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ABSTRACT

Type Ia supernovae are important, but mysterious cosmological tools. Their standard

brightnesses have enabled cosmologists to measure extreme distances and to discover dark en-

ergy. However, the nature of their progenitor mechanisms remains elusive, with many competing

models offering only partial clues to their origins. Here, type Ia supernova delay times are ex-

plored using analytical models. Combined with a new observation technique, this model places

new constraints on the characteristic time delay between the formation of stars and the first

type Ia supernovae. This derived delay time (500 million years) implies low-mass companions

for single degenerate progenitor scenarios.

In the latter portions of this dissertation, two progenitor mechanisms are simulated in

detail; white dwarf collisions and mergers. From the first of these simulations, it is evident

that white dwarf collisions offer a viable and unique pathway to producing type Ia supernovae.

Many of the combinations of masses simulated produce sufficient quantities of 56Ni (up to 0.51

solar masses) to masquerade as normal type Ia supernovae. Other combinations of masses

produce 56Ni yields that span the entire range of supernova brightnesses, from the very dim and

underluminous, with 0.14 solar masses, to the over-bright and superluminous, with up to 1.71

solar masses. The 56Ni yield in the collision simulations depends non-linearly on total system

mass, mass ratio, and impact parameter.

Using the same numerical tools as in the collisions examination, white dwarf mergers

are studied in detail. Nearly all of the simulations produce merger remnants consisting of a cold,

degenerate core surrounded by a hot accretion disk. The properties of these disks have strong

implications for various viscosity treatments that have attempted to pin down the accretion

times. Some mass combinations produce super-Chandrasekhar cores on shorter time scales than

viscosity driven accretion. A handful of simulations also exhibit helium detonations on the

surface of the primary that bear a resemblance to helium novae.

Finally, some of the preliminary groundwork that has been laid for constructing a new

numerical tool is discussed. This new tool advances the merger simulations further than any

research group has done before, and has the potential to answer some of the lingering questions

that the merger study has uncovered. The results of thermal diffusion tests using this tool have

a remarkable correspondence to analytical predictions.
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Chapter 1

INTRODUCTION

Late one night in 1572, a young Tycho Brahe walked out of Herrevad Abbey in Denmark to

gaze at the night sky, as he often did, and remarked upon a bright new star in the constellation

Cassiopeia. Since the universal assumption from the time of Aristotle was that the celestial

sphere beyond the Moon and planets was immutable, surely this new star did not belong to

the population of ordinary stars that resided far beyond them. The planets, as was known

since antiquity, exhibited a parallax, or a relative motion with respect to the background stars

over periods of days to months, and this new star was certainly bright enough to be a planet,

appearing brighter even than Venus. Tycho Brahe, perhaps surmising that this new star might

not be a planet, was so intrigued by this peculiar object that he built his own sextant in the

hopes to observe its parallax and carefully measured its position nearly every night for the next

year. And while the star had dimmed slightly over this time, much to his delight, it appeared

not to move relative to the background stars. This placed it firmly among the stars, and he

dubbed it a “stella nova” - the latin phrase for “new star.”

Tycho’s observations of this object made him world-famous and heralded the beginning

of a new era of precision astronomy that has persisted to this day. We now know that Tycho’s

new star was actually a supernova (SN1572), and in particular, a unique class of supernovae

called a type Ia supernova. The light from that cataclysm, observed so many centuries ago, has

been echoing across the galaxy and back to us ever since (Krause et al. 2008), and the remnant

is still visible today with powerful telescopes (see Figure 1.1).

1.1 Type Ia Supernovae as Cosmological Tools

Type Ia supernovae (SNeIa) are thought to be responsible for the largest contribution of iron-

group elements to the early universe (Wheeler et al.1989; Timmes et al. 1995; Feltzing et al.

2001; Strigari 2006), and they serve as direct probes of low-mass star formation rates at high red-

shift (Scannapieco & Bildsten 2005; Mannucci et al. 2006; Maoz 2008). In addition, they have

the remarkable property of being (nearly) standard candles. That is, their intrinsic brightnesses

can be inferred from other properties of their lightcurves (Phillips 1993). When the intrinsic

brightness of an object is known, its apparent brightness is then only a function of its distance,

and so SNeIa are routinely used to calculate extreme distances for cosmological measurements
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Figure 1.1: Composite image of the remnant of SN 1572 as seen by Chandra X-Ray Observatory,
Spitzer Space Telescope, and Calar Alto Observatory.

(Branch & Tammann 1992). Measurements made from SNeIa distance calculations led to the

discovery of the acceleration of the universe’s expansion, revitalizing the concept of a cosmo-

logical constant or dark energy. However, the nature and history of the dark energy remains

elusive.

A significant complication for performing cosmology with SNeIa is the uncertainty in

the brightness measurements, especially at high redshift. Though the Phillips relation provides

a guide to deriving their brightnesses, there are a number of systematic errors that creep into

the observations and not all SNeIa fit the standardizing templates. The result is that SNeIa

measurements lack the precision necessary to shed light on any of the major mysteries that the

existence of dark energy has uncovered (see Figure 1.2 showing distance vs. Hubble residuals).

We might achieve this precision were it not for the fact that as of yet, the astrophysical

community lacks a clear understanding of the exact mechanism responsible for producing SNeIa.

While the basic constituents are known, there are many competing theories of the dynamics that

lead to the supernova, of the nature of the detonation, of the interaction of the supernova ejecta
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Figure 1.2: A hubble diagram drawing from several SNeIa observations. The errors in the
Hubble residuals become quite large at high redshift. Reproduced from Kowalski et al. (2008).

with circumstellar gas, and of the physics responsible for making SNeIa standardizable at all.

If SNeIa are to remain useful for cosmology, all of these variables will need to be understood in

the context of a progenitor mechanism with high predictive value.

1.2 White Dwarf Stars & Progenitor Mechanisms

When a typical star nears the end of its life, it will have burned much of its hydrogen into

helium, and for a star larger than roughly 1.5 solar masses (1.5M⊙ ), much of that helium into

carbon and oxygen. These burning products settle by gravity into the core of the star where

no further burning occurs if the star is less than 8M⊙ . Without nuclear energy generation to

halt the contraction due to gravity, the core material collapses into an ever smaller volume until

Pauli’s exclusion principle, which holds that no two electrons may occupy the same quantum

state, prevents any further collapse. The absence of free quantum states (or in other words, the

filling of all quantum states) in any system is called degeneracy. The material that comprises

the core of a star at this stage is said to be in a degenerate state, as it is the electron degeneracy

pressure that is supporting it against further collapse from gravity. As the star sheds its outer

layers, this degenerate core remains as a white dwarf star and shines with residual thermal
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energy for billions of years, but is otherwise an inert object.

White dwarf stars have a number of peculiar features. Foremost among them is their

unintuitive mass-radius relation. We may derive an approximation of this relation by requiring

that the star is in pressure equilibrium. This implies that the gravitational potential energy per

unit mass,

Eg ≈
−GM
R
, (1.1)

where M is the total mass of the star and R is the radius, is equal in magnitude to the total

kinetic energy per unit mass. The kinetic energy of a unit mass of degenerate gas in a white

dwarf derives from the motions of each of its electrons (Ee = p2/2me). Since the electrons

are finely constrained in degenerate gas, we may approximate their momentum to be of order

the uncertainty in their momentum (i.e. p ∼ ∆p = �2∆x−1). With not much room for these

electrons to move, ∆x will be of order the average inter-electron spacing, or n−1/3, where n is

the number density of electrons. This total kinetic energy per unit mass is then

Ek ≈ N
∆p2
2me
≈ N �2n2/3

2me
≈ N5/3M

2/3�2

2meR2 , (1.2)

where N is the total number of electrons per unit mass and me is the mass of an electron.

Setting these energies equal to each other (|Eg| = Ek) yields

GM

R
= N5/3M

2/3�2

2meR2 ,

R = N5/3�2

2meGM1/3 . (1.3)

SinceN depends only on the isotopic composition of the white dwarf, this implies an approximate

scaling relationship between radius and mass of R ∝M−1/3.

This remarkable conclusion implies that when a white dwarf grows more massive, it

actually becomes physically smaller. Indeed, while the most common white dwarfs with a mass

of 0.6M⊙ have a radius about the same as the Earth, R ≈ 0.01R⊙ , the most massive white

dwarfs, nearing 1.4M⊙ are only 3/4 as large. This mass-radius scaling relation will become

important in subsequent chapters as it governs much of the dynamics of how white dwarfs

interact.

A second peculiarity of white dwarf stars is that in being composed of degenerate gas,

they do not respond to thermodynamical changes like an ideal gas. With their pressure support

deriving entirely from electron degeneracy, changes in temperature are not reflected in changes
4



in pressure. In fact, the equation of state for a white dwarf can be more aptly approximated

as P ∝ ργ , where γ is a parameter that relates to the degree of degeneracy. In practice, with

pressure scaling only with density, this means that strong temperature fluctuations that incite

nuclear burning of degenerate gas will quickly run away, as the thermal energy produced by the

burning raises the temperature of the gas, but the gas does not respond by expanding, cooling

and quenching the burn. As the temperature rises, the nuclear burning rates increase, and what

was a slight increase in temperature rapidly evolves into a catastrophic detonation.

A type Ia supernova is the observed transient after the thermonuclear detonation of one

(or more) of these white dwarf stars. The light it produces is powered by the radioactive decay

of 56Ni (a product of intense carbon-burning) to 56Co, and subsequently to 56Fe. Its spectra is

characterized by a lack of hydrogen and helium lines, distinguishing it from type II and type Ib

supernovae, respectively, and by a singly-ionized silicon line at 6150Å, distinguishing it from a

type Ic supernova. These features together strongly support the idea that the progenitor star

is a carbon-oxygen white dwarf, devoid of any hydrogen or helium. Several features of SNeIa

spectra also suggest that there is a protracted deflagration phase before the detonation, where

carbon and oxygen are burned more slowly than in an outright detonation. How an otherwise

inert white dwarf star, that is typically not subject to any temperature fluctations, detonates

in this fashion is hotly debated and several competing models exist.

The most commonly accepted progenitor model consists of a single white dwarf star

accreting helium gas from an evolved, late-stage companion star like a red giant or asymptotic

giant branch star (Whelan & Iben 1973; Nomoto 1982; Hillebrandt & Niemeyer 2000), as is

depicted in Figure 1.3. In this accretion model, the white dwarf will grow in mass until it

reaches what is called the Chandrasekhar limit, the maximum allowable mass for a white dwarf

star (≈ 1.4M⊙ ; Chandrasekhar 1931). This would seem to be a natural explanation for the

Phillips relation, since a progenitor mechanism that requires the same white dwarf mass every

time removes one of the most confounding free parameters. However, there are a number of

theoretical hurdles for this model.

First, it is not clear that pushing a white dwarf up to the Chandrasekhar limit can

always produce a type Ia supernova. In fact, it may be much more likely that a white dwarf at

this limit, where electron degeneracy pressure can no longer support gravity, will simply collapse

to form a neutron star. The likelihood for so-called “accretion induced collapse” was explored
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Figure 1.3: An artist’s depiction of a white dwarf star (left) accreting gas from an evolved
companion (right). c�David A. Hardy.

in detail by Nomoto & Kondo (1991). Second, there are several observations that suggest this

mechanism cannot be responsible for every type Ia supernova. Observations of SN2007if by

Scalzo et al. (2010) and of SN2009dc by Tanaka et al. (2010), suggest 1.6±0.1M⊙ and 1.2M⊙ of
56Ni, respectively. Observations of SN2003fg by Howell et al. (2006) and of SN2006gz by Hicken

et al. (2007) both suggest 56Ni yields of ≈ 1.3M⊙ . All of these yields are far too great to have

been generated by the detonation of a single, Chandrasekhar-mass white dwarf. Instead, it is

suggested that these SNeIa arose out of double-degenerate scenarios; progenitor mechanisms

involving two white dwarf stars.

By contrast, in double-degenerate models, two white dwarfs merge or collide, triggering

a detonation and subsequent supernova. These models have the benefit of having much more

relaxed mass constraints. In fact, the Chandrasekhar mass isn’t a factor in as much as these

models are able to replicate supernovae with a range of progenitor masses extending from as

little as 0.5M⊙ up to 1.4M⊙ for one of a pair of white dwarfs. The bulk of this thesis focuses

on exploring two double-degenerate models - collisions and mergers - as possible progenitors for

SNeIa. While it is not clear how common double-degenerate SNeIa progenitors are as compared
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to single-degenerate progenitors, double-degenerate models have the potential to answer many

of the outstanding questions about peculiar SNeIa, as the supernovae they produce span the

brightness range from very dim “point-Ia”-like SNe, to the overluminous SNeIa with super-

Chandrasekhar masses of 56Ni.

What is clear from the observed supernova rates is that whatever the mechanisms that

are ultimately responsible for producing SNeIa, nearly 1% of all white dwarf stars ever formed

must be converted to SNeIa. This is a staggeringly high conversion rate and suggests the culprit

mechanisms are robust. That is, a wide range of parameters must lead to the same basic result.

In this thesis, I intend to describe the work I have done to illuminate some of the prop-

erties of SNeIa progenitors in the hopes of providing clues that explain some of the peculiarities

of SNeIa and allow for better distance measurements that employ them. Starting with chapter

2, I describe an observational project that measured the characteristic time delay between the

formation of stars and the onset of SNeIa. This time delay reveals important details about the

age and possible progenitor masses of the white dwarfs that eventually lead to SNeIa and has sig-

nificant implications for the competing progenitor scenarios. In chapters 3 and 4, I describe two

ground-breaking simulation studies modeling double-degenerate collisions and mergers. Many

of these simulations are the first of their kind and have opened the door onto a new avenue for

SNeIa research. In chapter 5, I discuss what lies ahead for future SNeIa progenitor studies and

which mysteries might be solved sooner than others.
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Chapter 2

PROMPT IA SUPERNOVAE ARE SIGNIFICANTLY DELAYED

The time delay between the formation of a population of stars and the onset of type Ia super-

novae sets important limits on the masses and nature of SNeIa progenitors. Before investigated

the plausibility of particular progenitor mechanisms, we first examine this delay time in detail.

Since SNeIa may have a range of time delays, much work has been dedicated to mapping out

their delay-time distribution (DTD). However, the characteristic delay time is often simpler to

measure and can provide a more general framework for developing progenitor mechanism the-

ories. In this chapter, we describe a new observational technique to measure the characteristic

time delay of the DTD by comparing the spatial distributions of SNeIa to their local envi-

ronments. Previous work attempted such analyses encompassing the entire host of each SNIa,

yeilding inconclusive results. Our approach confines the analysis only to the relevant portions

of the hosts, allowing us to show that even so-called “prompt” SNeIa that trace star-formation

on cosmic timescales exhibit a significant delay time of 200-500 million years. This implies that

either the majority of SNeIa companion stars have main-sequence masses less than 3M⊙ , or

that most SNeIa arise from double-white dwarf binaries. This conclusion has important impli-

cations for the work that will be discussed in later chapters. The results here are also consistent

with a SNeIa rate that traces the white dwarf formation rate, scaled by a fixed efficiency factor.

