The Phoenix Four Rivers Flora,

Maricopa County, Arizona

by

Darin Jenke

A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science

Approved April 2011 by the Graduate Supervisory Committee:

Kathleen B. Pigg, Co-Chair Leslie R. Landrum, Co-Chair Elizabeth Makings

# ARIZONA STATE UNIVERSITY

May 2011

# ABSTRACT

The Phoenix Four Rivers Flora is an inventory of all the vascular plants growing along the Salt, Gila, New and Agua Fria Rivers, and their tributaries in the Phoenix Metropolitan Area during the years of the study (2009-2011). This floristic inventory documents the plant species and habitats that exist currently in the project area, which has changed dramatically from previous times. The data gathered by the flora project thus not only documents how the current flora has been altered by urbanization, but also will provide a baseline for future ecological studies.

The Phoenix Metropolitan Area is a large urbanized region in the Sonoran Desert of Central Arizona, and its rivers are important for the region for many uses including flood control, waste water management, recreation, and gravel mining. The flora of the rivers and tributaries within the project area is extremely diverse; the heterogeneity of the systems being caused by urbanization, stream modification for flood control, gravel mining, and escaped exotic species. Hydrological changes include increased runoff in some areas because of impermeable surfaces (e.g. paved streets) and decreased runoff in other areas due to flood retention basins. The landscaping trade has introduced exotic plant species that have escaped into urban washes and riparian areas. Many of these have established with native species to form novel plant associations.

i

# DEDICATION

I dedicate my thesis to James Michael Jenke and Wade Jenke, whose support

during the long years of graduate school made it possible to make it through.

# ACKNOWLEDGMENTS

A number of people assisted, supported, and encouraged me in the completion of this thesis. I would like to thank Dr. Leslie R. Landrum for the many years of mentorship and Dr. Kathleen B. Pigg for assistance with editing and advice during graduate school. Elizabeth Makings helped with plant identification and field work. I thank Wade Jenke for his assistance with field work, hours of plant collecting, and rides to field sites.

| TABLE OF CONTENTS |
|-------------------|
|-------------------|

| Page                                           |
|------------------------------------------------|
| IST OF TABLES                                  |
| IST OF FIGURESvi                               |
| HAPTER                                         |
| 1 INTRODUCTION                                 |
| 2 HISTORY                                      |
| History of the Phoenix Metropolitan Area (PMA) |
| Historical collectors                          |
| 3 CLIMATE                                      |
| 4 HYDROLOGY 12                                 |
| 5 METHODS 14                                   |
| 6 GEOGRAPHIC INFORMATION 17                    |
| Study Area17                                   |
| Geographic Informationction18                  |
| Habitats                                       |
| 7 RESULTS                                      |
| 8 CONCLUSIONS                                  |
| EFERENCES                                      |
| PPENDIX                                        |
| A PLANT LIST                                   |
| B TABLES AND FIGURES                           |

| Table |                                 | Page |
|-------|---------------------------------|------|
| 1.    | Water year precipitation totals | 11   |
| 2.    | PMA Flora                       | 67   |
| 3.    | Flora Comparison                | 67   |
| 4.    | New Plants                      | 68   |
| 5.    | List of Acronyms                | 69   |

| L | IST | OF | FIGU | JRES |
|---|-----|----|------|------|
|   |     |    |      |      |

| Figure | Page                                                        |
|--------|-------------------------------------------------------------|
| 1.     | Agua Fria River Quarry Lake 70                              |
| 2.     | Salt River Quarry Lake 70                                   |
| 3.     | Salt River Quarry Lake # 2 71                               |
| 4.     | Flooded Quarry Lake71                                       |
| 5.     | Cave Creek at 19 <sup>th</sup> Ave                          |
| 6.     | New River Confluence with Skunk Creek72                     |
| 7.     | Skunk Creek                                                 |
| 8.     | East Fork of Cave Creek74                                   |
| 9.     | Project Map74                                               |
| 10.    | Tres Rios Project at 91 <sup>st</sup> Ave. and Salt River75 |

### INTRODUCTION

This study, "The Phoenix Four Rivers Flora (PFR)," is a floristic inventory of all the vascular plants presently growing along the Salt River channel and its tributaries, the Agua Fria, and New Rivers, Cave Creek, and minor urban streams, of the Phoenix Metropolitan Area (PMA). Figure 9 is a map of the project area. (Two areas in the eastern part of the PMA, Indian Bend Wash and Queen Creek were not included as part of the flora project). This area is managed by the Maricopa County Flood Control District and the Tres Rios Project (TRP) with the participants and stakeholders being the cities of Phoenix, Scottsdale, Tempe, and Avondale. One major component of the system is the Phoenix 91<sup>st</sup> Ave. Treatment Plant which purifies metro waste water and releases effluent into the Salt River bottom, creating a riparian habitat. Before the Salt River was dammed and diverted for irrigation and urban water use, there were extensive riparian habitats in the Phoenix area but now they have been reduced to small remnants (Calvin 1946). The effective management of these remaining riparian ecosystems requires an extensive understanding of the environment.

One of the most important elements in ecosystem function is the plant life. Plants contribute to ecosystem functions in a variety of ways: by playing an important role in controlling nutrient cycling, mitigating erosion, and by being the primary producers and thus supporting animals, fungi, and micro-organisms. Biodiversity studies are critical to ecological research because they provide the baseline data that can be used for future comparisons. This study is one of the few to focus on an arid, urban riparian system. As preservation and restoration become increasingly important to scientists, biological inventories are valuable management tools in the context of impact assessment, restoration, evaluation, and ecosystem management.

The rivers in the PFR are important drainages of the Phoenix Metropolitan Area for flood control, waste water management, recreation, and gravel mining. The rivers are located in a dynamic area of the Southwest where the urban fringe and desert meet. The water for the Tres Rios Project is provided by ephemeral flow from the three rivers, storm drains, agricultural field drains, and effluent outflow from the city of Phoenix 91<sup>st</sup> Avenue Water Treatment Plant. The goal of this project is to identify the plant species that presently occur in the area. This flora will complement future interdisciplinary studies in urban riparian ecology. Government agencies, private organizations, and the TRP will benefit from this study. The information will be made available to the public as a pamphlet on the common plants, their ethno-botanical uses, along with a history of the project area. Thus this research will advance awareness and appreciation of the flora at the confluence of four major desert rivers of Central Arizona.

#### HISTORY

*History of the Phoenix Metropolitan Area (PMA).* The Phoenix Four Rivers Flora (PFR) is located at the confluence of two major rivers in the state of Arizona, the Salt and Gila Rivers. They are two of the most important water sources for Central Arizona. Early humans fished, hunted big game, and collected food here during the last Ice Age (Robichaux, 1999). However, a slow progression of climate change caused Arizona to become more arid (Holmgren, 2006). Given this change the rivers must have become an important water source for the inhabitants of Central Arizona.

The nomadic tribes known as the Hohokam settled in between 500 - early 1000's AD (Ross, 1946; Grimm et al., 2008) and started farming the Arizona valleys. Their methods varied from dry land farming of chollas and agaves to irrigating field crops with an advanced canal system. The Hohokam built this system of canals to divert water from the Salt and Gila Rivers to their fields. These canal systems reached over 400 miles in length during the 1200's (Calvin, 1946). The primary crops grown were corn, squash, and cotton in the summer, while in winter wild greens were collected from the fields. The Hohokam disappeared during the 1400's and their canal systems were mostly abandoned.

The next chapter in Arizona began in the late 1700s when Spanish missions were established in southern Arizona. The missionaries discovered the peaceful Pima and Maricopa tribes who lived and farmed near the confluence of the Salt and Gila Rivers just like the previous Hohokam (Emory and Fremont, 1849). The Pimas and Maricopa's obtained wheat and cattle from the Spanish. Wheat becomes an important crop for the tribes in Arizona because it essentially filled the fallow winter season with a multifunctional crop (Calvin, 1946).

3

In 1846, during the Mexican-American War, an expedition called the Army of the West was sent to California to take control of that region. The expedition was led by General Stephen W. Kearny with two thousand soldiers, dragoons, and wagons (Emory and Fremont, 1849). The soldiers walked from Fort Leavenworth, Kansas to San Diego, California. According to Emory and Fremont (1849) General Kearny peacefully conquered New Mexico without any major violence against the New Mexicans. Kearny's kind treatment was significant because prior to this the local people were subjected to mistreatment by the Mexican government and its cruel governor. In California there was significant resistance from the Mexicans but the Americans were victorious.

On this expedition Lieutenant William H. Emory was a soldier but, more importantly, also a scientist (Emory and Fremont, 1849). Emory's primary duties were to record latitude and longitude at different points along the way and convert these data into maps. The expedition's progress recorded on maps showing their route and important geographic features. As a scientist Emory also collected data on native people, plants and animals. Emory was one of the first trained scientists to visit the Southwest and as a result many plants are named after him. Emory's notes on the confluence of the Salt and Gila are interesting because he gives detailed firsthand accounts of what he saw. Emory provided a window of detail into what the PMA was like on November 12, 1846 noting that the Pimas had extensive farm fields along the Gila and Salt Rivers and that their primary crops were winter wheat, corn, beans, and squash. Wheat was the most important crop because of its high production and trade value with the new European settlers. The Pima's canal system used water from the Gila River, but most of the water was unused and returned to the river. The Salt and Gila Rivers during the 1840's were substantial; the confluence measured 100 to 500 feet across and was 4-5 feet deep, and the flow of the Gila continued all the way to the Colorado River at present-day Yuma. The Gila River

4

was wild and natural with extensive cottonwoods, willows, and "cane" (*Pluchea sericea*) (Emory and Fremont, 1849). Emory is credited with discovering many new species of plants (Calvin, 1946). Overall the work of Emory was valuable because it established a solid scientific and historical baseline for future research efforts.

Phoenix was established in the 1880s when Jack Swelling started a canal company by repairing and widening the old Hohokam canals (SRP, 2011). With irrigation systems in place farmers moved to the valley and Phoenix grew rapidly to become the territorial capital in 1888. Small farming towns were founded across the valley that would later become important cities. For instance, the city of Tempe was founded at a ferry crossing of the Salt River near Hayden Butte. Few people today could imagine that a boat was once needed to cross the Salt River. By 1900, Mesa was a small Mormon farming town, and was the first city in Arizona to have a Temple built (Calvin, 1946). Few people could have predicted that the fragmented and scattered settlements of the Salt River Valley would grow together to create one large nearly continuous city.

The Salt River Project (SRP) was founded to build dams to control the destructive floods of the Salt and Gila Rivers. In 1911 Roosevelt Dam was built to the northeast of the Valley, resulting in the beginning of the dewatering and containment of the PFR area. Arizona became a State on Valentine's Day 1912 in part due to the rapid growth of the PMA. The SRP grew and the Valley of the Sun became a major agriculture producer. Water diversion for farming caused the Salt and Gila Rivers soon to run dry in the valley, but downstream small amounts of agriculture field runoff were returned to the Gila (SRP, 2011).

Fredrick Irish, who served as football coach and biology professor at Arizona Normal School (now Arizona State University) collected *Prosopis pubescens* and *Cephalanthus occidentalis* along the then flowing Salt River. These early collections from around 1906 and included plants that currently no longer occur naturally in the PFR. The Irish collections are one of the few records of what grew along the Salt River before it was dewatered (Arizona State University Vascular Plant Herbarium records). The water diversion was so complete that from the1930's onward the Salt and Gila River beds were usually dry (Calvin, 1946).

In 1957 the City of Phoenix built a small sewage treatment plant near 91st Ave. and the Salt River, an area also known as Tres Rios Project (TRP). The treatment plant along with small amounts of agricultural runoff helped fill the dry river bed. Upstream however the Salt River usually remained dry and was used for dumping trash, unmanaged recreation, and the mining of rock and gravel. In fact, TRP only had flowing water throughout the system during wet El Nino years. This was because water from the SRP dams was released only during floods, after which the riverbeds soon returned to a dry state. Over the years the treatment plant was expanded to meet the increased needs of the growing city and the increase in effluent release along with periodic flooding created the possibility for cottonwood-willow recruitment. In the 1990s large tracts of cottonwoodwillow forest were established in the TRP area (Corkran, 1996). Tamarisk woodlands became established along the Gila River, as a result of this plant's tolerance of salty conditions, it thrives with other halophytes in the agricultural runoff that enters the river. These woodlands created a prime environment for wildfires that have recently burned, causing poor air quality across the urban valley.

In 1996 the city of Phoenix built the TRP demonstration wetland, as a way to treat sewage. The wetlands attracted birds and other wildlife, and soon became popular with bird watchers. In 2007 TRP received a grant to build extensive wetlands that were expected to be completed by 2010 (TRP website). Very little was known about the flora of the proposed project area and only a floristic study on the nearby Sierra Estella Park

had been conducted. However the focus of that flora was on the mountain range, not the Gila River. Thus there was a significant need for a floristic inventory to be conducted at TRP, and the PFR of the PMA in general.

In summer 2007, I started the study of the flora of TRP with the help of the ASU herbarium and the permission of the TRP. At that point in time there had been a 10 year drought and the prospect of wet years seemed unlikely. However the Salt and Gila Rivers had ample water due to effluent and agriculture runoff, which was fortunate because the presence of water made conducting a flora project practical. One of the benefits was that there would be plants growing in the riparian areas even in a drought as exemplified by the hot and dry summer of 2009 (Table 1). From 2007 to 2009 I conducted many field trips at TRP and collected a plethora of plant species for my project. Many summer annuals were discovered along with a *Cyperus* species new to the state of Arizona. In summer 2009 I began to collect on the tributaries of the Salt and Gila Rivers to make a comparison with TRP area and to add to the greater understanding of the flora of Phoenix. Many different species were found, especially escaped horticultural species. Thus my project evolved to include the Four Rivers of the PMA.

# Historical plant collectors:

There have been many plant collectors over the last one hundred years documenting species within the PFR area. Most have concentrated on local mountain ranges, such as Sierra Estrella Regional Park (Sundell, 1968), White Tank Mountains Regional Park (Keil, 1973), South Mountain (Daniel and Butterwick, 1992), McDowell Mountains Regional Park (Lane, 1981), Lake Pleasant Regional Park (Lehto, 1970), Hassayampa Preserve (Wolden et al.1995), and the Phoenix flora (Damrel, 2010). Relatively few have included riparian areas. The Sierra Estrella flora focused on the mountains but Sundell (1968) collected a few plants from the Gila River bed. The Lake Pleasant flora included part of the lower Agua Fria River just below the New Waddell Dam (Lehto, 1970). These two projects contributed information on the nature of the PMA river flora, but barely overlap with it. Most plant collections within the PMA have been associated with ecological studies, with no concentrated effort to document the plants.

As mentioned above, F.M. Irish was an important collector in the early 20<sup>th</sup> Century. McLellan and Stitt collected from about 1930 to 1950. Many of the plants that they collected along the Salt River no longer occur in the region's flora. For example: *Nasturtium officinale, Marrubium vulgare, Orobanche cooperi, Prosopis pubescens, Dimorphocarpa wislizeni,* and *Cephalanthus occidentalis*. In the late 20<sup>th</sup> century A. Rea, D.J. Pinkava, and E. Lehto were important collectors. In the early 21<sup>st</sup> century ecologists Jenica Pozik and Jacqueline White conducted seeds bank studies of soils from the Salt River. Seed banks often have interesting species from the upper watershed like *Hedeoma oblongifolia,* and escaped exotic garden plants like *Solanum lycopersicum.* The past plant collectors have contributed important information on previous occurrences of plant species that can be compared to collections made in the present study to serve as evidence for floristic change over time. The present study of species in PMA will aid future generations in understanding the changing nature of the flora.

8

### CLIMATE

The PMA is a riparian ecosystem located in central Arizona's arid Salt River Valley, which has a bi-seasonal pattern of precipitation (Cerveny, 1996). In the winter PMA is affected by cold fronts that bring gentle rains that originate in the western Pacific Ocean. This winter precipitation may last days with each passing cold front bringing cool temperatures, and this extended duration of rain allowing for deep penetration of water into the soil. This is an important aspect of the winter season because this duration has a direct effect on the number of germinating ephemeral plants. In the spring after heavy rains ephemeral plants can carpet vast areas of the PMA. The winter's rains are variable and often fail due to the changing conditions in the Pacific called El Nino and La Nina. Winter precipitation can be above average during El Nino because higher sea temperatures in the eastern Pacific feed extra moisture into frontal system entering the Southwest USA. During La Nina the eastern Pacific is cooler than normal and causes drought conditions in the Southwest (Cerveny, 1996).

The summer rains are called the North American Monsoon and have a complex origin. In the summer, high pressure forms over the Four Corners area (where the states of Arizona, Colorado, New Mexico and Utah meet). The circulation of the air around the high pressure draws in moist air from the Gulf of California and the Gulf of Mexico. In the Gulf of California low pressure forms due to intense daytime heating and it brings in the majority of moist air into Arizona. These two sources provide enough moisture via the monsoonal flow to generate thunderstorms due to daytime heating. Thunderstorms are intense but spotty with only small areas receiving rain on a given day (Cerveny, 1996). For instance, precipitation from one summer thunderstorm was 1.93" (August 2, 2005) on the east fork of Cave Creek (Maricopa Flood control, 2011).

Sometimes one storm can produce up to 3 inches of rain causing flash floods in small streams (personal observation). The summer rains, if plentiful enough, can produce abundant ephemerals, but these conditions rarely occur in low desert. In a dry monsoon ephemerals are rare and found widely scattered across the landscape. For example, in PMA I discovered that summer ephemerals were abundant in 2008 but were rarely observed in other years (Table 1).

Some authors have described the climate of PMA as having six seasons based on temperature and bi-seasonal precipitation pattern (Robichaux, 1999). 1) Winter: December-January average temperatures of 52 F. The mild winters allow subtropical plants to thrive but about every 10 years a hard frost below 25 F can kill frost-sensitive plants. Typically PMA experiences mild frosts which usually occur in December, January or February. The urban heat island effect has reduced the risk of frost and the urban center rarely experience temperatures below 25 F (Svoma & Brazel 2010). 2 Spring: February through March and up to April is usually dry with mild temperatures, but late spring can be hot with temperatures above 100 F. Sometimes the spring season can bring wet and cool weather due largely to the El Nino. 3) Pre Summer: May-June typically tends to be hot and dry with the first 100 F days. 4) Summer Monsoon: June 15 -September 15 is hot with high temperatures sometimes averaging above 110 F and lows in the 90's F. Nature can be forgiving in the desert with the monsoon clouds and thunderstorms moderating the intense heat. 5) Post Summer: September 15- October 15. This season tends to be hot with highs in the 100's F and dry much like May and June but the nights are pleasant with temperatures below 80 F. 6) Fall: October- November. The days are warm with highs in the 80's with cool nights in the 60's, temperatures moderate

by mid-season due to passing cold fronts and the shortening of the days (Robichaux,

1999). Most rains falls in the winter and summer monsoon seasons.

| Table 1.                 |      |      |      |
|--------------------------|------|------|------|
| "Water year" (October to | 2008 | 2009 | 2010 |
| September) precipitation |      |      |      |
| totals in inches         |      |      |      |
| Station name             |      |      |      |
| Laveen                   | 8.46 | 4.57 | 6.30 |
| East Fork of Cave Creek  | 8.46 | 4.09 | 7.13 |
| New River and Bell Road  | 7.24 | 3.74 | 9.53 |
|                          |      |      |      |
| New River and Glendale   | 7.36 | 3.66 | 8.82 |
| Ave.                     |      |      |      |

(Maricopa County flood control, 2011)

### HYDROLOGY

The PMA hydrology is defined by the Basin and Range topography of fault block mountain ranges and deep valleys filled with alluvium. The PMA is made up of several deep sub basins interconnected by a common aquifer. The depth to the water table varies across the basin due to ground water pumping. The shallowest depth is 27 feet near the Salt-Gila River confluence and the deepest near Luke Air force base at 483ft. Natural ground water recharge for the PMA is 24,000 acre feet a year, annual withdraw is 200,000 acre feet a year (ADWR, 2008).

