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ABSTRACT

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future

of greener and more efficient energy sources. Although SOFCs have been in existence for

over fifty years, they have not been deployed extensively because they need to be operated

at a high temperature (∼ 1000◦C), are expensive, and have slow response to changes in

energy demands. One important need for commercialization of SOFCs is a lowering of

their operating temperature, which requires an electrolyte that can operate at lower temper-

atures. Doped ceria is one such candidate. For this dissertation work I have studied different

types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the

bulk. Doped ceria is important because they have high ionic conductivities thus making

them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have

studied how the ionic conductivities are improved in these doped materials by studying the

oxygen-vacancy formations and migrations.

In this dissertation I describe the application of density functional theory (DFT)

and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion

and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gad-

olinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation

energies for vacancy migration between different nearest neighbor (relative to the dopant)

positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simu-

lation Package). These activation energies were then used as inputs to the KLMC code that

I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K)

and for different dopant concentrations (0 to 40%). These simulations have resulted in the

prediction of dopant concentrations for maximum ionic conductivity at a given temperature.
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Chapter 1

INTRODUCTION

1.1 Why this Topic is Important

With the accelerating demands of energy usage by developing countries such as China and

India, in addition to those of the developed countries, there is a renewed impetus to find

cleaner and more efficient engines that may lead to reduction in our dependence on fossil

fuel. Fuel cells, because of their higher efficiencies, much quieter technology, and signifi-

cantly lower pollution production, are promising replacements for the internal combustion

engines, if their cost can be lowered. Fuel cells, particularly solid oxide fuel cells (SOFCs)

are viewed as important to the future of greener and more efficient energy sources. Al-

though SOFCs have been in existence for decades, they have not been deployed extensively

because they need to be operated at high temperatures (> 900◦C), are expensive, and have

slow response to changes in energy demands.

One of the important components of a fuel cell is the electrolyte. Ideal electrolytes

should have high ionic conductivity, but low electronic conductivity. Ceria (CeO2) is one

of the oxides with a cubic fluorite structure that is a good solid electrolyte when it is doped

with cations of lower valence than the host cations [1]. The doped ceria has a high ionic con-

ductivity thus making it an attractive electrolyte for solid oxide fuel cells. In the electrolyte

of a solid oxide fuel cell, whose schematics are shown in Fig. 1.2 on page 6, the current

is carried by oxygen ions that are transported by oxygen vacancies. These vacancies are

introduced in order to compensate for the lower charge of the dopant cations. The ionic

conductivity in ceria depends on the oxygen-vacancy formation and migration properties.

Although solid electrolytes are critical in the SOFC, optimization of such materials

are often done by trial and error. The choice of the dopants (or co-dopants) and their

optimal concentrations to maximize the ionic conductivity can however be systematically

searched using computer simulation. Density functional theory (DFT) calculations can be

utilized to study oxygen diffusion in doped ceria. In our study, we have determined the

1



oxygen vacancy migration in ceria and the different diffusion pathways in doped ceria via

a vacancy hopping mechanism by calculating the activation energies using DFT. We then

used these rates as inputs to a kinetic lattice Monte Carlo (KLMC) code that we developed

in order to rigorously determine the ionic conductivity as a function of temperature and

dopant concentration. The thrust of this research is not only to find the optimal type of

dopants and the best dopant concentrations that maximize ionic conductivity but also to

understand how the choice of dopant improves the ionic conductivity.

1.2 Fuel Cell Technology

Fuel cells were first invented in the middle of the nineteenth century by Sir William Grove

and are one of the oldest known electrical energy conversion technologies. However, they

did not get wide acceptance in use, and lagged behind steam and internal combustion en-

gines due to economic factors, materials problems, and inadequacies in their operational

cost and durability [2]. Currently there are different types of fuel cells and they are, a) the

alkaline fuel cell (AFC) that was used in the Apollo space program, b) the proton exchange

membrane fuel cell (PEMFC), c) the direct methanol fuel cell (DMFC), d) the phosphoric

acid fuel cell (PAFC), e) the molten carbonate fuel cell (MCFC), and f) the solid oxide fuel

cell (SOFC). The main components of all the fuel cells are an electrolyte sandwiched be-

tween an anode and a cathode, similar to the schematics shown in Fig. 1.1 on page 3, with

catalytic layers between the electrodes and the electrolyte. The MCFC and SOFC operate

at high enough temperatures that the catalytic activity of the electrode materials are suffi-

cient to forgo the need of the catalyst layers. The differences between the various types of

fuel cells, due to the choices of the electrode and electrolyte materials are a) the operating

temperature, b) the fuel and gases fed to the electrodes, c) the catalysts, d) the by-products

of the reactions, and e) the reactions that take place. The AFC, PEMFC, and PAFC require

relatively pure hydrogen gas for their operation. This hydrogen has to be externally gen-

erated from fossil fuels or from other sources to be fed to the anode of these types of fuel

cells. This not only increases the complexity of these systems but also reduces their effi-

ciencies. However, the higher operating temperatures of the MCFC and SOFC mean that

2



Anode Cathode
Electrolyte

SOFC (Solid oxide fuel cell) 

MCFC (Molten carbonate fuel cell)

PAFC (Phosphoric acid fuel cell)

PEMFC (Polymer electrolyte membrane fuel cell)

DMFC (Direct methanol fuel cell)

AFC (Alkaline fuel cell)

T = 800 - 1000 °C (500 - 800 possible)

T = 600 - 800 °C

T = 160 - 200 °C

T = 80 - 110 °C

T = 80 - 110 °C

T = 60 - 90 °C

H2 + O2-       
        H2O + 2e-

H2 + 2OH-       
       2H2O + 2e-

H2 + CO32-     
H2O + CO2 + 2e-

CH3OH + H2O    
      CO2 + 6H+ + 6e-

H2         2H+ + 2e-

H2         2H+ + 2e-

1/2O2 + 2e-       
        O2-

1/2O2 + CO2 + 2e-      
CO32-

1/2O2 + 2H+ + 2e-

H2O

3/2O2 + 6H+ + 6e-

3H2O

1/2O2 + 2H+ + 2e-

H2O

1/2O2 + H2O + 2e-      
2OH-

O2-

CO32-

H+

OH-

H+

H+

External Load
e-e-

Figure 1.1: Schematics and overview of the different types of fuel cells, with operating
temperatures, along with the anodic and cathodic reactions. The ion types and their direc-
tion of transfer are also indicated. The electrons liberated during the anodic reaction travel
along an external path, driving an external load, to arrive at the cathode to participate in the
cathodic reaction. Excepting for the SOFC and the MCFC all the other types of fuel cells
also have a catalytic layer between the anode and the electrolyte and another layer between
the cathode and the electrolyte; these layers are not shown. The MCFC and SOFC operate
at high enough temperatures such that the catalytic activity of the electrode materials are
sufficient to forgo the need of the catalyst layers. It should also be noted that in addition
to the electricity being generated another by-product of these reactions is heat that can be
recycled to provide heating or to generate electricity. Adapted from Steele and Heinzel [3]
with data from Carrette, Friedrich, and Stimming [2].
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they can electrochemically oxidize H2 and CO at the anode. This, combined with integrated

reformers, can push MCFC and SOFC to efficiencies of ∼ 50% [4].

The AFC has the advantage of being simple in design but has the disadvantage of

not being CO2 tolerant. The PEMFC has the advantage of having a fast start-up time and

there being no leaking of electrolytes. The DMFC is simple to operate and usually uses a

3% mixture of methanol and water that is easy to store and transport. However, both the

PEMFC and DMFC have the disadvantage that they are not CO tolerant and since their

membranes have to be maintained at certain humidity levels they have water management

issues. The DMFC also has issues with methanol cross-over. The CO poisoning issue is

alleviated in the PAFC due to its higher operating temperature but is plagued with liquid

electrolyte leakage and lower phosphoric acid conductivity. It is possible to achieve high

efficiency with the MCFC, particularly when combined with gas turbine. It is also pos-

sible to combine internal reforming with the molten carbonate fuel cell and it is CO and

CO2 tolerant. The major disadvantages of the MCFCs are that they need a long start-up

time and electrolyte creep is possible whence the NiO cathode can creep and cause short

circuit. Although the solid oxide fuel cell has a long start-up time like the MCFC, it has

no electrolyte creeping problem. It too has the possibility of internal reforming and high

efficiency is attainable through co-generation. However, another drawback of the SOFC is

that because of the typical high operating temperature (800 - 1000 ◦C) materials degrade

faster and conformal sealing is difficult to maintain.

Of these different types of fuel cells the solid oxide fuel cell (SOFC) (Fig. 1.2) is

very promising for use in automobiles and power sources for buildings due to the following

advantages of solid oxide fuel cells: a) SOFCs have high efficiency, b) they have no cor-

rosive issues, c) they need no handling of hazardous liquid electrolytes, and d) they allow

fuel flexibility by the integration of an internal reformer [5]. The most widely used elec-

trolytes in SOFCs are ceria, and Yttria-Stabilized Zirconia (YSZ). Ceria, or cerium dioxide

(CeO2), is a material of great use and interest in solid oxide fuel cells owing to the fact that

it has high oxygen ion conductivity at temperatures of (∼ 1000 ◦C). Using Yttria-Stabilized
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Zirconia (YSZ), coupled with thin (10–15 micron) films, the operating temperature for op-

timal ionic conductivity may be reduced to ∼ 700 ◦C [3]. Technical difficulties preclude

further reduction in the film thickness. One advantage of such very high operating temper-

ature is that relatively impure fuels may be used. However, it also means the efficiency is

reduced, more expensive materials are needed, and the response time to energy demand is

slow (because it takes time to heat the system up to the required operating temperatures of

≈ 800-1000 ◦C). These points make pure ceria and YSZ unfeasible in automotive applica-

tions. It is imperative that we find SOFC electrolytes that can be operated at much lower

temperatures.

One way to attain lower operating temperatures is to use doped ceria. In doped ceria

oxygen vacancies are formed relatively easily facilitating ionic diffusion. By substituting

a fraction of the ceria with dopants, such as those from the rare earth lanthanide series

(Fig. 4.5 on page 62), we can introduce oxygen vacancies in the crystal without adding

charge carriers. This results in increased ionic conductivity in the SOFC and results in a

better electrolyte. As Steele and Heinzel [3] point out, doped ceria based electrolytes should

lower the operating temperature of an SOFC to around 500 ◦C. At elevated temperatures,

Ce 4+ ions can be reduced to Ce 3+ under the fuel-rich conditions that exist in the anode

compartment. The efficiency and performance of the fuel cells are significantly degraded by

the associated increase in electronic conductivity. Thus the lowering of the temperature has

the added benefit of achieving smaller electronic conduction thus attenuating the internal

short circuits in the positive-electrolyte-negative (PEN) components [3]. At around 500 ◦C

the electronic conductivity is small and can be neglected under typical operating conditions

of the cell [4]. The most promising candidates for doping ceria appear to be those from

the lanthanide series. However, the origin of the differences in ionic conductivity between

different dopants still remain poorly understood [5]. Our goal is to find out which dopants

or co-dopants are best in reducing the operating temperature, what are the optimal dopant

concentrations, and to explain the process of ionic conductivity from our model.
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Figure 1.2: Schematics of the solid oxide fuel cell (SOFC). The charge carrier in the SOFC
is the oxygen ion (O2−). At the cathode, the oxygen molecules from the air are split into
oxygen ions with the addition of four electrons. The oxygen ions are conducted through the
electrolyte and combine with hydrogen at the anode, releasing four electrons. The electrons
travel an external circuit providing electric power and producing by-product heat.

1.3 Literature Review—Experimental

Cerium dioxide (CeO2) has found a number of applications in industry. It is critical in three-

way catalysis in the removal of vehicular exhaust gases [6]. CeO2 has also been used as a

catalyst for the removal of SOx from fluid catalytic cracking flue gases [6]. CeO2 has also

been studied and is used in the inner coating of self-cleaning ovens as an oxidizing agent.

A number of recent publications [3–15] have addressed the role of ceria and doped ceria

due to their importance in oxygen vacancy migration in possible automotive applications

of solid oxide fuel cells (SOFC). Although not directly relevant to this study, a number of

studies [16–24] have applied the density functional theory, that we used in this dissertation

work, to the study of the CeO2 surface.
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Ceria (CeO2) crystallizes in the fluorite structure. It has a face-centered cubic unit

cell with space group Fm3̄m with a = 5.4113 Å. This structure can be regarded as a ccp

array of cerium ions with eight oxygen ions occupying all the tetrahedral holes for a total of

12 atoms per unit cell (Fig. 1.3. In this structure each cerium cation is coordinated by eight

equivalent nearest-neighbor oxygen anions and each anion is tetrahedrally coordinated by

four cations. This structure may also be viewed as a simple cubic oxygen sublattice with

the cerium ions occupying alternate cube centers as shown in Fig. 1.4.

Figure 1.3: CeO2 unit cell viewed as a ccp array of cerium atoms (yellow or light) with
eight oxygen atoms (red or dark) occupying the tetrahedral sites. False ionic radii are used
for clarity. Model created in CrystalMaker.

Three important properties make ceria very useful as an electrolyte in solid ox-

ide fuel cells and as oxygen sensors. First, the open fluorite structure of CeO2 allows the

oxygen anions to migrate through the lattice with relative ease [25]. Second, CeO2 can

also show large deviations from stoichiometry under reducing conditions with little phase

change. Under such conditions the Ce 4+ ions are reduced to Ce 3+. Although in most ma-

terial the resulting electron during the reduction process is not truly localized at a single

7



Figure 1.4: CeO2 unit cell viewed as a primitive array of oxygen ions (red or dark) occu-
pying the eight corners of tetrahedral polyhedra centered on cerium ions (yellow or light
colored). False ionic radii are used for clarity. Model created in CrystalMaker.

cation site, the resulting reduction of Ce 4+ to Ce 3+ does result in the electron in existing

as a small polaron1 [26]. This was determined by Tuller and Norwick in 1975 who investi-

gated the electrical properties of reduced ceria, CeO2-x, carried out on single crystals, and

determined that CeO2-x provided one of the clearest examples of hopping conduction and

the small polaron mechanism [26]. The presence of the polaron is charge compensated by

the formation of an oxygen vacancy. The third reason that ceria is an important material as

an SOFC electrolyte is that oxygen ion conductivity goes up significantly when doped with

trivalent cations because of the increase in the vacancy concentration [27–30]. Catlow [31]

explained that oxygen vacancy migration in ceria and doped-ceria takes place through a

1“A small polaron is a defect created when an electronic carrier becomes trapped at a
given site as a consequence of the displacement of adjacent atoms or ions. The entire defect
(carrier plus distortion) then migrates by an activated hopping mechanism. Small polaron
formation can take place in materials whose conduction electrons belong to incomplete
inner (d or f ) shells which, due to small electron overlap, tend to form extremely narrow
bands.” Ref. [26]
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simple hopping mechanism. The likely migration events involve an oxygen ion hopping to

a vacant site in a first nearest neighbor or to a second nearest neighbor position.

In one of the earliest studies of ionic conductivity, Tuller and Nowick [25] studied

ionic conductivity as a function of temperature in yttrium-doped ceria. They found that,

compared to pure ceria, doped ceria showed higher conductivity, lower activation energy

for anion vacancy migration, and absence of polarization effects to lower temperatures.

This led them to predict that doped ceria would be ideal candidates for lower temperature

SOFCs. Bourneau and Carniato [32], in noting that the theoretical calculations of formation

energies provide values larger than expected from thermodynamic data, speculated that the

reasons may be because the interactions between oxygen vacancies are very complex.

Electrical conductivity is measured using DC four-probe method on sintered ce-

ramic samples [9]. However, this method can introduce errors due to the grain boundaries

and electrodes and may mask the true behavior of the bulk. This uncertainty can be removed

by the use of the complex plane impedance analysis. Bulk and grain boundary contribu-

tions can also be individually resolved using AC impedance spectroscopy as reported by

Stephens and Kilner [33]. Inaba and Takagawa have plotted the electrical conductivities of

different fluorite structures (Fig. 1.5) using data from B. C. H. Steele [13] that show that

the very high conductivity of the ceria doped oxides make them attractive candidates for

use as the electrolyte in solid oxide fuel cells. Although Bi2O3 and yttria-stabilized Bi2O3

are the most conductive, they are structurally not stable and are easily reduced thus making

them unsuitable for use as an SOFC electrolyte. The δ -Bi2O3 structure is monoclinic at

low temperatures and becomes cubic with ionic conduction at high temperature but is eas-

ily reduced at low oxygen partial pressures [34] making it unsuitable to be used as an SOFC

electrolyte. Eguchi et al. measured the ionic conductivities of doped ceria with several rare

earth elements [27]. They found that in general the ionic conductivity went up with the

increase in dopant radius (Fig. 1.6).

Trovarelli [14] has listed experimental values for activation energies of ceria that

range from 3.6–24.8 Kcal/mol (0.16–1.08 eV) for experiments conducted in the temperature
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Figure 1.5: Electrical conductivity of fluorite oxides. Although Bi2O3 and yttria-stabilized
Bi2O3 are the most conductive, they are structurally not stable and are easily reduced thus
making them unsuitable for use as an SOFC electrolyte. Of the other choices doped ceria
is clearly the most promising. From Inaba and Tagagawa [9] with data from Steele [13].

range of 1123–1423 K. Trovarelli notes that the activation of stoichiometric ceria is higher

than that of CeO2-x due to the decrease in the energy needed to create a defect in CeO2-x

compared to CeO2. B. C. H. Steele [4] report the activation energy of Gd 3+ doped ceria

(Ce0.9Gd0.1O1.95) to be 0.64 eV and that for Sm 3+ doped ceria (Ce0.9Sm0.1O1.95) to be 0.66

eV. They also report a value of Ea = 0.87 eV for Y 3+ doped ceria Ce0.887Y0.113O1.9435

which is the same as reported by Kamiya et al. [35]. These experimental values and those

obtained by others for ceria and doped ceria are summarized in Table 1.1 that shows that

the oxygen ion conductivity of ceria-based oxides is strongly dependent on the type and

concentration of the dopant.
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Figure 1.6: Arrhenius plot of ionic conductivity of ceria based rare-earth oxides.
◦: (CeO2) 0.8(SmO1.5)0.2; 4: (CeO2) 0.8(GdO1.5)0.2; 5: (CeO2) 0.8(YO1.5)0.2; �:
(CeO2) 0.8(CaO1.5)0.2; �: CeO2; •: (ZrO2) 0.85(YO1.5)0.15; From Eguchi et al. [27].

1.4 Literature Review—Theoretical

First principles studies of the CeO2 structure were carried out by Yang et al. [22,39] who re-

port calculated lattice constant values of 5.45 Å and 5.48 Å respectively. Pornprasertsuk et

al. [40] studied the ionic conductivity of yttria-stabilized zirconia (YSZ) and calculated the

activation energies using density functional theory. Then they used kinetic Monte Carlo

simulations using Boltzmann probabilities mechanism to determine the dopant concen-

tration dependence of the oxygen self-diffusion coefficient for varying amounts of Y2O3.

Their finding was that maximum conductivity occurs at 7-9 mol% Y2O3 at 600–1500 K.
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Table 1.1: Experimentally observed activation energy Ea values for oxygen vacancy migra-
tion in ceria and doped ceria. For references with data involving doped ceria, the activation
energy values for the lowest dopant concentration are quoted. Table from Ref. [8].

Material Ea (eV) Material Ea (eV)
Ceriaa 0.49 Gd-doped ceriab 0.75
Ceriac 0.52 Gd-Pr-doped ceriab 0.76
Ceriad 0.76 Gd-doped ceriae 0.64
Y-doped ceriaa 0.99 Sm-doped ceriae 0.66
Y-doped ceriad 0.76 Y-doped ceriaf 0.87
CaO-doped ceriad 0.91 Pr-doped ceriag 0.42
Nd-doped ceria f 0.54 Pr-doped ceriah 0.37

a Reference [36]
b Reference [37]
c Reference [38]
d Reference [26]
e Reference [4]
f Reference [35]
g Reference [29]
h Reference [30]

However, this and a number of other studies show that to make the ionic conductivity of

YSZ useable high operating temperatures (∼ 1,000 ◦C) is needed.

The ionic conductivity σ of any material is given by an Arrhenius type expression

σT = σo exp
(−Ea

kBT

)
(1.1)

Ea = E f +Em

where Ea is the activation energy for oxygen vacancy diffusion, T is the temperature in

Kelvins, kB is the Boltzmann constant, and σo is a constant independent of the temperature.

Ea is the sum of the vacancy formation energy E f and the migration energy Em. This

equation tells us that in order to lower the operating temperature while keeping the ionic

conductivity high we need to find materials with lower activation energies Ea. Inaba and

Takagawa in their review article [9] mention several studies that point out that the rare-

earth doped-ceria are prime candidates for lowering the activation energy barrier. Kilner

and Brook [41] remark that “it appears likely that the strain energy term is generally the
12



most important part of the association enthalpies,” so that dopants should be chosen in

order to minimize the lattice strain.

Andersson et al. in their 2006 paper [1] show, using DFT calculations, that there

is a clear minimum (Fig. 1.7) for the activation energy Ea for oxygen vacancy diffusion in

ceria doped with elements from the lanthanide series with the ideal dopant having an effec-

tive atomic number between 61 (Pm) and 62 (Sm). Their results also show “a remarkable

correspondence between vacancy properties at the atomic level and the macroscopic ionic

conductivity.” When ceria is doped with lower valence cations oxygen vacancies are intro-

Figure 1.7: Ea for dopants sitting next to each other (a) and separated from each other
(b) and an effective average of the former two (c). The results were obtained within the
3×2×2 supercell, which implies a dopant concentration of 4.2%. Figure from Ref. [1].

duced in order to maintain charge neutrality. These extra vacancies in doped ceria increase

the ionic conductivity. Andersson et al. mention that because of interactions the dopants
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and vacancies form associates with a certain binding energy that they call the association

energy Eass which prevents the vacancies from being mobile (also Ref. [42]). In doped

ceria Eass plays a similar role to that played by E f in pure ceria in determining the num-

ber of mobile vacancies, so we can write Ea = Eass +Em. Although at high temperatures

most vacancies will be dissociated, at low to intermediate temperature solid oxide fuel cells

(IT-SOFC) the goal is then to find dopants and dopant concentrations that minimize Eass

in order to minimize Ea. They showed how E f is dependent on the local configuration of

dopants and vacancies with “small” ions preferring to have vacancies in the nearest neigh-

bor (NN) position and the “large” ions preferring to have them in the next nearest neighbor

(NNN) position.

In another paper [43] Andersson et al. studied the electronic structure and thermo-

dynamic properties of CeO2 and Ce2O3 from first principles (LDA, GGA, LDA+U)2. They

explored how the properties of CeO2 and Ce2O3 are affected by the choice of U as well

as the choice of exchange-correlation potential, i.e., the LDA or GGA. They also studied

the reduction of CeO2, leading to formation of Ce2O3 and Ce2O2-x, and its dependence on

U and exchange-correlation potential. Their results show that by choosing an appropriate

U it is possible to consistently describe structural, thermodynamic, and electronic prop-

erties CeO2, Ce2O3 and Ce2O2-x, which enables modeling of redox processes involving

ceria-based materials. They report finding U ≈ 6 eV for LDA and U ≈ 5 eV for GGA.