2.1 Introduction

Type Ia supernovae serve as the primary cosmological standard candles (Colgate 1979; Branch

& Tammann 1992; Phillips 1993), due to their extremely regular light curves (Pskovskii 1977;

Phillips 1993). However, this regularity need not imply that they share a common progenitor.

Indeed, one striking bimodality is that the brightest SNeIa occur in star-forming galaxies, and

the dimmest SNeIa occur in galaxies with little star-formation (Hamuy et al. 1996; Howell 2001;

van den Bergh & Filippenko 2005). This points to an evolution of SNeIa progenitors, and in fact,

while several parameterizations of the SNeIa rate exist (Greggio & Renzini 1983; Kobayashi et

al. 2000; Greggio 2005), current data is well fit by a two-component parameterization (Mannucci

et al. 2005; Scannapieco & Bildsten 2005), which takes the form

SNRIa(t) = AM∗(t) +BṀ∗(t). (2.1)
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Here, we refer to the A-component, which is proportional to the total stellar mass of the host, as

delayed, and to the B-component, which is is proportional to the instantaneous star-formation

rate, as prompt. Note that these words have been occasionally used slightly differently in

the literature (Greggio & Renzini 1983; Mannucci et al. 2006), assigning SNeIa as prompt or

delayed/tardy based on timescales, rather than the parameterization in eq. (1).

Despite the usefulness of eq. (1) on long time scales, there are several reasons to believe

that the prompt component should not be pinned to the instantaneous star-fomation rate. If

core-collapse supernovae (SNcc) and prompt SNeIa occured simultaneously, the oldest stars in

the Milky Way would be much more strongly enriched with iron group elements than observed

(McWilliams 1992; Scannapieco & Bildsten 2005). Furthermore, unlike SNcc, SNeIa can not

arise before stars evolve to form white-dwarfs, which takes at least 40 Myrs. Thus, it is likely

that the prompt component exhibits its own delay time, τ , such that SNRIa(t) = AM∗(t) +

BṀ∗(t− τ), where current constraints, which use the global properties of host galaxies, place

an indirect upper limit of τ ≤ 500 Myr on this timescale (Dahlen et al. 2004; Gal-Yam & Maoz

2004; Mannucci et al. 2005; Scannapieco & Bildsten 2005; Sullivan et al. 2006; Dilday et al. 2008).

Galaxies older than this age have fewer SNeIa, suggesting the characteristic delay time of the

prompt component cannot be longer than 500 Myr. An alternative model is that SNeIa occur

at a rate that is directly proportional to the white dwarf formation rate (WDFR). In particular,

Pritchet et al. (2008) argue for a uniform conversion of newly formed white dwarfs into type

SNeIa at an efficiency of ≈1%, matching the observed rates of SNeIa. This would fix the Ia rate

as being proportional to the stellar death rate of stars less than 8M⊙ .

In this chapter, we employ a new observational technique measuring the spatial distri-

butions of SNeIa and compare the results to analytical models with the goal of constraining

the delay time, τ , for the B-component in the A+B formalism, and the feasability of the white

dwarf formation rate (WDFR) model. The structure of this chapter is as follows. In §2, we

review previous work constraining the progenitors of other classes of transients, and build on

these techniques to develop a new analysis applicable to type Ia SNe. In §3, we review the

construction of the analytical host model for comparison from Raskin et al. (2008), including

modifications necessary to make accurate comparisons to the results of our new observational

technique. We present our results of the analysis and comparisons in §4, and conclusions are

given in §5.
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2.2 Data and Analysis
Previous work

Fruchter et al. (2006) developed an observational approach in which, for each host galaxy, they

computed the fraction of the total light (or photon counts) in all pixels fainter than the pixel

containing a transient. By compiling a sample of such measurements into a cumulative his-

togram, they demonstrated that long-duration gamma-ray bursts are more likely than SNcc to

cluster in the brighter regions of a galaxy. Kelly et al. (2008) expanded upon this analysis to

distinguish between SNcc subtypes Ic, Ib, and type II (see also Anderson & James 2008).

However, this study showed no difference between SNcc and SNeIa, even though SNcc

arise from massive, short-lived stars rather than from white dwarfs that form from longer-lived

stars. In fact, both populations followed the same distribution as that of the g-band light. In

the core-collapse case, this is because young stars lead both to supernovae and the brightest

regions. On the other hand, SNeIa are not likely to arise from ongoing star formation, but they

nevertheless share the same radial exponential profile as the g-band light, which is caused by a

radially-decreasing density of stars. This radial gradient is large enough to obscure any signal

caused by a delay in the prompt component (Raskin et al. 2008).

Doughnut Method

What is needed is a procedure that correlates SNeIa with the properties of nearby regions,

rather than with the host as a whole. In a spiral host, the ideal method for constraining SNIa

progenitors would be to measure the relative brightness of pixels within annuli. In this case, as

the density wave of star-formation moves around each annulus, SNeIa would appear behind it

at a characteristic surface brightness determined by the level to which a stellar population fades

away in the g-band before SNeIa appear. The g-band is ideal for this analysis as it fades away on

the order of 100 Myrs, a similar time as that of white dwarf formation. However, observations

are never perfect, and observing a single annulus of a spiral host is subject to complications

such as spurs, knots, and gaps, as well as the fact that stars rarely follow circular orbits.

We call our solution to this problem the doughnut method, and it builds directly on the

method described in Fruchter et al. (2006). The idea is to expand an annulus radially by some

small but appreciable radius, so as to encompass enough of the host’s morphological peculiarities
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Figure 2.1: A sample image showing a spiral host, NGC 3892, with a doughnut constraint,
having a width of one-half the scale radius of the galaxy. The highlighted region has a small
radial gradient, but still samples an area in which stars have an appreciable spread in ages
reflected in their g-band surface brightnesses. The cross marks the location of type Ia supernova
1963J.

to have a good representative sample, yet narrow enough to represent local variations in the

host light. Figure 1 illustrates this concept.

Sample Selection

Our sample was drawn from the the Padova-Asiago Supernova Catalogue (Barbon et al. 1999),

by selecting those events occurring within z < 0.07 spiral hosts with Sloan Digital Sky Survey

(SDSS) g-band images. While this yielded 98 SNeIa, we also removed those that occurred within

2�� of a foreground star or within a galaxy inclined more than 60◦ or involved in a merger. This

resulted in 50 usable images, and as a control sample, we also selected all SNcc meeting these

criteria, which resulted in 74 usable images.

Note that before the advent of CCD astronomy, it was difficult to spot a supernova

against the background light when it occurred near the bright center of its host galaxy (see

Shaw 1979). This induces a bias in most SN catalogs, the effect of which is to count fewer

supernovae at small radii than would be expected from the stellar distribution in the hosts (e.g.

Howell et al. 2000). Figure 2.2 shows the radial distribution of SNeIa in our sample, which

indicates a minor deficiency at small radii when our sample is compared to an exponential

density distribution. Thankfully, our doughnut method overcomes this bias since it relies only
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Figure 2.2: A cumulative histogram of the number of SNeIa vs. radial coordinate showing a
deficit at small radii when compared to an exponential density distribution. Note that while the
density of stars in a spiral host follows an exponential radial profile, the projected area scales
as the square of the radius, resulting in 0 SN counts at the very center.

on the local environment of the transient. Constraining our sample, then, to only recently

discovered SNe has little to no effect on our results. On the other hand, when global properties

are considered, as in a traditional Fruchter et al. (2006) analysis, this bias can have drastic effects

on the conclusions about SNeIa progenitors.

Given the typical resolution of SDSS images and the distances to these hosts, we settled

on a doughnut width of 0.5r0, or 0.25r0 on either side of the transient, where r0 is the scale

radius. Host deprojection was carried out using the 25th mag B-band isophote as measured by

the Padova-Asiago group, and to obtain the weighted average brightness within the uncertainties

in the supernova location, we applied a gaussian convolution with σ = 1.2��. Figure 2.3 shows

the cumulative supernova distribution vs. the cumulative light distribution. Unlike analyses

that use the full galaxy light, our approach is able to distinguish between the SNcc and SNeIa

distributions with 99.6% confidence, as quantified by a Kolmogorov-Smirnov (KS) test. SNeIa

are clearly biased to fainter pixels, while the SNcc distribution closely follows the g-band light

distribution.

In order to interpret this separation of the SNeIa from the SNcc data, we construct
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an analytical model of a spiral galaxy following that of Raskin et al. (2008) with the necessary

modifications to account for the doughnut method. Such a model allows us to age date the

SNeIa by reproducing spatial distributions for a range of SNeIa delay times.

Figure 2.3: A histogram of the number of SNeIa (crosses) located in pixels brighter than a given
fraction of the g-band host galaxy light contained within the surrounding “doughnut,” which
shows that SNeIa tend to occur in dimmer regions. A histogram of SNcc (circles) is also plotted,
which closely follows the g-band light distribution. The two supernova histograms are different
at the 99.6% confidence level.

2.3 Model Distribution

In such a model, we define the g-band surface brightness at a radius r and angle θ at a given

time, t, as the convolution

Σg(r, θ, t) =
�
t

0
dt�Lg(t− t�)Σ̇(t�, r, θ), (2.2)

where Lg(t) is the g-band luminosity per unit solar mass of a population stars with a total age

of t and is extracted from a Bruzual & Charlot luminosity model (Bruzual & Charlot 2003;

Raskin et al. 2008), and Σ̇(t, r, θ) is the star formation rate surface density as a function of time

and position.
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The star formation rate (SFR) takes the form of a rotating, fixed-body density wave.

We approximate the density wave as a Dirac-delta function modulated by a radial profile φ(r),

Σ̇(r, θ, t) = φ(r)
∞�

n=0
δ(θ − nπ − Ωpt), (2.3)

where Σ̇ has units of mass per unit time per unit area, as does φ, and Ωp is the pattern speed

of the star-forming density wave in the frame of the stars, whence

Ωp(r) = v0
r0

�
1− 1√

2

�
− Ω∗(r), (2.4)

Ω∗(r) =
�
v0/r r > 1kpc

v0/1kpc r ≤ 1kpc,

with v0 being the circular speed at 1kpc and r0 is the scale radius. This pattern speed will have

a singularity at

r = r0
�

1− 1√
2

�−1
≈ 3.414r0, (2.5)

where the pattern does not move with respect to the stars. This is called the corotation resonance

orbit (Binney & Tremaine 1987; Goldreich & Tremaine 1981) and any simulation would have to

terminate at radii below this coordinate.

In our simulations, we used a pattern speed that rotates 2π radians in 300 Myr, although

this speed was varied by a factor of two and ruled out as having a significant effect on the results.

For calculating Σg, the integrated luminosity in the g-band, at some time after the formation of

these stars, we employ the stellar evolution data from GALAXEV which gives us the magnitude

of a sample of stars at some time t in a particular band. We use the spline routine from numerical

methods (Mathews 1992) to construct a semi-analytical expression for the magnitudes with time

and convert to a luminosity, Lg, and convolve this expression with the SFR. From this, we obtain

an expression for the surface brightness of a pixel (r, θ) at a time t,

Σg(r, θ, t) = φ(r)
∞�

n=0
Lg

�
t− θ − nπΩp

�
|Ωp|−1. (2.6)

The image created by this simple expression represents a snapshot at a time t of the host galaxy

in the g-band.

For modeling the radial profile, observational evidence suggests an exponential in r

provides the best approximation, with

φ(r) = Σ̇0 exp
�
−r
r0

�
, (2.7)
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where Σ̇0 sets the star formation amplitude.

In order to compute the SNeIa distribution, we replaced Lg(t) with SNRIa(t) as given

by eq. (2.1), where the prompt component is modeled by a finite-width gaussian distribution

of width σ = 0.1τ Myr, centered on an adjustable delay time, τ . Larger values for σ were also

attempted, but these did not alter the best-fit τ , and instead only reduced the goodness of fit,

with the exception of very large σ values, which yielded poor fits for all τ . Furthermore, it is

crucial that the number of prompt and delayed SNeIa in our sample be adjustable rather than

just adopting the average low-redshift numbers. This is both becuase our hosts are selected to

be star forming, and because of a likely Malmquist bias due to the fact that prompt SNeIa are

significantly brighter than delayed SNeIa. Thus we are left with two independent parameters:

τ , the delay time, and Fdelayed the fraction of delayed SNeIa in our sample.

We can estimate this fraction in two ways. First, our SNeIa hosts have a mean color of

B−K = 3.53.Within this color bin SNeIa occur at roughly three times the rate seen in elliptical

galaxies (Mannucci et al. 2005), which would suggest that Fdelayed ≈ 0.3. Second, Howell et

al. (2007) established a strong correlation between this fraction and the distribution of SNeIa

stretches at varying redshifts. They found that long stretches are indicative of prompt SNeIa,

while short stretches indicate delayed SNeIa. Figure 2.4 shows a histogram of the stretches

for a subset of our sample that are available in the literature (dark gray, Conley et al. 2008)

and the distribution for the same redshift bin found by Howell et al. (2007, light gray). Again,

because our selection criteria favor star-forming galaxies, a resultant two-component fit using the

values for mean stretches (s̄) and dispersions (σ) of each component from Howell et al. (2007)

demonstrates a mix more heavily favoring the long-stretch, prompt component than would

normally be the case in a unbiased sample of low redshift hosts. Integrating these gaussians

yields an estimate of Fdelayed = 0.56. For our full analysis then, we consider Fdelayed to be

an adjustable parameter, where our galaxy colors suggest Fdelayed ≈ 0.3 and the results of our

stretch analysis provide a natural upper limit of Fdelayed ≤ 0.6.

For every choice of Fdelayed and τ , two images were produced and analyzed using the

doughnut method: one representing the host surface brightness and the other representing the

SNeIa probability density. The radial light decay across the doughnut was also measured for each

observed host. For the most part, ln[L(rSN − 0.25r0)]− ln[L(rSN + 0.25r0)] ≈ 0.5, where rSN is

the radial coordinate of the SN, but a few supernovae were found in regions where this relation
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did not strictly hold, and this variation was used as a small modification to our model in a Monte

Carlo fashion. However, the model cannot fully account for the numbers of SNeIa observed in

pixels fainter than the 20th percentile. In the model galaxy, with a doughnut centered on the

annulus containing the SN, the dimmest regions will always lie at the outermost edge of the

doughnut where SN probability is zero. In real galaxies, dim regions may lie anywhere, and a

small number of the SNeIa will be found in these dim regions.

Figure 2.4: A histogram of the distribution of stretches in our sample (dark gray) showing a
different distribution as compared to that of Howell et al. (2007) for the same redshift bin (light
gray). Using s̄ and σ values for each component from Howell et al. (2007), a two-gaussian fit for
the prompt and delayed components with χ2 = 12.18 is overlaid.

