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ABSTRACT

Data-driven applications are becoming increasingly complex with support for

processing events and data streams in a loosely-coupled distributed environment, pro-

viding integrated access to heterogeneous data sources such as relational databases and

XML documents. This dissertation explores the use of materialized views over struc-

tured heterogeneous data sources to support multiple query optimization in a distributed

event stream processing framework that supports such applications involving various

query expressions for detecting events, monitoring conditions, handling data streams,

and querying data. Materialized views store the results of the computed view so that

subsequent access to the view retrieves the materialized results, avoiding the cost of

recomputing the entire view from base data sources. Using a service-based metadata

repository that provides metadata level access to the various language components in

the system, a heuristics-based algorithm detects the common subexpressions from the

queries represented in a mixed multigraph model over relational and structured XML

data sources. These common subexpressions can be relational, XML or a hybrid join

over the heterogeneous data sources. This research examines the challenges in the def-

inition and materialization of views when the heterogeneous data sources are retained

in their native format, instead of converting the data to a common model. LINQ serves

as the materialized view definition language for creating the view definitions. An algo-

rithm is introduced that uses LINQ to create a data structure for the persistence of these

hybrid views. Any changes to base data sources used to materialize views are captured

and mapped to a delta structure. The deltas are then streamed within the framework

for use in the incremental update of the materialized view. Algorithms are presented

that use the magic sets query optimization approach to both efficiently materialize the

views and to propagate the relevant changes to the views for incremental maintenance.

Using representative scenarios over structured heterogeneous data sources, an evalua-

tion of the framework demonstrates an improvement in performance. Thus, defining
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the LINQ-based materialized views over heterogeneous structured data sources using

the detected common subexpressions and incrementally maintaining the views by using

magic sets enhances the efficiency of the distributed event stream processing environ-

ment.
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Chapter 1

INTRODUCTION

Database applications are becoming increasingly dynamic, requiring the monitoring

of streaming data and events in a distributed environment. In the past, research was

individually focused on continuous queries over streams [[1, 2]] and distributed event

processing [[3]]. In stream processing applications, data are received continuously and

ordered by their arriving timestamps [[4]]. The streaming data, which generally arrives

at a very high rate, is processed using continuous queries with filtering capabilities and

access to the persistent data sources. In contrast to streams, a primitive event is defined

as an atomic and instantaneous occurrence of interest at a given time [[5]]. Composite

events detect complex and meaningful relationships among the multiple occurrences of

primitive events. In event processing applications, active rules define the behavior of

the application in response to the occurrence of the events.

Although event processing and stream processing are similar in the aspect of

consuming the generated information, each paradigm is designed for different func-

tional purposes. Stream processing involves the execution of continuous queries over a

large volume of data generated at a high rate to extract meaningful information. Event

processing typically deals with a lower volume of data or primitive events to estab-

lish correlations that form composite events. Thus, stream processing can serve as a

processing step before event processing by reducing the volume of relevant data for the

event handler. There are many dynamic applications, in domains such as financial stock

market monitoring or criminal justice, which have a need to define events over stream-

ing data with access to heterogeneous data sources. Thus, the integration of steams and

events is now receiving attention in the research community [[6–9]].

The framework proposed in this research uses event stream processing as a

fundamental paradigm. The distributed nature of the framework with support for access

to heterogeneous data sources originated from an active database perspective to use
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events and rules to build enterprise applications [[10]]. The application of the proposed

framework to heterogeneous data sources results in a system that may be considered

a dataspace support platform [[11]] where data sources co-exist and the framework

provides the developer with an environment that supports the challenges of building

their application over disparate and distributed data sources. Dataspaces differ from

data integration approaches [[12]] that semantically integrate the data sources using

a common mediated schema. This research is novel in that it utilizes event stream

processing within the framework of the dataspace system.

1.1 Event Stream Processing and Materialized Views

A stream and event processing system consumes multiple data streams as well as event

streams. These streams need not be generated in the same application. The streams

might originate from other event and stream processing systems, sensors, or data ac-

quisition units. Thus, in a distributed event stream processing environment, in addition

to streams generated in-house, a system can subscribe to the data and/or event streams

generated by other systems. The subscriber does not have any other control over the

subscribed streams other than how to consume the data/events coming on the streams.

In the processing of the streams, the system can generate new output streams and these

streams can be subscribed to by the other event stream processing nodes in the dis-

tributed system.

To understand how to process the streaming information, event and stream pro-

cessing systems need to maintain metadata information regarding the streams. Other

components that are typically used along with the streaming information are the con-

tinuous queries with expressive filters, primitive and composite event definitions, and

active rules associated with systems. Continuous queries with filters are the queries

that are executed on every incoming data stream to filter out unwanted information.

This also reduces the rate at which the data is made available for the system compo-

nents to consume. The Continuous Query Language (CQL) allows filters to be defined
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over the streams in conjunction with the relational databases to filter out unnecessary

data [[1]]. Event definitions are maintained in the system to capture the atomic oc-

currences of interest in a given period of time. Active rules are defined in the system

to take appropriate actions whenever an event is detected and the optional condition

associated with the event is true. Active rules that contain all the three components,

i.e. Event, Condition and Action, are called Event-Condition-Action (ECA) rules. In

addition to ECA rules, the active rules can take the form of either EA (Event-Action)

or CA (Condition-Action) rules [[13]]. ECA and EA rules are fired whenever the event

occurs. However, for CA rules, since there is no way to invoke the rule automatically,

a continuous condition monitoring system is necessary to check when the condition of

a CA rule is satisfied.

One goal of this research is to allow these different components (continuous

queries, filters, event definitions, and rules) to interact with each other seamlessly and

efficiently. Continuous queries and filters have the capability to query data from the

persistent relational and/or XML databases. In addition, active rules can have condi-

tions that query information from the database and perform actions involving changes

to persistent databases. This introduces an important concept of materialized views de-

fined over these persistent sources. In relational databases, a view is a derived relation

over a set of base tables or relations. A view in XML databases is a derived XML tree

over a set of XML documents. A materialized view is a view in which qualifying tu-

ples are stored in the database and indices can be defined over this view [[14]]. Thus, in

the case of a non-materialized view, tuples are re-computed from the base tables every

time a query uses that view. Whereas in the case of a materialized view, the view is

populated when it is defined and retrieved upon reference to the view. Hence, there

is no need to re-execute the view definition over the base tables every time. Since the

view is populated, executing a query over a materialized view is typically faster than

executing a query over a non-materialized view. A materialized view is comparable to
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a cache mechanism, where the data is kept ready all the time.

A limitation of keeping materialized views is analogous to the problem of keep-

ing a cache coherent. Whenever updates occur to the underlying base tables, it is im-

portant to make these changes visible to the materialized view. Updating the material-

ized view based on the changes in the underlying database is called view maintenance.

However, it is expensive to re-compute the entire view every time there is a change to

the base tables. Therefore, the materialized view is incrementally updated by propagat-

ing these changes to the materialized view. This approach is called incremental view

maintenance and is used for materialized views over relational databases [[15–17]] as

well as over XML documents [[18, 19]].

These changes to the underlying database are also useful in the execution of

Condition-Action (CA) rules. In the case of CA rules, there is no explicit event that

triggers the check of the condition over the database. Thus, the system has to continu-

ously monitor the changes in the system to verify whether the condition specified in the

CA rule is satisfied or not. Thus, in this case, similar to incremental view maintenance,

it is not desirable to check the condition every time there is a change in the current

database state. Once the CA rule is defined in the system, the condition is checked at

that time with the database state at that instance. After that, the changes made to the un-

derlying database are then used incrementally to check whether the condition becomes

true or not. This is called condition monitoring. Condition monitoring algorithms have

been explored for active relational databases [[13]] and object-oriented databases [[20]].

Thus, the view maintenance and condition monitoring algorithms use the changes to

the underlying database to incrementally update the views, and check the conditions

respectively.

1.2 Overview of the Distributed Event Stream Processing Framework

The research challenges involving the incremental maintenance of materialized views

over heterogeneous distributed data sources in an event stream processing environment
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are examined within the context of Distributed Event Stream Processing Agents (DE-

PAs). The concept of a DEPA was first envisioned in [[10]] but not implemented. This

research contributes a proof of concept implementation of a framework built using a

DEPA as a fundamental building block, establishing an environment for this exploration

[[21]]. Specifically, a DEPA can subscribe to different event or data streams. DEPAs can

handle data streams from different data sources, including application event genera-

tors, the output from continuous queries over sensor data, and streams of incremental

changes from databases, such as the Oracle Streams [[22]] or Change Data Capture fea-

ture for SQL Server 2008 [[23]] for monitoring database log files. The event or data

streams can be either in relational format or in a structured XML format. Processing

these events or data streams often requires access to persistent data sources such as

relational databases and XML data.

This dissertation explores the use of materialized views over heterogeneous

structured data sources in such a distributed event stream processing environment as

shown in Figure 1.1. A materialized view is a query whose results are computed when

defined and stored in the database with appropriate indices [[15]]. Upon reference to the

view, the materialized results are retrieved instead of recomputed. Each DEPA main-

tains its own set of resources, such as data and event streams, active rules, relational

and structured XML data sources to which the DEPA subscribes. Even though DEPAs

communicate with each other to exchange information, it is crucial to define material-

ized views for each individual DEPA for efficient stream processing, composite event

detection, and the execution of active rules. The vision is that each DEPA will have a

specific responsibility within the distributed system, which will increase the probability

of common subexpressions on which to define materialized views for improving perfor-

mance. Providing materialized views closer to the specific responsibilities is expected

to reduce the overall latency of the event stream processing system [[24]].

The DEPA prototype uses Sybase CEP as the event stream processor. This CEP
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engine has its own Continuous Computation Language (CCL) for defining different

data streams and event streams [[25]]. CCL has SQL-like syntax and the streams can be

either in relational or XML format. Along with stream definitions, CCL also provides

the capability of defining continuous queries and composite events with temporal and

windowing capabilities over the streams with access to external persistent data sources,

such as relational databases and XML documents.
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Figure 1.1: DEPA architecture.

This dissertation is exploring a suitable materialized view definition language to

define views over the heterogeneous data sources in the DEPA framework. These views

will retain the data in their original format and hence the views can be either purely re-

lational or purely XML or a hybrid view over relational and XML data sources. Within

the DEPA framework, the event and stream processing often requires access to hetero-

geneous structured data sources at the same time. Figure 1.2 illustrates a scenario for

a query that can process streaming data and events along with access to one relational

and one XML data source. However, there are research challenges involved in using
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such a query language as a common platform to access heterogeneous data sources.

This query language should have the capability to access a collection of: objects in

memory or an object-oriented database, tuples in a relational table, or elements in an

XML document through a single query.

XML

DSB

Rela onal 

DSA

XML
Tuples

Query
Stream

Adapter

Results

Events

Data

Figure 1.2: Processing streams using query over heterogeneous data sources.

This unifying paradigm of such a query language will also provide a candi-

date materialized view definition language for the event stream processing framework.

In this inherently distributed and heterogeneous environment, the use of materialized

views, especially local to a DEPA, is investigated as an optimization technique to speed

up multiple query processing. For example, a materialized view can be defined over the

relational data source DSA and XML data source DSB such that part of the view con-

tains relational data and part of the view contains XML-based hierarchical data. This

hybrid materialized view is shown in Figure 1.3 where the original query is rewritten

to access the materialized view instead of the base data sources. Determining suitable

data structures to store the hybrid materialized views are a contribution of this research.

Finally, this research is also exploring research challenges involved in capturing

changes over the base data sources in their native format. These changes can then be

used to incrementally update the materialized views or for condition monitoring of the
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Figure 1.3: Processing streams using modified query and a materialized view over
heterogeneous data sources.

Condition-Action (CA) rules. The captured changes can be modeled as data streams

so that they can be transported to the respective agent. Thus, there are various spe-

cific research challenges involved in developing a distributed event stream processing

framework with the capabilities of defining and maintaining materialized views over

heterogeneous data sources.

