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ABSTRACT

This dissertation transforms a set of system complexity reduction problems to

feature selection problems. Three systems are considered: classification based on as-

sociation rules, network structure learning, and time series classification. Furthermore,

two variable importance measures are proposed to reduce the feature selection bias in

tree models.

Associative classifiers can achieve high accuracy, but the combination of many

rules is difficult to interpret. Rule condition subset selection (RCSS) methods for asso-

ciative classification are considered. RCSS aims to prune the rule conditions into a sub-

set via feature selection. The subset then can be summarized into rule-based classifiers.

Experiments show that classifiers after RCSS can substantially improve the classifica-

tion interpretability without loss of accuracy.

An ensemble feature selection method is proposed to learn Markov blankets

for either discrete or continuous networks (without linear, Gaussian assumptions). The

method is compared to a Bayesian local structure learning algorithm and to alternative

feature selection methods in the causal structure learning problem.

Feature selection is also used to enhance the interpretability of time series clas-

sification. Existing time series classification algorithms (such as nearest-neighbor with

dynamic time warping measures) are accurate but difficult to interpret. This research

leverages the time-ordering of the data to extract features, and generates an effective

and efficient classifier referred to as a time series forest (TSF). The computational com-

plexity of TSF is only linear in the length of time series, and interpretable features can

be extracted. These features can be further reduced, and summarized for even better
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interpretability.

Lastly, two variable importance measures are proposed to reduce the feature

selection bias in tree-based ensemble models. It is well known that bias can occur when

predictor attributes have different numbers of values. Two methods are proposed to

solve the bias problem. One uses an out-of-bag sampling method called OOBForest,

and the other, based on the new concept of a partial permutation test, is called a pForest.

Experimental results show the existing methods are not always reliable for multi-valued

predictors, while the proposed methods have advantages.
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CHAPTER 1

INTRODUCTION

Efficient and effective feature selection algorithms have been developed for

high-dimensional data sets. This dissertation transforms a set of system complexity

reduction problems to feature selection problems, which makes the original problems

much easier to solve. Three systems are considered: classification based on associa-

tion rules, network structure learning, and time series classification. Furthermore, two

variable importance measures are proposed to reduce the feature selection bias in tree

models.

Both accuracy and interpretability are important for a classifier. Associative

classifiers have been shown to be more accurate than decision trees, and each individual

rule is interpretable [1–4]. However, the large collection of rules must be combined for

a classifier, and this makes it difficult to interpret the classifier. While many algorithms

have been proposed for rule pruning, few of these algorithms aimed to select a minimum

number of rules without loss of accuracy. Rule condition subset selection (RCSS) con-

sidered here aims to select a maximum-relevancy-minimum-redundancy subset of rule

conditions, and then summarize the subset into an easily interpretable classifier. While

most existing approaches for rule pruning tend to be ad hoc, RCSS is more principled

by using well-established feature selection methods.

A Bayesian network is a directed acyclic graph that allows efficient and effective

representation of the joint probability distribution over a set of random variables which

are represented as nodes in the graph. Markov Blankets (MB) discovery algorithms are
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important for learning a Bayesian network structure. Under certain conditions (faith-

fulness to a Bayesian Network), the MB of a network node is identical to the parents,

children, and co-parents of the node [5]. Therefore, the MB of a node is essentially the

network local structure of that node. Feature selection methods maximizing relevancy

and minimizing redundancy could be used as Markov blanket discovery algorithms, and

thus for learning causal structure in networks. [6] and [7] showed the advantages of fea-

ture selection methods over a Bayesian network learning algorithm for learning causal

structure.

Linear relationship between variables and Gaussian distribution were commonly

assumed in learning networks where the variables are continuous. However, the assump-

tions do not hold in some well-known contexts (e.g, fMRI [8]). A tree ensemble feature

selection method is proposed to learn the Markov blankets of networks for either dis-

crete or continuous networks (without linear, Gaussian assumptions) [9]. To learn the

Markov blanket of a node in a network, the node is treated as the response variable,

other nodes are treated as the predictor variables, then the tree ensemble method can

be applied. Experiments conducted here show the tree ensemble method is superior to

traditional methods.

Feature selection is also used to enhance the interpretability of time series clas-

sification. Time series classification [10–12] has been an active research topic in recent

years. Time series classification methods can be divided into instance-based and feature-

based methods. Instance-based classifiers predict a test instance based on its similarity to

the training instances. One of the most commonly used instance-based classifiers, one-
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nearest-neighbor classifiers with a dynamic time warping metric (NNDTW) have been

widely, and successfully used. Dynamic time warping (DTW) [13] may be considered

simply as a tool to measure the dissimilarity between two time series, after aligning them

with an optimal match under certain conditions [14]. DTW is robust to the distortion of

time axis, and is considered a strong solution for time series problems [15]. However,

it is hard to interpret instance-based classifiers such as NNDTW. Feature-based clas-

sifiers generally are more interpretable than instance-based classifiers, as they extract

interpretable features, and then input the features to conventional classifiers. However,

as shown in Chapter 5, the feature space can be very large, which makes it challenging

to select useful features and interpret. This research presents an efficient and effective

time series classification framework. Under the framework, interpretable features can be

extracted efficiently, and feature selection algorithms can be used to reduce the number

of features, which can result in interpretable classifiers.

Variable importance measures for supervised learning are closely related to vari-

able/feature/attribute selection and they are important for improving both learning ac-

curacy and interpretability. Tree ensembles such as random forest are widely used in

measuring variable importance [16, 17]. However, the bias problem for multi-valued

attributes has been recognized for information-based measures commonly used in tree

models. For example, the Gini gain measure is biased in favor of those variables with a

larger number of levels [18]. Two methods are proposed to solve the bias problem [19].

One uses an out-of-bag sampling method called OOBForest and one, based on the new

concept of a partial permutation test, is called pForest. The experiments show the ex-
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isting methods are not always reliable for multi-valued predictors, while the proposed

methods have advantages.

In this dissertation, Chapter 1 is an introduction, and Chapter 2 summarizes the

background. Chapter 3 describes a framework for integrating associative classification

rule condition ranking, pruning and summarizing effectively and efficiently. Chapter 4

describes learning Markov blankets in networks via feature selection. Chapter 5 presents

an efficient and interpretable time series classification framework. Chapter 6 proposes

two importance measures for reducing feature selection bias in tree models. The con-

clusions are given in Chapter 7.

4



CHAPTER 2

BACKGROUND

This chapter summarizes the background of the four topics in this dissertation.

The background for each topic is also introduced in each of the following four chapters.

2.1. Associative classification rule condition subset selection

The Apriori algorithm [20] provides an efficient and effective way for mining

simple association rules from transaction data. Since then, association rule mining has

gained much recognition in the data mining area [21–32]. A rule example such as ( [33]):

{peanut butter, jelly} → {bread} (2.1)

indicates that customers that buy peanut butter and jelly also buy bread. In the rule

example, peanut butter, jelly, bread are called items. [1] proposed an associative clas-

sifier integrating association rule mining and classification (CBA). CBA treats a pair of

< attribute, value > as an item, and then association rule algorithms can be used. An

associative classification rule such as ( [1]): {(A = 1, B = 1) → y = 1} denotes that

the target class is predicted to be 1 if attributes A = 1 and B = 1. Here (A = 1, B = 1)

is also called the rule condition of the classification rule. Rule pruning and summarizing

have been active research topics. [34,35] have given reviews in the areas of rule pruning,

and rule summarizing for associative classification.

Pruning irrelevant and redundant rules leads to better interpretability and ef-

ficiency for classification. Pessimistic error estimation was used for rule pruning in
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CBA [1]. Classification based on multiple association rules (CMAR) [3] used Chi-

square testing to discard irrelevant rules; [3] pruned specific rules with less confidence

values than general rules; [36] removed conflicting rules, where two rules have the same

condition, but have different rule outcomes (class), though [37] shows experts could

profit from the conflicting rules. [38] proposed a visual and interactive user application

for rule pruning.

These pruning methods prune a rule set to some degree, but do not focus on

selecting a minimum subset of rules without loss of accuracy. Recently, [39] transformed

a set of rules into an indicator data set, then Lasso regression [40] was used to select a

small subset of rules. However, a linear model like Lasso does not consider nonlinear

relationship between the rules and the class. [41] considered frequent patterns (patterns

that occur frequently in data) as features, and proposed a method to select a subset of

frequent patterns for classification. The data transformation method used here is the

same as [41]. However, [41] focused on only the accuracy of using frequent patterns,

while rule condition subset selection (RCSS) considered here focuses on both accuracy

and interpretability, e.g. the size of the rule condition subset. Furthermore, the feature

selection method proposed in [41] requires a user-defined value to decide the subset

size, and is ad hoc, while RCSS applies well-established feature selection algorithms for

pruning, and some of them do not require any user-defined value.

In addition to pruning, classification rules need to be summarized for classifi-

cation. [42] computed statistical significance measures for ordering the rules, and used

confidence intervals for the support and confidence of rules to predict future data. The
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CBA algorithm [1] generated associative classification rules and built the classifier by

gradually adding informative rules to a predictive rule subset. The criteria for choosing

rules included support, confidence and the number of data samples covered, etc. CBA

only used one rule at a time to predict a new case, while CMAR [3] proposed to use mul-

tiple rules at each time for a more robust prediction. Also, predictive association rules

(CPAR) [4] extended FOIL (First Order Inductive Learner) [43] to integrate association

rules into a classifier. Furthermore, [44] built a classifier according to a rule’s informa-

tion such as confidence and support, and pruned the classifier using pessimistic error

estimation similar to decision tree pruning. The method effectively reduced the size of

the classifiers without loss of accuracy. HARMONY [45] used an instance-centric rule-

generation approach in the sense that it can assure for each training instance, one of the

highest-confidence rules covering this instance is included in the rule set. [46] presented

a gain based association rule classification (GARC), which could produce a smaller set

of rules than such associative classifiers as CBA. [47] proposed a multi-class classifi-

cation algorithm based on association rules (MCAR), and [48] presented a class-based

associative classification approach (CACA). A lazy associative classifier was proposed

to generate more rules that are useful for classifying a testing instance [49]. Also, as-

sociative classifiers focusing on multi-label problems were studied by [37, 50, 51]. [39]

used Lasso regression to form a linear combination of rules for prediction. However,

the linear combination of rules are hard to interpret. More recently, [52] summarized

associative classification rules using decision trees. Though decision tree is used to

summarize rule condition into classifiers in the experiments conducted here, the sum-
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marizing framework considered here is more principled and flexible than [52]. Under

this summarizing framework, the rule conditions are transformed to an indicator data

set, and then any classifiers such as decision trees and naive Bayes classifiers can be

chosen for summarization.

2.2. Local structure learning in networks

Bayesian networks are directed acyclic graphs that allow efficient and effective

representation of the joint probability distribution over a set of random variables [53].

Linear and Gaussian assumptions were common used in learning networks where the

variables are continuous. However, the assumptions do not hold in some well-known

contexts (e.g, fMRI [8]). Markov blanket learning can initialize a causal structure learn-

ing algorithm, and can be helpful for learning the structure of Bayesian networks. The

Markov blanket is defined as follows [54]:

Let F be a full set of variables. Given a target variable T , let MB(T ) ⊂ F

and T /∈ MB(T ), MB(T ) is said to be a Markov Blanket (MB) for T if T ⊥ (F −

MB)|MB. That is, T is conditionally independent of other features given MB.

Therefore, MB(T ) contains all information for predicting T . Under certain

conditions (faithfulness to a Bayesian Network), MB(T ) is identical to T ’s parents, its

children, and its children’s other parents (co-parents) [5]. In the Bayesian network ex-

ample shown in Figure 1, X1, X2 are parents of T , X3, X4 are children of T , and X5, X6

are co-parents of T . Therefore X1 to X6 are the Markov blanket of T . A network struc-
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Figure 1. X1 ∼ X6 are the Markov blanket of T in the Bayesian network.

ture learning method [55] first identified the MB of each node, and then all the MBs were

used to construct the Bayesian network of the domain. Algorithms (e.g., [5]) have been

proposed for identifying MBs in a Bayesian Network. However, most Bayesian net-

work learning algorithms are designed to learn either networks with discrete variables

or networks with continuous variables under the Gaussian-distribution, linear-relation

assumptions.

MB learning is also closely related to feature selection and [54] stated that MB

is an optimal solution for a feature selection method. The MB definition is similar to the

maximal relevancy and minimal redundancy principle used in [56], and [57]. There are

common characteristics between current MB learning and feature selection algorithms.

For example, the feature selection method [57], selected relevant features in a forward

phase and removed redundant features in a backward phase (similar to the two phases

described in a Markov Blanket learning algorithm [5]).

Therefore, those feature selection methods maximizing relevancy and minimiz-
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ing redundancy could be used for learning MBs and thus for learning causal structure

in networks. [6] and [7] showed the advantages of feature selection methods over a

Bayesian network learning algorithm for learning causal structure. [6] used the features

selected from C5.0 rules to identify Markov blankets of a discrete Bayesian network.

However, the C5C algorithm is based on only one decision tree and the greedy nature of

a single tree could lead to local optimum. [7] applied feature selection utilizing support

vector machine based on recursive feature elimination (SVM-RFE) to discover causal

structure of continuous networks. This research proposes to use a tree ensemble fea-

ture selection algorithm: artificial contrasts with ensembles (ACE) [58], to learn local

causal structure in both discrete and continuous Bayesian networks without any distribu-

tion assumptions. Tree models can naturally handle mixed categorical and continuous

variables, missing values, are robust to outliers in input space, and are insensitive to

monotone transformations of inputs [59]. Therefore, ACE can be easily applied to learn

network structures in practical applications.

2.3. Time series classification and feature extraction

Time series classification [10–12, 60–62] has been an active research topic in

recent years. Time series classification methods can be divided into instance-based and

feature-based methods. Instance-based classifiers (e.g. [60, 63]) predict a test instance

based on its similarity to the training instances. Among instance-based classifiers, one-

nearest neighbor (1NN) classifiers with a Euclidean distance metric (NNEuclidean) or
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a dynamic time warping metric (NNDTW) have been widely, and successfully used

[63–67]. Usually NNDTW performs better than NNEuclidean since DTW [13] is robust

to the distortion of time axis, and is considered as a strong solution for time series

problems [15]. A disadvantage of NNDTW is lack of interpretability. To this end, [68]

proposed a decision tree approach, which split examples based on dynamic warping

distance between a pair of time sequences. Such a decision tree improves interpretability

over NNDTW to some degree, and speeds up the time for testing, but the interpretability

is still limited.

