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ABSTRACT

Nonlinear dispersive equations model nonlinear waves in a wide range of

physical and mathematics contexts. They reinforce or dissipate effects of linear

dispersion and nonlinear interactions, and thus, may be of a focusing or defocus-

ing nature. The nonlinear Schrödinger equation or NLS is an example of such

equations. It appears as a model in hydrodynamics, nonlinear optics, quantum

condensates, heat pulses in solids and various other nonlinear instability phenom-

ena. In mathematics, one of the interests is to look at the wave interaction: waves

propagation with different speeds and/or different directions produces either small

perturbations comparable with linear behavior, or creates solitary waves, or even

leads to singular solutions.

This dissertation studies the global behavior of finite energy solutions to

the d-dimensional focusing NLS equation, i∂tu + ∆u + |u|p−1u = 0, with initial

data u0 ∈ H1, x ∈ Rd; the nonlinearity power p and the dimension d are chosen

so that the scaling index s = d
2
− 2

p−1
is between 0 and 1, thus, the NLS is

mass-supercritical (s > 0) and energy-subcritical (s < 1).

For solutions with ME [u0] < 1 (ME [u0] stands for an invariant and con-

served quantity in terms of the mass and energy of u0), a sharp threshold for

scattering and blowup is given. Namely, if the renormalized gradient Gu of a so-

lution u to NLS is initially less than 1, i.e., Gu(0) < 1, then the solution exists

globally in time and scatters in H1 (approaches some linear Schrödinger evolution

as t→ ±∞); if the renormalized gradient Gu(0) > 1, then the solution exhibits a

blowup behavior, that is, either a finite time blowup occurs, or there is a diver-

gence of H1 norm in infinite time.

This work generalizes the results for the 3d cubic NLS obtained in a series

of papers by Holmer-Roudenko and Duyckaerts-Holmer-Roudenko with the key

ingredients, the concentration compactness and localized variance, developed in

i



the context of the energy-critical NLS and Nonlinear Wave equations by Kenig

and Merle.

One of the difficulties is fractional powers of nonlinearities which are over-

come by considering Besov-Strichartz estimates and various fractional differenti-

ation rules.
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Chapter 1

INTRODUCTION

In the past twenty years, the field of nonlinear dispersive PDEs has dramatically

grown and attracted the interest of Harmonic Analysis, Geometry and PDE audi-

ences. Most of the problems, originate within physics in subjects such as general

relativity, quantum mechanics, quantum condensates, water waves, hydrodynam-

ics, nonlinear optics, nonlinear acoustics, nonlinear elasticity, heat pulses in solids

and various other nonlinear instability phenomena.

In mathematics, the interest comes from understanding the wave interac-

tion and measuring dispersion since the waves do not obey to the superposition

principle, as in the linear theory. Consequently, new ideas and techniques such as

the use of dispersive or Lp and Strichartz estimates for linear dispersive equations,

the vector fields method for the linear and nonlinear wave equation, estimates for

bilinear and multilinear wave interactions and the use of wave packet methods,

among others. The harmonic analysis ideas have become important for under-

standing the structure of nonlinearities, and even created a two way interaction

between harmonic analysis and the analysis of dispersive equations. In addition,

geometry plays an important role, for instance, the geometric properties of the

target spaces (manifolds) for the solutions may determine certain characteristics

of the equations, or involve obstacles or create compactly supported metric per-

turbations.

There are a large number of dispersive PDEs, the simplest ones include

nonlinear Schrödinger equation or NLS, nonlinear wave equation or NLW, Ko-

rteweg de Vries or KdV, some more advanced ones are Benjamin-Ono, Boussinesq

equations, and there are also systems like Zakharov system. A large part of re-

search is centered in understanding and developing techniques and principles to
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analyze the existence of solutions and long term behavior of solutions at either

high or low regularities.

In what follows, Hs and Ḣs stand for (inhomogeneous or homogeneous)

Sobolev spaces, exact definition is given in Section 1.4.

1.1 Background

In this work, we study the global behavior of solutions to the d-dimensional

focusing critical NLS equation with finite energy initial data (i.e., u0 ∈ H1(Rd)).

We consider the Cauchy problem for the nonlinear Schrödinger equation, denoted

by NLS±p (Rd),  i∂tu+ ∆u+ µ|u|p−1u = 0

u(x, 0) = u0(x) ∈ H1(Rd),
(1.1)

where u = u(x, t) is a complex-valued function in space-time Rd
x × Rt, p ≥ 1 and

µ = ±1. The value µ = −1 denotes the defocusing1 NLS equation or NLS−p (Rd),

and µ = +1 yields the focusing2 NLS equation or NLS+
p (Rd).

Definition 1.1 (Solution). Let I ⊆ R such that 0 ∈ I. A function u : Rd×I → C

is a strong solution to NLS±p (Rd) if and only if it belongs to C(I,H1(Rd)) and for

all t ∈ I satisfies the integral equation

u(t) = eit∆u0 + iµ

∫ t

0

ei(t−τ)∆
(
|u|p−1u(τ)

)
dτ. (1.2)

A function u : Rd×I → C is a weak solution to NLS±p (Rd) if and only if it belongs

to L∞(I,H1(Rd)) and for all t ∈ I satisfies the integral equation (1.2).

1Intuitively, an equation is defocusing if the nonlinearity dissipates the solution
when it is concentrated.

2The nonlinearity reinforces the solution when it is large and diminishes it
when it is small.
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For a fixed λ ∈ (0,∞), the rescaled function uλ(x, t) := λ
2
p−1u(λx, λ2t) is a

solution of NLS±p (Rd) in (1.1) if and only if u(x, t) is. This scaling property gives

rise to scale-invariant norms.

The scale-invariant Lebesgue norm is L
qc

(Rd) with qc := d(p−1)
2

, i.e.,

‖uλ‖Lqc (Rd) = ‖u‖Lqc (Rd), where

‖u‖qcLqc =

∫
(Rd)

|u(x, t)|qcdx,

and the scale-invariant Sobolev norm is Ḣsc(Rd) with sc := d
2
− 2

p−1
, i.e.,

‖uλ‖Ḣsc (Rd) = ‖u‖Ḣsc (Rd), where

‖u‖2
Ḣsc

=

∫
(Rd)

|ξ|2sc |û(ξ, t)|2dξ.

If sc = 0, this means that p = 4
d

+ 1, the problem is known as the mass-

critical or L2−critical and examples of this are NLS+
5 (R1) and NLS+

3 (R2); when

sc = 1, this means that p = d+2
d−2

, it is called energy-critical or Ḣ1−critical, the

NLS+
5 (R3) and NLS+

4 (R4) equations belong to this class.

The mass-supercritical and energy-subcritical problem is when 0 < sc < 1,

that is, 
p > 5 d = 1

p > 3 d = 2

4+d
d
< p < d+2

d−2
d ≥ 3,

examples in this category are NLS+
5 (R2), NLS+

3 (R3), NLS+
5
3

(R7) and NLS+
13
9

(R10).

Finally, the energy-supercritical equation is when sc > 1, so p = d+2
d−2

, and

examples of this type are NLS+
5 (R4) and NLS+

7 (R3).

Definition 1.2 (Wellposedness). The problem NLS±p (Rd) is locally wellposed in

H1(Rd) if for any u0 ∈ H1(Rd) there exist a time T > 0 and an open ball B in

H1(Rd) containing u0, and a subset X of C([−T, T ], H1(Rd)), such that for each

u0 ∈ B there exists a unique solution u ∈ X to the integral equation (1.2), and
3



furthermore, the map u0 7→ u is continuous from B to X. If T can be taken

arbitrarily large (T = +∞), the problem is globally wellposed.

Definition 1.3 (Interval of existence). The maximal interval of existence in time

of solutions to NLS±p (Rd) is denoted by the interval (T∗, T
∗). We say a solution is

global in forward time if T ∗ = +∞. Similarly, if T∗ = −∞, the solution is global

in backward time. If we say solution is global, it means (T∗, T
∗) = R.

Definition 1.4 (Scattering in Hs). A global solution u(t) to NLS±p (Rd) scatters

in Hs(Rd) as t→ +∞ if there exists ψ+ ∈ Hs(Rd) such that

lim
t→+∞

‖u(t)− eit∆ψ+‖Hs(Rd) = 0. (1.3)

Similarly, we can define scattering in Hs(Rd) for t→ −∞.

A standard question about the initial value problem (1.1) is whether

it has a solution which is locally (globally) wellposed. Ginibre-Velo

[Ginibre and Velo, 1979a, Ginibre and Velo, 1979b] showed that the initial-value

problem NLS±p (Rd) with initial data u(x, 0) = u0(x) ∈ H1, where 1 ≤ p < d+2
d−2

for the defocusing case and 1 ≤ p < d+4
d

in the focusing case, is locally well-posed

in Hs(Rd) with s ≤ 1. Further, Cazenave-Weissler [Cazenave and Weissler, 1990]

showed that for small initial data in Ḣs(Rd), with 0 ≤ s < d
2

and 0 < p ≤ d+2
d−2

,

there exists a unique solution to NLS±p (Rd) defined for all times.

On their maximal interval of existence, solutions to NLS±p (Rd), have three

conserved quantities: mass M [u](t) = M [u0], energy E[u](t) = E[u0] and momen-

tum P [u](t) = P [u0], where

M [u](t) =

∫
Rd
|u(x, t)|2dx,

E[u](t) =
1

2

∫
Rd
|∇u(x, t)|2dx− µ

p+ 1

∫
Rd
|u(x, t)|p+1dx,

P [u](t) = Im

∫
Rd
ū(x, t)∇u(x, t)dx.

4



Moreover, since

‖uλ‖L2(Rd) = λ−sc‖u‖L2(Rd), ‖∇uλ‖L2(Rd) = λ−sc+1‖∇u‖L2(Rd),

and

‖uλ‖p+1
Lp+1(Rd)

= λ2(−sc+1)‖u‖p+1
Lp+1(Rd)

,

the below quantities are scaling invariant [Holmer and Roudenko, 2007]

‖u‖1−sc
L2(Rd)

‖∇u‖sc
L2(Rd)

, and E[u]scM [u]1−sc .

Considering the history of mathematical developments of NLS, we start

with the defocusing NLS equation NLS−p (Rd). Bourgain in 1999 [Bourgain, 1999],

for the energy critical NLS (i.e., sc = 1) with initial radial data in H1(R3), estab-

lished scattering in Hs with s ≥ 1 for radial functions using the “induction on en-

ergy”3 argument, in dimensions d = 3, 4. Grillakis [Grillakis, 2000] showed preser-

vation of smoothness in H1 with spherically symmetric initial data in 3 dimen-

sions. Tao [Tao, 2005] extended Bourgain’s result for radial data, to dimension 5

and higher with initial data in Ḣ1. Ginibre-Velo [Ginibre and Velo, 1985] estab-

lished scattering in H1 for solutions to the energy critical NLS in 3d (NLS−5 (R3))

with initial data in H1 using Morawetz inequality4. Colliander-Keel-Staffilani-

Takaoka-Tao [Colliander et al., 2008] simplified Ginibre-Velo argument using in-

teraction Morawetz estimate and used the induction analysis in both momentum

and configuration spaces. The interaction Morawetz estimate removes the local-

ization at the origin (as it is observed in the usual Morawetz estimate) making it

3 This technique allows to focus on the “minimal energy blowup solutions”
which are localized both in space and frequency.

4 Morawetz inequalities are monotonicity formula for nonlinear Schrodinger
and wave equations, where the monotone quantity is usually generated by inte-
grating the momentum density against a bounded vector field such as the outgoing
spatial normal xi

|x| . They are particularly useful for obtaining scattering results in

Sobolev spaces such as in the energy class.
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possible to handle the nonradial contributions of solutions. A further simplifica-

tion of this proof is done by Killip-Visan [Killip and Visan, 2011]. Ryckman-Visan

[Ryckman and Visan, 2007] extended scattering to NLS−3 (R4) with u0 ∈ Ḣ1(R4),

and Visan [Visan, 2007] NLS−d+2
d−2

(Rd) and u0 ∈ Ḣ1(Rd) for d ≥ 5.

Recent further works in the case sc = 0 of NLS±p (Rd), i.e., p = 4
d

+ 1,

are by: Killip-Tao-Visan [Killip et al., 2009], Tao-Visan-Zhang [Tao et al., 2008]

and Killip-Visan-Zhang [Killip et al., 2008], where they study scattering of glob-

ally existing solutions in the defocusing case (and also in the focusing un-

der the threshold M [u] < M [Q]) in dimensions d ≥ 3 for large spheri-

cally symmetric L2(Rd) initial data. The recent work of Dodson has resolved

the scattering question for the mass-critical NLS with L2 initial data (see

[Dodson, 2009, Dodson, 2010a, Dodson, 2010b]).

The focusing case has a different story. The local wellposedness is similar to

the defocusing case, however, the global behavior of solutions in the focusing case

is a largely open question. Some of the challenging cases here are the mass-critical

(sc = 0) and the energy-critical (sc = 1) NLS equations when the initial data is

also taken in L2 or Ḣ1, correspondingly. For L2-critical NLS equation with initial

data u0 ∈ H1(Rd), Weinstein in [Weinstein, 1982] established a sharp threshold

for global existence, namely, the condition ‖u0‖L2(Rd) < ‖Q‖L2(Rd), where Q is

the ground state solution5, guarantees a global existence of evolution u0 ; u(t).

Solutions at the threshold mass, i.e., when ‖u0‖L2(Rd) = ‖Q‖L2(Rd), may blowup in

finite time, such solutions are called the minimal mass blowup solutions. Merle in

[Merle, 1993] characterized the minimal mass blowup H1 solutions showing that

all such solutions are pseudo-conformal transformations of the ground state (up

5See Section 2.4
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to H1 symmetries), that is,

u
T
(x, t) =

ei/(T−t)ei|x|
2/(T−t)

T − t
Q

(
x

T − t

)
.

In the energy-critical case sc = 1, the known results are as follows.

Kenig-Merle [Kenig and Merle, 2006] studied global behavior of solutions for

the energy-critical NLS+
p (Rd) with p = d+2

d−2
, and initial data in Ḣ1(Rd) in

dimensionsd = 3, 4, and 5. They showed that under a certain energy thresh-

old (namely, E[u0] < E[W ], where W is the positive solution of ∆W +

W p = 0, decaying at ∞), it is possible to characterize global existence ver-

sus finite blowup depending on the size of the L2–norm of gradient, and

also prove scattering for globally existing solutions. To obtain the last prop-

erty, they applied the concentration-compactness and rigidity technique. The

concentration-compactness method appears in the context of wave equation in

Gérard [Gérard, 1996] and NLS in Keraani [Keraani, 2001], and dates back to

works of P-L. Lions [Lions, 1984] and Brezis-Coron [Brezis and Coron, 1985]. The

rigidity argument (estimates on a localized variance) is the technique of F. Merle

from mid 1980’s. Killip-Visan [Killip and Visan, 2010] generalized the above re-

sult of Kenig-Merle [Kenig and Merle, 2006] for dimension d = 5 and higher.

The mass-supercritical and energy-subcritical case (0 < sc < 1) is discussed

in detail in the next section, and the energy-supercritical case (sc > 1) is largely

open.

1.2 The mass-supercritical and energy-subcritical problem

Another interesting critical focusing NLS problem is the mass- supercritical

and energy-subcritical NLS (0 < sc < 1), that is, the Cauchy problem (1.1) with

µ = +1 (NLS+
p (Rd)) and


p > 5 d = 1

p > 3 d = 2

4+d
d
< p < d+2

d−2
d ≥ 3

.
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Recall the invariant norm Ḣsc(Rd) with sc = d
2
− 2

p−1
, sc ∈ (0, 1).

In physics, the 2d or 3d cubic NLS (a variant of Gross-Pitaevskii equation

with zero potential) is the most relevant equation of this range (0 < sc < 1)

and it appears in modeling of several physical phenomena (see, for example,

[Sulem and Sulem, 1999]). The NLS3(R2) appears as a model in nonlinear op-

tics, Laser propagation in a Kerr medium [Sulem and Sulem, 1999]. The equation

NLS±3 (R3) appears as a model for the Bose-Einstein condensate in condensed mat-

ter physics [Dalfovo et al., 1999] and together with nonlinear wave equation yields

Zakharov system in plasma physics, Langmuir turbulence in a weakly magnetized

plasma, [Zakharov, 1972].

The 3d cubic NLS equation with H1 data has been studied in a

series of papers [Holmer and Roudenko, 2008], [Duyckaerts et al., 2008],

[Duyckaerts and Roudenko, 2010], [Holmer and Roudenko, 2010c] and

[Holmer et al., 2010]. The authors obtained a sharp scattering threshold

for radial initial data in [Holmer and Roudenko, 2008], then extension of these

result to the nonradial data was obtained in [Duyckaerts et al., 2008]. This

results hold under a so called mass-energy threshold

M [u]E[u] < M [Q]E[Q],

where Q is the ground state solution (see description Section in 2.4). Behav-

ior of solutions and characterization of all solutions at the mass-energy thresh-

old M [u]E[u] = M [Q]E[Q] was done in [Duyckaerts and Roudenko, 2010] us-

ing spectral techniques. Furthermore, for infinite variance nonradial solutions

Holmer-Roudenko in [Holmer and Roudenko, 2010c] introduced a first applica-

tion of concentration-compactness and rigidity arguments to prove the existence

of a “weak blowup”6. In addition, Holmer-Platte-Roudenko [Holmer et al., 2010]

6See Remark 1.7 and Chapter 4 for exact formulation and discussion.
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consider (both theoretically and numerically) solutions to the 3d cubic NLS above

the mass-energy threshold and give new blowup criteria in that region. They also

predict the asymptotic behavior of solutions for different classes of initial data

(Gaussian, super-Gaussian, off-centered Gaussian, and oscillatory Gaussian) and

provide several conjectures in relation to the threshold for scattering.

In the spirit of [Duyckaerts et al., 2008], [Holmer and Roudenko, 2008],

[Holmer and Roudenko, 2010c], Carreon-Guevara [Carreon and Guevara, 2011]

study the long-term behavior of solutions for the 2d quintic NLS equation with

H1 initial data, which corresponds to the mass-supercritical and energy-subcritical

NLS with sc = 1
2
. Mainly, for the initial value problem NLS+

5 (R2) scattering and

blowup was proven, including the existence of a “weak blowup”. This equation is

interesting since first of all, it has a higher power of nonlinearity (higher than cu-

bic), secondly, recently a nontrivial blowup result (on a standing ring) was exhib-

ited by Raphaël in [Raphaël, 2006], there are further extensions of [Raphaël, 2006]

to higher dimensions and different nonlinearities in [Raphaël and Szeftel, 2009],

also [Holmer and Roudenko, 2010b], and [Zwiers, 2010]; an H1 control on the

outside of the blowup core is shown in [Holmer and Roudenko, 2010a], which im-

proves the result of [Raphaël and Szeftel, 2009].

As it was mentioned before, the key argument to obtain scattering and

“weak blowup” is the concentration compactness technique together with a rigid-

ity theorem. Note that for 2 < q < 2d
d−2

the embedding H1(Rd) ↪→ Lq(Rd) is not

compact7; however, a profile decomposition allows to manage this lack of com-

pactness and to produce a “critical element”. Then a localization principle proves

scattering or weak blowup, depending on the initial assumptions.

7In fact, given any f ∈ H1(Rd), the sequence fn(x) = f(x − xn), where the
sequence xn →∞ in Rd, is uniformly bounded in H1(Rd), but has no convergent
sequence on Lq.
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To conclude this section, we point out that the concentration compactness-

ridigity method can be used for various types of PDEs, not necessary dispersive

ones. For example, a recent work of Kenig-Koch [Kenig and Koch, 2009] presents

an alternative to study regularity of solutions to the Navier-Stokes equations in

a critical space [Escauriaza et al., 2003]; they proved that mild solutions which

remain bounded in L3 for all times do not become singular in finite time using

the concentration compactness and rigidity theorem.

1.3 Overview of the results

Throughout this document, unless otherwise specified, we will always as-

sume that 0 < s < 1 and s = d
2
− 2

p−1
, α :=

√
d(p−1)

2
, and β := 1− (d−2)(p−1)

4
, and

let

u
Q

(x, t) := eiβtQ(αx). (1.4)

Then u
Q

(x, t) solves the equation (1.1), provided Q solves8

−β Q+ α2 ∆Q+Qp = 0, Q = Q(x), x ∈ Rd. (1.5)

The theory of nonlinear elliptic equations (Berestycki-Lions

[Berestycki and Lions, 1983a, Berestycki and Lions, 1983b]) shows that (1.5) has

an infinite number of solutions in H1(Rd), but a unique solution of minimal

L2-norm, which we denote by Q(x). It is positive, radial, exponentially decaying

(for example, [Tao, 2006, Appendix B]) and is called the ground state solution.

As it was mentioned in Section 1.1 the quantities

‖u‖1−sc
L2(Rd)

‖∇u‖sc
L2(Rd)

and E[u]scM [u]1−sc

8Here, in the equation (1.5) and definition of Q, we use the notation from

Weinstein [Weinstein, 1982]. Rescaling Q(x) 7→ β
1
p−1Q

(√
β
α
x
)

will solve a more

common version of the nonlinear elliptic equation −Q+ ∆Q+Qp = 0.

10



are scaled invariant, therefore, we introduce the following notation:

• the renormalized gradient Gu(t) :=
‖u‖1−s

L2(Rd)
‖∇u(t)‖s

L2(Rd)

‖u
Q
‖1−s
L2(Rd)

‖∇u
Q
‖s
L2(Rd)

, (1.6)

• the renormalized momentum P [u] :=
P [u]s‖u‖1−2s

L2(Rd)

‖u
Q
‖1−s
L2(Rd)

‖∇u
Q
‖s
L2(Rd)

, (1.7)

• the renormalized Mass-Energy ME [u] :=
M [u]1−sE[u]s

M [u
Q

]1−sE[u
Q

]s
. (1.8)

Remark 1.5 (Negative energy). Note that the renormalized mass-energyME [u] <

1 defined in (1.8) is not defined when E[u] < 0 and s is fractional. However, if

E[u] < 0, the blowup from the dichotomy in Theorem 1.6 Part II (a) applies. (It

follows from the standard convexity blow up argument and the work of Glangetas-

Merle [Glangetas and Merle, 1995]). Thus, we only consider positive energy in

what follows.

The main result of this dissertation is

Theorem 1.6. Consider NLS+
p (Rd) with u0 ∈ H1(Rd) with d ≥ 1 and let u(t) be

the corresponding solution in its maximal time interval of existence (T∗, T
∗), and

s := sc ∈ (0, 1). Let u
Q

(x, t) be as in (1.4), and assume

(ME [u])
1
s − d

2s
(P [u])

2
s < 1. (1.9)

I. If

[Gu(0)]
2
s − (P [u])

2
s < 1, (1.10)

then

(a) [Gu(t)]
2
s − (P [u])

2
s < 1 for all t ∈ R, and thus, the solution is global in time

(i.e., T∗ = −∞, T ∗ = +∞) and

(b) u scatters in H1(Rd), i.e., there exists φ± ∈ H1(Rd) such that

lim
t→±∞

‖u(t)− eit∆φ±‖H1(Rd) = 0.

11



II. If

[Gu(0)]
2
s − (P [u])

2
s > 1, (1.11)

then [Gu(t)]
2
s − (P [u])

2
s > 1 for all t ∈ (T∗, T

∗) and

(a) if u0 is radial (for d ≥ 3 and in d = 2, 3 < p ≤ 5) or u0 is of finite

variance, i.e., |x|u0 ∈ L2(Rd), then the solution blows up in finite time (i.e.,

T ∗ < +∞, T∗ > −∞).

(b) If u0 is non-radial and of infinite variance, then either the solution blows

up in finite time (i.e., T ∗ < +∞, T∗ > −∞) or there exists a sequence of

times tn → +∞ (or tn → −∞) such that ‖∇u(tn)‖L2(Rd) →∞.

Remark 1.7 (Weak blowup). We say there is a “weak blowup” if under the

ME [u] < 1, u(t) exists globally for all positive time and there exists a sequence

of times tn → +∞ such that ‖∇u(tn)‖L2 → ∞. In other words, L2 norm of the

gradient diverges in infinite time.

1.4 Notation

Throughout this dissertation we write X . Y whenever there exists some

constant C independent of the parameters, so that X ≤ CY . The abbreviation

O(X) denotes a finite linear combination of terms that “look like” X, but possibly

with some factors replaced by their complex conjugates. We use the ‘Japanese

bracket’ convention: 〈x〉 := (1 + |x|2)
1
2 and 〈∇〉 := (1−∆)

1
2 , where the derivative

operator ∇ refers only to the space variable.

Define the Fourier transform on Rd

f̂(ξ) :=

∫
Rd
e−2πix·ξf(x)dx,

12



and the inverse Fourier transform on Rd is given by

f(x) :=

∫
Rd
e2πix·ξf̂(ξ)dξ.

We regularly refer to the space-time norms

‖u‖LqtLrx(R×Rd) = ‖u‖LqtLrx :=

(∫
R

(∫
Rd
|u(x, t)|rdx

) q
r

dt

) 1
q

with the corresponding changes when either q =∞ or r =∞.

We work with the fractional differentiation operators Ds defined by

D̂sf(ξ) := |ξ|sf̂(ξ).

The inhomogeneous Sobolev norm Hs(Rd) is defined by (when s is an integer)

‖f‖Hs(Rd) = ‖f‖Hs :=
s∑

|α|=0

‖∂αx f‖L2(Rd),

when s is any real number as,

‖f‖Hs(Rd) = ‖f‖Hs :=
(∫

Rd
|f̂(ξ)|2(1 + |ξ|2)sdξ

) 1
2
,

and the homogeneous Sobolev norm Ḣs(Rd) is defined as

‖f‖Ḣs(Rd) = ‖f‖Ḣs :=
(∫

Rd
|f̂(ξ)|2|ξ|2sdξ

) 1
2
.

Let eit∆f be the free Schrödinger propagator, i.e., a solution of the linear

Schödinger equation iut + ∆u = 0 with u(0, x) = f(x). In physical space, this is

given by

eit∆f(x) =
1

(4πit)d/2

∫
Rd
ei|x−y|

2/4tf(y)dy,

and in frequency space

êit∆f(ξ) = e−4π2it|ξ|2 f̂(ξ).