1.3 Research Objectives

A major aspect of this research is the exploration of the use materialized views that

are local to the DEPAs for efficient processing of events and data streams. There is a

well-known trade-off with the use of materialized views and their maintenance. The

materialized view must be updated when the data on which it depends has changed.

Rather than recomputing the entire view, an incremental strategy is preferred to modify

the materialized view based on the changes to the underlying data sources [[14, 26]].

This work investigates the incremental update of the materialized views within the dis-

tributed event stream processing framework.

Prior research on incremental view maintenance for heterogeneous data sources
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has converted the different data sources to one format, either the XML data was con-

verted into relational data [[27]] or the relational data was converted into XML data

[[28]]. Once all the sources were in one format, then the materialized views were de-

fined and established incremental view maintenance approaches were used. However,

these techniques require the overhead of converting one source into another. Additional

mapping information is also required to reconstruct the results from the converted for-

mat to the original source format. One challenge of this research is the investigation

of the use of a materialized view definition language that supports a view defined na-

tively over heterogeneous relational and XML data sources, respecting the underlying

technology associated with each data store.

Another challenge is the examination of incremental view maintenance in this

loosely-coupled distributed event stream processing framework. The changes or deltas

to the underlying data sources required to incrementally update the view can be mod-

eled as streams in a DEPA. There are existing mechanisms to individually capture the

changes to relational or XML data sources. For example, Oracle has Oracle Streams

and SQL Server 2008 has Change Data Capture to identify the changes occurring in

the relational database. For XML files, there are change detection algorithms to cap-

ture the changes occurring in the XML documents [[29,30]]. This research explores the

challenges involved in modeling the captured deltas in their native format as streams to

incrementally update the materialized views.

The perspective of introducing agents for processing distributed events and

streams with access to heterogeneous structured data sources with support for incre-

mental view maintenance introduces several specific research challenges:

1. Dependency analysis across different filtering queries to identify common subex-

pressions as potential candidates for materialized partial joins

An incremental approach to the evaluation of the resulting language that inte-

grates streams, events, and persistent data is essential. Within each DEPA, there
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are various query expressions that are accessing the heterogeneous data sources,

including continuous queries, queries associated with composite event definitions

and active rules as well as queries over persistent data sources. By exploring mul-

tiple query optimization across these query expressions, common subexpressions

can be detected as the potential candidates for materialized views. The candidate

materialized views can represent partial joins across relational and XML data

sources.

Multiple query optimization and detecting common subexpressions for Select-

Project-Join (SPJ) queries have been explored extensively for SQL queries [[31–

34]]. Multiple query optimization reduces memory consumption and improves

performance when processing multiple queries. It is a well-known fact that iden-

tifying common subexpressions is an NP-hard problem and hence it can be ad-

dressed by using a heuristic approach [[31, 32]]. Thus, one of the objectives of

this dissertation is to define a multigraph model to represent the different query

expressions in a DEPA over relational and XML data sources in the same graph

model and to explore multiple query optimization by detecting common subex-

pressions across these query expressions.

To facilitate multiple query optimization by detecting common subexpressions,

each DEPA in the framework requires metadata-level access to the heterogeneous

data sources, event and data streams and parser-level access to the registered

query expressions. Also, DEPAs communicate with each other using event and

data streams to exchange information. DEPAs can request information regarding

their registered data sources or streams for their functioning. Thus, it is imper-

ative that each DEPA maintain its own independent metadata repository, which

will facilitate in the various functions of the DEPA. This research is exploring the

challenge in building and maintaining this metadata repository. The repository

should be self-contained and maintained in response to any changes occurring at
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the metadata level to the original data sources. The metadata repository should

also have access points through which each DEPA can provide access to other

agents. Since the DEPAs communicate peer-to-peer in a distributed environment

and expose information to other DEPAs, a Service-Oriented Architecture (SOA)

is a suitable technology to develop the DEPA framework. One of the research

challenges of this work is to investigate different SOA-based technologies and

decide which approach is suitable for the environment.

2. Techniques for selectively materializing the partial joins over relational as well

as XML data sources

The dependency analysis of the various query expressions leads to identifying

common subexpressions as potential candidates for materialized views. One re-

search challenge is the design of a heuristic algorithm that will selectively choose

partial joins over heterogeneous data sources that will be beneficial to material-

ize, using a cost-based approach in a distributed environment.

These materialized views can be purely relational or purely XML or a hybrid

view containing both relational and XML data. In the past, for defining material-

ized views over relational and XML data sources, different research approaches

have first converted one data format into another and then materialized views are

defined. This dissertation is focusing on relaxing this conversion constraint to

retain the data in their native format and take advantage of the underlying well-

established algorithms and mechanisms for each type of data source. One other

research objective is to investigate an appropriate materialized view definition

language that will facilitate the definitions of such materialized views. This view

definition language should be able to access the metadata repository to define

these views and provide a mechanism to persist the views. The proposed design

for addressing research challenges 1 and 2 is shown in Figure 1.4.
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Figure 1.4: Multiple query optimizer.

3. Incremental Evaluation and Materialized Views for Integrating Streams, Events,

and Persistent Data

Capturing of deltas or changes to the original data sources is important in incre-

mental view maintenance of the materialized partial joins. Deltas can be captured

for Oracle Server using Oracle Streams or for SQL Server 2008 using the Change

Data Capture feature. For capturing changes occurring in XML documents, there

are various diff algorithms to generate deltas. Another research challenge is

the capture of the heterogeneous distributed deltas in the native format of the data

source and the subsequent use of the delta to incrementally update the material-

ized view. The general concept of using deltas in their native format to update

the view is shown in Figure 1.5.

In the past, research has focused on incremental view maintenance for relational

views or XML views separately. For the views that were defined over relational

and XML data sources, the deltas were converted from one format to the other
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Figure 1.5: Using deltas in native format for incremental view maintenance.

and then used in the incremental maintenance of the views. This approach has

similar conversion drawbacks as the views defined over different data sources.

One of the objectives of this research is to retain the deltas in their original format

and use them in incremental view maintenance. Also, since the data sources are

distributed in nature, this research is focusing on streaming these changes from

their original source to the relevant agents that need them for view maintenance.

1.4 Dissertation Overview

The objective of this dissertation is to describe the research contributions resulting from

the investigation of the incremental maintenance of materialized views over structured

data sources, such as relational databases and XML data, within a distributed event

stream processing framework. This first chapter has provided an overview of the spe-

cific research challenges for incremental view maintenance within the DEPA frame-

work and a proof-of-concept prototype of the framework. Related work in the areas

of event stream processing, detecting and using common subexpressions for multiple

query optimization, and incremental view maintenance is described in chapter 2. The
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detection of common subexpressions over various query expressions within a DEPA

requires extensive metadata for each query language, heterogeneous data sources and

streams. Chapter 3 describes the design and implementation of a service-based meta-

data repository for the different data sources and the query expressions. It also provides

details on the different services provided by the DEPA to maintain the repository and

provide access to the metadata-level information. The different query expressions regis-

tered with a DEPA access heterogeneous data sources, such as relational and structured

XML data sources. In order to detect common subexpressions across these different

query expressions, they have to be represented in a single graph model. Chapter 4

provides details on such a mixed multigraph model that can represent queries over re-

lational and XML data sources. A heuristics-based algorithm to detect common subex-

pressions as partial joins over relational and XML data sources is also presented in this

chapter with a working example over the Criminal Justice data model. These detected

common subexpressions can be selectively materialized into views using a materialized

view definition language. These views can be used to answer certain queries instead

of their base data sources. Chapter 5 provides details on the materialized view defini-

tion language and the algorithms used to define the materialized views. This chapter

also provides details on how these views are persisted and illustrates the working of

these algorithms and the view definition language with an example. The data sources

registered with each DEPA may change over time and hence these changes should be

captured and used to incrementally update the materialized views defined locally to the

DEPA. Chapter 6 provides details on the mechanisms used in the DEPA framework to

capture these deltas in their native format and to propagate any relevant changes to the

materialized views. The deltas and their use in the incremental view maintenance are

illustrated using a detailed example. Details on developing the DEPA environment, its

prototype and performance evaluations of the different algorithms designed to define

and maintain materialized views over heterogeneous data sources locally to each DEPA
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are provided in chapter 7. Finally, the dissertation concludes with chapter 8 that pro-

vides a summary of the unique contributions of this research to the database community

and a discussion on future research directions that can be pursued with respect to the

distributed event stream processing environment.
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Chapter 2

RELATED WORK

This research is exploring the use of an agent-based distributed event and stream pro-

cessing framework that integrates querying heterogeneous data sources and using ma-

terialized views for multiple query optimization. The objective of this chapter is to

provide high-level details on relevant related research. The DEPA framework uses

event and stream processing as the backbone for all the communication between the

different agents. Section 2.1 overviews the capabilities typically provided by event

and stream processing systems. The DEPA framework is a loosely-coupled system that

may be considered a dataspace support platform where data sources co-exist and the

framework provides an environment that supports developing applications over hetero-

geneous distributed data sources. Section 2.2 provides an overview of the shared goals

of dataspaces and the DEPA environment. The use of materialized views for multi-

ple query optimization within such a framework requires the identification of common

subexpressions. Section 2.3 discusses the related work on the identification of common

subexpressions for relational queries and XML queries individually. A contribution of

this dissertation, as discussed in chapter 4, is the identification of common subexpres-

sions for queries that combine relational and XML data. Once the common subex-

pressions are detected as hybrid joins over these heterogeneous data sources, they are

materialized into views for efficient query processing. Base data sources of these mate-

rialized views may change. These changes must be captured and used to incrementally

update the materialized views instead of a complete re-materialization. Prior research

has explored incremental view maintenance with respect to views defined over only

relational or only XML data, which is described in section 2.4. These approaches first

convert one data format into another and then define the materialized views over the

homogeneous data sources. This dissertation is exploring the research challenges with

defining hybrid materialized views over relational and structured XML data sources. To
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define such views, an initial investigation has led to the choice of Language INtegrated

Query (LINQ) as the materialized view definition language. Section 2.5 provides a

high-level overview of LINQ, its syntax and illustrates its querying capabilities with

samples queries.

2.1 Events and Stream Processing

Streams can be considered as inflow or outflow of data, events or combination of both.

These streams need to be monitored and consumed at not necessarily real time but

under time constraints. Thus, monitoring applications are becoming more and more

important in day to day activities. Consider military applications for monitoring loca-

tions or other sensors, or consider health-related applications where sensors are used to

monitor patients. Even monitoring data continuously in finance-related applications is

crucial for corporations. In all these applications, the sensors send a continuous stream

of either data or events or both, which are to be analyzed and processed under time and

memory restrictions. Current database management systems are not suitable to handle

such high volume of data under time and memory restrictions. The monitoring appli-

cations have the characteristic of informing about abnormal activity or change in the

monitored data. Hence such applications are trigger-oriented. Monitoring applications

require a history of values rather than just most recent values from the streams to run

their queries, which cannot be achieved easily with traditional database management

systems. Sometimes the streamed data is often lost, or is unreadable or sometimes de-

liberately omitted for processing reasons. Thus, monitoring applications should be able

to handle such scenarios and still provide the user with approximate answers based on

whatever data is available.

Several event stream processing systems have been developed to process streams

using continuous queries and composite event detectors. Some of the open source re-

search prototypes are Aurora [[4]], Cayuga [[7]], CEDR [[6]], Tesla [[35]], and XChangeEQ

[[36]]. There are also commercial event stream processing systems, such as Streambase
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[[37]] and Sybase CEP [[25]]. As an integral part of the DEPA framework design, this

research uses the Sybase CEP as the event stream processor. The remainder of this

section describes the main features of event stream processing systems, using only a

few of the above referenced systems as examples.