Natural ground water flows is in the direction of the southwest toward the Gila River, but due to pumping many large cone depressions have formed near Luke Air Force base and South Scottsdale. The perennial reaches of the Salt and Gila Rivers may be dewatered as ground water flows towards the cone depression near Luke Air Force base. The perennial reach of the Salt and Gila water source is effluent from the 91<sup>st</sup> Ave Treatment Plant, agriculture runoff, and the naturally high water table. The Aqua Fria is a losing stream because of the water tables great depth due to excessive ground water pumping in the west Salt River sub basin (ADWR, 2008). The small urban streams are perennial for short distances near large storm drains, and other water sources. The influx of water into the otherwise intermittent stream creates many mesic microhabitats. Shade created by large bridges is also a factor and these tend to be located near storm drains.

The Rio Salado project is located near Central Ave. and the Salt River. The project transformed dry sections of the Salt River into perennial flowing riparian areas by pumping ground water and importing water from the Central Arizona Project Canal.

12

The hydrology of the PMA has been greatly affected by urbanization. The effects of urbanization include: soil compaction, impermeable surfaces, increased runoff into riparian areas, decreased runoff due to terminal flood retention basins, stream bed incision, ground water withdrawal and recharge, and introduction of exotic plants and animals. The combination of these effects has created an urban ecosystem that is unique to the PMA.

### METHODS

# Collections:

Field collecting for the present study of plants along the urban PFR system began in May 2007, and includes the Salt River channel and adjacent areas from 91st Avenue west to the Gila River and to the confluence of the Gila and Agua Fria River. Collections on the Agua Fria River watershed inside the Urban PMA were conducted from May 2009-present. Eight hundred and sixty specimens have been collected and the total number of species found is 347.

Plants have been identified to using the Arizona Flora by Kearney & Peebles and collaborators (1960), treatments for Vascular Plants of Arizona project (<u>http://www.canotia.org/vpa\_project.html</u>), Southwest Environmental Information Network, SEINet (accessed 2007-2011),and appropriate revisions of the Flora of North America (http://www.fna.org/). In general, nomenclature follows the United States Department of Agriculture's National Plant Database (USDA, 2000).

# Voucher specimens.

Herbarium voucher specimens have been made as part of the TRP collection and placed in the Arizona State University Herbarium. Duplicates will be sent to other herbaria around the world for exchange.

# Species abundance:

Classifications are useful tools for communicating various vegetation patterns. The flora provides information on the abundance of each species in distinct plant associations. An approach relying on dominant or indicator species was used to show stand similarities. Vegetation was classified into types as was appropriate within practical limits. The associations or patch types was defined as a plant community of definite floristic composition, uniform habitat conditions, and uniform physiognomy (Szaro, 1989). I have subjectively determined abundance of taxa in association types. Each species was be categorized as follows:

"Rare" was used to indicate 50 or fewer individuals occurring

in the Flora area.

"Occasional" described species found in few associations, never

dominating any one association or patch type.

"Common" represented species found at many patch types, occasionally dominating.

"Abundant" was used to describe plant species found in over half of the associations, often dominating.

# Species traits:

The following information was included for each species: phenology (flowering time), life span (perennial, annual, biennial), form (tree, shrub, sub-shrub, succulent, graminoid, or herb), native/exotic status, and wetland indicator ranking following Reed (1988).

### Site characterization:

Literature reviews of climate data, flood/drought dynamics, soils, and geography were conducted.

# Photography

Photographs were taken of many plants for presentations and addition to the ASU herbarium image library online. Rare species were scanned by herbarium staff at 300 dots per square inch, some with close-ups of important reproductive and/or vegetative parts.

Arizona State University administers and maintains a database of life science collections on the World Wide Web(SEINet 2011). I plan to add the PFR to this website.

The voucher specimens were georeferenced mostly with Google Earth (Google Inc. 2009.) In some cases these data were augmented with a handheld GPS unit. The latitude and longitude was recorded for every collection.

### GEOGRAPHIC INFORMATION

#### Study Area

The urban riparian flora of the Phoenix Metropolitan Area (PMA) encompasses watersheds of the lower Salt, middle Gila, New and Agua Fria Rivers. The flora project focuses on two main areas: the TRP Wetlands and the greater watershed of the tributary streams in the PMA (figure 9). TRP is situated in the southwestern Salt River Valley, at the confluence of Salt, Gila, and Agua Fria Rivers. The rivers now are ephemeral with the exception of areas where there is runoff from agriculture, storm drains, and the outflow from the 91<sup>st</sup> Avenue sewage treatment plant. The Agua Fria watershed within the PMA contains many small streams located mostly in the western part of the basin. Before the building of dams along these rivers, water probably flowed continuously along the Salt, Gila, and possibly the Aqua Fria. The river bed has been subject to environmental degradation from the nearby urban areas in a variety of man-made ways: illegal dumping, All Terrain Vehicle use, homeless squatters, feral dog packs, target shooting, and crime.

Despite the abuse of the river bed at the TRP there are many notable species of plants : 1) escaped cultivars (*Vitex agnus-castus, Morus alba, Cucumis sativa,* and *Colocasia esculenta*); 2) species nearly new to Arizona (*Cyperus elegans, Cyperus eragrostis, Cyperus pygmaeus*); 3) recent range expansions from the Colorado River (*Sesbania herbacea*); 4) unexpected species, (*Cylindropuntia fulgida,* and *Platystemon californicus*), both rarely found at the low elevations of the TRP. There are also some missing species, such as *Prosopis pubescens, Lycium torreyi, and Cephalanthus occidentalis*, that were collected in the past, but have not been collected in over 40 years.

#### **Geographic information**

The Phoenix Metropolitan Area, often called the Valley of the Sun, is situated within the Basin and Range Province of Western North America (Robichaux, 1999; see Fig. 9). This Province is characterized by fault block mountain ranges that separate basins filled by alluvium, forming flat valleys. The PMA is ringed by a series of mountain ranges including the Sierra Estrella and South Mountain to the south, White Tanks to the northwest, Bradshaws to the north, New River Mountains to the northeast, the McDowells and Superstitions to the east.

At the TRP the river bed is composed of different patches of substrate such as river cobble, sand, silt, and clay. The active river bed ranges from cobble to fine gravel. River terraces just above the active channel are typically sandy. The river bank adjacent to the active channel is composed of silt to clay loams. Soil organics are low except in perennial pools where algae and other aquatic organisms gather. Some plants are associated with particular substrate types, although many are found in all types depending on soil moisture. The soils are the result of young alluvium being deposited by floods of the Salt and Gila Rivers. The oldest are located on the upper terraces and were deposited during previous centuries. There are two granite buttes located in TRP. They have typical desert mountain soils of unconsolidated gravels, silts and clays. The soils are shallow and rocky, lacking soil organics and have a high pH (Corkran, 1996).

The Agua Fria watershed within the PMA has been altered for flood control purposes. The addition of levees, construction of low flow channels, grade leveling, removal of woody vegetation, and channel cementing, are some examples of stream alteration. The streams vary from small desert and urban washes to large, sandy river beds. Stream alteration within the PMA has changed the function of the stream to create new habitats unique to the PMA.

### **Habitats**

Plant communities (listed in Table 6 for mesic and xeric riparian) within the PFR vary with respect to water source and depth, depth to water table, substrate, and disturbance, and include the following:

# I. Mesic Riparian:

- (A) Cottonwood-Willow Forest
- (B) Prosopis Woodlands
- (C) Tamarix Woodlands
- (D) Tree Tobacco-Castor Bean Thickets
- (E) Agricultural land.

# **II. Xeric Riparian:**

- (A) River cobble to grave;
- (B) Sand bars
- (C) Silty river banks and terraces

# **III. Desert Mountain**

# **IV. Urban Xeric-Mesic Riparian Streams**

- V. Quarry Lakes and Marshes
- VI. Flood Control Dams and seasonally flooded lakes
- VII. Flood retention basins

# I. Mesic Riparian Habitats

(A). Cottonwood-Willow Forest (CWF): The forest is made up of Populus

fremontii, Salix gooddingii, and understory of shrubs and herbs. CWF is rich in grasses,

and other herbaceous plants. The CWF is limited to the main effluent channel, and is dependent on surface flows (Sarzo 1989).

(B). *Prosopis* Woodlands: The woodlands have a scattered distribution with the largest remnants located at TRP along Baseline Road west of Phoenix International Race Track. The woodlands are made up of *Prosopis*, *Atriplex spp.*, and variety of shrubs. *Prosopis* woodlands merge with *Tamarix* woodlands depending on substrate, soil salinity, and depth of water table. *Prosopis* forms the most extensive stands on upper dry terraces, and *Tamarix chinensis* dominates on silty low areas with halophytes.

(C). *Tamarix* Woodlands: These woodlands are found throughout the TRP varying in density from sparse shrubs to thick woodlands. The density and productivity of *Tamarix* stands is dependent on depth of the water table. Numerous stands develop on a number of different soil types from silt loams to clay loam with varying levels of water availability from surface water to shallow water tables. Sparse shrubby stands can develop with surface flows of water from floods and survive without access to ground water. *Tamarix* can occur in mixed stands with *Populus and Salix*, *Prosopis* and *Atriplex*, or in pure, thick stands. Shrub and herbaceous plants are minimal to absent. Groundcover is sometimes a thick thatch layer of *Tamarix* leaves. *Tamarix aphylla* is a minor associate reproducing by cloning or sprouting from broken limbs washed downstream from a parent plant.

(D). Tree Tobacco-Castor Bean Thickets: This habitat, associated with disturbed areas within the active channel, is composed of *Nicotiana glauca* and *Ricinus communis* 5-10 m in height. The understory is rich in shrubs and herbs, most commonly *Pluchea odorata* and *P. sericea*, and herbaceous plants such as *Nicotiana obtusifolia*, and *Eclipta prostrata*.

20

(E). Agricultural Land: Before the construction of the TRP wetlands the upper river terraces had farm fields. Depending on season the fields grew wheat, barley, alfalfa, sorghum, corn, or millet. Farms are present on the margins of the PMA and merge with the city. Common agriculture weeds in these areas include *Ipomoea purpurea*, *Cyperus rotundus*, *Polygonum aviculare*, and *Malva parviflora*.

### **II. Xeric Riparian Habitats**

The Xeric Riparian Habitats occur from just beyond the active channel to the upper river terraces. This habitat is defined by a seasonal presence of water. Flows occur during floods caused by heavy rain storms. This habitat is similar to xeric desert washes except it occurs along a major river course (see Fig. 10).

(A) River cobble to gravel: The species that characterize this habitat include Ambrosia eriocentra, Hymenoclea monogyra, and Stephanomeria pauciflora. Among herbaceous components are Cryptantha spp., Chamaesyce ssp., and Bouteloua barbata.

(B) Sand bars: Annual herbaceous plants found in sandy areas are *Abronia* angustifolia, Oenothera californica, Helianthus annuus, and Chenopodium album.

(C) Silty river banks and terraces: Common species are *Parkinsonia* spp., *Prosopis* spp., and species of Chenopodiaceae. Soils can be salty and salt-loving plants like *Allenrolfea occidentalis* occur in some areas.

# **III. Desert Mountain Habitat and plains**

There are two buttes within the TRP, both of which have typical Arizona Uplands plants. Because the buttes are isolated from larger mountain ranges, they are similar to islands where the flora is expected to be impoverished in comparison to larger mountain ranges such as the South Mountains or the Sierra Estrellas. Both buttes are also impacted by heavy recreational use and one of them is the site of a granite quarry. Two species which only occur on their slopes and not in riparian habitats of PMA watershed are *Carnegiea gigantea* and *Hilaria rigida*.

#### **IV. Urban Xeric-Mesic Riparian Streams**

The washes, creeks, and rivers of the Valley of the Sun have been greatly altered by urbanization. Flood control structures, such as the cementing of river beds have changed stream grade and water infiltration rates. Ground water pumping has caused the dewatering of some reaches of the Agua Fria and New Rivers. Waste water from agriculture runoff is received by some reaches of the Agua Fria and New Rivers which creates perennial stretches for short distances. The flow regimes have been significantly changed by pulses of storm runoff from impermeable streets.

The storm drains introduce an urban flora of escaped horticulture species and novel plant associations are created. These include *Eucalyptus-Acacia* forests, Ash-Elm woodlands, and *Prosopis* woodlands. Overall biodiversity is increased by the escaped horticultural species, which often do better in the altered urban riparian sites than native plants.

The New River, Agua Fria River, Cave Creek, and Skunk Creek have been altered for flood control purposes with cemented banks and leveled stream beds. Every mile the streambed has a drop off, followed by a leveling and the middle of the river bed has a low flow channel 1-3ft deep that in some reaches is cemented. Figures 5-8 are photos of the habitats with these stream alterations. When heavy rain falls on the urban watershed the water rushes from the storm drains and creates short periods of flood waters. When the flood waters breach the low flow channel the water slowly flows over the level stream bed. The slowly moving flood waters are similar in their effect to flood irrigation and grasses and mostly herbaceous species later cover the stream bed.

Maricopa County's practices for flood control management of the river beds have been to remove trees, and mow the grass and weeds. The result is that in some places a meadowland of *Cynodon dactylon* has formed. On reaches where flood control does not remove trees thick woodlands of *Prosopis-Acacia-Parkinsonia* form. Xeric desert wash vegetation occurs in dewatered reaches that lack storm drain or agriculture runoff. These are typically characterized by *Baccharis sarothroides, Prosopis spp., Parkinsonia spp.,* and *Rhus lancea*.

Perennial reaches of these rivers occur for short distances near large storm drains and agricultural runoff. Mesic habitats are dominated by cottonwood-willow, *Acacia-Prosopis-Parkinsonia*, and rarely *Tamarix*. Wetland species such as *Cyperus eragrostis*, *Schoenoplectus acutus*, *Juncus torreyi*, and many others occur in the perennial reaches. The New River has three perennial reaches located near Pinnacle Peak Road, the confluence with Skunk Creek, and near the Glendale Airport. The Agua Fria River has a short perennial reach near the I-10 Bridge crossing and just below the New Waddell Dam. The unique ecology of urban streams is fascinating and needs to be studied in the future.

# V. Quarry Lakes and Marshes

Gravel quarries are a major industry within the PMA. There are two main types of quarries: sand-gravel, and granite rock. Sand-gravel quarries are located near or within flood plains, and use the sand for aggregate in cement. Flooded quarries are an important habitat for birds. The pits can be very deep and in areas of high water tables perennial lakes and marshes can form. One Quarry near the confluence of the Agua Fria and Gila Rivers is over 10 feet deep (personal personal observation, 2009). Large dredges floating on barges are used to mine the aggregates. The quarry lakes can be several acres in size and if protected with levees will not fill with sediment over time.

Shallow quarry lakes along the urban rivers capture seasonal flood waters creating ephemeral lakes and marshes. Figures 2-4 are air photos of quarry lake habitat from Google Earth; this habitat is often difficult to find on the ground. The use of Google Earth allowed me to find many quarry lakes. At Pinnacle Peak road and the New River a large flooded quarry exists and is a fine example. A large pit was dug about fifty feet into the river bed. The quarry site was abandoned and flood waters from the New River are captured after heavy rains forming a large lake about 2 acres in diameter. Over a period of months the water seeps into the ground and also evaporates away. As the lake shrinks riparian and marsh plants establish along the shore. The lake dries up leaving behind large muddy areas covered in marsh plants. The quarry lake reforms after every large flood, but eventually it will fill with sediment and disappear. This reach of the New River is xeric riparian but supports wetland species that occupy the margins of the lake. Species present include *Typha domingensis*, *Cyperus pygmaeus*, and *Veronica peregrina*.

# VI. Flood control dams and seasonally flooded lakes

The Maricopa Flood Control District constructed several large flood control dams on the edge of the PMA. The dams prevent large scale flooding by capturing flood waters and slowly releasing managed flows downstream. The effect of the dams has essentially altered the downstream flood regime, while upstream the dams have also created ephemeral lakes. These lakes are only present for a matter of weeks but create riparian habitat similar to a flooded quarry lake. The lake beds are large flat areas and have several different habitats such as delta, lake shore, and silt-clay lake bed. This habitat can be seen in fig. 1, a quarry lake on the Agua Fria River. A. Deltas form where the stream enters the lake and sediments accumulate. Course sand builds up at the base of the delta and Bermuda grass dominates this area, while at the foot of the delta fine silt/clay sediment is present and supports *Chenopodium spp*.

B. The lake shore constantly changes as flood waters fill the basin or drain away. Herbaceous plants colonize the shore and can cover the dry lake bed.

C. Lake bed is made of fine silt/clay and can be barren or densely covered in annual plants depending on how long ago the lake bed was flooded. A common plant is pig weed: *Amaranthus palmeri*. Mesquite trees can form woodlands along the high water mark of the lake. Trees can grow on the lower lake bed but are commonly killed by flood waters. The ephemeral lakes created by the flood control dams are an interesting habitat because seasonally flooded lakes are uncommon in the Sonoran Desert. The New River, Skunk Creek, and Cave Creek have good examples of this habitat.

#### **VII. Flood retention Basins**

Flood control options in the PMA often include the construction of small retention basins to capture runoff from urban areas. These basins are often terminal and water disperses by seeping into the ground and evaporating away. The retention basins are usually small and constructed in association with parking lots or housing developments. The small retention basins provide water for landscaping trees like *Acacia* and *Prosopis*. Larger basins are used as recreation areas for residents of the nearby housing developments. The main effect of the many retention basins is a reduction of water flow into urban streams. The private retention basins are usually landscaped and maintained by a home owner association. Reach 11 retention basin is located in Northwest Phoenix and is a terminal flood retention basin built to protect the Central Arizona Project canal. The basin is 17 miles long by <sup>1</sup>/<sub>2</sub> mile wide and features recreation trials. Reach 11 retention basin has extensive xeric riparian wash habitat. *Prosopis-Acacia-Parkinsonia* woodlands occur along washes. Reach 11 also has a small seasonal stock tank fed by the many washes that empty into the terminal basin.

