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ABSTRACT

This dissertation studies routing in small-world networks such as grids plus long-

range edges and real networks. Kleinberg showed that geography-based greedy routing in

a grid-based network takes an expected number of steps polylogarithmic in the network

size, thus justifying empirical efficiency observed beginning with Milgram. A counterpart

for the grid-based model is provided; it creates all edges deterministically and shows an

asymptotically matching upper bound on the route length.

The main goal is to improve greedy routing through a decentralized machine learn-

ing process. Two considered methods are based on weighted majority and an algorithm

of de Farias and Megiddo, both learning from feedback using ensembles of experts. Tests

are run on both artificial and real networks, with decentralized spectral graph embedding

supplying geometric information for real networks where it is not intrinsically available.

An important measure analyzed in this work is overpayment, the difference be-

tween the cost of the method and that of the shortest path. Adaptive routing overtakes

greedy after about a hundred or fewer searches per node, consistently across different net-

work sizes and types. Learning stabilizes, typically at overpayment of a third to a half of

that by greedy. The problem is made more difficult by eliminating the knowledge of neigh-

bors’ locations or by introducing uncooperative nodes. Even under these conditions, the

learned routes are usually better than the greedy routes.

The second part of the dissertation is related to the community structure of unan-

notated networks. A modularity-based algorithm of Newman is extended to work with

overlapping communities (including considerably overlapping communities), where each

node locally makes decisions to which potential communities it belongs. To measure qual-

ity of a cover of overlapping communities, a notion of a node contribution to modularity is

introduced, and subsequently the notion of modularity is extended from partitions to covers.
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The final part considers a problem of network anonymization, mostly by the means

of edge deletion. The point of interest is utility preservation. It is shown that a concentra-

tion on the preservation of routing abilities might damage the preservation of community

structure, and vice versa.
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Chapter 1

INTRODUCTION

We consider problems related to various aspects of man-made networks. Many of these

networks are social. Their creation may be regulated by some rules, but is often controlled

by actions from many people who act independently and in a decentralized manner. Quite

often, the so-called small-world phenomenon (which assumes an abundance of short paths

between many nodes) emerges in man made networks. The networks are often presented as

graphs with possible additional annotation. For further aspects of social networks, see the

monograph by Easley and Kleinberg [18].

We are particularly interested in the decentralized routing and detection of overlap-

ping communities in man-made networks. We believe that there exists an interplay between

these two problems. The adaptive routing that we present in this dissertation is fully decen-

tralized and based on the ability of an entity (a person for example) to evaluate its immediate

neighborhood and make a judgment on which of its neighbors is the most useful in forward-

ing a message to a particular target. When it comes to the community detection algorithm

that we present in this dissertation, it is crucial that each node evaluates to what communities

its neighbors belong, and by that, to what communities it itself belongs. It is important that

people in real life can make these kinds of decisions independently, because social networks

are formed by independent decentralized actors (although other stages of our community

detection algorithm are not decentralized). In our study of networks, we found that there is

a difference between two types of networks: networks that have hubs (high node degrees)

and networks that are more regular (having similar node degrees). These two types exhib-

ited different behavior in the learning curves demonstrated for the adaptive routing. The

same two types of networks were affected to different magnitudes in the increase of the

shortest path distance during a network anonymization procedure (another problem that we

considered).
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In this work, we study the structure and feasibility of routing in man-made net-

works. In both cases, it is extremely important for a node to realize its place in the network

and has a sense of direction and distance between the nodes. This sense of distance is pro-

vided by using the same algorithm that embeds a network into a low-dimensional space.

This algorithm exploits spectral properties of the transition matrix of a random walk on the

graph (in particular, it relies on the eigenvectors and eigenvalues of this matrix to build the

embedding). While talking about decentralized routing, we will consider the grid-based

model that was introduced by Kleinberg [28] and for which a mechanism allowing ex-

pected small-world navigation was shown. This model classifies its edges as “local” and

“long-range”. We can consider local edges as those that form communities, and the long-

range edges as bridges that connect communities. The edges that connect communities

are extremely important in the creation of short paths between seemingly unrelated nodes.

Should we draw a network (not necessarily grid-based) by using Koren’s spectral graph

drawing technique [32], we would see that nodes belonging to the same community are

often placed close to each other and that edges that are internal to communities are often

shorter than edges that connect communities.

We recently presented an abbreviated version of the routing chapter of this disser-

tation in [9]. Full details of the work on adaptive decentralized routing and detection of

overlapping communities are also available in the technical reports [7] and [8] respectively.

1.1 Scope

This dissertation is organized in the following way. Chapter 2 reviews the work by Mil-

gram [36] that describes the small-world phenomenon and the grid-based model by Klein-

berg [28] that simulates this phenomenon and gives an algorithmic justification for it. We

provide a deterministic counterpart for this model. Chapter 3 presents an adaptive decen-

tralized algorithm that employs a learning technique to increase node’s knowledge about its

immediate neighbors with respect to navigation to different parts of a network. Experiments

in which this algorithm outperforms the greedy algorithm are conducted. Chapter 4 defines

the notion of a node contribution to the partition modularity and extends the notion of mod-
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ularity from partitions to covers. An algorithm capable of discovering significantly over-

lapping communities is presented. Chapter 5 looks into network perturbations performed

during network anonymization in order to preserve privacy. It points out how this leads to

reduction of the usability of anonymized networks. Chapter 6 provides the conclusion and

present directions of the future work.

Chapter 2 is written around the grid-based model introduced by Kleinberg [28]. In

this model, each node has a known location in the two-dimensional space. Local edges of

the nodes are created deterministically between pairs of closely located nodes, but the long-

range edges are created probabilistically according to an inversely proportional distribution.

The expected path length in the greedy routing has a polylogarithmic upper bound. We

modify the long-range edge generation to be deterministic. The upper bound on the path

length remains the same, but becomes guaranteed for any source-target pair of nodes (there

is nothing probabilistic in the model anymore). The deterministic model allows shorter

average long-range edges relatively to the expected length of the long-range edges in the

probabilistic model.

Chapter 3 covers the subject of adaptive decentralized routing. We start with the

greedy algorithm, but improve results by considering the edges as local experts. In grid-

based networks, each node knows its location; real world networks can be embedded into

a low-dimensional space. We embed them into two-dimensional space by using Koren’s

graph drawing algorithm [32]. Each node learns about its network by developing a sense of

the direction and distance to other nodes (or regions to which these nodes belong). It allows

the node to partition the space into different regions (independently of the partitions created

be other nodes) and correlate search targets with these regions.

We follow an idea of Awerbuch and Kleinberg [4] to consider an outgoing edge

as an expert always advising to use its edge. We use these experts by employing machine

learning techniques (either the Multiplicative Weights Update Method by Arora, Hazan, and

Kale [3] or the Exploration-Exploitation Experts Method by de Farias and Megiddo [15]).

3



Even when 10% of the nodes are “lazy” (partially cooperative), the rest eventually learns

how to avoid the lazy nodes and produce better results than greedy. We had partial success

in another adverse environment where all nodes are “blind” (not aware about locations of

their neighbors), and thus do not have any initial guess about values of their experts.

Chapter 4 deals with the problem of community detection in networks. While

there are many algorithms dedicated to the problem, only few of them consider overlapping

communities. Often it is assumed that an overlapping community has a core consisting of

nodes exclusively belonging to the community and a small fringe that consist of nodes of

the community that are shared with other communities. Our goal is to allow discovering

communities in which most of the nodes belong to multiple communities.

While there is no agreed single measure that evaluates quality of a community

structure, a notion of modularity suggested by Newman and Girvan [41] seems to be the

most popular when one considers partitions (a collection of communities in which each

node belongs to exactly one community). We consider a contribution that a node makes to

the modularity of a partition. This allows to extended the notion of modularity to covers (a

collection of communities in which a node may belong to many communities).

Newman [40] suggested an algorithm that attempts to maximize the modularity.

We add a parameter to this algorithm that allows splitting a community into smaller sub-

communities, which is especially important for the case of overlapping communities, be-

cause two or more communities that significantly overlap, or are just well connected be-

tween themselves, can be mistakenly considered as a single community. We follow an idea

by Gregory [26] to replace an original node by several clones and thus allow the node to

participate in several communities. We introduce an assumption that the node is capable of

forming its own ideas to what communities its neighbors belong. The overall communities

of the network are a result of the impressions about the network that are made by each node.

The absence of real-world data (that would include ground truth communities)

forces us to introduce a model that constructs artificial networks with overlapping commu-
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nities. We show that our algorithm can discover the ground truth communities with a good

precision even when those communities are strongly connected or significantly overlap.

In Chapter 5, we look into usability preservation issues related to the identity pro-

tection during the process of network anonymization. A company might want to release

data related to its clients that can be represented as a graph. In order to protect clients’ iden-

tity, the data might be anonymized. That is, the names of nodes (and edges) are replaced

by meaningless identifiers. There are no attributes associated with the nodes or the edges.

However, that might be not enough because an adversary might know some structural data

about its target (the target’s degree for example or some additional information). In this

case, a perturbation of the network’s topology is required as well. We will concentrate on a

particular way of perturbation — edge deletion.

In order to preserve routing ability of the perturbed network one might want to pre-

serve “odd” edges that connect otherwise distant parts of the network. We define the stretch

of an edge as the length of a shortest backup path connecting the edge’s endpoints. In this

case, edges with a high stretch (that keep many nodes close to each other) should be pre-

served and edges with a low stretch deleted. However, this makes the community structure

of the network less obvious. The opposite action, of deleting high stretch edges, leads to the

preservation of the community structure but affects routing abilities. In general, it seems

that anonymity preservation demands loss of network usability, because unusualness can be

a reason for an anonymity breach.

1.2 Major related work

Here we will mention the most important previous work that influenced this dissertation.

More complete information about the previous work can be found in the corresponding

chapters. The book by Easley and Kleinberg [18] covers different aspects of social net-

works. It considers ways in which information spreads in social networks and what is the

interplay with the network structure. It studies small-world phenomenon and routing in

small-world networks. It is interested in the dynamics of the network development, with
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special emphasis on social aspects of man-made networks. It also studies many macroeco-

nomic problems considered form the point-of-view of the game theory.

The paper by Kleinberg [28] that introduced the grid-based model simulating the

small-world phenomenon is the most influential single source that led to this dissertation.

This model demonstrated the necessity of at least an approximate knowledge of the under-

lying space in which the network lies (not all dimensions of the space have to be based on

the geography). It also showed the necessity to have better information about the immedi-

ate surroundings of the target. The grid-based model was later studied by many scientists.

Kleinberg also wrote a survey [29] related to the construction of and to searching in small-

world networks.

The necessity to have a good understanding of the surroundings of a node and its

general place in the network required a good and fast algorithm that provides with this in-

formation. That was done by Koren [32] who developed an algorithm for the graph drawing

purposes. We used this algorithm to embed a network into a low-dimensional space to help

with routing and community detection problems that are considered in this dissertation.

This work also uses concepts of machine learning and game theory. Different vari-

ants of the weighted majority algorithm are widely used across different fields. A survey

of them was published by Arora, Hazan, and Kale [3]. We used a variant of this famous

algorithm but achieved better results with a variant of the method designed to induce co-

operation in a setting from the game theory. This method was designed by de Farias and

Megiddo [15]; it requires evaluation of only one advice per stage and fits our setting much

better. Finally, the idea to consider an edge as a constant expert that gives an advice “choose

me” on all the stages of the game comes from Awerbuch and Kleinberg [4].

We adapt an algorithm devised by Newman [40] that targets to maximize the modu-

larity (a measure that is used by many to evaluate the quality of a partition) and extends it to

a cover. We use an idea of Gregory [26] that a node might be replaced by its clones and this

will allow creation of overlapping communities by the means of an algorithm that normally
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detects non-overlapping communities. A survey dedicated to the community detection was

published recently by Fortunato [20].

A paper by Backstrom et al. [5] showed that active attacks (where an adversary

plants several nodes into the network prior to the anonymization) could be successful. The

adversary can find the planted nodes in the released anonymized network by knowing basi-

cally just the degrees of the planted nodes. A survey by Zhou et al. [51] considers ways to

protect the user anonymity by means of perturbation of the network topology; it also deals

in part with the usability preservation, which is also a subject of this dissertation.
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Chapter 2

GRID-BASED MODELS

2.1 Introduction

In this chapter,1 we review the grid-based model that was introduced by Kleinberg [28]

and is extensively used to simulate the small-world phenomenon. This phenomenon was

described by Milgram in nineteen sixties (see Section 2.1.1) and it exposed the fact that

many people are connected to each other by short chains of common acquaintances and

that people can discover these chains locally and without using an exhaustive search.

The grid-based model by Kleinberg (see Section 2.2) creates local edges (between

nodes that are close to each other in the underlying space) deterministically. They provide

connectivity of the network but cannot connect nodes that are far away from each other in

the underlying space by short paths. Edges of another type (so-called long-range edges) are

created probabilistically and they connect nodes that can be far away and create the small-

world effect. These edges are created according to a probability distribution that depends

on the dimension of the underlying grid.

We created a deterministic counterpart of the grid-based model (see Section 2.3).

The long-range edges are here also created deterministically. Each edge corresponds to

exactly one dimension of the underlying grid and their creation does not depend on the

dimension of the grid.

2.1.1 The small-world phenomenon in social networks

The psychologist Milgram [36] conducted a series of experiments in the nineteen sixties

that exhibited counterintuitive results that collectively were named the “small-world phe-

nomenon”. In these experiments, a person (source) was given a name, occupation, and

location of another person (target) with whom the source was not in general acquainted.

Some additional information, such as the family status and age of the target might be pro-

vided as well. Both the source and the target were located in the U.S., but lived in different

states. A current message holder (initially the source) had to forward a message (together
1A preliminary version of this chapter was a part of the author’s M.S. Thesis [6].
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with all the known information about the target) to the target, but one could not contact the

target directly (unless one knew the target personally). Every participant in these exper-

iments could contact only a person who was an acquaintance on a first-name basis. The

objective was to form a path from the source to the target involving as few intermediaries

as possible. Importantly, the current message holder could not survey part or all of one’s

acquaintances prior to the message forwarding. Therefore, the current message holder had

to choose only one acquaintance and forward all the information to this person with a re-

quest to participate in the experiment. The message holder had to choose an acquaintance

who had a better chance of having a short path to the target and was likely to participate in

the experiment.

The rate of successful experiments was quite low — 20 to 25 percent. However,

the average path length was extremely short — normally only 5 to 6 people sufficed for the

message forwarding. The observed occurrences of the existence of the short paths between

randomly selected people were termed the small-world phenomenon. A few aspects of the

phenomenon have been studied by psychologists and sociologists: the high number of ac-

quaintances that an average person has, the person’s ability to choose the right acquaintance

to forward the message to (usually this choice was based on geography and occupation), the

rate of refusal to participate in the experiment and so on.

Numerous mathematical models were suggested to explain this phenomenon. Many

of them share some common restrictions:

• The number of contacts actually used by each participant is limited — a participant

cannot forward a message to all acquaintances (and thus overload the network).

• A participant does not know the exact global structure of the network.

• A participant has some inexact way to estimate the likelihood that an acquaintance

has a short path to the target.
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2.1.2 Related work

Newman writes in the survey [39] about first attempts to explain the small-world phe-

nomenon. The high degree of the nodes in the graph (the high number of acquaintances

in a social network) would suggest a short diameter in the graph representing the social

network. However, it does not explain the ability of the person to navigate the global graph

while knowing only about their immediate surroundings. It also was noticed that the real

world social networks exhibited a clustering effect: a friend of my friend is likely to be my

friend (high rate of cliques in subgraphs of the global graph).

Watts and Strogatz introduced a one-dimensional grid model [49]. All nodes are

spread out uniformly over a circle. Each node is connected to a fixed number of its closest

neighbors (the same number of neighbors in the clockwise and counterclockwise directions)

also known as local contacts. In addition to this, some other nodes (long-range contacts)

can be randomly chosen to be connected. Under certain conditions, a greedy algorithm

will find with high probability a path from the source to the target in a polylogarithmic

number of steps. The ability to find a path between a pair of randomly selected nodes

in a polylogarithmic number of steps is considered to be the primary characteristic of the

small-world phenomenon.

The work of Watts and Strogatz can be considered as a precursor for the grid-based

model that was described by Kleinberg [28] and which we review in Section 2.2. This

model gave a push to the research in this area. We want to note a work by Fraigniaud

et al. [21] that gave an augmentation scheme for an arbitrary graph that leads to an upper

bound of Õ(n1/3) on the diameter of the graph. A survey by Kleinberg [29] looks into the

decentralized search, models that simulate the small-world phenomenon, and problems of

graph reconstruction.
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2.2 Grid model by Kleinberg

2.2.1 Probabilistic grid model

Kleinberg [28] suggested a model supporting the small-world phenomenon that has be-

come a subject of study by many researchers. The underlying grid can be considered as

a square-shaped lattice, where nodes are located at intersections of n columns and n rows.

Throughout this chapter, when we talk about a distance, we talk about the lattice distance,

unless explicitly stated otherwise. Thus, the grid can be described by the following param-

eters:

• The number of rows and columns in the grid, denoted by n. There is a node u at any

location (i, j), where i and j are integers from the range [1,n]. There are no other

nodes.

• A constant p ≥ 1, that is, the local contact threshold. For any node u, there is a

directed edge from u to every node v such that the lattice distance from u to v is no

more than p. v is called a local contact of u.

• A constant r, that is, an exponent of the inverse r-th power distribution that defines

the probability of one node to become a long-range contact of another node. The

lattice length of a long-range contact is bounded by 2n because of the size of the grid.

That is, the chance that node v becomes a long-range contact of u is proportional to

1/d(u,v)r, where d(u,v) is the lattice distance between u and v.

• A constant q, that is, the number of long-range contacts per node. The q contacts are

generated independently of each other.

Figure 2.1 and Figure 2.2 are taken from the Kleinberg’s paper [28]. In Figure 2.1,

we see local contacts only, in a network with p equal to 1. In Figure 2.2, we see all contacts

of node u: four local contacts (p is equal to 1) and two long-range contacts (q is equal to

2). The local contacts form a regular underlying grid, which makes the graph connected.
11



Figure 2.1: Local contacts (from [28]).

Figure 2.2: All contacts of a single node (from [28]).

The long-range contacts give an opportunity for a pair of remote nodes to be connected by

a short path. At each step, the current message holder makes a choice based on the greedy

algorithm. The next message holder is chosen based on one criterion only — it should be

the neighbor closest to the target (from the point of view of the underlying geography). It

is not beneficial to the current message holder to know the choices that were made by its

predecessors, because the algorithm is greedy and the path will never cycle, due to the fact

that the current message holder always has a local contact that is geographically closer to

the target than the current message holder is. All this makes the algorithm decentralized.
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Figure 2.3: Areas of the grid defined with respect to the target t.

2.2.2 Overview of Kleinberg’s results

Kleinberg proved that the parameters p and q (as long as they are constants and greater than

0) do not affect whether the small-world phenomenon will be observed or not. The only

parameter that is important in this matter is r. The small-world phenomenon is expected to

be observed if and only if r is equal to 2. In all other cases of r, the expected path length

has an expected polynomial lower bound.

Lemma 1. (Positive results from [28].) When r is equal to 2, the expected delivery time by

the greedy algorithm is O(log2 n).

The grid is divided into the logarithmic number of areas with respect to the target

t. The nodes at the (lattice) distance no more than 2 from the target form area 0. Area j

(with j > 0) is formed by the nodes at distance d from the target, where 2 j < d ≤ 2 j+1. See

an example depicting a part of the grid and the boundaries of the areas defined with respect

to the target t in Figure 2.3. When the current message holder is in area j, then the process

is in phase j. There are dlogn+1e phases. The greedy process starts at the phase defined

by the location of the source node and advances towards smaller-index phases. Kleinberg

showed that the expected number of steps necessary to leave the phase j is O(lnn). Thus,

overall expected time to reach the target is O(log2 n).
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Lemma 2. (Negative results from [28].) When 0≤ r < 2, the expected delivery time by the

greedy algorithm is Ω(n(2−r)/3).

In this case, the long-range contacts are chosen almost uniformly at random, the

corresponding edges are too long and become useless when the message is close to the

target, but not so close that the routing can be done in the sub-polynomial time by using

local contacts only. There will be many cases when the source and the target are at such

distance. The long long-range edges often would have taken the message away from the

target in this situation and are useless. However r is small, and there are too few long-range

edges that are relatively short. Therefore, it is difficult to bump into a node at such distance

from the target, which has a long-range contact that is closer to the target.

Lemma 3. (Negative results from [28].) When r is greater than 2, the expected delivery

time by the greedy algorithm is Ω(n(r−2)/(r−1)).

In this case, the difficulties arise in the initial (high index) phases. Too many of the

long-range edges are relatively short. If the source is far enough from the target, although

many of the long-range edges are useful, they are too short to bring the message to the target

in the sub-polynomial time.

Kleinberg also suggested that the exponent r should match the dimension of the

grid in order to achieve the small-world phenomenon for networks of higher dimensions.

2.3 Deterministic generation of long-range contacts

In the grid model described by Kleinberg [28], the long-range contacts are chosen at random

according to the inverse power distribution. In this chapter, we describe a model in which

the long-range contacts are assigned deterministically. We will see that it is possible to

create a small-world network deterministically. Because the network is deterministic, it has

guaranteed (and not expected) poly-logarithmic delivery time.
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2.3.1 Network setup

Let us consider the one-dimensional case of the Kleinberg model. We will refer to such

networks as chains. Later we will go back to higher dimensions. We make the following

assumptions:

• n, that is, the number of nodes in the chain is a power of 2; n = 2k. This assumption

will be abolished in Section 2.3.2.1.

• p, that is, the local contact threshold is equal to 1. Thus, in the one-dimensional case,

two “dead end” nodes have one local contact and all the other nodes have two.

• q, that is, the number of long-range contacts per node is equal to 1. The length of

the long-range edges is always a power of 2. The length is limited by the diameter

of the space. The overall distribution of lengths of the long-range edges follows an

inversely proportional distribution. Note that a long-range contact may (and often

will) coincide with a local contact.

This setting can be represented by the following graph G = (V,E). G is considered

to be laid out in a chain. Any references to directions are references to the directions in the

chain. V = {v1,v2, · · · ,vn}. |V | = n = 2k. We will say that an edge is right-oriented if the

index of its tail is smaller than the index of its head. Similarly, we will that say an edge is

left-oriented if the index of its tail is greater than the index of its head. We index each edge

by two indices, the first index is equal to the index of the tail of the edge, and the second

index expresses a type of the edge. There are four types of edges: the first type is for the

right-oriented local edges, the second type is for the left-oriented local edges, the third type

is for the right-oriented long-range edges, the fourth type is for the left-oriented long-range

edges.
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Figure 2.4: G16. Right-oriented long-range edges.

There are 2n− 2 directed edges representing local contacts. For each i from 1 to

n− 1, there is a right-oriented local directed edge ei,1 = (vi,vi+1). For each i from 2 to n,

there is a left-oriented local directed edge ei,2 = (vi,vi−1).

Edges that represent long-range contacts of length 1 coincide with edges represent-

ing local contacts; a set of coinciding edges that share the same head and the same tail

are merged into one edge. Only edges connecting long-range contacts at distance longer

than 1 are added. There is one right-oriented edge of length n/2: en/2,3 = (vn/2,vn).

This is the only right-oriented long-range edge that connects the left and right halves of

the chain. There are two right-oriented edges of length n/4: en/4,3 = (vn/4,vn/2) and

e3n/4,3 = (v3n/4,vn). The former is the only right-oriented long-range edge that connects

the first and second quarters of the chain, and the latter is the only right-oriented long-range

edge that connects the third and fourth quarters of the chain. And so forth, until n/4 right-

oriented edges of length 2 are created. As an example, let G16 be the chain on 16 nodes. See

Figure 2.4 for the all right-oriented edges no shorter than 2. See Figure 2.5 for the pseudo

code generating the long-range edges.

Left-oriented long-range edges are defined in a similar way, but their tails are

shifted one unit to the right from the tails of their right-oriented counterparts. So, the longest

left-oriented edge is en/2+1,4 = (vn/2+1,v1) and so on. See the six longest edges of G16 in

Figure 2.6. The right-oriented edges are e8,3 = (v8,v16), e4,3 = (v4,v8) and e12,3 = (v12,v16);

they are shown in the upper half of the figure. The left-oriented edges are e9,4 = (v9,v1),

e13,4 = (v13,v9) and e5,4 = (v5,v1); they are shown in the lower half of the figure.
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// activate the generation of the long-range edges by
// LongRangeEdges(1,n) call
void LongRangeEdges( int Le f tEnd, int RightEnd )
{

if( RightEnd−Le f tEnd ≤ 2 )
{

return;
}
else
{

Middle = b(Le f tEnd +RightEnd)/2c;
// create right-oriented long-range edge eMiddle,3

if(RightEnd−Middle≥ 2)
CreateEdge( Middle, RightEnd );

// create left-oriented long-range edge eMiddle+1,4

if(Middle+1−Le f tEnd ≥ 2)
CreateEdge( Middle+1, Le f tEnd );

LongRangeEdges( Le f tEnd, Middle );
LongRangeEdges( Middle+1, RightEnd );
return;

}
}

Figure 2.5: Generating long-range edges.

Figure 2.6: G16. Long long-range edges (no shorter than 4).
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If we remove all four edges that connect the left and the right halves of G16 (see

Figure 2.7), we will receive two isomorphic subgraphs. These subgraphs are also isomor-

phic to graph G8 — the chain on 8 nodes. This is an important property of the suggested

generation model. Graph Gn includes 2 non-intersecting subgraphs isomorphic to graph

Gn/2; includes 4 non-intersecting subgraphs isomorphic to graph Gn/4; includes 8 non-

intersecting subgraphs isomorphic to graph Gn/8; and so on. This will allow splitting the

search algorithm into log2 n phases, where every following phase is a replica of the previous

phase on a smaller scale.

2.3.2 Routing algorithm

As an input, in addition to the chain described above we will receive the locations of the

source — node s, and of the target — node t. We will use a greedy algorithm: if we are

currently at the location u, then we choose an outgoing edge e = (u,v) that brings us as

close to the target t as possible, (we use the lattice distance to t in order to estimate the

shortest path distance to the target and as the greedy criterion). In the case of a tie, the

longest edge among the best candidates is chosen. The number of the outgoing edges per

any node cannot exceed 3: the right-oriented local edge, the left-oriented local edge, and

no more than one long-range edge (either right-oriented or left-oriented; see the creation

of outgoing edges of the nodes Middle and Middle+1 in Figure 2.5). At any point of the

process, no more than two edges can be considered: these will be right-oriented if the target

t is to the right of the current message holder, and left-oriented otherwise.

Let us define phase one as the part of the algorithm that brings the current location

u for the first time to the half of the chain to which the target belongs. Without loss of

generality, we can suggest that the target t is located in the right half of the chain, that is, the

target t belongs to {vn/2+1,vn/2+2, · · · ,vn}. How long will it take to finish phase one? If the

source s happened to be on the same half as the target t, then phase one ends immediately.

Otherwise, this will happen only if at least one of the two edges en/2,1 = (vn/2,vn/2+1) or

en/2,3 = (vn/2,vn) is used, since those are the only edges that start in the left half of the chain
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Figure 2.7: All edges connecting the left and the right halves of G16.

and finish in the right half. See Figure 2.7 for all edges connecting the left and the right

halves of G16.

