
Determining the Integrity of Applications and Operating Systems using

Remote and Local Attesters

by

Raghunathan Srinivasan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved March 2011 by the
Graduate Supervisory Committee:

Partha Dasgupta, Chair
Charles Colbourn
Aviral Shrivastava

Dijiang Huang
Prashant Dewan

ARIZONA STATE UNIVERSITY

May 2011

c©2011 Raghunathan Srinivasan
All Rights Reserved

ABSTRACT

This research describes software based remote attestationschemes for obtain-

ing the integrity of an executing user application and the Operating System (OS) text

section of an untrusted client platform. A trusted externalentity issues a challenge to

the client platform. The challenge is executable code whichthe client must execute,

and the code generates results which are sent to the externalentity. These results pro-

vide the external entity an assurance as to whether the client application and the OS are

in pristine condition.

This work also presents a technique where it can be verified that the application

which was attested, did not get replaced by a different application after completion of

the attestation. The implementation of these three techniques was achieved entirely in

software and is backward compatible with legacy machines onthe Intel x86 architec-

ture.

This research also presents two approaches to incorporating software based

“root of trust” using Virtual Machine Monitors (VMMs). The first approach determines

the integrity of an executing Guest OS from the Host OS using Linux Kernel-based Vir-

tual Machine (KVM) and qemu emulation software. The second approach implements

a small VMM called MIvmm that can be utilized as a trusted codebase to build security

applications such as those implemented in this research. MIvmm was conceptualized

and implemented without using any existing codebase; its minimal size allows it to be

trustworthy. Both the VMM approaches leverage processor support for virtualization

in the Intel x86 architecture.

i

DEDICATION

To my late parents, I dedicate my second, just as I was their second

ii

ACKNOWLEDGEMENTS

This has been an incredible journey. I started out in 2005 on the back of multiple

setbacks in life. I am finishing 2011 with a Doctorate and muchmore. There are many

people to whom I owe my sincerest gratitude for having reached this far. It has to start

with my late parents for giving me a good direction in life. The next person I need to

thank is my sister, Sathya, without whose nagging in 2005, I would not have attempted

graduate studies. Next, I owe thanks to my other relatives who supported me through

the toughest times a person can go through.

I would like to thank my advisor Dr. Partha Dasgupta without whose guidance none of

this would be possible. I would like to thank Dr. Charles Colbourn, Dr. Dijiang

Huang, Dr. Aviral Shrivastava, and Dr. Prashant Dewan for serving on my committee

and giving me useful insight into my research. I would like tothank my innumerable

lab mates who helped me out at various times. I would like to thank my close friends

Tushar Gohad, Dr. Satyajayant Misra, and Dr. Pavel Ghosh fortheir thoughts on

various issues during my PhD. I would like to thank Dr. Guoliang Xue and Dr.

Matthew Pittinsky for guiding me on many issues. Other notable mentions are to Dr.

Amiya Bhattacharya, Ranal Fernando, and Harie Srinivasa for helping me to complete

this work. I would also like to thank all my room mates and friends during the last 6

years for having shared many truly delightful and funny memories.

My last ‘thanks’ is a special one reserved for my long term girlfriend, now fiancée and

soon to be wife, Jessica. I have experienced remarkable upsurge in my fortunes ever

since I met her. It started with getting an internship, resulted in many publications and

has culminated in me successfully defending my Doctorate.

iii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER . 1

1 INTRODUCTION . 1

2 RELATED WORK . 8

2.1 Problems with building secure systems 8

2.2 Hardware based integrity measurement schemes 8

2.3 Existing commodiy VMMs . 9

2.4 Virtualization based integrity measurement 11

2.5 Software based integrity measurement schemes 12

2.6 Attacks against software based schemes and counter arguments 13

2.7 Program analysis and code obfuscation 14

2.8 Hardware extensions for virtualization on the Intel platform 15

2.9 Hypervisors Utilizing Extensions for Virtualization 16

3 THREAT MODEL AND ASSUMPTIONS 19

3.1 Threat model and assumptions for user application attestation 19

3.2 Threat model and assumptions for kernel attestation 20

3.3 Threat model and assumptions for guest OS attestation using KVM . . . 21

3.4 Threat model and assumptions for minimal VMM creation 21

4 DESIGN OF INTEGRITY MEASUREMENT CODE 22

4.1 Changing execution flow and locations of variables on stack 22

4.2 Inserting dummy instructions .. 23

4.3 Changing instructions during execution 23

4.4 Implementation . 24

iv

Chapter Page
Changing execution flow and locations of variables on the stack 24

Obfuscating instructions executed .25

5 REMOTE ATTESTATION OF USER APPLICATIONP 26

5.1 Implementation . 27

Injection of Code onP . 27

Communication with Trent . 28

Determining Machine Identifiers . 29

Determining MD5 and Arithmetic Checksum 30

Determining Process Identifiers . 31

5.2 Results . 32

6 VERIFIED CODE EXECUTION . 35

6.1 Stack allocation in Intel architecture 35

6.2 ExecutingF0 afterF1 without executing a RET 37

6.3 Implementation . 37

7 KERNEL ATTESTATION . 40

7.1 Implementation . 42

Identifying locations to measure in kernel 42

Communication with Trent′ . 43

Fixing call instructions . 43

Disabling interrupts . 45

7.2 Results . 45

8 ATTESTATION OF A GUEST OS FROM A HOST OS 47

8.1 Implementation . 51

Starting a clone . 51

Starting a TCP server inside clone . 52

Reading memory contents of the guest OS 53

Results . 54

v

Chapter Page
9 BUILDING A SECURE MINIMAL TRUSTED CODE BLOCK VMM . . . 56

9.1 Overview of dynamic launch model 58

9.2 Design of System . 59

9.3 Implementation . 62

Initial Processor Checks . 62

Allocating memory for the VMM components 63

Loading State values into VMCS . 64

Launching MIvmm . 67

Continued execution of MIvmm . 67

Lines of Code . 68

10 CONCLUSION . 69

REFERENCES . 71

BIOGRAPHICAL SKETCH . 76

vi

LIST OF TABLES

Table Page

5.1 Average code generation time at server end 33

5.2 Time to compute measurements .33

7.1 Execution times for various components 45

8.1 Execution times for components of kvm-qemu setup 54

vii

LIST OF FIGURES

Figure Page

1.1 Overview of Remote Attestation .. . 5

1.2 Overview of verified code execution 6

4.1 Snippet from the checksum code .. 23

5.1 Detailed steps in Remote Attestation process 27

5.2 sendroutine throughsocketcallin ASM 29

5.3 Contents of /proc/net/tcp file 32

6.1 Sample C routine and its disassembly 36

6.2 Change of flow of execution . 37

6.3 Tail portion ofF1 . 38

6.4 Fixing Jump target . 38

7.1 user application initiates attestation request 40

7.2 user application sends attestation code to kernel space. 41

7.3 kernel returns integrity measurements to user land 41

7.4 Verification of kernel integrity by trusted server 41

7.5 Fixing locations of call instruction 44

8.1 Overview of kvm-qemu interface .. . 49

8.2 Overview of qemu clone operation .. . 50

9.1 Overview of dynamic launch .59

9.2 System Design . 60

9.3 Structure of allocated stack area for host 64

9.4 Lines of code of each component in the VMM 68

viii

Chapter 1

INTRODUCTION

A consumer computing platform can be compromised by malicious code in many

different ways. Preventing compromises requires safe coding, developing secure

Operating Systems (OS), and developing secure kernel modules. Fault densities in OS

kernels can range from 2 - 75 per 1000 Lines of Code (LOC) [Ostrand and Weyuker,

2002]. OS kernels are often supplemented by many device drivers or kernel modules

which have higher error rates [Chou et al., 2001]. Buffer overflow is a common

vulnerability that exists in many pieces of application software. This may allow

malware to compromise systems [Iyer et al., 2010].

All copies of an application are identical; this gives an attacker (Mallory) the

opportunity to analyze the presence and locations of vulnerabilities in the application,

and develop means to exploit these flaws. Operating Systems offer little or no fault

isolation; this can lead to a malware rapidly obtaining control of a computing platform

[Wang and Dasgupta, 2008]. It has been mathematically proven that perfect detection

of unknown viruses is equivalent to solving the Halting program [Cohen, 1993]. Smart

malware can render detection schemes ineffective; this is due to the fact that traditional

detection mechanisms operate off application binaries which can be disabled or

patched to escape detection [Srinivasan and Dasgupta, 2007]. Consequentially a user

(Alice) has to request integrity measurement of the platform from an external agent, or

an entity that operates beyond the bounds of the operating system.

Remote attestation is a set of protocols that use a trusted service to probe the

memory of a client computer to determine whether at least oneapplication has been

tampered with or not. Primarily used for DRM, these techniques can be extended to

determine whether the integrity of the entire system has been compromised. Remote

attestation has been implemented using hardware devices, virtual machine monitors

1

(VMM), and software based techniques. The Trusted PlatformModule (TPM) chip

has been used extensively to build hardware based solutionsfor remote attestation. In

most cases, some integrity measurement values are stored inthe Platform

Configuration Registers (PCR) of the TPM. Anytime an integrity measurement is to be

taken on the consumer platform, a private key stored in the PCR is used to sign the

integrity values read from the system software [Stumpf et al., 2006], [Sailer et al.,

2004], [Goldman et al., 2006]. A parallel hardware integrity measurement may use a

secure co-processor that can be placed on the PCI slot of the client platform [Wang

and Dasgupta, 2008], [Petroni Jr et al., 2004]. The co-processor contains an

independent software stack which can read all memory locations on the client

platform to determine whether any compromise has taken place. Virtualization

schemes involve a special software layer known as thehypervisoror a VMM taking

integrity measurements over aguestoperating system [Garfinkel et al., 2003], [Sahita

et al., 2007].

Software based solutions for Remote Attestation vary in their implementation

technique. Most methods involve taking a mathematical or a cryptographic checksum

over a section of the program in question (P) , and reporting the results of verification

to a trusted external server (Trent) [Seshadri et al., 2005], [Kennell and Jamieson,

2003]. TEAS [Garay and Huelsbergen, 2006] proves mathematically that it is difficult

for an attacker to forge integrity results obtained on a client platform, provided the

integrity measurement code changes for every attestation instance, however, an

implementation framework is not provided in the work.

To provide a trusted computing environment to an end user, this dissertation

provides four frameworks. The first two schemes obtain the integrity of an OS and a

user application without the use of hardware support and without any virtualization

support. The protocol involves the untrusted client platform communicating with a

trusted external server Trent. Trent issues challenges which are executable code to the

2

OS or the user application depending on the entity being verified. For obtaining the

integrity measurement of the OS Text section, the attestation service provider Trent′

provides executable code (Ckernel) to the client OS (OSAlice). OSAlice receives the code

into a kernel module and executes the code. It is assumed thatOSAlice has means such

as Digital Signatures to verify thatCkernel did originate from Trent′. The challenge

measures the integrity of the OS text section, System Call Table and Interrupt

Descriptor Table (IDT).

It may be argued that once the OS is attested, it can be used to attest the

application rendering the second scheme redundant. However, many applications

execute on a client platform, and each gets updated frequently. If the OS performs

integrity measurement on each binary, for security requirements the definitions should

reside somewhere in the kernel. These definitions will have to be updated in the

protected area frequently as each software gets updated. This can be considered a

major overhead in the system. Instead of this, the simpler solution is to have an

external agent such as the application vendor, or a network administrator provide

integrity measurement for the applications as the definitions need to be updated only

at one location. After the attestation is completed for the OS areas, the attestation

proceeds with the second scheme which measures the integrity of a particular client

application. The OS provides system call interface which isextensively used by the

user application scheme, this way the OS serves as a root of trust for the application

attestation scheme. For the sake of explanation, this work explains the user application

prior to presenting the OS attestation scheme. Hence duringthe discussion of the user

application it is assumed that the OS is pristine, although in practice the kernel

attestation should precede the user application attestation.

For attesting the user application (P), the trusted authority (Trent) issues a

challenge toP. The response provided byP allows Trent to determine whether its

integrity is compromised. The challenge should have inherent characteristics that

3

prevent Mallory from forging any section of the results generated. A software protocol

allows Mallory to perform various attacks. If the challengeis not different for every

attestation instance, Mallory can construct a replay of a response from a previous

instance of the attestation. If the challenge is not complex, Mallory can compute the

response without executing the requested challenge and send the results to Trent. In

addition, Mallory may bounce the challenge to another machine which contains a

clean copy of the program to obtain results of the challenge.Mallory may also execute

the challenge in a sandbox to determine its results.

To mitigate these situations, Trent generates a new instance of attestation code

C , which is sent to Alice for execution.C is binary code which is injected by the

applicationP on itself.C does not require the system library support as it executes

any required system call by executing software interrupts.This prevents any user level

malware from tampering with the results of integrity measurements. The kernel

should not be compromised for this process to work.

Since Alice injectsC , it has to be verified thatC was indeed generated by

Trent. To determine this Alice can setup an SSL connection toTrent and receiveC

during the SSL connection. Trent can be authenticated usinga certificate based

scheme while the rest of the communication can be encrypted using a session key.

Injection of code on a client machine (MAlice) to obtain integrity measurements

is an important aspect of the solution provided in this work.This reduces the window

of opportunity that Mallory may have to analyze the measurement operations being

performed onMAlice. The operations performed byC in each attestation instance are

changed to prevent Mallory from performing areplayattack. There are many

operations performed during attestation that make determining the response difficult

for Mallory without executingC . In addition,C measures some machine and process

identifiers which are determined through the system interrupt interface to make

forging of results difficult.C has inherent programming constraints which ensure that
4

ApplicationP

codeC

Trent

Injected

Figure 1.1: Overview of Remote Attestation

if C executes, it sends the results back to Trent.

Fig. 1.1 provides an overview of remote attestation. Trent is a trusted entity

who has knowledge of the structure of a clean copy of the process (P) to be verified.

