
Smooth Surfaces for Video Game Development

by

Ashish Amresh

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2011 by the
Graduate Supervisory Committee:

Anshuman Razdan, Co-Chair
Gerald Farin, Co-Chair

Peter Wonka
Dianne Hansford

ARIZONA STATE UNIVERSITY

May 2011

ABSTRACT

The video game graphics pipeline has traditionally rendered the scene using a

polygonal approach. Advances in modern graphics hardware now allow the rendering

of parametric methods. This thesis explores various smooth surface rendering methods

that can be integrated into the video game graphics engine. Moving over to parametric

or smooth surfaces from the polygonal domain has its share of issues and there is an

inherent need to address various rendering bottlenecks that could hamper such a move.

The game engine needs to choose an appropriate method based on in-game character-

istics of the objects; character and animated objects need more sophisticated methods

whereas static objects could use simpler techniques. Scaling the polygon count over

various hardware platforms becomes an important factor. Much control is needed over

the tessellation levels, either imposed by the hardware limitations or by the applica-

tion, to be able to adaptively render the mesh without significant loss in performance.

This thesis explores several methods that would help game engine developers in mak-

ing correct design choices by optimally balancing the trade-offs while rendering the

scene using smooth surfaces. It proposes a novel technique for adaptive tessellation

of triangular meshes that vastly improves speed and tessellation count. It develops an

approximate method for rendering Loop subdivision surfaces on tessellation enabled

hardware. A taxonomy and evaluation of the methods is provided and a unified render-

ing system that provides automatic level of detail by switching between the methods is

proposed.

i

DEDICATION

To my parents Latha and Amresh, and to my loving wife kiran

ii

ACKNOWLEDGEMENTS

During these long years as a PhD student at Arizona State University, I have had the

opportunity of working with many admirable fellow researchers, students and faculty,

who have been instrumental in building my research. I am ever so grateful to all your

support and guidance.

Foremost, I would like to thank my advisors Dr. Gerald Farin and Dr. Anshuman

Razdan for continued guidance, support and extended patience with my research. I

would like to thank my committee members Dr. Peter Wonka and Dr. Dianne

Hansford for their timely advise, review and feedback at various stages of my

research. I would like to thank all my fellow researchers at Arizona State University

labs, PRISM, Decision Theater, Gaming and I3DEA, and specifically Ryan Anderson,

Christoph Funfzig, Kerstin Mueller and John Femiani for directly impacting my

research and help shape it into ways I never thought was possible. Mark Buchignani at

THQ Game Studios, Phoenix for helping out with the visual fidelity tests and

providing constant feedback.

I would like to thank my family members and friends who have always been there for

me over these long years and have supported me all the way. Above all my parents for

having the faith in me and letting me pursue my dreams and my wife Kiran for being

there from day one and never getting tired of this never-ending journey.

iii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER . 1

1 INTRODUCTION . 1

1.1 Smooth Surfaces for Video Game development 1

1.2 Intellectual Merit . 2

1.3 Contributions of This Work . 3

1.4 List of Publications . 3

2 RELATED WORK . 5

2.1 Related Work in Polygon Tessellation 5

2.2 Related Work in Rendering Smooth Surfaces 6

3 GRAPHICS PIPELINE IN GAMES . 9

3.1 Introduction . 9

3.2 Surfaces in Games . 9

3.2.1 Polygonal Rendering Pipeline 10

3.2.2 Tessellation by Instancing . 11

3.2.3 Hardware Tessellation . 12

3.2.4 Asset Production Pipeline . 13

3.3 Background for Rendering Smooth Surfaces 15

3.3.1 Notation . 15

3.3.2 Continuity . 16

3.3.3 Reflection Lines . 17

3.3.4 Continuous Tangent Frames 18

3.4 Locally Defined Parametric Surfaces 18

3.4.1 Triangular Bézier Patches . 18

iv

Chapter Page
3.4.2 G1 Continuity of Quartic Bézier Triangles 20

3.4.3 PN-Triangles . 21

3.4.4 Triangular Gregory Patches . 22

3.4.5 Bi-Cubic Bézier Patches . 23

3.5 Subdivision Surfaces . 24

3.5.1 Catmull-Clark Subdivision Surface 24

3.5.2 Approximating Catmull-Clark Surfaces 25

3.5.3 The Loop Subdivision Surface 30

3.5.4 Approximating Loop Subdivision Surfaces 31

4 ADAPTIVE TESSELLATION . 39

4.1 Introduction . 39

4.2 Semi-Uniform, 2-Different Tessellation 39

4.2.1 Edge Tessellation Factors based on Vertex/Edge Criteria 39

4.2.2 Edge Tessellation Factors for the 2-Different Case 40

4.2.3 Adaptive Tessellation Pattern with 2-Different Factors 41

4.3 Results . 42

5 UNIFIED RENDERING FRAMEWORK 48

5.1 Introduction . 48

5.2 Unified Rendering Framework . 49

5.2.1 Control Shader . 51

5.2.2 Evaluation Shader . 51

5.3 Results . 52

5.3.1 Visual Fidelity Test . 52

5.3.2 Performance Results . 53

6 CONCLUSION AND FUTURE DIRECTIONS 57

6.1 Summary . 57

6.2 Conclusions and Future Work . 57

v

Chapter Page
REFERENCES . 59

APPENDIX . 63

A SD-2 PSEUDO CODE . 63

B CONTROL, EVALUATION AND FRAGMENT SHADER IMPLEMENTA-

TIONS . 65

BIOGRAPHICAL SKETCH . 70

vi

LIST OF TABLES

Table Page

4.1 Performance for silhouette refinement with max tessellation factor 7 and triangle

strips . 44

4.2 Performance for silhouette refinement with max tessellation factor 7 and not using

triangle strips . 44

5.1 Shader properties for the three methods . 52

5.2 Frame rate comparison for the three methods 53

5.3 Geometric error reported by Metro . 53

vii

LIST OF FIGURES

Figure Page

1.1 Contribution Area - 1 . 1

1.2 Contribution Area - 2 . 1

1.3 Contribution - 1 . 2

1.4 Contribution - 2 . 3

3.1 Polygon rendering pipeline . 10

3.2 Tessellation using instancing . 12

3.3 New graphics pipeline with the tessellator unit 13

3.4 Asset production . 14

3.5 Cross platform rendering using CGFX . 14

3.6 Difference between G1 and C1 continuity 16

3.7 Smooth normals and reflection lines . 17

3.8 Cubic Bézier triangle . 19

3.9 de Casteljau algorithm . 19

3.10 G1 continuity for quartic Bézier . 20

3.11 PN-points . 21

3.12 PN-normals . 21

3.13 Triangular Gregory control polygon . 22

3.14 Control points of a bi-cubic Bézier patch. 24

3.15 Catmull-Clark masks . 25

3.16 One-ring neighborhood of a Catmull-Clark vertex 26

3.17 Catmull-Clark to bi-cubic Bézier masks 26

3.18 Quad Gregory control points . 27

3.19 Tangent fields along the boundary edge 28

3.20 Approximate Catmull-Clark (ACC) subdivision 31

3.21 ACC limitations . 32

3.22 Loop subdivision masks . 33

viii

Figure Page
3.23 Loop limit tangents . 35

3.24 Loop cross tangents . 35

3.25 Rendering comparison . 36

3.26 Rendering reflection lines and normals . 37

3.27 Tetrahedron with long skinny triangles . 38

4.1 SD-2 tessellation pattern . 43

4.2 Results of SD-2 refinement for improving the silhouette on the Sphere and

Bunny models . 45

4.3 Comparison of SD-2 and stitching methods using reflection lines. 46

4.4 SD-2 with continuous LOD . 47

5.1 Unified control points . 49

5.2 Half edge mesh structure . 50

5.3 Unified rendering stages . 50

5.4 Hardware tessellation of PN-triangles . 52

5.5 Visual fidelity results - 1 . 54

5.6 Visual fidelity results - 2 . 54

5.7 Rendering results for Monster Frog . 56

5.8 Approximation error . 56

A.1 SD-2 pseudo code . 64

B.1 Reflection line shader . 66

B.2 Gregory control shader . 67

B.3 Gregory evaluation shader . 68

B.4 Gregory evaluation shader-continued . 69

ix

Chapter 1

INTRODUCTION

Figure 1.1: [Approximate Catmull-Clark patches rendered in Valve Software’s game: Team
Fortress 2] The black lines indicate patch boundaries and the green lines provide crease support

Figure 1.2: [A semi-uniform adaptive tessellation method using vertex snapping] Figure cour-
tesy of (Dyken et al., 2009)

1.1 Smooth Surfaces for Video Game development

In this work, we present research that specifically addresses the following questions:

1. What are the various methods for rendering smooth surfaces using current

generation GPUs?

2. How can the rendering performance in terms of speed and quality be vastly

improved?

3. What strategies can an application developer employ for optimizing the

graphics pipeline?

1

4. How does an application developer change the asset production pipeline to

accommodate for a shift from polygonal to parametric rendering?

1.2 Intellectual Merit

This research builds upon various techniques, algorithms and methods and proposes a

unified rendering system that would help application developers improve their

rendering pipeline. Specifically it provides a comprehensive strategy for rendering

smooth parametric surfaces using modern day GPUs and provides strategies for

moving from polygonal to parametric rendering. It achieves the above by:

• Identifying various game assets for proper application of the rendering method.

• Providing implementation strategies for various parametric approaches.

• Applying these strategies into an adaptive tessellation framework.

It also develops two novel techniques for improving the rendering of triangular

parametric surfaces. In the first technique, an adaptive tessellation algorithm that

vastly improves the performance and visual quality of current methods is presented

and in the second, an approximate rendering method for Loop subdivision surfaces is

developed.

Figure 1.3: [Contribution 1:] A unified rendering framework for approximate Loop subdivi-
sion

2

Figure 1.4: [Contribution 2:] A non-uniform adaptive tessellation algorithm

1.3 Contributions of This Work

This thesis presents the following original contributions by the author

• A unified rendering framework has been developed which enables simultaneous

rendering of various smooth rendering algorithms in a single pass while using a

minimal set of input points. This framework would be important for application

developers interested in moving their architecture from polygonal to parametric

or smooth surface rendering. See Figure 1.3.

• The ACC method (Loop et al., 2009) has been adapted and a variant for

approximate rendering of Loop subdivision surfaces has been proposed.

• A new tessellation algorithm for triangular meshes is developed that takes

advantage of the observation that all three edges of a triangle never get different

tessellation factors. The algorithm is developed in such a manner that it

optimizes the triangles into strips and achieves faster performance while

tessellating into greater number of triangles. See Figure 1.4.

1.4 List of Publications

The following publications and submissions have been accomplished in last two years

under the scope of this research plan.
3

• Ashish Amresh, Christoph Fünfzig, Semi-uniform, 2-different tessellation of

triangular parametric surfaces, Proceedings of the 6th international conference

on Advances in visual computing-Volume Part I, 2010

• Ashish Amresh, John Femiani, Christoph Fünfzig, A Taxonomy and Evaluation

of Methods for Approximating Loop Subdivision Using Tessellation Enabled

GPUs, submitted to The Journal of Graphics and Game Tools.