Yang et. al. [44] report on the oxygen vacancy formation energy Evac in Pd-doped

ceria using DFT+U method, that is, first principles density functional theory calculations

with the inclusion of on-site Coulomb interaction, using similar U as above. They found

that Evac is lowered in Pd-doped ceria compared to pure ceria by 3 eV. The Pd dopant was

found to have significant effects on the reduction properties of ceria.

In two separate papers in 2010 Dholabhai et al. [7, 8] studied oxygen vacancy mi-

gration in ceria, praseodymium-doped ceria, and gadolinium-doped ceria using density

2These acronyms refer to different approximations to the density functional theory and
is discussed in the next chapter.
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functional theory. These papers report on the activation energies for vacancy formation

and migration in pure ceria and for different pathways in doped ceria. They found that for

Pr-doped ceria the second nearest neighbor was the most favorable vacancy formation site.

On the other hand, for Gd-doped ceria the first nearest neighbor to the dopant was found to

be the most favorable site for the formation of an oxygen vacancy. They explained that this

was due to the comparable ionic radii of the Gd 3+ and the host Ce 4+ ions.

Adams et al. [45] described the kinetic lattice Monte Carlo (KLMC) method to

model dynamic processes over long time periods. This method only deals with problems

dealing with atoms on bulk lattice sites and their migration from site to site in the crystal

structure. In this method the atom sits on atomic sites and the code simulates the motion

(kinetics) between lattice sites. The jump events are randomly picked one at a time accord-

ing to some weighted probability. The input to the KLMC method may be the activation

energies calculated from atomic level simulations [46]. We will be using a variant of the

KLMC method in determining oxygen vacancy diffusion in doped ceria.

Monte Carlo methods have also been used by others [36, 40, 47–50] to study elec-

trolyte applications in solid oxide fuel cells. One of these studies [47] used semi-empirical

potentials while the others [36, 40, 48–50] used density functional theory (DFT) method-

ology to determine the energetics for oxygen vacancy diffusion in oxides (yttria-stabilized

zirconium and yttria-doped ceria). Among the studies performed using DFT methodology,

some [36, 40, 48, 49] of the studies determined activation energies from static calculations,

and one [50] study determined energetics from ab initio molecular dynamics. The resulting

activation energies were used as input into KLMC models of oxygen vacancy diffusion.

However, none of these models included the effect of vacancy-vacancy interaction, which

we investigate in our work. Overall, these earlier calculations demonstrate that kinetic

Monte Carlo is a powerful technique for investigating oxygen vacancy diffusion (and hence

ionic conductivity) in doped oxides.

Using percolation theory and neglecting the Coulomb repulsion between vacan-

cies, Meyer et al. [51] deduced that for systems with the fluorite structure there are many

15



percolating paths for vacancy diffusion for low dopant concentrations. They interpreted

that at higher dopant concentration, many diffusion pathways are blocked due to attraction

of vacancies to the dopants leading to a decrease in ionic conductivity. Other calculations

used Monte Carlo approaches to analyze oxygen mobility in complex oxide systems such as

CeO2−ZrO2 and CeO2−ZrO2−La2O3 in platinum catalysts [52]and determined the equi-

librium composition profile across a coherent interface in Sm-doped ceria [53]. Hull et

al. [54] performed analysis of the total scattering using reverse Monte Carlo modeling of

anion deficient ceria. They showed that the oxygen vacancies preferentially align as pairs

in the (111) cubic directions as the degree of nonstoichiometry increases.

Molecular dynamics simulations have been used earlier to identify the trends in

ionic conductivity as a function of dopant concentration. Hayashi et al. [55] used molec-

ular dynamics simulations to investigate oxygen diffusion and the microscopic structure

of ceria-based solid electrolytes with different dopant radii. Inaba et al. [56] studied oxy-

gen diffusion in Gd-doped ceria using molecular dynamics simulations. They attributed

the larger size of the trivalent Gd dopant ion to the higher calculated diffusion constant as

compared to Y-doped ceria. An issue with molecular dynamics simulations is that they are

performed over a very short time frame that can lead to insufficient statistical sampling of

various configurations.

In the literature survey above we have discussed the importance of doped ceria as

the electrolytic material for solid oxide fuel cells, the experimental findings of activation en-

ergies and ionic conductivities, and some studies that have used first principles calculations

in order to determine the type of doped electrolyte that would increase the ionic conductiv-

ity. Some other studies have also used molecular dynamics methods to investigate oxygen

vacancy diffusion in doped ceria. However, most of the past studies have investigated only

part of the diffusion pathway, and may have missed the true rate-limiting jump events and

have not explored the full complex dopant–vacancy and vacancy–vacancy interactions.
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1.5 Goals of This Study

Currently vigorous efforts are underway to experimentally characterize bulk diffusion mech-

anisms and to develop optimal doped ceria electrolytes. However, they do not lend to an

understanding of the mechanism of ionic conduction at the atomic level. This understand-

ing is important in order to develop better ionic conductors such as by the use of suitable

co-dopants. The goals of this dissertation is to develop a fundamental understanding of

defect migration at the atomic level for both doped and pure ceria. In this research we

have considered several elements of the lanthanide series as dopants. We have explored

the different pathways for oxygen vacancy migration in doped ceria via vacancy hopping

mechanisms for varying dopant concentrations and temperatures. Since the introduction of

the dopants affects vacancy formation and migration we have investigated the effects on the

first three nearest neighbors, having determined that the effects on more distant neighbors

are negligible. We have used density functional theory (DFT+U) calculations to calculate

the energies and have chosen the ab initio total-energy and molecular-dynamics program

VASP (Vienna ab initio simulation program) to carry out our calculations. To model the

diffusion mechanism of the transport of the charge carriers I have co-developed a novel

random events code, the Kinetic Lattice Monte Carlo (KLMC) program, to carry out our

simulations.

In the next chapter I discuss the principles of the density functional theory, followed

by a chapter discussing the diffusion and ionic conductivity in doped ceria. In Chapter 4, I

discuss how the DFT calculations are carried out in VASP and discuss the results obtained

for neodymium doped ceria. In Chapter 5, I discuss the KLMC code and in the following

chapters I discuss the calculations and results of using the KLMC code to simulate the ionic

conductivity in praseodymium, gadolinium and neodymium doped ceria. The contents of

praseodymium and gadolinium doped ceria have been published (or are being published) in

two papers that I co-authored (with Pratik Dholabhai being the first author).
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Chapter 2

PRINCIPLES OF DENSITY FUNCTIONAL THEORY

In this chapter I discuss in brief the principles of the density functional theory (DFT) and

use these concepts to simulate doped ceria in Chapter 4. I have opted to use the density

functional theory for calculating oxygen vacancy formation and migration in doped ceria

because it yields results that are better than those employing, say, empirical potentials.

Shortly after Erwin Schrödinger’s epoch-making 1926 publication [57] on wave

mechanics, Paul Dirac1 boldly pronounced [58] that “The general theory of quantum me-

chanics is now almost complete . . . . The underlying physical laws necessary for the math-

ematical theory of a large part of physics and the whole of chemistry are thus completely

known, and the difficulty is only that the exact application of these laws leads to equa-

tions much too complicated to be soluble. It therefore becomes desirable that approximate

practical methods of applying quantum mechanics should be developed, which can lead

to an explanation of the main features of complex atomic systems without too much com-

putation.” The density functional theory (DFT) is an exact method in principle that is “an

alternative approach to the theory of electronic structure, in which the electron density ρ(~r),

rather than the many-electron wavefunction, plays a central role” [59]. However, solutions

to the the DFT require some approximations.

2.1 The Schrödinger Equation for a Many-Body System

As a prelude to describing the describing the density-functional theory we first discuss

the rudimentary wave-function theory. The central equation that describes the interaction

of the electrons and the nuclei of a many-body system is the Schrödinger equation. The

time-independent, non-relativistic form of the Schrödinger equation was first written as an

elegant eigenvalue equation by Dirac [58] as

H Ψ = EΨ (2.1)

1P. Dirac and E. Schrödinger were jointly awarded the Noble prize in Physics in 1933.
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where H is the Hamiltonian operator, the eigenstates Ψ are a set of solutions that are the

wave-functions, with associated eigenvalues E that are the energies of the system. What this

equation, originally developed to describe the equation of motion in classical mechanics,

says is that for a given Hamiltonian operator operating on a set of wavefunctions that satis-

fies this equation, we get the same wavefunctions back multiplied by a measurable quantity,

that is the energy of the system. The Ψ with the lowest energy is the ground state eigenstate

whereas the other solutions corresponds to the higher energy eigenstates. Although Eq. 2.1

is quite innocuous looking, difficulty arises in dealing with the many-body terms that com-

prise the Hamiltonian as we shall see in Eq. 2.9, and judicious approximations need to be

made in solving this equation of motion. For atomic systems the Hamiltonian operator con-

sists of five terms that describe the motions and interactions of the electrons and the nuclei.

They are 1) the kinetic energy operator for the nuclei (TN), 2) the kinetic energy operator for

the electrons (Te), 3) the electron-electron interaction (Vee) operator, 4) the electron-nucleus

interaction (VNe) operator, and 5) the nucleus-nucleus (VNN) interaction operator. If we let

the spatial coordinates of the n electrons be represented by ~x ≡~x1, . . . ,~xn, let s represent

the spin, let~r =~r(~x,s) represent the full set of electronic positions and spin variables, and

let the coordinates of the N nuclei by ~R ≡ ~R1, . . . ,~RN , then the above Hamiltonian can be

written as

H = TN +Te +Vee(~r)+VNe(~R,~r)+VNN(~R) (2.2)

and the full Schrödinger equation can be written, as

[
TN +Te +Vee(~r)+VNe(~R,~r)+VNN(~R)

]
Ψ(~r,~R) = EΨ(~r,~R). (2.3)

2.2 Components of the Hamiltonian

The kinetic energy operator of the N nuclei is given by

TN =
N

∑
I=1

(
− h̄2

2MI
∇

2
~RI

)
(2.4)

where h̄ = h/2π = 1.05457×10−34J s = 6.58212×10−16eV s, h is the Planck constant, MI

is the mass of the I-th nucleus at positions ~RI . Similarly, the kinetic energy operator of the
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n electrons of mass me each at positions~ri is given by

Te =
n

∑
i=1

(
− h̄2

2me
∇

2
~ri

)
. (2.5)

The ∇2 operator basically measures the curvature of the wavefunction. Rapidly varying

wavefunctions have high kinetic energy. Since the interactions between the charged parti-

cles are Coulombic in nature, we can write the electron-electron repulsive energy operator,

avoiding double counting, as

Vee(~r) = ∑
i> j

e2

|~ri−~r j|
. (2.6)

We note that this term couples all the electrons in the system and is quite formidable in the

many-body Schrödinger equation.

The electron-nucleus attractive energy operator between the electrons of charge e

at positions~ri and the nuclei of charges eZI at positions ~RI can be written as

VNe(~R,~r) =−
n

∑
i=1

N

∑
I=1

ZIe2

|~RI−~ri|
(2.7)

The nucleus-nucleus repulsive energy operator is similarly given, again avoiding double

counting, by

VNN(~R) = ∑
I>J

ZIZJe2

|~RI−~RJ|
. (2.8)

The full Hamiltonian of the many-body system can then be written as

H =−
N

∑
I=1

h̄2

2MI
∇

2
~RI
−

n

∑
i=1

h̄2

2me
∇

2
~ri
+∑

i> j

e2

|~ri−~r j|
−

n

∑
i=1

N

∑
I=1

ZIe2

|~RI−~ri|
+ ∑

I>J

ZIZJe2

|~RI−~RJ|
. (2.9)

The Schrödinger equation for this full Hamiltonian is inextricable for all but the simplest

cases such as the hydrogen or helium atoms. Therefore, we need to make appropriate

approximations and develop techniques so that we are able to come up with meaningful

solutions to this equation for many-body systems.

The biggest impediment to solving the Schrödinger equation is the electron-electron

interaction term (Eq. 2.6). Unlike the other terms that contain the coordinate of one electron

at a time, this term means that we have to solve for all the electrons in the system all at once.

We can, however, solve the one-electron problems iteratively to approach the true solution
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of the many-body Schrödinger equation. Two popular approaches are used to tackle this

issue. One is the Hartree-Fock (HF) method and the other is the density functional theory

(DFT) method. In the Hartree-Fock method an approximate many-electron wavefunction

is constructed from one-electron wavefunctions in an appropriate effective potential. How-

ever, the Hartree-Fock methods are computationally demanding, limiting their applications

to small molecules. In the density functional theory method the many-electron problem is

transformed to a one-electron problem in an unknown effective potential.

2.3 The Born-Oppenheimer Approximation

Since the nuclear masses are many times larger than the electronic mass (MI/me� 1), we

can consider the kinetic energy term for the nuclei to be much smaller than the kinetic en-

ergy term for the electrons and can thus safely drop the first term from the Hamiltonian in

Eq. 2.9. This is reasonable for all cases except for the very lightest elements like hydro-

gen where the ions have to be treated like quantum mechanical particles [60]. The Born-

Oppenheimer approximation then basically considers the nuclei to be at fixed positions and

the electrons to be moving in the field of this set of nuclei, thus treating the electrons and

nuclei as separate mathematical problems. Therefore, we can separate the wavefunction

into an electronic part ΨE (~r,~R) and a nuclear part ΨN(~R)

Ψ(~r,~R) = ΨE (~r,~R)ΨN(~R). (2.10)

Dropping the kinetic energy term for the nuclei, we can then write the electronic Hamilto-

nian as [61]

HE (~r,~R) = Te +Vee(~r)+VNe(~R,~r)+VNN(~R). (2.11)

Therefore, with this approximation the electronic Schrödinger equation reduces to
[
−

n

∑
i=1

h̄2

2me
∇

2
~ri
+∑

i> j

e2

|~ri−~r j|
−∑

i,I

ZIe2

|~RI−~ri|
+ ∑

I>J

ZIZJe2

|~RI−~RJ|

]
ΨE (~r,~R) = EΨE (~r,~R) (2.12)

We next realize that the ion-ion interaction term ∑(ZIZJe2/|~RI−~RJ|) is independent of the

electronic degrees of freedom and may be considered a constant. It can therefore be cal-

culated separately and later added to the total energy. The Schrödinger equation for the
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time-independent, non-relativistic case, with the Born-Oppenheimer (or adiabatic) approx-

imation then further reduces to
[
−

n

∑
i=1

h̄2

2me
∇

2
~ri
+∑

i> j

e2

|~ri−~r j|
−∑

i,I

ZIe2

|~RI−~ri|

]
Ψ(~r,~R) = EΨ(~r,~R). (2.13)

We emphasize here that since, as mentioned before, the coordinates ~r =~r(~x,s) represent

the full set of electronic positions and spin variables, the set of eigenfunctions Ψ(~r,~R) of

the Schrödinger equation are solved subject to the constraint that the wavefunctions are

antisymmetric. That is, the Ψ(~r,~R) change sign if the coordinates of any two electrons

are interchanged. It is still quite an inextricable equation. We need to consider two other

properties of the electrons. One is the exchange property that is a consequence of the Pauli

exclusion principle. The exchange property stipulates that when two electrons of the same

spin interchange positions then the sign of the wavefunction Ψ must change sign. The other

is the correlation property of the electrons. This is a consequence of every electron being

influenced by the motion of every other electron in the system.

2.4 The Hartree-Fock Approximation

The Hartree-Fock method is one of the approaches in which one tries to construct an ap-

proximate many-electron wavefunction from one-electron wavefunctions, determined in

some approximate effective potential. Higher order variants of the Hartree-Fock methods

are usually only applied to small molecules since they are computationally very demanding.

In his approximation Hartree [62] totally neglected the electron–electron interac-

tion. If we let hi denote the the Hamiltonian for electron i then the total Hamiltonian of the

electrons can be written as

H =
N

∑
i=1

hi. (2.14)

For each electron the Hamiltonian equation

hφ = Eφ (2.15)

is satisfied by the spin orbitals φ . Each of this single electron Hamiltonian equation is

satisfied by multiple eigenfunctions, so this defines a set of spin orbitals φ j(~ri ( j = 1,2, . . .)
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where ~ri are the vectors of coordinates that define the position of electron i and its spin

state. Since for the non-interacting electrons the total Hamiltonian can be written as a sum

of the one-electron operators hi, we can write the eigenfunctions of H as the products of the

one-electron spin orbitals known as the Hartree product:

Ψ(~r1, . . . ,~rN) = φ j1(~r1)φ j2(~r2) . . .φ jN (~rN). (2.16)

The problem with the Hartree product is that it does not satisfy all the important criteria

for wavefunctions [63], such as the antisymmetry principle. Since electrons are fermions,

the wavefunction must change sign if two electrons change places with each other, but

the Hartree product does not change sign if two electrons exchange positions. A better

approximation to the wavefunction is achieved by using Slater [64] determinants2. Using

the Slater determinant the eigenfunction is written as

Ψ(~r1, . . . ,~rN) =
1

(N!)1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(~r1) φ1(~r2) φ1(~r3) . . .

φ2(~r1) φ2(~r2) φ2(~r3) . . .

φ3(~r1) φ3(~r2) φ3(~r3) . . .

. . . . . .

. . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.17)

where the coefficient 1
(N!)1/2 is a normalization factor. It is perhaps easier to see the an-

tisymmetry property by examining the case for a two-electron system. Then the Slater

determinant becomes

Ψ(~r1, . . . ,~rN) =
1√
2

∣∣∣∣∣∣∣

φ1(~r1) φ1(~r2)

φ2(~r1) φ2(~r2)

∣∣∣∣∣∣∣

=
1√
2
[φ1(~r1)φ2(~r2)−φ2(~r1)φ1(~r2)]. (2.18)

The physical description of the electron exchange is explicitly built into this construction

since this changes sign if two electrons are exchanged. Also, this construction does not

2Dirac in his original 1926 article [65] pointed out that the wavefunctions for non-
interacting electrons of a given spin (up or down) can be written as a determinant of one-
electron orbitals. Slater later showed that the wavefunction including spin can be written as
a determinant of “spin orbitals” [66].
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distinguish between electrons and disappears if two of the one-electron wavefunctions are

the same or if two electrons have the same coordinates. Thus the Slater determinant satisfies

the Pauli exclusion principle.

Of course, in any real system the electrons interact with each other. The simplest

wavefunction based approach to approximate these interactions is the Hartree-Fock (HF)

method. In the Hartree-Fock method the positions of the atomic nuclei are kept fixed and

the wavefunctions of the N-interacting electrons are determined.

In the HF method the Schrödinger equation of each electron is written as

[
− h̄2

2m
∇

2 +V (~r)+VH(~r)
]

φ j = E jφ (2.19)

where the second term is the interaction between the electron and the collection of atomic

nuclei, and the third term is the Hartree potential

VH(~r) =
∫

ρ(~r′)
|~r−~r′|d~r

′ (2.20)

where ρ(~r) is the density of the electrons at the position~r. This means that each electron

experiences the effect of other electrons only as an average and not as instantaneous interac-

tions. In order to solve the single-electron equation the exact spin orbitals are approximated

as a linear combination of functions ϕi(~r):

φ j(~r) =
K

∑
i=1

α j,iϕ(~r) (2.21)

where the set of functions ϕ1(~r),ϕ2(~r), . . . ,ϕK(~r) is called the basis set. The larger the basis

set (that is, the larger the K), the more accurate is our calculation, although it also increases

the computational efforts. Also, the judicious choice of basis sets that approach the spin

orbitals of real materials also increases the accuracy of the HF calculations. The average

charge density is given by

ρ(~r) =
N

∑
j=1
|φ j(~r)|2 (2.22)

where, in the ground state, the summation is over the N lowest eigenvalues. In the Hartree-

Fock method the spin orbitals depend on the charge density and the charge density itself
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depends on the spin orbitals. Therefore, the calculations are done in a self-consistent itera-

tive way [67]. We first start with a trial charge density ρ(~r), construct the Hartree potential

VH(~r) in Eq. 2.21, solve for φ j, and then recalculate ρ(~r) from Eq. 2.22. If this charge

density differs from the initial guess by some convergence criteria then we iterate until it is.

One drawback of the Hartree approach is the lack of accounting for electron cor-

relation, or how electrons influence each other. Therefore, this method overestimates the

electrostatic energy between the electrons [68]. The poor scaling of Hartree-Fock (∼ N4)

limits its application to large systems and is better suited for small molecules and can be

directly solved only in special cases such as spherically symmetric atoms and the homo-

geneous electron gas [66]. Higher levels of theory, such as CI (configuration interaction),

MP (Møller-Plesset perturbation theory), and QCI (quadratic configuration interaction),

have been introduced [63] to incorporate correlation approximation into Hartree-Fock. The

level of theory defines the approximations that are made to describe the electron–electron

interactions. However, in order for the wavefunction based methods to converge to the

true solution of the Schrödinger equation, these higher levels of theory need to be used

in conjunction with larger basis sets necessitating3 calculation operations to scale as ∼ N7.

Therefore, these calculations are limited to individual molecules consisting of 10–30 atoms.

2.5 The Hohenberg-Kohn Theorems

The density functional theory (DFT) is an alternative method to the theory of electronic

structure, such as the Hartree-Fock method, for solving Schrödinger type equations in

which the electron density distribution ρ(~r), rather than the many-electron wavefunction,

play a central role [59]. It allows the treatment of 100–1000 atoms on current computer

systems as it scales as N2–N3, where N is the number of atoms. It is based on two remark-

able theorems by Hohenberg-Kohn [69, 70] (later simplified and extended by Levy [71]).

3Using a basis set with more functions requires more computational effort since the
numerical coefficients defining the magnitude of each function’s contribution to the net
function in Eq. 2.21 must be calculated.
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1. All aspects of the electronic structure of a system of interacting elec-

trons, in the ground state, in an ‘external’ potential ν(~r), are completely

determined by the electronic charge density ρ(~r).

2. The ground state energy of the interacting electron gas is a unique func-

tional of the charge density ρ(~r).

The difficulty is that unfortunately, the functional is not known! However, whatever the

functional is, it acquires a minimum value when the charge density ρ(~r) is the correct

(true) ρ(~r). Practically, a variation principle is used to find the charge density.

Mathematically, the second theorem above states that the total energy functional4

E[ρ(~r)] of interacting electrons in an external potential is given exactly as a functional of

the ground state electronic density ρ(~r). By using an reductivo ad absurdum approach [69]

Hohenberg and Kohn showed that the true ground state density is the density that minimizes

E[ρ(~r)]. In the Hohenberg-Kohn formulation the ground state energy of an interacting

inhomogeneous electron gas in a static potential vion(~r) is written as

E[ρ(~r)] =
∫

vion(~r)ρ(~r)d~r+
1
2

∫ ∫
ρ(~r)ρ(~r′)
|~r−~r′| d~rd~r′+F [ρ(~r)] (2.23)

where F [ρ(~r)] is a universal functional of the charge density (that we mentioned above)

and is valid for any number of particles and any external potential. The functional F [ρ(~r)]

is expressed entirely in terms of the correlation energy and linear and higher order elec-

tronic polarizabilities of a uniform electron gas [69]. It is important to note here that this

formulation is exact if F [ρ(~r)] is known.

2.6 The Local Density Approximation

In 1965 Kohn and Sham [70] [KS] derived approximation methods, that are somewhat anal-

ogous to the conventional Hartree and Hartree-Fock equations, for treating the Hohenberg-

Kohn [HK]equation (Eq. 2.23), but maintains the major part of exchange and correlation.