Is it possible that the current location u will ever move from the right half to the left

half and thus use one of the only two edges that can enable this: en/2+1,2 = (vn/2+1,vn/2) or

en/2+1,4 = (vn/2+1,v1)? In both of the cases, the message should be located at vn/2+1 — the

leftmost node of the right half of the chain. However, the target t is located somewhere else

in the right half of the chain and thus to the right of u. Choosing en/2+1,2 or en/2+1,4 means

going away from the target t, and that contradicts the greedy nature of the algorithm. We

infer that the algorithm will never move from the half of the chain containing the target to

the other half of the chain.

By completing phase one, we achieve an important goal, we have the initial prob-

lem but on a smaller scale: the number of the nodes has decreased by a factor of two and we

will never deal with the other half of the nodes again. In the phase two, we need to bring the

current location u to the (third or fourth) quarter, which includes the target t. Continuing

in the same manner after log2 n phases, we will end up at distance no more that two from

the target t and finish the process. If we prove that the first phase takes no more than log2 n

steps, then the overall process will not take more than log2
2 n steps, which asymptotically

matches the order of the upper bound on the performance of the greedy algorithm over a

grid with randomly generated long-range edges described by Kleinberg [28].

Let us evaluate the number of steps that are necessary to finish the first phase. The

target node t is in the right half and the source node s is in the first or second quarter.
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The only right-oriented edges connecting the left half of the chain to the right half of the

chain are en/2,1 = (vn/2,vn/2+1) and en/2,3 = (vn/2,vn), see Figure 2.7. Thus, in both cases

vn/2 is visited at one step before the last step of the first phase. The algorithm uses only

right-oriented edges during the first phase, due to its greedy nature. Importantly, by the

construction of the chain, if two right-oriented long-range edges overlap, then one of them

“covers” the other edge entirely. That is, if e1 = (vi,v j) and e2 = (vk,vl) are two right-

oriented long-range edges and i < k < j, then l ≤ j. That means that if the source s is in the

first quarter, then at some point the algorithm will visit vn/4 and will skip the whole second

quarter in one step by using en/4,3 = (vn/4,vn/2), because en/4,3 is the best outgoing edge of

vn/4 when the target t is in the right half of the chain. The maximum lattice distance that

should be covered before reaching vn/2 is n/2− 1, and if the source s is at lattice distance

more than n/4 from vn/2, then the distance will shorten by at least the half in one step.

Similarly, the shorter long-ranges edges will be reducing the initial part of the path, and the

whole phase cannot take more than log2 n+1 steps.

It was shown that the first phase takes O(log2 n) steps. Any following phase takes

O(log2 n) as well, because it is a replica of the first phase on a smaller scale. The total

number of the phases is log2 n. Thus, the overall time is O(log2
2 n).

2.3.2.1 Arbitrary number of nodes

If n is not a power of 2 then the routing algorithm remains unchanged. The algorithm

generating the long-range edges is also essentially the same. We still need to choose a

pair of neighboring nodes in the middle of the chain that will be tails of all four edges

connecting the left and the right halves of the chain. We need to continue the same process

on the smaller scale until the long-range edges are two units long. This setup ensures that

once the algorithm exits a routing phase, it will never return there. This also ensures that if

the algorithm is making several consecutive steps in the same direction then all long-range

edges (that are part of this stretch) will be included in the path, unless they are covered by

longer edges included in the path. The lengths of the edges are not powers of two anymore,

but they still form a hierarchy and the length of the long-range edge of the next higher level
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is roughly twice the length of the long-range edge from the lower level. The pseudo code

generating the long-range edges still works for the chains with an arbitrary number of nodes

(see Figure 2.5).

2.3.3 Higher dimensions

Let us consider the two-dimensional n×n grid. Note that n is the number of rows (columns)

in the grid. Only for the one-dimensional case, n is also the number of nodes in the net-

work. We can naturally define two basic directions for each dimension: left and right (for

the horizontal dimension), up and down (for the vertical dimension). The local contacts for

the two-dimensional grid are created the same way it was done for the chain, their maxi-

mum number per node increases to four. The number of long-range edges per node (q) is

increased to two to allow a node to have an edge for each of the two dimensions. The gen-

eration of the long-range edges requires some changes. In the deterministic model we limit

the long-range edges to four types; each type will be aligned (parallel and having the same

direction) with only one of the four basic directions. That is, either row or column indices

of the head and the tail of each edge coincide. Only one or two types of the long-range

contacts can be useful at each step (which is completely determined by how the current

location u is positioned relatively to the target t).

As in the case of the chain, many long-range edges will be of length one, thus

they coincide with local edges and can be omitted. Consider a node u that is located at

the intersection of i-th row and j-th column. To determine the length and the direction of

the left-oriented or the right-oriented long-range edge, originated from the node u, consider

only the index of the column, j. The index of the row for the left-oriented or right-oriented

long-range contact is already determined by the node u — they are equal to i. The index

of the column for the left-oriented or the right-oriented long-range contact of u is defined

by the rules described for the chain, where the whole row i of the two-dimensional grid is

considered as a chain. Similarly, to determine the up-oriented or the down-oriented long-

range contacts of the node u, consider column j as another chain.
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Two facts are important in this edge generation procedure. Firstly, determining the

exact location of horizontally oriented edges and vertically oriented edges are two inde-

pendent processes (conducted according to the same rules). Secondly, the heads of the all

left-oriented (right-oriented) long-range edges originating from a single column will belong

to some other single column; the heads of all up-oriented (down-oriented) long-range edges

originating from a single row will belong to some other single row.

The greedy algorithm for the routing from the source node s to the target node

t in the two-dimensional grid is composed of two interleaved processes: one process is

responsible for the horizontal movement and the other for the vertical movement. The exact

order of interleaving of horizontal and vertical steps is not important. The key is that the

sub-sequence of horizontal (vertical) steps is identical to the sequence defined for the chain,

obtained by the projection of the two-dimensional grid onto the one-dimensional line.

The algorithm can be expanded to higher dimensional grids: the order of complex-

ity and the order of the inverse distribution remains the same. For the k-dimensional grid,

the running time becomes O(k(log2 n)). The number of local and long-range contacts per

node grows linearly with the dimension of the grid — two local and one long-range edges

per each dimension. However, it is reasonable to suggest that the dimension of grid k is

incompatibly smaller than the number of rows in the grid. Then the dimension k can be

considered as a constant and removed from the bound on the time complexity and from the

bound on node degree.

2.3.4 The average and expected edge lengths

The order of complexity of the greedy routing for one- and two-dimensional grids of the

deterministic model is the same O(log2 n). Surprisingly, the same inverse linear distribution

is used to generate the long-range edges, which at first glance appears to contradict the

results of Kleinberg for the probabilistic model that the exponent of the inverse distribution

should match the dimension of the grid. However, there are other differences between the

two settings. If we look at the frequency with which edges of a certain length are created in
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the deterministic model, we see that a length, which is twice as short, is used twice as often.

The result looks like the inverse linear distribution, but some lengths (everything that is not

a power of 2) are not used at all. The average length of the long-range edges can be a better

property to consider. In the one-dimensional case, we have n/2 edges of the length 1, n/4

edges of the length 2, and so on. This makes the sum of all lengths about n(logn)/2, and the

average length is (logn)/2. The average length remains the same for higher dimensions.

In the probabilistic model of generation of the long-range edges for the two-dimen-

sional grids, the expected length E[l(u)] of a long-range edge originated from node u is the

sum (over all the possible distances in the grid) of the probability pd that node v which is at

the distance d from the node u becomes a long-range contact of u, multiplied by the number

nd of nodes at the distance d from the node u, multiplied by the distance d between u and v:

E[l(u)] = ∑
d

pd ·nd ·d = ∑
d

1/d2

C(u)
·nd ·d =

1
C(u) ∑

d
nd/d (2.1)

This is based on the fact that Kleinberg sets pd to be inversely proportional to d2:

pd =
1/d2

C(u)
,

where C(u) is the normalizing constant defined with respect to the node u and is equal to

C(u) = ∑
v 6=u

1/d2 =
∞

∑
d=1

nd ·
1
d2 (2.2)

The expected length of long-range edge depends on the location of the tail of the edge. In

Lemmas 4 and 5, we will show that the edges with the longest and shortest expected length

are of the same asymptotic order: Θ(n/ lnn). Consequently, all the other long-range edges

are of the same order as well.

Thus, we see that the expected length of a long-range edge in the probabilistic

model is Θ(n/(logn)), while in the deterministic model it is only Θ(logn). This can be

caused by the fact that in the deterministic algorithm we had a chance to align the long-range

contacts in certain (natural) directions. Another important factor is that, in the probabilistic

model, decisions about long-range contacts are made independently of each other.
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2.3.4.1 Corner node

The nodes that are located in the corners of the grid have the longest expected length of

long-range edge, because all the other nodes (which are the candidates to be the head of

the edge) are filling only a quarter of the two-dimensional space. The other three quarters

of the space are not a part of the grid (the origin of the space partitioning is the considered

node in the corner).

Lemma 4. The expected length of the long-range edge originated from a corner of the

two-dimensional probabilistic grid-based graph satisfies the following asymptotic relation:

E[l(corner)] = Θ

( n
lnn

)
Proof. When d ∈ [1,n− 1], the number of nodes that are at distance d: nd = d + 1 (when

d = n−1 those n nodes form a diagonal of the grid). When d ∈ [n,2n−2], the number of

nodes that are at distance d: nd = 2n− d− 1. According to Formula (2.1), the expected

edge length:

E[l(corner)] =
1

C(corner) ∑
d

nd

d
=

1
C(corner)

[
n−1

∑
d=1

d +1
d

+
2n−2

∑
d=n

2n−d−1
d

]

=
1

C(corner)

[
n−1

∑
d=1

1+
n−1

∑
d=1

1
d
+2n

2n−2

∑
d=n

1
d
−

2n−2

∑
d=n

1−
2n−2

∑
d=n

1
d

]

=
1

C(corner)

[
(n−1)+

n−1

∑
d=1

1
d
+2n

(
2n−2

∑
d=1

1
d
−

n−1

∑
d=1

1
d

)
− (n−1)−

(
2n−2

∑
d=1

1
d
−

n−1

∑
d=1

1
d

)]

=
1

C(corner)

[
2n

(
2n−2

∑
d=1

1
d
−

n−1

∑
d=1

1
d

)
−

2n−2

∑
d=1

1
d
+2

n−1

∑
d=1

1
d

]
(2.3)

From Formula (2.2), we can bound C(corner):

C(corner) =
∞

∑
d=1

nd ·
1
d2 =

n−1

∑
d=1

d +1
d2 +

2n−2

∑
d=n

2n−d−1
d2

The last summation is positive; its terms decrease with d. The largest term is (2n−n−1)/n2

(when d = n). Thus,

0 <
2n−2

∑
d=n

2n−d−1
d2 ≤

2n−2

∑
d=n

2n−n−1
n2 = (n−1)

n−1
n2 < 1
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The sum is bounded from both sides by constants, so it is o(lnn) as well. Now we can

bound C(corner) as n tends to infinity:

C(corner) =
n−1

∑
d=1

d +1
d2 +o(lnn) =

n−1

∑
d=1

1
d
+

n−1

∑
d=1

1
d2 +o(lnn)

= ζ (1)+ζ (2)+o(lnn) = lnn+ γ +Θ(1/n)+
π2

6
+o(lnn) = lnn+o(lnn),

where ζ (i) = limn→∞ 1/di is the Riemann zeta function, ζ (1) = lnn+ γ +Θ(1/n), γ =

0.577 . . . is the Euler-Mascheroni constant, and ζ (2) = π2/6.

We use this by going back to Equation (2.3):

E[l(corner)] = Θ

(
1

lnn

)[
2n

(
2n−2

∑
d=1

1
d
−

n−1

∑
d=1

1
d

)
−

2n−2

∑
d=1

1
d
+2

n−1

∑
d=1

1
d

]

= Θ

(
1

lnn

)[
(2n−1)

2n−2

∑
d=1

1
d
− (2n−2)

n−1

∑
d=1

1
d

]

= Θ

(
1

lnn

)
[(2n−1)(ln(2n−2)+ γ +Θ(1/2n))− (2n−2)(ln(n−1)+ γ +Θ(1/n))]

= Θ

(
1

lnn

)
[(2n−1)(ln(2n−2)− ln(n−1)+Θ(1/n))+ ln(n−1)+Θ(1)]

= Θ

(
1

lnn

)
[(2n−1)Θ(1)+ ln(n−1)+Θ(1)] = Θ

( n
lnn

)
To summarize:

E[l(corner)] = Θ

( n
lnn

)

2.3.4.2 Central node

The node that is located in the center of the grid has the shortest expected length of long-

range edge, because all the other nodes (which are the candidates to be the head of the edge)

are spread out evenly an all four directions. We will consider here grids with an odd number

of the rows, so there is only one central node in the grid.
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Lemma 5. The expected length of the long-range edge originated from the central node

of the two-dimensional probabilistic grid-based graph with an odd number of the rows

satisfies the following asymptotic relation:

E[l(center)] = Θ

( n
lnn

)
Proof. When d ∈ [1,(n−1)/2], the number of nodes that are at distance d: nd = 4d . When

d ∈ [(n+1)/2,n−1], the number of nodes that are at distance d: nd = 4(n−d). According

to Formula (2.1), the expected edge length:

E[l(center)] =
1

C(center) ∑
d

nd

d
=

1
C(center)

[
(n−1)/2

∑
d=1

4d
d

+
n−1

∑
d=(n+1)/2

4(n−d)
d

]

=
4

C(center)

[
(n−1)/2

∑
d=1

1+
(n−1)

∑
d=(n+1)/2

n
d
−

(n−1)

∑
d=(n+1)/2

1

]

=
4

C(center)

[(
n−1

2

)
+

n−1

∑
d=1

n
d
−

(n−1)/2

∑
d=1

n
d
−
(

n−1
2

)]

=
4

C(center)

[
n−1

∑
d=1

n
d
−

(n−1)/2

∑
d=1

n
d

]
(2.4)

From Formula (2.2), we can bound C(center):

C(center) =
∞

∑
d=1

nd ·
1
d2 =

(n−1)/2

∑
d=1

4
d
+

n−1

∑
d=(n+1)/2

4(n−d)
d2

The last summation is positive; its terms decrease with d. The largest term is (4(n− (n+

1)/2)/((n+1)/2)2 (when d = (n+1)/2). Thus,

0 <
n−1

∑
d=(n+1)/2)

4(n−d)
d2 ≤

n−1

∑
d=(n+1)/2)

4(n− (n+1)/2)
((n+1)/2)2 =

n−1
2
× 4((n−1)/2)

((n+1)/2)2

= 4
((n−1)/2)2

((n+1)/2)2 = 4
(

n−1
n+1

)2

< 4

The sum is bounded from both sides by constants, so it is o(lnn) as well. Now we can

bound C(center) as n tends to infinity:
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C(center) =
(n−1)/2

∑
d=1

4
d
+o(lnn) = 4(lnn+ γ)+o(lnn) = 4lnn+o(lnn),

where γ = 0.577 . . . is the Euler-Mascheroni constant.

We use this by going back to Equation (2.4):

E[l(center)] = Θ

(
1

lnn

)[n−1

∑
d=1

n
d
−

(n−1)/2

∑
d=1

n
d

]

= Θ

(
1

lnn

)
[n(lnn+ γ +Θ(1/n))−n(ln(n/2)+ γ +Θ(2/n))]

= Θ

(
1

lnn

)
[n(lnn+ γ− lnn+ ln2− γ +Θ(1/n))]

= Θ

(
1

lnn

)
[n(ln2+Θ(1/n))] = Θ

( n
lnn

)
To summarize:

E[l(center)] = Θ

( n
lnn

)

2.3.5 Summary

We built a deterministic grid-based model. The long-range edges were created iteratively,

creating a length-based hierarchy. The idea for edge generation was dictated by an attempt

to simulate the search process in the probabilistic grid-based model divided into a logarith-

mic number of phases. The freedom in creation of the long-range edges allowed generating

long-range edges that have asymptotically shorter average length than the corresponding

expected length in the probabilistic model. This can be useful in an environment where the

cost of edge creation increases monotonically with the edges length. Another difference

from the probabilistic model is that each long-range edge is aligned with only one dimen-

sion of the grid and the edge length distribution is independent of the dimension of the

grid.
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Chapter 3

ADAPTIVE DECENTRALIZED ROUTING IN SMALL-WORLD NETWORKS

3.1 Introduction

Graphs are widely used to model real-world networks and so it is of interest to have a model

describing the structure of a random network. While the classical Erdős-Rényi model [12]

has been well studied, its properties do not match those observed in real-world networks.

Observation of real-world networks has led to several models being proposed, many of

which are based on explicitly using geometric properties such as an underlying metric space

where nodes are located, and making a distinction between “local” and “long-range” con-

nections. One of the most prominent such models is Kleinberg’s grid-based model [28],

motivated by the earlier work of Watts and Strogatz [49]. This is the same model, which we

studied in Chapter 2. In addition to a generative definition of the network as a regular grid

of local contacts together with a bounded number of long-range contacts chosen randomly

from a particular probability distribution, Kleinberg offered an algorithmic justification for

the small-world phenomenon. This justification comes from considering the decentralized

greedy routing algorithm in which every node forwards the message to the neighbor who is

closest to the destination in terms of some notion of distance based on the geometry of the

underlying space. While in certain networks constructed from real world data there may

not be an intrinsic basis for a geometric interpretation, one may be postulated through an

embedding of the network into a low-dimensional space using any of a number of algo-

rithms developed either for graph drawing or specifically for low-dimensional embeddings.

Kleinberg proved that in his grid-based model, the expected delivery time of greedy rout-

ing, measured in the number of hops, is polylogarithmic in the size of the network. This

provides some theoretical explanation for empirical results found through many studies of

processes similar to greedy routing, starting from the early work of Milgram [36], which

showed that many arbitrarily chosen pairs of strangers were linked through very short chains

of acquaintances. In this chapter, we attempt to examine possible improvements to greedy

routing through a decentralized learning process.1 One way to view this is as the natural

1Bakun and Konjevod recently presented an abbreviated version of this chapter in [9].
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development of a routing strategy: each node works completely independently and bases

its routing decisions only on its past experience.

3.1.1 Related work

3.1.1.1 Greedy routing and variants

Of many papers on greedy routing, we only mention those most closely related to our work.

Fraigniaud et al. [22] improve greedy routing if long-range links of nodes in the vicinity

are known. Lebhar and Schabanel [33] grow a (small) search tree in every routing step,

examining a total of Θ(log2 n) nodes to improve the routes (again, in a
√

n×
√

n grid) to

expected length O(logn log logn).

3.1.1.2 Edges as experts

Using a model similar to ours, Awerbuch and Kleinberg [4] propose an online shortest path

algorithm that considers each edge in the graph as an expert. However, their online shortest

path algorithm knows the network topology but not the edge costs. In addition, they seek to

optimize the cost for a fixed source-target pair. We, on the contrary, group target nodes into

regions that become smaller and smaller the closer they are to the target, thus incrementally

navigating towards the target and allowing an emergence of the routing scheme.

3.1.1.3 Compact routing

A perhaps more practical motivation for our work comes from studying compact routing

schemes for distributed networks. A routing scheme is simply an algorithm that each node

in a network runs to determine how to forward a message. Each message is given a header

that may contain information about its destination and possibly its path so far, and this

header, together with the routing tables present at the node, is all that the node uses to deter-

mine the next hop for the message. In compact routing, the message header and the routing

table at each node are restricted in size to a number of bits polylogarithmic in the size of

the network. Intuitively, this may be thought of as allowing the header and the routing table

to store some information about a small number of other nodes; just numbering the nodes

consecutively will lead to names of size logarithmic in the network size. Thus, compactness
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is a relatively strict requirement, but it is one that arguably leads to scalable performance,

since the storage necessary at each node grows slowly with the network. There has been

a lot of work on compact routing in the distributed algorithms community, a large amount

of it is focusing on the tradeoff between two mutually incompatible objectives. The first

of these is the stretch of a routing scheme, as measured in terms of the worst-case, over all

source-destination pairs, ratio between the length of a routing path and the shortest path.

The second objective is the memory overhead: the amount of storage allowed for routing

tables and message headers. There exists by now a large literature on compact routing.

General surveys are available [44, 23, 24, 17]. It is known that in general networks either

the storage must grow polynomially with the size of the network or some routing paths will

require more than a constant stretch [47, 1]. The most general class of networks, that are

known to allow constant stretch for compact routing, are networks of low doubling dimen-

sion [31].

We can claim that our routing is a name-dependent compact routing scheme for net-

works with a polylogarithmic bound on the node’s outdegree. It has to be name-dependent,

because we need to know targets’ locations. However, we cannot claim any stretch be-

cause we cannot guarantee the message delivery. While we do not focus on theoretical

results in this dissertation, we do note that we are not aware of any such work on compact

routing schemes designed specifically for small-world networks. In fact, special properties

common to most of the proposed models for small-world networks, and also the intuitive

motivation for them, for example the existence of multiple short paths between most nodes

in the network, give hope that the situation here may be better than for general networks

and, for example, allow for a constant stretch with compact storage requirements.

3.1.2 Summary of results

We describe a decentralized learning process designed to improve on the routes found by the

greedy routing algorithm. We use online machine learning techniques to construct search

paths that are shorter than paths constructed by the greedy algorithm. We apply our adap-

tive decentralized routing to real networks and to networks generated from the grid-based
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model. In order to supply geometric information not present in their definition, we em-

bed real networks into two-dimensional space using a spectral graph-drawing algorithm by

Koren [32].

Our algorithm is adaptive and resilient. In separate sets of experiments, we change

the environment by depriving nodes of the knowledge about their neighbors’ locations, or

by assuming that a significant fraction of nodes is only partially cooperative. Even in the

presence of these added difficulties, the learning process works almost as well, if somewhat

more slowly.

The first method we examine is a variation of the classical weighted majority al-

gorithm [35] (described in Section 3.3.1). We refer to it as MWU, after the Multiplicative

Weights Update method by Arora, Hazan, and Kale, whose survey [3] collects applications

of the method in various fields. The second learning method we propose is a variation of

the Exploration-Exploitation Experts method (EEE) suggested recently by de Farias and

Megiddo [15]. They describe this as an artificial intelligence method whose goal is to en-

force cooperation in multistage games in reactive environments. These methods use an

ensemble of experts advising on actions for each stage of the learning process. In both

cases, the cumulative result achieved by the method will be in the limit arbitrarily close to

the result achieved by the best of the experts.

If, after a period of learning, we “deactivate” those steps in our algorithm that relate

to learning, that is, to changing the behavior according to the received feedback, we are left

with an algorithm that behaves greedily, albeit with the greedy decisions influenced by its

knowledge of the network accumulated through past feedback.

Finally, by showing similar behavior in synthetic grid networks as in spectral em-

beddings of those based on real-life data, our work also provides an independent confirma-

tion of the quality of embeddings produced by Koren’s spectral embedding algorithm.
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3.2 Adaptive decentralized routing

Greedy search studied by Kleinberg [28] assumes that each node only knows the exact

location of its neighbors and of the target. The node does not know the complete topology

of the network, so it chooses the neighbor that is closest to the target in the terms of the

lattice distance of the underlying grid. We make the following assumptions that go beyond

those required by Kleinberg’s algorithm:

• Each node knows its own location. (In Kleinberg’s greedy routing, each node relies

on its knowledge of its neighbors’ locations, but, strictly speaking, does not need

to know its own location, even though in the standard grid model this can be easily

derived from the neighbors’ locations.)

• Each node has access to locally stored unshared memory of size polylogarithmic in

the size of the network times the outdegree of the node. There is a logarithmic number

of the ensembles of experts, and an outgoing edge serves as an expert in each of the

ensembles.

• Each message has a header of size polylogarithmic in the size of the network. It has

to store its route in order to provide the feedback.

• Each successfully delivered message is followed by an acknowledgement receipt,

which is sent back to the source using the original path in the reverse order. (This

requires the message header to store the path the message has traversed. In our ex-

periments, we restrict all actual routing paths to a polylogarithmic number of hops by

declaring failure if the maximum allowed length is exceeded, and thus we may still

claim that the message header we use is compact.)

We cannot claim that our routing is compact, because the local memory of the

node is proportional to the node’s outdegree (we need to maintain a counter and weight for

each expert). Thus, we can make the claim about compactness only for networks with a
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polylogarithmic bound on the node’s outdegree. It is a name-dependent routing because we

require the node’s location to be a part of the node’s name. However, we cannot claim any

stretch because we cannot guarantee the message delivery.

As usual with a machine learning method, the results improve over time and a large

number of routing queries are run before the method provides the best results. Although in

our experiments, it took only about a hundred source-destination pairs per node to improve

on the performance of the greedy algorithm.

We now give two building blocks of the algorithm (regions in Section 3.2.1 and

constant experts in Section 3.2.2), and then present the routing scheme (Section 3.2.3). We

coach this in terms of the grid-based model and use geometry of the two-dimensional grid

for the algorithm description. In those cases where the network does not come with a natural

geometric structure and coordinate information, we first embed it into two-dimensional

space as described in Section 3.5.1.

3.2.1 Regions

Our search algorithm is still fully decentralized, but it is not greedy any more. Each node’s

goal is to deliver the message not to the target itself, but to a region of the network to which

the target is known to belong. Each node partitions the space into disjoint regions, defined

with respect to the node’s location. See an example of the region partitioning in Figure 3.1,

on the left. The idea to split the whole space into regions comes from the proof of the

upper bound on the expected path length (Lemma 1) in the grid-based model. We will

make adjustments for others graphs by evolving the described here static partitioning into

the dynamic partitioning later (in Section 3.5.2). Kleinberg considers the routing from the

point of view of the target and divides the process into a logarithmic number of phases. The

phases in effect divide the whole space into the corresponding smaller areas (see Figure 2.3).

Although the sizes of the areas are remarkably different, each phase is expected to last no

more than a logarithmic number of steps. This indicates that the navigation in the immediate

vicinity is disproportionally important (relatively to the size of the vicinity). In the case
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Figure 3.1: Examples of region partitioning. Original static partitioning (left). Dynamic
partitioning (right). High node density area is painted grey. It draws regions to increase the
node coverage in the area.

when node u has to dispatch messages to different targets, we need to define the areas

(regions) with respect to the location of node u. We want to have regions closer to the node

u to be small. In addition, we want to introduce direction (two per dimension), because in

our case u sends messages away from itself along different directions, and not attracting the

messages toward itself.

In order to navigate, instead of the actual coordinates of the target, the node uses

the direction and the Euclidean distance to the target. In the two-dimensional network, there

are four natural directions: left, right, up and down. Let k = blog2(2
√

n)c be the number

of regions in a single (out of four natural) direction, where n is the number of nodes in the

network, and let Dspace be the diameter of the metric space. The boundaries between the

regions of the same directions are circular arcs. Region j = 2,3, · · · ,k will cover area of the

corresponding direction at distance Dspace/2k− j+1 to Dspace/2k− j from the corresponding

node, for j = 1 it is the area at distance up to Dspace/2k−1.

As the message nears the target, the regions become smaller and finally converge to

the target itself. This way the regions closest to the current message holder (CMH) are very

small; and the farthest regions might cover up to 30% of the space (assuming a square shape
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of the entire space). Being able to effectively dispatch messages to the close-by targets is

extremely important, because the message holder makes the same kind of decision whether

it is the original source itself or an intermediary, and because if the current node is close to

the target then it is likely to be a frequent intermediary for this target. In this way, each node

defines 4blog2(2
√

n)c regions and stores all related information locally without sharing it

with its neighbors. There is a total of 4nblog2(2
√

n)c regions in the network.