4

Chapter 2

RELATED WORK

2.1 Related Work in Polygon Tessellation

Rendering of parametric surfaces has a long history (Sfarti et al., 2006). Early

approaches consist of direct scanline rasterization of the parametric surface

(Schweitzer and Cobb, 1982). Modern GPUs have the ability to transform, light,

rasterize surfaces composed of primitives like triangles and more recently also to

tessellate them. Tessellation in particular can save bus bandwidth for rendering

complex smooth surfaces on the GPU. The proposed triangle tessellation approaches

can be distinguished either by the hardware stage they employ or by the geometric

tessellation pattern. Approaches originating from triangular subdivision surfaces use a

1-to-4 split of the triangle, as seen in (Bóo et al., 2001) and (Settgast et al., 2004). For

greater flexibility of the refinement, factors are assigned to the edges of each triangle,

which results in three different tessellation factors for an arbitrary triangle.

Tessellation patterns for this general case go back to several authors after (Moreton,

2001), for example, in (Chung and Kim, 2003) optimized for a hardware

implementation, and in (Schwarz and Stamminger, 2009) for a fast CUDA

implementation.

Non-uniform, fractional tessellation (Munkberg et al., 2008) adds reverse

projection to the evaluation of the tessellation pattern to make it non-uniform in

parameter-space but more uniform in screen-space. In a recent work, (Dyken et al.,

2009) keep a uniform tessellation pattern and snap missing vertices on the border

curve to one of the existing vertices at the smaller tessellation factor. This is a

systematic way to implement gap-filling but it is restricted to power-of-two

tessellation factors and 1-to-4 splits of the parameter domain. In recent years hardware

tessellation has become a reality and significant work has been done to enable direct

rendering of parametric surfaces by providing a hardware tessellator unit (Gee, 2008).

5

Graphics API’s DirecX11 and OpenGL 4.0 provide support for this tessellator unit by

introducing three new stages in the rendering pipeline, see Section 3.2.3 in Chapter 3

for more details. In Chapter 4, we propose a novel tessellation algorithm that is

non-uniform and is applied when the tessellation factors of a triangle are at most

different by two. We show that in most cases this is true and our method improves the

performance in terms of speed as well as number of triangles generated.

2.2 Related Work in Rendering Smooth Surfaces

The basic idea behind subdivision can be traced as far back as to the late 40s and early

50s when G. de Rham used corner cutting to describe smooth curves. In recent times

the application of subdivision surfaces has grown in the field of computer graphics and

computer aided geometric design (CAGD) mainly because it easily addresses the

issues raised by multiresolution techniques and challenges raised for modeling

complex geometry. The subdivision schemes introduced by Catmull and Clark

(Catmull and Clark, 1978a) and Doo and Sabin (Doo and Sabin, 1978) set the tone for

other schemes to follow and schemes like Loop (Loop, 1987), Butterfly (Dyn et al.,

1990) and Modified Butterfly (Zorin et al., 1996), Kobbelt (Kobbelt, 1996) have

become popular. These schemes are classified as either approximating, where the

original vertices are not retained at newer levels of subdivision, or interpolating, where

subdivision makes sure that the original vertices are carried over to the next level of

subdivision. The Doo-Sabin, Cattmull-Clark and Loop schemes are approximating

and Butterfly, Modified Butterfly and Kobbelt schemes are interpolating.

Real-time rendering of subdivision surfaces goes back to (Bolz and Schröder,

2002) where the next-step subdivision patterns are precomputed and stored inside a

texture and (Bolz and Schröder, 2004) where it is performed as a linear combination

of basis functions in the fragment shader. (Shiue et al., 2005) further refines it and

preserves the patterns locally per mesh to reduce memory fetch time. Hardware

implementation of subdivision surface was first proposed in (Pulli and Segal, 1996)

6

for Loop subdivision where they organized the triangles into a set of patches. In

(Bischoff et al., 2000) hardware acceleration is performed by procedurally subdividing

the meshes using a breadth-first or a depth-first approach. Direct evaluation can be

performed on subdivision surfaces by implementing Stam’s methods (Stam, 1998a,b),

however this is not suitable for modeling sharp features and can also be

computationally intensive.

The idea of rendering parametric triangular surfaces in realtime dates back to

the introduction of PN-triangles (Vlachos et al., 2001), developed to improve the

surface quality of low polygonal meshes. The method renders the surface by passing

the control points and normals for the input mesh and evaluating a cubic triangular

Bézier patch and a quadratic normal patch. Quadratic approximation surface (QAS)

(Boubekeur and Schlick, 2007a,b) used the idea of rendering a PN-patch for limit

Loop points and normals. In PNG1-triangles (Fünfzig et al., 2008) this approach was

further improved to satisfy G1 continuity across each edge. Similarly (Walton and

Meek, 1996) provides a method for G1 continuous surface when the boundary curves

are known. (Loop and Schaefer, 2008) first introduced the idea of approximating

Catmull-Clark subdivision surfaces using bi-cubic Bézier patches and then further

refined it in (Loop et al., 2009) for hardware tessellation using Gregory Patches. In

both these methods the resulting surface is C2 continuous for regular meshes and G1

continuous for irregular. (Kovacs et al., 2009) adds creases and corners to this method.

These methods use 16 control points for the regular patches and 20 control points for

the irregular ones. This method is implemented in two passes with the regular and the

irregular patches rendered separately. (Li et al., 2010) provides a method for

approximating the Loop surface by interpolation and their method uses 29 input points

per patch. This method is implemented using two passes for the regular and the

irregular triangles. Our methods for approximating the Loop subdivision surface,

described in Chapter 5, are implemented using a single pass and also provide the

7

ability to switch from one method to the other at runtime.

8

Chapter 3

GRAPHICS PIPELINE IN GAMES

3.1 Introduction

Fast rendering of polygons has been an established process for over a decade and it

has been primarily driven by the processing power of the GPU. The common graphics

libraries DirectX and OpenGL expose this power and developers reconfigure their

applications to deliver increased realism by implementing rendering techniques

Luebke and Humphreys (2007); Kautz (2004); Akenine-Moller and Haines (2002) like

normal mapping, bloom lighting, shadows, and animation techniques Kry et al.

(2002); Baran and Popović (2007) like skinning, rigging and facial animation. In most

cases the polygons are rendered as triangles and animation is performed using a

skeleton, which transforms the vertices of the triangle in realtime.

We have come a long way since the days of doom, this landmark game did

many firsts including the creation of the game engine. The game engine was an effort

to modularize the content creation and display mechanism in games so it can be

separated out from the core game logic, which included game play, features,

mechanics and actions pertinent to the game. In doing so developers were able to use

the same engine or a revision of it for many games simultaneously. This helped

streamline the production process and bring efficiency to the game industry. The

Quake engine by ID software was the first major example where multiple games were

produced using the same engine. In this chapter we describe the evolution of the

graphics engine in games and how that ties to the asset creation process.

3.2 Surfaces in Games

In this section we describe the process of rendering inside a game engine and the steps

that need to be taken for content to move from the creation tool to the screen. We also

describe relevant methods that provide for smooth rendering of surfaces or patches.

We describe two ways of achieving tessellation, a necessary condition for rendering

9

patches, one using the hardware tessellator and other by instancing a tessellation

pattern using vertex and index buffer objects. We then describe current methods for

rendering triangle as well as quad patches.

3.2.1 Polygonal Rendering Pipeline

3D
Application
or Game

3D API:
OpenGL

or Direct3D

GPU
Front End

Programmable
Vertex Processor

Primitive
Assembly

Rasterization &
Interpolation

Raster
Operations

Frame Buffer

Programmable
Fragment
Processor

3D API
Commands

GPU
Command &
Data Stream

Vertex Index
Stream

Pretransformed
Vertices

Transformed
Vertices

Assembled
Polygons, Lines

& Points

Pixel
Location
Stream

Rasterized
Pretranformed

Fragments
Transformed
Fragments

Pixel
Updates

CPU - GPU Boundary

Figure 3.1: Polygon rendering pipeline

The central component of any game engine is the graphics core known as the

renderer. The renderer closely connects to the graphics processing unit (GPU) at work

and uses either DirectX or OpenGL to ultimately paint the picture on the screen. What

is ultimately seen on the screen is a combination of various stages in the graphics

pipeline and depends on many factors including the GPU, the type of the game, the

audience and the controls the game provides. Most engines however are broad in their

capabilities and are benchmarked on how they perform with respect to the current

state of the art in 3D rendering. Figure 3.1 describes the polygonal rendering pipeline,

the most prevalent pipeline in game engines today. The major stages of the pipeline

are as follows:

• Determine what objects are in the scene, locate their assets e.g. textures,

animations, geometry and locate the camera properties.

10

• Engine performs visibility and culling operations on the set of objects to

determine which ones to draw and with what properties.

• The engine passes this subset to the renderer which in turn performs back face

culling and transforms the objects from world to screen space in the vertex

shader.

• The primitive assembly organizes the vertices into points, lines or triangles.

• The pixel shader performs the per fragment operations and sends the

transformed fragments to the rasterizer, which in turn sends the final per pixel

values to the frame buffer.

In this setup the 3D objects are rendered as polygons and the detail is captured

and stored in bump or normal maps Policarpo et al. (2005). There are several tools

that can reduce the polygon count for a high resolution model and store the detail in a

normal map, the most common one being ZBrush Spencer (2008). In this approach the

fragment shader does a texture lookup from the normal map and on a per pixel basis

performs the lighting calculation to give the appearance of a highly detailed surface.

3.2.2 Tessellation by Instancing

The idea was first proposed in Boubekeur and Schlick (2005) and mainly simulates

tessellation by instancing. With hardware and API support developed based on this

idea the game engine can perform patch tessellation and render parametric surfaces

using this feature. As shown in Figure 3.2 the CPU stores a coarse mesh and a

refinement pattern is preserved inside vertex and index buffer objects and applied for

each triangle in the coarse mesh during render time. Displacement data can be looked

up and applied after performing a barycentric evaluation on the tessellated mesh to

provide additional detail to the surface. Graphics APIs provide a mechanism to store

the pattern and invoke it in the vertex shader at render time. One of the limitations is

11

Figure 3.2: Tessellation using instancing

that level of detail cannot be changed on the fly as the refinement patterns are static.

Several solutions have been proposed for adaptive tessellation using instancing;

Boubekeur and Schlick (2008) use a matrix of refinement patterns and constrain the

tessellation factors so that the size of this matrix is manageable. Dyken et al. (2009)

use a snap function to collapse triangles and patch the adjacent faces correctly. In

Chapter 4 we provide a new tessellation algorithm that is semi-uniform, local and does

not require matrix storage or patching.

3.2.3 Hardware Tessellation

Subdivision surfaces have been available in modeling and animation tools and most

asset production pipelines rely heavily on them. This is true in the case of games

where they are the primary mode of rendering high quality cut-scenes. With the

addition of a hardware tessellator unit to the graphics pipeline in Direct3D11 and

OpenGL 4.0, the asset production pipeline can be simplified to a greater detail by

having the content creators model both the cut-scenes and application level assets

using subdivision surfaces. The tessellator unit adds two new programmable stages

(See Figure 3.3), the hull and domain in Direct3D11 and control and evaluation in

OpenGL 4.0, to the graphics pipeline. The control shader takes in the control points
12

for the input mesh, performs geometric operations, and passes a regular mesh to the

tessellator unit. The tessellator adds edge tessellation factors for this input mesh and

constructs a triangulated pattern (See Figure 3.3) and sends the parameter values to the

evaluation shader. The evaluation shader evaluates the surface for u, v, w values

passed from the tessellator and the controls points from the control shader. The

evaluation shader is responsible for performing the appropriate parametric

calculations for an input mesh of given control points. The main advantage is in the

fact that we now store and manipulate only the control points for rendering and

animation purposes. With this process any parametric surface can be rendered using

hardware tessellation.