Feature-based classifiers extract interpretable features, and then input the fea-

tures to conventional classifiers, which generally are more interpretable than instance-

based classifiers. [69] incorporated domain knowledge into an automated search for

extracting features, and then applied conventional classifiers such as a support vector

machine (SVM) [70]. [71] extracted statistical features such as mean and deviation from

time series, and then a multi-layer perceptron neural network was used for classifica-

tion. [72] extracted features from intervals of time series, and SVM was trained on the

features.

[73] extracted features from intervals of time series, and built boosting binary

stumps, while [74] used the features from boosting binary stumps to build a single deci-

sion tree, which leads to a comprehensible classifier. However, only binary stumps were

boosted, and the effect of using more complex base learners, such as decision trees,

should be studied [73] (but larger tree models impact the computational complexity of

their method). This work shows that this issue can be handled with a simple random
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strategy (linear in the length of the time series). More importantly, [73, 74] used only

class-based information to evaluate the features. However, the number of extracted fea-

tures is generally large, sometimes even larger than the number of training examples,

and a number of features can provide the same class information (e.g., entropy gain).

Consequently, class entropy alone can result in features useful for generalization being

ignored.

Advances in feature selection [58], allowed [75] to consider a massive number

of features. Features sets were derived from statistical moments, wavelets, Chebyshev

coefficients, PCA coefficients, and the original values of the signal. Furthermore, time-

warped invariant versions of these features were generated as described by [76]. This

massive set of features were used in a dynamic gradient-boosted tree (GBT) ensem-

ble [77] for classification. The dynamic enhancement allows the ensemble to provide

higher weight to features with more potential and reduce the computational burden. Per-

formance was excellent in the time series classification challenge [75]. Still, it is compu-

tationally complex and features such as PCA scores and Chebyshev coefficients are dif-

ficult to interpret and the GBT classifier obfuscates results further. The objective of this

work is to produce a fast, accurate classifier that yields a simple set of features that can

contribute to the domain knowledge. For example, in manufacturing applications, spe-

cific properties of the signals that discriminate conforming from un-conforming product

is invaluable to diagnose, correct, and improve processes.

Ensemble methods have been shown effective for time series classification

[75, 78, 79]. However, lack of interpretability, and high computational complexity are
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disadvantages of the current ensemble methods. Here an effective, yet efficient, en-

semble method, referred to as a time series forest (TSF) is proposed for time series

classification and feature extraction.

2.4. Bias of importance measures for multi-valued attributes

Variable importance measures for supervised learning are closely related to vari-

able/feature/attribute selection and they are important for improving both learning accu-

racy and interpretability. However, the bias problem for multi-valued variables has been

recognized for well-known variable importance measures such as information-based

measures [18]. The number of distinct values of a variables is called cardinality. [80]

noted that variable selection with Gini gain measure is biased in favor of those variables

with higher cardinality. [18] showed that there are biases in information-based measures

adopted by decision tree inductions. [81] showed that variable selection biases not only

exist in information-based measures such as the Gini index, but also in others such as

the distance measure in Relief [82], etc.

For solving the multi-valued problem, [83] introduced a normalization into the

variable selection measure known as the gain ratio. However, attributes with very low

information values then appeared to receive an unfair advantage [18, 81]. Also [18]

experimented with discrete, uniformly distributed variables with different number of

levels. They concluded that Chi-square could be used for the multi-valued problem. [81]

proposed a minimum description length principle to alleviate the feature selection bias,
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but also mentioned that there are still slight decreases in the importance measure with

the increasing cardinality.

Recently, a conditional inference framework [84] was proposed to solve the

overfitting and attribute selection bias problems. One method under the framework,

cForest [85] demonstrated promising results in their experiments. In addition, [16] in-

troduced a permutation importance measure (PIMP) and demonstrated its advantage

over cForest and the original random forest for feature selection. PIMP permutes the re-

sponse variable and a p-value can be used to measure the variable importance. However,

PIMP fits the importance score with a prior probability distributions. Though specify-

ing a prior distribution is not necessary, [16] used prior probability distribution in their

experiments (e.g., a gamma distribution for the simulated data, and a normal or lognor-

mal distribution in other cases) and this requires such a prior to be specified in practice.

One of the algorithms proposed here: pForest also uses permutation importance, how-

ever, there are significant differences between PIMP and pForest. pForest permutes the

predictor variables, and more importantly, makes use of a partial permutation strategy

for better efficiency. Furthermore, pForest does not need to specify a prior probability

distribution.
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CHAPTER 3

ASSOCIATIVE CLASSIFICATION RULE CONDITION SUBSET SELECTION

3.1. Introduction

Both accuracy and interpretability are important for a classifier. Associative

classifiers have been shown to be more accurate than decision trees, and each individ-

ual rule is interpretable [1–4]. However, the large collection of rules must be combined

for a classifier, and this makes it difficult to interpret the classifier. While many algo-

rithms have been proposed for pruning and summarizing, few of these algorithms aimed

to select a minimum number of rules without loss of accuracy. Rule condition sub-

set selection (RCSS) considered here aims to select a maximum-relevancy-minimum-

redundancy subset of rule conditions, and then summarize the subset into an easily

interpretable classifier. While existing approaches for rule pruning tend to be ad hoc,

RCSS is more principled by using well-established feature selection methods.

The remainder of this chapter is organized as follow. Section 3.2 introduces

previous work related to rule pruning and summarizing. Section 3.3 describes how to

form a new data set, and how supervised learning methods are applied to rank, prune

and summarize conditions. Section 3.4 demonstrates the effectiveness and efficiency of

RCSS by testing on data sets from UCI repository [86]. Conclusions are presented in

Section 3.5.
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3.2. Related work

The Apriori algorithm [20] provides an efficient and effective way for mining

simple association rules from transaction data. Association rule mining has gained much

recognition in the data mining area [21–32]. A rule example such as ( [33]):

{peanut butter, jelly} → {bread} (3.1)

indicates that customers that buy peanut butter and jelly also buy bread. In the rule

example, peanut butter, jelly, bread are called items. [1] proposed an associative clas-

sifier integrating association rule mining and classification (CBA). CBA treats a pair of

< attribute, value > as an item, and then association rule algorithms can be used. An

associative classification rule such as ( [1]): {(A = 1, B = 1) → y = 1} denotes that

the target class is predicted to be 1 if attributes A = 1 and B = 1. Here (A = 1, B = 1)

is also called the rule condition of the classification rule, which is generally a conjunc-

tion of attribute-value pairs. Since then, rule pruning and summarizing have been active

research topics. [34, 35] have given reviews in the areas of rule pruning, and rule sum-

marizing for associative classification.

Pruning irrelevant and redundant rules leads to better interpretability and ef-

ficiency for classification. Pessimistic error estimation was used for rule pruning in

CBA [1]. Classification based on multiple association rules (CMAR) [3] used Chi-

square testing to discard irrelevant rules; [3] pruned specific rules with less confidence

values than general rules; [36] removed conflicting rules, where two rules have the same

condition, but have different rule outcomes (class), though [37] shows experts could
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profit from the conflicting rules. [38] proposed a visual and interactive user application

for rule pruning.

These pruning methods prune a rule set to some degree, but do not focus on

selecting a minimum subset of rules without loss of accuracy. Recently, [39] transformed

a set of rules into an indicator data set, then Lasso regression [40] was used to select a

small subset of rules. However, a linear model like Lasso does not consider nonlinear

relationship between the rules and the class. [41] considered frequent patterns (patterns

that occur frequently in data) as features, and proposed a method to select a subset of

frequent patterns for classification. The data transformation method used here is the

same as [41]. However, [41] focused on only the accuracy of using frequent patterns,

while rule condition subset selection (RCSS) considered here focuses on both accuracy

and interpretability, e.g. the size of the rule condition subset. Furthermore, the feature

selection method proposed in [41] requires a user-defined value to decide the subset

size, and is ad hoc, while RCSS applies well-established feature selection algorithms for

pruning, and some of them do not require any user-defined value.

In addition to pruning, classification rules need to be summarized for classifi-

cation. [42] computed statistical significance measures for ordering the rules, and used

confidence intervals for the support and confidence of rules to predict future data. The

CBA algorithm [1] generated associative classification rules and built the classifier by

gradually adding informative rules to a predictive rule subset. The criteria for choosing

rules included support, confidence and the number of data samples covered, etc. CBA

only used one rule at a time to predict a new case, while CMAR [3] proposed to use mul-
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tiple rules at each time for a more robust prediction. Also, predictive association rules

(CPAR) [4] extended FOIL (First Order Inductive Learner) [43] to integrate association

rules into a classifier. Furthermore, [44] built a classifier according to a rule’s informa-

tion such as confidence and support, and pruned the classifier using pessimistic error

estimation similar to decision tree pruning. The method effectively reduced the size of

the classifiers without loss of accuracy. HARMONY [45] used an instance-centric rule-

generation approach in the sense that it can assure for each training instance, one of the

highest-confidence rules covering this instance is included in the rule set. [46] presented

a gain based association rule classification (GARC), which could produce a smaller set

of rules than such associative classifiers as CBA. [47] proposed a multi-class classifi-

cation algorithm based on association rules (MCAR), and [48] presented a class-based

associative classification approach (CACA). A lazy associative classifier was proposed

to generate more rules that are useful for classifying a testing instance [49]. Also, as-

sociative classifiers focusing on multi-label problems were studied by [37, 50, 51]. [39]

used Lasso regression to form a linear combination of rules for prediction. However,

the linear combination of rules are hard to interpret. More recently, [52] summarized

associative classification rules using decision trees. Though decision tree is used to

summarize rule condition into classifiers in the experiments conducted here, the sum-

marizing framework considered here is more principled and flexible than [52]. Under

this summarizing framework, the rule conditions are transformed to an indicator data

set, and then any classifiers such as decision trees and naive Bayes classifiers can be

chosen for summarization.
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3.3. Associative classification rule analysis based on rule conditions

A training data set is denoted as D = {(xi, yi)|i = 1...n}, where yi ∈ Y ,

where Y is a set of class labels: {1, 2, ...|Y |}, and |Y | is the number of class values. A

classification rule rj describing D can be expressed as {cj → y = k}, where k ∈ Y and

cj is the condition of rj .

Given a set of classification rules describing D: {r1, r2, ..., rm}, instead of di-

rectly pruning and summarizing the rules, this work considers pruning and summarizing

the rule conditions: {c1, c2, ..., cm} after transforming the rule conditions to a new data

set. The same technique was used for transforming a set of rules [39] or a set of frequent

patterns [41] to an indicator data set.

3.3.1. Transform conditions to an indicator data set

Let Iij be an indicator variable that denotes whether a condition cj ∈

{c1, c2, ..., cm} is satisfied for the predictors in a training instance (xi, yi): xi. That

is,

Iij =


1 cj is satisfied for xi

0 otherwise

(3.2)

A new data set I is formed based on the indicator variables and the class la-

bels: {[Ii1, ..., Iim, yi], i = 1, ...n}. Denote the attributes (excluding the class) as

{I1, I2, ..., Im}. The conditions: {c1, c2, ..., cm} are represented by the attributes:
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{I1, I2, ..., Im} in I and directly linked to the class variable y. Thus the dependency

between the conditions and the class can be measured.

Take the XOR logical operation as an illustrative example. There are four log-

ical operations for XOR. Replicate each row 40 times to form a 160-row data set as

shown in Table 1. Then extract associative rules from the data set (with minimum sup-

port greater than 0). As shown in Table 2, a total of 14 rules are generated, with their

support and confidence shown in the table. The new data set I is formed from the data

in Table 1 and the conditions in Table 2 and are shown in Table 3.

TABLE 1
40 cases are simulated for each

XOR operation.

data row ID X1 X2 y
1-40 0 0 0
41-80 0 1 1
81-120 1 0 1

121-160 1 1 0

TABLE 2
14 associative classification rules generated from

the XOR data.

Rule ID Conditions Class Support Confidence
R1 c1: {} y=0 0.5 0.5
R2 c2: X1=0 y=0 0.25 0.5
R3 c3: X2=0 y=0 0.25 0.5
R4 c4: X2=1 y=0 0.25 0.5
R5 c5: X1=1 y=0 0.25 0.5
R6 c6: X1=0,X2=0 y=0 0.25 1
R7 c7: X1=1,X2=1 y=0 0.25 1
R8 c8: {} y=1 0.5 0.5
R9 c9: X1=0 y=1 0.25 0.5

R10 c10: X2=0 y=1 0.25 0.5
R11 c11: X2=1 y=1 0.25 0.5
R12 c12: X1=1 y=1 0.25 0.5
R13 c13: X1=0,X2=1 y=1 0.25 1
R14 c14: X1=1,X2=0 y=1 0.25 1

3.3.2. Rank conditions

For a classification problem, the importance of an attribute should be measured

by the dependency between the attribute and the class. In classification rule analysis,
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TABLE 3
New data formed from the data in Table 1 and the conditions in Table 2

data row ID I1 I2 · · · I14 y

1-40 1 1 · · · 0 0
41-80 1 1 · · · 0 1

81-120 1 0 · · · 1 1
121-160 1 0 · · · 0 0

statistics such as the support and confidence of a rule are also useful criteria for eval-

uating the rule importance. Thus, both support and confidence are usually considered

in associative classifiers. For example, CBA [1] sorts the rules by confidence and sup-

port, and then considers the dependency of the rules and the class. In this framework,

rule condition ranking is achieved at one time by applying an importance measure on I .

Measuring the importance of an attribute Ij in I is essentially measuring the importance

of the condition cj to the class. In fact, because I includes information (such as support

and confidence statistics) on the rules the importance measure could be a function of

these statistics.

Any methods for measuring attribute importance in supervised learning area can

be used to measure the importance of conditions here. Symmetric Uncertainty (SU ) [87]

and random forest (RF) [88] are considered here. First consider SU . The entropy H(y)

of the class variable y is

H(y) = −
|Y |∑
k=1

P (y = k)log2(P (y = k))
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The information gain IG of y after observing Ij is

IG(y|Ij) = H(y)−H(y|Ij)

Then SU is defined as

SU(Ij , y) = 2

[
IG(y|Ij)

H(Ij) +H(y)

]
(3.3)

SU(Ij , y) is closely related to rule statistics, because SU(Ij , y) can be easily written

as a function of the support and confidence of all the rules with cj as the condition:

{cj → y = k, k = 1, 2, ..., |Y |}.