The Aurora system is an event stream processor that continuously monitors

streaming data coming from computer programs or hardware sensors [[4]]. Each stream

source has a unique source identifier and the system timestamps the tuple or the record

coming through every streaming source. The Aurora system defines a variety of prim-

itive operators for stream processing. There are windowed operators that work on a

set of consecutive tuples within a given time interval called a window. In addition to

these windowed operators, there are tuple-level operators that work on a single tuple

at a time. These different operators can also be classified as either blocking or non-

blocking operators. A blocking operator needs to have its entire input data before it can

generate any output, whereas, a non-blocking operator can process either an individual

tuple or a window of tuples and will continue to generate output. The Aurora system

allows the composition of these primitive operators to obtain desirable results. The Au-

rora Query Model assumes a centralized environment that supports continuous queries,

materialized views over relational data sources and ad-hoc queries each of which has

process flow based on QoS (Quality of Service) specifications (several performance

and quality related attributes).

The Aurora system assumes that the streams are comprised of relational data.

However, streams can also be event streams comprising of simple events or composite

events. The applications working on such streams detects the occurrence as well as

non-occurrences of simple or composite events. Hence, the event language needs to be

able to query the streaming events similar to the filtering or querying mechanism that

exists in Aurora system. The streaming events are filtered to remove irrelevant primitive

events and correlated for composite event detection. However, this becomes difficult
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and complex to achieve because of short-life nature of the streaming data and long-

lived composite events. SASE (Stream-based And Shared Event processing) is one

such event definition language that process real-time data from RFID streams [[38]].

One advantage for such events coming from the streams is that they are initially time

stamped like data streams before they can be consumed. This allows the consumer to

look at the true discrete ordering of the events. The events are declared using the declar-

ative event language SASE that combines filtering, correlation and transformation of

events [[38]]. The syntax of this event language is shown in Listing 2.1.

EVENT <pattern>
[WHERE <qualification>]
[WITHIN <window>]

Listing 2.1: SASE event syntax.

The event pattern can be either a simple event name or a sequence of multi-

ple simple events to denote a composite event. The WHERE clause helps in filtering

the events if the predicate evaluates to false and WITHIN indicates the time frame of

the sliding window to be considered. The non-occurrence of an event is indicated by

negating that particular event in the composite event description.

In the case of XML streaming data, the XML data can be either a sequence of

small sized tuples or a sequence of large semi-structured tuples. It is possible that the

entire set of tuples required for processing a query is not available immediately. Also

the XQuery queries written over such XML data can be recursive; hence they might

need more than one pass over the data, which is not possible all the time. The system

developed at Ohio State University has a code generation base that rewrites the XQuery

query plan, whenever possible, to execute in one single pass over the dataset [[9]]. The

system analyzes the dependencies in the query using a stream data flow graph and then

applies a series of high-level transformations. Based on this analysis, not all the queries

can be executed in a single pass. The XQuery queries that involve blocking operators

(sorting) with unbounded input and queries that involve progressive blocking operators
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(aggregate functions) with unbounded input are the two types of queries which cannot

be rewritten to execute in one pass over the dataset.

The communication between the agents in the DEPA framework uses events

and data streams, in both relational and XML format. The DEPA framework utilizes

Sybase CEP (formerly known as Coral8) as its event and stream processor. Sybase

CEP uses CQL queries within the DEPA framework to process events and data streams

with the ability to define filters with access to persistent data sources, such as relational

databases and XML documents. Data streams are also used to model the flow of cap-

tured deltas over the relational and XML data sources from their origin to the relevant

agents in the framework for incremental view maintenance and condition monitoring.

2.2 Dataspaces

Recently, the concept of dataspaces has been introduced to access loosely-coupled het-

erogeneous data sources that are managed locally but are integrated under a common

data application [[39]]. Typically, these heterogeneous data sources are not under the

control of a single data management system. The distributed enterprise applications

subscribe to these data sources as needed to produce the desired results. Application

domains, such as digital libraries, personal information management (PIM), criminal

justice and homeland security departments can benefit from these types of application

architecture that provides seamless integrated access to loosely-coupled heterogeneous

data sources.

Dataspaces provide data management abstraction for the above mentioned ap-

plication areas and Dataspace Support Platforms (DSSP) provide different abstracted

views of the data along with different services [[11, 40]]. Many different dataspaces

can combine to form a network of dataspaces resulting in a larger dataspace or remain

as an individual dataspace just interacting with dataspaces under the canopy of DSSP.

Since each dataspace registers to all the data sources that are needed for it to function

autonomously, it is possible that multiple dataspaces share some common data sources.
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With this focus, the first challenge is to provide a querying capability over the rele-

vant data sources registered to the dataspace [[11, 40]]. Hence, it is essential to create

a central metadata repository that can be queried at any time instead of querying the

data sources individually for their metadata whenever needed. The interesting research

challenges that are closely related to the proposed research are of maintaining the data

once the data sources are registered with the dataspaces and handling the changes that

occur in the system.

Once the resources are registered with a particular dataspace, any subsequent

access to the data sources has to guarantee access to the latest data values from the data

source. Since dataspace do not have full control over the data sources, changes can

occur at the data source locations, which can be distributed. It is very crucial for the

dataspace to maintain and provide an updated copy of the data as part of the services

the dataspace provide. Thus to maintain such updated copy, dataspaces need to have

rules, integrity constraints, unique naming conventions across the data sources, recov-

ery and access control and housekeeping optimized data structures for data as well as

metadata [[11, 40]]. Along with getting updated information from the autonomous and

heterogeneous data sources, future research work in dataspaces involves providing the

capabilities of condition monitoring, complex event detection and complex work-flow

patterns. It is quite possible that not all the data sources will be able to provide meta-

data in the format needed by the dataspaces. Hence, it becomes necessary to maintain

an independent metadata repository. Along with maintaining the metadata repository,

dataspaces should provide a querying mechanism to find sources that contain specific

elements or attributes. Once the metadata repository is created, then this information

can be used along with the incremental view maintenance of user defined views and

condition monitoring of condition-action rules defined at the dataspace level.

The concept of dataspaces is analogous to the concept of DEPAs. They both

share the common goal of working over loosely coupled heterogeneous data sources
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without the need of a global schema. Although not inherent to the current framework

of a dataspace, dataspaces can benefit from the incorporation of complex event stream

processing over data and/or event streams. The following list summarizes the common

features of DEPAs and dataspaces in the integration of heterogeneous data sources.

1. Both target autonomous, heterogeneous data sources such as relational databases,

XML databases, events and data streams. However, dataspaces are targeted to

accommodate even less-structured data sources such as emails and flat files.

2. They both subscribe to other data sources along with the data generated at their

own site.

3. Both need to maintain a local metadata repository for different language compo-

nents and data sources.

4. For efficient search and query mechanisms, both can benefit from materialized

view definitions over persistent data sources.

5. To keep the materialized views updated with the changes, both need incremental

view maintenance algorithms to synchronize the views with the underlying data

sources.

6. Other key services for both include composite event detection, active rules, and

condition monitoring to accommodate event detection across multiple DEPAs or

dataspaces.

Even though dataspaces and DEPAs are closely related to each other, dataspaces

do not satisfy all the requirements of a typical DEPA. Dataspaces are more generalized

and targeted towards textual querying of all the data sources. A DEPA can subscribe

to streaming sources whereas dataspaces do not have the provision for processing of

streaming data. Finally, in the literature available for dataspaces, there is no indication
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of the related work on dataspaces that define materialized views over heterogeneous

data sources without converting one source format to the other.

2.3 Multiple Query Optimization

In both the relational as well as the XML databases, materialized views are defined

over underlying original data sources (tables in relational databases and hierarchical

documents in XML databases) and the validate-propagate-update mechanism is used

to update these views. In case of views over relational databases, the view definition

mainly comprises of simple or complex Select-Project-Join (SPJ) queries. In case of

views over XML data sources, a view definition is an XQuery expression encapsulated

within a unique root node, which is the view name.

Hence, every view definition consists of a query expression of either a Select-

Project-Join expression or an XQuery expression. The collection of such query ex-

pressions in a database environment leads to the important concept of Multiple Query

Optimization (MQO). MQO optimizes a given set of queries such that the common

subexpressions from the query definitions are detected and executed only once [[31]].

This helps in less consumption of memory and speeds up the processing of multiple

queries over single-query processing. It is a well-known fact that identifying common

subexpressions is a NP-hard problem and hence it can be addressed only by using a

heuristics approach [[31]]. The main steps in MQO comprises of detecting the common

expression either in the form of sub-query, or common data source, or operation and

then using these common expressions to construct a global execution plan to facilitate

the Multiple Query Processing (MQP). First, the multiple SPJ queries expressed in re-

lational algebra are represented in the form of multiple graphs, and then a series of

transformations are applied to these graphs with the help of heuristic rules for detecting

common subexpressions to construct a global execution plan [[31]].

Before detecting the common subexpressions, a given set of queries is classified

into different sets of unrelated queries. This guarantees that each set of queries that is
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analyzed for common subexpressions has at least one data source in common. Then

the queries in each set are executed separately. This helps in reducing the number of

queries to be considered for detecting common subexpressions. For any given set of

queries, there can be four types of common subexpressions: 1) nothing in common; 2)

exactly the same; 3) subsumption; and 4) overlap. Multigraphs generated for every SPJ

query are executed using a contraction process [[31]]. Whenever a relational operation

is executed, then the nodes and/or the edges related to that operation are reduced to

form a new node. As the relational operations continue to be executed, at the end only

one node per query will remain. This node represents the result for that query.

Detecting common subexpressions is important for both MQO as well as for

rule execution in active database systems. In active databases, the rules can be rep-

resented as rule execution graphs. In these graphs, the intermediate nodes of the SPJ

query expression in the condition part of the rule can be viewed as potential candi-

dates for partial joins or views. In a given set of rules in an active database system,

efficient pattern matching algorithms can detect common nodes or patterns in the rules

that will lead to faster and efficient execution of the rules [[41]]. These patterns or com-

mon subexpressions can be materialized into partial joins and later used to optimize

the rule execution. RETE and TREAT are the well-known pattern matching algorithms

for active database systems. The RETE algorithm retains the intermediate temporary

results for the selection conditions known as α−memory nodes and for the join condi-

tions known as β−memory nodes [[41]]. Thus, the main advantage of RETE algorithm

is that it can reuse these intermediate temporary results for other rules. However, this

advantage is its biggest limitation because as the data size grows, the memory consump-

tion for the β−memory nodes can be huge. Miranker introduced TREAT as another

matching algorithm to reduce the huge memory requirement of the β−memory nodes.

The TREAT algorithm reduces the overhead by not maintaining the β−memory nodes

but keeping the α−memory nodes. The main reasoning behind the TREAT algorithm
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is to determine whether the time required to maintain the β−memory nodes is less than

the time required to compute the join conditions whenever needed [[41]].

The detection of common subexpressions over XML data sources has also been

explored as a multiple query optimization technique [[42]]. Multiple XQuery expres-

sions are represented as expression trees of their execution plans. The BEA streaming

XQuery processor compiles and parses the XQuery expressions to give access to dif-

ferent parts of the expression trees. These expression trees have nodes that represent

the different types of expressions and the edges connecting the nodes represent the data

flow dependencies. The expression types includes different variables defined in the

query, first order and second order expressions, user-defined functions and constants.

All the expression trees are first normalized using rewriting rules based on the XQuery

format semantics. A heuristics-based algorithm traverses these expression trees to de-

tect shared subexpressions, which are the candidates for memoization. Memoization

is a technique that stores the results of certain chosen expressions in the main memory

and for any subsequent access to the same expressions with the same set of arguments,

the results are retrieved from the main memory instead of recalculating them.

Multiple query optimization with common sub-expressions to detect partial

joins in the past research has been explored in the context of relational databases. This

concept has significant importance in the DEPA environment; however, the algorithms

need to be redesigned to incorporate XML data sources. The research described in

chapter 4 builds on the MQO approaches of [[31]] and [[42]] by defining a mixed

multigraph model to represent query expressions over relational and structured XML

data sources. An algorithm is presented to detect common subexpressions from this

multigraph representation of different queries for multiple query optimization.
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2.4 Materialized View Maintenance
Relational Databases

Incremental evaluation in relational databases is comprised of two closely-related con-

cepts i.e. incremental maintenance of materialized views and incremental evaluation

for condition-monitoring of CA events defined over the relational databases. These two

concepts use the modifications made to the relations to maintain the views or evaluate

the conditions.