Trent has to be a trusted server, as Alice executes code received from Trent. Trent

provides executable code (C) to Alice which is injected onP. C takes overlapping

MD5 hashes and overlapping arithmetic checksums on sub-regions ofP and returns

the results to Trent. This prototype determines the integrity of a binary executing at

(MAlice). This protocol is robust against user mode viruses that canmodify system

libraries, but not against rootkits. The remote attestation implemented as part of this

work is more robust and works under harder constraints more difficult than those

implemented in previous worksPioneer[Seshadri et al., 2005],Genuinity, [Kennell

and Jamieson, 2003].

It is possible that onceRemote Attestationis completed, Mallory may replace

the attested binary (P) with a corrupted version (P ′). Alice would have no

knowledge of such a change as long asP ′ performs all the functionalities ofP. To

prevent Mallory from achieving such attacks, a framework for verified code execution

is also presented in this work. This involves server making some changes to the code

section of the client programP after the remote attestation is performed. Trent uses

C to change a function call inP to call a new functionF1 instead of callingF0.

5

codeC

ApplicationP

F0 F1

Trent

main routine

Injected

Figure 1.2: Overview of verified code execution

When the changed section ofP executes it communicates back to Trent. This

communication tells Trent that the attested program indeedcompleted execution. All

changes made by Trent to the attested program are non-persistent and remain in-core

to prevent Mallory from analyzing the changes made toP. In addition this keeps the

binary image ofP unmodified. Fig. 1.2 shows the overview of the verified code

execution process.

To remove the dependency on remote agents, this dissertation presents a

scheme where an external agent residing on the same physicalmachine as the client

OS. Any agent residing within the bounds of a corrupted OS is susceptible to getting

subverted. Hence a local attester has to reside outside the client OS. To incorporate

this threat model, this dissertation implements a virtualization based scheme where the

integrity of a guest OS is measured by a Host OS using the LinuxKVM interface.

Depending on the threat model, the Host OS can communicate the results to the user

sitting on the guest OS using a separate channel or pass the results back to the guest.

The communication of results is not implemented as part of this framework.

Virtual machine monitors (VMM) are not completely secure; numerous

vulnerabilities are known to exist in Xen 3, VMware Workstation 6, and VMware ESX

Server 3 [Secunia, a], [Secunia, b], [Secunia, c], and [Wojtczuk, 2008a]. To address

6

this aspect, this dissertation also presents a framework for implementing a small

VMM (MIvmm) on which security audits can be performed easily. A small code base

is more manageable, and can be used as a trusted code base on which various

applications can be built. The VMM presented in this work wasimplemented in under

4000 Lines of Code (LOC). This is due to the fact that the VMM supports only the

minimum necessary features to support virtualization for one guest operating system.

The rest of this dissertation is organized as follows: Chapter 2 presents related

work for all the implemented modules in this dissertation. Chapter 3 provides the

threat model for each of the implementations. Chapter 4 presents the guidelines for

generating attestation code; chapter 5 presents the remoteattestation framework for

obtaining the integrity of a user application. Chapter 6 presents the verified code

execution component; chapter 7 presents the kernel attestation scheme. Chapter 8

presents the Linux KVM based attestation scheme; chapter 9 presents the small

VMM, finally chapter 10 concludes this work.

7

Chapter 2

RELATED WORK

2.1 Problems with building secure systems

Many early security works featured on building secure kernels. A secure kernel

implements basic security mechanisms to control the systemresources, prevent

intrusions, and provide verification of components [Ames Jr. et al., 1983], [Wika and

Knight, 1994], [McCauley and Brongowski, 1979]. If the kernel is completely secure

and trusted then the security of the rest of the software can be built around it.

However, reliable and secure operating systems did not exist in the past [Tanenbaum

et al., 2006], and with recent operating systems running into millions of lines of code

with many rich features, it is unlikely that a secure operating system will exist in the

future. Fault density is found to be in the range of 2 to 75 bugsin every 1000 lines of

operating systems code [Ostrand and Weyuker, 2002]. Devicedrivers are known to

have higher error rates than operating systems [Chou et al.,2001]. Due to these issues,

relying on a commodity operating system kernel to provide protection and integrity

measurements is not feasible.

2.2 Hardware based integrity measurement schemes

Some hardware based schemes that determine the integrity ofa client platform operate

off the TPM chip provided by the Trusted Computing Group [Stumpf et al., 2006],

[Sailer et al., 2004], [Goldman et al., 2006]. These schemesmay involve the kernel or

an application executing on the client obtaining memory reads, and providing it to the

TPM. The TPM signs the values with its private key and may forward it to an external

agent for verification. The TPM may also be capable of providing secure bootstrap,

but subsequent deployment of malware may go undetected based on the

implementation of the protocol. TPM based solutions have the stigma of Digital

Rights Management (DRM), may be difficult to reprogram and are not ideally suited

8

for mass deployment.

Integrity Measurement Architecture (IMA) [Sailer, 2008] is a software based

integrity measurement scheme that utilizes the underlyingTPM on the platform to

measure the integrity of applications that are loaded on theclient machine. IMA

maintains a list of integrity values of all possible applications in the system. When an

executable, library, or kernel module is loaded, IMA performs an integrity check prior

to executing it. IMA measures values while the system is being loaded, however, it

does not provide means to determine whether any program thatis in execution is

tampered in memory after it was loaded from the secondary storage.

Co-processor schemes that are installed on the PCI slot of the PC have been

used to measure the integrity of the kernel as mentioned in section 2.1. One scheme

[Wang and Dasgupta, 2008] computes the integrity of the kernel at installation time

and stores this value for future comparisons. The core of thesystem lies in a

co-processor (SecCore) that performs integrity measurement of a kernel module

during system boot. The kernel interrupt service routine (SecISR) performs integrity

checks on a kernel checker and a user application checker. The kernel checker

proceeds with attesting the entire kernel .TEXT section andmodules. The system

determines that during installation for the machine used for building the prototype, the

.TEXT section began at virtual address 0xC0100000 which corresponded to the

physical address 0x00100000, and begin measurements at this address. The Copilot

[Petroni Jr et al., 2004] is a hardware coprocessor that constantly monitors the host

kernel integrity. It cannot handle dynamic kernel modules and user-level applications

and it does not have a mechanism for a kernel patch.

2.3 Existing commodiy VMMs

A virtual machine monitor (VMM) adds a layer of software to emulate computer

hardware such that one hardware platform can be partitionedinto multiple logical

9

platforms. The VAX [Karger et al., 1991] security kernel wasa VMM based security

solution for the VAX processor. It creates isolated virtualprocessors each capable of

running an operating system. The VAX architecture did not have provisions to support

a VMM and hence certain changes were required to implement the security kernel.

The security kernel is a layered architecture and isolates one layer from another

completely. The kernel applies discretionary and mandatory access controls to each

VM. VMM based detection schemes are used to detect the presence of malware and

rootkits. The VAX processor is not manufactured anymore andthis VMM is outdated

as a result of it.

Xen is a virtual machine monitor that allows concurrent execution of several

guest operating systems on one hardware platform. The first guest operating system is

a trusted OS known as its domain 0. The domain 0 guest boots automatically with the

hypervisor (VMM) and receives special privileges and direct access to all hardware on

the system. Domain 0 can be used to manage other untrusted guest machines (domain

U). The Xen hypervisor is a large system that comprises of nearly 150,000 lines of

code [Weblink, p], which is coupled with a trusted domain 0 OS. This leads to a bulky

solution, increasing the possibility of vulnerabilities in the implemented VMM.

Kernel-based Virtual Machine (KVM) is a Linux kernel based virtualization

technology [Weblink, h]. Each virtual machine in KVM is a Linux process and it

interacts with a driver known as the KVM driver. All hardwareaccess for the virtual

machine is handled by the KVM driver using a character device/dev/kvm, and

through a modified qemu process. All code handling and exception handling is

delegated to one kernel module. In the Linux 2.6.33 kernel the KVM device driver for

Intel VT–x can be measured to be around 4000 lines of C code [Weblink, j]. However

KVM also has other components such as an emulator, interruptcontroller, memory

management, and page table management which increase the overall size of KVM. It

should be noted that these features are necessary once real applications are built on a

10

VMM. However, for obtaining a code block without vulnerabilities, these features can

be eliminated and added later when required by each application. This also gives an

application the freedom to choose how to implement the abovefeatures. As KVM is

coupled with the Linux kernel, the security features provided by KVM are affected by

the security features a standard Linux kernel provides.

VMware ESX server 3.x was known to have had 13 documented security

vulnerabilities in 2009 [Secunia, a] - these attacks were documented as privilege

escalation, security bypass, and exposure of sensitive information. VMware

workstation 6 was reported to have had 5 new security advisories documented in 2009

[Secunia, b] - 1 of them was a privilege escalation based attack. Xen was documented

to have had 5 new security advisories in 2008 [Secunia, c] which consisted of security

bypass and DoS based attacks. These numbers show that commercial VMM solutions

that have been in use extensively (may have also passed numerous audits) still have

vulnerabilities present. The presence of newly discoveredvulnerabilities over time

makes it imperative to create a secure root of trust VMM.

2.4 Virtualization based integrity measurement

Terrauses a trusted virtual machine monitor (TVMM) and partitions the hardware

platform into multiple virtual machines that are isolated from one another [Garfinkel

et al., 2003]. Hardware dependent isolation and virtualization are used by Terra to

isolate the TVMM from the other VMs. Using Terra, a scheme canbe implemented

where each class of application may be run on a different virtual machine. Terra is

installed in one of the VMs (TVMM) and is not exposed to external applications like

mail, gaming, and so on. The TVMM takes measurements on the VMs prior to

loading them. Most traditional VMM based schemes are bulky and need significant

resources on the platform to appear transparent to the end user, this holds true for

Terra where the authors advocate multiple virtual machines.

11

VIS [Sahita et al., 2007] is a hardware assisted (Intel VT-x)virtualization

scheme which determines the integrity of client programs that connect to a remote

server. VIS contains an Integrity Measurement Module whichreads the

cryptographically signed reference measurement (manifest) of a client process. VIS

requires that the pages of the client programs to be pinned inmemory (not paged out).

VIS restricts network access during the verification phase to prevent any malicious

program from bypassing registration. VIS does not allow theclient programs

unrestricted access to network before the program has been verified.

2.5 Software based integrity measurement schemes

In Pioneer[Seshadri et al., 2005], the integrity measurement is done without the help

of hardware modules or a VMM. The verification code for the application resides on

the client machine. The verifier (server) sends a random number (nonce) as a

challenge to the client machine. The response to the challenge determines if the

verification code has been tampered or not. The verification code then performs

attestation on some entity within the machine and transferscontrol to it. This forms a

dynamic root of trust in the client machine.Pioneerassumes that the challenge cannot

be redirected to another machine on a network, however, in many real world scenarios

a malicious program may attempt to redirect challenges to another machine which has

a clean copy of the attestation code.Pioneerincorporates the values of Program

Counter and Data Pointer, in its checksum procedure; both the registers hold virtual

memory addresses. An adversary can load another copy of the client code to be

executed in a sandbox like environment and provide it the challenge. This way an

adversary can obtain results of the computation that the challenge produces and return

it to the verifier.

Genuinity[Kennell and Jamieson, 2003] implements a remote attestation

system in which the client kernel initializes the attestation for a program. It receives

12

executable code and maps it into the execution environment as directed by the trusted

authority. The executable code performs various checks on the client program, returns

the results to a verified location in the kernel on the remote machine, which returns the

results back to the server. The server checks if the results are in accordance with the

checks performed, if so the client is verified. This protocolrequires operating system

(OS) support on the remote machine for many operations including loading the

attestation code into the correct area in memory, obtaininghardware values such as

TLB. It also requires the client OS to disable interrupts in order to have confidence

that the attestation code actually executed. However, if a client OS is corrupted then it

may choose to not disable interrupts in which case various meta-information about the

process incorporated into the checksum will not be correct.Another problem with this

scheme is that the results are communicated to the server by the kernel and not the

downloaded code. This may allow a malicious OS to analyze andmodify certain

values that the code computes.

In TEAS[Garay and Huelsbergen, 2006], the authors propose a remote

attestation scheme in which the verifier generates program code to be executed by the

client machine. Randomized code is incorporated in the attestation code to make

analysis difficult for the attacker. The analysis provided by them proves that it is very

unlikely that an attacker can clearly determine the actionsperformed by the

verification code; however implementation is not describedas part of TEAS and

certain implementation details often determine the effectiveness of a particular

solution.

2.6 Attacks against software based schemes and counter arguments

Genuinity has been shown to have weaknesses. Genuinity has been shown to fail

against a range of attacks known as substitution attacks [Shankar et al., 2004]. The

attack suggests placing attack code on the same physical page as the checksum code.

13

The attack code leaves the checksum code unmodified and writes itself to the

zero-filled locations in the page. If the pseudo random traversal maps into the page on

which the imposter code is present, the attack code redirects the challenge to return

byte values from the original code page. Authors of Genuinity countered these

findings by stating that the attack scenario does not take into account the time required

to extract test cases from the network, analyze it, find appropriate places to hide code

and finally produce code to forge the checksum operations [Kennell and Jamieson,

2004]. The attacks were specifically constructed against one instance of the checksum

generation, and would require complex re engineering to succeed against all possible

test cases. It is also suggested that Genuinity reads 32 bit words for performing a

checksum and hence will be vulnerable if the attack is constructed to avoid the lower

32 bits of memory regions [Seshadri et al., 2004]. These two claims are countered by

the authors of Genuinity [Kennell and Jamieson, 2004]. The authors state that

Genuinity reads 32 bits at a time, and not the lower 32 bits of an address.

Other works have also been researched against check summingsoftware

[Wurster et al., 2005]. However, every attack scenario has its limitations and can be

worked around. In this dissertation, remote attestation isimplemented by downloading

new (randomized and obfuscated) attestation code for everyinstance of the operation.

This operation makes it difficult for the attacker to forge any results that are produced

by the attestation code. To launch a successful attack, Mallory would have to perform

an ‘impromptu’ analysis of the operations performed and report the forged results to

Trent within a specific time frame. This is considered difficult to achieve.