In particular, the propagator preserves the homogeneous Sobolev norms

and obeys the dispersive inequality

‖eit∆f‖L∞x (Rd) . |t|−
d
2‖f‖L1

x(Rd) (1.12)
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for all times t 6= 0, for example, see Cazenave [Cazenave, 2003, Proposition 2.2.3].

We employ some Littlewood-Paley operators theory. Specifically, let ϕ ∈

C∞comp(Rd) be such that

ϕ(ξ) =

 1 |ξ| ≤ 1

0 |ξ| ≥ 2.

For each dyadic number N ∈ 2Z and a Schwartz function f , define the Littlewood-

Paley operators

P̂≤Nf(ξ) := ϕ
( ξ
N

)
f̂(ξ), P̂>Nf(ξ) :=

(
1− ϕ

( ξ
N

))
f̂(ξ),

P̂Nf(ξ) :=

(
ϕ
( ξ
N

)
− ϕ

(2ξ

N

))
f̂(ξ).

Thus, P̂Nf , P̂≤Nf, and P̂>Nf are smooth out projections to the regions |ξ| ∼ N ,

|ξ| ≤ 2N, and |ξ| > N, respectively. Note that for all Schwartz functions f , and

M ∈ Z

P̂≤Nf(ξ) =
∑
M≤N

P̂Mf, P̂>Nf(ξ) =
∑
M>N

P̂Mf, f =
∑
M

PMf.

Similarly, P<N , P≥N , and PM<·≤N := P≤N −P≤M can be defined whenever M and

N are dyadic numbers with M < N .

Note that Littlewood-Paley operators commute with derivative operators,

the free propagator, and complex conjugation. They are self-adjoint and bounded

on every Lp and Ḣs
x space for 1 ≤ p <∞ and s ≥ 0. They also obey the following

Sobolev and Bernstein estimates:∥∥P≥Nf∥∥Lpx .p,s,n N−s
∥∥DsP≥Nf

∥∥
Lpx

= N−s
∥∥P≥NDsf

∥∥
Lpx
,∥∥P≤NDsf

∥∥
Lpx

=
∥∥DsP≤Nf

∥∥
Lpx

.p,s,n N s
∥∥P≤Nf∥∥Lpx ,∥∥PND±sf∥∥Lpx =

∥∥D±sPNf∥∥Lpx ∼p,s,n N±s
∥∥PNf∥∥Lpx ,∥∥P≤Nf∥∥Lqx .p,q,n N

n
p
−n
q

∥∥P≤Nf∥∥Lpx ,∥∥PNf∥∥Lqx .p,q,n N
n
p
−n
q

∥∥PNf∥∥Lpx ,
14



whenever s ≥ 0 and 1 ≤ p ≤ q <∞, for further discussion see Tao [Tao, 2006].

Let S ′(Rd) be the space of tempered distributions on Rd. For 1 ≤ p, q ≤ ∞

and σ > d
p
, define the inhomogeneous Besov space βσp,q(Rd) =

{
u ∈ S ′(Rd) :

‖u‖Bσp,q(Rd) <∞
}
, where

∥∥u∥∥
βσp,q(Rd)

: = ‖P≤Nu‖Lpx +

(
∞∑
j=1

(
2jσ‖P2ju‖Lpx

)q) 1
q

= ‖P≤Nu‖Lp +
( ∑
N∈2Z

(
Nσ‖PNu‖Lpx

)q) 1
q
,

and the homogeneous Besov space β̇σp,q(Rd) =
{
u ∈ S ′(Rd) : ‖u‖β̇σp,q(Rd) < ∞

}
,

where ∥∥u∥∥
β̇σp,q(Rd)

:=
( ∑
N∈2Z

(
Nσ‖PNu‖Lpx

)q) 1
q
.

Note that most of the Lp, Hs, Ḣs, βσp,q and β̇σp,q norms are defined on Rd,

thus, we will omit the symbol Rd unless we need a specific space dimension.
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Chapter 2

PRELIMINARIES

In this chapter, we review the Strichartz estimates (e.g., see Cazenave

[Cazenave, 2003], Keel-Tao [Keel and Tao, 1998], Foschi [Foschi, 2005]), frac-

tional calculus tools and local theory; these are the instruments to treat the

nonlinearity F (u) = |u|p−1u. In addition, we survey the ground state properties

and the reduction to the zero momentum which allows us to restate Theorem 1.6

into a simpler version.

2.1 Fractional calculus tools

For Lemmas 2.1, 2.3, 2.2, assume p, pi ∈ (1,∞), 1
p

= 1
pi

+ 1
pi+1

, with

i = 1, 2, 3.

Lemma 2.1 (Chain rule [Kenig et al., 1993]). Suppose F ∈ C1(C). Let σ ∈ (0, 1),

then

‖DσF (u)‖Lp . ‖F ′(u)‖Lp1 ‖Dσf‖Lp2 .

Lemma 2.2 (Leibniz rule [Kenig et al., 1993]). Let σ ∈ (0, 1), then

‖Dσ(fg)‖Lp .

(
‖f‖Lp1 ‖Dσg‖Lp2 + ‖g‖Lp3 ‖Dσf‖Lp4

)
.

Lemma 2.3 (Chain rule for Hölder-continuous functions [Visan, 2007]). Let F

be a Hölder-continuous function of order 0 < ρ < 1, then for every 0 < σ < ρ,

and σ
ρ
< ν < 1 we have

∥∥DσF (u)
∥∥
Lp

.
∥∥|u|ρ−σν ∥∥

Lp1

∥∥Dνu
∥∥σν
L
σ
ν p2
,

provided (1− σ
ρν

)p1 > 1.
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2.2 Strichartz type estimates

We say the pair (q, r) is Ḣs−Strichartz admissible if

2

q
+
d

r
=
d

2
− s, with 2 ≤ q, r ≤ ∞ and (q, r, d) 6= (2,∞, 2);

and the pair (q, r) is d
2
−acceptable if

1 ≤ q, r ≤ ∞, 1

q
< d
(1

2
− 1

r

)
, or (q, r) = (∞, 2).

As usual we denote by q′ and r′ the Hölder conjugates of q and r, respec-

tively ( i.e., 1
r

+ 1
r′

= 1).

2.2.1 Strichartz estimates

The Strichartz estimates (e.g., see Cazenave [Cazenave, 2003],

[Keel and Tao, 1998], Foschi [Foschi, 2005]) are

∥∥∥eit4φ∥∥∥
LqtL

r
x

.
∥∥φ∥∥

L2 ,

∥∥∥∥∥
∫
e−iτ4f(τ)dτ

∥∥∥∥∥
L2

.
∥∥φ‖

Lq
′
t L

r′
x
, (2.1)∥∥∥∥∥

∫
τ<t

ei(t−τ)4f(τ)dτ

∥∥∥∥∥
LqtL

r
x

.
∥∥f‖

Lq
′
t L

r′
x
, (2.2)

where (q, r) is an Ḣs−Strichartz admissible pair. The retarded estimate (2.2)

have a wider range of admissibility and holds when the pair (q, r) is d
2
−acceptable

[Kato, 1994].

In order to include the appropriate (for our goals) admissible pairs for the

(2.2), define the Strichartz space S(Ḣs) = S(Ḣs(Rd× I)) as the closure of all test

functions under the norm ‖ · ‖S(Ḣs) with
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‖u‖S(Ḣs) =



sup

‖u‖LqtLrx (q, r) Ḣs admissible with(
2

1−s
)+ ≤ q ≤ ∞, 2d

d−2s ≤ r ≤
(

2d
d−2

)−
 if d ≥ 3

sup

‖u‖LqtLrx (q, r) Ḣs admissible with(
2

1−s
)+ ≤ q ≤ ∞, 2

1−s ≤ r ≤
((

2
1−s
)+)′

 if d = 2

sup

‖u‖LqtLrx (q, r) Ḣs admissible with

4
1−2s ≤ q ≤ ∞, 2

1−2s ≤ r ≤ ∞

 if d = 1.

Here, (a+)′ is defined as (a+)′ := a+·a
a+−a , so that 1

a
= 1

(a+)′
+ 1

a+ for any positive

real value a, with a+ being a fixed number slightly larger than a. Likewise, a− is

a fixed number slightly smaller than a.

Remark 2.4. Note that 2d
d−2s

<
(

2d
d−2

)−
< 2d

d−2
, if d ≥ 3. Additionally, when d = 2

and s 6= 1
2
, the quantity r = 2d

d−2s
might be very large, but 2d

d−2s
<
((

2
1−s

)+)′
.

Similarly, define the dual Strichartz space S ′(Ḣ−s) = S ′(Ḣ−s(Rd × I)) as

the closure of all test functions under the norm ‖ · ‖S′(Ḣ−s) with

‖u‖S′(Ḣ−s) =



inf

‖u‖Lq′t Lr′x (q, r) Ḣ−s admissible with(
2

1+s

)+ ≤ q ≤
(

1
s

)−
,
(

2d
d−2s

)+ ≤ r ≤
(

2d
d−2

)−
 if d ≥ 3

inf

‖u‖Lq′t Lr′x (q, r) Ḣ−s admissible with(
2

1+s

)+ ≤ q ≤
(

1
s

)−
,
(

2
1−s
)+ ≤ r ≤

((
2

1+s

)+)′
 if d = 2

inf

‖u‖Lq′t Lr′x (q, r) Ḣ−s admissible with

2
1+2s ≤ q ≤

(
1
s

)−
,
(

2
1−s
)+ ≤ r ≤ ∞

 if d = 1.

Remark 2.5. Note that S(L2) = S(Ḣ0) and S ′(L2) = S ′(Ḣ−0). In this dissertation,

if (q, r) is Ḣ−0 admissible we say a pair (q′, r′) is L2 dual admissible.
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Under the above definitions, the Strichartz estimates (2.1) become

‖eit∆φ‖S(L2) ≤ c‖φ‖L2 and
∥∥∥∫

s<t

ei(t−s)∆f(s)ds
∥∥∥
S(L2)

≤ c‖f‖S′(L2) (2.3)

and in this paper, we refer to them as the (standard) Strichartz estimates.

Combining (2.3) with the Sobolev embedding W s,r
x (Rd) ↪→ L

nr
n−sr
x (Rd) for

s < n
r

and interpolating yields the Sobolev Strichartz estimates

‖eit∆φ‖S(Ḣs) ≤ c‖φ‖Ḣs and
∥∥∥∫ t

0

ei(t−s)∆f(s)ds
∥∥∥
S(Ḣs)

≤ c‖Dsf‖S′(L2), (2.4)

and in similar fashion (2.2) leads to the Kato’s Strichartz estimate [Kato, 1987,

Foschi, 2005] ∥∥∥∫ t

0

ei(t−s)∆f(s)ds
∥∥∥
S(Ḣs)

≤ c‖f‖S′(Ḣ−s). (2.5)

Kato’s Strichartz estimate along with the Sobolev embedding imply the

inhomogeneous estimate (second estimate in (2.4)) and it is the key estimate in

the long term perturbation argument (Proposition 2.17).

2.2.2 Besov Strichartz estimates

We will also address a question of non-integer nonlinearities for NLS+
p (Rd). Thus,

the following remark is due

Remark 2.6. The complex derivative of the nonlinearity F (u) = |u|p−1u is Fz(z) =

p+1
2
|z|p−1 and Fz̄(z) = p−1

2
|z|p−1 z

z̄
. They are Hölder-continuous functions of order

p, and for any u, v ∈ C, we have

F (u)− F (v) =

∫ 1

0

[
Fz(v + t(u− v))(u− v) + Fz̄(v + t(u− v))(u− v)

]
dt, (2.6)

thus,

|F (u)− F (v)| . |u− v|
(
|u|p−1 + |v|p−1

)
. (2.7)

Hence, the nonlinearity F (u) satisfies
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(a) F ∈ C2(C), if 2 ≤ d < 5, or d = 5 when 1
2
< sc < 1,

(b) F ∈ C1(C), if d ≥ 6, or d = 5 when 0 < sc ≤ 1
2
.

When estimating the fractional derivatives of (2.6), in the case (b), there

is a lack of smoothness. This issue is resolved by using the Besov Spaces.

Define the Besov Strichartz space β̇σ
S(Ḣs)

= β̇σ
S(Ḣs)

(Rd × I) as the closure

of all test functions under the semi-norm ‖ · ‖β̇σ
S(Ḣs)

with

‖u‖β̇σ
S(Ḣs)

=



sup

‖u‖Lqt β̇σr,2 (q, r) Ḣs admissible with(
2

1−s
)+ ≤ q ≤ ∞, 2d

d−2s ≤ r ≤
(

2d
d−2

)−
 if d ≥ 3

sup

‖u‖Lqt β̇σr,2 (q, r) Ḣs admissible with(
2

1−s
)+ ≤ q ≤ ∞, 2

1−s ≤ r ≤
((

2
1−s
)+)′

 if d = 2.

sup

‖u‖Lqt β̇σr,2 (q, r) Ḣs admissible with

4
1−2s ≤ q ≤ ∞, 2

1−2s ≤ r ≤ ∞

 if d = 1.

Similary, define the dual Besov Strichartz space β̇σ
S′(Ḣ−s)

= β̇σ
S′(Ḣ−s)

(Rd×I)

as the closure of all test functions under the semi-norm ‖ · ‖β̇σ
S′(Ḣ−s)

with

‖u‖β̇σ
S′(Ḣ−s)

=



inf

‖u‖Lq′t β̇σr′,2 (q, r) Ḣ−s admissible with(
2

1+s

)+ ≤ q ≤
(

1
s

)−
,
(

2d
d−2s

)+ ≤ r ≤
(

2d
d−2

)−
 if d ≥ 3

inf

‖u‖Lq′t β̇σr′,2 (q, r) Ḣ−s admissible with(
2

1+s

)+ ≤ q ≤
(

1
s

)−
,
(

2
1−s
)+ ≤ r ≤

((
2

1+s

)+)′
 if d = 2

inf

‖u‖Lq′t β̇σr′,2 (q, r) Ḣ−s admissible with

2
1+2s ≤ q ≤

(
1
s

)−
,
(

2
1−s
)+ ≤ r ≤ ∞

 if d = 1.
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Lemma 2.7. If u ∈ β̇σ
S(Ḣs)

and σ ≥ 0, s ∈ R, then

∥∥Dσu
∥∥
S(Ḣs)

. ‖u‖β̇σ
S(Ḣs)

.

Proof. Let (q, r) be Ḣs admissible pair, then

∥∥Dσu
∥∥
LqtL

r
x

.

∥∥∥∥( ∑
N∈2Z

∣∣PNDσu
∣∣2) 1

2

∥∥∥∥
LqtL

r
x

.
∥∥∥( ∑

N∈2Z

‖PNDσu‖2
Lrx

) 1
2
∥∥∥
Lqt

≈
∥∥∥( ∑

N∈2Z

N2σ‖PNu‖2
Lrx

) 1
2
∥∥∥
Lqt

. ‖u‖β̇σ
L
q
t β̇
σ
r,2

.

Taking sup over all (q, r) Ḣs−admissible pairs yields the claim.

Lemma 2.8 (Embedding). For any compact time interval I, assume 0 ≤ σ < ρ,

1 ≤ r, r1 , q ≤ ∞. Then

‖Dσu‖LqtLrx . ‖Dρu‖
LqtL

r1
x
, (2.8)

where r1 = rd
(ρ−σ)r+d

and q1 = q2.

Proof. The Sobolev embedding Ẇ
ρ,r1
x (Rd) ↪→ Ẇ σ,r

x (Rd) yields the inequality (2.8).

Remark 2.9. If q′, r′ and r′
1

are the Hölder’s conjugates of r, q and r1 , respectively,

then we have

‖Dρu‖
Lq
′
t L

r′
1
x

. ‖Dσu‖
Lq
′
t L

r′
x
.

Lemma 2.10 (Linear Besov-Strichartz). Let u ∈ β̇σS(L2) be a solution to the forced

Schrödinger equation

iut + ∆u =
M∑
m=1

Fm (2.9)

for some functions F1, . . . , FM and σ = 0 or σ = s. Then on Rd × I we have

‖u‖β̇σ
S(Ḣs)

. ‖u0‖Ḣσ +
M∑
m=1

‖Fm‖β̇σ
S′(L2)

. (2.10)
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Proof. It suffices to prove the statement for M = 1, since combining Duhamel’s

formula (1.2) and the triangle inequality yield the proof for M ≥ 1. Furthermore,

it is enough to prove for σ = 0 because applying Ds to both sides of the equation

(2.9), and observing thatDs and Littlewood-Paley operators commute with i∂t+∆

give that for all dyadic N

i∂tPNu+ ∆PNu = PNF1.

Note that the standard Strichartz estimates (2.4) yield

‖PNu‖S(Ḣs) . ‖PNu(t0)‖L2
x

+ ‖PNF1‖S′(L2), (2.11)

squaring (2.11), summing over all dyadic N , and combining with the Littlewood-

Paley inequality, the claim is obtained.

Lemma 2.11 (Inhomogeneous Besov Strichartz estimate). If F ∈ β̇σ
S′(Ḣ−s)

, then∥∥∥∫ t

0

ei(t−τ)∆F (τ)dτ
∥∥∥
β̇σ
S(Ḣs)

. ‖F‖β̇σ
S′(Ḣ−s)

. (2.12)

Proof. The dispersive inequality (1.12) and interpolation with the L2
x norm when-

ever t 6= τ yield ∥∥ei(t−τ)∆F (τ)
∥∥
Lrx

. |t− τ |−d( 1
r′−

1
2

)
∥∥F (τ)

∥∥
Lr′x
.

In particular, if (q, r) Ḣs admissible, integration on Rd × I combined with

Minkowski’s inequality imply∥∥∥∫ t

t0

ei(t−τ)∆F (τ)dτ
∥∥∥
LqtL

r
x

.
∥∥∥∫ t

t0

∥∥ei(t−τ)∆F (τ)
∥∥
Lrx
dτ
∥∥∥
Lqt

.
∥∥∥∫ t

t0

∥∥F (τ)
∥∥
Lr′x
∗ |t|d( 1

r
− 1

2
)
∥∥∥
Lqt

.
∥∥F∥∥

Lq
′
t L

r′
x
.

Thus, Littlewood-Paley theory gives∥∥∥PN ∫ t

t0

ei(t−τ)∆F (τ)dτ
∥∥∥
LqtL

r
x

.
∥∥PNF (τ)

∥∥
Lq
′
t L

r′
x
.

Therefore, (2.12) is obtained by multiplying both sides of the above estimate by

Nσ, squaring and summing over all dyadic N ′s.
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Lemma 2.12 (Interpolation inequalities for Besov spaces [Triebel, 1978]). Let

1 ≤ pi, qi ≤ ∞ and u ∈ βσipi,qi(R
d), where i = 1, 2, 3. Then

‖u‖βσ1p1 ,q1 (Rd) = ‖u‖1−θ
β
σ2
p2 ,q2

(Rd)
‖u‖θ

β
σ3
p3 ,q3

(Rd)

provided that

σ1 = (1− θ)σ2 + θσ3,
1

p1

=
1− θ
p2

+
θ

p3

and
1

q1

=
1− θ
q2

+
θ

q3

.

2.3 Local Theory

In this section the global existence and scattering in H1(Rd) for small data

in Ḣs (Propositions 2.13 and 2.21), and a long perturbation argument (Proposition

2.17) are examined. The proofs lie on paraproduct9 techniques and Besov spaces

which allow us to treat the lack of smoothness of the nonlinearity F (u) = |u|p−1u

(see Remark 2.6).

Proposition 2.13 (Small data). Suppose ‖u0‖Ḣs . A. There exists δsd =

δsd(A) > 0 such that if ‖eit4u0‖β̇0
S(Ḣs)

. δsd, then u(t) solving the NLS+
p (Rd)

is global in Ḣs(Rd) and

‖u‖β̇0
S(Ḣs)

. 2‖eit4u0‖β̇0
S(Ḣs)

, ‖u‖β̇s
S(L2)

. 2c‖u0‖Ḣs .

Proof. Using a fixed point argument in a ball B, the existence of solutions to (1.1)

and continuous dependence on the initial data is proven as follows.

Let

B =
{
‖u‖β̇0

S(Ḣs)

. 2‖eit4u0‖β̇0
S(Ḣs)

, ‖u‖β̇s
S(L2)

. 2c‖u0‖Ḣs

}
.

9Bilinear, non-commutative operator that satisfies product reconstruction and
linearization formulas (up to smooth errors), a Hölder-type inequality, and a
Leibniz-type rule.
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Assume F (u) = |u|p−1u and the map u 7→ Φu0(u) defined via

Φu0(u) := eit4u0 + i

∫ t

0

ei(t−τ)4F (u(τ))dτ.

Combining the triangle inequality and the Linear Besov Strichartz estimates (2.10)

and the fact that F (u) ∈ C1, we obtain

‖Φu0(u)‖β̇0
S(Ḣs)

. ‖eit4u0‖β̇0
S(Ḣs)

+ ‖F (u)‖β̇s
S′(L2)

,

‖Φu0(u)‖β̇s
S(L2)

. ‖u0‖β̇s
S(L2)

+ ‖F (u)‖β̇s
S′(L2)

.

For each dyadic number N ∈ 2Z, the fractional chain rule (Lemma 2.1) and

Hölder’s inequality lead to

‖DsF (u)‖S′(L2) . ‖Ds(|u|p−1u)‖
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

. ‖u‖p−1

L
dp
2s
t L

d2p(p−1)
2(d+4)

x

‖Dsu‖
L
dp
2s
t L

2d2p

d2p−8s
x

. ‖u‖p−1

S(Ḣs)
‖Dsu‖S(L2),

thus, Littlewood-Paley theory yields

‖|u|p−1u‖β̇s
S′(L2)

. ‖u‖p−1

β̇0
S(Ḣs)

‖u‖β̇s
S(L2)

. (2.13)

Therefore,

‖Φu0(u)‖β̇0
S(Ḣs)

. ‖eit4u0‖β̇0
S(Ḣs)

+ ‖u‖p−1

β̇0
S(Ḣs)

‖u‖β̇s
S(L2)

,

‖Φu0(u)‖β̇s
S(L2)

. ‖u0‖β̇s
S(L2)

+ ‖u‖p−1

β̇0
S(Ḣs)

‖u‖β̇s
S(L2)

and choosing δ1 = min
{

1

2pcp−1
1 Ap−2

, p−1

√
1

2pcp−1
2 A

}
leads to Φu0(u) ∈ B.

To complete the proof, we need to show that the map u 7→ Φu0(u) is a

contraction. Take u, v ∈ B, and note that triangle inequality and Besov Strichartz

estimates yield

‖Φu0(u)− Φu0(v)‖β̇0
S(Ḣs)

.
∥∥∥∫ t

0

ei(t−τ)4
(
F
(
u(τ)

)
− F

(
v(τ)

))
dτ
∥∥∥
β̇0
S(Ḣs)

. ‖Ds
(
F (u)− F (v)

)
‖β̇0

S′(L2)

≈ ‖F (u)− F (v)‖β̇s
S′(L2)

,
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and

‖Φu0(u)− Φu0(v)‖β̇s
S(Ḣs)

≈ ‖Ds(Φu0(u)− Φu0(v))‖β̇0
S(L2)

.
∥∥∥∫ t

0

ei(t−τ)4Ds
(
F
(
u(τ)

)
− F

(
v(τ)

))
dτ
∥∥∥
β̇0
S(L2)

. ‖Ds
(
F (u)− F (v)

)
‖β̇0

S′(L2)

≈ ‖F (u)− F (v)‖β̇s
S′(L2)

.

For each dyadic number N ∈ 2Z, we estimate ‖Ds
(
F (u) − F (v)

)
‖S′(L2). Recall

that we are considering the mass-supercritical energy-subcritical NLS, i.e., 0 <

s < 1 and p = 1+ 4
d−2s

. Due to the lack of smoothness of the nonlinearity (Remark

2.6), we consider two (complementary) cases:

(a) The function F (u) is at least in C2(C).

(b) The nonlinearity F (u) is at most in C1(C).

In the rest of the proof we examine these cases separately, and after the

proof we give specific examples to illustrate our approach.

Case (a). F (u) is at least in C2(C): this case occurs when 1 ≤ d ≤ 4 + 2s, i.e.,

dimensions 2, 3, and 4 for 0 < s < 1, or dimension 5 when 1
2
≤ s < 1. Combining

(2.7), chain rule (Lemma 2.1) and Hölder’s inequality, gives

‖Ds
(
F (u)−F (v)

)
‖S′(L2) . ‖Ds(|u|p−1u− |v|p−1v)‖

L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

. ‖Ds|u− v|‖
L
dp
2s
t L

2d2p

d2p−8s
x

(
‖u‖p−1

L
dp
2s
t L

d2p(p−1)
2(d+4)

x

+ ‖v‖p−1

L
dp
2s
t L

d2p(p−1)
2(d+4)

x

)
. ‖Ds|u− v|‖S(L2)

(
‖u‖p−1

S(Ḣs)
+ ‖v‖p−1

S(Ḣs)

)
.

Here, we used the Hölder split

2d2(p− 1)

d2(p− 1) + 16
=
d2p− 8s

2d2p
+ (p− 1)

2(d+ 4)

d2p(p− 1)
(2.14)

together with the fact that the pair
(
d
2s
, 2d2(p−1)
d2(p−1)+16

)
is L2 dual admissible, the pair(

dp
2s
, 2d2p
d2p−8s

)
is L2 admissible and the pair

(
dp
2s
, d

2p(p−1)
2(d+4)

)
is Ḣs admissible.
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Therefore, ‖F (u) − F (v)‖β̇s
S′(L2)

. ‖u − v‖β̇s
S(L2)

(
‖u‖p−1

β̇0
S(Ḣs)

+ ‖v‖p−1

β̇0
S(Ḣs)

)
.

Letting δ2 = min
{

p−1

√
1

2pC
, 1

2pAp−2C

}
implies that Φu0 is a contraction.

Case (b). F (u) is at most in C1(C): this corresponds to dimensions higher than

4 + 2s, i.e., d = 5 with 0 < s < 1
2

or d ≥ 6 with 0 < s < 1. Let w = u − v,

therefore (2.6) and the triangle inequality imply

‖Ds
(
F (u)− F (v)

)
‖S′(L2) . ‖Ds(|u|p−1u− |v|p−1v)‖

L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

. ‖DsFz(v + w)w‖
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

+ ‖DsFz̄(v + w̄)w̄‖
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

. (2.15)

To estimate (2.15), we consider the subcases s ≤ p− 1 and s > p− 1.

