
Time Efficient and Quality Effective K Nearest Neighbor Search

in High Dimension Space

by

Renwei Yu

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2011 by the
Graduate Supervisory Committee:

Kasim Selçuk Candan, Chair
Maria Luisa Sapino

Yi Chen
Hari Sundaram

ARIZONA STATE UNIVERSITY

May 2011

ABSTRACT

K-Nearest-Neighbors (KNN) search is a fundamental problemin many appli-

cation domains such as database and data mining, information retrieval, machine learn-

ing, pattern recognition and plagiarism detection. Locality sensitive hash (LSH) is so

far the most practical approximate KNN search algorithm forhigh dimensional data.

Algorithms such as Multi-Probe LSH and LSH-Forest improve upon the basic LSH

algorithm by varying hash bucket size dynamically at query time, so these two algo-

rithms can answer different KNN queries adaptively. However, these two algorithms

need a data access post-processing step after candidates’ collection in order to get the

final answer to the KNN query. In this thesis, Multi-Probe LSHwith data access

post-processing (Multi-Probe LSH with DAPP) algorithm andLSH-Forest with data

access post-processing (LSH-Forest with DAPP) algorithm are improved by replacing

the costly data access post-processing (DAPP) step with a much faster histogram-based

post-processing (HBPP). Two HBPP algorithms: LSH-Forest with HBPP and Multi-

Probe LSH with HBPP are presented in this thesis, both of themachieve the three

goals for KNN search in large scale high dimensional data set: high search quality,

high time efficiency, high space efficiency. None of the previous KNN algorithms can

achieve all three goals. More specifically, it is shown that HBPP algorithms can always

achieve high search quality (as good as LSH-Forest with DAPPand Multi-Probe LSH

with DAPP) with much less time cost (one to several orders of magnitude speedup) and

same memory usage. It is also shown that with almost same timecost and memory us-

age, HBPP algorithms can always achieve better search quality than LSH-Forest with

random pick (LSH-Forest with RP) and Multi-Probe LSH with random pick (Multi-

Probe LSH with RP). Moreover, to achieve a very high search quality, Multi-Probe

with HBPP is always a better choice than LSH-Forest with HBPP, regardless of the

distribution, size and dimension number of the data set.

i

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank all the important people who help

me to finish this thesis.

I am grateful to my advisor Dr. Kasim Selçuk Candan for his great help in both

academia and research in my three years graduate study at Arizona State University.

I would like to thank Dr. Maria Luisa Sapino, Dr. Yi Chen, Dr. Hari Sundaram,

for joining my graduate committee and giving me invaluable guidance on my thesis

research.

I would like to thank Xinxin, Wei, Shruti, Mijung, Mahsa, Parth, Mithila, Jung

Hyun Kim, Jong Kim, Yan, my friends and colleagues in Emitlab. They help me so

much during my research work. I would also like thank my friend Shanshan Liang, for

her great patient and passion in the proofreading and editing of my thesis draft.

Finally, I would like to thank my parents, my sister, my brother who always

support and encourage me in pursuing my graduate degree.

ii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iii

LIST OF FIGURES . vi

CHAPTER . 1

1 INTRODUCTION . 1

1.1 Challenges . 2

Large Data Size Challenge . 2

High Dimension Challenge . 2

1.2 Thesis Contribution . 3

1.3 Organization of the Thesis . 6

2 RELATED WORK . 8

2.1 Linear Indexing . 8

2.2 Multi-dimensional Indexing .. 9

2.3 Locality Sensitive Hashing .10

Multi-Probe LSH . 11

LSH-Forest . 11

2.4 Alternative Methods . 12

3 OVERVIEW OF LSH BASED KNN SEARCH ALGORITHMS 13

3.1 Basic Idea of LSH . 13

3.2 Multi-Probe LSH . 16

3.3 LSH-Forest . 20

3.4 Multi-Probe LSH vs. LSH-Forest .21

4 PROPOSED ALGORITHMS . 22

4.1 What is the Innovation? . 22

4.2 Algorithms . 24

Index Building . 24

Candidate Objects Collection . 25

iii

Chapter Page
Histogram-based Post-processing .27

4.3 Mathematical Model . 29

5 EXPERIMENTAL SETUP . 33

5.1 Experimental Data Sets . 33

SIFT Data . 33

GIST Data . 33

Uniform Data . 34

Normal Data . 34

5.2 Experimental Algorithms . 34

LSH-Forest based Algorithms . 35

Multi-Probe LSH based algorithms . 35

5.3 Evaluation Metrics . 35

5.4 Implementation Details . 36

6 EXPERIMENTAL RESULTS . 37

6.1 Efficiency and Effectiveness Results 37

LSH-Forest based Algorithms Evaluated based on Error Ratio. 38

LSH-Forest based Algorithms Evaluated based on Recall 43

Multi-Probe LSH based Algorithms Evaluated based on Error Ratio . . 46

Multi-Probe LSH based Algorithms Evaluated based on Recall. 50

Summary of Efficiency and Effectiveness Results 52

6.2 Scalability Results . 54

Scalability Results for LSH-Forest based Algorithms 54

Scalability Results for Multi-Probe LSH based Algorithms 56

6.3 Sensitivity Results . 57

Search Quality vs. Budget Percent . 58

Search Quality vs. KNN Percent . 61

Search Quality vs. Number of LSH trees 62

iv

Chapter Page
6.4 Model Comparison Results . 64

Recall vs. KNN Size . 64

Recall vs. Budget Size . 65

Recall vs. Number of LSH trees . 66

7 CONCLUSIONS . 67

References . 68

v

LIST OF FIGURES

Figure Page

1.1 3 black circle points are 3-nearest neighbors of query point based on Eu-

clidean distance (circle points represent data set and rectangle point is the

query point) . 1

1.2 Object occurrence histogram in which the numbers at the bottom of each

bar denote occurrence count; numbers on the top of each bar denote number

of objects with the corresponding occurrence count in the candidate set

(e.g., the first bar in the chart has the number 1 in bottom and number 546

on the top, it means there are 546 objects that occur once in the candidate set) 6

3.1 Given a query object, Multi-Probe LSH not only checks if the bucket has

the same signature as query object’s (indicated by black arrow), but also

checks all 1-step buckets (indicated by solid white arrows)and 2-step buck-

ets (indicated by dashed gray arrows) 18

3.2 Each bucket is identified by the string of integers produced by each of the

c LSH functionsh∈ H . 19

3.3 The bucket’s signature is translated to the path of a prefix tree from the root

node to leaf node . 19

4.1 The top-down step in candidates collection on LSH treeTi initiated with

DESCEND(q,0,rooti), adapted from [3] 26

4.2 The bottom-up step in candidates collection initiated with arguments re-

turned by DESCEND . 26

4.3 The result hash table of the candidate collection step, the key is the object

ID, the value is the occurrence count of the object in the candidate set . . . 27

4.4 The candidate objects collection step of Multi-Probe LSH 28

4.5 The post processing step initiated with arguments returned by FOREST-

COLLECT/MULCOLLECT . 28

vi

Figure Page
6.1 Error ratio vs. Time cost results of LSH-Forest based algorithms with 0.1

million SIFT Data . 38

6.2 Error ratio vs. Time cost results of LSH-Forest based algorithms with 0.1

million GIST Data . 39

6.3 Error ratio vs. Time cost results of LSH-Forest based algorithms with 0.1

million Uniform Data . 39

6.4 Error ratio vs. Time cost results of LSH-Forest based algorithms with 0.1

million Normal Data . 40

6.5 20 nearest neighbors example of Normal Data 40

6.6 (1-Recall) vs. Time cost results of LSH-Forest based algorithms with 0.1

million SIFT Data . 43

6.7 (1-Recall) vs. Time cost results of LSH-Forest based algorithms with 0.1

million GIST Data . 44

6.8 (1-Recall) vs. Time cost results of LSH-Forest based algorithms with 0.1

million Uniform Data . 44

6.9 (1-Recall) vs. Time cost results of LSH-Forest based algorithms with 0.1

million Normal Data . 45

6.10 Error ratio vs. Time cost results of Multi-Probe LSH based algorithms with

0.1 million SIFT Data . 46

6.11 Error ratio vs. Time cost results of Multi-Probe LSH based algorithms with

0.1 million GIST Data . 47

6.12 Error ratio vs. Time cost results of Multi-Probe LSH based algorithms with

0.1 million Uniform Data . 47

6.13 Error ratio vs. Time cost results of Multi-Probe LSH based algorithms with

0.1 million Normal Data . 48

6.14 (1-Recall) vs. Time cost results of Multi-Probe LSH based algorithms with

0.1 million SIFT Data . 49

vii

Figure Page
6.15 (1-Recall) vs. Time cost results of Multi-Probe LSH based algorithms with

0.1 million GIST Data . 50

6.16 (1-Recall) vs. Time cost results of Multi-Probe LSH based algorithms with

0.1 million Uniform Data . 51

6.17 (1-Recall) vs. Time cost results of Multi-Probe LSH based algorithms with

0.1 million Normal Data . 51

6.18 Error ratio vs. Time ratio (DAPP/HBPP) results of LSH-Forest based algo-

rithms with 0.1 million SIFT Data . 52

6.19 Error ratio vs. Time ratio (DAPP/HBPP) results of Multi-Probe LSH based

algorithms with 0.1 million SIFT Data 53

6.20 Scalability results of LSH-Forest based algorithms based on error ratio . . . 55

6.21 Scalability results of LSH-Forest based algorithms based on recall 55

6.22 Scalability results of Multi-Probe LSH based algorithms based on error ratio 56

6.23 Scalability results of Multi-Probe LSH based algorithms based on recall . . 57

6.24 Error ratio vs. Budget percent of each LSH tree.L = 160, L means the

number of LSH trees, KNN percent=5% means the result size of KNN

query is 5%*1 million=50000 . 58

6.25 (1-Recall) vs. Budget percent of each LSH tree.L = 160, L means the

number of LSH trees, KNN percent=5% means the result size of KNN

query is 5%*1 million=50000 . 59

6.26 Error ratio vs. KNN percent.L = 160,L means the number of LSH trees . . 60

6.27 (1-Recall) vs. KNN percent.L = 160,L means the number of LSH trees . . 60

6.28 Error ratio vs. L (number of LSH trees). Budget means thenumber of can-

didate objects that are collected from each LSH tree, so L*Budget means

the total number of candidate objects we collect (includes duplicate objects) 62

viii

Figure Page
6.29 (1-Recall) vs. L (number of LSH trees). Budget means thenumber of can-

didate objects that are collected from each LSH tree, so L*Budget means

the total number of candidate objects we collect (includes duplicate objects) 63

6.30 Recall vs. KNN size result (of the model and SIFT Data) 65

6.31 Recall vs. Budget size result (of the model and SIFT Data) 65

6.32 Recall vs. Number of LSH trees (of the model and SIFT Data) 66

ix

Chapter 1

INTRODUCTION

Finding the K-Nearest-Neighbors (KNN) [33] of a query pointis a fundamental prob-

lem in many application domains. Some examples are data mining [20], machine learn-

ing [9], information retrieval [11, 14, 32], multimedia database [13, 31], bioinformat-

ics [25, 16], and duplicate document detection [34, 8]. In the vector model, the object

of interest is usually represented as a point in theRd space, whered is the number of

features of the object we are interested in [17]. The number of features can range any-

where from a few hundreds to several thousands. A distance metric of these points can

be used to quantify the dissimilarity of objects, so the similarity of objects is inversely

related to the distance.

The KNN (K-Nearest-Neighbors) [12] problem has been studied for decades.

It can be defined as follows: given a collection of data pointsM, a query pointQ,

return the result set,R, of data points from the collection which satisfy the following

condition: |R| = K and if a∈ R,b∈M andb 6∈ R, thenF(Q,a) ≤ F(Q,b). HereF()

is the distance function selected by the user. For example,F() can be the Euclidean

Figure 1.1: 3 black circle points are 3-nearest neighbors ofquery point based on Eu-
clidean distance (circle points represent data set and rectangle point is the query point)

1

distance, as shown in Figure 1.1.

1.1 Challenges
Large Data Size Challenge

One naive way to execute a KNN query would be to simply computethe distances from

the query point to all then points in the data set (n is the size of the data set) and pick

the closestK points. Obviously, this naive algorithm will be very costly, and it is only

feasible when the data size is small enough to fit into main memory (when the size is

large, the data set can only be stored on disk, so both the distance computation cost and

the disk I/O cost will be huge). However, the size of the data collections nowadays is

increasing vastly. Consequently, the data size we need to deal with is becoming larger

and larger; from several GBs to TBs (it means millions to billions of high dimensional

data vectors/points). Given such a large data size, efficient index structures are needed

in order to prune unpromising data points as early as possible and return the KNN

within a reasonable amount of time.