2.7 Program analysis and code obfuscation

Program analysis requires disassembly of code and the control flow graph (CFG)

generation. The linux tool ‘objdump’ is one of the simplest linear sweep tools that

perform disassembly. It moves through the entire code once,disassembling each

14

instruction as and when encountered. This method suffers from a weakness that it

misinterprets data embedded inside instructions hence carefully constructed branch

statements induce errors [Schwarz et al., 2003]. Linear sweep is also susceptible to

insertion of dummy instructions and self modifying code. Recursive Traversal

involves decoding executable code at the target of a branch before analyzing the next

executable code in the current location. This technique canalso be defeated by opaque

predicates [Collberg et al., 1998], where one target of a branch contains complex

instructions which never execute [Linn and Debray, 2003].

CFG generation involves identifying blocks of code such that they have one

entry point and only one branch instruction with target addresses. Once blocks are

identified, branch targets are identified to create a CFG. Compiler optimization

techniques such as executing instructions in the delay slotof a branch cause issues to

the CFG and require iterative procedures to generate an accurate CFG. The execution

time of these algorithms is non-linear (n2) [Cooper et al., 2002].

2.8 Hardware extensions for virtualization on the Intel platform

Hardware virtualization is a recent development on the x86 platform which provides

processor extensions to create a VMM. The processor contains several fields which

can be filled during boot or after the native OS has loaded to move the native OS into

guest mode. VMM implementations involve a hypervisor that manages one or more

VMs by operating at the highest software privilege level (VMX-root mode in VT–x)

[Intel Corporation, 2010]. The VMM is invoked on the occurrence of certain events

which can be setup prior to executing the VMM. On the occurrence of these events the

processor loads the state of the VMM stored in certain area ofthe memory (termed

VMCS in Intel VT–x) and jumps to its entry point. The VMM operates in two modes

VMX root mode and VMX non-root mode. The guest runs in non-root mode and the

VMM itself runs in the root mode. A control transfer into the VMM (host) is called a

15

VMExit and a transfer to the VM (guest) is called a VMEntry. The exit and entries

happen at certain instructions as specified in the architecture, or as set up by the

system administrator. A VM can also explicitly perform a VMExit by executing a

VMCall instruction which is similar to a hypercall. The VMM enforces isolation and

other system policies. The VMM can manage the launch and shutdown of VMs,

memory/device isolation, control register access, MSR access, interrupts and

instruction virtualization. Intel VT–x allows a user to override certain sections of the

guest operating system routines based on the threat model and usage.

2.9 Hypervisors Utilizing Extensions for Virtualization

BitVisor [Shinagawa et al., 2009] implements a hypervisor that utilizes the drivers of

the guest operating system to minimize its code size. The hypervisor implements a set

of drivers to mediate all access to devices. BitVisor implements shadow DMA

descriptors to control data transferred through DMA between guest OS and devices.

BitVisor mediates data transferred between the guest OS anddevices by intercepting

data I/Os. BitVisor inspects and manipulates the content ofdata to implement security

functionalities such as encryption or intrusion detection. The hypervisor implements

parapass-through drivers for each of the device to be monitored. BitVisor also

implements instruction emulators to handle mode transitions between real mode and

protected mode of the Intel x86 based CPU. Due to these additions in it, the size of

BitVisor is estimated as being close to 20KLOC, the size of each para-pass through

drivers is an addition to this code size.

SecVisor [Seshadri et al., 2007] is a hypervisor that virtualizes Memory

Management Unit and the IO Memory Management Unit of the CPU to allow

hardware protections to be set over kernel memory. SecVisorchecks all modifications

to MMU and IOMMU state to protect protected code from DMA writes. SecVisor

depends on user supplied policy to approve code that can be executed by the kernel.

16

Its security relies on a user inputs of trusted code, it can benoted that smart malware

may attempt to fake user responses and inputs to send messages to the SecVisor TCB

to modify its trusted code lists.

MAVMM [Nguyen et al., 2009] builds a minimal VMM that can extract

information such as execution traces, memory dumps, systemcalls, disk accesses, and

network interactions from programs running on the guest OS.MAVMM protects the

hypervisor memory from being tampered by the guest using nested paging and

protects from external DMA writes by using the IOMMU features of the virtualization

extensions of the processor. MAVMM single steps through guest applications to

determine instructions executed. MAVMM does not utilize the guest OS drivers to

extract data; instead it uses a serial port to extract data with the help of BIOS.

MAVMM has the ability to selectively monitor some processesand ignore other ones.

To achieve this, a user level application specifies the namesof the processes to be

tracked. The hypervisor section of MAVMM is written in nearly 4KLOC. In

comparison MIvmm implemented in this work has the core of thecode to be around

2.5 KLOC. This is because MIvmm does not implement any security features, it

merely offers a system which is small in code size and offers the capability to build

various applications on top of it.

Bluepill [Rutkowska, 2006] is a rootkit that utilizes hardware extensions for

virtualization provided by Intel VT –x and AMD –V to move the native operating

system into a shell monitored by it. Bluepill identifies a paged out driver to be written

on and writes binary code on the paged out code of the device driver. When the driver

is loaded back to memory the injected code executes. The injected code turns on the

hardware virtualization feature and forces the Vista Operating System to migrate to

the guest environment. Bluepill does not survive system reboot. Vitriol [Zovi, 2006] is

also a hardware assisted virtualization rootkit which executes on a platform having

Intel VT–x which works in a similar fashion to Bluepill. Bothrootkits implement only

17

the bare features necessary to implement a hypervisor usingthe hardware extensions

on the x86 architecture.

18

Chapter 3

THREAT MODEL AND ASSUMPTIONS

This chapter provides the threat model and assumptions thatwill be used in each of

the implemented works. Since each work is slightly different in its aim and scope,

each work has a separate threat model and assumptions.

3.1 Threat model and assumptions for user application attestation

It is assumed that Mallory may have installed a backdoor atMAlice which can inform

Mallory that an attestation process has been initiated. Thebackdoor may divert the

challenge to another machine inside Mallory’s control which can provide the response

for the challenge. The backdoor can also use dis-assembly tools to determine the

operations performed by the challenge. In addition the backdoor may attempt to

execute the challenge inside a sandbox to determine the results of the response.

Since Trent is a trusted server, it is assumed that Alice willexecute the code

provided by Trent. Trent may be the vendor of the binary or a commercial provider of

remote attestation service for many binaries. It is also assumed that Alice has a digital

signature scheme, which can identify that the executable code was generated by Trent.

Because attestation code determines the IP address of the client which serves as its

machine identifier, it is assumed that Alice is not executingthe programs behind a

NAT. This assumption is made asC takes measurements onMAlice to determine if it is

the same machine that contacted Trent. IfMAlice is behind a NAT the connections

would appear to be coming from a router and not the machine, while C would respond

with the machine IP. It can also be noted that in case Trent is anetwork administrator,

the NAT does not come into play at all as the attester would be inside the NAT. In a

home computing scenario, often there is only one computer onthe network, so the

case of another machine masquerading with the same IP can be ignored. Hence, the IP

19

measurement check can be done away with. Also many routers allow one machine

inside the NAT to be placed outside it. This option can be usedtemporarily during

communication between Trent and Alice.

C executes OS calls by using software interrupts. Due to this,it is assumed

that the OS onMAlice is not compromised by arootkit. The presence of arootkit would

require the use of a VMM or a hardware based checker to determine integrity. Also so

note that there are many software interrupts in the Linux operating system, due to

which it can be assumed that a user level malware will find it difficult to intercept the

operations of software interrupts.

It is assumed thatP is not self-modifying code. Any integrity measurement

technique cannot obtain measurements on self-modifying code because the state of the

code section changes with time and execution. Moreover, on computing platforms

based on the Intel x86 architecture, the code section is ‘write protected’ by default,

which reduces the scenario of self modifying code existing in common applications. It

is also assumed that Mallory may attempt to change the applicationP after it has been

attested by Trent. To prevent this scenario, the first schemeis extended to determine

whether the attested binary continued execution or was replaced by an attacker.

3.2 Threat model and assumptions for kernel attestation

For the kernel attestation part, this work assumes that the kernel is compromised;

system call tables may be corrupted, and a malware may have changed the interrupt

descriptors. Runtime code injection is performed on a kernel module to measure the

integrity of the kernel. It is assumed that Alice has means such as digital certificates to

determine that the code being injected is generated by a trusted server. It is also

assumed that the trusted server is the OS vendor or a corporate network administrator

with knowledge of the OS mappings for the client.

20

3.3 Threat model and assumptions for guest OS attestation using KVM

For the virtualization based OS kernel attestation, this work uses Linux-KVM and

qemu emulator. It is assumed that the implementation of the qemu and kvm interface

is secure. This means that it is assumed that no malware can exploit any bugs in the

interface to exploit the Host OS. It is assumed that the GuestOS may be completely

corrupted, but the Host OS is clean. The external server receives a connection request

from the guest OS and requests the integrity measurements ofthe guest OS by

communicating to the Host OS. It is assumed that the trusted entity knows the IP

address of the Host machine for the guest OS in question. It isassumed that the Host

OS runs on an Intel x86 based machine which has virtualization extensions VT-x built

in its hardware. This assumption is made for KVM support. It is assumed that the

Host has means such as digital signatures to verify Trent.

3.4 Threat model and assumptions for minimal VMM creation

For the minimal VMM creation section, it is assumed that the platform on which the

VMM executes will have Intel-VT capabilities. It is assumedthat the native OS is

clean prior to launch of the VMM. Although this seems restrictive, it is required only

as long as the VMM is implemented as a minimal feature VMM. If the ability to take

integrity measurements on the native OS is incorporated in the VMM, then this

assumption is not required. It is assumed that the processorwill behave correctly and

trap the execution of sensitive instructions into the VMM.

21

Chapter 4

DESIGN OF INTEGRITY MEASUREMENT CODE

Trent is a trusted server that provides integrity measurement codeC to Alice. Alice

injects the code on the user applicationP. P transfers control toC and allows it to

report measurements to Trent. Trent must prevent Mallory from analyzing the

operations performed byC . To achieve this, Trent can utilize a combination of

obfuscation techniques.

Trent also maintains a time threshold (T) by which the response fromMAlice is

expected. IfC does not respond in a stipulated period of time (allowing fornetwork

delays), Trent will know that something went wrong atMAlice. This includes denial of

service based attacks where Trent will inform Alice thatC is not communicating back.

Fig. 4.1 shows a sample snippet of theC mathematical checksum code. The

send function used in the checksum snippet is implemented using inline ASM. It is

evident that in order to forge any results, Mallory must determine the value of

checksum2 being returned to Trent. This requires that Mallory identify all the

instructions modifying checksum2 and the locations on stack that it uses for

computation. To prevent Mallory from analyzing the injected code, certain

obfuscations are placed inC as discussed below:

4.1 Changing execution flow and locations of variables on stack

To prevent Mallory from using knowledge about a previous instance ofC in the

current test, Trent changes the checksum operations performed by selecting

mathematical operations on memory blocks from a pool of possible operations and

also changes the order of the instructions. The results of these operations are stored

22

{

....

x = <random value>

a = 0;

while (a<400) {

checksum 1 += Mem[a];

if ((a % 55) == 0) {

checksum2 += checksum1/x;

}

a++;

}

send checksum2;

....

}

Figure 4.1: Snippet from the checksum code

temporarily in the stack. Trent changes the pointers on the stack for all the local

variables insideC for every instance. These steps prevent Mallory from successfully

launching an attack similar to those used for HD-DVD key stealing [Weblink,

e],[Weblink, f].

4.2 Inserting dummy instructions

Program Analysis is a non linear operation as discussed in section 2.7. An increase in

the number of instructions that Mallory has to analyze decreases the time window

available to forge the results of these operations. Trent inserts instructions that never

execute and also inserts operations that are performed onMAlice but not included as

part of the results sent back to Trent. These additions to thecode make it difficult for

Mallory to correctly analyzeC within a reasonable period of time.

4.3 Changing instructions during execution

Mallory may perform static analysis on the executable codeC sent by Trent. A good

disassembler can provide significant information on the instructions being executed,

and allow Mallory to determine when system calls are made andwhen function calls

23

are made. In addition, it may also allow Mallory to see the area of code which reads

memory recursively. If these tools do not have access to the code to be executed

before it actually executes, then Mallory cannot determinethe operations performed

by C . Trent removes some instructions inC while sending the code toMAlice and

places code insideC with data offsets, such that during execution, this sectionin C

changes the modified instructions to the correct values. Therefore, without executing

C , it is difficult for Mallory to determine the exact contents of C .

4.4 Implementation

Changing execution flow and locations of variables on the stack

Changing execution flow and locations on stack prevents the program analysis onC .

The source code ofC was divided into four blocks which are independent of each

other. Trent assigns randomly generated sequence numbers to the four blocks and

places them accordingly insideC source code.

The checksum block is randomized by creating a pool of mathematical

operations that can be performed on every memory location and selecting one

operation from the pool of operations for each memory slot. The pool of operations is

created by replacing the mathematical operation with othermathematical operations

on the same location.

Once the mathematical operations are selected in theC source code, Trent

changes the sub-regions for the checksum code and the MD5 calling procedure. This

is done by replacing the numbers defining the sub-regions.C has sub-regions defined

in its un-compiled code. To randomize the sub-regions, a pre-processor is executed on

the un-compiledC so that it changes the numbers defining the sub-regions. The

numbers are generated so that the sub-regions randomly overlap.

C allocates space on the local stack to store computational values. Instead of

using fixed locations on the stack, Trent replaces all variables insideC with pointers

24

to locations on the stack. To allocate space on the stack Trent declares a large array of

type ‘char’ of size N, which has enough space to hold contentsof all the other

variables simultaneously. Trent executes a pre-processorwhich assigns locations to

the pointers. The pre-processor maintains a counter starting at 0 and ending at N-1. It

randomly picks a pointer to assign a location and assigns it the value on the counter

and increments the counter using the size of the corresponding variable in question.

This continues until all the pointers are assigned a location on the stack. Trent

compilesC source code to produce the executableC by placing these obfuscations.

Obfuscating instructions executed

Mallory cannot obtain a control flow graph (CFG) or perform program analysis on the

executable code ofC if the instruction being executed byC cannot be determined.