(i) If dimensions 4 + 2s < d ≤ 4+2s2

s
, then s ≤ p− 1, thus,

‖DsFz(u)w‖
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

. ‖D
s(p−1)

2 Fz(u)w‖
L
d
2s
t L

4d2(p−1)

(d+4)(d−dp+8)+d2p(p−1)
x

(2.16)

.‖D
s(p−1)

2 Fz(u)‖
L

dp
2s(p−1)
t L

8d2p

(p−1)2((d2−3ds+2s2)(d+4)+8s2)
x

‖w‖
L
dp
2s
t L

d2p(p−1)
2(d+4)

x

(2.17)

+ ‖u‖p−1

L
d(p−1)
s

t L

d2(d−1)
2(d−s)
x

‖D
s(p−1)

2 w‖
L
d
s
t L

d2(d−1)

2d+s2(p−1)2
x

(2.18)

.‖u‖
p−1
2

L
dp
2s
t L

d2p(p−1)
2(d+4)

x

‖Dsu‖
p−1
2

L
dp
2s
t L

2d2p

d2p−8s
x

‖Dsw‖
L
dp
2s
t L

2d2p

d2p−8s
x

(2.19)

+ ‖u‖p−1

L
d(p−1)
s

t L

d2(d−1)
2(d−s)
x

‖Dsw‖
L
d
s
t L

2d2

d2−4s
x

(2.20)

.‖Dsw‖S(L2)

(
‖u‖

p−1
2

S(Ḣs)
‖Dsu‖

p−1
2

S(L2) + ‖u‖p−1

S(Ḣs)

)
,

here, Remark 2.9 yields (2.16) since 4d2(p−1)
(d+4)(d−dp+8)+d2p(p−1)

, 2d2(p−1)
d2(p−1)+16

are Hölder

conjugates and s(p−1)
2

< s. Leibniz rule gives (2.17) and (2.18). Then applying

chain rule for Hölder-continuous functions (Lemma 2.3) with ρ := p − 1, σ :=

s(p−1)
2

and ν := s to (2.17), we obtain (2.19). Noticing that L
2d2

d2−4s
x ↪→ L

d2(d−1)

2d+s2(p−1)2

x ,

Lemma 2.8 implies (2.20). The last line comes from the fact that the pairs
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(
dp
2s
, d

2p(p−1)
2(d+4)

)
,
(
d(p−1)
s

, d
2(d−1)
2(d−s)

)
are Ḣs admissible, and the pairs

(
dp
2s
, 2d2p
d2p−8s

)
,(

d
s
, 2d2

d2−4s

)
are L2 admissible. In a similar fashion, we obtain the estimate for the

conjugate

‖DsFz̄(v + w̄)w̄‖
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

. ‖Dsw‖S(L2)

(
‖u‖

p−1
2

S(Ḣs)
‖Dsu‖

p−1
2

S(L2) + ‖u‖p−1

S(Ḣs)

)
.

Thus, Littlewood-Paley theory implies that

‖F (u)− F (v)‖β̇s
S′(L2)

. 2‖u− v‖β̇s
S(L2)

(
‖u‖

p−1
2

β̇0
S(Ḣs)

‖u‖
p−1
2

β̇s
S(L2)

+ ‖u‖p−1

β̇0
S(Ḣs)

)
,

and letting δ3 ≤ p−1
2

√
1

2(p+2)CA
p−1
2

gives that Φu0 is a contraction.

(ii)

If the dimensions d > 4+2s2

s
, then s > p−1. Therefore, we make an estimate

for ‖DsFz(u)w‖
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

, as follows

‖DsFz(u)w‖
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

. ‖D(p−1)2Fz(u)w‖
L
d
2s
t L

2(d+4)+d(p−1)3

d2(p−1)
x

(2.21)

.‖D(p−1)2Fz(u)‖
L

dp
2s(p−1)
t L

d2p

2(d+4)+dp(p−1)2
x

‖w‖
L
dp
2s
t L

d2p(p−1)
2(d+4)

x

(2.22)

+ ‖u‖p−1

L
d(p−1)
s

t L

d2(p−1)
2(d−s)
x

‖D(p−1)2w‖
L
d
s
t L

2d2

d2+2d(p−1)2−2s(d+2)
x

(2.23)

.‖u‖
(p−1)(1+s−p)

s

L
dp
2s
t L

d2p(p−1)
2(d+4)

x

‖Dsu‖
(p−1)2

s

L
dp
2s
t L

2d2p

d2p−8s
x

‖Dsw‖
L
dp
2s
t L

2d2p

d2p−8s
x

(2.24)

+ ‖u‖p−1

L
d(p−1)
s

t L

d2(p−1)
2(d−s)
x

‖Dsw‖
L
d
s
t L

2d2

d2−4s
x

(2.25)

.‖Dsw‖S(L2)

(
‖u‖

(p−1)(1+s−p)
s

S(Ḣs)
‖Dsu‖

(p−1)2

s

S(L2) + ‖u‖p−1

S(Ḣs)

)
,

as before in (i), Remark 2.9 yields (2.21) since 2(d+4)+d(p−1)3

d2(p−1)
, 2d2(p−1)
d2(p−1)+16

are Hölder

conjugates and (p− 1)2 < s. Leibniz rule gives (2.22) and (2.23). To obtain (2.24),

we use chain rule for Hölder-continuous functions (Lemma 2.3) with ρ := (p− 1)2

and ν := s to (2.17). The line (2.20) follows from Lemma 2.8, and finally,
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since the pairs
(
dp
2s
, d

2p(p−1)
2(d+4)

)
,
(
d(p−1)
s

, d
2(d−1)
2(d−s)

)
are Ḣs admissible, and the pairs(

dp
2s
, 2d2p
d2p−8s

)
,
(
d
s
, 2d2

d2−4s

)
are L2 admissible, we obtain the last estimate. Similarly,

‖DsFz̄(v + w̄)w̄‖
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

. ‖Dsw‖S(L2)

(
‖u‖

(p−1)(1+s−p)
s

S(Ḣs)
‖Dsu‖

(p−1)2

s

S(L2) + ‖u‖p−1

S(Ḣs)

)
.

Therefore, Littlewood-Paley theory produces

‖F (u)− F (v)‖β̇s
S′(L2)

. 2‖u− v‖β̇s
S(L2)

(
‖u‖

(p−1)(1+s−p)
s

β̇0
S(Ḣs)

‖u‖
(p−1)2

s

β̇s
S(L2)

+ ‖u‖p−1

β̇0
S(Ḣs)

)
,

and taking δ4 ≤ (p−1)(1+s−p)
s

√
1

2(p+1)CA
(p−1)2

s

implies that Φu0 is a contraction.

From cases (a) and (b) choosing δsd ≤ min
{
δ1, δ2, δ3, δ4

}
implies that the

map u 7→ Φu0(u) is a contraction which concludes the proof.

We next illustrate the above cases when considering the estimate

‖Ds
(
F (u) − F (v)

)
‖S′(L2) in the above proof: we describe the Ḣ

1
2−critical cases

NLS+
7
3

(R4), NLS+
5
3

(R7) and NLS+
13
9

(R10) corresponding to the cases (a), (b)(i) and

(b)(ii), respectively.

Example 2.14. Case (a): For NLS+
7
3

(R4), the nonlinearity F (u) = |u| 43u is C2(C).

The pairs (4, 8
7
), (28

3
, 56

25
), and (28

3
, 28

9
) are L2 dual admissible, L2 admissible and

Ḣ
1
2 admissible, respectively.

‖D
1
2

(
F (u)−F (v)

)
‖S′(L2) . ‖D

1
2 (|u|

4
3u− |v|

4
3v)‖

L4
tL

8
7
x

(2.26)

. ‖D
1
2 |u− v|‖

L
28
3
t L

56
25
x

(
‖u‖

4
3

L
28
3
t L

28
9
x

+ ‖v‖
4
3

L
28
3
t L

28
9
x

)
(2.27)

. ‖D
1
2 |u− v|‖S(L2)

(
‖u‖

4
3

S(Ḣ
1
2 )

+ ‖v‖
4
3

S(Ḣ
1
2 )

)
. (2.28)

Since L4
tL

8
7
x ⊆ S ′(L2), we have (2.26). Applying (2.7), chain rule (Lemma 2.1)

and Hölder’s inequality, we obtain (2.26). Finally, (2.28) comes from the fact that

S(L2) ⊆ L
28
3
t L

56
25
x and S(Ḣ

1
2 ) ⊆ L

28
3
t L

28
9
x .
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Example 2.15. Case (b) (i): The NLS+
5
3

(R7) is Ḣ
1
2−critical so s = 1

2
≤ 2

3
= p−1.

The nonlinearity F (u) = |u| 23u is C1(C). The pairs (35
3
, 490

233
), (14, 98

47
) are L2

admissible; the pairs (35
3
, 245

99
), (28

3
, 98

39
) are Ḣ

1
2 admissible and the pair (7, 98

73
) is

L2 dual admissible. Bound ‖Ds
(
F (u) − F (v)

)
‖S′(L2) by looking at ‖D 1

2Fz(v +

w)w‖
L7
tL

98
73
x

and its conjugate ‖D 1
2Fz̄(v + w̄)w̄‖

L7
tL

98
73
x

, as follows

‖D
1
2Fz(u)w‖

L7
tL

98
73
x

. ‖D
1
6Fz(u)w‖

L7
tL

294
205
x

(2.29)

. ‖D
1
6Fz(u)‖

L
35
2
t L

1470
431
x

‖w‖
L

35
3
t L

245
99
x

+ ‖Fz(u)‖
L14
t L

49
13
x

‖D
1
6w‖

L14
t L

294
127
x

(2.30)

. ‖u‖
1
3

L
35
3
t L

245
99
x

‖D
1
2u‖

1
3

L
35
3
t L

490
233
x

‖D
1
2w‖

L
35
3
t L

490
233
x

+ ‖u‖
1
6

L
28
3
t L

98
39
x

‖D
1
2w‖

L14
t L

98
47
x

(2.31)

. ‖D
1
2w‖S(L2)

(
‖u‖

1
3

S(Ḣ
1
2 )
‖D

1
2u‖

1
3

S(L2) + ‖u‖
1
6

S(Ḣ
1
2 )

)
,

where Remark 2.9 yields (2.29), Leibniz rule gives (2.30). Applying the chain rule

for Hölder-continuous functions (Lemma 2.3) with ρ := 2
3
, σ := 1

6
and ν := 1

2
to

the first term of (2.30) and Lemma 2.8 to the second term, we get (2.31). In a

similar fashion, we obtain the estimate for the conjugate

‖DsFz̄(v + w̄)w̄‖
L7
tL

98
73
x

. ‖D
1
2w‖S(L2)

(
‖u‖

1
3

S(Ḣ
1
2 )
‖D

1
2u‖

1
3

S(L2) + ‖u‖
1
6

S(Ḣ
1
2 )

)
.

Example 2.16. Case (b) (ii): Consider the Ḣ
1
2−critical NLS in dimension 10,

i.e., NLS+
13
9

(R10), so s = 1
2
> 4

9
= p − 1. Note that F (u) = |u| 49u is C1(C). The

pairs (130
9
, 1300

567
), (80

9
, 400

171
) are Ḣ

1
2 admissible; the pairs (130

9
, 325

158
), (20, 100

49
) are

L2 admissible and the pair (10, 25
17

) is L2 dual admissible. Estimate ‖Ds
(
F (u) −

F (v)
)
‖S′(L2) by looking at ‖D 1

2Fz(v + w)w‖
L10
t L

25
17
x

and its conjugate ‖D 1
2Fz̄(v +
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w̄)w̄‖
L10
t L

25
17
x

, as follows

‖D
1
2Fz(u)w‖

L10
t L

25
17
x

. ‖D
16
81Fz(u)w‖

L10
t L

8100
5263
x

(2.32)

. ‖D
16
81Fz(u)‖

L
65
2
t L

26325
5623
x

‖w‖
L

130
9
t L

1300
567
x

+ ‖u‖
4
9

L
80
9
t L

400
171
x

‖D
16
81w‖

L20
t L

2025
931
x

(2.33)

. ‖u‖
4
81

L
130
9
t L

1300
567
x

‖D
1
2u‖

32
81

L
130
9
t L

325
158
x

‖D
1
2w‖

L
130
9
t L

325
158
x

+ ‖u‖
4
9

L
80
9
t L

400
171
x

‖D
1
2w‖

L20
t L

100
49
x

(2.34)

. ‖D
1
2w‖S(L2)

(
‖u‖

4
81

S(Ḣs)
‖D

1
2u‖

32
81

S(L2) + ‖u‖
4
9

S(Ḣs)

)
,

where as in case (b)(i) Remark 2.9 yields (2.32), Leibniz rule gives (2.33). Ap-

plying the chain rule for Hölder-continuous functions (Lemma 2.3) with ρ := 4
9
,

σ := 16
81

and ν := 1
2

to the first term of (2.33) and Lemma 2.8 to the second term,

we obtain (2.34). In a similar fashion, we obtain the estimate for the conjugate

‖DsFz̄(v + w̄)w̄‖
L10
t L

25
17
x

. ‖D
1
2w‖S(L2)

(
‖u‖

4
81

S(Ḣs)
‖D

1
2u‖

32
81

S(L2) + ‖u‖
4
9

S(Ḣs)

)
.

Note that the difference between the treatment of the case (b) (i) and (ii) is

just the choice of the value ρ when applying the chain rule for Hölder-continuous

functions (Lemma 2.3).

Proposition 2.17 (Long term perturbation). For each A > 0, there exist ε0 =

ε0(A) > 0 and c = c(A) > 0 such that the following holds. Let u = u(x, t) ∈

H1(Rd) solve NLS+
p (Rd). Let v = v(x, t) ∈ H1(Rd) for all t and satisfies ẽ =

ivt + ∆v + |v|p−1v.

If ‖v‖β̇0
S(Ḣs)

≤ A, ‖ẽ‖β̇0
S′(Ḣ−s)

≤ ε0 and ‖ei(t−t0)∆(u(t0) − v(t0))‖β̇0
S(Ḣs)

≤ ε0,

then ‖u‖β̇0
S(Ḣs)

≤ c.

Proof. Let F (u) = |u|p−1u, w = u− v, and W (v, w) = F (u)−F (v) = F (v+w)−

F (v). Therefore, w solves the equation

iwt + ∆w +W (v, w) + ẽ = 0.
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Since ‖v‖β̇0
S(Ḣs)

≤ A, split the interval [t0,∞) into K = KA intervals Ij =

[tj, tj+1] such that for each j, ‖v‖β̇0
S(Ḣs,Ij)

≤ δ with δ to be chosen later. Recall

that the integral equation of w at time tj is given by

w(t) = ei(t−tj)∆w(tj) + i

∫ t

tj

ei(t−τ)∆(W + ẽ)(τ)dτ. (2.35)

Applying Kato Besov Strichartz estimate (2.12) on (2.35) for each Ij, we obtain

‖w‖β̇0
S(Ḣs,Ij)

. ‖ei(t−tj)∆w(tj)‖β̇0
S(Ḣs,Ij)

+ ‖
∫ t

tj

ei(t−τ)∆(W + ẽ)(τ)dτ‖β̇0
S(Ḣs,Ij)

. ‖ei(t−tj)∆w(tj)‖β̇0
S(Ḣs,Ij)

+ c‖W (v, w)‖β̇0
S′(Ḣ−s,Ij)

+ c‖ẽ‖β̇0
S′(Ḣ−s,Ij)

. ‖ei(t−tj)∆w(tj)‖S(Ḣs,Ij)
+ c‖W (v, w)‖β̇0

S′(Ḣ−s,Ij)
+ cε0.

Thus, for each dyadic number N ∈ 2Z, the following estimate holds

‖W (v, w)‖S′(Ḣ−s,Ij) . ‖F (v + w)− F (v)‖
L

12(d−2s)
(8+3d−6s)(1−s)
Ij

L

6d(d−2s)

3(d2+2s2)+9d(1−s)−2(5s+4)
x

. ‖w‖
L

4
1−s
Ij

L
2d

d−s−1
x

(
‖v‖p−1

L
6

1−s
Ij

L
6d

3d−4s−2
x

+ ‖w‖p−1

L
6

1−s
Ij

L
6d

3d−4s−2
x

)
(2.36)

. ‖w‖S(Ḣs,Ij)

(
‖v‖p−1

S(Ḣs,Ij)
+ ‖w‖p−1

S(Ḣs,Ij)

)
≤ ‖w‖S(Ḣs,Ij)

(
δp−1
N + ‖w‖p−1

S(Ḣs,Ij)

)
, (2.37)

where we first observed that the pairs ( 6
1−s ,

6d
3d−4s−2

), ( 4
1−s ,

2d
d−s−1

) are Ḣs admis-

sible; the pair ( 12(d−2s)
(8+3d−6s)(1−s) ,

6d(d−2s)
3(d2+2s2)+9d(1−s)−2(5s+4)

) is Ḣ−s admissible. Thus, we

used (2.7) and Hölder’s inequality to obtain (2.36). Since ‖v‖β̇0
S(Ḣs,Ij)

≤ δ for each

dyadic interval, there exists δN = δ(N), so we have (2.37). Therefore,

‖F (v + w)− F (v)‖β̇0
S′(Ḣ−s,Ij)

. ‖w‖β̇0
S(Ḣs,Ij)

(
‖v‖p−1

β̇0
S(Ḣs,Ij)

+ ‖w‖p−1

β̇0
S(Ḣs,Ij)

)
≤ ‖w‖β̇0

S(Ḣs,Ij)

(
δp−1 + ‖w‖p−1

β̇0
S(Ḣs,Ij)

)
.

Choosing δ =
∑

N∈2Z δN < min
{

1, 1
4c1

}
and ‖ei(t−tj)∆w(tj)‖β̇0

S(Ḣs,Ij)

+ c1ε0 ≤

min
{

1, 1
2 p
√

4c1

}
, it follows

‖w‖β̇0
S(Ḣs,Ij)

≤ 2‖ei(t−tj)∆w(tj)‖β̇0
S(Ḣs,Ij)

+ 2c1ε0.
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Taking t = tj+1, applying ei(t−tj+1)∆ to both sides of (2.35) and repeating the Kato

estimates (2.5) , we obtain

‖ei(t−tj+1)∆w(tj+1)‖β̇0
S(Ḣs)

≤ 2‖ei(t−tj)∆w(tj)‖β̇0
S(Ḣs,Ij)

+ 2c1ε0.

Iterating this process until j = 0, we obtain

‖ei(t−tj+1)∆w(tj+1)‖β̇0
S(Ḣs)

≤ 2j‖ei(t−t0)∆w(t0)‖β̇0
S(Ḣs,Ij)

+ (2j − 1)2c1ε0

≤ 2j+2c1ε0.

These estimates must hold for all intervals Ij for 0 ≤ j ≤ K − 1, therefore,

2K+2c1ε0 ≤ min
{

1,
1

2 p
√

4c1

}
,

which determines how small ε0 has to be taken in terms of K (as well as, in terms

of A).

As an illustration of how the estimate ‖W (v, w)‖S′(Ḣ−s,Ij) works for the

cases considered in the proof of Proposition 2.13, we again consider the Ḣ
1
2 -

critical cases: NLS+
3 (R3), NLS+

5
3

(R7) and NLS+
13
9

(R10), corresponding to the cases

(a), (b)(i) and (b)(ii), respectively.

Example 2.18. Case (a): For NLS+
3 (R3), the nonlinearity F (u) = |u|3u is C2(C).

The pairs (8, 4), (12, 18
5

) are Ḣ
1
2 admissible and the pair (24

7
, 36

29
) is Ḣ−

1
2 admissible.

‖W (v, w)‖
S′(Ḣ−

1
2 ,Ij)

. ‖W (v, w)‖
L

24
7
Ij
L

36
29
x

. ‖w‖L8
Ij
L4
x

(
‖v‖2

L12
Ij
L

18
5
x

+ ‖w‖2

L12
Ij
L

18
5
x

)
(2.38)

. ‖w‖
S(Ḣ

1
2 ,Ij)

(
‖v‖2

S(Ḣ
1
2 ,Ij)

+ ‖w‖2

S(Ḣ
1
2 ,Ij)

)
.

We get (2.38) combining (2.7) and Hölder’s inequality with the split 1
8

+ 2
12

= 7
24

and 1
4

+ 10
18

= 29
36
.
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Example 2.19. Case (b) (i): For NLS+
5
3

(R7), the nonlinearity F (u) = |u| 53u is

C1(C). The pairs (8, 28
11

), (12, 42
17

) are Ḣ
1
2 admissible and the pair (72

13
, 252

167
) is Ḣ−

1
2

admissible.

‖W (v, w)‖
S′(Ḣ−

1
2 ,Ij)

. ‖W (v, w)‖
L

72
13
Ij
L

252
167
x

. ‖w‖
L8
Ij
L

28
11
x

(
‖v‖

2
3

L12
Ij
L

42
17
x

+ ‖w‖
2
3

L12
Ij
L

42
17
x

)
(2.39)

. ‖w‖S(Ḣs,Ij)

(
‖v‖

2
3

S(Ḣs,Ij)
+ ‖w‖

2
3

S(Ḣs,Ij)

)
.

As before in Case (a), we get (2.39) combining (2.7) and Hölder’s inequality with

indices 1
8

+ 2
36

= 13
72

and 11
28

+ 34
126

= 167
252
.

Example 2.20. Case (b) (ii): For NLS+
13
9

(R10), the nonlinearity F (u) = |u| 49u

is C1(C). The pairs (8, 40
17

), (12, 30
13

) are Ḣ
1
2 admissible and the pair (216

35
, 1080

667
) is

Ḣ−
1
2 admissible.

‖W (v, w)‖
S′(Ḣ−

1
2 ,Ij)

. ‖W (v, w)‖
L

216
35
Ij

L
1080
667
x

. ‖w‖
L8
Ij
L

40
17
x

(
‖v‖

4
9

L12
Ij
L

30
13
x

+ ‖w‖
4
9

L
160
279
Ij

L
392
45
x

)
(2.40)

. ‖w‖
S(Ḣ

1
2 ,Ij)

(
‖v‖

4
9

S(Ḣs,Ij)
+ ‖w‖

4
9

S(Ḣs,Ij)

)
.

We get (2.40) combining (2.7) and Hölder’s inequality with the split 1
8

+ 1
27

= 35
216

and 17
40

+ 26
135

= 667
1080

.

Proposition 2.21 (H1 scattering). Assume u0 ∈ H1(Rd). Let u(t) be a

global solution to NLS+
p (Rd) with the initial condition u0, globally finite Ḣs

Besov Strichartz norm ‖u‖β̇0
S(Ḣs)

< +∞ and uniformly bounded H1(Rd) norm

supt∈[0,+∞) ‖u(t)‖H1 ≤ B. Then there exists φ+ ∈ H1(Rd) such that (1.3) holds,

i.e., u(t) scatters in H1(Rd) as t → +∞. Similar statement holds for negative

time.

Proof. Suppose u(t) solves NLS+
p (Rd) with the initial datum u0, and satisfies the

integral equation (1.2).
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The assumption ‖u‖β̇0
S(Ḣs)

< +∞ implies that for each dyadic N ∈ 2Z

there exists M = ‖u‖
L
dp
2s
t L

d2p(p−1)
2(d+4)

x

<∞ and let M̃ ∼ M
np
2s . Decompose [0,+∞) =

∪M̃j=1Ij, such that for each j, ‖u‖
L
dp
2s
Ij
L

d2p(p−1)
2(d+4)

x

< δ. Hence, the triangle inequality

and Strichartz estimates yield

‖u‖S(L2) . ‖eit4u0‖S(L2) + ‖F (u)‖S′(L2),

‖∇u‖S(L2) . ‖eit4∇u0‖S(L2) + ‖∇F (u)‖S′(L2).

Therefore, the integral equation (1.2) on Ij, combined with the above in-

equalities, leads to

‖∇u‖S(L2;Ij) . B +
∥∥|u|p−1∇u

∥∥
S′(L2;Ij)

. B +
∥∥|u|p−1∇u

∥∥
L
d
2s
Ij
L

2d2(p−1)

d2(p−1)+16
x

(2.41)

. B + ‖u‖p−1

L
dp
2s
Ij
L

d2p(p−1)
2(d+4)

x

‖∇u‖
L
dp
2s
Ij
L

2d2p

d2p−8s
x

(2.42)

. B + δp−1‖∇u‖S(L2;Ij). (2.43)

The pairs
(
d
2s
, d

2p(p−1)
2(d+4)

)
and

(
d
2s
, 2d2p
d2p−8s

)
are L2 admissible and the pair(

d
2s
, 2d2(p−1)
d2(p−1)+16

)
is L2 dual admissible; we obtain (2.42) applying Hölder’s inequality

to (2.41). Similarly, by dropping the gradient, it follows

‖u‖S(L2;Ij) . B + δp−1‖u‖S(L2;Ij). (2.44)

Combining (2.43) and (2.44) and using the fact that δ can be chosen ap-

propiately small, gives that ‖(1 + |∇|)u‖S(L2;Ij) . 2B. Summing over the M̃

intervals, leads to

‖(1 + |∇|)u‖S(L2) . BM
np
2s .

Define the wave operator

φ+ = u0 + i

∫ +∞

0

e−iτ∆F (u(τ))dτ,
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note that φ+ ∈ H1, thus Strichartz estimates and hypothesis lead to

‖φ+‖H1 . ‖u0‖H1 +
∥∥|u|p−1∇u

∥∥
S′(L2)

. ‖u0‖H1 +
∥∥|u|p−1∇u

∥∥
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

. ‖u0‖H1 + ‖u‖p−1

L
dp
2s
t L

d2p(p−1)
2(d+4)

x

‖∇u‖
L
dp
2s
t L

2d2p

d2p−8s
x

. B +BM
p(d+2s)−2s

2s . (2.45)

Additionally,

u(t)− eit∆φ+ = −i
∫ +∞

t

ei(t−τ)∆F (u(τ))dτ. (2.46)

Therefore, estimating the L2 norm of (2.46), Strichartz estimates and Hölder’s

inequality give

‖u(t)− eit∆φ+‖L2 .
∥∥∥∫ +∞

t

ei(t−τ)∆F (u(τ))dτ
∥∥∥
S(L2)

.
∥∥F (u(τ))

∥∥
S′(L2;[t,+∞)

.
∥∥|u|p−1∇u

∥∥
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

, (2.47)

and simillary, estimating the Ḣ1 norm of (2.46), we obtain

‖∇(u(t)− eit∆φ+)‖L2 .
∥∥∥∫ +∞

t

ei(t−τ)∆F (u(τ))dτ
∥∥∥
S(L2)

.
∥∥F (u(τ))

∥∥
S′(L2;[t,+∞))

.
∥∥|u|p−1∇u

∥∥
L
d
2s
[t,∞)

L

2d2(p−1)

d2(p−1)+16
x

. (2.48)

Using the Leibniz rule (Lemma 2.2) to estimate (2.47) and (2.48), yields

∥∥|u|p−1∇u
∥∥
L
d
2s
[t,∞)

L

2d2(p−1)

d2(p−1)+16
x

. ‖u‖p−1

L
dp
2s
[t,∞)

L

d2p(p−1)
2(d+4)

x

‖∇u‖
L
dp
2s
[t,∞)

L

2d2p

d2p−8s
x

.