For the white dwarf formation rate model (WDFR model), SNRIa(t) was derived from

the Chabrier IMF (Chabrier 2003) convolved with the main-sequence turn-off ages from Bruzual

& Charlot (2003) times 10% to approximate stellar lifetimes, for all stars below 8M⊙ (see Raskin

et al. 2008). Stars whose turn-off ages are older than our simulated galaxy (≈10 Gyr) do not

contribute to the simulated SN distribution. Pritchet et al. (2008) suggest a uniform conversion

of ∼1% of all white dwarfs to SNeIa. However, the Fruchter et al. (2006) approach, and by

extension our doughnut method, disregards the total count of SNe, instead being concerned

only with the relative distribution.

2.4 Results

In Figure 2.5 we plot A+B model distributions with Fdelayed = 0.3 and varying delay times as

well as the result of the WDFR model. It is clear from the A+B model curves that larger values
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for τ provide increasingly good fits to the data, while the 50 Myr model is inconsistent with

the observations. Because our model galaxy has two free parameters, however, we must account

for degeneracy between τ and Fdelayed. Figure 2.6 illustrates the two-parameter KS probability

map for our sample when compared to our model with varying Fdelayed values and delay times.

Figure 2.5: Model curves representing the A+B model for several delay times as well as the
white dwarf formation rate model are shown compared to the observed distribution of SNeIa.
Both the τ = 300 and WDFR models provide excellent fits to the data.

Both the two-parameter map and the average KS probabilities for all tested Fdelayed

values show a clear trend toward longer delay times with the probability reaching its maximum at

≈ 500 Myr and one value of Fdelayed yielding a probability of 82% at this τ . This is a significant

delay time, roughly corresponding to the lifetime of a 2.5M⊙ star at solar metallicity, and is

much longer than the minimum theoretically expected time of 40 Myrs. The best fit delay time

for all models, even those with high values of Fdelayed, is longer than 200 Myr and probably

longer than 300 Myr. On the other hand, global approaches place an upper limit of τ ≤ 500

Myrs (Dahlen et al. 2004; Gal-Yam & Maoz 2004; Mannucci et al. 2005; Scannapieco & Bildsten

2005; Sullivan et al. 2006; Dilday et al. 2008). Relating a 200-500 Myr delay to main sequence
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lifetimes, it is clear that majority of SNeIa stars have main-sequence masses less than 3M⊙ , or

alternatively, that most SNeIa arise from double-white dwarf binaries. It is important to note

that while our model provides strong constraints on the characteristic SNeIa delay time, it does

not rule out that a fraction of SNeIa occur at shorter delays (Aubourg et al. 2008; Mannucci et

al. 2005; Anderson et al. 2007; Anderson & James 2008; Totani et al. 2008).

In Figure 2.5 we also plot the WDFR, whose similarity to the A+B model with τ = 300

Myrs is striking. One cannot truly be ruled out in favor of the other. A KS test for the

WDFR yields a value of 72%, and in fact, the average delay for this model as calculated by
�∞

0 SNR(t)tdt/
�∞

0 SNR(t)dt is ≈ 500 Myr.

Figure 2.6: Top Panel: A KS probability map for the A+B model with varying parameters
Fdelayed and τ . Degeneracies between the two fit parameters are extremely small. For all
values of Fdelayed, τ ≤ 100 Myrs is very unlikely, and the best overall fit value is 500 Myrs.
The solid contours mark various levels of KS confidence. Bottom Panel: Average and best fit
KS probabilities over a range of Fdelayed values, each as a function of τ, again showing that
substantial delay times are highly favored.

Finally, to place an upper limit on the fraction of prompt SNeIa with very short de-

lay times we considered a three-component model in which SNR(t) = AM∗(t) + B1Ṁ∗(t −
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100Myrs) +B2Ṁ∗(t− 300Myrs). By fixing τ , we again consider two free parameters, Fdelayed

and B1/BTot, the fraction of the prompt component with a delay time of 100 Myrs. For large

values of B1/BTot, a KS test yields a low statistical likelihood in the model for all values of

Fdelayed. We can say with some confidence that the maximum allowed value of B1/BTot is 0.3,

corresponding to 30% of the prompt component to coming from a 100 Myr old population, while

the parameter space with the highest probability has B1/BTot = 0.

2.5 Discussion

Differentiating the spatial distributions of SNeIa from core-collapse SNe is a difficult problem,

both due to the stochastic nature of SNeIa detections and the potential for the delayed compo-

nent of the Ia rate to obscure the prompt SNeIa spatial distribution. However, by restricting

the Fruchter et al. (2006) analysis to an annulus, our “doughnut method” seperates the local

host properties from global properties, allowing us to measure the impact of the delay time of

the prompt component on the spatial distribution of SNeIa.

By comparing our observations to analytical models, we have established a strong case

for a modified A+B model in which the prompt component is delayed by 300-500 Myrs. This

long delay time sets important limits on progenitor mechanisms. For the traditional picture of

a white dwarf accreting from an evolved, non-degenerate companion, this time delay implies

a characteristic companion mass of ≈ 3M⊙ , since stars of this mass evolve on approximately

the same time scale. Alternatively, double-degenerate progenitor mechanisms favor long delay

times since the time for inspiraling after the formation of the white dwarfs necessarily sets a

long minimum time between the formation of stars and SNeIa.

Note that the time delay derived here is an average time and that there can be a con-

siderable spread in this value. Thus, a three-component model allows up to 30% of the prompt

component to have shorter delay times ≈ 100 Myrs, as suggested by Auborg et al. (2008) and

Mannucci et al. (2006). We also found that a model in which the Ia rate is directly propor-

tional to the white-dwarf formation rate, as considered by Pritchet, Howell & Sullivan (2008),

reproduces the observed spatial distributions of SNeIa very well.

Regardless of which model proves to be the best fit, it is this characteristic timescale

that is most important for calculations of cosmic enrichment, and the results of our analysis

using both the A+B model and the WDFR model are evidence of a long characteristic timescale.
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One caveat is that all our measurements have been made in relatively high-metallicity grand-

design sprial galaxies, and several observational and theoretical studies have hinted that SNeIa

rates and properties may be substantially different at lower metallicities (Timmes et al. 2003;

Gallagher et al. 2008; Cooper et al. 2009). There is still much more to be learned about these

ubiquitous but mysterious cosmological probes.
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Chapter 3

56Ni PRODUCTION IN WHITE DWARF COLLISIONS

In this chapter, beginning the series on numerical studies of progenitor mechanisms, we present

a comprehensive study of white dwarf collisions as an avenue for creating type Ia supernovae.

Using a smooth particle hydrodynamics code with a 13-isotope, α-chain nuclear network, we

examine the resulting 56Ni yield as a function of total mass, mass ratio, and impact parameter.

We show that several combinations of white dwarf masses and impact parameters are able to

produce sufficient quantities of 56Ni to be observable at cosmological distances. We find the
56Ni production in double-degenerate white dwarf collisions ranges from sub-luminous to the

super-luminous, depending on the parameters of the collision. For all mass pairs, collisions

with small impact parameters have the highest likelihood of detonating, but 56Ni production

is insensitive to this parameter in high-mass combinations, which significantly increases their

likelihood of detection. We also find that the 56Ni dependence on total mass and mass ratio

is not linear, with larger mass primaries producing disproportionately more 56Ni than their

lower mass secondary counterparts, and symmetric pairs of masses producing more 56Ni than

asymmetric pairs.

3.1 Introduction

While the preferred mechanism for type Ia supernovae involves a single white dwarf star accreting

material from a non-degenerate companion (Whelan & Iben 1973; Nomoto 1982; Hillebrandt

& Niemeyer 2000), recent observational evidence suggests a non-negligible fraction of observed

SNeIa may derive from double-degenerate progenitor scenarios. Scalzo et al. (2010) observed

the supernova SN 2007if photometrically, and assuming no host galaxy extinction, they found

1.6±0.1M⊙ of 56Ni with 0.3-0.5M⊙ of unburned carbon and oxygen forming an envelope. This
56Ni yield implies a progenitor mass of 2.4±0.2M⊙ , which is well above the Chandrasekhar limit

- the maximum mass for a non-rotating white dwarf (Chandrasekhar 1931, Pfannes et al. 2010,

Yoon & Langer 2004, Yoon & Langer 2005). It follows that two white dwarfs must have been

involved in the event that produced SN 2007if, since a single white dwarf cannot accrete enough

material to reach this mass without either exploding as a SNIa or collapsing to form a neutron

star (Yoon et al. 2007). Furthermore, spectroscopic observations by Tanaka et al. (2010) suggest

SN 2009dc produced � 1.2M⊙ of 56Ni, depending on the assumed dust absorption. This also
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implies a progenitor mass > 1.4M⊙ as 0.92M⊙ of 56Ni is the greatest yield a Chandrasekhar

mass can produce (Khokhlov et al. 1993).

Howell et al. (2006) inferred from their observations of SN 2003fg that ∼ 1.3M⊙ of 56Ni

was produced, as did Hicken et al. (2007) in their observations of SN 2006gz. There is a growing

body of evidence supporting double-degenerate SNeIa progenitor systems. Since any supernova

arising from a double-degenerate progenitor scenario may not fit the standard templates for

SNeIa, these transients must be filtered out if SNeIa are to remain as premier cosmological

tools. To that end, we must develop models that give clear and detectable signatures of double-

degenerate SNeIa to distinguish them from standard SNeIa.

Currently, models of double-degenerate progenitors are split into two, dynamically dif-

ferent scenarios. In the first, white dwarfs in close binaries lose angular momenta through

gravitational radiation, ultimately merging into a thermally supported super-Chandrasekhar

object or detonating outright (Iben & Tutukov 1984; Webbink 1984; Benz et al. 1989a; Yoon et

al. 2007; Pakmor et al. 2010). In the second, two white dwarfs collide in dense stellar systems

such as globular cluster cores (Raskin et al. 2009; Rosswog et al. 2009; LorŐn-Aguilar et al. 2009;

LorŐn-Aguilar et al. 2010), where white dwarf number densities can be as high as ≈ 104 pc−3.

This follows from conservative estimates for the average globular cluster mass, 106M⊙ (Brodie

& Strader 2006), and for an average globular cluster core radius, 1.5 pc (Peterson & King 1975),

taken together with the Salpeter IMF (Salpeter 1955). Assuming cluster velocity dispersions

on the order of 10 km s−1, this allows for 10 − 100, z � 1 collisions per year. Observations

by Chomiuk et al. (2008) of globular clusters in the nearby S0 galaxy NGC 7457 have detected

what is likely to be a SNIa remnant. Given the difficulty in distinguishing SNeIa as residing

in galaxy field stars or in globular clusters in front of or behind their host galaxies (Pfahl et

al. 2009), the frequency with which these can occur warrants investigation.

Numerical simulations of white dwarf collisions were pioneered in Benz et al. (1989b)

using a smooth particle hydrodynamics (SPH) code. They concluded from their results that

white dwarf collisions were of little interest as the 56Ni yields were small. However, their sim-

ulations employed an approximate equation of state for white dwarfs and resolutions were low,

relative to what is possible with current computing resources. Moreover, as will be discussed,

the infall velocities and velocity gradients play a crucial role in the final 56Ni yields.

More recently, Raskin et al. (2009), Rosswog et al. (2009), and LorŐn-Aguilar et al. (2010)

22



revisited collisions using up-to-date SPH codes and vastly more particles (8× 105, 2× 106, and

4 × 105, respectively). In Raskin et al. (2009), a single mass pair (0.6M⊙×2) was explored

with three impact parameters, whereas in Rosswog et al. (2009), several mass pairs were exam-

ined in direct, head-on collisions. Both of these papers aimed at establishing double-degenerate

collisions as SNeIa progenitors, finding that 56Ni is indeed produced prodigiously in such colli-

sions, lending credence to their candidacy. LorŐn-Aguilar et al. (2010) examined one mass pair

(0.6M⊙+ 0.8M⊙ ), but at a number of different impact parameters, ranging from those that

resulted in direct collisions to those that resulted in eccentric binaries, aimed at establishing the

parameters of white dwarf coalescence arising from collisional dynamics.

In this chapter, we revisit the three impact parameters studied in Raskin et al. (2009)

using a variety of mass pairings. Using 22 combinations of masses and impact parameters, we

aim to answer five key questions; how does 56Ni production depend on

• the total mass of the system?

• the mass ratio of the two stars?

• the impact parameter?

• the infall velocities of the constituent stars?

• tidal effects?

While the last two of these questions can be eliminated with robust initial conditions, they are

nevertheless important details that are sometimes overlooked. Armed with this information,

we will be able to make some conclusions about the observability of different combinations of

collision parameters, and to determine whether the resulting transient of any particular collision

is as luminous as a SNIa.

The structure of this chapter is as follows. In §2, we discuss the details of our initial

conditions and our new hybrid burning nuclear network. In §3, we give the details of the results

of each simulation that resulted in a detonation along with a study of the effect of numerical

parameters on the 56Ni yield in §3.1.2, and in §4, we discuss those that resulted in remnants.

Finally, in §5, we summarize our results and conclusions.

23



3.2 Method
Particle Setups & Initial Conditions

As in Raskin et al. (2009), we employ a version of a 3D SPH code called SNSPH (Fryer et

al. 2006). SPH codes are particularly well suited to these kinds of simulations as the white dwarf

stars involved are very dense and moving very rapidly. Advecting rapidly moving, isothermal,

cold white dwarfs in Eulerian, grid-based codes introduces perturbations that can be challenging

to overcome. Moreover, because many of our simulations are grazing impacts, conservation of

angular momentum is crucial to the final outcomes, for which SNSPH excels (Fryer et al. 2006).

We used a Weighted Voronoi Tessellations method (WVT, Diehl & Statler 2006) for our

particle setups. This method arranges particles in a pseudo-random spatial distribution with

thermodynamic quantities that are consistent with the chosen equation of state (EOS). The

default operation for this method is to allow the masses of particles to vary in order to keep

their sizes, or smoothing lengths (h), constant throughout the initial setup. This approach has

its advantages when it comes to spatial arrangement, but one disadvantage is that it produces a

uniform level of refinement in the initial conditions regardless of where most of the mass resides.

The result is that much higher particle counts are required to reach convergence.

To remedy this, we modified the WVT method to keep mass fixed, varying h consistent

with the density profiles of white dwarf stars. This has the effect of concentrating resolution

where most of the mass resides, vastly reducing the required particle counts for convergence. In

fact, whereas in Raskin et al. (2009), we showed that convergence of the 56Ni yield was reached

at approximately 106 particles, using constant mass particles, we reach convergence with only

200,000. A convergence test on particle count of our fiducial case, 0.64M⊙×2 with zero impact

parameter, is discussed in §3.1.2.