The materialized views provide access to the view tuples directly rather than re-

computing the view every time for the query containing that view. Apart from quicker

data access, integrity constraint checking and query optimization can also benefit from

materialized views. However, whenever modifications are made to the base relations,

it is important to keep these views updated. Thus, the process of using these modi-

fications for updating the materialized views is called view maintenance. Using only

relevant changes to update the view is incremental view maintenance. Incremental

view maintenance problems are based on the resources used to maintain the view, types

of modifications considered and whether the algorithm works for all the instances of

databases and modifications [[14]]. Most of the prior research focused on expressing

views in different languages such as SQL and Datalog with features like aggregations,

duplicates, recursion, and outer joins.

The landmark paper [[43]] examines materialized view maintenance in the con-

text of Select-Project-Join (SPJ) expressions using SQL as the view definition language

in a relational database environment. The algorithm presented by this paper computes

differential expressions to identify the tuples that must be inserted or deleted from

the view based on the modifications made to the base relations. This approach was

enhanced by [[44]] with a counting algorithm for SQL non-recursive views with dupli-

cates including union, negation, and aggregation. This algorithm keeps a count of the

number of derivations for each view tuple as additional information in the view. The
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algebraic differencing algorithm [[45]] differentiated relational algebraic expressions to

derive two expressions for each view; one for insertions and the other for deletions.

Hence, updates could be modeled using this algorithm as a sequence of deletes and

inserts to the view. The Ceri-Widom view maintenance algorithm [[46]] defines the ma-

terialized views using SQL-based syntax and derives production rules in terms of SQL

queries that are associated with the view’s base tables. Whenever changes occur at the

base tables, these production rules are triggered to propagate the changes to the view

as a sequence of deletes and inserts to the view. The views defined using this approach

do not support duplicates, aggregations, and negations.

Most of the view maintenance algorithms for recursive views were developed

in the context of Datalog [[15]]. Incremental view maintenance of recursive views in-

volves two steps. The first step of propagation or derivation computes an overestimate

of change tuples (either insertion or deletion) and the second step of filtering or re-

derivation determines whether the change tuples computed in the first step are relevant

changes necessary to update the the view. The PF (Propagation/Filtration) algorithm

[[47]] and the DRed algorithm [[44]] were developed for Datalog (or SQL) views with re-

cursion, union, negation and aggregation. These two algorithms differ in how these two

steps are performed. The PF algorithm uses top-down memoing whereas DRed uses

bottom-up semi-naı̈ve evaluation. In case of deletions, both the algorithms compute

the overestimate of tuples to be deleted. However, the PF algorithm filters out those

tuples that have alternative derivations before propagating them. The DRed algorithm

propagates the potential deletions within the stratum but applies filtering to the over-

estimated tuples before they are propagated to the next stratum. In case of insertions,

the PF algorithm handles insertions similar to deletions. However, the DRed algorithm

uses bottom-up semi-naı̈ve evaluation to determine the actual insertions to the mate-

rialized view. There are instances where the PF algorithm performs better than DRed

and there are other scenarios in which DRed outperforms the PF algorithm.
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Another use of incremental evaluation in the context of relational databases can

be found in the area of continuous stream processing. Typically, only the new streaming

information is considered as the only updates available for incrementally maintaining

the materialized views [[16]]. In such a high-speed streaming processing application, a

chronicle is defined as a sequence of records rather than an unordered set of tuples. The

chronicle cannot be stored completely in the database because of its size; however, the

data that fits in the latest time window are stored in the database for computation (the

sliding window protocol). Thus, in this model the only update possible to the chronicle

is insertion of tuples. The algorithm to define views over such chronicles and maintain

them efficiently makes use of the Summarized Chronicle Algebra (SCA) [[16]]. This

algorithm works on non-recursive views with aggregation and summarization.

XML Databases

XML data, due to its hierarchical structure, provides a different set of challenges in

terms of updating views defined over XML data sources. Updating an XML view can

lead to recreation of a totally new XML tree where the nodes can not only get modified

with new values or new subtrees, but it is possible that these nodes are moved around to

a different subtree. Thus, modeling and validating XML updates is an important issue.

While updating an XML document, it is necessary to locate the part or subsection of the

XML tree structure that is to be updated. Also the view maintenance algorithm should

be able to handle batch XML updates, and handle updates with missing information.

Once the updates are modeled and validated, propagating and applying the updates to

XML views is complex because XML data is a hierarchical semi-structured represen-

tation of data with ordering semantics, which is not the case with flat tuples with no

ordering [[18]].

The validate-propagate-apply framework [[18]] was proposed to solve these

problems with XML views defined using XQuery. The framework supports an expres-

sive subset of XQuery views with XPath expressions, FLWOR expressions and element
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constructors. In the validate phase, the XQuery updates are transformed into a set of

update trees and are checked for their relevance to the views. The potential relevant

updates are annotated with information necessary for propagation. This information

includes any other nodes needed by the XQuery query to determine the exact location

of the update within the view tree. Lastly, all these update trees for different update

types are batched into one batch update tree. In the propagate phase, the Incremental

Maintenance Plans (IMPs) are derived from the view query. These IMPs process the

batch update trees to generate delta update trees, which are used in the apply phase to

incrementally update the XML views. The apply phase mainly comprises of merging

the delta update trees into the corresponding view trees. In the apply phase, the order-

ing of the XML tree nodes is very important for the correct merging of delta update

trees. This ordering is done by applying semantic identifiers to all the XML nodes

[[48]]. This semantic ID solution helps to keep the XML views distributive because the

tag ordering is encoded as part of the semantic IDs.

All the previous work related to incremental evaluation has focused individu-

ally on either relational data sources or XML data sources. However, in a distributed

environment of heterogeneous data sources, it is necessary to combine relational as

well as XML data sources. Past research focused on this aspect has taken the direction

of converting one data source to the other and then defining views over the converted

data. This approach has the inherent drawbacks of repeated conversion from one for-

mat to the other for the original data as well as the deltas captured over the original data

sources. Also, to convert one format to the other requires extensive mapping informa-

tion to be maintained that facilitates the conversion. One of the research challenges

that is explored in this dissertation focuses on defining materialized views over hetero-

geneous data sources within the DEPA framework. These views defined as the partial

joins over relational and structured XML data sources will retain the data in their na-

tive format, exploiting the well-established technology for each of the data sources.
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Thus, the changes over these heterogeneous data sources are captured in their native

format and are used in the incremental maintenance of the hybrid views. The deltas are

transported over data streams from the base data sources to the relevant agents in the

framework for the incremental evaluation of the localized views.

2.5 LINQ

The various research objectives of this dissertation require a materialized view defini-

tion language that supports views over heterogeneous structured data sources within the

same view definition. Initial investigation has led to the choice of Language INtegrated

Query (LINQ) language as the materialized views definition language for the DEPA

framework. LINQ is a relatively new language introduced with the .NET 3.5 Frame-

work. LINQ is a declarative, strongly-typed query language that is integrated into an

imperative programming language, such as C# and Visual Basic. LINQ’s query com-

prehension syntax is SQL-like with from, where, and select clauses. However, the

order of the clauses corresponds to the execution order based on the underlying foun-

dation of functional programming. Specifically, the from clause introduces a variable

to iterate over a collection, the where clause filters the results using dot notation to

access properties of the from variable, and select returns a structured result. An

overview of LINQ for the database educator can be found in [[49]]. As an example

of a simple LINQ query to understand its syntax, consider a LINQ query in C# over

the TPC-H benchmark database schema [[50]] as shown in Listing 2.2 that returns the

names of the suppliers who have an account balance more than $1000.00.

var suppliersBalGreaterthan1000 =
from s in supplier
where s.s_acctbal > 1000.00
select s.s_name;

Listing 2.2: Simple LINQ query.

An advantage of LINQ is that the same language can query a collection of: ob-

jects in memory or an object-oriented database, tuples in a relational table, or elements
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in an XML document. The same dot notation accesses a property of an object, an at-

tribute of a tuple, or a nested element or an attribute. This unifying paradigm allows

the database developer to use one language to access the various data sources needed

for the application. Thus, the use of LINQ avoids the additional learning curve of the

developers to understand the intricacies of the APIs for each database technology.

LINQ provides a layer of abstraction over the different data sources. A LINQ

query is represented internally as an expression tree. The LINQ framework then uses a

data-source specific LINQ provider to automatically generate an equivalent query over

that data source. A LINQ provider for a data source must implement required APIs to

facilitate this generation. Microsoft has various LINQ providers as shown in Table 2.1.

For example, the LINQ to SQL provider queries SQL Server databases by converting

a LINQ query into an equivalent SQL Server query. Also, the LINQ framework is

fully extensible. There are numerous third party LINQ providers available to query

different types of data sources, such as LINQ to Amazon, LINQ to MySQL, Oracle,

and PostgreSql [[51]].

Name of the Provider Type of Data source access
LINQ to Objects In-memory collection of Objects
LINQ to SQL Microsoft SQL Server
LINQ to Entities Any ODBC-compliant relational data source
LINQ to Dataset In-memory collection of relational tuples
LINQ to XML XML data sources
LINQ to XSD XML data sources with associated XML Schema

Table 2.1: Different LINQ providers by Microsoft.

The LINQ to Objects provider queries a collection of objects by defining a

variable in the from clause. Let us consider that there is a C# class called Supplier that

matches the schema from the TPC-H supplier schema and the user has created an array

or list called “Suppliers” that contains Supplier objects. Thus, the query from Listing

2.2 can be modified to use the “Suppliers” collection object in the from clause and

everything else remains the same in the query.
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LINQ to SQL provides the mechanism to query and manipulate the data from

a SQL Server database. LINQ to SQL is an ORM approach, mapping entity classes

(in C#) to tables (in SQL Server). The entity classes provide the metadata for LINQ

queries. (Note that the selective mapping of existing SQL Server databases can be

automated using tools, such as the visual design tool, LINQ to SQL Classes, within the

Visual Studio 2008 environment.) Once the mappings are specified, then LINQ queries

are converted to corresponding SQL queries using expression trees and deferred query

execution. Assuming that the ORM mappings between the TPC-H database in SQL

Server and C# classes have been defined and “supplier” is the name of the collection.

(Notice that while using the visual design tool from Visual Studio 2008, certain settings

should be configured so that the name of the collection is the same as the name of the

table in the SQL Server 2008.) Thus, the LINQ to SQL query remains exactly the same

as in Listing 2.2. There are two more providers: LINQ to Dataset and LINQ to Entities,

which are very similar to LINQ to SQL. LINQ to Dataset provides querying mechanism

over structured relational data collections temporary stored in the main memory for fast

execution. LINQ to Entities, which is more stable and provides secured execution than

LINQ to SQL is used to more in a production environment, whereas, LINQ to SQL is

used for rapid prototyping [[52]].

LINQ to XML query iterates over a collection of XML elements. The XML

data is read from an XML file stored in the file system. Whenever LINQ to XML reads

an XML file that does not have any XML Schema associated with it, then that particular

query is untyped. Considering the TPC-H schema again, assume that an XML file

named “customer.xml” has been created with elements having the same name as the

attributes of the customer table. The following code Listing 2.3 shows how to open

the “customer.xml” file and a LINQ to XML query that returns the names of all the

customers who have an account balance greater than $10000.00.

XElement customer = XElement.Load("customer.xml");
var customersBalGreaterthan10000 =
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from c in customer.Elements("customer")
where Double.Parse(c.Element("c_acctbal").Value) > 10000.00
select c.Element("c_name").Value;

Listing 2.3: LINQ to XML query.

