophyll-binding amino 
acid residues in Sll1906 relative to PucC from Rhodobacter capsulatus and 
Synechocystis psbB. Underlined residues represent possible chlorophyll binding sites. 
Sll1906 protein sequences 1 and 2 represent residues 22-49 and 76-87. CP47 protein 
sequence 2 represents residues 13-25. 

lacking sll1906 have normal chlorophyll content and chlorophyll synthesis (Table V-1 

and Figure V-3), whereas also the tetrapyrrole biosynthesis pathway was not disrupted in 

the mutant (no accumulation in chlorophyll precursors) (Figure V-2A). Also, judging 

from the 77 K fluorescence emission spectra, lack of Sll1906 did not impair PSII and PSI 

assembly (Figure V-4). 

In order to examine if Sll1906 possibly binds chlorophyll, Table V-2 shows 

examples of the Sll1906 protein sequences that contain possible chlorophyll-binding 

amino acid residues (underlined). Protein sequence 1 is highly conserved in all organisms 

possessing BCD proteins and contain a few amino acid residues that could bind 

chlorophyll. Protein sequence 2 is conserved in cyanobacteria only but aligns well with 

part of PsbB containing a histidine that binds chlorophyll (Muh et al., 2008). Therefore, 

Sll1906 may have chlorophyll-binding ability. 

In conclusion, the Δsll1906 mutant did not show significant effects on pigment 

content and photosystem assembly. However, this does not necessarily mean that Sll1906 

is not involved in these processes as other (parallel) pathways may exist that may fully 

compensate for the lack of Sll1906. 

Organisms Protein sequence 1 Protein sequence 2 

Rb capsulatus PucC RLSLFQITVGMTLTLLAGTLNRVMIVEL KSDTHKSALGLRR 

Syn 6803 Sll1906 RLGLFQMGLGIMSLLTLGVLNRVLIDEL LSDSQRLWGYH-R 

PsbB (CP47)  LNDPGRLISVHLM 
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CHAPTER VI. PERSPECTIVE AND OUTLOOK 

 

A combination of stable-isotope labeling (15N) and mass spectrometry is a powerful 

method to provide insights in the dynamics of photosystems in the membrane. In this 

study, the lifetimes of PSI and PSII proteins have been determined to range from 30-75 h 

and 1-33 h, respectively. The wide range of lifetimes indicates that the damaged 

photosynthetic proteins can be replaced independently, and the other proteins can be re-

used and assembled into functional photosynthetic complexes. Indeed, Synechocystis 

cells have nascent photosynthetic proteins in the membrane for the replacement of 

damaged proteins or for photosystem biogenesis when photosynthetic complexes turn 

over. If there are changes in environment or growth conditions, cells may be able to 

response rapidly by utilizing these nascent proteins and retain a homeostasis of the 

photosystems. It would be interesting to examine the lifetimes of photosynthetic proteins 

and change in the pool of nascent photosynthetic proteins upon transition between 

different growth conditions. Also, the IsiA (CP43’) protein, an iron-stress-induced 

protein, can form circular aggregates (rings) of up to 18 subunits around trimeric PSI in a 

first ring and possibly up to 25 subunits in a second ring under iron-deficient or some 

other stress conditions (Bibby et al., 2001; Boekema et al., 2001; Yeremenko et al., 

2004). IsiA proteins may serve as a light-harvesting antenna and as an energy dissipator 

for PSI (Bibby et al., 2001; Berera et al., 2009). By applying a combination of stable-

isotope labeling and mass spectrometry on strains with and without IsiA proteins under 

iron-sufficient/deficient conditions, the effects of IsiA on lifetimes of PSI proteins and 

the dynamics of PSI complexes switching between monomeric and trimeric forms can be 

studied. 
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Chlorophyll is the most abundant cofactor in the photosystems. A total of 131 

chlorophyll molecules are in PSII and PSI combined, and synthesis of one chlorophyll 

molecule from glutamate requires 9 ATP and 13 NADPH. It is a significant investment 

just on cofactors for cyanobacteria to practice photosynthesis. Synechocystis cells have 

evolved an efficient way of reutilizing chlorophyll from the damaged chlorophyll-binding 

proteins in the PSI and PSII complexes. As known from this study, SCPs play an 

important role in PSII chlorophyll recycling. However, what factors function in the 

recycling of PSI chlorophyll still needs to be investigated. Although chlorophyll can be 

utilized, highly active chlorophyll synthesis is required as there is always a significant 

amount of chlorophyll-binding proteins synthesized for both photosystem repair and 

biogenesis to retain a homeostasis of photosystems and cell growth. 

As chlorophyll is a strong photo-oxidizer, free chlorophyll is very dangerous for 

cells by rapidly producing reactive oxygen species in the presence of light and oxygen, 

and cellular damage may happen as quick as in a few seconds. However, chlorophyll in 

chlorophyll-binding proteins is relatively safe as efficient quenchers, such as carotenoids, 

are nearby, as demonstrated by the long half-lives of chlorophyll-binding proteins that do 

not turn over on a timescale of up to 40 h. Therefore, cooperation between chlorophyll 

biosynthesis and synthesis of chlorophyll-binding proteins is important. This study shows 

that SCPs are possible candidates as bridges in communication between chlorophyll and 

PSII proteins as upon removal of SCPs the rate of chlorophyll synthesis and the amount 

of chlorophyll molecules are reduced while the amount of PSII proteins decrease and the 

accumulation of nascent PSII proteins in membranes disappears. Interestingly, the 

phenotype is exhibited only in the absence of PSI. However, PSI possesses about 90% of 

chlorophyll in the Synechocystis cells. The deletion of SCPs in the PSI-containing strain 

can not inhibit ALA synthesis significantly because chlorophyll synthesis needs to meet 
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the demand of chlorophyll from PSI. It is as yet unknown which protein(s), if any, that 

function like SCPs serve PSI, and whether such protein(s) can function like SCPs for 

PSII. The Sll1906 protein, a member of putative bacteriochlorophyll delivery family, may 

possibly function as a bridge between chlorophyll and chlorophyll-binding proteins. 

However, deletion of Sll1906 does not show any phenotype in either chlorophyll 

biosynthesis/degradation or photosystem assembly. In order to understand how the 

synthesis of chlorophyll and chlorophyll-binding proteins is coordinated and chlorophyll 

is delivered to the chlorophyll-binding proteins, a continuous search for factor(s) that 

function like the SCPs in PSII but, for example, work in PSI is critical. 
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