3.2.2 Constant experts

In order to decide where to forward a message, each region has its own ensemble (set) of

experts (“constant experts” in our case). A constant expert (or just expert) here is essentially

an outgoing edge of the corresponding CMH that gives the same advice “choose me” in all

stages of the protocol. The number of experts in the ensemble is equal to the outdegree of

the corresponding node. An ensemble is responsible for dispatching any message that has

a target, which is a node of the corresponding region. The best expert (edge) of the same

ensemble may vary depending on which of the multiple nodes belonging to the region is the

target in this stage and what choices will be made by the remaining intermediaries between

the CMH and the target. We will discuss machine learning methods in Section 3.3.

Let e be an outgoing edge of node u. The node u has 4blog2(2
√

n)c regions; and it

has 4blog2(2
√

n)c experts that advise choosing the edge e. The rating of an expert advising

to choose e is determined by the performance of the expert with respect to its ensemble,

and is independent of a performance by any other expert advising to choose e (because this

other expert belongs to a different ensemble and attempts to solve a different problem —

navigation to a different region).

3.2.3 Routing scheme

The online algorithm works in the following way:

• At each step the CMH (initially the source node):

– Determines the region that contains the target, based on the target’s coordinates.
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– Chooses an expert according to the adopted machine learning method (either

EEE or MWU, see Section 3.3.1). The chosen expert is often (but not always)

the best expert so far.

– Adds CMH’s name, the chosen expert, and the step number to the header of the

message.

– Forwards the message to the corresponding neighbor.

• Exceptions to the above:

– If the target is one of the CMH’s neighbors, then the corresponding edge is

chosen automatically.

– The message cannot be returned to the immediate previous message holder (that

is, no cycles of length two are allowed), unless this is the only neighbor. This

operation is cheap, and is done because if the best experts of two nodes want to

forward a message to each other, it might take long until some other expert will

be followed to break the cycle.

• If the target is not found in the number of steps equal to log2
2 n, the search is halted

and declared as unsuccessful. No feedback to the participating nodes is provided in

this case.

• If the target is found then an acknowledgement receipt including the route of the mes-

sage and the total number of steps is formed. The receipt is sent to the source along

the original route, but in the reverse order. At each intermediary node, including the

source, the counters and weights of the corresponding ensemble are updated accord-

ing to the actual length of the part of the path from the node to the target. This way a

node learns not only if it is a source, but also if it is an intermediary.

We compare this adaptive routing protocol to the greedy algorithm (which uses

Euclidean distance) and the breadth first search (which provides the shortest path distance).

Unlike the other two, adaptive routing requires sending acknowledgement receipts. We
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ignore this additional cost. There are at least two justifications. One is that when the

network is static (no new nodes, no new edges) we can stop sending the receipts and stop

learning once the desired performance is achieved. The other is that the receipts can be sent

when the network load is low and the delivery is cheaper (though this can somewhat slow

down the learning process).

3.3 Machine learning methods

In Section 3.3.1, we start with a description of our variant of the multiplicative weights

update method (a generalized version of the well known weighted majority algorithm).

This method was later used in the experiments with artificial grid-based networks only

(Section 3.4). Then we continue with the exploration-exploitation experts method, which

better suits our needs to learn the network topology. This method demonstrated better

results and was used in the both artificial (Section 3.4) and real networks (Section 3.5).

For both methods, each region of each node requires its own ensemble; each out-

going edge of the node is an expert of the ensemble.

3.3.1 Multiplicative Weights Update method

Variants of multiplicative weights update (MWU), which is a generalization of the weighted

majority algorithm, are widely used in various fields of computer science. Several experts

form an ensemble. All the experts advise on the course of action at every stage. It is

assumed that it is easy to observe outcomes of their advices. The method (MWU in this

case) does not know at the beginning which experts are good and which are not. It observes

the outcomes of past advice (of all the experts at all the stages) and tries to learn the best

expert. The best expert is defined as someone who would accumulate the smallest penalty

(the largest reward), if we always followed this expert at all the stages. The best expert is

defined with respect to a sequence of problems presented in front of the ensemble. MWU

provides us with a strategy how to learn about the best expert and how, by following the

best expert most of the time, to average regret that converges to the average regret of the

best expert. Here, regret of an expert is the difference between the sum of all penalties
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incurred by the expert and the sum of all penalties that can be incurred if the machine

learning follows the best advice at each stage of the game.

The method associates a weight with each expert. After each stage the weights of

all the experts are updated using the formula:

wi =

 wi(1− ε)+M(i, j)/ρ if M(i, j)≥ 0

wi(1+ ε)−M(i, j)/ρ otherwise
(3.1)

Here i denotes an expert, j is an outcome, M(i, j) is the corresponding penalty, all

penalties are in the range [−ρ,ρ], and ε is a constant that defines how strong is the impact

of the last outcome. At each stage, MWU chooses an expert i at random with probability

wi/∑wk. For more details see the overview by Arora et al. [3].

The direct adoption of this algorithm is not possible in our environment; in this

case, we would have to examine exponentially many paths in order to know the outcome

of following a particular expert. Therefore, we will update the weight of only one expert

per ensemble at a time — the weight of the chosen expert. In addition, we use a one-

dimensional penalty matrix M( j), because there is no point to discriminate against any

edge. The matrix M( j) is a matrix with dynamic penalties, because it is difficult to estimate

from the start, what would be a good path length between a CMH and its region. The

average outcome seen by the ensemble so far is considered as neutral (penalty of zero). For

more details on the penalty matrix, see Appendix A.

3.3.2 Exploration-exploitation experts method

The original Exploration-Exploitation Experts (EEE) learning method [15] induces coop-

eration between players in a game theory setting. For example, it helps in the Prisoner’s

Dilemma game when the best-case scenario for two suspects (players) is to cooperate (with

each other and not with the police) and deny any wrong-doing. However, it requires trust

between the suspects. Without trust, the cooperation seems irrational, because cooperation

is strictly dominated by defection (giving out your partner and reducing by this your own

punishment). On the over hand, when this stage of the game is played repeatedly, one of the
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suspects may induce cooperation with the other suspect by repeatedly choosing the domi-

nated strategy to indicate that one is ready to act irrationally. It is impossible to make this

kind of indications in a single stage game, where rationality is a manifestation of selfishness

limited by the short-term horizon.

In order to induce cooperation a player employs the EEE method. EEE is conducted

in phases; a phase in turn consists of several consecutive stages where the method follows

the same expert. For an expert e, a counter, which is telling for how many phases e has

been chosen so far, is maintained. When the expert e is chosen for a new phase, its counter

is incremented by 1 and the phase will run for the number of stages equal to the counter.

This way, the length of the phase is defined by the “popularity” of the chosen expert: at

some point late in the game, a length of a phase of a popular expert will be very long, and a

length of a phase of an unpopular expert will be very short. The idea is simple: for each of

the experts, EEE checks if the cooperation (with the environment or nature) can be induced

by gradually increasing the number of stages in which the same expert is consecutively

chosen. In addition to the counter, the method maintains a weight of each expert. When

the feedback arrives, only the weight of the corresponding expert (that was chosen for the

forward routing in this stage) is updated in such a way that it is an average of all the received

feedback for the expert.

Now we need to decide how the expert is chosen for a new phase. Suppose that

we are at beginning of the phase j, that is, j is equal to the sum of the counters of all the

experts of the ensemble. Each phase is either an exploration or an exploitation phase. The

main version of EEE suggested by de Farias and Megiddo assumes that at the beginning of

phase j, with the probability p j = 1/ j, the phase is declared an exploration phase and the

expert that will be used throughout the phase is chosen uniformly at random. Otherwise,

this is an exploitation phase, and the expert that has shown the best results so far (the expert

that has the highest weight) is chosen.
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De Farias and Megiddo studied the competitiveness of the method with respect

to the best expert as well. The situation here is different form the situation with MWU,

because here we do not know outcomes of following the advice of each of the experts, and

cannot learn from these outcomes. The expected average reward of EEE is infinitely close

to the average outcome of the best expert (when the number of stages grows to the infinity).

However, the average outcome for the best expert is calculated only for the stages in which

this expert was actually chosen.

When the intensive learning is over, there will often be one leading expert, chosen

for almost all exploitation phases. Its counter will be greater that the sum of all the other

counters, and so the probability that stage i is an exploration stage that does not utilize

the best expert will be roughly 1/i2 (i is counted from the beginning, regardless of what

expert is chosen, the same way it is done for j — the counter of phases). This means

that the frequency of the learning stages decays fast. That can be undesirable in dynamic

environments (for example in our case, when edges can be added or deleted over the time).

To overcome this problem de Farias and Megiddo suggested a different version of EEE,

where the probability of phase j to become an exploration phase is a constant and does not

depend on the value of j.

Our version of EEE has the following specifications and alterations. In our case,

a player is a region of a node, which routes incoming messages to all targets of the region

(an expert is not a player; an expert (outgoing edge) is a strategy). Each time a player

receives a message, it is a new stage in the game of routing. We use the reciprocal path

length as the feedback (outcome of the stage). At the beginning (when the first target of the

corresponding region arrives), we initialize the weight of each expert with the reciprocal of

the Euclidean distance between the corresponding neighbor and the target. De Farias and

Megiddo were concerned with a reactive environment and introduced phases (choosing one

expert for several consecutive stages) in order to overcome cyclic behavior of the environ-

ment and to encourage cooperation among agents. While this may indicate further research

possibilities, we do not currently examine such situations and abandon phases all together.
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Stage i becomes an exploration stage with probability 1/
√

i+1, which allows more

exploration stages. We have received better results with this low exponent (in comparison

to 1/i2). This may be caused by the fact that we are mostly concerned with the initial stages

and because our environment is highly dynamic at the beginning (every region starts as an

agent in its own initial stages and affects the environment more strongly because it has many

exploration stages of its own). Even if a node u has to route to the same target several times,

the best edge can be different for different stages, because no one knows what decision will

be made later by other nodes (of the remaining parts of the paths to the target) in cases when

the nodes are entering into new phases.

3.4 Grid-based networks

3.4.1 Review of the grid-based model

The small-world network model we use in our experiments is the grid-based model that was

suggested by Kleinberg [28]. This is the same model that we studied in Chapter 2; however,

the notation is slightly different. To recap, it is a regular two-dimensional grid (square l×l

lattice) augmented with a small number of long-range edges. Throughout this chapter, we

denote the number of nodes in the network by n; then for the grid n = l2. The network

contains edges between every pair of nodes at lattice distance at most p. These edges are

said to link local contacts. Additionally, each node has q outgoing links to some nodes

that may be far away from each other. Each of these long-range contacts of u is chosen

randomly, so that for any node v6=u, the probability of v becoming a long-range contact of

u is proportional to 1/dr(u,v), where d(x,y) is the lattice distance between x and y. See a

more detailed description of the model in Section 2.2.1.

3.4.2 Experimental setup

Thus, a grid can be described by the parameters l (size of the grid), p ≥ 1 (local contact

range), r (distribution exponent), and q (the number of long-range contacts). In all our

experiments p is one, q is one, and r is two (this is the only value of r that leads to the

emergence of the small-world network for the two-dimensional grid). That is, most of
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the nodes have four local contacts (border nodes have three and corner nodes have two).

Most nodes have one long-range contact (some long-range contacts may coincide with local

contacts). Note that, although long-range edges are unidirectional, we assume that the

acknowledgement receipt (but not the message itself) can be sent in the opposite direction

of the edge.

For each search, we choose both the source and the target uniformly at random.

We run the adaptive decentralized routing described above, and send the acknowledgement

receipts upon success. Each new source-target pair is chosen independently of the previous

ones.

To evaluate the performance of the adaptive routing algorithm in comparison to the

performance of the greedy routing algorithm, we define the overpayment rate, as

ζ = (dad−SPD)/(dgr−SPD) (3.2)

Here, SPD is the average shortest path distance over all source-target pairs in the network;

dgr denotes the average path length of the paths constructed by greedy routing (that uses

Euclidean distance) for the first 100,000 source-target pairs (the expected path length for

greedy routing does not change much with time); and dad denotes the average path length of

the paths constructed by the adaptive routing for the latest bucket. A bucket (initially) con-

sists of a hundred (or a thousand) consecutive source-target pairs. We use non-overlapping

buckets of exponentially growing size in order not to overcrowd plots with logarithmic

scales. The average path length takes into account both successful and unsuccessful (over

log2
2 n steps) path lengths of the adaptive routes. In this way, an overpayment rate of 0

means that the adaptive routing shows the shortest path distance results and overpayment

rate of 1 means that it is similar to greedy routing.

We conducted experiments for the grids of the following sizes: 32× 32, 64× 64,

128× 128, and 256× 256. The corresponding maximum path length dmax = log2
2 n varied

from 100 to 256. Although the maximum path length to nodes ratio dmax/n varied from

0.004 to 0.098, dmax is not high at all. In fact, dmax is only 6.44 to 7.93 times longer than
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the corresponding average greedy path length. In Appendix B, we will consider the same

grids but with dynamic long-range edges, where networks change with time.

3.4.3 Experiments with EEE

The fraction of unsuccessful searches (when the target is not found in dmax steps) might be

high at the start, but decreases to less than 10−3 after 50 source-target pairs per node on

average. As long as the fraction is small (and it is), the unsuccessful searches are not a real

problem at all. The fraction of unsuccessful searches in the last bucket and dmax/n decrease

with grid size, even as the results get better. We could have changed the algorithm as the

following (but we did not). Upon realizing that the search cannot be completed in dmax

number of steps, we would allow the search to continue from the current location greedily

(we still would consider this search as a failure and would not return the acknowledgement

receipt).

In Figure 3.2, we see that the overpayment rate (and thus the average path length)

exhibits the same type of behavior for grids of different sizes, improving slightly with the

grid size. The horizontal axis shows the number of source-target pairs per node on a loga-

rithmic scale. The vertical axis shows the overpayment rate (per bucket). EEE starts poorly

with many unsuccessful searches, partially due to the high level of exploration rate at early

stages that does not allow a full utilization of good initial weights of the experts. It is fol-

lowed by a sharp improvement that happens at about the same point for all networks. We

see that it takes about 42 to 119 source-target pairs per node to reach the results of the

greedy algorithm. After 300 pairs per node EEE is “overpaying” 55%–82% of what the

greedy is “overpaying” comparing to the SPD, and by 3000 pairs per node, this decreases

to 39%–55%. Because of the worst start, the largest network has the largest overall fraction

of unsuccessful searches of 0.0042, which is still low. The vast majority of the failures were

at the beginning of the learning process. All greedy searches were successful. The results

produced for the last bucket of the experiments are shown in Table 3.1.
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Figure 3.2: Overpayment rate progress for the grid-based networks: EEE (left), MWU
(right). Inserts show detail of crowded graph regions.

network regions dmax average path length overpayment
per rate

node SPD EEE MWU greedy EEE MWU
32×32 24 100 6.83 10.03 10.45 12.61 0.55 0.63
64×64 28 144 8.12 13.43 13.82 19.61 0.46 0.50

128×128 32 196 9.31 17.31 17.67 28.50 0.42 0.44
256×256 36 256 10.51 21.91 22.02 39.72 0.39 0.39

Table 3.1: Routing in the grid-based networks. For the adaptive search, the data is given for
the last bucket.

3.4.4 Experiments with MWU

The overpayment rate (and thus the average path length) exhibits the same type of behavior

for the grids of different sizes, with a slight improvement as the grid size increases, see

Figure 3.2. There are no exploration steps in MWU, therefore MWU immediately benefits

from good weight initialization based on the Euclidean distance between the CMH and the

target, and the failure rate is not high at the start. We see that it takes about 22 to 105

source-target pairs per node to reach the results of the greedy algorithm. After 300 pairs per

node EEE is “overpaying” 43%–75% of what the greedy is “overpaying” comparing to the

SPD, and by 3000 pairs per node, this decreases to 39%–63%. From the point of view of the

average path length, MWU results were very similar to EEE results for the larger networks.
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The largest network has the largest overall fraction of unsuccessful searches 0.00014, which

is lower than for EEE. However, the failure rate MWU does not change much with time,

and eventually EEE shows better current failure rate toward the end. The results shown at

the end of the experiments are shown in Table 3.1.

3.5 Real embedded networks

In Section 3.4, we considered artificial networks created according to the grid-based model.

Although those networks demonstrate some characteristics of small-world networks (exis-

tence of short paths between most pairs of nodes and ability to find them in a decentralized

way), they also have characteristics that cannot be expected in real networks. In the grid-

based model:

• The network is embedded into (in fact explicitly based upon) the metric space.

• The nodes are distributed uniformly within the minimal bounding box of the network.

• Greedy routing guarantees to make progress at each step (CMH has at least one neigh-

bor, which is closer to the target than CMH is).

• The node outdegrees are within a narrow range (this does not fit the power law degree

distribution often associated with the small-world networks).

In this section, we conduct experiments that are similar to the experiments of Section 3.4,

but for real networks coming from several different sources. We are not pursuing any con-

crete application, but evaluating the performance of the adaptive search for realistic small-

world network topologies.

We describe the spectral graph embedding that we rely on in Section 3.5.1. We

describe further improvements of the adaptive routing protocol in Sections 3.5.2 and 3.5.3.

We describe our embedded networks and conduct experiments similar to the experiments

of Section 3.4 in Section 3.5.4. We will be using the EEE method only, because it produces

better results. In Sections 3.5.5 and 3.5.6 we describe experiments conducted in more ad-

verse environments.
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3.5.1 Spectral graph embeddings

The problem of reconstructing the node locations in a grid-based small-world network,

given only the graph structure of the network, was posed by Kleinberg [29]. Sandberg [45]

studied reconstruction of and also routing in an anonymized grid-based small-world net-

work, by using an algorithm based on the Markov Chain Monte Carlo method. Koren [32]

proposed a spectral graph-drawing algorithm, using eigenvectors of the transition matrix of

a random walk on the graph, to assign coordinates for the nodes. Similar ideas go back to

the original elastic spring model of Tutte [48]. Dell’Amico [16] embedded the OpenPGP

web of trust into a metric space for the purpose of greedy routing by using the spectral

graph-drawing algorithm. He also suggested a decentralized version of the Koren’s al-

gorithm that performs comparatively well. In Appendix C we describe our decentralized

version of Koren’s algorithm that matches the original algorithm exactly, but requires more

communication between the nodes than the version by Dell’Amico. We will not simulate

the decentralized versions and use the original Koren’s spectral graph-drawing algorithm to

embed several real networks into two-dimensional Euclidean space. See Appendix D for

the details on the spectral graph embeddings and the plots of the embeddings.

3.5.2 Dynamic partitioning

To be able to deal with non-uniformly distributed nodes we will allow the adaptive algo-

rithm to change dynamically the partitioning of the regions (in the experiments of Sec-

tion 3.4 the regions were static). It will update the region partitioning of each direction

of the node of each node independently from the partitioning of the other directions and

nodes. Each node supports the same four directions within the partitioning, and keeps the

number of regions in each direction unchanged. A node learns about the distribution of the

network’s nodes in the space and about their popularity, and then it adjusts the region bound-

aries (the arcs dividing neighboring regions of the same direction) by splitting overused and

merging underused regions. This way, the nodes will be sensibly distributed between re-

gions even if they are not evenly distributed within the metric space. As in experiments of
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Section 3.4, the closest nodes (that are likely to include many neighboring nodes) are more

important than the other nodes for the purpose of routing and they are contained in smaller

cardinality regions. See an example of the dynamic partitioning in Figure 3.1, on the right.

For more details on dynamic partitioning, see Appendix E.

3.5.3 Avoiding cycles and dead ends

Due to the topology, there are no dead ends in grid-based networks. There are also no

cycles in the greedy route because CMH always has at least one neighbor closer to the

target than CMH. To diminish the severity of the cycling problem in adaptive routing it

was enough to explicitly prohibit cycles of length two and implicitly break larger cycles by

means of exploration when a random expert is chosen anyway. In embedded networks, dead

ends do exist and the absence of experts that bring immediate improvement is frequent. To

overcome these difficulties both greedy and adaptive routing should be enhanced.

For greedy routing, the algorithm keeps in the message header all previously visited

nodes of the path and check against them at every step. If all neighbors of CMH have been

visited, the message backtracks until it reaches a node with at least one unvisited node.

In other words, a node can be revisited only as part of the backtracking process. This is

probably not an exhaustive search, because the minimal lookahead in the forward search is

used.

For adaptive routing, we check at each node if it has been visited before (this in-

formation is available in the header). If it has, we will conduct an exploration step with

probability 0.5. On the one hand, this probability is high enough to have a good chance of

getting to a new neighbor; on the other hand, if there is only one neighbor that leads to the

target we will not be avoiding it all of the time.

3.5.4 Embedded networks

We studied five embedded networks. Four of them are real data networks, and one of

them is the anonymized grid-based (GB) network considered for the sake of comparison.

All the real data sets come from GML files accessible on the web page [37] supported
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by Newman. All directed edges are converted to undirected ones (with the exception of the

grid-based network). Koren’s algorithm can manage weights; it will treat them as a measure

of similarity. Adaptive routing then should treat them in a different way: the reciprocal of

an edge weight should be considered as edge contribution to the path length. However, we

would then have difficulty comparing the results of adaptive routing to the results of greedy

routing. Therefore, we decided to ignore edge weights to keep the analysis straightforward.

The political blogs network (PB) was constructed by Adamić and Glance [2] and

depicts connections between political weblogs covering the 2004 US elections. The power

grid network (PG) was constructed by Watts and Strogatz [49] and depicts the power grid of

the western U.S. states. The autonomous systems network (AS) is a snapshot constructed

by Newman [37] from GPB tables of University of Oregon Route Views Project for July

22, 2006. The condensed materials coauthorship network (CM) was constructed by New-

man [38] and updated in 2005.

Some characteristics of the largest components of the networks are given in Ta-

ble 3.2. The average SPD is calculated over all pairs of nodes of the network. The coef-

ficient of variation is a ratio of the standard deviation to the mean; we consider it for the

nodes’ outdegrees. The effective diameter of 0.9, denoted as D0.9, is defined by Tauro et

al. [46] as a minimal threshold sufficient for 90% of the source target pairs of the connected

component to be connected by the paths of length at most D0.9. The presence of nodes

of high degree and high standard deviation of node outdegrees (PB, AS and CM) makes

networks look like star graphs, and wastes most of the “space” in the embedded space, see

Figure D.1. When the maximum node degree in the graph is close to the average node de-

gree (PG and GB), the nodes are spread out more uniformly across the space. We will see

that learning curves for these two types of network are different as well.

We want to evaluate how well the adaptive routing performs. It is not enough to

consider the overpayment rate only for real world networks. These networks are not as

regular as the grid-based model networks, and the embeddings are estimated by the graph-
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network nodes average maximum outdegree coefficient average effective diam-
n outdegree outdegree standard of SPD diameter eter

deviation variation D0.9
GB 4096 4.68 5 0.51 0.108 8.12 9.83 17
PG 4941 2.67 19 1.79 0.671 18.99 26.87 46
CM 36458 9.42 278 13.19 1.400 5.50 6.68 18
PB 1222 27.36 351 38.40 1.404 2.74 3.33 8
AS 22963 4.22 2390 32.94 7.809 3.84 4.63 11

Table 3.2: Statistics of the largest connected components. The networks are sorted by
the coefficients of variation (ratio of the standard deviation to the mean) of the nodes’
outdegrees.

drawing algorithm. As a result, many more searches will fail because of reaching dead-

ends or cycling (very few adaptive searches for the grid-based networks failed). We have to

evaluate how many of the adaptive searches failed compared to the greedy ones. Therefore,

instead of plotting progress of the failure rates we will introduce failure-success deviation

(FSD) defined as:

FSD =

 ( fad− fgr)/(1− fgr) if fad > fgr

( fad− fgr)/ fgr otherwise
(3.3)

Here, fgr is a failure rate demonstrated by the greedy search for the first 100 thousand

source-target pairs (the expected failure rate for the greedy routing does not change much

with time); and fad is a failure rate demonstrated by the adaptive searches for the latest

bucket. In other words, FSD shows how far fad deviated from fgr towards the extremes. If

all adaptive searches failed FSD = 1; if they all succeeded FSD = −1; and if fad is equal

to fgr then FSD = 0.

The progress of the overpayment rates and of FSD for the embedded networks is

shown in the top row of Figure 3.3. The corresponding data for the averages after 3000

source-target pairs per node are shown in Table 3.3. PG and GB had sharp changes in

the behavior similar to what was shown in the case of grid-based networks in Section 3.4,

but the other networks (with high outdegree standard deviation) showed a more steady

improvement. Adaptive routing showed improvement over greedy routing in the embedded

networks with the overpayment rates comparable to (or even better than) the corresponding

rates for grid-based networks, where the “real” coordinates of nodes are known. But, as
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network regions maximum average ζ failure FSD
per path length path length rate

node dmax adaptive greedy adaptive greedy
GB 28 144 19.85 47.09 0.30 0.0139 0.0746 -0.814
PG 28 150 27.52 59.19 0.21 0.0063 0.1378 -0.954
CM 32 229 76.30 180.9 0.40 0.1809 0.6459 -0.720
PB 24 105 6.84 19.11 0.25 0.0068 0.0585 -0.884
AS 32 209 43.30 77.98 0.53 0.1226 0.2215 -0.447

Table 3.3: Routing in the embedded networks. For the adaptive search, the data is given for
the last bucket.

expected, the average path length and the rate of failure for the embedded networks are

much higher than for the grids. The failure rates for adaptive routing were considerably

better than for the greedy routing in 4 out of 5 embedded networks. Even for AS (the

remaining fifth network) the failure rate for the adaptive was almost twice smaller than for

the greedy algorithm.

3.5.5 Lazy nodes

In this section, we introduce the notion of lazy nodes and conduct experiments in a more

adverse environment to find out the adaptive routing is still possible. A lazy node is a node

unwilling to rate (or incapable of rating) its experts. As a result, the lazy node always

behaves as if the current step is an exploration step and chooses a random neighbor to be

the next CMH. However, it executes all the other actions that an ordinary node does: the

lazy node forwards the message to the target immediately if the target is its neighbor, it

accurately updates the message header with the routing information, and so on.

In the experiments of this section, each node is declared as a lazy with probability

0.1 independently at random. If we were conducting simple greedy routing in such net-

works, we would expect to see about 10% of the intermediate nodes on the path to be lazy

nodes. However, in the adaptive search the fraction of lazy nodes seen decreases to the

range of 5.7% to 8.7% (see Table 3.4). This is due to the fact that the neighbors of the lazy

nodes detect the ineffectiveness of the lazy nodes and try to avoid them.
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Figure 3.3: Overpayment rate ζ (left column) and FSD (right column) in the embedded
networks. Regular setup (top), with lazy nodes (middle), with blind nodes (bottom). Inserts
show details of crowded graph regions.
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network average path length overpayment rate lazy nodes
greedy adaptive usage

regular lazy blind regular lazy blind rate
GB 47.09 19.85 22.77 21.45 0.30 0.38 0.34 0.059
PG 59.19 27.52 31.07 32.68 0.21 0.30 0.34 0.057
CM 180.9 76.30 90.29 108.29 0.40 0.48 0.59 0.066
PB 19.11 6.84 7.45 21.97 0.25 0.29 1.18 0.087
AS 77.98 43.30 46.45 158.26 0.53 0.57 2.08 0.082

Table 3.4: Average path lengths and overpayment rates in the embedded networks: lazy
and blind nodes. For the adaptive search, the data is given for the last bucket. The greedy
searches are conducted on the networks without lazy and blind nodes.