Figure 3.3: New graphics pipeline with the tessellator unit

3.2.4 Asset Production Pipeline

Game assets include everything that is not code Arnaud (2010). The game asset

pipeline is the path that all models, textures, sound effects, levels, animations and

other assets follow to go from the tool in which they were created to the actual game.
13

Figure 3.4: Asset production pipeline, model courtesy of Joost van Dongen

CgFX File

 GUI
 Parameters
 Annotations Cg Shader

DirextX 8 Shader

Other ...

Xbox Shader PS2 Shader

Parse

Cg

CompilerOffline Compile

Runtime
Compile

DirectX OpenGL

Application

Figure 3.5: Cross platform rendering using CGFX

14

This path can include export, optimization, checking for correctness, pre-calculating

data and the content management system that stores this data to keep track of versions.

The main component of this pipeline is the 3D modeling, texturing and animation of

game objects. As shown in Figure 3.4, a model has several assets associated with it

including geometry, textures, sounds and animations. Most game engines interface

with the asset creation software by the way of an intermediate production tool or

platform that consolidates all the assets to be engine ready. For the purposes of

rendering 3D models by polygonal or parametric methods, preprocessing of the

original asset needs to be performed and represented in a uniform manner. One way of

standardizing this process is by defining an effect file that contains the relevant

rendering information for the model. We use the popular CGFX effect format

described in the CG tutorial Fernando and Kilgard (2003) for our implementation

discussions in Chapter 5. Figure 3.5 shows the cross platform rendering ability of the

CGFX file format. The format helps illustrate multiple effects by breaking them into

several techniques to achieve multi-pass rendering for the model. It also allows the

engine to specify non-programmable rendering states such as blending and depth-test.

3.3 Background for Rendering Smooth Surfaces

In this section we define the building blocks that are necessary during several stages of

our research. Since the tessellation hardware needs to construct patches that are

locally defined and since our goal is to achieve smooth looking surfaces, methods are

needed that convert common subdivision algorithms into patches. We discuss the

background necessary for achieving this conversion and present some existing

approaches that are currently the state of the art.

3.3.1 Notation

This thesis uses the following notation:

• All control points and vectors are denoted by boldface letters, for example b00

15

denotes a control point of a Bézier surface.

• All scalars are denoted by non boldface letters.

• All points that are intermediate and not part of the control mesh are denoted by

capital non boldface letters.

• All functions, including those that generate surfaces are denoted by capital

boldface letters.

3.3.2 Continuity

G1 C1

Figure 3.6: Difference between G1 and C1 continuity

Surfaces are said to exhibit G0 continuity when any two faces on the surface

share a common edge except at the boundary. G0 surfaces that are differentiable once

have a unique tangent plane and are called G1 or geometrically continuous surfaces.

These exhibit a unique normal n at every point on the surface and it is computed as the

cross product of two independent tangents in the tangent plane. In order for two

adjacent patches to appear visually smooth, see Figure 3.7, they need to be G1, which

means that for any point on the boundary curve the tangent along the edge and the

tangents pointing towards the inside of each patch must be on the same plane. For

surfaces to be C1 continuous, they have to satisfy geometric continuity and the tangent

16

planes need to be an affine map of the domain triangles. Figure 3.6 shows two

adjacent cubic triangles that are G1 and C1 continuous. For more detailed explanation

on continuity conditions see Peters (2002). When the boundary curves for any two

adjacent patches are known, Piper (1987) shows that cubics do not have enough

degrees of freedom to enforce tangent plane continuity across the shared boundary.

Therefore a quartic needs to be constructed for ensuring G1 continuity using Bézier

triangles. The tangent plane continuity conditions are described in Section 3.4.

3.3.3 Reflection Lines

Figure 3.7: Smooth normals rendered as color for a G1 surface (left), reflection lines:
G1 (middle) and G0 (right)

A well known surface interrogation technique Hagen et al. (1992) is by

rendering reflection lines. Even and continuous flow in these lines indicate a smooth

surface. In terms of application they are useful in comparing approximation

techniques with the original methods by visually representing how close the lines

match. Figure 3.7 compares the reflection lines for a a G1 surface with a G0 surface.

Reflection lines are implemented by a technique described in Klass (1980), wherein

parallel light lines are projected on to the surface that can be seen from a fixed

view-point. Let X(u, v) be a surface and n be the normal on the surface and a light

line can be defined for a parameter t as L(t) = L0 + ld ∗ t, where L0 is the light

position and ld is the light direction vector. Then the reflection line is the projection of

L(t) on X(u, v) as seen from a fixed eye point A. Appendix B shows the

17

implementation of reflection lines in the fragment shader.

3.3.4 Continuous Tangent Frames

In addition to rendering smooth surfaces at a significantly less cost, moving to the

parametric domain has other advantages for game developers. Tangent frame is

common term given to tangent space basis vectors used for calculations during normal

mapping. Tangent frame for each vertex has to be pre-calculated and then skinned to

produce the needed detail during normal mapping. With the parametric approach

vertex operations such as skinning are performed before tessellation on a small

number of control points. The mesh is tessellated, smooth normals are then calculated

per vertex relative to the animation operations. This reduces the complexity of the

normal mapping pipeline and improves shading quality. For a detailed explanation of

the interplay between the tangent frame, animation pipeline and normal mapping refer

Lengyel (2004).

3.4 Locally Defined Parametric Surfaces

We split our discussion into methods that deal with parametric patches and those that

deal with subdivision surfaces. Most realtime rendering applications and especially

games render the polygons as triangles. The focus of this dissertation is therefore on

rendering smooth triangles and leads to the development of a unified rendering

framework presented in Chapter 5. However from a modeling standpoint quads are

easier to represent smooth surfaces and we discuss methods that deal with smooth

rendering of quads in the next section. In the next few sections we describe the

construction of triangular and tensor product Bézier surfaces and methods for

approximating subdivision surfaces by constructing Bézier patches.

3.4.1 Triangular Bézier Patches

A parametric triangular patch in Bézier form is defined by:

P (u, v, w) =
∑

i+j+k=n

n!
i!j!k!

uivjwkbijk (3.1)

18

b210

b030
b120

b300

b111

b201

b102

b003

b012

b021

Figure 3.8: Control points of a cubic Bézier patch

where bijk are the control points of the Bézier triangle and (u, v, w = 1 − u − v) are

the barycentric coordinates with respect to the triangle Farin (2002). Setting n = 3

gives a cubic Bézier triangle as used in the following construction. see Figure 3.8.

Figure 3.9: Point on the surface and the tangent plane(white triangle) calculated using
the de Casteljau algorithm

The de Casteljau algorithm for triangular patches is a n recursive linear

interpolation algorithm where n is the degree of the patch. Figure 3.9 shows the

construction for a cubic Bézier triangle and and a point on the surface is obtained by

repeating the interpolation process for 3 times. Another important benefit of this
19

algorithm is that it provides the tangent plane at n − 1 recursion level. So for the cubic

case the tangent plane is shown by the white triangle in Figure 3.9. One can therefore

simultaneously evaluate the point and normal at any given parameter value using the

de Casteljau algorithm.

3.4.2 G1 Continuity of Quartic Bézier Triangles

p0

p4

p1

p3

v0

v3

v̂0

v̂3

v

v̂

p0

pn

Figure 3.10: G1 Continuity for a quartic Bézier patch boundary , the blue plane is the
result of applying de Casteljau algorithm on the G1 constraints

Consider two quartic triangular patches that share an edge as shown in Figure

3.10 and let p(t) be a point on the boundary curve common to the two patches. This

point can be constructed using de Casteljau algorithm for both these patches. The

algorithm also provides the tangent planes for this point, calculated both times. For

the two patches to be G1 the two planes have to be coplanar for all values of t. The

points p0, v, pn, v̂ have to be on the same plane. This is shown in Figure 3.10. Which

means that the lines p0pn and vv̂ intersect. Therefore for all t Farin (2002), there are

functions λ(t) and µ(t) such that:

(1 − λ(t))v(t) + λ(t)v̂(t) = (1 − µ(t))p0(t) + µ(t)pn(t) (3.2)

20

Figure 3.10 shows the shared edge of a quartic Bézier patch and for enforcing

G1 across the two patches, we only need to consider the two parallel rows of control

points for each patch.

3.4.3 PN-Triangles

o
n1

P1

P2

1
3

2
3

b210

Figure 3.11: The edge point b210 of the Bézier triangle is calculated by projecting
(2P1 + P2)/3 into the tangent plane at P1

�
�

K

7

O

P1 P2

n1
n2

n110

Figure 3.12: Quadratic interpolation of the normals is needed to pick up inflection
points

Vlachos et al. Vlachos et al. (2001) propose curved PN-triangles for

interpolating a triangle mesh by a parametric, piecewise cubic surface. This

established technique generates a G0 continuous surface, stays near the original

control polygon and thus avoids self-interference. At first, the PN scheme places the

21

intermediate points Bijk at the positions (ib300 + jb030 + kb003)/3, i + j + k = 3,

leaving the three corner points unchanged. Then, each control point bijk on the border

is constructed by projecting the intermediate point Bijk into the plane defined by the

nearest corner point and it’s normal, see Figure 3.11. Finally, the central control point

b111 is constructed by moving the point B111 halfway in the direction M − B111 where

M is the average of the six control points computed on the borders as described above.

The construction uses only data local to each triangle: the three triangle vertices and

its normals. This makes it especially suitable for a triangle rendering pipeline.

Quadratic interpolation of the normals is performed, see Figure 3.12, for picking up

shape variations. The mid-edge normal is calculated by reflecting the average of the

two end normals across a plane perpendicular to the edge.

3.4.4 Triangular Gregory Patches

Triangular Gregory Quartic Bezier

Figure 3.13: Control points for triangular Gregory and its relation with quartic Bézier

A triangular Gregory patch Gregory (1974); Chiyokura et al. (1990) is a

modified form of a quartic Bézier triangle where in the boundary curves are cubic and

the interior surface is a quartic. However the inner control points of the patch are

dependent on the (u, v, w = 1 − u − v) parameter values on the domain. This leads to
22

the formulation of interior points represented by F0, F1, F2 in Figure 3.13 for each

parameter value in the domain. This construction was introduced by Gregory to ensure

that a pair of patches meeting at a shared edge are tangent plane continuous across that

edge. The patch is evaluated by the following equation:

T (u, v, w) = u3p0 + v3p1 + w3p2 +

3uv(u + v)(ue+
0 + ve−

1) +

3vw(v + w)(ve+
1 + we−

2) +

3wu(w + u)(we+
2 + ue−

0) +

12uvw(uF0 + vF1 + wF2)

where

F0 = wf−
0 + vf+

0
v + w

,

F1 = uf−
1 + wf+

1
w + u

,

F2 = vf−
2 + uf+

2
u + v

(3.3)

Figure 3.13 shows the control point labeling for the Gregory Patch and how it maps to

a quartic Bézier patch.