Trent changes the instructions inside the executable code so that they cause analysis

tools to produce incorrect results.C contains a section (Crestore) which changes these

modified instructions back to their original contents when it executes.Crestorecontains

the offset from the current location and the value to be placed inside the offset. Trent

places information to correct the modified instructions insideCrestore. Crestore is

executed prior to executing other instructions insideC andCrestorecorrects the values

inside the modified instructions.

25

Chapter 5

REMOTE ATTESTATION OF USER APPLICATIONP

If Alice could download the entire copy ofP every time the program had to be

executed then Remote Attestation would not be required. However, sinceP is an

installed application, Alice must have customized certainprofile options, saved some

data which will be cumbersome to create every time.

Alice usesP to contact Trent for a service, Trent returns toP: a challenge

which is executable code (C). P must injectC in its virtual memory and execute it at

a location specified by Trent.C computes integrity measurements and communicates

the integrity measurement valueM1 directly to Trent. Trent has a local copy ofP on

which the same sets of tests are executed as issued to the client to produce an integrity

measurement valueM0. Trent comparesM1 andM0; if the two values are the same

then Alice is informed thatP has not been tampered. Trent wants to be certain thatC

took its measurements onP residing insideMAlice. To provide this guarantee,C

executes some more tests onMAlice and returns their results to Trent. These checks

ensure thatC was not bounced to another machine, and that it was not executed in a

sandbox environment inside a dummy processPdummywithin MAlice.

There are many ways in which Mallory may tamper with the execution of C .

Mallory may substitute values ofM1 being sent to Trent, such that the evidence of

modification ofP is not discovered by Trent. It is also possible that Mallory may

have loaded a clean copy ofP inside a sandbox, executeC within it, and provide the

results back to Trent. Mallory may redirect the challenge toanother machine on the

network in order to compute the integrity measurements and send the responses back

to Trent. Without addressing these issues, it is not possible for Trent to correctly

determine whether the measurements accurately reflect the state ofP onMAlice. If

Trent can determine thatC executed onMAlice, C was not executed in a sandbox, and

26

1. Alice Trent
Verification Request

2. Trent Alice

3. Trent
Machine Identifier

4. Trent
Proceed/Halt

Trent5.
Initial Checksum

Trent6.
Proceed/Halt

7.
MD5 of specified regions

Trent8.

Trent

9. Trent
Test of correct process decriptor

Proceed/Halt

Trent10.
Proceed/Halt

Inject codeC at location, execute it

C

C

C

C

C

C

C

C

Figure 5.1: Detailed steps in Remote Attestation process

Trent can produce code whose results are difficult to guess, then the results can

indicate the correct state ofP. Achieving these guarantees also requires thatC

provides Trent with a machine identifier and a process identifier of MAlice.

Trent can retain a sense of certainty that the results are genuine by producing

code that makes it difficult for Mallory to pre-compute results. Once these factors are

satisfied, Trent can determine whetherP onMAlice has been tampered. Fig. 5.1 shows

the detailed steps in performing Remote Attestation.

5.1 Implementation

Injection of Code onP

The attestation codeC is injected byP on itself. This allowsC to execute within the

process space ofP. This wayC can use all descriptors ofP on MAlice without

creating new descriptors. The advantage of this is thatC cannot be executed in a

sandbox easily andC can also determine whether more than one set of descriptors are

present forP. At the client sideP makes a connection request to Trent. Trent

responds by providing the size of attestation routineC followed by the actual
27

executable code to determine the integrity ofP. Trent also sends the information on

the location insideP whereC should be placed.P receives the code and prepares

the area for injection by executing the library utilitymprotect[Weblink, k] on the area.

Once injection is complete,P creates a function pointer which points to the address

of the location and callsC using the pointer.

Communication with Trent

The attestation routine does not have any calls to system libraries. This is because

libraries may get compromised by an attacker to return incorrect results. In addition,

the references to libraries are present at different location in every machine. It is easier

to generate interrupts to execute the required functionality instead of placing the

correct references to the libraries in C. Moreover, a call toa system library may

expose the functionality of the code to Mallory. Execution of libraries for

communication is achieved by executing the software interrupt with the interrupt

number for the OS callsocketcall.

Communication to Trent is achieved by using the socket connection thatP

created for an attestation request. All messages are sent toTrent using thesocketcall

[Weblink, i] system call. ASM code for a network send usingsocketcallis shown in

Fig. 5.2. The routine allocates space on the stack for the parameter, followed by

placing the parameters on the stack. The system call number for socketcallis 102,

which is moved into the A register. The call number for a send in socketcallis 9, this

value is moved to the B register, then the location of the parameters are moved to the

C register and the system call is executed using the interrupt instruction (INT 80).

Once the interrupt returns the stack is restored to the original value and the result is

obtained in the A register. The functions provided insidesocketcallis present in the

Linux source code in the file< include/linux/net.h>.

28

asm (

"sub $16,%%esp\n"

"movl %%ebx,(%%esp)\n"

"movl %%ecx,4(%%esp)\n"

"movl %%edx,8(%%esp)\n"

"movl $0,12(%%esp)\n"

"movl $102,%%eax\n"

"movl $9,%%ebx\n"

"movl %%esp,%%ecx\n"

"int $0x80\n"

"add $16,%%esp\n"

: "=a" (res)

:"b" (send_sock), "c" (p_MD5Buf), "d" (len)

);

Figure 5.2:sendroutine throughsocketcallin ASM

Determining Machine Identifiers

To determine thatC is not re-directed to another machine, Trent obtains the machine

identifier on whichC executes. Trent had received the request for attestation from

Alice, hence has access to the IP address of the machine from which the request came.

C obtains the IP address of the platform on which it is executing and communicates

the result to Trent. Trent compares the two values to determine if the platform in

whichC is obtaining results is the same as the platform from which the initial

attestation request came. It can be argued that IP addressesare dynamic; however

there is little possibility that any machine will change itsIP address in the small time

window between Alice requesting a challenge - to measurements being provided byC

to Trent.MAlice is not behind a NAT; hence Trent observes the IP address ofMAlice and

C reports the same address. It can be argued that Mallory may have redirected the

challenge to another machine (MMallory), and changed the address of the network

interface onMMallory to match that ofMAlice. But asMAlice is not behind a NAT it

would be difficult for Mallory to provide the address to another machine on an

29

external network and achieve successful communication.

C determines the IP address of MAlice using system interrupts. The interrupt

ensures that the address present on the network interface iscorrectly reported to Trent.

This involves loading the stack with the correct operands for the system call, placing

the system call number in the EAX register and loading the other parameters in

registers EBX, ECX, EDX and executing the interrupt instruction. Reading the IP

address involves creating a socket [Weblink, l] on the network interface and obtaining

the address from the socket by using another system callioctl [Weblink, g]. The

obtained address is in the form of an integer which is converted to the standard

A.B.C.D representation.

Determining MD5 and Arithmetic Checksum

To determine whether the code section ofP has been tampered,C computes an MD5

hash on the code section ofP. It is possible that since the code section of the binary

is available, Mallory may compute the MD5 hash of every possible boundary region

prior to Trent sending a challenge. To prevent this attack, Trent defines sub-regions in

the binary and overlaps on the sub-regions before measuringthe MD5 hash of the

overlapping regions. Overlapping checksums ensure that ifby accident the

sub-regions are defined identically in two different versions ofC , the overlap provides

a second set of randomization and ensures that the results ofcomputation produced by

C are different. This also ensures that some random sections of P are present more

than once in the checksum to make it more difficult for Malloryto hide any

modifications to such regions.

To increase the complexity of the attestation procedure, Trent changes the

MD5 measurement to a two phase protocol. MD5 code cannot be randomized. The

only changes that can be made are to the overlapping sub-regions. To prevent possible

attacks on this protocol, Trent also obtains an arithmetic checksum of the code section

30

of P. The checksum is taken on overlapping sub-regions as described above. The

sub-regions defined for the arithmetic checksum are different from the sub-regions

defined for obtaining the MD5 hash.

The sub-regions on the MD5 hash are defined by Trent in the source code of

the attestation routine using constants. Prior to compilation, Trent runs a pre-processor

which generates random numbers to change these constants. The checksum operations

are randomized by creating a basic arithmetic operation fora memory location and

modifying the basic arithmetic operation to create alternate operations. This provides

a pool of operations that can be performed on each memory location. During code

generation, one operation is randomly selected for each memory location and placed

in the attestation routine. This changes the arithmetic operations performed for every

attestation request. The results of these operations are stored temporarily on the stack.

Trent changes the pointers on the stack for all the local variables insideC for every

instance. These steps prevent Mallory from successfully launching an attack similar to

those used for HD-DVD key stealing [Weblink, e], [Weblink, f]. Trent places dummy

instructions that never execute and inserts some operations that are performed on

MAlice, but not included as part of the results sent back to Trent. Trent also places a

time limit (T) within which the response for these computations must be received. The

addition of these operations is aimed to make analysis of operations within the time

frame difficult for Mallory.

Determining Process Identifiers

To determine that the attestation routine was not bounced toexecute inside a second

copy ofP, Trent obtains the state of the machine by comparing the opendescriptors

on MAlice against a known state of a clean machine. Trent knows that in aclean

machine there must be only one set of file descriptors used byP. If there are multiple

copies of the descriptors used byP, then an error is reported to Trent.C identifies

31

1: 00000000:C3A9 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 4533
2: 00000000:006F 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 4473
3: 0100007F:0277 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 5690
4: 0100007F:0019 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 5358
5: 0100007F:743A 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 5411

sl local_address rem_address st tx_queue rx_queue tr tm−>when retrnsmt uid timeout inode
0: 0100007F:1F40 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 5456

Figure 5.3: Contents of /proc/net/tcp file

descriptors that match the known descriptors used byP and determines the process

using these descriptors in the system. If the process using these descriptors are the

same as the process inside whichC executes, then an OK state is sent to Trent.

C obtains the pid of the process (P0) under which it is executing using the

system interrupt forgetpid[Weblink, c]. It locates all the remote connections

established to Trent fromMAlice. This is done by reading the contents of the

‘/proc/net/tcp’ file. The file has a structure shown in Fig. 5.3. This file has some more

fields that are omitted from the figure. Once all the connections are identified,C

utilizes theinodeof each of the socket descriptor to locate any process using it. This is

done by scanning the ‘/proc/< pid >/fd’ folder for all the running processes onMAlice.

In the situation thatP is not corrupted, there should be only one process id (P0)

using the identified inode. IfC encounters more than one such process, then it sends

an error message back to Trent.

5.2 Results

The remote attestation scheme was implemented on Ubuntu 8.04 (Linux 32 bit)

operating system using the gcc compiler; the applicationP and attestation codeC

were written in the C language. The time threshold (T) is an important parameter in

this implementation. The value of T must take into account network delays. Network

delays between cities in IP networks are of the order of a few milliseconds [Weblink,

d]. Measuring the overall time required for one instance of Remote Attestation and

adding a few seconds to the execution time can suffice for the value of T. The

32

Table 5.1: Average code generation time at server end

Machine Test generation time (ms) Compilation time (ms) Total time (ms)

Pentium 4 12.3 320 332

Quad Core 5.2 100 105

Table 5.2: Time to compute measurements

Machine Server side execution time (ms) Client side execution time (ms)

Pentium 4 0.6 22

Quad Core 0.4 16

performance of the system was measured by executing the integrity checks on the

source code for VLC media player interface [Weblink, n]. Some sections of the

program were removed for compilation purposes. The performance of the system was

measured on two pairs of systems. One pair of machines were legacy machines

executing on an Intel Pentium 4 processor with 1 GB of ram, andthe second pair of

machines were Intel Core 2 Quad machine with 3 GB of ram. The tests measured

were: the time taken to generate code including compile time, time taken by the server

to do a local integrity check on a clean copy of the binary and time taken by the client

to perform the integrity measurement and send a response back to the server. The time

taken for compiling the freshly generated code is reported in Table 5.1. As expected,

the Pentium 4 machine has slightly lower performance than a platform with 4 Intel

Core 2 processors.

The integrity measurement codeC was executed locally on the server, and also

sent to the client for injection and execution. The time taken on the server to execute is

the time the code will take to generate integrity measurement on the client, because

both machines were kept with the same configuration in each case. These times are

reported in Table 5.2. As the code takes only in the order of milliseconds to execute on

the client platform, the value for T can be set in the order of afew seconds to allow for

network delays.

It can be observed from Table 5.1 that it takes an order of a fewhundred

33

milliseconds for the server to generate code, while from Table 5.2 it can be observed

that the integrity measurement is very light-weight and returns results in the order of a

few milliseconds. As a result, the code generation process can be viewed as a huge

overhead. However, the server need not generate new code forevery instance of a

client connection. It can generate the measurement code periodically every second and

ship out the same integrity measurement code to all clients connecting within that

second. This can alleviate the workload on the server.

34

Chapter 6

VERIFIED CODE EXECUTION

Once Remote Attestation determines the integrity of a program, the server begins

communication and sharing of sensitive data to the client program. However, Mallory,

the attacker, may choose to wait till the attestation process is completed and then

substitute the client programP with a corrupted programPc. To prevent Mallory

from doing this, Trent has to obtain some guarantee that the process that was attested

earlier is the same process performing the rest of the communication. Trent cannot

make any persistent changes to the binary as Mallory would detect these changes

under the current threat model. Trent has to change the flow ofexecution from normal

in the client process such that the sequence of events reported will allow Trent to

determine whether the attested process is executing.

As discussed before, Trent knows the layout of the programP. At the end of

Remote Attestation, Trent sends a new group of messages toC . The message contains

some code executable codeF1 that Trent instructsC to place at a particular location

in P. Trent also instructsC to modify a future function call F0 inP such that

instead of callingF0, P callsF1. F1 communicates back to Trent and this way

Trent knows that the copy ofP which was attested in the previous step is still

executing. At the end of its execution,F1 undoes all its stack operation and jumps to

the address whereF0 is located. IfF1 executes a return instruction then control

would move back toP and some functionality ofP would be lost. It cannot execute

a function call toF0 as this may cause loss of some parameters passed byP.

6.1 Stack allocation in Intel architecture

In the Intel x86 implementation of Linux, stack is defined during compilation time and

allocated only during runtime. Every function allocates the required stack at the start

35

int C1()

{

char mesg_string[20];

strcpy(mesg_string, "Hello World");

printf("\n %s", mesg_string);

return 0;

}

8048514: 55 push %ebp

8048515: 80 e5 mov %esp, %ebp

8048517: 80 ec 38 sub $0x38, %esp

.......