High Dimension Challenge

Pruning of unpromising data points often requires the support of index structures. There

already exist many index structures, such as linear indexing (space filling curve [21]),

high-dimension space partition (KD-tree [5], R-tree [19],SR-tree [23]) and locality

sensitive hashing (LSH [22]). However, as the dimension of the data objects increases,

algorithms based on many of the existing index structures are not much better than a

naive algorithm that enumerates allO(n) data points and returns theK closest points as

the result. The reason is that in the high dimensional case, alarge proportion of the data

points/objects in the space needs to be considered as candidates of KNN. As shown

in [36], when the number of dimensions exceeds 10, existing space partition index

structure are slower than the brute-force sequential scan algorithm. This phenomenon

is called the “curse of dimensionality” [4]. We will discuss these issues in detail in

Chapter 2.

2

1.2 Thesis Contribution

As mentioned in [22], all known techniques for solving the exact KNN problem in

high dimensional space fail due to the “curse of dimensionality”, so the authors of [22]

tried to solve approximate KNN instead. The definition of theapproximate KNN is

as follows: assume the maximum distance from the query object to the objects of the

exact KNN result isr (r =max{Dis(q, p)}, Dis() is the distance function,q is the query

object,p∈(exact KNN result)), so the exact KNN objects are in the sphere with radius

r in the high dimensional space, we want to returnK objects within distance(1+ε)× r

from the query point as the answer of approximate KNN query. In the definition,ε ≥ 0

and the smallerε is, the better the search quality. Whenε = 0, the approximate KNN is

the same as exact KNN. In [22], the authors proposed the well known algorithm called

locality sensitive hashing (LSH, we will explain it in more detail in Chapters 2 and 3)

to solve the approximate KNN problem efficiently.

The key idea of LSH is that objects that are close to each otherare more likely to

be hashed to the same bucket in the hash table than objects that are far apart [22]. So far,

LSH is the most practical algorithm for high dimensional space KNN search problem,

even though it is an approximate algorithm. However, one weakness of this basic LSH

algorithm is that many parameters need to be tuned carefullyin order to answer a

domain specific KNN query. In the KNN search problem, we can assume there is a

hyper-ball around query object within which there will beK objects as its KNN. For

different KNN queries, the radius of the hyper-ball will vary for two reasons: (1) the

data distribution around query object, (2)K, the size of the query result. The change of

the radius may render the previous setup parameters useless, and subsequently render

LSH to be unfeasible in terms of real world application wherethere exists a large variety

of queries. In order to eliminate the parameter tuning requirement of the basic LSH

algorithm, in [3] Bawaet al. proposed the LSH-Forest algorithm, in which the most

3

important improvement is the use of the prefix tree data structure to index the LSH

signature of each data object. In essence, a leaf tree node islike a hash bucket in the

basic LSH, and each level of the tree represents a different hash table (with a different

bucket size). To answer a KNN queryq, this algorithm descends each LSH tree to

find the leaf having the largest prefix match withq′s LSH signature, and then ascends

synchronously in each LSH tree to check the possible siblings until it collects enough

candidate nearest neighbor objects [3]. Inspired by the idea of LSH-Forest, we find

that Multi-Probe LSH [27] can also be used to answer the KNN queries in a self-tuning

manner. The reason is as follows: the main idea of LSH-Forestis using the LSH tree

to vary bucket size in a query adaptive way; similarly, Multi-Probe LSH is also able to

vary bucket size dynamically at query time (they achieve this goal via probing multiple

relevant buckets, the union of which can be viewed as a singlebigger bucket).

An ideal KNN search algorithm should be able to achieve 3 goals: high search

quality, high time efficiency, high space efficiency. Although some above mentioned

algorithms can achieve high search quality and high space efficiency, they failed to

achieve high time efficiency because of a main drawback: theyall require a costly

post-processing step. For algorithms such as LSH-Forest and Multi-Probe LSH, after

a sufficient number of candidate objects are collected, theyneed to be ranked by the

distance to the query object, then theK objects that are most similar (thus closest)

to the query point are returned as the KNN result to the query.In order to get the

distance of each candidate object to the query object, we need to fetch the full vector

of each candidate object from some data storage device (e.g., database), and compute

the distance according to the distance function (for example, l1 distance orl2 distance).

The vector fetching step can be costly. For high dimension data, there is a possibility

that the data size is too large to be stored in main memory. Forexample, one of our

experiment data sets with only 1 million vectors has the sizeof 8.1 GB (960 dimension

GIST data stored in text format) [18]. In order to fetch a dataobject vector from a disk-

4

based index (e.g., BerkeleyDB [29] database in our case), wehave to payO(logN) disk

I/O price (N is the number of data objects in the data set). When the candidate set size is

not small, this disk read cost is not negligible. Moreover, the distance computation step

can also be costly, especially when the number of dimensionsis high or the distance

function is costly. Furthermore, in some cases the vectors of data objects may not be

visible at all for security/privacy reasons, rendering thedata access post-processing step

impossible.

The weaknesses of all previous KNN related algorithms is thecostly post-

processing step, hence we think it is necessary to find a more time efficient post-

processing solution without visiting candidate objects vectors in data storage device

at all. Here we propose our histogram-based post-processing (HBPP) method. The

logic behind HBPP is that in each hash table, objects that areclose to the query object

are more likely to appear in the corresponding bucket than objects that are far apart

from the query object. In the candidate set, which is the combination (not union in this

case) of all the fetched buckets from each hash table, objects that appear more times are

very likely to be closer to the query object than objects thatappear fewer times. The

work flow of our HBPP method is as follows: after the candidateobjects are collected,

we order them according to the occurrence count of each object (in a sense, it is very

similar to building an occurrence histogram, as shown in Figure 1.2). Then we collect

objects from the highest occurrence slot, then the next highest occurrence slot and so

on, until we getK nearest neighbors. If the last slot from which we collect KNNobjects

has more objects than required, we will just randomly pick the required number of ob-

jects from that slot. For example, in Figure 1.2, if we want topick 100 objects that are

closest to the query object, we will collect all the objects with occurrence count 10 and

9, furthermore, we will randomly pick 34 objects from objects with occurrence count

8, thus we get 100 objects in total as the KNN result. Finally,we return theseK objects

as an answer to the KNN query. We will explain our algorithm inmore detail in Chap-

5

Figure 1.2: Object occurrence histogram in which the numbers at the bottom of each
bar denote occurrence count; numbers on the top of each bar denote number of objects
with the corresponding occurrence count in the candidate set (e.g., the first bar in the
chart has the number 1 in bottom and number 546 on the top, it means there are 546
objects that occur once in the candidate set)

ter 4. In the experimental results chapter, we compared our algorithms (Multi-Probe

LSH with Histogram-based post-processing (HBPP) and LSH-Forest with HBPP) with

several other LSH based KNN algorithms, including Multi-Probe LSH with data ac-

cess post-processing (DAPP), LSH-Forest with DAPP, Multi-Probe LSH with random

pick(RP), LSH-Forest with RP. We have shown that our algorithms can always achieve

high search quality (as good as LSH-Forest with DAPP and Multi-Probe LSH with

DAPP) with much less time cost (one to several orders of magnitude speedup). We

have also shown that with almost same time cost and memory usage, our algorithms

can always achieve better search quality than the LSH-Forest with RP and Multi-Probe

LSH with RP.

1.3 Organization of the Thesis

The organization of this thesis is as follows: we discuss related work in Chapter 2.

Chapter 3 presents the overview of locality sensitive hashing (LSH) for nearest neigh-

bors search, and other improved techniques based on LSH suchas Multi-Probe LSH

6

and LSH-Forest. We will discuss our proposed algorithms in Chapter 4 and present

the mathematical model that explains HBPP theoretically. Chapter 5 describes the ex-

perimental setups which evaluate different algorithms formultiple data sets. Chapter 6

discusses the experimental results. We conclude this thesis in Chapter 7.

7

Chapter 2

RELATED WORK

The most important problem for multi-dimensional query processing is how to index

the high-dimensional objects. One straightforward and intuitive way would be mapping

the objects from a multidimensional space into one dimension, and indexing them with

a data structure like B-tree.

2.1 Linear Indexing

Space-filling curves such as Hilbert Curve [21] (introducedby Hilbert in 1891) and

Z-order Curve [28] will be appropriate methods. Although Hilbert curve fills the space

effectively, it is not computationally efficient. So instead, a Z-order curve that has a

very efficient mapping implementation, is used in practice for high dimensional space.

The z-value of a point is obtained by interleaving the binaryrepresentations of

its coordinate values [38]. For example, given a point (3, 5)in a 2-d space, its binary

representation is (011,101). Hence, its z-value is 011011=27. The Z-order curve for a

data setS is generated by connecting the points inS in the descending order of their

z-values [38].

In [38], the authors utilize the z-values to map points in a multidimensional

space into one dimension, and then translate the KNN search for a query pointq into

one dimensional range search on the z-values around theq′s z-value. To avoid the infor-

mation loss in the mapping, they produce some independent, randomly shifted copies

of the original data set. Then they do the same operation on the shifted data set (map-

ping and range query). By doing this, the approach theoretically guarantees to provide a

constant factor approximate (in terms of the radius of theK nearest neighbor ball) solu-

tion, and it could be extended to find the exact KNN efficientlyin any fixed dimensions.

8

2.2 Multi-dimensional Indexing

However, the weakness of space-filling curves is that when the multi-dimensional data

objects are mapped to one dimensional space and stored usingtraditional index struc-

tures, some amount of information is lost (for example, the jumps in Z-order curve),

which may result in misses or false positives during query processing. Another way to

index the high-dimensional data points would be to apply a multi-dimensional indexing

method to index the original space directly.

KD-tree, which was introduced by Jon Bentley [5] in 1975, is the first high-

dimensional indexing structure used to solve the KNN problem. KD-tree always splits

the space along one single dimension every time. To ensure that every dimension gets

the chance to divide the space, the dividing dimension is selected at each level of the

KD-tree in a round-robin manner. A KNN query can be processedefficiently in a KD-

tree by using a branch and bound method to quickly eliminate large portions of the

search space. For a KD-tree and its variants, they build the indexing structure in a

top-down manner. But this top-down method results in the dead space problem [19],

because the entire space needs to be covered at each level of the tree even if some

portion of the space is totally empty [7]. To solve the dead space problem, [19] intro-

duced R-tree in 1984, which uses a bottom-up data-partitionstrategy instead of space

partition method. At the leaf level, minimum bounding region (MBR) [19] is used

to cluster nearby data points together. Then in the higher level node, larger MBR is

formed by clustering nearby lower level MBRs. The highest level is the root node, the

only level which has to cover the entire space [7]. Actually,R-tree is a tree data struc-

ture very similar to the well known B-tree, but is used in the spatial access case, i.e., for

indexing multi-dimensional data objects. In [19], the algorithm uses depth-first (DF)

traversal paradigm, starts from the root of R-tree, and visits recursively the node with

the smallest mindist toq (query point) until the leaf level where a potential NN (Nearest

9

Neighbor) exists is reached. Subsequently, the algorithm conducts backtrackings. In

particular, during backtracking to the higher levels, DF only visits those nodes whose

minimum distance toq is smaller than the distance between the NN candidate retrieved

so far and the query point. In other words, R-tree is used to prune a large portion of

unpromising data points quickly.

2.3 Locality Sensitive Hashing

In many modern applications, the number of features (dimensions) can be very large [13,

15]. As the number of dimensions increases, all the algorithms mentioned above be-

come less effective. The reason is that a large proportion ofthe objects in the space

needs to be compared to the query point in this case, so these algorithms are not much

better than the sequential scan algorithm that compares allthe objects in the space to

the query point. This phenomenon is called the “curse of dimensionality” [4]. To deal

with this issue, Locality Sensitive Hashing (LSH) [22] is introduced.

Locality sensitive hashing (LSH) [22] is a technique for grouping points in

space into “buckets” based on some distance function. We will give more details about

LSH in Chapter 3. Points that are close to each other under thechosen metric are

mapped to the same bucket with high probability. The key ideais to hash the points

using several hash functions to ensure that for each function the probability of collision

is much higher for objects that are close to each other than for those that are far away,

in [17], the authors provide theoretical proof. So nearest neighbors can be obtained by

hashing the query point and fetching points stored in the corresponding buckets. LSH

is an approximate algorithm.

10

Multi-Probe LSH

One disadvantage of the basic LSH algorithm is that it requires a huge amount of hash

tables in order to achieve good search quality (or low miss rate). In [27], the authors

propose a new indexing scheme called Multi-Probe LSH to overcome this disadvantage.