Although SU measures the dependency (dependency(cj , y)) between a con-

dition and the class, it does not consider the effect of other conditions. To measure

the dependency (dependency(cj , y|ci̸=j)) considering other conditions, an importance

measure from tree models can be applied. Interactions between attributes are included

in tree models. Furthermore, to overcome the greedy nature of a single decision tree,

evaluation from an ensemble is more stable. Thus the importance measure from RF is

used. RF uses the Gini index information criteria [88]:
∑

k1 ̸=k2
P (y = k1)P (y = k2),

where k1 and k2 run through all class labels.

Still consider the example XOR. In Table 2, if only a measure

dependency(cj , y) is considered, then only {c6, c7, c13, c14} are useful for predicting

the class. If a measure such as dependency(cj , y|ci ̸=j) is used, besides the previ-

ous four conditions, other conditions such as c2 and c3 should be important too, be-

cause a combination of c2 and c3 can be combined to accurately predict the class.
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For predicting the class, the interactions between conditions should be considered, thus

dependency(cj , y|ci̸=j) is an important measure.

The importance scores of the conditions using SU and RF (with 1000 trees) are

shown in the Table 4. As expected, SU ranks {c6, c7, c13, c14} as the most important

and scores all other conditions with zero importance. RF not only ranks the four con-

ditions as the most important, it also scores some other conditions such as c2 and c3 as

important.

TABLE 4
Importance score from SU and RF for conditions from Table 2. SU ranks
{c6, c7, c13, c14} as most important and scores all other conditions with zero

importance. RF not only ranks the four conditions as most important, it also scores
some other conditions such as c2 and c3 as important.

ID SU RF ID SU RF
c1 0.00 0.00 c8 0.00 0.00
c2 0.00 3.58 c9 0.00 3.60
c3 0.00 4.40 c10 0.00 3.39
c4 0.00 4.44 c11 0.00 3.77
c5 0.00 4.10 c12 0.00 3.94
c6 0.34 10.83 c13 0.34 10.29
c7 0.34 10.56 c14 0.34 9.33

3.3.3. Prune conditions

For better classification efficiency and interpretability, the conditions should be

pruned into a smaller-size subset. Though the size is smaller, the subset should still

reserve all the information of the original conditions for predicting the class. This is

23



similar to the goal of feature selection (FS) algorithms (for example, correlation-based

feature selection (CFS) [89], fast correlation-Based filter (FCBF) [90], artificial con-

trasts with ensembles (ACE) [58]) that seek to select a subset of minimum-redundancy-

maximum-relevancy attributes for supervised learning, which can be described in terms

of a Markov blanket [54].

Definition 1. Let F be a full set of features. Given a class variable y, let M ⊂ F and

y /∈M , M is said to be a Markov blanket (MB) of F for y if y ⊥ (F −M)|M . That is,

M is the only subset of features needed to predict y.

A MB of a set of variables might be considered as a feature selection solution

[54]. This work applies the same concept to the pruning of conditions. The goal of

condition pruning is to find a MB of the condition set.

Calculating an accurate MB is computationally infeasible since there are 2m−1

subsets for evaluation. Thus, heuristic methods are used to find an approximate MB.

By applying feature selection to find an approximate MB of {I1, ..., Im}, a compact

subset of conditions that preserve most of the information useful for prediction can be

found. An advantage of the feature selection methods is that they are developed for

high-dimensional data sets. Therefore, the condition pruning here becomes as efficient

as the selected feature selection method.

In the data set I , there may be some attributes (columns) with the same values.

These attributes have the same information for predicting the class and thus only one

attribute from them is needed to be kept for classification. Keep the attribute Ii whose
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corresponding ci has the simplest form, that is, ci has the least number of attribute-

value pairs among the conditions. This simple pruning serves as the first step before

using feature selection method. Then a feature selection method can be applied (e.g.,

CFS [89], FCBF [90], ACE [58]). For selecting the relevant features, CFS and FCBF

use SU as the relevancy measure, and ACE uses the RF measure along with an iterative

algorithm. To eliminate redundant conditions, SU is again used by CFS and FCBF to

measure redundancy. The class variable y is replaced with a rule condition Ij in equation

3.3 for this role

SU(Ii, Ij) = 2

[
IG(Ii|Ij)

H(Ii) +H(Ij)

]
(3.4)

Here SU(Ii, Ij) evaluates the dependency between Ii and Ij and a large value indicates

that Ii or Ij is redundant.

CFS, FCBF, ACE are applied on I for the XOR example. Denote the data

set obtained after using a FS algorithm on I as I∗. The subsets selected by the three

methods are shown in Table 5. CFS, FCBF select the conditions that correspond to the

four XOR logical rules. The four conditions can predict the class with 100% accuracy.

ACE selects only two conditions, which can be used to predict the class correctly in a

tree model as well.

3.3.4. Summarize conditions

For associative classification, one important task is to summarize the rules into

a classifier. Here a summary of the conditions is needed for classification. In the rule
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TABLE 5
The condition subsets selected by

CFS, FCBF, ACE.

Method Condition subset
CFS c6, c7, c13, c14

FCBF c6, c7, c13, c14
ACE c6, c7

TABLE 6
The classifier formed by applying C4.5 to
the condition subset selected by ACE in

Table 5.

If c7 is satisfied, then y = 0;
else,

If c6 is satisfied, then y = 0;
else, then y = 1;

analysis area, designing a rule summary method is non-trivial. Not only do a large

number of redundant rules need to be organized for fitting the training data, but also

pruning needs be considered to avoid possible overfitting. However, in the framework

considered here, the design of such a classifier is rather simple and flexible. By applying

a classifier to I∗, the conditions can be organized into a classifier easily. Moreover,

because I∗ has fewer attributes than I , but has similar information regarding the class,

applying a classifier on I∗ could have better efficiency and interpretability. [41] used

support vector machine (SVM) and C4.5 for summarizing frequent patterns, but only

focused on classification accuracy.

The option of a large number of classifiers provides a flexible representation for

the condition summary. A classifier with both reasonable accuracy and interpretability

should be considered so that the model built from the conditions can be understood. For

example, by building a decision tree on I∗, a decision is made at each node. If Ij = 1

(if condition cj is satisfied), then go to left branch; else, go to the right branch. The

class is assigned at the leaf nodes. For the XOR example, C4.5 is applied to the data
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set I∗ formed by ACE, a classifier built with conditions is shown in Table 6. Only two

conditions are used in classification, and the classifier correctly captures the true pattern.

Furthermore, the classifier shown in Table 6 can be simply interpreted as a decision tree

that uses conjunction of attributes in the splitting rules (such as c6: X1 = 0, X2 = 0).

3.4. Experiments

To demonstrate the efficiency and effectiveness of the methods considered here,

data sets from the UCI Repository are analyzed. The R package [91] and RWeka [92,93]

are used for running all the experiments, except ACE [58] is programmed in C. The de-

fault parameter setting for the methods in the software is used unless specified otherwise.

Associative classification rules are extracted with minimum confidence = 0.6, minimum

support = 0.05, which are the minimum values allowed in RWeka to produce valid re-

sults for all data sets. Furthermore, this work investigates the sensitivity to the minimum

support and confidence levels. For generating the association rules, first discretize the

continuous attributes using the entropy method [94]. All the following results are ob-

tained from 10-fold cross validation. The condition-based classifiers are compared to

C4.5 [95] (pruned tree with one as the minimum number of instances per leaf node) and

a well-known associative classifier (CBA [1]) regarding both classification accuracy and

interpretability. The results from CBA are obtained from [1] with minimum confidence

= 0.5 and minimum support = 0.01. To evaluate the quality of the subsets selected by

the FS algorithms, tree classifiers are built on the condition subsets selected and the
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accuracy and interpretability of the classifiers are used for the evaluation.

3.4.1. Condition pruning and classification

CFS [89], FCBF [90] and ACE [58] are used to prune the conditions. Because

ACE is tuned for datasets with two classes, only two-class results for ACE are shown.

The results are shown Table 7. Columns 1-3 provide the name of the data set, the number

of classes, and the number of associative classification rules generated, respectively.

Columns 4-6 are the numbers of conditions selected after pruning (approximate MBs)

from the three feature selection algorithms. All algorithms select a compact subset of

conditions with many fewer conditions than those generated from the association rules.

FCBF and ACE (for two-class data) select a subset with even smaller size than CFS.

To summarize the conditions into a classifier, C4.5 [95] is applied to I and I∗

for all the data sets and then the interpretability and the accuracy of the classification

are evaluated. In tree classifiers, the path from the root node to a leaf node can be

considered as a rule. Although a reduced set of rules can sometimes be obtained from a

tree model, that refinement is not considered here. Therefore, the number of leaf nodes

in tree classifiers and the number of rules in CBA are used to evaluate a classifier’s

interpretability. In Table 7 the remaining columns show the number of leaf nodes in

C4.5 trees from the original data sets (Orig), discretized data sets (Disc), full set of

conditions (Full), and conditions after pruning with algorithms CFS, FCBF, ACE, and

the number of rules in the CBA classifier. Note the substantial reduction in the number of
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leaf nodes from trees generated from conditions pruned by CFS, FCBS and ACE based

on either the mean or median over the data sets. Compared to trees built on the original

data the trees built from the conditions benefit from attributes combined into conditions,

but the FS methods still reduce the complexity compared to trees built from the full set

of conditions. Furthermore, the number of leaf nodes after FS are substantially fewer

than the number of rules used in CBA. However, the quality of the subsets still needs to

be evaluated by the classification accuracy.

For the accuracy of the classification, error rates from C4.5 are used for evalua-

tion. Because the objective here is an interpretable model, a simple classifier is applied

to the selected conditions. To compare with more complex classifiers, RF with 500 trees

is applied to the original data (RFOrig) and discretized data (RFDisc). Figures 2 and 3

show the box plots of error rates from all the methods for two-class data sets and all data

sets, respectively. The error rate details are also shown in Table 8.

First consider the interpretable classifiers. The tree-based classifiers pruned with

FS have error rates comparable to those from the original or discretized data with respect

to both means and medians. There is no significant difference in the mean accuracy be-

tween C4.5Orig and C4.5Disc and any of the FS methods at a 5% significance level.

The accuracy from the FS methods is also closely comparable to CBA. Only the differ-

ence between FCBF and CBA is significant and FCBF uses a substantially less complex

model. Also, for the two-class problems, ACE provides excellent accuracy scores (no

significant differences with paired t-tests) and compact models.

Although RFOrig provides slightly better performance than the other methods,
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the conclusions change once discretized data are considered. That is, there is no signifi-

cance difference between the FS method CFSC4.5 and RFDisc nor is there a significance

difference between ACEC4.5 and RFDisc for the two-class cases. Only FCBFC4.5 is

significantly weaker than RFDisc. Consequently, two of the FS methods provide in-

terpretable models that are similar to RF for the discretized data in these examples.

Furthermore, a better discretizer might narrow the small gap to the results from RFOrig.
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Figure 2. The box plot of error rates from
data sets with only two classes
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Figure 3. The box plot of error rates from
all data sets

In summary, conditions pruned with a FS algorithm can substantially reduce the

number of conditions and these conditions can be used in a simple decision tree model

that still maintains the accuracy compared to an associative classifier such as CBA (or

trees from the full set of conditions). The FS-based CFSC4.5 and ACE4.5 algorithms

are competitive with CBA regarding the accuracy, but have many fewer leaf nodes than

CBA rules. Two of the FS methods considered here can provide interpretable models

that perform as well as an RF applied to the same discretized data. The FS approach is

based on well-known, and widely-available FS algorithms that are easy to apply. Also,
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the FS methods are not tuned for optimum performance. Potentially these methods could

be further improved.
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3.4.2. Sensitivity to support and confidence

Here investigate the sensitivity of the FS classifiers to minimum support and the

minimum confidence changes. First fix the minimum support = 0.05 and analyze dif-

ferent minimum confidence values: {0.6, 0.65, 0.7, 0.75, 0.8}. then fix the minimum

confidence = 0.6 and analyze different minimum support values: {0.05, 0.055, 0.06

0.065, 0.07, 0.075, 0.08}. The average error rates and the number of leaf nodes over

all the data sets for these values are shown in Figures 4 to 11. For two-class data sets

the average error rates and leaf nodes numbers are stable for the values considered here,

except that CFSC4.5 and FCBFC4.5 have obvious error rate increases when the mini-

mum support changes to 0.8 (Figure 6). For all data sets, the average error rates tend

to be larger and the leaf nodes numbers tend to be smaller as the minimum support or

the minimum confidence increases. This implies that the condition based classifiers are

not sensitive to the minimum confidence and minimum support values considered here

for two-class problems. However, for the data sets more than two classes, the minimum

support and confidence should made small for better classification accuracy.

3.5. Conclusions

Associative classification rule pruning and summarizing have been active re-

search topics. While previous pruning methods focused on pruning rules to some de-

gree, this research proposes to prune rule conditions into a minimum subset without

loss information regarding predicting the class, which suggests a new direction for rule
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Figure 4. The average error rates of tree
classifiers for two-class data sets as mini-
mum confidence changes with fixed mini-
mum support = 0.05
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Figure 5. The average error rates of tree
classifiers for all data sets as the mini-
mum confidence changes with fixed mini-
mum support = 0.05

pruning. In addition, although previous associative classifiers were derived from simple

association rules, the large number of rules used in the final model results in limited

interpretability. The rule condition based classifiers discussed here consist of a signif-

icantly smaller number of rules without loss of accuracy, comparing to previous well-

known associative classifiers in the experiments conducted here.
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Figure 6. The average error rates of tree
classifiers for two-class data sets as the min-
imum support changes with fixed minimum
confidence = 0.6
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Figure 7. The average error rates of tree
classifiers for all data sets as the minimum
support changes with fixed minimum confi-
dence = 0.6
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Figure 8. The average number of leaf nodes
in tree classifiers for two-class data sets as
the minimum confidence changes with fixed
minimum support = 0.05
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Figure 9. The average number of leaf nodes
in tree classifiers for all data sets as the min-
imum confidence changes with fixed mini-
mum support = 0.05
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Figure 10. The average number of leaf
nodes in tree classifiers for two-class data
sets as the minimum support changes with
fixed minimum confidence = 0.6
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Figure 11. The average number of leaf
nodes in tree classifiers for all data sets as
the minimum support changes with fixed
minimum confidence = 0.6
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CHAPTER 4

LEARNING MARKOV BLANKETS FOR CONTINUOUS OR DISCRETE

NETWORKS VIA FEATURE SELECTION

4.1. Introduction

Bayesian networks are directed acyclic graphs that allow efficient and effective

representation of the joint probability distribution over a set of random variables [53].