Table 3.4 shows a comparison between the path lengths and overpayment rates for

the networks with and without lazy nodes. Table 3.5 shows the corresponding data for the

failure rates and FSD. In this section and the following section on the blind nodes, we

refer to the searches without lazy nodes as regular adaptive searches; they are identical to

the searches of Section 3.5.4. We gave a significant advantage to the greedy searches by

conducting them without lazy nodes. PB and AS (the star-like networks, with the highest

ratio of maximum node degree to the number of nodes) suffered the least significant impact

in the overpayment and failure rates (compared to the regular data), even though they have

the highest lazy nodes usage rate. The plots for the regular and lazy adaptive results in

Figure 3.3 show that the corresponding curves are similar, with only change being, that the

improvements for the networks with the lazy nodes happen slightly later and the final results

for the networks for with lazy nodes are slightly worse. The data of Tables 3.4 and 3.5

demonstrates resilience of the adaptive routing and the absence of any sharp deterioration

in the adaptive routing performance in the face of the substantial presence of lazy nodes.

3.5.6 Blind nodes

In the previous experiments, we were assuming that each node knew the exact locations of

its neighbors. Now we assume that it does not, and only knows its own location and that of

the target. This brings three disadvantages:

52



network failure rate FSD
greedy adaptive

regular lazy blind regular lazy blind
GB 0.0746 0.0139 0.0190 0.0221 -0.814 -0.745 -0.704
PG 0.1378 0.0063 0.0141 0.0172 -0.954 -0.898 -0.875
CM 0.6459 0.1809 0.2311 0.3647 -0.720 -0.642 -0.435
PB 0.0585 0.0068 0.0075 0.1233 -0.884 -0.872 0.069
AS 0.2215 0.1226 0.1323 0.7066 -0.447 -0.403 0.623

Table 3.5: Failure rates and FSD in the embedded networks: lazy and blind nodes. For
the adaptive search, the data is given for the last bucket. The greedy routing searches are
always conducted on the networks without lazy and blind nodes.

• Firstly, when CMH is one step away from the target it cannot detect this and send

the message to the target automatically without choosing an expert. This has only a

limited impact on large networks.

• The second disadvantage is that in the case of failure we cannot default to the greedy

algorithm, which does not work in this environment at all. (Defaulting to the greedy

algorithm, in case that the adaptive algorithm cannot reach the target in the maximum

permitted number of steps, is an option that we did not use in any of our experiments.)

• The third disadvantage is much more severe. We cannot initialize the experts’

weights, because their Euclidean distances to the target are unknown. Thus, all ex-

perts have an equal weight at the beginning and our search is similar to the random

walk at first stages of the learning process.

We conducted experiments for the same networks as before, but all of the nodes

were blind for the adaptive searches. It is impossible to conduct greedy routing for blind

nodes, so we again used the regular environment for the greedy algorithm. As a result of the

mentioned above difficulties (mostly of the inability to initialize the weights of the experts),

almost all the initial searches fail. It takes a pair with the target close to the source or some

luck for the search to succeed. However, once this happens, the resulting path updates the

weights of the participating experts and it will help the following searches. Experiments

indicate a critical number of successful searches after which there is a (sometimes sharp)
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improvement in the rate of success. The networks with the lowest coefficients of variation

of the node outdegrees (PG and GB) suffered the least from the blind nodes and eventually

showed results compatible to the results of the regular environment. The star-like networks

(AS and PB) suffered the most from the blind nodes and could not reach the performance of

the greedy routing in the regular environment (at least in the experiments of 3000 source-

target pairs per node). Average path length and failure rate progress for adaptive routing

with blind nodes are shown in Figure 3.3 and Tables 3.4 and 3.5.

3.6 Summary

Our online adaptive decentralized routing performs well both in the studied real world net-

works and networks built according to the grid-based model. It outperforms the greedy

algorithm and shows results somewhere in the middle between the shortest path distance

and the greedy algorithm results. Both EEE and MWU models show similar behavior that

scales well with the grid size for the grid-based networks. However, EEE performs better

in the real world networks, which may be related to the fact that the original MWU should

update all experts after each stage, and we can do it only for the chosen expert. The search

performs reasonably well in the environments that contain either lazy or blind nodes. In the

lazy nodes environment, the neighbors of lazy nodes automatically respond to the ineffec-

tiveness of lazy nodes by avoiding them. In the blind nodes environment, networks with

the lowest coefficients of variation eventually show results comparable to the results of the

regular environment. We could overcome the difficulties presented by non-uniformly dis-

tributed nodes by using dynamically defined regions. Providing any bounds on the number

of the source-target pairs necessary for the algorithm to converge seems difficult, because

of the highly dynamic environment in the first stages of the algorithm, caused by the fact

that each region of each node has its own ensemble of experts.
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Chapter 4

COVER MODULARITY — OVERLAPPING COMMUNITIES

4.1 Introduction

Social networks are a result of human interaction. It is reasonable to assume that some of

the networks are based on a particular type of relationship (a hobby, for an example). The

increasing usage of the Internet gives an easy way to build and maintain social networks.

The websites that are specially oriented to support such networks, such as MySpace and

Facebook, enable creation (and monitoring) of gigantic networks with a complex structure.

Closely related entities in social networks are called communities. The detection of com-

munities can be useful in the achievement of a wide range of objectives starting from pure

scientific interests to marketing to security surveillance. Many algorithms for community

detection were suggested in the last decade (see the survey by Fortunato [20]), however

only few of them can detect overlapping communities. We consider overlapping commu-

nities not as a border effect, where some of the entities from the fringe of the community

might also belong to a fringe of another closely related community. We consider overlap-

ping communities as a natural product of a network covering many types of relationships.

This assumes that an entity might participate in many communities and an overlap between

two communities might be significant, especially if the communities are interdependent.

4.1.1 Community

In the community-uncovering problem, we try to identify communities, that is, closely

related sets of nodes in the network. The network is usually presented as a graph, and thus

can be fully described by its adjacency matrix (edge weights might be allowed as well). We

might have some additional general information about the network, such as how the data

was collected, what the nodes and the edges represent, how many communities are expected

to be found, and so on. However, we normally do not have any meaningful additional

information about properties of specific nodes or edges, other than what is presented by a

graph.
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Identifying communities in a network presented as a graph is a difficult task. The

problem begins with the fact that the notion of the community is in the eye of the beholder; it

might be defined in different ways, or not be well defined at all. For example, one might see

a community as something node-centric: a node (the center of the community) and nodes

of the graph that are at up to a certain distance to the center. One might see a community

as a non-extendable set of nodes that are up to a certain distance from each other. Finally,

one might see a community as a set of nodes that are forming a non-extendable clique in

the graph (or almost a clique, however “almost” might be defined).

The lack of clarity of the definition of what community is leads to the lack of clarity

of the evaluation metrics for communities produced by a community detection algorithm.

Given a network and its proposed communities, can we say how much we like them? This

question is separate from that of whether these communities are the best possible ones

for the particular network or not. Should the “quality” of a community be measured by

the average node degree that counts only edges internal to the community? Should it be

measured by the ratio of the community size (either the number of nodes or the number of

edges) to the diameter of the community? One measure that appears to be reasonable is

the conductance. Conductance of the community is the ratio of the number of edges that

connect the community to the rest of the graph to the sum of the degrees of the community

nodes. The measure was used by Leskovec et al. [34] to demonstrate that communities of

size around 100 are the most pronounced communities in the real world networks.

4.1.2 The big picture

However, evaluating a single community of the network might be not enough. It is rea-

sonable to assume that there are several communities in real world networks, and then we

would like to be able to evaluate the quality of a collection of communities that are sug-

gested for the network. The most popular measure for evaluating communities is called

modularity (see Section 4.2.1); it was introduced by Newman and Girvan [41] [40]. It is

defined for partitions (each node belongs to exactly one set), we will expand this notion to

a more general notion, namely covers (see Section 4.2.2).
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Newman [40] suggested an algorithm that puts initially all nodes in a single com-

munity and then recursively evaluates (based on the modularity) whether a community

should be split into two sub-communities. Importantly, the algorithm decides by itself when

to stop further splitting and does not require a predefined number of communities or their

maximum size as an input. We will use our variant of this algorithm as a building block of

the proposed later algorithm for the detection of overlapping communities.

Our algorithm for the detection of overlapping communities uses the idea of Gre-

gory [26] that a node can be replaced by several clones that will represent the node in

different communities. In our algorithm, the decision of how the clones are created is made

locally by each node, thus reflecting its views on how its neighbors are organized in com-

munities.

The absence of real world networks with known overlapping communities, forces

us to introduce a model that generates a network with known overlapping communities

(“ground truth groups”) in Section 4.4.1. We will compare these communities against the

communities produced by our algorithm by the means of Jaccard index (see Section 4.2.3).

To summarize, in Section 4.2, we will examine how to evaluate the quality of sug-

gested communities. In Section 4.3, we will propose an algorithm that detects overlapping

communities. In Section 4.4, we will propose a model that generates an artificial network

with known overlapping communities, and we will examine results produced by the pro-

posed algorithm.

4.1.3 Other previous work

A few algorithms for detecting overlapping covers of communities were suggested. Gre-

gory [25] extended the notion of edge betweenness of Newman and Girvan [41] to the split

betweenness, allowing not only the deletion of edges but also splitting nodes. At each iter-

ation, the number of the shortest paths between all pairs of nodes going through each edge

(edge betweenness) and going through each node (split betweenness) is calculated. The

busiest element of the network is detected and transformed in the following way. If it is an
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edge, it is removed. If it is a node, it is split into two clones. Gregory also suggested split-

ting nodes based on the split betweenness in Peacock [26], and then using any algorithm

for the non-overlapping partitioning as a black box. Our approach is similar to Peacock, see

discussion in Section 4.3.4.

Palla et al. [43] introduced one of the first (if not the first) algorithms for the detec-

tion of overlapping communities. They define a community as a continuum of neighboring

cliques. To be more precise, two cliques of size k are neighboring cliques if their share k−1

nodes. Two k-cliques A and B belong to the community C if and only if there is a chain

of neighboring k-cliques that leads from clique A to clique B. The community C should be

non-extendable, that is, there is no k-clique D that does not belong to the community C and

is a neighboring clique to any k-clique that belongs to the community C. The method has

several problems:

• The notion of a clique is too restrictive.

• There is no way to fine-tune k, small changes of k lead to completely different results.

• k has to be a small number (normally from 3 to 6), not only because big cliques are

rare in real world networks, but also because of the prohibitively high computational

cost.

• k is the same constant across the network and it can lead to a problem if the degrees of

nodes are coming from a wide range (a node with a low degree will never be accepted

into a community if k is high, even if all of its edges are connected to the nodes of

the same clique).

Baumes et al. [11] build communities bottom-up using their LA-IS2 algorithm,

which optimizes the ratio of the number of edges internal to the community to the number

of nodes of the community. It is unclear if it can detect a community with all nodes be-

longing to multiple communities. It seems like they consider the overlap as a small group
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of boundary nodes that usually belong to two neighboring communities. However, the re-

ality might be quite different; and in social networks, a node might participate in many

communities (some of which can be unrelated to each other).

The fuzzy c-means algorithm by Zhang et al. [50] extends the idea of k-means clus-

tering to overlapping communities by assigning a node to a community with some probabil-

ity. The algorithm suffers from the same problems as those related to the standard k-means

algorithm (k should be known, need of good seeds, clusters tend to be of the similar size).

4.2 Definitions

4.2.1 Modularity

Newman and Girvan [41] introduced a notion of modularity for a specific family of collec-

tions of communities, namely partitions. A collection (set) of communities forms a partition

if each node of the network appears in exactly one community.

Definition 1. Let P be a partition of a graph. Let i and j be communities of the partition P.

Denote by eii the fraction of edges that are internal to the community i. Denote by ei j the

fraction of edges that connect the nodes of community i to the nodes of community j. The

modularity Q of the partition P is defined as:

Q(P) = ∑
i∈P

eii−

[
∑
j∈P

ei j

]2
 (4.1)

Newman used this notion later again [40] and considered a community as a col-

lection of nodes that have more internal edges than they expected to have based on their

degrees. He characterized a good partition as one which has “fewer than expected edges

between communities”. Newman [40] gave an equivalent definition of the modularity for a

partition of a graph:

Definition 2. The modularity Q of a partition P is defined as:

Q(P) =
1

4m ∑
u∈V,v∈V

(Auv−
kukv

2m
)σuv, (4.2)
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where m is the number of edges in the graph, Auv are the elements of the adjacency matrix,

ku is the degree of the node u, σuv is 1 if the nodes u and v belong to the same community

and is −1 otherwise.

The intuition behind this definition is easier to comprehend, and we will be using

this definition throughout this dissertation.

Consider the case where we are dealing with a weighted undirected graph where

each pair of nodes is connected and all loops are present, that is there are n(n+1)/2 edges.

The nodes’ degrees (reflecting weights of adjacent edges) are known upfront and assigned to

the nodes. However, we do not know the weight of any individual edge. Our task is to assign

the weights proportionally to the nodes’ degrees. Consider edges adjacent to the node u.

Let ku be the degree of node u. Let kv be the degree of node v, which is obviously a neighbor

of u (it is a complete graph). Let m be the sum of all the edge weights in the graph. Edge

e = (u,v) should get v’s share of u’s degree. v’s share is equal to kv/(∑w∈V kw) = kv/2m.

Applying v’s share to u’s degree, we get kukv/2m. Note that we get the same term if we

consider the edge e from the point of view of node v. This term appears as the expected

weight of edge e in Formula (4.2).

For an unweighted undirected graph, kukv/2m becomes the likelihood of existence

of edge e = (u,v). It is not a probability, because kukv/2m is greater than 1, if ku and

kv are greater than
√

2m. Many consider real world networks as sparse networks. It is

reasonable to assume that a node’s degree in such networks is bounded by
√

2m. Then the

term Auv− kukv/2m from Formula (4.2) is positive when the edge e exists, and is negative

otherwise. That incentivizes assigning nodes connected by an edge to the same community,

and assigning nodes not connected by an edge to different communities. The modularity

also punishes when two nodes connected by an edge are in different communities, or when

two nodes not connected by an edge are in the same community. Note, that a pair of

low degree nodes connected by an edge (or a pair of high degree nodes not connected by

an edge) is especially valuable, because of the higher absolute value of the term (Auv−
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kukv/2m). The multiplier 1/4m was added to Formula (4.2) to match the original definition

of modularity by Newman and Girvan [41] (see Formula (4.1)).

We will introduce the notion of contribution of a node to the partition modularity in

order to understand better the notion of modularity, and extend it from partitions to covers

in Section 4.2.2.

Definition 3. The contribution of node u to the modularity of the partition P is defined as:

Q(u,P) =
1

4m ∑
v∈V

(Auv−
kukv

2m
)σuv (4.3)

It follows that:

Lemma 6. The modularity of the partition P of the network G = (V,E) is equal to the sum

of the contributions of the nodes of V .

Q(P) = ∑
u∈V

Q(u,P)

Proof.

Q(P) =
1

4m ∑
u∈V,v∈V

(Auv−
kukv

2m
)σuv = ∑

u∈V

[
1

4m ∑
v∈V

(Auv−
kukv

2m
)σuv

]
= ∑

u∈V
Q(u,P)

4.2.1.1 Bounds on the partition modularity

In the following, we will investigate the bounds of the partition modularity.

Lemma 7. The upper bound on the partition modularity is 1. The lower bound on the

partition modularity is -1.

Proof. We will start by bounding the node contribution to the partition modularity from

above. Taking into account that σuv is equal to either 1 or -1, and Auv ≥ 0, and kukv/2m≥ 0:

Q(u,P) =
1

4m ∑
v∈V

(Auv−
kukv

2m
)σuv ≤

1
4m ∑

v∈V
(Auv +

kukv

2m
)
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=
1

4m
(∑

v∈V
Auv + ∑

v∈V

kukv

2m
) =

1
4m

(ku +
ku

2m ∑
v∈V

kv) =
1

4m
(ku + ku) =

ku

2m

Then, for the partition:

Q(P) = ∑
u∈V

Q(u,P)≤ ∑
u∈V

ku

2m
=

2m
2m

= 1

Similarly, for the lower bound:

Q(u,P) =
1

4m ∑
v∈V

(Auv−
kukv

2m
)σuv ≥

1
4m ∑

v∈V
(−Auv−

kukv

2m
) =− ku

2m

Q(P) = ∑
u∈V

Q(u,P)≥ ∑
u∈V
− ku

2m
=−2m

2m
=−1

The following lemma shows that the upper bound proven in Lemma 7 is asymptot-

ically tight.

Lemma 8. There is a family of graphs, which have partitions with the partition modularity

converging to 1.

Proof. Let k be a constant. Consider a family of graphs G(k, l) that consists of l cliques,

each clique is of size k, and there are no edges between nodes belonging to different cliques.

Each clique will be represented by a single community. Let n be the number of nodes in

the graph, n = kl. All nodes will have the same degree of k−1. Let m be the number of the

edges in the graph, m = (k−1)n/2.

There are k(k−1)×n/k =(k−1)n ordered pairs (u,v) of distinct (u 6= v) nodes that

have an edge between them and belong to the same community (pairs are ordered because

Auv and Avu are considered separately in Formula (4.2)). For each of them σuv = 1 and

Auv−
kukv

2m
= 1− (k−1)2

(k−1)n
=

n− k+1
n

Each node is also in the same community with itself (u = v), but it does not have a

loop. There are n nodes, for each of them σuv = 1 and

Auv−
kukv

2m
= 0− (k−1)2

(k−1)n
=−k−1

n
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There remaining n2−kn = (n−k)n ordered pairs of nodes, which do not belong to

the same community and do not have an edge between them (pairs are ordered because Auv

and Avu are considered separately in Formula (4.2)). For each of them σuv =−1 and:

Auv−
kukv

2m
= 0− (k−1)2

(k−1)n
=−k−1

n

Combining all three types of them, we have:

Q(P) =
1

4m

[
(k−1)n

n− k+1
n

×1−n
k−1

n
×1− (n− k)n

k−1
n
×−1

]

=
1

2(k−1)n

[
(k−1)n

n− k+1
n

−n
k−1

n
+(n− k)n

k−1
n

]
=

1
2(k−1)n

[(k−1)(n− k+1)− (k−1)+(n− k)(k−1)]

=
k−1

2(k−1)n
(n− k+1−1+n− k)

=
1
2n

(2n−2k) = 1− k
n
= 1− 1

l

So, for the family of graphs G(k, l) and the corresponding “natural” partitions

lim
l→∞

Q(P) = 1

Lemma 9. The lower bound on the partition modularity is −1/2.

This better lower bound on the partition modularity came from Brandes et al. [13].

They also proved that finding a partition with maximum modularity is an NP-hard problem.

In both cases they were using Formula (4.1) for the modularity.

Lemma 10. For any graph, the partition that consists of a single community has modularity

of 0.

Proof. For any pair of nodes u and v, σuv = 1. Then from Definition 3:

Q(u,P) =
1

4m ∑
v∈V

(Auv−
kukv

2m
)σuv =

1
4m

[
∑
v∈V

Auv−∑
v∈V

kukv

2m

]
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=
1

4m

[
ku− ku ∑

v∈V

kv

2m

]
=

1
4m

(ku− ku) = 0

From Lemma 6:

Q(P) = ∑
u∈V

Q(u,P) = 0

Lemma 11. There exists a graph that does not have a partition with positive modularity.

Proof. Consider a triangle graph G= (V,E), where V = {u,v,w} and E = {e1 = (u,v),e2 =

(u,w),e3 = (v,w))}. Each node has degree 2 and m = 3, so kukv/2m = 2/3. There are three

possible partitions.

Partition P1: all nodes belong to the same community. According to Lemma 10,

Q(P1) = 0.

Partition P2: each node has its own community. There are 6 ordered pairs of nodes

connected by an edge and 3 nodes that do not have loops.

Q(P2) =
1

4m ∑
u∈V,v∈V

(Auv−
kukv

2m
)σuv =

1
12

[6(1−2/3)×−1+3(0−2/3)×1]

=
1

12
(6×−1/3+3×−2/3) =

1
12
×−4 =−1/3

Partition P3 has two nodes in one community and the remaining node in another

community. Only one edge is an internal edge.

Q(P3) =
1

4m ∑
u∈V,v∈V

(Auv−
kukv

2m
)σuv

=
1
12

[4(1−2/3)×−1+2(1−2/3)×1+3(0−2/3)×1]

=
1
12

(4×−1/3+2×1/3+3×−2/3) =
1
12

(−4/3+2/3+−6/3) =
1
12

(−8/3) =−2/9

To summarize, the modularity enables comparison of partitions of the same graph,

but in general, it is unclear whether a specific partition produces modularity that is close to
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the best possible modularity of the network. The partition modularity of 0 may mean that

the partition is meaningless, but it also may mean that the graph does not have a pronounced

community structure. The random graphs created according to the Erdős-Rényi model [19]

are unlikely to have a good community structure and are likely to have highest partition

modularities close to 0. The maximum possible modularity cannot be higher than 1, but this

level is not achievable for most networks. Newman and Girvan [41] report that real world

networks with a community structure usually have partitions that produce modularities from

0.3 to 0.7.

4.2.2 Modularity and covers

It is not necessarily the case that the communities of a network have to form a partition.

Consider a network where a node represents a person and an edge represents a relationship

based on employment and/or a hobby. It might be preferable to create two partitions rather

than one: one partition would be based on the employment relationships and another based

on the hobby relationships. Reasonable communities might not form partitions at all; a per-

son might be unemployed and have a few hobbies. It is unclear how to adapt the definition

of the modularity to the community cover or just cover (a collection of communities that is

not necessary a partition).

Suppose that node u belongs to the community C of the partition P. The contribu-

tion of node u to the modularity of the partition P depends on the community C only and

does not depend on other communities of the partition P (see Formula 4.3 and the definition

of σ ). We would like to define the contribution of node u to the community C. However, the

node u may belong to multiple communities in a cover. Therefore, we will have to introduce

some definitions that may look excessive for the case of partitions, but are necessary for the

case of covers. We will abuse notation and define σuvC. Let C ⊆ V , and u ∈C, and v ∈ V .

Then σuvC = 1 if v ∈C, and σuvC =−1 if v /∈C.

We are now ready to define the contribution of a node to the community modularity.
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Definition 4. Let node u ∈ C. The contribution of the node u to the modularity of the

community C

Q(u,C) =
1

4m ∑
v∈V

(Auv−
kukv

2m
)σuvC (4.4)

Note, that for partitions σuvC = σuv, and as a result Q(u,C) = Q(u,P).

Definition 5. The modularity of the community C is the sum of the contributions of the

nodes of the community to the community modularity:

Q(C) = ∑
u∈C

Q(u,C) =
1

4m ∑
u∈C,v∈V

(Auv−
kukv

2m
)σuvC (4.5)

Lemma 12. The modularity of the partition P is equal to the sum of the modularities of its

communities:

Q(P) = ∑
C∈P

Q(C) (4.6)

Proof. By Lemma 6

Q(P) = ∑
u∈V

Q(u,P) = ∑
u∈V

Q(u,C) = ∑
C∈P

∑
u∈C

Q(u,C) = ∑
C∈P

Q(C)

It is unclear how to proceed with modularity for a cover, which is not a partition.

Consider a case where the community cover CV R consists of the communities of two par-

titions: P1 and P2. Each node u participates in two communities C1(u) of P1 and C2(u)

of P2. We can calculate the contributions of the node u to the community modularities:

Q(u,C1(u)) and Q(u,C2(u)), and define the modularity of the node in the cover CV R as the

mean of the node’s contributions to the community modularities (all communities in which

the node u participates): Q(u,CV R) = (Q(u,C1(u))+Q(u,C2(u)))/2. Without loss of gen-

erality assume that Q(P1)> Q(P2). In this case, Q(P1)> Q(P1∪P2). Therefore, modularity

of one of the partitions is greater than modularity of the cover consisting of the communities

of the two partitions, as long as Q(P1) 6= Q(P2).
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Thus, the suggested definition of modularity will not allow a blind usage of the

modularity maximization as a perfect tool for cover detection and evaluation. However, we

do not have a better proposal for the node contribution to the cover modularity.

Definition 6. The contribution of the node u to the modularity of the cover CV R is the mean

of the contributions of the node u to the community modularities over all communities of

the cover CV R to which the node u belongs:

Q(u,CV R) =
1

|{C : u ∈C}| ∑
C:u∈C

Q(u,C) (4.7)

Definition 7. The modularity of cover CV R is the sum of the contributions of the nodes of

the graph to the cover modularity:

Q(CV R) = ∑
u∈V

Q(u,CV R) = ∑
u∈V

[
1

|{C : u ∈C}| ∑
C:u∈C

Q(u,C)

]
(4.8)

Note that we use the same definitions of the community modularity (4.5) and of

the node contribution to the community modularity (4.4) for partitions and for covers. The

cover modularity and the node contribution to the cover modularity are defined in such way

that partitions are just special cases of covers.

Nicosia et al. [42] used a genetic algorithm (with crossovers and mutations) to de-

tect overlapping communities in networks with directed edges. To allow the overlap, a

vector of nonnegative “belonging factors” is associated with a node, and the sum of the ele-

ments of the vector is equal to 1. The size of the vector is equal to a predefined (maximum)

number of the communities in the network. An edge has a belonging factor as well, which

is a (user defined) function of the corresponding belonging factors of the edge endpoints.

More interestingly, they introduced a notion of modularity for overlapping communities

based on the belonging factors as a fitness function:

Qov =
1
m ∑

c∈C
∑

u,v∈V

[
βe(u,v),cAi j−

β out
e(u,v),ckout

u β in
e(u,v),ckin

v

m

]
,

where the β ’s are different belonging factors. Our definition of Q(CV R) does not appear to

be a special case of the above formula for Qov, but they both attempt to resolve the same

issue.
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Figure 4.1: Jaccard index. |A∩B|/|A|= |A∩B|/|B|= 1/2, but J(A,B) = 1/3.

4.2.3 Jaccard index

Another measure that we consider to evaluate set (community) similarity is the Jaccard

index, a generalization of which (known as cosine similarity) is widely used in text mining.

We will use this measure to evaluate the quality of a proposed community, assuming that a

ground truth community is known. However, it cannot be used as an objective function.

Definition 8. The Jaccard index between two sets is a ratio of the cardinality of the inter-

section of the sets to the cardinality of their union, that is

J(C1,C2) =
|C1∩C2|
|C1∪C2|

.

See an example in Figure 4.1.

We denote the cover of ground truth communities as GTCV R, and the cover of

communities detected by the algorithm as ACV R. Ideally, we want both covers to have the

same cardinality. Then we can define a bijective function f that maps GTCV R to ACV R.

However, ACV R may have larger cardinality than GTCV R. Therefore, we will require f

to be injective instead (we can always add empty communities to ACV R if its cardinality is

smaller than the cardinality of GTCV R). Now we can extend the notion of a Jaccard index

from sets to covers.

Definition 9. The Jaccard index between the ordered pair of sets (GTCV R,ACV R) is

J(GTCV R,ACV R) = max
in jective f

∑
C∈GTCV R

wC× J(C, f (C)), (4.9)

68



where wC is the weight of the community C of the cover GTCV R with respect to the cover

GTCV R: wC = |C|/∑D∈GTCV R |D|.

Finding such an f can be done in the polynomial time (see Section 4.2.3.1), but

instead we will be using upper and lower bounds that are easier to find.

It is much easier to find a function g from GTCV R to ACV R that maximizes the

Jaccard index for every community of GTCV R: g(C) = argmaxD∈ACV R J(C,D). In fact, f

gives a solution that is inferior to g, because f is more restrictive (it has to be injective):

J(GTCV R,ACV R) ≤ ∑C∈GTCV R wC × J(C,g(C)). The deficiencies of g are that multiple

communities of GTCV R can correspond to the same community of ACV R, and there is

no penalty for having communities in ACV R that do not correspond to any community of

GTCV R (the last fact is also a deficiency of f ).