A further modification we have added to our previous approach is an isothermalization

step in our initial conditions. When mapping 1D profiles for cold white dwarfs onto a resolution

limited, 3D particle setup, there is often a relaxation time, during which the stars oscillate

before finding equilibrium. For white dwarf masses of ≈ 0.6M⊙ , this settling time is short, but

for larger masses, the oscillations can continue for several minutes or hours. These repeated

gravitational contractions heat the interiors of the stars until they can no longer be considered

“cold" white dwarfs. Therefore, we relaxed each individual star in a modified version of SNSPH
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that artificially cools the stars by keeping each particle at a constant temperature during the

stars’ oscillations until they reach a cold equilibrium. Figure 3.1 shows a temperature profile for

a 0.64M⊙white dwarf that has been passed through this isothermalization routine, indicating

an isothermal temperature of ≈ 107K throughout.

Figure 3.1: Temperatures and densities of particles lying on the x-axis in a 0.64M⊙white dwarf.
This star was created using WVT and isothermalized to 107K after ∼ 5 minutes.

As in our previous work, the initial conditions for the positions and velocities of the

white dwarf stars in our simulations were generated using a fourth-order Runge-Kutta solver

with an adaptive time-step that integrates simple kinematic equations. The impactor star was

initially given a small velocity comparable to the velocity dispersion of globular cluster cores,

σ = 10km/s. The solver places the stars at 0.1R⊙ apart with the proper velocity vectors

expected for free-fall from large initial separations with a given velocity dispersion.

Figure 3.2 compares the initial conditions of the 0.64M⊙×2, head-on collision to the ve-

locity gradient that is introduced by tidal forces. The relative velocity of the centers of mass can

be predicted analytically for a zero impact parameter collision with vc = [2G(M1 +M2)/∆r]1/2,

whereMi are the masses of the constituent white dwarfs and ∆r is the separation of their centers

of mass.

As Figure 3.2 demonstrates, when the stars are allowed to free-fall in SNSPH from larger

separations, such as the separation of 0.1R⊙ used throughout this paper, the velocity gradients

that arise from tidal distortions are non-negligible. As will be shown in §3.1.2, the magnitudes

of these velocities and their spreads play an important role in the final outcomes and the 56Ni

yields of each simulation as they determine how much kinetic energy is converted to thermal

energy, and thusly, when carbon-ignition occurs. A shooting-method was used to determine the

necessary, initial vertical separation that resulted in the final impact parameter that we desired
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Figure 3.2: The velocity evolution from our initial conditions to the moment of first contact,
indicating strong velocity gradients induced by tidal forces. The shaded area denotes the spread
in relative x-velocities, and vc is the relative velocity of the centers of mass.

at the moment of impact. Initial velocities for all of our collision scenarios with zero impact

parameter are given in Table 3.1.

Table 3.1: Initial velocities of each component star in the head-on cases of each mass pair for
initial separations of 0.1R⊙ . All velocities are relative to the center of mass.

# m1 [M⊙ ] m2 [M⊙ ] −v1 [×103km/s] v2 [×103km/s]
1 0.64 0.64 1.10 1.10
2 0.64 0.81 1.31 1.03
3 0.64 1.06 1.58 0.95
4 0.81 0.81 1.24 1.24
5 0.81 1.06 1.51 1.15
6 0.96 0.96 1.35 1.35
7 1.06 1.06 1.41 1.41
8 0.50 0.50 0.97 0.97

Likewise, all of our stars are initialized with 50% 12C and 50% 16O throughout. This

approximates typical carbon-oxygen white dwarf compositions, and we use the Helmholtz free-

energy EOS (Timmes & Arnett 1999; Timmes & Swesty 2000).

Hybrid Burner

Most large, hydrodynamic codes use some form of a hydrostatic nuclear network (e.g. Eggleton

1971; Weaver et al. 1978; Arnett 1994; Fryxell et al. 2000; Starrfield et al. 2000; Herwig 2004;

Young & Arnett 2005; Nonaka et al. 2008). That is, the thermodynamic conditions present at

the start of a burn calculation are not altered until the next hydrodynamic time step, which

often times is controlled by abundance or energy changes from the burn calculation rather than

a pure Courant condition. The effect of this is to fix the temperature-dependent reaction rates
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throughout the hydrodynamic time step to what they were at its start.

There are several reasons for running a simulation this way, the most important of which

is to avoid a decoupling of the nuclear network from the hydrodynamic calculation. However,

for limited spatial, mass and time resolutions, this approximation - that the thermodynamic

conditions do not change rapidly enough during a burn to warrant a sub-cycle recalculation of

the nuclear reaction rates - fails in regimes where the nuclear reactions are strongly temperature

dependent, such as at temperatures where photo-disintegration is the dominant nuclear process.

As Figure 3.3 shows below, the nuclear statistical equilibrium (NSE) state for material with

ρ = 1× 106 g cm−3 at T9 ≈ 7 has most of the heavy isotopes photo-disintegrating back to 4He.

Figure 3.3: NSE distributions for ρ =1e7 g cm−3 and Ye=0.5 in an α-centric nuclear network.
Proton and neutron mass fractions are plotted for reference. At T9 ≈ 6, 4He begins to dominate
the isotope distribution.

In such a regime, the material undergoing photo-disintegration experiences what amounts

to an abrupt phase change through a strongly endothermic reaction. In nature, this reaction

should rapidly cool the material before complete photo-disintegration, allowing these liberated

α-particles to react with other isotopes. However, a hydrostatic burn will overestimate the

time-scale for this cooling as it assumes a full hydrodynamic time step is necessary for relevant

pressure or temperature changes. With the temperature remaining fixed over an artificially long

time, this approach results in the nuclear network removing far too much internal energy, u, to

be physical.

Typically, one attempts to limit the impact of such a phase change by relying on a
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global time-step minimization scheme of the form

∆tn+1 = min
�
∆tc,∆tn × fu ×

�
ui
n−1

ui
n
− ui
n−1

��
, (3.1)

where the subscript n refers to the iteration number, ∆tc is the Courant time, ui is the specific

internal energy of the ith particle, and fu is a dimensionless parameter which constrains the

maximum allowable change in energy. Our global time-step is also controlled in this manner.

In practice, the conditions immediately prior to photo-disintegration will fix the next time-step,

∆tn+1, to of order 10−5s for fu = 0.30. However, even this time-step is too large to capture the

relevant temperature changes effecting the reaction rates on time-scales of order 10−12s.

The alternative approach to a hydrostatic burn is to use a “self-heating/cooling" nuclear

network that simultaneously integrates an energy equation and the abundance equation self-

consistently (see e.g. Müller 1986). When applied to a particle code like SPH, this type of

calculation keeps ρ fixed, but updates temperature in a fashion that is consistent with the

equation of state and the new internal energy at each sub-cycle.

The ordinary differential equation that governs a hydrostatic burn calculation of the

abundance of an isotope Yi, assuming the mass diffusion gradients are negligible, is of the form

Ẏi =
�

j

CiRjYj

+
�

j,k

Ci
Cj !Ck!

ρNARj,kYjYk

+
�

j,k,l

Ci
Cj !Ck!Cl!

ρ2N2
A
Rj,k,lYjYkYl, (3.2)

where the coefficients Ci..l specify how many particles of the ith species are created or de-

stroyed, and Ri..l are the temperature-dependent reaction rates for each of the different reaction

types. The first term describes weak reactions (β-decays and electron captures) and photo-

disintegrations, the second describes two-body reactions of the type 12C(α,γ)16O, and the third

term describes three-body reactions, such as 4He(2α,γ)12C. The energy generation ODE takes

the form

�̇ = −NA
�

i

Ẏimic
2, (3.3)

where mi is the rest-mass of the ith isotope (see e.g. Benz et al. 1989b). The density and

temperature equations are simply ρ̇ = 0 and Ṫ = 0, respectively, in a hydrostatic burn.
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A self-heating at constant density calculation modifies only the temperature equation,

starting from the first law of thermodynamics in specific mass units,

du

dt
− P
ρ2
dρ

dt
= T ds
dt
, (3.4)

where du/dt is the change in specific energy and ds/dt is the change in specific entropy. In

accordance with ρ̇ = 0 and employing the identity T ṡ = �̇, this reduces to

∂u

∂T

dT

dt
= �̇

Ṫ = �̇

cv
, (3.5)

where cv is the specific heat capacity at a constant volume. Equations (3.2), (3.3), and (3.5)

are evolved simultaneously and self-consistently (Müller 1986).

At very high spatial resolutions and small time-steps, the self-heating approach would

be identical to the hydrostatic approach. As Figure 3.4 shows for the energy, temperature and

composition of a single particle over a finite and relatively large time-step as determined by

Equation (3.1) with fu = 0.30, these two burning calculations reach very different conclusions

about the final energy and composition of the particle after photo-disintegration.

To capture the relevant temperature changes using a hydrostatic approach would require

a global time-step ∼ 10−12s, where the temperatures of the two calculations have diverged by

≈ 5%. This is problematic for two reasons: 1) such a time-step cannot be predicted from the

conditions immediately prior to photo-disintegration, and 2) having such a small global time-

step exceeds the limit of machine precision for many hydrodynamic codes, SNSPH included.

When SNSPH attempts to calculate velocities for the next time-step using ∆t ∼ 10−12s, it often

fails or returns zero.

Unfortunately, a self-heating nuclear network can also expose the weakness of a mass

resolution limit. For a typical simulation of 106 particles, each particle has a mass of ≈ 1027g.

A self-heating nuclear calculation for carbon-burning of such large masses becomes rapidly

explosive on time-scales approaching the Courant limit. Without any mechanism for energy

transport on such short time-scales, the assumption of a homogeneous burn of all 1027g begins

to break down. The vigorous burning of so much material rapidly liberates more energy than

the binding energy of the star.

Our “middle-path" solution to these two extremes is a hybrid-burning scheme wherein a

combination of these two approaches is used under different circumstances. Since the hydrostatic
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Figure 3.4: Calculations of the energy, temperature, and composition of a particle after a
representative time-step as determined by Equation (3.1) with fu = 0.30. Solid lines show
the implicit integrations from a hydrostatic calculation, while dotted lines indicate those for a
self-heating calculation. In both cases, ρ is kept constant, while in the self-heat calculation, the
temperature, and thus the nuclear reaction rates, are recalculated at each implicit integration
step, consistent with the first law of thermodynamics.

approach is a better approximation for exothermic reactions at our resolution limit, the self-

heating/cooling approach is only employed for particles that undergo strong, net endothermic

reactions such as photo-disintegration. This allows these particles to smoothly “step over" the

photo-disintegration phase change without artificially losing too much energy. We apply this

approach, along with the time-step minimization of Equation (3.1), to the α-chain aprox13

nuclear network (Timmes 1999; Timmes et al. 2000) by imposing the condition that if �̇ < 0

after a hydrostatic burn, the burn is recalculated employing Equation (3.5).

While stepping through a photo-disintegration process is an interesting wrinkle for nu-

merical simulations of double-degenerate white dwarf collisions, it is not a significant factor for
56Ni production. In all of our simulated cases, we found that on average < 2% of particles

experienced this phase change. For the most part, the local conditions for a number of par-

ticles wherein a single particle might undergo photo-disintegration are sufficiently high-energy

that the neighboring particles will have already initiated a detonation. Based on the results
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of our simulations, we do not expect that collisions with yet higher kinetic energies than those

attempted here would paradoxically yield less 56Ni due to photo-disintegration effects.

3.3 Results & Analysis I - Detonations

Our previous work narrowed the range of pertinent impact parameters to three scenarios, which

we revisited for each of our mass combinations. We simulated head-on impacts, partially grazing

collisional impacts, and fully grazing/glancing impacts. Table 3.2 summarizes the 56Ni yields of

each of our simulations. In this table, the impact parameter, b (the vertical separation between

the cores of both white dwarfs at the moment of impact) is given as the fraction of the radius

of the primary white dwarf. Thus the b = 0 column shows the yields for head-on impacts, the

b = 1 column indicates a full white dwarf radius and b = 2 indicates 2 white dwarf radii, or a

fully grazing impact.

Table 3.2: Simulation 56Ni yields for various mass combinations and parameters. Values indi-
cated with a (¤) are those simulations that resulted in remnants. Dashes (–) indicate combi-
nations of parameters we did not simulate. All simulations listed here used fu = 0.30 and 200k
particles.

# m1 [M⊙ ] m2 [M⊙ ] mtot[M⊙ ] b = 0 b = 1 b = 2
1 0.64 0.64 1.28 0.51 0.47 ¤
2 0.64 0.81 1.45 0.14 0.53 ¤
3 0.64 1.06 1.70 0.26 ¤ ¤
4 0.81 0.81 1.62 0.84 0.84 0.65
5 0.81 1.06 1.87 0.90 1.13 ¤
6 0.96 0.96 1.92 1.27 1.32 1.33
7 1.06 1.06 2.12 1.71 1.72 1.61
8 0.50 0.50 1.00 0.00 – –

Dursi & Timmes (2006) examined the shock-ignited detonation criteria for carbon in

a white dwarf using numerical models. They derived a relationship between the density of the

carbon fuel and the minimum radius of a burning region that will launch a detonation. For a

carbon abundance of X12C = 0.5 and densities typically found in the white dwarfs used in our

simulations, ρ ∼ 107g cm−3, their results suggest a minimum burning region, or match head size

of rb ∼ 104cm. This is three orders of magnitude smaller than our smallest particle size, and

properly resolving this criterion would require ∼ 1012 particles. Such a high-resolution study

is too expensive with our current computing resources, and therefore, we acknowledge that we

cannot resolve the precise detonation mechanism in our simulations.

The criteria established in Dursi & Timmes (2006) would suggest that a single particle
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in any of our simulations can initiate a detonation. However, in order for a detonation to be

sustained, the energy that the initiating particle deposits in its neighbors must be sufficient to

cause those neighbors to liberate an equal amount of nuclear energy. This somewhat softens the

ability of a single particle to initiate a sustainted detonation. Indeed, in all of our simulations,

we found that several particles ignited nearly simultaneously, or at least outside of causal contact

with one another in order to initiate a sustained detonation. Moreover, the pressure gradient

established by particles neighboring those that reached ignition needed to be favorable for a

significant and rapid energy deposition.