4In contrast to a function that accepts a variable as its input and produces a number as its
output, a functional accepts a function as its argument and produces a number as its output.
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They first wrote the functional F as

F [ρ(~r)] = Ts[ρ(~r)]+Exc[ρ(~r)] (2.24)

where Ts[ρ(~r)] is the kinetic energy of a system of non-interacting electrons with density

ρ(~r) and Exc[ρ(~r)] is the exchange and correlation energy of an interacting system with

density ρ(~r). For a sufficiently slowly varying charge density ρ(~r) Kohn and Sham show

that the exchange-correlation energy can be written as

Exc[ρ(~r)] =
∫

ρ(~r)εxc(ρ(~r))d~r (2.25)

where εxc(ρ(~r)) is the exchange and correlation energy per electron of a homogeneous,

interacting electron gas of the same density ρ(~r). This approximation is known as the local

density approximation (LDA). We make this explicit by adding a superscript

ELDA
xc [ρ(~r)] =

∫
ρ(~r)εxc(ρ(~r))d~r. (2.26)

We note that the charge density is a function of only three variables and that the

‘external’ potential is the set of nuclear potentials. We emphasize that the theory holds for

the ground state but the band gaps are off for the excited states. According to Hohenberg-

Kohn, then, we need to only know the electronic charge density to determine the ground

state properties of the system. It is much simpler to deal with charge density ρ(~r) than the

many-electron wavefunction.

In the Kohn-Sham self consistent formalism we start with an initial estimated

charge density, which is usually a superposition of atomic densities ρ(~r). Fig. 2.1 shows a

flow chart implementing this method. We then construct the Hartree potential

VH(r) =
∫

ρ(~r′)

|~r−~r′ |
d~r. (2.27)

The effective potential is then given by

Ve f f (~r) =VH(~r)+VN(~r)+VXC(~r) (2.28)

where VN is the potential due to the nuclei and VXC is the exchange-correlation potential,

the latter being a purely quantum mechanical phenomena.
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Guess input ρ(~r)
e.g. superposition of atomic charge densities

Construct

VH(r) =

∫
ρ(~r′)

| ~r − ~r′ |
d~r

Construct

Veff (~r) = VH(~r) + VN (~r) + VXC(~r)

Mix new and old ρ(~r)
to recalculate VH

Solve

− ~2

2m
∇2Ψj(~r) + Veff (~r)Ψj(~r) = εjΨ(~r)

Construct output

ρ(~r) =
∑

j occupied

Ψj(~r)Ψ
∗
j (~r)

Does output
ρ(~r)

converge to
input ρ(~r)?

STOP

No

Yes

Figure 2.1: Flow chart of a self consistent calculation in the local density approximation
(LDA) implementation of the density functional theory (DFT).
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We then solve the Schrödinger equation

− h̄2

2m
∇

2
Ψ j(~r)+Ve f f (~r)Ψ j(~r) = ε jΨ(~r) (2.29)

and use the generated wavefunctions to construct an output charge density

ρ(~r) = ∑
j occupied

Ψ j(~r)Ψ∗j(~r). (2.30)

If this output is not the same as the input then we modify our initial guess for the charge

density and repeat the calculations again. This is called the self-consistent field (SCF)

calculation.

It is remarkable that LDA reasonably predicts many measurable quantities such

as the ground state geometries, vibration and phonon frequencies, and moments of the

density [72]. LDA gives ionization energies of atoms, dissociation energies of molecules,

and cohesive energies with accuracies of 10-20% and bond lengths and geometries of solids

and molecules with an accuracy of ∼ 1% [59]. Although the solution of the Kohn-Sham

equation is much easier than the Hartree-Fock equations, its accuracy for exchange energy

is off by as much as 10% and correlation energy is typically overstated by a factor of 2,

although these errors partially cancel each other out [59].

One important case where the LDA (and its extension to systems with unpaired

electrons, LSDA) fails are systems that are dominated by electron-electron interaction ef-

fects, such as the heavy fermion systems. This is because such systems lack any resem-

blance to noninteracting electron gases [59]. Other shortcomings are that the LDA system-

atically underestimates excited state energies, and in particular, the band gaps in semicon-

ductors and insulators5; overestimates the cohesive energies as mentioned above; gives the

wrong ground state of some magnetic materials; and fails to appropriately describe the Van

der Walls interactions [73].

One way to improve on the LDA is to incorporate the local gradient as well as the

density by replacing εxc(ρ(~r)) in the Eq. 2.26 by εxc(ρ, |∇ρ|). We then get what is known as

5This is reasonable to expect since the density functional theorem is based on the ground
state only.
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the generalized gradient approximation (GGA) [74–78] which is another approximation to

the Kohn-Sham functional. The basic premise of the GGA is that since the electron densities

of real materials are not uniform we can get a better functional by including the spatial

variation in the electron density. Inclusion of the gradient corrections to εxc has led to better

results for dissociation energies, improved cohesive energies, and more accurate predictions

of magnetic properties. However, in some cases GGA overcorrects the deficiencies of the

LDA and leads to an underbinding [73]. There are many different ways to include electron

density gradient in a GGA functional leading to many distinct GGA functionals [79] and

more detail can be found in Ref. [76]. Two widely used non-empirical GGA functionals are

the Perdew-Wang functional (PW91) and the Perdew-Burke-Ernzerhof functional (PBE).

These so-called “hybrid” functionals, that mix the exact results for the exchange part of

the functional with approximations of the correlation part, are the most commonly used

functionals in DFT calculations based on spatially localized basis functions [63]. The most

popular functionals of this kind is the B3LYP functional, where B stands for Becke, who

worked on the exchange part of the problem, the LYP stands for Lee, Yang, and Parr, who

developed the correlation part of the functional, and the 3 describes the particular way that

the results are mixed together [80, 81]. B3LYP employs a elaborate functional with three

parameters and has the form

EB3LY P
xc = ELDA

xc +ao(EHF
X −ELDA

x )+ax(EGGA
x −ELDA

x )+ac(EGGA
c −ELDA

c ) (2.31)

with parameters ao = 0.20, aX = 0.72, and aC = 0.81; Exc is the exchange-correlation en-

ergy, Ex is the exchange energy, and Ec is the correlation energy. Although the form of

the exact exchange results mean that they can be efficiently utilized for applications based

on spatially localized functions, and not for applications using periodic functions [63], it

is interesting to note that Baranek et al [82] and Kullgren, et al [83] were able to use the

B3LYP functionals for the calculations of CeO2 and Ce2O3, although B3LYP did not give

results as good as that obtained by DFT+U, discussed below.
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2.7 The DFT + U Approximation

Notwithstanding the successes of DFT there are cases where DFT (within the LDA and

GGA approximations) fails even to give a correct qualitative description, for example by

predicting a known insulator to be metallic [84, 85]. The main reason for this is due to

the approximation of the exchange-correlation functionals. The failure of the DFT-LDA in

strongly correlated electron materials, such as the transition metal oxides and the actinides,

that contain many electrons in partially filled d or f shells, is because the d and f shells are

inherently localized on each atomic site resulting in strong Coulombic repulsion between

the electrons [84].

Since the self-interaction errors are cancelled exactly in the Hartree-Fock scheme,

one can address the case of the strongly correlated electron materials by making a judicious

combination of Hartree-Fock type approach for the localized states with DFT for the rest.

This is the essence of the DFT+U methods [84, 86]. In the DFT+U method a correction

to the DFT energy is introduced to correct for the electron self-interaction. This is done

by introducing a single numerical parameter Ue f f = U − J where U is the Coulomb self-

interacting term and and J is the exchange self-interaction term. Ab intio calculations can

be carried out on test systems to determine the bounds on Ue f f , but in practice this term

is evaluated with a parametrized Hamiltonian instead of an explicit HF calculation. For

example, the bulk modulus of a perfect crystal can be calculated and the value of U−J that

gives the best fit to the known bulk modulus is determined.

2.8 Basis Sets, Plane-waves, and Energy Cutoffs

As mentioned earlier, a judicious choice of basis sets for the expansion of the single-

particle wavefunctions φ j(~r) (Eq. 2.21) is important for the solution of the Kohn-Sham

equations. Two of the choices for the basis sets are the atomic orbitals6 (AO) (also known

as the spatially localized functions) and the plane-waves (PW) (the spatially periodic func-

6An excellent review of the selection of basis sets for molecular calculations can be
found in Ref. [87].
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tions). In quantum chemical calculations where localized bondings exist, such as for atoms,

molecules, and clusters, the atomic orbitals basis sets are more efficient. Since the molecu-

lar orbital shapes often resemble those of the atomic orbitals, only a small number of basis

functions are needed in the expansion of the wavefunctions. One of the common atomic or-

bital basis sets are the minimal basis sets STO-nG, where n is an integer that represents the

number of Gaussian primitive functions comprising a single basis function [88]. In these

basis sets, the same number of Gaussian primitives comprise the core and valence orbitals.

There have been a number of improvements over the minimal energy basis sets

(that are fixed and are unable to adjust to different molecular environments), such as the

split-valence basis sets. The idea behind these is that since it is the valence electrons that

primarily participate in bonding then it is more prudent to represent valence orbitals by

more than one basis function (each of which can in turn be composed of a fixed linear

combination of primitive Gaussian functions). Examples of split-valence basis sets are the

Pople basis sets and the correlation-consistent basis sets, such as cc-pVDZ and cc-pVTZ

that been been carefully developed to be numerically efficient for molecular calculations

[63]. One major issue with atomic orbital basis sets is that it is difficult to ensure the

completeness of an AO basis set [89]. The completeness is important because it determines

if properties such as the total energy are converged with respect to the number of basis

sets [90].

Plane-wave basis sets are the method of choice for extended crystalline systems,

particularly those containing metallic phases. Two of the advantages of plane-wave basis

sets are that they are a set of orthogonal and complete functions. The accuracy of the

basis can be systematically improved by simply increasing the number of basis functions

thus facilitating the check for convergence. The essence of the PW method is that in the

solution of the Schrödinger equation for a periodic system, the solution must satisfy Bloch’s

theorem [91], which states that the solution can be expressed as a sum of terms of the form

ψn~k(~r) = ei~k·~run~k(~r), (2.32)

where ei~k·~r is a plane wave and the function un~k(~r) is periodic in space with the same peri-
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odicity as the supercell (Bravais lattice), i.e.,

un~k(~r+~R) = un~k(~r). (2.33)

The index n is known as the band index and occurs because for a given~k (in reciprocal

space) there are many independent eigenstates. Combining the last two equations Bloch’s

theorem can also stated in the alternate form: The eigenstate of the Hamiltonian H can be

chosen so that for each wave-function ψ there is a wave vector~k such that

ψ(~r+~R) = ei~k·~r
ψ(~r) (2.34)

for every ~R in the Bravais lattice [91]. It is important to note that this theorem means that it

is possible to try and solve the Schrödinger equation independently for each value of~k. This

also applies to quantities derived from the solutions to the electron density equations [63].

In carrying out DFT calculations lot of the calculations reduce down to evaluating

integrals in the reciprocal space of the form

ḡ =
Vcell

(2π)3

∫

BZ
g(~k)d~k (2.35)

that spans over all possible values of~k in the Brillouin zone (BZ). There have been many

attempts at solving equations of this form efficiently and the most popular one (and the one

that we have used in our calculations) is the Monkhorst-Pack scheme [92]. To use this in

VASP all we need to do is to specify the number of k-points that we want to use in each

direction in the reciprocal space. Although it can be expected that the larger the number of

k-points the greater the accuracy of our calculations, in practice one needs to use enough

k-points to ensure that the energy converges to within 10−3 eV. Also, it is important to take

the symmetry of the system into consideration so that the calculations can be carried out in a

small portion of the zone and then extend to fill the rest of the Brillouin zone. This reduced

zone in k space is called the irreducible Brillouin zone (IBZ). For example, for a perfect fcc

crystal using a 10× 10× 10 Monkhorst-Pack sampling of the BZ, only 35 distinct points

of the k-space that lie within the IBZ need to be used compared to the 1,000 that would

need to be used if symmetry was not taken into consideration, thus greatly reducing the

computational effort [63].
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Other difficulties that are encountered in condensed matter simulations arise due to

the fact that the wavefunctions are nearly infinite in extent and because we are confronted

with dealing with a very large number of electrons. These issues are dealt with by introduc-

ing periodic boundary conditions (PBC) [93] in which a “supercell” is replicated throughout

space. We can then use Bloch’s theorem (Eq. 2.34) thus allowing the periodic part of the

wavefunction un~k(~r) to be expanded in a discrete set of plane-waves whose wave vectors

are the reciprocal lattice vectors ~G of the crystal structure

ψn~k(~r) = ei~k·~run~k(~r) = ∑
~G

cn,~k+~G ei(~k+~G)·~r. (2.36)

Of course it would not be possible to evaluate this summation over all the (infinite) values

of ~G. We first note that functions in the above equation are solutions to the Schrödinger

equation with kinetic energy

E =
h̄2

2m
|~k+ ~G|. (2.37)

Since solutions with lower energies are physically more important it is prudent to truncate

the infinite sum to include only solutions with kinetic energies less than some value

Ecut =
h̄2

2m
G2

cut . (2.38)

where Ecut is known as the cutoff energy. Then Eq. 2.36 reduces to

ψn~k(~r) = ∑
|~G+~k|<Gcut

cn,~k+~G ei(~k+~G)·~r (2.39)

and is more manageable. One important point to note when doing DFT calculations for

multiple systems (such as an alloy) is to use the same energy cutoff Ecut in all calculations,

preferably the one with the highest cutoff energy among the different species.

2.9 Psuedopotentials

With the use of pseudopotentials we can, by treating only the valence electrons, further im-

prove the efficiency and accuracy of planewave-based DFT calculations [94]. In the pseu-

dopotential approximation the electronic potential is separated between a core region and a

valence region. The strong core potential that includes the Coulombic attraction, the Hartree
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potential due to the core charge, and a component of the exchange-correlation potential re-

lated to the valence-core interaction, is replaced by a pseudopotential whose ground state

wavefunction ϕPS mimics the all electron valence wavefunction outside the selected core ra-

dius. Thus, both the core states and the orthogonalization wiggles in the valence wavefunc-

tions are removed [78] as shown in Fig. 2.2. The resulting pseudo-wavefunctions ϕPS(r) are

Figure 2.2: Schematics of the replacement of the actual all-electron wavefunction ϕ(~r) and
the actual core potential V (~r) by a pseudo-wavefunction ϕPS(~r) and pseudopotential V PS(r)
inside some core radius ~rC. From Singh and Nordström [78].

node-less and quite smooth inside some core radius ~rC for many elements and may be well

represented using only a much smaller basis set of ~G planewaves thus saving substantial

amount of computational resources.

The main advantages of using pseudopotentials are that a) we need fewer wave-

functions since we are omitting the core electrons and that b) by avoiding the nodes by
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using a smooth pseudo-wavefunction for the core region we can expand the wavefunction

using far fewer basis functions. The accuracy compromise is negligible since most prop-

erties of solids depend on the valence electrons. Additionally, the precision required to

determine energy differences for a pseudopotential calculation is much smaller than that

for the all-electron calculation. This is because the energy difference between the differ-

ent ionic and bonding configurations is due to the differences in the valence electrons and

since the total energy of the valence-only system is much smaller than the energy of an

all-electron system.

The pseudopotentials that we have used in this work are the ab initio pseudopo-

tentials, as distinguished from empirical pseudopotentials in which pseudopotentials are

parametrized by fitting to experimental data, such as a band structure. In generating mod-

ern pseudopotentials we have to reconcile some conflicting goals [78]. 1) The pseudopo-

tentials must be as soft as possible, i.e., the valence pseudo-wavefunctions should be ex-

panded using a minimum of planewaves. 2) The pseudopotential must be transferable so

that a pseudopotential generated for a given atomic configuration should be useable to other

cases, such as dimers, bulk, and surfaces. 3) The pseudo-charge density should reproduce

the valence charge density as faithfully as possible. These conflicting goals are greatly

alleviated by using the norm conserving pseudopotentials [95, 96]. In this scheme the po-

tentials and the pseudo-wavefunctions outside some core radius rC are constructed to be

equal to those of the actual potential and pseudo-wavefunction. Although inside rC the

pseudo-wavefunctions differ from the true wavefunctions, their norm is constrained to be

invariant. That is [78],

∫ rC

0
dr r2

ϕ
PS ∗(r)ϕPS(r) =

∫ rC

0
dr r2

ϕ
∗(r)ϕ(r). (2.40)

This ensures that the charge density for both all-electron and pseudo-wavefunctions is the

same.

36



2.10 Concluding Remarks

In this chapter we have discussed the essence of the density functional theory. Using DFT

we can predict optimal design of materials rather than conducting expensive and time con-

suming trial and error experimental procedures. As we have discussed in the literature

survey in Chapter 1, DFT has been used by others to find bulk properties of ceria in good

agreement with experimental data. Density functional theory (DFT) is also a very good

first principles tool for calculating oxygen vacancy formation and migration in doped ceria

because it yields results that are better than those employing, say, empirical potentials and

aspects of it has been been explored by others. In chapter 4 of this dissertation we will dis-

cuss in detail the actual implementation of DFT in calculating oxygen vacancy formation

and migration in doped ceria and present the results of our calculations.
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Chapter 3

DIFFUSION AND IONIC CONDUCTIVITY IN DOPED CERIA

Having discussed the basics of the density functional theory in the last chapter we now

discuss the structure and defect structure of ceria and how it affects ionic conduction.

3.1 Structure of Ceria

Cerium with a 4 f 25 d 06 s 2 electron configuration can exhibit both the +3 and +4 oxidation

states, and intermediate oxides whose composition is in the range Ce2O3−CeO2 can be

formed1. It can be seen from the thermodynamic data presented in Table 3.1 that cerium

metal is unstable in the presence of oxygen and that CeO2 and Ce2O3 are easily formed,

the final stoichiometry being dependent on temperature and oxygen pressure.

As mentioned earlier, Ceria (CeO2) crystallizes in the fluorite structure with space

group Fm3̄m with a = 5.4113 Å. This structure can be regarded as a ccp array of cerium

ions with eight oxygen ions occupying all the tetrahedral holes for a total of 12 atoms per

unit cell (Fig. 3.1). In this structure each cerium cation is coordinated by eight equivalent

nearest-neighbor oxygen anions and each anion is tetrahedrally coordinated by four cations.

That is, each cerium atom occupies the (0, 0, 0) position in the fcc lattice and the oxygen

atoms occupy the interstitial positions of the type (1
4 ,

1
4 ,

1
4). This structure may also be

viewed as a simple cubic oxygen sublattice with the cerium ions occupying alternate cube

centers as shown in Fig. 3.2. By redrawing the elementary cell as a primitive cubic array

of oxygen ions, in which the eight coordination sites are alternately empty and occupied

by a cation, we can clearly see that there are large vacant octahedral holes in the structure.

This octahedral holes play a significant role in the movement of ions through the defect

structure. In order to discuss the defect structures we first visit the Kröger-Vink notation.

1This exposition in this chapter is mainly based on materials from Trovarelli [14], Kilner
[97, 98], Stephen and Kilner [33], and Tilley [99].
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Table 3.1: Some thermodynamic properties of Ce and Pr oxides. Adapted from Ref. [14].

Reaction
∆H◦298
(kJ/mol)

∆G◦298
(kJ/mol)

S◦298 (J/K-mol)

Ce+O2 = CeO2 -1089 -1025 61.5

2 Ce+1.5O2 = Ce2O3 -1796 -1708 152

CeO1.5 +0.25O2 = CeO2 -191 -172 -

Pr+O2 = PrO2 -958 -899 79.9

2 Pr+1.5O2 = Pr2O3 -1810 -1735 159

PrO1.5 +0.25O2 = PrO2 -44 -31.5 -

Figure 3.1: CeO2 unit cell viewed as a ccp array of cerium atoms (yellow or light) with
eight oxygen atoms (red or dark) occupying the tetrahedral sites. False ionic radii are used
for clarity. Model created in CrystalMaker.
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Figure 3.2: CeO2 unit cell viewed as a primitive array of oxygen ions (red or dark) occu-
pying the eight corners of tetrahedral polyhedra centered on cerium ions (yellow or light
colored). False ionic radii are used for clarity. Model created in CrystalMaker.

Kröger-Vink Notation

Point defects fundamentally affect the physical and chemical properties of materials. In

order to describe the point defects Kröger and Vink in 1956 developed a set of notations for

point defects in crystals, The Kröger-Vink notation [100] facilitates incorporation of defect

formation into chemical equations and thus use chemical thermodynamics methods to treat

defect equilibria [99]. In the Kröger-Vink notation vacancies are represented by the symbol

V. The atom that is missing from a normally occupied site is indicated by a subscript. For

example, in CeO2 the symbol VO represents an oxygen atom vacancy and VCe represents a

cerium atom vacancy. A defect that has been substituted for another atom in the structure

is indicated by a subscript that is the chemical symbol of the atom normally occupying the

site occupied by the defect impurity atom. For example, a Pr atom on a Ce site in CeO2

is written as PrCe. Interstitial positions are denoted by a subscript i. If one or more lattice
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defects associate with each other, for example a defect in which a vacancy on a metal site

and a vacancy on a nonmetal site associate as a vacancy pair then this defect is written as

(VMVY). These are summarized in Table 3.2.

Table 3.2: Kröger-Vink notation for defects in crystals.

Defect Type Notation
Metal vacancy at metal (M) site VM

Impurity metal (A) at metal (M) site AM

Interstitial metal (M) Mi

Neutral metal (M) vacancy VM
×

Metal (M) vacancy with negative effective charge V
′
M

Interstitial metal (M) with n positive effective charge M n •
i

Free electron e
′

Associate pair (vacancy pair) (VMVY)

Adapted from Ref. [99].

3.2 Defect Structure in Ceria

Defects in ceria can be of the intrinsic or the extrinsic type. Intrinsic defects can arise from

thermal disorder or from redox type reactions. There are three types of thermally generated

defects [14], one is of the Schottky type (Eq. 3.1) and the other two are of the Frenkel

types (Eq. 3.2 and 3.3), here represented using the Kröger-Vink notation discussed above,

with ∆E values from Ref. [101].

CeCe +2Oo ↔ V
′′′′
Ce +2V ••O +CeO2 ∆E = 3.53 eV (3.1)

CeCe ↔ Ce••••i V
′′′′
Ce ∆E = 11.11 eV (3.2)

OO ↔ O
′′
i +V••O ∆E = 3.2 eV (3.3)

where OO and CeCe represent oxygen and cerium at their respective lattice sites, V ••O indi-

cates an oxygen vacancy, V
′′′′
Ce indicates a cerium vacancy, Ce ••••i represents a cerium ion

in an interstitial position, and O
′′
i represents an oxygen ion in an interstitial position. The

effective charge (that is, the charge expressed in terms of the charge normally present in
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the same position in the host lattice) is indicated by a dot (•) for each positive charge and

a prime (′) for each negative charge. In this case, O
′′
i indicates a doubly negative oxygen

interstitial and V ••O indicates a doubly positive-charged oxygen vacancy.