Non-terminal flood retention basins retain water that is not released. These basins are scattered across the PMA and are often larger than the small private terminal basins. The non-terminal retention basins are linked to urban streams by pipe systems. These basins are smaller urban analogs to larger flood control basins of the major rivers of the PMA. Public parks are often built in these basins and feature turf areas and landscaping trees like *Prosopis, Acacia, Quercus,* and *Fraxinus*. The basins that are linked to urban streams could be a source of exotic tree species.

#### RESULTS

The flora of the PFR, including the TRP area, and the tributaries of the Salt and Gila Rivers of the Phoenix Metropolitan area was collected over a four year period from 2007-2010. The purpose was to increase the understanding of the region's riparian flora. The data from the urban tributaries provided a comparison of how the distribution of native and escaped horticulture species varies across the urban river system. Species found growing upstream of Tres Rios Project area could have seeds transported by floods downstream. The distribution of species varies from one river to another due to the effects of urbanizations.

The species found in urban streams appear to have three origins: native, escaped horticultural species, and agricultural weeds. Native species are those such as *Populus fremontii* that have persisted through the changes to the urban river environment. Escaped species originated from cultivated species in city landscaping by three dispersal agents; animals (biotic dispersal), wind (amenochory), and water (hydrochory). Species spread by animals often have burs that stick to fur in order to be transported to a new area, or juicy fruit like *Lantana camera* that are consumed, with the seeds transported to a new area. Wind dispersal species have seeds that are small and sometimes fluffy like grass species. Hydrochorous species dispersal occurs when heavy rains wash seeds off the streets into storm drains that empty into river beds. Escaped species are often found in close proximity to storm drains for a variety of reasons. Each storm drain has its own watershed with a unique flora of cultivated species; however several species are common to most of these assemblages.

In a study of the dispersal mechanisms on the Hassayampa River animal dispersal was the most common method, followed by wind and water (Drezner et al.,

2001). Similar modes of dispersal are found in the Phoenix riparian areas. Water dispersal may be more important because of the frequency of storm drains that reach river beds. River bed sites provide a good environment where windblown and hydrochorous seeds can germinate.

Urban streams of the PMA have developed novel species associations composed of both native and escaped species. Riparian species are preadapted to disturbance regimes of rivers and thrive in these areas. The mixture of native and escaped species may seem odd at first glance but when the life histories of the species are examined it is clear that they are occupying habitats with similar environmental parameters as those of their native range. For example *Eucalyptus microtheca* forms woodlands in dry washes and is associated with *Acacia farnesiana*, *Parkinsonia spp.*, and *Rhus lancea*. *Eucalyptus microtheca* in Australia grows along seasonally flooded watercourses (Chippendale, 1988), a habitat very similar to the seasonally flooded washes in urban Phoenix. Other escaped horticultural species have become established in the river bottoms because it is the only mesic environment in an otherwise arid landscape. Examples include: *Ulmus pariflora, Schinus terebinthifolius*, and *Melalueca viminalis*.

The urban streams of the PMA are a unique assemblage of species and habitats found nowhere else in the world. The factors that formed these habitats were urbanization and stream alteration. As the PMA urban environment expanded, new horticultural species from around the world were introduced as landscaping plants for new housing developments. The landscape plants are native to arid parts of Australia, Africa, Eurasia, and Latin America and the conditions of the PMA riparian system are similar to their native habitats.

The urban streams of the PMA probably receive more water from runoff than natural systems because of the impermeable surfaces of the city surroundings. In desert systems much of the runoff is absorbed before it reaches the main channels of the tributaries. The effect of increased long lasting water flow and stream alteration has created new habitats prime for colonization by both native and escaped plants.

Anthropogenic alteration to streams is similar to disturbance in natural streams. The common example in the PMA is when a stream grade is leveled and vegetation is removed. After grading, the streams have bare substrate ready for recruitment of disturbance tolerant plants. Plant associations will change as succession processes For example, annual grasses often form meadow like areas in early successional areas, but are replaced by woody plants over time. Areas that have not been graded for many years form dense woodlands of *Parkinsonia*, *Prosopis*, and *Acacia*.

At the confluence of the New River and Skunk Creek the stream bed was graded and the river bed and channelized for flood control. This reach of the New River has mixtures of both native and escaped exotic species. Exotic species included: *Eucalyptus microtheca*, *Acacia farnesiana*, *Parkinsonia aculeata*, *and Lythrum hyssopifolium*. The seed source of these exotics was the urban flora growing in the watershed that entered through storm drains. Native plants were either already present in the seed bank or were washed down stream during large flood events. Natives included many typical xeric riparian species like *Hymenoclea monogyra*, *Parkinsonia florida*, and *Chilopis linearis*. There are also many native mesic plants like *Schoenoplectus maritimus*, *Cyperus eragrostis*, *Lythrum californica*, *Veronica peregrina*, and *Juncus torreyi*.

The occurrence of the mesic species is interesting because the pre-modified stream was xeric riparian wash. Urbanization changes including stream bed modifications, increased runoff from the urban watershed, and Arizona canal overflow water, have apparently provided conditions favorable for the establishment of mesic species. The combination of changes to the stream bed, watershed, and exotic and seed sources have created several unique urban riparian habitats. For example, Cave Creek just west of the confluence with its East Fork has dense woodlands of Eucalyptus microtheca, Eucalyptus camaldulensis, Parkinsonia aculeata, and Acacia farnesiana, approximately from 19<sup>th</sup> Ave east to the confluence with the East Fork of Cave Creek. The dense stands of *Eucalyptus* recently developed after a levee was constructed for a new shopping center. Vegetation was removed and the bare ground was colonized by seeds washed down from storm drains and plants upstream. Eucalyptus microtheca occurs upstream on the East Fork of Cave Creek but there are only a few scattered trees. The seeds that produced this Cave Creek grove may have been washed in through storm drains, were windblown, or carried by animal from nearby landscaping trees. The grove of trees is interesting because it appears to be the densest stand of *Eucalyptus* trees in the PMA. There are also scattered trees of Eucalyptus that occur throughout the streams of the PMA. *Eucalyptus microtheca* was introduced ca. 25 years ago to the PMA as a landscape tree. In contrast, most escaped specimens appear less than ten years old. It will be interesting in the future to see how successful these trees will become in the urban riparian habitat of the PMA.

The Salt-Gila River reach of the PMA is a perennial stream dominated by effluent flow from the 91st Ave treatment plant. The Salt-Gila River reach was initially the primary focus of my botanical exploration effort and understanding of urban riparian ecology. This reach is influenced by both the urban and rural landscapes of the PMA, but the degree of influence of the urban environment is less than the upstream tributaries. The banks of this reach are lined with farm fields growing many different types of crops, and the exotic species found in this area are mostly weeds from these agricultural fields versus escaped cultivars. Seed sources for escaped exotics are upstream and only a few species have been found during the project. For example *Acacia salicina* is frequently found on the New River, and on the Salt River at the Rio Salado project area. This species has only one occurrence on the Salt-Gila reach. Escaped agriculture plants are common on this reach and include alfalfa, wheat, barely, and pearl millet. One of the important components of the flora is weeds both native and escaped agricultural. Common weedy species include *Cynodon dactylon, Sorghum halepense, Cyperus rotundus*, and *Enchinochloa colona*.

The Agua Fria River from below Lake Pleasant to the confluence with the Gila River is a large, dry desert river bed. The Agua Fria River has one perennial reach just below New Waddle dam in a small canyon. The perennial reach has *Tamarix* woodlands, and wetland plants along the active channel. Below the perennial reach the river is intermittent. The river has a broad sandy channel about a half mile to quarter mile wide. The river has been modified by the construction of levees, bridges, and gravel quarries. Vegetation consists of widely scattered *Prosopis, Chilopsis linearis*, and *Parkinsonia florida*. The river is a large wash for most of its length in the PMA. Microhabitats near storm drains and under bridges have more mesic species such as *Fraxinus uhdei*, and *Ulmus parvifolia*. Gravel quarries located within the river bed capture flood waters and form ephemeral ponds and marshes. In areas of high water table, deep quarry pits can be perennial lakes or marshes, depending on the quarry pit depth. Quarry lakes and marshes are common throughout the PMA and represent a major habitat for marsh plants and birds.

An interesting comparison can be made between the urban riparian systems of the mesic eastern city of Baltimore and the PMA (Grimm et al., 2008). The mesic streams experience hydrologic drought due to the effects of urbanization. City streets create large areas of impermeable surfaces that increase runoff into streams causing flash floods. The floods incise streams beds and lower water tables (Groffman et al.). The riparian species of the mesic east coast of the United State are ill adapted to drought and suffer from the loss of water. The effects of urbanization in the PMA are similar to Baltimore with respect to the physical changes to the urban watershed but with different results. Urban streams in the PMA experience an increase water flow because runoff from urban impermeable surface runs into stream channels and sometimes the stream channel itself is paved. In the PMA many smaller streams have intermittent flows and are often losing streams due to natural low water tables. Under natural conditions water running into these streams would have often been absorbed by desert soils. The increased water into the urban streams benefits the drought adapted xeric riparian species and also benefits more mesic riparian species, both native and exotic, that would have not been present in a pre-urban stream.

The Hassayampa River just northwest of the PMA perhaps provides a glimpse of the Agua Fria before urbanization. Its watershed is similar in size, but has not been as greatly affected by humans. The lower reach of Hassayampa River west of the White Tank Mountains sits on a broad plain and is an intermittent stream with xeric riparian vegetation such as *Baccharis, Hymenoclea*, and *Prosopis*. A comparison of the two rivers floras is interesting because it's an indicator of the change urbanization may bring to a xeric river. The Agua Fria has many wetland mesic species that do not occur along the dry reach of Hassayampa River west of the White Tank Mountains, including: *Cyperus eragrostis, Schoenoplectus acutus, Veronica peregrina, Ulmus parvifolia, and Fraxinus uhdei..* Their presence in the PMA and absence along the Hassayampa may indicate that urbanization has increased water availability enough for these species to thrive in a habitat that would have been too dry in its pre-urban state. *Ulmus* and *Fraxinus*, being urban trees, are less likely to have established along the Hassayampa.

#### Chapter 8

#### CONCLUSIONS

The known flora of the rivers of the PMA includes 347 species with the important families listed in Table 2. The most important families are Asteraceae with 43 species, Poaceae with 33 species, and Cyperaceae with 15 species. Regionally, the flora is most similar to Sierra Estrella Park (Sundell, 1974) with 162species in common. Table 3 shows the flora is least similar to Seven Springs with 96 species in common, a higher elevation area in the New River Mountains (Doan, 2002).

Table 4 notes the records of new and/or recently recorded species for the Arizona flora, many of which are horticultural cultivars that are apparently persisting. The two escaped *Acacia* species from Australia, were common landscaping plants in the late 20<sup>th</sup> Century. They are found as young trees along urban streams and in abundance on the Agua Fria watershed. The new *Cyperus* species pose an interesting question: have these species been here for many years, but have gone unnoticed until now? *Cyperus* species are often misidentified and/or avoided for collection by botanists due to the difficulty in identification.

The discovery of several new species for Arizona may be the result of the intense botanical exploration of the project area or perhaps these species were just overlooked by previous botanist's investigations. For example, the first collections of the old world species *Cyperus pygmaeus* were on the Salt and Agua Fria Rivers in 1998 but were not correctly identified until much later. The Agua Fria plants were collected just below New Waddell dam where a flora was conducted many years earlier by Elinor Lehto in her flora of Lake Pleasant Park (Lehto 1970). The Lake Pleasant Flora was published in 1970 by Lehto and would have most likely recorded the new *Cyperus* if it were present at the time. *Cyperus pygmaeus* must have escaped and become established between 1970 and 1998.

The escaped horticulture species are found more often at urban sites and less frequently at rural sites in the Flora area. For example, the New River has many escaped species like *Eucalyptus* but the more rural site of the TRP does not. TRP is on the fringe of the urban area where seeds from landscape plants have yet to establish.

The flora of the PFR has expanded the known flora of the state by vouchering horticultural species that have become established in the area, and by adding new several state records. New species are not included in keys for the region were especially challenging. For example *Acacia salicina* was identified to genus with local reference material, then to species by comparison to cultivated herbarium records. Identification to species is often the most difficult step due to variety of reasons such as specimen quality. Sometimes unknown plants must be confirmed by experts. For example, *Cyperus pygmaeus* was confirmed in this manner. The theme of the urban river system is anthropogenic change and introductions of plant species. The main difference between urban riparian ecosystem and the unaltered pre-urban streams is increased biodiversity and heterogeneity of habitats. The ecosystem services these highly altered riparian systems provide remain important and include for example, habitat for wildlife, recreation, water filtration, aquifer recharge, scenic beauty, erosion and flood control. The urban streams of the PMA are dynamic and fascinating systems that will continue to produce novel associations of plants and should be explored on a regular basis.

### REFERENCES

Arizona Department of Water Resources. 2008.

http://www.azwater.gov/azdwr/StatewidePlanning/WaterAtlas/ActiveManagementAreas/ documents/Volume 8 PHX final.pdf .

Calvin, R. (1946). River of the sun; stories of the storied Gila. Albuquerque: University of New Mexico Press.

Cerveny, R.S. 1996. Climate of Phoenix Arizona. Online version. http://www.public.asu.edu/~aunjs/ClimateofPhoenix/phxwx.htm.

Chippendale, G. M. 1988. Eucalyptus. Pp. 1--448 in A. S. George (ed.), Flora of Australia 19, Astralian Government Publishing Service, Canberra.

Corkran, D. F. (1996). Native riparian vegetation of the lower Salt and middle Gila rivers: Status and restoration. *M.S. thesis*. Arizona State University, Tempe.

Damrel, D.Z., 2010. http://swbiodiversity.org/seinet/checklists/checklist.php?cl=22&proj=1.

Daniel, T. F. and M. L. Butterwick. 1992. The flora of the South Mountains of southcentral Arizona. Desert Plants 10: 99-119

Drezner, T. D., Fall, P. L., & Stromberg, J. C. 2001. Plant distribution and dispersal mechanisms at the Hassayampa River Preserve, Arizona, USA. Global Ecology and Biogeography, 10(2): 205-217.

Doan, S. 2002. Flora of the Seven Springs Region, Tonto National Forest, Maricopa County, Arizona. M.S. thesis. Arizona State University, Tempe.

Emory, W. H., & Fremont, J. C. (1849). Notes of travel in California; comprising the prominent geographical, agricultural, geological, and mineralogical features of the country; also, the route to San Diego, in California, including parts of the Arkansas, Del Norte and Gila Rivers. Dublin: J. M'Glashan.

Google Inc. 2009. Google Earth (Version 5.2.1.1588) [Software]

Grimm, N.B., J. M. Grove, S. T. A. Pickett, and C. L. Redman. 2008 Integrated approaches to long-term studies of urban ecological systems. 123-142 in: Urban ecology. An international perspective on the interactions between humans and nature. Marzluff, J. M., E. Shulenberger, W. Endlicher, M. Alberti, G. Bradley, C. Ryan, U. Simon, C. ZumBrunnen, eds. Springer Science + Business Media, New York.

Groffman, P. M., et al. 2003. Down by the riverside: Urban riparian ecology. *Frontiers in Ecology and the Environment*, 1(6):315-321.

Holmgren, C. A., J.L. Betancourt., and K.A. Rylander. 2006. A 36,000-yr vegetation history from the peloncillo mountains, southeastern arizona, USA.*Palaeogeography, Palaeoclimatology, Palaeoecology, 240*(3-4), 405-422. doi:DOI: 10.1016/j.palaeo.2006.02.01

Kearney, T. H., R.H. Peebles and collaborators. 1960. *Arizona flora, ed.* 2. Berkeley, University of California Press.

Keil, D. J. 1973. Vegetation and flora of the White Tank Mountains Regional Park, Maricopa County, Arizona. *Journal of the Arizona Academy of Science*, 8(1):35-48.

Flora of North America Editorial Committee, eds. 1993-2003. *Flora of North America north of Mexico*. 10+ vols. New York and Oxford.

Lane, M. A. 1981. Vegetation and flora of the McDowell Mountains Regional Park, Maricopa County, Arizona. Journal of the Arizona-Nevada Academy of Science 16(VOL?): 29-38.

Lehto, E. 1970. Floristic Study of Lake Pleasant Regional Park, Maricopa County, Arizona. M.S. thesis. Arizona State University, Tempe.

Maricopa County Flood Control, 2011. http://www.fcd.maricopa.gov/Rainfall/Raininfo/raininfo.aspx . Accessed 2011

Reed, P.B., Jr. 1988. National list of plant species that occur in wetlands: Southwest (Region 7). U.S. Fish and Wildlife Service Biological Report 88(26.7).

Robichaux, R. H. (1999). Ecology of Sonoran desert plants and plant communities. Tucson: University of Arizona Press.

Salt River Project Website, 2011. <u>http://www.srpnet.com/about/history/water.aspx</u> <u>Accessed 2011</u>

SOUTHWEST ENVIRONMENTAL INFORMATION NETWORK SEINet). 2007-2011.SEINet. http://swbiodiversity.org/seinet/index.php. Accessed January 2007 to April 2011.

Sundell, E.G. 1974. Vegetation and Flora of the Sierra Estrella Regional Park, Maricopa County, Arizona. M.S. thesis. Arizona State University, Tempe.

Svoma, B. M., and A. Brazel. 2010. Urban Effects on the Diurnal Temperature Cycle in Phoenix, Arizona. *Climate Research* 41(1):21-29.

Szaro, R. C. 1989. *Riparian forest and scrubland community types of Arizona and New Mexico*. Desert Plants 9(3-4):70-138.

Tres Rios wetlands http://phoenix.gov/TRESRIOS/index.html. Accessed 2008-2010

United State Department of Agriculture, NRCS 2000. The Plants Database <u>http://www.plants.usda.gov/plants</u>. National Plant Database Center, Baton Rouge, LA 70874-4490, U.S.A.