The LINQ to XSD provider can be used when an XML Schema Definition

(XSD) is available for an XML document. LINQ to XSD creates Object-XML map-

pings (OXMs) that map entity classes in C# to XML elements and attributes in the

XML schema. Assuming that there is an XML schema file “customer.xsd” associated

with the XML file “customer.xml”, the modified LINQ to XSD query is shown below

in Listing 2.4.

var customersBalGreaterthan10000 =
from c in customer
where c.c_acctbal > 10000.00
select c.c_name;

Listing 2.4: LINQ to XSD query.

The previous discussion illustrated the use of LINQ over disparate data sources

individually. However, LINQ can query relations, objects, and XML in the same query.

Assume that there is a relational table “supplier” defined in SQL Server 2008 and there

is an XML file “customer.xml” without an associated XSD. In addition to these two

data sources, there is another collection of objects “Nations” for a C# class “Nation”

in accordance with the TPC-H schema. The following query Listing 2.5 returns all

the supplier names and customer names from the same nation as “United States” (the

nation key for United States is 24).

XElement customer = XElement.Load("customer.xml");
var SuppliersCustomersfromUnitedStates =

from c in customer.Elements("customer")
from s in supplier
from n in Nations
where n.n_nationkey == 24 &&

n.n_nationkey == s.s_nationkey &&
Int32.Parse(c.Element("c_nationkey").Value) == n.

n_nationkey
select new {CustomerName = c.c_name,

SupplierName = s.s_name,
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Nation = n.n_name};

Listing 2.5: Single LINQ query over objects, SQL and XML.

Thus, LINQ’s unifying paradigm to query heterogeneous data sources in a sin-

gle query supports the objectives of the materialized view definition language for the

DEPA framework.

2.6 Summary

The related work on event stream processing, dataspaces, multiple query optimization,

and materialized view maintenance establishes the importance of this work that builds

on these various approaches. Chapter 3 describes the metadata requirements for the

DEPA framework and presents a service-based implementation of the repository that

provides metadata-level access to different language components in the DEPA environ-

ment. Chapter 4 presents a heuristics-based algorithm that uses a mixed multigraph

model to represent queries over relational and structured XML data sources to detect

common subexpressions as the candidates for materialized views. Chapter 5 explores

the use of LINQ as the materialized view definition language to define hybrid views

over the heterogeneous data sources. An incremental maintenance algorithm based

on magic sets query optimization approach to update the materialized views using the

deltas captured over relational and XML data sources is presented in chapter 6. Chap-

ter 7 presents the performance evaluation of the different components in the DEPA

framework using two different data models.
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Chapter 3

SERVICE-BASED METADATA REPOSITORY

The distributed event stream processing environment provides querying capabilities

over heterogeneous structured data sources taking advantage of materialized views de-

fined over these data sources. The software agents in the DEPA framework support

different query languages, such as SQL, LINQ, and XQuery along with the continu-

ous query language (CQL) provided by the event stream processor. This dissertation

is exploring the research challenge of optimizing multiple queries defined in these dif-

ferent languages by detecting common subexpressions over the relational and XML

data sources. Detecting common subexpressions requires metadata level access to the

different data sources and the various query expressions. Materialized views can be

defined using these detected common subexpressions. The view definition and creation

algorithms described in chapter 5 also require metadata access to the different data

sources, which are used in the view materialization. Thus, the first step in developing

the DEPA framework is to collect and provide access to the metadata for the different

language components and data sources. The DEPA framework for integrating events

and stream processing with access to distributed heterogeneous data sources is based

on the concept of co-existence of data sources, similar to a dataspace support platform

[[11]]. This approach differs from a typical data integration framework that semantically

integrates the data sources to provide a global reconciled schema over the data sources

[[12]]. The metadata design explained in this chapter coordinates the metadata-level in-

formation from the co-existing data sources using services, which provide a protocol

for interactions between loosely coupled systems.

The objective of this chapter is to present the design and development of a

service-based metadata repository for the heterogeneous data sources registered in a

distributed event stream processing framework. These heterogeneous sources include

relational databases, XML data, event and data streams. Section 3.1 describes the
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metadata repository design and the different components that contribute to the metadata

repository. Section 3.2 describes the implementation of the metadata repository and

the services exposed for accessing it through a service-oriented architecture. The chap-

ter concludes with a brief discussion of using this metadata repository in the loosely

coupled distributed event stream processing framework.

3.1 Metadata Design

The DEPAs are essential to the vision of developing enterprise-level applications by

orchestrating events and streams over heterogeneous data sources that are registered

with the DEPA. The “application integrator,” typically a knowledgeable programmer,

can define events of interest, filter streams and pose queries to coordinate these appli-

cations.

The goal of this research is to examine multiple query optimization within this

context to improve the performance of the system. Specifically, the research uses

the metadata level information to identify common subexpressions from the different

queries to materialize potential views over distributed data sources locally at the DEPA

level to improve performance. This research also uses the metadata level information

in conjunction with the incremental view maintenance algorithm to update the views

defined within this context.

To extract common subexpressions from these different query expressions, it is

important for the DEPA to have access to metadata-level information of the different

persistent data sources, such as relational and XML databases, and parsing-level access

to various streams, events, continuous queries, SQL, XQuery and LINQ queries. The

conceptual metadata repository is shown in Figure 3.1.

DEPAs are autonomic agents that can register/unregister resources at run-time,

which requires the design of the metadata repository to be able to handle dynamic up-

dates. Thus, the conceptual repository is designed in two parts: a persistent component

and a run-time component as shown in Figure 3.2. The persistent component stores the
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Figure 3.1: Conceptual metadata repository.

necessary access information for the data sources that are used to build the correspond-

ing run-time component within the metadata repository. The run-time component is a

collection of C# classes that provides access to the actual metadata through services

provided by the DEPA. Maintaining two separate components in the repository pro-

vides the capability to update the metadata information in response to schema-level

changes.

The persistent metadata consists of query expressions and structured data sources

that are registered with the agent. The different types of query expressions that are

maintained by the DEPA are LINQ, SQL, XQuery, CQL queries, event definitions, and

materialized views. The persistent metadata also keeps access information regarding

the different data sources, such as relational databases, XML documents, and stream

definitions.

The run-time component uses the information from the persistent component to

build the metadata information whenever a new resource is registered with the DEPA.

For the different types of data sources, the run-time component is a collection of related
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C# classes that provides access to the metadata level information regarding that type

of the data source. For the different query expressions maintained in the persistent

component, the run-time component has a set of C# classes generated for the Antlr-

based parsers for each language component. These classes provide parsing-level access

to different clauses from the query expressions. In the event of an agent going off-line

and coming back on-line, then the agent can rebuild the run-time component of the

metadata repository by gathering the latest metadata for the relational and XML data

sources using the access information from the persistent component.

Since each agent in the framework registers the events and streams to which it

subscribes, the metadata repository also provides metadata level information regarding

the event and data stream definitions as shown in Figure 3.3. The run-time information

regarding the event stream processor, the different workspaces and the schema-level

information of the streams and event definitions are acquired through the Coral8-

ServerMetadata class and its associated classes (see Figure 3.2). The details

regarding the metadata for the Sybase CEP server accessed using the API calls are

provided by the CEP .NET development kit [[25]].
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Figure 3.3: Streams metadata information.

The DEPA agents store SQL queries for querying relational data sources and

XQuery queries for querying the XML documents. To provide querying capabili-

ties over combined relational and XML data sources, the agents also store the LINQ

queries, which can query objects, relations, and XML documents through a single

query. In order to detect common subexpressions from these different queries, the

agent needs access to information from queries, such as different data sources, predi-

cates used to filter information, and which attributes or elements are projected as the

output of the queries. In the DEPA framework, this parsing level information is ob-

tained by using parsers for each query language. A parser written in Antlr parses the
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continuous queries defined using the Sybase CQL language into abstract syntax trees

that can be used to represent queries in mixed multigraph model. This is a modified

parser from the CQL parser, which was provided by the technical support team at Aleri

Inc. This CQL parser is a stripped down version of the original parser that is used

internally in the Coral8 software. The Coral8 event stream processor, now known as

Sybase CEP, was originally developed by Coral8 Inc., which was bought by Aleri Inc.,

which was then acquired by Sybase. The CCLASTTreeVisitor class and its asso-

ciated Antlr-based classes (see Figure 3.2) provide access to the parsing level informa-

tion from the CQL queries. Since LINQ is used to access all the relational and XML

data sources throughout the development of the DEPA framework, LINQ is also used

to access the metadata related to the heterogeneous data sources. The LINQ frame-

work provides access to the expression tree generated by parsing a LINQ query. The

ExpressionTreeVisitor class and its associated classes from the LINQ frame-

work (see Figure 3.2) provide access to the expression trees. These classes are also

used to parse the metadata information from the materialized view definitions since the

views are defined using LINQ. Similar to the parser used to parse the CQL queries,

there is an SQL parser that accesses the different information obtained by parsing an

SQL query. The SQLASTTreeVisitor class and its associated Antlr-based classes

(see Figure 3.2) provide metadata information related to the SQL queries. The differ-

ent queries are stored as part of the persistent metadata repository as shown in Figure

3.4. To provide metadata access to the queries expressed in the XQuery language,

an Antlr-based XQuery parser is used to access different sections of the query. The

XQueryASTTreeVisitor class and its associated Antlr-based classes (see Figure

3.2) provide metadata information related to the XQuery queries.

The agents in the DEPA framework are assumed to perform their own tasks or

responsibilities. In order to carry our these tasks, each DEPA maintains a set of data

sources required for proper functioning and timely output of the different queries regis-
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Figure 3.4: Metadata information for query expressions.

tered with the DEPA. As part of the persistent metadata repository, the agent maintains

information regarding accessing the data source. For a relational database, this infor-

mation includes the server name, user name, password, and database name, along with

other necessary data required to connect to the database server as shown in Figure 3.5.

The run-time component uses this information to access the server for the first time and

creates the necessary data structures to store and access the metadata for the database.

The run-time component of the metadata repository uses Object-Relational mappings

(ORMs) through the LINQ to Entities provider. This ORM provides metadata level

information for the classes created for the individual relational table as well as the

metadata information of the database server. The classes generated using the ORM

technique are compiled into a Dynamic Linked Library (DLL), which can be loaded

or unloaded into the main memory of the DEPA at run-time. The EntityMetadata

class (see Figure 3.2) and its associated LINQ framework classes provide access to

the required metadata information on relational data sources. Along with this informa-

tion, the DEPA also maintains a record of which relational tables are configured for the

Change-Data-Capture mechanisms that captures the changes made to the tables. These

deltas are used to incrementally update the relevant materialized views. For an XML
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document, if the corresponding XML schema is available, then it is used to access the

metadata for the XML document. If the XML schema is not available, then the XML

schema definition tool called xsd.exe [[53]] can be used to create XML schema from

the XML document, attach the XML schema to the document and validate the docu-

ment at the same time. The same XSD tool is then used to create XML-Object map-

pings that create C# classes corresponding to the XML schema. These classes are also

compiled into a DLL file and the DLL file is used whenever metadata information is

required. The XMLSchemaMetadata class (see Figure 3.2) and its associated .NET

framework classes provide access to the necessary information related to the XML

document.

3.2 Implementation of Metadata Services

The DEPAs communicate peer-to-peer in a distributed environment. The DEPAs ex-

change information about the subscribed resources, as well as the event and data streams

they are exposing to other DEPAs. The DEPAs also communicate about the changes

occurring in the persistent data sources. Thus, in order to achieve these key functional-

ities, a Service-Oriented Architecture (SOA) serves as an ideal technology to develop

the DEPA framework. Since the research focuses on using LINQ as the view definition

language and LINQ is part of the .NET framework, the .NET technology called Win-

dows Communication Foundation (WCF) is a unified framework used to build SOA-

based applications [[54]].

WCF is a Software Development Kit (SDK) provided by Microsoft to develop

and deploy services, which can take advantage of the underlying .NET 3.5 framework.