3.4.5 Bi-Cubic Bézier Patches

Smooth surface rendering is possible for quad patches and can be determined locally

by converting the content data to bi-cubic Bézier patches. A n-degree parametric

quadrilateral patch in Bézier form is defined by

P (u, v) =
n∑

i=0

n∑
j=0

bi,jhi (u) hj (v) , hk (t) = n

(n − k)!k!
(1 − t)n−k tk (3.4)

where bi,j are the control points of the Bézier quad and (u, v) are the parameter values

with respect to the quad Farin (2002). Setting n = 3 gives a bi-cubic Bézier quad as

used in the following construction. see Figure 3.14.
23

b00 b10 b20 b30

b01

b02

b03 b13 b23 b33

b11 b21

b12 b22
b32

b31

Figure 3.14: Control points of a bi-cubic Bézier patch.

3.5 Subdivision Surfaces

In these section we describe the implementation details for various subdivision surface

rendering methods and how they can be approximated using Bézier and Gregory

patches. By starting with an input mesh consisting of polygons, regular polygons are

directly converted to Bézier patches and irregular polygons are approximately

rendered using Gregory patches. The methods described in this section perform

operations on the one-ring neighborhood of the input mesh to derive the various patch

control points.

3.5.1 Catmull-Clark Subdivision Surface

The Catmull-Clark scheme was described in Catmull and Clark (1978b). It is based on

the tensor product bi-cubic spline. The masks are shown in Figure 3.15. The scheme

produces surfaces that are C2 continuous everywhere except at extraordinary vertices,

where they are C1 continuous.

The limit point and limit tangents for the Catmull-Clark scheme to include

both quad and triangles was derived in Loop et al. (2009) and can be calculated by the

following equations:
24

1
4

1
4

1
4

1
4

1
16

1
16

1
16

1
16

3
8

3
8

β
k

β
k

β
k

β
k

γ
k

γ
k

γ
k

γ
k

γ
k

1 − β − γ

Figure 3.15: Masks for calculating the face(top-left), edge(bottom-right) and ver-
tex(right) points using Catmull-Clark subdivision, β = 3/2k and γ = 1/4k and k
is the valence at the vertex

p∞
0 = n − 3

n + 5
p0 + 4

n (n + 5)

n−1∑
i=0

(Mi + Ci) (3.5)

t0,i = 2
n

n−1∑
i=0

((
1 − σ cos

(
π

n

))
cos

(2π ∗ i

n

)
Mi + 2σ cos

(2π ∗ i + π

n

)
Ci

)
(3.6)

Mi and Ci are the midpoints and centroids of the ith edge surrounding p0. This

is shown in Figure 3.16.

It naturally follows that the limit normal can be calculated by the cross product

of two tangent vectors at the limit point. Direct evaluation for the surface at arbitrary

u, v values is possible and presented in Stam (1998a).

3.5.2 Approximating Catmull-Clark Surfaces

In this section we describe the Approximate Catmull-Clark (ACC) subdivision method

that works with meshes that are quad-dominant, implying that the mesh has mostly
25

p0

Mi−1

Ci−1

pi−1

pi

pi+1

pi+2

Mi+1

Ci

Ci+1

Figure 3.16: The one ring neighborhood of p0 showing Ci and Mi

quads and a few triangles. Rendering quads has been available for game engines in

past few iterations of the graphics hardware, however application have been slow to

adapt. With the availability of the hardware tessellation unit and the ability to merge

the asset production pipeline to create both high quality cut scene content and in-game

content, game engines will be ready for incorporating Catmul-Clark surfaces.

Figure 3.17: Masks for converting a regular Catmull-Clark quad into a bi-cubic Bézier
control mesh

26

b00 b10 b20 b30

b01

b02

b03 b13 b23 b33

b32

b31f+
0

f−
1

f+
1

f−
2

f+
2f−

3

f+
3

f−
0

Figure 3.18: The quad Gregory control polygon

The fastest method to approximate Catmull-Clark surfaces is by applying the

point-normal strategy to quads in a manner similar to PN-triangles Vlachos et al.

(2001). The limit Catmull-Clark points and normals can be passed to the control

shader and a bi-cubic Bézier patch can be constructed from the boundary curves. In

Loop et al. (2009) a method for approximating Catmull-Clark surfaces using a

combination of bi-cubic Bézier and Gregory patches is proposed. The Bézier patches

are used for regular quads, all vertices have a valence of 4, and the irregular quads and

triangles are approximated by using quad and tri Gregory patches. For regular quads

the inner Bézier points are calculated by the masks shown in in Figure 3.17, a)

calculates the four inner points, b) the edge points and c) the corner points. The

construction of the tri Gregory patch is shown in Section 3.4.4 and Figure 3.18 shows

the construction for quads. The evaluation is performed using Equation 3.4, the

regular case uses 16 control points calculated by the masks shown in Figure 3.17 and

for irregular quads the 20 Gregory control points are calculated using the limit points

in Equation 3.5 and the limit tangents in Equation 3.6 and the inner control points are

calculated for each u, v by the following equation:

27

b11 = uf−
0 + vf+

0
v + u

, b21 = (1 − u) f−
1 + vf+

1
1 − u + v

,

b12 = (1 − u) f+
2 + (1 − v) f−

2
2 − u − v

, b22 = uf−
3 + (1 − v) f+

3
1 + u − v

(3.7)

Similarly Equations 3.15 and 3.16 are used for the triangular Gregory patch.

The last step is to calculate the inner Gregory points or the f points shown in Figures

3.13 and 3.18. For tangent plane continuity the versal (along the edge) and the two

traversal (pointing to the interior) derivatives are linearly dependent. See Figure 3.19.

v0 v1
v2

v3

u0u0
u1

u2

v̂0

v̂0 v̂0

v̂0

Figure 3.19: The three tangent fields that satisfy the continuity constraints

u(t) = B2(t).[u0, u1, u2]

v(t) = B3(t).[v0, v1, v2, v3]

v̂(t) = B3(t).[v̂0, v̂1, v̂2, v̂3] (3.8)

28

The values of u vectors and v0, v̂0, v3, v̂3 are known. The remaining v vectors

can be written in terms of the f points. Value of d is set to 3 for quads and 4 for

triangles. The notation is shown in Figure 3.19.

v1 = d(f+
0 − e+

0)

v2 = d(f−
1 − e−

1) (3.9)

The condition for tangent plane continuity is given by:

((1 − t)c0 − tc1)u(t) = 1/2(v(t) + v̂(t)) (3.10)

where ci = cos(2π/ni), i = 0, 1 and n0, n1 are the valence at t = 0 and t = 1. Note

that this condition takes the same form as Equation 3.2 by choosing µ(t) as

((1 − t)c0 − tc1) and λ(t) as 0.5.

Substituting t = 1/3 in the above equation

2
3

c0u1 − 1
3

c1u0 = 1/2(v1 + v̂1) (3.11)

Equation 3.11 will be satisfied by constructing a traversal vector r such that

v1 = 2
3

c0u1 − 1
3

c1u0 + r

v̂1 = 2
3

c0u1 − 1
3

c1u0 − r (3.12)

The value of r is chosen in such a manner that it satisfies the case when the

patch is regular, i.e. n = 4.

r+
0 = 1

3
(Mi+1 − Mi−1) + 2

3
(Ci − Ci−1) (3.13)

29

Equating 3.9 with 3.12 the f point is obtained as:

f+
0 = 1

d
(c1p0 + (d − 2c0 − c1)e+

0 + 2c0e
−
1 + r+

0 (3.14)

Figure 3.20 shows the results of rendering this method on a tessellation

enabled GPU. The red regions represent irregular patches rendered using Gregory

patches. The resulting surface is G1 continuous as indicated by the smooth normals.

Figure 3.21 shows some of the limitations of the method. The tangents at the corners

do not align with the boundary edges when there are skinny and long faces in the

mesh. The rendered surface has wells and undulations when the algorithm is applied

to a triangulated version of the same mesh, it is evident from the rendering that the

method does not provide visually pleasing results for triangles. In the next section we

develop a variant of the above approach for approximating the Loop subdivision

scheme on triangular meshes.

3.5.3 The Loop Subdivision Surface

The Loop subdivision scheme Loop (1987); Amresh et al. (2002) is a face split

scheme based on triangular box splines Seidel (1992) and at every subdivision step it

calculates a new vertex for each existing one and a new vertex for each edge. The

masks for these are shown in Figure 3.22. A limit point is the result of applying

infinite number of subdivision steps to the input vertex or in our case the input control

points. Given a vertex p0 and its 1-ring of adjacent vertices pi, i = 1,n, we can

calculate the limit point and limit tangents for the Loop control mesh directly Li et al.

(2010) as shown by Equations 3.15 and 3.16:

p∞
0 = ωn

n + ωn

p0 + 1
n + ωn

n∑
i=1

pi

where ωn = 3n

8αn

and αn = 5
8

−
(3

8
+ 2

8
cos 2π

n

)2
(3.15)

30

Figure 3.20: ACC Subdivision, top row: original mesh, irregular patches in red, bottom
row: rendered surface and surface normals

t0,i =
n−1∑
j=0

2
n

cos 2πj

n
p1+mod(i+j−1,n), i = 1,n (3.16)

It naturally follows that the limit normal can be calculated by the cross product of two

tangent vectors at the limit point. Direct evaluation for the loop scheme at arbitrary

u, v, w values is possible and presented in (Stam, 1998b).

3.5.4 Approximating Loop Subdivision Surfaces

In this section we will illustrate how to approximate the Loop subdivision surface by

using the points, normals and tangents obtained in Section 3.5. We start by

introducing methods that require less input control points and then move on to those
31

Figure 3.21: Limitations: Improper alignment of the tangents (left) and tri patch ren-
dering (right)

that would require more. We also discuss alternate implementation details in the

control shader and provide performance trade-offs.

PN-Triangles

The PN-Triangles method is described in Section 3.4. The construction uses only data

local to each triangle: the three triangle vertices and its normals. This makes it

especially suitable for a triangle rendering pipeline. Substituting the Loop limit points

and normals from Equations 3.15 and 3.16, we get an approximate Loop

representation using PN-Triangles.

Walton-Meek Triangles

Walton and Meek (Walton and Meek, 1996) proposed the WM method for achieving

G1 patch from the boundary curves of a triangular control net. Both the WM method

and the Gregory Method, described in the next section, construct a triangular Gregory

patch to evaluate the surface. The boundary curves are obtained in the same manner as

PN-triangles and the inner points are calculated for each u, v, w, this ensures that any

two neighboring triangles have a common tangent plane along their shared boundary.