Wolden, L. G., J. C. Stromberg and D. T. Patten. 1995. Flora and vegetation of the Hassayampa River Preserve, Maricopa County, Arizona. Journal of the Arizona-Nevada Academy of Science 28: 76-111

APPENDIX A

## PLANT LIST

| Family        | Scientific name                   | Author                              | Common<br>name           | Collector #                               | Native/int<br>roduced | Habitat                       | Wetland<br>indicator | Site                      | Notes                                                              |
|---------------|-----------------------------------|-------------------------------------|--------------------------|-------------------------------------------|-----------------------|-------------------------------|----------------------|---------------------------|--------------------------------------------------------------------|
| Acanthaceae   | Ruellia brittoniana               | Leonard                             | Britton's wild petunia   | DJ 572                                    | Intro                 | Mesic<br>riparian             | N/A                  | Tres Rios-Salt<br>River   | Subshrub with purple flowers. Rare                                 |
| Acanthaceae   | Ruellia nudiflora                 | (Engelm.<br>& A.<br>Gray)<br>Urban  | Violet wild<br>petunia   | DJ 689                                    | Native                | Mesic<br>riparian             | N/A                  | New River-<br>Skunk Creek | Subshrub with purple flowers. Rare                                 |
| Aizoaceae     | Mesembryanthemu<br>m crystallinum | L.                                  | Ice plant                | DJ 47                                     | Intro                 | Mesic<br>riparian             | N/A                  | Tres Rios-Salt<br>River   | Ice plant a small prostrate<br>herb, yellow flowers.<br>Cultivated |
| Aizoaceae     | Sesuvium<br>verrucosum            | Raf.                                | Verrucose<br>seapurslane | DJ 490                                    | Intro                 | Mesic<br>riparian             | FACW                 | All                       | Marsh plant, small<br>prostate herb along rivers.<br>Common        |
| Aizoaceae     | Trianthema<br>portulacastrum      | L.                                  | Desert<br>horsepurslane  | DJ 20, 45, 121,<br>136, 157, 172,<br>515. | Native                | Mesic<br>riparian             | N/A                  | All                       | Herb grows in disturbed soils. Common                              |
| Amaranthaceae | Amaranthus albus                  | L.                                  | Prostrate<br>pigweed     | DJ 35, 55.                                | Native                | Mesic<br>riparian             | FACU                 | All                       | Herb grows in disturbed soils. Common                              |
| Amaranthaceae | Amaranthus<br>fimbriatus          | (Torr.)<br>Benth.<br>ex S.<br>Wats. | Fringed<br>amaranth      | DJ 519. 561.                              | Native                | Xeric<br>riparian             | N/A                  | All                       | Herb grows on disturbed<br>soils. Occasional                       |
| Amaranthaceae | Amaranthus<br>palmeri             | S. Wats.                            | Careless weed            | DJ 133,<br>472,477, 533.                  | Native                | Xeric<br>riparian             | FACU                 | All                       | Herb. Occasional                                                   |
| Amaranthaceae | Tidestromia<br>lanuginosa         | (Nutt.)<br>Standl.                  | Woolly<br>tidestromia    | DJ 81,117, 203,<br>479.                   | Native                | Xeric<br>riparian,            | N/A                  | All                       | Herb that grows in sandy soils. Common                             |
| Anacardiaceae | Rhus lancea                       | L.f.                                | African sumac            | DJ 695, 728,<br>745.                      | Intro                 | Mesic to<br>Xeric<br>riparian | N/A                  | All                       | Tree that escapes into<br>urban streams.<br>Occasional             |
| Anacardiaceae | Schinus molle                     | L.                                  | Peruvian<br>peppertree   | DJ 570                                    | Intro                 | Mesic<br>riparian             | N/A                  | Tres Rios-Salt<br>River   | Tree that escapes into<br>urban streams. Rare                      |

| Anacardiaceae  | Schinus<br>terebinthifolia  | Raddi                                   | Brazilian<br>peppertree    | DJ 792                                                                            | Intro  | Mesic<br>riparian                              | N/A  | New River-<br>Skunk Creek                   | Tree that escapes into urban streams. Rare                           |
|----------------|-----------------------------|-----------------------------------------|----------------------------|-----------------------------------------------------------------------------------|--------|------------------------------------------------|------|---------------------------------------------|----------------------------------------------------------------------|
| Apiaceae       | Bowlesia incana             | Ruiz &<br>Pav.                          | Hoary bowlesia             | DJ 254, 262,<br>369, 612, 775.                                                    | Native | Desert<br>mountian<br>and<br>Riparian<br>areas | UPL  | All                                         | Herb. Common                                                         |
| Apiaceae       | Hydrocotyle<br>verticillata | Thunb.                                  | Whorled marsh<br>pennywort | DJ 53.                                                                            | Native | Mesic<br>riparian                              | OBL  | Tres Rios-Salt<br>River                     | Herb of marshlands.<br>Common                                        |
| Apiaceae       | Spermolepis<br>echinata     | (Nutt.<br>Ex DC.)<br>Heller             | Bristly scale<br>seed      | DJ 829                                                                            | Native | Mesic<br>riparian                              | N/A  | New River-<br>Skunk Creek                   | Herb. Rare                                                           |
| Apocynaceae    | Nerium oleander             | L.                                      | Oleander                   | DJ 716                                                                            | Intro  | Mesic to<br>Xeric<br>riparian                  | N/A  | New River-<br>Skunk Creek                   | Shrub. Rare                                                          |
| Araceae        | Colocasia esculenta         | (L.)<br>Schott                          | Taro                       | DJ 86, 181, 191                                                                   | Intro  | Mesic<br>riparian                              | OBL  | Tres Rios-Salt<br>River                     | Herb with edible tuber                                               |
| Arecaceae      | Phoenix dactylifera         | L.                                      | Date palm                  | Makings 3611                                                                      | Intro  | Mesic<br>riparian                              | N/A  | Salt River at<br>Tres Rios, and<br>Loop 202 | Tree. Rare                                                           |
| Arecaceae      | Washingtonia<br>filifera    | (Linden<br>ex<br>Andre)<br>H.<br>Wendl. | California palm<br>tree    | Observed at<br>Cave Creek at<br>19th Av. And<br>New River near<br>Thunderbrid rd. | Native | Mesic<br>riparian                              | FACW | New River-<br>Skunk Creek                   | Tree. Occasional                                                     |
| Arecaceae      | Washingtonia<br>robusta     | H.<br>Wendl.                            | Palm tree                  | DJ 740                                                                            | Intro  | Mesic<br>riparian                              | N/A  | All                                         | Tree that escapes into<br>urban streams.<br>Occasional               |
| Asclepiadaceae | Asclepias subulata          | Dcne.                                   | Rush milkweed              | DJ 139                                                                            | Native | Xeric<br>riparian to<br>desert<br>mountains    | N/A  | Tres Rios-Salt<br>River                     | Native plant that is grown<br>as a cultivated plant in<br>this area. |

| Asclepiadaceae | Sarcostemma<br>cynanchoides | Dcne.                                | Fringed<br>twinevine         | DJ 625                   | Native | Xeric<br>riparian.                                | FAC  | All                     | Desert vine, sprawls over<br>trees, shrubs and herbs.<br>Common |
|----------------|-----------------------------|--------------------------------------|------------------------------|--------------------------|--------|---------------------------------------------------|------|-------------------------|-----------------------------------------------------------------|
| Asteraceae     | Ambrosia<br>ambrosioides    | (Cav.)<br>W.W.<br>Payne              | Ambrosia leaf<br>bur ragweed | DJ 78                    | Native | Xeric<br>riparian,<br>sandy<br>soils              | N/A  | All                     | Shrub with large ragweed like leafs. Common                     |
| Asteraceae     | Ambrosia dumosa             | (A.<br>Gray)<br>W.W.<br>Payne        | Burrobush                    | DJ 617,                  | Native | Desert<br>mountain                                | N/A  | All                     | Shrub that grows on mountain slopes. Rare                       |
| Asteraceae     | Ambrosia<br>eriocentra      | (A.<br>Gray)<br>W.W.<br>Payne        | Woolly fruit<br>bur ragweed  | DJ 75, 100,<br>395.      | Native | Xeric<br>riparian,<br>sandy<br>soils              | N/A  | Tres Rios-Salt<br>River | Shrub bur like fruit.<br>Common                                 |
| Asteraceae     | Baccharis<br>salicifolia    | (Ruiz &<br>Pav.)<br>Pers.            | Seep willow                  | DJ 1                     | Native | Mesic<br>riparian                                 | FACW | All                     | Shrub with willow like<br>leaves and white flowers.<br>Common   |
| Asteraceae     | Baccharis<br>sarothroides   | A. Gray                              | Desertbroom                  |                          | Native | Xeric<br>riparian                                 | FAC- | All                     | Shrub. Common                                                   |
| Asteraceae     | Baileya<br>multiradiata     | Harvey<br>& A.<br>Gray ex<br>A. Gray | Desert marigold              | DJ 42, 808               | Native | Xeric<br>riparian                                 | N/A  | All                     | Herb with yellow<br>flowers. Occasional                         |
| Asteraceae     | Bebbia juncea               | (Benth.)<br>Greene                   | Sweatbush                    | DJ 57, 99, 396           | Native | Xeric<br>riparian,<br>sandy<br>soils              | N/A  | All                     | Desert shrub. Common                                            |
| Asteraceae     | Brickellia coulteri         | Ell.                                 | Coulter's<br>brickellbush    | DJ 656                   | Native | Desert<br>hills and<br>Sandy<br>Xeric<br>riparian | N/A  | Tres Rios-Salt<br>River | Desert shrub. Occasional                                        |
| Asteraceae     | Calycoseris wrightii        | A. Gray                              | White tackstem               | DJ 638                   | Native | Xeric<br>riparian                                 | N/A  | All                     | Herb. Occasional                                                |
| Asteraceae     | Centaurea<br>melitensis     | L.                                   | Maltese star<br>thistle      | DJ 702, 706              | Intro  | Xeric<br>riparian                                 | N/A  | All                     | Herb. Occasional                                                |
| Asteraceae     | Chaenactis<br>stevioides    | Hook. &<br>Arn.                      | Esteve's pincushion          | DJ 594, 618,<br>641, 772 | Native | Xeric<br>riaprian                                 | N/A  | All                     | Herb. Occasional                                                |
| Asteraceae     | Conyza canadensis           | (L.)<br>Cronq.                       | Canadian<br>horseweed        | DJ 169                   | Native | Mesic<br>riparian                                 | FACU | All                     | Herb. Common                                                    |

| Asteraceae | Dicoria canescens           | A. Gray                             | Desert<br>twinbugs         | DJ 153, 585                          | Native | Xeric<br>riparian,<br>sandy<br>soils              | N/A  | All                       | Shrub. Occasional                                       |
|------------|-----------------------------|-------------------------------------|----------------------------|--------------------------------------|--------|---------------------------------------------------|------|---------------------------|---------------------------------------------------------|
| Asteraceae | Dieteria asteroides         | Torr.                               | Fall Tanyaster             | DJ 446, 481,<br>421                  | Native | Xeric<br>riparian                                 | N/A  | All                       | Herb. Occasional                                        |
| Asteraceae | Dimorphotheca<br>sinuata    | Berg.                               | Glandular Cape<br>marigold | DJ 230                               | Intro  | Xeric<br>riparian                                 | N/A  | All                       | Herb. Occasional                                        |
| Asteraceae | Dyssodia<br>pentachaeta     | (DC.)<br>B.L.<br>Robins.            | Fiveneedle<br>pricklyleaf  | DJ 714                               | Native | Xeric<br>riparian                                 | N/A  | All                       | Herb. Occasional                                        |
| Asteraceae | Eclipta prostrata           | (L.) L.                             | False daisy                | DJ 152, 160,<br>468                  | Intro  | Mesic<br>riparian                                 | FAC  | All                       | Herb. Common                                            |
| Asteraceae | Encelia farinosa            | A. Gray<br>ex Torr.                 | Brittlebush                | DJ 59, 257, 463                      | Native | Desert<br>hills and<br>Sandy<br>Xeric<br>riparian | N/A  | All                       | Desert perennial shrub.<br>Common                       |
| Asteraceae | Filago californica          | Nutt.                               | California<br>cottonrose   | DJ 223, 281                          | Native | Xeric<br>riparian to<br>desert<br>mountains       | N/A  | All                       | Herb. Occasional                                        |
| Asteraceae | Helenium thurberi           | A. Gray                             | Thurber's sneezeweed       | DJ 682                               | Native | Mesic<br>riparian                                 | OBL  | New River-<br>Skunk Creek | Herb. Rare                                              |
| Asteraceae | Helianthus annuus           | L.                                  | Common<br>sunflower        | DJ 49, 176,<br>385, 471, 551,<br>574 | Native | Mesic<br>riparian                                 | FAC- | All                       | Herb with yellow flowers<br>and edible seeds.<br>Common |
| Asteraceae | Heterotheca<br>subaxillaris | (Lam.)<br>Britt. &<br>Rusby         | Camphorweed                | DJ 166, 552                          | Native | Mesic<br>riparian                                 | UPL  | All                       | Tall herb with yellow flowers. Common                   |
| Asteraceae | Hymenoclea<br>monogyra      | Torr. &<br>A. Gray<br>ex A.<br>Gray | Singlewhorl<br>burrobush   | DJ 189, 206                          | Native | Xeric<br>riparian                                 | N/A  | All                       | Shrub common in<br>riparian areas. Occasional           |
| Asteraceae | Hymenoclea salsola          | Torr. &<br>A.Gray                   | Burrobush                  | DJ 356, 397                          | Native | Xeric<br>riparian                                 | N/A  | All                       | Shrub common in<br>riparian areas. Occasional           |

| Asteraceae | Isocoma acradenia              | (Greene)<br>Greene                      | Alkali<br>goldenbush      | DJ 192                                | Native | Xeric<br>riparian                       | N/A  | All                     | Desert perennial shrub.<br>Occasional |
|------------|--------------------------------|-----------------------------------------|---------------------------|---------------------------------------|--------|-----------------------------------------|------|-------------------------|---------------------------------------|
| Asteraceae | Lactuca serriola               | L.                                      | Prickly lettuce           | DJ 503, 540                           | Intro  | Xeric<br>riparian                       | FAC  | All                     | Herb. Common                          |
| Asteraceae | Laennecia coulteri             | (A.<br>Gray)<br>G.L.<br>Nesom           | Coulter's<br>horseweed    | DJ 11, 14, 178,<br>413, 419           | Native | Mesic<br>riparian                       | FAC  | All                     | Herb. Common                          |
| Asteraceae | Machaeranthera<br>pinnatifida  | B.L.<br>Turner<br>& Horne               | Arid tansyaster           | DJ 652                                | Native | Xeric<br>riparian<br>desert<br>mountain | FAC  | All                     | Desert perennial shrub.<br>Occasional |
| Asteraceae | Malacothrix<br>glabrata        | (A. Gray<br>ex D.C.<br>Eat.) A.<br>Gray | Smooth<br>desertdandelion | DJ 210, 317,<br>321, 327, 355,<br>358 | Native | Desert<br>mountain                      | N/A  | All                     | Herb. Occasional                      |
| Asteraceae | Monoptilon<br>bellioides       | (A.<br>Gray)<br>Hall                    | Mohave<br>desertstar      | DJ 319, 325,<br>372                   | Native | Desert<br>mountain                      | N/A  | All                     | Herb. Occasional                      |
| Asteraceae | Oncosiphon<br>piluliferum      | (L. f.)<br>Kallersjo                    | Stinknet                  | DJ 6, 205                             | Intro  | Desert<br>mountain                      | N/A  | All                     | Herb with yellow<br>flowers. Common   |
| Asteraceae | Pectis papposa                 | Harvey<br>& A.<br>Gray                  | Manybristle<br>cinchweed  | DJ 512                                | Native | Desert<br>mountain                      | N/A  | All                     | Herb. Occasional                      |
| Asteraceae | Perityle emoryi                | Torr.                                   | Emory's<br>rockdaisy      | DJ 607, 653,<br>661                   | Native | Desert<br>mountain                      | N/A  | Tres Rios-Salt<br>River | Herb. Occasional                      |
| Asteraceae | Pluchea odorata                | (L.)<br>Cass.                           | Sweetscent                | DJ 69, 107, 202                       | Native | Mesic<br>riparian                       | FACW | All                     | Shrub. Common                         |
| Asteraceae | Pluchea sericea                | (Nutt.)<br>Coville                      | Arrowweed                 | DJ 108, 116,<br>119, 812              | Native | Mesic<br>riparian                       | FACW | All                     | Shrub. Common                         |
| Asteraceae | Pseudognaphalium<br>canescens  | (DC.)<br>W.A.<br>Weber                  | Wright's<br>cudweed       | DJ 719                                | Native | Xeric<br>riparian                       | UPL  | All                     | Herb. Occasional                      |
| Asteraceae | Pseudognaphalium<br>luteoalbum | (L.)<br>Hilliard<br>& Burtt             | Jersey cudweed            | DJ 498, 722,<br>832                   | Native | Mesic<br>riparian                       | FAC  | All                     | Herb. Occasional                      |
| Asteraceae | Rafinesquia<br>neomexicana     | A. Gray                                 | New Mexico<br>plumeseed   | DJ 279, 322,<br>334, 789              | Native | Desert<br>mountain                      | N/A  | All                     | Herb. Common                          |

| Asteraceae   | Sonchus asper                 | (L.) Hill                                       | Spiny<br>sowthistle                   | DJ 449                                                      | Intro  | Mesic<br>riparian                           | FACW | All | Herb. Common                          |
|--------------|-------------------------------|-------------------------------------------------|---------------------------------------|-------------------------------------------------------------|--------|---------------------------------------------|------|-----|---------------------------------------|
| Asteraceae   | Sonchus oleraceus             | L.                                              | Common<br>sowthistle                  | DJ 164, 183,<br>213, 214, 374,<br>410, 459                  | Intro  | Desert<br>mountain                          | UPL  | All | Herb. Common                          |
| Asteraceae   | Stephanomeria<br>pauciflora   | (Torr.)<br>A. Nels.                             | Brownplume<br>wirelettuce             | DJ 60, 114, 188                                             | Native | Xeric<br>riparian                           | N/A  | All | Shrub with small pink flowers. Common |
| Asteraceae   | Symphyotrichum<br>divaricatum | (Nutt.)<br>G.L.<br>Nesom                        | Southern<br>annual<br>saltmarsh aster | DJ 541, 548                                                 | Native | Xeric<br>riparian                           | N/A  | All | Herb. Occasional                      |
| Asteraceae   | Verbesina<br>encelioides      | (Cav.)<br>Benth. &<br>Hook. f.<br>ex A.<br>Gray | Golden<br>crownbeard                  | DJ 31, 271,<br>333, 336, 403,<br>412                        | Native | Mesic to<br>Xeric<br>riparian               | FAC  | All | Herb. Common                          |
| Asteraceae   | Xanthium<br>strumarium        | L.                                              | Rough<br>cocklebur                    | DJ 120, 122,<br>177                                         | Native | Mesic<br>riparian                           | FAC  | All | Herb. Common                          |
| Bignoniaceae | Chilopsis linearis            | (Cav.)<br>Sweet                                 | Desert willow                         | DJ 26, 62, 746                                              | Native | Xeric<br>riparian                           | UPL  | All | Tree. Occasional                      |
| Boraginaceae | Amsinckia menziesii           | (Lehm.)<br>A. Nels.<br>& J.F.<br>Macbr.         | Menzies'<br>fiddleneck                | DJ 253, 266,<br>272, 273, 508,<br>616, 781, 787             | Native | Desert<br>mountain<br>and xeric<br>riparian | N/A  | All | Herb. Common                          |
| Boraginaceae | Cryptantha<br>angustifolia    | Lehm.<br>ex G.<br>Don                           | Panamint<br>cryptantha                | DJ 61, 242,<br>245, 247, 328,<br>365, 386, 408,<br>510, 635 | Native | Desert<br>mountain<br>and xeric<br>riparian | N/A  | All | Herb. Common                          |
| Boraginaceae | Cryptantha<br>barbigera       | (A.<br>Gray)<br>Greene                          | Bearded<br>cryptantha                 | DJ 58, 265,<br>367, 390, 392                                | Native | Desert<br>mountain<br>and xeric<br>riparian | N/A  | All | Herb. Common                          |
| Boraginaceae | Cryptantha<br>maritima        | (Greene)<br>Greene                              | Guadalupe<br>cryptantha               | DJ 357, 391,<br>393, 601,<br>654,784                        | Native | Desert<br>mountain<br>and xeric<br>riparian | N/A  | All | Herb. Occasional                      |