By (2.45) the term ‖u‖p−1

L
dp
2s
[t,∞)

L

d2p(p−1)
2(d+4)

x

‖∇u‖
L
dp
2s
[t,∞)

L

2d2p

d2p−8s
x

is bounded. Then as t →

∞ the term ‖u‖
L
dp
2s
[t,∞)

L

d2p(p−1)
2(d+4)

x

→ 0, thus, summing over all dyadic N , (1.3) is

obtained.

Combining Lemmas 2.7, 2.8 and Remark 2.9, we obtain the following ver-

sion for the local theory propositions, we add ∗ to indicate to which proposition

it corresponds to.
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Proposition 2.13* (Small data). Suppose ‖u0‖Ḣs . A. There exists δsd =

δsd(A) > 0 such that if ‖eit4u0‖S(Ḣs) . δsd, then u(t) solving the NLS+
p (Rd) is

global in Ḣs(Rd) and ‖u‖S(Ḣs) . 2‖eit4u0‖S(Ḣs), ‖Dsu‖S(L2) . 2c‖u0‖Ḣs .

Proposition 2.17* (Long term perturbation). For each A > 0, there exist ε0 =

ε0(A) > 0 and c = c(A) > 0 such that the following holds. Let u = u(x, t) ∈

H1(Rd) solve NLSp(Rd). Let v = v(x, t) ∈ H1(Rd) for all t and satisfies ẽ =

ivt + ∆v + |v|p−1v.

If ‖v‖S(Ḣs) ≤ A, ‖ẽ‖S′(Ḣ−s) ≤ ε0 and ‖ei(t−t0)∆(u(t0) − v(t0))‖S(Ḣs) ≤ ε0,

then ‖u‖S(Ḣs) ≤ c.

Proposition 2.21* (H1 scattering). Assume u0 ∈ H1(Rd), u(t) is a global

solution to NLS+
p (Rd) with the initial condition u0, globally finite Ḣs norm

‖u‖S(Ḣs) < +∞ and uniformly bounded H1(Rd) norm supt∈[0,+∞) ‖u(t)‖H1 ≤ B.

Then there exists φ+ ∈ H1(Rd) such that (1.3) holds, i.e., u(t) scatters in H1(Rd)

as t→ +∞. Similar statement holds for negative time.

2.4 Properties of the Ground State

Recall that Q = Q(x) is the ground state for the nonlinear elliptic equation

α2∆Q− βQ+Qp = 0, (2.49)

where

α =

√
d(p− 1)

2
and β = 1− (d− 2)(p− 1)

4
.

And u
Q

(x, t) = eiβtQ(αx) is a soliton solution of NLS±p (Rd) 10.

Weinstein [Weinstein, 1982] proved the Gagliardo-Nierberg inequality

‖u‖p+1
Lp+1 ≤ CGN‖∇u‖

d(p−1)
2

L2 ‖u‖2− (d−2)(p−1)
2

L2 (2.50)

10Here, the elliptic equation (2.49) corresponds to (1.5) and u
Q

(x, t) as in (1.4).
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with the sharp constant

CGN =
p+ 1

2‖Q‖p−1
L2

. (2.51)

This inequality is optimized by Q, i.e., ‖Q‖p+1
Lp+1 = p+1

2
‖∇Q‖

d(p−1)
2

L2 ‖Q‖2− d(p−1)
2

L2 .

Multiplying (1.5) by Q and integrating, gives

‖Q‖p+1
Lp+1 = α2‖∇Q‖2

L2 + β‖Q‖2
L2 ,

thus,

p+ 1

2
‖∇Q‖

d(p−1)
2

L2 ‖Q‖2
L2 − α2‖∇Q‖2

L2‖Q‖
d(p−1)

2

L2 − β‖Q‖2+
d(p−1)

2

L2 = 0.

The trivial solution of the above equation is ‖Q‖2
L2 = 0, we exclude it and

denote z =
‖∇Q‖L2

‖Q‖L2
. Thus obtaining

p+ 1

2
z
d(p−1)

2 − d(p− 1)

4
z2 +

(d− 2)(p− 1)

4
− 1 = 0.

The only real root of the above equation is z = 1, hence,

‖∇Q‖L2 = ‖Q‖L2 ,

and,

‖ Q‖p+1
Lp+1 =

p+ 1

2
‖Q‖2

L2 .

In addition,

‖u
Q
‖2
L2 = α−d‖Q‖2

L2 , ‖∇u
Q
‖2
L2 = α2−d‖∇Q‖2

L2 , and ‖u
Q
‖p+1
Lp+1 = α−d‖Q‖p+1

Lp+1 ,

(2.52)

therefore, the scale invariant quantity becomes

‖u
Q
‖1−s
L2 ‖∇uQ‖sL2 = α−

2
p−1‖Q‖L2 , (2.53)

and the mass-energy scale invariant quantity is

M [u
Q

]1−sE[u
Q

]s =
(
α−d‖Q‖2

L2

)1−s
(
α2−d

2
‖∇Q‖2

L2 −
α−d

p+ 1
‖Q‖p+1

Lp+1

)s
(2.54)

=
α−d

2s

(
(p− 1)s

2

)s
‖Q‖2

L2 (2.55)

=

(
s

d

)s(
‖u

Q
‖1−s
L2 ‖∇uQ‖sL2

)2
. (2.56)
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The energy definition yields (2.54), Pohozhaev identities (2.52) and (2.53) implies

(2.55) and (2.56).

Notice that

M [u]1−sE[u]s = (‖u‖2
L2)1−s

(
1

2
‖∇u‖2

L2 −
1

p+ 1
‖ u‖p+1

Lp+1

)s
≥ (‖u‖1−s

L2 ‖∇u‖sL2)2

(
1

2
− CGN
p+ 1

(
‖u‖1−s

L2 ‖∇u‖sL2

)p−1
)s

≥ 1

2s
(‖u‖1−s

L2 ‖∇u‖sL2)2

(
1− α−2

(
‖u‖1−s

L2 ‖∇u‖sL2

‖u
Q
‖1−s
L2 ‖∇uQ‖sL2

)p−1)s
,

therefore,

d

2s
[Gu(t)]

2
s

(
1− [Gu(t)]p−1

α2

)
≤ (ME [u])

1
s ≤ d

2s
[Gu(t)]

2
s . (2.57)

Summarizing, the upper bound in (2.57) is obtained bounding the energy

E[u] above by the kinetic energy; and the lower bound is achieved using the

definition of energy and the sharp Gagliardo-Nirenberg inequality (2.50) to bound

the potential term.

2.5 Properties of the Momentum

Let u be a solution of NLS+
p (Rd) and assume that P [u] 6= 0. Let ξ0 ∈ Rd

to be chosen later and w be the Galilean transformation of u

w(x, t) = eix·ξ0e−it|ξ0|
2

u(x− 2ξ0t, t).

Then

∇w(x, t) = iξ0 · eix·ξ0e−it|ξ0|
2

u(x− 2ξ0t, t) + eix·ξ0e−it|ξ0|
2∇u(x− 2ξ0t, t),

therefore,

‖∇w‖2
L2 = |ξ0|2M [u] + 2ξ0 · P [u] + ‖∇u‖2

L2 . (2.58)

Observe that M [w] = M [u], P [w] = ξ0M [u] + P [u], and

E[w] =
1

2
|ξ0|2M [u] + ξ0 · P [u] + E[u]. (2.59)
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Note that the value ξ0 = − P [u]
M [u]

minimizes the expressions (2.58) and (2.59),

with P [w] = 0, that is,

E[w] = E[u]− (P [u])2

2M [u]
and ‖∇w‖2

L2 = ‖∇u‖2
L2 −

(P [u])2

M [u]
.

Thus, the conditions (1.9), (1.10) and (1.11) in Theorem 1.6 become

(ME [w])
1
s = (ME [u])− d

2s
(P [u])

2
s < 1, [Gw(0)]

2
s = [Gu(0)]

2
s − P

2
s [u] < 1

and [Gw(0)]
2
s > 1, hence we restate Theorem 1.6 as

Theorem 1.6* (Zero momentum). Let u0 ∈ H1(Rd) with d ≥ 1 and u(t) be the

corresponding solution to (1.1) in H1(Rd) with maximal time interval of existence

(T∗, T
∗) and s := sc ∈ (0, 1). Assume ME [u] < 1.

I. If Gu(0) < 1, then

(a) Gu(t) < 1 for all t ∈ R, thus, the solution is global in time (i.e., T∗ =

−∞, T ∗ = +∞) and

(b) u scatters in H1(Rd), this means, there exists φ± ∈ H1(Rd) such that

lim
t→±∞

‖u(t)− eit∆φ±‖H1(Rd) = 0.

II. If Gu(0) > 1, then Gu(t) > 1 for all t ∈ (T∗, T
∗) and if

(a) u0 is radial (for d ≥ 3 and in d = 2, 3 < p ≤ 5) or u0 is of finite

variance, i.e., |x|u0 ∈ L2(Rd), then the solution blows up in finite time

(i.e., T ∗ < +∞, T∗ > −∞).

(b) u0 non-radial and of infinite variance, then either the solution blows up

in finite time (i.e., T ∗ < +∞, T∗ > −∞) or there exists a sequence of

times tn → +∞ (or tn → −∞) such that ‖∇u(tn)‖L2(Rd) →∞.
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Thus, in the rest of the paper, we will assume that P [u] = 0 and prove

only Theorem 1.6*. To illustrate the scenarios for global behavior of solutions

given by Theorem 1.6*we provide Figure 2.1.

We plot y = (ME [u])
1
sc vs. [Gu(t)]

2
sc using the (2.57) restriction in Figure

1.

2.6 Global versus Blowup Dichotomy

In this section we establish the sharp threshold for the global existence

and finite time blowup solutions of the NLS+
p (Rd). Theorem 2.1 and Corollary

2.5 of Holmer-Roudenko [Holmer and Roudenko, 2007] proved the general case

for the mass-supercritical and energy-subcritical NLS equations with H1 initial

data, thus, establishing Theorem 1.6* I(a) and II(a) for finite variance data. We

only included the proof of the blow up in finite time when d = 2 and p = 5 (i.e.,

Theorem 1.6* part II(a)) for the radial initial data, since it was not include in

[Holmer and Roudenko, 2007] (they considered p < 5).

Lemma 2.22 (Gagliardo-Nirenberg estimate for radial functions

[Ogawa and Tsutsumi, 1991]). Let d ≥ 2 and u ∈ H1(Rd) be radially sym-

metric. Then for any R > 0, u satisfies

‖u(x)‖p+1
Lp+1(R<|x|) ≤

c

R
(d−1)(p−1)

2

‖u‖
p+3
2

L2(R<|x|)‖∇u‖
p−1
2

L2(R<|x|), (2.60)

where c depends only on d.

Proof of Theorem 1.6 part II. (for radial data in the case p = 5 and d = 2).

Recall that the variance is given by

V (t) =

∫
|x|2|u(x, t)|2dx.

The standard argument for finite variance data is to examine the derivative and

show that

∂2
t V (t) = 32E[u0]− 8‖∇u(t)‖2

L2 < 0,
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Figure 2.1: Plot of plot y = (ME [u])
1
sc vs. [Gu(t)]

2
sc where Gu(t) and ME [u] are

defined by (1.6) and (1.8), respectively. The region above the line ABC and below
the curve ADF are forbidden regions by (2.57). Global existence of solutions and
scattering holds in the region ABD, which corresponds to Theorem 1.6* part I
and the region EDF explains Theorem 1.6* part II (a), and the “weak” blowup
Theorem 1.6 part II (b).
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which by convexity implies the finite time existence of solutions. To obtain

a wider range of blow up solutions, there are more delicate arguments (see

[Lushnikov, 1995], [Holmer et al., 2010]).

Here, for infinite variance radial data, the argument of localized variance

is used following Ogawa-Tsutsumi techniques [Ogawa and Tsutsumi, 1991].

Let χ ∈ C∞(Rd) be radial,

χ(r) =


r2 0 ≤ r ≤ 1

smooth 1 < r < 4

c 4 ≤ r

such that ∂2
rχ(r) ≤ 2 for all r ≥ 0. Now, for m > 0 large, let χm(r) = m2χ

(
r

m

)
.

Define the localized variance

V (t) =

∫
χ(x)|u(x, t)|2dx

and consider the second derivative of the localized variance

∂2
t V (t) = 4

∫
χ′′|∇u|2 −

∫
42χ|u|2 − 4

3

∫
4χ|u|p+1. (2.61)

For r ≤ m it follows that 4χm(r) = 4 and 42χm(r) = 0. Each of the

three terms in the inequality (2.61) are bounded as follows:

4

∫
χ′′m|∇u|2 ≤ 8

∫
Rd
|∇u|2,

−
∫
42χm|u|2 ≤

c1

m2

∫
m≤|x|≤2m

|u|2 ≤ c1

m2

∫
m≤|x|

|u|2,

−
∫
4χm|u|p+1 ≤ −4

∫
Rd
|u|p+1 + c2

∫
m≤|x|

|u|p+1.

Thus, rewriting (2.61), we obtain

∂2
t V (t) ≤32E[u]− 8‖∇u‖2

L2 +
c1

m2
‖u‖2

L2 + c3‖u‖6
L6(|x|≥m)

≤32E[u]− 8‖∇u‖2
L2 +

c1

m2
‖u‖2

L2 +
c4

m2
‖u‖4

L2‖∇u‖2
L2 , (2.62)
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where ‖u‖L6(|x|≥m) was estimated using (2.60).

Let ε > 0, to be chosen later, pick m1 >
(

c1
εE[u

Q
]

) 1
2 ‖u‖L2 , m2 >(

c4
ε

) 1
2 ‖u‖2

L2 and m = max{m1,m2}, we get

∂2
t V (t) < 32E[u]− (8− ε)‖∇u‖2

L2 + εE[u
Q

]

Furthermore, the assumptions ME [u] < 1 and Gu(0) > 1 imply that there

exists δ1 > 0 such that ME [u] < 1 − δ1 and there exists δ2 = δ2(δ1) such that

Gu(t) > (1 + δ2) for all t ∈ I. Multiplying both sides of (2.62) by M [u0], leads to

M [u0]∂2
t V (t) <32(1− δ1)M [u

Q
]E[u

Q
]− (8− ε)(1 + δ2)‖u

Q
‖2
L2‖∇uQ‖2

L2

+ εM [u
Q

]E[u
Q

]

<[32(1− δ1)− 4(8− ε)(1 + δ2) + ε]M [u
Q

]E[u
Q

],

the last inequality follows since 4E[u
Q

] = ‖∇u
Q
‖2
L2 . Choosing ε < 32(δ1+δ2)

5+4δ2
implies

that the second derivative of the variance is bounded by a negative constant

(−A < 0) for all t ∈ R, i.e., ∂2
t V (t) < −A, and integrating twice over t, we have

that V (t) < −At2 + Bt + C. Thus, there exists T such that V (T ) < 0 which is

a contradiction. Therefore, radially symmetric solutions of the type described in

Theorem 1.6* part II (a) must blow up in finite time.

2.7 Energy bounds and Existence of the Wave Operator

Lemma 2.23 (Comparison of Energy and Gradient). Let u0 ∈ H1(Rd) such that

Gu(0) < 1 and ME [u] < 1. Then

s

d
‖∇u(t)‖2

L2 ≤ E[u] ≤ 1

2
‖∇u(t)‖2

L2 . (2.63)

Proof. The energy definition combined with G(0) < 1 (and thus, by Theorem 1.6*

part I (a) Gu(t) < 1), the Gagliardo-Nirenberg inequality (2.50) and Pohozhaev
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identities (2.52) and (2.53) yield

E[u] ≥ ‖∇u(t)‖2
L2

(
1

2
− CGN
p+ 1

‖∇u(t)‖
d(p−1)

2
−2

L2 ‖u‖2− (d−2)(p−1)
2

L2

)
≥ ‖∇u(t)‖2

L2

(
1

2
− CGN
p+ 1

(
‖∇u

Q
‖sL2‖uQ‖

(1−s)
L2

)p−1
)

= ‖∇u(t)‖2
L2

(
1

2
− CGN
p+ 1

α−2‖Q‖p−1
L2

)
=

(
α2 − 1

2α2

)
‖∇u(t)‖2

L2 =
s

d
‖∇u(t)‖2

L2 , (2.64)

where the equality (2.64) is obtained from combining (2.53), the sharp constant

(2.51) and α =

√
d(p−1)

2
.

The second inequality of (2.63) follows directly from the definition of en-

ergy.

Lemma 2.24 (Lower bound on the convexity of the variance). Let u0 ∈ H1(Rd)

satisfy Gu(0) < 1 and ME [u] < 1. Then Gu(t) ≤ ω for all t, and

16(1− ωp−1)E[u] ≤ 8(1− ωp−1)‖∇u‖2
L2 ≤ 8‖∇u‖2

L2 −
4d(p− 1)

p+ 1
‖u‖p+1

Lp+1 , (2.65)

where ω =
√
ME [u].

Proof. The first inequality in (2.63) yields ‖∇u‖2
L2 ≤ d

s
E[u], multiplying it by

M θ[u], where θ = 1−s
s

, normalizing by ‖∇u
Q
‖2
L2‖uQ‖2θ

L2 and using the fact that

‖∇u
Q
‖2
L2 ≤ d

s
E[u

Q
] leads to

[Gu(t)]2 ≤ME [u], i.e, Gu(t) ≤ ω.

Next, considering the right side of (2.65), applying Gagliardo-Nirenberg inequality

(2.50), then the relation (2.53) and recalling that α =

√
d(p−1)

2
, we obtain

8‖∇u‖2
L2 −

4d(p− 1)

p+ 1
‖u‖p+1

Lp+1 ≥ ‖∇u‖2
L2

(
8− 2d(p− 1)

α2
[Gu(t)]p−1

)
≥ 8‖∇u‖2

L2(1− ωp−1), (2.66)
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which gives the middle inequality in (2.65).

Finally, combining (2.66) with the second inequality in (2.63), completes

the proof.

Proposition 2.25 (Existence of Wave Operators). Let ψ ∈ H1(Rd).

I. Then there exists v+ ∈ H1 such that for some −∞ < T ∗ < +∞ it produces

a solution v(t) to NLS+
p (Rd) on time interval [T ∗,∞) such that

‖v(t)− eit∆ψ‖H1 → 0 as t→ +∞ (2.67)

Similarly, there exists v− ∈ H1 such that for some −∞ < T∗ < +∞ it

produces a solution v(t) to NLS+
p (Rd) on time interval (−∞, T∗] such that

‖v(−t)− e−it∆ψ‖H1 → 0 as t→ +∞ (2.68)

II. Suppose that for some 0 < σ ≤
(

2s
d

) s
2 < 1

‖ψ‖2(1−s)
L2 ‖∇ψ‖2s

L2 < σ2

(
d

s

)s
M [u

Q
]1−sE[u

Q
]s . (2.69)

Then there exists v0 ∈ H1 such that v(t) solving NLS+
p (Rd) with initial data

v0 is global in H1 with

M [v] = ‖ψ‖2
L2 , E[v] =

1

2
‖∇ψ‖2

L2 , Gv(t) ≤ σ < 1 (2.70)

and ‖v(t)− eit4ψ‖H1 → 0 as t→∞. (2.71)

Moreover, if ‖eit4ψ‖β̇0
S(Ḣs)

≤ δsd, then

‖v0‖Ḣs ≤ 2‖ψ‖Ḣs and ‖v‖Ḣs ≤ 2‖eit4ψ‖β̇0
S(Ḣs)

.

Proof. I. This is essentially Theorem 2 part (a) of [Strauss, 1981a] adapted to the

case 0 < s < 1 (see his Remark (36) and [Strauss, 1981b, Theorem 17]).
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II. For this part, we consider the integral equation

v(t) = eit4ψ − i
∫ ∞
t

ei(t−t
′)4(|v|p−1v)dt′. (2.72)

We want to find a solution to (2.72) which exists for all t. Note that for T > 0

from the small data theory (Proposition 2.13) there exists δsd > 0 such that

‖eit4ψ‖β̇0
S([T,∞),Ḣs)

≤ δsd. Thus, repeating the argument of Proposition 2.13, we

first show that we can solve the equation (2.72) in Ḣs for t ≥ T with T large. So

this solution will estimate ‖∇v‖S(L2;[T,∞)), which will also show that v is in H1.

Observe that for any v ∈ H1

‖∇|v|p−1v‖S′(L2) . ‖∇|v|p−1v‖
L
d
2s
t L

2d2(p−1)

d2(p−1)+16
x

. ‖v‖p−1

L
dp
2s
t L

d2p(p−1)
2(d+4)

x

‖∇v‖
L
dp
2s
t L

2d2p

d2p−8s
x

. ‖v‖p−1

S(Ḣs)
‖∇v‖S(L2). (2.73)

Note that the pairs
(
d
2s
, d

2p(p−1)
2(d+4)

)
and

(
d
2s
, 2d2p
d2p−8s

)
are L2 admissibles and the pair(

d
2s
, 2d2(p−1)
d2(p−1)+16

)
is L2 dual admissible. Thus, the Hölder’s inequality yields (2.73).

Now, the Strichartz (2.3) and Kato Strichartz (2.5) estimates imply

‖∇v‖S([T,∞),L2) . c1‖∇ψ‖S([T,∞),L2) + c‖∇(|v|pv)‖S′([T,∞),L2)

. c1‖ψ‖Ḣ1 + c3‖v‖p−1

S([T,∞),Ḣs)
‖∇v‖S([T,∞),L2).

Taking T large enough, so that c3‖v‖S([T,∞),Ḣs) ≤ 1
2
, we obtain

‖∇v‖S([T,∞),L2) ≤ 2c1‖ψ‖H1 .

It now follows

‖∇(v − eit∆ψ)‖S([T,∞),L2) ≤ ‖∇(|v|p−1v)‖S′([T,∞),L2)

≤ ‖∇v‖S([T,∞),L2)‖v‖p−1
S([T,∞),Hs) ≤ c‖ψ‖H1 ,

hence, ‖∇(v − eit∆ψ)‖S(L2([T,∞))) → 0 as T →∞.
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On the other hand, Proposition 2.21 (H1 Scattering) implies v(t)→ eit∆ψ

in H1 as t→∞, and the decay estimate (1.12) together with the embedding and

H1(Rd) ↪→ Lq(Rd) for q ≤ 2d
d−2

when 3 ≤ d, q <∞ when d = 2 and q ≤ ∞ when

d = 1 imply

‖eit∆ψ‖Lp+1
x
≤ |t|

−(p−1)d
2(p+1) ‖ψ‖H1 ,

thus, ‖eit∆ψ‖Lp+1
x
→ 0 as t→∞. Since ‖∇eit∆ψ‖L2 = ‖∇ψ‖L2 , it follows

E[v] =
1

2
‖∇v‖2

L2 −
1

p+ 1
‖v‖p+1

Lp+1
x

= lim
t→∞

(1

2
‖∇eit∆ψ‖2

L2 −
1

p+ 1
‖eit∆ψ‖p+1

Lp+1
x

)
=

1

2
‖∇ψ‖2

L2

and

M [v] = lim
t→∞
‖v(t)‖2

L2 = lim
t→∞
‖eit∆ψ‖2

L2 = ‖ψ‖2
L2 .

From the hypothesis (2.69), we obtain

M [v]1−sE[v]s =
1

2s
‖ψ‖2(1−s)

L2 ‖∇ψ‖2s
L2 < σ2

(
d

2s

)s
M [u

Q
]1−sE[u

Q
]s

and thus,

ME [v] < 1, since σ2 <

(
2s

d

)s
.

Furthermore,

lim
t→∞
‖v(t)‖2(1−s)

L2 ‖∇v(t)‖2s
L2 = lim

t→∞
‖eit∆ψ‖2(1−s)

L2 ‖∇(eit∆ψ)‖2s
L2 = ‖ψ‖2(1−s)

L2 ‖∇ψ‖2s
L2

< σ2

(
d

s

)s
M [u

Q
]1−sE[u

Q
]s = σ2‖u

Q
‖2(1−s)
L2 ‖∇u

Q
‖2s
L2 ,

where, the inequality is due to (2.69) and the last equality is obtained using (2.56).

Hence,

lim
t→∞
Gv(t) ≤ σ < 1.

We can take T > 0 large so that Gv(T ) ≤ 1. Then applying Theorem 1.6* part

I (a) (global existence of solutions with ME [v] < 1 and Gv(t) < 1), we evolve v

from time T back to time 0 (we automatically get Gv(t) ≤ 1 for all t ∈ [0,+∞).)

Thus, we obtain v with initial data v0 ∈ H1 and properties (2.70) and (2.71) as

desired.
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Chapter 3

SCATTERING VIA CONCENTRATION COMPACTNESS

The goal of this chapter is to prove scattering in H1(Rd) of global solutions of

NLS+
p (Rd) from Theorem 1.6* part I (a).

Definition 3.1. Suppose u0 ∈ H1(Rd) and let u be the corresponding H1(Rd)

solution to (1.1) on [0, T ∗), the maximal (forward in time) interval of existence.

We say that SC(u0) holds if T ∗ = +∞ and ‖u‖β̇0
S(Ḣs)

<∞.

3.1 Outline of Scattering via Concentration Compactness

Notice that H1(Rd) scattering of u(t) = NLS(t)u0 is obtained when SC(u0)

holds by Proposition 2.21. Therefore, to establish Theorem 1.6* part I (b), it will

be enough to verify that the global-in-time Ḣs Besov-Strichartz norm is finite, i.e.,

‖u‖β̇0
S(Ḣs)

<∞, since the hypotheses provides an a priori bound for ‖∇u(t)‖L2 (by

Theorem 1.6* part I a), thus, the maximal forward time of existence is T = +∞.