.......

8048569: c9 leave

804856a: c3 ret

Figure 6.1: Sample C routine and its disassembly

of its execution by subtracting required amount of bytes forlocal memory from the

stack pointer using the SUB instruction.

Fig. 6.1 shows a sample routine and its disassembly. As seen in the code snippet, the

code first saves the base pointer on the stack; this action saves the frame for the

previous function. The execution then moves the current stack pointer (which points

to the location beyond the last push), into the base pointer;this is done as most of the

addressing inside a routine is performed relative to the current base pointer. The

execution then subtracts some memory from the current stackpointer to allocate

memory for the local variables. The rest of the instructionsconstitute the program

functionality. The last two instructions areleaveandret. The leave instruction

reverses all net stack operations performed by the functionand it pops the value stored

in stack for the base pointer. The ret instruction resumes execution at the return

address stored on the stack.

36

start
communicate to Trent
add value to esp
set ebp

M
od

ifi
ca

tio
n

of
 fu

tu
re

 fu
nc

tio
n

ca
ll

start

ret

Remote Attestation

Start

End

Change function callF0 to F1

F1

F0

jmp F0

Figure 6.2: Change of flow of execution

6.2 ExecutingF0 afterF1 without executing a RET

F1 allocates some stack for its local memory in a fashion similar to above. However,

instead of letting it return toP, a jump instruction will be executed after the stack

operations are reversed.F1 can either move the value of the frame pointer into the

stack pointer to reverse stack allocation (which is equivalent of performing an addition

on the stack pointer), pop the current stack value into the base pointer, and then jump

to the start ofF0, or execute the leave instruction and jump toF0. This allowsF0 to

receive all parameters passed on the stack byP and resume normal execution. When

F0 executes a return instruction, the control moves back toP. Fig. 6.2 shows the

represents this process diagrammatically.

6.3 Implementation

As part of sending messages toC , Trent provides the code ofF1, the location where

F1 should be placed and a particular address insideP which corresponds to a

function call toF0. C places the codeF1 at the specified location and changes the

target of the call instruction insideP to point toF1. WhenF1 executes, it

communicates to Trent and informs Trent that it executed. Itcan be noted here thatF1

37

can use the existing connection to Trent or open a new connection. Since Trent

generatedF1, Trent can place a random secret insideF1 which gets communicated to

Trent. On receiving the secret Trent knows thatF1 executed.

__asm__ ("mov %ebp, %esp \n"

"pop %ebp \n"

"jmp 0x8048bff \n");

Figure 6.3: Tail portion ofF1

The tail portion ofF1 is provided with code similar in functionality as shown

in fig. 6.3.F1 clears its stack by moving the base pointer into the stack pointer. It then

pops the base pointer value of the previous routine into EBP.Then finally a jump is

performed toF0. As F1 is compiled as a standalone function, the gcc complier

generates an incorrect target address for the Jump instruction. This is fixed by the

int fix_address(void){

int length_ofF1= 0xbd;

int location_F0 = 0x08048bff;

int location_F1 = 0x08048c92;

int offset_of_jmp_in_F1 = 0xa3;

int eip_offset_for_jmp = 5;

....

T_address = location_F0 -

(location_F1 +

offset_of_jmp_in_F1+

eip_offset_for_jmp);

Write_back[0xa4] = T_address & 0x000000FF;

Write_back [0xa5] = (T_address & 0x0000FF00) >>8;

Write_back [0xa6] = (T_address & 0x00FF0000) >>16;

Write_back [0xa7] = (T_address & 0xFF000000) >>24;

....

}

Figure 6.4: Fixing Jump target

38

server side program by correcting the target of the jump instruction as seen in fig. 6.4.

The code calculates the actual 4 byte address for the JMP instruction and then writes it

back in the binary in the little-endian format.

39

Chapter 7

KERNEL ATTESTATION

To measure the integrity of the kernel we implement a scheme which is similar to the

user application attestation scheme. Trent′ is a trusted server who provides code

(Ckernel) to MAlice. It is assumed that Alice has means such as digital signature

verification scheme to determine whetherCkernel was sent by Trent′. Alice receives

Ckernel using a user level applicationPuser, verifies that it was sent by Trent′ and

places it in the kernel of the OS executing onMAlice. Ckernel is then executed and

obtains integrity measurements (Hkernel) on the OS Text section, system call table, and

the interrupt descriptors table.Ckernel passes these results toPuser, which returns these

results to Trent′. If requiredCkernel can encrypt the integrity measurement results

using a onetime pad or a simple substitution cipher, however, as the test case generated

is different in every instance this is not a required operation. Trent′ also provides a

kernel modulePkernel that providesioctl calls toPuser. As seen in figure 7.1,Puser

receivesCkernel from Trent′. In figure 7.2,Puser forwards the code toPkernel.

Operating System

Userland

Kernel
attestation
request

Pkernel

Puser

Ckernel

Trent′

Figure 7.1: user application initiates attestation request

Pkernel places the received code in its code section at a location specified by

Trent′ and executes it.Ckernel obtains an arithmetic and MD5 checksum on the

specified regions of the kernel onMAlice and returns the results toPuser as seen in

figure 7.3.Puser then forwards the results to Trent′ who determines whether the

measurements obtained from the OS onMAlice match with existing computations as

40

Userland

Operating System

Pkernel

Puser

Ckernel

Figure 7.2: user application sends attestation code to kernel space

Userland

Operating system

Pkernel

Puser

Hkernel

Figure 7.3: kernel returns integrity measurements to user land

Kernel
integrity
measurements

OK

Userland

Operating System

Pkernel

Puser Trent′

Figure 7.4: Verification of kernel integrity by trusted server

shown in figure 7.4. Since Trent′ is an OS vendor or a corporate network

administrator, it can be assumed that Trent′ has local access to a pristine copy of the

kernel executing onMAlice to obtain expected integrity measurement values generated

by Ckernel. Although this seems like Trent′ would need infinite memory requirements

to keep track of every client, most OS installations are identical as they are off the

shelf. In addition, if Trent is a system administrator for a number of machines on a

corporate network, Trent′ would have knowledge of the OS on every client machine.

41

7.1 Implementation

The kernel attestation was implemented on an x86 based 32 bitUbuntu 8.04 machine

executing with 2.6.24-28-generic kernel. In Linux the exact identical copy of the

kernel is mapped to every process in the system. For the application attestation

described in previous chapters, the support of OS is required in the form of system

calls and interrupts. The system calls and interrupts are stored inside the high memory

(above 3 GB) of the process space in a 32 bit Linux OS. The high memory constitutes

kernel memory. We need to ensure that these sections of the OSare clean while

providing integrity measurements of a process. The following section descibes the

integrity measurement of the OS text section, system call table and the interrupt

descriptor table.

Identifying locations to measure in kernel

The /boot/System.map-2.6.24-28-generic file on the clientplatform was used to locate

the symbols to be used for kernel measurement. The kernel text section was located at

virtual address 0xC0100000 and the end of kernel text section was located to be at

0xC03219CA which corresponded to the symbol ‘etext’. The system call table was

located at 0xC0326520, the next symbol in the maps file was located at 0xC0326B3C,

a difference of 1564 bytes. The ‘arch/x86/include/asm/unistd 32.h’ file for the kernel

build showed the number of system calls to be 337. SinceMAlice was a 32 bit system,

the space required for the address mappings would be 1348 bytes. We took integrity

measurements from 0xC0326520 - 0xC0326B3B. The Interrupt descriptor table was

located at 0xC0410000 and the next symbol was located at 0xC0410800, which gives

the IDT a size of 2048 bytes. A fully populated IDT should be 256 entries of 8 bytes

each which gives a 2KB sized IDT, this is consistent with the System.maps file on the

client machine.

42

Communication with Trent′

The trusted server Trent′ communicates to a user level applicationPuser. Puser can be

assumed to be an application provided by Trent′. Trent′ also provides a kernel module

(Pkernel) to the client platform which is installed as a device driverfor a character

device.Puser communicates to a kernel modulePkernel using theioctl interface

provided by a character device ‘remoteattestationdevice’ which is created using a

command ‘mknod /dev/remoteattestationdevice c 100 0’. The last two numbers in

the command provide the MAJORNUM and MINOR NUM for the device.

Puser receives the code from the trusted authority and opens the char device.

Puser then executes anioctl which allows the kernel module to receive the executable

code. As in the user application attestation case Trent′ does not send the MD5 code for

every attestation instance. The trusted authority sends a driver code which populates a

data array and provides it to the MD5 code which stays resident onPkernel. To

prevent Mallory from exploiting this aspect the trusted authority also provides an

arithmetic checksum computation routine which is downloaded for every attestation

instance. This provides a degree of extra unpredictabilityto the results generated by

the integrity measurement code.

Fixing call instructions

Kernel modules can be relocated during compile time. This means that Trent′ would

not know where the MD5 code got relocated during installation of the module. In

order to execute the MD5 code, Trent′ requests the location of MD5 function in the

kernel module from the client end. After obtaining the address, Trent′ generates the

executable code (Ckernel) which has numerous calls to the MD5 code. At generation,

the call address may not match the actual function address atthe client end. Once

Ckernel is generated, the call instructions are identified in the code and the correct target

43

call_target = -((address_injected_driver +

call_locations[0] +

length_ofcall

)

- address_mdstring);

code_in_file[jump_locations[0] +1] = call_target;

Figure 7.5: Fixing locations of call instruction

address is patched on the call instruction. Once this patching is done, Trent′ sends the

code to the client end. The call address calculation is done as shown in fig. 7.5.

Ckernel is loaded in a char array codein file. The location whereCkernel

address to be injected is determined by Trent′ by selecting a location from a number of

‘nop’ locations in the module, this address is termed as addressinjecteddriver in the

above code snippet. The call location in the generated executable code is determined

by scanning the code for the presence of the call instruction. The target of the call

instruction is a 4 byte value in the x86 architecture. Finally, the address of mdstring

(which is the location of MD5 code) is obtained from the client machine as described

above. The second statement changes the code array by placing the correct target

address. This procedure is repeated for all the call instructions in the generated code.

It must be noted thatCkernel calls only the MD5 code and no other function. If

obfuscation is required, Trent′ can place some function calls that do not have any

bearing on the final result. These calls can be executed by evaluating an ‘if statement’.

Trent′ can construct several if statements such that they never evaluate to true. It can

be noted that even if the client does not communicate the address of the MD5 code,

Pkernel can be designed such that the MD5 driver provided by the trusted authority

and the MD5 code reside on the same page. This means that the higher 20 bits of the

address of the MD5 code and the downloaded code will be the same and only the

lower 12 bits would be different. This allows the Trent′ to determine whereCkernel

will reside on the client machine and automatically calculate the target address for the

44

MD5 code. This is possible because the C compiler produces lower 12 bits of function

addresses while creating a kernel module and allows the higher 20 bits to be populated

during module insertion.

Once the code is injected, Trent′ issues a message to the user application

requesting the kernel integrity measurements.Puser executes anotherioctl which

causes thePkernel to execute the injected code.Ckernel reads various memory

locations in the kernel and passes the data to the MD5 code. The MD5 code returns

the MD5 checksum value toCkernel which in turn returns the value to theioctl handler

in thePkernel. Pkernel then passes the MD5 and arithmetic checksum computations

back toPuser which forwards the results to the Trent′.

Disabling interrupts

If required, the disable interrupt instruction (CLI) can beissued byCkernel to prevent

any other process from obtaining hold of the processor. It must be noted that in multi

processor systems disable interrupt instruction may not prevent a second processor

from smashing kernel integrity measurement values. However, as the test cases are

different for every attestation instance, Mallory cannot use any prior knowledge to

smash the integrity measurement values.

7.2 Results

Table 7.1: Execution times for various components

Time (ms) Pentium 4 Core 2 Quad

Fixing call instructions of Ckernel 0.45 0.2

Execution of Ckernel 175 54.3

Network delay 21 15

Table 7.1 provides cumulative results for various operations on an Intel

Pentium 4 with 1 GB of RAM and an Intel Core 2 Quad machine that had 3 GB of

RAM. As expected, the Pentium 4 machine has slightly lower performance than a

45

platform with 4 Intel Core 2 processors. The kernel attestation scheme takes longer to

execute than the times required for application attestation in chapter 5. This is because

the size of the application is small compared to the size of the OS text section, system

call tables, and the IDT. The network delay shown in the tableis for each send/receive

operation occurring between the client and server machines. Hence if the two

machines perform 10 sends/receive, the network delay valuewill be greater than other

components. The times shown do not present the time requiredto generate the

challenge. This is because the generation involves issuinga ‘make’ command which

takes variable time. Code generation can be seen as a major overhead for the server

for each attestation due to issuing a make command. To alleviate the load on the

server code generation can occur for a number of test cases beforehand, and stored in

persistent medium. During attestation any one of them can beused randomly.

46

Chapter 8

ATTESTATION OF A GUEST OS FROM A HOST OS

This chapter presents a scheme to obtain the integrity measurement of an client OS by

utilizing an external trusted server Trent and virtualization on the client machine. The

client OS in question is a guest OS. The guest OS executes on top of a Host OS which

communications to Trent and obtains the integrity measurements on the guest OS. The

virtualization scheme used in this work is the Linux KVM interface. KVM is used in

combination with the qemu software to provide virtualization. KVM provides many

OS level calls through the ioctl interface. The integrity measurements were obtained

in this work using existing functions provided by KVM and adding ioctl calls.

A Host OS or a Virtual Machine Monitor (VMM) provides a usefulinterface

to execute multiple OSs on the same physical platform. Each guest OS or a virtual

machine (VM) is a standalone operating environment that is independent of other

virtual machines. Each VM is dependent on the underlying VMMto interface to the

hardware on the platform. Virtualization has become quite popular with the advent of

multi core platforms. This allows utilization of hardware resources as most executions

do not saturate the CPU, this way the resources on one platform can be shared among

multiple users.