| Boraginaceae | Cryptantha<br>muricata       | (Hook.<br>& Arn.)<br>A. Nels.<br>& J.F.<br>Macbr. | Pointed<br>cryptantha   | DJ 252, 354,<br>366      | Native | Desert<br>mountain<br>and xeric<br>riparian | N/A  | All                     | Herb. Occasional                                          |
|--------------|------------------------------|---------------------------------------------------|-------------------------|--------------------------|--------|---------------------------------------------|------|-------------------------|-----------------------------------------------------------|
| Boraginaceae | Cryptantha<br>pterocarya     | (Torr.)<br>Greene                                 | Wingnut<br>cryptantha   | DJ 264, 611,<br>614, 662 | Native | Desert<br>mountain<br>and xeric<br>riparian | N/A  | Tres Rios-Salt<br>River | Herb. Occasional                                          |
| Boraginaceae | Heliotropium<br>curassavicum | L.                                                | Salt heliotrope         | DJ 13, 32, 46.           | Native | Mesic<br>riparian                           | FACW | All                     | Prostrate spreading herb<br>with white flowers.<br>Common |
| Boraginaceae | Pectocarya<br>heterocarpa    | (I.M.<br>Johnston<br>) I.M.<br>Johnston           | Chuckwalla<br>combseed  | DJ 240, 241,<br>270      | Native | Desert<br>mountain<br>and xeric<br>riparian | N/A  | All                     | Herb. Common                                              |
| Boraginaceae | Pectocarya<br>platycarpa     | (Munz &<br>Johnston<br>) Munz<br>&<br>Johnston    | Broadfruit<br>combseed  | DJ 243, 243,<br>244, 246 | Native | Desert<br>mountain<br>and xeric<br>riparian | N/A  | All                     | Herb. Common                                              |
| Boraginaceae | Pectocarya<br>recurvata      | I.M.<br>Johnston                                  | Curvenut<br>combseed    | DJ 208, 274,<br>398      | Native | Desert<br>mountain<br>and xeric<br>riparian | N/A  | All                     | Herb. Common                                              |
| Boraginaceae | Tiquilia plicata             | (Torr.)<br>A.<br>Richards                         | Fanleaf<br>crinklemat   | DJ 74                    | Native | Xeric<br>riparian<br>and desert             | N/A  | All                     | Herb. Occasional                                          |
| Brassicaceae | Brassica<br>tournefortii     | Gouan                                             | Asian mustard           | DJ 249                   | Intro  | Mesic<br>riparian                           | N/A  | All                     | Herb. Common                                              |
| Brassicaceae | Capsella bursa-<br>pastoris  | (L.)<br>Medik.                                    | Shepherd's purse        | DJ 235                   | Intro  | Mesic<br>riparian                           | FAC  | All                     | Herb. Occasional                                          |
| Brassicaceae | Descurainia<br>pinnata       | (Walter)<br>Britton                               | Western<br>tansymustard | Lehto 17533              | Native | Desert<br>mountain<br>and xeric<br>riparian | N/A  | All                     | Herb. Not collected<br>during this study                  |

| Brassicaceae | Dimorphocarpa<br>wislizeni     | (Engelm.<br>) Rollins          | Touristplant              | Irish s.n., Lehto<br>17991                 | Native | Desert<br>mountian<br>and<br>Riparian<br>areas | N/A | Tres Rios-Salt<br>River   | Herb. Not collected<br>during this study |
|--------------|--------------------------------|--------------------------------|---------------------------|--------------------------------------------|--------|------------------------------------------------|-----|---------------------------|------------------------------------------|
| Brassicaceae | Draba cuneifolia               | Nutt. ex<br>Torr. &<br>A. Gray | Wedgeleaf<br>draba        | DJ 593                                     | Native | Desert<br>mountain<br>and xeric<br>riparian    | N/A | All                       | Herb. Occasional                         |
| Brassicaceae | Eruca vesicaria ssp.<br>sativa | (P. Mill.)<br>Thellung         | Rocketsalad               | DJ 783, 830                                | Intro  | Desert<br>mountain<br>and xeric<br>riparian    | N/A | New River-<br>Skunk Creek | Herb. Occasional                         |
| Brassicaceae | Guillenia<br>lasiophylla       | (Hook.<br>& Arn.)<br>Greene    | California<br>mustard     | DJ 251, 597,<br>599, 619, 779,<br>786      | Native | Desert<br>mountian<br>and<br>Riparian<br>areas | N/A | All                       | Herb. Common                             |
| Brassicaceae | Lepidium<br>lasiocarpum        | Nutt.                          | Shaggyfruit<br>pepperweed | DJ 222, 232,<br>238, 239, 359,<br>603, 636 | Native | Desert<br>mountian<br>and<br>Riparian<br>areas | N/A | All                       | Herb. Common                             |
| Brassicaceae | Lesquerella<br>gordonii        | (A.<br>Gray) S.<br>Wats.       | Gordon's<br>bladderpod    | DJ 276                                     | Native | Desert<br>mountain<br>and xeric<br>riparian    | N/A | All                       | Herb. Occasional                         |
| Brassicaceae | Raphanus sativus               | L.                             | Radish                    | D.J. Pinkava<br>10116                      | Intro  | Mesic<br>riparian                              | N/A | Gila River                | Herb. Rare                               |
| Brassicaceae | Sisymbrium irio                | L.                             | London rocket             | DJ 182                                     | Native | Mesic<br>riparian                              | N/A | All                       | Herb. Abundant                           |
| Buddlejaceae | Buddleja<br>marrubiifolia      | Benth.                         | Wolly<br>butterflybush    | DJ 457                                     | Intro  | Mesic<br>riparian                              | N/A | Tres Rios-Salt<br>River   | Subshrub cultivated. Rare                |
| Cactaceae    | Cylindropuntia<br>fulgida      | (Engelm.<br>) Knuth            | Chainfruit<br>cholla      | DJ 190                                     | Native | Desert<br>mountain                             | N/A | Tres Rios-Salt<br>River   | Shrub/Tree. Rare                         |
| Cactaceae    | Opuntia sp.                    | P. Mill.                       | Prickly-pear              | DJ 577                                     | Native | Desert<br>mountain                             | N/A | Tres Rios-Salt<br>River   | Shrub. Rare                              |

| Cactaceae       | Opuntia<br>engelmannii var.<br>engelmannii     | Salm-<br>Dyck           | Prickly-pear             | DJ 89                       | Native | Desert<br>mountain | N/A  | Tres Rios-Salt<br>River | Shrub. Rare                             |
|-----------------|------------------------------------------------|-------------------------|--------------------------|-----------------------------|--------|--------------------|------|-------------------------|-----------------------------------------|
| Campanulaceae   | Nemacladus<br>glanduliferus var.<br>orientalis | Mc<br>Vaugh             | Glandular<br>threadplant | Pinkava 11817               | Native | Mesic<br>riparian  | N/A  | Papago Park             | Herb Not collected<br>during this study |
| Capparidaceae   | Polanisia<br>trachysperma                      | Torr. &<br>Gray         | Sandyseed<br>clammyweed  | DJ 12, 30                   | Native | Mesic<br>riparian  | FAC  | All                     | Tall herb with yellow flowers. Common   |
| Capparidaceae   | Wislizenia refracta                            | Engelm.                 | Spectacle fruit          | Lehto 18276,<br>Sundell 546 | Native | Mesic<br>riparian  | FACW | Gila River              | Herb Not collected<br>during this study |
| Caprifoliaceae  | Sambucus nigra<br>ssp. caerulea                | (Raf.)<br>Bolli         | Blue Elderberry          | DJ 5, 28, 36,<br>193, 433   | Native | Mesic<br>riparian  | FAC  | Tres Rios-Salt<br>River | Small tree or shrub.<br>Occasional      |
| Caryophyllaceae | Spergularia salina                             | J.& K.<br>Presl         | Salt sandspurry          | DJ 623, 659,<br>705         | Native | Mesic<br>riparian  | OBL  | Tres Rios-Salt<br>River | Herb. Common                            |
| Chenopodiaceae  | Allenrolfea<br>occidentalis                    | (S.<br>Wats.)<br>Kuntze | Iodine bush              | DJ 626                      | Native | Mesic<br>riparian  | FACW | Tres Rios-Salt<br>River | Shrub. Rare                             |
| Chenopodiaceae  | Atriplex canescens                             | (Pursh)<br>Nutt.        | Fourwing saltbush        | DJ 655                      | Native | Xeric<br>riparian  | UPL  | All                     | Shrub. Common                           |
| Chenopodiaceae  | Atriplex elegans                               | (Moq.)<br>D. Dietr.     | Wheelscsle<br>saltbush   | DJ 516, 555                 | Native | Xeric<br>riparian  | N/A  | All                     | Herb. Common                            |
| Chenopodiaceae  | Atriplex lentiformis                           | (Torr.)<br>S. Wats.     | Big saltbush             | DJ 18, 87, 126,<br>554      | Native | Xeric<br>riparian  | FACW | All                     | Shrub. Common                           |
| Chenopodiaceae  | Atriplex polycarpa                             | (Torr.)<br>S. Wats.     | Cattle saltbush          | DJ 204                      | Native | Xeric<br>riparian  | FACU | All                     | Shrub. Occasional                       |
| Chenopodiaceae  | Atriplex<br>semibaccata                        | R. Br.                  | Australian<br>saltbush   | Lehto 427                   | Intro  | Xeric<br>riparian  | FAC  | Agua Fria<br>River      | Shrub. Not collected during this study  |
| Chenopodiaceae  | Atriplex wrightii                              | S.<br>Watson            | Wright's<br>saltbush     | McLellan 81                 | Native | Xeric<br>riparian  | N/A  | Agua Fria<br>River      | Herb Not collected during this study.   |

| Chenopodiaceae | Bassia hyssopifolia         | (Pall.)<br>Kuntz                       | Fivehorn<br>smotherweed | Rhea 1193                                 | Intro  | Xeric<br>riparian               | FACW | Agua Fria<br>River      | Herb. Not collected during this study. |
|----------------|-----------------------------|----------------------------------------|-------------------------|-------------------------------------------|--------|---------------------------------|------|-------------------------|----------------------------------------|
| Chenopodiaceae | Chenopodium sp.             | L.                                     | Goosefoot               | DJ 54, 216, 261                           | Native | Xeric<br>riparian               | N/A  | All                     | Herb. Common                           |
| Chenopodiaceae | Chenopodium<br>album        | L.                                     | Lambsquarters           | DJ 199                                    | Native | Xeric<br>riparian               | FAC  | All                     | Herb. Common                           |
| Chenopodiaceae | Chenopodium<br>berlandieri  | Moq.                                   | Pitseed<br>goosefoot    | DJ 217, 320,<br>404, 409                  | Native | Xeric<br>riparian               | N/A  | All                     | Herb. Common                           |
| Chenopodiaceae | Chenopodium<br>leptophyllum | (Moq.)<br>Nutt. ex<br>S. Wats.         | Narrowleaf<br>goosefoot | DJ 383                                    | Native | Xeric<br>riparian               | FACU | All                     | Herb. Common                           |
| Chenopodiaceae | Chenopodium<br>murale       | L.                                     | Nettleleaf<br>goosefoot | DJ 19, 220,<br>418, 535, 550,<br>651, 816 | Native | Xeric<br>riparian               | NO   | All                     | Herb. Common                           |
| Chenopodiaceae | Dysphania<br>ambrosioides   | (L.)<br>Mosyaki<br>n &<br>Clemant<br>s | Mexican tea             | DJ 171, 175,<br>452, 586                  | Native | Xeric<br>riparian               | FAC  | All                     | Herb. Common                           |
| Chenopodiaceae | Monolepis<br>nuttalliana    | (J.A.<br>Schultes<br>) Greene          | Nuttall's povertyweed   | DJ 326, 388                               | Native | Xeric<br>riparian               | FAC  | All                     | Herb. Occasional                       |
| Chenopodiaceae | Salsola tragus              | L.                                     | Prickly Russian thistle | DJ 77, 102                                | Intro  | Xeric<br>riparian               | FACU | All                     | Herb. Common                           |
| Chenopodiaceae | Suaeda moquinii             | (Torr.)<br>Greene                      | Mohave<br>seablite      | DJ 93, 197, 580                           | Native | Xeric<br>riparian               | N/A  | Tres Rios-Salt<br>River | Herb. Common                           |
| Convolvulaceae | Ipomoea X<br>leucantha      | L.                                     | Morning-glory           | DJ 534, 590                               | Intro  | Xeric<br>riparian               | N/A  | Tres Rios-Salt<br>River | Herb. Rare                             |
| Crassulaceae   | Crassula connata            | (Ruiz &<br>Pav.)<br>Berger             | Sand<br>pygmweed        | DJ 268, 295,<br>324, 339, 361,<br>637     | Native | Xeric<br>riparian               | FACW | All                     | Herb. Common                           |
| Cucurbitaceae  | Cucumis sativus             | L.                                     | Garden<br>cucumber      | DJ 184, 221                               | Intro  | Xeric<br>riparian               | N/A  | Tres Rios-Salt<br>River | Herb. Rare                             |
| Cucurbitaceae  | Cucurbita digitata          | A. Gray                                | Fingerleaf<br>gourd     | Sundell 356                               | Native | Xeric<br>riparian<br>and desert | N/A  | Gila River              | Vine. Occasional                       |
| Cuscutaceae    | Cuscuta campestris          | Yuncker                                | Dodder                  | DJ 717                                    | Native | Xeric<br>riparian<br>and desert | N/A  | All                     | Herb, parasite.<br>Occasional          |

| Cuscutaceae | Cuscuta salina           | L.                                          | Saltmarsh<br>dodder   | DJ 499, 834,<br>842                                               | Native | Xeric<br>riparian<br>and desert | N/A  | All                       | Herb parasite. Occasional    |
|-------------|--------------------------|---------------------------------------------|-----------------------|-------------------------------------------------------------------|--------|---------------------------------|------|---------------------------|------------------------------|
| Cyperaceae  | Cyperus sp.              | L.                                          | Faltsedge             | DJ 97, 524, 713                                                   | Native | Mesic<br>riparian               | OBL  | All                       | Herb. Common                 |
| Cyperaceae  | Cyperus difformis        | L.                                          | Variable<br>flatsedge | DJ 162, 560,<br>566, 764                                          | Intro  | Mesic<br>riparian               | OBL  | All                       | Herb. Common                 |
| Cyperaceae  | Cyperus elegans          | L.                                          | Royal flatsedge       | DJ 591, 707,<br>711, 734                                          | Native | Mesic<br>riparian               | OBL  | Gila River, Salt<br>River | Herb. Occasional             |
| Cyperaceae  | Cyperus eragrostis       | Lam.                                        | Tall flatsedge        | DJ 435, 589,<br>678, 712, 736                                     | Native | Mesic<br>riparian               | OBL  | New River-<br>Skunk Creek | Herb. Common                 |
| Cyperaceae  | Cyperus<br>erythrorhizos | Muhl.                                       | Redroot<br>flatsedge  | DJ 148, 158,<br>434                                               | Intro  | Mesic<br>riparian               | OBL  | Gila, Salt<br>Rivers      | Perennial. Occasional        |
| Cyperaceae  | Cyperus<br>involucratus  | Rottb.                                      | Umbrella plant        | DJ 51, 215                                                        | Intro  | Mesic<br>riparian               | FACW | All                       | Perennial. Occasional        |
| Cyperaceae  | Cyperus odoratus         | L.                                          | Fragrant<br>flatsedge | DJ 124, 145,<br>147, 149, 187,<br>423, 426, 427,<br>495, 497, 504 | Native | Mesic<br>riparian               | OBL  | All                       | Herb. Abundant               |
| Cyperaceae  | Cyperus pygmaeus         | Rottb.                                      | Dwarf flatsedge       | DJ 526, 708,<br>723                                               | Intro  | Mesic<br>riparian               | OBL  | All                       | Small annual herb.<br>Common |
| Cyperaceae  | Cyperus rotundus         | L.                                          | Nutgrass              | DJ 528                                                            | Intro  | Mesic<br>riparian               | OBL  | All                       | Herb. Occasional             |
| Cyperaceae  | Eleocharis sp.           | R. Br.                                      | Spike rush            | DJ 675, 709                                                       | Native | Mesic<br>riparian               | OBL  | All                       | Herb. Occasional             |
| Cyperaceae  | Eleocharis<br>geniculata | (L.)<br>Roemer<br>& J.A.<br>Schultes        | Canada<br>spikesedge  | DJ 161, 525                                                       | Native | Mesic<br>riparian               | OBL  | All                       | Herb. Occasional             |
| Cyperaceae  | Eleocharis parishii      | Britt.                                      | Parish's<br>spikerush | DJ 67, 718                                                        | Native | Mesic<br>riparian               | FACW | All                       | Herb. Occasional             |
| Cyperaceae  | Schoenoplectus<br>acutus | (Muhl.<br>ex<br>Bigelow<br>) A.& D.<br>L÷ve | Hardstem<br>bulrush   | DJ 22, 430,<br>487, 730, 733                                      | Native | Mesic<br>riparian               | OBL  | All                       | Perennial. Occasional        |