From variations in ∆E we can see that the predominant defect category is the anion

Frenkel type (Eq. 3.3) that leads to the formation of pairs of oxygen vacancies and oxygens

in interstitial positions. Although these defects are generally present in low concentra-

tions and do not much alter the stoichiometry, exposure to reducing gaseous atmospheres

can produce high defect concentrations in ceria. Upon reduction CeO2 has excess metal

composition compared to its anion content and the main way that it can accommodate the

variation in composition is by the oxygen vacancy method [38]. In this method oxygen

vacancies compensate the holes formed on reduction. If the oxygen is removed, the bulk

material ends up with an overall positive charge. Therefore, two electrons need to be intro-

duced for each removed oxygen ion in order to retain the charge neutrality of the crystal.

These electrons are associated with two cerium atoms that changes the charge from +4 to

+3. The effective charge of the anion vacancies is positive, thus neutralizing the negatively

charged holes and the process is represented by [14]:

CeO2↔ CeO2−x +
x
2

O2(g) (x < 0.5). (3.4)

The oxygen vacancies are mobile at elevated temperatures making ceria an excel-

lent oxygen ion conductor. In neodymium doped ceria, the charge compensation that occurs

upon solution of the lower valent oxide, in which Nd added to CeO2 results in the formation

of material with the general formula Ce1-xNdxO2 - x/2 is given by

Nd2O3
CeO2−−−→ 2Nd

′
Ce +3O×O +V••O . (3.5)

Thus, for doped ceria, the concentration of vacancies depends primarily on the concen-

tration of ionized dopants. For Nd, V••O ≈ 1
2 Nd

′
Ce. Although the generic formula for the

reduced phases is CeO2-x, at low temperatures these phases show ordering of oxygen va-

cancies in a regular fashion, generating a homologous series of phases which have compo-

sitions of the form CenO2n-2m [14].
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3.3 Conduction in Ceria

The use of materials as solid oxide electrolytes depends on transport properties such as the

electrical conduction and oxygen diffusion of such oxides. The conduction and diffusion

are determined by the concentration and mobility of lattice defects. The total electrical

conductivity in a solid σt is the sum of the conductivities of each of the charge carriers

present in the solid:

σt = ∑
j

σ j (3.6)

where the charge carriers may be electronic (electrons, e, or holes, h) or atomic (cation or

anion defects). The conductivities of each of these species is given by

σ j = n jq jµ j (3.7)

where σ j is the partial conductivity measured in Scm−1 (1 Siemens = 1 ohm−1, n j is the car-

rier concentration(per cm3), q j is the charge (Coulombs), and µ j is the mobility (cm2/Vs).

Ceria is a mixed conductor showing both electronic and ionic conduction and its

properties are strongly dependent on temperature, on oxygen partial pressures, and on the

presence of dopants or impurities. All of these affect the charge carrier concentrations,

and this together with the carrier mobility determines electrical conductivity. In cerium

oxide electronic conduction does not happen through the band model but occurs instead

through the formation of small polarons [26] where the electron is self-trapped at a given

lattice site (Ce 3+) and can move only to an adjacent site by an activated hopping process

similar to ionic diffusion [14]. This strongly reduces electron mobilities and can be two

orders of magnitude less than the ionic mobility. This is what makes doped ceria an ideal

candidate for use as the electrolyte in SOFCs where we want to maximize the ionic con-

ductivity through the electrolyte but want minimal electronic conductivity so that most of

the electronic conduction takes place through a circuit driving an external load.
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From the Arrhenius expression for the ionic conductivity2

σ =
σo

T
exp
(−Ea

kBT

)
(3.8)

we see that two parameters determine the ionic conductivity. One is the pre-exponential

factor σo and the other is the activation energy Ea. The activation energy is a very important

factor since at low activation energies we can sustain high ionic conductivities at lower

temperatures. The activation energy Ea consists of two parts, the enthalpy of migration

for the oxygen vacancy, ∆Hm, and another term ∆Ha due to the interaction of the vacancy

with other point defects. Kilner [98] says that for dilute solutions of the trivalent cation the

interaction term may be due to the formation of defect associates, or dimers, of the oxygen

vacancy with the solute cation of the type, for example for Nd-doped ceria:

Nd
′
Ce +V••O ↔ (Nd

′
CeV••O )• ∆Ha (3.9)

Kilner points out that for the simple associated defect pair shown above the concentration of

ionized cations is double that of the oxygen vacancies produced. He asserts that this means

there is a high probability of forming large clusters as the solute concentration increases. If

only simple associated pairs were formed then Ea = ∆Ha +∆Hm.

Faber et al. [102] determined the activation energy of conduction as a function of

dopant cation concentration in ceria solid solutions with trivalent rare earths. They found

that there is a minimum in the activation energy Ea for conduction (Fig. 3.3) that depends

on the nature of the rare earth solute and attributed this to the type of interactions between

the dopant cation and the mobile oxygen vacancies [14]. Kilner [98] cites Wang et al. [103]

as explaining the minima by the interplay of competitive defect interactions. In the dilute

range (solute concentrations ≈ 1%) there is a weakening of the association energy due to

Coulombic interactions between the associated pair and the unassociated solute cations,

which have opposite effective charges in the lattice. In the high concentration range they

2This equation is sometimes written as σ = σo exp
(
−Ea
kBT

)
in which case the temperature

T is incorporated in the pre-exponential factor. However, the form presented in Eq. 3.8 is
preferred because it explicitly shows the temperature dependence of the pre-exponential
factor.
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Figure 3.3: Concentration dependence of the activation energy for oxygen ion conduction
in ceria solid solutions. Data from Ref. [102].

attributed the increase in Ea, and the associated decrease in the conductivity σ , to the pres-

ence of vacancy traps (of large clusters) that limit vacancy mobility, thus rendering the

concept of free vacancy invalid at high dopant concentrations. By analyzing the data of

Faber et al. and Wang et al., Kilner found that there is actually a global minima that is

dependent on both solute size and concentration (Fig. 3.4). From this he concluded that the

association energy must contain two terms, 1) a Coulombic term that reflects the electro-

static attraction between the components (that is independent of the solute type) and 2) an

elastic term representing the size mismatch of the solute with the host lattice.

Minervini et al. [101] carried out atomistic simulations3 based on energy minimiza-

tion techniques (with a Born-like description of the lattice to generate the various structures)

3In their procedure Minervani et al. created a crystal structure using periodic boundary
conditions an then minimized the total energy by allowing the ions in the unit cell and the
lattice vectors to relax to zero strain.
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Figure 3.4: Minimum activation energy for each ceria solid solution plotted against ionic
radius of the solute. From Ref. [98].

to understand the minimum near Gd 3+ in activation energy with the ionic radius in Fig. 3.4.

Their results showed that the binding energy of an oxygen vacancy to one or two substitu-

tional cations is a strong function of dopant cation radius. That is, small dopant ions prefer

to occupy first neighbor sites, large dopant ions prefer second neighbor sites and that this

crossover happens near Gd 3+, thus confirming the finding by Kilner. Andersson et al. [1]

used density functional theory and found confirmation of this solute size trend for ceria,

and have found that the energy difference for the vacancy between the first and the second

neighbor sites is minimal. They explained that this is because of a balancing act in the

optimal electrolyte between the repulsive elastic and the attractive electronic interactions.

Andersson et al. concluded that the ideal dopant should have an effective atomic number

between 61 (Pm) and 62 (Sm), and that codoped combinations such as Nd/Sm and Pr/Gd

have higher conductivity as compared with that for each element alone.
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Dholabhai et al. [8] using density functional calculations also confirmed the corre-

spondence between the dopant radius and the binding energy of the oxygen vacancy. For

example, for Pr-doped ceria, where the Pr 3+ has an (eight-coordinated) ionic radius4 of

1.266 Å that is much larger than Ce 4+ (1.11 Å), they found that the second nearest neigh-

bor site to be the most favorable vacancy formation site. On the other hand, in another DFT

study Dholabhai et al. [7] report that due to the comparable (eight-coordinated) ionic radii

of Gd 3+ (1.193 Å) and host Ce 4+ (1.11 Å) ions, the first nearest neighbor site with respect

to the dopant cation is the most favorable oxygen vacancy formation site.

3.4 Conclusion

In this chapter we have discussed the structure of ceria and pointed out that the large octahe-

dral holes in this structure play significant role for ionic diffusion. We have also discussed

the defect structure of ceria and have discussed how the introduction of dopants creates

vacancies in the structure. These vacancies facilitates ionic conductivity through doped

ceria.

4All ionic radii mentioned here are the Shannon ionic radii for 8-coordinate M(III) ions,
except for Ce which is an 8-coordinate M(IV) ion, as listed in webelements.com. The
ionic radii given in Kilner [98], on the other hand, are 0.97 Å for Ce 4+, 1.11 Å for Gd 3+,
and 1.05 Å for Nd 3+.
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Chapter 4

DENSITY FUNCTIONAL THEORY CALCULATIONS USING VASP

In earlier chapters we have discussed the density functional theory and the role that it plays

in designing materials with optimal properties. In this chapter we discuss the implementa-

tion of the DFT code in detail and discuss how we have used it to calculate the properties of

pure ceria and neodymium doped ceria, We also compare our results with those of others.

4.1 The VASP Code

In order to calculate the activation energies of ceria and doped ceria we have carried out the

DFT calculations using the Vienna Ab-initio Simulation Package1 (VASP) which is a soft-

ware package developed by researchers in the Universität Wien, Austria for performing ab

initio quantum-mechanical molecular dynamics (MD) simulations using pseudopotentials

or the projector-augmented wave method and a plane wave basis set [104–107]. Here we

reproduce the salient points of the VASP software as described in the VASP manual.

The Vienna Ab initio Simulation Package (VASP) is a computer program for

atomic scale materials modelling, e.g. electronic structure calculations and

quantum-mechanical molecular dynamics, from first principles.

VASP computes an approximate solution to the many-body Schrödinger

equation, either within density functional theory (DFT), solving the Kohn-

Sham equations, or within the Hartree-Fock (HF) approximation, solving the

Roothaan equations. Hybrid functionals that mix the Hartree-Fock approach

with density functional theory are implemented as well. Furthermore, Green’s

functions methods (GW quasiparticles, and ACFDT-RPA) and many-body per-

turbation theory (2nd-order Møller-Plesset) are available in VASP.

In VASP, central quantities, like the one-electron orbitals, the elec-

tronic charge density, and the local potential are expressed in plane wave ba-

sis sets. The interactions between the electrons and ions are described using
1http://cms.mpi.univie.ac.at/marsweb/
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norm-conserving or ultrasoft pseudopotentials, or the projector-augmented-

wave (PAW) method.

To determine the electronic ground state, VASP makes use of effi-

cient iterative matrix diagonalization techniques, like the residual minimization

method with direct inversion of the iterative subspace (RMM-DIIS) or blocked

Davidson algorithms. These are coupled to highly efficient Broyden and Pulay

density mixing schemes to speed up the self-consistency cycle.

To reiterate, the single particle Kohn-Sham wavefunctions are expanded using

plane-wave basis sets in VASP. Pseudopotentials, as discussed above, are used to approx-

imate the computationally expensive electron-ion interactions [108]. The use of ultra-soft

Vanderbilt pseudopotentials (US-PP) or the projector-augmented wave (PAW) method al-

lows for a considerable reduction of the number of plane-waves per atom for transition

metals and first row elements. Forces and the full stress tensor can be calculated with

VASP and used to relax atoms into their instantaneous ground-state. Because of this im-

plementation, the VASP manual claims, no more than 100 plane waves (PW) per atom are

required to describe bulk materials and in most cases even 50 PW per atom are sufficient

for a reliable simulation.

The VASP program requires a number of input files that the user has to specify

in order to initiate density functional calculations. Four of these input files are critical for

carrying out the DFT calculations for ceria and doped ceria systems. They are the POSCAR,

POTCAR, KOINTS, and the INCAR files and are shown schematically in Fig. 4.1.

1. The POSCAR file contains structural information such as the Bravais lattice vectors

and the coordinates of the atoms.

2. The POTCAR file contains the description of the pseudopotentials and is generated

by concatenating the individual species pseudopotential files from a data base, mak-

ing sure the species are in the same order as in the POSCAR file. The information

contained in this file are the atomic masses, the required cutoff energies, the number

of valance electron of each species, and it is used to generate the potential.
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3. The KPOINTS file tells how many k-points are needed to sample the Brillouin zone

and what scheme are used.

4. The INCAR file basically steers the entire job. It specifies what approximations and

what level of theory to use.

5. Additionally there are computer architecture dependent script files that one needs to

create and run.

POSCAR
Structural data

OSZICAR

POTCAR
Pseudopotentials

VASP
Vienna ab-initio

Simulation Package
OUTCAR

KPOINTS
Brillouin zone sampling

DOSCAR

INCAR
Steering file

CHGCAR

Figure 4.1: The input files necessary to run the VASP program and four of the output files
generated by it.

The code generates a large number of output files, among them the most relevant

ones for my work are the OSZICAR, OUTCAR, DOSCAR, and CHGCAR files. The OS-

ZICAR file keeps track of the last few iterations of the run in its attempt to arrive at con-

vergence of the total energy. It lists the iteration count N, the total energy ETot , the change

in total energy dE, the change in the eigenvalues d(eps), and the charge density residual

vector, among other items. The CHGCAR file contains information such as the lattice vec-

tors, atomic coordinates, and the total charge density multiplied by the volume ρ(~r)×Vcell .

The DOSCAR file contains the density of state (DOS) and the integrated DOS in units of

“number of states per unit cell”. The OUTCAR file is the main output file. The type and

volume of information in it is controlled by the tags that we put in the INCAR file. It keeps

detailed track of all the calculations.
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4.2 Methodology

In this work all calculations were performed using the VASP code by carrying out the

spin-polarized calculations within the generalized gradient approximation (GGA) to density

functional theory (DFT) [69] with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation

functional [76]. The PBE is one of the widely used non-empirical GGA functionals. It is

a “hybrid” functional that mixes the exact results for the exchange part of the functional

with approximations of the correlation part and it is useful for DFT calculations of spatially

localized basis functions (atomic orbitals).

Strong Coulomb correlation of the localized Ce 4 f electrons preclude standard

DFT methods using GGA or local density approximation to adequately predict the elec-

tronic structure [16, 39, 43, 109–116]. To address this we have applied the rotationally

invariant form of GGA+U , which is a combination of the standard GGA and a Hubbard

Hamiltonian for the Coulomb repulsion and exchange interaction as formulated by Du-

darev et al. [84] to account for the strong on-site Coulomb repulsion amid the localized

Ce 4 f electrons. In the GGA+U method, if the 4 f levels are partially filled, the potential

is attractive and promotes the on-site 4 f electrons to be localized and the material is then

properly identified as insulating instead of metallic [113, 117, 118]. In the DFT+U method

as formulated by Dudarev et al. [84], a correction to the DFT energy is introduced to correct

for the electron self-interaction. This is done by introducing a single numerical parameter

Ue f f =U−J where U is the Coulomb self-interacting (repulsive) term and and J is the ex-

change self-interaction term. We reiterate that U and J do not enter separately, but only the

difference Ue f f is meaningful. The choice of Ue f f is decided and usually fitted to recover

the experimentally measured parameters, for instance, band gap, magnetic moment, and

structural properties. For example, the bulk modulus of a perfect crystal can be calculated

and the value of U− J that gives the best fit to the known bulk modulus is determined.

In order to determine the optimal value of the parameter Ue f f , we performed static

bulk calculations by varying Ue f f from 0 to 6 eV. For different Ue f f values, we compared
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the bulk modulus (Bo), lattice constant (ao), and electronic band gap (Egap) with the exper-

imental values. Ue f f = 0 represents the GGA limit. We found that with increasing Ue f f

the lattice parameter ao deviates further from the experimental value, but the Bo and Egap

approaches the experimental limit. Others have reported similar behavior of these param-

eters [16, 119]. For reduced ceria, which is the focus of the current work, we find using

Bader analysis [120] that for Ue f f = 5 eV, the 4 f electrons are completely localized on two

Ce ions near the oxygen vacancy and the electronic structure is converged. This is reason-

able because then the material can properly be identified as insulating instead of metallic.

As pointed out by Dholabhai et al. [8] this shows a significant improvement in the descrip-

tion of Ce 4 f electrons as GGA (Ue f f = 0) applied to reduced ceria shows that the Ce 4 f

electrons are delocalized over all the cerium ions [16, 39, 43, 109–116]. Also, this value of

Ue f f = 5 eV has been used within the GGA+U formalism by others for studying ceria and

doped ceria [43, 44, 111, 121–123]. Therefore, the chosen Ue f f value of 5 eV is optimal in

modeling ceria related materials in the GGA+U formalism and we expect the total energies

obtained for these materials to be very accurate.

The strongly oscillating wavefunctions were solved using a plane wave basis set

using the projected augmented wave (PAW) approach [124, 125]. The PAW method repro-

duces the effect of the core electrons on the valence electrons, with [He] core for oxygen

and [Xe] cores for cerium and neodymium. For neodymium, the 4 f electrons were treated

as part of the core (core state model), therefore, no empirical Ue f f parameter for the 4 f

electrons of Nd was necessary. The Broyden mixing scheme [126] was used to calculate

energies and charge densities self-consistently. We used a plane-wave cutoff energy of

400 eV, which converged the energies to approximately 0.01 meV. Block Davidson [127]

minimization algorithm was used that led to a convergence in total energies of the order

of 0.01 meV/atom or better. Ground state geometries of different systems were obtained

by minimizing the Hellman-Feynman [128, 129] forces until the total forces on each atom

were less than 0.02 eV/Å. The irreducible Brillouin-zone integrations were performed us-

ing Monkhorst-Pack (MP) [92] grids with a Gaussian smearing of 0.1 eV. We conducted

a convergence test for pure ceria to determine the viability of the chosen MP grid. A MP
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grid of 2×2×2 was deemed to be optimal for maintaining a balance between accuracy and

computing efficiency.

4.3 VASP Calculations for Pure Ceria

In order to verify the validity of the methodology before carrying out simulations on doped

ceria, calculations were carried out using VASP to determine the equilibrium lattice con-

stant for pure ceria.

To create the bulk structure, I created a new ceria structure with space group Fm3̄m

using the experimental lattice constant of 5.411 Å in the CrystalMaker software. I placed

the Ce and O atoms in the following sites as in Table 4.1. This created a structure whose 12

Table 4.1: CeO structure. Spacegroup = Fm3̄m. Lattice constant = 5.411 Å.

Species Site occupancy x y z
Ce Ce 1 0 0 0
O O 1 0.25 0.25 0.25

fcc sites are occupied by cerium (Ce) atoms and 8 tetrahedral sites are occupied by oxygen

(O) atoms. This gives us the fluorite structure. Since the fcc structure has 4 atoms within

the unit cell and we have 8 extra atoms in the tetrahedral sites, the CeO2 fluorite structure

has 12 atoms in each unit cell (Fig. 1.3 and 1.4).

In VASP we used a 1× 1× 1 CeO2 supercell consisting of 12 atoms (4 Ce and 8

O atoms). In order to get good convergence (of 0.01 meV or better) a 12× 12× 12 K-

points grid was used. The optimized Ue f f = 5 eV was used for the calculations. The atomic

positions of the twelve atoms was calculated by hand and verified using the CrystalMaker

software. The resulting POSCAR file for VASP is given below and the INCAR file is given

in the appendix.

1 fcc CeO2 supercell

2 5.44

3 1.0 0.0 0.0

4 0.0 1.0 0.0
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5 0.0 0.0 1.0

6 4 8

7 direct

8 0.5000 0.5000 0.0000

9 0.5000 0.0000 0.5000

10 0.0000 0.5000 0.5000

11 0.0000 0.0000 0.0000

12 0.7500 0.2500 0.7500

13 0.2500 0.2500 0.7500

14 0.2500 0.7500 0.2500

15 0.7500 0.7500 0.7500

16 0.7500 0.2500 0.2500

17 0.2500 0.2500 0.2500

18 0.2500 0.7500 0.7500

19 0.7500 0.7500 0.2500

In this file the first line is the comments line, the second line gives an initial lattice

parameter. This parameter was systematically varied from 5.40 to 5.58 Å in increments of

0.01 Å. The third through fifth lines are the three Bravais lattice vectors. Line 6 declares the

number of cerium and oxygen atoms in the supercell. Line 7 tells VASP that the coordinates

in the following lines are given in direct (Cartesian) coordinates that are to be scaled by

the lattice parameter declared in line 2. The coordinates of lines 8–11 are for the four

cerium atoms and lines 12–19 are for the oxygen atoms. It is important that the order of

these species be the same as those in the pseudopotentials POTCAR file. Our simulations

with a Ue f f value of 5 eV resulted in a structure with a lattice constant of ao = 5.494 Å

(Fig. 4.2), bulk modulus of 185.2 GPa, Egap[O(2p)→ Ce(4 f )] = 2.06 eV (experimental

value is ∼ 3 eV), and Egap[O(2p)→ Ce(5d)] = 4.99 eV (Fig. 4.3). Our lattice constant

value is in reasonable agreement with the measured value of ao = 5.411 Å by Eyring

[130]. Our Bulk modulus is also in good agreement with the room temperature value of

Bo = 187 GPa calculated by Gerward et al. [131] obtained by X-ray diffraction. These latter

authors also report a computed value of Bo = 176.8 GPa using self-interaction corrected

local spin density (SIC-LSD) approximation, a value very close to our DFT+U value. These

calculated values are in reasonable agreement with the measured values of ao = 5.411 Å

[130] and Bo = 220 GPa at room temperature [131]. In the projected density of states
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(Fig. 4.3) the band found between -20 eV and -10 eV below the valence band is a result of

the interactions between cerium 5p and oxygen 2s states. The valence band is composed

of oxygen 2p states with some contributions from Ce 5d and 4 f . Above the valence band

we find a narrow unoccupied band from Ce 4f and the conduction band that is made up of

Ce 5d states. This projected density of states reproduces the one reported using DFT+U

by Dholabhai et al. [8] and by Nolan et al. [111]. It is also similar to that reported by by

Hill and Catlow [132] who used the restricted Hartree-Fock method using the CRYSTAL

software. For CeO2 increasing U primarily pushes up the unoccupied f band and slightly

decrease the band gap, as was also observed by Jiang et al. [16]. We conclude that a Ue f f

value of 5 eV represents a good fit for reproducing the experimental data.
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Figure 4.2: Optimization of the lattice parameter of pure ceria using a Birch-Murnaghan fit
for data obtained by carrying out DFT+U calculations on pure ceria with and effective U
parameter of 5 eV. The optimized lattice parameter calculated for CeO2 is 5.494 Å.

55



!"#$ !%&$ !%#$ !&$ #$ &$ %#$ %&$

'(
)$
*+
,-
./,
+,
0$
12

./3
4$

526,70$*684$

3$*194$

9$*194$

:$*194$

;$*194$

Figure 4.3: Projected density of states for CeO2 obtained with GGA+U for Ue f f = 5 eV.
The low-lying Ce 5s states found at energy of -33 eV are not included in the plot. Only
spin-up channel is shown. The zero of energy is set to the top of the valence band.

4.4 VASP Calculations for Nd-doped Ceria

As mentioned earlier we found that a Monkhorst-Pack grid of 2× 2× 2 was optimal for

maintaining a balance between accuracy and computing efficiency. Therefore, I created

a 2× 2× 2 slab (supercell) of pure ceria (CeO2) consisting of 96 atoms in CrystalMaker

and used it to create the POSCAR file for VASP (included in the Appendix). We used a

periodic supercell model [133]. In this model, periodic boundary conditions are applied and

all interactions are periodic with the periodicity of the supercell. The 96-atom supercell

consists of 32 cerium and 64 oxygen atoms consisting of eight elementary unit cells of

CeO2) with a 2× 2× 2 periodicity built from a conventional 12-atom cubic unit cell of

ceria. We used the theoretically optimized lattice constant of 5.494 Å for bulk ceria to

construct the supercell. In this 96-atom supercell, the vacancy-vacancy and the dopant-
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dopant interactions are small. This type of supercell has also been previously used by others

to simulate ceria, reduced ceria, and reduced ceria with dopants [1,16,43,44,109,121,134].