Linear and Gaussian assumptions were common used in learning networks where the

variables are continuous. However, the assumptions do not hold in some well-known

contexts (e.g, fMRI [8]). Markov blanket learning can initialize a causal structure learn-

ing algorithm, and can be helpful for learning the structure of Bayesian networks. The

Markov blanket is defined as follows [54]:

Let F be a full set of variables. Given a target variable T , let MB(T ) ⊂ F

and T /∈ MB(T ), MB(T ) is said to be a Markov Blanket (MB) for T if T ⊥ (F −

MB)|MB. That is, T is conditionally independent of other features given MB.

Therefore, MB(T ) contains all information for predicting T . Under certain

conditions (faithfulness to a Bayesian Network), MB(T ) is identical to T ’s parents, its

children, and its children’s other parents (co-parents) [5]. A network structure learning

method [55] first identified the MB of each node, and then all the MBs were used to con-

struct the Bayesian network of the domain. Algorithms (e.g., [5]) have been proposed

for identifying MBs in a Bayesian Network. However, most Bayesian network learning

algorithms are designed to learn either networks with discrete variables or networks with

continuous variables under the Gaussian-distribution, linear-relation assumptions.
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MB learning is also closely related to feature selection and [54] stated that MB

is an optimal solution for a feature selection method. The MB definition is similar to the

maximal relevancy and minimal redundancy principle used in [56], and [57]. There are

common characteristics between current MB learning and feature selection algorithms.

For example, the feature selection method [57] selected relevant features in a forward

phase and removed redundant features in a backward phase (similar to the two phases

described in a Markov Blanket learning algorithm [5]).

Therefore, those feature selection methods maximizing relevancy and minimiz-

ing redundancy [57, 58, 89, 90, 96] can be used for learning MBs and thus for learning

causal structure in networks. [6] and [7] showed the advantages of feature selection

methods over a Bayesian network learning algorithm for learning causal structure. [6]

used the features selected from C5.0 rules to identify Markov blankets of a discrete

Bayesian network. However, the C5C algorithm is based on only one decision tree and

the greedy nature of a single tree could lead to local optimum. [7] applied feature selec-

tion utilizing support vector machine based on recursive feature elimination (SVM-RFE)

to discover causal structure of continuous networks.

This research proposes to use artificial contrasts with ensembles (ACE) [58], a

tree ensemble feature selection algorithm to learn local causal structure in both discrete

and continuous Bayesian networks without any distribution assumptions. Tree models

can naturally handle mixed categorical and continuous variables, missing values, are

robust to outliers in input space, and are insensitive to monotone transformations of

inputs [59]. Therefore, ACE can be easily applied to learn network structures in practical
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applications.

Section 4.2 describes the feature selection approach. Section 4.3 provides exper-

iments for local structure learning in continuous networks for both linear and nonlinear

models and with and without Gaussian assumptions. An example is provided for one

discrete Bayesian network. Section 4.4 provides conclusions.

4.2. Feature selection framework

The framework of ACE [58] is outlined in Algorithm 1 (shown for a regres-

sion problem) and with notation summarized in Table 9. A similar algorithm applies to

classification problems. Several iterations of feature selection are considered to include

features important, but possibly weaker than a primary set. In each iteration only the

important features are used to predict the target and generate residuals (targets minus

model predictions for regression). In subsequent iterations the feature selection is ap-

plied to the residuals. However, all variables are input to the feature selection module

that builds the ensembles—not only the currently important ones. This is to recover par-

tially masked variables that still contribute predictive power to the model. This can occur

after the effect of a masking variable is completely removed, and the partial masking is

eliminated. Based on important features, the redundancy elimination module selects

a non-redundant feature subset. Brief comments for the functions SelectFeatures and

RemoveRedundant are provided below and further details were provided by [58].
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Algorithm 1 Ensemble-Based Feature Selection.

1. Set Φ← {}; set F ← {X1, . . . , XM}; set I = 0 (|I| = M)
2. Set [Φ̂,∆I] = SelectFeatures(F, T )
3. Set Φ̂ = RemoveRedundant(Φ̂)
4. If Φ̂ is empty, then quit
5. Φ← Φ ∪ Φ̂
6. I(Φ̂) = I(Φ̂) + ∆I(Φ̂)
7. T = T − gT (Φ̂, T )
8. Go to 2.

TABLE 9
Notation in Algorithm 1

F set of original variables
T target variable
M Number of variables
I cumulative variable importance vector
Φ set of important variables
∆I current vector of variable importance scores

from an ensemble
∆I(Φ̂) current variable importance scores

for the subset of variables Φ̂
gT (F, T ) function that trains an ensemble based on variables F

and target T , and returns a prediction of T

4.2.1. Feature importance measure

Relevant feature selection is based on an ensemble of decision tees. Trees handle

mixed categorical and numerical data, capture nonlinear interactions, are simple, fast

learners. Trees also provide intrinsic feature selection scores through split values. The

ACE feature selection algorithm [58] is summarized here. For a single decision tree the

measure of variable importance is V I(Xi, T ) =
∑

t∈T △I(Xi, t) where △I(Xi, t) is

the impurity decrease due to an actual split on variable Xi at a node t of tree T . Impurity

measure I(t) for regression is defined as
∑

i∈t(yi − ȳ)2/N(t), where yi is the response
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of observation i in node t, and ȳ is the average response for all N(t) observations in

node t. For classification, I(t) equals the Gini index at node t

Gini(t) =
∑
i ̸=j

ptip
t
j (4.1)

where pti is the proportion of observations with y = i and i and j run through all

target class values. The split weight measure △I(Xi, t) can be improved if out-of-bag

(OOB) samples are used. The split value for the selected variable is calculated using the

training data as usual. However, only the OOB samples are used to select the feature as

the primary splitter. The experiments show that this provides a more accurate estimate

of variable importance, and mitigates the cardinality problem of feature selection with

trees [88] (where features with greater numbers of attributes values are scored higher

by the usual metrics). Then, the importance score in a ensemble can be obtained by

averaging over the trees

E(Xi) =
1

M

M∑
m=1

V I(Xi, TM ) (4.2)

Furthermore, a statistical criterion is determined through the use of artificial features

(permutations of the actual features). Variable importance scores for actual features are

compared to the distribution of scores obtained for the artificial features. Replicates

of the ensembles are also used so that a statistical t-test can generate a p-value for the

importance score of an actual feature. Further comments are provided below.

4.2.2. Statistical criteria for identifying relevant and redundant features

For deleting irrelevant or redundant features, a threshold is needed. Artificial

contrasts can be used to construct and specify the threshold in an efficient way. Let the
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number of variables be M . Denote the variables set as SX = {Xj , j = 1, 2, ...K}. In

each replicate r, r = 1, 2, ...R, artificial variables are generated as follows. For every

variable Xj in SX , a corresponding artificial variables Zr
j is generated from randomly

permutating values of Xj , let Sr
Z = {Zr

j , j = 1, 2, ...K}. Then the new variables set

can be denoted as Sr
X,Z = {SX , Sr

Z}.

Consider relevant variables selection. Denote the importance score of Sr
X,Z as

IrX,Z = {IrX , IrZ}, where IrX = {IrXj
, j = 1, 2, ...M)} and IrZ = {IZr

j
, j = 1, 2, ...K)},

IrXj
and IZr

j
are the importance scores of Xj and Zr

j at the rth replicate respectively.

Denote IXj = {IrXj
, r = 1, 2, ...R}. Then IrX,Z can be obtained by using relevant

feature selection methods to Sr
X,Z . Denote Irα as the 1 − α percentile value of IrZ and

Iα = {Irα, r = 1, 2, ..., R}. For each variable Xj , a paired t-test compares IXj to Iα.

A test that results in statistical significance, i.e., a suitably small p-value, identifies an

important variable. Therefore, an important variable here need consistently score higher

than the artificial variables over multiple replicates.

Consider redundancy elimination. Let M r
Xi,Xj

for j = 1, 2, ...i− 1, i+1, ...,K

and M r
Xi,Zj

for j = 1, 2, ...,K denote the masking score of Xi over Xj , and over Zr
j

for replicate Sr
X,Z respectively. Denote M r

Xi,α
as the 1 − α percentile value of M r

Xi,Zj

and MXi,α = {M r
Xi,α

, r = 1, 2, ..., R}. A paired t-test compares between M r
Xi,Xj

and

MXi,α. Variable Xj is masked by variable Xi if the test is significant.
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4.2.3. Residuals for multiple iterations

A single iteration in Algorithm 1 can select a relevant and non-redundant fea-

ture set, but it may fail to detect some variables important but possibly weaker than a

primary set. Thus more iterations are considered here. At the end of each iteration, a

subset of features Φ̂ can be obtained. An ensemble model gT (Φ̂) is built on Φ̂. Denote

T̂ as the out-of-bag (OOB) prediction of gT (Φ̂). Then residual are calculated and form

a new target. For a regression problem, the new target is simply formed by: T = T − T̂ .

For a classification problem, residuals are calculated from a multi-class logistic regres-

sion procedure. Log-odds of class probabilities for each class are predicted (typically a

gradient boosted tree [97]is used), and then pseudo-residuals are taken as residuals.

In a Bayesian network sometimes non-causal, but relevant variables, can also

contribute to the target. Though the contribution from those non-causal but relevant

variables could be small compare to causal related variables, ACE adds them into the

feature set. Therefore, false alarm rates might be increased. The Bonferroni correction

is a multiple-comparison correction used when several statistical tests are performed

simultaneously. The Bonferroni correction is used here to reduce the false positive rate.

For example, if the p-value of t-test in the previous sections is α, when there are N

features the p-value is reduced to α/N .
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4.3. Experiments

The work here focuses on continuous Bayesian networks but an example from

a discrete network is added to illustrate ACE [58] easily generalizes – the discrete

networks results are equally good. ACE and feature selection methods correlation-

based feature selection (CFS) [89], SVM-RFE [57], and fast correlation-Based filter

(FCBF) [90] are applied to learn the MB of the target nodes. The performance is also

compared to a well-known Bayesian local structure learning algorithm: max-min par-

ents and children (MMPC) [98]. In the experiments, ACE [58] is programmed in C,

RWeka [92, 93] and bnlearn [99] in R [91] are used to run the other algorithms. The

default parameter settings for the methods in the software are used. To evaluate the per-

formance, the sensitivity and specificity are measured for a given task. The sensitivity

is the ratio of the number of correctly identified variables in the MB over the size of the

true MB. The specificity is the ratio of the number of correctly identified variables as

not belonging in the MB over the true number of variables not in MB [98]. To compare

different algorithms, a combined measure d is used [98].

d =
√

(1− sensitivity)2 + (1− specificity)2 (4.3)

A better algorithm implies a smaller d value.

4.3.1. Continuous, Gaussian local structure learning

There are few available continuous benchmark causal-structure network (the

focus is on discrete networks). Therefore a causal-structure network with continuous
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nodes is simulated as shown Figure 12. Bayesian structure learning often assumes Gaus-

sian models whereas the ensemble-based ACE method is not limited to the such mod-

els. The first experiment uses the common Gaussian distributions for these experiments

and the second experiment relaxes this assumption. Because FCBF and SVM-RFE (in

RWeka [92, 93]) do not work with continuous target variables, only ACE, MMPC and

CFS with best first search (CFSBestFirst) and gene search (CFSGene) are applied to this

data.

Consider the network in Figure 12. For the first experiment nodes A,B,C are

root nodes and follow normal distributions N(1,1), N(2,1) N(3,1), respectively, where

N(µ, σ2) denotes a normal distribution with mean µ and variance σ2. Denote a node

(not a root node) as Ni, and denote the parent nodes of Ni as Np
i (j), j = 1, ..., |Np

i |,

where |Np
i | is the number of parent nodes of Ni. The causal relation between Ni and

Np
i (j) is expressed by Ni = f(Np

i (j)). Here Ni =
∑|Np

i |
j=1 (N

p
i (j)) + ε or Ni =∏|Np

i |
j=1 (N

p
i (j)) + ε where ε ∼ N(0, 1). Therefore, both linear and nonlinear causal

relationships in the network can be investigated. For example, in Figure 12, the linear

causal relationship between node D and its parent nodes A, C is D = A+ C + ε. The

nonlinear causal relationship is D = A ∗ C + ε. For each of the continuous Bayesian

networks, 5000 rows of data are simulated. The objective is to learn the MBs of the

output nodes.

The sensitivity, specificity and combined measure d for the linear and non-linear

cases are shown in Table 10-12. For the linear Bayesian network, it is well known that

linear relationships are not optimal for a tree representation. Still ACE has the lowest d
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A ~ N(1,1) B ~ N(2,1) C ~ N(3,1)

D = f(A,C) E = f(A,B) F = f(B,C)

G = f(D,F) H = f(D,E) I = f(E,F)

Figure 12. Nodes with thick edges (yellow)
are taken as targets. The function f is taken
as either an additive or multiplicative func-
tion of the inputs.
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Figure 13. Local structure of the Windows
printer network with regard to targets.

TABLE 10
Sensitivity for each output node from different algorithms learning continuous,

Gaussian, linear and nonlinear Bayesian networks

Linear NonLinear
G H I Average G H I Average

ACE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CFSBestFirst 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.83

CFSGene 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MMPC 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.83

value. The other three methods have the same d value. For the non-linear network the

challenge of learning increases, and the d of all methods increase. ACE still produces

the smallest d value.