| Cyperaceae      | Schoenoplectus<br>americanus                 | (Pers.)<br>Volk. ex<br>Schinz<br>& R.<br>Keller | Chairmaker's<br>bulrush  | DJ 432                                                          | Native | Mesic<br>riparian | OBL | All                                | Perennial. Occasional                        |
|-----------------|----------------------------------------------|-------------------------------------------------|--------------------------|-----------------------------------------------------------------|--------|-------------------|-----|------------------------------------|----------------------------------------------|
| Cyperaceae      | Schoenoplectus<br>californicus               | (C.A.<br>Mey.)<br>Palla                         | California<br>bulrush    | Lehto 5082                                                      | Native | Mesic<br>riparian | OBL | Agua Fria<br>River, Papago<br>Park | Perennial. Occasional                        |
| Cyperaceae      | Schoenoplectus<br>maritimus                  | (Pers.)<br>Volk. ex<br>Schinz<br>& R.<br>Keller | Cosmopolitan<br>bulrush  | DJ 23, 64, 159,<br>163, 428, 429,<br>432, 476, 492,<br>493, 757 | Native | Mesic<br>riparian | OBL | All                                | Perennial. Common                            |
| Dryopteridaceae | Nephrolepis<br>exultata var.<br>bostoniensis | Davenp.                                         | Boston fern              | Sundell 394                                                     | Intro  | Mesic<br>riparian | N/A | Gila River                         | Perennial Not collected<br>during this study |
| Euphorbiaceae   | Argythamnia<br>neomexicana                   | Mull.<br>Arg.                                   | New Mexico<br>silverbush | Lehto 5139,<br>McLellan 656                                     | Native | Xeric<br>riparian | N/A | All                                | Herb. Occasional                             |
| Euphorbiaceae   | Chamaesyce sp.                               | S.F. A.<br>Gray                                 | Sandmat                  | DJ 156                                                          | Native | Xeric<br>riparian | N/A | All                                | Herb. Occasional                             |
| Euphorbiaceae   | Chamaesyce<br>albomarginata                  | (Torr. &<br>A. Gray)<br>Small                   | Whitemargin<br>sandmat   | DJ 34, 818                                                      | Native | Xeric<br>riparian | N/A | All                                | Herb. Occasional                             |
| Euphorbiaceae   | Chamaesyce<br>arizonica                      | (Engelm.<br>) Arthur                            | Arizona<br>sandmat       | DJ 436                                                          | Native | Xeric<br>riparian | N/A | All                                | Herb. Occasional                             |
| Euphorbiaceae   | Chamaesyce<br>hyssopifolia                   | (L.)<br>Small                                   | Hyssopleaf sandmat       | DJ 755                                                          | Native | Xeric<br>riparian | N/A | All                                | Herb. Occasional                             |
| Euphorbiaceae   | Chamaesyce<br>maculata                       | (L.)<br>Small                                   | Spotted sandmat          | Makings 3606                                                    | Native | Xeric<br>riparian | N/A | All                                | Herb. Occasional                             |
| Euphorbiaceae   | Chamaesyce<br>setiloba                       | (Engelm.<br>ex Torr.)<br>Millsp.<br>ex Parish   | Yuma sandmat             | DJ 155, 579                                                     | Native | Xeric<br>riparian | N/A | All                                | Herb. Occasional                             |
| Euphorbiaceae   | Ricinus communis                             | L.                                              | Castor bean              | DJ 10, 127,<br>134, 576                                         | Intro  | Mesic<br>riparian | FAC | All                                | Small tree or shrub.<br>Common               |

| Fabaceae | Acacia farnesiana        | (L.)<br>Willd.                 | Sweat acacia                    | DJ 666, 842              | Native | Mesic<br>riparian   | FACU | New River-<br>Skunk Creek                           | Tree. Occasional                                     |
|----------|--------------------------|--------------------------------|---------------------------------|--------------------------|--------|---------------------|------|-----------------------------------------------------|------------------------------------------------------|
| Fabaceae | Acacia greggii           | A. Gray                        | Catclaw acacia                  | DJ 480                   | Native | Xeric<br>riparian   | UPL  | All                                                 | Tree. Occasional                                     |
| Fabaceae | Acacia salicina          | Lindl.                         | Cooba                           | DJ 649, 665,<br>747, 801 | Intro  | Xeric<br>riparian   | N/A  | New River-<br>Skunk Creek                           | Tree. Occasional                                     |
| Fabaceae | Acacia schaffneri        | (S.<br>Wats.)<br>F.J.<br>Herm. | Schaffner's wattle              | DJ 687, 698              | Intro  | Xeric<br>riparian   | N/A  | New River-<br>Skunk Creek                           | Tree. Occasional                                     |
| Fabaceae | Acacia stenophylla       | A. Cunn.<br>ex<br>Benth.       | Dalby myall                     | DJ 664                   | Intro  | Xeric<br>riparian   | N/A  | New River-<br>Skunk Creek,<br>Gila River            | Tree. Occasional                                     |
| Fabaceae | Alhagi maurorum          | Medik.                         | Camelthorn                      | Makings 3601             | Intro  | Xeric<br>riparian   | N/A  | Salt River at<br>Loop 202                           | Shrub with sharp thorns.<br>Occasional               |
| Fabaceae | Calliandra<br>eriophylla | Benth.                         | Fairyduster                     | DJ 137                   | Native | Mesic<br>riparian   | N/A  | Tres Rios-Salt<br>River                             | Shrub. Occasional                                    |
| Fabaceae | Dalea mollis             | Benth.                         | Hairy prairie<br>clover         | DJ 630                   | Native | Desert<br>mountains | N/A  | All                                                 | Subshrub. Common                                     |
| Fabaceae | Gleditsia<br>triacanthos | L.                             | Honeylocust                     | DJ 679                   | Intro  | Mesic<br>riparian   | FAC  | New River-<br>Skunk Creek                           | Tree. Rare                                           |
| Fabaceae | Leucaena<br>leucocephala | (Lam.)<br>de Wit               | White leadtree                  | DJ 453                   | Intro  | Mesic<br>riparian   | N/A  | Tres Rios-Salt<br>River                             | Tree. Occasional                                     |
| Fabaceae | Lotus salsuginosus       | Greene                         | Coastal bird's-<br>foot trefoil | DJ 2, 604, 771           | Native | Desert<br>mountains | N/A  | All                                                 | Herb. Occasional                                     |
| Fabaceae | Lupinus<br>sparsiflorus  | Benth.                         | Coulter's lupine                | DJ 280, 307,<br>609, 776 | Native | Desert<br>mountains | N/A  | All                                                 | Herb. Common                                         |
| Fabaceae | Lysiloma watsonii        | Rose                           | Littleleaf false<br>tamarind    | Makings 3605             | Intro  | Mesic<br>riparian   | N/A  | Salt River at<br>Loop 202                           | Tree. Rare                                           |
| Fabaceae | Medicago sativa          | L.                             | Alfalfa                         | DJ 458, 530              | Intro  | Mesic<br>riparian   | N/A  | Tres Rios-Salt<br>River                             | Herb. Occasional                                     |
| Fabaceae | Melilotus alba           | Medikus                        | White clover                    | DJ 726                   | Native | Mesic<br>riparian   | FAC  | All                                                 | Herb. Common                                         |
| Fabaceae | Melilotus indicus        | (L.) All.                      | Annual yellow<br>sweatclover    | DJ 407                   | Native | Mesic<br>riparian   | FAC  | All                                                 | Herb. Common                                         |
| Fabaceae | Nasturtium<br>officinale | W.T.<br>Aiton                  | Watercress                      | Irish                    | Intro  | Mesic<br>riparian   | OBL  | Salt River near<br>what is now<br>TempeTown<br>Lake | Perennial herb Not<br>collected during this<br>study |

| Fabaceae       | Parkinsonia<br>aculeata    | L.                                    | Mexican<br>paloverde    | DJ 21, 444,<br>833, 845                                     | Native | Xeric<br>riparian                            | FAC  | All                                | Tree. Abundant                            |
|----------------|----------------------------|---------------------------------------|-------------------------|-------------------------------------------------------------|--------|----------------------------------------------|------|------------------------------------|-------------------------------------------|
| Fabaceae       | Parkinsonia florida        | (Benth.<br>ex A.<br>Gray) S.<br>Wats. | Blue paloverde          | DJ 91, 379                                                  | Native | Xeric<br>riparian                            | N/A  | All                                | Tree. Occasional                          |
| Fabaceae       | Parkinsonia<br>microphylla | Torr.                                 | Foothills<br>paloverde  | DJ 209                                                      | Native | Desert<br>mountains<br>and xeric<br>riparian | N/A  | All                                | Tree. Occasional                          |
| Fabaceae       | Prosopis sp.               | L.                                    | Mesquite                | DJ 741,<br>742,743,751,<br>754, 800, 807,<br>838, 841, 844, | Native | Xeric<br>riparian                            | N/A  | All                                | Trees of hybrid swarms.<br>Abundant       |
| Fabaceae       | Prosopis alba              | Griseb.                               | White mesquite          | DJ 90                                                       | Intro  | Xeric<br>riparian                            | N/A  | All                                | Tree. Occasional                          |
| Fabaceae       | Prosopis pubescens         | Benth.                                | Screwbean<br>mesquite   | DJ 24                                                       | Native | Mesic<br>riparian                            | FACW | Tres Rios-Salt<br>River            | Tree cultivated. Rare                     |
| Fabaceae       | Prosopis velutina          | Woot.                                 | Velvet<br>mesquite      | DJ 37, 88, 381                                              | Native | Xeric<br>riparian                            | FAC  | All                                | Tree. Common                              |
| Fabaceae       | Sesbania herbacea          | Urb.                                  | Bigpod<br>sesbania      | DJ 72, 96                                                   | Native | Mesic<br>riparian                            | FACW | Tres Rios-Salt<br>River            | Tall herb with yellow flowers. Common     |
| Fabaceae       | Senna artemisioides        | Gaud.<br>Ex DC.                       | Silver senna            | DJ 803                                                      | Intro  | Xeric<br>riparian                            | N/A  | New River<br>near Glendale<br>Ave. | Shrub. Occasional                         |
| Fabaceae       | Senna covesii              | A. Gray                               | Coves senna             | DJ 83                                                       | Native | Xeric<br>riaprian                            | N/A  | All                                | Shrub. Occasional                         |
| Fabaceae       | Vigna caracalla            | (L.)<br>Verdc.                        | Snailflower             | DJ 41, 454                                                  | Intro  | Mesic<br>riaprian                            | N/A  | Tres Rios-Salt<br>River            | Vine. Occasional found<br>in cultivations |
| Fouquieriaceae | Fouquieria<br>splendens    | Engelm.                               | Ocotillo                | DJ 138                                                      | Native | Desert<br>mountain                           | N/A  | Tres Rios-Salt<br>River            | Large Shrub. Occasional                   |
| Gentianaceae   | Eustoma exaltatum          | (L.)<br>Salisb.<br>Ex G.<br>Don       | Catchfly praire gentian | Makings 3591                                                | Native | Mesic<br>riparian                            | OBL  | Salt River at<br>Loop 202          | Herb of salty soils. Rare                 |
| Geraniaceae    | Erodium cicutarium         | (L.)<br>L'HØr.<br>ex Ait.             | Redstem stork's bill    | DJ 248, 394                                                 | Native | Xeric<br>riparian                            | N/A  | All                                | Herb with small pink flowers. Abundant    |

| Haloragaceae    | Myriophyllum<br>brasiliense | Camb.                     | Parrot feather<br>watermilfoil    | DJ 185                                                  | Intro  | Mesic<br>riparian | OBL  | Tres Rios-Salt<br>River                             | Aquatic herb. Occasional                               |
|-----------------|-----------------------------|---------------------------|-----------------------------------|---------------------------------------------------------|--------|-------------------|------|-----------------------------------------------------|--------------------------------------------------------|
| Hydrophyllaceae | Emmenanthe<br>penduliflora  | Benth.                    | Whisperingbell<br>s               | DJ 338                                                  | Native | Xeric<br>riparian | N/A  | All                                                 | Herb. Occasional                                       |
| Hydrophyllaceae | Eucrypta micrantha          | (Torr.)<br>Heller         | Dainty desert<br>hideseed         | DJ 592, 610,<br>780, 785                                | Native | Xeric<br>riparian | N/A  | All                                                 | Herb. Common                                           |
| Hydrophyllaceae | Nama demissum               | A. Gray                   | Purplemat                         | DJ 231, 318,<br>337, 360, 389,<br>416, 509, 640,<br>667 | Native | Xeric<br>riparian | N/A  | All                                                 | Herb. Common                                           |
| Hydrophyllaceae | Phacelia crenulata          | Juss.                     | Cleftleaf<br>wildheliotrope       | DJ 332, 657                                             | Native | Xeric<br>riparian | N/A  | All                                                 | Herb. Common                                           |
| Hydrophyllaceae | Phacelia distans            | Benth.                    | Distant phacelia                  | DJ 278, 600,<br>602, 620, 770,<br>777, 782              | Native | Xeric<br>riparian | N/A  | All                                                 | Herb. Common                                           |
| Juncaceae       | Juncus torreyi              | Coville                   | Torrey's rush                     | DJ 691, 737,<br>804                                     | Native | Mesic<br>riparian | OBL  | New River-<br>Skunk Creek                           | Wetland herb. Occasional                               |
| Lamiaceae       | Hedeoma<br>oblongifolia     | (A.<br>Gray) A.<br>Heller | Oblongleaf<br>false<br>pennyroyal | Jacqueline<br>White s.n.                                | Native | Mesic<br>riparian | N/A  | Salt River near<br>Central Ave.                     | Perennial herb. Not<br>collected during this<br>study. |
| Lamiaceae       | Marrubium vulgare           | L.                        | Horehound                         | McLellan 660,<br>34                                     | Intro  | Mesic<br>riparian | FAC+ | Salt River near<br>what is now<br>TempeTown<br>Lake | Perennial Herb                                         |
| Lamiaceae       | Teucrium cubense            | Jacq.                     | Small coastal germander           | Nelson 11204a                                           | Native | Mesic<br>riparian | FAC  | Gila River                                          | Perennial herb. Species not found in flora area.       |
| Lemnaceae       | Lemna gibba                 | L.                        | Swollen<br>duckweed               | DJ 753                                                  | Native | Mesic<br>riparian | OBL  | All                                                 | Aquatic herb. Occasional                               |
| Lemnaceae       | Lemna minor                 | L.                        | Common<br>duckweed                | DJ 154                                                  | Native | Mesic<br>riparian | OBL  | All                                                 | Aquatic herb. Occasional                               |
| Liliaceae       | Dichelostemma<br>capitatum  | (Benth.)<br>Wood          | Bluedicks                         | DJ 769                                                  | Native | Desert<br>hills.  | N/A  | All                                                 | Herb with purple flowers.<br>Occasional                |

| Loasaceae  | Mentzelia affinis        | Greene             | Yellowcomet                  | DJ 335                                          | Native | Xeric<br>riparian                           | N/A | All                                  | Herb with yellow flowers. Common                                                                        |
|------------|--------------------------|--------------------|------------------------------|-------------------------------------------------|--------|---------------------------------------------|-----|--------------------------------------|---------------------------------------------------------------------------------------------------------|
| Loasaceae  | Mentzelia multiflora     | (Nutt.)<br>A. Gray | Adonis<br>blazingstar        | DJ 9, 415, 465                                  | Native | Xeric<br>riparian                           | N/A | All                                  | Small shrub. Occasional                                                                                 |
| Loasaceae  | Petalonyx thurberi       | A. Gray            | Thurber's<br>sandpaper plant | DJ 73, 475,501,<br>699, 720.                    | Native | Xeric<br>riparian,<br>sandy<br>washes.      | N/A | Agua Fria<br>River and Salt<br>River | Shrub with rough leafs<br>and yellow flowers.<br>Occasional                                             |
| Lythraceae | Ammannia coccinea        | Rottb.             | Valley redstem               | DJ 164                                          | Native | Mesic<br>riparian                           | OBL | All                                  | Herb with pink flowers,<br>rare in most of flora area<br>but common in Tempe<br>reach of the Salt River |
| Lythraceae | Lythrum<br>californicum  | Torr. &<br>A. Gray | California<br>loosestrife    | Lehto L-6695,<br>Makings 3596,<br>McLellan 520. | Native | Mesic<br>riparian                           | OBL | New River                            | Shrub. Occasional                                                                                       |
| Lythraceae | Lythrum<br>hyssopifolium | L.                 | Hyssop<br>loosestrife        | DJ 806, 810,<br>827, 837                        | Intro  | Mesic<br>riparian                           | OBL | New River                            | Herb. Common                                                                                            |
| Malvaceae  | Abutilon<br>theophrasti  | Medik.             | Velvetleaf                   | DJ 581                                          | Native | Mesic<br>riparian                           | N/A | Tres Rios-Salt<br>River              | Herb common in farm fields. Occasional                                                                  |
| Malvaceae  | Alcea rosea              | L.                 | Hollyhock                    | Makings 3614                                    | Intro  | Mesic<br>riparian                           | N/A | Salt River at<br>Loop 202            | Biennial perennial herb.<br>Rare                                                                        |
| Malvaceae  | Gossypium<br>hirsutum    | L.                 | Upland cotton                | DJ 557                                          | Native | Mesic<br>riparian                           | N/A | Tres Rios-Salt<br>River              | Herb. Rare                                                                                              |
| Malvaceae  | Malva parviflora         | L.                 | Cheeseweed mallow            | DJ 65, 135, 210                                 | Native | Mesic<br>riparian                           | N/A | All                                  | Herb. Common                                                                                            |
| Malvaceae  | Sphaeralcea sp.          | StHil.             | Globemallow                  | DJ 343                                          | Native | Xeric<br>riparian<br>and desert<br>mountain | N/A | All                                  | Herb. Common                                                                                            |
| Malvaceae  | Sphaeralcea<br>ambigua   | StHil.             | Desert<br>globemallow        | DJ 445, 521,<br>633, 658                        | Native | Xeric<br>riparian<br>and desert<br>mountain | N/A | All                                  | Shrub. Common                                                                                           |

| Malvaceae     | Sphaeralcea<br>coulteri     | (S.<br>Wats.)<br>A. Gray      | Coulter's globemallow        | DJ 275, 384,<br>400, 650      | Native | Xeric<br>riparian<br>and desert<br>mountain | N/A | All                                                                    | Herb. Common                                                              |
|---------------|-----------------------------|-------------------------------|------------------------------|-------------------------------|--------|---------------------------------------------|-----|------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Martyniaceae  | Proboscidea<br>parviflora   | (Woot.)<br>Woot. &<br>Standl. | Devilsclaw                   | DJ 567, 569                   | Native | Xeric<br>riparian<br>and desert<br>mountain | N/A | Tres Rios-Salt<br>River                                                | Herb. Occasional                                                          |
| Meliaceae     | Melia azedarach             | L.                            | Chinaberry                   | DJ 690, 762,<br>798           | Intro  | Mesic<br>riparian                           | N/A | New River-<br>Skunk Creek,<br>Agua Fria<br>River at I-10               | Tree. Occasional                                                          |
| Moraceae      | Morus alba                  | L.                            | White Mulberry               | DJ 128, 485,<br>568, 725      | Intro  | Mesic<br>riparian                           | N/A | All                                                                    | Tree. Rare                                                                |
| Myrtaceae     | Callistemon<br>salignus     | (Sm.)<br>Sweat                | Stonewood                    | DJ 685, 668,<br>761, 790, 793 | Intro  | Mesic<br>riparian                           | N/A | New River-<br>Skunk Creek,<br>Agua Fria<br>River at I-10               | Tree. Occasional                                                          |
| Myrtaceae     | Eucalyptus<br>camaldulensis | Dehnhar<br>dt                 | Redriver gum                 | DJ 539, 646,<br>674           | Intro  | Mesic<br>riparian                           | N/A | New River-<br>Skunk Creek,<br>Cave Creek.                              | Tree. Occasional                                                          |
| Myrtaceae     | Eucalyptus<br>microtheca    | F. Muell.                     | Coolabah                     | DJ 647, 673,<br>694, 756, 835 | Intro  | Xeric<br>riparian<br>and Mesic<br>riparian. | N/A | Salt River near<br>Airport, Cave<br>Creek, New<br>River-Skunk<br>Creek | Tree. Occasional                                                          |
| Myrtaceae     | Eucalyptus<br>polyanthemos  | Schauer                       | Redbox                       | DJ 571                        | Intro  | Xeric<br>riparian                           | N/A | Tres Rios-Salt<br>River                                                | Tree, cultivated. Rare                                                    |
| Najadaceae    | Najas marina                | L.                            | holly-leaved<br>water nymph. | DJ 167                        | Native | Mesic<br>riparian                           | OBL | Tres Rios-Salt<br>River                                                | Aquatic herb. Occasional                                                  |
| Nyctaginaceae | Abronia<br>angustifolia     | Greene                        | Purple sand<br>verbena       | DJ 226, 236,<br>340           | Native | Xeric<br>riparian,<br>sandy<br>soils        | N/A | Tres Rios-Salt<br>River                                                | Herb with purple flowers,<br>common in sandy river<br>bottoms. Occasional |
| Nyctaginaceae | Boerhavia coccinea          | L.                            | Scarlet<br>spiderling        | DJ 76, 115, 375, 523, 546     | Native | Mesic<br>riparian                           | N/A | All                                                                    | Herb. Common                                                              |