It is also computation-wise easy to find some injective function h from GTCV R

to ACV R, that does not necessarily produce the optimal Jaccard index, but tries to do it

greedily. If the number of communities in GTCV R is known, we will select the same

number of communities from ACV R and make h bijective (see Section 4.3.2.5 for the details

on h). h is suboptimal, so: J(GTCV R,ACV R)≥ ∑C∈GTCV R wC× J(C,h(C)). Thus, we can

bound the Jaccard index for the covers from both sides:

∑
C∈GTCV R

wC× J(C,h(C))≤ J(GTCV R,ACV R)≤ ∑
C∈GTCV R

wC× J(C,g(C)), (4.10)

where h is injective and g(C) = argmaxD∈ACV R J(C,D).

4.2.3.1 Exact matching

To recap, G = (V,E) is the original graph, n = |V |, m = |E|. GTCV R is a collection of the

ground truth communities; we do not control this collection. Let k = |GTCV R|. In theory,

GTCV R can be the power set of V , but then the whole idea of the ground truth communities

is pointless. We will assume that k is polynomial in n (although most reasonable covers will

be O(n)). ACV R is a collection of communities produced by the algorithm. The cardinality

of ACV R cannot be greater than the number of node clones produced by the algorithm, so
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|ACV R| ≤ 2m (the algorithm will be described is Section 4.3). We need to find an injective

function f from GTCV R to ACV R. If |ACV R| is less than k (which is unlikely), then we can

add empty sets to ACV R. We are looking for f such that

J(GTCV R,ACV R) = max
in jective f

∑
C∈GTCV R

wC× J(C, f (C)),

where wC is the weight of the community C with respect to its cover:

wC = |C|/∑D∈GTCV R |D|.

Let l =max(|GTCV R|, |ACV R|). If |GTCV R| 6= |ACV R|we will add to the smallest

collection the number of empty sets required to satisfy the |GTCV R| = |ACV R| condition.

We need to build a complete bipartite graph Kl,l . Each node in one part will represent a

unique community of GTCV R. Each node in the other part will represent a unique commu-

nity of ACV R. Each edge e = (u,v) will have weight wC1 × J(C1,C2), where u represents

C1 ∈GTCV R, and v represents C2 ∈ ACV R. Considering the facts that |GTCV R| is polyno-

mial in n, |ACV R| ≤ 2m, and each community is no larger than n, the process of construction

of Kl,l can be done in polynomial time.

In order to solve Formula (4.9) and find f , it is enough to find a maximum matching

in the bipartite graph Kl,l . This is a known problem (see it in Section 7.13 of the book by

Kleinberg and Tardos [30]); the solution can be found in the polynomial time. That can

be done in time polynomial in the size of the parts and thus polynomial in n. One part is

connected to a newly introduced source node s, and the other part to a newly introduced sink

node t. The exact maximum matching is constructed by finding a sequence of augmenting

paths.

4.3 Algorithm

4.3.1 Overview

We suggest an approach that is somewhat similar to Peacock [26], in the sense that it uses

a non-overlapping algorithm (NOLA) as a black box. We receive a network as an input,
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which is represented by a graph (referenced as the original graph G = (V,E) from now on).

Our algorithm proceeds in the following stages:

1. The vicinity graphs stage. For each node, we create a vicinity graph (defined below).

The vicinity graph of node u is split into non-overlapping communities according to

NOLA. The communities are formed according how the node u sees the world. Our

expectation is that if the node u participates in several communities of the original

graph, then each of these communities will be represented by at least one community

of the vicinity graph of u.

2. The extended graph stage. We build the extended graph (defined below) based on

the communities produced in the previous stage. For each of the communities of the

vicinity graph of node u, we create a clone of u. We run NOLA on the extended

graph, and receive a community partition of the extended graph.

3. The conversion stage. We map the clones (the nodes of the extended graph) back to

the nodes of the original graph, thus creating an overlapping cover of the communities

instead of the partition.

4. The refinement stage. We adjust each of the communities locally, regardless of the

rest of the cover.

5. The selection stage. We rank communities and might remove some of them from the

final cover.

MACSIN (abbreviated after the title “Modularity and community structure in net-

works”) is the modularity-based algorithm introduced by Newman [40]. We will be using a

version of MACSIN as NOLA in all our experiments. See more about the original and our

version of MACSIN in Section 4.3.3.

4.3.2 Full description

Let G = (V,E) be the original undirected unweighted graph in which we attempt to detect

potentially overlapping communities.
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4.3.2.1 Vicinity graphs stage

Consider a social network where nodes represent people. A person knows only one’s im-

mediate acquaintances (comprising a small portion of the network), and some of the rela-

tionships between the acquaintances. Based on this information, the person might identify

several types of relationships in which he participates and classify (label) each of the ac-

quaintances accordingly. Each of the types of relationships might be considered as one’s

personal view on potential communities of the network in which the person participates.

The view is usually partial, because the entire communities are unlikely to be known to an

individual. However, as long as those views, although partial, are somewhat accurate, there

is a chance of detecting these communities.

During the vicinity graphs stage, we create clones for each node. Each node is

considered independently of other nodes. For each node u, we construct a vicinity graph

Gu = (Vu,Eu), where Vu is a set of neighbors of u in G (but not u itself); and there is an edge

between two nodes v ∈ Vu and w ∈ Vu in Eu if and only if there is an edge between v and

w in G. An example of a vicinity graph is shown in the second picture of Figure 4.2. Note

that Gu can be a disconnected graph.

We can execute this stage of the algorithm in a parallel (distributed) manner, be-

cause we use the local information only and communities of one vicinity graph do not

affect communities of other vicinity graphs. In general, we can build non-overlapping com-

munities of Gu according to any NOLA. Vicinity graphs are much smaller than the original

graph, so decomposition of a vicinity graph into communities is fast. In all our experiments,

we are using our version of MACSIN [40].

Our expectation is that if a node participates in several communities, then its neigh-

bors that belong to the same community are likely to have edges among themselves, and its

neighbors that belong to different communities do not. Of course, if two communities are

strongly overlapping, then it is difficult to make such distinction. Then again, if there is a
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Figure 4.2: Vicinity and extended graphs. Node u and its clones in Gext are drawn as filled
disks. C′, C′′, C′′′, and C′′′′ are communities of Gu. They are respectively represented by
nodes u′, u′′, u′′′, and u′′′′ in Gext . Having the distinct nodes u′ and u′′ in Gext , and not
one node instead shows that the node u sees the nodes v and w as nodes from different
communities. However, edges e(u′,v′′), e(v′′,w′), and e(w′,u′′) show that the node v sees
the nodes u and w as nodes of the same community, and the node w sees the nodes u and v
as nodes of the same community. There can be other edges of Gext that connect the clones
of the node u; they existence depends on the vicinity graph of the node u and the vicinity
graphs of nodes other than u.

non-annotated edge between a pair of nodes that participates in more than one community,

how can we attribute the edge to one community or another (or several of them)?

4.3.2.2 Extended graph stage

During the extended graph stage, when we know (whether and) how the neighborhood of

a node in G was partitioned into smaller communities, we can build Gext — the extended

graph of the graph G. Each node u of G is replaced by its clones in Gext . The number of

clones of u is equal to the number of communities into which we have partitioned Vu in

the previous stage. Each clone of u represents a particular community of Gu and inherits

only those adjacent edges of u, which connect u to its neighbors of this community. In

this way, Gext has more nodes than G, but the number of the edges remains the same. An

example of clones of a single (original) node and their adjacent edges is given in the last

picture of Figure 4.2. At this point, we can run any NOLA on Gext . In all our experiments,

we are using our version of MACSIN. After completion of the algorithm, we receive non-

overlapping communities in terms of clones of the original nodes.

4.3.2.3 Conversion stage

At the conversion stage, we transform the communities of the extended graph to the commu-

nities of the original graph by mapping the clones of the original nodes back to the original
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nodes. Importantly, this stage allows usage of the results of NOLA to create an overlapping

cover instead of a partition. If two or more clones of the same node are present in the same

community, they are merged into a single node. Thus, the number of communities in which

a node participates is not completely defined by the vicinity graphs stage, which relies on

local information only; the vicinity graphs stage just sets an upper bound on this number.

For example, in the last picture of Figure 4.2, the nodes u′ and u′′ of Gext (clones of the

original node u) have a good chance to be merged back into a single node due to the short

path through the nodes v′′ and w′. The conversion stage is straightforward and fast.

4.3.2.4 Refinement stage

Starting this moment we are dealing with the original graph G only (for example, in the

modularity calculations), and not with the extended graph Gext . We refine a community

based on the modularity of the community (see Equation (4.5)), which does not depend on

other communities of the cover. For community C, we check whether its modularity per

node can be improved by removing a single member of C, and remove all such members

simultaneously (that is, remove u ∈ C if [Q(C \{u})/(|C|−1)] > [Q(C)/|C|]. We repeat

this process until no improvement is possible.

Alternatively, we could refine communities by assuming that each member of the

community should be connected to a relatively large number of other members of the com-

munity. We compare the edge density of the community (the ratio of the internal edges of

the community to the cardinality of the community) to the edge density of its subcommuni-

ties. We run the following iterative process: at each iteration, we create a subcommunity by

removing a node with the current lowest internal degree. At the end we replace the original

community by its subcommunity with the highest (internal) edge density (unless the origi-

nal community has the highest edge density). This process is a 2-approximation algorithm

for finding a subgraph with the highest edge density [14].

In both cases of the refinement, we are considering a community contraction, not a

community expansion. This is done not in order to limit the number of explorative branches,
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but because we are dealing with overlapping communities. We expect a node to have edges

that have nothing to do with a particular community of the node. We are likely to have more

such edges in the case of overlapping communities than in the case of non-overlapping

communities; those edges might belong to a different community of the node and lead to

a false community expansion (and even to a merge of two overlapping communities into a

single community). In all the experiments of Section 4.4, we refine communities based on

the maximization of the modularity per node criterion.

At this point, given the ground truth communities, we can calculate the upper bound

on the Jaccard index for the (ground truth and algorithm provided) covers at the end of the

refinement stage according to Formula (4.10).

4.3.2.5 Selection stage

As in Section 4.2.3, we denote the collection of the algorithm produced communities as

ACV R, and the ground truth cover as GTCV R. We rank the communities of ACV R in de-

creasing order based on the community modularity per node Q(C)/|C| (the same measure

we used in the refinement stage). Given the ground truth communities, we could now cal-

culate the lower bound on the Jaccard index for the (ground truth and algorithm produced)

covers according to Formula (4.10). However, we need to find an injective function from

GTCV R to ACV R first. Let us denote the number of communities in GTCV R by N. We

compare the highest-ranking unpaired community of ACV R against all unpaired communi-

ties of GTCV R and pair the best match (from the point of view of the Jaccard index between

two sets). We continue the process until all communities of GTCV R are paired. Thus, we

actually create a bijective function from the N highest-ranking communities of ACV R to

GTCV R. (To get a corresponding injective function from GTCV R to ACV R we just need to

change the direction of the correspondence.)

It would have made more sense to rank communities of GTCV R instead. Neverthe-

less, we do not do this because in the real world we might not know GTCV R itself, but know

only the expected number of the communities in GTCV R (that is N). Obviously, we cannot
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calculate the lower bound for the Jaccard index in this case, but we can give the ranked list

of only N communities as the answer. If GTCV R becomes known later, a bijective function

will be constructed in the same way it was done previously.

4.3.3 Details on MACSIN

4.3.3.1 The original version of MACSIN

First we will review the original version of the MACSIN algorithm, which was presented

by Newman [40] (see Figure 4.3). MACSIN seeks to partition the nodes of the given graph

G = (V,E) in a way that maximizes the modularity. The MACSIN algorithm initially puts

all the nodes into a single community, and then iteratively attempts to split any previously

formed community that has not yet been split into two. This iterative process creates a bi-

nary tree. The leaves of the tree form the current partition. At each step of the algorithm, it

is checked if a leaf of the tree should become an internal node (in other words, if a commu-

nity of the current partition should be split). The iterative process stops when all the leaves

were considered and rejected to be split. The split happens only if the modularity of the

new potential partition is higher than the modularity of the current partition. This decision

is local; it does not depend on the communities of the current partition except the one that

is under consideration to be split (an independent proof of it comes from the discussion

in Section 4.2.2, where it is shown in Lemma 12, that Q(P) = ∑C∈P Q(C) for partitions).

Because of this, the order in which the leaves are considered for the split is not important,

and each leaf should be considered only once. Finding a best possible split of a commu-

nity is computationally expensive (finding a partition that provides maximum modularity is

an NP-hard problem [13]). Instead, MACSIN looks for an approximate solution for each

community.

Let us check how it works for the first split (when all the nodes start in the same

community). Recall the formula for the partition modularity (4.2):

Q(P) =
1

4m ∑
u∈V,v∈V

(Auv−
kukv

2m
)σuv
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Input: Graph G = (V,E)

create community C0, add each node of V to C0

create an empty partition P

add C0 to P

unmark C0 // it is a leaf

while (there is an unmarked community in P)

{
pick an unmarked community Lea f

find the potential split of Lea f into communities ChildA and ChildB

// the potential split is based on the spectral qualities of the graph G

form a candidate partition Pcand = P

remove Lea f from Pcand

add ChildA and ChildB to Pcand

if (Q(Pcand)> Q(P))

// this is equivalent to if ((Q(ChildA)+Q(ChildB)−Q(Lea f ))> 0)

{
remove Lea f from P

unmark ChildA and ChildB // they are leaves

add ChildA and ChildB to P

}
else
{

mark Lea f // it is a permanent member of P, should not be split

}
}
Output: the partition P

Figure 4.3: The original version of MACSIN.
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Newman uses the terms of the formula to form the matrix B, where Buv = (Auv−kukv/2m).

He shows that the modularity satisfies

Q = ∑
i
(wT

i · s)2
βi, (4.11)

where wi is i-th normalized eigenvector of B, βi is its eigenvalue, and s is a vector whose

components are either 1 or −1, depending to which of the two communities their corre-

sponding nodes belong. Newman ignores all eigenvectors except w1 (the largest one). Then

he aligns s with w1 in order to maximize wT
1 ·s by assigning nodes with positive coordinates

in w1 to one community and the rest of the nodes to the other community. The split happens

only if the modularity of the suggested partition is greater than 0. Or equivalently, the split

happens only if β1 in Formula (4.11) is positive.

This is exactly what is done in MACSIN. One only needs to switch to the subgraph

induced by the community under consideration. In order to do so, the algorithm calculates

the eigenvector corresponding to the largest eigenvalue of the matrix B with its elements

defined as:

Buv = Auv−
kukv

2m
−δuv[k

(g)
u − ku

dg

2m
], (4.12)

where g is the subgraph induced by the community under consideration for the further split,

u and v are nodes of g, k(g)u is the internal degree of u (only edges internal to g count), dg

is the sum of all node degrees (only edges internal to g count), δuv is the Kronecker’s delta,

and the rest is the same as in Equation (4.2). Note, that for the highest level (when the

subgraph g is the whole graph), Buv = Auv− kukv/2m.

4.3.3.2 Our version of MACSIN

We will be using our version of MACSIN as a NOLA (non-overlapping algorithm) in all of

our experiments of Section 4.4. The main differences between our version and the original

version of the algorithm are (in order of decreasing importance):

• We introduce a decomposition rate (defined below) to manage the progress of MAC-

SIN (that is, to force the further split of communities).
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• We use a transition matrix instead of matrix B.

• We consider three candidate splits instead of one.

• We do not do the final fine-tuning as part of NOLA, because the original fine-tuning

was designed for partitions. We do community refinement as described in Sec-

tion 4.3.2.4 instead. See [40] for the original final fine-tuning details.

4.3.3.2.1 Decomposition rate. In many of our experiments with artificially constructed

networks and their ground truth communities, our algorithm often produces fewer than ex-

pected communities, and they are larger in size. The original version of MACSIN algorithm

is unusual in the sense that the recursive process of the network decomposition stops auto-

matically when the further partitioning does not increase the modularity, and the algorithm

does not require an additional parameter that regulates the number or the size of the com-

munities. Most of the community detection algorithms require such a parameter, but also

claim that this allows multiresolution (see the discussion in [20]). Our version of MACSIN

has such a parameter as well; unfortunately, we do not have a good intuitive description of

it. We introduce a decomposition rate r (a real number that is usually around 0), that effec-

tively allows the creation of a larger number of smaller communities. Consider a situation

where we decide whether a parent community should be split into two nonintersecting sub-

communities A and B. We split the parent community if (Q(A)+Q(B))/Q(A∪B)−1≥ r.

For the original MACSIN [40] the decomposition rate r would be 0 (MACSIN does not

use the coefficient), but if it is less than 0 then a larger number of smaller communities is

created. The decomposition rates for the vicinity graphs and the extended graph do not have

to be the same.

Networks with overlapping communities have a legitimate reason to have a nega-

tive decomposition rate. When a node u participates in several communities, each of the

communities has adjacent to u edges that are internal to one of the communities. This cre-

ates additional forces that try to keep the neighbors of u together. A negative decomposition

rate helps to overcome these forces.
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4.3.3.2.2 Transition matrix. Koren [32] used the transition matrix on random walks

D−1A for graph drawing purposes, where D is a diagonal matrix where the diagonal entries

are filled with the degrees of the corresponding nodes (the same matrix is used in the chapter

on routing). We use the transition matrix instead of matrix B in order to assign coordinates

to the nodes for sake of convenience. The transition matrix has an additional advantage due

to the fact that real world networks are usually sparse. In this case, the transition matrix is

sparse too, but matrix B is not (due to the term kukv/2m and other terms of Formula (4.12)).

4.3.3.2.3 Three candidate splits. For each community, we produce three candidate

splits and chose the best of them (if any). The split is evaluated by how much further it

increases the modularity. In the original MACSIN algorithm, the split will actually hap-

pen only if the split would increase the overall partition modularity, or in other words, the

marginal modularity is positive. We choose that split (out of the three) which produces the

largest marginal modularity (but it does not have to be positive anymore, because of the

decomposition rate). All of the three splits are based on the coordinates of the eigenvector

corresponding to the largest eigenvalue. The first candidate split is similar to the original

MACSIN algorithm’s split: nodes associated with the negative coordinates form one po-

tential sub-community and nodes associated with the positive coordinates form the other

community. In the second candidate split, the range of nodes’ coordinates is partitioned

into 10 equal intervals. The split will happen on the border of the least populated interval

and its less populated neighbor. In the third candidate split, we split by the largest gap

between the sorted coordinates of the nodes.

The first candidate split usually creates two sub-communities of comparable size.

Let us consider a situation where we have a large network with one relatively small but

obvious community (for example, the community is connected to the rest of the network by

a single simple path) and many other communities that are interconnected between them-

selves and are therefore much less obvious. The coordinates of the nodes of the obvious

community are likely to be concentrated on the one end of the range of nodes’ coordinates.
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The rest of the nodes will be much closer to the origin. The first candidate split might

produce a bad solution because the nodes of the non-obvious communities will be affected

by the nodes of the obvious community. It comes as a result of the strong repulsive forces

between the obvious community and the rest of the network, which will shift most of the

nodes away from the obvious community and some of the nodes that are very close to the

origin will change their signs (while still being close to the origin). Therefore, it is useful

to release the obvious community first and then proceed with the rest of the network. The

second and third candidate splits are targeting to solve this scenario.

4.3.4 Comparison to Peacock

Gregory [26] proposed Peacock algorithm. It finds the node u with the highest split be-

tweenness (the number of the shortest paths between all the pairs of nodes going through

a single node), replaces it by two clones connected by a new edge, and distributes the

original edges adjacent to u between the clones. It was not clear how the edges are dis-

tributed between the clones. Thus, the network is continuously expanding until the ratio

of the maximum split betweenness to the maximum edge betweenness (the number of the

shortest paths between all the pairs of nodes going through a single edge) is lower than a

certain user-defined limit. When the network expansion is over, any NOLA runs on the ex-

tended graph. Both, the maximum split betweenness and the maximum edge betweenness

are global numbers for the whole network and should be recalculated after each cloning.

Our algorithm is different from Peacock in several aspects. We list them here in

order of decreasing importance:

• We consider only the immediate neighborhood of the node u in order to decide

whether it should be cloned. That is, the cloning of any other node (including a

neighbor of u) has no effect on the cloning of u. Our version is more distributed,

initially each node judges by itself in which prospective communities it participates.

• We use the modularity instead of the split betweenness and the edge betweenness.

The extent of the iterative split procedure is controlled by the decomposition rate.
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• We use the same NOLA for the vicinity graphs and the extended graph stages.

• We do not connect the clones of the same node with new edges. We see a node

participating in several communities as an actor playing several roles. Keeping these

roles connected does not seem to make sense, because they can be orthogonal. This

option was considered in Peacock, but was rejected because the global network was

becoming disconnected quickly, and that was seen as a disadvantage (maybe because

the original network was gradually expanding and the ratio of the maximum split

betweenness to the maximum edge betweenness does not have meaning once the

network becomes disconnected).

• We also introduce a selection stage, which ranks the communities and might filter out

insignificant ones.

4.4 Experiments

For all the networks, which we consider in this section, we face three problems:

• Choosing the decomposition rate for the vicinity graphs.

• Choosing the decomposition rate for the extended graph.

• Deciding how many communities survive throughout the selection stage.

These problems do not allow us to claim that this process is truly unsupervised learning.

The last problem is less severe, because we might be given an (approximate) number of the

desired communities upfront, or we can claim that we provide a ranked (by the modularity

per node) list of communities and the ground truth has several versions of resolution, so the

user makes the final cut.

However, the notion of the decomposition rate is unlikely to make intuitive sense

to the user. As a result of that, we will only show in our experiments that there are levels

of decomposition rates that produce good results, but we do not know how to choose them

without actual knowledge of the ground truth.
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There is an alternative that we have tried, but did not pursue systematically. In this

setup, the decomposition rates for the vicinity and the extended graphs are the same. The

quality of results was not affected seriously, but they were slightly worse (in the terms of

the Jaccard index). We could try several levels for the decomposition rates with the step of

0.01 and let the user choose which of the solutions is the best. The user is involved to a

larger extent, but we do not need to know anything about the ground truth.

4.4.1 Community generation model — independent dimensions network

There are a few small networks with known ground truth community structure. However,

these communities are not overlapping and they cannot be used as test cases to evaluate

our algorithm. Below we introduce a model that generates data with known ground truth.

We assume that a network describes a limited number of types of relationships; and that

the types of these relationships are independent of each other. A node represents a subject

participating in all these types of relationships; and an edge between two nodes is evidence

that these nodes are connected in one or more type of the relationships. However, an edge

can also connect two nodes that do not participate in any community together; those edges

make the community detection more difficult.

We assume that the network is embedded in a low dimensional space, and that each

dimension corresponds to exactly one type of relationship. Let dim be the dimension of

the space. The dimensions are independent of each other. An underlying group (or just

a group) is a set of nodes that participate in one type of relationship. That is, a group

corresponds to exactly one dimension. It will also play a role of a ground truth community

in the a posteriori analysis of the quality of results produced by the algorithm. Let N be

the number of groups per dimension. For each of the groups, we assign a unique integral

coordinate from the interval [0,N−1]. Each node is assigned to exactly one of these groups

(of the same dimension) independently at random according to the uniform distribution. A

node assumes its underlying group’s coordinate as its own coordinate for the corresponding

dimension. Let n be the number of nodes in the network, then the expected size of a group

is n/N.
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For each dimension, two types of edges might be created. An intragroup edge —

an edge between two nodes of the same underlying group is created with the intragroup

probability pintra, independently of other edges. High intragroup probability allows forma-

tion of dense subgraphs representing groups. An intergroup edge — an edge between two

nodes of different underlying groups (of the same dimension) is created with the intergroup

probability pinter, independently of other edges. Two nodes connected due to an intergroup

edge of one dimension still can belong to the same group in another dimension (but it will

be impossible to say due to which dimension an edge was created by looking at the result-

ing graph). Probability pinter might depend on the distance between the coordinates of the

underlying groups. High intergroup probability models close connection between two or

few groups. Intergroup edges also can be used to model a noise.

The process is repeated for each dimension independently of other dimensions. We

will call a network created according to the described above procedure as IDN(dim,N,

n/N, pintra, pinter), named after independent dimensions network. Note that all edges be-

tween two groups of the same dimension, which were created due to all other dimensions,

can be deemed as noise (as long as the dimensions are independent of each other). Multiple

edges between a pair of nodes are merged into one edge.

The information about the chosen model and its parameters is hidden, unless ex-

plicitly stated otherwise. Ideally, the algorithm knows only the graph that represents the

network. In reality, unsupervised learning is rarely successful.

We could have generalized the model in several ways, but we will not be using more

complex constructions in most of our experiments. For example, we might have allowed an

underlying group to be based on multiple types of relationships. Or, we might have allowed

a node not to participate in an arbitrary number of types of relationships. Later we will

allow some types of relationships to be interdependent, see Section 4.4.4.2.

We will evaluate the results of the experiments of this section in two ways. We

will assume knowledge of the ground truth communities that form partitions(s). We will
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calculate the lower and upper bounds on Jaccard similarity the way it was described in

Section 4.3.2. We will also calculate partition modularities of the ground truth community

and compare them to the modularities of the covers that produced the lower bounds on

Jaccard similarity.

4.4.2 One-dimensional networks

4.4.2.1 One dimension, 50% uniform noise

4.4.2.1.1 Setup. The artificial network consists of 400 nodes. It has edges that represent

one type of relationship. We create 20 underlying groups corresponding to the type of

relationship. The distances between the coordinates of the nodes do not play any role in

this experiment; the coordinates are only necessary to distinguish between the groups. Each

node is assigned to one of these groups independently at random according to the uniform

distribution. The intragroup probability pintra is 0.5. The intergroup probability pinter is a

constant c1 that is set to a level sufficient to obtain the number of intergroup edges equal to

50% of all the edges.

We created an instance of IDN(1,20,20,0.5,c1). The groups’ sizes varied from

12 to 29. If one is interested in identifying the underlying groups, then 50% of the edges

in the network can be considered as uniformly random noise. The resulting average node

degree was 20.6. The modularity calculated by Formula (4.6) for the partition matching the

underlying groups was 0.443. Ideally, we want exactly 20 communities forming a partition

to be selected.

4.4.2.1.2 Experiment. The decomposition rate in the vicinity and extended graphs was

set to 0, the same as if it was used in the MACSIN algorithm. 3347 clones were created

at the end of the vicinity graphs stage (8.37 per node). 961 communities with 2386 clones

(5.97 per node) were created at the end of the refinement stage. But only 31 communities

were of size 4 or larger. Now we can calculate the upper bound on the Jaccard index

according to Formula (4.10); it was equal to 0.887. However, we can calculate the lower
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network average modularity cover bounds on
degree by groups modularity Jaccard index

dim A dim B lower upper
1D 50% uniform noise 20.6 0.443 N/A 0.423 0.941 0.961
1D 50% intraedges 20.8 0.438 N/A 0.385 0.747 0.797
2D 100% intraedges 19.7 0.469 0.456 0.465 0.980 0.980
2D 67% intraedges 30.3 0.291 0.294 0.289 0.898 0.905
2D 50% intraedges 41.0 0.204 0.207 0.192 0.667 0.692

Table 4.1: Single tests data. Except of the first test, all intergroup edges are created with the
probability inversely proportional to the distance between the groups.

bound only after the selection stage, because we need to create a bijective function and

thus, use our knowledge of the number of groups. The lower bound was equal to 0.855.

The modularity of the cover that produced the lower bound was calculated according to

Formula (4.8) and equal to 0.397, which is not so far away from 0.443, calculated for the

partition matching the underlying groups.