In other words, it remains to show

Proposition 3.2. If Gu(0) < 1 and ME [u] < 1, then SC(u0) holds.

The technique to achieve the scattering property above (Propo-

sition 3.2) is the induction argument on the mass-energy threshold

as in [Holmer and Roudenko, 2008] and [Duyckaerts et al., 2008] (see also

[Kenig and Merle, 2006]), and we describe it in steps 1, 2, 3.

Step 1: Small Data.

The equivalence of energy with the gradient (Lemma 2.23) yields

‖u0‖p+1

Ḣs ≤ (‖u0‖1−s
L2 ‖∇u0‖sL2)

p+1
2 ≤

((
d

s

)s
M [u]1−sE[u]s

) p+1
4

.
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If Gu(0) < 1 and M [u]1−sE[u]s <
(
s
d

)s
δ4
sd, then using the above inequality one

obtains ‖u0‖Ḣs ≤ δsd and by Strichartz estimates ‖eit∆u0‖β̇0
S(Ḣs)

≤ cδsd. Hence,

the small data (Proposition 2.13) yields SC(u0) property.

Observe that Step 1 gives the basis for induction:

Assume Gu(0) < 1. Then for small δ > 0 such that M [u0]1−sE[u0]s < δ, we have

that SC(u0) holds.

Let (ME)c be the supremum of all such δ for which SC(u0) holds, namely,

(ME)c = sup
{
δ | u0 ∈ H1(Rd) with the property:

Gu(0) < 1 and M [u]1−sE[u]s < δ ⇒ SC(u0) holds
}
.

Thus, the goal is to show that (ME)c = M [u
Q

]1−sE[u
Q

]s.

Remark 3.3. In the definition of (ME)c, it should be considered Gu(0) ≤ 1 instead

of the strict inequality Gu(0) < 1. However, Gu(0)=1 only when ME [u] = 1 (see

Figure 2.1 point D). In other words, u0 = u
Q

(x) is a soliton solution to (1.1) and

does not scatter, thus, it suffices to consider the strict inequality Gu(0) < 1.

Step 2: Induction on the scattering threshold and construction of the “critical”

solution.

Assume that (ME)c < M [u
Q

]1−sE[u
Q

]s. This means that, there exists a sequence

of initial data {un,0} in H1(Rd) which will approach the threshold (ME)c from

above and produce solutions which do not scatter, i.e., there exists a sequence

un,0 ∈ H1(Rd) with

Gun(0) < 1 and M [un,0]1−sE[un,0]s ↘ (ME)c as n→∞ (3.1)

and ‖u‖β̇0
S(Ḣs)

= +∞,

i.e., SC(un,0) does not hold (this is possible by definition of supremum of

(ME)c).
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Using a nonlinear profile decomposition on the sequence {un,0} it will allow

us to construct a “critical” solution of NLS+
p (Rd), denoted by uc(t), that will lie

exactly at the threshold (ME)c and will not scatter, see Existence of the Critical

solution (Proposition 3.11).

Step 3: Localization properties of the critical solution.

The critical solution uc(t) will have the property that K = {uc(t)|t ∈ [0,+∞)}

is precompact in H1(Rd) (Lemma 3.12). Hence, its localization implies that for

given ε > 0, there exists an R > 0 such that ‖∇u(x, t)‖2
L2(|x+x(t)|>R) ≤ ε uniformly

in t (Corollary 3.13); this combined with the zero momentum will give control

on the growth of x(t) (Lemma 3.14).

On the other hand, the rigidity theorem (Theorem 3.15) implies that such

compact in H1(Rd) solutions with the control on x(t), can only be zero solutions,

which contradicts the fact that uc does not scatter. As a consequence, such uc

does not exist and the assumption that (ME)c < M [u
Q

]E[u
Q

] is not valid. This

finishes the proof of scattering in Theorem 1.6*, Part 1(b).

In the rest of this chapter we proceed with the linear and nonlinear profile

decomposition and the proof of the existence and properties of the critical solution

described in Step 2 and Step 3.

3.2 Profile decomposition

This section contains the profile decomposition for linear and nonlinear

flows for NLS+
p (Rd). The important point to make here is that these are general

profile decompositions for bounded sequences on H1.

Proposition 3.4 (Linear Profile decomposition). Let φn(x) be a uniformly

bounded sequence in H1(Rd). Then for each M ∈ N there exists a subsequence of

φn (also denoted φn), such that, for each 1 ≤ j ≤ M , there exist, fixed in n, a
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profile ψj in H1(Rd), a sequence tjn of time shifts, a sequence xjn of space shifts

and a sequence WM
n (x) of remainders11 in H1(Rd), such that

φn(x) =
M∑
j=1

e−it
j
n∆ψj(x− xjn) +WM

n (x)

with the properties:

• Pairwise divergence for the time and space sequences. For 1 ≤ k 6= j ≤M ,

lim
n→∞

|tjn − tkn|+ |xjn − xkn| = +∞. (3.2)

• Asymptotic smallness for the remainder sequence

lim
M→∞

(
lim
n→∞

‖eit∆WM
n ‖β̇0

S(Ḣs)

)
= 0. (3.3)

• Asymptotic Pythagorean expansion. For fixed M ∈ N and any 0 ≤ s ≤ 1,

we have

‖φn‖2
Ḣs =

M∑
j=1

‖ψj‖2
Ḣs + ‖WM

n ‖2
Ḣs + on(1). (3.4)

Proof. Let φn be uniformly bounded in H1, and c1 > 0 such that ‖φn‖H1 ≤ c1.

For each dyadic N ∈ 2N, given (q, r) an Ḣs admissible pair, pick θ =

4d(d+r)−2d2r
r2(d−2s)(d−2)−2dr(d+2s−4)

, so 0 < θ < 1.

Let r1 = r(d−2)+2d
2(d−2)

, and q1 = 8(d−2)+4dr
r(d−2s)(d−2)−2d(d+2s−4)

, so (q1, r1) is Ḣs admis-

sible pair, for 0 < s < 1 and d ≥ 2. Interpolation and Strichartz estimates (2.4)

yield

‖eit∆WM
n ‖LqtLrx ≤ ‖e

it4WM
n ‖1−θ

L
q1
t L

r1
x
‖eit4WM

n ‖θ
L∞t L

2d
d−2s
x

≤ c‖WM
n ‖1−θ

Ḣs ‖eit∆WM
n ‖θ

L∞t L
2d
d−2s
x

. (3.5)

11Here, in Proposition 3.4 and Proposition 3.6, WM
n (x) and W̃M

n (x) represent
the remainders for the linear and nonlinear decompositions, respectively.
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The goal is to write the profile φn as
∑M

j=1 e
−itjn∆ψj(x−xjn) +WM

n (x) with

‖WM
n (x)‖Ḣs ≤ c1, for some constant c1. By (3.5), it suffices to show

lim
M→+∞

[
lim sup
n→+∞

‖eit∆WM
n ‖

L∞t L
2d
d−2s
x

]
= 0 .

We have d ≥ 2s, since we are considering
(i) 0 ≤ s ≤ 1 in d ≥ 3

(ii) 0 < s < 1 in d = 2

(iii) 0 < s < 1
2

in d = 1.

(3.6)

Construction of ψ1
n :

Let A1 = lim supn→+∞ ‖eit∆φn‖
L∞t L

2d
d−2s
x

. If A1 = 0, taking ψj = 0 for all j finishes

the construction.

Suppose that A1 > 0, and let c1 = lim supn→+∞ ‖φn‖H1 < ∞. Passing to

a subsequence φn, we show that there exist sequences t1n and x1
n and a function

ψ1 ∈ H1, such that

eit
1
n∆φn(·+ x1

n) ⇀ ψ1 in H1,

and a constant K > 0, independent of all parameters, with

Kc
d+2s−4s2

2s
1 ‖ψ1‖Ḣs ≥ A

d+4s−4s2

2s
1 . (3.7)

Note that d+ 2s− 4s2 = d+ 2s(1− 2s) > 0 by (3.6).

Let χr be a radial Schwartz function such that supp χr ⊂
[

1
2r
, 2r
]

and

χ̂r(ξ) = 1 for 1
r
≤ |ξ| ≤ r. Note that |1 − χ̂r| ≤ 1 and Ḣs ↪→ L

2d
d−2s in Rd with

2s < d, then

‖eit∆φn − χr ∗ eit∆φn‖2

L∞t L
2d
d−2s
x

≤
∫
|ξ|(1− χ̂r(ξ))2|φ̂n(ξ)|2dξ

≤
∫
|ξ|≤ 1

r

|ξ||φ̂n|2dξ +

∫
|ξ|≥r
|ξ||φ̂n(ξ)|2dξ

≤
‖φn‖2

L2
x

+ ‖φn‖2
Ḣ1
x

r
≤ c2

1

r
.
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Take r =
4c21
A2

1
, then A1 = 2c1√

r
. Using the definition of A1, triangle inequality and

the previous calculation, for large n we have

A1

2
≤ ‖χr ∗ eit∆φn‖

L∞t L
2d
d−2s
x

. (3.8)

Therefore, interpolation implies

‖χr ∗ eit∆φn‖d
L∞t L

2d
d−2s
x

≤ ‖χr ∗ eit∆φn‖d−2s
L∞t L

2
x
‖χr ∗ eit∆φn‖2s

L∞t L
∞
x

≤ ‖φn‖d−2s
L2
x
‖χr ∗ eit∆φn‖2s

L∞t L
∞
x
, (3.9)

where the second inequality follows from the fact that |χ̂r| ≤ 1 and L2 isometry

property of the linear Schrödinger operator.

Using the definition of c1, combining (3.8) and (3.9), we get(
A1

2c
d−2s
d

1

) d
2s

≤ ‖χr ∗ eit∆φn‖L∞t L∞x .

Thus, there exists a sequence of (x1
n, t

1
n) ∈ Rd × R1

+ satisfying(
A1

2c
d−2s
d

1

) d
2s

≤ |χr ∗ eit
1
n∆φn(x1

n)|.

Since eit∆ is an H1 isometry and translation invariant12, it follows that {eit1n∆φn(·+

x1
n)} is uniformly bounded in H1 (with the same constant as φn’s) and along a

subsequence

{eit1n∆φn(·+ x1
n)}⇀ ψ1 with ‖ψ1‖H1 ≤ c1.

Observe that(
A1

2c
d−2s
d

1

) d
2s

≤
∣∣ ∫

R2

χr(x
1
n − y)ψ1(y)dy

∣∣ ≤ ‖χr‖Ḣ−s‖ψ1‖Ḣs ≤ r1−s‖ψ1‖Ḣs ,

since ‖χr‖2
Ḣ−s

. r1−s (by converting to radial coordinates) and the Hölder’s in-

equality produces (3.7) with K = 2
d+4s−4s2

2s .

12

∣∣∣(eit∆f(x+ h)
)∧ ∣∣∣ =

∣∣∣eiξh (eit∆f(x)
)∧ ∣∣∣ =

∣∣∣(eit∆f(x)
)∧∣∣∣
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Define W 1
n(x) = φn(x)− e−it1n∆ψ1(x−x1

n). Note that eit
1
n∆φn(·+x1

n) ⇀ ψ1

in H1, therefore, for any 0 ≤ s ≤ 1, we have

〈φn, e−it
1
n∆ψ1(· − x1

n)〉Ḣs = 〈eit1n∆φn, ψ
1(· − x1

n)〉Ḣs → ‖ψ1‖2
Ḣs ,

and since ‖W 1
n‖2

Ḣs = 〈φn − e−it
1
n∆ψ(· − x1

n), φn − e−it
1
n∆ψ1(· − x1

n)〉2
Ḣs , we obtain

lim
n→∞

‖W 1
n‖2

Ḣs = lim
n→∞

‖eit1n∆φn‖2
Ḣs − ‖ψ1‖2

Ḣs .

Taking s = 1 and s = 0, yields ‖W 1
n‖H1 ≤ c1.

Construction of ψj for j ≥ 2 ( Inductively we assume that ψj−1 is known and

construct ψj):

Let M ≥ 2. Suppose that ψj, xjn, tjn and W j
n are known for j ∈ {1, · · · ,M − 1}.

Consider

AM = lim sup
n
‖eit∆WM−1

n ‖
L∞t L

2d
d−2s
x

.

If AM = 0, then taking ψj = 0 for j ≥M will end the construction.

Assume AM > 0, we apply the previous step to WM−1
n , and let cM =

lim supn ‖WM−1
n ‖H1 , thus, obtaining sequences (or subsequences) xMn , t

M
n and a

function ψM ∈ H1 such that

eit
M
n ∆WM−1

n (·+ xMn ) ⇀ ψM in H1 and Kc
d+2s−4s2

2s
M ‖ψM‖Ḣs ≥ A

d+4s−4s2

2s
M .

(3.10)

Define

WM
n (x) = WM−1

n (x)− e−itMn ∆ψM(x− xMn ).

Then (3.2) and (3.4) follow from induction, i.e., we assume (3.4) holds at rank

M − 1, then expanding

‖WM
n (x)‖2

Ḣs = ‖eitMn ∆WM−1(·+ xMn )− ψM‖2
Ḣs ,
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the weak convergence yields (3.4) at rank M.

In the same fashion, we assume (3.2) is true for j, k ∈ {1, . . . ,M − 1} with

j 6= k, that is |tjn − tkn| + |xjn − xkn| → +∞ as n → ∞. Take k ∈ {1, . . . ,M − 1}

and show that

|tMn − tkn|+ |xMn − xkn| → +∞.

Passing to a subsequence, assume tMn − tkn → tM1 and xMn − xkn → xM1

finite, then as n→∞

eit
M
n ∆WM−1

n (x+ xMn ) =ei(t
M
n −t

j
n)∆(eit

j
n∆W j−1

n (x+ xjn)− ψj(x+ xjn))

−
M−1∑
k=j+1

ei(t
j
n−tkn)∆ψkn(x+ xjn − xkn).

The orthogonality condition (3.2) implies that the right hand side goes to 0 weakly

in H1, while the left side converges weakly to a nonzero ψM , which is a contra-

diction. Note that the orthogonality condition (3.2) holds for k = M , and since

(3.4) holds for all M, we have

‖φn‖2
Ḣs ≥

M∑
j=1

‖ψj‖2
Ḣs + ‖WM

n ‖2
Ḣs

and cM ≤ c1. Fix s. If for all M, AM > 0, then (3.10) yields

∑
M≥1

(
A

d+4s−4s2

2s
M

Kc
d+2s−4s2

2s
1

)2

≤
∑
n≥1

‖ψM‖2
Ḣs ≤ lim sup

n
‖φn‖2

Ḣs <∞,

therefore, AM → 0 as M →∞, and consequently, ‖eit∆WM
n ‖S(Ḣs) → 0 as n→∞.

Finally, summing over all dyadic N, yields (3.3).

Proposition 3.5 (Energy Pythagorean expansion). Under the hypothesis of

Proposition 3.4, we have

E[φn] =
M∑
j=1

E[e−it
j
n∆ψj] + E[WM

n ] + on(1). (3.11)
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Proof. By definition of E[u] and (3.4) with s = 1, it suffices to prove that for all

M ≤ 1, we have

‖φn‖p+1
Lp+1 =

M∑
j=1

‖e−it
j
n∆ψj‖p+1

Lp+1 + on(1). (3.12)

Step 1. Pythagorean expansion of a sum of orthogonal profiles. Fix M ≥ 1. We

want to show that the condition (3.2) yields∥∥∥∥ M∑
j=1

e−it
j
n∆ψj(· − xjn)

∥∥∥∥p+1

Lp+1
x

=
M∑
j=1

‖e−it
j
n∆ψj‖p+1

Lp+1
x

+ on(1). (3.13)

By rearranging and reindexing, we can find M0 ≤M such that

(a) tjn is bounded in n whenever 1 ≤ j ≤M0,

(b) |tjn| → ∞ as n→∞ if M0 + 1 ≤ j ≤M.

For the case (a) take a subsequence and assume that for each 1 ≤ j ≤M0,

tjn converges (in n), then adjust the profiles ψj’s such that tjn = 0. From (3.2) we

have |xjn − xkn| → +∞ as n→∞, which implies∥∥∥∥ M0∑
j=1

ψj(· − xjn)

∥∥∥∥p+1

Lp+1
x

=

M0∑
j=1

‖ψj‖p+1

Lp+1
x

+ on(1). (3.14)

For the case (b), i.e., for M0 ≤ j ≤ M , |tjn| → ∞ as n → ∞ and for

ψ̃ ∈ Ḣ
p
p+1 ∩ L

p
p+1 , thus, the Sobolev embedding and the Lp space-time decay

estimate yield

‖e−itkn∆ψk‖Lp+1
x
≤ c‖ψk − ψ̃‖

Ḣ
p
p+1

+
c

|tkn|
d(p−1)
2(p+1)

‖ψ̃‖
L
p+1
p

x

,

and approximating ψk by ψ̃ ∈ C∞comp in Ḣ
p
p+1 , we have

‖e−itkn∆ψk‖Lp+1
x
→ 0 as n→∞. (3.15)

Thus, combining (3.14) and (3.15), we obtain (3.12).
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Step 2. Finishing the proof. Note that

‖WM1
n ‖Lp+1

x
≤ ‖WM1

n ‖L∞t Lp+1
x
≤ ‖WM1

n ‖
1/2

L∞t L
2d
d−2s
x

‖WM1
n ‖

1/2

L∞t L

2d(d+2−2s)
d(d−2)+4s(1−s)
x

≤ ‖WM1
n ‖

1/2

L∞t L
2d
d−2s
x

‖WM1
n ‖

1/2

L∞t Ḣ
1
x
≤ ‖WM1

n ‖
1/2

L∞t L
2d
d−2s
x

sup
n
‖φn‖1/2

H1 .

By (3.3) it follows that

lim
M1→+∞

(
lim

n→+∞
‖eit∆WM1

n ‖Lp+1

)
= 0. (3.16)

Let M ≥ 1 and ε > 0. The sequence of profiles {ψn} is uniformly bounded in H1

and in Lp+1. Hence, (3.16) implies that the sequence of remainders {WM
n } is also

uniformly bounded in Lp+1
x . Pick M1 ≥M and n1 such that for n ≥ n1, we have∣∣∣‖φn −WM1

n ‖
p+1

Lp+1
x
− ‖φn‖p+1

Lp+1
x

∣∣∣+
∣∣∣‖WM

n −WM1
n ‖

p+1

Lp+1
x
− ‖WM

n ‖
p+1

Lp+1
x

∣∣∣ (3.17)

≤ C
((

sup
n
‖φn‖pLp+1

x
+ sup

n
‖WM

n ‖
p

Lp+1
x

)
‖WM1

n ‖Lp+1
x

+ ‖WM1
n ‖

p+1

Lp+1
x

)
≤ ε

3
.

Choose n2 ≥ n1 such that n ≥ n2. Then (3.13) yields

∣∣∣‖φn −WM1
n ‖

p+1

Lp+1
x
−

M1∑
j=1

‖e−it
j
n∆ψj‖p+1

Lp+1
x

∣∣∣ ≤ ε

3
. (3.18)

Since WM
n −WM1

n =
∑M1

j=M+1 e
−itjn∆ψj(·−xjn), by (3.13), there exist n3 ≥ n2 such

that n ≥ n3,

∣∣∣‖WM
n −WM1

n ‖
p+1

Lp+1
x
−

M1∑
j=M+1

‖e−it
j
n∆ψj‖p+1

Lp+1
x

∣∣∣ ≤ ε

3
. (3.19)

Thus for n ≥ n3, (3.17), (3.18), and (3.19) yield

∣∣∣‖φn‖p+1

Lp+1
x
−

M∑
j=1

‖e−it
j
n∆ψj‖p+1

Lp+1
x
− ‖WM

n ‖
p+1

Lp+1
x

∣∣∣ ≤ ε, (3.20)

which concludes the proof.

Proposition 3.6 (Nonlinear Profile decomposition). Let φn(x) be a uniformly

bounded sequence in H1(Rd). Then for each M ∈ N there exists a subsequence
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of φn, also denoted by φn, for each 1 ≤ j ≤ M , there exist a (same for all

n) nonlinear profile ψ̃j in H1(Rd), a sequence of time shifts tjn, and a sequence

of space shifts xjn and in addition, a sequence (in n) of remainders W̃M
n (x) in

H1(Rd), such that

φn(x) =
M∑
j=1

NLS(−tjn)ψ̃j(x− xjn) + W̃M
n (x), (3.21)

where (as n→∞)

(a) for each j, either tjn = 0, tjn → +∞ or tjn → −∞,

(b) if tjn → +∞, then ‖NLS(−t)ψ̃j‖β̇0
S([0,∞);Ḣs)

< +∞ and if tjn → −∞, then

‖NLS(−t)ψ̃j‖β̇0
S((−∞,0];Ḣs)

< +∞,

(c) for k 6= j, then |tjn − tkn|+ |xjn − xkn| → +∞.

The remainder sequence has the following asymptotic smallness property:

lim
M→∞

(
lim
n→∞

‖NLS(t)W̃M
n ‖β̇0

S(Ḣs)

)
= 0. (3.22)

For fixed M ∈ N and any 0 ≤ s ≤ 1, we have the asymptotic Pythagorean

expansion

‖φn‖2
Ḣs =

M∑
j=1

‖NLS(−tjn)ψ̃j‖2
Ḣs + ‖W̃M

n ‖2
Ḣs + on(1) (3.23)

and the energy Pythagorean decomposition (note that E[NLS(−tjn)ψ̃j] = E[ψ̃j]):

E[φn] =
M∑
j=1

E[ψ̃j] + E[W̃M
n ] + on(1). (3.24)

Proof. From Proposition 3.4, given that φn(x) is a uniformly bounded sequence

in H1, we have

φn(x) =
M∑
j=1

e−it
j
n∆ψj(x− xjn) +WM

n (x) (3.25)
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satisfying (3.2), (3.3), (3.4) and (3.11). We will choose M ∈ N later. To prove

this proposition, the idea is to replace a linear flow eit∆ψj by some nonlinear flow.

Now for each ψj we can apply the wave operator (Proposition 2.25) to

obtain a function ψ̃j ∈ H1, which we will refer to as the nonlinear profile (corre-

sponding to the linear profile ψj) such that the following properties hold:

For a given j, there are two cases to consider: either tjn is bounded, or

|tjn| → +∞.

Case |tjn| → +∞:

If tjn → +∞, Proposition 2.25 Part I equation (2.67) implies that

‖NLS(−tjn)ψ̃j − e−it
j
n∆ψj‖H1 → 0 as tjn → +∞

and so

‖NLS(−t)ψ̃j‖β̇0
S([0,+∞),Ḣs)

< +∞. (3.26)

Similarly, if tjn → −∞, by (2.68) we obtain

‖NLS(−tjn)ψ̃j − e−it
j
n∆ψj‖H1 → 0 as tjn → −∞,

and hence,

‖NLS(−t)ψ̃j‖β̇0
S((−∞,0],Ḣs)

< +∞. (3.27)

Case tjn is bounded (as n → ∞): Adjusting the profiles ψj we reduce it to the

case tjn = 0. Thus, (3.2) becomes |xjn − xkn| → +∞ as n → ∞, and continuity of

the linear flow in H1, leads to e−t
j
n∆ψj → ψj strongly in H1 as n → ∞. In this

case, we simply let

ψ̃j = NLS(0)e−i(limn→∞ tjn)∆ψj = e−i0∆ψj = ψj.
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Thus, in either case of sequence {tjn}, we have a new nonlinear profile ψ̃j

associated to each original linear profile ψj such that

‖NLS(−tjn)ψ̃j − e−it
j
n∆ψj‖H1 → 0 as n→ +∞. (3.28)

Thus, we can substitute e−it
j
n∆ψj by NLS(−tjn)ψ̃j in (3.25) to obtain

φn(x) =
M∑
j=1

NLS(−tjn)ψ̃j(x− xjn) + W̃M
n (x), (3.29)

where

W̃M
n (x) = WM

n (x) +
M∑
j=1

{
e−it

j
n∆ψj(x− xjn)− NLS(−tjn)ψ̃j(x− xjn)

}
≡ WM

n (x) +
M∑
j=1

T j. (3.30)

The triangle inequality yields

‖eit∆W̃M
n ‖β̇0

S(Ḣs)

≤ ‖eit∆WM
n ‖β̇0

S(Ḣs)

+ c
M∑
j=1

∥∥e−itjn∆ψj − NLS(−tjn)ψ̃j
∥∥
β̇0
S(Ḣs)

.

By (3.28) we have that

‖eit∆W̃M
n ‖β̇0

S(Ḣs)

≤ ‖eit∆WM
n ‖β̇0

S(Ḣs)

+ c
M∑
j=1

on(1),

and thus,

lim
M→∞

(
lim
n→∞

‖eit∆W̃M
n ‖β̇0

S(Ḣs)

)
= 0.

Now we are going to apply a nonlinear flow to φn(x) and approximate it by a

combination of “nonlinear bumps” NLS(t− tjn)ψ̃j(x− xjn), i.e.,

NLS(t)φn(x) ≈
M∑
j=1

NLS(t− tjn)ψ̃j(x− xjn).

Obviously, this can not hold for any bounded in H1 sequence {φn}, since,

for a example, a nonlinear flow can introduce finite time blowup solutions. How-

ever, under the proper conditions we can use the long term perturbation theory
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(Proposition 2.17) to guarantee that a nonlinear flow behaves basically similar to

the linear flow.

To simplify notation, introduce the nonlinear evolution of each separate

initial condition un,0 = φn:

un(t, x) = NLS(t)φn(x),

the nonlinear evolution of each separate nonlinear profile (“bump”):

vj(t, x) = NLS(t)ψ̃j(x),

and a linear sum of nonlinear evolutions of “bumps”:

ũn(t, x) =
M∑
j=1

vj(t− tjn, x− xjn).

Intuitively, we think that φn = un,0 is a sum of bumps ψ̃j (appropriately

transformed) and un(t) is a nonlinear evolution of their entire sum. On the other

hand, ũn(t) is a sum of nonlinear evolutions of each bump so we now want to

compare un(t) with ũn(t).

Note that if we had just the linear evolutions, then both un(t) and ũn(t)

would be the same.

Thus, un(t) satisfies

i∂tun + ∆un + |un|p−1un = 0,

and ũn(t) satisfies

i∂tũn + ∆ũn + |ũn|p−1ũn = ẽMn ,

where

ẽMn = |ũn|p−1ũn −
M∑
j=1

|vjn(t− tjn, · − xjn)|p−1vjn(t− tjn, · − xjn).
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Claim 3.7. There exists a constant A independent of M , and for every M , there

exists n0 = n0(M) such that if n > n0, then ‖ũn‖β̇0
S(Ḣs)

≤ A.