| Nyctaginaceae | Boerhavia<br>intermedia      | L.                                                                   | Fivewing<br>spiderling            | DJ 543, 544,<br>545, 547      | Native | Mesic<br>riparian                     | N/A | All                                               | Herb. Common                                        |
|---------------|------------------------------|----------------------------------------------------------------------|-----------------------------------|-------------------------------|--------|---------------------------------------|-----|---------------------------------------------------|-----------------------------------------------------|
| Nyctaginaceae | Bougainvillea<br>spectabilis | Willd.                                                               | Bougainvillea                     | DJ 573                        | Intro  | Mesic<br>riparian                     | N/A | Tres Rios-Salt<br>River                           | Shrub. Common<br>cultivated plant                   |
| Oleaceae      | Fraxinus uhdei               | (Wenzig<br>)<br>Lingelsh                                             | Shamel ash                        | DJ 697                        | Intro  | Mesic<br>riparian                     | N/A | Agua Fria at I-<br>10, Salt River<br>at Loop 202. | Tree. Rare                                          |
| Oleaceae      | Fraxinus velutina            | Torr.                                                                | Velvet ash                        | DJ 92, 681                    | Native | Mesic<br>riparian                     | FAC | New River-<br>Skunk Creek.                        | Tree. Occasional                                    |
| Onagraceae    | Camissonia<br>californica    | (Nutt. ex<br>Torr. &<br>A. Gray)<br>Raven                            | California<br>suncup              | DJ 224, 225,<br>228, 605      | Native | Xeric<br>riparian                     | N/A | All                                               | Herb. Occasional                                    |
| Onagraceae    | Clarkia epilobioides         | (Nutt.<br>Ex Torr.<br>& A.<br>Gray) A.<br>Nelson<br>& J.F.<br>Macbr. | Canyon Clarkia                    | Harrison 3951                 | Native | Xeric<br>riparian                     | N/A | Agua Fria<br>River                                | Herb Not collected in current study                 |
| Onagraceae    | Gaura mollis                 | James                                                                | Velvetweed                        | DJ 677, 688,<br>701, 765      | Native | Mesic<br>riparian                     | N/A | New River-<br>Skunk Creek                         | Herb. Occasional                                    |
| Onagraceae    | Ludwigia erecta              | (L.) H.<br>Hara                                                      | Erect primrose-<br>willow         | Makings 3594                  | Native | Mesic<br>riparian                     | OBL | Salt River at<br>Loop 202                         | Herb, new state record.<br>Rare                     |
| Onagraceae    | Ludwigia peploides           | (Kunth)<br>Raven                                                     | Floating<br>primrose-<br>willow   | DJ 85, 186,<br>494, 759       | Native | Mesic<br>riparian                     | OBL | All                                               | Herb. Common                                        |
| Onagraceae    | Oenothera<br>arizonica       | (Munz)<br>W.L.<br>Wagner                                             | Arizona<br>evening<br>primrose    | Loomis 6709,<br>Rhea 585, 790 | Native | Xeric<br>riparian,<br>sandy<br>soils. | N/A | Gila River                                        | Herb. Not collected in<br>current study. Occasional |
| Onagraceae    | Oenothera<br>californica     | (S.<br>Wats.) S.<br>Wats.                                            | California<br>evening<br>primrose | DJ 227, 233,<br>329, 402, 693 | Native | Xeric<br>riparian,<br>sandy<br>soils. | N/A | Tres Rios-Salt<br>River                           | Herb. Occasional                                    |
| Onagraceae    | Oenothera speciosa           | Nutt.                                                                | Pinkladies                        | DJ 676, 828                   | Intro  | Mesic<br>riparian                     | N/A | New River-<br>Skunk Creek                         | Herb. Occasional                                    |

| Orobanchaceae  | Orobanche cooperi                            | (A.<br>Gray) A.<br>Heller | Broomrape            | Howard Rice<br>s.n., Irish s.n. | Native | Mesic<br>riparian | N/A  | Gila River              | Herb. Not collected<br>during this study                           |
|----------------|----------------------------------------------|---------------------------|----------------------|---------------------------------|--------|-------------------|------|-------------------------|--------------------------------------------------------------------|
| Papaveraceae   | Eschscholzia<br>californica ssp.<br>mexicana | (Greene)<br>C. Clark      | Golden poppy         | DJ 267, 277,<br>331, 629, 773   | Native | Xeric<br>riparian | N/A  | All                     | Herb. Occasional                                                   |
| Papaveraceae   | Platystemon<br>californicus                  | Benth.                    | Tidytips             | DJ 371                          | Native | Xeric<br>riparian | N/A  | Tres Rios-Salt<br>River | Herb. Rare                                                         |
| Passifloraceae | Passiflora caerulea                          | L.                        | Passionvine          | DJ 455                          | Intro  | Xeric<br>riparian | N/A  | Tres Rios-Salt<br>River | Vine. Occasional found<br>in cultivation                           |
| Pinaceae       | Pinus halepensis                             | P. Mill.                  | Alleppo pine         | DJ 549                          | Intro  | Xeric<br>riparian | N/A  | Tres Rios-Salt<br>River | Cultivated tree. Rare                                              |
| Plantaginaceae | Plantago ovata                               | Forsk.                    | Plantago             | DJ 606, 634<br>788              | Native | Xeric<br>riparian | N/A  | All                     | Herb. Occasional                                                   |
| Platanaceae    | Platanus wrightii                            | S. Wats.                  | Arizona<br>Sycamore  | DJ 25                           | Native | Xeric<br>riparian | N/A  | Tres Rios-Salt<br>River | Cultivated tree. Rare                                              |
| Poaceae        | Aristida<br>adscensionis                     | L.                        | Sixweeks<br>threeawn | DJ 56                           | Native | Xeric<br>riparian | N/A  | All                     | Grass. Occasional                                                  |
| Poaceae        | Aristida purpurea                            | Nutt.                     | Purple<br>threeawn   | DJ 299, 598                     | Native | Xeric<br>riparian | N/A  | All                     | Perennial grass.<br>Occasional                                     |
| Poaceae        | Arundo donax                                 | L.                        | Giant reed           | DJ 489, 553                     | Intro  | Mesic<br>riparian | FACW | Gila River              | Giant reed. Occasional                                             |
| Poaceae        | Avena fatua                                  | L.                        | Wild oat             | DJ 378                          | Intro  | Desert            | N/A  | All                     | Oat grass. Common                                                  |
| Poaceae        | Bothriochloa<br>barbinodis                   | (Lag.)<br>Herter          | Cane bluestem        | DJ 536                          | Native | Mesic<br>riparian | N/A  | All                     | Perennial grass.<br>Occasional                                     |
| Poaceae        | Bothriochloa<br>ischaemum                    | (L.)<br>Keng              | Yellow<br>bluestem   | DJ 672, 710,<br>826             | Native | Mesic<br>riparian | N/A  | All                     | Perennial grass.<br>Abundant                                       |
| Poaceae        | Bouteloua<br>aristidoides                    | (Kunth)<br>Griseb.        | Needle grama         | DJ 146, 179,<br>370, 517        | Native | Desert            | N/A  | All                     | Grass. Occasional                                                  |
| Poaceae        | Bouteloua barbata                            | Lag.                      | Sixweeks<br>grama    | DJ 518                          | Native | Desert            | N/A  | All                     | Grass. Occasional                                                  |
| Poaceae        | Bromus catharticus                           | Vahl                      | Rescuegrass          | Lehto 18060                     | Intro  | Mesic<br>riparian | N/A  | Agua Fria<br>River      | Perennial grass. Not<br>collected during this<br>study. Occasional |

| Poaceae | Bromus diandrus                    | Roth                          | Ripgut brome           | DJ 700                     | Intro  | Desert             | N/A  | All                                                          | Grass. Rare                    |
|---------|------------------------------------|-------------------------------|------------------------|----------------------------|--------|--------------------|------|--------------------------------------------------------------|--------------------------------|
| Poaceae | Bromus rubens                      | L.                            | Red brome              | DJ 377, 660                | Intro  | Desert             | N/A  | All                                                          | Grass. Occasional              |
| Poaceae | Cynodon dactylon                   | (L.)<br>Pers.                 | Bermudagrass           | DJ 382, 825                | Intro  | Mesic<br>riparian  | FACU | All                                                          | Perennial grass.<br>Abundant   |
| Poaceae | Dasyochloa<br>pulchella            | (Kunth)<br>Willd.<br>ex Rydb. | Low<br>woollygrass     | DJ 631                     | Native | Desert             | N/A  | All                                                          | Perennial grass.<br>Occasional |
| Poaceae | Digitaria<br>sanguinalis           | (L.)<br>Scop.                 | Hairy crabgrass        | Makings 3612               | Native | Mesic<br>riparian  | FACU | New River                                                    | Grass. Occasional              |
| Poaceae | Echinochloa colona                 | (L.) Link                     | Jungle rice            | DJ 144, 532                | Native | Mesic<br>riparian  | FACW | All                                                          | Grass. Common                  |
| Poaceae | Echinochloa crus-<br>galli         | (L.)<br>Beauv.                | Barnyardgrass          | DJ 500, 823                | Native | Mesic<br>riparian  | FACW | All                                                          | Perennial grass. Common        |
| Poaceae | Eragrostis<br>echinochloidea       | Stapf                         | African<br>lovegrass   | DJ 724, 848                | Intro  | Desert<br>mountain | N/A  | Salt River at<br>Central Ave,<br>New River.                  | Perennial grass.<br>Occasional |
| Poaceae | Eriochloa aristata                 | Vasey                         | Bearded<br>cupgrass    | DJ 537                     | Native | Mesic<br>riparian  | FACW | All                                                          | Grass. Occasional              |
| Poaceae | Hordeum murinum<br>ssp. leporinum  | (Link)<br>Arcang.             | Hare barley            | DJ 260, 399                | Intro  | Desert<br>mountain | N/A  | All                                                          | Grass. Common                  |
| Poaceae | Hordeum pusillum                   | Nutt.                         | Little barley          | DJ 791                     | Native | Desert<br>mountain | FAC  | New River-<br>Skunk Creek                                    | Grass. Rare                    |
| Poaceae | Hordeum vulgare                    | L.                            | Common barley          | DJ 229, 644                | Intro  | Desert<br>mountain | N/A  | Cave Creek at<br>19th Ave, and<br>Salt river at<br>91st Ave. | Grass. Rare                    |
| Poaceae | Leptochloa fusca<br>ssp. uninervia | Beauv.                        | Mexican<br>sprangletop | DJ 44, 50, 98,<br>531, 538 | Native | Mesic<br>riparian  | FACW | All                                                          | Grass. Abundant                |
| Poaceae | Lolium perenne                     | L.                            | Perennial<br>ryegrass  | DJ 732, 739,<br>824        | Intro  | Mesic<br>riparian  | FACU | All                                                          | Perennial grass.<br>Abundant   |
| Poaceae | Paspalum distichum                 | L.                            | Knotgrass              | Johnson 3912               | Native | Mesic<br>ripariann | OBL  | New River-<br>Skunk                                          | Perennial grass.<br>Occasional |

| Poaceae       | Pennisetum ciliare         | (L.) Link         | Buffelgrass                    | DJ 380,<br>482,502, 632,<br>847 | Intro  | Xeric<br>riparian   | N/A  | All                          | Perennial grass.<br>Occasional            |
|---------------|----------------------------|-------------------|--------------------------------|---------------------------------|--------|---------------------|------|------------------------------|-------------------------------------------|
| Poaceae       | Phalaris minor             | Retz.             | Littleseed<br>canarygrass      | DJ 364                          | Intro  | Mesic<br>riparian   | N/A  | All                          | Grass. Common                             |
| Poaceae       | Pleuraphis rigida          | Thurb.            | Big galleta                    | DJ 621                          | Native | Desert<br>mountains | N/A  | Tres Rios-Salt<br>River      | Perennial grass.<br>Occasional            |
| Poaceae       | Poa annua                  | L.                | Annual<br>Bluegrass            | Sundell 196                     | Intro  | Mesic<br>riparian   | FAC- | New River-<br>Skunk          | Grass. Occasional                         |
| Poaceae       | Poa bigelovii              | Vasey &<br>Scribn | Bigelow's<br>bluegrass         | DJ 596, 613,<br>778             | Native | Desert<br>mountain  | N/A  | New River                    | Grass. Occasional                         |
| Poaceae       | Polypogon<br>monspeliensis | (L.)<br>Desf.     | Annual<br>rabbitsfoot<br>grass | DJ 68, 362, 822                 | Intro  | Mesic<br>riparian   | FACW | All                          | Grass. Abundant                           |
| Poaceae       | Schismus arabicus          | Nees              | Arabian<br>schismus            | DJ 4, 237                       | Intro  | Xeric<br>riparian   | N/A  | All                          | Grass. Abundant                           |
| Poaceae       | Setaria<br>macrostachya    | Kunth             | Large-spike<br>bristle grass   | DJ 715                          | Native | Xeric<br>riparian   | N/A  | Salt River at<br>Central Ave | Perennial grass. Rare                     |
| Poaceae       | Sorghum bicolor            | (L.)<br>Moench    | Sorghum                        | DJ 563, 588,<br>627, 758        | Native | Mesic<br>riparian   | N/A  | Tres Rios-Salt<br>River      | Grass. Occasional                         |
| Poaceae       | Sorghum halepense          | (L.)<br>Pers.     | Johnsongrass                   | DJ 170, 520,<br>738, 819        | Intro  | Mesic<br>riparian   | FACU | All                          | Perennial grass. Common                   |
| Poaceae       | Triticum aestivum          | L.                | Wheat grass                    | DJ 431, 794                     | Intro  | Mesic<br>riparian   | N/A  | Tres Rios-Salt<br>River      | Wheat. Rare                               |
| Poaceae       | Vulpia octoflora           | (Walt.)<br>Rydb.  | Sixweeks<br>fescue             | Sundell 90                      | Native | Desert              | N/A  | All                          | Grass. Occasional                         |
| Polemoniaceae | Eriastrum<br>eremicum      | (Jepson)<br>Mason | Desert<br>woollystar           | DJ 387, 401                     | Native | Desert<br>mountain  | N/A  | Tres Rios-Salt<br>River      | Herb. Occasional                          |
| Polemoniaceae | Gilia stellata             | Heller            | Star gilia                     | DJ 347                          | Native | Desert<br>mountain  | N/A  | Tres Rios-Salt<br>River      | Herb. Occasional                          |
| Polemoniaceae | Linanthus                  | Benth.            | Linanthus                      | DJ 346, 348                     | Native | Desert<br>mountian  | N/A  | Tres Rios-Salt<br>River      | Herb. Occasional                          |
| Polygonaceae  | Antigonon leptopus         | Hook. &<br>Arn.   | Coral vine                     | DJ 40                           | Intro  | Mesic<br>riparian   | N/A  | Tres Rios-Salt<br>River      | Vine. Occasional found<br>in cultivation. |

| Polygonaceae     | Chorizanthe rigida         | (Torr.)<br>Torr. &<br>A. Gray     | Devil's<br>spineflower    | Sundell 128                                                          | Native | Desert<br>mountain | N/A  | All                     | Herb.Not collected during this study.                    |
|------------------|----------------------------|-----------------------------------|---------------------------|----------------------------------------------------------------------|--------|--------------------|------|-------------------------|----------------------------------------------------------|
| Polygonaceae     | Eriogonum<br>deflexum      | Torr.                             | Flatcrown buckwheat       | DJ 150, 578                                                          | Native | Desert<br>mountain | N/A  | All                     | Herb. Common                                             |
| Polygonaceae     | Polygonum<br>aviculare     | L.                                | Prostrate<br>pigweed      | DJ 529, 622,<br>813, 820                                             | Native | Mesic<br>riparian  | FACW | All                     | Perennial herb. Common                                   |
| Polygonaceae     | Polygonum<br>lapathifolium | L.                                | Curlytop<br>knotweed      | DJ 82, 424,<br>438, 451, 491,<br>496, 511, 582,<br>750, 763          | Native | Mesic<br>riparian  | OBL  | All                     | Herb. Occasional                                         |
| Polygonaceae     | Polygonum<br>pensylvanicum | L.                                | Pennsylvania<br>smartweed | DJ 470                                                               | Native | Mesic<br>riparian  | OBL  | All                     | Herb. Occasional                                         |
| Polygonaceae     | Polygonum<br>persicaria    | L.                                | Spotted<br>ladysthumb     | DJ 437, 483,<br>583, 814                                             | Native | Mesic<br>riparian  | FACW | All                     | Perennial herb.<br>Occasional                            |
| Polygonaceae     | Rumex dentatus             | L.                                | Toothed dock              | DJ 16, 43, 104,<br>218, 255, 406,<br>417, 425, 447,<br>727, 817, 827 | Native | Mesic<br>riparian  | OBL  | All                     | Herb. Abundant                                           |
| Pontederiaceae   | Heteranthera dubia         | (Jacq.)<br>MacMill                | Grassleaf<br>mudplantain  | Irish s.n.,<br>McLellan 597,<br>Rhea 1482,<br>Sauck 1.               | Native | Mesic<br>riparian  | OBL  | Agua Fria<br>River      | Perennial herb. Not<br>collected during this<br>study.   |
| Portulacaceae    | Portulaca oleracea         | L.                                | Little hogweed            | DJ 505, 527,<br>799                                                  | Intro  | Mesic<br>riparian  | FAC  | All                     | Herb. Occasional                                         |
| Potamogetonaceae | Stuckenia<br>pectinatus    | (L.)<br>Boeiner                   | Sago pondweed             | Taylor T67-123                                                       | Native | Mesic<br>riparian  | OBL  | Tres Rios-Salt<br>River | Herb. Not collected<br>during this study                 |
| Primulaceae      | Androsace<br>occidentalis  | Pursh                             | Western<br>rockjasmine    | Lehto 11780                                                          | Native | Mesic<br>riparian  | FACU | Gila River              | Herb.Not collected during this study.                    |
| Proteaceae       | Grevillea robusta          | A.<br>Cunning<br>ham ex<br>R. Br. | Silkoak                   | DJ 575                                                               | Intro  | Mesic<br>riparian  | N/A  | Tres Rios-Salt<br>River | Tree found at old<br>homestead. Common in<br>cultivation |