Multi-Probe LSH is based on the well-known basic LSH algorithm, but it intelligently

probes multiple buckets (within the same hash table) that are likely to contain nearest

neighbors of the query object. Thus Multi-Probe LSH requires much fewer hash tables

to achieve the same search quality (recall rate). We will give more details about Multi-

Probe LSH in Chapter 3.

LSH-Forest

Another significant drawback of the basic LSH algorithm is that it requires hand-tuning

for many of its data dependent parameters in order to answer specific KNN queries

(e.g., specific data domain, specific result size). So Bawaet al. [3] proposed a self-

tuning indexing scheme called LSH-Forest which is applicable for KNN search in

high-dimensional space. LSH-Forest is also based on the well-known technique of

locality-sensitive hashing (LSH), but improves upon it in several perspectives: (a) it

gets rid of the need for hand-tuning of many data-dependent parameters in basic LSH

algorithm, (b) it has better performance compared to basic LSH for skewed data dis-

tribution, with same space and time complexity [3]. LSH-Forest algorithm achieves

these improvements by indexing hash signatures of objects (of each LSH function)

with prefix-tree, instead of a hash table. As a result, the signature length of each ob-

ject is able to vary at different levels of the prefix tree. In other words, one prefix tree

can represent multiple hash tables with each node corresponding to one bucket. So

the LSH-Forest algorithm can answer a specific KNN query adaptively by traversing

from the leaf node toward the root node in each prefix tree simultaneously until enough

candidate objects are collected to answer the KNN query.

11

2.4 Alternative Methods

Another algorithm to beat the “curse of dimensionality” [4] is called Vector Approxima-

tion Files [37]. Observing that most existing algorithms are not better than sequential

scan method in the high dimension case, it uses a memory stored reduced space granu-

larity version of the data set to speed up the scan in the first run. Then in the second run,

it fetches the complete vectors of the candidates from disk for post-processing. Vector

Approximation Files is also an approximate algorithm.

12

Chapter 3

OVERVIEW OF LSH BASED KNN SEARCH ALGORITHMS

This chapter reviews the existing LSH-based indexing schemes. We first explain the

key idea of the basic LSH algorithm, then we introduce two improved versions of the

LSH scheme: one is called Multi-Probe LSH, which reduces thespace complexity

compared to the basic LSH algorithm; another is called LSH Forest, which is able to

eliminate the data dependent parameter tuning step of the basic LSH algorithm.

3.1 Basic Idea of LSH

Locality sensitive hashing (LSH) functions map “close” objects into the same bucket

with higher probability than “far apart” objects. Given a KNN query, steps to answer

the query using LSH index are: (1) use LSH functions to hash the query object into

a corresponding bucket in each hash table, (2) collect objects from the corresponding

bucket in each hash table, then merge all these objects to form the candidate set, (3)

rank all the candidates according to their distances to the query object, and return the

K closest objects as the answer [27].

In [22], Indyk and Motwani proposed the idea of locality sensitive hashing

(LSH) for the first time. By using LSH functions, two objects that are “close” to each

other are more likely to collide than two “far apart” objects. The definition of LSH

functions is as follows [27]:

Definition 1. A function familyH = {h : S→ U} is called (r1, r2, p1, p2)-

sensitive for distance functionDis(), if for any p,q∈ S (hereS is the data set,r1 < r2,

p1 > p2)

If Dis(p,q)≤ r1, thenPrH [h(p) = h(q)]≥ p1

If Dis(p,q)≥ r2, thenPrH [h(p) = h(q)]≤ p2

By using such functions, we can ensure that “close” objects (within distancer1)

13

are more likely (sincep1 > p2) to have the same hash value than “far apart” objects

(with distance more thanr2). More generally, the collision probability of two objectsp

andq decreases strictly with the distance between them.

The distance functionDis(a,b) we mentioned above can vary, as long as it is

lp norm (e.g., Hamming distance, Manhattan distance, Euclidean distance), as shown

below:

Dis(a,b)= {∑d
i=1(ai−bi)

p}1/p, hereaandbare two points in the d-dimensional

space, andai is the coordinate value of pointa in thei−th dimension,bi is defined sim-

ilarly.

The LSH family that is applicable forlp norm distance is based on p-stable

distributions [10]. This point was first proposed by Dataret al. Some well know p-

stable distributions are [1]:

� Cauchy distribution, defined by the density functionf (x) = 1
π

1
1+x2 ; it is 1-

stable

�Gaussian (normal) distribution, defined by the density function f (x)= 1√
2π e−x2/2;

it is 2-stable

Locality sensitive hash functions forlp norm usually have the following format:

HA,B(~v) = b~A·~v+B
W c

Here,~v is the corresponding vector of some data object/point in thehigh dimen-

sional space,~A is a d-dimensional vector whose entries are chosen randomlyfrom a

p-stable distribution, andB is a real number chosen randomly from the range[0,W] [1].

In this thesis, the distance function is Euclidean distance(l2 norm), so we will use a

2-stable distribution (normal distribution) to generate the random vector~A. More gener-

ally, the algorithms proposed in this thesis can work for anylp norm distance function,

as long as there is a corresponding p-stable distribution togenerate the random vector

14

in the hash function.

The authors of [22] illustrate how to build an indexing data structure for nearest

neighbors search using a locality sensitive hash function familyH. In order to obtain the

desired search quality, they need to amplify the gap betweenthe collision probability

of “close” objects (e.g., with a distance less thanr1) and the collision probability of

“ far apart” objects (e.g., with a distance greater thanr2, r2 > r1). To achieve this

goal, the authors concatenate several functionsh∈ H. Specifically, given the integer

c, the authors define a function familyG= {g : S→Uc}, and for eachg∈ G, g(v) =

{h1(v), · · · ,hc(v)} wherehi ∈ H. “For an integer L, the algorithm chooses L such

functions g1, · · · ,gL from G, independently and uniformly at random” [1]. Each of the

L functionsgi (1≤ i ≤ L) is used to construct one hash table; as a result, there areL

hash tables.

After concatenating several hash functions,h ∈ H, the gap between the colli-

sion probability of “nearby” objects (e.g., within a distance less thanr1) and the col-

lision probability of “far apart” objects (e.g., with a distance greater thanr2, r2 > r1)

is amplified. For example, assume there are 4 objectsa,b,e, f , and Dis(a,b) = r1,

PrH [h(p) = h(q)] = p1, Dis(e, f) = r2, PrH [h(p) = h(q)] = p2. Sincer1 < r2 and due

to the monotonic decreasing property of the hash function, we havep1 > p2. At this

point, the gap between the collision probability of(a,b) and the collision probability

of (e, f) is t = p1/p2. After concatenatingc hash functionsh∈ H to form new hash

functionsg∈G, PrH [g(p)= g(q)] = pc
1, PrH [g(e) = g(f)] = pc

2. Now the gap becomes

T =
pc

1
pc

2
= (p1

p2
)c = tc. Sincet > 1, c> 1, we haveT > t.

However, after concatenating several hash functions,h∈ H, not only does the

collision probability of “far apart” objects (e.g., objectse and f) becomes very small

(e.g.,pc
2), but also the collision probability of “nearby” objects (e.g., objectsa andb)

is reduced (e.g.,pc
1). This means that the miss rate of “nearby” objects is increased.

As a result, we need multiple hash tables in order to reduce the miss rate of “nearby”
15

objects. GivenL hash tables, the miss rate of “nearby” objects is 1− (1− pc
1)

L [1]. As

we can see, whenc is fixed andL increases, the miss rate decreases; on the other hand,

whenL is fixed andc increases, the miss rate also increases.

Then [22] starts to preprocess the data set and construct LSH-based indexing

structure. There are 2 main steps [27]: (1) Given parametersc, L, W, it constructsL

hash tables, the hash function of each hash table is composedof c randomly picked

locality sensitive hash functionsh (h ∈ H); (2) For each of theL hash tables, it puts

each pointv∈ P (P is the data set) into the corresponding bucket.

After constructing the LSH index structure, a nearest neighbors’ query can be

processed in three steps, which have been explained in the first paragraph of this sec-

tion.

3.2 Multi-Probe LSH

As we mentioned in Section 3.1, one significant drawback of the basic LSH algorithm

is that it may require a huge amount of hash tables to reduce the miss rate of nearest

neighbors. For example, over 580 hash tables are used in [6].The size of each hash

table will scale linearly with the dataset size (when the number of dimension is fixed).

When these hash tables are too large to be stored in the main memory, they have to be

stored on disk. As a result, checking a hash bucket may require disk accesses, which

are much slower than memory accesses and hence this causes the dramatic performance

drop of basic LSH algorithm.

In [30], Panigrahy gives the theoretical study of basic LSH algorithm and pro-

poses an entropy-based LSH algorithm. The key idea of entropy-based LSH algorithm

is it generates many randomly “perturbed” objects that are close to the query object in

the space. Then these objects are queried in addition to the query object, and returns

the union of all the fetched objects as the candidate set [27]. In this way, Panigrahy

argues that entropy-based LSH method can reduce the space complexity by increasing

16

the time cost of query processing, but this is still much better than the basic LSH al-

gorithm in the situation where it has to store its hash tableson disk for its larger space

complexity.

Entropy-based LSH algorithm has two main drawbacks [27]: (1) The nearest

neighbor distanceRn needs to be known beforehand in order to run the perturbation

step. However,Rn is really a data dependent parameter. (2) The perturbation step is not

computationally efficient, since generating randomly “perturbed” points and comput-

ing their corresponding hash values are costly and slow.

To overcome the drawbacks of the basic and entropy-based LSHalgorithms,

the authors in [27] propose a new method called Multi-Probe LSH. It has two main

improvements over the entropy-based LSH algorithm: (1) Multi-Probe LSH does not

need the knowledge of the nearest neighbor distance (i.e.,Rn, which is data dependent)

to order the hash buckets. However, such knowledge is required in entropy-based LSH

algorithm. (2) Multi-Probe LSH algorithm in a sense probes hash buckets in a more

efficient manner and only checks buckets with the highest success/collision probabili-

ties. In the paper, the authors give a simple scoring system which estimates the success

probabilities of hash buckets quite well. By using this scoring system, they are able to

order the hash buckets for exploration quickly.

The main idea of the Multi-Probe LSH algorithm is to use an intelligently gen-

erated probing sequence to explore multiple buckets (in each hash table) that are likely

to contain the nearest neighbors of a query object. According to the property of locality

sensitive hashing, if some nearest neighbors of the query object q are not hashed to the

same bucket asq, they are very likely to be hashed to some “slightly different” buckets

(i.e., buckets whose signatures only differ slightly toq′s signature). So Multi-Probe

LSH algorithm uses a probing vector withc entries corresponding toc hash functions

(since the hash functiong(v) of each hash table is composed ofc hash functions,h∈H)

to explore these “slightly different” buckets, in addition to the bucket where the query
17

Figure 3.1: Given a query object, Multi-Probe LSH not only checks if the bucket has
the same signature as query object’s (indicated by black arrow), but also checks all 1-
step buckets (indicated by solid white arrows) and 2-step buckets (indicated by dashed
gray arrows)

objects is hashed, as shown in Figure 3.1. In [27], the authors have developed two

probing sequences for the Multi-Probe LSH algorithm. One isthe step-wise probing

sequence; another is the query-directed probing sequence.The latter one is shown to

be more efficient than the former.

The experimental results in [27] show that the Multi-Probe LSH algorithm can

significantly reduce both time and space complexity as compared to the previous LSH-

based algorithms (e.g., basic LSH algorithm, entropy-based LSH algorithm). In com-

parison to the basic LSH algorithm, Multi-Probe LSH algorithm can achieve the same

search quality with similar time cost but much fewer hash tables. On the other hand,

when compared to the entropy-based LSH algorithm, the Multi-Probe LSH algorithm

has a lower query processing time and 5 to 8 times fewer hash tables to achieve the

same search quality.

18

Figure 3.2: Each bucket is identified by the string of integers produced by each of thec
LSH functionsh∈ H

Figure 3.3: The bucket’s signature is translated to the pathof a prefix tree from the root
node to leaf node

19

3.3 LSH-Forest

Another drawback of the basic LSH algorithm for nearest neighbors search is that it

cannot tune the parameters intelligently to answer different nearest neighbor queries

(e.g., KNN queries with different result sizes). Once the parameters of the basic LSH

(e.g.,W, L, c) are decided and the hash tables are built, the bucket size ofeach table

cannot be changed any more. So for a given KNN query, the bucket size is very likely

to be too large or too small to answer this query. If the bucketsize is too small, then

there may be not enough objects in the candidate set. On the other hand, if the bucket

size is too large, then there are too many candidate objects,thus the post-processing

cost will be high. In the worst case, it will not be better thanthe brute-force, sequential

scan method.