The main difference between the WM and Gregory method is based on where and

how the calculations for the tangent plane continuity occur, the WM performs this

32

3
8

1
8

3
8

1
8

β

β

β

β

β
β

1 − kβ

k = valence

β = 1
k
(5

8 − (3
8 + 1

4 cos 2π
k

)2)

Figure 3.22: The masks for the Loop subdivision scheme, edge mask (left) and vertex
mask (right)

inside the control shader while the Gregory processes this information and sends it to

the control shader. We pass the limit Loop points (3) and normals (3)a total of 6

control points for this method. The WM method constructs the inner points based only

on the boundary control points as the 1-ring neighborhood is not available inside the

control shader. It is therefore not as smooth as the Gregory method but much smoother

than the PN method. A simple explanation of the WM method is provided below, for

details refer to (Walton and Meek, 1996):

• Degree elevate the cubic boundary curve, formed by the limit Loop points and

normals, to a quartic and get the boundary control points.

• Since each interior point of a quartic (F0, F1, F2) is associated with two

boundary curves, it is determined twice to obtain the 6 interior Gregory control

points.

33

• For each u, v, w evaluate the patch by blending the six Gregory points and

obtaining the interior quartic points as shown in Equation 3.3.

Gregory Triangles

As shown in Figure 3.13, we need to calculate 15 control points for evaluating a

triangular Gregory surface. For each u, v, w parameter value the boundary control

points are degree elevated from cubic to quartic using the two corner and two edge

points and the the inner quartic points F0, F1, F2 are calculated from the inner six

Gregory control points as shown in Equation 4. So an approximation of the Loop

surface is possible by calculating these 15 control points, 3 corner, 6 edge and 6 inner

points for the Gregory triangle.

The corner points are set to the limit Loop control points, see Equation 3.15,

the edge points are calculated using the limit Loop tangents, see Equation 3.16,

however we need to choose the right length for these tangents to get the edge points.

We also know that the derivative at the end points of a Gregory patch is 3(e+
0 − p0),

therefore we can solve e+
0 by

e+
0 = p0 + 2

3
t0,1λ (3.17)

where t0,1 is the Loop limit tangent from p0 to p1 and λ is chosen to be the

subdominant eigenvalue of the Loop surface and is given by

λ = 3
8

+ 1
4

cos
(2π

n

)
(3.18)

We have to now construct the inner points so that the surface is tangent plane

continuous across the edge. We use the method described in Section 3.5.2 of Chapter

3, we find that setting the traversal vector r to be equal to the Loop surface cross

tangents (Figure 3.24), provides the best results. The traversal vector r is calculated

by performing two levels of Loop subdivision on the original control mesh and

evaluating the cross tangents at 1/4, 1/2, 3/4 along each edge and then linearly
34

Figure 3.23: Lines showing Loop limit tangents in black, the original mesh in red, the
inner points in blue and the result of rendering (right)

interpolating them to find the values at 1/3, 2/3. This construction is not strictly G1 in

all cases but, based on our experiments, perfectly adequate for gaming applications.

+

 +

+

Figure 3.24: Loop Cross tangents at 0.25, 0.5 and 0.75 shown by tw1, tw2 and tw3

The equation for the inner points is given by

f+
0 = 1

4
(
c1p0 + (4 − 2c0 − c1) e+

0 + 2c0e
−
1 + r

)
(3.19)

where c0 = 2π
n0

and c1 = 2π
n1

, n0 and n1 are the valence at p0 and p1

Figure 3.25 shows the the face, bunny and big guy models rendered using the

three methods. Figure 3.26 shows the reflection lines and normals on the face mesh

35

for each of the three methods and the Loop scheme. Figure 3.27 shows the ability of

this method to handle arbitrary meshes with long and skinny triangles.

Face Bunny Armadillo

Figure 3.25: The Face, Bunny and Armadillo models rendered using PN, WM, Gregory
and Original Loop methods

36

Method Reflection Lines Normals

PN

WM

Gregory

Loop

Figure 3.26: Reflections lines (left) and surface normals (right) for the Face model

37

Figure 3.27: Ability to handle long skinny triangles as shown by the original control
polygon in red and the corresponding smooth normals

38

Chapter 4

ADAPTIVE TESSELLATION

4.1 Introduction

In this work, we restrict the edge tessellation factors in such a way that only two

different tessellation factors can occur in each triangle. For such cases, a tessellation

pattern can be used, which is much simpler and more regular than in the regular case.

The tessellation code can output the resulting triangles as triangle strips, which makes

this approach also suitable for an inside hardware implementation. We will

demonstrate this advantage by implementing the pattern in a geometry shader (Section

4.2.3). In Section 4.2.2, we analyze which assignments are possible with two different

factors and show that many important cases are contained, i.e., factors based on the

distance to the camera eye plane and to the silhouette plane. We show visual results

and GPU metrics obtained with our implementation in Section 4.3.

4.2 Semi-Uniform, 2-Different Tessellation

Semi-uniform 2-Different (SD-2) is our proposed pattern for adaptive tessellation

where the tessellation factors on the three edges of a triangle are either all same or

only two different values occur. As parametric triangular surfaces are composed of

patches, it is necessary to do a tessellation of patches. In order to change the

tessellation based on various criteria, the computation of suitable tessellation factors

and an adaptive tessellation pattern for them is necessary. In the following sections,

we describe both these components.

4.2.1 Edge Tessellation Factors based on Vertex/Edge Criteria

For adaptive tessellation of a triangular parametric, normally tessellation factors are

computed per vertex or per edge. If computed per vertex then they are propagated to

tessellation factors per edge. Given the three edge tessellation factors (fu, fv, fw), the

subdivisions of the three border curves into line segments are given by

p(0, i/fu, (fu − i)/fu), i = 0 . . . ⌊fu⌋, p(j/fv, 0, (fv − j)/fv), j = 0 . . . ⌊fv⌋, and

39

p(k/fw, (fw − k)/fw, 0), k = 0 . . . ⌊fw⌋. A gap-free connection to the mesh neighbors

is guaranteed by a tessellation that incorporates these conforming border curves.

An assignment of edge tessellation factors can be based on criteria like vertex

distance to the camera eye plane, edge silhouette property, and/or curvature

approximations using normal cones Settgast et al. (2004).

4.2.2 Edge Tessellation Factors for the 2-Different Case

For our following tessellation pattern, we need that in the edge tessellation factor

triple (f∗
u , f ∗

v , f ∗
w) only two different values f∗

u = f ∗
v and f ∗

w occur.

Approximation of an arbitrary tessellation factor assignment (fu, fv, fw),

fu ̸= fv, fv ̸= fw, fu ̸= fw by a 2-different one (f ∗
u , f ∗

v , f ∗
w) is a non-local problem.

Therefore, we avoid the general case and guarantee that the tessellation factor

calculation never produces 3-different factors for the edges of a triangle. Then SD-2

can be used for a faster and simpler tessellation.

Let D : V (M) → R be a level function on the vertices of the mesh, which

means d is strictly monotone increasing on shortest paths {v0 = x ∈ I, . . . , vl = y},

i.e. D(vi−1) < D(vi), from a vertex x ∈ I in the set

I = {x ∈ V (M) : ∀y d(x) ≤ d(y)} of minimum elements. Given a level function D,

it is easy to derive a tessellation factor assignment f ∗, which is only 2-different, as

follows f ∗({s, e}) := G(min{D(s), D(e)}) with a normally monotone, scalar

function G. Note that the level function is only used to impose an order on the mesh

vertices, which is easy to compute based on the vertex coordinates. We give examples

of tessellation factor assignments below, which are constructed with the help of a level

function as described.

Distance from the camera eye plane. The smallest distance dp to a plane, for

example, the camera eye plane, naturally is a level function, as defined above. A

semi-uniform edge tessellation factor assignment (f ∗
u , f ∗

v , f ∗
w) for a triangle then is

40

f ∗
edge := G(min{D(sedge), D(eedge)}) with a linear function

G1(d) := fmax
dmax−d

dmax−dmin
+ fmin

d−dmin
dmax−dmin

or a quadratic function

G2(d) := fmax−fmin
(dmin−dmax)2 (d − dmax)2 + fmin mapping the scene’s depth range [dmin, dmax]

to decreasing tessellation factors in the range [fmin, fmax].

Silhouette refinement. Silhouette classification is usually done based on a

classification of the vertices into front-facing (n(E − v) ≥ 0) and back-facing

(n(E − v) < 0) using the vertex coordinates v, vertex normal n and the camera eye

point E. The distance function Dsilh to the silhouette plane is a level function as

defined above. But the function n(E − v) is easier to compute by just using the

vertices and vertex normals of the mesh. It is not a level function though, but an edge

is crossed by the silhouette plane in case the two incident vertices are differently

classified. Each triangle can have exactly 0 or 2 such edges. An edge tessellation

factor assignment with just two values, a for an edge not crossed by the silhouette, and

b for an edge crossed by the silhouette, can be used to refine the silhouette line and

present full geometric detail at the silhouette.

The edge tessellation factor assignments based on a level function can be

directly computed inside a GPU shader. We show examples of this in Section 4.3. On

the contrary, the edge tessellation factors obtained by a curvature approximation in the

patch vertices can not be made 2-different for arbitrary meshes easily. Computing an

approximation is possible though on the CPU.

4.2.3 Adaptive Tessellation Pattern with 2-Different Factors

In case of triangles with only two different edge tessellation factors fu = fv and fw, it

is possible to tessellate in an especially simple way. Our tessellation pattern is

composed of a bundle of parallel lines w = i/fu := wi, i = 0, . . . , ⌊fu⌋, which are

intersected by a second bundle of radial lines from the tip vertex (0, 0, 1) to

((fw − j)/fw, j/fw, 0), j = 0, . . . , ⌊fw⌋. The intersections with the parallel line i are

in the points ((1 − wi)(fw − j)/fw, (1 − wi)j/fw, wi), j = 0, . . . , ⌊fw⌋. This pattern

41

is very flexible as it works also with fractional factors fu = fv and fw. In the

fractional case, the remainders (fu − ⌊fu⌋)/fu and (fw − ⌊fw⌋)/fw can be added as

additional segments. In case the subdivision is symmetric to the mid-edge, it can be

generated in arbitrary direction. We achieve this by shrinking the first segment and

augmenting the last segment by the half fractional remainder

0.5(1/fu − (fu − ⌊fu⌋)/fu) and 0.5(1/fw − (fw − ⌊fw⌋)/fw) respectively.

Otherwise, it has to be generated in a unique direction, for example from the nearest to

the farthest vertex, which complicates things a lot. Concerning the distribution of

lines, it is also possible to place them non-uniformly by a reverse projection according

to Munkberg et al. (2008): u′ = u/z1
(1−u−v)/z0+u/z1+v/z2

, w′ = w/z0
w/z0+u/z1+(1−u−w)/z2

where z0, z1, z2 are the vertex depths of the triangle.

Figure 4.1 shows an example of the construction for fractional values

fu = fv = 2.5, fw = 2.5, and for integer factors fu = fv = 3, fw = 3 and

fu = fv = 3, fw = 5.

It is possible to output all triangles between two adjacent radial lines or two

adjacent parallel lines as a triangle strip, which reduces vertex repetition considerably

and is beneficial on some hardware architectures. This property becomes a great

advantage at the silhouettes where the triangles have edge tessellation factors

(fu = fv ≫ fw) or (fu = fv ≪ fw) and the tessellation can be emitted with a

minimum number of strips. For edge tessellation factors (fu = fv, fw), we give the

pseudo code for barycentric coordinates (u, v, w = 1 − u − v) on triangle strips along

radial lines in Appendix A.