Claim 3.8. For each M and ε > 0, there exists n1 = n1(M, ε) such that if n > n1,

then ‖ẽMn ‖β̇0
S′(Ḣ−s)

≤ ε.

Note ũn(0, x)− un(0, x) = W̃M
n (x). Then for any ε̃ > 0 there exists M1 =

M1(ε̃) large enough such that for each M > M1 there exists n2 = n2(M) with

n > n2 implying

‖eit∆(ũn(0)− un(0))‖β̇0
S(Ḣs)

≤ ε̃.

Therefore, for M large enough and n = max(n0, n1, n2), since

eit∆(ũn(0)) = eit∆

(
M∑
j=1

vj(−tjn, x− xjn)

)
,

which are scattering by (3.28), Proposition 2.17 implies ‖un‖β̇0
S(Ḣs)

< +∞, a

contradiction.

Coming back to the nonlinear remainder W̃M
n , we estimate its nonlinear

flow as follows (recall the notation of W̃M
n , WM

n and T j in (3.30)):

By Besov Strichartz estimates (2.12) and by the triangle inequality, we get

‖NLS(t)W̃M
n ‖β̇0

S(Ḣs)

≤ ‖eit∆W̃M
n ‖β̇0

S(Ḣs)

+

∥∥∥∥∣∣∣W̃M
n

∣∣∣p−1

W̃M
n

∥∥∥∥
β̇0
S′(Ḣ−s)

≤ ‖eit∆W̃M
n ‖β̇0

S(Ḣs)

+ c
M∑
j=1

‖T j‖p−1

β̇0
S(Ḣs)

‖T j‖β̇s
S(L2)

(3.31)

≤ ‖eit∆W̃M
n ‖β̇0

S(Ḣs)

+ c

M∑
j=1

‖T j‖p−1

β̇0
S(Ḣs)

‖T j‖β̇0
S(Ḣ1)

. (3.32)

We used (2.13) to obtain (3.31) and since s < 1 we have Ḣ1 ↪→ Ḣs, so it yields

(3.32). Hence,

‖NLS(t)W̃M
n ‖β̇0

S(Ḣs)

≤ ‖eit∆W̃M
n ‖β̇0

S(Ḣs)

+ c

M∑
j=1

∥∥e−itjn∆ψj − NLS(−tjn)ψ̃j
∥∥p
H1
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and by (3.28) and then applying (3.3), we obtain

lim
n→∞

‖eit∆WM
n ‖β̇0

S(Ḣs)

→ 0 as M →∞.

Thus we proved (3.29), (3.22). This also gives (3.23).

Next, we substitute the linear flow in Lemma 3.5 by the nonlinear and

repeat the above long term perturbation argument to obtain

‖φn‖p+1
Lp+1 =

M∑
j=1

‖NLS(−tjn)ψj‖p+1
Lp+1 + ‖W̃M

n ‖
p+1
Lp+1 + on(1), (3.33)

which yields the energy Pythagorean decomposition (3.24). The proof will be

concluded after we prove the Claims 3.7 and 3.8.

Proof of Claim 3.7. We show that for a large constant A independent of M and

if n > n0 = n0(M), then

‖ũn‖S(Ḣs) ≤ A. (3.34)

Let M0 be a large enough such that ‖eit∆W̃M0
n ‖S(Ḣs) ≤ δsd. Then, by (3.30),

for each j > M0, we have ‖eit∆ψj‖S(Ḣs) ≤ δsd, thus, Proposition 2.25 yields

‖vj‖S(Ḣs) ≤ 2‖eit∆ψj‖S(Ḣs) for j > M0.

Assume both s 6= 1
2

and d 6= 2, the pairs
(

2(d+2)
d−2s

, 2(d+2)
d−2s

)
,
(
∞, 2d

d−2s

)
,(

6
1−s ,

6d
3d−4s−2

)
and

(
4

1−s ,
2d

d−s−1

)
, are Ḣs admissible. Hence, we have

‖ũn‖
2(d+2)
d−2s

L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

=

=

M0∑
j=1

‖vj‖
2(d+2)
d−2s

L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

+
M∑

j=M0+1

‖vj‖
2(d+2)
d−2s

L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

+ cross terms

≤
M0∑
j=1

‖vj‖
2(d+2)
d−2s

L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

+ 2
2(d+2)
d−2s

M∑
j=M0+1

‖eit∆ψj‖
2(d+2)
d−2s

L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

+ cross terms,

(3.35)
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note that by (3.25) we have

‖eit∆φn‖
2(d+2)
d−2s

L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

=

=

M0∑
j=1

‖eit∆ψj‖
2(d+2)
d−2s

L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

+ 2
2(d+2)
d−2s

M∑
j=M0+1

‖eit∆ψj‖
2(d+2)
d−2s

L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

+ cross terms.

(3.36)

Observe that by (3.2) and taking n0 = n0(M) large enough, we can consider

{un}n>n0 and thus, make “the cross terms” ≤ 1. Then (3.36) and

‖eit∆φn‖
L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

≤ c‖φn‖Ḣs ≤ c1

imply
∑M

j=M0+1 ‖eit∆ψj‖
2(d+2)
d−2s

L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

is bounded independent of M provided n >

n0. If n > n0 then ‖ũn‖
L

2(d+2)
d−2s
t L

2(d+2)
d−2s
x

is also bounded independent of M by (3.35).

In a similar fashion, one can prove that ‖ũn‖
L∞t L

2d
d−2s
x

is bounded inde-

pendent of M provided n > n0. Interpolation between these exponents gives

‖ũn‖
L

6
1−s
t L

6d
3d−4s−2
x

and ‖ũn‖
L

4
1−s
t L

2d
d−s−1
x

are bounded independent of M for n > n0.

When s = 1
2

and d = 2, the previous argument takes the pair (2,∞)

which is not an admissible pair in dimension 2, instead we estimate ‖ũ‖L8
x,L

8
x

and

‖ũ‖L∞x ,L4
x
, as previously done, and interpolate between them to get that ‖ũ‖L12

x ,L
6
x

is bounded independent of M provided n > n0.

To close the argument, we apply Kato estimate (2.5) to the integral equa-

tion of

i∂tũn + ∆ũn + |ũn|p−1ũn = ẽMn .

Claiming ‖ẽMn ‖β̇0
S′(Ḣ−s)

≤ 1 (see Claim 3.8) , as in Proposition 2.17, we obtain that

‖ũn‖β̇0
S(Ḣs)

is as well bounded independent of M provided n > n0. Thus, Claim

3.7 is proved.

Proof of Claim 3.8. Note that the pairs ( 6
1−s ,

6d
3d−4s−2

), ( 4
1−s ,

2d
d−s−1

) are Ḣs admis-

sible and the pair ( 12(d−2s)
(8+3d−6s)(1−s) ,

6d(d−2s)
3(d2+2s2)+9d(1−s)−2(5s+4)

) is Ḣ−s admissible. Recall
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the elemental inequality: for aj, ak ∈ C,∣∣∣∣∣
∣∣∣∣ M∑
j=1

aj

∣∣∣∣p−1 M∑
k=1

ak −
M∑
j=1

|aj|p−1aj

∣∣∣∣∣ ≤ cp,M

M∑
j=1

M∑
k=1
k 6=j

|ak|p−1|aj|,

which combined with the Hölder’s inequality, for each dyadic number N ∈ 2Z,

leads to

‖ẽMn ‖S′(Ḣ−s) ≤ ‖ẽ
M
n ‖

L

12(d−2s)
(8+3d−6s)(1−s)
t L

6d(d−2s)

3(d2+2s2)+9d(1−s)−2(5s+4)
x

≤
M∑
j=1

M∑
k=1
k 6=j

‖vk(t− tkn, x− xk)‖
p−1

L
6

1−s
t L

6d
3d−4s−2
x

‖vj(t− tjn, x− xj)‖
L

4
1−s
t L

2d
d−s−1
x

.

Here, we used the following Hölder split

(p− 1)(1− s)
6

+
1− s

4
=

(8 + 3d− 6s)(1− s)
12(d− 2s)

,

(p− 1)(3d− 4s− 2)

6d
+
d− s− 1

2d
=

3(d2 + 2s2) + 9d(1− s)− 2(5s+ 4)

6d(d− 2s)
.

Note that either {tkn} → ±∞ or {tkn} is bounded.

If {tjn} → ±∞, without loss of generality assume |tkn − tjn| → ∞ as n →

∞ and by adjusting the profiles that |xkn − xjn| → 0 as n → ∞. Since vk ∈

L
6

1−s
t L

6d
3d−4s−2
x and vj2 ∈ L

4
1−s
Ij

L
2d

d−s−1
x , then

‖vk(t− tkn, x− xk)‖
p−1

L
6

1−s
t L

6d
3d−4s−2
x

‖vj(t− tjn, x− xj)‖
L

4
1−s
t L

2d
d−s−1
x

→ 0.

If {tjn} is bounded, without loss of generality, assume |xjn − xkn| → ∞ as

n→∞, then

‖vk(t− tkn, x− xk)‖
p−1

L
6

1−s
t L

6d
3d−4s−2
x

‖vj(t− tjn, x− xj)‖
L

4
1−s
t L

2d
d−s−1
x

→ 0.

Thus, in either case we obtain Claim 3.8.

This finishes the proof of Proposition 3.6

Observe that (3.23) gives Ḣ1 asymptotic orthogonality at t = 0 and the

following lemma extends it to the bounded NLS flow for 0 ≤ t ≤ T.
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Lemma 3.9 (Ḣ1 Pythagorean decomposition along the bounded NLS flow).

Suppose φn is a bounded sequence in H1(Rd). Let T ∈ (0,∞) be a fixed

time. Assume that un(t) ≡ NLS(t)φn exists up to time T for all n, and

limn→∞ ‖∇un(t)‖L∞
[0,T ]

L2
x
< ∞. Consider the nonlinear profile decomposition from

Proposition 3.6. Denote WM
n (t) ≡ NLS(t)WM

n . Then for all j, the nonlinear

profiles vj(t) ≡ NLS(t)ψ̃j exist up to time T and for all t ∈ [0, T ],

‖∇un(t)‖2
L2 =

M∑
j=1

‖∇vj(t− tjn)‖2
L2 + ‖∇WM

n (t)‖2
L2
x

+ on(1), (3.37)

where on(1)→ 0 uniformly on 0 ≤ t ≤ T.

Proof. We use Propositon 3.6 to obtain profiles {ψ̃j} and the nonlinear profile

decomposition (3.21). Note that limn→∞ ‖NLS(t)WM
n ‖β̇0

S(Ḣs)

→ 0 as M → ∞, so

by choosing a large M we can make ‖NLS(t)WM
n ‖β̇0

S(Ḣs)

small.

Let M0 be such that for M ≥ M0 (and for n large), we have

‖NLS(t)WM
n ‖β̇0

S(Ḣs)

≤ δsd (recall δsd from Proposition 2.13). Reorder the first

M0 profiles and let M2, 0 ≤M2 ≤M, be such that

1. For each 1 ≤ j ≤M2, we have tjn = 0. Observe that if M2 = 0, there are no

j in this case.

2. For each M2 + 1 ≤ j ≤ M0, we have |tjn| → ∞. If M2 = M0, then it means

that there are no j in this case.

From Proposition 3.6 and the profile decomposition (3.21) we have that vj(t) for

j > M0 are scattering, and for M2 +1 ≤ j ≤M0 we have ‖vj(t−tjn)‖S(Ḣs;[0,T ]) → 0

as n→ +∞.

In fact, taking tjn → +∞ and ‖vj(−t)‖S(Ḣs;[0,+∞)) <∞, dominated conver-

gence leads to ‖vj(−t)‖Lq
[0,+∞)

Lrx
<∞, for q <∞, where (r, q) is an Ḣs admissible

pair, and consequently, ‖vj(t − tjn)‖Lq
[0,T ]

Lrx
→ 0 as n → ∞. As vj(t) has been

66



constructed via the existence of wave operators to converge in H1 to a linear flow,

the Lrx decay of the linear flow

‖vj(t− tj)‖L∞
[0,T ]

Lrx → 0,

with

r =


2d
d−2s

d ≥ 3

2
1−s d = 2

2
1−2s

d = 1

and s as in (3.6).

Let B = max{1, limn ‖∇un(t)‖L∞
[0,T ]

L2
x
} < ∞. For each 1 ≤ j ≤ M2,

let T j ≤ T be the maximal forward time such that ‖∇vj‖L∞
[0,T j ]

L2
x
≤ 2B, and

T̃ = min1≤j≤M2 T
j or T̃ = T if M2 = 0. It is sufficient to prove that (3.37) holds

for T̃ = T , since for each 1 ≤ j ≤ M2, we have T j = T, and therefore, T̃ = T.

Thus, let’s consider [0, T̃ ]. For each 1 ≤ j ≤M2, we have for d ≥ 3:

‖vj(t)‖S(Ḣs;[0,T̃ ]) . ‖vj‖
L

2
1−s
[0,T̃ ]

L
2d
d−2
x

+ ‖vj‖
L∞

[0,T̃ ]
L

2d
d−2s
x

(3.38)

. ‖vj‖
L

2
1−s
[0,T̃ ]

L∞x

‖vj‖
L∞

[0,T̃ ]
L

2d
d−2
x

+ ‖vj‖1−s
L∞

[0,T̃ ]
L2
x
‖vj‖s

L∞
[0,T̃ ]

L
2d
d−2
x

(3.39)

.
(
T̃

1−s
2 + c1−s)‖∇vj‖L∞

[0,T̃ ]
L2
x

. 〈T̃
1−s
2 〉B, (3.40)

note that (3.38) comes from the “end point” admissible S(Ḣs) Strichartz norms

(L
2

1−s
t L

2d
d−2s
x and L∞t L

2d
d−2s
x ) since all the other S(Ḣs) norms will be bounded by

interpolation; the Hölder’s inequality yields (3.39) and the Sobolev’s embedding

Ḣ1(Rd) ↪→ L
2d
d−2s (Rd) together with ‖vj‖L∞

[0,T̃ ]
L2
x

= ‖ψj‖L2
x
≤ ‖φn‖L2 , from (3.23)

with s = 0, gives (3.40).
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For d = 2:

‖vj(t)‖S(Ḣs;[0,T̃ ]) . ‖vj‖
L∞

[0,T̃ ]
L

2
1−s
x

+ ‖vj‖
L

2
1−s
[0,T̃ ]

Lrx

(3.41)

. ‖vj‖1−s
L∞

[0,T̃ ]
L2
x
‖vj‖L∞

[0,T̃ ]
L∞x + ‖vj‖1−s

L2
[0,T̃ ]

L∞x
‖vj‖L∞

[0,T̃ ]
Lrx (3.42)

. ‖vj‖1−s
L∞

[0,T̃ ]
L2
x
‖∇vj‖L∞

[0,T̃ ]
L2
x

+ ‖vj‖1−s
L2

[0,T̃ ]
L∞x
‖vj‖

L∞
[0,T̃ ]

Ḣ
1− 2

r
x

(3.43)

.

(
‖vj‖1−s

L∞
[0,T̃ ]

L2
x

+ ‖vj‖1−s
L2

[0,T̃ ]
L∞x

)
‖∇vj‖L∞

[0,T̃ ]
L2
x

(3.44)

.
(
T̃

1−s
2 + c1−s)‖∇vj‖L∞

[0,T̃ ]
L2
x

. 〈T̃
1−s
2 〉B, (3.45)

where r =
((

2
1−s

)+)′
. Note that (3.41) comes from the “end point” admissi-

ble Strichartz norms (L∞t L
2

1−s
x and L

2
1−s
t Lrx); Hölder’s inequality yields (3.42);

the Sobolev’s embeddings Ḣ1(R2) ↪→ L∞(R2) and Ḣ1− 2
r (R2) ↪→ Lr(R2) leads to

(3.43); since r is large we have the Sobolev’s embedding Ḣ1(R2) ↪→ Ḣ1− 2
r (R2),

which implies (3.44), and finally, since ‖vj‖L∞
[0,T̃ ]

L2
x

= ‖ψj‖L2
x
≤ ‖φn‖L2 by (3.23)

with s = 0 we get (3.45).

For d = 1:

‖vj(t)‖S(Ḣs;[0,T̃ ]) . ‖vj‖
L∞

[0,T̃ ]
L

2
1−2s
x

+ ‖vj‖
L

4
1−2s

[0,T̃ ]
L∞x

(3.46)

. ‖vj‖1−2s
L∞

[0,T̃ ]
L2
x
‖vj‖L∞

[0,T̃ ]
L∞x + ‖vj‖

1−2s
2

L2
[0,T̃ ]

L∞x
‖vj‖L∞

[0,T̃ ]
L∞x (3.47)

.

(
‖vj‖1−2s

L∞
[0,T̃ ]

L2
x

+ ‖vj‖
1−2s

2

L2
[0,T̃ ]

L∞x

)
‖∇vj‖L∞

[0,T̃ ]
L2
x

.
(
T̃

1−2s
2 + c

1−2s
2

)
‖∇vj‖L∞

[0,T̃ ]
L2
x

. 〈T̃
1−2s

2 〉B, (3.48)

note that (3.46) comes from the “end point” admissible Strichartz norms (L∞t L
2

1−2s
x

and L
4

1−2s

t L∞x ); Hölder’s inequality yields (3.47); the Sobolev’s embeddings

Ḣ1(R1) ↪→ L∞(R1) implies (3.47), and finally, ‖vj‖L∞
[0,T̃ ]

L2
x

= ‖ψj‖L2
x
≤ ‖φn‖L2

leads to (3.48).

As in the proof of Proposition 3.6, set ũn(t, x) =
∑M

j=1 v
j(t − tjn, x − xjn)

and, a linear sum of nonlinear flows of nonlinear profiles ψ̃j, ẽMn = i∂tũn + ∆ũn +
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|ũn|p−1ũn. Thus, for M > M0 we have

Claim 3.7: There exist a constant A = A(T̃ ) independent of M , and for every

M , there exists n0 = n0(M) such that if n > n0, then ‖ũn‖β̇0
S(Ḣs)

≤ A.

Claim 3.8: For each M and ε > 0, there exists n1 = n1(M, ε) such that if n > n1,

then ‖ẽMn ‖β̇0
S′(Ḣ−s)

.

Remark 3.10. Note since u(0) − ũn(0) = W̃M
n , there exists M ′ = M ′(ε) large

enough so that for each M > M ′ there exists n2 = n2(M) such that n > n2

implies

‖eit∆(u(0)− ũn(0))‖β̇0
S(Ḣs;[0,T̃ ])

≤ ε.

We will next apply the long term perturbation argument (Proposition

2.17); note that in Proposition 2.17, T = +∞, while here, it is not necessary.

However, T does not form part of the parameter dependence, since ε0 depends

only on A = A(T ), not on T , that is, there will be dependence on T , but it is

only through A.

Thus, the long term perturbation argument (Proposition 2.17) gives us

ε0 = ε0(A). Selecting an arbitrary ε ≤ ε0, and from Remark 3.10 take M ′ = M ′(ε).

Now select an arbitrary M > M ′ and take n′ = max(n0, n1, n2). Then combining

claims 3.7 - 3.8, Remark 3.10 and Proposition 3.6, we obtain that for n > n′(M, ε)

with c = c(A) = c(T̃ ) we have

‖un − ũn‖S(Ḣs;[0,T̃ ]) ≤ c(T̃ )ε. (3.49)

We will next prove (3.37) for 0 ≤ t ≤ T̃ . Recall that for each dyadic

number N ∈ 2Z, ‖vj(t − tjn)‖S(Ḣs;[0,T̃ ]) → 0 as n → ∞ and for each 1 ≤ j ≤ M2,

we have ‖∇vj‖L∞
[0,T j ]

L2
x
≤ 2B. Strichartz estimates imply

‖∇vj(t− tjn)‖L∞
[0,T̃ ])

L2
x

. ‖∇vj(−tjn)‖L∞
[0,T̃ ])

L2
x
,
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then

‖∇ũ(t)‖2
L∞

[0,T̃ ]
L2
x

=

M2∑
j=1

‖∇vj(t)‖2
L∞

[0,T̃ ]
L2
x

+
M∑

j=M2+1

‖∇vj(t− tjn)‖2
L∞

[0,T̃ ]
L2
x

+ on(1)

. M2B
2 +

M∑
j=M2+1

‖∇NLS(−tjn)ψj‖2
L2
x

+ on(1)

. M2B
2 + ‖∇φn‖2

L2
x

+ on(1) . M2B
2 +B2 + on(1).

Using (3.49), we obtain for d ≥ 3:

‖un − ũn‖L∞
[0,T̃ ]

Lp+1
x

. ‖un − ũn‖
2

d−2s+2

L∞
[0,T̃ ]

L
2d
d−2s
x

‖un − ũn‖
d−2s
d−2s+2

L∞
[0,T̃ ]

L
2d
d−2
x

(3.50)

. ‖un − ũn‖
2

d−2s+2

S(Ḣs;[0,T̃ ])
‖∇(un − ũn)‖

d−2s
d−2s+2

L∞
[0,T̃ ]

L2
x

(3.51)

. c(T̃ )
2

d−2s+2 (M2B
2 +B2 + o(1))

d−2s
d−2s+2 ε

2
d−2s+2 ,

in this case, we used Hölder’s inequality to get (3.50) and the Sobolev embedding

Ḣ1(Rd) ↪→ L
2d
d−2 (Rd) to obtain (3.51).

For d = 2:

‖un − ũn‖L∞
[0,T̃ ]

Lp+1
x

. ‖un − ũn‖
1

2−s

L∞
[0,T̃ ]

L
2

1−s
x

‖un − ũn‖
1−s
2−s
L∞

[0,T̃ ]
L∞x

(3.52)

. ‖un − ũn‖
1

2−s
S(Ḣs;[0,T̃ ])

‖∇(un − ũn)‖
1−s
2−s
L∞

[0,T̃ ]
L2
x

(3.53)

. c(T̃ )
1

2−s (M2B
2 +B2 + o(1))

1−s
2−s ε

1
2−s ,

here, we used Hölder’s inequality to get (3.52) and the Sobolev embedding

Ḣ1(R2) ↪→ L∞(R2) to obtain (3.53).

For d = 1:

‖un − ũn‖L∞
[0,T̃ ]

Lp+1
x

. ‖un − ũn‖
2

3−2s

L∞
[0,T̃ ]

L
4

1−2s
x

‖un − ũn‖
1−2s
3−2s

L∞
[0,T̃ ]

L∞x
(3.54)

. ‖un − ũn‖
2

3−2s

S(Ḣs;[0,T̃ ])
‖∇(un − ũn)‖

1−2s
3−2s

L∞
[0,T̃ ]

L2
x

(3.55)

. c(T̃ )
2

3−2s (M2B
2 +B2 + o(1))

1−2s
3−2s ε

2
3−2s ,
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here, we used Hölder’s inequality to get (3.54) and the Sobolev embedding

Ḣ1(R1) ↪→ L∞(R1) to obtain (3.55).

Similar to the argument in the proof of (3.33), we establish that for 0 ≤

t ≤ T̃

‖un(t)‖p+1
Lp+1 =

M∑
j=1

‖vj(t− tjn)‖p+1
Lp+1 + ‖WM

n (t)‖p+1
Lp+1 + on(1). (3.56)

Energy conservation and (3.24) give us

E[un(t)] =
M∑
j=1

E[vj(t− tj)] + E[WM
n ] + on(1)

=
M∑
j=1

E[ψj] + E[WM
n ] + on(1). (3.57)

Combining (3.56) and (3.57), completes the proof of (3.37).

We now have all the profile decomposition tools to apply to our particular

situation in part I (a) of Theorem 1.6*.

Proposition 3.11 (Existence of a critical solution.). Let θ = 1−s
s

, with 0 < s < 1.

There exists a global (T = +∞) H1 solution uc(t) ∈ H1(Rd) with initial datum

uc,0 ∈ H1(Rd) such that

‖uc,0‖L2 = 1, E[uc] = (ME)c < M [u
Q

]θE[u
Q

],

Guc(t) < 1 for all 0 ≤ t < +∞,

‖uc‖β̇0
S(Ḣs)

= +∞. (3.58)

Proof. Consider a sequence of solutions un(t) to NLS+
p (Rd) with corresponding

initial data un,0 such that Gun(0) < 1 and M [un]θE[un] ↘ (ME)c as n → +∞,

for which SC(un,0) does not hold for any n.

Without lost of generality, rescale the solutions so that ‖un,0‖L2 = 1, thus,

‖∇un,0‖L2 < ‖u
Q
‖θL2‖∇uQ‖L2 and E[un]↘ (ME)c.
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By construction, ‖un‖β̇0
S(Ḣs)

= +∞. Note that the sequence {un,0} is uniformly

bounded on H1. Thus, applying the nonlinear profile decomposition (Proposition

3.6), we have

un,0(x) =
M∑
j=1

NLS(−tjn)ψ̃j(x− xjn) + W̃M
n (x). (3.59)

Now we will refine the profile decomposition property (b) in Proposition 3.6 by us-

ing part II of Proposition 2.25 (wave operator), since it is specific to our particular

setting here.

Recall that in nonlinear profile decomposition we consider 2 cases when

|tjn| → ∞ and |tjn| is bounded. In the first case, we can refine it to the following.

First note that we can obtain ψ̃j (from linear ψj) such that

‖NLS(−tjn)ψ̃j − e−it
j
n∆ψj‖H1 → 0 as n→ +∞

with properties (2.70), since the linear profiles ψj’s satisfy

‖ψ‖2(1−s)
L2 ‖∇ψ‖2s

L2 < σ2

(
d

s

)s
M [u

Q
]1−sE[u

Q
]s,

and since

M∑
j=1

M [e−it
j∆ψj] + lim

n→+∞
M [WM

n ] = lim
n→+∞

M [un,0] = 1.

M∑
j=1

lim
n→+∞

E[e−it
j
n∆ψj] + lim

n→+∞
E[WM

n ] = lim
n→+∞

E[un,0] = (ME)c,

we also have,

1

2
‖ψj‖θL2‖∇ψj‖L2 ≤ (ME)c.