In SPH, energy is shared between particles via PdV work with

u̇ij = Pi
ρ2
i

mj∆vij · ∇iWij , (3.6)

where Pi and ρi are the pressure and density of particle i, mj is the mass of particle j, ∆vij

is the difference in velocities of particles i and j, and Wij is the SPH smoothing kernel. For

each particle i, there is an implied sum over all particles j. In SPH formalism, the condition

for a sustained detonation would require that this quantity is large enough to ignite explosive

burning in particle i. Put another way, if particle i generates energy �i at time t0, u̇ji must

be sufficient such that at time t0 + ∆t, �̇j ≈ �̇i, where ∆t is the Courant time. This requires a

proportionality between the energy generation rate in particle i and the pressure gradient with

its nearest neighbors, and to first order, this criterion reduces to

�̇i ≥
Pi
csρ2i
∇Pij . (3.7)

For a given energy generation rate, large and positive pressure gradients can inhibit a

detonation breakout. In situations where particles ignited carbon-burning, but were nevertheless

unable to deposit enough energy into their neighbors to cause them to also ignite, the material

settled into a slow-burn regime rather than detonating. While we cannot resolve the detonation

mechanism to the desired precision, we compared one-dimensional ZND detonation profiles

(see e.g. Fickett & Davis 1979) with detonation profiles from one-dimensional slices through

the SNSPH models and concluded that our collision calculations are resolving the detonation

widths and structures to within 20%.
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Mass Pair 1 - 0.64M⊙ × 2

Fiducial Case

We recalculated the ≈ 0.6M⊙ equal mass case as in Raskin et al. (2009) to establish a baseline

comparison with our equal-mass particle configuration and hybrid-burner technique. Empirical

white dwarf mass functions (e.g. , Williams, Bolte, & Koester 2004) suggest collisions with this

mass pair are expected to be among the most common. With our equal-mass particle constraint,

the final mass of the star used in the simulations came to 0.64M⊙ .

The right-top panel of Figure 3.5 shows that when the stars first collide the infall speeds,

vx of material entering the shocked region are greater than the sounds speeds, cs, resulting in a

stalled shock in that region. The conditions in the center plane of this shocked region (the y-z

plane, ρ ≈ 106.5−7 g cm−3 and T9 ≈ 1) are sufficient to ignite carbon with an energy-generation

rate scaling roughly as �̇ ∼ ρT 22, burning up to silicon at T9 ≈ 3. The separation of material

into three distinct phases is clearest in the left two panels of Figure 3.5, which plots particle

number density in the ρ-T plane. The lower, more populated region is unshocked, carbon-

oxygen material and is indicated in green. The less populated middle region, also represented

with green at T9 ≈ 1, is shocked material that has yet to reach the critical conditions for carbon

ignition, and the upper, sparse region is material that has begun burning carbon to silicon-group

elements, represented in red.

The pressure gradient slopes positively in all directions away from the geometric center

where this early burning begins, which is in fact at lower densities than the surrounding shocked

medium. While the whole of the shocked region continues to heat up, causing more material

to ignite near the center, the steep pressure gradient prevents the energy liberated by burning

to initiate a detonation. For these burning particles, with silicon ash behind them and higher

pressure carbon in front, the energy they deposit in their neighbors is insufficient to greatly

alter their energy-generation rate. Instead, the burning region grows only as fast as material

is heated to the critical temperatures needed for carbon ignition, T9 ≈ 1, by the conversion of

kinetic energy to thermal energy.

Approximately two seconds after the stars first collide, sufficiently high temperatures

and densities are reached at the edges of the shocked region to initiate carbon-burning. In these

locations, the pressure gradient slopes negatively in all directions. The liberated energy is free
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Figure 3.5: Left Panels: Density vs. temperature for all particles from each constituent star
in mass pair 1, 0.64M⊙×2 and b = 0. Each point is colored indicating the isotope(s) with
the greatest abundance and by the particle number density at each ρ − T coordinate. Green
indicates high concentrations of carbon and oxygen, red indicates silicon group elements, and
blue indicates iron-peak elements, most predominantly 56Ni. The darker the color in each
group, the higher the particle number density. Right-top Panel: Sound speed, infall velocity,
and density for particles lying on the x-axis. Right-bottom Panel: A slice in the x-y plane of
particle densities.

to break out, initiating detonations at the ignition points. The sound speeds in these zones are

raised higher than the infall speeds due to the rapid rise in temperature, and 56Ni begins to

appear in large quantities, indicated in blue in the left panels of Figure 3.6.

Sustained detonation fronts then propagate through the unburned material, as well as

the silicon “ash” that lies in the shocked region. As Figure 3.7 shows, significantly more 56Ni

is produced during this phase. In Figure 3.7, it is also evident that the shocks overtake one

another inside the contact zone, shocking the material a second time and producing yet more
56Ni. Less than one second after the detonations began, the entire system has become unbound,

freezing out the nuclear reactions, as can be seen in Figure 3.8. The final 56Ni yield for this
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Figure 3.6: Same format as Figure 3.5, at a later time in the simulation.

simulation was 0.51M⊙ .

In the b = 1 simulation, the added angular momentum distorted the shocked region

between the two stars, resulting in detonations lighting off-center and off-axis as compared

to the b = 0 case. As Figure 3.9 shows, the detonation waves traveling through the densest

portions of the shocked regions where the sound speed is highest, twist the material into a

uniquely anisotropic configuration. Moreover, because much of the material is traveling nearly

perpendicular to the shock, the density in the pre-detonation, shocked region is lower than in

the b = 0 case. This reduces 56Ni production by about 7% to 0.47M⊙ .

Since the post-explosion, expansion phase is homologous, the pattern of isotopes present

at the moment the system becomes unbound is not altered by the expansion. Therefore, the

velocities plotted in Figure 3.10 for several isotopes in the b = 0 and b = 1 cases are directly

related to the radial distribution of the isotopes.
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Figure 3.7: Same format as Figure 3.5, at a later time in the simulation.

The velocity structure preserves the isotopic segregation expected behind the burning

front, with a progression from complete burning of carbon & oxygen to iron-peak elements,

though silicon-group elements, and finally ending with an unburned or only partially burned

carbon & oxygen envelope. This layered structure is in agreement with the observations of

Scalzo et al. (2010) and others of type Ia SNe suspected of having been produced from double-

degenerate progenitor scenarios.

The b = 2 scenario for this mass pair did not feature a detonation, and instead, resulted

in a hot remnant embedded in a disk. Details of this simulation and its outcome will be discussed

in §4.

Variations on Parameters

In order to assess the impact of the time-step on the nuclear yields, we compared three simula-

tions of the 0.64M⊙×2, b = 0 case varying the value of fu in Equation (3.1); one with a value
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Figure 3.8: Same format as Figure 3.5, at a later time in the simulation.

of fu = 0.50, another with fu = 0.30, and finally, one with fu = 0.25. As the results in table 3.3

show for the largest yields by mass, changes in the value of fu below 0.5 have little discernible

impact on the final outcomes.

Table 3.3: 56Ni yields for 0.64M⊙×2, b = 0 simulations with variations on the parameter fu
and particle count.

fu Particle Count 56Ni
0.50 2× 105 0.51
0.30 2× 105 0.51
0.25 2× 105 0.51
0.30 1× 104 0.21
0.30 4× 104 0.31
0.30 4× 105 0.49
0.30 2× 106 0.53

The detonations on either side of the shocked region are unique to the 0.64M⊙×2 mass

pairing and the 0.50M⊙×2 mass pairing described in §3.7. This is due, in large part, to the

kinetic energy at impact, which is related directly to the infall speed. With greater infall speeds,
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Figure 3.9: A 2D slice of interpolated densities through the x-y plane of the b = 1 case of two
0.64M⊙white dwarfs colliding. Four snapshots at different times are shown. Arrows in the
top-left panel indicate the directions of motion of each star.

the shocked region heats sufficiently to initiate a detonation earlier, and the detonations begin

nearer to the central region (the y-z plane).

We tested this mechanism with a 0.64M⊙×2 collision scenario by giving the constituent

stars an artificially high infall velocity to reproduce the kinematic energies associated with

collisions of larger masses. In that test, the critical temperatures for carbon ignition were reached

in locations nearer to the y-z plane, but still displaced enough that the pressure gradient was

favorable to a detonation. In this case, the 56Ni production was actually depressed, resulting in

only 0.39M⊙ , due to an early detonation coupled with altered shock conditions.
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Figure 3.10: Masses of several isotopes at logarithmically spaced velocity bins for the b = 0 and
b = 1 cases of mass pairing 1, 0.64M⊙×2.

We also tested the effect of velocity gradients (tidal distortions) on the final 56Ni yield

by running a 0.64M⊙×2, b = 0 collision with an initial separation of only 0.048R⊙with the

commensurate relative velocities. In that simulation, the 56Ni yield was also depressed, slightly,

to 0.48M⊙ . The combination of infall velocity and tidal distortions are evidently critical for
56Ni production.

However, by far the most important parameter effecting the convergence of the 56Ni yield

is resolution. We carried out a convergence test of the 56Ni yield in mass pair 1, b = 0, using

equal-mass particle setups. We varied particle counts from 104 particles total, to 2 × 106. As

Figure 3.11 demonstrates, convergence was reached at 2×105 particles. This compares favorably

to previous convergence estimates in Raskin et al. (2009) that concluded ∼ 106 particles were

needed for convergence using equal-h particle setups.

Early work on numerical simulations of white dwarf collisions carried out by Benz et

al. (1989b) did not have the benefit of modern computational resources to reach these kinds of

resolutions. Consequently, the 56Ni yields in those simulations were comparatively quite low.
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Figure 3.11: Convergence of the 56Ni yield with particle count for simulations employing equal
mass particles (blue, 0.64M⊙ ×2) and equal h particles (red, 0.6M⊙ ×2 from Raskin et al. 2009).
The dashed, vertical line indicates the number of particles used in simulations throughout this
paper.

Mass Pair 2 - 0.64M⊙+ 0.81M⊙

For asymmetrical collisions involving 0.64M⊙ and 0.81M⊙white dwarfs, the higher kinetic en-

ergy with which they collide results in several, almost immediate detonations near the center in

the b = 0 scenario. As Figure 3.12 shows, these detonation shocks superimpose to form a sin-

gle, nearly spherical shock front that raises the sound speed above the infall speed for material

in the 0.64M⊙ star, but the pressure gradient leftward of the detonation (region 1) stalls the

detonation shock, which can be seen as a higher-density, laminar shock at the rightmost edge

of region 1 in Figure 3.12.

However, region 1 does not maintain its lenticular shape as the two stars are moving

at different speeds relative to this shocked region. This allows the detonation shock to travel

through this region at ≈ Mach 1, eventually reaching fresh carbon outside of region 1. This

fresh carbon ignites explosively, creating a second detonation (region 3 in Figure 3.13), which

sends leading shocks back through region 1 and into region 2, shocking it a second time and

eventually catching up with the first detonation shock.

Most of the 56Ni in this scenario is produced in the more massive star, as Table 3.4

demonstrates. Since only low-density portions of the 0.64M⊙ star had entered the shocked region

before the detonation, most of its contribution to the total output is in Si-group elements.

In the b = 1 case, the pre-detonation, shocked region reaches much higher densities,

and the oblique angle at which the white dwarf stars enter the shocked region allows more

material to become strongly shocked by the detonation. The detonation shock also twists

40



Figure 3.12: Same format as Figure 3.5 for mass pair 2, 0.64M⊙+ 0.81M⊙ , and b = 0. Material
shocked by the collision is labeled as region 1. Material behind the first detonation shock is
labeled as region 2.

Table 3.4: Isotope yields for the b = 0 and b = 1 cases of mass pairing 2, 0.64M⊙+ 0.81M⊙ .

b Isotope 0.81 [M⊙ ] 0.64 [M⊙ ] Total [M⊙ ]

0

12C 0.21 0.03 0.24
16O 0.25 0.14 0.39
28Si 0.12 0.27 0.39
56Ni 0.13 0.02 0.14

1

12C 0.02 0.03 0.05
16O 0.07 0.14 0.21
28Si 0.12 0.25 0.37
56Ni 0.49 0.04 0.53

around the peculiar density contours inside the shocked region, shocking much of the material

several times, as is seen in the bottom-right panel of Figure 3.14. The 0.81M⊙ star experiences

a near complete burn of all of its carbon and oxygen. However, as in the b = 0 case, most

of the 0.64M⊙ star remains unshocked at the time of the detonation breakout. As before, the

0.64M⊙ star contributes mostly Si-group elements to the total output, as shown in Table 3.4.
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Figure 3.13: Same format as Figure 3.5 for mass pair 2, 0.64M⊙+ 0.81M⊙ , and b = 0, at a later
time in the simulation. Material shocked by the collision is labeled as region 1. Material behind
the first detonation shock is labeled as region 2, and material behind the second detonation
shock is labeled region 3.

The velocity profiles for the b = 0 and b = 1 cases of mass pair 2, shown in Figure 3.15,

reinforce the observation that 56Ni is created in a confined region in the b = 0 case, mainly

in the densest portions of the shocked material from the 0.81M⊙ star. Carbon and oxygen,

together, dominate the total output by mass, while in the b = 1 case, 56Ni is the dominant

isotope, followed by 28Si.

Mass Pair 3 - 0.64M⊙+ 1.06M⊙

As with mass pair 2, the b = 0 case of mass pair 3 experiences a detonation of material in the

0.64M⊙ star very quickly after the stars first collide. However, owing to the greater potential

well into which the 0.64M⊙ star is falling, the sound speed of the material shocked by the

detonation is less than the infall velocity as shown in the top-left panel of Figure 3.16.
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Figure 3.14: A 2D slice of interpolated densities through the x-y plane of the b = 1 case of a
0.64M⊙white dwarf colliding with a 0.81M⊙white dwarf. Four snapshots at different times are
shown. Arrows in the top-left panel indicate the directions of motion of each star.

After ≈ 0.7s, as the core of the 1.06M⊙ star enters the shocked region, a second detona-

tion lights on the left edge of the shocked region. This powers a shock that travels through both

stars, catching up with the shock from the first detonation in the 0.64M⊙ star. The material in

the 0.64M⊙ star burns mostly to 28Si, while what burns in the 1.06M⊙ star burns almost en-

tirely to 56Ni, due to its higher density. The contributions from each star to the total elemental

abundances are given in Table 3.5.

In simulations of mass pair 3 that introduced a non-zero impact parameter, the 1.06M⊙ star

was simply too compact to be significantly disrupted by a collision with a 0.64M⊙ star. In both

43



Figure 3.15: Masses of several isotopes at logarithmically spaced velocity bins for the b = 0 and
b = 1 cases of mass pairing 2, 0.64M⊙+ 0.81M⊙ .

Table 3.5: Isotope yields for the b = 0 case of mass pairing 3, 0.64M⊙+ 1.06M⊙ .

Isotope 1.06 [M⊙ ] 0.64 [M⊙ ] Total [M⊙ ]
12C 0.39 0.02 0.41
16O 0.40 0.15 0.55
28Si 0.05 0.24 0.29
56Ni 0.19 0.07 0.26

the b = 1 and b = 2 cases, most of the 1.06M⊙ star survived the collision, while completely

disrupting the 0.64M⊙ star. Details of those simulations are given in §4.