4.3.2. Continuous, nonGaussian local structure learning

For the nonGaussian experiment the distributions for nodes A,B,C are changed

to Normal(0, 1), Exponential(1), Uniform(−1, 1) respectively. Other characteris-

tics of the experiment (including the linear and nonlinear target functions) are the same
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TABLE 11
Specificity for each output node from different algorithms learning continuous,

Gaussian, linear and nonlinear Bayesian networks

Linear NonLinear
G H I Average G H I Average

ACE 1.00 1.00 0.83 0.94 1.00 0.67 1.00 0.89
CFSBestFirst 0.67 0.67 0.67 0.67 0.50 0.33 0.33 0.39

CFSGene 0.67 0.67 0.67 0.67 0.50 0.33 0.33 0.39
MMPC 0.67 0.67 0.67 0.67 0.00 0.67 0.17 0.28

TABLE 12
Combined measure d for each output node from different algorithms learning

continuous, Gaussian, linear and nonlinear Bayesian networks

Linear NonLinear
G H I Average G H I Average

ACE 0.00 0.00 0.17 0.06 0.00 0.33 0.00 0.11
CFSBestFirst 0.33 0.33 0.33 0.33 0.50 0.67 0.83 0.67

CFSGene 0.33 0.33 0.33 0.33 0.50 0.67 0.67 0.61
MMPC 0.33 0.33 0.33 0.33 1.00 0.33 0.97 0.77
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TABLE 13
Sensitivity for each output node from different algorithms learning continuous,

nonGaussian, linear and nonlinear Bayesian networks

Linear NonLinear
G H I Average G H I Average

ACE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CFSBestFirst 1.00 1.00 1.00 1.00 0.00 0.00 0.50 0.17

CFSGene 1.00 1.00 1.00 1.00 0.00 0.00 0.50 0.17
MMPC 1.00 1.00 1.00 1.00 0.00 0.00 0.50 0.17

TABLE 14
Specificity for each output node from different algorithms learning continuous,

nonGaussian, linear and nonlinear Bayesian networks

Linear NonLinear
G H I Average G H I Average

ACE 1.00 1.00 0.67 0.89 0.50 0.50 0.33 0.44
CFSBestFirst 0.67 0.83 0.83 0.78 0.50 0.33 0.50 0.44

CFSGene 0.67 0.83 0.83 0.78 0.50 0.33 0.50 0.44
MMPC 0.50 0.50 0.67 0.56 0.50 0.33 0.50 0.44

as in the Gaussian case. The results are shown in Table 13-15.

For both nonGaussian linear and nonlinear networks, ACE is still better than the

other three methods. CFSBestFirst outperforms MMPC in the nonGaussian linear case,

while they have similar performance in other cases. Consequently, feature selection

methods can provide reasonable alternatives to the MMPC algorithm in continuous net-

works. Furthermore, it is more difficult for all methods to learn a nonlinear relationship

than a linear relationship in the nonGaussian cases.

49



TABLE 15
Combined measure d for each output node from different algorithms learning

continuous, nonGaussian, linear and nonlinear Bayesian networks

Linear NonLinear
G H I Average G H I Average

ACE 0.00 0.00 0.33 0.11 0.50 0.50 0.67 0.56
CFSBestFirst 0.33 0.17 0.17 0.22 1.12 1.20 0.71 1.01

CFSGene 0.33 0.17 0.17 0.22 1.12 1.20 0.71 1.01
MMPC 0.50 0.50 0.33 0.44 1.12 1.20 0.71 1.01

4.3.3. Discrete local structure learning

Although this work focuses continuous network structure, a discrete Bayesian

network is also considered. The network is Windows printer trouble shooting with 76

features. 10000 observations were generated with the GeNIe structural modeling tool

(http://genie.sis.pitt.edu/). The local structure with regard to the targets of the network

are illustrated in Figure 13. Here 6 nodes (printer problem nodes) are considered as

the targets (each with binary classes). ACE, MMPC, FCBF, CFSBestFirst, CFSGene,

SVM-RFE are compared based on learning the local structure of the Bayesian networks.

Because SVM-RFE requires the number of features to be selected as an input, the num-

ber of features is assigned in two ways: the size of the correct Markov blanket and the

number of features selected by ACE. The SVM-RFEs with these two parameters are

denoted as SVM(MB) and SVM(ACE), respectively. The results from the Windows

printer trouble shooting network are shown in Table 16-18.

For the Windows printer network, ACE and SVM(MB) have the lowest d values.
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TABLE 16
Sensitivity of outputs from different algorithms learning the Windows printer network.

SVM(MB) is given the correct number of features, and SVM(ACE) is given the
number of features selected by ACE

Pro1 Prob2 Prob3 Prob4 Prob5 Prob6 Average
ACE 1.00 1.00 0.67 1.00 1.00 0.33 0.833

CFSBestFirst 1.00 1.00 0.67 1.00 0.67 0.67 0.833
CFSGene 1.00 1.00 0.67 0.67 1.00 1.00 0.889

FCBF 1.00 1.00 0.33 1.00 0.67 0.33 0.722
MMPC 1.00 1.00 0.33 0.67 1.00 0.33 0.722

SVM(ACE) 1.00 1.00 0.33 1.00 1.00 0.33 0.778
SVM(MB) 1.00 1.00 0.67 1.00 1.00 0.67 0.889

TABLE 17
Specificity of outputs from different algorithms learning the Windows printer network.

SVM(MB) is given the correct number of features, and SVM(ACE) is given the
number of features selected by ACE

Pro1 Prob2 Prob3 Prob4 Prob5 Prob6 Average
ACE 1.00 1.00 1.00 1.00 1.00 1.00 1.000

CFSBestFirst 0.89 0.97 0.96 0.96 0.94 0.93 0.943
CFSGene 0.66 0.81 0.76 0.85 0.75 0.81 0.772

FCBF 1.00 0.97 1.00 0.96 0.93 1.00 0.977
MMPC 1.00 0.96 1.00 0.99 0.97 1.00 0.986

SVM(ACE) 1.00 1.00 0.99 1.00 1.00 1.00 0.998
SVM(MB) 1.00 1.00 0.99 1.00 1.00 0.99 0.995
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TABLE 18
Combined measure: d of outputs from different algorithms learning the Windows

printer network. SVM(MB) is given the correct number of features, and SVM(ACE) is
given the number of features selected by ACE

Pro1 Prob2 Prob3 Prob4 Prob5 Prob6 Average
ACE 0.00 0.00 0.33 0.00 0.00 0.67 0.167

CFSBestFirst 0.11 0.03 0.34 0.04 0.34 0.34 0.199
CFSGene 0.34 0.19 0.41 0.37 0.25 0.19 0.292

FCBF 0.00 0.03 0.67 0.04 0.34 0.67 0.291
MMPC 0.00 0.04 0.67 0.33 0.03 0.67 0.289

SVM(ACE) 0.00 0.00 0.67 0.00 0.00 0.67 0.222
SVM(MB) 0.00 0.00 0.33 0.00 0.00 0.33 0.111

SVM(MB) only outperforms ACE for the target Prob6. However, SVM(MB) is given

the priori knowledge of the size of true MBs. With the number of variables selected by

ACE as input, SVM(ACE) does not perform as well as ACE. Another feature selection

method CFSBestFirst also provides better results than MMPC.

4.4. Conclusions

Structure learning is important for both discrete and continuous networks, and

relaxed Gaussian assumptions are important for continuous networks. Common fea-

ture selection methods, along with a Bayesian structure algorithm, are compared for

the structure learning problem, and experiments illustrates the strength of an ensemble-

based feature selection approach in these cases.
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CHAPTER 5

A TREE ENSEMBLE FOR TIME SERIES CLASSIFICATION AND FEATURE

EXTRACTION

5.1. Introduction

Time series classification [10–12, 60–62] has been an active research topic in

recent years. Time series classification methods can be divided into instance-based and

feature-based methods. Instance-based classifiers (e.g. [60, 63]) predict a test instance

based on its similarity to the training instances. Among instance-based classifiers, one-

nearest-neighbor (1NN) classifiers with a Euclidean distance metric (NNEuclidean) or

a dynamic time warping metric (NNDTW) have been widely, and successfully used

[63–67]. Usually NNDTW performs better than NNEuclidean since DTW [13] is robust

to the distortion of time axis, and is considered as a strong solution for time series

problems [15]. A disadvantage of NNDTW is lack of interpretability. To this end, [68]

proposed a decision tree approach, which split examples based on dynamic warping

distance between a pair of time sequences. Such a decision tree improves interpretability

over NNDTW to some degree, and speeds up the time for testing, but the interpretability

is still limited.

Feature-based classifiers extract interpretable features, and then input the fea-

tures to conventional classifiers, which generally are more interpretable than instance-

based classifiers. [69] incorporated domain knowledge into an automated search for

extracting features, and then applied conventional classifiers such as a support vector

machine (SVM) [70]. [71] extracted statistical features such as mean and deviation from
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time series, and then a multi-layer perceptron neural network was used for classifica-

tion. [72] extracted features from intervals of time series, and SVM was trained on the

features.

[73] extracted features from intervals of time series, and built boosting binary

stumps, while [74] used the features from boosting binary stumps to build a single deci-

sion tree, which leads to a comprehensible classifier. However, only binary stumps were

boosted, and the effect of using more complex base learners, such as decision trees,

should be studied [73] (but larger tree models impact the computational complexity of

their method). This work shows that this issue can be handled with a simple random

strategy (linear in the length of the time series). More importantly, [73, 74] used only

class-based information to evaluate the features. However, the number of extracted fea-

tures is generally large, sometimes even larger than the number of training examples,

and a number of features can provide the same class information (e.g., entropy gain).

Consequently, class entropy alone can result in features useful for generalization being

ignored.

Advances in feature selection [58], allowed [75] to consider a massive number

of features. Features sets were derived from statistical moments, wavelets, Chebyshev

coefficients, principle component analysis (PCA) coefficients, and the original values of

the signal. Furthermore, time-warped invariant versions of these features were gener-

ated as described by [76]. This massive set of features were used in a dynamic gradient-

boosted tree (GBT) ensemble [77] for classification. The dynamic enhancement allows

the ensemble to provide higher weight to features with more potential and reduce the
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computational burden. Performance was excellent in the time series classification chal-

lenge [75]. Still, it is computationally complex and features such as PCA scores and

Chebyshev coefficients are difficult to interpret and the GBT classifier obfuscates re-

sults further. The objective of this work is to produce a fast, accurate classifier that

yields a simple set of features that can contribute to the domain knowledge. For ex-

ample, in manufacturing applications, specific properties of the signals that discriminate

conforming from un-conforming product is invaluable to diagnose, correct, and improve

processes.

Ensemble methods have been shown effective for time series classification

[75, 78, 79]. However, lack of interpretability, and high computational complexity are

disadvantages of the current ensemble methods. Here an effective, yet efficient, ensem-

ble method, referred to as a time series forest (TSF) is proposed for time series classi-

fication and feature extraction: 1) with new criteria to evaluate features. The new crite-

ria consider both class-based information and distance measures. Experimental studies

show that the new criteria produce significantly better performance than only a class-

based criterion. 2) with random sampling based on intervals in a method analogous to

a random forest [88]. Consequently, model variance can be reduced and the computa-

tional complexity of TSF is only linear in the length of the time series: O(MN logN)

where N is the number of time series for training, and M is the length of each time

series). 3) and TSF can extract a scalable set of interpretable features.

The remainder of this paper is organized as follow. Section 5.2 describes the

time series forest (TSF) method. Section 5.3 illustrates extracting time series features
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via TSF. Section 5.4 demonstrates the effectiveness and efficiency of TSF by testing on

a full set of benchmark data set from UCR time series database [100]. Conclusions are

drawn in Section 5.5.

5.2. Time series forest classifier

This section describes the TSF algorithm. First introduce the split of a tree

node, and then describe the algorithm for a tree. TSF is a combination of such trees.

To build a tree classifier, the split at each node needs to be defined. A split consists

of two important components: search space and evaluation criteria (also referred to as

loss function). The search space contains all the candidate splits of interest, and the

evaluation criteria defines the best split in the search space.

Assume the time series are measured at equally-spaced intervals, and each time

series is of the same length M , but the methods can be modified for more general cases.

A univariate time series is denoted as {v1, v2, . . . , vM}. Though this method can be eas-

ily extended for multivariate time series, here focuses on univariate time series bench-

mark data sets in the experiment, and thus adopt the univariate notation for simplicity.

A time series data set consists of N time series {e1, e2, ..., eN}. Each instance is asso-

ciated with a class label yn, for n = 1, 2, . . . , N and yn ∈ {1, 2, ..., C}. Given a set of

time series for training and the class labels for these instances, the goal is to predict the

class labels for testing instances. The goal of feature extraction is to extract interpretable

features informative for classification.
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At each node a time interval is selected, and then features (such as mean, de-

viation, etc.) are extracted from that interval. The interval and the feature are cho-

sen to maximize the splitting criterion when the collection of time series is partitioned

into child nodes. A typical example of a interval splitting rule is average(I[t1, t2]) ≤

threshold, where the notation indicates that a series for which the average over the in-

terval [t1, t2] is less than or equal to a threshold is assigned to the left child, and to

the right child otherwise. An interval tree is able to capture interpretable features from

a window from time series, however, O(M2) calculations are needed to evaluate all

the intervals, and thus, expensive for time series with large length. Previous research

used sampling powers of two to reduce the computational complexity from O(NM2) to

O(NM logM) [73] (at the root node) for univariate time series. An alternative is pro-

vided in the next section that reduce this to O(NM). Furthermore, the powers of two

can generate wide intervals (for longer time series) that can attenuate important features.

5.2.1. Search space

Let fk(·) (k = 1, 2, ...,K) denote the kth feature type. Here consider features

such as f1 = mean, f2 = slope, f3 = variance. Let fk(t1, t2) for (0 < t1 ≤ t2 ≤M)

denote an feature calculated over the interval between t1 and t2. A candidate split S in a

tree node (for simplicity, assume the number of instances equals N , i.e., the split is the

root node) tests the following condition

fk(t1, t2) ≤ threshold (5.1)
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The value of the threshold depends on the feature type and time interval. Given a time

series instance en let fn
k (t1, t2) denote the interval feature calculate from instance n. The

threshold set for fk(t1, t2) can be defined as {fn
k (t1, t2), n ∈ 1, 2, ..., N}, i.e., the values

of fk(t1, t2) over all time series instances. Typically decision trees order the threshold

set and evaluate the information gain over all possible values in the threshold set. Here

consider a more efficient approach [73]. The thresholds for fk(t1, t2) are formed such

that they divide the range of [min(fn
k (t1, t2)),max(fn

k (t1, t2)], n ∈ 1, 2, ..., N with

equal width. The number of thresholds are fixed for all splits, e.g. 20, and denoted as

|threshold|.