Care must be used when creating the supercell in CrystalMaker. From the Trans-

form menu of CrystalMaker we defined a 2× 2× 2 super cell consisting of 8 unit cells.

This should consist of 96 (= 8×12) atoms in the super cell. However, CrystalMaker lists

127 coordinates because it also lists the equivalent coordinates at the edges. To get the cor-

rect number of atomic coordinates within the super cell we reduced the range of the cells

slightly (by setting the three axial range limits from 0 to 0.99) in order to remove the edge

atoms. This gave us the correct 96 atoms in the super cell. Selecting “List Coordinates”

from the Transform menu gives us both the fractional and orthogonal coordinates of the the

96 atoms. We copied the fractional coordinates to our POSCAR file in VASP. It is impor-

tant to note here that since we are now expressing each of the lattice coordinates we are not

using the crystal symmetry any more. In VASP we need to explicitly define the fractional

atomic coordinates along with the lattice parameter.

We optimized the pure ceria supercell with respect to the lattice parameter and

atomic positions. The pure ceria system after optimization did not show any signs of re-

laxation and the 96 atoms retained their positions in the supercell. The neodymium doped

ceria (NDC) was simulated by substituting two Ce ions with two trivalent Nd ions, corre-

sponding to a dopant concentration of 6.25% (2 of 32 atoms). Reduced ceria and reduced

NDC was simulated by removing an oxygen ion to create an oxygen vacancy concentration

of approximately 1.56% (1 of 64 atoms).

Two Nd 3+ ions compensate for each oxygen vacancy thus maintaining the charge

neutrality of the slab. The doped systems were optimized with respect to cell parameter

as well as atomic positions. We first calculated the total energy of the system before the

migration of an oxygen ion and then calculated the total energy after placing an oxygen

atom at the saddle point. The difference of these two energies yielded the activation energy.

The saddle point position is the midpoint between the initial and final position after

migration. After placing the ion at the saddle point we allowed it to relax in the plane
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perpendicular to the migration path. We then used small variations to the saddle point

position in order to ascertain that the midpoint was indeed the true maximum energy point.

4.5 Nd-doped Ceria Results

In doped ceria we can place the oxygen vacancy in several possible sites. These sites that

are of interest to us are the first nearest neighbor (1NN), second nearest neighbor (2NN),

and the third nearest neighbor (3NN) sites as shown in Fig. 4.4. We have determined that

the contribution of sites further away has negligible contribution to the activation energies.

In order to retain charge neutrality we have to introduce two Nd 3+ ions for each oxygen

vacancy created. Once the oxygen vacancy position was selected, we then placed a sec-

ond dopant atom far away from the first one and more than 3NN distance from the oxygen

vacancy so that we could investigate the effect of a single dopant toward the vacancy mi-

gration energy. We will later investigate the effect of placing two dopant atoms in nearby

sites.

There are nine different migration paths for an oxygen vacancy located in 1NN,

2NN, or 3NN sites in neodymium doped ceria. These paths are (1NN→ 1NN), (1NN↔

2NN), (1NN↔ 3NN), (2NN→ 2NN), (2NN↔ 3NN), (3NN→ 3NN). We have studied

oxygen vacancy migration for these nine different paths in the < 100 >, < 110 >, and

< 111 > directions. We have only reported the first and second nearest neighbor migration

paths since they have the lowest energy barriers. The results for oxygen vacancy migration

along different pathways in neodymium doped ceria (NDC) are tabulated in Table 4.2.

Oxygen vacancies were introduced in the pure ceria structure by removing the rele-

vant oxygen coordinates lines of the POSCAR file in VASP. We created the vacancies at the

1NN, 2NN , and 3NN positions (with respect to the dopant) in Nd-doped ceria. We found

that the 1NN position is the most favorable. This is consistent with the reported values in

Ref. [1]. It is important to note here that the ionic radius definitely plays a role in deter-

mining the most favorable vacancy formation site. Dholabhai et al. [8] had reported that

for praseodymium doped ceria the 2NN site was the favored vacancy formation site since
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Figure 4.4: Nearest neighbor sites to a neodymium dopant. The yellow balls represent the
cerium atoms, the red balls the oxygen atoms, and the green ball the neodymium atom. The
oxygen atomic sites are labelled according to their distance from the Nd site. The oxygen
ion from the different sites are shown with the white arrows and labelled accordingly. Some
jumps, such as the (3,1) and (1,3) jumps, are not shown for clarity.
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Table 4.2: Activation energies (Ea) for oxygen vacancy migration in ceria and for different
pathways in neodymium doped ceria (NDC). EBulk is the activation energy for bulk diffu-
sion in ceria and E(m,n) is the activation energy of an oxygen atom to migrate from a site
mNN to a site nNN in the doped ceria. NN ≡ nearest neighbor. < hkl > is the vector
direction between the initial and final positions of a migrating vacancy. Activation energies
quoted correspond to the vector direction for oxygen vacancy.

Migration pathway Oxygen vacancy migration direction Ea (eV)
E(Bulk) < 100 > 0.47
E(1,1) < 100 > 0.73
E(1,2) < 100 > 0.44
E(1,3) < 110 > 2.77
E(2,1) < 100 > 0.43
E(2,2) < 100 > 0.47
E(2,3) < 100 > 0.55
E(3,1) < 110 > 2.66
E(3,2) < 100 > 0.45
E(3,3) < 100 > 0.47

the large Pr 3+ ionic radius (1.266 Å) makes it unfavorable for an oxygen vacancy to form

at the 1NN site. On the other hand, in another paper [7] they reported that for gadolinium

doped ceria the 1NN site is favored because the Gd 3+ ionic radius (1.193 Å) is much closer

to that of the Ce 4+ ion (1.110 Å). The Shannon ionic radius of Nd 3+ (1.249 Å) is closer to

Ce 4+ than Pr 3+ thus making the 1NN site more favorable.

We created an oxygen vacancy in undoped ceria in order to calculate the bulk acti-

vation energy. Then the migrating oxygen ion was placed midway between two lattice sites

(the saddle point). This oxygen ion was then restricted in its motion by removing one of the

degrees of freedom of motion and the cell was relaxed. The difference in energy between

this saddle point configuration and the unrestricted configuration was then calculated. We

calculated this to be 0.47 eV and it is the bulk diffusion energy E(Bulk). This value is in

reasonable agreement with other theoretical calculations [1, 5, 8, 19, 42, 135–137]. It also

compares well with the experimental value of 0.52 eV obtained by Steele and Floyd [38]

and of 0.49 eV obtained by Adler et al. [36]. Our calculations yielded activation energies

for vacancy migration along the paths 1NN→ 1NN, 2NN→ 2NN, and 3NN→ 3NN to be
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0.73 eV, 0.47 eV, and 0.47 eV, respectively. The reason that migration along the 1NN →

1NN is more difficult is because of the presence of the large Ce 3+ ion near this migration

path. As can be seen in Fig. 4.4 the 2NN → 2NN, and 3NN → 3NN these paths are far

enough removed from the dopant atom so that their environment can be considered to be

similar to that of the undoped ceria.Thus, the migration energies along these paths are also

similar to that of the bulk.

We found that the most favorable migration path is the E(2,1) path with an energy

barrier of 0.428 eV, while that of the E(1,2) is slightly larger at 0.437 eV. But, given the

small difference (of only 0.009 eV) between E(2,1) = 0.428 eV and E(1,2) = 0.437 eV for

neodymium doped ceria we can expect to find oxygen vacancies being facilitated by both

the 1NN and 2NN sites. This suggests that NDC has higher ionic conductivity than undoped

ceria, so it can be more easily reduced. Migration along the 1NN→ 3NN and 3NN→ 1NN

has an activation barrier of 2.77 eV and 2.66 eV. This means that these jump events will

be extremely rare and are unimportant pathways for vacancy diffusion. Table 4.3 compares

the results of the Nd-doped ceria with those of Pr-doped and Gd-doped ones carried out by

Dholabhai et al. [7,8]. So far our group has calculated the oxygen migration energies by the

DFT+U method in ceria doped with four of the elements of the Lanthanide series (Fig. 4.5).

4.6 Conclusion

In this chapter we have discussed the DFT+U calculations for neodymium doped ceria to

investigate oxygen vacancy migration. We have verified the known bulk properties of pure

ceria and have calculated the energy barriers along different migration pathways. We have

found that the first nearest site to Nd 3+ is the most favorable for vacancy formation and

that the 2NN → 1NN to be the most favorable. Our calculations validate experimental

results that the inclusion of dopants in pure ceria reduces the activation barrier to vacancy

migration—thus diffusion and ionic conductivity is increased. We can expect that adding

more dopants would further lower the activation barrier. In order to explore the variation of

diffusion (and hence the ionic conductivity) as a function of dopant concentration, and also
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Figure 4.5: The periodic table of the Lanthanide series. The atomic and ionic radiii infor-
mation are from Cotton [138].
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Table 4.3: Activation energies (Ea) oxygen migration in Pr-doped, Gd-doped, Sm-doped
and Nd-doped ceria. EBulk is the activation energy for bulk diffusion in ceria and E(m,n) is
the activation energy of an oxygen atom to migrate from a site mNN to a site nNN in the
doped ceria. NN ≡ nearest neighbor. All energies are in eV.

Migration
pathway

EPr−doped
(a) EGd−doped

(b) ESm−doped
(c) ENd−doped

(d)

E(Bulk) 0.47 0.47 0.47 0.47
E(1,1) 0.78 0.59 0.66 0.73
E(1,2) 0.41 0.50 0.47 0.44
E(1,3) 2.79 2.61 2.69 2.77
E(2,1) 0.43 0.36 0.40 0.43
E(2,2) 0.47 0.48 0.48 0.47
E(2,3) 0.57 0.49 0.51 0.55
E(3,1) 2.69 2.46 2.56 2.66
E(3,2) 0.44 0.46 0.45 0.45
E(3,3) 0.47 0.47 0.47 0.47

a Reference [7]
b Reference [8]
c Dholabhai (unpublished)
d This work

of the temperature, we have used the values reported in this chapter as inputs to the Kinetic

Lattice Monte Carlo (KLMC) code that we discuss in the next chapter.
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Chapter 5

KINETIC LATTICE MONTE CARLO

Since KLMC methods have proven very useful in the investigation of oxygen diffusion in

other oxides, as discussed in Chapter 1, it makes sense to apply this methodology to doped

ceria. Previous KLMC models have often suffered from two limitations: 1) very limited

data on dopant effects on vacancy migration, often limited to a single binding energy, and

2) a failure to include the effect of repulsion between the oxygen vacancies. In this chapter

we discuss the development of a KLMC model that overcomes both of these limitations,

and use it to investigate the effects of dopant concentration and temperature on ionic con-

ductivity in the following chapters. This model can be used as a design tool to determine

the optimal concentration of dopants for maximizing ionic conductivity.

We have developed1 a Kinetic Lattice Monte Carlo (KLMC) code to simulate the

oxygen vacancy in a doped ceria structure, doped with atoms from the lanthanide series,

and have applied it to Gd (gadolinium), Pr (praseodymium), and Nd (neodymium). In

the KLMC method we start out by placing the basis atoms and dopants at lattice sites

appropriate for the ceria, and then move the atoms from site to site. All atoms are allowed to

move subject to a jump frequency and some activation energy that is temperature dependent.

The jump events are randomly picked subject to some probability condition [45, 139].

5.1 Computational Methodology

Monte Carlo (MC) techniques were developed originally by Von Neumann, Ulam and

Metropolis [140] and broadly refer to diverse approaches to unraveling problems involving

the use of random numbers to sample the ensemble. Kinetic Lattice Monte Carlo (KLMC)

is one such approach used to model lattice dynamics with the evolution of time. In the

KLMC model, all atoms are assumed to occupy lattice sites that coincides with the local

potential minimum with a potential barrier, Exy, separating the adjacent lattice sites. The

1This code is written in Fortran 90 and was co-developed by Shahriar Anwar and Pratik
Dholabhai.

64



only meaningful events in KLMC simulations are those involving transfer or exchange of

atoms from one lattice site to another. In this dissertation we focused on a vacancy diffusion

mechanism in order to save computational memory and effort by only tracking the oxygen

vacancies, and by assuming all other sites are occupied. In events where Exy � kBT , the

transition rate of a vacancy moving from lattice site x to y is evaluated by the hopping

mechanism governed by the Arrhenius Law:

qxy = νxye(−Exy/kBT ) (5.1)

Here νxy represents the attempt frequency for an atom hopping from lattice site x to y.

The harmonic approximation of the effective attempt frequency corresponding to the defect

vibrations can be expressed using the dynamical matrix theory [141] as:

νxy =

3N
∏
i

νmin
i

3N−1
∏
i

νsad
i

(5.2)

where, νmin
i and νsad

i represent normal mode frequencies at the minimum and saddle point

position of the hopping atom respectively and N is the numbers of ions. The KLMC model

requires input rates for various allowable events, such as diffusion and reactions. One key

aspect of the KLMC algorithm are these input rates, since if these rates are known then one

can accurately simulate time-dependent diffusion of various species. The pros and cons

of various approaches for identifying the rate process database in a KLMC simulation are

explained by Adams et al. [45]. KLMC simulations based on a set of kinetic atomic-scale

processes can describe the evolution of mesoscopic systems up to macroscopic times. In

this way, we have developed a 3-D KLMC model of vacancy diffusion in ceria and doped

ceria. This model will further enable us to calculate ionic conductivity of various doped

materials with respect to the dopant concentration.

The KLMC technique is based on a blend of Monte Carlo approaches and Poisson

processes. In the current KLMC model, the material in consideration can consist of various

possible events and evolve as a series of independent events occurring in accordance with
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the input rates. Assuming Arrhenius dependence, the diffusivity can be expressed as:

D = Doexp
(−∆Ea

kBT

)
(5.3)

where Do is the pre-exponential factor, T is the absolute temperature and kB is the Boltz-

mann constant. The term Ea generally comprises of two contributions: the total migration

energy ∆Em, and the vacancy formation energy ∆Ev. Primarily, most of the vacancies in

ceria-related materials are generated to maintain the charge balance due to the addition of

aliovalent dopants. For example, the addition of Pr +3 to CeO2 results in an oxygen vacancy

for every two ionized dopants (this is the stoichiometric vacancy to dopant ratio of 0.5).

Moreover, the vacancy formation energy in ceria and doped ceria is very high; hence the

concentration of vacancies created thermally in the electrolyte is extremely small. Con-

sequently, the vacancy formation energy term (∆Ev) can be neglected and effectively the

energy term in Eq. 5.3 consists only of vacancy migration energy ∆Em. Dholabhai et al. [7]

have argued that the activation energy for vacancy migration is actually a complex aver-

age of many jump events. Therefore, activation energies of various diffusion pathways for

oxygen vacancy migration in doped ceria can be calculated for a vacancy hopping mecha-

nism [7]. These energies are input to the KLMC model.

The average rate of displacement of defects in solids by thermal activation can be

calculated using classical rate theory [142]. Accordingly, the hopping rate for the defect

can be expressed by Eq. 5.1. The pre-exponential factor (Do) in Eq. 5.3 mainly consists of

the jump distance (for ceria it is half the length of the lattice parameter) and the hopping

rate for the migrating vacancy. In the current work, the jump distances for all first neighbor

jumps were assumed to be constant for various dopant concentrations as very small changes

in O−O bond length (∼ 0.001 nm) are expected. The attempt frequency (5×1012 Hz) was

determined from Eq. 5.2. It is the ratio of the product of 3N normal frequencies of the

entire system at the starting point of the transition to the 3N−1 frequencies of the system

constrained in the saddle point configuration. This value of attempt frequency was assumed

constant for different configurations, as the normal mode frequencies are not expected to

differ significantly.
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Start KLMC
simulation

Input ∆E, cell size, Number of dopants & vacancies

Select random sites for dopants & vacancies

Selected site occupied
by existing dopant or

vacancy?

Randomly pick one vacancy and jump direction

For vacancy repelling
model, is vacancy

nearest neighbor to
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Calculate ∆E

Are initial & final
positions of the vacancy

near a dopant?

Calculate total ∆E

Accept/reject jump

END Calculate Dv, σ and MSD; reinitialize all variables
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No

No

Yes

No

Yes

Accept

Reject

Figure 5.1: Flowchart of the major events involved in a KLMC simulation. NN and MSD
represents the next neighbor and mean square displacement, respectively; Dv is the diffusion
coefficient and σ is the conductivity.
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The KLMC model comprises a number of ordered events which take place in a

sequence as given in the flowchart in Fig. 5.1. We computed the mean square displacement

of all the vacancies in the simulation cell (accounting for crossing periodic boundaries) and

used the results to calculate the diffusion coefficient of oxygen vacancies as follows:

Dv = lim
t→∞

N

∑
i=1

|Ri(t)−Ri(0)|2
6t

(5.4)

where t is the sum of all the time steps ∆t, for each jump event and Ri(t) is the position of the

i-th vacancy at time t. Following the computation of oxygen vacancy diffusion coefficient,

the ionic conductivity was calculated using the Nernst-Einstein relation [14]:

σi =
DvCi(qe)2

kBT
(5.5)

where σi is the ionic conductivity, Ci is the concentration of ionic carriers (vacancies for the

present case) and qe their charge.

5.2 The KLMC Code

The KLMC code works by creating a lattice, say 2×2×2, and by defining the number of

vacancies and the number of dopants. Initially we simulate pure ceria by setting the number

of dopants to zero, and setting the number of vacancies to 8.

We then specify the basis atom positions. These are the positions where the dopant

atoms go. Since we are using the fluorite structure, the possible dopant positions are at

1/4 and 3/4 positions. The dopants are placed randomly, while ascertaining that no dopant

site contains more than one dopant. For the pure ceria structure we ignore the random

placement of the dopants and fill all the sites with Ce (cerium) atoms.

The specific steps of the code are:

1. Define a lattice (by using CrystalMaker, for example).

2. Specify the number of dopants, and vacancies.

3. Enter the activation energies calculated using DFT+U in the VASP software.

4. Randomly place the dopants in acceptable sites.

5. Randomly place the vacancies in their permitted sites.
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6. Randomly select a vacancy.

7. Randomly select a jump direction for the vacancy (from a list of possible jump direc-

tions)

8. Accept this jump in one time step (subject to some acceptance criteria).

9. Record the new position of this vacancy, either moved or not.

10. Move on to the next vacancy and repeat for all the vacancies.

11. Repeat the cycle for a total simulation time of TotalTime seconds. The number of

times, k, the entire simulation is run is given by k = TotalTime/τ where τ is a time

step that is entered by the user and is selected subject to the criterion that it is a

reasonable fraction of the typical or average jump time.

12. Calculate the mean x,y, and z positions, both at the start and at the end of the simula-

tion.

13. Calculate the diffusivity from Dx = ((∆x)2×TotalTime)/4 (similarly for Dy and Dz).

14. Repeat the simulation at different temperatures and times.

Note that the jump acceptance criteria is a function of the average jump time; aver-

age jump time being just the reciprocal of the jump frequency;

JumpFrequency = AttemptFrequency× exp(−∆E/(kB×Temperature)) (5.6)

where ∆E is the activation energy barrier in the jump direction, kB is the Boltzmann con-

stant, and Temperature is in Kelvins.

Diffusion is happening all the time, dependent on the diffusion coefficient, the tem-

perature, and time. Net diffusion in any direction takes place in the presence of some

driving mechanism. such as the concentration gradient or a potential gradient. So Dx

exists and can be calculated, even in the absence of any net diffusion. To calculate Dx

we need only keep count of the number of successful jumps in the x-direction. We set

AttemptFrequency = 1013 [99]. The activation energies ∆E are obtained from density

functional theory (DFT) calculations using VASP. They are dependent on the initial and

final positions. We use periodic boundary conditions for the cells to keep our cells at a rea-

sonable size while simulating the bulk behavior. We also take into account the constraints
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that the dopants and vacancies when they are placed one by one, after some random event,

are not placed on an already occupied site. We also take into consideration the possibility

that vacancies may repel each other and therefore, in one version of the code we forbid

placement of them at adjacent sites.

In the next chapters we present the results of simulations carried out for neodymium,

praseodymium, and gadolinium doped ceria for varying dopant concentrations and at dif-

ferent temperatures. We plan to put this KLMC code on the web in the future and perhaps

also develop an interactive graphical front end to it.
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Chapter 6

PRASEODYMIUM DOPED CERIA

In this chapter we discuss the implementation of the Kinetic Lattice Monte Carlo (KLMC)

code that we discussed in the previous chapter to study the oxygen vacancy migration in

praseodymium doped ceria (PDC). We use a database of activation energies for oxygen va-

cancy migration, calculated using first-principles, for various migration pathways in PDC1.

6.1 Calculation Details

Activation energies of various diffusion pathways for oxygen vacancy migration in praseo-

dymium-doped ceria (PDC) has been calculated using DFT+U by Dholabhai, et al. [7]. The

energies from this work, as presented in Table 6.1, are input to the KLMC model. It should

be noted that, for PDC, the oxygen prefers a second nearest neighbor (2NN) site, which

means that many types of jump events need to be included (1NN → 2NN, 2NN → 2NN,

2NN→ 3NN, etc.) to properly model the complexity.

We used a 10×10×10 cell comprising of 12,000 possible sites to place the respec-

tive ion. The periodic cell with a 10× 10× 10 periodicity was built from a conventional

12-atom cubic unit cell of ceria using the theoretically optimized lattice constant of 5.494 Å

for bulk ceria as reported in Chapter 4. Of these 12,000 positions, 4,000 are available for

dopant placement and 8,000 sites for vacancy formation. The vacancies are allowed to hop

to adjacent sites, subject to certain constraints. The simulation cell was repeated period-

ically along the three axes to simulate a lattice of effectively infinite extent. The dopant

and vacancy concentration were varied. All the dopant ions are assumed to be trivalent,

hence for every two dopant ions, a vacancy was incorporated. For each of the different

dopant concentrations, ten simulations were performed, each with a different dopant distri-

bution. Each simulation comprised of approximately 3000,000 or more jump events. This

resulted in achieving a statistical average with a precision of ∼ 3% for various dopant con-

1The contents of this chapter has been published [7] in the Journal of Solid State Chem-
istry where I am a coauthor and Pratik Dholabhai is the first author.
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centrations. Considering the difference of the order of ∼ 3% in ionic conductivity for the

simulations involved, the sampling does not require additional runs for each configuration.

The simulations were performed for temperatures ranging from 673 K to 1073 K and ap-

proximately equal diffusion distances were used to calculate the final diffusion coefficients.

To plot the Arrhenius relationship and facilitate comparison with the available experimental

data, some specific configurations were simulated for temperatures ranging from 573 K to

1173 K.

Table 6.1: Activation energies for oxygen vacancy migration along distinctive pathways in
PDC calculated using first-principles. E(X ,Y ) denotes activation energy for a oxygen atom
migrating from X-nearest neighbor (XNN) to Y -nearest neighbor (Y NN) with respect to the
Pr ion in PDC.