In [3], Bawaet al.propose an indexing scheme called LSH-Forest which is ap-

plicable in high dimensional nearest neighbors searches. LSH-Forest algorithm is also

inspired by the idea of the basic LSH algorithm, but it has several improvements com-

pared to the basic LSH: (1) It does not require hand-tuning ofseveral data dependent

parameters (e.g.,L, W, c) as in the basic LSH algorithm. (2) It can achieve better

search qualities for skewed data distributions while keeping the same space and time

complexity [3].

In LSH-Forest, each hash table is presented by a prefix tree, so the number

of hash functions per table can be adapted for different approximation distances in

order to process different KNN queries. By concatenating the bits on the path from

the root node of the prefix tree to the leaf node we get the hash signature (of pointp)

g(p) = {h1(p), · · · ,hc(p)}, which is the hash label ofp in the tree (Figure 3.2 and 3.3).

“Making c big enough would ensure that each object has a distinct hash label. A

maximum label length cm is used to limit the depth of one tree” [35]. In fact, a leaf node

of a tree can be viewed as a hash bucket in the basic LSH algorithm. Given a nearest

20

neighbors query, LSH-Forest descends each LSH prefix tree tofind the leaf having the

largest prefix match with the query object’s label, and then ascends to check possible

siblings simulaneously. In other words, it increases the bucket size of each LSH tree

until it collects enough candidate objects.

3.4 Multi-Probe LSH vs. LSH-Forest

The same goal (i.e., answering KNN query in a self-tuning manner, so that the bucket

size can vary according to different KNN queries) can also beachieved by using the

Multi-Probe LSH method which is mentioned in Section 3.2. Although Multi-Probe

LSH is originally proposed to reduce storage cost by probingmore than one bucket in

each hash table (so we need fewer hash tables to achieve the same search quality), it

can also be used to enlarge the bucket size (all the probed buckets can be viewed as

one single larger bucket) gradually by probing more and morebuckets in each table

synchronously until enough candidate objects are collected (instead of being used to

save storage cost, in this thesis the Multi-Probe LSH methodis being used to vary the

bucket size to answer different KNN queries).

In this thesis, both Multi-Probe LSH and LSH-Forest are usedas the indexing

structures for our HBPP algorithm. These two algorithms have mainly two differences:

(1) In the index building step, Multi-Probe LSH uses LSH tables to store the data points,

while LSH-Forest uses LSH trees. (2) In the candidates collection step, Multi-Probe

LSH increases the candidate set size by exploring more and more buckets in each LSH

table, while LSH-Forest increases the candidate set size bytraversing toward the higher

level node of each LSH tree (from the leaf node) and collecting all the leaf nodes under

that node. We will discuss the differences between these twoalgorithms in more detail

in Section 4.2.

21

Chapter 4

PROPOSED ALGORITHMS

Having seen that all the state of the art LSH based algorithmssuffer from the costly

post-processing step, here we give a more efficient approximate post processing method

to overcome this disadvantage. Our method also utilizes theproperty of the famous

locality sensitive hashing function. We will discuss the innovation of our algorithm in

the following paragraphs. In Section 4.2 and 4.3, we will give the algorithm details and

the mathematical model formally.

4.1 What is the Innovation?

In the d-dimensional space, for a pointp, there is a corresponding vectorvp which starts

from the original point top. As we mentioned in Chapter 3, data sets in high dimen-

sional space withlp norm distance metric can use the LSH scheme based on p-stable

distribution function to solve the KNN search problem. The details are as follows [1]:

(1) A d-dimensional vector~A is generated, entries in~A are drawn from a p-stable distri-

bution. (2) A real numberB is generated,B is a real number picked randomly from the

range[0,W], whereW is a reasonably large real number. (3) The locality sensitive hash

function is defined with the following format:HA,B(~V) = b~A·~V+B
W c. In other words, a

locality sensitive hash function maps a d-dimensional vector~V to an integer.

Now let us analyze the locality preserving property of the locality sensitive

hash function. The dot product~A ·~V in the hash function maps vector~V to a real

number and the corresponding real number distance between two vectors~V1 and ~V2

is (~A · ~V1−~A · ~V2) [1]. Since vector~A is drawn from a p-stable distribution, the real

number distance is distributed as‖~V1− ~V2‖pt wheret is a value which follows the p-

stable distribution [1]. In fact, one can imagine that the locality sensitive hash function

first maps vector~V to a real number line, then cuts the line into segments with length

W, and assigns the corresponding segment number to the vector~V. So if two points are

22

close to each other in the space, the projection distance of their vectors also tends to be

small, so their vectors are very likely to have the same segment number. Now we are

clear about the locality preserving property of LSH function.

More formally, in [1], the authors give the formula to compute the probability

that two vectors~Vi and~Vj collide under a hash function picked randomly from the hash

family. Let fp(s) present the probability density function of the absolute value of the p-

stable function. For two vectors~Vi and~Vj , let z= ‖~Vi− ~Vj‖p. Let A be a d-dimensional

vector with entries picked randomly from a p-stable distribution, B be a real number

chosen randomly from[0,W]. We have

p(z) = PrA,B[hA,B(V1) = hA,B(V2)] =
∫W

0
1
z fp(

s
z)(1− s

W)ds.

Hence it is easy to see that for a fixed parameterW the probability of collision

p(z) decreases monotonically withz (i.e., the distance between two pointsi and j).

This advantageous property of LSH is the key for our efficienthistogram-based

post-processing (HBPP) method. Given two objectsX andY, and one query objectq,

let us assumeDis(X,q) = r1, Dis(Y,q) = r2, r1 < r2, hence we havep(r1) > p(r2) for

any hash functionhA,B(). It means that objectX is more likely to collide withq thanY.

Given the concatenated hash functiong(p) = {h1(p), · · · ,hc(p)} for a hash table, the

probability that objectX collides with objectq in the same bucket of the hash table is

(p(r1))
c, while the probability for objectY to collide with objectq in the same bucket

is (p(r2))
c. So we have(p(r1))

c� (p(r2))
c. It means objectX is more likely to be

hashed into the same bucket as the query objectq than objectY. In other words, in a

locality sensitive hash table, objects that are close to thequery object are much more

likely to appear in the corresponding bucket than objects that are far apart from the

query object. GivenL such locality sensitive hash tables, we expect that objectscloser

to the query object will occur more times in the combined candidate set. As a result,

we can use the occurrence count to rank the candidate objectsas an approximation to

23

the real ordering. The real ordering of candidate objects can be obtained by computing

the real distances of the candidate objects (to the query object) and ranking them by

distance. As we mentioned earlier, this real ordering step can be very costly.

To our best knowledge, all previous LSH based algorithms fornear neighbors

search have not considered using the occurrence information for the pruning of false

positive objects in the candidate set. So in this thesis, we propose to use this useful

information to speed up the post-processing step. In Section 6.1 of Chapter 6, we will

show that by using our occurrence histogram based pruning method (HBPP), the query

processing can be improved by at least an order of magnitude,while still maintaining

high search quality.

4.2 Algorithms

There are mainly 3 steps in our algorithms: (1) Index building, which is similar to

the previously mentioned LSH-based nearest neighbors search algorithms (e.g., LSH-

Forest, Multi-Probe LSH). (2) Candidate objects collection, this step is also similar

to that of LSH-Forest algorithm or Multi-Probe LSH algorithm. We enlarge bucket

size gradually to fetch enough objects from each LSH tree/table. (3) Histogram-based

post-processing on candidate set. This is the most innovative step compared to existing

algorithms. We use the occurrence count of candidate objects to estimate their distances

(since occurrence count is a good approximation of distance) to the query object, which

is a much cheaper operation compared to the real distance computation. In fact, step

2 and step 3 together can be called the query processing step,which will be described

below.

Index Building

There are mainly two choices about the indexing structures,one is original LSH table

(as in Multi-Probe LSH), and the other is LSH tree (as in LSH-Forest). (1) For the

first choice, we can achieve the goal of dynamically expanding buckets in each table

24

by probing more and more hash buckets. As in [3], each hash bucket ideally should

contain only one object to achieve the best search quality. However, in this ideal case,

the number of buckets will be equal to the number of data objects and more buckets

mean extra memory cost. As a result, we will impose a largest bucket numberBm in

each table. In the basic design of LSH, the bucket number is decided byc (the number

of concatenated hash functionsh ∈ H) and the number of segments in eachh. If we

fix c, then the only parameter affecting the bucket number is the segment number of

each hash functionh, which is affected byW and the space range of the data set. So

according to the specific data domain, the specific value ofW is required in order to

get the appropriate segment number of hash functions. So in that sense, Multi-Probe

LSH has at least one data-dependent parameter. (2) For the second choice, the goal of

dynamically expanding buckets in each LSH tree can be achieved by moving from leaf

node of the tree towards the root node. As in [3], each leaf node can be viewed as a

bucket in the hash table and should contain only one object inthe ideal case. However,

doing so may require the depth to be extremely large, which results in large number

of tree nodes and huge memory cost. Similarly as in the first choice, we also give a

largest leaf numberFm in each tree. As we know, the number of leaves in a binary tree

is only decided by the depth of the tree. So given the valueFm, we can get the depth

of the LSH tree in a data independent manner. In that sense, LSH-Forest is more data

independent and self-tuning.

Candidate Objects Collection

a. Candidate Objects Collection for LSH-Forest

Given an LSH-Forest consisting ofL LSH trees built on a set of objects, the candidate

objects for the KNN query of objectq can be collected by traversing the LSH trees in

two steps. In the first top-down step, we descend each LSH treeTi to find the leaf node

having the largest prefix match withq′s hash signature as shown in Figure 4.1 [3]. In

the second bottom-up step,M data objects are collected from each tree while we are

25

Algorithm: DESCEND(q,yi, f)

Input: queryq at levelyi on nodef
Output:a leaf node matchesq′s signature with max length

if f is a leafthen
return f;

else
z=yi+1;
hz(q) =Evaluategi(q,z);
n=child node off from branch with labelhz(q);
p=DESCEND(q,z,n);
return p;

end if

Figure 4.1: The top-down step in candidates collection on LSH treeTi initiated with
DESCEND(q,0,rooti), adapted from [3]

Algorithm: FORESTCOLLECT(s[0, · · · , l −1])

Input: si is the corresponding leaf node for LSH treeTi
Output: a hash table P which contains candidate objects and their occurrence count

Budget[0, · · · , l −1] = {0, · · · ,0}; /*Budget is an array with values initialized with 0 */
P= /0; /*P is an empty hash table*/

for i = 0 to l -1 do
while Budget[i]< M do

A=Descendants[s[i]];
for j = 0 to A.length-1do

if P.containsKey(A[j]) then
count=P.getValue(A[j]);
count← count+1;
P.update(A[j],count);

else
P.put(A[j],1);

end if
Budget[i]← Budget[i]+1;
if Budget[i]≥M then

break;
end if
j← j +1;

end for
end while
i← i+1;

end for
return P;

Figure 4.2: The bottom-up step in candidates collection initiated with arguments re-
turned by DESCEND

26

Figure 4.3: The result hash table of the candidate collection step, the key is the object
ID, the value is the occurrence count of the object in the candidate set

ascending from the corresponding leaf node (that is found inthe first step) to the root

node [3]. While we are collecting candidate objects synchronously from each LSH

prefix tree, we remember the occurrence count of each distinct object (there will beM′

distinct candidate objects, whereM′ < L×M). The second step is shown in Figure 4.2

and an example of the candidate objects collection result isshown in Figure 4.3. These

two steps work together as the candidate objects collectionstep.

b. Candidate Objects Collection for Multi-Probe LSH

GivenL hash tables built on a set of objects, the candidate objects for the KNN query

of objectq can be collected as follows: we generateq′s signaturegi(q)(0≤ i ≤ L) by

using the hash function for each hash table. Then we start collectingM objects in each

hash table. First we collect objects from the bucket with thehighest success/collision

probability, given the parameters(q,gi(q),gi()). If there are not enough objects, we

collect objects from the bucket with the next highest success/collision probability and

so on, untilM objects are collected. When we are collecting candidate objects syn-

chronously from each hash table, we remember the occurrencecount of each distinct

object (there will beM′ distinct candidate objects, whereM′ < L×M). The full process

of candidate objects collection for Multi-Probe LSH is shown in Figure 4.4.