Therefore, the search space Θ at a tree node consists of a set of time intervals

{t1, t2 ∈ 1, 2, ...M, t1 ≤ t2}, a set of features {f1, f2, ..., fK}, and a threshold set. The

size of the time interval space is M(1 +M)/2. The size of space of feature space is K.

The size of Θ is |Θt| ∗K ∗ |threshold|. The search space for splitting evaluation leads

to computational complexity of O(NM2) at the node.

A random forest (RF) [88] is an ensemble of base tree models.At each node, a

RF considers the best split based on only a random sample of feature subspaces. Often

the sample size is
√
p, where p is the number of predictor features. The random feature

selection reduces the variance of the ensemble [88], and also reduces the computational

complexity of a single tree from O(pN logN) to O(
√
pN logN) (assume the depth of

tree is O(logN) where N is the number of instances).

Similar to a RF the sampling procedure at each node for TSF considers only a

fraction of the potential splits point. This yields the same benefits (reduced variance and
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computations). The sampling is illustrated in Algorithm 2, and reduces the computa-

tional complexity to O(NM) (at the root node).

Algorithm 2 sample() function: randomly sampling a set of start position and end
position < T1, T2 > for interval features.

< T0, T1 >= empty
Randomly select a

√
M number of window sizes from {1, ...,M} without replace-

ment. Denote the set of window sizes as W .
for w in set W do

randomly select
√
M − w + 1 number of start positions from {1, ...,M − w + 1}

without replacement. Denote the set of start positions as T0.
for t0 in set T0 do

< T0, T1 >← + < t0, t0 + w − 1 >
end for

end for
Output < T0, T1 >

5.2.2. Evaluation criteria

A split at a tree node tests equation (5.1) and divides the examples at a node

into two children nodes. An evaluation criteria is needed to select the best split S∗:

f∗(p
∗
1, p

∗
2) <= threhold∗ from the search space Θ. Information gain measures such

as entropy gain are commonly used for such an evaluation in tree models such as C4.5

[95]. Denote the proportion of instances with the corresponding classes at the node as

{γ1, γ2, ...γC}. The entropy at the node is defined as

Entropy = −ΣC
c=1γc log γc (5.2)

The entropy gain△Entropy for a split is then the difference between the weighted sum

of entropy at the children nodes and the entropy at the parent node, where the weight at
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a child node is the proportion of the cases assigned to that child node.

△Entropy captures the class information gain, and can be used to evaluate

the quality of a split shown in equation (5.1). However, in time series classification,

the number of candidate splits could be larger than number of time series examples,

and there are often cases that several candidate splits lead to the same entropy gain.

Therefore alternative criteria are considered. One measure is called relative mean square

error gain (RMSE). The mean square error of an interval feature fk(t1, t2) at a node is

defined as

MSE =
1

ν
∗ Σν

n=1(f
n
k (t1, t2)− fk(t1, t2) )

2 (5.3)

where fk(t1, t2) = Σν
n=1f

n
k (t1, t2)/ν, and ν is the number instances at the node. Let

MSE, MSEl and MSEr denote the MSE at the root, left, and right child nodes,

respectively. The RMSE gain due to splitting the node into two children nodes is

△RMSE = 1− MSEl +MSEr

MSE
(5.4)

Here △RMSE is used to evaluate the split from a clustering perspective. Larger

△RMSE is preferred.

The second measure considers the margin between the threshold and its nearest

neighbor

M = min
n=1,2,...,ν

|fn
k (t1, t2)− threshold| (5.5)

A relative margin (RM ) can be defined as

RM = M/ max
n,r=1,2,...,ν,n ̸=r

[fn
k (t1, t2)− f r

k (t1, t2)] (5.6)
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A large relative margin is preferred for better generality and interpretability.

Finally, an evaluation criterion E for a split is defined as a linear combination

E = △Entropy + αRMSE + βRM (5.7)

The split S∗ with maximum E is selected. Small values for α and β are used so that

the only role for the corresponding terms in the model is to break ties that can occur

from entropy alone. Set β = 0.000001 ≪ α = 0.001 ≪ 1. Though it may be possible

to obtain more accurate predictions by adjusting α and β, the model becomes more

complex.

5.2.3. Time series forest

Each tree in a TSF is briefly described in Algorithm 3. The data for each tree are

randomly sampled (without replacement) with a specified percentage. Assume each tree

has depth O(logN), the computational complexity for training a TSF is O(MN logN).

5.3. Feature extraction and summary

TSF selects the best interval feature f∗(t∗0, t
∗
1) from a subspace at each node, and

is therefore a feature selection process. Here discuss how to extract a scalable number

of features, and how to summarize these features in an interpretable way.

An interval feature in TSF should be informative about predicting the class, and

the entropy gain can be used to score the degree of information of the feature. However,

because a large number of features could be extracted from TSF, and some of them are
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Algorithm 3 tree(data): A single tree function in TSF. The function
evaluate(fk(t0, t1) ≤ threshold, data) calculates the criterion in equation (5.7)
on data.

if only one class exists in data then
terminal node;
return;

end if
{T0, T1}=sample()
E∗ = 0, t0∗ = 0,t1∗ = 0, threshold∗ = 0, f∗ = −1
for < t0, t1 > in set < T0, T1 > do

for threshold in set Threshold do
for k in 1:K do

E = evaluate(fk(t0, t1) ≤ threshold, data)
if E > E∗ then

E∗ = E, t0∗ = t0, t1∗ = t1, threshold∗ = threshold, f∗ = fk
else

if E∗ = 0 then
terminal node;
return;

end if
end if

end for
end for

end for
dataleft← time series with f∗(t0, t1) ≤ threshold, data)
dataright← time series with f∗(t0, t1) > threshold, data)
tree(dataleft)
tree(dataright)

redundant or ignorable, a further feature selection procedure is used. Feature subset se-

lection methods such as correlation-based feature selection (CFS) [89], fast correlation-

Based filter (FCBF) [101], artificial contrasts with ensembles (ACE) [58] are common

choices. However, a large number of features from TSF could affect the efficiency of

some of these feature subset selection methods. For example, the worse-case complexity

of FCBF is O(p2), where p is the number of features. Consequently, redundant features
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are eliminated by extracting features from only a small number of trees, and ignorable

features are eliminated by discarding features appearing in tree nodes exceeding a cer-

tain depth.

Let the number of trees for feature extraction be nTree, and the maximum depth

be depth, where the depth is the length of the path from the root node to the node.

The number of features is bounded by nTree ∗ 2depth − 1. After limiting the number

of features by setting a small number of trees, and maximum depth, feature selection

methods can then be used on the features more efficiently.

The TSF classifier is much less interpretable than a simple classifier such as

C4.5. A subset of features can be extracted, but how these features are summarized for

classification is important as well. This work considers using a simple classifier to learn

the features selected from the previous step.

5.4. Experiments

TSF is implemented in Matlab and C++. Multi-core computing is used for train-

ing the models, but only use single core for testing (because testing is fast). The experi-

ments were run on Vista system with 6GB RAM, quad CPU (2.5GHz). The parameters

are set as follows: number of trees = 200, f(·) = {mean, slope, variance}, and arctan

is used for slope. Here 20 thresholds are used and α = 0.001, β = 0.000001. The min-

imum time interval is constrained to 5 points for mean and slope, and 15 points for

variance, for better interpretability. The largest window (i.e., the interval equal to the
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entire time series) is always a candidate for splitting a node. For feature extraction, 50

trees are used, and the maximum depth is 5. TSF is tested on a full set of time series

data sets from [100]. The data sets characteristics are shown in Table 19. The train-

ing/testing setting is the same as in [100]. The classification accuracy and classification

interpretability are discussed in the following sections.

number classes training cases testing cases time series length
50words 50 450 455 270

Adiac 37 390 391 176
Beef 5 30 30 470
CBF 3 30 900 128

Coffee 2 28 28 286
ECG200 2 100 100 96
FaceAll 14 560 1,690 131

FaceFour 4 24 88 350
fish 7 175 175 463

GunPoint 2 50 150 150
Lighting2 2 60 61 637
Lighting7 7 70 73 319
OliveOil 4 30 30 570
OSULeaf 6 200 242 427

SwedishLeaf 15 500 625 128
syntheticcontrol 6 300 300 60

Trace 4 100 100 275
TwoPatterns 4 1,000 4,000 128

wafer 2 1,000 6,174 152
yoga 2 300 3000 426

TABLE 19
Characteristics of the time series: number of classes, number of training and testing

instances, and lengths of time series.
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5.4.1. Classification accuracy and speed

Now evaluate the effectiveness of the evaluation criteria in equation 5.7, and

the random sampling in Algorithm 2. The classification error rates and the compu-

tational time are used for evaluation. The results are shown in Table 20. In the ta-

ble, “default” represents TSF with the proposed settings. The other entries in the table

use the same as settings as default with the following exceptions: “entropy” uses only

△Entropy for evaluating splits, “full sampling” searches all the intervals in the search

space, “log sampling” searches window sizes that are powers of 2, “log+entropy” uses

only△Entropy and searches window sizes that are power of 2. Because both “default”

and “entropy” use random sampling, their times are similar; similarly “log sampling”

and “log+entropy” have similar times, and thus only the times of the first ones are shown

in the table. The testing times for all methods are small, and only the times of “default”

are shown.

The mean and median are calculated for error rates and computation time for all

data sets. Pair t-tests are performed between error rates of “default” and other methods.

It can be seen that “default” is more accurate than both “entropy” and “log+entropy”

at the significance level of 0.05. Consequently, the evaluation criteria in equation 5.7

improves the classifier’s accuracy. There are no significant difference of classification

accuracy between different sampling methods. However, the time for “default” is obvi-

ously smaller than “full sampling”, “log sampling”, and “log+entropy”. In addition, the

testing times for TSF are small, which can be a computing advantage over lazy learners
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such as nearest neighbor classifiers.

Error rates training testing
time time

default entropy log full log default full log default
+entropy sampling sampling sampling sampling

50words 0.266 0.299 0.295 0.275 0.277 251.52 38150.00 1182.30 4.60
Adiac 0.263 0.279 0.274 0.261 0.215 139.57 12193.00 549.48 3.21
Beef 0.233 0.400 0.300 0.300 0.167 15.44 3487.20 74.98 0.26
CBF 0.043 0.068 0.140 0.034 0.020 2.44 114.54 6.53 0.66

Coffee 0.036 0.036 0.143 0.036 0.000 2.41 306.46 9.48 0.06
ECG200 0.000 0.010 0.010 0.000 0.000 1.50 61.64 4.34 0.07
FaceAll 0.237 0.246 0.253 0.148 0.224 85.54 5306.90 298.25 6.33

FaceFour 0.046 0.227 0.227 0.034 0.034 6.71 1217.60 30.98 0.27
fish 0.154 0.160 0.177 0.160 0.171 81.69 20244.00 409.86 1.52

GunPoint 0.073 0.100 0.087 0.067 0.073 3.57 206.57 9.75 0.17
Lighting2 0.197 0.279 0.295 0.262 0.246 25.78 6684.60 109.54 0.50
Lighting7 0.260 0.260 0.301 0.329 0.343 27.95 4072.00 110.71 0.51
OliveOil 0.133 0.100 0.167 0.100 0.100 10.89 3687.10 64.65 0.15
OSULeaf 0.422 0.413 0.409 0.401 0.393 108.69 25540.00 576.91 2.59

SwedishLeaf 0.136 0.131 0.176 0.149 0.142 82.23 5080.30 283.77 2.70
syntheticcontrol 0.023 0.027 0.040 0.043 0.043 9.65 231.31 20.93 0.45

Trace 0.000 0.010 0.020 0.010 0.000 9.55 1539.70 45.46 0.20
TwoPatterns 0.056 0.059 0.061 0.065 0.060 107.14 6613.00 396.43 17.72

wafer 0.007 0.008 0.010 0.011 0.009 37.84 2609.10 117.16 13.39
yoga 0.160 0.164 0.182 0.173 0.175 116.14 24244.00 531.63 45.33
mean 0.1373 0.1637 0.1783 0.1428 0.1346 56.312 8079.451 241.657 5.035

median 0.1347 0.1456 0.1766 0.1240 0.1212 26.868 3879.550 110.125 0.585
t-test - 0.0451 0.0010 0.4904 0.7216 - - - -

TABLE 20
Error rates and running time (seconds) for time series forest (TSF) with default and

alternative settings. Multi-core computing is used to train models on a four-core
computer. Only one core is used for testing. Here “default” represents TSF with the

proposed settings. The other entries in the table use the same as settings as default with
the following exceptions: “entropy” uses only△Entropy for evaluating splits, “full
sampling” searches over all intervals, “log sampling” searches window sizes that are
powers of 2, “log+entropy” uses only△Entropy and searches window sizes that are

powers of 2.

Now compare TSF with the default settings to other classifiers: random forest

with 500 trees used on the original time values, nearest neighbors classifier (NN) with

Euclidean distance, nearest neighbors (NN) with dynamic time warping (DTW), and a

GBT method with a massive number of features (Massive) [75]. This work considers
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two versions of NN with DTW, “NNDTWBest” [65] searches the best warping window,

while “NNDTWNoWin” has no warping window. The results for the three NN classi-

fiers are obtained from [100]. Mean and median of error rates from all data sets are cal-

culated, and paired t-tests between TSF and all other classifiers are performed. It can be

seen from Table 21 that TSF has an obvious advantage over NN Euclidean and Random

Forest and it is significantly better than NNDTWNoWin at significance level of 0.10.

TSF is not significantly different from “NNDTWBest”, but the mean and median error

rates of TSF are obviously smaller. The Massive classifier is a strong performer from

the time series challenge [75], with results better than TSF, but as mentioned in Section

5.1, the results are not interpretable and the method is computationally complex. Note

that DTW is a strong solution for time series problems in a variety of domains [15].

The robustness of TSF accuracy to the number of trees is investigated. Figure

14 shows the change of average error rate from all data sets as the number of trees

increases. The error rate decreases as the number of trees increases, but the change is

relatively small after the number of trees achieves 100.

5.4.2. Feature extraction and summary

Features are extracted from TSF built from the training instances. To reduce

the number of features, set the number of trees for feature extraction to 50, and the

maximum depth as 5. Therefore, the maximum number of features that can be extracted

is 50 ∗ 25 − 1 = 1599. In addition, CFS [89] and ACE [58] is used to select a subset
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Figure 14. The average error rates from all data sets decreases as the number of trees
increases. The error rates become stable when the number of trees is more than 100.

of features. ACE is tuned for two-class data, and therefore is only applied to two-class

data sets. To summarize these features for classification, input the selected subset into

interpretable classifiers: C4.5 [95] and naive Bayes (NB). Then the error rates for these

classifiers are evaluated.