Some of the key features of WCF are service instance management, asynchronous calls,

transaction management, disconnected message queuing and security. These features

distinguish WCF services from traditional web services such that WCF services are

stateful and they can retain the client call-back handlers to send messages or data back

to the client in an asynchronous way. This is also helpful in achieving server-pushing
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Figure 3.5: Metadata information for heterogeneous data sources.

so that if any metadata or data has changed, then that DEPA service will notify other

subscribing DEPAs about the changes. Hence, it is not essential for all the DEPAs to

keep polling for the changes occurring at other DEPAs.

Like any typical service, a WCF service has endpoints through which the clients

can communicate with the service. The WCF service can be hosted on either an IIS

server or Windows Activation Service (WAS) or in a standalone windows process. The

same service can have multiple endpoints providing different subsets of services to dif-

ferent clients based on their subscriptions. Each endpoint is characterized by 3 param-
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eters: a URL address of the endpoint; a binding mechanism that tells how the endpoint

can be accessed; and a contract name that indicates which service contract is exposed

at that endpoint. The binding mechanism is the most important criteria through which

the client can communicate with the endpoint either synchronously or asynchronously,

through TCP, HTTP, MSMQ or Named Pipes protocol.

In the DEPA environment, the metadata repository can be accessed at differ-

ent levels through different WCF services. Figure 3.6 shows two important WCF

services that allow access to the metadata repository. The Subscription service

is accessible to the clients to register/unregister the persistent resources and different

query expressions. The Metadata provider service provides actual access to the

metadata for the resources registered.
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Figure 3.6: Exposing metadata through SOA services.

One of the main issues regarding providing data access over services is mar-

shalling and unmarshalling of the data between the client and the service. In order

to avoid heavy objects transfer between the client and service, the metadata services
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use the enterprise-level design patterns of Data Access Objects (DAO) [[55]] and Data

Transfer Objects (DTOs) [[56]]. DAOs are the abstraction-layer objects through which

the metadata repository is accessible. DTOs are the light-weight replica objects of ac-

tual entities retrieved from the repository. These DTOs are the actual objects that are

marshalled and unmarshalled. The mapping between DTOs and the actual entities is

handled by DAOs.

The metadata prototype for the DEPA environment is developed using WCF

services and C# with the metadata stored in an Oracle 11g database. The service ad-

ministrator can subscribe/unsubscribe resources at run time. For registering a relational

data source, the EntityMetaData handler class (see Figure 3.2) takes the access

information and creates the Entity Context class for that relational database, converts

this class into a Dynamic Linked Library (DLL) and loads the DLL into the WCF ser-

vice, thus updating the metadata repository at run time. For unregistering a relational

data source, the same handler class unloads the DLL file, deletes the file and then re-

moves access information from the metadata repository, thus keeping the repository

updated. A similar process is followed for the XML documents. The event stream and

continuous query definitions are first registered or unregistered with the Coral8 Stream-

ing server and then the Coral8ServerMetadata and the CCLASTTreeVisitor

classes (see Figure 3.2) can access the metadata.

3.3 Summary

This chapter has discussed the design and implementation of a SOA-based metadata

repository for processing events and data streams in a loosely coupled distributed envi-

ronment in coordination with heterogeneous structured data sources. One aspect of this

research is to explore the feature of providing materialized views local to the DEPAs for

processing events and data streams. In order to define materialized views, it is important

to extract common subexpressions from different query expressions, such as continu-

ous queries, primitive and composite event definitions, SQL queries and existing view
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definitions. Designing the metadata repository to provide access to metadata-level in-

formation of the distributed sources is the first step in the journey of exploring multiple

query optimization for a variety of query expressions to detect common subexpres-

sions and using LINQ as a materialized view definition language over heterogeneous

structured data sources while respecting the native format of the data. This metadata

repository is the common backbone for the following research challenges:

1. Dependency analysis across different filtering queries to identify common subex-

pressions as potential candidates for materialized partial joins.

Using an analysis of the various rules, conditions, and queries, materialized

views representing the partial joins of common subexpressions can provide the

foundation for the efficiency of the incremental evaluation by exploring multi-

ple query optimization within the framework. While identifying these common

sub-queries, the metadata repository is essential for query unfolding and to get

metadata information about the data sources on which the queries are defined.

The metadata database also provides schema-level information for the candidate

partial joins across relational and XML data sources.

2. Techniques for selectively materializing the partial joins over relational as well

as XML data sources.

After identifying the potential candidates for the materialized views, one research

challenge is to design a heuristic algorithm that will selectively choose partial

joins over the heterogeneous data sources that will be beneficial to materialize.

Once the materialized views are defined in the system, the original query expres-

sions have to be rewritten to use the materialized views instead of the underlying

data sources. The metadata repository plays an important role in assisting this

process.

3. Incremental Evaluation and Materialized Views for Integrating Streams, Events,
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and Persistent Data.

Capturing of deltas or changes to the original data sources is important in incre-

mental view maintenance of the materialized partial joins. Using the metadata

repository and the materialized views, the native deltas arriving into the system

must be analyzed and used to incrementally update the views.
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Chapter 4

DETECTING COMMON SUBEXPRESSIONS OVER HETEROGENEOUS DATA

SOURCES

This dissertation is focusing on the research challenges involved in developing a dis-

tributed event stream processing framework that can take advantage of optimizing mul-

tiple queries defined over heterogeneous data sources for the efficient functioning of the

individual agent in the framework. A DEPA (an agent) maintains a repository of vari-

ous types of query expressions including continuous queries over streams with access to

heterogeneous data sources, queries over relational and structured XML data sources.

Also, every DEPA performs specific tasks that increases the probability of optimiz-

ing various query expressions by detecting common subexpressions across them. This

multiple-query optimization (MQO) technique analyzes various query expressions to

detect common subexpressions across the query graphs and construct a global access

plan that will avoid repeated computations of the detected common subexpressions.

Once these common subexpressions are identified, they can be computed only once

and the results are cached in the main memory for subsequent access [[31, 42]] or the

results can be materialized into views which can be referenced for reuse [[15, 33]].

Detecting common subexpressions across relational queries has been studied

for centralized databases [[31, 32, 57]] as well as in distributed databases [[58]]. SQL

queries can be represented either in relational algebra trees [[32]] or as multigraphs [[31,

59]]. Multiple queries are analyzed and are expressed in terms of a graph that represents

the data sources, the operations on the attributes of the data sources and the predicates

related to each operation. Detecting common subexpressions across multiple queries

is a well-known NP-hard problem [[60]]. However, this problem can be addressed by

applying heuristic rules in a specific order. This approach has been explored for Select-

Project-Join (SPJ) queries over relational tables in main memory databases using a

multigraph model [[31, 59]]. Multiple relational queries can also be optimized by first
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obtaining the execution plans from the database engine and then analyzing all the plans

for global optimization [[33,34]]. This approach works well only for SQL queries posed

to a specific database based on the execution plan generated by that database.

Processing multiple XQuery queries over XML documents also leads to the de-

tection of common subexpressions involving XPath expressions [[42]]. XQuery queries

are represented as expression trees with nodes that represent different types of expres-

sions and the edges that represent the data flow dependencies. The algorithm described

in [[42]] also uses heuristic rules to detect the common subexpressions and to cache

the results in main memory. Subsequent queries are then analyzed to verify whether

the cached results can be reused. The above mentioned approaches work well for in-

dividual data formats, but these approaches do not handle queries over both relational

and XML data under the same graph model. The expression trees or the execution

plans generated for XQuery queries are quite different from the execution plans for

SQL queries [[42, 61]]. Thus, combining the two execution plans together to detect

common subexpressions for MQO is quite challenging and difficult. Also, the query

optimizers provided by the centralized databases cannot be used to optimize queries

over distributed heterogeneous data sources. This dissertation proposes a mixed multi-

graph model to represent SQL, LINQ and XQuery queries over relational and XML

data sources in a single graph model.

This chapter focuses on formalizing the multigraph approach to represent SQL,

LINQ and XQuery queries and describes a heuristics-based algorithm to detect com-

mon subexpressions as potential candidates for view materialization. To motivate the

rationale behind the design of the multigraph model, the chapter describes a small sce-

nario from the criminal justice model with sample queries over heterogeneous data

sources. These queries exhibit some commonalities in their expressions, which pro-

vides the groundwork for detecting common subexpressions. This chapter then de-

scribes the formal details of the mixed multigraph model along with the representation
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of a sample query over relational and XML data sources. The next section presents the

set of heuristic rules and the common subexpression detection algorithm that analyzes

the query graph to detect the commonalities from their expressions. A detailed work-

ing example to illustrate the use of the algorithm shows that common subexpressions

can be purely relational or purely XML or a hybrid join over relational and XML data

sources.

4.1 Motivational Example

One of the research challenges of this dissertation is to explore ways for efficient exe-

cution of different query expressions over heterogeneous data sources in a distributed

event stream processing framework. Each autonomous agent in the framework car-

ries out specific tasks by subscribing to different resources such as events, streams,

relational databases and structured XML documents. To query these different data

sources, each agent also maintains a repository of metadata level information of the

data sources along with various query expressions, such as continuous queries, SQL

queries, XQuery queries and LINQ queries. Due to the locality of tasks and their

associated data sources and queries, there is a higher probability that the query expres-

sions will exhibit some common subexpressions, which can be used to optimize these

queries. These common subexpressions are the potential candidates for materialized

views in the DEPA environment. As motivation to illustrate this concept, consider a

part of a larger criminal justice model that holds information in different data formats

as shown in Figure 4.1. The driver license information is stored in a relational table

where as the vehicles associated with the licenses are stored in an XML document.

Figure 4.1: Criminal Justice diagram.

Consider a LINQ query Q1 in Listing 4.1 that checks for the expired driver
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license for all the vehicles registered in the state of Arizona and have more than 10

points on them. Consider another LINQ query Q2 from Listing 4.1 that checks for the

expired driver licenses of class type D with points greater than 12 for all the vehicles

registered in the state of Arizona. These two queries have certain conditions in common

over the same set of data sources. Query Q1 shares the identical select condition of

license status being expired with query Q2. Query Q1 also shares the common select

condition of vehicles registered in the state of Arizona with Q2. There is a set of

subsumed select conditions on license points in the queries Q1 and Q2. Finally, Queries

Q1 and Q2 share the common join condition over the driver license number between

relational table LicenseInfo and the XML document VehicleRecords.xml.

Thus, it is necessary to represent these queries in a common graph model, where the

select and join conditions can be analyzed to detect common subexpressions.

Query Q1:
XElement VRDb = XElement.Load("VehicleRecords.xml");
var query1 =
from li in LicenseInfo
from vr in VRDb.Elements("Vehicle")
where li.points > 10 &&

li.status == "expired" &&
vr.Element("VehicleLocation").Element("State").Value.Equals("AZ

") &&
vr.Element("DriverInfo").Element("DriverLicense").Value.Equals(

li.DriverLicense)
select new {/* project needed fields */};

Query Q2:
XElement VRDb = XElement.Load("VehicleRecords.xml");
var query2 =
from li in LicenseInfo
from vr in VRDb.Elements("Vehicle")
where li.class = "D" &&

li.points > 12 &&
li.status == "expired" &&
vr.Element("VehicleLocation").Element("State").Value.Equals("AZ

") &&
vr.Element("DriverInfo").Element("DriverLicense").Value.Equals(

li.DriverLicense)
select new {/* project needed fields */};

Listing 4.1: Sample LINQ queries.
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4.2 Multigraph Approach

This research examines query expressions over both relational and XML data sources.

A mixed multigraph model is introduced to represent the combined relational and XML

query expressions QE within a single graph model. This mixed multigraph approach is

based on a similar formalism of a multigraph model [[31,62]], extended to use directed

edges for navigating through the XML nodes. Thus, XQuery queries and LINQ queries

can be represented in the same graph model along with SQL queries.