Histogram-based Post-processing

27

Algorithm: MULCOLLECT(q)

Input: query object q
Output: a hash table P which contains candidate objects and their occurrence count

Budget[0, · · · , l −1] = {0, · · · ,0}; /*Budget is an array with values initialized with 0 */
P= /0; /*P is an empty hash table*/

for i = 0 to l-1 do
while Budget[i]< M do

A=NextBestBucket(q,gi(q),gi());
for j = 0 to A.length-1do

if P.containsKey(A[j]) then
count=P.getValue(A[j]);
count← count+1;
P.update(A[j],count);

else
P.put(A[j],1);

end if
Budget[i]← Budget[i]+1;
if Budget[i]≥M then

break;
end if
j← j +1;

end for
end while
i← i+1;

end for
return P;

Figure 4.4: The candidate objects collection step of Multi-Probe LSH

Algorithm: POST-PROCESS(P,K)

Input: candidate set hash table P, K is the size of query result
Output: a set of K objects as the KNN query result

Budget[0, · · · , l −1] = Bucketsort(P); /*Budget is an array with values initialized with 0 */
R= /0;

for i = l −1 to 0do
if R.size≥ K then

break;
end if
for j = 0 toB[i].length−1 do

R.put(B[i][j]);
if R.size≥ K then

break;
end if
j ← j +1;

end for
i← i−1;

end for
return R;

Figure 4.5: The post processing step initiated with arguments returned by FOREST-
COLLECT/MULCOLLECT

28

Now we will introduce the histogram-based post-processing(HBPP) step. When

we get the candidate set, we have the occurrence count of eachcandidate object. Thus,

we rank the candidate objects according to their occurrencecounts (occurrence count

can be used as an approximation of distance of each candidateobject to the query ob-

ject). Since the maximum possible occurrence count of one object isL (L is the total

number of hash tables/LSH trees), we can use bucket sort to order these candidate ob-

jects according to their occurrence counts quickly. Then wecollect objects from the

highest occurrence count slot, then the next highest occurrence count slot and so on,

until we get enough number of nearest neighbors, in this case, it is K (we give an

example of KNN objects collection in the end of Section 1.2).The post-processing

step is shown in Figure 4.5 and an example of the sorted candidate objects is shown in

Figure 1.2.

4.3 Mathematical Model

Here we give a mathematic model to explain why our histogram-based post-processing

algorithm works. We build our model under the assumption that the indexing structure

is LSH-Forest.

In the high dimensional space, the whole space can be viewed as a hyper-ball.

As we know, the hyper-ring around the out-most of the hyper-ball will become a signif-

icant volume relative to that of the hyper-ball, because of the “curse of dimensionality”

[8]. If the data set distribution is approximate to uniform distribution, then we can say

that most of the data points will be on the surface of the hyper-ball.

For a given query objectq, there exists a hyper-ball withq as the center, andr

as the radius. Within this hyper-ball there areK objects, not including the query object.

TheseK objects are the real KNN ofq. As we explained in the above paragraph, we

can assume that all theseK objects are on the hyper-surface of this hyper-ball in the

high dimensional space.

29

Meanwhile, we can view the whole data space as a hyper-ball with radiusR(R>

r), and we can assume that all the false positive objects are on the hyper-surface of this

larger hyper-ball.

We assume thatpr is the probability of the real KNN objects colliding with the

query object in any locality sensitive hash functionh∈ H, which is drawn uniformly

from the p-stable distribution, andpR for all other false positive objects. Given the

depth t (Let us assumeM is the candidates budget size of each tree,N is the size

of the false positives, andK is the size of the real KNN result. Since LSH tree is a

binary and balanced tree when the data distribution is approximate to uniform, we have

t = blog2(
N+K

M))c) of one LSH tree, we know that the probability of the real KNN

objects colliding with the query object in the same bucket is(pr)
t , and(pR)

t for false

positive objects. We setp1 = (pr)
t , andp2 = (pR)

t , for simplicity purposes. So in each

tree, the probability of a real KNN objects appearing in the bucket of query object is

p1 and the probability of missing the bucket is(1− p1). As a result, the probability

of a real KNN object occurringx times in L LSH trees isCx
L(p1)

x(1− p1)
L−x, and

for simplicity, we will denote it asBinomDist[L,x, p1]. Similarly, for a false positive

object, the probability that it appearsx times in the candidate set isBinomDist[L,x, p2].

Then we define the accumulated probability of an object appearing at leasti times. For

a real KNN object, it is∑L
x=i BinomDist[L,x, p1], and for simplicity, we denote it as

CDF[BinomDist[L, p1], i]. Similarly, the accumulated probability for a false positive

object isCDF[BinomDist[L, p2], i].

So the expected number of objects occurring at leastx times is:

CDF[BinomDist[L, p1],x]× K + N×CDF[BinomDist[L, p2],x]. Let us denote it as

ResultNum. In order to fetch the bestK objects from the candidate set, we need to

decreasex (starting fromL) until ResultNum≥ K. Let us assume that the largestx

value satisfying the conditionResultNum≥ K is xs. Then we collect objects from

the highest occurrence slot, then the next highest occurrence slot and so on, until we

30

get K nearest neighbors. If the last slot (slotxs) from which we collect KNN ob-

jects has more objects than required, we will just randomly pick the required number

of objects from that slot. TheseK objects form the KNN of the query object. To

evaluate the recall of the result, we need to know the number of real KNN object

in these K retrieved objects. The expected number of real KNNobjects in the slots

with number equal or larger thanxs+1 is K×CDF[BinomDis[L, p1],xs+1], the ex-

pected number of false positives in the slots with number equal or larger thanxs+1

is N×CDF[BinomDis[L, p2],xs+1], the expected number of real KNN objects in the

slot with numberxs is K×BinomDist[L, p1,xs], the expected number of false positives

in the slot with numberxs is N×BinomDis[L, p2,xs]. So the expected number of real

KNN objects in theK retrieved objects is

K×CDF[BinomDis[L, p1],xs+1] + (K−K×CDF[BinomDis[L, p1],xs+1]−

N×CDF[BinomDis[L, p2],xs+1])× K×BinomDist[L,p1,xs]
K×BinomDist[L,p1,xs]+N×BinomDis[L,p2,xs]

, and the re-

call is

CDF[BinomDis[L, p1],xs+1] + (K−K×CDF[BinomDis[L, p1],xs+1]−N×

CDF[BinomDis[L, p2],xs+1])× BinomDis[L,p1,xs]
K×BinomDist[L,p1,xs]+N×BinomDis[L,p2,xs]

.

To verify the correctness of the model, we tested it with following scenarios:

1. GivenR, r, N, M, L, what is the relation between recall andK?

2. GivenR, r, N, K, L, what is the relation between recall andM?

3. GivenR, r, N, M, K, what is the relation between recall andL?

The patterns we find in the model from the above scenarios match well with

real data case. We will give more details in Section 6.4 of Chapter 6.

Discussion

With the help of the above model, it is possible to predict therecall value for a KNN

query, for givenL, K, N, M, and local distribution and global distribution of the dataset.

31

The local distribution is used to estimater, while the global distribution is used to set

W. The reason is as follows: for a given query object andK, we can estimater (r is the

maximum distance of KNN objects from the query object) if we know the distribution

information around the query object. Givenr andW, we can obtain the value ofpr , thus

we knowp1 (p1 = (pr)
t , and the value oft can be estimated by using local distribution,

global distribution,N, K andM). Then the expected number of real KNN objects we

collect from each LSH tree isp1×K. So the expected number of false positives we

collected from each LSH tree isM′=M− p1×K, thus p2 can be obtained byM
′

N (p2

means the collision probability of any false positive object with the query object in

each LSH tree, so it also means the percent of false positivesbeing collected in each

LSH tree). Now we have obtained all the required parameters in the recall formula

presented above (xs is determined byp1, p2, K andN). Thus we can use the recall

formula to predict the recall value.

32

Chapter 5

EXPERIMENTAL SETUP

In this section, we describe the setup of our experiments, including the experimental

data sets, algorithms to be evaluated in the experiments, evaluation metrics, and imple-

mentation details.

5.1 Experimental Data Sets

There are four different data sets used in our experiments. We want to show under

different data distributions, how our histogram-based post-processing (HBPP) methods

help reduce time cost while there remains high search quality and high space efficiency

in the KNN query processing.

SIFT Data

This data set is created by extracting scale invariant feature transform (SIFT) [26] vec-

tors from an online image data set [24]. SIFT vectors are local descriptors of the inter-

esting points of an image that are invariant to image scaling, translation, rotation, and

also partially invariant to illumination and projections.By default, SIFT vectors have

128 dimensions, and the value in each dimension is integer. In our experiments, we

extract one million SIFT vectors from the image data set.

GIST Data

We download this data set from [18]. There are totally 1 million vectors in the data

set, and each vector has 960 dimensions. The data type of value in each dimension is

double. These vectors are generated by projecting objects in an image to a high dimen-

sional (960 dimensions) space. By doing so, scenes sharing membership in semantic

categories (e.g., streets, highways) are projected close together[2]. GIST data is mainly

used in our experiments to show the scalability of our histogram-based post-processing

(HBPP) algorithms to high dimensions.

33

Uniform Data

This data set is created synthetically. Each vector is generated as follows: for each

dimension in the vector, we assign a double value, which is randomly picked from the

range[0,50], to it. For the purpose of comparing with results of SIFT data, we also

set the number of dimensions for this data set as 128. It is shown in [39] that for vec-

tors/points generated uniformly in high dimensional spaceas above, the distribution of

their distances will obey power-law (the distances betweenmost point pairs are small,

while very few points pairs have large distances). We also generated 1 million vectors

for this data set.

Normal Data

This data set has 20 clusters, and data points in each clusterobey normal distribution.

This data set is created by first randomly generating 20 points in the high dimensional

space (128 dimensions, each dimension has the value range[0,50]), then for each point,

we use it as the cluster center to generate the correspondingcluster. For each cluster,

we randomly pick variance from the value range[0,20]. We set the number of data

points to be equal among all clusters (50000 if the total datasize is 1 million), thus the

densities of clusters (in the space) vary. By doing so, we make sure the distribution is

skewed in this data set. Each vector/point in this data set also has 128 dimensions and

we generated 1 million vectors for this data set.

5.2 Experimental Algorithms

In the experiment, we implemented six KNN search algorithms: (1) LSH-Forest with

random pick (LSH-Forest with RP); (2) Multi-Probe LSH with random pick (Multi-

Probe LSH with RP); (3) LSH-Forest with data access post-processing (LSH-Forest

with DAPP); (4) Multi-Probe LSH with data access post-processing (Multi-Probe LSH

with DAPP); (5) LSH-Forest with histogram-based post-processing (LSH-Forest with

HBPP) and (6) Multi-Probe LSH with histogram-based post-processing (Multi-Probe

34

LSH with HBPP). These six algorithms can be categorized intotwo classes: LSH-

Forest based algorithms and Multi-Probe LSH based algorithms.

LSH-Forest based Algorithms

Three algorithms belong to this class: LSH-Forest with RP, LSH-Forest with DAPP

and LSH-Forest with HBPP. All these three algorithms use LSH-Forest as the indexing

structure and collect candidate objects as mentioned in theChapter 4. After enough

candidate objects are collected from each LSH tree, we unionall of them to form the

candidate set. The main difference among these three algorithms is the post-processing

step after candidates collection. For LSH-Forest with RP algorithm, we just randomly

pick K objects from the candidate set as the answer to the KNN query.For LSH-Forest

with DAPP algorithm, we compute the distances of all candidate objects to the query

object and pickK objects with smallest distances, so this post-processing step needs to

access the database to retrieve the data vectors. For LSH-Forest with HBPP algorithm,

we apply our histogram-based post-processing method (as mentioned in Chapter 4).

Multi-Probe LSH based algorithms

There are also three algorithms in this class: Multi-Probe LSH with RP, Multi-Probe

LSH with DAPP, and Multi-Probe LSH with HBPP. All these threealgorithms use

LSH hash table as the indexing structure and collect enough candidate objects from

each table by using the Multi-Probe LSH algorithm as mentioned in Chapter 4. Then

they union all candidate objects to get the candidate set. The main difference among

these three algorithms is also the post-processing step after candidate collection, as

mentioned in the above paragraph.

5.3 Evaluation Metrics

The performance of a KNN search algorithm can be measured in three aspects: search

quality, time cost, and space complexity. An ideal KNN algorithm should achieve all

three goals: high search quality, high time efficiency, and high space efficiency.

35

The search quality can be evaluated by the fraction of the real KNN objects we

are able to retrieve in the query result (i.e., recall).

Moreover, the search quality can also be evaluated by comparing the sum of

distances ofK retrieved objects (to the query objectq) to the sum of distances of real

K nearest neighbors (toq), which can be represented formally as follows:

error ratio= ε = ∑d
i=1 Dis(q,p′i)

∑d
i=1 Dis(q,pi)

-1, pi ∈ (Real KNN),p′i ∈ (K retrieved objects)

As we can see, the smallerε is, the better the search quality is. Whenε is 0,

then our algorithm performs perfectly, in which case theK objects retrieved by our

algorithm are the real KNN. We will evaluate the search quality by using both these

two metrics in the experiments.