This network is relatively easy to decompose, because all the underlying groups are

equally apart from each other and the intergroup edges are randomly created. This allowed

good results without tuning the decomposition rates, and staying close to the MACSIN

algorithm. Trying various decomposition rates allowed getting even better results. When

the decomposition rates were set for the vicinity graphs to 0.1, and for the extended graph

to −0.00945, lower and upper bounds on the Jaccard indices were 0.941 and 0.961; the

modularity of the cover that produced the lower bound was 0.423. A summary of this and

other single tests is in Table 4.1. Note, that the underlying groups are normally unknown

and we only make the claim that levels of the decomposition rates that lead to good results

exist.

4.4.2.2 One dimension, 50% intraedges

4.4.2.2.1 Setup. The setup is similar to the setup of Section 4.4.2.1 with one exception.

pinter is not a constant anymore, but is different for different pairs of nodes and depends

on the distance between the groups (to which the nodes belong). The intergroup proba-

bility pinter is such, that two nodes from different underlying groups have a chance to be
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connected by an edge with probability inversely proportional to the distance between the

corresponding groups. The total number of intergroup edges is at least the total number of

intragroup edges.

We created an instance of IDN(1,20,20,0.5,c2/d). Where d is the distance be-

tween a pair of nodes, and c2 is set to a level sufficient to obtain the number of intergroup

edges equal to 50% of all the edges. This setup increases the number of edges between the

neighboring (at distance one) groups and makes it difficult to separate them. There are 19

pairs of neighboring groups in the network. For each of the pairs, we compared the sum

of the community modularities of the two groups with the modularity of the community

comprised of the two groups. In all 19 cases, the former was smaller. That is, if we were

using the MACSIN algorithm for a community formed by the union of any two neighbor-

ing groups, it would not split it into two communities corresponding to the groups. This is

an example, that usage of decomposition rates different from 0 is necessary even for non-

overlapping communities. For the overlapping communities, the necessity might be even

higher, because intraedges created due to the two overlapping communities can be falsely

treated as intraedges of a non-existing community (or a super-community), which is a union

of the two communities.

To summarize, we created an instance of IDN(1,20,20,0.5,c2/d). The groups’

sizes varied from 12 to 29. Almost 50% of the edges were intragroup edges, 18% of the

edges connected nodes of the neighboring groups. The resulting average node degree was

20.8. The modularity calculated by Formula (4.6) for the partition matching the underly-

ing groups was 0.438. Ideally, we want exactly 20 communities forming a partition to be

selected.

4.4.2.2.2 Experiment. For the reasons mentioned above, we could not get good results

when the decomposition rates for the vicinity and extended graphs were set to 0. To some-

what simplify the situation we kept the decomposition rate for the vicinity graphs set to 0 at

first. In this case, the best results were shown when the decomposition rate for the extended
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graph was set to −0.0594. 2545 clones were created at the end of the vicinity graphs stage

(6.36 per node). 676 communities with 2031 clones (5.08 per node) were created at the end

of the refinement stage. But only 67 communities were of size 5 or larger. The lower and

upper bounds on the Jaccard index were 0.747 and 0.797. The modularity of the cover that

produced the lower bound was calculated according to Formula (4.8) and equal to 0.385,

which is not so far away from 0.438, calculated for the partition matching the underlying

groups. Trying various decomposition rates for the vicinity graphs did not lead to better

results.

4.4.3 Two-dimensional networks

4.4.3.1 Two dimensions, 100% intraedges

4.4.3.1.1 Setup. The artificial network consists of 400 nodes. It has edges that represent

two types of relationships: A and B. In order to assign edges representing the relationships

of A we create 20 underlying groups corresponding to this type of relationship. The intra-

group probability pintra is 0.5. The intergroup probability pinter is 0. We repeat the same

procedure for the relationships of B. Outcomes of the trials related to the relationships of A

has no effect on the outcomes related to the relationships of B.

To summarize, we created an instance of IDN(2,20,20,0.5,0). The groups’ sizes

varied from 10 to 30. When we are looking at nodes of some group of type A, we see

that about a half of the edges are intraedges of the group and about a half of the edges

are intraedges of the groups of type B. The relationships of B has nothing to do with the

relationships of A; and we might think that the intraedges of the groups of type B are a

uniformly random noise with respect to the group of relationships of type A, just like in

Section 4.4.2.1. This is not exactly true (but very close to it), because the intraedges of the

relationships of B have a structure.

The expected probability that two nodes belong to the same two underlying groups

and have two edges (that will be merged to one edge) is about 1.25%. The resulting aver-

age node degree was 19.65. The modularity calculated by Formula (4.6) for the partitions
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matching the underlying groups of a single dimension was 0.469 and 0.456. Ideally, we

want exactly 40 communities forming two partitions to be selected. Those partitions would

create overlapping communities.

4.4.3.1.2 Experiment. We kept the decomposition rate for the vicinity graphs set to 0 at

first. In this case, the best results were shown when the decomposition rate for the extended

graph was set to −0.02176. 1195 clones were created at the end of the vicinity graphs

stage (2.99 per node). 81 communities with 806 clones (2.02 per node) were created at

the end of the refinement stage. Only 37 communities were of size 4 or larger; at least

three underlying groups were not covered well. The fact that the number of clones (806)

is close to the number of the nodes times two (800) was an indicator that the selection

stage would be easy. The lower and upper bounds on the Jaccard index were 0.912 and

0.916. The modularity of the cover was equal to 0.477, which is even higher than 0.469 and

0.456, calculated for the partitions matching the underlying groups. That can be partially

explained by the fact that the underlying groups are defined before the edges are added to

the network and this is a probabilistic process. The communities are identified after the

edges are known.

Trying various decomposition rates allowed getting even better results. When the

decomposition rates were set for the vicinity graphs to −0.01, and for the extended graph

to −0.01042, the lower and upper bounds on Jaccard index were the same 0.98, the cover

modularity was 0.465.

4.4.3.2 Discussion.

The three experiments that we have conducted so far have many things in common. They

have underlying groups of the same expected size; they have the same resulting intragroup

probability. About 50% of the edges adjacent to the nodes of any group connect the group

to other groups. That explains the similarity in the average node degree and in the modular-

ities of the partitions based on the underlying groups (see the first three lines of Table 4.1).

Unlike the other two experiments, the middle experiment (where the neighboring groups are
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strongly connected) represents a more difficult case. In this experiment, the cover modu-

larity of the discovered (by the algorithm) communities and the Jaccard index were slightly

lower. The problem of this experiment is that the neighboring groups are more intercon-

nected; and it is difficult (if not impossible) to find the exact splits between the groups, even

when the splits are forced by an appropriate value of the decomposition rate. In the fol-

lowing, we will conduct two experiments of similar setup, where the strong interconnection

between the neighboring groups of the same dimension is combined with the presence of

two dimensions in the networks.

4.4.3.3 Two dimensions, 67% intraedges

4.4.3.3.1 Setup. The setup is similar to the setup of Section 4.4.3.1 with one exception.

The intergroup probability pinter is equal to c3/d. Here d is the distance between two

groups corresponding to the pair of nodes (other dimensions do not affect d); and c3 is set

to a level sufficient to obtain the number of intergroup edges equal to 33.3% of all edges of

the corresponding dimension.

To summarize, we created an instance of IDN(2,20,20,0.5,c3/d). There were 40

underlying groups; each node belonged to two underlying groups (one per each of the di-

mensions). If one is interested in identifying communities (corresponding to the underlying

groups) of type A, then only 1/3 of the edges in the network can be considered as the intra-

group edges, 1/6 as the distance-based intergroup edges, and 1/2 as random noise (they are

created due to the relationships of type B). The resulting average node degree was 30.25.

The modularity calculated for the partitions matching the underlying groups of one of the

dimensions was 0.291 and 0.294. Ideally, we want exactly 40 communities forming two

partitions to be selected. Those partitions would create overlapping communities.

4.4.3.3.2 Experiment. To somewhat simplify the situation we kept only the decompo-

sition rate for the vicinity graphs set to 0 at first. In this case, the best results were shown

when the decomposition rate for the extended graph was set to−0.05783. 1938 clones were

created at the end of the vicinity graphs stage (4.85 per node). 392 communities with 1528
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clones (3.82 per node) were created at the end of the refinement stage. Only 60 communi-

ties were of size 5 or larger. The lower and upper bounds on the Jaccard index were 0.779

and 0.804. The modularity of the cover was equal to 0.266, which is close to 0.291 and

0.294, calculated for the partitions matching the underlying groups.

Trying various decomposition rates allowed getting even better results. When the

decomposition rates were set for the vicinity graphs to −0.05, and for the extended graph

to −0.04366, the lower and upper bounds on the Jaccard indices were 0.898 and 0.905; the

cover modularity was 0.289.

4.4.3.4 Two dimensions, 50% intraedges

4.4.3.4.1 Setup. The setup is similar to the setup of Section 4.4.3.3 with one exception;

there are even more intergroup distance-based edges. The intergroup probability pinter is

equal to c4/d, where c4 is set to a level sufficient to obtain the number of intergroup edges

equal to 50% of all edges of the corresponding dimension.

To summarize, we created an instance of IDN(2,20,20,0.5,c4/d). There were 40

underlying groups; each node belonged to two underlying groups (one per each of the di-

mensions). If one is interested in identifying communities (corresponding to the underlying

groups) of type A, then only 1/4 of the edges in the network can be considered as the in-

tragroup edges, 1/4 as the distance-based intergroup edges, and 1/2 as random noise (they

are created due to the relationships of type B). The resulting average node degree grew (rel-

atively to the previous experiment) to 41.01. The modularity calculated for the partitions

matching the underlying groups of one of the dimensions went down to 0.204 and 0.207.

4.4.3.4.2 Experiment. Not surprisingly, the results were worse than the results of the

previous experiment, because this network is more difficult. We could receive the best

results that when the decomposition rates were set for the vicinity graphs to −0.03, and for

the extended graph to −0.09744. In this case, the lower and upper bounds on the Jaccard

indices were 0.667 and 0.692; the cover modularity was 0.192.
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4.4.4 Serial tests

What are the limitations on the settings in which the proposed algorithm works for the pro-

posed network generation model? If an average node of the community has too few edges

that connect it to the other nodes of the community then it is difficult to identify the com-

munity. The larger the community the larger number of such (internal to the community)

edges per node is expected. Another important factor is the contrast between the edges

belonging to the community and the edges that connect the community to the rest of the

network (bridges). It is not only a question of the numerical ratio. Increasing the number of

bridges does not cause serious problems as long as these bridges lead to the far communi-

ties. There seems to be two main scenarios causing problems in community detection: two

communities have many bridges between themselves, and two communities have a signif-

icant overlap (share many nodes). In both cases, it is difficult to decide whether there are

two communities or just one.

4.4.4.1 Independent dimensions

We will consider here the first scenario: two communities have many bridges between

themselves. In this section, pintra is always a constant and pinter is a function inversely

proportional to the distance between the corresponding groups (these functions might be

different in different experiments). In order to make some things obvious, we will be using

pneigh instead of pinter. pneigh is the probability that two nodes belonging to neighboring

groups (the groups at distance 1) are connected by an edge, we call such edge a neighbor-

edge. It can be defined alternatively as pinter = pneigh/d, where d is the distance between

two groups corresponding to the pair of nodes (other dimensions do not affect d). Thus, we

will work with networks of IDN(dim,N,n/N, pintra, pneigh/d) family.

Consider for a moment that we are dealing with the one-dimensional case. There-

fore, if we have two networks A and B with the same expected size of groups, the same

pneigh and the same pinter, but the network A has a half the number of the groups of B. Then

it will look like we took two networks of the size of A and added some additional edges to
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obtain the network of the size of B. Alternatively, we can think that the network A grows

into the network B, all this without changing pneigh and pinter, and without reassigning any

existing edges. Of course, this will lead to the increase of the average node degree, and

should make the community detection somewhat harder, because the fraction of intraedges

is reduced.

If we have more than one dimension, then edges created due to the one dimension

are created independently of the other dimensions, the same way it was done before. This

will lead to the situation that the growth of the network by adding new groups in one di-

mension requires rewiring of the edges created due to the other dimensions. As a result, the

average (node) overlap between two groups of different dimensions will be smaller. But

anything else will mean that the dimensions are not independent.

In the following experiments, the number of dimensions is 2. The expected group

sizes were 20, 40, and 80. The number of groups per dimension was 10, 20, 40, 80, and

160. We kept pintra/pneigh equal to 5. The number of groups per dimension, the number

of dimensions and pintra/pneigh determine the resulting fractions of intragroup edges and

neighbor-edges, and independent of the expected group size. We will denote the actual ratio

of the number of the intragroup edges to the number of the neighbor-edges as rion (Intra-

group edges Over Neighbor-edges). Thus, we created instances of IDN(2,N,n/N,c,c/5d)

family, where c is a monotonically decreasing function of the expected group size n/N.

We were targeting to receive similar high results for the Jaccard index, while keep-

ing pintra/pneigh equal to 5, and saw that larger groups require a higher number of intraedges

per node. However, it does not have to be a constant fraction of the group size. As the size

of the groups grew, we could use smaller pintra. See the settings of the related parameters

in Table 4.2.

Table 4.3 gives ranges of the resulting fractions of the intragroup edges and the

neighbor-edges across different networks. These fractions were calculated with respect to

a specific dimension (that is, for a two-dimensional network we have two scores for the
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group size pintra pneigh expected number of intraedges
created due to the corresponding dimension

20 0.50 0.10 9.5
40 0.35 0.07 13.65
80 0.25 0.05 19.75

Table 4.2: Settings that are independent of the number of groups. pintra/pneigh = 5.

groups per fraction of fraction of ratio
dimension intragroup edges neighbor-edges rion

10 0.316 - 0.330 0.180 - 0.198 1.64 - 1.83
20 0.265 - 0.269 0.131 - 0.142 1.89 - 2.05
40 0.224 - 0.233 0.106 - 0.111 2.07 - 2.18
80 0.194 - 0.201 0.087 - 0.091 2.21 - 2.26
160 0.175 - 0.178 0.076 - 0.077 2.30 - 2.35

Table 4.3: Data that is dependent on the number of groups.

expected groups per dimension
group size 10 20 40 80 160

20 0.786 - 0.798 0.836 - 0.840 0.791 - 0.818 0.791 - 0.818 0.786 - 0.805
40 0.812 - 0.820 0.793 - 0.830 0.787 - 0.802 0.803 - 0.819 0.814 - 0.828
80 0.826 - 0.887 0.852 - 0.875 0.834 - 0.849 0.842 - 0.850 0.815 - 0.823

Table 4.4: Bounds of Jaccard indices.

intragroup edges and the neighbor-edges). The resulting ratio of the intragroup edges to

the neighbor-edges rion is significantly smaller than 5 (pintra/pneigh), because most of the

groups have two neighboring groups in each dimension, and because edges created due

to the other dimensions affect rion as well. However, the importance of the second factor

diminishes to zero as the number of groups per dimension increases to infinity.

Table 4.4 shows the upper and lower bounds on the Jaccard index. For the smaller

networks, we tried several decomposition thresholds, for the larger ones just few or one.

The table shows that we could achieve similar results for the Jaccard indices for the different

expected sizes of a group, the different numbers of groups per dimension by varying pintra

while keeping pintra/pneigh the same.

4.4.4.1.1 One parameter change series. We also conducted a series of experiments in

which only pneigh was different. The increase of pneigh caused an increase of the number of

94



pneigh 0.04 0.05 0.06 0.07 0.08 0.09 0.10
ratio rion 2.94 2.49 2.17 1.92 1.71 1.55 1.42

lower bound on J 0.928 0.879 0.831 0.793 0.774 0.706 0.645
upper bound on J 0.941 0.891 0.857 0.830 0.791 0.731 0.658

Table 4.5: Dependencies on pneigh. IDN(2,20,40,0.35, pneigh/d).

pintra 0.25 0.30 0.35 0.40 0.45
ratio rion 1.46 1.70 1.92 2.12 2.32

lower bound on J 0.368 0.643 0.793 0.916 0.931
upper bound on J 0.402 0.669 0.830 0.923 0.941

Table 4.6: Dependencies on pintra. IDN(2,20,40, pintra,0.07/d).

the intergroup edges and the nodes’ degrees. As a result, it caused decreases in pintra/pneigh

and rion. That makes the community detection more difficult and lowers the Jaccard index

J. Some data can be found in Table 4.5. In all the networks: pintra was 0.35, the number of

dimensions was 2, the expected group size was 40, and the number of groups per dimension

was 20. It was IDN(2,20,40,0.35, pneigh/d).

In a different series, we achieved a similar phenomenon of change of pintra/pneigh

by changing only the pintra parameter. The results are given in Table 4.6. In all the networks:

pneigh was 0.07, the number of dimensions was 2, the expected group size was 40, and the

number of groups per dimension was 20. It was IDN(2,20,40, pintra,0.07/d).

In both series we saw that higher rion produces a better Jaccard index, but we should

remember that only one parameter was changing in each series. It cannot be used as a sole

indicator of how difficult it is to detect communities. However, it confirms the role of the

contrast between the intraedges and the neighbor-edges.

4.4.4.2 Codependent dimensions

In this section, we consider the case where a significant node overlap between communities

makes it difficult to distinguish them as two communities, and not as a single community

comprised of them. The IDN model makes it impossible to have a node overlap between

groups corresponding to the same dimension, because they form a partition. Groups cor-

responding to the different dimensions are likely to overlap, but the overlap is insignifi-
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cant unless the number of groups corresponding to a dimension is small, but the last fact

makes the network less interesting. We will solve the problem by introducing a depen-

dency between the dimensions and defining a codependent dimensions network (CDN).

CDN(dim,N,s,n/N, pintra, pinter) has the same parameters as IDN(dim,N,n/N, pintra,

pinter) with an addition of span s, whose role is defined below. In CDN, we consider exactly

one dimension as a base dimension and distribute nodes among the group of the base di-

mension exactly the same way as it was done for IDN. Let s be the span of CDN and i be the

coordinate of node v in the base dimension, then the coordinate of the node v in the dimen-

sion, which is not the base dimension, is an integer drawn independently at random from

the uniform distribution on the interval [max(i−(s−1)/2,0),min(i+(s−1)/2,N−1)]. We

will call this interval the actual span of the group i. It is convenient (although not necessary)

to limit s to the odd positive numbers. CDN can be considered as a generalization of IDN.

Indeed, when s≥ 2N−1 the actual span of any group of the base dimension is [0,N−1].

See Figure 4.4 for the illustrative example of the expected overlap for the span equal

to 5. The size of a rectangle corresponds to the expected cardinality of the overlap between

two groups of different dimensions. The actual spans for the first (and last) (s+1)/2 groups

are smaller than s. This affects the expected size of the overlap for those groups, but not of

the groups that are in the middle. Note, that expected sizes of the first (and last) groups of

a non-base dimension are not n/N, but the rest of the groups have the same expected size

as the groups of the base dimension. Small spans ensure large (usually about 1/s) overlaps

between a group of the base dimension and up to s groups of a non-base dimension.

We want to check how the algorithm works for networks with significant node

overlaps. Therefore, we want to mitigate against the impact of the problem studied in Sec-

tion 4.4.4.1, where the neighboring groups had many bridges. We can do so by decreasing

pneigh comparing to what it was set for in the experiments described by Table 4.2. pneigh

should be low enough to ensure that IDN produces a very high score for the Jaccard index,

so the algorithm will have a chance at least for the cases with the high spans. We con-

sider a series of networks that are produced by CDN(2,40,s,40,0.35,0.05/d) for different
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Figure 4.4: Expected cardinality of the overlap between groups of CDN with span 5. Size
of a rectangle corresponds to the expected cardinality of the overlap.

values of s. The results are given in Table 4.7. We conducted experiments for only one

decomposition threshold for the vicinity graphs for all networks. The average overlap line

refers to the observed average overlap between the i-th group of the base dimension and

the i-th group of the non-base dimension. It is close to 1/s, as expected. The ratio rion is

less important in this case; we are more interested in the node overlap between groups of

different dimensions. Most of the edges between the nodes of the neighboring groups of

one dimension were created as intraedges of the groups of the other dimension. There is

a significant average overlap of 0.116 for the network with span of 11, and still the lower

bound on Jaccard index is high (0.753). Even when more than a third of nodes of a group

on average is shared with some other group (which corresponds to a span of 3), the lower

bound on the Jaccard index is 0.488.
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span s IDN 21 11 7 5 3
average overlap 0.019 0.075 0.116 0.158 0.219 0.361

ratio rion 2.20 2.36 2.00 1.74 1.62 1.48
lower bound on J 0.883 0.849 0.753 0.643 0.556 0.488
upper bound on J 0.897 0.870 0.769 0.668 0.591 0.519

Table 4.7: Different spans for CDN(2,40,s,40,0.35,0.05/d).

4.5 Summary

We consider MACSIN algorithm as an important building block of our algorithm for the

detection of overlapping communities, but found it beneficial to extend MACSIN by adding

a parameter (the decomposition rate) that regulates the degree of the iterative splitting of

communities. This is true even in a network with non-overlapping communities. Consider

the case where there are two obvious communities. Then start adding edges that connect

these communities until at some point it becomes clear that the original communities be-

come a single community. Somewhere in the middle of the process, there is a gray area

where it is not clear if there are two communities or one. The MACSIN algorithm in this

case says exactly when the switch happens. However, it seems that this decision should be

subjective (or application dependent), and the decomposition rate is one mechanism that

allows it.

In the case of overlapping communities, the situation becomes even more difficult.

A pair of close but non-overlapping communities may be connected not only by the edges

that were created because of the closeness of the communities (whatever close means),

but also because some nodes of these two communities belong to a third community that

overlaps with the first two communities. These nodes may be connected by additional

edges that are legitimate intraedges of the third community. Thus, we see even a stronger

than expected connection between the first two communities and it is difficult to separate

them without using the decomposition rate.

We developed an algorithm that detects overlapping communities. The first stage

of the algorithm that builds the vicinity graphs is crucial. It is based on locally made deci-
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sions. We assume that an entity (node) may play different roles in the network; these roles

lead the entity to different communities. The node is capable of evaluating its immediate

surrounding and makes a decision to what potential communities itself and its neighbors

belong. The final communities of the overall network are a composition of the views on the

communities that are made by each node individually.

We conducted tests on many networks, including networks with non-obvious com-

munity structure. Even for these tests, we could get high Jaccard indices for the collections

detected by the algorithm and the ground truth communities. As mentioned before, we do

not know how to choose the best decomposition rates and actually think that it is subjec-

tive; we just show that there are rates that produce good results. We extended the notion

of modularity from partitions to covers and saw that when Jaccard indices were high, the

corresponding cover modularity (discovered by the algorithm) was similar to the partition

modularities of the ground truth communities. We conducted serial tests and saw that our

algorithm scales well. Larger communities require higher internal node degree (node de-

gree that counts only intraedges), but the degree does not have to grow as fast as the size of

the community. Finally, we conducted tests with a high pairwise overlap and still could see

high Jaccard indices.
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Chapter 5

EFFECTS OF EDGE REMOVAL ON NETWORK UTILITY

5.1 Network anonymization

We consider a problem of network anonymization while preserving utility. A company (cu-

rator) might be releasing information about its clients to subcontractors in order to analyze

the data. However, the analysis should be performed based on the already collected data;

and it does not require the knowledge of real identities that described in the data to be re-

leased. That allows the curator to protect the privacy of those who mentioned in the data.

Nevertheless, an attacker dedicated to deanonymization may overcome this kind of protec-

tion because people tend to leave unique marks in their surroundings. It might be enough

for the attacker to know a unique subset of attributes of a person in question (target) and

find the target in the anonymized data. This was actually done in AOL case [10].

As a result, the curator minimizes the amount of information that is released, as

long as the omitted data is inconsequential in the eyes of the curator. For example, the cu-

rator can release information which of the entities contacted each other through their email

accounts, but the exact data stamps might be omitted. One of the most conservative ways

of releasing information is to represent it as an anonymized graph without any annotation.

For example, a node represents an email account and an edge is evidence that there was

an email exchange between the corresponding accounts. Backstrom et al. [5] showed that

even this scant information is prone to an attack. The suggested walk-based attack is not the

main subject of the discussion, and we just notice that it is partially based on the detection

of a path in the graph with a unique sequence of the nodes’ degrees.

5.1.1 Utility

A possible way of protecting against this kind of attack might be perturbations in the topol-

ogy of the graph. Those perturbations however affect most of the nodes (because we do

not know what nodes are likely to be attacked). Even if the perturbations do not change the

nodes’ degrees significantly, they might however affect some other qualities of the network.
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As an extreme example, the perturbation can turn a connected graph into a disconnected

one.

Hay et al. [27] considered attacks based on the knowledge of the degree of the

targeted node (or on the knowledge of the neighbors’ degrees). They perturbed networks by

deleting a number of edges uniformly at random and then adding the same number of edges

choosing uniformly at random among pairs of nodes not connected by an edge. When 5–

10% of the edges were replaced by other edges, network anonymity significantly increased

(the adversary knowing the target node degree would find more suitable candidates in the

perturbed network). They also reported change in network characteristics such as diameter,

clustering coefficient, and so on, which affects the network utility.

Edge deletion is one of the major approaches to network perturbation. The pertur-

bations should be done in ways that do not affect specific properties of the network. The

problem is however, that other properties of the network might be seriously affected. We

will not try to define what the utility of a perturbed network is. The utility seems to depend

on a particular application in which the perturbed network is used. Even in this case, it is

not easy to specify all qualities of the network that should be preserved. Releasing several

perturbed networks of the same original network for different applications, creates a new

source of a potential breach if an adversary tries to derive knowledge about the original net-

work by detecting correspondence between nodes of the perturbed networks that represent

the same node in the original network.

In the following, we will show that non-uniform deletion of a part of the edges can

affect a utility of the anonymized network. More specifically, we consider edge deletion as

a means of the network perturbation and use the stretch of the edge as the main factor in

the decision whether an edge should be selected for deletion. We rate each existing edge by

how much it “deserves” to appear in the network based on the network topology. Let edge e

of graph G = (V,E) be the edge under consideration. We construct graph Ge = (V,E\{e}),

which is identical to the original graph with the exception that the edge e is missing. For
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edge e = (u,v) ∈ G, we calculate the length of the shortest path between the nodes u and

v in Ge (that is, the stretch of e in G) and the number of such unique paths (any pair of

these paths can overlap, but only partially). The edges that have shorter stretches have more

“rights” to be in the graph G than the edges that have longer stretches. In case of the tie, the

edges that have more unique paths supporting their stretch have more “rights” to be in the

graph G than the edges that have less such paths.

We have chosen the stretch as a measure of edge oddness due to the simplicity of the

calculations necessary to obtain the measure (we use a BFS-like approach). In Section 5.3.5,

we will compare this measure to the commute time and see that their effects are quite

similar. Throughout this chapter, with the exception of Section 5.3.5, we always assume

that edge ratings are based on the stretch.

Consider a situation where the curator of the network asks a subcontractor to iden-

tify a set of nodes that play an important role in the routing, for example in the setting that

is similar to the problem of routing in Section 3. Edges with high stretches are important in

the routing because they often belong to many shortest paths. The edges with the highest

stretch (that is, the “odd” edges) make the small-world networks small-world. Removal of

edge e = (u,v) with a high stretch is likely to lead to excluding of the nodes u and/or v

from the list of the important nodes. We will run experiments on the real world networks

of Section 3.5.4 to show that if we concern with the preservation of the short paths then the

edges with the long stretch should be preserved during the edge removal.

On the other hand, if a subcontractor is asked to identify communities similarly to

the problem in Section 4 (but not necessarily overlapping communities) then the edges with

high stretch are not so important. Edges within a community are likely to have low stretch,

otherwise the community is not as tightly knit as expected [18]. Thus, the edges with high

stretches are likely to connect different communities; and their removal or perturbation will

not change the community structure. If anything, it will make the community detection

easier.
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We will take a two-dimensional network from Section 4 and a one-dimensional

network, those with a clear structure of communities (for which the algorithm could produce

covers with Jaccard index of about 0.8 against the ground truth). We will delete either

random edges, or edges with the lowest stretch, or edges with the highest stretch. We will

see (at least when 10% of edges are deleted), that deletion of the edges with the lowest

stretch (that is, the “natural” edges) leads to the deterioration of the community structure

and should be used if we want to conceal it. If we want to preserve the structure then the

edges with the highest stretch edges can be deleted harmlessly.