Mass Pair 4 - 0.81M⊙ × 2

The symmetrical mass pair, 0.81M⊙×2 is quite unlike the 0.64M⊙×2 mass pairing discussed

above. For the 0.81M⊙×2 mass pair with b = 0, several detonations occur in the y-z plane

simultaneously and almost immediately after impact, owing to the higher temperatures reached

in the shocked region from the higher infall speeds. As Figure 3.17 shows, these detonations

superimpose and produce copious amounts of 56Ni as they travel through the much denser

material present inside the 0.81M⊙ stars. This denser material allows for a significantly greater
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Figure 3.16: Same format as Figure 3.5 for mass pair 3, 0.64M⊙+ 1.06M⊙ , and b = 0.

conversion of carbon and oxygen to 56Ni. Therefore, with only a 26% increase in total mass of

the system over the 0.64M⊙×2 scenario, there is a 64% increase in 56Ni production to 0.84M⊙ .

Having denser and more compact stars also reduces the sensitivity of the 56Ni yield to

impact parameter. Indeed, with two 0.81M⊙ stars, both the b = 1 and b = 2 simulations resulted

in detonations and significant 56Ni production, 0.84M⊙ and 0.65M⊙ , respectively. Differences

in the 56Ni yield for the two non-zero impact parameter simulations stem mainly from the

amount of material that burns to 28Si before the detonations occur, with the b = 2 scenario

featuring much more material burning at lower temperatures to silicon before the detonation.

The high activation energy of 28Si prevents much of that material from being converted to 56Ni.

Mass Pair 5 - 0.81M⊙+ 1.06M⊙

The 0.81M⊙+ 1.06M⊙mass pair follows a very similar pattern to that of mass pair 2 (0.64M⊙+

0.81M⊙ ). Intermediate impact parameters allow more material to enter the shocked region
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Figure 3.17: Same format as Figure 3.5 for mass pair 4, 0.81M⊙×2, and b = 0.

before detonation, and so there is a rise in 56Ni production in the b = 1 case over b = 0.

However, because both stars involved in the collision are denser than their counterparts in mass

pair 2, much more 56Ni is produced overall. Contributions to the total yield in the b = 0 and

b = 1 simulations are given in Table 3.6 below.

Table 3.6: Isotope yields for the b = 0 and b = 1 cases of mass pairing 5, 0.81M⊙+ 1.06M⊙ .

b Isotope 1.06 [M⊙ ] 0.81 [M⊙ ] Total [M⊙ ]

0

12C 0.17 0.01 0.18
16O 0.19 0.09 0.28
28Si 0.06 0.22 0.28
56Ni 0.58 0.32 0.90

1

12C 0.05 0.02 0.07
16O 0.07 0.09 0.16
28Si 0.06 0.22 0.28
56Ni 0.82 0.31 1.13
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Mass Pairs 6 & 7 - 0.96M⊙ × 2 & 1.06M⊙×2

The 0.96M⊙×2 and 1.06M⊙×2 simulations were essentially similar to the 0.81M⊙×2 simu-

lations with the exception that the greater the mass of the constituent stars, the less sensitive

the 56Ni yield was to impact parameter. Indeed, both mass pairs 6 and 7 produced almost the

same yield in all three tested collision scenarios.

What distinguishes the 1.06M⊙×2 mass pair from all the others attempted is that the
56Ni yield is super-Chandrasekhar in all cases. Were such explosions observed, there would be no

doubt that a double-degenerate progenitor scenario of some kind was responsible. The resulting

1.71M⊙ of 56Ni from the 1.06M⊙×2 simulations appear strikingly similar to the 1.7M⊙ of 56Ni

derived from the observations of Scalzo et al. (2010).

Mass Pair 8 - 0.50M⊙ × 2

Finally, we studied symmetric collisions of low-mass, 0.50M⊙white dwarfs. Table 3.2 demon-

strates that the b = 0 collision scenario for this mass pairing produced less than 0.01M⊙ of
56Ni despite having resulted in a detonation. In this case, the energy generated from even mild

carbon-burning was sufficient to unbind the stars. As in the 0.64M⊙×2, b = 0 scenario, the

lower velocities with which the stars collide results in a late detonation. The shocked region

slowly heats up until carbon-burning at its edges ignites a detonation.

It is clear from the velocity profile of the most abundant isotopes from this collision,

given in Figure 3.18, that carbon and oxygen remain mostly unburned in this scenario. This

seems to suggest that collisions of low-mass white dwarfs (M � 0.6M⊙ ) of the CO variety

would not produce observable transients. Other simulations introducing impact parameters with

this mass pair were not attempted with carbon-oxygen white dwarfs as the b = 0 simulation

yielded essentially a non-result. However, further investigation involving Helium white dwarfs

is warranted.

3.4 Results & Analysis II - Remnants

As seen in Raskin et al. (2009), the b = 2 case of mass pair 1 (0.64M⊙×2) did not feature a

detonation and instead formed a hot remnant of thermally-supported carbon and oxygen with

some carbon-burning products. Figure 3.19 illustrates the dynamics of this collision, starting
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Figure 3.18: Masses of several isotopes at logarithmically spaced velocity bins for the b = 0 case
of mass pairing 8, 0.50M⊙×2.

with a glancing case that leads to the constituent stars spinning off from each other before

coalescing into a single hot object.

The compact remnant core after 100s featured a nearly constant density of ρ ∼ 106 g

cm−3. It was surrounded by a thick, Keplerian disk ≈ 2.0×1010 cm in radius with a scale radius

r0 ≈ 2.3 × 109 cm. The compact object at the center of the disk is not strictly a white dwarf

since much of its pressure support is thermal (T ≈ 5×108 K). Indeed, since degeneracy pressure

support necessitates that more massive white dwarfs are smaller than less massive ones, this

object, at ≈ 0.8M⊙ is far too large to be wholly degenerate (rrem ≈ 2.5× 109 cm); larger than

the 0.64M⊙white dwarfs that entered into the collision (r0.64 = 6.98× 108 cm).

Carbon ignition nominally takes place at approximately 7-8×108 K (e.g. Gasques et

al. 2007), but recent phenomenological models (e.g. Jiang et al. 2007) have suggested a strongly

reduced, low-energy astrophysical S-factors for carbon fusion reactions that potentially reduce

carbon ignition temperatures to ≈ 3×108 K, especially at densities of 109 g cm−3. A lower

carbon burning threshold would be of interest to future studies of collision remnants.

Since the system started in a bound state, (T � −V , where T in this case is total kinetic

energy and V is total gravitational potential energy) and since any energy gained from nuclear

processes is negligible, most of the material cannot escape the system and the disk remains

bound to the compact core. It will eventually cool and collapse onto the surface of the compact

object. However, the hot core may accelerate parts of the disk to escape velocity via radiative
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Figure 3.19: Snapshots of density isosurfaces at six different times for the b = 2 simulation of
mass pair 1, 0.64M⊙×2. After first colliding, the stars separate before coalescing into a single
object.

processes, and so the calculation of the final mass of the resultant white dwarf is beyond the

scope of this paper. Suffice it to say, the final mass will not exceed the Chandrasekhar limit as

only 1.28M⊙ of material is available.

For the b = 2 case of mass pair 2, 0.64M⊙+ 0.81M⊙ , the compact remnant was slightly

less massive at ≈ 0.75M⊙ . However, since the total mass of the system is super-Chandrasekhar,

the final remnant mass may result in a super-Chandrasekhar white dwarf. Again, this final mass

will depend greatly on radiative processes, and the likelihood of producing a SNIa will hinge on

the accretion rate of the disk onto the core.

The simulations of mass pair 3, 0.64M⊙+ 1.06M⊙ , resulted in remnants in both the

b = 1 and b = 2 cases as the 1.06M⊙white dwarf was too compact for the star to be much

affected by a grazing collision with a 0.64M⊙white dwarf. In the b = 1 case, some of the

atmosphere of the 1.06M⊙ star was stripped away to join the material from the disrupted

0.64M⊙ star in the disk, while in the b = 2 case, the 1.06M⊙ star was nearly unaffected by the

collision. Figure 3.20 illustrates that the remnant core of the b = 2 simulation masses ≈ 1.0M⊙ ,
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and the central densities are essentially unchanged from the 1.06M⊙ progenitor.

Figure 3.20: Temperature and density profiles of the b = 1 and b = 2 simulation remnants of
mass pair 3, 0.64M⊙ + 1.06M⊙ .

Some features worth noting in the b = 2 profiles in Figure 3.20 are the indications of

a cold core (Tcore ≈ 2 × 108 K) surrounded by a hot envelope (Tenv. ≈ 9 × 108 K), and the

presence of a strong overdensity in a part of the disk, which causes large spreads in density

and temperature for the disk material. This suggests that while the 0.64M⊙ star is no longer a

gravitationally bound object, it has nevertheless not been completely disrupted.

The radial profiles of the b = 2 simulation of the 0.81M⊙+ 1.06M⊙mass pair, shown in

Figure 3.21, indicate a very similar structure, with a high-temperature envelope surrounding a

cold core and an overdensity in a part of the disk. These inhomogeneities in the disk would most

likely vanish after many crossing-times, however, it is highly unlikely that radiative processes or

collisional excitations within the disk could remove as much as 0.4M⊙ . This suggests that after

a Kelvin-Helmholtz timescale, the remnant from the b = 2 collision of mass pair 5 will almost

certainly be super-Chandrasekhar.

Some of the properties of these remnants are very similar to the simulated remnant

explored in Yoon et al. (2007), which was produced by the merger of 0.9M⊙ and 0.6M⊙white

dwarfs. In that simulation, the remnant also featured a cold core (Tcore ≈ 1×108 K) surrounded

by a hot envelope (Tenv. ≈ 6 × 108 K), embedded inside a thick, Keplerian disk. Using a 1D

stellar evolution code, they found that such systems can indeed evolve on timescales ∼ 105yr
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Figure 3.21: Temperature and density profiles of the b = 2 simulation remnant of mass pair 5,
0.81M⊙ + 1.06M⊙ .

toward becoming SNeIa.

3.5 Discussion

White dwarf collisions are not typically regarded as SNeIa progenitors, and therefore, they

have been relatively unexplored theoretically. Here we have conducted a comprehensive suite of

simulations of such collisions examining the dependence of their 56Ni yield on total mass, mass

ratio, and impact parameter. Our results suggest that white dwarf collisions are a viable avenue

for producing SNeIa with brightnesses that range from sub-luminous to super-luminous.

In fact, in more than 75% of our simulations, collisions resulted in detonations, and in

all but the least massive combination of stars, significant amounts of 56Ni were produced. We

found that even mass pairs that are below the Chandraskehar limit featured explosive nuclear

burning, with the 0.64M⊙×2 mass pair producing 56Ni in quantities comparable to standard

SNeIa. Moreover, the most massive combinations of stars produced super-luminous quantities

of 56Ni, regardless of the impact parameter, greatly increasing their likelihood of detection.

The 56Ni yields from these collisions are consistent with those of observed SNeIa with super-

Chandrasekhar mass progenitors.

Asymmetric mass pairs generally produced less 56Ni in head-on collisions than sym-

metric pairs. At middling impact parameters, much more 56Ni was produced, however, at high

impact parameters, there was little or none. This is due primarily to the delicate balance which

must be struck between the dynamics of the impact and the binding energy of the less massive

star in order to establish a stalled shock region that can lead to a detonation. At high impact
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parameters, the less massive star is typically unbound by the collision before much or any 56Ni

is produced.

For combinations of masses and impact parameters that did not detonate, the end result

always featured a compact, semi-degenerate object surrounded by a bound, thick disk of carbon

and oxygen. Many of these systems were super-Chandrasekhar, and over Kelvin-Helmholtz time

scales, these, too, are candidate progenitors for producing SNeIa. These remnant objects are

very similar to those described as resulting from mergers of white dwarfs. We will return to the

discussion of these types of remnants in the next chapter that explores mergers in detail.

Our results have shown that 56Ni production in white dwarf collisions is a non-linear

process that depends on several factors, including infall velocities and tidal distortion effects.

Foremost among parameters to be explored in future studies is the composition of the constituent

white dwarfs. Helium has a much lower activation energy than carbon or oxygen, and combina-

tions of stars that include helium white dwarfs would almost certainly produce interesting and

different results. Other avenues to be explored include the impact of more detailed modeling of

the isotopic profiles in the progenitor stars, and the possibility of sparse hydrogen atmospheres.

The results of these studies will shed further light on the contribution of double-degenerate

collisions to the observed population of SNeIa.
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Chapter 4

DOUBLE DEGENERATE WHITE DWARF MERGERS AND REMNANTS

In this chapter, we continue the series of numerical studies of progenitor mechanisms and present

the results of simulation studies of white dwarf mergers as possible type Ia supernova progenitors.

Using SNSPH, we carry out a comprehensive simulation survey of double-degenerate white dwarf

binary mergers of varying mass combinations in order to establish correspondence between initial

conditions and remnant configurations. We find that all of our simulation remnants share some

general properties such as a cold, degenerate core surrounded by a hot disk, while some remnants

exhibit cores that will grow to become super-Chandrasekhar masses after cooling and before

viscosity-driven accretion. We show that the disks that result from our simulations are too hot

to be treated with typical thin disk accretion rates. We also find that some of our simulations

with very massive constituent stars exhibit helium detonations on the surface of the primary

star before complete disruption of the secondary.

4.1 Introduction

Type Ia supernovae are commonly accepted to be the observed transient produced after a ther-

monuclear detonation inside a white dwarf star. While the preferred mechanism for producing

SNeIa involves accretion from an evolved main sequence star onto a white dwarf (Whelan &

Iben 1973; Nomoto 1982; Hillebrandt & Niemeyer 2000), the observed SNeIa rate is incompat-

ible with the narrow range of helium accretion rates that will initiate a carbon detonation as

opposed to accretion induced collapse or classical novae (Nomoto & Kondo 1991). Moreover,

many recent observations of abnormally luminous SNeIa have been interpreted as having derived

from double-degenerate systems involving two white dwarfs.

Photometric observations of SN 2007if suggest 1.6±0.1M⊙ of 56Ni was formed, implying

a progenitor mass of 2.4±0.2M⊙ (Scalzo et al. 2010), which is well above the Chandrasekhar

limit (Chandrasekhar 1931). Spectroscopic observations of SN 2009dc suggest � 1.2M⊙ of 56Ni

(Tanaka et al. 2010), depending on the assumed dust absorption. Since 0.92M⊙ of 56Ni is the

greatest yield a Chandrasekhar mass can produce (Khokhlov et al. 1993), this yield also implies

a super-Chandrasekhar progenitor mass. And observations of SN 2003fg by Howell et al. (2006)

and of SN 2006gz by Hicken et al. (2007) infer ∼ 1.3M⊙ of 56Ni each.