Time efficiency can be measured by the query time, which is time cost per

query. Space efficiency is measured by the total memory usage.

5.4 Implementation Details

We have implemented the six algorithms described above. We store all the experiment

data sets in a popular database called BerkeleyDB [29]. We will read these data sets

from BerkeleyDB to build the hash index structure in memory.Furthermore, vectors

will be fetched from BerkeleyDB to compute distances in the post processing step for

the DAPP algorithms.

The evaluations are done on a server machine with one four-processor Intel 3.00

GHz CPU with 6144 KB cache. The server has 8 GB of DRAM and a 320 GB and 7200

RPM SATA disk. The operation system of this server machine isUbuntu 10.2.

36

Chapter 6

EXPERIMENTAL RESULTS

In this chapter, we report the evaluation results of the six algorithms using the four data

sets (SIFT Data, GIST Data, Uniform Data, Normal Data). We are interested in an-

swering questions including how the search quality (evaluated by both error ratio and

recall) and time cost trade-offs for different algorithms,given same amount of memory

usage. The experimental results are clustered into 4 sections: efficiency and effective-

ness results, scalability results, sensitivity results and model comparison results.

6.1 Efficiency and Effectiveness Results

In this section, three LSH-Forest based algorithms (namelyLSH-Forest with RP, LSH-

Forest with DAPP and LSH-Forest with HBPP) and three Multi-Probe LSH based al-

gorithms (namely Multi-Probe LSH with RP, Multi-Probe LSH with DAPP and Multi-

Probe with HBPP) will be evaluated by using four different data sets. For each data set,

0.1 million data objects are randomly picked from the original 1 million data set as the

experimental data, then 100 objects are randomly picked from these 0.1 million objects

as query objects and the time cost in the experiment is the average query processing

time of these 100 queries. In these experiments, we set the number of LSH trees/tables

to be 160 (L = 160). To ensure the memory usages of the six algorithms for the same

data set are equal, firstly we define the depth of the LSH trees for LSH-Forest based

algorithms to be 8 and the number of hash functionsh∈H of each hash table for Multi-

Probe LSH based algorithms to be 6, then we record the memory costs of LSH-Forest

based algorithms for the experiment data set. Next we will pick the appropriate value

for W (segment width of LSH functions) for Multi-Probe based algorithms for the same

data set such that the memory cost is the same. We also set the KNN percent (percent

of KNN result size compared to the full data size, e.g., KNN percent=5% means the

size of KNN result is 5000 if the data set size is 0.1 million) to be 5%. We will show

the scalability results for these algorithms in section 6.2.

37

Figure 6.1: Error ratio vs. Time cost results of LSH-Forest based algorithms with 0.1
million SIFT Data

LSH-Forest based Algorithms Evaluated based on Error Ratio

In Figures 6.1, 6.2, 6.3 and 6.4, we show the performances of three LSH-Forest based

algorithms (LSH-Forest with RP, LSH-Forest with DAPP and LSH-Forest with HBPP)

by using the four different data sets.

In Figures 6.1, 6.2, 6.3 and 6.4, every curve represents an “Error ratio vs. Time

cost” trend of one of the three LSH-Forest based algorithms. We vary the time cost

of each algorithm by changing the budget size. Budget size means the number of

candidate objects collected from each LSH tree, and larger budget size means higher

time cost. On the other hand, large budget size also decreases the error ratio (except for

LSH-Forest with RP algorithm, in which case the error ratio may increase). Thus, we

get the “Error ratio vs. Time cost” curves in each of the four figures.

As shown in Figures 6.1, 6.2, 6.3 and 6.4, for LSH-Forest withDAPP and LSH-

Forest with HBPP, we can achieve better search quality by increasing the budget size

38

Figure 6.2: Error ratio vs. Time cost results of LSH-Forest based algorithms with 0.1
million GIST Data

Figure 6.3: Error ratio vs. Time cost results of LSH-Forest based algorithms with 0.1
million Uniform Data

39

Figure 6.4: Error ratio vs. Time cost results of LSH-Forest based algorithms with 0.1
million Normal Data

Figure 6.5: 20 nearest neighbors example of Normal Data

40

(thus increasing time cost). However, for LSH-Forest with RP, error ratio increases

(i.e., search quality becomes worse) as the budget size increases. The reason is that

more candidate objects also mean higher percentage of falsepositive objects in the

final result if there is no effective pruning in the post-processing step. We also notice

two interesting patterns: (1) given the same budget size, LSH-Forest with HBPP can

achieve much lower error ratio (better search quality) thanLSH-Forest with RP with a

little more time cost (this also shows LSH-Forest with HBPP is very time efficient). (2)

To achieve the same error ratio (search quality), LSH-Forest with HBPP is much faster

than LSH-Forest with DAPP.

As we can see from these four figures, to achieve the same search quality (error

ratio), LSH-Forest with DAPP requires at least an order of magnitude more time cost

than LSH-Forest with HBPP. Especially for GIST Data in Figure 6.2, the time gain

is even more. The reason is that GIST Data has 960 dimensions,so the data access

post-processing (DAPP) will be even more expensive compared to other data sets (with

128 dimensions). In fact, the time cost of the histogram-based post-processing (HBPP)

algorithm will not increase as dimension increases. Because in histogram-based post-

processing, only the occurrence counts of candidate objects (keys) will be considered,

it has nothing to do with the high dimensional vectors of the data objects which are

stored in the disk database. This means algorithms with HBPPscale quite well with

number of dimensions. However, for algorithms with DAPP, given that the size of the

candidate set is defined, as the dimensions of the objects increase, both the disk I/O cost

and distance computation cost increase. Another interesting thing worth mentioning is

that given the same budget size, the time cost of LSH-Forest with DAPP algorithm for

SIFT Data is much less than that for Uniform Data and Normal Data (these three data

sets all have 128 dimensions). That is because the value typeof vectors in SIFT data

is integer, but the value type of vectors in Uniform Data and Normal Data is double.

Thus both the disk I/O cost and distance computation cost (ofLSH-Forest with DAPP)

41

for SIFT Data are much less than those of Uniform Data and Normal Data.

We also note that Figure 6.4 is quite different from other three figures. In Fig-

ure 6.4, the error ratios of all the curves go beyond 1, they even go beyond 5 in the worst

case. However, for all other three figures, the error ratios never go beyond 1. This is

due to the relation between the KNN percent in the experimentand the cluster size of

the Normal Data. In the experiment, we set KNN percent=5%, and the size of each

cluster in the Normal Data is also 5% of the full data set size.Since these clusters are

very likely to be far away from each other (as we described in Section 5.1 in Chapter 5),

a perfect KNN answer should only contain all the objects in the cluster to which the

query object belongs. However, since LSH-based algorithmsonly give an approximate

answer, there must be some portions of false positive objects in the KNN result which

belong to other far away clusters. In fact, given the same recall, the KNN results of

other three data sets will have much lower error ratios than those of Normal Data, since

the false positive objects in the results of other three datasets are not much further from

the query point compared to the real KNN objects (but most of the false positive ob-

jects in the Normal Data case are much further from the query points compared to the

real KNN objects). As we can see from Figure 6.1, 6.2 and 6.3, even for LSH-Forest

with random pick (RP), the error ratio is still below 1. However, for skewed data set

such as Normal Data, the difference between a real KNN objectand a false positive

object is huge from the perspective of the distance from the query object. This is also

the reason that for LSH-Forest with random pick (RP) in Figure 6.4, the error ratio is

very high. When we collect enough candidates, most of the very far away false positive

objects will be eliminated from the final KNN result after post-processing (by DAPP or

HBPP), so we can achieve small error ratio. Actually, Figure6.4 is a good example to

show that our LSH-Forest with HBPP performs quite well even for skewed data set. In

Figure 6.5, an example is used to show what we described above. In the example, the

triangle in cluster1 is the query object, and we ask for 20 nearest neighbors of the query

42

Figure 6.6: (1-Recall) vs. Time cost results of LSH-Forest based algorithms with 0.1
million SIFT Data

object. The real 20 nearest neighbors of the query object areall the objects in cluster1,

and 20 rectangles are returned as the approximate answer. Since LSH and its variants

are approximate algorithms, there might be some false positive objects from other clus-

ters, and these far away false positives cause the high errorratio. The diamond objects

in cluster1 are misses.

LSH-Forest based Algorithms Evaluated based on Recall

In this subsection, we evaluate the three LSH-Forest based algorithms with four differ-

ent data sets. All the setups are the same as the previous subsection, except that the

search quality is evaluated by recall instead of error ratio.

In Figures 6.6, 6.7, 6.8 and 6.9, every curve represents a “(1-Recall) vs. Time

cost” trend of one of the three LSH-Forest based algorithms. The time cost of each

algorithm is varied by changing the budget size. The value(1−Recall) can be de-

creased by increasing the budget size (except for LSH-Forest with RP algorithm, in

which case the value(1−Recall) may increase). Thus, we get the “(1-Recall) vs. Time

43

Figure 6.7: (1-Recall) vs. Time cost results of LSH-Forest based algorithms with 0.1
million GIST Data

Figure 6.8: (1-Recall) vs. Time cost results of LSH-Forest based algorithms with 0.1
million Uniform Data

44

Figure 6.9: (1-Recall) vs. Time cost results of LSH-Forest based algorithms with 0.1
million Normal Data

cost” curves in each of the four figures.

As shown in Figures 6.6, 6.7, 6.8 and 6.9, there are several similar patterns

as previous subsections: (1) For LSH-Forest with DAPP and LSH-Forest with HBPP,

we can achieve higher recall (better search quality) by increasing budget size (thus

increasing time cost). However, for LSH-Forest with RP, recall decreases as the budget

size increases. (2) Given the same budget size, LSH-Forest with HBPP can achieve

much higher recall (better search quality) than LSH-Forestwith RP, with a little more

time cost. (3) To achieve the same recall, LSH-Forest with DAPP requires at least an

order of magnitude more time cost than LSH-Forest with HBPP.Especially for GIST

Data in Figure 6.7, the time gain is even more, and the reason is explained in the

previous subsection.

We also note that for LSH-Forest with HBPP, the best recall itcan achieve for

the two real data sets (SIFT Data, GIST Data) is even higher than the two synthetic data

sets (Uniform Data, Normal Data).

45

Figure 6.10: Error ratio vs. Time cost results of Multi-Probe LSH based algorithms
with 0.1 million SIFT Data

Multi-Probe LSH based Algorithms Evaluated based on Error Ratio

In Figure 6.10, 6.11, 6.12 and 6.13, we show the performancesof three Multi-Probe

LSH based algorithms (Multi-Probe LSH with RP, Multi-ProbeLSH with DAPP and

Multi-Probe LSH with HBPP) by using four different data sets.

In Figures 6.10, 6.11, 6.12 and 6.13, every curve representsan “Error ratio vs.

Time cost” trend of one of the three Multi-Probe LSH based algorithms.We vary the

time cost of each algorithm by budget size, and a larger budget size means more time

cost. One the other hand, a larger budget size also decreasesthe error ratio (except for

Multi-Probe LSH with RP algorithm, in which case the error ratio may increase). Thus,

we get the “Error ratio vs. Time cost” curves in each of the four figures.

As shown in Figures 6.10, 6.11, 6.12 and 6.13, for Multi-Probe LSH with DAPP

and Multi-Probe LSH with HBPP, we can achieve better search quality by increasing

46

Figure 6.11: Error ratio vs. Time cost results of Multi-Probe LSH based algorithms
with 0.1 million GIST Data

Figure 6.12: Error ratio vs. Time cost results of Multi-Probe LSH based algorithms
with 0.1 million Uniform Data

47

Figure 6.13: Error ratio vs. Time cost results of Multi-Probe LSH based algorithms
with 0.1 million Normal Data

the budget size (thus increasing the time cost). However, for Multi-Probe LSH with

RP, search quality becomes worse as the budget size increases. The reason is that more

candidate objects also means higher percentage of false positive objects in the final

result if there is no effective pruning in the post-processing step. We also notice two

interesting patterns: (1) Given the same budget size, Multi-Probe LSH with HBPP can

achieve much lower error ratio (better search quality) thanMulti-Probe LSH with RP

with a little more time cost (this also shows Multi-Probe LSHwith HBPP is very time

efficient). (2) To achieve the same error ratio (search quality), Multi-Probe LSH with

HBPP is much faster than Multi-Probe LSH with DAPP.