5.2 Intent

We do not make assumptions about powers of the adversary, and about what kind of prior

knowledge the adversary has about the target. All we say is that edge deletion is a popular

way of the network anonymization. In addition, we need to care about the preservation of

utility while trying to induce anonymization [27].

It is difficult to talk about utility in general. When we concentrate on preserving

one quality (by using the stretch as a device to make preference which edges can be most

harmlessly deleted), we can hurt another quality more that expected.

One of methods of the network perturbation is the edge deletion. In this section,

we suggest versions of a reasonable procedure to perform it. We will check the results of

running this algorithm on different networks in the following sections.

5.2.1 Edge deletion procedure

If the deletion of an edge (but not its endpoints) transforms its connected component into

two connected components then the edge is a bridge. An edge has an infinite stretch if and

only if it is a bridge. We will call a node depleted if it has lost a half or more of its original

edges. The edge deletion procedure is given in Figure 5.1.

Exclusion of bridges is introduced to prevent an immediate and unavoidable cre-

ation of new disconnected components. As a (partial) result, nodes with a degree of one

never lose their edges. A new disconnected component can be considered as a major al-
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// input: kmax — number of edges to be deleted

create EdgeList — the ranking list of the edges of the largest connected component

remove bridges from EdgeList // Exclusion of bridges

k = 0

while k < kmax

edge e = (u,v) is a top of EdgeList

remove e from EdgeList

// Exclusion of edges of depleted nodes

if deletion of e makes neither u nor v a depleted node

then
delete edge e

k = k+1

end if
end while

Figure 5.1: Edge deletion procedure.

ternation of the network topology. Also we do not want to reduce the size of the largest

component because we want to deal with largest connected components in the original and

its perturbed networks of approximately the same number of nodes when we are comparing

different metrics (for example, the average SPD). Although we do not allow removal of

bridges, it does not mean that the connected component would not be split under any cir-

cumstances. That may happen because the stretch is calculated with respect to the original

network and not with respect to the current network where some of the edges were already

removed. Considering the stretch of the current network would be a better approach, but it

requires additional computations.

Exclusion of edges of depleted nodes is introduced to prevent a significant change

of the network topology around a single node. That is, a half or more of adjacent edges

of any node must survive the deletion. That means (among other things) that nodes of the

degree two do not lose any edges. Making this threshold (of 50%) of the surviving edges
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substantially higher would mean that only an edge adjacent from both of its sides to nodes

with higher degrees could be deleted.

The ranking in our experiments will be done in one of three orders: ascending, de-

scending, or random. The descending order gives the highest rank to an edge that connects

seemingly the most unrelated nodes. The ascending ranking is the reverse of the descend-

ing ranking. The random order associates with an edge a number uniformly drawn from the

same range, and ranks the edges according to these numbers. The following is a description

of the descending order:

• Rank the edges according to their stretch. Longer stretch means higher rank.

• In the case of the tie, rank the edges by the number of the unique paths supporting

the stretch. Fewer paths means higher rank.

• Break the remaining ties randomly.

When we talk about the descending and ascending orders of deletion, we always imply the

edge rating based on the stretch, unless it is explicitly stated otherwise, like in Section 5.3.5.

5.3 Impact on the shortest paths

To affect the routing opportunities in the graph the most, we should concentrate on the edges

with the highest stretch (these edges are deleted first when the descending order of deletion

is used). Those edges are expected to participate in many shortest paths of the graph and

should play an important role in the formation of the small-world phenomenon. In the grid-

based model, for example, some of the long-range edges play this role. The proof of the

upper bound on the expected path length for the greedy routing is based on the expectation

to encounter a useful long-range contact (mentioned in Lemma 1 of Section 2.2.2, proved

in [28]).

We use the embedded networks from Section 3.5.4 for our experiments. See the

description of the networks in Table 5.1. It repeats Table 3.2 with one exception. The grid-

based network was converted to an undirected graph by adding the necessary edges. The
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network nodes average maximum degree coefficient average effective diam-
n degree degree standard of SPD diameter eter

deviation variation D0.9
GB 4096 5.42 11 1.03 0.190 6.68 7.86 12
PG 4941 2.67 19 1.79 0.671 18.99 26.87 46
CM 36458 9.42 278 13.19 1.400 5.50 6.68 18
PB 1222 27.36 351 38.40 1.404 2.74 3.33 8
AS 22963 4.22 2390 32.94 7.809 3.84 4.63 11

Table 5.1: Statistics of the largest connected components. Undirected graphs. The networks
are sorted by the coefficients of variation (ratio of the standard deviation to the mean) of the
nodes’ degrees.

rest of the networks were already undirected and remained unchanged; their data is repeated

here for the sake of convenience.

5.3.1 Grid-based network

We start with the grid-based network (GB), which was converted to an undirected graph.

In GB, any pair of nodes has at least two simple edge-disjoint paths connecting them. Most

of the nodes of the network have a degree of five or six, and the standard deviation of the

node degree is very small. The local edges have the stretch of three at most, and the stretch

of the long-range edges may vary considerably.

We remove a fixed fraction of the edges from the network according to the edge

deletion procedure. We conduct three experiments for each of the chosen fractions. In the

first experiment, we will choose edges for the deletion uniformly at random regardless of

their stretch; this will serve as a reference point. In the second experiment, we will delete

edges with in the descending order (highest stretch first), and in the last experiment we

delete edges in the ascending order. For each experiment, we calculate an average shortest

path distance (SPD) for a hundred thousand pairs of nodes chosen uniformly at random.

The results are given in Table 5.2. The first line shows the results for the original

network (with no deleted edges, so the results for the all orders of deletion are identical). Let

SPD0 be the average SPD for the original network, and SPDdesc (SPDasc, SPDrand) be the

average SPD for the network perturbed in the descending (ascending, random) order. The

increase of SPD columns show by how much the average SPD grew after the edge deletion
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(SPDdesc/SPD0−1 for the descending order, for example). There is an obvious difference

in the increase of SPD between the random and the descending orders of edge removal for

these sets of experiments. The ratio columns show this difference. The ratio of descending

order or rdesc column is a ratio of increases of SPD between the descending and random

orders rdesc = (SPDdesc/SPD0−1)/(SPDrand/SPD0−1) = (SPDdesc−SPD0)/(SPDrand−

SPD0), because the random order serves as a reference point. Similarly, ratio of ascending

order or rasc column is defined as rasc = (SPDasc−SPD0)/(SPDrand−SPD0).

In general, we expect the function rdesc of fraction of deleted edges to be close to

a concave function. When too few edges are deleted, then SPD is not seriously affected by

the order of deletion, because the number of shortest paths in which these edges participate

is small anyway. If too many edges are deleted, then we might be dealing with similar sets

of deleted edges (although they do not have to be identical, because of the interplay between

an order of deletion and the exclusion of edges of depleted nodes).

We will be mostly talking about rdesc and only notice that rasc was always less that

1 for GB, which means that the difference between the descending and ascending orders is

even larger. When 10% of the edges were removed in the descending order SPD grew up by

almost 65% and rdesc was above 10. We received this high ratio because most of the edges

are local edges and they extremely bad suited for the creation of the small-world network;

and many of the long-range edges have a high stretch.

The max row of Table 5.2 shows what happens if we delete all qualified edges (they

should not satisfy the aforementioned exclusions). The real fraction of the deleted edges

cannot be higher than 50%, because of the exclusion of edges of depleted nodes. This row

can be used as a vague upper bound of what can be achieved by the edge deletion procedure.

5.3.2 Power grid network

The two exclusions in the edge deletion algorithm (prohibiting deletion of bridges and of

edges of depleted nodes) did not affect seriously the sets of deleted edges for GB network.
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fraction average SPD increase of SPD ratio
of deleted

edges asc. rand. desc. asc. rand. desc. asc. desc.
0 6.679 6.679 6.679 N.A. N.A. N.A. N.A. N.A.

0.01 6.693 6.720 6.939 0.002 0.006 0.039 0.348 6.364
0.03 6.731 6.793 7.532 0.008 0.017 0.128 0.453 7.437
0.1 6.920 7.095 11.14 0.036 0.062 0.668 0.581 10.72
max 8.511 9.294 28.74 0.274 0.392 3.303 0.701 8.434

Table 5.2: Grid-based network perturbation.

This was not a problem because of the abundance of the backup paths in GB and because

most of the nodes had four local edges with a low stretch and high stretch edges were rela-

tively evenly distributed. This is not true for real world networks. Even with the exclusions,

the size of the largest component of power grid network (PG) changed considerably in the

case of in the descending order of deletion. Only 2749 out of 4941 nodes survived when

10% of edges were deleted in the descending order. (In other networks, we never lost more

than 3% of nodes.) Cases like this may happen, because we calculate all the stretches in the

original network only, and not in the current network. We could have checked whether the

edge which is about to be deleted creates a new component online, but it would cost O(m)

per edge, and O(m2) totally, and we decided not to do it. An idea that gives even more

precise data is to recalculate all stretches after each edge deletion, but it would cost even

more. Partially, the loss of the component size for PG can be related to a very low average

node degree in the original network, which is equal to 2.67.

The results of experiments are shown in Table 5.3. Again, we see significant dif-

ferences in the increase of SPD between the random and the descending orders of the edge

removal. Moreover, it strongly affects SPD even with a low fraction of deleted edges. Even

when only 1% of the edges were removed in the descending order and 97% of the nodes

did not lose any adjacent edges, SPD grew by 18.4% (versus 1.2% in the random order

case). Again, rasc was always less that 1 for PG, which means that the difference between

the descending and ascending orders is even larger.
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fraction average SPD increase of SPD ratio
of deleted

edges asc. rand. desc. asc. rand. desc. asc. desc.
0 18.99 18.99 18.99 N.A. N.A. N.A. N.A. N.A.

0.01 19.01 19.21 22.48 0.001 0.012 0.184 0.107 15.76
0.03 19.20 20.34 26.33 0.011 0.071 0.387 0.158 5.430
0.1 22.51 25.32 34.04 0.185 0.333 0.793 0.556 2.379
max 36.10 39.88 40.63 0.901 1.100 1.140 0.819 1.036

Table 5.3: Power grid network perturbation.

5.3.3 Networks with hubs

Here we consider the remaining three networks: the condensed materials coauthorship net-

work (CM), the autonomous systems network (AS), and the political blogs network (PB).

We got the striking difference in the increase of SPD between the random and descending

orders of the edge deletion for these networks. However, the magnitude of the increase was

smaller, although for two of them (CM and AS) the difference was still significant. The key

to the problem may lie in the presence of hubs (nodes with high degrees) in these networks

(there were no hubs in GB and PG).

Hubs also present a problem in the anonymization process; they are easily iden-

tifiable in an unlabeled network based on the node degree. Moreover, the node degree is

often considered as the most accessible information (to the adversary), for example in [27].

Being able to identify hubs in the anonymized network may lead to the identification of

many other nodes, assuming that the adversary may have knowledge about the presence of

edges between the target nodes and the hubs. If there are many hubs, the connections from

the hubs to a node may often work as a unique signature of the node.

To be more specific, we might say that if a node has a degree higher than a hub

threshold then it is a hub. It makes sense in this case to convert hubs into a regular node

overtly at the beginning of the anonymization process and only then apply the edge deletion

procedure of Section 5.2.1. The hub conversion procedure is conducted as the following.

We remove an edge between a node with the highest degree and its neighbor with the
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while at least one hub remains in the network

identify node u with the highest node degree in the network.

identify node v, a neighbor of u with the highest node degree.

delete edge e = (u,v).

end while

Figure 5.2: Hub conversion procedure.

highest degree iteratively; until no hubs are remained in the network, see Figure 5.2. We

considered two alternatives to this procedure, but they had shortcomings. A more drastic

alternative would be to remove all the hubs with all their edges. However, this can lead to

a severe reduction in the size of the largest component (more that a half of nodes were lost

in one case). A smaller impact alternative would only delete the edges between the hubs,

but preserve the edges between the hubs and the rest of the nodes. However, that resulted

in preservation of some of the hubs (they preserved most of their edges), which defeats the

purpose of the hub conversion procedure.

The question what constitutes the hub threshold is arguable, but it seems that if

a node is connected to the square root (or more) of the nodes in the largest connected

component then it is definitely a hub. In this case, the hub threshold for CM is 190, for AS

is 151, and for PB is 34. The conversion of hubs led to the decrease of the largest component

of the networks and of their average node degree. Some data for the largest components

of the original networks (annotated as having the hub threshold equal to ∞) and networks

formed by the conversion of hubs into regular nodes is given in Table 5.4. The conversion

of hubs affected PB the most, which is result of the very high level of the average node

degree (more than 27) relatively to the small number of nodes (1222).

Alternatively, a hub should be defined as a node that that have more neighbors than

the average node degree plus some number of standard errors of the node degree. This

definition might be more suitable for PB. In the following sections were using the first

definition.
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network hub number largest average average
network threshold of hubs component size degree SPD

CM ∞ 0 36458 9.42103 5.49924
190 11 36458 9.39936 5.50617
100 115 36458 9.22102 5.59007

AS ∞ 0 22963 4.21861 3.83999
151 52 18489 3.18178 5.94757

PB ∞ 0 1222 27.3552 2.73706
34 321 1222 14.2111 3.43892

Table 5.4: Networks before and after removal of hubs

hub fraction average SPD increase of SPD ratio
thresh- of deleted

old edges asc. rand. desc. asc. rand. desc. asc. desc.
∞ 0 5.499 5.499 5.499 N.A. N.A. N.A. N.A. N.A.

0.1 5.586 5.687 6.229 0.016 0.034 0.133 0.465 3.890
max 6.631 6.923 7.731 0.206 0.259 0.406 0.795 1.568

190 0 5.506 5.506 5.506 N.A. N.A. N.A. N.A. N.A.
0.1 5.589 5.699 6.246 0.015 0.035 0.134 0.432 3.846
max 6.666 6.931 7.739 0.211 0.259 0.406 0.814 1.567

100 0 5.590 5.590 5.590 N.A. N.A. N.A. N.A. N.A.
0.1 5.670 5.789 6.300 0.014 0.036 0.134 0.400 3.574
max 6.799 7.040 7.917 0.216 0.259 0.416 0.834 1.605

Table 5.5: Condensed materials coauthorship network perturbation.

5.3.3.1 Condensed materials coauthorship network

For the results in the original CM network, see the upper section of Table 5.5 (annotated as

having hub threshold ∞). When 10% of the edges were removed with the descending order,

the average SPD grew by 13% and rdesc was 3.89. Although the ratio and the increase are

significant, the increase is much lower than for PG and GB. The max row indicates that

the possible room for improvement is limited and achieving results of GB and PG is very

unlikely.

Here and for the two remaining networks, we calculate the increases of SPD and

the ratios with respect to the networks received after the hub conversion (if applicable).

Remember, the hub conversion is defined as an overt action by the network curator. Only
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11 out of more than 36 thousand nodes of CM were identified as hubs (see the row of

Table 5.4 annotated as CM network having a hub threshold of 190). Therefore, there is no

much difference in the results shown for the original network and the networks received

after removal of the hubs (compare different sections of Table 5.5). We lowered the hub

threshold to 100 and still could not get significantly larger increase of the average SPD.

This remains an example of not well-understood network resilience, although partially it

might be related to the fact that when we lower the hub threshold we treat regular nodes as

hubs and this does not give us the desired effect. Note that the average node degree does not

change much when the hub threshold goes down (see Table 5.4). Again, rasc was always

less that 1 for CM networks, which means that the difference between the descending and

ascending orders is even larger.

5.3.3.2 Political blogs network

The results for the smallest network, which is a network of political blogs, are given in

Table 5.6. The reason for the resilience of the original PB network might be a combination

of a very high average node degree (more than 27) and a small network size (1222). Even

when we removed all removable edges (about 43% of the edges), the average SPD was

3.165 (increase of only 0.156).

Due to the aforementioned combination, about a fourth of the nodes were qualified

as hubs with the hub threshold of 34 (≈
√

1222). Many of the edges were deleted during the

hub conversion, and the results became much better. When 10% of the edges were removed

with the descending order, the average SPD grew by 10% and rdesc was 3.87. Again, rasc

was always less that 1 for all PB networks, which means that the difference between the

descending and ascending orders is even larger.

5.3.3.3 Autonomous systems network

The results for the original autonomous systems network are in the upper section of Ta-

ble 5.7 and look similar to the results shown for the original CM. When 10% of the edges

were removed with the descending order, the average SPD grew by 10% and rdesc was 2.04.
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hub fraction average SPD increase of SPD ratio
thresh- of deleted

old edges asc. rand. desc. asc. rand. desc. asc. desc.
∞ 0 2.737 2.737 2.737 N.A. N.A. N.A. N.A. N.A.

0.1 2.778 2.796 2.852 0.015 0.022 0.042 0.693 1.945
max 3.028 3.113 3.165 0.106 0.137 0.156 0.774 1.138

34 0 3.439 3.439 3.439 N.A. N.A. N.A. N.A. N.A.
0.1 3.480 3.530 3.791 0.012 0.026 0.102 0.447 3.870
max 3.900 3.983 4.339 0.134 0.158 0.262 0.847 1.655

Table 5.6: Political blogs network perturbation.

Surprisingly, the average SPD for the ascending order of edge deletion was even higher than

the average SPD for the descending order (for all other networks the average SPD for the

ascending order was the lowest among SPDs for the three orders). We believe this is related

to the important role that hubs play in this network. AS has nodes with very high degree and

the coefficient of variation of the node degree is the highest among the considered networks

(see Table 5.1). Consider two hubs with very high degrees that are connected by an edge.

This edge might be a part of many shortest paths. It is also likely to have a high ranking in

the ascending order, because many nodes might be connected to the two hubs. Deletion of

the edge between the hubs will increase many SPDs, although just by one. And that might

explain why the ascending order of deletion is so powerfull in the original AS.

AS network had slightly higher fraction of hubs than CM (52 hubs out of almost 23

thousand nodes, see Table 5.4). There was a significant difference in the increase of SPD,

after the hub conversion (see Table 5.7). The increase of SPD went up from 10% to 20% for

the descending order. rdesc reduced from 2.04 to 1.72, but it is still significant. The average

SPD for the ascending order was still higher than the average SPD for the random order,

but less than the average SPD for the descending order (rdesc = 1.72 and rasc = 1.27).

5.3.4 SPD summary

If we consider the original networks (that is, do not convert hubs) and look at the result

of removal of 10% of the edges, rdesc was always high (between 1.9 and 3.8 for the real

networks, and 10.7 for GB), which shows a big difference between the descending and the
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hub fraction average SPD increase of SPD ratio
thresh- of deleted

old edges asc. rand. desc. asc. rand. desc. asc. desc.
∞ 0 3.840 3.840 3.840 N.A. N.A. N.A. N.A. N.A.

0.1 4.567 4.040 4.247 0.189 0.052 0.106 3.638 2.038
max 5.393 5.291 5.614 0.404 0.378 0.462 1.070 1.223

151 0 5.948 5.948 5.948 N.A. N.A. N.A. N.A. N.A.
0.1 6.851 6.657 7.170 0.152 0.119 0.206 1.274 1.723
max 7.795 7.945 8.438 0.311 0.335 0.419 0.925 1.247

Table 5.7: Autonomous systems network perturbation.

random orders of the edge deletion. With the exception of AS, the same applies to the

difference between the descending and the ascending orders of the edge deletion (rasc was

less than 1 for the other four networks). In the terms of the magnitude of increase of the

average SPD for the descending order, the results were mixed. CM and AS had increases of

above 10%, which is significant. GB and PG had increases of over 66%, which is huge (even

when only 1% of the edges was deleted, the increase was over 12% for these networks). PB

was resilient (combination of the small network size and the high average node degree) and

had an increase of only 4%.

The introduction of the hub conversion brought increase in the magnitude of in-

crease of the average SPD for the descending order for AS and more importantly for PB.

CM remained unaffected, may be because it had only few hubs.

5.3.5 Commute time

In this section, we consider commute time as a measure by which the edges are rated. The

commute time of a random walk between two nodes on a graph is defined as the expected

time (number of steps) for the random walk to depart from one of the nodes, reach the other

node, and return to the first node. Instead of calculating the commute time between the

endpoints of an edge exactly, we estimate it. For each edge, we conducted 100 random

walks emanating from one of its endpoints (the commute time is symmetric) and measured

the average commute time. A walk can be quite long, so in order to save the time we also

set a maximum walk limit. If a walk reaches the limit, the walk is terminated and the limit is
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network commute average SPD
success ascending ascending random descending descending

rate stretch comm. time comm. time stretch
GB 0.688 6.920 7.022 7.095 7.219 11.14
PG 0.785 22.51 20.69 25.32 39.70 34.04
CM 0.086 5.586 5.656 5.687 5.758 6.229
PB 0.963 2.778 2.840 2.796 2.806 2.852
AS 0.320 4.567 4.835 4.040 4.085 4.247

Table 5.8: Commute time versus stretch.

assumed as the walk length. For the largest network (CM), the limit was set to 1000; for the

rest of the networks, it was set to 10000. The success rates (of the commute completion)

and the average SPDs for five orders of deletion are given in Table 5.8. The fraction of

deleted edges was set to 0.1. Three of the orders were already discussed before and their

results are repeated here for the sake of convenience. The two new orders (the descending

and ascending orders of the edge deletion based on the commute time) rate edges based on

the commute time solely.

The stretch can be considered as a local measure (at least for the edges with a

short stretch), but all edges of the network affect the commute time for any pair of nodes.

Addition of an edge to the network may lead only to the reduction of some of the stretches,

but the commute time might be increased for some pairs of nodes and decreased for some

other pairs. For all five networks that we considered here, usage of a descending order

of deletion (based on either the stretch or the commute time) led to the increase of the

SPD (comparatively to the random order of deletion). For GB, PG, and CM, usage of both

ascending orders of deletion led to the decrease of the SPD. For AS, they led to the increase

of the SPD. Only for the combination of PB and the ascending orders, there was a switch;

the stretch based deletion decreased the SPD, the commute time based deletion increased

the SPD (all comparatively to the random order of deletion). Thus, in most of the cases, the

stretch based and the commute time based ratings caused impacts of a same character but

of a different magnitude (stretch based orders had usually a stronger impact).
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5.4 Impact on the community structure

5.4.1 Evaluation of the orders of edge removal

In this section, we consider networks that have an underlying community structure. Internal

edges of a community build the community, and we expect to see many of them. Consider

an edge that is internal to some community. It is reasonable to expect that the edge has

many short paths connecting its endpoints. Therefore, internal edges are likely to have low

stretch and might have many paths that support this stretch. On the other hand, an edge that

connects two communities is likely to have a large stretch. Otherwise, one should consider

including its endpoints into the same community.

We can evaluate the obviousness of a community structure of an original and its

perturbed network by calculating their partition modularities (with the partition as defined

by the known ground truth communities) and comparing them with each other. However,

that measure might be difficult to comprehend. To overcome this problem we will assume

that our community detection algorithm works well and will use it to produce communities

that are supposed to match the ground truth communities. We will calculate Jaccard indices

between the ground truth communities and the communities discovered by algorithm.

5.4.1.1 Two-dimensional network

We will borrow a network that we considered in Section 4.4.4.1. The network is IDN(2,

20,40,0.35,0.07/d). We chose this network because the community detection algorithm

showed good results for it. Modularity by groups columns of Table 5.9 show the modu-

larity of partitions formed by the ground truth communities of the original and perturbed

networks. The random order of the edge deletion did not affect the modularity much, while

the ascending order led to the decrease of modularity, and the descending order led to the

increase of modularity. The last three columns are based on the results produced by the

community detection algorithm. The cover modularity column shows the modularity for

the cover that produced the lower bound on Jaccard index. When 10% of the edges are
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fraction of order of modularity cover bounds on
of deleted deletion by groups modularity Jaccard index

edges dim A dim B lower upper
0 N.A 0.2155 0.2143 0.2074 0.7931 0.8296

0.03 ascend. 0.2037 0.2047 0.1831 0.7201 0.7553
0.03 random 0.2157 0.2146 0.2006 0.7739 0.7857
0.03 descend. 0.2234 0.2217 0.2160 0.8153 0.8265
0.1 ascend. 0.1833 0.1854 0.1449 0.5110 0.5342
0.1 random 0.2141 0.2143 0.2027 0.7744 0.7866
0.1 descend. 0.2425 0.2404 0.2364 0.8394 0.8448

Table 5.9: Perturbation of two-dimensional network.

fraction of order of modularity cover bounds on
of deleted deletion by groups modularity Jaccard index

edges lower upper
0 N.A 0.4445 0.4004 0.8369 0.8489

0.03 ascend. 0.4295 0.3850 0.7530 0.7659
0.03 random 0.4432 0.3960 0.8214 0.8289
0.03 descend. 0.4594 0.4177 0.8525 0.8609
0.1 ascend. 0.3927 0.2291 0.4976 0.5253
0.1 random 0.4420 0.3811 0.7687 0.7859
0.1 descend. 0.4985 0.4620 0.8402 0.8474

Table 5.10: Perturbation of one-dimensional network.

deleted, the ascending order of deletion caused a significant damage, the random order

caused a small damage, and the descending order actually improved the results. When 3%

of the edges are deleted, the tendencies are the same but the amplitudes of the changes are

smaller.

5.4.1.2 One-dimensional network

We also tried the edge deletion for a one-dimensional network, for which we could produce

Jaccard index of just above 80%. It was a IDN(1,20,40,0.25,0.05/d) network. We kept

the ratio rion = pintra/pneigh equal to 5, similarly to the two-dimensional case. We could

lower pintra and thus the number of internal edges, because the network is one-dimensional

and there is no noise caused by the edges of the missing dimension. The results are given

in Table 5.10 and they are very similar to the results of the two-dimensional case.
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5.4.2 Why one might want not to preserve the community structure

Here we want to introduce a scenario where the preservation of communities during the

anonymization process can be undesirable. It might go against the general idea of Sec-

tion 5.4 that we want to preserve the community structure of the network, but this should

be considered anyway. Consider an attack that is similar to the active attack described by

Backstrom et al. [5]. The attacker plants several nodes prior to the network anonymiza-

tion. These nodes are connected between themselves and also to legitimate nodes of the

network, some of which are the target nodes (which the attacker wants to identify in the

anonymized network). When the anonymized network is released, the attacker identifies

the planted nodes based on the connections between the planted nodes and knowledge of

the exact node degree of the planted nodes. After that, the identification of the target nodes

is possible.

The problem of identification of a planted subgraph in an anonymized network is

closely related to the problem of subgraph isomorphism, which is a known NP-hard prob-

lem. Backstrom et al. [5] make this problem easier by introducing a special path connecting

the planted nodes that takes into account the nodes’ degrees. They claim that detection of

the planted nodes can be easily done in the real networks. At the same time, the cura-

tor of the network that does the anonymization might perturb the network and make the

anonymization more difficult. Without knowing any specifics of the work that is done by

the adversary and the curator, we cannot prove anything and can only assume that detection

of the planted nodes is still hard (whatever hard might mean).