Apart from being useful for sharing of resources, virtualization in itself offers

some security features. Virtualization is intended to keepeach guest environment

completely isolated from other guest environments. Virtualization offers memory

isolation, code isolation, disk isolation, and separate time chunks on the physical

hardware on the platform. In the best case scenario, one OS can be installed on the

platform as a Host/VMM followed with the install of an emulation/virtualization

environment, and install guest OSs on top of the Host/VMM. Multiple OSs can be

installed on the machine; each OS can be limited to doing certain tasks. For example,

47

watching streaming videos can be limited to one operating system; checking mail can

be limited to another operating system. Using bank applications, credit cards, and

other financial transactions can be limited to another operating system. This way the

use case scenario for each operating system can be limited, which in turn limits

possible overflow attacks and phishing that may occur. Multiple virtual machines are

relatively quick to start and execute with the advent of multi core platforms, and this

entire process can be seen as a light overhead for achieving security. A base snapshot

of a particular virtual machine can be stored and the workingcopy of the operating

system can be purged regularly to replace it with the base copy. This way a pristine

working copy of the OS is available regularly. This serves toremove any infections

that may have occurred over a period of time. However, this last step may be highly

cumbersome.

A domain 0 virtual machine (like XEN), which has limited userinteraction,

and no outside world interaction can also be used. Such VMMs can monitor all other

resident virtual machines and alert the user to any changes in the guest environment.

This concept is utilized already to build virtual machine monitors like Terra [Garfinkel

et al., 2003].

Security features offered by virtualization are heavily dependent on the

underlying VMM that allows virtualization to occur. If the VMM layer itself is buggy,

then isolation and security features cannot be implementedperfectly [Weblink, m].

Xen is a commonly used VMM layer and is known to run into many thousands of

lines of code. Isolating and discovering bugs in such a largevolume of code is

difficult. Xen consists of a Domain 0 which is a trusted root environment which has

access to all other guest VM. Every other guest VM is an unprivileged Domain U.

Dom 0 can access all contents of Dom U. As long as Dom 0 stays secure, it can detect

any malicious activity in other domains. However, Xen is also known to be vulnerable

to buffer overflow, DMA write, and other attacks which concern buggy device drivers.

48

qemu process

Guest OS

ioctl

Physical Machine

Userland

KVM

space
Kernel

Figure 8.1: Overview of kvm-qemu interface

It was shown in black hat that attackers can get root access tothe Dom 0 on a

machine, introduce a buggy driver, and overwrite portions of Xen code using DMA

[Wojtczuk, 2008b]. However, the crucial assumption is thatattackers can get root

access to the account. If the system administrator places stringent security measures

such that attackers find it difficult to get root access to Dom 0, then this attack will be

difficult to execute. Nevertheless virtualization still offers an important security

benefit, which is strong isolation of execution environments [McDermott, 2007].

KVM utilizes the hardware assisted virtualization features present in the x86

architecture to offer a light weight virtualization on computing platforms. KVM is

installed as a kernel module and the emulation/virtualization of the guest OSs is

performed by a software calledqemu. The qemu software is launched as a process,

and the guest OS is loaded inside the process. It is assumed that the guest OS cannot

escape the execution environment and any malware that may have infected the guest

cannot infect the Host OS.

Figure 8.1 depicts the overall kvm-qemu interface. The Guest OS is loaded

49

QEMU
QEMU
CLONE
(TCP
 server)

Attestation
Request

File Descriptors

Shared memory
and TCP client

Local/Remote

GUEST OS

Linux Host OS

Figure 8.2: Overview of qemu clone operation

entirely inside the qemu software process. All of guest physical memory is actually

virtual memory of the qemu process. The qemu software communicates with kvm

module using ioctl. kvm provides the required acceleratorsfor qemu.

To measure the integrity of a guest OS, the qemu software was modified to

launch a ‘clone’ along with the initial process execution. Figure 8.2 depicts the

procedure. The qemu-clone is a TCP server that shares the memory of the qemu

process. The clone waits for a signal from Trent (TCP client). The signal includes the

sections of the guest memory that Trent needs to verify. On receiving the signal, the

clone executes an ioctl which transfers execution to the kernel module. The kernel

module obtains the memory areas requested and reads the contents back to the

qemu-clone process. The qemu-clone process takes an MD5 on the memory contents

and returns the MD5 values to Trent. If Trent finds correct MD5values, then the

remote attestation is completed.

50

8.1 Implementation

This work was implemented on a 32 bit Ubuntu 10.04 OS executing the linux

2.6.32.28 kernel. The qemu software version used was 0.13.0. The Host OS executed

on an Intel Core 2 quad machine with 3 GB RAM. Since KVM utilizes hardware

assisted virtualization features, this system could not beimplemented on legacy

machines.

Starting a clone

The clone system call [Weblink, a] creates a new process justlike the fork call

[Weblink, b]. However, clone also allows the two processes to share context such as

file descriptors, global ariables. It essentially implements threads that share concurrent

memory space. The child process requires a stack which is allocated on the parent’s

heap region. Certain flags determine which memory contents are shared between the

two processes. The most pertinent flags to this implementation are the CLONEVM

and the CLONEFILES flags. CLONEVM allows the calling process and the child

processes to run in the same memory space. Memory writes performed by the calling

process or by the child process are also visible in the other process. CLONEFILES

allows the two processes to share file descriptors. A clone islaunched by executing

the code below.

clone(child_function, child_stack + CHILD_STACK_SIZE,

CLONE_VM | CLONE_FILES, NULL);

The parameters are explained as follows - childfunction is the function to be

executed as a clone. The childstack is allocated using a malloc call prior to executing

the clone call with a size of 0x4000. In the Intel architecture, the stack moves down

and heap grows up, hence CHILDSTACK SIZE (of value 0x4000) is used to move

51

the stack pointer up for the clone process. The next argumentallows the clone to use

the main process’ files and memory.

Starting a TCP server inside clone

The clone created inside the qemu process was used to implement a TCP server. The

TCP server waits for an incoming connection on port 2000. Once a TCP client makes

an incoming connection the server receives various parameters and executes the ioctl

described in section 8.1. Since the clone stack was allocated as 0x4000 bytes, data

buffer variables were allocated on the heap to avoid the possibility of exceeding the

allocated stack.

The clone creates the server executing the following code

listenSocket = socket(AF_INET, SOCK_STREAM, 0)

serverAddress.sin_family = AF_INET

serverAddress.sin_addr.s_addr = htonl (INADDR_ANY)

serverAddress.sin_port = htons (listenPort)

bind (listenSocket, (struct sockaddr *) &serverAddress,

sizeof (serverAddress)

listen (listenSocket, 5);

connectSocket = accept(listenSocket,

(struct sockaddr *) &clientAddress,

&clientAddressLength)

The last line of code shown in the snippet is kept inside a while loop. This is

done so that once an attestation instance is completed, the server breaks the client

connection and waits for a new connection to be made. Four pairs of send and receive

are required for each attestation instance. The first pair does a ‘hello handshake’. The
52

second pair receives the guest physical address from which the measurements have to

be taken. The third pair receives the number of bytes starting from the provided

address that need to be measured, the last pair sends the MD5 on the requested

memory region back to the TCP client.

Reading memory contents of the guest OS

The KVM module provides a function ‘kvm read guest’ which provides direct access

into the physical memory of the executing guest OS. The parameters it requires are the

file descriptor for the guest OS, the guest physical address,length of data to be read

and a char pointer to read the values into. The file descriptoris automatically filled

when the execution enters the kernel module through the ioctl interface of ‘/dev/kvm’.

It determines the guest frame where the memory is located andcalls

kvm readguestpage which does the page table walk using ‘gfnto hva’ to find what

is the Host virtual address that corresponds to the guest physical address. Once the

host virtual address is found, the memory contents are copied into the destination

pointer provided.

The ‘kvm readguest’ functionality is used to implement a new ioctl

‘KVM GUESTINTEGRITY’. The ioctl populates the provided parameters ofguest

address, length, and memory pointer into an instance of ‘struct

kvm userspacememoryregion’.

Fresh memory is allocated in the kernel to copy the guest OS data. The user

space pointer is not directly used to avoid errors which may occur in case the

‘kvm read guest’ call does not return correctly. The parameters passed by the userland

are then used to call kvmreadguest function. Once ‘kvm read guest’ returns with a

valid value, the memory contents are copied to the user spacepointer using

‘copy to user’. After a successful copy the kernel memory allocated for executing the

ioctl is freed by executingkfree.

53

Results

Table 8.1: Execution times for components of kvm-qemu setup

Time (micro seconds) Core 2 Quad

Execution of ioctl 0.5

Execution of MD5 inside qemu for 100 bytes of data .5

Network Round Trip on same machine 30

Network Round Trip on Gigabit Ethernet 150

Network Round Trip through fast ethernet switch 260

Table 8.1 provides the results for operations performed during the attestation

of a guest OS from the Host OS using the kvm interface. The timerequired to execute

the ioctl which extracts the memory from the guest space and delivers it to the qemu

clone was found to be less than a microsecond. Similarly taking an MD5 on the

requested memory was found to be less than a microsecond. Thedata is not large,

most requests were kept down to the order of 100 bytes, hence the small turnaround

time for the attestation.

The network round trip time for one ‘send and receive pair’ was found to be an

average of 30 microseconds over 20 tries while using the 127.0.0.1 interface. As seen

in section 8.1 there were 4 pairs or send and receive requiredfor each attestation

instance. Hence a total of approximately 120 microseconds would be required for one

attestation instance if the user initiates the attestationrequest from the Host OS or on

the same physical machine.

Network round trip time was measured for a client and server process

executing on two machines which were connected through Gigabit ethernet ports. The

time required for a send and receive pair was found to be averaged as 150 micro

seconds over 20 tries.

Network round trip time was measured for a client and server process when

one machine was connected through a fast ethernet switch while the other machine

was connected to a Gigabit port. The time required for a send and receive pair was
54

found to be averaged as 260 micro seconds over 20 tries. This represents a remote

attestation scenario when the user typically has a slower network connection compared

to a trusted server Trent who would be connected to a Gigabit speed network.

55

Chapter 9

BUILDING A SECURE MINIMAL TRUSTED CODE BLOCK VMM

This chapter presents a hardware assisted VMM called MIvmm for the x86 computing

platform implemented under 4000 lines of code (LOC) that canbe used to build

secure applications. Attackers may patch operating systemroutines and system

utilities to hide network sessions, processes, and open ports. Due to the reasons

described above malicious logic can have as much power as theOS itself.

Determining the integrity of a platform requires that we usesystems that are secure

enough to provide an indication of an attack to the user. It isknown to be difficult to

build a secure operating system [Tanenbaum et al., 2006]; hence it is difficult to build

a secure root of trust while using a commercial OS as its base.

The use of hardware or a VMM based root of trust offers a crucial tool to

system administrators while determining the integrity of systems. A VMM provides a

root of trust and a minimal Trusted Computing Base (TCB) to prevent many escalation

based attacks from taking place. However, the robustness ofany root of trust

mechanism built using a VMM depends on the security of the underlying VMM.

Traditional VMMs are known to be bulky; VMware ESX server is known to

run into 200K lines of code [Weblink, o] while the latest version of Xen which utilizes

hardware extensions for virtualization has nearly 150K lines of code [Weblink, p]. It is

estimated that software modules that are around 2000 LOC have nearly 40 faults while

modules with 4000 LOC may have as much as 60 faults [Fenton andOhlsson, 2002],

with this observation it can be assumed that the larger the code base, the higher are

chances of vulnerabilities to exist in the module, which in this case is a VMM. It is

difficult to perform code audits on such large systems to determine whether they are

completely secure or not. Numerous vulnerabilities are known to exist in Xen 3,

VMware Workstation 6, and VMware ESX Server 3 [Secunia, a], [Secunia, b],

56

[Secunia, c], and [Wojtczuk, 2008a]. These vulnerabilities allow attackers to break the

VMM sandbox environment and take control of the hypervisor/host OS. Due to this,

such bulky VMMs are not desired to provide a minimal trusted computing base.

Intel VT–x [Intel Corporation, 2010] and AMD–V [Advanced Micro Devices,

2010] are recent hardware extensions for the x86 platform that provide virtualization

support in the processor. These hardware extensions allow for the creation of a

minimal secure TCB which can be utilized to build complex security software stacks.

MIvmm implements only the minimum necessary features to support virtualization for

a single guest operating system. This allows the entire VMM to be implemented in

under 4KLOC. The core of the VMM code comprising the launch ofthe VMM and

handling of VM exits is completed in around 2KLOC. This smallcode size can allow

security audits of the code and formal proofs. It also allowsvulnerabilities such as

buffer overflow to be minimized and identified easily. To keepin line with the design

aspects certain features which are normally part of a VMM were removed from

MIvmm. MIvmm does not support multiple VMs. This eliminatesthe need for device

virtualization and scheduling of VMs. MIvmm does not need tohandle RESET vector

of the CPU. This is due to the fact that in the current implementation of the VMM,

interactions with the BIOS are removed to reduce the size of the code base. MIvmm

does not virtualize interrupts. A standard VMM that supports multiple VMs will have

to implement these features. However, to build a secure codebase, these features are

currently stripped out of MIvmm.

If used in conjunction with the Intel Trusted Execution Technology (TXT),

MIvmm can prevent rootkits like the bluepill [Rutkowska, 2006] from infecting the

system. Such rootkits utilize the hardware extensions of the platform, the hypervisor

can be tuned to disallow attempt by any program to launch another hypervisor when

MIvmm is already executing. In addition, these rootkits execute instructions such as

‘CPUID’, ‘VMXON’, and ‘VMLAUNCH’. These instructions are sensitive

57

instructions and the processor traps into the Host (hypervisor) for the execution of

these instructions.

MIvmm was implemented on the Intelx86 64 architecture. To reduce the

number of lines of code in the hypervisor, MIvmm is launched after the native OS

boots up thereby bypassing real mode emulation of VT. MIvmm is launched by

loading specific state values in the Virtual Machine ControlStructure (VMCS) and

executing a series of instructions. Most of the state valuesare copied directly from the

native OS. The VMCS is also filled with certain conditions known as exit conditions

on which the processor traps the execution of the guest operating system and executes

the VMM which can determine whether to allow the event, or disallow the event.