Migration pathway Activation energy (eV)
E(1,1) 0.78
E(1,2) 0.41
E(1,3) 2.79
E(2,1) 0.43
E(2,2) 0.47
E(2,3) 0.57
E(3,1) 2.69
E(3,2) 0.44
E(3,3) 0.47

We have developed two separate models for PDC, a Vacancy Non-Repelling model

(VNR) and a Vacancy Repelling model (VR). Calculations using the DFT+U methodol-

ogy were carried out by Dholabhai et al. [7] to investigate vacancy diffusion in PDC. In

that work the calculations were performed for charge neutral supercells. They studied two

separate cases for PDC; (i) Vacancies are placed next to the dopant ions (ii) Vacancies are

placed far apart from the dopant ions. For case (i), they found that the configuration involv-

ing two vacancies separated by a distance larger than the 1NN (nearest-neighbor) distance

is more stable by 0.38 eV as compared to the configuration with vacancies placed next to

each other. For case (ii), the configuration involving two separated vacancies is more stable

by 0.28 eV as compared to the configuration with vacancies placed next to each other. The
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observed Coulomb interaction between charged vacancies lead us to develop two separate

models; (1) In the VNR model, vacancies are allowed to move anywhere in the simulation

cell except into an existing vacancy; (2) In the VR model, the vacancies are not allowed

to move adjacent (first nearest neighbor) to any other vacancies in the simulation cell, nor

into an existing vacancy. (It would be slightly more accurate to add the repulsion energy.

But the repulsion energy is so large (∼ 0.35 eV) that it is very rare that vacancies will move

adjacent to one another, so this is a very good approximation)2. Previous studies have ne-

glected the Coulomb interaction between the anionic species, but we find that this effect

is important in correctly characterizing the optimal dopant concentration in ceria related

electrolyte materials.

6.2 Effect of Multiple Dopants

The energies given in Table 6.1 correspond to vacancy motion adjacent to one trivalent Pr

ion as shown in Fig. 6.1. In the presence of multiple dopant ions, we use an underlying

assumption that every additional Pr dopant in the vicinity of the migrating vacancy will

have an additive effect towards the activation energy for vacancy migration. For exam-

ple, for paths 1NN → 2NN and 2NN → 1NN, we found that the decrease in activation

energy for ceria doped with two Pr ions located next to each other was twice as much com-

pared to ceria doped with two Pr ions that are separated. Using first principles calculations

Dholabhai et al. [7] found that in the vicinity of two next neighbor Pr dopant ions, the

decrease in activation energy relative to the undoped ceria for the migration path 1NN→

2NN is 0.13 eV as compared to 0.06 eV in presence of one Pr dopant ion. Similarly, for

the migration path 2NN → 1NN, the respective numbers are 0.07 eV and 0.04 eV. In the

KLMC model, for the migration paths 1NN→ 2NN and 2NN→ 1NN in presence of two

Pr dopant ions, the decrease in activation energy is calculated to be 0.12 eV and 0.08 eV,

respectively. These numbers justify the assumption (additive effect of dopants) incorpo-

rated in the KLMC model and provide a reasonable approximation of migration energies

2The vacancy repulsive energy was calculated by creating two structures, one structure
with two vacancies next to each other and another one with two vacancies farthest from
each other, and then calculating the difference in the total energies of each system.
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in the presence of multiple dopants. Moreover, this decrease in activation energy for the

case where two Pr ions are next to each other is in reasonably good agreement with re-

sults reported by Andersson et al. [1]. Using this relationship in the KLMC model, we

have simulated diffusion of oxygen vacancies in the presence of multiple dopants. Under

the current assumption, the estimated activation energies for multiple dopants are proba-

bly valid to about 10 meV at low to moderate concentrations, but may be larger at higher

concentrations.

!

Figure 6.1: Top view of a 2×2×2 PDC supercell. The blue, green and red balls represent
Ce, Pr and O ions, respectively. Numbers 1, 2 and 3 represent 1NN, 2NN and 3NN oxygen
ions with respect to the Pr ion, respectively. (X ,Y ) represents an oxygen ion jump from
XNN to Y NN. Pr ion closer to the migrating vacancy is only shown. (Note: we have rep-
resented the ions following the CPK (Corey, Pauling, and Kultun) scheme conventionally
used by chemists in most publications. J. C. Slater (1964) J. Chem. Phys. 41:3199.)
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6.3 Diffusion Results

One of the principal goals of the current effort is to study the variations in ionic conductivity

as a function of dopant concentration in PDC and to determine the optimal dopant concen-

tration that exhibits a maximum in ionic conductivity. As mentioned earlier, researchers

have previously studied other systems with similar methodology, but have neglected the

Coulomb interactions between the charged vacancies. Hence, we also wish to investigate

the significance of including these effects. Fig. 6.2 comprises the simulation results for

variations in ionic conductivity as a function of dopant concentration in PDC using the

KLMC–VNR model for temperatures ranging from 673 K to 1073 K. For the tempera-

tures ranging from 673 K to 873 K, the maximum in ionic conductivity is observed at

∼ 25% dopant concentration, whereas the maxima at temperatures of 973 K and 1073 K

are shifted at ∼ 30% dopant concentration. Incorporating the effects of charged vacancies

using the VR model significantly changes the results. Plotted in Fig. 6.3 are the variations

in ionic conductivity as a function of dopant concentration in PDC using the KLMC-VR

model for temperatures ranging from 673 K to 1073 K. The overall effect of the VR model

is to reduce vacancy diffusion, especially at higher concentrations, which also results in a

shift of the peak conductivity towards lower concentrations. For the temperatures of 673

K and 773 K, the maximum in ionic conductivity is predicted at ∼ 15% dopant concentra-

tion, whereas the maximum at temperature ranging 873 K to 1073 K is predicted at ∼ 20%

dopant concentration.

Considering all the simulations performed for PDC using KLMC–VNR and VR

models, the magnitude of ionic conductivity is larger for the values obtained using the

VNR model. This is a consequence of the fewer number of available sites for the vacancies

to migrate on the oxygen sublattice for the VR model due to the vacancy-repelling factor,

which decreases the diffusion coefficient. The computed maximum in ionic conductivity at

around ∼ 25% to ∼ 30% dopant concentration using the KLMC–VNR model agrees well

with experiment [30, 143], but does not provide the true picture. Praseodymium is known

to have mixed valence at atmospheric pressure, and hence equilibrium between Pr 4+ and
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Figure 6.2: Plot of calculated ionic conductivity of PDC as a function of dopant concentra-
tion generated using KLMC-VNR model for temperature ranging from 673 K to 1073 K.

Pr 3+ exists determined by the temperature and oxygen pressure. Hence, only half of the

dopant ions are Pr 3+ [30, 144]. This equilibrium reduces the probable oxygen vacancy

concentration upon doping with Pr and hence the ionic conductivity increases more slowly

with increase in Pr content as compared to other aliovalent dopants [145]. In the current

simulations performed using both VNR and VR models, all the Pr dopant ions are assumed

to be trivalent. Hence, the results obtained with the KLMC models should be compared

with experimental data plotted vs. ionized dopants, not total dopants. In some cases it has

been estimated that only half of the dopants are ionized, so this is a large effect.

Experimental studies by Shuk and Greenblatt [30] and Chen et al. [146] found that

the maximum in ionic conductivity occurred at about ∼ 30% dopant concentration. If we

assume that approximately half of these dopants are trivalent (in the experiment, only half of

the dopants are ionized) [30,143], the optimal concentration of dopants (∼ 15% to ∼ 20%)
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Figure 6.3: Plot of calculated ionic conductivity of PDC as a function of dopant concentra-
tion generated using KLMC-VR model for temperature ranging from 673 K to 1073 K.

as predicted by the KLMC–VR model is in reasonably good agreement with the measured

values. Moreover, the slight discrepancy in the experimental and theoretical findings can

be attributed to the dependence of oxygen vacancy concentration on the temperature and

oxygen partial pressure, and also to grain boundary effects, effects that are not included in

the KLMC model.

In order to further investigate the origin behind the calculated maximum in the ionic

conductivity, we performed additional simulations using the KLMC-VR model at 873 K.

Fig. 6.4 shows two different scenarios, (i) the vacancy concentration is increased linearly

keeping the dopant concentration fixed at ∼ 20%, (ii) increasing the dopant concentration

linearly and keeping the vacancy concentration fixed at ∼ 5%. For case (i), the ionic con-

ductivity keeps increasing, as shown in the figure. The slight dip in the curve is due to

vacancy-vacancy interactions at higher vacancy concentration, but this effect is modest.
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Case (ii) results in a steadily decreasing ionic conductivity. The conductivity decreases

in case (ii) because a growing fraction of the vacancies get trapped near the dopant ions,

decreasing the net diffusion. This effect is significantly larger than the effect of vacancy-

vacancy interactions (case (i)), which also decreases ionic conductivity.

!
Figure 6.4: Plot of calculated ionic conductivity as a function of fixed dopant concentration
and fixed vacancy concentration using the KLMC-VR model at 873 K. For the plot with
fixed dopant concentration, the x-axis represents the varying vacancy concentration.

Overall, these two investigations explain the increase and then decrease in ionic

conductivity with increasing dopant concentration. Initially, the ionic conductivity in-

creases at lower dopant concentration due to the increase in vacancy concentration, but

after reaching a maximum, it decreases due to increasing interactions between the dopant

ions and vacancies that serves as a bottleneck, decreasing the number of minimum energy

pathways for a vacancy to diffuse.

Nauer et al. [29] reported that the total conductivity of PDC increases until a dopant

concentration of ∼ 40% to ∼ 50% is reached. This is due to the fact that for PDC, beyond

∼ 25% to ∼ 30% dopant concentration, the electronic conductivity exceeds the ionic con-
78



ductivity [30] and hence explains the higher dopant concentration for attaining a maximum

in electrical conductivity. Fig. 6.5 shows the plot of ionic conductivity versus dopant con-

centration at 973 K using the KLMC–VNR and VR model. Fig. 6.6 shows data obtained by

experimental measurements performed by Shuk and Greenblatt [30] and Chen et al. [146].

The primary reason for the discrepancy in the absolute magnitude of the conductivity as

observed from the experimental measurements, as shown in Fig. 6.6, is probably due to

the difference in synthesis methods of the respective samples [30, 143]. Depending on the

fraction of dopants that are trivalent, the graph obtained using the KLMC–VR simulations

should be shifted somewhat towards the right. This is in reasonable agreement with experi-

mental data if the vacancy concentration is half (in the experiment, only half of the dopants

are ionized) of what should be expected after the addition of Pr dopant [30, 143]. Overall,

Fig. 6.5 shows that the trend of increased conductivity in PDC can be reasonably predicted

using KLMC–VR model if the fraction of ionized dopants is known.

The primary reason for the decrease in the ionic conductivity with increasing dopant

concentration is the increase in average activation energy for vacancy migration and the per-

cent increase of Pr ions near the migrating vacancy. The increasing number of Pr ions often

tends to bind the neighboring oxygen vacancy more strongly and decrease the diffusion

coefficient, which in turn decreases the oxide ion conductivity. At low dopant concentra-

tion, the number of available minimum energy diffusion pathways is higher. For PDC, the

formation of an oxygen vacancy is found to be most favorable at the 2NN position [7] to

the Pr dopant and hence the available minimum energy pathways keep decreasing with in-

creasing of dopant ion concentration leading to this behavior. Thus the simulations results,

obtained using the KLMC–VR model, show reasonable agreement with the experimental

data and highlight the importance of including the Coulomb interactions between the an-

ionic species. Hence, the current methodology serves as a fundamental tool for predicting

the optimal dopant concentration in PDC.

Fig. 6.7 and Fig. 6.8 show values of ionic conductivity as a function of inverse

temperature for Ce0.90Pr0.10O2-x and Ce0.80Pr0.20O2-x respectively, obtained from KLMC
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Figure 6.5: Ionic conductivity data calculated for PDC obtained using KLMC-VNR and
VR models for simulations performed at 973 K. In both KLMC models, we assume that all
the dopants are ionized.

simulations and experimentally measured values [29, 30]. The Arrhenius type behavior

of the ionic conductivity for this particular configuration is visible with all the simulation

data points for KLMC-VNR and VR models lying on straight lines. The simulation results

agree reasonably well with the experiments with some discrepancy in the magnitude of

ionic conductivity, but this could be due to the reasons mentioned above. For Fig. 6.8,

our theoretical results are in the middle of two sets of experimental measurements, and the

trends with temperature are very similar. Nauer [29] is the total conductivity, whereas our

model and Shuk [30] included only the ionic contribution to the conductivity. Several other

plots for different compositions have been studied and the general trends and conclusions

that can be drawn are analogous.

A vacancy can move through a number of distinctive diffusion pathways before

finally diffusing across an ionic conductor such as PDC. Determination of the rate-limiting
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Figure 6.6: Ionic conductivity data for PDC obtained by experimental measurements per-
formed at 973 K. �: Ref. [30] and �: Ref. [146]. Only half of the dopants are ionized. The
lines are provided only to guide the eye.

step for a path is complex, because it depends on the dopant concentration and arrange-

ment. The input rates used for the KLMC simulations were evaluated using the DFT+U

calculations [7] and provide a very reasonable initial assumption, but the migration energy

for a complete diffusion path cannot be associated with a single migration event. It has to

be averaged using a statistical model that takes into account the distinct pathways involved

during diffusion. Moreover, the migration energies generated using first-principles are ap-

plicable for processes occurring at 0 K. Hence we have compared the statistically averaged

migration energies elucidating the temperature dependence with the experimentally mea-

sured values. Fig. 6.9 shows averaged activation energy for vacancy migration as a function

of dopant concentrations. The activation energies presented in Fig. 6.9 are computed from

the slopes of similar Arrhenius plots as seen in Fig. 6.7 and Fig. 6.8.
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Figure 6.7: Arrhenius plot of ionic conductivity of 10 mol% PDC as a function of temper-
ature ranging from 573 K to 1173 K for the KLMC simulations and 573 K to 973 K for
experimental data (Shuk & Greenblatt [30]).

The plots of average activation energy as a function of dopant concentration gen-

erated using KLMC–VNR and KLMC–VR simulations show similar behavior with the

former having slightly lower magnitude. The experimental values taken from the measure-

ments performed by Shuk et al. [30] are compared with those obtained from simulations in

Fig. 6.8. The experimental and theoretical values are in good agreement at low dopant con-

centrations, and both increase with increasing dopant concentration, but the effect is larger

for the experimental data, although there are significant error bars. The small increase in

the activation energy for vacancy migration at dopant concentrations ranging from ∼ 5%

to ∼ 15% as seen in Fig. 6.8 from simulations is primarily due to negligible interactions

between oxygen vacancies and dopant ions. At higher dopant concentrations, the increase

in average activation energy for migration is due to the increased likelihood of finding two

next neighbors Pr−Pr or Pr−Ce ions pairs near an oxygen vacancy, where a higher energy
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Figure 6.8: Arrhenius plot of ionic conductivity of 20 mol% PDC as a function of temper-
ature ranging from 573 K to 1173 K for the KLMC simulations and 573 K to 973 K for
experimental data (Shuk & Greenblatt [30]) and Nauer et al. [29]).

is needed to overcome these barriers. Any further increase in the Pr ions can eventually trap

the vacancy and form a bottleneck for diffusion. This is also evident from the earlier ex-

planation and Fig. 6.4, where the increase in dopant concentration is found to be primarily

responsible for the decrease in ionic conductivity after attaining a maximum. The differ-

ences between theory and experiment may partly be due to 1) limitations in the DFT data

used as input, 2) assumptions involved in the KLMC model regarding activation energies,

3) the large uncertainty of the order of 50 meV in measured values, 4) the experimental sam-

ples are polycrystalline, so grain boundaries may have a small effect, and 5) variations in

sintering temperature may affect the level of reduction of the experimental samples. Nauer

et al. [29] reported an experimentally measured value of activation energy ranging between

0.42–0.53 eV for ∼ 20% dopant concentration for PDC as compared to the average activa-

tion energy value 0.39 eV obtained for similar dopant concentration by KLMC simulations.
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Figure 6.9: Average activation energy as a function of dopant concentration for PDC com-
pared with the available experimental data. The experimental data involves error bars of 50
meV.

Keeping this in mind, the averaged activation energies obtained from KLMC simulations

are in reasonable agreement with the measured values.

6.4 Conclusions

We have used KLMC simulations in conjunction with previously published activation en-

ergies calculated using density functional theory method to investigate oxygen vacancy

diffusion in PDC. The increase in average activation energy for vacancy migration as a

function of dopant concentration is due to the increase in Pr–Pr dopant pairs that hinder fur-

ther motion of the oxygen vacancies. Our findings follow similar trends as compared with

previously measured values. A dopant concentration of approximately ∼ 15% to ∼ 20% is

found to be optimal for achieving maximum ionic conductivity in PDC. The KLMC sim-

ulations are in reasonably good agreement with the available experimental data, when we
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take into account that only about half of the dopants are ionized. The decrease in ionic

conductivity with increasing dopant concentration is correlated with the increase in aver-

age activation energy for vacancy migration from the vicinity of the dopant pairs and the

subsequent decrease in availability of minimum energy pathways for the vacancy diffusion.

Based on the reasonable agreement with experimental measurements, we believe that the

current model can be used as a design tool to predict the optimal dopant concentration for

attaining maximum ionic conductivity.
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Chapter 7

GADOLINIUM DOPED CERIA

7.1 Introduction

Gadolinium doped ceria (GDC) is one of the ceria-based materials that has been studied

extensively over the years by measurement and calculation of oxide ion conductivity as a

function of temperature and dopant concentration. In this chapter we discuss the imple-

mentation of the Kinetic Lattice Monte Carlo (KLMC) code to study the oxygen vacancy

migration in GDC.

Among reported results for ceria doped with different aliovalent dopants, GDC

is considered to be one of the most promising solid electrolyte materials for operation of

SOFC below 600 ◦C [3, 4]. Activation energies for gadolinium doped ceria have been cal-

culated by Dholabhai et al. [7] using first-principles (DFT+U) methodology to study defect

migration in doped ceria. The results of those first-principle calculations are ideally suited

for input into kinetic lattice Monte Carlo (KLMC) models of vacancy diffusion. In the pre-

vious chapter on praseodymium doped ceria we have employed a systematic approach of

inputting the activation energies calculated by first-principles to the KLMC model to study

time-dependent vacancy diffusion in doped ceria [147]. There we have presented the re-

sults and methodologies of several studies with similar approach employing Monte Carlo

simulations in conjunction with first-principles calculations.

Determination of the optimal dopant concentration that exhibits maximum con-

ductivity is critical for the use of doped ceria as an electrolyte material in SOFC. For GDC,

there are often inconsistent and sometimes contradictory experimental reports on the best

composition that exhibits maxima in conductivity, including 10%, 15% , and 20% Gd (i.e.,

Ce0.90Gd0.10O2-x [4,148], Ce0.85Gd0.15O2-x [149–152] and Ce0.80Gd0.20O2-x [153–157]). A

few reports suggest that the best compositions for GDC were temperature dependent with

the dopant concentration shifting towards a higher value with increasing temperature. For

example, shifts from 15% to 21% dopant concentration with a temperature increase from
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773 K to 1073 K [152]], from 20% to 24% dopant concentration with a temperature in-

crease from 973 K to 1073 K [157], and from 15% dopant concentration below 673 K to

20% above 673 K [155] were reported. Steele [4] reported that a GDC sample with 10%

dopant concentration exhibited the maximum conductivity, but after summarizing other

authors work indicated that at 773 K, the total conductivity peaks at around 25% dopant

concentration. The scatter in the measured data for best compositions of GDC showing

peak conductivity can be attributed mainly to the divergences in sample preparation, vari-

ations in sintering temperature, and variations in the level of reduction in the samples.

Moreover, the level of the purity of the ceramic sample also affects the conductivity as im-

pure samples exhibit considerable grain boundary resistivity. SiO2, one of the predominant

impurities at the grain boundary in ceria related materials, reportedly affects the conduc-

tivity [56] and is introduced in the sample through the precursor chemicals and sample

preparation [4, 158, 159].

Reported computational studies for predicting the compositional dependence of the

oxygen vacancy diffusion constant in GDC are limited to molecular dynamics simulations.

Hayashi et al. [55] used ab-initio ACDvb vmolecular dynamics simulations to investigate

oxygen diffusion and the microscopic structure of ceria-based solid electrolytes with differ-

ent dopant radii. Inaba et al. [56] studied oxygen diffusion in Gd-doped ceria using classical

molecular dynamics simulations. They reported that the diffusion constant shows maxima

at the gadolinia content of 10 mol% and decreases at higher gadolinia contents. They at-

tributed the formation of Gd−vacancy−Gd clusters and long-range interactions between

the oxygen vacancies to be the possible mechanisms for decrease in diffusion constant at

higher gadolinia content. These molecular dynamics simulations were carried out at 1273

K, higher than the effective temperature ranges for the operation of SOFC. Hence, knowl-

edge of various compositions of GDC showing peak conductivities at lower temperatures

will be very insightful towards selecting the appropriate electrolyte materials for SOFC.

Moreover, an issue with the molecular dynamics simulations is that they are performed

over a very short time frame that can lead to insufficient statistical sampling of various

configurations.
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7.2 Computational Methodology

The activation energies of various diffusion pathways for oxygen vacancy migration in

GDC for a vacancy hopping mechanism have been calculated by Dholabhai et al. [7] and is

presented in Table 7.1. These energies are inputted to our KLMC model, where every event

occurs independently in accordance with the statistically averaged activation energy corre-

sponding to the local environment. For GDC, the oxygen prefers a first nearest neighbor

(1NN) site [7], which means that many types of jump events need to be included (1NN→

2NN, 2NN→ 1NN, 2NN→ 2NN, 2NN→ 3NN, etc.) to properly model the complexity.

Table 7.1: Activation energies (Ea) for oxygen vacancy migration along various diffusion
pathways in GDC calculated using DFT+U . The nearest neighbor positions are given with
respect to the Gd ion. Data from Ref. [7].

Migration pathway Activation energy, Ea (eV)
1NN→ 1NN 0.59
1NN→ 2NN 0.50
1NN→ 3NN 2.61
2NN→ 1NN 0.36
2NN→ 2NN 0.48
2NN→ 3NN 0.49
3NN→ 1NN 2.46
3NN→ 2NN 0.46
3NN→ 3NN 0.47

For GDC, we used a 10×10×10 cell (consisting of 12,000 sites) built from a con-

ventional 12-atom cubic unit cell of ceria using the theoretically optimized lattice constant

of 0.5494 nm for bulk ceria [7, 8]. Among these 12,000 positions, 4,000 are available for

Gd dopant placement, which are assumed to be immobile. The vacancies are formed on the

oxygen sublattice consisting of 8,000 sites, and are allowed to hop to adjacent sites, subject

to certain constraints. The simulation cell was repeated periodically along the three axes

to simulate a lattice of effectively infinite extent. The dopant and vacancy concentration

were varied in order to maintain a stoichiometric vacancy to dopant ratio of 0.5, as all the

dopant ions are assumed to be trivalent. For each of the different dopant concentrations, ten
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simulations were performed, each with a different dopant distribution, with approximately

300,000 or more jump events for each configuration. This resulted in achieving a statistical

average with a precision of∼ 3% for various dopant concentrations. Considering the differ-

ence of the order of ∼ 3% in ionic conductivity for the simulations involved, the sampling

did not require additional runs for each configuration. The simulations were performed for

temperatures ranging from 673 K to 1073 K and approximately equal diffusion distances

were used to calculate the final diffusion coefficients.