Creating multigraphs and defining heuristic rules and algorithms to detect com-

mon subexpressions over the full SQL, XQuery, and LINQ languages are complex

problems. Hence, the initial focus of this research is to consider queries over a subset

of these query languages. For the purpose of this research, Select-Project-Join (SPJ)

queries in SQL are considered without self-joins. The restrictions on XQuery include

limiting clauses to For-Where-Result (FWR) and XPath expressions to forward axes (/,

//, *) and simple boolean predicates. Similar to [[42]], the XQuery queries are assumed

to guarantee XML data equivalence. Finally, queries defined using From-Where-Select

clauses in the LINQ language are considered.

The definition of the mixed multigraph is as follows:

Let R be a set of relations and X be a set of XML documents.

Assume R∩X = ϕ for simplicity.

Let DS be the set of structured data sources such that,

DS = R∪X .

For a given set of queries Q over DS, define a mixed multigraph G = (N,SE,JE,NE)

where N is a set of nodes and SE, JE and NE are the edges where,

• A node n ∈ N where,

N = {r∪ x∪ r.a∪Descendant − or− sel f (d(x)) | r ∈ R, x ∈ X , a ∈ schema(r),

and d(x) is the distinguished root element of x }
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• A non-directional selection edge SE(u,u) is an edge looping over the node u that

corresponds to a selection condition pred cond from a query Qi for the node u.

The selection edge is labeled by SE(Qi, pred cond).

• A non-directional join edge JE(u,v) connects two nodes u and v with an edge that

represents a join condition pred cond from a query Qi between the two nodes.

The join edge is labeled by JE(Qi, pred cond).

• A directional navigation edge NE(u,v) represents a reachable path path expr

from node u to node v from the query Qi. For u,v ∈ N, the path expr can be

either . for relational navigation or a valid XPath expression for XML navigation.

The navigation edge is labeled by NE(Qi, path expr).

• Let E = SE ∪ JE ∪NE be the set of all the edges defined in the multigraph.

• Define QL{E(u,v)} as the list of query IDs from the labels on the edges E(u,v).

With this definition of the multigraph, the different queries over relational as

well as XML data sources can be represented in the same graph model. As an exam-

ple, the multigraph for LINQ queries Q1 and Q2 over one relational and one XML

data source is shown in Figure 4.2. The nodes are represented as rectangular boxes.

The selection edges are represented as dashed lines. The solid line represents the join

condition between the two data sources and the dotted lines are the navigational edges.

4.3 Detecting Common Subexpressions

Once the multigraph is created by parsing all the queries, then heuristic rules can be ap-

plied to detect common subexpressions. However, before applying the common subex-

pression detection algorithm, it is important to do an early pruning by dividing the

query expressions into separate lists of queries that have at least one data source in

common [[31]]. These sets indicate that there is no data source common across any

query set. The heuristic rules defined in this paper use the following notations:
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Figure 4.2: Mixed multigraph representing queries over relational and XML data
sources.

Define Root(u) as the root node or the data source for the node u.

Root(u) =

 r if u ∈ schema(r) ∧ r ∈ R

x if u ∈ Descendant-or-self(d(x)) ∧ x ∈ X

Let Path(u,v) be the navigational path from node u to node v.

If Root(u) ∈ X , then Path(u,v) = XPath expression from node u to node v

If Root(u) ∈ R, then Path(u,v) = u.v

Define csub as the detected common subexpression.

Let CSet be the set of all the common subexpressions detected in the multigraph.

The heuristic rules defined in this research handle identical and subsumed con-

ditions at the same time whenever they co-exist. In the prior research, heuristic rules

were defined separately to handle different conditions [[31,32]]. These rules accommo-

date the detection of common subexpressions across heterogeneous data sources and

handle the navigational edges to support path navigation in XML trees. The rules are
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defined in a specific order so that certain types of edges are selected first in the common

subexpression detection algorithm. The first rule handles the selection edges while the

second rule handles the join conditions.

1. Selection conditions:

Let SE(u,u)α = {a|a ∈ SE(u,u) and has the selection condition α on the node

u ∈ N }

Let SE(u,u)β
α = {b|b∈ SE(u,u) labeled by SE(Qi,β ) and ∃a∈ SE(u,u)α labeled

by SE(Q j,α), where α subsumes β and β ̸= α}

Let Rootu = Root(u)

Let QLβ
α = QLSE(u,u)α ∪ QLSE(u,u)β

α be the list of IDs of the queries that

contain the selection conditions α and β .

IF (| SE(u,u)α | > 1 or SE(u,u)β
α ̸= ϕ ) [True if multiple identical or subsumed

selection conditions exist]

• Create a new node uα representing the selection condition α on u.

Edge bookkeeping

• Join edges: move the relevant JEs on α and β selections to the new node

uα .

– Let JE(u,v)α = { je| je ∈ JE(u,v)∧QL{JE(u,v)} ⊆ QL{SE(u,u)α}}

For each je(u,v) ∈ JE(u,v)α

JE = JE ∪{ je(uα ,v)}

JE = JE − JE(u,v)α

– Let JE(u,v)β
α = { je| je ∈ JE(u,v)∧QL{JE(u,v)} ⊆ QL{SE(u,u)β

α}}

For each je(u,v) ∈ JE(u,v)β
α

JE = JE ∪{ je(uα ,v)}

JE = JE − JE(u,v)β
α

• Selection edges:
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– Remove SE(u,u)α edges since they are coalesced into the new node

uα .

SE = SE −SE(u,u)α

– Move all the edges in SE(u,u)β
α to the new node uα .

For each se(u,u) ∈ SE(u,u)β
α

SE = SE ∪{se(uα ,uα)}

SE = SE −SE(u,u)β
α

• Navigation edges:

Move the relevant NEs from node u to new node uα .

– An outgoing edge ne ∈ NE(u,v) is relevant if QL{NE(u,v)} ⊆

(QL{SE(u,u)α} ∩ QL{SE(u,u)β
α})

Let NE(u,v)α = {ne|ne ∈ NE(u,v)∧QL{NE(u,v)} ⊆ QLβ
α}

For each ne(u,v) ∈ NE(u,v)α

NE = NE ∪{ne(uα ,v)}

NE = NE −NE(u,v)α

– Similarly, an incoming edge ne ∈ NE(v,u) is relevant if QL{NE(u,v)}

⊆ (QL{SE(u,u)α}∪QL{SE(u,u)β
α})

Let NE(v,u)α = {ne|ne ∈ NE(v,u)∧QL{NE(v,u)} ⊆ QLβ
α}

For each ne(v,u) ∈ NE(v,u)α

NE = NE ∪{ne(v,uα)}

NE = NE −NE(v,u)α

• Add the newly detected common subexpression to the set of common subex-

pressions.

Let csub = Path(Root u,uα)

CSet =CSet ∪{csub}

Node bookkeeping

• Remove node u if there are no selection, join or navigational conditions
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involving node u.

if {SE(u,u)∪ JE(u,v)∪NE(u,v)∪NE(v,u)}= ϕ

then N = N −{u}

End if

2. Join conditions:

Let JE(u,v)α = {a|a ∈ JE(u,v) and has the join condition α over the two nodes

u,v ∈ N}

Let JE(u,v)β
α = {b|b ∈ JE(u,v) labeled by JE(Qi,β ) and ∃a ∈ JE(u,v)α labeled

by JE(Q j,α), where α subsumes β and β ̸= α}

Let Rootu = Root(u) and Rootv = Root(v) be the roots of nodes u and v respec-

tively.

Let QLβ
α = QL{JE(u,v)α}∪QL{JE(u,v)β

α} be the list of IDs of the queries that

contain the join conditions α and β .

If (| JE(u,v)α | > 1 or JE(u,v)β
α ̸= ϕ ) [True if multiple identical or subsumed

join conditions exist]

• Create a new node Rcombined = (Rootu on Rootv) representing the join con-

dition α on the two data sources involving u and v.

• Collect a set of all nodes in the multigraph that are affected by the join

condition α .

Na f f ected = {n|n ∈ N ∧QL{NE(n,x)∪NE(x,n)} ⊆ QLβ
α ∧ x ∈ N} -

{Rootu,Rootv}

• Create a corresponding new node ncombined for each node n ∈ Na f f ected . Let

Ncombined be the set of new nodes.

For each n ∈ Na f f ected

N = N ∪{ncombined}

Ncombined = Ncombined ∪{ncombined}
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End For

Edge bookkeeping

• Join edges: move relevant JEs from nodes in Na f f ected to the corresponding

nodes in Ncombined .

JEa f f ected = { je| je ∈ JE ∧QL{JE(n,x)} ⊆ QLβ
αn,x ∈ Na f f ected ∧x ̸= n}−

JE(u,v)α

For each je(x,y) ∈ JEa f f ected

JE = JE∪{ je(xcombined,ycombined)} where xcombined,ycombined ∈Ncombined

are the nodes corresponding to nodes x and y from Na f f ected .

JE = JE − JEa f f ected − JE(u,v)α

• Selection edges: move relevant SEs from nodes in Na f f ected to the corre-

sponding nodes in Ncombined .

SEa f f ected = {se|se ∈ SE ∧QL{SE(n,n)} ⊆ QLβ
α ∧n ∈ Na f f ected}

For each se(n,n) ∈ SEa f f ected

SE = SE ∪{se(ncombined,ncombined)} where ncombined ∈ Ncombined is the

corresponding node for n ∈ Na f f ected .

SE = SE −SEa f f ected

• Navigation edges:

Move the relevant NEs from nodes in Na f f ected to the corresponding nodes

in Ncombined .

NEa f f ected = {ne|ne∈NE∧QL{NE(n,x)∪NE(x,n)}⊆QLβ
α ∧n,x∈ Na f f ected

∧x ̸= n}

For each ne(x,y) ∈ NEa f f ected

NE =NE∪{ne(xcombined,ycombined)} where xcombined,ycombined ∈ Ncombined

are the nodes corresponding to nodes x and y from Na f f ected .

• Add the newly detected common subexpression to the set of common subex-

pressions.
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Let csub = Rcombined

CSet =CSet ∪{csub}

Node bookkeeping

• For each n ∈ Na f f ected

Remove node n if there are no selection or join conditions involving

node n.

if {SE(n,n)∪ JE(n,x)}= ϕ where x ∈ N

Remove the navigational edges on node n.

NE = NE −NE(n,x)−NE(x,n) where x ∈ Na f f ected

N = N −{n}

end if

End For

• Repeat the above for loop for nodes in Ncombined .

• Finally, remove the nodes Rootu,Rootv if there are no navigational edges

involving these nodes.

if {NE(n,x)}= ϕ where x ∈ N ∧n = Rootu or Rootv

N = N −{n}

end if

End if

The heuristic rules defined above identify a set of qualifying edges (either selec-

tion or join edges) from the mixed multigraph representation of various query expres-

sions. These edges and their connected nodes are altered based on certain conditions

and a modified multigraph is constructed. The common subexpressions detection al-

gorithm takes the original mixed multigraph representation as the input and executes

the heuristic rules in a specific order to modify the multigraph. The final output of the

algorithm is the modified multigraph and a set of common subexpressions CSet over
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heterogeneous data sources. In the multigraph representation of given set of queries,

there are a finite number of SE and JE edges. As the algorithm applies certain rules,

a set of edges are considered and processed. Once the edges are processed, then they

are marked and are not chosen again. Hence, when the algorithm applies a new rule or

the same rule again, then those already examined edges are not considered again. This

guarantees the termination of the algorithm in finite time. The algorithm 1 outlines the

pseudo code to detect the common subexpressions across multiple queries represented

in a multigraph model using the heuristic rules.