The properties (2.70) for ψ̃j imply that (ME [ψ̃j])
1
s < (ME)c, and thus,

we get that

‖NLS(t)ψ̃j(· − xjn)‖β̇0
S(Ḣs)

< +∞. (3.60)
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This fact will be essential for case 1 below. Otherwise, in nonlinear decom-

position 3.59 we also have the Pythagorean decomposition for mass and energy:

M∑
j=1

lim
n→+∞

E[ψ̃j] + lim
n→+∞

E[W̃M
n ] = lim

n→+∞
E[un,0] = (ME)c.

Since each energy is greater than 0 (Lemma 2.23), for all j we obtain

E[ψ̃j] ≤ (ME)c. (3.61)

Furthermore, s = 0 in (3.23) imply

M∑
j=1

M [ψ̃j] + lim
n→+∞

M [W̃M
n ] = lim

n→+∞
M [un,0] = 1. (3.62)

We show that in the profile decomposition (3.59) either more than one

profiles ψ̃j are non-zero, or only one profile ψ̃j is non-zero and the rest (M − 1)

profiles are zero. The first case will give a contradiction to the fact that each

un(t) does not scatter, consequently, only the second possibility holds. That non-

zero profile ψ̃j will be the initial data uc,0 and will produce the critical solutiton

uc(t) = NLS(t)uc,0, such that ‖uc‖β̇0
S(Ḣs)

= +∞.

Case 1: More than one ψ̃j 6= 0. For each j, (3.62) gives M [ψ̃j] < 1 and for a large

enough n, (3.61) and (3.62) yield

M [NLS(t)ψ̃j]θE[NLS(t)ψ̃j] = M [ψ̃j]θE[ψ̃j] < (ME)c.

Recall (3.60), we have

‖NLS(t− tj)ψ̃j(· − xjn)‖β̇0
S(Ḣs)

< +∞, for large enough n,

and thus, the right hand side in (3.59) is finite in S(Ḣs), since (3.22) holds for

the remainder W̃M
n (x). This contradicts the fact that ‖NLS(t)un,0‖β̇0

S(Ḣs)

= +∞.

Case 2: Thus, we have that only one profile ψ̃j is non-zero, renamed to be ψ̃1,

un,0 = NLS(−t1n)ψ̃1(· − x1
n) + W̃ 1

n , (3.63)
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with

M [ψ̃1] ≤ 1, E[ψ̃1] ≤ (ME)c and lim
n→+∞

‖NLS(t)W̃ 1
n‖β̇0

S(Ḣs)

= 0.

Let uc be the solution to NLS+
p (Rd) with the initial condition uc,0 = ψ̃1.

Applying NLS(t) to both sides of (3.63) and estimating it in β̇0
S(Ḣs)

, we obtain

(by the nonlinear profile decomposition Proposition 3.6) that

‖uc‖β̇0
S(Ḣs)

= ‖NLS(t− t1n)ψ̃1‖β̇0
S(Ḣs)

= lim
n→∞

‖NLS(t)un,0‖β̇0
S(Ḣs)

= lim
n→∞

‖un(t)‖β̇0
S(Ḣs)

= +∞,

since by construction ‖un‖β̇0
S(Ḣs)

= +∞, completing the proof.

Lemma 3.12 ( Precompactness of the flow of the critical solution). Assume uc

as in Proposition 3.11. Then there exists a continuous path x(t) in Rd such that

K = {uc(· − x(t), t)|t ∈ [0,+∞)}

is precompact in H1(Rd).

Proof. Let a sequence τn → +∞ and φn = uc(τn) be a uniformly bounded se-

quence in H1; we want to show that uc(τn) has a convergent subsequence in H1.

The nonlinear profile decomposition (Proposition 3.6) implies the existence

of profiles ψ̃j, the time and space sequences{tjn}, {xjn} and an error W̃M
n such

that

uc(τn) =
M∑
j=1

NLS(−tjn)ψ̃j(x− xjn) + W̃M
n (x), (3.64)

with |tjn − tkn|+ |xjn − xkn| → +∞ as n→ +∞ for fixed j 6= k. In addition,

M∑
j=1

E[ψ̃j] + E[W̃M
n ] = E[uc] = (ME)c,

since each energy is nonnegative, we have

lim
n→∞

E[NLS(−tjn)ψ̃j(x− xjn)] ≤ (ME)c.
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Taking s = 0 in (3.23)

M∑
j=1

M [ψ̃j(x− xjn)] + lim
n→∞

‖W̃M
n ‖2

L2 = M [uc] = 1.

Note that, in the decomposition (3.64) either have more than one ψ̃j 6= 0 or only

one ψ̃1 6= 0 and ψ̃j = 0 for all 2 ≤ j < M . Following the argument of Proposition

3.11, we show that only the second case occurs:

uc(τn) = NLS(−t1n)ψ̃1(x− x1
n) + W̃ 1

n(x) (3.65)

such that

M [ψ̃1] = 1, lim
n→∞

E[NLS(−t1n)ψ̃j(x− x1
n)] = (ME)c,

lim
n→∞

M [W̃M
n ] = 0 and lim

n→∞
E[W̃M

n ] = 0.

Lemma 2.23 implies

lim
n→∞

‖W̃M
n ‖H1 = 0. (3.66)

The sequence xn1 will create a path x(t) by continuity. We now show that tn1 has

a convergence subsequence t̃n1 .

Assume that t̃1n → −∞, apply NLS(t) to (3.65) implies then triangle in-

equality yields

‖NLS(t)uc(τn)‖β̇0
S(Ḣs;[0,+∞))

≤‖NLS(t− t̃1n)ψ̃1(x− x1
n)‖β̇0

S(Ḣs;[0,+∞))

+ ‖NLS(t)W̃M
n (x)‖β̇0

S(Ḣs;[0,+∞))

.

Note

lim
n→+∞

‖NLS(t− t̃1n)ψ̃1(x− x1
n)‖β̇0

S(Ḣs;[0,+∞))

= lim
n→+∞

‖NLS(t)ψ̃1(x− x1
n)‖β̇0

S(Ḣs;[t1n,+∞))

= 0,

and

‖NLS(t)W̃M
n ‖β̇0

S(Ḣs)

≤ 1

2
δsd,
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thus, taking n sufficiently large, the small data scattering theory (Proposition

2.13) implies ‖uc‖β̇0
S(Ḣs;(−∞,τn))

≤ δsd a contradiction.

In a similar fashion, assuming that t̃1n → +∞, we obtain that for n large,

‖NLS(t)uc(τn)‖β̇0
S(Ḣs;(−∞,0])

≤ 1
2
δsd, and thus, the small data scattering theory

(Proposition 2.13) shows that

‖uc‖β̇0
S(Ḣs;(−∞,τn])

≤ δsd. (3.67)

Taking n→ +∞ implies τn → +∞, thus (3.67) becomes ‖uc‖β̇0
S(Ḣs;(−∞,+∞))

≤ δsd,

a contradiction. Thus, t̃1n must converge to some finite t1.

Since (3.66) holds and NLS(t̃1n)ψ̃1 → NLS(t1)ψ̃1 inH1, (3.65) implies uc(τn)

converges in H1.

Corollary 3.13. ( Precompactness of the flow implies uniform localization.) As-

sume u is a solution to (1.1) such that

K = {u(· − x(t), t)|t ∈ [0,+∞)}

is precompact in H1(Rd). Then for each ε > 0, there exists R > 0, so that for all

0 ≤ t <∞ ∫
|x+x(t)|>R

|∇u(x, t)|2 + |u(x, t)|2 + |u(x, t)|p+1dx < ε. (3.68)

Furthermore, ‖u(t, · − x(t))‖H1(|x|>R) < ε.

Proof. Assume (3.68) does not hold, i.e., there exists ε > 0 and a sequence of

times tn such that for any R > 0, we have∫
|x+x(tn)|>R

|∇u(x, tn)|2 + |u(x, tn)|2 + |u(x, tn)|p+1 dx ≥ ε.

Changing variables, we get∫
|x|>R

|∇u(x−x(tn), tn)|2 + |u(x−x(tn), tn)|2 + |u(x−x(tn), tn)|p+1 dx ≥ ε. (3.69)
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Note that since K is precompact, there exists φ ∈ H1 such that, passing to a

subsequence of tn, we have u(· − x(tn), tn) → φ in H1. For all R > 0, (3.69)

implies

∀R > 0,

∫
|x|>R

|∇φ(x)|2 + |φ(x)|2 + |φ(x)|4 ≥ ε,

which is a contradiction with the fact that φ ∈ H1. Thus, (3.68) and ‖u(t, · −

x(t))‖H1(|x|>R) < ε hold.

Lemma 3.14. Let u(t) be a solution of NLS+
p (Rd) defined on [0,+∞) such that

P [u] = 0 and either

(a) K = {u(· − x(t), t)|t ∈ [0,+∞)} is precompact in H1(Rd), or

(b) for all 0 < t,

‖u(t)− eiθ(t)u
Q

(· − x(t))‖H1 ≤ ε1 (3.70)

for some continuous function θ(t) and x(t). Then

lim
t→+∞

x(t)

t
= 0. (3.71)

Proof. Without loss of generality, suppose x(0) = 0.

(a) Assume K = {u(· − x(t), t)|t ∈ [0,+∞)} is precompact in H1(Rd).

We proceed by contradiction assumming that (3.71) does not hold, i.e., there

exists a sequence tn → +∞ such that |x(tn)|/tn ≥ ε0 for some ε0 > 0. Given

R > 0, let

t0(R) = inf{t ≥ 0 : |x(t)| ≥ R} .

Since x(t) is continuous, the value of t0(R) is well-defined and satisfies

(i) t0(R) > 0,

(ii) |x(t)| < R for 0 ≤ t < t0(R), and
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(iii) |x(t0(R))| = R.

Let Rn = |x(tn)| and t̃n = t0(Rn), hence, tn ≥ t̃n. The assumption tn → +∞ and

|x(tn)|/tn ≥ ε0 imply Rn/t̃n ≥ ε0, Rn = |x(tn)| → +∞ and t̃n = t0(Rn) → +∞;

allowing to forget about tn and work on the time interval [0, t̃n] with the properties:

1. for 0 ≤ t < t̃n, we have |x(t)| < Rn;

2. |x(t̃n)| = Rn;

3.
Rn

t̃n
≥ ε0 and t̃n → +∞.

The precompactness of K and Corollary 3.13 imply that for any ε > 0

there exists R0(ε) ≥ 0 such that for any t ≥ 0,∫
|x+x(t)|≥R0(ε)

(
|u|2 + |∇u|2

)
dx ≤ ε. (3.72)

Let θ(x) ∈ C∞comp(R) such that

θ(x) =

 x −1 ≤ x ≤ 1

0 |x| ≥ 21/d
,

|θ(x)| ≤ |x|, ‖θ′‖∞ ≤ 4, and ‖θ‖∞ ≤ 2.

Set φ(x) = (θ(x1), θ(x2), · · · , θ(xd)), where x = (x1, x2, · · · , xd) ∈ Rd.

Then φ(x) = x for |x| ≤ 1 and ‖φ‖∞ ≤ 2. For R > 0, let φR(x) = Rφ(x/R). Let

zR : R→ Rd be the truncated center of mass given by

zR(t) =

∫
φR(x) |u(x, t)|2 dx .

Then z′R(t) = ([z′R(t)]1, [z
′
R(t)]2, · · · , [z′R(t)]d), where

[z′R(t)]j = 2 Im

∫
θ′(xj/R) ∂ju ū dx.
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Since θ′(xj/R) = 1 for |xj| ≤ 1, the zero momentum property implies

Im

∫
|xj |≤R

∂ju ū = − Im

∫
|xj |>R

∂ju ū,

and thus,

[z′R(t)]j = −2 Im

∫
|xj |≥R

∂ju ū dx+ 2 Im

∫
|xj |≥R

θ′(xj/R)∂ju ū dx ,

and Cauchy-Schwarz yields

|z′R(t)| ≤ 5

∫
|x|≥R

(|∇u|2 + |u|2)dx . (3.73)

Let R̃n = Rn+R0(ε). For |x| > R̃n and 0 ≤ t ≤ t̃n we have |x+x(t)| ≥ R̃n−Rn =

R0(ε), therefore (3.73) and (3.72) yield

|z′
R̃n

(t)| ≤ 5 ε. (3.74)

Note that

zR̃n(0) =

∫
|x|<R0(ε)

φR̃n(x) |u0(x)|2 dx+

∫
|x+x(0)|≥R0(ε)

φR̃n(x)|u0(x)|2 dx ,

thus, (3.72) implies

|zR̃n(0)| ≤ R0(ε)M [u] + 2R̃n ε. (3.75)

For 0 ≤ t ≤ t̃n, we split zR̃n(t) as

zR̃n(t) =

∫
|x+x(t)|≥R0(ε)

φR̃n(x) |u(x, t)|2 dx+

∫
|x+x(t)|≤R0(ε)

φR̃n(x) |u(x, t)|2 dx.

= I + II.

To estimate I, observe that |φR̃n(x)| ≤ 2R̃n, combining it with (3.72), yields

|I| =
∣∣∣ ∫
|x+x(t)|≥R0(ε)

φR̃n(x) |u(x, t)|2 dx
∣∣∣ ≤ 2R̃nε.

To estimate II, note that |x| ≤ |x + x(t)| + |x(t)| ≤ R0(ε) + Rn = R̃n, therefore,

φR̃n(x) = x, and we rewrite II as

II =

∫
|x+x(t)|≤R0(ε)

(x+ x(t)) |u(x, t)|2 dx− x(t)

∫
|x+x(t)|≤R0(ε)

|u(x, t)|2 dx

=

∫
|x+x(t)|≤R0(ε)

(x+ x(t)) |u(x, t)|2 dx− x(t)M [u] + x(t)

∫
|x+x(t)|≥R0(ε)

|u(x, t)|2 dx

= IIA + IIB + IIC.
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Note |IIA| ≤ R0(ε)M [u], and (3.72) yields |IIC| ≤ |x(t)|ε ≤ R̃nε. Thus,

|zR̃n(t)| ≥ |IIB| − |I| − |IIA| − |IIC|

≥ |x(t)|M [u]−R0(ε)M [u]− 3R̃nε .

Taking t = t̃n, we get

|zR̃n(t̃n)| ≥ R̃n(M [u]− 3ε)−R0(ε)M [u] . (3.76)

Combining (3.74), (3.75), and (3.76), we have

5 ε t̃n ≥
∫ t̃n

0

|z′
R̃n

(t)| dt ≥

∣∣∣∣∣
∫ t̃n

0

z′
R̃n

(t) dt

∣∣∣∣∣ ≥ |zR̃n(t̃n)− zR̃n(0)|

≥ R̃n(M [u]− 5ε)− 2R0(ε)M [u] .

Dividing by t̃n and using that R̃n ≥ Rn (assume ε ≤ 1
5
M [u]), we obtain

5 ε ≥ Rn

t̃n
(M [u]− 5ε)− 2R0(ε)M [u]

t̃n
.

Since Rn/t̃n ≥ ε0, we have

5 ε ≥ ε0(M [u]− 5ε)− 2R0(ε)M [u]

t̃n
.

Take ε = M [u]ε0/11 (assume ε0 ≤ 1), and then send n → +∞. Since t̃n → +∞,

we get a contradiction.

(b) For all t > 0,

‖u(t)− eiθ(t)u
Q

(· − x(t))‖H1 ≤ ε1

for some continuous function θ(t) and x(t).

Let R(T ) = max
0≤t≤T

|x(t)|. It suffices to prove that there exists an absolute constant

c > 0 such that for each T with R(T ) = |x(T )| � 1, we have

|x(T )| ≤ c T
(
e−|x(T )| + ε

)2
. (3.77)
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Fix T > 0, thus |x(t)| ≤ R(T ) for 0 ≤ t ≤ T, and by (3.73) there is an absolute

constant c1 such that

|z′2R(T )(t)| ≤ c1

∫
|x|≥2R(T )

(
|∇u(t)|2 + |u(t)|2

)
dx.

In addition, for all 0 ≤ t ≤ T , (3.70) implies

|z′2R(T )(t)| ≤ c2

(
ε+ ‖Q‖H1(|x|≥R(T ))

)2
.

Due to the exponential decay at ∞ of Q(x), we have (upon integrating the above

inequality over [0, T ]) the bound

|z2R(T )(t)− z2R(T )(0)| ≤ c3T
(
ε+ e−R(T )

)2
. (3.78)

Since |x(T )| = R(T ), there exists an absolute constant c4 such that

|z2R(T )(T )| ≥ c4R(T ) . (3.79)

In addition, x(0) = 0 implies

|z2R(T )(0)| ≤ c5

(
1 +R(T )ε2

)
. (3.80)

By combining (3.78), (3.79), and (3.80), we obtain (3.77).

Theorem 3.15. (Rigidity Theorem.) Let u0 ∈ H1 satisfy P [u0] = 0,ME [u0] < 1

and Gu(0) < 1. Let u be the global H1(Rd) solution of NLS+
p (Rd) with initial data

u0 and suppose that K = {uc(· − x(t), t)|t ∈ [0,+∞)} is precompact in H1, then

u0 ≡ 0.

Proof. Let φ ∈ C∞0 be radial, with

φ(x) =


|x|2 for |x| ≤ 1

0 for |x| ≥ 2.
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For R > 0 define

zR(t) =

∫
R2φ(

x

R
)|u(x, t)|2dx. (3.81)

Then

z′R(t) = 2 Im

∫
R∇φ(

x

R
) · ∇u(t)ū(t)dx, (3.82)

and Hölder’s inequality yields

|z′R(t)| ≤ cR

∫
{|x|≤2R}

|∇u(t)||u(t)|dx ≤ cR‖u(t)‖2(1−s)
L2 ‖∇u(t)‖2s

L2 . (3.83)

Note that,

z′′R(t) = 4
∑
j,k

∫
∂2φ

∂xj∂xk

(
|x|
R

)
∂u

∂xj

∂ū

∂xk
− 1

R2

∫
∆2φ

(
|x|
R

)
|u|2

− 4

(
1

2
− 1

p+ 1

)∫
∆φ

(
|x|
R

)
|u|p+1. (3.84)

Since φ is radial, we have

z′′R(t) = 8

∫
|∇u|2 − 4d(p− 1)

p+ 1

∫
|u|p+1 + AR(u(t)), (3.85)

where

AR(u(t)) = 4
∑
j

∫ (
∂2
xj
φ

(
|x|
R

)
− 2

)∣∣∣∣∣ ∂u∂xj
∣∣∣∣∣
2

+ 4
∑
j 6=k

∫
R≤|x|≤2R

∂2φ

∂xj∂xk

(
|x|
R

)

− 1

R2

∫
∆2φ

(
|x|
R

)
|u|2 − 4

(
1

2
− 1

p+ 1

)∫ (
∆φ

(
|x|
R

)
− 2d

)
|u|p+1. (3.86)

Thus,

∣∣AR(u(t))
∣∣ = c

∫
|x|≥R

(
|∇u(t)|2 +

1

R2
|u(t)|2 + |u(t)|p+1

)
dx. (3.87)

Choosing R large enough, over a suitably chosen time interval [t0, t1], with 0 �

t0 � t1 <∞, combining (3.85) and (2.65), we obtain

|z′′R(t)| ≥ 16(1− ωp−1)E[u]− |AR(u(t))|. (3.88)
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From Corollary 3.13 , letting ε = 1−ωp−1

c
, with c as in (3.87), we can obtain R0 ≥ 0

such that for all t,∫
|x+x(t)|>R0

(
|∇u(t)|2 + |u(t)|2 + |u(t)|p+1

)
≤ 1− ωp−1

c
E[u]. (3.89)

Thus combining (3.87), (3.88) and (3.89), and taking R ≥ R0 + supt0≤t≤t1 |x(t)|,

gives that for all t0 ≤ t ≤ t1,

|z′′(t)| ≥ 8(1− ωp−1)E[u]. (3.90)

By Lemma 3.14, there exists t0 ≥ 0 such that for all t ≥ t0, we have |x(t)| ≤ γt.

Taking R = R0+γt1, we have that (3.90) holds for all t ∈ [t0, t1]. Thus, integrating

it over this interval, we obtain

|z′R(t1)− z′R(t0)| ≥ 8(1− ωp−1)E[u](t1 − t0). (3.91)

In addition, for all t ∈ [t0, t1], combining (3.83), Gu(0) < 1, and Lemma 2.24 we

have

|z′R(t)| ≤ cR‖u(t)‖2(1−s)
L2 ‖∇u(t)‖2s

L2 ≤ 2cR‖u
Q
‖2(1−s)
L2 ‖∇u

Q
‖2s
L2

≤ c‖u
Q
‖2(1−s)
L2 ‖∇u

Q
‖2s
L2(R0 + γt1). (3.92)

Combining (3.91) and (3.92) yields

8(1− ωp−1)E[u](t1 − t0) ≤ 2c‖u
Q
‖2(1−s)
L2 ‖∇u

Q
‖2s
L2(R0 + γt1). (3.93)

Observe that, ω, and R0 are constants depending on ME [u], S, and t0 = t(γ).

Let γ = (1−ωp−1)E[u]

c‖u
Q
‖2(1−s)
L2 ‖∇u

Q
‖2s
L2

> 0, thus, (3.93) yields

6(1− ωp−1)E[u]t1 ≤ 2c‖u
Q
‖2(1−s)
L2 ‖∇u

Q
‖2s
L2R0 + 8(1− ωp−1)E[u]t0, (3.94)

sending t1 → +∞ implies that the left hand side of (3.94) goes to ∞ and the

right hand side is bounded which is a contradiction unless E[u] = 0 which implies

u ≡ 0.
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Chapter 4

WEAK BLOWUP VIA CONCENTRATION COMPACTNESS

In this chapter, we complete the proof of Theorem 1.6* part II (b), i.e., if under

the mass-energy threshold ME [u] < 1, a solution u(t) to NLS+
p (Rd) with the

initial condition u0 ∈ H1 such that Gu(0) > 1 exists globally for all positive time,

then there exists a sequence of times tn → +∞ such that Gu(tn)→ +∞. We call

this solution a “weak blowup” solution.

Recall that uQ(x, t) = eiβtQ(αx) is a soliton solution of NLS±p (Rd), where

α =

√
d(p−1)

2
and β = 1− (d−2)(p−1)

4
.

Definition 4.1. Let λ > 0. The horizontal line for which

M [u] = M [uQ] and
E[u]

E[uQ]
=

d

2s
λ

2
s

(
1− λp−1

α2

)
is called the “ mass-energy” line for λ.

Notice that in definition 4.1, the renormalized energy definition comes

naturally by expressing the energy in term of the gradient which is assumed to be

λ. We illustrate the mass-energy line notion in Figure 4.1.

4.1 Outline for Weak blowup via Concentration Compactness

Suppose that there is no finite time blowup for a nonradial and infinite

variance solution (from Theorem 1.6* part II), thus, the existence on time (say,

in forward direction) is infinite (T ∗ = +∞). Now, under the assumption of global

existence, we study the behavior of Gu(t) as t → +∞, and use a concentration

compactness type argument for establishing the divergence of Gu(t) in H1−norm

as it was developed in [Holmer and Roudenko, 2010c], note that the concentration

compactness and rigidity argument is not used here for scattering but for a blowup

property. The description of this argument is in steps 1, 2 and 3.
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Figure 4.1: This is a graphical representation of restrictions on energy and gradi-
ent.For a given λ > 0 the horizontal line GH is referred to as the “mass-energy”
line for this λ. Observe that this horizontal line can intersect the parabola

y = d
2s

[Gu(t)]
2
s

(
1 − [Gu(t)]p−1

α2

)
twice, i.e., it can be a “mass-energy” line for

0 < λ1 < 1 and 1 < λ2 < ∞, the first case produces solutions which are global
and are scattering (by Theorem 1.6* part I) and the second case produces solutions
which either blow up in finite time or diverge in infinite time (“weak blowup”) as
shown in Chapter 4.
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Step 1: Near boundary behavior.

Figure 4.2: Near boundary behavior of G(t). We investigate whether the solution
can remain close to the boundary (see the dash line KL) for all time

Theorem 1.6* II part (a) yields Gu(t) > 1 for all t ∈ (T∗, T
∗) whenever Gu(0) > 1

on the “mass-energy” line for some λ > 1. We illustrate this in Figure 4.1: given

u0 ∈ H1, we first determine M [u0] and E[u0] which specifies the “mass-energy”

line GH. Then the gradient Gu(t) of a solution u(t) lives on the line GH. Note

that Gu(t) > λ2 > 1 if Gu(0) > 1. A natural question is whether Gu(t) can be,

with time, much larger than 1 or λ2. Proposition 4.6 shows that it can not. Thus,

we prove that the renormalized gradient Gu(t) can not forever remain near the

boundary if originally Gu(0) is very close to it, that is, if λ0 > 1, there exists

ρ0(λ0) > 0 such that for all λ > λ0 there is NO solution at the “mass-energy” line
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for λ satisfying

λ ≤ Gu(t) ≤ λ(1 + ρ0).

Using the Figure 4.2, this means that the solution u(t) would have a gradient

Gu(t) very close to the boundary DF (for all times), i.e., between the boundary

DF and the dashed line KL. We will show that Gu(t) on any “mass-energy” line

with ME [u] < 1 and Gu(0) > 1 will escape to infinity (along this line). By

contradiction, assume that all solutions (starting from some mass-energy line cor-

responding to the initial renormalized gradient Gu(0) = λ0 > 1) are bounded in

renormalized gradient for all t > 0.

Step 1 gives the basis for induction, giving that when λ > 1, any solution

u(t) of NLS+
p (Rd) at the “mass-energy” line for this λ can not have a renormalized

gradient Gu(t) bounded near the boundary DF for all time (see Figure 4.2). We

will show that Gu(t), in fact, will tend to +∞ (at least along an infinite time

sequence).

Definition 4.2. Let λ > 1. We say the property GBG(λ, σ) holds13 if there exists

a solution u(t) of NLS+
p (Rd) at the mass-energy line λ (i.e., M [u] = M [uQ] and

E[u]
E[uQ]

= d
2s
λ

2
s

(
1− λp−1

α2

)
) such that λ ≤ Gu(t) ≤ σ for all t ≥ 0. Figure 4.3

illustrates this definition.

In other words, GBG(λ, σ) is not true if for every solution u(t) of NLS+
p (Rd)

at the “mass-energy” line for λ, such that λ ≤ Gu(t) for all t > 0, there exists

t∗ such that σ < Gu(t∗). Iterating, we conclude that, there exists a sequence

{tn} → ∞ with σ < Gu(tn) for all n.

Note that, if GBG(λ, σ) does not hold, then for any σ′ < σ, GBG(λ, σ′)

does not hold either. This will allow us induct on the GBG notion.