Suppose, for the sake of argument, that the adversary wants to identify the planted

nodes based on the subgraph isomorphism. The whole network will be much larger than

the planted subgraph, and the size of the network affects the time necessary to find the

isomorphism. Suppose that the adversary creates links between the planted nodes in such

way that they form community in the network. It is a reasonable assumption because if the

adversary wants to create a link between two planted nodes then he has full control over
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both endpoints of the edge. If the anonymization process preserves the network communi-

ties, then the adversary might run a community identification process on the anonymized

network. Even if the planted community is not identified exactly by the community iden-

tification process, it would suffice that all the planted nodes end up in one of the identified

communities. Now the adversary has to solve the subgraph isomorphism problem many

times (one per each identified community), but the size of each instance of the problem is

much smaller.

5.5 Summary

We have demonstrated a difficulty of the utility preservation in the process of network

anonymization. Concentrating on achieving the best results in order to preserve one quality

of the network might damage another quality. When we prefer the deletion of edges with

a high stretch as a part of the network perturbation, we gain in the preservation of the

community structure of the network, but we worsen routing abilities in the network. When

we prefer the deletion of edges with a low stretch, we preserve many short paths in the

network, but destroy its community structure.

If we look at the edge stretch as a measure whether the edge deserves to exist,

then edges with a long stretch can be deemed as “odd” edges. The number of “odd” edges

should be small and it is not a surprise that their removal affect some property (shortest path

distance in our case). Edges with a short stretch should be deemed as “normal” and there

should be a plenty of them. We expected that it would require removing much more of them

in order to see a change (destruction of the community structure in our case). However, it

took about the same fraction of edges to be deleted in order to see the changes.
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Chapter 6

CONCLUSION AND FUTURE WORK

A few aspects related to small-world networks were considered in this dissertation. The

grid-based model introduced by Kleinberg possesses two main characteristics that pertained

to small-world networks: the existence of short paths between many randomly chosen pairs

of nodes of the network and the ability of the nodes to find these paths in a decentralized

fashion. The routing in this model is based on the ability of a node to understand its own

place in the network, having good understanding of the locations and the roles of its im-

mediate neighbors, and having at least an approximate understanding where the targets are

located.

The proof on the upper bound of the expected path length in the grid-based model

was a source of our idea for how a deterministic grid-based model should be organized.

We saw that in the probabilistic model, the search was divided into a logarithmic number

of phases and later phases were responsible to route in exponentially smaller areas around

the target. In the deterministic model, we do not know where the target will be at the time

when the grid is created, but we can assign the long-range edges so that we have the same

logarithmic number of phases and later phases are responsible to navigate in smaller areas

similarly to the probabilistic model. The difference is that the areas corresponding to the

phases in the deterministic model are defined at the stage when the grid is created and the

target is unknown.

We proved that the average length of the long-range edges in the deterministic

model is asymptotically shorter than the expected edge length of a long-range edge in the

probabilistic model. It can be useful in an environment where the deterministic generation

of long-range edges is allowed and the cost of connection is increases with the geographical

distance of the underlying space.

A long-range edge in the deterministic model is always aligned with a direction in

a single dimension. It would be interesting to know if a path length can be decreased if an
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edge lies in the subspace spanned on more than one dimension. For example, if some edges

will be connected to the center of the multidimensional grid and not to the center of the

chain (one-dimensional grid comprising a grid of higher dimension).

Greedy routing in grid-based model is memoryless. Humans are capable of learn-

ing, and our adaptive decentralized search capitalizes on the experience of previous searches.

We borrow a lot from the grid base-model: we still partition the space into logarithmic

number of regions and initialize expert weights based on the Euclidean distance in the un-

derlying space. However, this time each node is an active learning agent and defines these

regions with respect to its own location. Our adaptive routing improves upon greedy rout-

ing because each node learns about the network beyond its immediate neighborhood. The

learning happens not because a node learns explicitly about some additional nodes to which

it is not connected by an edge. It learns about the underlying space of the network and

learns which of its neighbors can be more useful in routing to a particular region.

We saw that the adaptive routing outperforms greedy routing in grid-based net-

works and real world networks. It scales well, showing better results for larger networks.

It is also capable of managing dynamic networks as long as changes in the network ap-

proximately match the underlying space (it cannot deal with randomly created edges). We

saw that the adaptive routing learns at different speeds. Networks that are regular (with a

low deviation of the nodes outdegrees) have something similar to a phase transition. The

overpayment rates dropped significantly in a short period of time. However, networks with

hubs showed an improvement that is more gradual. We do not know the reason for this

phenomenon and this can be a source of the future research.

Another strength of our adaptive routing is its resilience, which is particularly valu-

able for decentralized systems where the assumption of failure of part of the nodes is reason-

able. We saw very good results in networks with 10% of lazy nodes. It would be interesting

to see how the adaptive routing works for different fractions of lazy nodes in the network. In
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particular, it is interesting to check whether the transition phase still happens in the learning

curves of more regular networks when the fraction of lazy nodes becomes larger.

The other adverse environment we considered was an environment with blind nodes.

We considered the extreme situation when all the nodes were blind. Even in this environ-

ment, some networks outperformed the greedy routing. It would be interesting to see how

the adaptive routing behaves in the situation when only a part of the nodes is blind. It is

possible to imagine that there will be a significant improvement when even a small fraction

of nodes is not blind. The non-blind nodes are likely to play an important role in shaping

the first successful searches. With time, the difference between blind and non-blind nodes

should diminish.

Yet much more challenging will be situation where a blind node does not know not

only coordinates of its neighbors but also of itself. The whole idea of partitioning is based

on the assumption that a node forms regions with respect to its own location, and now it is

deprived of this ability. The solution might lay in a different kind of dynamic partitioning.

A node splits the whole space into four equal quadrants at first. Then it finds out which

quadrant is overused and splits it into four smaller quadrants. This way, it can “zoom in”

to the most populated areas. We did not try this approach and cannot say if this will indeed

work.

Another area for future work can be the integration of the network embedding and

the message routing into a single decentralized process. We provided a decentralized ver-

sion of the network embedding. However, we cannot unite it with the adaptive decentral-

ized routing because we need to know the node locations in order to route, and they become

known only in the middle of the extended flow. It will be interesting to know if there are

special cases of graphs for which a node is also used as a location service that knows how

to route to a small number of other nodes.

We considered the problem of community detection in networks. This problem

is especially difficult when we try to detect overlapping communities. We considered the
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modularity; this measure is widely used to evaluate quality of the network partition into

communities. We defined a notion of the contribution of a node to the partition modularity.

This allowed us to extend of the notion of the modularity to covers (a partition is a special

case of a cover). The definition of cover modularity is not perfect (we demonstrated it

on the example of a cover consisting of two partitions; it would be interesting to find out

an alternative definition that does not suffer from this problem). However, we saw that

the suggested cover modularity correlates well with the Jaccard index in our experiments

(the Jaccard index is defined with respect to the ground truth communities and expected to

reflect the quality of the cover well).

We developed an algorithm for detection of the overlapping communities. At the

first stage of the algorithm, each node makes its own decision to how many communities it

belongs and how its neighbors are distributed between the communities. Importantly, this

stage is conducted by each node locally independently of other nodes. Later these local

decisions are combined to form final communities. Interestingly, we build our communities

and rate them based on the notions of modularity and contribution to modularity.

The existing problem is that our algorithm relies on the decomposition rates (a tun-

ing parameter that allows us to regulate how deep the iterative process of a community

splitting should go). We do not know how to find these rates and only show (in our experi-

ments) that such rates exist. An interesting question is what should be done in order to find

these rates, or at least how to suggest a limited number of possible solutions.

Due to the absence of real world networks with known overlapping communities,

we had to design independent dimensions network model. This model not only allows to

create overlapping communities, but also to introduce distance-based relationship between

non-overlapping communities. Later we extended this model to codependent dimensions

network model that allows a significant overlap between communities.

We intentionally targeted the case that all nodes of the network belong to multiple

communities. However, in our community generation models each node participates in the
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same number of communities. It will be interesting to see what happens when the models

allow nodes to participate in different numbers of communities.

Finally, we considered the problem of preservation of network utility while protect-

ing the user anonymity. The definition of a network utility is application driven. Efforts to

preserve a particular utility better may lead to a significant decrease in the level of preser-

vation of another utility. We demonstrated this on the example of two characteristics of

the network that were considered in this dissertation before: routing opportunities versus

community structure.

We considered one of the simplest ways of network anonymization — edge dele-

tion. It would be interesting to see how things change when edge replacement is used, for

example.

An area for future work can be related to the case when several perturbed networks

preserving different properties of the same original network are released. It might be easier

to match nodes of the released networks than to find planted nodes of an active attack. It is

enough for the adversary to match any pair of nodes (hubs for example) and then to extend

to other nodes.

Another area for future research might be related to the understanding of the role

of hubs in the preservation of network utility. Similarly to the routing experiments, we

saw that networks with hubs and networks that are more regular exhibit different types of

behavior.
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Appendix A

DETAILS ON THE PENALTY MATRIX
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We do not know at the outset which outcomes (path lengths) should be considered

as good ones, in other words what the penalty matrix M(i, j) should look like. To overcome

this difficulty we consider the average outcome seen so far by the ensemble (denoted as

daver) as a neutral outcome (with zero penalty). We treat all experts equally, therefore each

region has its own dynamic one-dimensional penalty matrix M( j), and j is an outcome, i.e.,

the length of the portion of the path from the node (corresponding to the ensemble) to the

target. Thus, Formula (3.1) for the weight update of the expert i becomes

wi =

 wi(1− ε)+M( j)/ρ if M( j)≥ 0

wi(1+ ε)−M( j)/ρ otherwise
(A.1)

If the new outcome d is longer than the average one we will use min(4,d/daver− 1) as a

penalty; otherwise when the new outcome d is shorter that the average one we will use

max(−4,−daver/d + 1) as a penalty (a negative penalty is a reward). These two ratios

(d/daver and daver/d) are always greater than or equal to 1 when they are used. So we

subtract (add) 1 from (to) the corresponding ratio in order to prevent the (-1,1) gap in the

range of penalties. If d = daver the penalty is equal to zero (there is no weight update). By

limiting the penalty range to the interval [-4,4], we are setting ρ to 4; the smaller is ρ , the

faster is the convergence (as long as the path lengths are not extremely far away from the

limit of the average path length). We set ε in our experiments to 0.3. Finally, in order to

speed up the convergence, we initialize the weights of an expert i before the first stage with

the reciprocal of the Euclidean distance between the corresponding neighbor and the first

target that was assigned to the ensemble to the power of ten: 1/l10
2 . The reason for the so

high exponent is that we want that the ensemble will start in the greedy-like style and we

want a clear distinction between the neighbors with the closest Euclidean distance to the

target and the rest. Exact values for all these constants were chosen experimentally.
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Appendix B

DYNAMIC LONG-RANGE EDGES
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In this section, we consider networks that change with the time. We rarely but

consistently reassign heads of some of the edges to different nodes. This way the number

of outgoing edges and thus the experts in the ensembles do not change. However, experts

that correspond to the reassigned edges become poorly rated. We cannot make reasonable

assumptions how real-world networks will change with the time unless we have an expertise

in their domains. Because of that, we concentrate here only on the grid-based networks. For

these networks, we can reassign long-range edges without hurting their quality of being able

to represent small-world networks.

To be more precise we create a grid-based network with a chosen number of rows

(columns), and specified parameters p, q, and r (see their definitions in Section 2.2.1). With

some frequency, we reassign one edge at a time. We choose an edge for the reassignment

uniformly at random between all long-range edges that are longer than 1. Only these long-

range edges do not coincide with the local edges and have their own experts. When the

edge is chosen, a new corresponding long-range contact (the head of the edge) is chosen

from exactly the same distribution that was used for the original network (it is defined by

the exponent r). If the length of the newly proposed long-range edge is 1, the process of the

search for a new contact for the same tail of the edge continues immediately until a longer

edge is found. This way we are dealing with an ordered sequence of grid-based networks.

Each network is very similar to its predecessor and successor. It would have made more

sense not to reassign the long-range edge from the old contact to the new contact at once, but

move it slowly along the local edges. Although that would also make the learning process

easier, we did not want to complicate the model with the speed rate at which the contact

should travel.

When an edge changes its contact, the corresponding experts are likely to have

outdated weights in EEE method. However, we could learn the correct weights the first

time. Why cannot we do it again? The problem lies in the exploration rate, in the beginning

it is high, but soon becomes very low. (The probability of stage i to become an exploration

stage is 1/
√

i+1.) The reason is that we do not want to waste many stages on the learning
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when we succeeded to rate the experts well enough. This works in static environments, but

backfires in dynamic ones.

In our experiments with the grid-based networks from Section 3.4.3, we conducted

3000 searches per node. We repeat plots of the progress of the overpayment rate for these

experiments with EEE on the left part of Figure B.1. We show the average path lengths

and overpayment rates for the last buckets in these experiments and experiments with the

dynamic long-range edges in Table B.1.

We start with exactly the same networks and conduct the same number of searches

in our experiments with the dynamic long-range edges. We reassign a random long-range

edge every 750 searches. That is, an average long-range edge changes its contact four

times. When the reassignment happens, the tail of the node is not informed about it, so

it cannot reinitialize the weight of the affected experts based on the Euclidean distances

from the new contact to the regions. However, CMH still can detect when it is one hop

away from the target. The progress of the overpayment rate is shown in the middle of

Figure B.1. Obviously, the overpayment rate becomes higher because the environment is

more dynamic now. However more significantly, the overpayment rate reaches it minimum

around 140 to 600 searches per node and then starts to grow. At this point, the fraction of

the exploration stages becomes so low that it cannot keep up with the changes caused by

the reassignment of the dynamic edges. The results are becoming quite bad; it is likely that

eventually the experts of the long-range edges will end up with low weights and the routing

will be conducted by using mostly the local edges. We increased the number of searches

for the smallest network to 30000 per node, and the overpayment rate for the last bucket

was 5.46 and almost a quarter of the searches failed (the failure rate was 0.246).

De Farias and Megiddo considered a different scheme to make a decision whether

a phase should be an explorative or exploitative. They suggested that a phase becomes an

explorative phase with a constant probability that does not change with the time. That is

likely to hurt somewhat in environments that are more static, but helps with dynamic ones.
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Figure B.1: Dynamic long-range edges. Overpayment rates.

network average path length overpayment rate
static dynamic constant static dynamic constant
env. env. exploration env. env. exploration

rate rate
32×32 10.03 19.71 12.24 0.55 2.23 0.94
64×64 13.43 23.21 16.02 0.46 1.31 0.69

128×128 17.31 35.15 20.86 0.42 1.35 0.60
256×256 21.91 44.68 26.69 0.39 1.17 0.55

Table B.1: Dynamic long-range edges. The results are given for the networks with static
long-range edges, dynamic long-range edges, and dynamic long-range edges with a con-
stant exploration rate. The data is given for the last bucket.

On top of that, we can speed up the learning process about the moving edges by discounting

an old feedback. Up until now, all feedbacks to an expert had the same importance. With a

constant exploration rate, we will pretend that the weight of the constant expert is a result

of no more than 19 feedbacks. This way a new feedback has greater importance (at least of

5 percent of the current weight is formed by the latest feedback). We conducted the same

experiments with the dynamic long-range edges and received better results. We used the

exploration rates of 0.03. We used this exploration rate and the importance 0.05 of the last

feedback because it gave good results for the smallest network, and we used these constants

for the rest of the networks. The overpayment rates are shown on the left part of Figure B.1,

it shows that the overpayment rates are steadily decreasing and the results for the larger

networks become slightly better (the method scales well).
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Appendix C

DECENTRALIZED EMBEDDING
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It was suggested by the committee to consider decentralization of the extended flow,

which includes both the embedding and the routing. Although, the decentralized version

for the embedding was found and will be presented below, we cannot claim that the whole

flow is a name-independent decentralized algorithm. Although the embedding algorithm

does not depend on the names of the nodes, the routing does. In order to route the message,

CMH should know the target’s location and we require it to be a part of the name. We do

the embedding only because we do not know the true locations of the nodes, so they cannot

be incorporated into the names (unless we allow name change during the preprocessing,

that is, the embedding stage). We are not aware about any specific class of graphs for which

we can make the extended flow decentralized.

C.1 Koren’s algorithm.

Koren [32] uses the transition matrix of a random walk on the graph D−1A for the purposes

of graph visualization. The main idea is to put closely related nodes close to each other.

Koren motivates his method by an attempt to minimize ∑e=(i, j) wi j(xi− x j)
2, which can be

rewritten as xT Lx. Where L = (D−A) is the Laplacian, A is the adjacency matrix, D is a

diagonal matrix with the diagonal filled with the nodes’ degrees, the components of x are

the coordinates of the nodes, and wi j is the weight of the edge between the nodes i and j.

This leads to

min
x

xT Lx

given:

xT Dx = 1

xT D1n = 0

Where the last two lines make sure that the components of x are centered at 0, and they are

not collapsing to the origin. Both of them are normalized with respect to D in order to take

care of the variation of the nodes’ degrees. The solution for the above becomes a search for

the generalized eigenvectors of (L,D) (that is, Lu = µDu, where u and µ are a generalized

eigen-pair of (L,D)). They are equivalent to the eigenvectors of D−1A, which is exactly

what is used for the drawing by Koren by running an iterative process (see Figure C.1). The
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Function SpectralDrawing (G — the input graph, k — dimension)

// This function computes u2, . . . , uk,

// the top (non-degenerate) eigenvectors of D−1A.

const ε ← 10−7 // tolerance

for i = 2 to k do
ûi← random // random initialization

ûi← ûi/‖ûi‖
do

ui← ûi

// D-Orthogonalize against previous eigenvectors:

for j = 1 to i−1 do
ui← ui− (uT

i Du j)/(uT
j Du j)×u j

end for
// multiply with 1/2(I +D−1A):

for j = 1 to n do
ûi( j)← 1/2× (ui( j)+(∑k∈N( j) w jkui(k))/deg( j))

end for
ûi← ûi/‖ûi‖ // normalization

while ûi ·ui < 1− ε // halt when direction change is negligible

ui← ûi

end for
return u2, . . . , uk

Figure C.1: The algorithm for computing degree-normalized eigenvectors by Koren [32].

line 16 of this figure is the crux of the algorithm. The next value of the node’s coordinate is

the average of the current value of the node’s coordinate and the average of the coordinates

of the nodes’ neighbors.

C.2 Dell’Amico’s algorithm.

The algorithm provided by Koren [32] is centralized. Dell’Amico [16] used the spectral

graph drawing to embed the OpenPGP web of trust into a metric space for the purpose of

greedy routing and also suggested a decentralized version of the Koren’s algorithm. We

used Koren’s version in our experiments because of its straightforwardness and because
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we do not see it as a part of our adaptive routing algorithm per se. Nevertheless, it would

add to the value of the distributed routing if the mandatory input might be produced in the

distributed fashion as well.

The central operation of the algorithm (the line 16 of Figure C.1) is a calculation

of the next location of the node based on its current location and the current locations of its

neighbors. This is definitely can be done in the distributed fashion. Θ(m) messages of the

constant size are sent to facilitate the calculations at every iteration (one message in each

direction of each edge). There is a delay of Θ(1) at each of the iterations for the coordinate

exchange, because it can be done simultaneously.

However, for each larger iteration of the vector calculations (the lines 8 – 19 of

Figure C.1), there are operations that require a global effort of the network: D-orthogonali-

zation, normalization, and correctness of the stoppage criterion.

• Dell’Amico suggests that D-orthogonalization (the line 12 of Figure C.1) is redundant

and abandons it in his experiments. Koren also wrote that it was added for the sake

of numerical stability.

• Dell’Amico claims that the underflow/overflow of the variables storing the coordi-

nates of the nodes was not an issue in his experiments, and does the normalization

(the line 18 of Figure C.1) only at the end of the algorithm instead of doing it at each

iteration. He suggests a distributed normalization that is imprecise, but it might work.

• Instead of checking the conversion of the coordinates as the stoppage criterion (the

line 19 of Figure C.1), Dell’Amico runs the algorithm for a fixed number of iterations,

which explains in part why there is no need in the normalization after each iteration.

He suggests trying different numbers of the iterations, running a simulation of an ap-

plication that uses the results of the embedding, and deciding whether the embedding

was good based on the results from the application. Dell’Amico used 200 iterations

in his experiments. This low number might be an explanation why the algorithm did

139



not run into the underflow/overflow problem without the frequent normalizations, but

a different network may require a higher number of the iterations.

Overall, the algorithm of Dell’Amico does not require much overhead (in the terms of

the time and the number of messages) related to the transition from the centralized to the

distributed version, but there are questions related to the precision of the solutions.

C.3 New distributed algorithm.

We propose here an implementation of the Koren’s algorithm in a distributed manner with-

out any relaxation, but the overhead will be more significant than in Dell’Amico’s case.

As mentioned before, the main iterative operation (the line 16 of Figure C.1) recalculates

coordinates of a node based on the coordinates of its neighbors and can be done in the imme-

diate vicinity of each node. Consider the normalization (the lines 7 and 18 of Figure C.1)

and the stop criteria (the line 19 of Figure C.1). They both are essentially dot products;

and these particular dot products are linear combinations of the locally computable terms

(because each node needs to multiply its own coordinates). The remaining work to do is

D-orthogonalization (the line 12 of Figure C.1). uT
i Du j and uT

j Du j are very similar to the

dot product because D is diagonal; they are linear combination of the locally computable

terms as well. All we need for the transition from the centralized to the distributed version

is to execute the summation of the locally calculated terms and propagate the results (the

length of the current vector or some other real number) back to every node.

We can assume that each node has a unique ID. We need to choose a root r (with the

largest ID, for example) and build a spanning tree that will be used for the data collection

and the result propagation. It can be a tree matching a breadth-first search tree. Each node u

(except r) initializes du (its distance from r) to infinity, initializes its immediate ancestor to

NULL, and creates an empty list of its descendants. r sends to all its neighbors a message

that they are at distance 1 from r. When the node u receives a message that it might be at

distance d from r, it compares d to du. If du > d, then u:
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• stores the last sender as the current immediate ancestor of u (this neighbor is the only

immediate ancestor of u)

• notifies the last sender, that u is a descendant of the sender;

• notifies u’s previous immediate ancestor, that u is not its descendant anymore;

• updates du: du = d;

• notifies all neighbors of u that they might be at distance d +1 from the root r.

If du≤ d, then nothing is done by u. This way, the node u knows its (exactly) one immediate

ancestor and the list of descendants of u. Edges that connect each node to its immediate

ancestor form a spanning tree. The height of this rooted at r tree cannot be greater than D

— the diameter of the network.

In order to produce a linear combination of the locally computable terms, each node

u computes its term locally and adds it to the data received by u from its descendants. Only

when all the descendants of u have sent the data to u, u can send the sum to its immediate

ancestor. When the root r receives the data, it can calculate the linear combination and start

the result propagation (it is either the length of the vector or some other real number). Each

node propagates the result to its descendants.

Let k be the dimension of the space (that is the number of eigenvectors that we want

to produce). We need to do D-orthogonalization to all previously calculated eigenvectors.

At each iteration of the vector’s calculations (the lines 8–19 of Figure C.1), Θ(kn) messages

of the constant size are sent to accommodate D-orthogonalization. There are also Θ(m)

messages of the constant size to be sent in the line 16 of Figure C.1. Therefore, there are

totally Θ(kn+m) messages of the constant size are sent at each iteration of the loop. There

is a delay of O(kD) at each of the iterations, because the data propagation cannot be done

simultaneously.

In the previous paragraph, we bounded the number of the messages and the delay

for one iteration of the loop of the lines 8–19 of Figure C.1. In order to produce the bounds
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for all k eigenvectors, assume that the number of iterations for one vector is bounded from

above by a number N. Then in order to produce all the vectors, we will need O(kN(kn+m))

messages of the constant size and the related delay of O(k2ND).
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Appendix D

DETAILS ON THE SPECTRAL GRAPH EMBEDDINGS
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The description of Koren’s algorithm and the related discussion is given in Ap-

pendix C. Here we discuss how it was used for the networks that we considered for the

routing.

The spectral graph-drawing algorithm requires specifying two parameters in addi-

tion to the graph topology. One of them is the dimension of the desired metric space, and

we set it to two in all our experiments for the sake of simplicity. We do not attempt to assign

a geographic interpretation to the resulting coordinates. Tolerance is the second parameter

that indirectly determines the number of iterations necessary for the iterative process of

eigenvector calculation. The lower the tolerance, the smaller the changes in the same eigen-

vector between two consecutive iterations are required, and the better the drawing should

be.

However, we run into the problem that most of the space available for the drawing

remains unused. The main idea behind spectral drawing is that similar nodes are pulled

close to each other (an edge is an evidence of similarity), and nodes that are not similar

are pulled apart. When many nodes of a graph have very high degree, most of them can

be considered as similar to each other and will be drawn within a very small portion of the

space, while the rest of the space will be used to demonstrate the remoteness of the few

least connected nodes (see Figure D.1). The lower the tolerance is, the smaller the portion

of the space where most of the nodes are concentrated. In order to prevent this we will not

always be using the lowest (time-wise possible) tolerance, but the (negative) power of 10

that leads to the best results for the greedy routing. That is, we will compare the results of

the adaptive algorithm to the best observed results of the greedy routing.
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Figure D.1: Embedded networks. From the left to the right. Upper row: GB, PG. Middle
row: CM, PB. Lower row: AS.
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Appendix E

DETAILS ON THE DYNAMIC PARTITIONING
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Regions that participate in a merge or a split belong to the direction of the same

node. Let k = blog2(2
√

n)c be the number of regions in a single (out of four natural pos-

sibilities) direction, and let Dspace be the diameter of the metric space (the spectral graph-

drawing algorithm assigns coordinates within a unit square). The boundaries between the

regions of the same directions are circular arcs. Region j = 2,3, · · · ,k will cover area of the

corresponding direction at distance Dspace/2k− j+1 to Dspace/2k− j from the corresponding

node, for j = 1 it is the area at distance up to Dspace/2k−1.

In order to allow the dynamic partitioning a node will support an additional counter

per region (recall that regions are specific to nodes, and so each node maintains the nec-

essary data). This counter keeps track of the number of times the region was successfully

used (the message was eventually delivered to the target) since the latest initialization of the

counter. When the sum of all k counters is larger than k2 and divisible by 10, the algorithm

checks if the regions have been used in the expected frequency. The algorithm expects that

the regions are roughly used in the linearly biased way, that is, region j (where j ≥ 2) is

expected to be used j times more often than region 1 (initially, the region j is 3× 4 j−2

times larger than the region 1, if there are no boundary effects). We introduce the notion

of usage rate (of a region) to denote the ratio of the actual counter value to the expected

counter value of the corresponding region. This notion can be extended to a pair of regions

by summation of the values of their counters (actual or expected).

We will support merge and split procedure for regions of the same direction of the

same node. The most overused region (the region of the direction with the highest usage

rate) becomes the candidate for split region. The pair of two most underused neighboring

regions (the pair of regions of the same direction with the lowest usage rate) neither of

which is the candidate for split becomes the candidate for merge pair. If the usage rate of

the candidate for split is at least 4 times higher than the usage rate of the candidate for merge

pair, then the region boundaries will be simultaneously realigned by merging the candidate

for merge pair in to one new region and splitting the candidate for split region into two new

regions.
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When two regions are merged, the weight of an expert in the new region is initial-

ized with the weighted average of the corresponding weights from the merged regions. An

expert’s counter of number of stages the expert has been used is initialized with the sum of

the corresponding counters from the merged regions.

When a region is split, the intermediate boundary between the new regions is drawn

at the distance (from the node) which is an arithmetic mean of the distances to the arc

boundaries of the old region. An expert’s weight of a new region is initialized with the

corresponding weight from the split region. An expert’s counter of number of stages the

expert has been used is initialized as the half of the corresponding counter from the split

region.

All k lately introduced counters of the direction (one counter per region) are reset

to zero after each merge and split procedure.
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