| Punicaceae       | Punica granatum              | L.                                             | Pomegranate           | DJ 558, 797                  | Intro  | Mesic<br>riparian                    | N/A  | New River-<br>Skunk Creek,<br>Tres Rios | Shrub/tree that escaped<br>into the New River and<br>found at an old<br>homestead on the Salt<br>River. Rare |
|------------------|------------------------------|------------------------------------------------|-----------------------|------------------------------|--------|--------------------------------------|------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Ranunculaceae    | Ranunculus<br>sceleratus     | L.                                             | Cursed<br>buttercup   | DJ 752                       | Native | Mesic<br>riparian                    | OBL  | Tres Rios-Salt<br>River                 | Herb. Rare                                                                                                   |
| Resedaceae       | Oligomeris linifolia         | (Vahl)<br>J.F.<br>Macbr.                       | Lineleaf<br>whitepuff | Lehto 426,<br>Sundell 107    | Native | Xeric<br>riparian                    | N/A  | Gila River                              | Herb. Species not found<br>in Flora area.                                                                    |
| Rhamnaceae       | Ziziphus obtusifolia         | (Hook.<br>ex Torr.<br>& A.<br>Gray) A.<br>Gray | Lotebush              | DJ 94                        | Native | Xeric<br>riparian                    | N/A  | All                                     | Spiny small tree.<br>Occasional                                                                              |
| Rosaceae         | Rosa                         | L.                                             | Rose                  | DJ 141                       | Intro  | Mesic<br>riparian                    | N/A  | Tres Rios-Salt<br>River                 | Cultivated shrub. Rare                                                                                       |
| Rubiaceae        | Cephalanthus<br>occidentalis | L.                                             | Common<br>button bush | Irish 1904 s.n.              | Native | Mesic<br>riparian                    | OBL  | Salt River at<br>Tempe                  | Tree. Not collected during this study                                                                        |
| Salicaceae       | Populus fremontii            | S. Wats.                                       | Fremont's cottonwood  | DJ 234, 256, 258             | Native | Mesic<br>riparian                    | OBL  | All                                     | Tree. Common                                                                                                 |
| Salicaceae       | Salix exigua                 | Nutt.                                          | Narrowleaf<br>willow  | DJ 680                       | Native | Mesic<br>riparian                    | OBL  | New River-<br>Skunk Creek               | Shrub. Rare                                                                                                  |
| Salicaceae       | Salix gooddingii             | Ball                                           | Goodding<br>willow    | DJ 52, 130,<br>174, 663, 671 | Native | Mesic<br>riparian                    | OBL  | All                                     | Tree. Common                                                                                                 |
| Saururaceae      | Anemopsis<br>californica     | (Nutt.)<br>Hook. &<br>Arn.                     | Yerba mansa           | DJ 84                        | Native | Mesic<br>riparian                    | OBL  | Tres Rios-Salt<br>River                 | Herb. Rare                                                                                                   |
| Scrophulariaceae | Mimetanthe pilosa            | (Benth.)<br>Greene                             | false<br>monkeyflower | DJ 448, 473                  | Native | Mesic<br>riparian,<br>sandy<br>soils | FACW | All                                     | Herb with yellow<br>flowers. Occasional                                                                      |
| Scrophulariaceae | Orthocarpus<br>purpurascens  | Benth.                                         | Indian<br>paintbrush  | DJ 323, 330                  | Native | Xeric<br>riparian                    | N/A  | All                                     | Herb with pink flowers.<br>Occasional                                                                        |

| Scrophulariaceae | Penstemon parryi                | (A.<br>Gray) A.<br>Gray           | Parry's<br>beardtongue  | DJ 140                                                    | Native | Mesic<br>riaprian                       | N/A  | Tres Rios-Salt<br>River    | Perennial garden plant<br>with pink flowers. Rare |
|------------------|---------------------------------|-----------------------------------|-------------------------|-----------------------------------------------------------|--------|-----------------------------------------|------|----------------------------|---------------------------------------------------|
| Scrophulariaceae | Stemodia<br>durantifolia        | (L.) Sw.                          | Whitewoolly<br>twintip  | DJ 71, 462,<br>584, 670                                   | Native | Mesic<br>riparian                       | OBL  | All                        | Herb with small purple flowers. Occasional        |
| Scrophulariaceae | Veronica anagallis-<br>aquatica | L.                                | Water<br>speedwell      | DJ 15, 48, 66,<br>103, 123, 129,<br>198, 363, 422,<br>450 | Native | Mesic<br>riparian                       | OBL  | All                        | Herb. Abundant                                    |
| Scrophulariaceae | Veronica peregrina              | L.                                | Neckweed                | DJ 669, 805                                               | Native | Mesic<br>riparian                       | OBL  | All                        | Herb. Common                                      |
| Simaroubaceae    | Ailanthus altissima             | (P. Mill.)<br>Swingle             | Tree of heaven          | DJ 696                                                    | Intro  | Mesic<br>riparian                       | FACU | Agua Fria<br>River at I-10 | Tree. Rare                                        |
| Simaroubaceae    | Castela emoryi                  | (A.<br>Gray)<br>Moran &<br>Felger | Crucifixion<br>thorn    | Landrum 7045                                              | Native | Xeric<br>riparian<br>on slity<br>soils. | N/A  | Gila River                 | Tree/shrub. Not collected during this study       |
| Simmondsiaceae   | Simmondsia<br>chinensis         | (Link)<br>Schneid.                | Goatnut                 | DJ 760                                                    | Native | Mesic<br>riparian                       | N/A  | Agua Fria<br>River at I-10 | Shrub. Rare                                       |
| Solanaceae       | Calibrachoa<br>parviflora       | (Juss.)<br>D'Arcy                 | Seaside petunia         | DJ 173, 349,<br>405, 411, 464                             | Native | Mesic<br>riparian                       | FACW | All                        | Herb. Common                                      |
| Solanaceae       | Datura discolor                 | Bernh.                            | Desert thorn-<br>apple  | DJ 513, 559,<br>565, 587                                  | Native | Xeric<br>riparian                       | N/A  | All                        | Herb with tubular<br>flowers. Occasional          |
| Solanaceae       | Datura wrightii                 | Regel                             | Sacred thorn-<br>apple  | DJ 131, 168,<br>564                                       | Native | Xeric<br>riparian                       | N/A  | All                        | Perennial with large<br>white flowers. Common     |
| Solanaceae       | Lycium andersonii               | A. Gray                           | Water jacket            | DJ 300, 624                                               | Native | Xeric<br>riparian                       | N/A  | All                        | Shrub with red berries.<br>Occasional             |
| Solanaceae       | Lycium<br>californicum          | Nutt. Ex<br>A. Gray               | California<br>wolfberry | Lehto 424                                                 | Native | Xeric<br>riparian                       | N/A  | Gila River                 | Shrub. Not collected during this study            |

| Solanaceae   | Lycium fremontii          | A. Gray                  | Fremont's<br>wolfberry       | DJ<br>132,195,207,25<br>9,263,642.                                    | Native | Xeric<br>riparian<br>on slity<br>soils. | N/A  | All                     | Desert shrub, red berries.<br>Common              |
|--------------|---------------------------|--------------------------|------------------------------|-----------------------------------------------------------------------|--------|-----------------------------------------|------|-------------------------|---------------------------------------------------|
| Solanaceae   | Lycium torreyi            | A. Gray                  | Torrey's<br>wolfberry        | Pinkava 7793                                                          | Native | Xeric<br>riparian                       | N/A  | Gila River              | Shrub. Not collected<br>during this study         |
| Solanaceae   | Nicotiana glauca          | Graham                   | Tree tobacco                 | DJ 3, 414                                                             | Intro  | Xeric<br>riparian                       | FAC  | All                     | Small tree or shrub with yellow flowers. Abundant |
| Solanaceae   | Nicotiana<br>obtusifolia  | Mertens<br>&<br>Galeotti | Desert tobacco               | DJ 8, 420, 474                                                        | Native | Xeric<br>riparian                       | FACU | All                     | Perennial herb. Abundant                          |
| Solanaceae   | Physalis acutifolia       | (Miers)<br>Sandw.        | Sharpleaf<br>groundcherry    | DJ 507, 562,<br>729, 843                                              | Native | Mesic<br>riparian                       | N/A  | All                     | Herb. Occasional                                  |
| Solanaceae   | Physalis angulata         | L.                       | Cutleaf<br>groundcherry      | DJ 461, 506,<br>522, 542, 556                                         | Native | Mesic<br>riparian                       | N/A  | All                     | Herb. Occasional                                  |
| Solanaceae   | Solanum<br>americanum     | P. Mill.                 | American black<br>nightshade | DJ 17, 27, 105,<br>142, 219, 469,<br>484, 639, 469,<br>628, 639, 749, | Native | Mesic<br>riparian                       | FAC  | All                     | Subshrub/herb. Common                             |
| Solanaceae   | Solanum<br>elaeagnifolium | Cav.                     | silverleaf<br>nightshade     | DJ 125, 211,<br>212, 33.                                              | Intro  | Xeric<br>riparian                       | N/A  | All                     | Subshrub/herb. Common                             |
| Solanaceae   | Solanum<br>lycopersicum   | L.                       | Garden tomato                | Jenica Poznik<br>s.n.                                                 | Intro  | Mesic<br>riparian                       | N/A  | Gila and Salt<br>River  | Herb. Rare                                        |
| Tamaricaceae | Tamarix aphylla           | (L.)<br>Karst.           | Athel tamarisk               | DJ 194                                                                | Intro  | Xeric<br>riparian                       | FACW | Tres Rios-Salt<br>River | Tree. Rare                                        |
| Tamaricaceae | Tamarix chinensis         | Lour.                    | Five-stamen<br>tamarisk      | DJ 101, 143,<br>79, 80                                                | Intro  | Xeric<br>riparian                       | FACW | All                     | Tree to shrub. Common                             |
| Typhaceae    | Typha domingensis         | Pers.                    | Cattail                      | DJ 63                                                                 | Native | Mesic<br>riparian                       | OBL  | All                     | Perennial herb. Abundant                          |
| Ulmaceae     | Celtis pallida            | Torr.                    | Spiny<br>hackberry           | DJ 342                                                                | Native | Xeric<br>riparian                       | FAC  | All                     | Small tree or shrub with juicy fruit. Occasional  |

| Ulmaceae         | Celtis reticulata          | Torr.                                  | Netleaf<br>hackberry         | DJ 95               | Native | Mesic to<br>Xeric<br>riparian | UPL | Tres Rios-Salt<br>River                                 | Tree with small fruit.<br>Rare in Flora area                         |
|------------------|----------------------------|----------------------------------------|------------------------------|---------------------|--------|-------------------------------|-----|---------------------------------------------------------|----------------------------------------------------------------------|
| Ulmaceae         | Ulmus parviflora           | Jacq.                                  | Elm tree                     | DJ 686, 796         | Intro  | Mesic<br>riparian             | N/A | New River-<br>Skunk Creek,<br>Salt River at<br>Loop 202 | Tree that escapes into<br>urban streams. Rare                        |
| Urticaceae       | Parietaria hespera         | Hinton                                 | Rillita pellitory            | DJ 595              | Native | Desert<br>mountain            | N/A | All                                                     | Herb. Occasional                                                     |
| Urticaceae       | Parietaria<br>pensylvanica | Muhl. ex<br>Willd.                     | Pennsylvania<br>pellitory    | DJ 368, 615,<br>774 | Native | Desert<br>mountain            | N/A | All                                                     | Herb. Occasional                                                     |
| Verbenaceae      | Glandularia<br>gooddingii  | (Briq.)<br>Solbrig                     | Southwestern<br>mock vervain | DJ 456, 811         | Native | Mesic<br>riparian             | N/A | All                                                     | Herb. Occasional                                                     |
| Verbenaceae      | Lantana camara             | L.                                     | Lantana                      | DJ 38, 39, 684      | Intro  | Xeric<br>riparian             | N/A | New River                                               | Shrub that escapes into<br>urban streams. Rare                       |
| Verbenaceae      | Verbena bracteata          | Lag. &<br>Rodr.                        | Bigbract<br>verbena          | DJ 721              | Native | Xeric<br>riparian             | FAC | New River                                               | Herb. Occasional                                                     |
| Verbenaceae      | Verbena<br>neomexicana     | Benth.                                 | Mint vervain                 | DJ 683, 795         | Native | Mesic<br>riparian             | N/A | New River-<br>Skunk Creek                               | Herb. Occasional                                                     |
| Verbenaceae      | Vitex agnus-castus         | L.                                     | Lilac chastetree             | DJ 29, 106, 467     | Intro  | Mesic<br>riparian             | N/A | All                                                     | Shrub or small tree<br>thatescapes into urban<br>streams. Occasional |
| Zannichelliaceae | Zannichellia<br>palustris  | L.                                     | Horned<br>pondweed           | DJ 735              | Native | Mesic<br>riaprian             | OBL | Tres Rios-Salt<br>River                                 | Aquatic Herb, Occasional                                             |
| Zygophyllaceae   | Larrea tridentata          | (SessO<br>& Moc.<br>ex DC.)<br>Coville | Creosote bush                | DJ 118              | Native | Xeric<br>riparian             | N/A | All                                                     | Desert perennial shrub.<br>Rare in Riparian areas                    |
| Zygophyllaceae   | Tribulus terrestris        | L.                                     | Puncturevine                 | DJ 460, 478,<br>514 | Native | Xeric<br>riparian             | N/A | All                                                     | Herb, seeds sharply<br>pointed. Occasional                           |

### APPENDIX B

# TABLES AND FIGURES

| Table 2    | Poenix Four River |
|------------|-------------------|
|            | Flora             |
| Family     | # Species         |
| Asteraceae | 43                |
| Poaceae    | 33                |
| Fabaceae   | 28                |
| Cyperaceae | 15                |
| Solanaceae | 14                |

|                 | 1       |            |
|-----------------|---------|------------|
| Table 3 Flora   |         |            |
| comparisons     |         |            |
| <b>^</b>        |         |            |
| Flora           | Number  | Number of  |
|                 | of      | Species in |
|                 | Species | common     |
|                 |         |            |
| Lake Pleasant   | 364     | 148        |
|                 |         |            |
| Sierra Estrella | 316     | 162        |
| Seven Springs   | 239     | 96         |
|                 |         |            |
| Hassayampa      | 284     | 143        |
| PMA             | 329     |            |
|                 |         |            |

| Table 4            | New plants records<br>for Arizona                           |                        |                                                           |
|--------------------|-------------------------------------------------------------|------------------------|-----------------------------------------------------------|
| Acacia salicina    | Gila River, New<br>River                                    | Fraxinus uhdei         | Found on the Agua<br>Fria River                           |
| Acacia schaffneri  | New River                                                   | Ludwigia erecta        | Salt River and Loop<br>202                                |
| Acacia stenophylla | New River                                                   | Lythrum<br>hyssopifium | New River                                                 |
| Alcea rosea        | Hollyhocks found at<br>loop 202 and Salt<br>River           | Melaleuca viminalis    | I-10 and Agua Fria<br>River, and New<br>River Skunk Creek |
| Cucumis sativus    | Tres Rios                                                   | Melia azedarach        | Chinaberry<br>common escaped<br>tree in wet rivers        |
| Cyperus elegans    | Salt River, and Gila<br>River                               | Punica granatum        | New River Skunk<br>Creek                                  |
| Cyperus ergrostis  | New River                                                   | Ulmus parviflora       | Elm tree found on<br>the Salt and New<br>River            |
| Cyperus pygmaeus   | Tres Rios, Salt<br>River, New River,<br>and Agua Fria River | Senna artemisioides    | New River                                                 |

| Table 5List of Acronyms   |     |
|---------------------------|-----|
| Phoenix Four Rivers Flora | PFR |
| Phoenix Metropolitan Area | PMA |
| Tres Rios Project         | TRP |
| Salt River Project        | SRP |

| Table 6.                              |                                                                                               |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| Mesic and Xeric riparian              | Important Species present                                                                     |  |  |
| I. Mesic Riparian:                    |                                                                                               |  |  |
| (A) Cottonwood-Willow Forest          | Forest of <i>Populus fremontii</i> , <i>Salix gooddingii</i> , and herbs.                     |  |  |
| (B) Prosopis Woodlands                | Woodlands of Prosopis, Atriplex spp                                                           |  |  |
| (C) Tamarix Woodlands                 | Woodlands of <i>Tamarix</i> .                                                                 |  |  |
| (D) Tree Tobacco-Castor Bean Thickets | Brush thickets of <i>Nicotiana glauca</i><br>and <i>Ricinus communis</i> 5-10 m in<br>height. |  |  |
| (E) Agricultural land.                | Farm with cotton, wheat, and other crops on river banks.                                      |  |  |
| II. Xeric Riparian:                   |                                                                                               |  |  |
| (A) River cobble to gravel.           | Ambrosia eriocentra, Hymenoclea<br>monogyra, and Stephanomeria<br>pauciflora.                 |  |  |
| (B) Sand bars                         | Abronia angustifolia, Oenothera<br>californica, Helianthus annuus, and<br>Chenopodium album.  |  |  |
| (C) Silty river banks and terraces    | Parkinsonia spp., Prosopis spp., and Atriplex spp.                                            |  |  |



Figure 1. A quarry Lake on the Agua Fria River (Google Earth, 2011)



Figure 2. Quarry lakes on the Salt River (Google Earth, 2011)



Figure 3. Quarry lakes # 2 on the Salt River (Google Earth, 2011)



Figure 4. Quarry lakes fill up with water when the Salt River floods during a wet spring in 2010. (Google Earth, 2011)



Figure 5. Cave Creek at 19<sup>th</sup> Ave. Xeric riparian habitat with Eucalytus microtheca, Parkinsonia spp., and Acacia spp.



Figure 6. Mesic riparian section of the New River confluence with Skunk Creek, *Acacia stenophylla*, *Cyperus eragrostis*, and *Lythrum hyssopifium* are present.



Figure 7. Mesic Riparian habitat on Skunk Creek, Salix spp. Ulmus parviflora, Juncus torreyi, and Fraxinus velutina are present.



Figure 8. Xeric Riparian habitat on the East Fork of Cave Creek, Prosopis spp, Parkinsonia spp., Chilopsis linearis, and Hymenoclea monogyra.



Figure 9. Map of the Phoenix Metropolitan Area. (Google Earth, 2011)

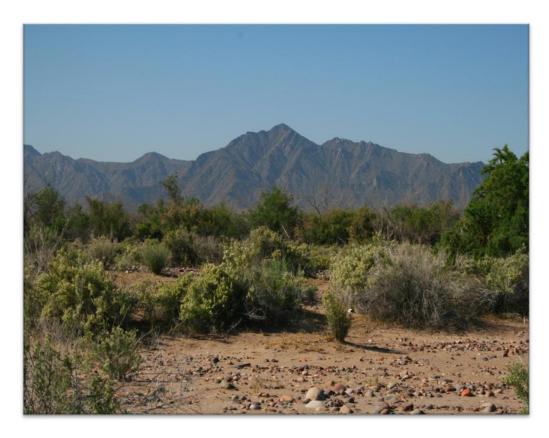



Figure 10. Xeric Riparian habitat at Tres Rios, *Ambrosia eriocentra, Hymenoclea monogyra, and Lycium fremontii*. Woodlands of *Prosopis* and *Tamarix* are visable in the background.