13GBG stands for globally bounded gradient.
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Figure 4.3: In the graph the statement “GBG(λ, σ) holds” implies G(t) only on
the segment GJ.

Definition 4.3. Let λ0 > 1. We define the critical threshold σc by

σc = sup
{
σ|σ > λ0 and GBG(λ, σ) does NOT hold for all λ with λ0 ≤ λ ≤ σ

}
.

Note that σc = σc(λ0) stands for “σ-critical”.

From the step 1 (Proposition 4.6) we have that GBG(λ, λ(1 + ρ0(λ0)) does

not hold for all λ ≥ λ0.

Step 2: Induction argument.

Let λ0 > 1 . We would like to show that σc(λ0) = +∞. Arguing by contradiction,

we assume σc(λ0) is finite.

Let u(t) be a solution to NLS+
p (Rd) with initial data un,0 at the “mass-energy” line

for λ > λ0, i.e., E[u]
E[u

Q
]

= d
2s
λ

2
s

(
1− λp−1

α2

)
, M [u] = M [u

Q
] and Gu(0) > 1. We want

to show that there exists a sequence of times {tn} → +∞ such that Gu(tn)→∞.

Suppose the opposite, that is, such sequence of times does not exist.
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Then there exists σ < ∞ satisfying λ ≤ Gu(t) ≤ σ for all t ≥ 0, i.e., GBG(λ, σ)

holds with σc(λ0) ≤ σ < ∞. At this point we can apply Proposition 3.6 (the

nonlinear profile decomposition).

The nonlinear profile decomposition of the sequence {un,0} and profile reordering

will allow us to construct a “critical threshold solution” u(t) = uc(t) to NLS+
p (Rd)

at the “mass-energy” line λc, where λ0 < λc < σc(λ0) and λc < Guc(t) < σc(λ0)

for all t > 0 (see Existence of threshold solution Lemma 4.8).

Step 3: Localization properties of critical threshold solution.

By construction, the critical threshold solution uc(t) will have the property that

the set K = {u(· − x(t), t)|t ∈ [0,+∞)} has a compact closure in H1 (Lemma

4.9). Thus, we will have uniform concentration of uc(t) in time, which together

with the localization property (Corollary 3.13) implies that for a given ε > 0,

there exists an R > 0 such that ‖∇u(x, t)‖2
L2(|x+x(t)|>R) ≤ ε uniformly in t ; as

a consequence, uc(t) blows up in finite time (Lemma (4.10)), that is, σc = +∞,

which contradicts the fact that uc(t) is bounded in H1. Thus, uc(t) can not exist

since our assumption that σc(λ0) < ∞ is false, and this ends the proof of the

“weak blowup”.

In the rest of this chapter we proceed with the proof of claims described

in Step 1, 2 and 3.

First, recall variational characterization of the ground state.

4.2 Variational Characterization of the Ground State

Propositon 4.4 is a restatement of Proposition 4.4

[Holmer and Roudenko, 2010c] adjusted for our general case, and shows

that if a solution u(t, x) is close to uQ(t, x) in mass and energy, then it is close

to uQ in H1(Rd), up to a phase and shift in space. The proof is identical so we
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omit it.

Proposition 4.4. There exists a function ε(ρ) defined for small ρ > 0 with

limρ→0 ε(ρ) = 0, such that for all u ∈ H1(Rd) with∣∣‖u‖Lp+1 − ‖uQ‖Lp+1

∣∣+
∣∣‖u‖L2 − ‖uQ‖L2

∣∣+
∣∣‖∇u‖L2 − ‖∇uQ‖L2

∣∣ ≤ ρ,

there is θ0 ∈ R and x0 ∈ Rd such that

‖u− eiθ0uQ(· − x0)‖H1 ≤ ε(ρ). (4.1)

The Proposition 4.5 is a variant of Proposition 4.1

[Holmer and Roudenko, 2010c], rephrased for our case.

Proposition 4.5. There exists a function ε(ρ) such that ε(ρ) → 0 as ρ → 0

satisfying the following: Suppose there exists λ > 0 such that∣∣∣∣ (ME [u])
1
s − d

2s
λ

2
s

(
1− λp−1

α2

)∣∣∣∣ ≤ ρλ
2(p−1)
s (4.2)

and

∣∣[Gu(t)] 1
s − λ

∣∣ ≤ ρ

 λ
2
s if λ ≤ 1

λ if λ ≥ 1
. (4.3)

Then there exist θ0 ∈ R and x0 ∈ Rd such that∥∥∥u(x)− eiθ0λκ−
s

1−suQ
(
λ(κ−

3s
d(1−s)x− x0)

)∥∥∥
L2
≤ κ

s
2(1−s) ε(ρ),

and ∥∥∥∇[u(x)− eiθ0λκ−
s

1−suQ
(
λ(κ−

3s
d(1−s)x− x0)

]∥∥∥
L2
≤ λκ−

s
2(1−s) ε(ρ),

where κ =
(

M [u]
M [uQ]

) 1−s
s

.

Proof. Set v(x) = κ
s

1−su(κ
3s

(1−s)dx), hence M [v] = κ−
s

1−sM [u]. Assume M [v] =

M [uQ]. Then there exists λ > 0 such that (4.2) and (4.3) become∣∣∣∣ E[v]

E[uQ]
− d

2s
λ

2
s

(
1− λp−1

α2

)∣∣∣∣ ≤ ρ0λ
2(p−1)
s , (4.4)
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and ∣∣∣∣ ‖∇v‖L2

‖∇uQ‖L2

− λ
∣∣∣∣ ≤ ρ0

 λ
2
s if λ ≤ 1

λ if λ ≥ 1
. (4.5)

Letting ũ(x) = λ−
2((p−1)(d−2)−ds)
((p−1)(d−2)−4)s v(λ−

2((p−1)(2−s)+2s)
((p−1)(d−2)−4)s x), we have∣∣∣∣ ‖∇ũ‖L2

‖∇uQ‖L2

− 1

∣∣∣∣ ≤ ρ0

 λ
2
s
−1 if λ ≤ 1

1 if λ ≥ 1
≤ ρ0. (4.6)

Combining Pohozhaev identities, (4.4) and (4.5), gives

d

2sα2

∣∣∣∣ ‖ v‖p+1
Lp+1

‖uQ‖p+1
Lp+1

− λ
2(p−1)
s

∣∣∣∣ ≤
∣∣∣∣∣ E[v]

E[uQ]
−

(
d

2s
λ

2
s

(
1− λp−1

α2

))∣∣∣∣∣
+
d

2s

∣∣∣∣ ‖∇v‖2
L2

‖∇uQ‖2
L2

− λ2

∣∣∣∣
≤ ρ0

λ 2(p−1)
s +

d

2s

 λ
2(p−1)
s if λ ≤ 1

λ
2
s if λ ≥ 1


≤ d+ 2s

2s
ρ0λ

2(p−1)
s .

This yields ∣∣∣∣ ‖ũ‖p+1
Lp+1

‖uQ‖p+1
Lp+1

− 1

∣∣∣∣ ≤ α2(d+ 2s)

d
ρ0. (4.7)

From (4.6) and (4.7) we have∣∣∣∣‖ũ‖Lp+1 − ‖uQ‖Lp+1

∣∣∣∣+

∣∣∣∣‖ũ‖L2 − ‖uQ‖L2

∣∣∣∣+

∣∣∣∣‖∇ũ‖L2 − ‖∇uQ‖L2

∣∣∣∣ ≤ C(‖uQ‖L2)ρ0.

Let ρ = ρ0
C(‖uQ‖L2 )

, then by Proposition 4.4 there exist θ ∈ R and x0 ∈ Rd

such that (4.1) holds for ũ. Rescaling to v and then to u, completes the proof.

Next proposition is “close to the boundary” behavior.

Proposition 4.6. Fix λ0 > 1. There exists ρ0 = ρ0(λ0) > 0 (with the property

that ρ0 → 0 as λ0 ↘ 1) such that for any λ ≥ λ0, there is NO solution u(t) of

NLS+
p (Rd) with P[u]=0 satisfying ‖u‖L2 = ‖uQ‖L2, and E[u]

E[uQ]
= d

2s
λ

2
s

(
1 − λp−1

α2

)
(i.e., on any “mass-energy” line corresponding to λ ≥ λ0 and ME < 1) with

λ ≤ Gu(t) ≤ λ(1 + ρ0) for all t ≥ 0. A similar statement holds for t ≤ 0.
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Proof. To the contrary, assume that there exists a solution u(t) of (1.1) with

‖u‖L2 = ‖uQ‖L2 , E[u]
E[uQ]

= d
2s
λ

2
s

(
1− λp−1

α2

)
and Gu(t) ∈ [λ, λ(1 + ρ0)].

By continuity of the flow u(t) and Proposition 4.5, there are continuous

x(t) and θ(t) such that∥∥∥u(x)− eiθ0λuQ
(
λ(x− x0)

)∥∥∥
L2
≤ ε(ρ), (4.8)

and ∥∥∥∇[u(x)− eiθ0λuQ
(
λ(x− x0)

]∥∥∥
L2
≤ λε(ρ). (4.9)

Define R(T ) = max
{

max0≤t≤T |x(t)|, log ε(ρ)−1
}

. Consider the localized

variance (3.81). Note

d

s
λ

2
sE[uQ] = λ

2
s‖∇uQ‖2

L2 ≤ ‖∇u(t)‖2
L2 ,

then,

z′′R = 4d(p− 1)E[u]−
(
2d(p− 1)− 8

)
‖∇u‖2

L2 + AR(u(t))

= 16α2E[u]− 8
(
α2 − 1

)
‖∇u‖2

L2 + AR(u(t)) ≤ −8
d

s
λ

2
s (λp−1 − 1)E[uQ] + AR(u(t)),

where AR(u(t)) is given by (3.86).

Let T > 0 and for the local virial identity (3.84) assume R = 2R(T ).

Therefore, (4.8) and (4.9) assure that there exists c1 > 0 such that

|AR(u(t))| ≤ c1λ
2
(
ε(ρ) + e−R(T )

)2 ≤ c̃1λ
2ε(ρ)2.

Taking a suitable ρ0 small (i.e. λ > 1 is taken closer to 1), such that for 0 ≤ t ≤ T ,

ε(ρ) is small enough, we get

z′′R(t) ≤ −8
d

s
λ

2
s (λp−1 − 1)E[uQ].

Integrating z′′R(t) in time over [0, T ] twice, we obtain

zR(T )

T 2
≤ zR(0)

T 2
+
z′R(0)

T
− 8

d

s
λ

2
s (λp−1 − 1)E[uQ].
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Note supx∈Rd φ(x) from (3.81), is bounded, say by c2 > 0. Then from

(3.81) we have

|zR(0)| ≤ c2R
2‖u0‖2

L2 = c2R
2‖uQ‖2

L2 ,

and by (3.83)

|z′R(0)| ≤ c3R‖u0‖2(1−s)
L2 ‖∇u0‖2s

L2 ≤ c3R‖uQ‖2(1−s)
L2 ‖∇uQ‖2s

L2λ
1
s (1 + ρ0).

Taking T large enough so that by Lemma 3.14 we have R(T )
T

< ε(ρ), we estimate

z2R(T )(T )

T 2
≤c4

(R(T )2

T 2
+
R(T )

T

)
− 4

d

s
λ

2
s (λp−1 − 1)E[uQ]

≤C(ε(ρ)2 + ε(ρ))− 4
d

s
λ

2
s (λp−1 − 1)E[uQ].

We can initially choose ρ0 small enough (and thus, ε(ρ0)) such that C(ε(ρ)2 +

ε(ρ)) < 4d
s
λ

2
s (λp−1 − 1)E[uQ]. We obtain 0 ≤ z2R(T )(T ) < 0, which is a contra-

diction, showing that our initial assumption about the existence of a solution to

(1.1) with bounded Gu(t) does not hold.

Before we exhibit the existence of a critical element/solution, we return to

the nonlinear profile decomposition (Proposition 3.6) and introduce reordering.

Lemma 4.7 (Profile reordering). Suppose φn = φn(x) is a bounded sequence in

H1(Rd). Let λ0 > 1. Assume that M [φn] = M [uQ] and E[φn]
E[uQ]

= d
2s
λ

2
s
n

(
1 − λp−1

n

α2

)
such that 1 < λ0 ≤ λn and λn ≤ Gφn(t) for each n. Apply Proposition 3.6 to the

sequence {ψn} and obtain nonlinear profiles {ψ̃j}. Then, these profiles ψ̃j can be

reordered so that there exist 1 ≤M1 ≤M2 ≤M and

1. For each 1 ≤ j ≤M1, we have tjn = 0 and vj(t) ≡ NLS(t)ψ̃j does not scatter

as t→ +∞. (In particular, there is at least one such j)

2. For each M1 + 1 ≤ j ≤ M2, we have tjn = 0 and vj(t) scatters as t→ +∞.

(If M1 = M2, there are no j with this property.)
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3. For each M2 +1 ≤ j ≤M, we have |tjn| → ∞ and vj(t) scatters as t→ +∞.

(If M2 = M, there are no j with this property.)

Proof. Pohozhaev identities (2.52) and energy definition yield(
‖φn‖Lp+1

‖uQ‖Lp+1

)p+1

=
d

d− 2s
[Gφn(t)]

2
s − 2s

d− 2s

E[φn]

E[uQ]
≥ λ

2(p−1)
s

n ≥ λ
2(p−1)
s

0 > 1.

Notice that if j is such that |tjn| → ∞, then ‖NLS(−tjn)ψ̃j‖Lp+1 → 0 and by (3.33)

we have that
‖φn‖Lp+1

‖uQ‖Lp+1
→ 0. Therefore, there exists at least one j such that tjn

converges. Without loss of generality, assume tjn = 0, and reorder the profiles such

that for 1 ≤ j ≤M2, we have tjn = 0 and for M2 + 1 ≤ j ≤M , we have |tjn| → 0.

It is left to prove that there exists at least one j, 1 ≤ j ≤ M2 such that

vj(t) is not scattering. Assume that for all 1 ≤ j ≤ M2 we have that all vj

are scattering, and thus, ‖vj(t)‖Lp+1 → 0 as t→ +∞. Let ε > 0 and t0 large

enough such that for all 1 ≤ j ≤ M2 we have ‖vj(t)‖p+1
Lp+1 ≤ ε/M2. Using Lp+1

orthogonality (3.56) along the NLS flow, and letting n→ +∞, we obtain

λ
2(p−1)
s

0 ‖uQ‖p+1
Lp+1 ≤ ‖un(t)‖p+1

Lp+1

=

M2∑
j=1

‖vj(t0)‖p+1
Lp+1 +

M∑
j=M2+1

‖vj(t0 − tjn)‖p+1
Lp+1 + ‖WM

n (t)‖p+1
Lp+1 + on(1)

≤ ε+ ‖WM
n (t)‖p+1

Lp+1 + on(1).

The last line is obtained since
∑M

j=M2+1 ‖vj(t0 − tjn)‖p+1
Lp+1 → 0 as n → ∞, and

gives a contradiction.

Recall that we have a fixed λ0 > 1.

Lemma 4.8 (Existence of threshold solution). There exists initial data uc,0 ∈

H1(Rd) and 1 < λ0 ≤ λc ≤ σc(λ0) such that uc(t) ≡ NLS(t)uc,0 is a global solution

with M [uc] = M [uQ] , E[uc]
E[uQ]

= d
2s
λ

2
s
c

(
1 − λp−1

c

α2

)
and, moreover, λc ≤ Guc(t) ≤ σc

for all t ≥ 0.
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Proof. Definition of σc implies the existence of sequences {λn} and {σn} with

λ0 ≤ λn ≤ σn and σn ↘ σc such that GBG(λn, σn) is false. This means that there

exists un,0 with M [u] = M [uQ], E[un,0]

E[uQ]
= d

2s
λ

2
s

(
1 − λp−1

α2

)
and λc ≤

‖∇u‖L2

‖∇uQ‖L2
=

[Gu(t)]
1
s ≤ σc, such that un(t) = NLS(t)un,0 is global.

Note that the sequence {λn} is bounded, thus we pass to a convergent

subsequence {λnk}. Assume λnk → λ′ as nk →∞, thus λ0 ≤ λ′ ≤ σc.

We apply the nonlinear profile decomposition (Proposition 3.6) and re-

ordering (Lemma 4.7).

In Lemma 4.7, let φn = un,0. Recall that vj(t) scatters as t → ∞ for

M1 + 1 ≤ j ≤ M2, and by Proposition 3.6, vj(t) also scatter in one or the other

time direction for M2 + 1 ≤ j ≤ M and E[ψ̃j] = E[vj] ≥ 0. Thus, by the

Pythagorean decomposition for the nonlinear flow (3.24) we have

M1∑
j=1

E[ψ̃j] ≤ E[φn] + on(1)

For at least one 1 ≤ j ≤ M1, we have E[ψ̃j] ≤ max{limnE[φn], 0}. Without loss

of generality, we may assume j = 1. Since 1 = M [ψ̃1] ≤ limnM [φn] = M [uQ] = 1,

it follows (
ME [ψ̃1]

) 1
s ≤ max

(
lim
n

E[φn]

E[uQ]

)
,

thus, for some λ1 ≥ λ0, we have(
ME [ψ̃1]

) 1
s

=
d

2s
λ

2
s
1

(
1− λp−1

α2

)
.

Recall ψ̃1 is a nonscattering solution, thus [Gψ1(t)]
1
s > λ, otherwise it will

contradict Theorem 1.6* Part I (b). We have two cases: either λ1 ≤ σc or λ1 > σc.

Case 1. λ1 ≤ σc. Since the statement “GBG(λ1, σc− δ) is false” implies for each

δ > 0, there is a nondecreasing sequence tk of times such that

lim[Gv1(tk)]
1
s ≥ σc,
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thus,

σ2
c − ok(1) ≤ lim[Gv1(tk)]

2
s

≤
‖∇v1(tk)‖2

L2

‖∇uQ‖2
L2

≤
∑M

j=1 ‖∇v1(tk − tn)‖2
L2 + ‖WM

n (tk)‖2
L2

‖∇uQ‖2
L2

(4.10)

≤
‖∇un(t)‖2

L2

‖∇uQ‖2
L2

+ on(1)

≤ σ2
c + on(1).

Taking k →∞, we obtain σ2
c − on(1) = σ2

c + ok(1). Thus, ‖WM
n (tk)‖H1 → 0 and

M [v1] = M [uQ]. Then, Lemma 3.9 yields that for all t,

‖∇v1(t)‖2
L2

‖∇uQ‖2
L2

≤ lim
n

‖un(t)‖2
L2

‖∇uQ‖2
L2

≤ σc.

Take uc,0 = v1(0)(= ψ1), and λc = λ1.

Case 2. λ1 ≥ σc. Note that

λ2
1 ≤ lim[Gv1(tk)]

2
s . (4.11)

Replacing the first line of (4.10) by (4.11), taking tk = 0 and sending n → +∞,

we obtain

λ2
1 ≤

‖v1(tk)‖2
L2‖∇v1(tk)‖2

L2

‖uQ‖2
L2‖∇uQ‖2

L2

≤
‖∇v1(tk)‖2

L2

‖∇uQ‖2
L2

≤
∑M

j=1 ‖∇v1(tk − tjn)‖2
L2 + ‖WM

n (tk)‖2
L2

‖∇uQ‖2
L2

≤
‖∇un(t)‖2

L2

‖∇uQ‖2
L2

+ on(1)

≤ σ2
c + on(1).

Thus, we have λ1 ≤ σc, which is a contradiction. Thus, this case cannot happen.
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Lemma 4.9. Assume u(t) = uc(t) to be the critical solution provided by Lemma

4.8. Then there exists a path x(t) in Rd such that

K = {u(· − x(t), t)|t ≥ 0}

has a compact closure in H1(Rd).

Proof. As we proved in Lemma 3.13, it suffices to show that for each sequence

of times tn →∞, passing to a subsequence, there exists a sequence xn such that

u(· − xn, tn) converges in H1. Let φn = u(tn) as in Proposition 4.7, and apply the

proof of Lemma 4.8. It follows for j ≥ 2 we have ψj = 0 and W̃M
n → 0 in H1 as

n→∞. And thus, u(· − xn, tn)→ ψ1 in H1.

Lemma 4.10 (Blow up for a priori localized solutions). Suppose u is a solution

of the NLS+
p (Rd) at the mass-energy line λ > 1, with Gu(0) > 1. Select κ such

that 0 < κ < min(λ− 1, κ0), where κ0 is an absolute constant. Assume that there

is a radius R & κ−1/2 such that for all t, we have

GuR(t) :=
‖u‖1−s

L2(|x|≥R)‖∇u(t)‖sL2(|x|≥R)

‖u
Q
‖1−s
L2(|x|≥R)‖∇uQ‖sL2(|x|≥R)

. κ.

Define r̃(t) to be the scaled local variance:

r(t) =
zR(t)

32α2E[u
Q

]
(
d
2s
λ

2
s

(
1− λp−1

α2 − κ
)) .

Then blowup occurs in forward time before tb (i.e., T ∗ ≤ tb), where

tb = r′(0) +
√
r′(0)2 + 2r(0) .

Proof. By the local virial identity (3.85),

r′′(t) =
16α2E[u]− 8(α2 − 1)‖∇u‖2

L2 + AR(u(t))

16α2E[u
Q

]
(
d
2s
λ

2
s

(
1− λp−1

α2

)
− κ
) ,

where

∣∣AR(u(t))
∣∣ = ‖∇u(t)‖2

L2(|x|≥R) +
1

R2
‖u(t)‖2

L2(|x|≥R) + ‖u(t)‖p+1
Lp+1(|x|≥R).
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Note that, E[u
Q

] = d
s
‖∇u

Q
‖2
L2 and definition of the mass-energy line yield

16α2E[u]− 8(α2 − 1)‖∇u‖2
L2

16α2E[u
Q

]
=

E[u]

E[u
Q

]
−
d‖∇u‖2

L2

sE[u
Q

]

=
E[u]

E[u
Q

]
−
‖∇u‖2

L2

‖∇u
Q
‖2
L2

(4.12)

≤ d

2s
λ

2
s

(
1− λp−1

α2

)
− [Gu(t)]2. (4.13)

In addition, we have the following estimates

‖∇u(t)‖2
L2(|x|≥R) . κ,

‖u(t)‖2
L2(|x|≥R)

R2
=
‖u

Q
‖2
L2

R2
. κ,

‖u(t)‖p+1
Lp+1(|x|≥R) . ‖∇u‖

d(p−1)
2

L2(|x|≥R)‖u‖
2− (d−2)(p−1)

2

L2(|x|≥R) (4.14)

. [GuR(t)]2
(
‖∇u

Q
‖sL2‖uQ‖1−s

L2

)p−1
. κ.

We used the Gagliardo-Nirenberg to obtain (4.14) and noticing that ‖∇u
Q
‖sL2 and

‖u
Q
‖1−s
L2 are constants, the last expression is estimated by κ (up to a constant). In

addition, Gu(t) > 1, then κ . κ[Gu(t)]2. Applying the above estimates, it follows

r′′(t) .

d
2s
λ

2
s

(
1− λp−1

α2

)
− [Gu(t)]2(1− κ)

d
2s
λ

2
s

(
1− λp−1

α2

)
− κ

.

Since Gu(t) ≥ λ, we obtain r̃′′(t) ≤ −1 . which is a contradiction. Now integrating

in time twice gives

r(t) ≤ −1

2
t2 + r′(0)t+ r(0) .

The positive root of the polynomial on the right-hand side is

tb = r′(0) +
√
r′(0)2 + 2r(0).

This concludes all the claims in steps 1, 2 and 3 in section 4.1 and finishes

the proof of Theorem 1.6* part II (b).
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Chapter 5

FUTURE PROJECTS ON NONLINEAR SCHRÖDINGER EQUATION

Let’s return to Figure 2.1 to summarize our results and postulate future directions

of research. In this work we completely described the behavior of solutions under

the line BE. The behavior of solutions on the line BE (i.e. ME [u] = 1) is only

known in the case p = 3, N = 3 (sc = 1
2
), see [Duyckaerts and Roudenko, 2010].

The behavior of solutions above the line BE is largely unknown, there are blow

up criteria for the case p = 3, N = 3 in [Holmer and Roudenko, 2007].

Thus, one could ask if further characterizations of solutions to NLS can be

investigated:

Question1. If the mass-energy threshold is dropped and one analyzes the gra-

dient of the solution u of the Cauchy problem (1.1) with u0 ∈ H1, is it possible

to find a bound on the gradient so that there is global existence and scattering?

Is there B > 0 if supt∈(T∗,T ∗) Gu(t) < B, then T∗ = +∞ and scattering holds? It

seems that B = 1 will give a criterion, but could we go beyond 1? Is there any

relationship between B and the conserved quantities?

Question 2. Can we find C > 0 such that if inft∈(T∗,T ∗) Gu(t) < C, then T∗ <

+∞, i.e., a finite blowup occurs? Is it possible that C = B or on the interval

[C,B] any behavior of solutions happen?

Question 3. In Figure 2.1, in the region DEF, it has been proven that there are

“weak” blowup solutions. Could a “weak” blowup solution turn into a “strong”

blowup, i.e., is it true that for any sequence of times tn the gradient ‖∇u(tn)‖2
L → 0

as tn → ∞. In other words, the existence of solution is global in time but with

an exploding gradient along any time sequence?

Question 4. From the local Ḣsc theory, it is known that for small (in Ḣsc) initial
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data there is scattering (i.e., for δ small, ‖u0‖Ḣsc < δ, then scattering holds, see

[Cazenave and Weissler, 1990]). One could ask, if it is possible to find a threshold

(i.e., the supremum of all such δ) that guarantees global existence and scattering?

Could sup0<t<T∗ ‖u(t)‖Ḣsc < ‖uQ‖Ḣsc be such a threshold? This question is in the

spirit of Kenig-Merle [Kenig and Merle, 2010] work for for the defocusing cubic

NLS in 3 dimensions (NLS−3 (R3)).

Question 5. Extend the characterization of solution behavior on line GH (as in

[Duyckaerts and Roudenko, 2010]) to other NLS equations with 0 < s < 1.

Question 6. If nonlinearity is combined-type (such as 2 different powers or some

potential is introduced), how does this influence the scattering or “weak blowup”

behavior.
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[Raphaël, 2006] Raphaël, P. (2006). Existence and stability of a solution blowing

up on a sphere for an L2-supercritical nonlinear Schrödinger equation. Duke

106



Math. J., 134(2):199–258.
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