As we can see from these four figures, to achieve the same search quality (error

ratio), Multi-Probe LSH with DAPP requires at least an orderof magnitude more time

cost than Multi-Probe LSH with HBPP. Especially for GIST Data in Figure 6.11, the

time gain is even more. The reason is explained in subsection“LSH-Forest based Algo-

48

Figure 6.14: (1-Recall) vs. Time cost results of Multi-Probe LSH based algorithms
with 0.1 million SIFT Data

rithms Evaluated based on Error Ratio”. It is another evidence of the nice dimension

scalability of our HBPP methods. We also observe that given the same budget size, the

time cost of Multi-Probe LSH with DAPP algorithm for SIFT Data is much less than

those for Uniform Data and Normal Data. The reason is also described in subsection

“LSH-Forest based Algorithms Evaluated based on Error Ratio”.

We also note that Figure 6.13 is quite different from other three figures. In

Figure 6.13, the error ratios of all the curves go beyond 1, they even go beyond 5 in the

worst case. However, for all other three figures, the error ratios never go beyond 1. The

reason is the same as that is mentioned in subsection “LSH-Forest based Algorithms

Evaluated based on Error Ratio”. Figure 6.13 is another good example to show that

our HBPP methods perform quite well even for skewed data set.

49

Figure 6.15: (1-Recall) vs. Time cost results of Multi-Probe LSH based algorithms
with 0.1 million GIST Data

Multi-Probe LSH based Algorithms Evaluated based on Recall

In this subsection, we evaluated the three Multi-Probe LSH based algorithms with four

different data sets. All the setups are the same as the previous subsection, except that

the search quality is evaluated by recall instead of error ratio.

In Figures 6.14, 6.15, 6.16 and 6.17, every curve representsa “(1-Recall) vs.

Time cost” trend of one of the three Multi-Probe LSH based algorithms.The time

cost of each algorithms is varied by changing the budget size. The value(1−Recall)

can be decreased by increasing the budget size (except for Multi-Probe LSH with RP

algorithm, in which case the value(1−Recall) may increase). Thus, we get the “(1-

Recall) vs. Time cost” curves in each of the four figures.

As shown in Figures 6.14, 6.15, 6.16 and 6.17, there are several similar patterns

as previous subsections: (1) For Multi-Probe LSH with DAPP and Multi-Probe LSH

50

Figure 6.16: (1-Recall) vs. Time cost results of Multi-Probe LSH based algorithms
with 0.1 million Uniform Data

Figure 6.17: (1-Recall) vs. Time cost results of Multi-Probe LSH based algorithms
with 0.1 million Normal Data

51

Figure 6.18: Error ratio vs. Time ratio (DAPP/HBPP) resultsof LSH-Forest based
algorithms with 0.1 million SIFT Data

with HBPP, we can achieve higher recall (better search quality) by increasing the bud-

get size (thus increasing time cost). However, for Multi-Probe LSH with RP, recall de-

creases as the budget size increases. (2) Given the same budget size, Multi-Probe LSH

with HBPP can achieve much higher recall (better search quality) than Multi-Probe

LSH with RP, with a little more time cost. (3) To achieve the same recall, Multi-Probe

LSH with DAPP requires at least an order of magnitude more time cost than Multi-

Probe LSH with HBPP. Especially for GIST Data in Figure 6.15,the time gain is even

more. The reason is explained in subsection “LSH-Forest based Algorithms Evaluated

based on Error Ratio”.

Summary of Efficiency and Effectiveness Results

After checking all the figures in Section 6.1, we observe thatfor the same data set and

memory usage, Multi-Probe LSH with HBPP always outperformsLSH-Forest with

HBPP (e.g. Figure 6.1 and 6.10). The reason is as follows: given the same amount

of memory usage and number of LSH trees/tables, the initial size of buckets in Multi-

Probe LSH based algorithms is smaller than that in LSH-Forest based algorithms (LSH

52

Figure 6.19: Error ratio vs. Time ratio (DAPP/HBPP) resultsof Multi-Probe LSH
based algorithms with 0.1 million SIFT Data

tree has many internal nodes which cost non-negligible amount of memory, so we can

not set the depth of the LSH tree big enough to make the initialsize of buckets as small

as in Multi-Probe LSH based algorithms), so Multi-Probe LSHbased algorithms are

able to collect candidates more precisely. As a result, Multi-Probe LSH wins when we

want to achieve very high search quality.

Next, we are interested in answering following questions: to achieve the same

error ratio, how much time gain HBPP has compared to DAPP? Howdoes the error

ratio affect the time gain? We answer these questions in Figure 6.18 and 6.19. In

Figure 6.18, we show the “Error ratio vs. Time ratio” pattern for LSH-Forest based

algorithms (DAPP and HBPP). As shown in the figure, to achievea reasonable low

error ratio, HBPP has at least one order of magnitude time gain. As the error ratio

increases, the time gain also increases. In Figure 6.19, we show the “Error ratio vs.

Time ratio” pattern for Multi-Probe LSH based algorithms (DAPP and HBPP), and the

pattern is very similar as in Figure 6.18.

53

In a word, the two algorithms using our histogram-based post-processing method

(LSH-Forest with HBPP, Multi-Probe LSH with HBPP) perform much better than other

four algorithms. With the same time cost and memory usage, LSH-Forest with HBPP

and Multi-Probe LSH with HBPP can achieve much higher searchquality than LSH-

Forest with RP and Multi-Probe LSH with RP. To achieve the same search quality with

same amount of memory usage, LSH-Forest with HBPP and Multi-Probe LSH with

HBPP need much less time cost than LSH-Forest with DAPP and Multi-Probe LSH

with DAPP. And the experiment results show that if we want to achieve very high

search quality, Multi-Probe LSH with HBPP algorithm is a better choice than LSH-

Forest with HBPP algorithm.

6.2 Scalability Results

In this section, the scalability of three LSH-Forest based algorithms and three Multi-

Probe LSH based algorithms will be evaluated. In the experiment, we test SIFT Data of

different sizes (10000, 100000, 1000000). The two smaller data sets are generated by

picking randomly from the original 1 million SIFT Data, so that the data distribution

information is kept the same for these three data sets. We define all other parameters:

L is set to be 160, budget percent (budget percent means the ratio of budget size com-

paring to the full data set size. for example, if budget size is 5000 and full data set size

is 100000, then budget percent is 5%) is set to be 5%, KNN percent is set to be 5%, the

memory usage is same for all algorithms. The main purpose of this section is to show

that as the data size increases, how the time cost of each algorithm scales.

Scalability Results for LSH-Forest based Algorithms

In Figure 6.20 and 6.21 we show the scalability results of three LSH-Forest based

algorithms. As shown in these two figures, the time cost of each of the three LSH-Forest

algorithms scales almost linearly with the data size. As thedata size increases, the time

costs of RP and HBPP increase faster than that of DAPP. However, even when data size

is large (e.g., 1 million), HBPP still has significant time gain compared to DAPP. In

54

Figure 6.20: Scalability results of LSH-Forest based algorithms based on error ratio

Figure 6.21: Scalability results of LSH-Forest based algorithms based on recall

55

Figure 6.22: Scalability results of Multi-Probe LSH based algorithms based on error
ratio

Figure 6.20, we also show the error ratio information on the label for all cases. As we

can see, given the same budget percent, KNN percent,L and data distribution, the error

ratio (search quality) is almost the same for each of the LSH-Forest based algorithms,

no matter what the data size is. We also observe the same pattern in Figure 6.21, except

that the search quality is represented by recall instead of error ratio.

Scalability Results for Multi-Probe LSH based Algorithms

In Figure 6.22 and 6.23 we show the scalability results of three Multi-Probe LSH based

algorithms. As shown in these two figures, the time cost of DAPP scales almost linearly

with the data size, and the time costs of RP and HBPP scale a little more than linearly

with the data size. The reason is that as data size increases,the density of the space

also increases, thus the number of buckets in every hash table increases (In LSH-Forest,

the number of buckets in each LSH tree keeps the same as long asthe depth is fixed,

no matter the data size increases or not). For Multi-Probe LSH based algorithms, as

the dataset size increases, more buckets need to be probed inorder to fetch the same

percent of candidates in each hash table. As a result, the time costs of HBPP and RP
56

Figure 6.23: Scalability results of Multi-Probe LSH based algorithms based on recall

have more than linear scale with the data size. The reason whywe do not observe

the same pattern in DAPP is that the time cost of bucket fetching is only a very small

portion of the total time cost of DAPP. We also observed that even when data size is

large, HBPP still has significant time gain compared to DAPP.In Figure 6.20, we also

show the error ratio information on the label in all cases. Aswe can see, given the same

budget percent, KNN percent,L and data distribution, the error ratio (search quality)

is almost the same for each of the Multi-Probe LSH based algorithms, no matter what

the data size is. We also observe the same pattern in Figure 6.23, except that the search

quality is represented by recall instead of error ratio.

6.3 Sensitivity Results

Now we have shown that our HBPP algorithms (LSH-Forest with HBPP and Multi-

Probe LSH with HBPP) perform quite well compared to other algorithms. We want to

find out what affects the search quality of our HBPP algorithms and how they affect

the search quality. Since Multi-Probe LSH with HBPP always performs better (as

shown in Section 6.1) than LSH-Forest with HBPP when we want to achieve very high
57

Figure 6.24: Error ratio vs. Budget percent of each LSH tree.L = 160,L means the
number of LSH trees, KNN percent=5% means the result size of KNN query is 5%*1
million=50000

search quality (low error ratio or high recall), the latter one and its relative algorithms

(three LSH-Forest based algorithms) will be used as a worst case example to show the

sensitivity results.

Search Quality vs. Budget Percent

The first question is that for a given KNN query, if the budget percent (ratio of bud-

get size from each LSH tree) increases (thus the combined candidate set size also in-

creases), will the search quality be improved for each of theLSH-Forest based algo-

rithms (LSH-Forest with RP, LSH-Forest with DAPP and LSH-Forest with HBPP)?

We give the answer in Figures 6.24 and 6.25. In Figure 6.24, the horizontal

dimension of the figure represents percent of candidates collected from each LSH tree

compared to the full data set size (i.e., budget percent, if we collect 20000 objects from

each LSH tree, and total data size is 1 million, then budget percent=2%); the vertical

dimension represents the error ratio, which is inversely related to the search quality.

We use 1 million SIFT Data as experiment data and setL = 160 (L is the number of

58

Figure 6.25: (1-Recall) vs. Budget percent of each LSH tree.L = 160,L means the
number of LSH trees, KNN percent=5% means the result size of KNN query is 5%*1
million=50000

LSH trees), KNN percent=5%. As shown in Figure 6.24, for LSH-Forest with DAPP

and HBPP, the search quality increases as the budget percentincreases; however, for

LSH-Forest with RP, the error ratio decreases as the budget percent increases. The rea-

son is that for algorithms with effective post-processing steps (e.g., LSH-Forest with

DAPP and LSH-Forest with HBPP) which are able to prune false positive objects, more

candidates mean fewer misses in the final KNN result; however, for algorithms with-

out effective post-processing steps (e.g., LSH-Forest with RP), more candidates means

more false positives in the final KNN result. All the setups ofFigure 6.25 are the same

as in Figure 6.24, except that the search quality is represented by recall instead of error

ratio. The “Search quality vs. Budget percent” pattern in Figure 6.25 is the same as we

found for Figure 6.24.

59

Figure 6.26: Error ratio vs. KNN percent.L = 160,L means the number of LSH trees

Figure 6.27: (1-Recall) vs. KNN percent.L = 160,L means the number of LSH trees

60

Search Quality vs. KNN Percent

Now our question is: if the result size of the KNN query is increased and all other

parameters are fixed, will the search quality be improved foreach of the LSH-Forest

based algorithms?

We give the answer in Figures 6.26 and 6.27. In Figure 6.26, the horizontal

dimension represents KNN percent (percent of KNN result size compared to the full

data size, e.g., KNN percent=5% means the size of KNN result is 50000 if the data set

size is 1 million); the vertical dimension represents the error ratio, which is inversely

related to the search quality. We use 1 million SIFT Data as experiment data set and

set setL = 160, budget percent=1%. In Figure 6.27, all the setups are the same as in

Figure 6.26, except that the search quality is evaluated by recall instead of error ratio.