We have developed two separate models, a Vacancy Non-Repelling model (VNR)

and a Vacancy Repelling model (VR) [147]. In the VNR model, vacancies are allowed

to move anywhere in the simulation cell except into an existing vacancy site. In the VR

model, the vacancies are not allowed to move adjacent (1NN) to any other vacancies in

the simulation cell, nor into an existing vacancy site (It would be slightly more accurate to

add the repulsion energy, but the repulsion energy is so large (∼ 5 eV) that it is very rare

that vacancies will move adjacent to one another, so this is a very good approximation).

These models were developed in order to incorporate the effect of vacancy repelling in ceria

related materials. This effect was verified using DFT+U methodology, where we found

that the configuration involving two vacancies separated by a distance larger than the 1NN

(nearest-neighbor) distance is energetically more stable as compared to the configuration

with vacancies placed next to each other [147]. This was also found to be true for GDC.

For instance, we studied two separate cases for GDC; (i) Vacancies are placed next to the

dopant ions (ii) Vacancies are placed far apart from the dopant ions. For both the cases,

(i) and (ii), the configuration involving two vacancies separated by a distance larger than

the 1NN (nearest-neighbor) distance is more stable by 0.32 eV and 0.15 eV respectively,

as compared to the configuration with vacancies placed next to each other. In this paper

we only report results for KLMC-VR, which assumes that vacancies cannot move next to

one-another, which is a reasonable approximation for GDC. We also wish to mention that

previous studies [36, 40, 47–50] have not included the Coulomb interaction between the

anionic species, but we have highlighted the importance of including this effect for correctly

characterizing the optimal dopant concentration in ceria related electrolyte materials [147].
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Previously, Inaba and co-workers [55, 56] have reported, using molecular dynam-

ics simulations, that the atomic arrangement with the randomly distributed Gd−Gd pairs

in GDC is more stable than the arrangement where isolated Gd atoms are distributed ran-

domly. They reached this conclusion based on the closer agreement between experimental

measurements and calculated values of lattice parameters and the calculation of the en-

thalpy of formation. To understand this behavior, we have performed calculations using

the DFT+U methodology [7, 8] to investigate the effect of Gd−Gd dopant pairs in GDC.

All the calculations were performed for charge neutral supercells. Similar to the reported

results [55, 56], we found that the atomic arrangement with Gd−Gd dopant pairs is more

stable by 0.17 eV as compared to the arrangement with Gd atoms placed in isolation. In

order to incorporate these results from first-principles in the KLMC model and to investi-

gate the effect of Gd−Gd dopant pairs in maximizing the conductivity in GDC, we have

developed a separate model called Vacancy-repelling Dopant Pairs (VRDP) model. In the

KLMC-VRDP model, the dopants are randomly distributed in Gd−Gd pairs, with the rest

of the algorithm being same as the KLMC-VR model. In reality, only a fraction of the Gd

ions will exist as pairs, depending on the processing conditions and thermal history of the

sample. The KLMC–VRDP model is an approximation of the extreme case where all the

dopant ions are assumed to exist in pairs, and serves as an upper-bound on the effect of

pairing.

7.3 Results

Vacancy Mobility

In the presence of multiple dopant ions, a common physical scenario encountered in elec-

trolyte materials and the current KLMC model, we use an underlying assumption that every

additional Gd dopant ion in the vicinity of the migrating vacancy will have an additive effect

towards the activation energy for vacancy migration. Earlier, we have tested this relation-

ship using the first-principles calculations [7, 8] and, justified and explained its use in the

working of the KLMC model [147]. Andersson et al. also reported a similar decrease in

activation energy for the case where two Gd ions are next to each other [1]. Incorporat-
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ing this assumption in the KLMC model, we have simulated diffusion of oxygen vacancies

in the presence of multiple dopants. Under the current assumption, the estimated activa-

tion energies for multiple dopants are probably valid to about 10 meV at low to moderate

concentrations, but may be larger at higher concentrations.

Ionic Conductivity Calculation Using KLMC-VR Model

The primary goal of the current effort is to study various compositions of GDC within the

temperature range 673 K to 1073 K and identify the compositions exhibiting peak con-

ductivities at different temperatures. As cited earlier, researchers have previously studied

other systems with similar methodology, but have failed to include the Coulomb interac-

tions between the charged vacancies. Moreover, no literature data is available of the Monte

Carlo study of various compositions of GDC. Including the effect of vacancy repelling, the

simulations results in Fig. 7.1 correspond to the variations in ionic conductivity as a func-

tion of dopant concentration in GDC using the KLMC-VR model for temperatures ranging

from 673 K to 1073 K. For the temperatures ranging from 673 K to 873 K, the conductiv-

ity steadily increases as a function of dopant concentration and exhibits a broad maximum

at ∼ 20% dopant content. At higher temperatures, 973 K and 1073 K, the conductivity in-

creases steadily as a function of dopant concentration as observed for the temperature range

673 K to 873 K, but the maximum in conductivity is shifted to higher dopant content with

a well-defined peak observed at ∼ 25% dopant content.

Ionic Conductivity Calculation Using KLMC-VRDP Model

Simulation results presented in Fig. 7.2 are generated using the KLMC-VRDP model at

temperatures 673 K, 873 K and, 1073 K and compared with the results obtained using the

KLMC-VR model. As mentioned earlier, the Gd−Gd dopant pairs are randomly distributed

in the cationic sites for the VRDP model. For all the temperatures studied, the conductiv-

ity increases as a function of dopant concentration and exhibits maxima at ∼ 20% dopant

content, but the conductivity for temperatures 873 K and 1073 K shows a broad maximum

whereas that for 673 K exhibits a finer peak. Considering all the simulations performed for
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Figure 7.1: Calculated ionic conductivity in GDC as a function of dopant content generated
using KLMC–VR model for temperature ranging from 673 K–1073 K.

GDC using KLMC-VR and VRDP models, the magnitude of ionic conductivity is larger

for the values obtained using the VR model. This is a consequence of the formation of

Gd−vacancy−Gd clusters in the VRDP model, which effectively traps the vacancy and

decreases the net diffusion. The Gd−vacancy−Gd cluster can be thought of as a same

vacancy having two 1NN Gd dopant ions. The difference in magnitude of conductivity

calculated using the VR and VRDP models is smaller at lower dopant concentrations and

steadily increases until it reaches a dopant concentration of ∼ 30%, after which the dif-

ference remains roughly constant. This could be due to the fact that above ∼ 30% dopant

concentration, even in the VR model, a fraction of dopant ions that are placed randomly

might form pairs and have an effect similar to the VRDP model.

For results pertaining to both the models, VR and VRDP, the decrease in ionic

conductivity after reaching a maximum can be attributed to (a) growing interactions be-

tweens the vacancies and dopants, and as the number of vacancies increases as a function

of increasing dopant concentration, (b) fewer number of available sites for the vacancies to

migrate on the oxygen sublattice due to the vacancy-repelling factor. To further substanti-
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Figure 7.2: Calculated ionic conductivity in GDC as a function of dopant content generated
using KLMC–VRDP model for temperatures 673 K, 873 K and 1073 K. Data generated
using KLMC-VR model for the same temperatures are also shown for comparison.

ate the origin behind the decrease in conductivity after reaching a maximum, we performed

additional simulations using the VR model. We studied two different cases; (i) linearly

increasing the vacancy concentration while keeping the dopant concentration fixed, and (ii)

increasing the dopant concentration linearly and keeping the vacancy concentration fixed.

For case (i), the ionic conductivity keeps increasing, with a slight dip due to vacancy-

vacancy interactions at higher vacancy concentration, but this effect is modest. Simulations

for case (ii) results in a steadily decreasing ionic conductivity due to a growing fraction

of the vacancies getting trapped near the dopant ions, decreasing the diffusion coefficient.

This effect is considerably larger than the effect of vacancy-vacancy interactions as seen in

case (i), which also decreases ionic conductivity. Overall, the additive results of these two

effects explain the increase and then decrease in ionic conductivity with increasing dopant

concentration. A similar behavior was also found to be true for Pr-doped ceria and was

reported in our previous effort [147].

93



Comparison of the Predicted Optimal GDC Composition with Experimental Data

Experimental reports for the best GDC compositions that exhibit maximum conductivity

lie on a wide spectrum with varied dopant content. As mentioned in the introduction, best

compositions for GDC with a Gd dopant content of 10% [4, 148], 15% [149–152] and

20% [153–157, 160] have been reported. Moreover, the compositions were found to be

temperature dependent [152, 155, 157]. Reasons for the scatter in the measured data for

best GDC compositions are explained earlier. Fig. 7.3 shows the various trends of increase

in ionic conductivity as a function Gd dopant concentration at 973 K for experimentally

measured data available from literature. Also included in Fig. 7.3 is a plot of ionic conduc-

tivity data generated using the KLMC-VR model at 973K. At 973 K, the GDC composition

with∼ 25% dopant concentration showing peak conductivity using KLMC-VR model is in

reasonable agreement with experimental measurements [152–157] reporting samples with

∼ 20% Gd as the best compositions. A few other results predict an optimal dopant con-

centration of ∼ 15% [149–152]. Two other measurements [4, 148] predict ∼ 10% optimal

dopant concentration, but the measurements were not performed for intermediate concen-

tration (i.e 15%, 25%), so there is a possibility of the true maximum being masked. Overall,

majority of the experimental work predicts an optimal dopant concentration ranging from

15% to 20% in GDC between the temperature ranges 673 K to 973 K, with some reports

claiming the optimal content to be above 20% for higher temperatures [152, 157]. For

instance, at 873 K, a few of the experimental measurements [153,155,157] reported an op-

timal dopant concentration of ∼ 20%, which is exactly the same concentration as predicted

by the current KLMC-VR model.

The above results show that at higher temperatures, the KLMC-VR model predicts

a slightly higher optimal dopant concentration for GDC as compared with experiment, but

is in reasonable agreement at lower temperatures. The discrepancy between the experi-

mental and theoretical findings may be attributed to the dependence of oxygen vacancy

concentration on the temperature and oxygen partial pressure. Moreover, the experimental
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Figure 7.3: Calculated (using KLMC–VR model) and measured ionic conductivity in GDC
as a function of dopant content at 973 K.

samples are polycrystalline, and exhibit significant grain boundary resistance with increas-

ing dopant concentration, which decrease the conductivity at lower dopant concentrations

as compared to the current KLMC model that does not incorporate grain boundary effects.

Slight discrepancy between the results is also expected due to the approximation involved

in estimating the migration energies in presence of multiple dopants. Nevertheless, the

agreement between the calculated and measured values is especially good considering that

all the input data for the KLMC model was generated exclusively using first-principles

calculations (no experimental parameters involved).

At 973 K the KLMC-VRDP model predicts an optimal dopant concentration of

∼ 20% (data not shown in the plot), which is in very good agreement with most of the

experimental measurements [152–157, 160]. But a direct comparison of the data gener-

ated using the KLMC-VRDP model and experimental measurements is not appropriate as

no experimental data are available that claim that all the dopants are present in the form

of Gd−Gd pairs in GDC. It was reported using MD simulations [55] carried out at 1273
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K that the oxygen diffusion coefficient of GDC show maxima at about 20% dopant con-

tent. These calculations involved the initial placement of Gd−Gd dopant pairs in GDC

similar to the KLMC-VRDP model. The result is similar to the one obtained with the cur-

rent KLMC-VRDP model that predicts an optimal dopant concentration of ∼ 20%, but at a

lower simulation temperature of 1073 K. The current simulations for GDC using KLMC-

VRDP model were limited to temperatures at and below 1073 K due to its applications as

an electrolyte material in SOFC. At 1273 K, we expect a slight shift to higher dopant con-

centration as compared to the reported optimal concentration of 20% [55]. At this point,

further experimental information on the arrangement of dopants with respect to their place-

ment in GDC, whether in isolation, pairs or the approximate fraction of dopants that form

pairs, at specific concentrations and temperatures is welcome. In future, the KLMC model

can be modified to incorporate these experimental findings to enable an improved and more

suitable comparison.

Fig. 7.4 shows values of ionic conductivity as a function of inverse temperature

for low Gd concentration (Ce0.05Gd0.20O2-x) and one of the most widely used composition

of GDC (Ce0.80Gd0.20O2-x) obtained from KLMC-VR model and experimentally measured

values [149,151,152,155,157,160]. The Arrhenius type behavior of the ionic conductivity

for this particular configuration is visible with all the simulation data points for KLMC-VR

model lying on a straight line. At low dopant concentration, the simulation results at lower

temperatures agree reasonably well with the experiments. As can be seen in Fig. 7.4, the

simulated data points lie in the center of the various experimental measurements. At higher

temperatures the scatter between experiment and simulations increases.

Effect of Dopant Concentration on Lattice Parameter

One effect not included in the KLMC–VR model is the effect of dopants on lattice pa-

rameter. Several experiments have demonstrated that the addition of Gd dopants to ceria

significantly increases the lattice parameter; for example, at 20% Gd content, the lattice

parameter increases by ∼ 0.015 Å [149–152, 155, 157]. This small expansion is enough

to significantly change activation energies. To investigate this effect, we recalculated acti-
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Figure 7.4: Arrhenius plot of ionic conductivity of Ce0.95Gd0.05O2-x as a function of temper-
ature calculated using the KLMC–VR model and compared with the available experimental
data. For Fu:2006 [157], the data is plotted for Ce0.96Gd0.04O2-x.

vation energies for diffusion of oxygen vacancies in GDC using the experimental percent

increase in lattice parameter for 20% dopant concentration to build an expanded 96-atom

GDC supercell. The activation energies decreased slightly, as shown in Table 7.2. A small

decrease in activation energy has an exponential effect on diffusion and conductivity. The

revised activation energies for an expanded cell were input into the KLMC model (now

referred to as KLMC-VR,X), and the results are shown in Fig. 7.5.

For 20 mol% GDC, the KLMC–VR,X model yields conductivities that are approxi-

mately an order of magnitude higher than for the KLMC–VR model. The observed increase

in conductivity is due to the slightly larger space available for the oxygen ion diffusion that

decreases the activation energy for vacancy migration. The agreement of the two models

with experiment is similar, with the KLMC–VR model having better agreement at lower

temperatures, and the KLMC–VR,X model having better agreement at higher tempera-

tures. However, although the predicted magnitude of ionic conductivity agrees surprisingly

well with experimental measurements, the slope of the experimental curves is significantly
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Table 7.2: Calculated activation energies (Ea) for oxygen vacancy migration along various
diffusion pathways in the expanded GDC supercell built by including the experimental
percent increase in lattice parameter as a function of 20% dopant concentration.

Migration pathway Activation energy, Ea (eV)
1NN→ 1NN 0.56
1NN→ 2NN 0.47
1NN→ 3NN 2.57
2NN→ 1NN 0.33
2NN→ 2NN 0.47
2NN→ 3NN 0.46
3NN→ 1NN 2.42
3NN→ 2NN 0.44
3NN→ 3NN 0.46
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Figure 7.5: Arrhenius plot of ionic conductivity of Ce0.80Gd0.20O2-x as a function of tem-
perature calculated using the KLMC–VR and KLMC–VR,X models and compared with
the available experimental data.

higher than the slope of the calculated KLMC curve, and the reasons for that discrepancy

are unclear. A few other plots for different compositions (10, 15 and 25 mol% GDC) have

been studied as well (not presented here) and the overall trends and conclusions that can be

drawn are similar.

98



Thermal expansion will also have a slight effect on the activation energies, and in

fact, the thermal expansion of GDC has been found to increase as a function of dopant

content [161,162]. However, the magnitude of this effect is much smaller than the effect of

the dopants, so it is not included here.

The large effect of dopant expansion of the lattice on ionic conductivity suggests

that the addition of other dopants that expand the lattice more may be beneficial. This effect

may be an important guide in searching for new dopants for ceria.

Average Activation Energy

Dholabhai et al. [7] have argued that the determination of the rate-limiting step for a path

is complex, because it depends on the dopant concentration and arrangement. The input

rates used for the KLMC simulations were evaluated using the DFT+U calculations [7] and

provide a very reasonable initial assumption, but the migration energy for a complete diffu-

sion path cannot be associated with a single migration event. It has to be averaged using a

statistical model that takes into account the distinct pathways associated with the particular

configuration. The average activation energy for 5% dopant concentration in GDC com-

puted using the results from KLMC-VR model is 0.43 eV. Using DFT+U , we found that

for ∼ 6% dopant concentration, activation energy for vacancy migration of a single mobile

vacancy along the most favorable path 2NN→ 1NN is 0.36 eV. This shows that the calcu-

lations of a single most favorable migration energy is not sufficient to correctly depict long

time diffusion and that a single migration energy does not allow a fitting comparison with

the experimentally measured values.

Fig. 7.6 shows averaged activation energy for vacancy migration as a function of

increase in dopant concentration computed using the KLMC-VR model and available ex-

perimental values [4,150,152,155,160] to enable comparison with the current simulations.

The calculated activation energies presented in Fig. 7.6 are computed from the slopes of

similar Arrhenius plots as the one presented in Fig. 7.5. The calculated increase in activa-

tion energy with increasing dopant concentration is in good qualitative agreement with the
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experimental measurements, but the effect is more pronounced for the experimental data.

At higher dopant concentrations, the increase in average activation energy for migration is

due to the increased likelihood of finding two next neighbors Gd−Gd pairs near an oxygen

vacancy, where a higher energy is needed to overcome these barriers. Any further increase

in the Gd ions can eventually trap the vacancy and form a bottleneck for diffusion. This is

also evident from the earlier explanation suggesting the increase in dopant concentration to

be the primary cause for the decrease in ionic conductivity at very high dopant concentra-

tion. The differences between theory and experiment may be partly due to limitations in

the DFT data used as input and the assumptions involved in the KLMC model for multi-

ple dopants. In addition, the experimental samples are polycrystalline, so grain boundaries

may have a small effect. For example, at 10% dopant concentration, the computed and mea-

sured values [150] are in reasonably good agreement, but at higher dopant concentration,

the discrepancy increases. Considering the above effects, the averaged activation energies

obtained from the KLMC simulations are in reasonable agreement with the measured val-

ues.

7.4 Conclusions

We have performed KLMC simulations to predict the optimal dopant composition for GDC

that exhibits maximum ionic conductivity. As an input to the KLMC model, we have used

the activation energies for vacancy migration along distinct diffusion pathways calculated

using DFT+U . Applying the KLMC–VR model for the temperature ranges 673 K to 1073

K, a dopant concentration of ∼ 20% to 25% is found to be optimal for achieving maximum

ionic conductivity in GDC. The current findings are found to follow similar trends as com-

pared with the previously measured values. The linear increase in ionic conductivity at low

dopant concentration and its gradual decrease at higher dopant concentration after reaching

a maxima can be explained due to the combined effect of (i) increasing interactions between

the dopant ions and vacancies that block further diffusion of vacancies; (ii) fewer sites being

available for vacancies to migrate due to the vacancy-repelling effect; and (iii) the increase

in average activation energy as a function of the increase in dopant concentration.
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Figure 7.6: Average activation energy as a function of dopant concentration for GDC cal-
culated using the KLMC–VR model and compared with the available experimental data.

We also present an alternative KLMC–VRDP model, which assumes that all the

dopants are placed in Gd−Gd pairs. The KLMC–VRDP model results in slightly lower

conductivities, and shifts the peak to somewhat lower dopant concentrations.

To include the effect of lattice parameter expansion due to dopant addition, we

developed a KLMC–VR,X model, which uses the activation energies calculated in an ex-

panded GDC lattice. For 20 mol% GDC, KLMC–VR,X model yields conductivities that

are approximately an order of magnitude higher than for the KLMC-VR model. The agree-

ment of the two models with experiment is similar, with the KLMC–VR model having

better agreement at lower temperatures, and the KLMC–VR,X model having better agree-

ment at higher temperatures. Based on the agreement with experimental measurements,

the KLMC model in conjunction with first-principles calculations can be used as a design

tool to predict the optimal dopant concentration in ceria related materials for electrolyte

applications.
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Chapter 8

NEODYMIUM DOPED CERIA

In the last two chapters we have discussed the utilization of the Kinetic Lattice Monte

Carlo (KLMC) code that we developed to praseodymium and gadolinium doped ceria elec-

trolytes in order to determine the effect of dopant concentrations and temperatures on the

ionic conductivity. In this chapter we apply the code to study neodymium doped ceria

(NDC) using similar techniques. We use the same technique as in the last two chapters by

utilizing a database of activation energies for oxygen vacancy migration, calculated using

first-principles, for various migration pathways in neodymium-doped ceria.

8.1 Calculation Details

In Chapter 4 we reported the density functional theory calculations of the activation energies

of various diffusion pathways for oxygen vacancy migration in neodymium-doped ceria

(NDC). The energies from those calculations, as presented in Table 8.1, are input to the

KLMC model. It should be noted that, for NDC, the oxygen prefers a first nearest neighbor

(1NN) site, which means that many types of jump events, such as 1NN→ 2NN, 2NN→

1NN, 2NN→ 3NN, need to be included to properly model the complexity.

Table 8.1: Activation energies for oxygen vacancy migration along distinctive pathways in
NDC calculated using first-principles. E(m,n) denotes activation energy for a oxygen atom
migrating from m-nearest neighbor (mNN) to n-nearest neighbor (nNN) with respect to the
Nd ion in NDC.

Migration pathway Ea (eV)
E(1,1) 0.73
E(1,2) 0.44
E(1,3) 2.77
E(2,1) 0.43
E(2,2) 0.47
E(2,3) 0.55
E(3,1) 2.66
E(3,2) 0.45
E(3,3) 0.47
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For the KLMC simulation for NDC we used a 10× 10× 10 supercell consisting

of 12,000 possible sites to place the respective ion. The periodic cell with a 10× 10× 10

periodicity was built from a conventional 12-atom cubic unit cell of ceria using the theo-

retically optimized lattice constant of 5.494 Å for bulk ceria as reported in Chapter 4. Of

these 12,000 positions, 4,000 are available for dopant placement and 8,000 sites are avail-

able for vacancy formation. The vacancies are allowed to hop to adjacent sites, subject to

certain constraints. The simulation cell was repeated periodically along the three axes to

simulate a lattice of effectively infinite extent. The dopant and vacancy concentration were

varied. All the dopant ions are assumed to be trivalent, hence for every two dopant ions,

an oxygen vacancy was introduced. For each of the different dopant concentrations, seven

to fourteen simulations were performed, each with a different dopant distribution. Each

simulation comprised of approximately 3000,000 or more jump events. This resulted in

achieving a statistical average with a precision of ∼ 3% for various dopant concentrations.

Considering the difference of the order of ∼ 3% in ionic conductivity for the simulations

involved, the sampling does not require additional runs for each configuration. The simu-

lations were performed for temperatures ranging from 673 K to 1073 K and approximately

equal diffusion distances were used to calculate the final diffusion coefficients. To plot the

Arrhenius relationship and for comparison with available experimental data, some specific

configurations were simulated for temperatures ranging from 573 K to 1173 K.