Generally, for the purposes of cosmological measurements, obvious double-degenerate
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candidates are excluded from SNeIa surveys. The Phillips relation, which established SNeIa

as standard candles (Phillips 1993), relates the peak luminosity of a SNIa to the change in

magnitude after 15 days (or the stretch). This relation is often thought to be the result of a

balance struck between the 56Ni yield and the opacity of the ejecta material, assuming a total

mass not exceeding the Chandrasekhar mass. However, since a double-degenerate system can

have essentially any mass up to two times the Chandrasekhar mass, the relationship between

the 56Ni yield and the ejecta mass is not constant, and therefore, the Philips relation may not be

applicable to these SNeIa. SNeIa deriving from double-degenerate progenitor systems can have

ordinary 56Ni yields, and thus may be masquerading as typical SNeIa, introducing systematic

errors into cosmological surveys. In order for SNeIa to remain premiere distance indicators, we

must first establish whether double-degenerate SNeIa are standardizable, and if not, we must

identify the tell-tale signatures of a double-degenerate progenitor mechanism.

The most probable double-degenerate progenitor scenario involves two white dwarfs in

a tight binary, though other progenitor systems have been considered (Benz et al. 1989a; Raskin

et al. 2009; Rosswog et al. 2009). Binary white dwarf systems were first seriously explored as

plausible SNeIa progenitors by Iben & Tutukov (1984) and Webbink (1984). In such a system,

tidal dissipation and gravitational radiation drive the binary pair into an ever closer orbit.

Eventually, the least massive white dwarf, being physically larger as R ∝ M−1/3, overflows

its Roche lobe and begins to accrete material onto the primary, or more massive companion

star. For many mass combinations, this is a fundamentally unstable process in which the loss

of mass from the secondary causes it to outgrow its Roche lobe faster than its orbit widens due

to conservation of angular momentum (see e.g. Marsh et al. 2004).

Benz et al. (1990) performed one of the first simulations of double-degenerate mergers,

examining a binary system consisting of a 1.2M⊙white dwarf primary and a 0.9M⊙white

dwarf secondary. They used a smooth particle hydrodynamics code with 3000 particles per star

and found that the merger remnant consisted of a 1.7M⊙ core surrounded by a rotationally

supported disk. This is more massive than the Chandrasekhar limit, but they concluded that

the central object was not entirely degenerate, having been considerably heated, and thus, much

of the object’s support against gravitational collapse came simply from thermal pressure.

Since this pioneering work, others have revisited the white dwarf merger scenario with

up-to-date simulation codes and higher resolutions than were possible in the past (see e.g. Yoon
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et al. 2007; Lorén-Aguilar et al. 2009). In this chapter, we will also revisit white dwarf mergers,

examining a wider range of possible mass combinations than previously studied, and using more

realistic white dwarf compositions in each of our simulations. The structure of this chapter is

as follows. In §2, we will review and compare our method to those used in previous studies

of white dwarf mergers. We discuss the results of our simulations in §3, and finally, in §4, we

summarize our results and conclusions.

4.2 Method & Initial Conditions

As in the previous chapter on white dwarf collisions, we employ the 3D smooth particle hydro-

dynamics code SNSPH (Fryer et al. 2006). Particle codes are ideally suited to simulating binary

systems as they excel at conserving angular momentum, which is crucial for properly simulating

accretion flows in binary systems. We include a Helmholtz free energy equation of state (EOS;

Timmes & Arnett 1999; Timmes & Swesty 2000) that spans a range of possible thermodynamic

conditions, from cold, electron-degenerate gas, to hot, non-degenerate gas, and includes coulomb

corrections and photon pressures. For nucleosynthesis, we use a 13-isotope, α-chain nuclear net-

work with a hybrid photo-disintegration capture scheme as described in Raskin et al. (2010),

which utilizes a similar method for sub-cycling the reaction rates to what is implemented in

MAESTRO (Nonaka et al. 2010). We limit our hydrodynamic time step to that which results

in at most a 30% change in internal energy (u) due to nuclear reactions. If nuclear reactions

are not important, the time step is not allowed to grow larger than what is derived from the

Courant-Friedrichs-Lewey condition.

For our constant mass particle arrangements, we use Weighted Voronoi Tessellations

(WVT; Diehl & Statler 2006), which ensures the lowest energy particle configuration for our

stars. We initiate each of our carbon-oxygen white dwarfs with a uniform composition of 50%
12C and 50% 16O plus a thin atmosphere of pure 4He that comprises 10% of the total stellar

mass. Each of our stars is relaxed to an isothermal temperature of roughly 107 K.

There is some debate over whether white dwarfs in tight binaries will be tidally locked.

The time scales for inspiral and for spinning up the white dwarfs are roughly commensurate.

Yoon et al. (2007) initialized their binary systems with tidally locked white dwarfs, while Lorén-

Aguilar et al. (2009) assumed they would not be. Since most observations of close white dwarf

binaries have suggested they are tidally locked, we make a conscious choice to simulate our

binaries in a tidally locked configuration. We initially allow our stars to fall from rest toward
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each other until there is noticeable tidal distortion in the least massive star. This is done via

an iterative process whereby the stars free-fall for a short time, and then all particles have their

velocities reset and free-fall begins again. This ensures that the binary system is in a meta-stable

configuration and that the stars are still in hydrostatic equilibrium after tidal distortions have

first appeared.

This method avoids unnaturally high accretion rates that result from the secondary

white dwarf overflowing its Roche lobe immediately upon the start of the simulation. Figure

4.1 shows the effective potential at t = 0 in the rotating frame of the 0.64M⊙+ 0.81M⊙merger

simulation, where Φeff = Φg−1/2Ω2r2 normalized to 1.79×1017 erg/g with Ω being the orbital

velocity. As is evident, none of the particles in the 0.64M⊙ star lie outside of the Roche lobe,

and no particle has a higher potential than the potential wall between the two stars. Dan et

al. (2011) discuss how previous efforts in this area have overestimated the accretion rates due to

inappropriate initial conditions, and this can have implications for the final arrangement of the

system and on the long-term evolution prospects.

Our iterative method for creating the initial conditions of the mergers avoids immediate

and rapid mass-transfer while also placing the stars very near the stage where mass transfer

would naturally begin. At this stage, the stars are set into their tidally locked orbits about their

common center of mass with the initial periods given in Table 4.1 for each of our chosen mass

combinations. Over several orbits, the tidal distortions grow and material from the secondary

star overflows its Roche lobe and mass transfer begins. Our mass combinations all lie safely in

the regime of unstable mass transfer (Marsh et al. 2004), and so resolving a steady accretion

stream that could possibly lead to stable accretion using a discretized method like SPH is not

important.

Table 4.1: Simulated binary mass pairs and their initial orbital periods (τ0). All masses are
solar.

# m1 m2 mtot m1/m2 τ0 [s]
1 0.64 0.64 1.28 1.00 47.61
2 0.64 0.81 1.45 0.79 46.99
3 0.64 0.96 1.60 0.67 42.71
4 0.64 1.06 1.70 0.60 43.99
5 0.81 0.81 1.62 1.00 28.72
6 0.81 0.96 1.77 0.84 27.83
7 0.81 1.06 1.87 0.76 25.34
8 0.96 0.96 1.92 1.00 21.50
9 0.96 1.06 2.02 0.90 17.95
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Figure 4.1: Top panel: Particle positions for a representative subsample of all particles overlaid
on top of a contour map of the rotating frame effective potential in the initial conditions (t = 0)
of the 0.64M⊙+ 0.81M⊙merger simulation. The effective potential is normalized to −1 at
the location of the Roche lobe contact between the two stars (L1). Bottom panel: Particle x-
positions vs. effective potentials are plotted with the derived potential for the same conditions
and normalization as the top panel. Inset: Same as bottom panel, but rescaled to better
demonstrate the potential difference between the particles of the 0.64M⊙ star and the point of
Roche lobe contact.

Pakmor et al. (2010) also explored a double degenerate merger of two 0.9M⊙white

dwarfs in a simulation study that was the first of its kind to track a merger from the initial inspiral

to the final detonation and subsequent homologous expansion phase. They found that if such a

meger features a prompt detonation before settling into a meta-stable core-disk configuration,

the resultant supernova would be exceptionally dim, appearing much like 1991 bg. However, the

detonation in their simulations was inserted by hand at the location where large-scale conditions
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matched those found in offline calculations to produce microphysical conditions necessary for

detonation.

At first glance, this is a reasonable approach since the length-scale required for sustaining

a detonation is quite small and unresolved in an SPH simulation. While the conditions across

a single particle may not be sufficient to initiate a detonation on their own, it is reasonable

to suspect that unresolved temperature fluctuations could lead to a detonation that would not

be captured in a simulation like this. However, it is not clear that these large-scale conditions

always lead to a detonation and so should be detonated manually. In fact, as will be discussed,

many of our simulations produced the same detonation preconditions in local hotspots at the

surface of the accretor star, but these hotspots were not gravitationally constrained as they were

part of an orbiting flow. Instead, they merely expanded outward hydrodynamically and floated

away from the surface, cooling rapidly. For this reason, we choose not to insert detonations

into those hotspots while leaving the question open as to whether prompt detonations in these

scenarios are likely or unlikely.

4.3 Results & Analysis

In our simulations of equal-mass binaries, such as simulation 5 with 0.8M⊙×2, depicted in

Figure 4.2, there is first a protracted accretion phase that persists for several orbits. During

this time, both stars lose material, and thus angular momentum, through the L2 and L3 points.

This brings the stars closer together, hastening their mass loss. The helium atmospheres that

the stars were initially given also burns fairly rapidly to carbon and oxygen during this phase.

Finally, one of the stars is disrupted entirely, owing primarily to slight inhomogeneities in the

constituent stars. At this stage, ≈ 2% of the carbon is burned into heavier, silicon-group

elements. The iron-group yield from the merger is negligible.

After many orbital periods, the system settles into a meta-stable configuration with a

dense core, a shock-heated, sub-keplerian disk, and a semi-degenerate interface between them.

As Figure 4.3 indicates, much of the core has been heated slightly to ≈ 2 × 108 K, while

the interface reaches temperatures near 109 K. The core and interface also exhibit solid-body

rotation out to ≈ 1.05M⊙ .

While the disk is large in spatial extent with an outer radius of ≈ 0.8R⊙ , it represents

≈ 35% of the total system mass, or ≈ 0.57M⊙ . Moreover, most of the mass of the disk lies

58



Figure 4.2: Snapshots in time of simulation 5, 0.8M⊙×2, with the time coordinate centered
on the moment of complete destruction of the secondary star. The top four images are density
maps of slices in the x-y plane, while the bottom four images are temperature maps of the same
slice.

much nearer to the core, with the half-mass radius at ≈ 0.02R⊙ , as compared to the radius of

the core, ≈ 0.008R⊙ . This disk will eventually decay due to viscosity and angular momentum

transfer, and often an α-disk prescription for the viscosity is used to compute the time scale for

this accretion (Shakura & Sunyaev 1973). The α-disk accretion time can be approximated by

τacc � α−1
� rd

2h

�2
Ω−1, (4.1)

where α is a free parameter that relates the viscosity to the speed of sound times the scale

height h, rd is the half-mass radius of the disk, and Ω is the angular speed. However, an α-disk

prescription assumes the disk is thin relative to its spatial extent, and this assumption is not

valid for the disks observed in our simulations. In fact, for the disk observed in simulation 5,

h/rd ≈ 0.1; far to thick a disk for α-disk accretion rates. As Figure 4.4 shows for an edge-on view

of the disk in simulation 5 with the core removed, there remains considerable dense material at

high latitudes.

Thin disk accretion severely underestimates the time scale for viscosity driven accretion

in these disks. Instead, cooling from conduction and radiation will probably be the dominant

evolutionary process over viscous torque for some time. As it cools, conservation of angular

momentum will drive it toward becoming a thin disk, shortening the time scale for accretion until

viscosity driven accretion becomes the dominant process. However, during cooling, ≈ 0.15M⊙ of
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Figure 4.3: Left Panel: Temperature and angular velocity as functions of mass coordinate for
the remnant configuration of simulation 4, 0.8M⊙×2 at 223.3s after complete destruction of
the secondary. The red vertical line indicates the progenitor mass of the primary star. Right
Panel: A slice in the x-y plane of the temperature of the remnant.

Figure 4.4: An slice through the x-z plane of the disk remnant in simulation 5, 0.81M⊙×2,
with the core removed.

gas will have too little angular momentum to remain in orbit, and absent the pressure support

from the heated disk, this material will accrete onto the core merely from kinematics, bringing

its total mass to ≈ 1.2M⊙ . In the cases where this cooled core mass is super-Chandrasekhar,

the final evolution of the core mass no longer depends on disk accretion.

Simulation 8, 0.96M⊙×2, exhibited very much the same behavior as simulation 5, with

0.81M⊙×2. Here, the increased densities of the constituent stars and faster orbital velocity

resulted in a much stronger shock, as shown in Figure 4.5. This stronger shock heats some

of the material to ≈ 2 × 109 K in a very similar fashion to the simulation studied in Pakmor
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et al. (2010). However, as evidenced by subsequent snapshots, this shock-heated gas simply

expands and cools, joining the flow of material into the disk before setting off a self-initiated

detonation. Since our simulations cannot resolve the relevant length-scales at which a detonation

might be sustained under these conditions, it remains an open question as to whether a prompt

detonation is a natural outcome here.

Figure 4.5: Same as figure 4.2, but for simulation 8, 0.96M⊙×2.

As Figure 4.6 demonstrates, the remnant core is slightly colder and the core-disk in-

terface is slightly hotter than the remnant in simulation 5. This implies that while the shock

heating of the disk and interface was stronger, the shock was less able to penetrate through the

primary star. In fact, the core of the primary remains essentially unchanged from its original

state.

More importantly, the fraction of the disk that would rapidly accrete onto the core

during cooling and before viscous torque becomes important is sufficient to bring the core mass

to ≈ 1.44M⊙which is above the Chandrasekhar limit. It is an open question as to whether a

white dwarf pushed to the Chandrasekhar limit through this type of accretion will result in a

SNIa or in accretion induced collapse to a neutron star. Whichever path this core mass takes,

it will do so independently of the disk evolution.

For simulation 1, 0.64M⊙×2, the common-envelope phase is foreshortened, and unlike

the more massive pairs of equal-mass white dwarfs, the cores of both stars merge at the center

of mass, as depicted in Figure 4.7. This is most likely due to the stars being less massive and
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Figure 4.6: Same as figure 4.3, but for simulation 8, 0.96M⊙×2 at 210.0s after the destruction
of the secondary.

thus, more susceptible to tidal disruption.

Figure 4.7: Same as figure 4.2, but for simulation 1, 0.64M⊙×2.