There are several interesting patterns shown in Figure 6.26and 6.27: (1) For LSH-

Forest with RP, both the error ratio and (1-recall) decreaseas KNN percent increases;

the reason is that as the KNN percent increases and candidateset remains the same

(since budget size keeps the same), the possibility that a randomly picked object is a

real KNN objects also increases, so the recall increases andthe error ratio drops. (2)

For LSH-Forest with HBPP, recall increases as KNN percent increases; the reason is

that as the KNN percent increases and candidate set keeps thesame, the percent of false

positives in the candidate sets decreases; it helps to decrease the false positive percent

of the final KNN result and increase recall. On the other hand,since the error ratio

is already very low when KNN percent is small, so the small increase of recall does

not help much to decrease the error ratio. As a result, the error ratio keeps almost the

same as KNN percent increases. (3) For LSH-Forest with DAPP,recall decreases as

KNN percent increases; the reason is that as the KNN percent increases and candidate

set keeps the same, the missing ratio of the real KNN objects also increases. So for an

algorithm like LSH-Forest with DAPP which is able to find all the existing real KNN

61

Figure 6.28: Error ratio vs. L (number of LSH trees). Budget means the number of
candidate objects that are collected from each LSH tree, so L*Budget means the total
number of candidate objects we collect (includes duplicateobjects)

objects in the candidate set, increase of missing ratio means decrease of recall (it is

not true for LSH-Forest with HBPP since it can not find all the real KNN objects in the

candidate set). On the other hand, error ratio keeps the sameas KNN percent increases;

it is also because the error ratio is already very low when KNNpercent is small, so the

small decrease of recall does not affect error ratio much.

Search Quality vs. Number of LSH trees

Another question we are interested in answering is: given that all other parameters are

fixed (e.g., KNN percent), will the increment of memory usage(i.e., space complexity,

the number of LSH trees in our case) improve search quality for each of the LSH-Forest

based algorithms?

We give our answer in Figure 6.28 and 6.29. In Figure 6.28, thehorizontal

dimension of the figure representsL, the number of LSH trees; the vertical dimension

represents the error ratio. We use 1 million SIFT Data as experimental data set and set

62

Figure 6.29: (1-Recall) vs. L (number of LSH trees). Budget means the number of
candidate objects that are collected from each LSH tree, so L*Budget means the total
number of candidate objects we collect (includes duplicateobjects)

KNN percent=5%, andL× budget size=1.6 million. So asL increases, the budget size

will decrease. There are several interesting patterns shown in Figure 6.28 and 6.29:

(1) For LSH-Forest with RP, both error ratio and (1-recall) decrease asL increases; the

reason is thatM decreases asL increases, we collect candidate objects more precisely

from more trees, so the search quality increases. As a result, error ratio and (1-recall)

decrease. (2) For LSH-Forest with HBPP, recall increases asL increases; the reason is

the same as for LSH-Forest with RP. However, error ratio doesnot change much asL

increases; the reason is that error ratio is already very lowwhenL is small, so the small

increase of recall does not help much to decrease the error ratio. As a result, the error

ratio remains almost the same asL increases. (3) For LSH-Forest with DAPP, error

ratio and (1-recall) remain the same asL increases; that is because the search quality

is already perfect whenL is small, so increase ofL does not help to increase search

quality (reduce error ratio or (1-recall)) any more.

63

6.4 Model Comparison Results

In Section 4.3 of Chapter 4, we describe the mathematical model of LSH-Forest with

HBPP algorithm and give 3 scenarios to verify the correctness of our model:

1. GivenR, r, N, M, L, what is the relation between recall andK (KNN size)?

2. GivenR, r, N, K, L, what is the relation between recall andM (budget size)?

3. GivenR, r, N, M, K, what is the relation between recall andL (Number of

LSH trees)?

Herer is the radius of the hyper-ball that has all the KNN objects (of the query)

on its hyper-surface,R is the radius of the hyper-ball that has all the false positive points

(of the query) on its hyper-surface,N is the size of the false positives,K is the size of

the KNN result,L is the number of LSH trees, andM is the budget size of each LSH

tree (i.e., the number of candidates collected from each LSHtree).

In the following 3 subsections, we will test the above mentioned 3 scenarios

separately.

Recall vs. KNN Size

As shown in Figure 6.30, we show the “Recall vs. KNN size” patterns of LSH-Forst

with HBPP algorithm for the model and SIFT Data. For both cases, we fix all other

parameters exceptK (KNN size). In the experiment, we varyK from 2000 to 100000,

and the recall changes accordingly. As we can see, the patterns of the model and real

data are a little different, but the shape of these two lines are similar, and they both obey

log scale.

The reason why the patterns of the model and SIFT Data are different is that in

the model, we keep the parameterr the same as KNN size increases. However, in the

real case,r changes as KNN size increases.

64

Figure 6.30: Recall vs. KNN size result (of the model and SIFTData)

Figure 6.31: Recall vs. Budget size result (of the model and SIFT Data)

In the further comparison of other test scenarios, we will set the KNN size at

50000; the reason is that as long as the chosen KNN size does not cause big difference

between the two patterns, it will not effect the comparison of other patterns much.

Recall vs. Budget Size

As shown in Figure 6.31, we show the “Recall vs. Budget size” patterns of LSH-Forst

with HBPP algorithm for the model and SIFT Data. For both cases, we fix all other

65

Figure 6.32: Recall vs. Number of LSH trees (of the model and SIFT Data)

parameters exceptM (budget size). In the experiment, we varyM from 2000 to 100000,

and the recall changes accordingly. As we can see, pattern ofthe model matches that

of SIFT Data quite well.

Recall vs. Number of LSH trees

As shown in Figure 6.32, we show the “Recall vs. Number of LSH trees” patterns of

LSH-Forst with HBPP algorithm for the model and SIFT Data. For both cases, we fix

all other parameters exceptL (number of LSH trees). In the experiment, we varyL from

40 to 200 (M also changes because we setL×M = 1600000), and the recall changes

accordingly. As we can see, the “Recall vs. Number of LSH trees” pattern of the model

matches that of SIFT Data nicely.

66

Chapter 7

CONCLUSIONS

In this thesis, we improved the previous LSH-based KNN search algorithms (e.g. LSH-

Forest with DAPP, Multi-Probe LSH with DAPP) which need a costly data access

post-processing (DAPP) step. We achieve this by using a muchfaster histogram-based

post-processing (HBPP) algorithm. We have shown the use of HBPP on two LSH al-

gorithms: LSH-Forest and Multi-Probe LSH and showed that HBPP achieves the three

goals for KNN search in large scale high dimensional data set: high search quality,

high time efficiency, high space efficiency. As far as we know,none of the previous

KNN algorithms can achieve all three goals. More specifically, relative to DAPP al-

gorithms (LSH-Forest with DAPP and Multi-Probe LSH with DAPP), HBPP-based

algorithms cost much less time to answer a KNN query with samesearch quality and

memory usage; relative to random post selection (RP) algorithms (LSH-Forest with RP

and Multi-Probe LSH with RP), HBPP-based algorithms achieve much higher search

quality for a KNN query. Moreover, we observed that to achieve a high search qual-

ity, Multi-Probe LSH HBPP is better than LSH-Forest with HBPP, regardless of the

distribution, size, and the number of dimensions of the dataset.

67

References

[1] Alexandr Andoni and Piotr Indyk. Lsh user manual.
http://www.mit.edu/andoni/LSH/manual.pdf.

[2] Antonio Torralba Aude Oliva. Modeling the shape of
the scene: a holistic representation of the spatial envelope.
http://people.csail.mit.edu/torralba/code/spatialenvelope/.

[3] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. Lsh forest: Self-tuning
indexes for similarity search. InWWW, pages 651–660. ACM Press, 2005.

[4] Richard E. Bellman.Dynamic Programming. Princeton University Press, 1957.

[5] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching.Communications of the ACM, 18:509–517, 1975.

[6] Jeremy Buhler. Efficient large-scale sequence comparison by locality-sensitive
hashing.Bioinformatics, 17:419–428, 2001.

[7] K. S. Candan and Maria Luisa Sapino.Data Management for Multimedia Re-
trieval. Cambridge University Press, Cambridge, UK, 2010.

[8] Jack G. Conrad, Xi S. Guo, and Cindy P. Schriber. Online duplicate document de-
tection: signature reliability in a dynamic retrieval environment. InProceedings of
the twelfth international conference on Information and knowledge management,
CIKM ’03, pages 443–452, New York, NY, USA, 2003. ACM.

[9] Scott Cost and Steven Salzberg. A weighted nearest neighbor algorithm for learn-
ing with symbolic features.Mach. Learn., 10:57–78, January 1993.

[10] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions.In Proceedings of the
twentieth annual symposium on Computational geometry, SCG ’04, pages 253–
262, New York, NY, USA, 2004. ACM.

[11] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. L, and Richard
Harshman. Indexing by latent semantic analysis.J. Am. Soc. Information Science,
pages 391–407, 1990.

[12] David Dobkin and Richard J.Lipton. Multidimensional searching problems.SIAM
Journal of Computing, 2:181–186, 1976.

68

[13] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and
W. Equitz. Efficient and effective querying by image content. J. Intell. Inf. Syst.,
3:231–262, July 1994.

[14] Christos Faloutsos and Douglas W. Oard. A survey of information retrieval and
filtering methods. Technical report, Department of Computer Science, University
of Maryland, College Park, 1995.

[15] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian
Huang, Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic,
David Steele, and Peter Yanker. Query by image and video content: The qbic
system.Computer, 28:23–32, September 1995.

[16] Yanlan Gan, Jihong Guan, and Shuigeng Zhou. A pattern-based nearest neighbor
search approach for promoter prediction using dna structural profiles. Bioinfor-
matics, 25:2006–2012, 2009.

[17] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high
dimensions via hashing. InVLDB Conference, pages 518–529, 1997.

[18] Gist. Gist data. http://corpus-texmex.irisa.fr/.

[19] Ntonin Guttman. R-trees: A dynamic index structure forspatial searching. In
SIGMOD Conference, pages 47–57, 1984.

[20] Trevor Hastie and Robert Tibshirani. Discriminant adaptive nearest neighbor clas-
sification. IEEE Trans. Pattern Anal. Mach. Intell., 18:607–616, June 1996.

[21] David Hilbert. Über die stetige abbildung einer linie auf ein flächenstck.Mathe-
matische Annalen, 38:459–460, 1891.

[22] Piotr Indyk and Rejeev Motwani. Approximate nearest neighbors: Towards re-
moving the curse of dimensionality. InSymposium on Theory of Computing,
pages 604–613, 1998.

[23] Norio Katayama and Shin’ichi Satoh. The sr-tree: An index structure for high-
dimensional nearest neighbor queries. InSIGMOD Conference, pages 369–380,
1997.

[24] Caltech Computational Vision Lab. Caltech image data set.
http://www.vision.caltech.edu/Image-Datasets/Caltech101/.

69

[25] Haiquan Li, Xinbin Dai, and Xuechun Zhao. A nearest neighbor approach for au-
tomated transporter prediction and categorization from protein sequences.Bioin-
formatics, 24:1129–1136, 2008.

[26] David G. Lowe. Object recognition from local scale-invariant features. InPro-
ceedings of the International Conference on Computer Vision-Volume 2 - Volume
2, ICCV ’99, pages 1150–1157, Washington, DC, USA, 1999. IEEEComputer
Society.

[27] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe
lsh: Efficient indexing for high-dimensional similarity search. InVLDB Confer-
ence, pages 950–961, 2007.

[28] Morton. A computer oriented geodetic data base and a newtechnique in file
sequencing. Technical Report Ottawa, Ontario, Canada: IBMLtd, 1966.

[29] Oracle. Berkeleydb. http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html.

[30] Rina Panigrahy. Entropy based nearest neighbor searchin high dimensions. In
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algo-
rithm, SODA ’06, pages 1186–1195, New York, NY, USA, 2006. ACM.

[31] A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: Content-based manipula-
tion of image databases, 1995.

[32] Gerard Salton and Michael J. McGill.Introduction to Modern Information Re-
trieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[33] Hanan Samet.Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann Publisher, 2006.

[34] Jenq-Haur Wang and Hung-Chi Chang. Exploiting sentence-level features for
near-duplicate document detection. InProceedings of the 5th Asia Information
Retrieval Symposium on Information Retrieval Technology, AIRS ’09, pages 205–
217, Berlin, Heidelberg, 2009. Springer-Verlag.

[35] Shiyuan Wang and Kyle Chipman. Lsh-based indexing for similarity search on
high-dimensional data. http://www.cs.ucsb.edu/ sywang/290D.htm.

[36] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional spaces. In
VLDB Conference, pages 194–205, 1998.

70

[37] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional spaces. In
Proceedings of the 24rd International Conference on Very Large Data Bases,
VLDB ’98, pages 194–205, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

[38] Bin Yao, Feifei Li, and Piyush Kumar. K nearest neighborqueries and knn-joins
in large relational databases (almost) for free. InICDE Conference, pages 4–15,
2010.

[39] Qi Ye, Bin Wu, and Bai Wang. Distance distribution and average shortest path
length estimation in real-world networks. InProceedings of the 6th international
conference on Advanced data mining and applications: Part I, ADMA’10, pages
322–333, Berlin, Heidelberg, 2010. Springer-Verlag.

71