The results are shown in Table 22. The length of the time series was shown in

Table , denoted as M . The initial number of features extracted from TSF is denoted as

initTSF. The sizes of the subsets from feature selection are denoted as nCFS and nACE.

The error rates of C4.5 and NB using the original time series values (C4.5 and NB),

TSF interval features (C4.5TSF, NBTSF), and results after feature selection (C4.5CFS,

C4.5ACE, NBCFS, NBACE) are shown in the remainder of Table 22.

The mean and median of error rates and number of features from all data sets

are calculated. Paired t-tests between a classifier with CFS and a classifier with other
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feature sets are performed. After feature selection, nCFS is much smaller than initTSF,

which improves interpretability. By using interval features TSF, CFS, and ACE, for both

C4.5 and NB, are better than using the original time values at significance level of 0.001.

Furthermore, the accuracy of both classifiers using selected features from CFS is at least

as good as the classifiers using TSF. The accuracy of C4.5 using selected features from

ACE is competitive to C4.5 with other feature sets for data sets with two classes.
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TSF NN Random NNDTW NNDTW Massive
default Euclidean Forest Best NoWin

50words 0.266 0.369 0.332 0.242 0.310 0.235
Adiac 0.263 0.389 0.350 0.391 0.396 0.274
Beef 0.233 0.467 0.467 0.467 0.500 0.130
CBF 0.043 0.148 0.116 0.004 0.003 0.019

Coffee 0.036 0.250 0.321 0.179 0.179 0.004
ECG200 0.000 0.120 0.190 0.120 0.230 0.052
FaceAll 0.237 0.286 0.184 0.192 0.192 0.191

FaceFour 0.046 0.216 0.193 0.114 0.170 0.056
fish 0.154 0.217 0.211 0.160 0.167 0.147

GunPoint 0.073 0.087 0.093 0.087 0.093 0.079
Lighting2 0.197 0.246 0.246 0.131 0.131 0.131
Lighting7 0.260 0.425 0.247 0.288 0.274 0.256
OliveOil 0.133 0.133 0.200 0.167 0.133 0.170
OSULeaf 0.422 0.483 0.496 0.384 0.409 0.355

SwedishLeaf 0.136 0.213 0.117 0.157 0.210 0.107
syntheticcontrol 0.023 0.120 0.040 0.017 0.007 0.012

Trace 0.000 0.240 0.170 0.010 0.000 0.000
TwoPatterns 0.056 0.090 0.149 0.002 0.000 0.000

wafer 0.007 0.005 0.011 0.005 0.020 0.004
yoga 0.160 0.170 0.188 0.155 0.164 0.163
mean 0.1373 0.2337 0.2161 0.1636 0.1794 0.1192

median 0.1347 0.2165 0.1916 0.1560 0.1685 0.1185
t-test - 0.0000 0.0007 0.1428 0.0556 0.0419

TABLE 21
Time series forests (TSF) compared to alternatives: nearest neighbors (NN) based on

Euclidean distance, random forest (500 trees), NN with dynamic time warping
distance, a complex approach with a non-interpretable features (Massive).

NNDTWBestWin searches for the best warping window, but NNDTWNoWin has no
warping window. Paired t-tests between TSF and all other classifiers are performed
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Figure 15 - Figure 18 show the decision tree models using the selected features

from CFS as inputs for data sets ECG, Gunpoint, Trace and Wafer. These decision tree

models capture the time series characteristics well, and demonstrate simple interpretabil-

ity. It is also interesting that the decision tree model for ECG data set shown in Figure

15 indicates that the variance for the whole time series is a key feature to distinguish

the time series with two classes. A further look into the ECG data set discloses that the

variance is identically one for one class, and is less than one for the other class.
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class:−1
class:1

(a) Time series from the ECG
data set

variance(1−96)

≤ 0.999 > 0.999

class=1
(69.0)

class=−1
(31.0)

(b) The tree classifier for the
ECG data set

Figure 15. ECG time series and the corresponding decision tree classifier. The features
used in the tree models are extracted from CFS feature selection applied to features used
in TSF.

5.5. Conclusions

A time series forest (TSF) for time series classification, and feature extraction

is proposed. TSF has computational complexity linear in the length of a time series,

but is as accurate as a widely used alternative such as one nearest neighbor with the
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(b) Tree classifier for the gun-
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Figure 16. Gunpoint time series and the corresponding decision tree classifier. The
features used in the tree models are extracted from CFS feature selection applied to
features used in TSF.

dynamic time warping metric. Furthermore, a scalable size of features can be extracted

from TSF, and can be further reduced and summarized for better interpretability. The

effectiveness, and efficiency are demonstrated by testing on a full set of benchmark data

sets from UCR time series database [100]. The benchmark data sets are univariate, but

the method can be also used for multivariate time series classification. One disadvantage

of TSF is that it requires the time series to be aligned to the same length. Also TSF is

not suitable for time series that have serious distortion on the time axis. As DTW is

robust to the distortion of time axis, it would be worthwhile to integrate DTW into TSF

without loss of much interpretability.
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(b) The tree classifier for the
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Figure 17. Trace time series and the corresponding decision tree classifier. The features
used in the tree models are extracted from CFS feature selection applied to features used
in TSF.
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Figure 18. Wafer time series and the corresponding decision tree classifier. The features
used in the tree models are extracted from CFS feature selection applied to features used
in TSF.
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CHAPTER 6

BIAS OF IMPORTANCE MEASURES FOR MULTI-VALUED ATTRIBUTES AND

SOLUTIONS

6.1. Introduction

Attribute importance measures for supervised learning are closely related to at-

tribute selection and they are important for improving both learning accuracy and in-

terpretability [16, 17]. There are well known attribute importance measures such as

information-based measures. However, the bias problem for multi-valued attributes has

been recognized for these methods. The number of distinct values of a attributes is re-

ferred to as its cardinality. [80] noted that attribute selection with Gini gain measure

is biased in favor of those attributes with higher cardinality. [18] showed that there are

biases in information-based measures adopted by decision tree inductions. [81] showed

that attribute selection biases not only exist in information gain measures such as the

Gini index, but also in others such as the distance measure in Relief [82], etc.

For solving the multi-valued problem, [83] introduced a normalization into the

attribute selection measure known as the gain ratio. However, attributes with very low

information values then appeared to receive an unfair advantage [18, 81]. Also [18]

experimented with discrete, uniformly distributed attributes with different number of

levels. They concluded that Chi-square could be used for the multi-valued problem. [81]

proposed a minimum description length principle to alleviate the feature selection bias,

but also mentioned that there are still slight decreases in the importance measure with

the increasing cardinality.
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Recently, a conditional inference framework [84] was proposed to solve the

overfitting and attribute selection bias problems. [85] showed that this method demon-

strated promising results in both null and power cases. In the null case, all predictor

attributes are irrelevant with different cardinality. In the power case, only one predictor

attribute is informative, all other attributes are irrelevant with different cardinality [85].

Though these research methods have successfully discovered and alleviated the multi-

valued problem to some degree, there are still some important problems that are unre-

solved.

A permutation importance measure (PIMP) was introduced by [16]. It permutes

the target attribute and a p-value can be used to measure importance. However, PIMP

fits the importance score with a prior probability distribution. Though specifying a prior

distribution is not necessary, [16] used prior probability distribution in their experiments

(e.g., a gamma distribution for the simulated data, and a normal or lognormal distribution

in other cases) and this requires such a prior to be specified in practice. One of the

algorithms proposed here, pForest, also uses permutation importance, however, there

are significant differences between PIMP and pForest. pForest permutes the predictors,

and more importantly, makes use of a partial permutation strategy for better efficiency.

Furthermore, pForest does not need prior probability distributions to be specified.

Most experiments from the existing research are limited to some idealized sit-

uations. For example, [18] considered the multi-valued problem only for irrelevant at-

tributes, while [85] considered irrelevant attributes and only one informative attribute.

[81] considered irrelevant and equally informative attributes. However, there can exist
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both irrelevant and unequally informative attributes with different cardinalities. Further-

more, the informative attributes may interact with each other.

Therefore, it is important to consider the multi-valued problem under more real-

istic scenarios. Two two solutions are proposed for these problems. This work focuses

on two-class classification problems (one of the most common problems in supervised

learning), but it can be extended. This work also focuses on tree-based ensembles be-

cause of their capability to generate robust models that can handle nonlinearities, in-

teractions, mixed (categorical and numerical) attributes, missing values, attribute scale

differences, etc. However, the second method considered here is not limited to a certain

type of classifier. It is a meta approach that can be applied to a base classifier to improve

feature selection algorithms. Furthermore, this work contributes a more comprehensive

simulation framework for studying the problem that integrates multiple cardinalities,

and where non-equally informative attributes (with or without interactions) and irrele-

vant attributes co-exist. Such a framework can provide a useful benchmark to compare

alternatives.

Section 6.2 briefly summarizes some widely used importance measures. Section

6.3 proposes two attribute importance methods. Section 6.4 describes the simulation

framework and experimental results, while Section 6.5 provides conclusions.

77



6.2. Attribute importance measures

Several attribute importance measures are considered here. Random forest (RF)

[88] is a commonly-used feature selection tool, e.g. [58, 102]. It allows for not only

nonlinear models, but also interactions between predictor attributes. However, it can

suffer from the multi-valued problem because it is based on an information criteria.

Consequently, a remedy for RF’s problem is important.

A RF builds an ensemble of decision trees. Each tree is built on a bootstrap

sample (random, with replacement) from the original training data. Also, at each node

only a subset of attributes is selected from the full set of attributes and the split is cal-

culated only from members of this subset. The objective is to decrease the correlation

between trees in the ensemble in order to decrease the final model variance. RF uses

the Gini impurity criterion for scoring attribute importance. Denote Imp(Xk, τ) as the

importance of a attribute Xi at a single tree τ , then Imp(Xk, τ) =
∑

t∈τ △Gini(Xk, t)

where△Gini(Xk, t) is the Gini impurity decrease at a node t where Xk is the splitting

attribute. The Gini index at node t is defined as Gini(t) =
∑

j p
t
j(1 − ptj) where ptj is

the proportions of cases of class j at node t. The importance of Xk is obtained from the

sum of the importance scores from trees τm,m = 1, . . . ,M in a RF. For every tree τ

in the ensemble, the instances not selected in the bootstrap sample are referred to as out

of bag (OOB) and these cases can be considered to be a test sample for tree τ . These

samples are used in the proposed importance measure.

A conditional inference framework [84] was proposed to solve the overfitting
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problem and attribute selection bias problem. [85] used the method (referred as cFor-

est) to measure importance for multi-valued attributes in a model similar to a RF. In

this method, for each node, first the attribute to be split is selected by minimizing the

statistical p value of a conditional inference independence test. Then the splitting value

is established by an appropriate splitting criterion. The separation of attribute selection

and splitting criterion is the key to handle the cardinality bias [84].

6.3. Attribute importance from OOBForest and pForest

This section proposes two methods to score attribute importance. The first

method improves upon the RF methodology, while the second method can be applied to

RF, but also more generally to other feature selection algorithms.

An OOBForest [58] is applied to determine importance measures. An OOB-

Forest uses the training samples to find the best splitting value on each attribute in the

same manner as for a RF (with the Gini index as the default information measure). But,

instead of discarding the OOB samples when building a tree, the OOB samples are used

to select the best splitting attribute at a node. That is, the Gini index (as the default)

is recomputed for the OOB samples based on the split value obtained from the train-

ing data at each node. Furthermore, the importance measure △Imp(Xi, t) uses only

the OOB samples. The principle here is similar to a conditional inference framework.

The attribute selection criterion and splitting criterion are separated. The role of OOB

samples was discussed for model improvements in [58], this work proposes to use it to
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specifically solve the bias problem in measuring attribute importance. Computationally,

the extra work over a RF is to calculate the split score from the OOB samples at each

node in the forest. Because the OOB samples for a tree are typically smaller than the

original training data less time is needed (approximately 2/3 less) than to generate a

second RF (and the basic RF algorithm is fast [88]).

Next consider the pForest. Denote Xk, k = 1, ...,K as the predictors and T as

the target. [103] used permutation tests to obtain the statistical p value for dependency

between an Xk and T . Then the inverse of the p value was used as the importance of

the attribute. However, this method only measures the dependency of T over a single

attribute Xk and the interactions between predictors are not considered. Permutation

tests for feature selection was also used by [58]. Their method first randomly permutated

each attribute Xk, k = 1, ...,K and then compared importance score of an attribute to

the distribution of scores from the irrelevant variables obtained form the permutations to

obtain the corresponding attributes Zk, k = 1, ...,K.

The proposed algorithm also uses permutations, but an attribute is only com-

pared to permuted version of itself. Furthermore, the concept of partial permutations is

introduced. In each replicate r, by applying an importance method f(.) (such as RF)

to {Xk, Zk, T, k = 1, ...,K}, the importance score of Xk, Zk, k = 1, ...,K, that is,

Impr(Xk) and Impr(Zk) can be obtained. A feature Xk is compared directly to its

permuted version Zk in each replicate to match the cardinality between Xk and Zk (and
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this differs from [58]). Next consider the measure

Imp(Xk) =
1

R

R∑
r=1

I[Impr(Xk) > Impr(Zk)] (6.1)

where I(.) denotes the indicator function. It can be seen that
∑R

r=1 I(Impr(Xk) >

Impr(Zk)) follows a binomial distribution B(R, pk), where pk is the probability that

Imp(Xk) > Imp(Zk). It is not feasible to compute the true pk over all possible per-

mutations in most practical situations. Therefore, [103] suggested a bounded number of

permutations to achieve a significance level of 0.05.

The basic approach described so far is effective to distinguish informative from

noninformative attributes. However, to rank informative attributes a more subtle refine-

ment is used. For an informative attribute Xk one expects Impr(Xk) > Impr(Zk) in

most replicates. In order to better detect finer importance relationships, partial permu-

tations is proposed. That is, Zk is obtained from permuting a fraction of the rows of

Xk (a fraction δ selected randomly in each replicate). Consequently, as δ is decreased

Xk and Zk are more similar and it is more difficult for Impr(Xk) > Impr(Zk). Thus,

only more informative attributes can achieve larger Imp(Xk) values for small δ. The

default choice is δ = 20%. This partial permutation method to attribute importance,

with importance scores obtained from a RF, is referred to as the pForest.