The merged core of the remnant in simulation 1 has a temperature of ∼ 2 × 108 K

and exhibits solid-body rotation out to ≈ 0.84M⊙ . After cooling, this core will have a mass of

≈ 0.99M⊙ . Roughly 80% of the initial helium is burned to carbon and oxygen in this simulation,

and with 0.03M⊙ of helium remaining in the disk, sub-Chandrasekhar detonation mechanisms

that require helium atmospheres may still be viable for this system, but this scenario seems

unlikely.
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For unequal mass simulations, the least massive star is always disrupted entirely, forming

an accretion disk around the primary. This is not unlike the equal mass simulations with

the more massive constituent stars. However, for mass pairs that involved a 1.06M⊙ primary,

the accretion stream shock on the surface of the primary was sufficiently strong to sustain a

helium detonation. This is most clearly evident in simulation 9, 0.96M⊙+ 1.06M⊙ , depicted

in Figure 4.8. This detonation propagates a shock through the 1.06M⊙ primary, raising its

core temperature slightly and expanding its outer layers on the opposite side of the accretion

shock. The detonation shock joins the accretion shock in the accretion stream and stalls as the

material there is moving at near the sound speed onto the primary. The energy released from

this detonation is ∼ 1049 erg, however, the detonation was not sufficiently energetic to burn

carbon in considerable quantities, or to unbind the primary star.

Figure 4.8: Same format as Figure 4.2, but for simulation 9, 0.96M⊙+ 1.06M⊙ , with the
time coordinate centered on the moment of the helium detonation. The white arrow in the
left-most, lower panel indicates the location of the detonation nucleus. A detonation shock can
be seen propagating to the right of this location, through the 1.06M⊙ primary, expanding its
outer layers.

Except for the helium detonation, simulation 9 proceeds in a very similar fashion to the

equal mass simulations already discussed. While the 0.96M⊙ secondary is entirely disrupted

into an accretion disk, the core of the 1.06M⊙ primary is largely unchanged, though slightly

heated by the detonation shock. As shown in Figure 4.9, the core-disk interface is much hotter

than previous simulations, reaching a maximum temperature of 1.25×109 K. The core exhibits

solid-body rotation out to ≈ 1.23M⊙ , and after disk cooling, will mass 1.42M⊙ .
63



Figure 4.9: Same as figure 4.3, but for simulation 9, 0.96M⊙+ 1.06M⊙ , at 115.7s after the
destruction of the secondary.

Simulations 4 and 7, 0.64M⊙+ 1.06M⊙ and 0.81M⊙+ 1.06M⊙ , both featured these

helium detonations as well. The detonation for simulation 4 is illustrated in Figure 4.10. As

in simulation 9, 0.96M⊙+ 1.06M⊙ , the detonation propagated a shock through the primary,

expanding its outer layers, but it did not significantly affect the remnant properties or the

formation of a disk. The properties of the disk in this simulation and of the disks in each of our

simulations are given in Table 4.2.

Figure 4.10: Same format as Figure 4.2, but for simulation 4, 0.64M⊙+ 1.06M⊙ , with the time
coordinate centered on the moment of the helium detonation. A detonation shock propagates
to the right, through the 1.0M⊙ primary, expanding its outer layers.
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Table 4.2: Simulated binary mass pairs and their disk properties. M∗ is the final mass of the
core after the inner disk cools, but before viscosity driven disk accretion. The half-mass radius
of the disk is given as rd. Ω is the rotational speed of the inner disk. All units are solar unless
specified otherwise.

# m1 m2 Mdisk Mcore M∗ rd Ω [s−1]
1 0.64 0.64 0.44 0.84 0.99 0.019 0.36
2 0.64 0.81 0.49 0.96 1.05 0.023 0.38
3 0.64 0.96 0.53 1.07 1.16 0.028 0.45
4 0.64 1.06 0.59 1.11 1.20 0.029 0.46
5 0.81 0.81 0.57 1.05 1.20 0.019 0.47
6 0.81 0.96 0.67 1.10 1.26 0.020 0.57
7 0.81 1.06 0.75 1.12 1.30 0.019 0.69
8 0.96 0.96 0.67 1.25 1.44 0.016 0.67
9 0.96 1.06 0.79 1.23 1.42 0.017 0.78

4.4 Discussion

Double degenerate progenitor scenarios are quickly drawing new interest among the astrophysical

community. They have the potential to explain many of the confounding mysteries that remain

about SNeIa, and to enhance their usefulness as cosmological probes. Here, we have conducted a

large simulation survey of white dwarf binary mergers in order to begin to understand how these

systems evolve, and to piece together some of the observational signatures of double degenerate

SNeIa.

In each of our simulations, the merger remnant consisted of a cold, degenerate core

surrounded by a hot accretion disk. These disks were thick, relative to their half-mass radii

(h/rd ∼ 0.1), and so α-disk accretion rates are not appropriate for them. Given the structure of

the disks we observed, cooling time scales are most likely the dominant evolutionary processes.

For many of our simulations, this implies that a Chandrasekhar mass object will form at the

center of mass before viscous accretion of the disk becomes important.

The only exception to this remnant configuration was the simulation of two 0.64M⊙white

dwarfs, where the cores of both stars merged at the center of mass, heating the remnant core

considerably and lifting most of its degeneracy. Since it is unlikely that two identical mass white

dwarfs would form in a binary in nature, this scenario might seem of trivial importance, but

the merging of the cores was less the result of their masses being identical than it was of the

stars being highly susceptible to tidal disruption. Our other equal mass simulations with more

massive constituent stars featured merger scenarios wherein one of the stars was completely

disrupted into an accretion disk around the core of the other. Therefore, it is likely that merger
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scenarios involving slightly unequal but low-mass white dwarfs might also exhibit core merging.

While none of our simulations exhibited prompt carbon detonations, all of the simu-

lations that included a 1.06M⊙ primary did exhibit prompt helium detonations on the surface

of the primary. These helium detonations were not sufficiently energetic to significantly burn

much of the carbon or to unbind either of the constituent stars, but the detonation shocks they

produced did alter the structure of the primary before complete merger. Moreover, at ∼ 1049

ergs, the energy these detonations released is likely sufficient to be observable by many of the

upcoming transient surveys, such as LSST.

Whether white dwarf mergers produce SNeIa is still an open question. Our simulations

and others’ represent only the beginnings of our exploration of this progenitor mechanism.

Preliminary results look very promising, and it is doubtless that the viability of mergers as

SNeIa progenitors will be established in the near term. Meanwhile, it remains an exciting time

to be exploring these dynamical scenarios that continue to surprise us.
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Chapter 5

THE FUTURE

In the previous chapter, we explored simulations of white dwarf mergers and examined their

remnant configurations. With one notable exception, all of these simulation remnants featured

a cold, degenerate core surrounding by a hot accretion disk. We discussed attempts made by

other groups to estimate the evolution of these disks using α-disk viscosity. Since the disks we

observed were much too thick for thin disk approximations to be valid, we concluded that these

were not in fact α-disks, and that the cooling processes are the dominant evolutionary processes

for these disks.

This conclusion naturally leads to the question of how then these disks will actually

evolve, since viscosity of some unknown quantity must still play a role as the disk cools. More-

over, while we concluded in the previous chapter that some of the remnant cores will grow to

Chandrasekhar masses during the cooling phase, we could not say whether this would lead to

SNeIa or to accretion induced collapse to a neutron star. Nor could we make many conclusions

about the observable signatures of the helium detonations we observed in some of the mergers.

In this chapter, we lay out the future avenues and research programs that will attempt to answer

some of these remaining questions about white dwarf mergers.

5.1 Implicit-Explicit Evolution in SNSPH

As discussed and demonstrated in previous chapters, SNSPH is an exquisite tool for modeling

dynamical progenitor scenarios. Its natural ability to conserve angular momentum makes it the

ideal tool for modeling mergers and accretion disks. However, a weakness that it shares with

all explicit hydrodynamical codes is its inability to operate on time scales longer than the CFL

condition (tCFL ≈ ∆x/cs). This is perfectly valid for simulations where the dynamical time

scales are of the same order as the hydrodynamical time scales, but as was observed in our

merger simulations in the previous chapter, the system settled into a nearly stable state where

dynamical changes were bound to operate on much longer time scales than the hydrodynamics

or the CFL condition would dictate. In that scenario, the relevant time scale is the Kelvin-

Helmholtz or cooling time scale, tKH . This is typically on the order of 1010 dynamical times

and is far too large to simulate with an purely explicit code.

The alternative that is often used under these conditions is an implicit hydrostatic solver
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that assumes hydrostatic equilibrium at all times throughout the simulation and only evolves

the relevant thermodynamics. In this scenario, such a simulation would operate on Kelvin-

Helmholtz time scales, solving for hydrostatic equilibrium at each time step, and eliminating

kinematics from the simulation entirely. Without kinematics, such a simulation would require

a prescribed viscosity of some sort that is typically approximated via a tunable accretion rate.

It is also typical for these simulations to operate in one or two dimensions, since absent any

dynamics, a hydrostatic calculation does not gain any precision by operating in full 3D.

A implicit hydrostatic code would seem like a natural avenue for iterating our merger

remnants forward. However, there are a number of drawbacks to taking this approach. First,

since remnants are the result of an explicit particle code, and since nearly all implicit codes

use a grid-based resolution method, the remnant configurations would need to be adapted to

the new code’s preferred resolution framework. Moving from particles to grid cells necessarily

involves interpolation, and thus, a loss of resolution. Second, since most implicit codes operate

in fewer than three dimensions, the full geometry of the accretion disk would be sacrificed.

And third, without kinematics, the viscous torque leading to angular momentum loss would be

purely prescriptive rather than an emergent property of the physics of the disk. If the angular

momentum loss is purely by prescription, the observed accretion rate becomes a tunable knob

that can be set for a desired outcome.

Instead, we plan to integrate some of the implicit physics that operates on very long

time scales into SNSPH in order to preserve geometric and dynamical parity with the results

of the hydrodynamic calculations. To accomplish this, we have built into SNSPH a bookkeeper

module that tracks two time scales simultaneously, ∆tdyn and ∆tlong. This bookkeeper takes

account of the contributions to the time derivative of internal energy (u) from long time scale

processes like conduction and radiation and adjusts ∆tlong to optimize the evolution of the most

rapid physical process. The unitless quantity ξ = ∆tlong/∆tdyn is then used to scale any of the

other relevant, non-dynamical processes to maintain parity.

For instance, to account for energy exchange in the disk via conduction, we have im-

plemented an energy diffusion term of the form

∆ui = ξ∆tdyn
�

j

mj
ρiρj

(κj + κi)(Tj − Ti)
|rij |2

rij∇iWij , (5.1)

where i and j are particle indices, m is mass, ρ is density, κ is conductive opacity, T is temper-
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ature, and ∇iWij is the gradient of the smoothing kernel of particles i and j at a distance of

rij . The scaling quantity, ξ, is determined by an optimization in the change in energy such as

∆ucond/u < 0.1. If the radiation time scale is longer than the conduction time scale, the change

in energy from radiation which takes the form

∆ui = ξ∆tdynσT 4
i
A, (5.2)

where σ is the Stephan-Boltzmann constant and A is the exposed surface area of a radiating

particle, will scale to the diffusion time scale, and vice versa. The bookkeeper module ensures

that none of the long time scale physical processes overtake one another while also allowing those

processes to run at significantly accelerated rates over the dynamical time scales that govern

the kinematics of the simulation.

A necessary pre-condition for this method to remain viable is the complete absence of

any sound waves in the system. Since sound waves will evolve on dynamical time scales, this

method will drastically overestimate the effect of the long time scale physics on the sound wave’s

evolution, potentially dissipating their energy in an unreasonable fashion. In modeling accretion

disks, however, we do not expect to encounter any sound waves.

Conduction and heat diffusion are already implemented and working in our modified

version of SNSPH. Figure 5.1 demonstrates the result of a proof-of-concept test wherein a nearly

infinite rod is given a constant temperature at one end and the heat energy diffuses along the

length of the rod on long time scales. In this case, the rod had a cross-sectional radius of

0.01R⊙ , the approximate radius of a white dwarf star, and densities commensurate with what

is found in the cores of white dwarfs.

As is evident from Figure 5.1, our bookkeeper module is able to run a simulation out to

∼ 1012 dynamical times, and our conduction/diffusion routine matches analytical models quite

well. What remains is an implementation of a viscosity that strikes the right balance between

prescription and emergent physics, and to scale that viscosity, whichever form it may take, with

the bookkeeper scaling quantity ξ. Once the implementation of viscosity is complete, we will

have all the relevant physical processes we need to advance our merger remnants forward in

time and observe their final outcomes. Whether merger remnants result in SNeIa or in neutron

stars, a simulation study of this kind will be the first to attempt to answer this question with

explicit rigor.
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Figure 5.1: Comparisons between our simulation and the analytical prediction of the tempera-
ture evolution of a single location on an nearly infinite rod with a constant temperature at one
end.

5.2 Radiative Transfer

In the previous chapter, we observed that each of the unequal mass merger simulations that

featured a 1.06M⊙ primary exhibited a helium detonation on the surface of the primary. These

detonations released ∼ 1049 ergs in ≈ 0.5 s, and were sufficiently energetic to alter the structure

of the primary. Such an explosion would almost certainly be visible to ground telescopes and

transient sky surveys, and it bears all the hallmarks of a helium nova, such as V445 Puppis

(Kato & Hachisu 2003). The current understanding of helium novae employs compact white

dwarfs accreting helium from evolved, non-degenerate companions. If, indeed, we have discov-

ered a new mechanism for producing helium novae, we would like to make predictions of their

particular spectra and light-curves so as to distinguish observed helium novae as stemming from

the traditional picture or from our new model.

In order to do this, we will employ a radiative transfer code called PHOENIX (Baron

et al. 2009). This atmosphere code is fully relativistic and generalizable to three dimensions.

With this code, we will be able to construct detailed spectra of these explosions and compare

them to helium novae observations. We will also be able to construct light-curves which are

often the only available observations of transients. These light-curves will tell us how bright

the explosions appear and how long they last. Armed with this information, we should be able

to make testable predictions of how often these events should be observed by various transient

searches.
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5.3 Other Progenitor Mechanisms

The well of information about SNeIa progenitors has not yet been tapped. Here, we have ex-

plored mostly double degenerate mechanisms, but there are a number of outstanding questions

that remain, even in the more ordinary case of a single white dwarf in a binary with a non-

degenerate companion. For instance, it is still not clear how accretion produces a supernova,

since a white dwarf reaching the Chandrasekhar limit does not imply a catastrophic, thermonu-

clear detonation must necessarily result. It is also unclear how all of the hydrogen that typically

persists in evolved companions nevertheless does not appear in SNeIa spectra.

The search for robust progenitor mechanisms will go on, and undoubtedly, the as-

trophysical community will uncover peculiar, previously unthought of mechanisms. Already,

considerable effort is being expended exploring sub-Chandrasekhar detonation models. This

and other mechanisms will likely occupy astrophysicists for some time, and we may never arrive

at a satisfactory explanation of every peculiar feature of SNeIa. The Universe appears not to

be very picky about how it accomplishes things, like blowing up white dwarfs, since SNeIa are

quite common. The Universe simply does what it does, and we in the scientific community will

likely always have plenty of work to do, explaining what we think is happening, and hoping,

perhaps, that we might be right - some of the time.
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