4.3 Results

The method can use any triangular parametric surface, however we have chosen the

PN triangles scheme. We compare SD-2 with uniform tessellation of the PN patches

as well as the stitching pattern methods described in (Moreton, 2001), (Chung and

Kim, 2003) and (Schwarz and Stamminger, 2009). We compare frame rate and
42

2.5

2.52.51/2.5

1/2.5

1/2−1/2.5

1/2.5 1/2.5 1/2−1/2.5

3 3

3

3 3

5

Figure 4.1: Tessellation pattern for 2-different factors, which is composed of a bundle
of parallel lines, intersected by a second bundle of radial lines towards the tip vertex.
In the top row, for a fractional example: fu = fv = 2.5, fw = 2.5; in the bottom row,
for integer examples: fu = fv = 3, fw = 3 and fu = fv = 3, fw = 5.

number of primitives generated on the GPU. For demonstration purposes, we have

implemented all methods as geometry shaders. The SD-2 method clearly outperforms

the other two and it can be clearly seen that there is a significant boost in frame rate

for SD-2 by switching over to triangle strips. See Tables 4.1 and 4.2 for the concrete

values on a PC with Windows Vista, 32bit, and NVIDIA 9800 GTX graphics. For

surface interrogation, we render a series of reflection lines on the final surface and

look at the smoothness of these lines. In general, smoother reflection lines indicate

better surface quality. Reflection lines are much smoother for SD-2 in the adaptive

region compared to the stitching method, see Figure 4.3.

43

Table 4.1: Performance for silhouette refinement with max tessellation factor 7 and
triangle strips.

Model Base Mesh Uniform PN f = 7 PN SD-2 PN Stitch
Name Triangles FPS/Primitives FPS/Primitives FPS/Primitives
Sphere 320 121.0/15680 153.0/12952 122.0/12184
Violin Case 2120 19.5/103880 24.5/83932 19.9/75446
Cow 5804 7.0/284396 9.5/222586 7.4/200383

Table 4.2: Performance for silhouette refinement with max tessellation factor 7 and not
using triangle strips.

Model Base Mesh Uniform PN f = 7 PN SD-2 PN Stitch
Name Triangles FPS/Primitives FPS/Primitives FPS/Primitives
Sphere 320 60.0/15680 65.0/12952 65.0/12184
Violin Case 2120 7.5/103880 16.0/83932 16.0/75446
Cow 5804 3.2/284396 4.0/222586 4.0/200383

44

Figure 4.2: Results of SD-2 refinement for improving the silhouette on the Sphere and
Bunny models 45

Figure 4.3: Comparison of SD-2 and stitching methods using reflection lines.

46

Figure 4.4: Results of SD-2 refinement for continuous LOD based on the distance to
the camera eye plane. From left to right, the original mesh, and adaptive tessellations
generated by a linear level function with fmax = 7, fmin = 2, dmax = 1 and dmin = 0.

47

Chapter 5

UNIFIED RENDERING FRAMEWORK

5.1 Introduction

In principle, direct evaluation can be performed on subdivision surfaces by

implementing Stam’s methods Stam (1998a,b) however it fails to achieve a reasonable

framerate Loop and Schaefer (2008); Loop et al. (2009). It is therefore necessary to

find methods that can take advantage of the tessellator unit and approximately render

subdivision surfaces. The main factors that limit the performance of the GPU is the

number of control points in the input mesh and number of calculations performed in

the control shader to calculate the control points. This is mainly because the GPU is

bound by its memory bandwidth and its speed is directly dependent on the number of

memory fetches. Our research also found that algorithms that use many instructions to

derive the control points in the control shader can severely limit performance even

though their initial memory foot print is low. We therefore choose three methods

based on these observations. PN method has 6 control points and 13 operations in the

control shader, WM method has 6 control points and 70 operations in the control

shader and Gregory method has 15 control points and 0 operations in the control

shader. We render various objects using the three methods and describe the

performance in terms of their visual quality and speed. We find that the speed is also

dependent on the number of models in the scene invoking a particular method and

therefore the methods need to be carefully chosen in order to optimize the scene. To

validate the hypothesis, a visual fidelity test, described in Section 5.3, was performed

at THQ Digital Studios, Phoenix, Arizona. The test shows that there is a need for

developing an unified rendering framework, that can combine all three methods at run

time. Our goal is to provide application developers the information necessary for

migrating from polygonal domain to smooth rendering of triangles. By applying the

unified rendering framework, described in Section 5.2, developers can perform

48

automatic level-of-detail(LOD) calculations for their meshes. The number of control

points in the input mesh then becomes synonymous with the LOD level. This gives the

ability to have a two step system for LOD, one computes the control points of the

input mesh and the other computes the edge tessellation factors.

5.2 Unified Rendering Framework

I �

60

12

0 1

2
34

5

6

7

8

9101112

13

14

15

1617

Figure 5.1: Indexing of the 18 control points calculated for every input triangle

We propose a unified rendering framework that involves three stages,

preprocessing, CPU switching and rendering. We suggest that during the

preprocessing stage all the control point calculations for each triangle in the input

mesh be done irrespective of the method chosen. This means that we need to calculate

for each triangle, 3 limit points, 3 limit normals, 6 edge points and 6 inner points,

resulting in a total of 18 control points. The application can then dynamically pass the

appropriate number of control points at run time on a case by case basis. This gives

the developer an automatic one-pass algorithm to switch the methods at run time to

manage quality vs. performance or connect it into existing LOD structures. In order to

manage the control point mesh efficiently we use a half edge mesh structure Weiler

(1988) and is shown in Figure 5.2. The half edge splits each edge down its length with

each half (blue lines) representing one direction, therefore the two half edges of an

edge are in opposite direction. Each half edge references the face it borders, so unlike

the edge, the half edge is part of a unique face. It also stores references to the vertex it
49

originates from, the next half edge in the face that it belongs to and the opposite half

edge that it pairs with to form the edge.

Figure 5.2: The half edge mesh structure, image courtesy of Max McGuire

Figure 5.3: Various stages of the unified rendering framework

As shown in Figure 5.3, there are three main stages for the unified rendering

framework. In the first stage, control polygon from asset production packages like
50

Maya is read by a custom patch generation tool and processed into the half edge mesh

structure, then the mesh is evaluated for generating the limit points, tangents and

normals and the 18 control points are indexed and stored for rendering. Figure 5.1

shows the indexing of these points. In the second stage the application creates custom

draw calls for all the three methods and performs CPU based decisions to choose the

appropriate method.

5.2.1 Control Shader

The control shader takes the input control mesh based on the method chosen, and

performs tessellation calculations to determine each edge tessellation factor. Also

depending on the case it can perform other calculations before sending the output to

the evaluation shader. For example, in the PN method the 10 control points for the

cubic Bézier triangle and the 6 normals for quadratic interpolation are calculated in

the control shader. The implementation details are provided in Appendix B.

5.2.2 Evaluation Shader

The Evaluation shader receives the u, v, w = 1 − u − v values from the tessellator and

the output from the control shader and calculates the surface point and normal at that

parameter set. The PN method evaluates the point using Equation 3.1 and the normal

by quadratic interpolation. The WM method evaluates the point by Equation 3.3, and

the normal by quadratic interpolation. The Gregory method transforms Equation 3.3

into a quartic Bézier by degree elevating the boundary cubic curves and calculating

F0, F1, F2 as described in Section 3.5.4. This allows for simultaneous calculation of

the point and normal using the de Casteljau algorithm. Table 5.1 shows the the

number of calculations in the control and evaluation shaders for the three methods.

The last stage involves creating the effect file using the CGFX file format with the

methods implemented as separate techniques. Control and Evaluation shaders need to

be written and are provided as CGFX files. Figure 5.4 shows the various steps

involved in the rendering the PN method using hardware tessellation. In principle this
51

process remains the same across all methods with changes happening in the type and

size of data fed to the control shader, calculations required for processing this data and

the calculations required for evaluating the method in the evaluation shader. The

implementation details are provided in Appendix B.

Figure 5.4: Rendering PN-Triangles using hardware tessellation, PN images courtesy
of Vlachos et al. (2001)

Table 5.1: Shader properties for the three methods

Method Control Evaluation Control
Name Shader Shader Points
PN 13 10 6
WM 70 10 6
Gregory 0 20 15

5.3 Results
5.3.1 Visual Fidelity Test

A team of 15 video game artists, graphics programmers and designers ranked the

methods applied to the bunny, monster frog and face models on scale of 1 to 10 with

10 being the best. The camera was up-close and they were also shown the actual Loop

rendering for comparison. In the next step they were asked to again rank these models

at mid-distance, with camera moved away and the models occupying only 50 percent
52

of the screen space, and at far-distance, with camera moved further away and the

models occupying less than 25 percent of screen space. Finally they were asked to

rank at close range by considering the frame rate for each of the renderings along with

the visual quality. Figure 5.6, left, shows that for all models the Gregory is visually

pleasing over WM and PN; however this difference diminishes quite rapidly at mid

and far distances (Figure 5.6, right). Figure 5.5 shows that different models rate

differently at near, mid and far distances. It is not necessary that Gregory should be

the chosen method at all times and when performance numbers are known it is less

likely to be preferred for most models. Looking closely at Figure 5.5 we can also see

that except the face model, Gregory is not the preferred method when frame rate is

taken into consideration. This proves that there is a need for having multiple smooth

rendering methods and it would greatly benefit if they can be switched at run time.

The unified rendering system provides this ability for developers to either use it during

run time or inside export tools that perform asset conversion during production time.

5.3.2 Performance Results

Table 5.2: Frame rate comparison for the three methods

Model Base Mesh Tess Level/ PN WM Gregory
Name Tris/Verts Object Count FPS FPS FPS
Face 102/200 5/1 1850 1180 1780
Bunny 502/1000 5/1 1297 822 1190
Big Guy 1754/2900 5/1 940 635 870
Face 102/200 5/50 479 379 266
Bunny 502/1000 5/50 63 52 32
Big Guy 1754/2900 5/50 53 39 22

Table 5.3: Geometric error reported by Metro for the three methods

Method Max mean RMS
Name error error error
PN 0.5618 0.019 0.030
WM 0.3913 0.013 0.022
Gregory 0.1746 0.009 0.013

In this section we measure the speed and quality of the surface for the three

53

Figure 5.5: Results of a visual fidelity test performed on the bunny, monster frog and
face models, top left: compares PN, WM and Gregory for the three models, top right:
compares the methods at three distances, bottom left: shows how various models com-
pare at different distances and bottom right: comparison when performance numbers
are known

Figure 5.6: Left: Average visual quality values for the three methods and Right: Aver-
age values obtained for all methods at near, mid and far distances

methods described in this paper. With all conditions being the same we test the frame

rate at various tessellation levels. We also render the reflection lines for each method

to test the quality of the surface. Our tests were performed on PC with Windows 7

32bit and NVIDIA Quadro5000 graphics card. Table 5.2, shows the frame rate

54

comparisons for the face, bunny and big guy models at tessellation level 5 and also

compares the numbers by changing the number of models drawn from 1 to 50. It is

seen that PN performs best under all situations and Gregory outperforms the WM

method only when few models use it. This confirms that performance depends on the

number of operations in the hull shader and the number of control points that need to

be stored in video memory for a base mesh triangle. Figure 5.7 shows the monster

frog model rendered using the three methods, PN, WM, Gregory and the original

Loop method. Table 5.3 shows the geometric error calculated by Metro Cignoni et al.