Computationally, pForest is more demanding than OOBForest because each

replicate requires another RF to be generated. However, the speed of a RF enables even

hundreds of replicates to be computed in minutes for moderate data sets. Finally, note

that although this work focuses on decision-tree ensembles, the permutation strategy
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to solve the multi-valued problem can be applied to any feature selection method f(.).

One would simply replace the score Impr(Xk) with another method and still average

I[Impr(Xk) > Impr(Zk)] over the replicates.

Algorithm 4 pForest importance measure.

Input: R = number of permutation replicates; δ = percentage of rows permuted; train-
ing data D = {(xi, ti)|i = 1, . . . , N} with K features F = {X1...XK}; f(F,D):
a function that provides variables importance scores for attributes in F with data D
(default is RF).

for r in 1:R do
for k in 1:K do

Zk ← randomly select and permute δ ∗N rows of Xk

end for
set F ′ ← F ∪ {Z1, . . . , ZK}
Impr(F

′) = f(F ′, D)
end for
for k in 1:K do

Imp(Xk) =
1
R

∑R
r=1 I(Impr(Xk) > Impr(Zk))

end for

Output: Imp(Xk), for k = 1...K

6.4. Experiments

Similar to [18, 81, 85], The experiments are setup as simulations so that the

”ground truths” for variable importance are known. The relationship between the pre-

dictor variables and the target variable is shown in Figure 19. Here T1 and T2 are the

target attributes with and without interactions present in the model, respectively. All

other variables are predictor variables. The generation and properties for these variables

are summarized as follows:
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• Generate X1 ∼ Normal(0, 10), X1 is then discretized (equal-frequency) into X2

with 64 levels, X3 with 16 levels, X4 with 2 levels, X5 with 8 levels, X6 with 32

levels, respectively. Randomly permutate 30% of the rows of X5, and 50% of the

rows of X6. This introduces different amount of noise into the X5, X6 so that they

are unequally informative concerning the target.

• Generate Yk, k = 1, ..., 6 independent from Xk, k = 1, ..., 6. The generation

procedure is similar to the generation of Xk, k = 1, ..., 6.

• Generate U1 ∼ Uniform(−10, 10), and U1 is then discretized (equal-frequency)

into U2, U3, U4, U5, U6 with different cardinalities.

• The binary target T1 is generated as P (T1 = X4) = 0.95 and P (T1 ̸= X4) =

0.05.

• The binary target T2 is generated as P (T2 = xor(X4, Y4)) = 0.95 and P (T2 ̸=

xor(X4, Y4)) = 0.05 (where xor is the exclusive or logical operation).
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Figure 19. Relationship between predictors and targets along with cardinalities. Here T1

and T2 denote the target for the experiments with and without interactions, respectively.

Two experiments can be derived from the relationships among the attribute. In

first experiment, T1 is the target variable and {Xk, Uk, k = 1, ..., 6} are the predictor

variables. In the second experiment, T2 is the target variable and {Xk, Yk, Uk, k =

1, ..., 6} are the predictor variables. The difference between the two experiments is that

the true model for T2 includes interactions from the xor function. In each experiment,

50 replicates of data sets are simulated, each data set with 5120 = 10 ∗ 29 rows of data

so that all values of an attribute have the same number of rows. For example, for a

two-value attribute, value 0 and value 1 each have 2560 rows.
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By designing such experiments, the order of the importance scores for the pre-

dictor attributes is known. In the first experiment

Imp(X1) = . . . = Imp(X4)

> Imp(X5)

> Imp(X6)

> Imp(U1) = . . . = Imp(U6)

Therefore, there are four groups and attributes from the same group have equal informa-

tion regarding T1.

In the second experiment

Imp(X1) = . . . = Imp(X4) = Imp(Y1) = . . . = Imp(Y4)

> Imp(X5) = Imp(Y5)

> Imp(X6) = Imp(Y6)

> Imp(U1) = . . . = Imp(U6)

Therefore, there are still four groups and attributes from the same group have equal in-

formation regarding T2. A variable importance measure should be able to indicate such

orders of variable importance. The original random forest [88], Chi-square, OOBFor-

est [58], cForest [84, 85] and pForest are applied to the two data sets. Each forest used

200 trees. For the pForest test, set δ = 20% and R = 200. Because Chi-square works

only for categorical attributes, the continuous predictor variables were removed before

Chi-square importance measure were applied.

85



6.4.1. Results from experiments without interactions

The feature importance scores of all data sets for the experiment without interac-

tions are shown as box-plots in Figure 20. Figure 20(a) illustrates the expected pattern.

For basic RF in Figure 20(b), the importance measure prefers higher attributes

variables for both informative and irrelevant variables. Also, it can’t discriminate be-

tween X5 and X6. Furthermore, the continuous variable X1 has the greatest importance

score among the informative variables. However, for the irrelevant variables, the impor-

tance scores of the categorical attributes increase as the cardinality increases, and exceed

the importance score of the continuous attribute when the cardinality equals 64.
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Figure 20. Feature importance from different methods for experiments without interac-

tions. X axis represents variables, and Y axis represents importance score. Figure 20(a)

illustrates the expected pattern, and the importance score in Figure 20(a) only represents

a relative measure for comparing different variables.
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For cForest in Figure 20(c), there is no bias among the irrelevant variables, which

is consistent with the null case in [85]. cForest can also discriminate informative vari-

ables from irrelevant variables (though the differences between Imp(X5), Imp(X6) and

the Uk are not obvious), which is also consistent with the power case in [85]. However,

for the informative variables, cForest prefers higher cardinality variables. Furthermore,

it can not discriminate X5 from X6.

For Chi-square in Figure 20(d), higher-cardinality attributes are preferred for

irrelevant variables. However, it is able to rank informative variables higher than irrel-

evant variables. Furthermore, it perform well for those informative variables, that is,

there is no obvious multi-valued problems for informative variables.

For OOBForest in Figure 20(e), there is no bias in both informative and irrel-

evant variables. The expected orders among all predictor variables are well preserved.

Therefore, OOBForest has good performance here.

For pForest in Figure 20(f), there is no bias in both informative and irrelevant

variables. The expected orders among all predictor variables are well preserved. There-

fore, pForest is also has good performance here.

6.4.2. Results from experiments with interactions

The feature importance scores of all data sets for the experiment with interac-

tions are shown as box-plots in Figure 21. Figure 21(a) illustrates the expected pattern.

For RF in Figure 21(b), the bias is even more severe than in the previous ex-
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periment. The random forest cannot even discriminate irrelevant attributes from some

informative variables. The importance of U2 is only less than X2 and Y2. Therefore, the

variable importance scores from random forest are extremely unreliable here.
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Figure 21. Feature importance from different methods for experiments with interactions.

X axis represents variables, and Y axis represents importance score. Figure 21(a) illus-

trates the expected pattern, and the importance score in Figure 21(a) represents a relative

measure for comparing different variables.

For Chi-square in Figure 21(c), it cannot even distinguish between the informa-

tive variables and the irrelevant variables. This is expected because Chi-square does not

consider the interactions. This observation can be extended to other methods such as

information gain, which only consider dependency between a single predictor variable

and the target variable. It should noted that although random forest uses information

criteria for each node, the summary of all nodes in the forest considers the interactions

between the predictor variables.
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For cForest in Figure 21(d), there is no obvious bias among the irrelevant vari-

ables and cForest can also discriminate the informative variables from the irrelevant

variables (although the importance difference between X6 and Uis is not obvious).

However, there is multi-valued problem in the informative variables. In contrast to the

previous experiment, cForest now prefers lower cardinality attributes.

For OOBForest in Figure 21(e), there is no bias among the irrelevant variables.

The four groups can be discriminated. There are some minor importance differences

among the most informative variables.

For pForest in Figure 21(f), there is no bias in both informative and irrelevant

variables. The expected orders among all predictor variables are well preserved.

6.4.3. Selection of δ

Selecting a suitable δ is important for pForest to produce importance values

that match the true relative relevance of variables. If δ is too small, then the pForest

importance values for all variables tend to be small; and conversely, if δ is too large,

then all variables relevant to the class could have similarly large importance values.

An example is simulated to show the effect of δ selection. First, generate a two-level

categorical variable V , with equal number of cases at each level. The target variable T is

then derived from V with 5% rows randomly permuted, and the predictor variables V1,

V2 are derived from V with 20% and 40% rows randomly permuted. Therefore, both V1

and V2 are relevant to T , and Imp(V1) > Imp(V2). Here 100 cases are simulated, and
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pForest is used to measure the importance of V1 and V2 with varying δ. The experiment

is simulated 20 times. Figure 22 shows the average and standard errors of the pForest

importance over the 20 replicates at each δ value. It can be seen that the importance

values of V1 and V2 are similar when δ is too small or too large, and thus the importance

values do not match the true relationship: Imp(V1) > Imp(V2). Here 0.05 or 0.1 are

good choices for δ.

As seen from the example, the ability of pForest to distinguish small difference

in variable importance can depend on δ. A solution for selecting δ for a data set might

be testing different δ values, and selecting a δ value maximizing the variability of vari-

able importance values. This might better identify differences between the importance

values. However, this enhancement is not studied further here.
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6.4.4. Discussion

From the experiments, it can be seen that RF is not reliable for feature selection

when predictor variables have different cardinality, it always prefers high cardinality

variables. cForest performs well for those irrelevant variables with different cardinality.

However, it is not reliable enough for measuring the importance of informative vari-

ables with different cardinalities. Chi-square performs well regarding those unequally

informative variables when interactions are not present. However, it prefers higher-

cardinality ones for irrelevant variables. More importantly, Chi-square is not reliable

when interactions are present. The results of pForest are much better than random for-

est. OOBForest performs also well in both experiments.

6.5. Conclusions

The bias of attribute importance measures is an important problem. In particular,

the common use of RF for attribute importance is shown to be a concern. Two methods

are proposed to solve the bias problem. One is based on out-of-bag samples [58], while

the other method uses the new concept of a partial permutation test to refine the attribute

importance scores. The second method is studied with an RF, but can be easily adapted

to other feature scoring algorithms. The bias problem is studied in a simulation frame-

work that integrates different cardinalities, and where non-equally informative attributes

(with or without interactions) and irrelevant attributes co-exist. The proposed methods

are compared directly to two existing solutions for multi-value bias: Chi-square and a
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conditional inference framework. The experiments show that the existing methods are

not always reliable for multi-valued predictors, while the proposed methods compare

favorably.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

This dissertation transforms a set of system complexity reduction problems to

feature selection problems, which makes the original problems much easier to solve.

Three systems are considered: classification based on association rules, network struc-

ture learning, and time series classification. Furthermore, two variable importance mea-

sures are proposed to reduce the feature selection bias in tree models.

Associative classification rule pruning and summarizing have been active re-

search topics. While previous pruning methods focused on pruning rules to some de-

gree, this research proposes to prune rule conditions into a minimum subset without loss

of information regarding predicting the class, which suggests a new direction for rule

pruning. In addition, although previous associative classifiers were derived from simple

association rules, the large number of rules used in the final model results in limited in-

terpretability. The rule-based classifiers discussed here consist of a significantly smaller

number of rules without loss of accuracy, comparing to a well-known associative classi-

fier in the experiments conducted here.

Network structure learning is important for both discrete and continuous net-

works, and relaxed Gaussian assumptions are important for continuous networks. By

using minimum-relevancy-maximum redundancy feature selection methods, the net-

work local structure can be learned without any restrictions on the distribution of the

variables. Since tree ensembles are able to deal with complex data structures, a tree
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ensemble feature selection method is proposed to learn local structures for discrete or

continuous networks. The experiments conducted in this research illustrate the tree en-

semble method is superior to a Bayesian structure learning algorithm, and other feature

selection methods.

A time series forest (TSF) for time series classification, and feature extraction is

proposed. TSF has computational complexity linear in the length of a time series, but is

as accurate as widely used alternatives such as one-nearest-neighbor with the dynamic

time warping metric. Furthermore, a scalable size of features can be extracted from TSF,

and can be further reduced and summarized for better interpretability. The effectiveness,

and efficiency are demonstrated by testing on a full set of benchmark data sets from UCR

time series database [100]. The benchmark data sets are univariate, but the method can

be also used for multivariate time series classification.

The bias of attribute importance measures is an important problem. Two meth-

ods to solve the bias problem are proposed. One is based on out-of-bag samples, while

the other method uses the new concept of a partial permutation test to refine the attribute

importance scores. The second method is studied with a RF, but can be easily adapted

to other feature scoring algorithms. The proposed methods are compared to two exist-

ing solutions for multi-value bias: Chi-squared and a conditional inference framework.

The experiments show that the existing methods are not always reliable for multi-valued

predictors, while the proposed methods have advantages.
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7.2. Future work

Feature selection is used for rule condition subset selection after transforming

the rule condition set to a new data set. Since the predictor variables of the new data set

are binary, it would be worthwhile to study alternative feature selection methods more

efficient for binary data sets.

A feature selection method based on tree ensembles (ACE) is proposed to learn

MBs of Bayesian networks. The experiments conducted here show the effectiveness

of the method, still theoretical analysis is desired to understand why ACE works. In

addition, one objective of learning MBs of a Bayesian network is to help identify a

directed acyclic graph. Therefore, it is valuable to investigate if an approach similar to

ACE could be developed to learn the directions of arcs in a network.

For time series classification, one disadvantage of TSF proposed here is that it

is targeting time series with equal lengths. Though the time series can be aligned to the

same lengths before applying TSF, still improvement on handling time series of different

lengths would be desirable. As DTW has been considered one of the best solutions for

handling time series with different lengths, it would be worthwhile to integrate DTW

into feature-based methods without loss of much interpretability.

Potentially selecting the best interval feature at each node in TSF can be formu-

lated as an optimization problem: the solution space consists of all the interval features,

and the objective function is the evaluation criteria in TSF. Considering that interval

features extracted from time series are closely related, it is valuable to find an efficient
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method to solve the optimization problem.

Both OOBForest and pForst considered here can be used to measure attribute

importance. While OOBForest is also a classifier less biased than random forest, pForst

considered so far can be only used for measuring attribute importance. Therefore, it

would be worthwhile to find a way to build a less-biased tree model by using the pForest

concept. Furthermore, future work on reducing the computational complexity of pForest

would be desired.
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