We have simulated the NDC calculations using two separate models for NDC, a Va-

cancy Non-Repelling model (VNR) and a Vacancy Repelling model (VR). We performed

preliminary calculations using the DFT+U methodology, discussed in Chapter 4, to investi-

gate vacancy diffusion in NDC. All the calculations were performed for charge neutral su-

percells. The observed Coulomb interaction between charged vacancies lead us to develop

two separate models; (1) In the VNR model, vacancies are allowed to move anywhere in the

simulation cell except into an existing vacancy; (2) In the VR model, the vacancies are not

allowed to move adjacent (first nearest neighbor) to any other vacancies in the simulation

cell, nor into an existing vacancy. (It would be slightly more accurate to add the repulsion

energy. But the repulsion energy is so large (∼ 5 eV) that it is very rare that vacancies will
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move adjacent to one another, so this is a very good approximation). Previous studies have

neglected the Coulomb interaction between the anionic species, but we find that this effect

is important in correctly characterizing the optimal dopant concentration in ceria related

electrolyte materials.

8.2 Calculation of Error Bars

Computer simulations do not produce identical results each time a simulation is run. This

is because of round-off errors and the randomness of the random number generator. We

observed this in our calculations. For a small number of runs the scatter in the data was

quite large resulting in large error bars for our data points. As the number of runs were

increased the scatter (error bars) got smaller. In order to determine the number of runs

needed to produce an acceptable error (at 95% confidence level) in our calculations we

used the equation

StandardError(x) =
abs(tn−1)√

n
×StandardDeviation(x) (8.1)

where n− 1 is the degrees of freedom and t is obtained from the t-table for one-tailed

distribution at a 95% confidence level. We conducted a number of test runs to determine

the standard deviation of our data, and once we had decided upon what standard error to

accept, we were able to settle on the number of runs n. we decided that we needed about

ten runs for desirable extent of our error bars.

We ran the KLMC simulation for each dopant concentration at each temperature

for fifteen times. However, due to server bottlenecks we did not get the results of all these

runs. We obtained results for seven to fourteen runs for the VNR model.

8.3 Results and Discussion

In this chapter we study the variations in ionic conductivity as a function of dopant con-

centration in NDC and explore the optimal dopant concentration that maximizes the ionic

conductivity. As mentioned earlier, researchers have previously studied other systems with

similar methodology, but have neglected the Coulomb interactions between the charged va-
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cancies. We also investigate the significance of including these effect by using the vacancy

repelling (VR) and the vacancy non-repelling (VNR) versions of our code.

The results of the KLMC-VNR model for 0-40% dopant concentrations at temper-

atures of 673 K, 723 K and 773 K are shown in Fig. 8.1. We also show a representative

data in Table 8.2 to show the standard error calculations using Eq. 8.1. We see that for this

non-repelling model the ionic conductivity for neodymium doped ceria reaches a maximum

between 25%–30%. Now, if we we instead use the vacancy repelling model, the ionic con-

ductivity reaches a maximum at around 17.5% dopant concentration at all temperatures,

as can be seen in Fig. 8.2. We have also plotted the log of the conductivity vs. 1/T in

Fig. 8.5 that shows that the ionic conductivity rises from 5% dopant concentration to about

17.5% dopant concentration and then decreases as the Nd concentration rises to 40%. The

reduction in the dopant concentration needed to reach maximum conductivity is significant.

However, we note that the VNR model yields a higher ionic conductivity compared to the

VR model. This is because there are fewer number of available sites for the vacancies to

migrate on the oxygen sublattice for the VR model due to the vacancy-repelling factor,

which decreases the diffusion coefficient.

Table 8.2: Neodymium-doped Ceria—Non-repelling KLMC model at 500 ◦C.

% Dopant
Number of
Runs

Mean
Diffusion
Coefficient

Standard
Error

Mean Ionic
Conducti-
vity

Standard
Error

0.005 13 5.46e-07 3.27e-09 1.27e-05 7.56e-08
5 13 4.84e-07 2.50e-09 1.12e-03 5.84e-06
10 24 4.17e-07 2.48e-09 1.93e-03 1.15e-05
15 14 3.51e-07 4.79e-09 2.44e-03 3.34e-05
20 6 2.94e-07 6.19e-09 2.73e-03 5.75e-05
25 6 2.42e-07 5.68e-09 2.81e-03 6.58e-05
30 7 1.98e-07 3.59e-09 2.76e-03 5.00e-05
35 8 1.64e-07 2.60e-09 2.67e-03 4.22e-05
40 8 1.41e-07 2.18e-09 2.62e-03 4.06e-05

Our calculated values for a maximum in ionic conductivity for Nd doped ceria

at ∼ 17.5% dopant concentration is in the range of 15–20% experimental values plotted
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Figure 8.1: Diffusion coefficient for Nd doped ceria vs. dopant concentration for the va-
cancy non-repelling model. The extent of the error bars as calculated using Eq. 8.1 can
clearly be seen as dependent on the number of sampling of each data point as presented in
Table 8.2.

by Stephens and Kilner [33] using data from Aneflous et al. [163] (Fig. 8.3, and Fu et

al. [164] (Fig. 8.4. As in the other two cases we observe the increase and then decrease

in ionic conductivity with increasing dopant concentration. Initially, the ionic conductivity

increases at lower dopant concentration due to the increase in vacancy concentration, but

after reaching a maximum, it decreases due to increasing interactions between the dopant

ions and vacancies that serves as a bottleneck, decreasing the number of minimum energy

pathways for a vacancy to diffuse.

Ionic conductivity decreases with increasing dopant concentration because of the

increase in average activation energy for vacancy migration and the percent increase of Nd

ions near the migrating vacancy. The increasing number of Nd ions often tends to bind the

neighboring oxygen vacancy more strongly and decrease the diffusion coefficient, which in

turn decreases the oxide ion conductivity. For NDC, the formation of an oxygen vacancy
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Figure 8.2: Ionic conductivity for Nd doped ceria vs. dopant concentration (vacancy re-
pelling model).

is found to be most favorable at the 1NN as we have pointed out in Chapter 4. However,

the difference between E2,1 (0.437 eV) and E1,2 (0.428 eV) is only 0.009 eV. This value

compares well with that reported by Nakayama and Martin [165] (∼ 0.01 eV), using spin-

polarization calculations in VASP. For Pr doped ceria this difference is 0.06 eV and for Gd

doped ceria it is 0.14 eV. So, while for PDC the 1NN→ 2NN migration path is more favor-

able and for GDC the 2NN→ 1NN migration path is clearly preferred, for Nd doped ceria

the preference between the first and second nearest neighbor sites is a little ambiguous. At

low dopant concentration, the number of available minimum energy diffusion pathways is

higher and as the dopant concentration goes up the available minimum energy pathways

decreases leading to lower ionic conductivity. Our results agree well with the few experi-

mental results, therefore we feel that our methodology can serve as a fundamental tool for

predicting the optimal dopant concentration in neodymium doped ceria. Our work is also

important because, as far we know, no one else has used Monte Carlo simulation to explore

the effect of dopant concentration and temperature on the ionic conductivity of NDC.
107



Figure 8.3: Ionic conductivity for Nd doped ceria vs. dopant concentration. Figure from
Stephens and Kilner [33] who plotted it with data extracted from Aneflous et al. [163].

Figure 8.4: Ionic conductivity for Nd doped ceria vs. dopant concentration. Figure from
Fu et al. [164].
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Figure 8.5: Log Ionic conductivity for Nd doped ceria (vacancy repelling model).

It is interesting to compare the ionic conductivities of the three dopants. Fig.8.6

shows the ionic conductivities of Nd, Gd, and Pr calculated by KLMC-VR model at differ-

ent temperatures. We see that Pr, has the highest ionic conductivity with the maximum near

20% dopant concentration, followed by Nd. However, Nd crests at a slightly lower dopant

concentration (17.5%). Gd has similar maximum as Nd, but at a much higher dopant con-

centration (∼ 25−−30%) for the VR model. But, we know that running Gd with another

model (KLMC-VRDP) gives us a maximum for Gd ionic conductivity for a lower dopant

concentration of ∼ 22%. We can clearly see that these trends hold at different tempera-

tures. I feel that we can attribute the differences in this plot to the size effect of the ionic

radius. Dopant size plays a role in attracting oxygen vacancies and strong associations oc-

cur between Ce 4+ and an oxygen vacancy for large dopants as observed by Nakayama and

Martin [165].
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Figure 8.6: Log Ionic conductivity for Nd, Gd, and Pr doped ceria (vacancy repelling
model) at three different temperatures (873 K, 973 K, and 1073 K).

8.4 Conclusion

We have simulated vacancy diffusion in neodymium doped ceria (NDC) using the Kinetic

Lattice Monte Carlo code that we have developed, using the activation energies calculated

using density functional theory, for the vacancy repelling and vacancy non-repelling cases.

Our findings are in good agreement with experimental ones. We have not found any sim-

ulation results by other to compare against our findings. Compared to our calculations for

PDC and GDC we find that NDC reaches a maximum in ionic conductivity at slightly less

dopant concentrations.
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Chapter 9

CONCLUSIONS

9.1 Summary

In this dissertation work we have conducted a theoretical investigation of the ionic conduc-

tivity in doped ceria. Doped ceria is important because it is used as an electrolyte in solid

oxide fuel cells (SOFCs). SOFCs have not gained widespread deployment because they

need to be operated at high temperatures (∼ 1000 ◦C). Therefore, one of the goals of this

research was to systematically explore how dopant types and dopant concentrations influ-

ence the ionic conduction and to understand the mechanisms of diffusion in doped ceria.

Although vigorous efforts are underway to experimentally characterize ionic diffu-

sion and to develop optimal doped ceria electrolytes, experimental studies do not lend to an

understanding of the mechanism of ionic conduction at the atomic level. This understand-

ing is important in order to develop better ionic conductors. Therefore,the thrust of this

dissertation was to develop a fundamental understanding of oxygen vacancy migration at

the atomic level for both doped and pure ceria. In this research we have considered several

elements of the lanthanide series (neodymium, praseodymium and gadolinium) as dopants.

We have explored the different pathways for oxygen vacancy migration in doped ceria via

vacancy hopping mechanisms for varying dopant concentrations and temperatures. Since

the introduction of the dopants affects vacancy formation and migration we have investi-

gated the effects on the first three nearest neighbors, having determined that the effects on

more distant neighbors are negligible. We have used density functional theory (DFT+U)

calculations to calculate the energies and have chosen the ab initio total-energy program

VASP (Vienna ab initio simulation program) to carry out our calculations. To model the

diffusion mechanism of the transport of the charge carriers. We have developed a novel

random events code, the Kinetic Lattice Monte Carlo (KLMC) program, to carry out sim-

ulations of oxygen vacancy diffusion, using the density functional theory (DFT) activation

energies as input.
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Using DFT and KLMC we can predict optimal design of materials rather than

conducting expensive and time consuming trial and error experimental procedures. DFT has

also been used by other researchers to find bulk properties of ceria in good agreement with

experimental data. Density functional theory (DFT) is also a very good first principles tool

for calculating oxygen vacancy formation and migration in doped ceria because it yields

results that are better than those employing, say, empirical potentials and aspects of it has

been been explored by others.

We have used DFT+U calculations for neodymium doped ceria to investigate oxy-

gen vacancy migration. We have verified the known bulk properties of pure ceria and have

calculated the energy barriers along different migration pathways. We have found that the

first nearest site to Nd 3+ is the most favorable for vacancy formation and that the 2NN→

1NN to be the most favorable. Our calculations validate experimental results that the in-

clusion of dopants in pure ceria reduces the activation barrier to vacancy migration—thus

diffusion and ionic conductivity is increased. We can expect that adding more dopants

would further lower the activation barrier. In order to explore the variation of diffusion

(and hence the ionic conductivity) as a function of dopant concentration, and also of the

temperature, we have used the activation energies calculated using DFT+U as inputs to the

Kinetic Lattice Monte Carlo (KLMC) code that we have developed to study neodymium

doped ceria. For praseodymium and gadolinium doped ceria we have used the activation

energies calculated by first principles method by Dholabhai et al.

I have co-developed a KLMC code to model oxygen vacancy diffusion in ceria.

We have used different versions of the KLMC code in which we either allow vacancies to

be placed next to each other (vacancy repelling KLMC (VR model)) or the vacancy non-

repelling KLMC (VNR model)).

We have used KLMC simulations using previously published activation energies

calculated using density functional theory method to investigate oxygen vacancy diffusion

in praseodymium doped ceria (PDC). We have found that a dopant concentration of ap-

proximately ∼ 15% to ∼ 20% to be optimal for achieving maximum ionic conductivity in

112



PDC. The KLMC simulations are in reasonably good agreement with the available exper-

imental data, when we take into account that only about half of the dopants are ionized.

The decrease in ionic conductivity with increasing dopant concentration is correlated with

the increase in average activation energy for vacancy migration from the vicinity of the

dopant pairs and the subsequent decrease in availability of minimum energy pathways for

the vacancy diffusion.

We next conducted KLMC simulations to predict the optimal dopant composition

for gadolinium doped ceria (GDC) using the activation energies for vacancy migration

along distinct diffusion pathways calculated using DFT+U by Dholabhai, et al. Applying

the KLMC–VR model for the temperature ranges 673 K to 1073 K, a dopant concentra-

tion of ∼ 20% to 25% is found to be optimal for achieving maximum ionic conductivity in

GDC. The linear increase in ionic conductivity at low dopant concentration and its gradual

decrease at higher dopant concentration after reaching a maxima can be explained by the

combined effect of (i) increasing interactions between the dopant ions and vacancies that

block further diffusion of vacancies; (ii) fewer sites being available for vacancies to migrate

due to the vacancy-repelling effect; and (iii) the increase in average activation energy as a

function of the increase in dopant concentration.

We also presented an alternative KLMC–VRDP model, which assumes that all the

dopants are placed in Gd−Gd pairs. The KLMC–VRDP model results in slightly lower

conductivities, and shifts the peak to somewhat lower dopant concentrations. To include

the effect of lattice parameter expansion due to dopant addition, we developed a KLMC–

VR,X model, which uses the activation energies calculated in an expanded GDC lattice. For

20 mol% GDC, KLMC–VR,X model yields conductivities that are approximately an order

of magnitude higher than for the KLMC-VR model. The agreement of the two models

with experiment is similar, with the KLMC–VR model having better agreement at lower

temperatures, and the KLMC–VR,X model having better agreement at higher temperatures.

For neodymium doped ceria (NDC), we found that an oxygen vacancy was more

likely to be formed at the 1NN site. This is similar to the Gd doped case, but contrasts with
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the Pr doped case in which the second nearest neighbor was the more favorable site. This

has to do with the ionic radii of the dopants as compared with that of the host cerium ions.

We have simulated vacancy diffusion in NDC using our Kinetic Lattice Monte Carlo code

for both the vacancy repelling and vacancy non-repelling cases, using the activation ener-

gies calculated using density functional theory. Our findings are in good agreement with

experimental ones and that the vacancy repelling case gives more realistic results. We have

not found any simulation results by other to compare against our findings. Compared to our

calculations for PDC and GDC we find that NDC reaches a maximum in ionic conductivity

at slightly less (∼ 17.5%) dopant concentrations.

Since the KLMC results are in reasonable agreement with experimental measure-

ments, we can assert that the KLMC model in conjunction with first-principles calculations

can be used as a design tool to predict the optimal dopant concentration for attaining maxi-

mum ionic conductivity in ceria related materials for electrolyte applications.

9.2 Future Work

In the future we plan to expand this work to investigate the effect of some other dopants

from the lanthanide series. The large effect of dopant expansion of the lattice on ionic

conductivity that we have seen suggests we should explore lattice expansion by the addition

of other dopants, and this effect may be an important guide in searching for new dopants

for ceria. We also plan to investigate the effect of codopants on ionic conductivity and

for creating new electrolyte material for operation at lower temperatures. In this study

we have restricted ourselves only to the study of bulk and doped bulk ceria. It would

also be interesting to extend our study to those of the surfaces. We could, for example,

compute surface energies of Ce2O3 for different surface orientations and compute O vs. Ce

termination. This can lead to different faceting. We could also study hydrogen adsorption

on Ce2O3 surfaces by calculating the binding energies and H coverage.It would also be very

interesting to investigate cerium and oxygen vacancy diffusion on Ce2O3 surfaces. Last, but

not least we plan to modularize our KLMC code and place it on the web for others to use

and develop a graphical user interface front end.
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Appendix A

POSCAR FILE FOR 1×1×1 SUPERCELL FOR PURE CERIA
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! This is the 1× 1× 1 POSCAR file consisting of 4 cerium and 8 oxygen atoms
used to calculate the bulk properties of pure ceria.

1 fcc CeO2 supercell

2 5.49

3 1.0 0.0 0.0

4 0.0 1.0 0.0

5 0.0 0.0 1.0

6 4 8

7 direct

8 0.5000 0.5000 0.0000

9 0.5000 0.0000 0.5000

10 0.0000 0.5000 0.5000

11 0.0000 0.0000 0.0000

12 0.7500 0.2500 0.7500

13 0.2500 0.2500 0.7500

14 0.2500 0.7500 0.2500

15 0.7500 0.7500 0.7500

16 0.7500 0.2500 0.2500

17 0.2500 0.2500 0.2500

18 0.2500 0.7500 0.7500

19 0.7500 0.7500 0.2500
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Appendix B

POSCAR FILE FOR 2×2×2 SUPERCELL FOR PURE CERIA
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! This is the 2×2×2 POSCAR file consisting of 32 cerium and 64 oxygen atoms
used to calculate the bulk properties of pure ceria. This is modified by introducing dopants
and vacancies to simulate doped ceria.

1 fcc CeO2 supercell

2 5.494

3 2.0 0.0 0.0

4 0.0 2.0 0.0

5 0.0 0.0 2.0

6 32 64

7 direct

8 0.0000 0.0000 0.0000

9 0.0000 0.0000 0.5000

10 0.0000 0.5000 0.0000

11 0.0000 0.5000 0.5000

12 0.5000 0.0000 0.0000

13 0.5000 0.0000 0.5000

14 0.5000 0.5000 0.0000

15 0.5000 0.5000 0.5000

16 0.0000 0.2500 0.2500

17 0.0000 0.2500 0.7500

18 0.0000 0.7500 0.2500

19 0.0000 0.7500 0.7500

20 0.5000 0.2500 0.2500

21 0.5000 0.2500 0.7500

22 0.5000 0.7500 0.2500

23 0.5000 0.7500 0.7500

24 0.2500 0.2500 0.0000

25 0.2500 0.2500 0.5000

26 0.2500 0.7500 0.0000

27 0.2500 0.7500 0.5000

28 0.7500 0.2500 0.0000

29 0.7500 0.2500 0.5000

30 0.7500 0.7500 0.0000

31 0.7500 0.7500 0.5000

32 0.2500 0.0000 0.2500

33 0.2500 0.0000 0.7500

34 0.2500 0.5000 0.2500

35 0.2500 0.5000 0.7500

36 0.7500 0.0000 0.2500

37 0.7500 0.0000 0.7500

38 0.7500 0.5000 0.2500

39 0.7500 0.5000 0.7500

40 0.1250 0.1250 0.1250

41 0.1250 0.1250 0.6250

42 0.1250 0.6250 0.1250
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43 0.1250 0.6250 0.6250

44 0.6250 0.1250 0.1250

45 0.6250 0.1250 0.6250

46 0.6250 0.6250 0.1250

47 0.6250 0.6250 0.6250

48 0.1250 0.3750 0.3750

49 0.1250 0.3750 0.8750

50 0.1250 0.8750 0.3750

51 0.1250 0.8750 0.8750

52 0.6250 0.3750 0.3750

53 0.6250 0.3750 0.8750

54 0.6250 0.8750 0.3750

55 0.6250 0.8750 0.8750

56 0.3750 0.3750 0.1250

57 0.3750 0.3750 0.6250

58 0.3750 0.8750 0.1250

59 0.3750 0.8750 0.6250

60 0.8750 0.3750 0.1250

61 0.8750 0.3750 0.6250

62 0.8750 0.8750 0.1250

63 0.8750 0.8750 0.6250

64 0.3750 0.1250 0.3750

65 0.3750 0.1250 0.8750

66 0.3750 0.6250 0.3750

67 0.3750 0.6250 0.8750

68 0.8750 0.1250 0.3750

69 0.8750 0.1250 0.8750

70 0.8750 0.6250 0.3750

71 0.8750 0.6250 0.8750

72 0.1250 0.1250 0.3750

73 0.1250 0.1250 0.8750

74 0.1250 0.6250 0.3750

75 0.1250 0.6250 0.8750

76 0.6250 0.1250 0.3750

77 0.6250 0.1250 0.8750

78 0.6250 0.6250 0.3750

79 0.6250 0.6250 0.8750

80 0.1250 0.3750 0.1250

81 0.1250 0.3750 0.6250

82 0.1250 0.8750 0.1250

83 0.1250 0.8750 0.6250

84 0.6250 0.3750 0.1250

85 0.6250 0.3750 0.6250

86 0.6250 0.8750 0.1250

87 0.6250 0.8750 0.6250

88 0.3750 0.3750 0.3750

89 0.3750 0.3750 0.8750

132



90 0.3750 0.8750 0.3750

91 0.3750 0.8750 0.8750

92 0.8750 0.3750 0.3750

93 0.8750 0.3750 0.8750

94 0.8750 0.8750 0.3750

95 0.8750 0.8750 0.8750

96 0.3750 0.1250 0.1250

97 0.3750 0.1250 0.6250

98 0.3750 0.6250 0.1250

99 0.3750 0.6250 0.6250

100 0.8750 0.1250 0.1250

101 0.8750 0.1250 0.6250

102 0.8750 0.6250 0.1250

103 0.8750 0.6250 0.6250
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Appendix C

INCAR FILE FOR PURE CERIA
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! This is the INCAR file used to calculate the bulk properties of pure ceria and for
carrying out the simulations for neodymium doped ceria.

1 SYSTEM = fcc CeO2

2 ISTART = 0 # job: 0=new

3 ICHARG = 2 # construct initial charge density with

# superposition of atomic charge densities

4 GGA = PE # xc-type: PE=Perdew-Burke-Ernzerhof

5 IALGO = 38 # integer selecting algorithm: 38 (Kosugi)

6 NSW = 50 # Ionic relaxation; number of steps for

# ionic update

7 IBRION = 1 # Ionic relaxation; 0=MD, 1=quasi-NEW, 2=CG

8 POTIM = 0.1 # time-step for ion-motion (fs)

9 ENCUT = 400 # kinetic energy cutoff in eV for

# augmented charges

# (default from POTCAR file)

10 ISPIN = 2 # spin polarized calculation (2=yes, 1=no)

11

12 LDAU = .TRUE. # Switches on the L(S)DA+U

13 LDAUTYPE = 2 # Dudarev’s approach to LSDA+U

14 LDAUL = 3 -1 # l-quantum # for which the on site interaction

# is added. Must specify for all atomic species

15 LDAUU = 6.0 0.0 0.0 # effective on site

# Coulomb interaction parameter

16 LDAUJ = 1.0 0.0 0.0 # effective on site

# Exchange interaction parameter

17 LMAXMIX = 6

18 LORBIT = 10

19

20 ISMEAR = 0 # DOS related; method to determine

# partial occupancies:

# -5=Blochl, -4=tet, -1=fermi, 0=gaus

21 SIGMA = 0.1 # DOS related value; broadening in eV

22 LWAVE = .FALSE. # LWAVE = .TRUE. generates the WAVECAR file
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