(1998) by comparing the triangle meshes generated by Loop subdivision to the ones

generated by the three methods. Figure 5.8 shows this error mapped to vertex colors

and we can observe that except at extreme extraordinary points (valence greater than

7) the error produced by the Gregory method is minimal. To compensate for this

limitation the original control mesh would need to avoid having such points at model

time.

55

Figure 5.7: Monster frog rendered using PN (top-left), WM (top-right), Gregory
(bottom-left) and Original Loop (bottom-right) methods

Figure 5.8: Geometric approximation error calculated by Metro for PN, WM and Gre-
gory methods, the error is represented as a color ramp between red and blue with red
representing no error, the error range is 0.0 to 0.57 with the bounding box diagonal
measuring 41.25 units.

56

Chapter 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Summary

In this thesis, we have described, SD-2, a tessellation pattern for fractional edge

tessellation factors with only two different values per triangle. Under continuous

changes of the tessellation factors, the pattern fulfills all the requirements on the

continuity of tessellation changes. This is especially important for the sampling of

geometry and applied t1exture/displacement maps during animations. The scheme is

especially simple to implement, and it is suitable for triangle output in the form of

triangle strips. In terms of adaptivity, it can cover the most important cases, where the

edge tessellation factors are derived from a level function on the mesh vertices. Then,

the edges can be directed and 2-different edge tessellation factors can be assigned

based on the minimum (or maximum) vertex on each edge. We have shown results in

terms of speed and quality with an implementation of the pattern and the edge

tessellation factor assignment in the geometry shader of the GPU. This shows that the

approach is also suitable for a future hardware implementation.

We have also presented three methods for approximating Loop subdivision

surfaces using tessellation enabled hardware. Developers can unify the asset

production pipeline and provide automatic switching between these methods at

runtime. The maximum number of control points required per patch is 18, the PN and

WM methods use 6 while the Gregory uses 15.

6.2 Conclusions and Future Work

SD-2 has potential to be implemented in hardware or be used via instanced

tessellation in cases where hardware tessellation is not available. SD-2 works for any

parametric surface rendering method and in future we would like to compare its

performance with other smooth rendering methods. We would also like to further

refine the pattern so that it produces even tessellation triangles around the 1-ring of

57

each vertex and minimizes skinny triangles.

Our observations with the unified rendering setup lead to the following

conclusions, the Gregory method is best suited for characters and fluid assets that

incorporate complex animations such as human characters, the WM method is best

suited for dynamic objects with simple animations such as weapons, vehicles and

breakable objects, while the PN method works best for static objects like trees,

environments and terrain. This observation stems from the visual fidelity test

described in Section 5.3 and the information in Table 5.2 based on the performance of

rendering these methods with single and multiple objects as well as at lower and

higher tessellations. Even though the unified rendering setup is shown for triangles by

approximating the Loop method, it can similarly be applied for quads using the

Catmull-Clark subdivision method. In future work, we plan to improve the unified

rendering setup to include meshes consisting of arbitrary polygons and not just

triangles. We also plan to develop newer algorithms that approximate subdivision

surfaces while maintaining smoothness and performance metrics.

58

REFERENCES

C. Dyken, M. Reimers, J. Seland, Semi-Uniform Adaptive Patch Tessellation, in:
Computer Graphics Forum, vol. 28, Wiley Online Library, ISSN 1467-8659,
2255–2263, 2009.

C. Loop, S. Schaefer, T. Ni, I. Castaño, Approximating subdivision surfaces with
gregory patches for hardware tessellation, ACM Transactions on Graphics (TOG)
28 (5) (2009) 1–9, ISSN 0730-0301.

A. Sfarti, B. A. Barsky, T. Kosloff, E. Pasztor, A. Kozlowski, E. Roman, A. Perelman,
Direct Real Time Tessellation of Parametric Spline Surfaces, in: 3IA Conference,
Invited Lecture, http://3ia.teiath.gr/3ia_previous_conferences_cds/2006, 2006.

D. Schweitzer, E. S. Cobb, Scanline rendering of parametric surfaces, SIGGRAPH
Comput. Graph. 16 (3) (1982) 265–271, ISSN 0097-8930,
doi:\bibinfo{doi}{http://doi.acm.org/10.1145/965145.801289}.

M. Bóo, M. Amor, M. Doggett, J. Hirche, W. Strasser, Hardware support for adaptive
subdivision surface rendering, in: HWWS ’01: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, ACM, New
York, NY, USA, ISBN 1-58113-407-X, 33–40,
doi:\bibinfo{doi}{http://doi.acm.org/10.1145/383507.383522}, 2001.

V. Settgast, K. Müller, C. Fünfzig, D. Fellner, Adaptive Tesselation of Subdivision
Surfaces, Computers & Graphics 28 (2004) 73–78.

H. Moreton, Watertight tessellation using forward differencing, in: HWWS ’01:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware, ACM, New York, NY, USA, ISBN 1-58113-407-X, 25–32,
doi:\bibinfo{doi}{http://doi.acm.org/10.1145/383507.383520}, 2001.

K. Chung, L. Kim, Adaptive Tessellation of PN Triangle with Modified Bresenham
Algorithm, in: SOC Design Conference, 102–113, 2003.

M. Schwarz, M. Stamminger, Fast GPU-based Adaptive Tessellation with CUDA,
Comput. Graph. Forum 28 (2) (2009) 365–374.

J. Munkberg, J. Hasselgren, T. Akenine-Möller, Non-uniform fractional tessellation,
in: GH ’08: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, ISBN 978-3-905674-09-5, 41–45, 2008.

K. Gee, Introduction to the Direct3D 11 graphics pipeline, in: nvision ’08: The World
of Visual Computing, Microsoft Corporation, ISBN 1-59593-364-6, 1–55, 2008.

E. Catmull, J. Clark, Recursively generated B-spline surfaces on arbitrary topological
meshes, Computer-aided design 10 (6) (1978a) 350–355, ISSN 0010-4485.

D. Doo, M. Sabin, Behaviour of recursive division surfaces near extraordinary points,
Computer-Aided Design 10 (6) (1978) 356–360, ISSN 0010-4485.

59

C. Loop, Smooth Subdivision Surfaces Based on Triangles, Master’s Thesis,
University of Utah 1 (1987) 1–74, URL
http://research.microsoft.com/~cloop/.

N. Dyn, D. Levine, J. Gregory, A butterfly subdivision scheme for surface
interpolation with tension control, ACM transactions on Graphics (TOG) 9 (2)
(1990) 160–169, ISSN 0730-0301.

D. Zorin, P. Schröder, W. Sweldens, Interpolating subdivision for meshes with
arbitrary topology, in: Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, ACM, ISBN 0897917464, 189–192, 1996.

L. Kobbelt, Interpolatory subdivision on open quadrilateral nets with arbitrary
topology, in: Computer Graphics Forum, vol. 15, Wiley Online Library, ISSN
1467-8659, 409–420, 1996.

J. Bolz, P. Schröder, Rapid evaluation of Catmull-Clark subdivision surfaces, in:
Proceedings of the seventh international conference on 3D Web technology, ACM,
ISBN 1581134681, 11–17, 2002.

J. Bolz, P. Schröder, Evaluation of subdivision surfaces on programmable graphics
hardware, preprint URL
http://www.multires.caltech.edu/pubs/GPUSubD.pdf.

L. Shiue, I. Jones, J. Peters, A realtime GPU subdivision kernel, ACM Transactions on
Graphics (TOG) 24 (3) (2005) 1010–1015, ISSN 0730-0301.

K. Pulli, M. Segal, Fast rendering of subdivision surfaces, in: Proceedings of the
eurographics workshop on Rendering techniques, vol. 96, Citeseer, 61–70, 1996.

S. Bischoff, L. Kobbelt, H. Seidel, Towards hardware implementation of loop
subdivision, in: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, Citeseer, 41–50, 2000.

J. Stam, Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter
values, in: Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, ACM, ISBN 0897919998, 395–404, 1998a.

J. Stam, Evaluation of loop subdivision surfaces, in: SIGGRAPHŠ98 CDROM
Proceedings, Citeseer, 1998b.

A. Vlachos, J. Peters, C. Boyd, J. Mitchell, Curved PN triangles, in: Proceedings of
the 2001 symposium on Interactive 3D graphics, ACM, ISBN 1581132921,
159–166, 2001.

T. Boubekeur, C. Schlick, Approximation of subdivision surfaces for interactive
applications, ACM Siggraph Sketch Program .

T. Boubekeur, C. Schlick, QAS: Real-Time Quadratic Approximation of Subdivision
Surfaces, in: Proceedings of the 15th Pacific Conference on Computer Graphics and
Applications, IEEE Computer Society, ISBN 0769530095, 453–456, 2007b.

60

C. Fünfzig, K. Müller, D. Hansford, G. Farin, PNG1 triangles for tangent plane
continuous surfaces on the GPU, in: GI ’08: Proceedings of graphics interface
2008, Canadian Information Processing Society, Toronto, Canada, ISBN
978-1-56881-423-0, 219–226, 2008.

D. Walton, D. Meek, A triangular G1 patch from boundary curves, Computer-Aided
Design 28 (2) (1996) 113–123, ISSN 0010-4485.

C. Loop, S. Schaefer, Approximating Catmull-Clark subdivision surfaces with bicubic
patches, ACM Transactions on Graphics (TOG) 27 (1) (2008) 1–11, ISSN
0730-0301.

D. Kovacs, J. Mitchell, S. Drone, D. Zorin, Real-time creased approximate
subdivision surfaces, in: Proceedings of the 2009 symposium on Interactive 3D
graphics and games, ACM, 155–160, 2009.

G. Li, C. Ren, J. Zhang, W. Ma, Approximation of Loop Subdivision Surfaces for Fast
Rendering, IEEE Transactions on Visualization and Computer Graphics ISSN
1077-2626.

D. Luebke, G. Humphreys, How gpus work, Computer 40 (2) (2007) 96–100, ISSN
0018-9162.

J. Kautz, Hardware lighting and shading: A survey, in: Computer Graphics Forum,
vol. 23, Wiley Online Library, ISSN 0167-7055, 85–112, 2004.

T. Akenine-Moller, E. Haines, Real-time rendering, AK, ISBN 1568811829, 2002.

P. Kry, D. James, D. Pai, Eigenskin: real time large deformation character skinning in
hardware, in: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium
on Computer animation, ACM, ISBN 1581135734, 153–159, 2002.

I. Baran, J. Popović, Automatic rigging and animation of 3d characters, in: ACM
SIGGRAPH 2007 papers, ACM, 72, 2007.

F. Policarpo, M. Oliveira, J. Comba, Real-time relief mapping on arbitrary polygonal
surfaces, in: Proceedings of the 2005 symposium on Interactive 3D graphics and
games, ACM, ISBN 1595930132, 155–162, 2005.

S. Spencer, ZBrush Character Creation: Advanced Digital Sculpting, Sybex, ISBN
047024996X, 2008.

T. Boubekeur, C. Schlick, Generic mesh refinement on GPU, in: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, ACM,
ISBN 1595930868, 99–104, 2005.