Once launched, MIvmm performs routine exits from the guest OS which are handled

by the host (VMM).

During exit handling the parameters received from the guestoperating system

are validated. This is achieved by selecting a range of allowed values that the guest

registers may contain while executing the sensitive instruction. If the exit contains

allowed values, then the instruction is emulated in the VMM and the resulting values

are stored back in the guest registers prior to resuming the guest. If the values are

determined to be invalid, the guest operating system is resumed at the next instruction.

It may be noted that since MIvmm is installed by the OS as a device driver, a

compromised OS can modify the VMM during launch. However both Intel and AMD

provide TXT and SVM technologies that have the ability to measure the integrity of a

VMM prior to loading it. As a result any wrongdoing by the OS can be clearly

identified.

9.1 Overview of dynamic launch model

We utilized the Intel VT–x hardware extensions to create a dynamic launch
58

Power on/Machine boot

Load the OS

Insert device driver

Perform compatibility checks

Copy OS state to guest components in the VMCS

Setup host state components in VMCS

Launch VMM, move the OS into guest environment

Handle VMexits, continue executing until VMM is turned off

Figure 9.1: Overview of dynamic launch

VMM (MIvmm) that provides a root of trust in the hypervisor layer. Dynamic launch

involves allowing the native operating system to boot up completely and then porting

it into the guest environment. Fig. 9.1 shows the steps to be followed for dynamic

launch of a VMM. Once the native OS boots, a device driver containing all the VMM

code is installed on the OS. The device driver can be controlled by a ring 3 application

to perform the steps or it can execute all the required steps on its own as part of its

module entry depending on the threat model. The device driver checks for machine

compatibility for executing instructions that require thepresence of Intel VT–x on the

platform. The driver copies each of the required guest statecomponents from the

native OS into a control area known as the Virtual Machine Control Structure

(VMCS), sets up the VMM (host) state area in the VMCS and executes the

instructions to launch the VMM. Once launched the VMM executes in the background

and executes when the CPU traps certain events on the guest OS.

9.2 Design of System

The design goal of MIvmm was to create a root of trust mechanism on the platform

while keeping the lines of code in the implementation as small as possible. To create a

secure root of trust it is imperative that the number of bugs in the root be almost

negligible. As discussed in section 2.1, the fault rates have a density of 2 –75 every

1000 lines of code in OSs. Due to this a design requirement forMIvmm was that it

59

User

Space

User
Space

User
Space

User
Space

Ring 3
Application

Kernel
Space

Kernel
Space Space

Kernel

Device

Driver

Device

V
M

X
 n

on
 r

oo
t

V
M

X
 n

on
 r

oo
t

V
M

X
 r

oo
t

V
M

X
 r

oo
t

Kernel
Space

Driver

Device

Driver
MIvmm

Page table with
address mapping(2) (3) (4)(1)

Figure 9.2: System Design

should be implemented in under 10,000 –15,000 lines of code.The small code base

also eliminates any possible vulnerability that may creep into the code apart from

faults. This also allows removal of unnecessary features from the VMM. Overall a

smaller code base provides an efficient and secure solution to the providing a root of

trust. MIvmm leverages Intel Virtualization Technology orVT-x to overlay memory

protections from the hypervisor onto software running in a VM, hence it serves as a

root of trust to an untrusted system.

The VMM acquires control of the hardware on the machine including the CPU

and monitors specified events on the system. Only one guest OSwas implemented

executing on top of the VMM, this enabled removal of featuressuch as device

virtualization and memory isolation from the VMM. The dynamic launch model was

chosen to allow the native OS to handle all device drivers andbootstrap. These

reductions enable creating a VMM with minimal features as specified by the Intel

VT–x technology.

Fig. 9.2 provides an overview of the system design of MIvmm. The VMM is

loaded after a successful boot of the native OS. The VMM is started as a device driver

as seen by the dotted box. A ring 3 application issues a seriesof commands using the

ioctl interface to start the VMM. On a successful execution of the VMLAUNCH

60

instruction the guest OS completely migrates to the guest mode and a thin layer VMM

executes underneath. The exit conditions are stored in the VMCS region, on

encountering these conditions the processor loads the hoststate configuration into

memory and executes it. The processor resumes the guest OS after the exit condition

is handled, the transfer of execution control to the guest OSis called a

VMResume/VMEntry. VMExits and VMResumes occur routinely till the VMM is

turned off or the machine is powered down/rebooted.

MIvmm does not survive a system reboot. This model allows thereduction of

the code from the VMM. The VMM only needs to implement code formanaging its

memory resources and storing certain state area. All other code such as user

interaction, device management is left to the guest operating system. Although this

can be seen as a drawback, a smaller VMM allows bug free implementation of a

secure code base. If needed while building other applications, these features can be

incorporated in MIvmm. This also mitigates memory leaks, buffer overflow and other

attack scenarios.

Once inserted, the device driver performs certain checks, allocates memory for

VMXON region and executes VMXON. This puts the operating system in VMX root

mode. It then allocates memory for the host (VMM) code, stackand various other

required memory regions. This is followed by loading state values into the VMCS and

finally executing VMLAUNCH instruction which moves the OS into guest mode.

Once the OS is completely moved to the guest mode, it executeson the platform

hardware. As discussed before, the execution of certain specified conditions in the

VMCS cause the processor to trap the execution of the guest and load the host state

(VMM) components for execution.

61

9.3 Implementation

The VMM was implemented on Linux Fedora 11 64 bit Operating system on the Intel

x86 64 architecture on the Intel Core i7 930 processor. The VMM was written in C,

inline assembly and assembly, it was compiled using the GNU Compiler Collection

(gcc). The implementation is logically separated into performing initial checks,

allocating required memory, loading values into VMCS, launching VMM, and

continued execution of VMM. Preliminary operations involve installing the driver,

allocating required memory, and starting VMX operations. Loading the values in

VMCS involves reading nearly 100 state values from the guestregister and storing

them in the VMCS. Launch of VMM involves porting the native OSinto the guest

mode and executing the VMM in the background. This occurs if the VMLAUNCH

instruction executes without errors. Continued executioninvolves handling and

returning from VM-exits.

The VMM is written as part of a device driver. After the nativeOS boots up

completely, the device driver is installed using aninsmodcommand. Once installed

the driver stays dormant till a Ring 3 application issues a series of ioctl commands to

launch the VMM. Preliminary checks are performed by the driver on receiving one

ioctl command from the Ring 3 application. The second ioctl command allocates the

required memory for the VMM. The third ioctl command starts VMX operations,

loads values into VMCS and launches the VMM. It must be noted that the control

does not return to the Ring 3 application from the time VMXON is executed till a

successful VMLAUNCH occurs.

Initial Processor Checks

The driver executes CPUID with RAX =1, the resulting value inbit 5 of the RCX

register determines whether the processor supports VMX operations. The driver

62

checks the state of the IA32Featurecontrol MSR. This is a safety feature in the

architecture which prevents malicious programs from entering VMX operations. Bit 0

and 2 of this MSR must be set to start VMX operations in normal operating mode.

This MSR can be changed only through the BIOS and not from the operating system.

VMX operations are enabled by setting the CR4.VMXE (bit 13),CR0.PE (bit 1),

CR0.NE (bit 5), and CR0.PG (bit 31). The driver then finds the size of the VMXON,

VMCS regions and the Processor Revision ID by reading the IA32 VMX BASIC

MSR. The first 32 bits in the MSR contain the revision identifier and bits 32-44

contain the size of the VMXON region and the VMCS region. Thissize is reported as

a value between 0 and 4096. On the machine used to develop the VMM this register

reported the size as 1024. However there is an architecturalrestriction that both these

memory regions must be aligned on a 4K address (lower 12 bits of the address must be

0).

Allocating memory for the VMM components

The VMM requires memory for VMXON region, VMCS region, host stack region,

and exit conditions for MSR bitmaps. Each of the above VMM regions needs to be in

physically contiguous memory; hence the device driver useskmalloc with the

GFP KERNEL option instead of the vmalloc call to allocate N KB of memory for

each region.

For VMXON and VMCS regions it was difficult to allocate a 1K region as

specified by the IA32VMX BASIC MSR using kmalloc and obtain memory which

was address aligned on the 4K boundary. Due to this, an allocation of 4K memory

region was chosen for both VMXON and VMCS regions. On both memory regions

(VMXON and VMCS) the processor revision ID read from the IA32VMX BASIC

MSR. 4 pages (4 * 4096 bytes) of memory were allocated for the host stack. The page

with the higher address was reserved for the guest state registers. The host stack can

63

X + 4
pages

Host RSP

X + 0 bytes

Guest State GPR

Host Stack

Host Stack

RAX

RBX

R15

. . . .

X + 4
pages

X + 3
pages

X + (3*4096)
bytes

Figure 9.3: Structure of allocated stack area for host

be seen in Fig. 9.3 On a VM-exit, the host entry routine (written in assembly to

remove compiler additives) saves each of the 15 GPRs in the system on the highest

page using MOV instructions. This way the host stack pointerremains unchanged,

and the Host RSP can be used as a frame pointer to the guest state registers while

handling the exit. The driver also allocates memory bitmap vector for each possible

MSR read and write. This is done as MSR reads and writes cause aVM-exit. A

bitmap vector can be created in the allocated memory which indicates to the processor

to cause a VM-exit on the specified reads and writes in the vector.

Loading State values into VMCS

Once the processor revision ID is written on the VMXON region, we execute

VMXON instruction. This puts the processor state in VMX rootmode and allows us

to write values into the VMCS using the VMWRITE instruction.After this the

processor revision ID is written into the VMCS region and VMPTRLD is executed

with the physical address of the VMCS region. This makes the VMCS region as the

current VMCS region in the processor state.

After the VMCS pointer is loaded as the current VMCS, the guest state values

are loaded into the VMCS by executing a series of VMWRITEs. These values are:
64

1. Read the values of CS, SS, DS, ES, FS, GS, LDTR, TR selectors, GDTR, IDTR,

GS, FS base, control registers CR0, CR3, and CR4 and wrote these values in the

guest state area of the VMCS. We also determine values of CS, SS, DS, ES, FS,

GS, LDTR, TR segment limits and access rights. The base values of all the

segments other than IDTR are determined from the global descriptor table. The

location of the GDT is found by executing the SGDT instruction. The base

address of the interrupt descriptor table is determined by executing the SIDT

instruction. The segment limit and access rights are determined by reading the

appropriate entry in the GDT.

2. Read the native operating system RSP and assigned it in theVMCS. Determined

the instruction where the guest would ‘wake-up and assignedit to the guest RIP.

3. Read the values present in the following MSRs and stored them in the guest

state VMCS. IA32DEBUGCTL, IA32 SYSENTERCS, IA32 EFER,

IA32 SYSENTERESP, IA32SYSENTEREIP, IA32 PAT,

IA32 PERFGLOBAL CTRL.

4. We also determined some non-register state information for the guest VMCS.

These are activity state and VMCS link pointer. The activitystate is determined

by reading the IA32VMX MISC and the link pointer is statically assigned

FFFFFFFFFFFFFFFFH.

5. Read and stored values of control registers CR0, CR3, and CR4 in the host state

area of the VMCS. Allocated a 4 page memory area for the host stack and

assign the address to host RSP. Created a host entry point function and assigned

it to the host RIP.

6. Read the selector fields for CS, SS, DS, ES, FS, GS, and TR segments and

stored it in the host state VMCS. Base address fields for FS, GS, TR, GDTR,

and IDTR. The base address for FS and GS base are determined from the
65

respective MSRs. The other base values are determined by reading the selector

offset into the GDT just like in the case of the guest state area.

7. Read the values in the following MSRs and stored them in thehost state VMCS.

IA32 SYSENTERCS, IA32 EFER, IA32SYSENTERESP,

IA32 PAT, IA32 SYSENTEREIP, IA32 PERFGLOBAL CTRL.

8. Determined the values of the following VM-execution control fields and stored

them in the VMCS. Pin-Based VM execution controls, Primary and Secondary

Processor-Based VM execution controls, MSR-Bitmap address. The Pin-Based

VM execution controls are determined by reading the contents of

IA32 VMX PINBASED CTLS and IA32VMX TRUE PINBASED CTLS.

The Primary Processor-Based VM execution controls are determined by reading

the contents of IA32VMX PROCBASEDCTLS and

IA32 VMX TRUE PROCBASEDCTLS. The Secondary Processor-Based VM

execution controls are determined by reading the contents of

MSR IA32 VMX PROCBASEDCTLS2. The MSR-Bitmap address is a 4 K

memory area. Each MSR is represented by 2 bits; one for read access and

another for write access. Each bit represents whether the VMshould exit into

the host area for the respective access. If the bit is set, then the access causes a

VM-exit. We cleared all the bits in our implementation.

9. Determined the values of VM-Exit controls and VM-Entry controls. The exit

controls are determined by reading the MSRs IA32VMX EXIT CTLS and

IA32 VMX TRUE EXIT CTLS. The entry controls are determined by reading

the following two MSRs: IA32VMX TRUE ENTRY CTLS and

IA32 VMX ENTRY CTLS.

66

Launching MIvmm

Loading state values into the VMCS is followed by the execution of VMLAUNCH

instruction. If successful the native operating system transitions into the guest mode

and the VMM runs underneath. The processor performs sanity checks on the VMCS

values. If the VMCS state values are incorrect the processorreports an error in

RFLAGS. The corresponding error number is read from a VMCS component

VM-Instruction Error. The errors encountered during the implementation of MIvmm

were: incorrect VM-execution control fields, incorrect host-state fields, and incorrect

guest state fields. The occurrence of the events in order can be explained as the

processor first performs a check on the control fields in the VMCS, followed by

checks host state fields. If the first two checks cause an error, then the processor aborts

the VMX operation and returns to the native OS. If these two fields are successful the

processor starts loading the guest state values while performing checks on the guest

state fields. If the checks on the guest state fields report anyerror the processor

performs a VM-exit and starts executing the Host.