T. Boubekeur, C. Schlick, A flexible kernel for adaptive mesh refinement on GPU, in:
Computer Graphics Forum, vol. 27, Wiley Online Library, ISSN 1467-8659,
102–113, 2008.

61

R. Arnaud, The Game Asset Pipeline, Game Engine Gems: Volume One (2010) 11.

R. Fernando, M. Kilgard, The Cg Tutorial: The definitive guide to programmable
real-time graphics, Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, ISBN 0321194969, 2003.

J. Peters, Geometric Continuity, in: Handbook of Computer Aided Geometric Design,
Elsevier, 193–229, 2002.

B. Piper, Visually smooth interpolation with triangular Bézier patches, Geometric
modeling: algorithms and new trends (1987) 211–233.

H. Hagen, S. Hahmann, T. Schreiber, Y. Nakajima, B. Wordenweber,
P. Hollemann-Grundstedt, Surface interrogation algorithms, Computer Graphics
and Applications, IEEE 12 (5) (1992) 53–60, ISSN 0272-1716.

R. Klass, Correction of local surface irregularities using reflection lines,
Computer-Aided Design 12 (2) (1980) 73–77, ISSN 0010-4485.

E. Lengyel, Mathematics for 3D game programming and computer graphics, Cengage
Learning, ISBN 1584502770, 2004.

G. Farin, Curves and Surfaces for Computer-Aided Geometric Design — A Practical
Guide, The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling, Morgan Kaufmann Publishers (Academic Press), 5th edn., 499 pages.,
2002.

J. Gregory, Smooth interpolation without twist constraints, Computer Aided
Geometric Design (1974) 71–87.

H. Chiyokura, T. Takamura, K. Konno, T. Harada, G1 surface interpolation over
irregular meshes with rational curves, NURBS for Curve and Surface Design
(1990) 15–34.

E. Catmull, J. Clark, Recursively generated B-spline surfaces on arbitrary topological
meshes, Computer-Aided Design 10 (1978b) 350–355.

A. Amresh, G. Farin, A. Razdan, Adaptive subdivision schemes for triangular meshes,
Hierarchical and Geometric Methods in Scientific Visualization .

H. Seidel, Polar forms and triangular B-spline surfaces, Computing in Euclidean
Geometry (1992) 235–286.

K. Weiler, The radial edge structure: a topological representation for non-manifold
geometric boundary modeling, Geometric modeling for CAD applications (1988)
3–36.

P. Cignoni, C. Rocchini, R. Scopigno, Metro: measuring error on simplified surfaces,
in: Computer Graphics Forum, vol. 17, Wiley Online Library, ISSN 1467-8659,
167–174, 1998.

62

Appendix A

SD-2 PSEUDO CODE

63

// reorder control points/normals (b000/n000, b030/n030, b003/n003)
// so that fu=fv on u,v isolines
void calcUVValues(float diff, float same) //fu=fv=same, fw=diff
{
float line; // counter that traverses along the diff edge
float line1; // counter that traverses along the same edge

// remainder for same fractional
float incS = 0.5*(1.0/same - (same - floor(same))/same);
// remainder for diff fractional
float incD = 0.5*(1.0/diff - (diff - floor(diff))/diff);

vec2 diff1, diff2; // pair of u,v values on the diff edge
float u, v;
float par; // keeps track of the current location on the same edge

for (line=0; line < diff; ++line)
{
diff1.u = (line -incD)/diff;
if (diff1.u < 0.0)

diff1.u = 0.0;
diff1.v = 1.0 - diff1.u;
diff2.u = (line+1.0 -incD)/diff;
if (diff2.u > 1.0)

diff2.u = 1.0;
diff2.v = 1.0 - diff2.u;

u = 0.0;
v = 0.0;
//Use PN/PNG1 evaluation code to calculate the point and the normal
//In GLSL use EmitVertex()
for (line1=0; line1<same; ++line1)
{
/* evaluate the point on the second radial line */
par = (line1+1.0 -incS)/same;
if (par > 1.0)
par = 1.0;
v = diff2.y*par;
u = diff2.x*par;
//Use PN/PNG1 evaluation code to calculate the point and the normal
//In GLSL use EmitVertex()

/* evaluate the point on the first radial line */e */
v = diff1.y*par;
u = diff1.x*par;
//Use PN/PNG1 evaluation code to calculate the point and the normal
//In GLSL use EmitVertex()
}
//Finish the triangle strip
//In GLSL call EndPrimitive()
}
}

Figure A.1: Pseudo code used for generating the barycentric coordinates in SD-2 tes-
sellation

64

Appendix B

CONTROL, EVALUATION AND FRAGMENT SHADER IMPLEMENTATIONS

65

float4 fragmentReflection
(
float4 position : TEXCOORD0,//screenspace position
float3 normal : TEXCOORD1,//screenspace normal
uniform float4x4 modelView, // modelview matrix
uniform float4x4 projection // projection matrix

) : flat COLOR // fragment color to output
{

float3 normal_ = normalize(normal);
float3 position_ = position.xyz;
float4 color;

int iter; //index to the number of light lines
for(iter=0; iter<100; iter++)
{
float3 lightPos = float3(-100.,20.,-10.);
lightPos = mul((float3x3)projection,lightPos);
lightPos = mul((float3x3)modelView,lightPos); // light position transform to screen space
lightPos.x += float(1*iter);
float3 lightDir = normalize(lightPos); // light direction vector

float t = (dot(position_,lightDir) - dot(lightPos,lightDir));
// parameter value t on the light line
float s = -1.0*(dot(normal_,lightDir));

float3 r = normalize(lightPos + t*lightDir - position_); // projected look vector
float3 q = normalize(normal_ + s*lightDir); // projected normal

float angle = (dot(r,q)); // if angle between the two vectors is ~= 0 then color black else white
if(angle > 0.9999)
{
color = float4(0.,0.,0.,1.);
break;
}
else
{
color = float4(1.,1.,1.,1.);
}

return color;
}

Figure B.1: Fragment shader implementation of reflection lines

66

gp5tcp PATCH_15
void main_gt
(
in AttribArray<float3> position : POSITION,

out accPatchData pd : ATTR3, // 15 gregory control points
out float oEdgeTess[3] : EDGETESS, // tessellation factors - outer
out float oInnerTess : INNERTESS, // tessellation factors - inner

uniform float2 innerTess, // CPU input
uniform float4 outerTess // CPU input

)
{
oEdgeTess[0] = outerTess.x;
oEdgeTess[1] = outerTess.y;
oEdgeTess[2] = outerTess.z;

oInnerTess = innerTess.x;

// copy the preprocessed input data over
pd.p0 = position[0];
pd.p1 = position[1];
pd.p2 = position[2];
pd.p3 = position[3];
pd.p4 = position[4];
pd.p5 = position[5];
pd.p6 = position[6];
pd.p7 = position[7];
pd.p8 = position[8];
pd.p9 = position[9];
pd.p10 = position[10];
pd.p11 = position[11];
pd.p12 = position[12];
pd.p13 = position[13];
pd.p14 = position[14];

}

Figure B.2: Control shader for the Gregory method

67

gp5tep PATCH_15 TRIANGLES ORDER_CCW
void main_gt
(
in float2 uv : UV, // u,v parameters from tessellator
in accPatchData pd : ATTR3, // control point input from control shader
out float4 oPosition : POSITION,
out float3 oNormal : TEXCOORD1,
out float2 oUV : TEXCOORD2,
out float3 oGradU : TEXCOORD3,
out float3 oGradV : TEXCOORD4,
uniform float4x4 projection, // projection matrix
uniform float4x4 modelview // model view matrix

)
{

//Transformation from gregory to quartic control points
// 0
// 6 1 5
// 14 0|1 7 ===> 2 6 9
// 13 5/4 3\2 8 3 7 10 12
// 12 11 10 9 4 8 11 13 14

// 11 10
// 13/14 12
// 2 4/3 9\8 6
// 0 1 7 5

Figure B.3: Evaluation shader for the Gregory method

68

float3 F0, F1, F2; //inner quartic points
float3 pos, nor;
float u,v,w;
u=uv.x; v=uv.y; w=1-u-v;

float d0 = (v*(1-u) + u*(1-v)); if ((d0<0.001)) d0 = 1;
float d1 = (w*(1-v) + v*(1-w)); if ((d1<0.001)) d1 = 1;
float d2 = (u*(1-w) + w*(1-u)); if ((d2<0.001)) d2 = 1;

F0 = (v*(1-u)*pd.p1 +u*(1-v)*pd.p0)/d0;
F1 = (w*(1-v)*pd.p5 +v*(1-w)*pd.p4)/d1;
F2 = (u*(1-w)*pd.p3 +w*(1-u)*pd.p2)/d2;

float3 q[15];
float3 p[15];
q[0]= pd.p6; q[1]=(pd.p6+3*pd.p14)/4; q[2]=(pd.p14+pd.p13)/2; q[3]=(3*pd.p13+pd.p12)/4;
q[4]= pd.p12; q[5]=(3*pd.p7+pd.p6)/4; q[6]=F0; q[7]=F1; q[8]=(pd.p12+3*pd.p11)/4;
q[9]=(pd.p7+pd.p8)/2; q[10]=F2; q[11]=(pd.p11+pd.p10)/2; q[12]=(pd.p9+3*pd.p8)/4;
q[13]=(pd.p9+3*pd.p10)/4; q[14]= pd.p9;

// perform de Cateljau algorithm
uint j, k=0;
float s=w; float t= u; w=v;
for (j=0; j<4; j++) {

p[k++]=s*q[j]+t*q[j+1]+w*q[j+5];
}
for (j=5; j<8; j++) {

p[k++]=s*q[j]+t*q[j+1]+w*q[j+4];
}
for (j=9; j<11; j++) {

p[k++]=s*q[j]+t*q[j+1]+w*q[j+3];
}
p[9]=s*q[12]+t*q[13]+w*q[14];

k=0;
for (j=0; j<3; j++) {

q[k++]=s*p[j]+t*p[j+1]+w*p[j+4];
}
for (j=4; j<6; j++) {

q[k++]=s*p[j]+t*p[j+1]+w*p[j+3];
}
q[5]=s*p[7]+t*p[8]+w*p[9];
for (j=0; j<2; j++) {

p[j]=s*q[j]+t*q[j+1]+w*q[j+3];
}
p[2]=s*q[3]+t*q[4]+w*q[5];

pos=s*p[0]+t*p[1]+w*p[2];
oGradV = (p[2] - p[0]); // surface tangent

oGradU = (p[1] - p[0]); // surface tangent
oUV = uv;
oPosition = float4(pos,1);
oPosition = mul(modelview,oPosition);
oPosition = mul(projection,oPosition); // transformed position

oNormal = cross(oGradV,oGradU);
oNormal = mul((float3x3)modelview,oNormal);
oNormal = normalize(oNormal); / normalized transformed normal

}

Figure B.4: Evaluation shader for the Gregory method-continued

69

BIOGRAPHICAL SKETCH

70

Ashish Amresh was born in India and moved to the united states as a graduate
student in computer science. Upon getting his masters degree he worked for Ronin
Entertainment as a graphics software engineer. While working on his doctoral degree
he built the decision theater prototype and launched the successful camp game
summer program and the computer gaming certificate.

71