Continued execution of MIvmm

Once launched, the VMM executes in the background and performs routine VM-exits

on the execution of CPUID and other mandatory exits as specified by Intel VT-x. On a

VM-exit the host entry routine saves each of the 16 general purpose registers using an

instruction of the format: MOV REGISTER, X (% RSP) where X is the offset from

the host RSP. The first register is stored at offset 0H; the second register is stored at

offset 8H, and so on. Exit handling operations are performedon this stored frame and

these values are restored from memory onto registers just prior to VMRESUME using

MOV instructions. The guest OS also contains a VMCALL interface. The VMCALL

interface allows the guest to voluntarily cede control to the VMM. The guest provides

67

Ring 3 application: 100 LOC

Driver routine including ioctl definitions: 150 LOC

Preliminaries checks: 200 LOC

Launching VMM: 1900 LOC

Exit handling: 50 LOC (C) + 150 LOC (Assembly)

Print routines for debugging: 1000 LOC

Figure 9.4: Lines of code of each component in the VMM

information to the host on which VMCALL is requested by passing certain values

through the GPRs. The registers can be chosen by the programmer to implement the

VMCALL interface.

Lines of Code

MIvmm was implemented in under 4000 lines of C code. It was comprised of the

components as shown in Fig. 9.4. As can be seen from the numbers in Fig. 9.4,

MIvmm implementation provides a very minimal trusted code base. If the print

routines used for debugging are excluded, MIvmm can be quantified as smaller than

4KLOC. This enables elimination of vulnerabilities that occur due to implementing

features that are not essential for executing a VMM.

68

Chapter 10

CONCLUSION

This research presents software based techniques to obtainthe integrity of a user

application, and OS kernels entirely in software. A trustedexternal entity provides

Alice with generated code that when executed on the client side provides guarantee

that the client side application is not compromised. This work also extends remote

attestation by verifying whether the binary attested continued executing or was

replaced by the attacker. The check involves placing new code in the in-core image of

the binary and replacing a function call inside the binary topoint to the new code. The

execution of the new code provides an attesting server the guarantee that the binary

was not replaced. A series of such changes made inside the attested binary reduce the

opportunities that an attacker may have to hijack authenticated sessions by tampering

other client end software.

This work presented a technique to obtain the integrity measurement of the OS

text section, system call table and Interrupt descriptor table. These measurements are

important as the remote attestation scheme for the user application requires the

assistance of system calls and the interrupt interface to obtain its measurements. This

scheme was implemented on Intel x86 architecture using Linux and its performance

was measured.

This work presented a virtualization based technique to determine the integrity

of a guest OS using Linux-KVM. A VMM based solution is more secure than the

previous device driver based solution provided in the dissertation as it is considered

difficult for a malware operating in the guest OS to affect theexecution of the Host OS.

This research also presented the need to develop a secure thin VMM which can

be used to build other security protocols. The VMM was built utilizing Intel VT-x

69

technology on Linux (Fedora 11) and supports one guest operating system as it is built

for providing a trusted code base. The VMM is launched using the dynamic launch

model, i.e., after the operating system boots up, and was implemented in under

4KLOC on the C language using GCC.

As future work the Remote Attestation scheme can be implemented with

hardware assisted virtualization as every consumer x86 computing platform is

currently manufactured with this ability. The native OS canbe ported into the guest

OS mode as described in the VMM implementation and remote attestation on the user

application and the OS kernel can be performed. Once completed, the OS can be

brought back to the native state.

70

REFERENCES

Advanced Micro Devices (2010, June). AMD64 architecture programmers manual
volume 2: System programming.

Ames Jr., S., M. Gasser, and R. R. Schell (1983). Security kernel design and
implementation: An introduction.Computer 16(7), 14–22.

Chou, A., J. Yang, B. Chelf, S. Hallem, and D. Engler (2001). An empirical study of
operating systems errors. InProceedings of the eighteenth ACM symposium on
Operating systems principles, pp. 73–88. ACM.

Cohen, F. (1993). Operating system protection through program evolution* 1.
Computers & Security 12(6), 565–584.

Collberg, C., C. Thomborson, and D. Low (1998). Manufacturing cheap, resilient, and
stealthy opaque constructs. InProceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp. 184–196. ACM.

Cooper, K., T. Harvey, and T. Waterman (2002). Building a control-flow graph from
scheduled assembly code. Technical report, Dept. of Computer Science, Rice
University.

Fenton, N. and N. Ohlsson (2002). Quantitative analysis of faults and failures in a
complex software system.Software Engineering, IEEE Transactions on 26(8),
797–814.

Garay, J. and L. Huelsbergen (2006). Software integrity protection using timed
executable agents. InProceedings of the 2006 ACM Symposium on Information,
computer and communications security, pp. 189–200. ACM New York, NY, USA.

Garfinkel, T., B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh (2003). Terra: A virtual
machine-based platform for trusted computing.ACM SIGOPS Operating Systems
Review 37(5), 206.

Goldman, K., R. Perez, and R. Sailer (2006). Linking remote attestation to secure
tunnel endpoints. InProceedings of the first ACM workshop on Scalable trusted
computing, pp. 24. ACM.

Intel Corporation (2010, March). Intel 64 and IA-32 Architectures Software
Developers Manual Volume 3B: System Programming Guide. Technical report.

Iyer, V., A. Kanitkar, P. Dasgupta, and R. Srinivasan (2010). Preventing overflow
attacks by memory randomization. InProceedings of the 21st IEEE International
Symposium on Software Reliability Engineering, pp. 339–347. IEEE.

Karger, P., M. Zurko, D. W. Bonin, A. Mason, and C. Kahn (1991). A retrospective on
the VAX VMM security kernel.IEEE Trans. Software Eng. 17(11), 1147–1165.

71

Kennell, R. and L. Jamieson (2003). Establishing the genuinity of remote computer
systems. InProceedings of the 12th USENIX Security Symposium, pp. 295–308.

Kennell, R. and L. Jamieson (2004). An analysis of proposed attacks against genuinity
tests. Technical report, CERIAS Technical Report, Purdue University.

Linn, C. and S. Debray (2003). Obfuscation of executable code to improve resistance
to static disassembly. InProceedings of the 10th ACM conference on Computer and
communications security, pp. 290–299. ACM.

McCauley, E. and P. Brongowski (1979). KSOS-The design of a secure operating
system. Inafips, pp. 345. IEEE Computer Society.

McDermott, J. (2007). Xenon: High assurance xen. RetrievedApril 20, 2010:http:
//www.xen.org/files/xensummit_4/XenSummitSpring07_McDermott.pdf.

Nguyen, A. M., N. Schear, H. D. Jung, A. Godiyal, S. T. King, and H. D. Nguyen
(2009). MAVMM: Lightweight and Purpose Built VMM for Malware Analysis. In
2009 Annual Computer Security Applications Conference, pp. 441–450. IEEE.

Ostrand, T. and E. Weyuker (2002). The distribution of faults in a large industrial
software system. InProceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, pp. 64. ACM.

Petroni Jr, N., T. Fraser, J. Molina, and W. Arbaugh (2004). Copilot-a
coprocessor-based kernel runtime integrity monitor. InProceedings of the 13th
conference on USENIX Security Symposium-Volume 13, pp. 13. USENIX
Association.

Rutkowska, J. (2006). Subverting vista kernel for fun and profit. In Black Hat
Briefings.

Sahita, R., U. Savagaonkar, P. Dewan, and D. Durham (2007). Mitigating the
lying-endpoint problem in virtualized network access frameworks. In A. Clemm,
L. Granville, and R. Stadler (Eds.),Managing Virtualization of Networks and
Services, Volume 4785 ofLecture Notes in Computer Science, pp. 135–146.
Springer Berlin - Heidelberg.

Sailer, R. (2008). I.B.M. research - integrity measurementarchitecture. Retrieved
November 3, 2010:http://domino.research.ibm.com/comm/research_
people.nsf/pages/sailer.ima.html.

Sailer, R., X. Zhang, T. Jaeger, and L. Van Doorn (2004). Design and implementation
of a TCG-based integrity measurement architecture. InProceedings of the 13th
USENIX Security Symposium, pp. 223–238.

Schwarz, B., S. Debray, and G. Andrews (2003). Disassembly of executable code
revisited. InReverse Engineering, 2002. Proceedings. Ninth Working Conference
on, pp. 45–54. IEEE.

72

Secunia. Vulnerability report: Vmware esx server 3.x. Retrieved June 6, 2010:
http://secunia.com/advisories/product/10757/.

Secunia. Vulnerability report: Vmware workstation 6.x. Retrieved June 6, 2010:
http://secunia.com/advisories/product/14321/.

Secunia. Vulnerability report: Xen 3.x. Retrieved June 6, 2010:
http://secunia.com/advisories/product/15863.

Seshadri, A., M. Luk, N. Qu, and A. Perrig (2007). SecVisor: Atiny hypervisor to
provide lifetime kernel code integrity for commodity OSes.In Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles, pp. 350.
ACM.

Seshadri, A., M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla (2005). Pioneer:
verifying code integrity and enforcing untampered code execution on legacy
systems.ACM SIGOPS Operating Systems Review 39(5), 1–16.

Seshadri, A., A. Perrig, L. Van Doorn, and P. Khosla (2004). Swatt: Software-based
attestation for embedded devices. InSecurity and Privacy, 2004. Proceedings. 2004
IEEE Symposium on, pp. 272–282. IEEE.

Shankar, U., M. Chew, and J. Tygar (2004). Side effects are not sufficient to
authenticate software. InProceedings of the 13th USENIX Security Symposium, pp.
89–102.

Shinagawa, T., H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hirano,
K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato (2009).
BitVisor: a thin hypervisor for enforcing i/o device security. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, pp. 121–130. ACM.

Srinivasan, R. and P. Dasgupta (2007). Towards more effective virus detectors.
Communications of the Computer Society of India 31(5), 21–23.

Stumpf, F., O. Tafreschi, P. Röder, and C. Eckert (2006). A robust integrity reporting
protocol for remote attestation. InSecond Workshop on Advances in Trusted
Computing (WATC06 Fall). Citeseer.

Tanenbaum, A., J. Herder, and H. Bos (2006). Can we make operating systems
reliable and secure?Computers 39(5), 44–51.

Wang, L. and P. Dasgupta (2008). Coprocessor-based hierarchical trust management
for software integrity and digital identity protection.Journal of Computer
Security 16(3), 311–339.

Weblink. clone(2) - linux system call man page. Retrieved February 15,
2011:http://linux.die.net/man/2/clone.

73

Weblink. fork(2) - linux system call man page. Retrieved February 15,
2011:http://linux.die.net/man/2/fork.

Weblink. getpid(2) - linux system call man page. Retrieved June 6, 2010:
http://linux.die.net/man/2/getpid.

Weblink. Global ip network latency. Retrieved on January 17, 2010:
http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html.

Weblink. Hackers discover hd dvd and blu-ray processing key- all hd titles now
exposed. Retrieved on November 3, 2009:http://www.engadget.com/2007/02/

13/hackers-discover-hd-dvd-and-blu-ray-processing-key-all-hd-t/.

Weblink. Hi-def dvd security is bypassed. Retrieved on November 3, 2009:
http://news.bbc.co.uk/2/hi/technology/6301301.stm.

Weblink. ioctl(2) - linux system call man page. Retrieved June 6, 2010:
http://www.manpagez.com/man/2/ioctl/.

Weblink. Kvm: Kernel-based virtualization driver. Retrieved June 6, 2010:
http://www.linuxinsight.com/files/kvm_whitepaper.pdf.

Weblink. Linux/unix command -socketcall. Retrieved June 6, 2010:
http://linux.about.com/library/cmd/blcmdl2_socketcall.htm.

Weblink. Lxr the linux cross reference, code for kvm. Retrieved October 6, 2010:
http://lxr.linux.no/#linux+v2.6.33/arch/x86/kvm/vmx.c.

Weblink. mprotect(2) - linux system call man page. Retrieved June 6, 2010:
http://linux.die.net/man/2/mprotect.

Weblink. socket(2) - linux system call man page. Retrieved June 6, 2010:
http://linux.die.net/man/2/socket.

Weblink. Virtualization security. Retrieved April 21, 2010:
http://kerneltrap.org/OpenBSD/Virtualization_Security.

Weblink. Vlc media player source code ftp repository. Retrieved on February 24
2010:http://download.videolan.org/pub/videolan/vlc/.

Weblink. Vmware esx server virtual infrastructure node evaluators guide. Retrieved
June 6, 2010:http://www.vmware.com/pdf/esx_vin_eval.pdf.

Weblink. Xen documentation. Retrieved June 6, 2010:
http://www.xen.org/products/xenhyp.html.

Wika, K. G. and J. Knight (1994). A safety kernel architecture, Technical Report
No.CS-94-04. Technical report, Department of Computer Science, University of
Virginia.

74

Wojtczuk, R. (2008a). Adventures with a certain xen vulnerability (in the pvfb
backend).

Wojtczuk, R. (2008b). Subverting the Xen hypervisor.BlackHat USA.

Wurster, G., P. van Oorschot, and A. Somayaji (2005). A generic attack on
checksumming-based software tamper resistance. InSecurity and Privacy, 2005
IEEE Symposium on, pp. 127–138. IEEE.

Zovi, D. (2006). Hardware virtualization-based rootkits.In Black Hat USA.

75

BIOGRAPHICAL SKETCH

Raghunathan Srinivasan was born in Patna, India. He received his schooling through
ICSE (Xth grade) and CBSE (XIIth grade). He moved after XIIth grade to greener
pastures of Chennai for receiving a Bachelor of EngineeringDegree in Computer
Science from Anna University, India. He joined Arizona State University, USA on the
insistence of his sister to pursue a Masters Degree in Computer Science instead of
starting work in the software industry. Not satisfied with obtaining only a MS in 2007,
he continued on after finishing MS to obtain a PhD in Computer Science at ASU
under Dr. Partha Dasgupta. During his PhD he gained useful expertise in operating
systems, kernel programming, computer architecture, placing relocatable executable
code in running processes, virtualization, and device driver programming.

Raghu has worked as an Intern at Intel Corporation in Oregon in 2009 and in
Arizona in 2010. The internships helped him to gain useful tricks into kernel
programming. Raghu has also briefly worked as an unpaid intern at Reliance
Infocomm in Chennai, India. Raghu will be joining Intel Corporation at Chandler,
Arizona after his marriage to Jessica.

76