Algorithm 1 CommonSubexpressionDetection

Input: Mixed Multigraph G(N,SE,JE,NE) and empty CSet.
Output: Modified mixed multigraph G′(N′,SE ′,JE ′,NE ′) with no related conditions

and CSet that contains the list of common subexpressions.
1: repeat
2: Apply the heuristic rules in the specified order to select the type of edges (e.g.

select or join)
3: if there exists some type of commonality (e.g. identical and/or subsumed) then
4: Take appropriate actions
5: end if
6: Modify the multigraph based on the actions performed
7: if common subexpression is detected then
8: Add the subexpression to the list CSet
9: end if

10: until all the edges are examined and no more common edges exist

4.4 Example

To illustrate the working of the algorithm, consider the same two queries in Listing

4.1 with the corresponding multigraph in Figure 4.2. Recall that the queries Q1

and Q2 are defined over one relational table LicenseInfo and one XML document

VehicleRecords.xml. Thus, this example illustrates the importance of detecting

a common subexpression over a relational and an XML data source.

On the multigraph from Figure 4.2, apply the algorithm and heuristic rules

from section 4.3. Rule 1 indicates that there are identical selection conditions on the

Status and the State nodes and subsumed selection conditions on the Points node. First
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analyze the identical selection conditions using dotted boxes as shown in Figure 4.3

(a). After taking the appropriate steps in rule 1, the common subexpression CS1 as

LicenseIn f o.Status =“expired” is added to the list CSet and the Status node is re-

placed by a new node Status= “expired”. Similarly, the common subexpression CS2

as V RDb/Vehicle/VehicleLocation/State =“AZ” is added to the list CSet. The State

node is also replaced by a new node State=“AZ”. The modified multigraph is shown

in Figure 4.3 (b). The candidate common subexpressions are enclosed in DotDashed

boxes.

Now, from Figure 4.3 (b), analyze the subsumed conditions over the Points

node. The superset condition Points > 10 is applied to the Points node replacing

that node with a new node Points>10. The remaining subsumed selection condition

Points > 12 is now applied to the new node. The common subexpression CS3 as

LicenseIn f o.Points > 10 is added to the list CSet. This change in the multigraph is

shown in Figure 4.3 (c).

From Figure 4.3 (c), rule 2 detects identical join conditions LicenseIn f o.Driver-

License = V RDb/Vehicle/DriverIn f o/DriverLicense. In order to process the identical

join condition, a new root node LicenseIn f o onDriverLicense V RDb is created. All the

qualifying nodes and the relevant selection, join and navigation edges as per the condi-

tions in rule 2 are now associated with the new root node. The modified graph is shown

in Figure 4.3 (d). The common subexpression CS4 as LicenseIn f o onDriverLicense V RDb

is added to the list CSet.

Since, no more edges are left to be analyzed; the algorithm terminates with

four common subexpressions detected across the two queries. CS1 and CS3 are purely

relational in structure, and CS2 is purely hierarchical in structure. However, CS4 is a

partial join over the relational table and the XML document.
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(a) Selection conditions: idential select. (b) Selection conditions: subsumed select.

(c) Join conditions: identical join. (d) Final query graph.

Figure 4.3: Detecting common subexpressions from a multigraph.

4.5 Summary

The detection of common subexpressions plays an important role in optimizing mul-

tiple queries. Common subexpressions can be selectively materialized into views to

answer future queries. In the DEPA environment, each agent registers a set of queries

accessing distributed heterogeneous structured data sources. Hence, it is important to

detect these common subexpressions to facilitate the efficient execution of the queries.

This chapter has presented a mixed multigraph model to represent query expressions

over relational and structured XML data sources. Detecting common subexpressions is
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a well-known NP-hard problem. Thus to address this problem, this research has con-

tributed the design and implementation of a heuristics-based algorithm that can analyze

the multigraph and detect common subexpressions across heterogeneous data sources.

As seen in the example, a common subexpression can be a hybrid join over relational

as well as XML data source. These common subexpressions are the potential candi-

dates for materialized views. The next chapter in this thesis explores specific research

challenges in defining such materialized views using LINQ as the materialized view

definition language.
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Chapter 5

DEFINING MATERIALIZED VIEWS OVER HETEROGENEOUS DATA

SOURCES

The distributed event stream processing environment integrates data from heteroge-

neous data sources using various types of query expressions, including continuous

queries over events and data streams, queries over relational and XML data sources, and

primitive and composite event definitions with access to heterogeneous data sources.

The goal of this research is to materialize views of common subexpressions across these

heterogeneous data sources to improve performance. This chapter first describes the

language features required for the materialized view definition language in the DEPA

framework and then discusses the capabilities provided by the LINQ language as the

materialized view definition language. The chapter then presents an algorithm to de-

fine a view in LINQ for the identified common subexpressions. The original queries

can then be rewritten to use the newly defined view. Once the view is defined in LINQ,

there must be an appropriate data structure for storing the persistent results of a query

over heterogeneous data sources. An algorithm is presented that generates the state-

ments required to persist the view. One challenge of this work is the persistence of

hybrid views defined in LINQ over relational and XML data sources. The presented

algorithm contributes an approach to persist such views in a relational table with XML

columns for XML data. Examples are provided to illustrate both the view definition

and creation.

5.1 Materialized View Definition Language

The distributed stream processing environment described in chapter 1 integrates data

coming from heterogeneous data sources especially relational and structured XML

sources. Such an environment uses different query expressions such as continuous

queries, SQL queries, XQuery queries and LINQ queries to access the heterogeneous

data sources subscribed by the individual agent. The focus of this research is to pro-
64



vide capabilities of extracting common subexpressions across these different queries

and materialize these partial joins into views that will provide better performance in

executing the queries. These materialized views can be over purely relational or purely

XML or even over a hybrid combination of the two. In order to define such kinds of ma-

terialized views, following are the necessary features that a materialized view definition

language (MVDL) should have:

1. Querying Relational Sources: The MVDL should be able to fully accommodate

querying relational tables from different data sources. Each DEPA can subscribe

to individual relational tables from different relational database systems in order

to gain access to different data needed for its initial view materialization or for

subsequent incremental view maintenance. The MVDL should be able to ob-

tain the metadata level information of each of these sources from the metadata

repository of that DEPA.

2. Querying XML Sources: The MVDL should also be able to query XML doc-

uments (with or without) XML Schema. As with relational sources, the MVDL

should be able to access the metadata information from the repository for its

initial view materialization or for subsequent incremental view maintenance.

3. Querying Collection of Objects: The DEPA maintains collection of objects

(lists, arrays) to store data such as metadata repository, temporary data and data

received over the streams by Sybase CEP processor. The temporary data can be

in terms of Datasets while the streaming data can be either a single object or a

list. The DEPA is capable of processing data received over the streams to answer

certain queries. In addition to this, the changes occurring over the base data

sources are streamed to the DEPA that contains materialized views over these

base data sources. The DEPA uses these deltas in incremental view maintenance

of the views defined locally to the agent. Thus, MVDL should be able to access
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these delta objects and use them in the view maintenance algorithm.

4. Querying Heterogeneous Sources Together: The main required feature of MVDL

suitable for the DEPA environment is the capability of MVDL to query heteroge-

neous data sources within a single query. Thus, MVDL should be able to access

data from relational as well as from XML data sources using a single view defi-

nition.

In the past, SQL has been considered as the main MVDL for defining and

maintaining materialized views over relational sources [[15]]. Recently, for defining

and maintaining XML views over XML data, XQuery is chosen as the MVDL [[18]].

However, for defining views over both relational and XML sources, researchers have

explored the use of either SQL or XQuery as the MVDL. Some of the work that used

SQL, first converted the XML data into relational format and then used SQL to define

materialized views over the relational data sources [[19, 27]]. While others who used

XQuery as the MVDL, converted the relational data into XML and then used XQuery

to define views which are materialized into different XML documents [[28]]. However,

both the approaches have certain drawbacks. The data has to be converted back and

forth from one format to the other which is time consuming. Also, additional mapping

information is required to transform the results from the converted format back to the

original source format. The time required to convert data from one format to the other

increases during incremental view maintenance whenever deltas are received in smaller

chunks. This research is relaxing this constraint by taking the advantage of established

technology behind each data format. Thus, the materialized views defined in the DEPA

framework will retain the data in their original format. Considering these different re-

quirements for MVDL, this dissertation is exploring the use of LINQ as the language

accessing multiple heterogeneous data sources through a single query and defining and

maintaining LINQ-based materialized views.
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5.2 LINQ as Materialized View Definition Language

LINQ is a declarative query language that extends object-oriented programming lan-

guages like C# and Visual Basic with a native language syntax for querying different

types of data sources or collections. LINQ uses the familiar SQL-like syntax with

from, where and select clauses to query heterogeneous data sources through a

single query. The from clause iterates over a collection, the where clause defines

the filters over the collection and the select clause defines the desired output. An

introduction to LINQ is given in chapter 2.

LINQ provides a layer of abstraction over different data sources with the help

of an extensive set of class libraries. A typical LINQ query is compiled and internally

represented as an expression tree. Based on the type of data source, this expression tree

is translated into the corresponding query language to take advantage of the underlying

technology for each of the individual data sources to return the desired results. One of

the challenges of this research is the materialization of the heterogeneous results while

retaining the corresponding data formats. Prior approaches have handled this problem

by first converting one format to the other and then defining the materialized views over

the now homogeneous data sources. However, this dissertation is exploring the storage

of heterogeneous query results as materialized views. An extensive literature search

did not reveal any existing work that addresses this research challenge.

As a motivational example for this research challenge, consider a LINQ query

Q over one relational data source LicenseInfo and an XML document Vehicle-

Records.XML that returns all the active license numbers along with the vehicle in-

formation associated with each license number as shown in Listing 5.1.

Query Q:
XElement VRDb = XElement.Load("VehicleRecords.xml");
var query =
from vr in VRDb.Elements("Vehicle")
from li in LicenseInfo
where li.Points == 10 &&

li.Status == "active" &&
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vr.Element("VehicleLocation").Element("State").Value.Equals("AZ
") &&

vr.Element("DriverInfo").Element("DriverLicense").Value.Equals(
li.DriverLicense)

select new {DriverLicense = li.DriverLicense,
Status = li.Status,
VehicleInfo = vr

};

Listing 5.1: A sample LINQ query over relational and XML data sources.

The output of this particular query contains partial results from the relational

data source LicenseInfo and partial results from the XML document Vehicle-

Records.XML. Sample output with one tuple is shown in Table 5.1.

The research challenge is to take this type of query output and materialize it into

a persistent view retaining the columns DriverLicense and Status as relational

data and VehicleInfo column as the XML data. Any typical materialized view

definition language has two counterparts. There is a semantic definition of the view

that decides which qualifying tuples from the base data sources are used to populate the

view and a persistence definition that denotes how the view is materialized or persisted.

The LINQ query provides the semantic definition of the view. However, the LINQ

framework does not provide any mechanism to persist this view. This research presents

a solution for this problem by constructing a view creation statement that will persist

the qualifying tuples into an appropriate data structure that will retain the data in their

native format. This research has explored the use of the Create Table statement to

persist a relational or hybrid view. For the hybrid view, the XML data will be stored

in an XML column. For a pure XML view, an XML Schema will be created so that

the qualifying XML records will be stored in an XML document validated against

the schema definition. The corresponding Create Table statement for the above

sample LINQ query over relational and XML data sources is shown in Listing 5.2. The

algorithms to create LINQ-based materialized views are described in the next section.

Create Table Q (DriverLicense string,
Status string,
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VehicleInfo XML);

Listing 5.2: The corresponding create statement for hybrid view.

DriverLicense Status VehicleInfo

G97910467 Active

<Vehicle id=”11”>
<VehicleInformation>
<Vin>0ANSU809MIJ610291</Vin>
<PlateNumber>CJE-3154</PlateNumber>
<Make>Audi</Make>
<BodyStyle>Convertible</BodyStyle>
<Color>Average red</Color>
<Year>2000</Year>
<Model>Impreza</Model>
<ListPrice>$34191.32</ListPrice>
<Fuel>Hybrid</Fuel>
</VehicleInformation>
<RegistrationInformation>
<StartDate>2/26/2009</StartDate>
<EndDate>2/21/2021</EndDate>
</RegistrationInformation>
<DriverInformation>
<DriverLicense>G97910467</DriverLicense>
</DriverInformation>
<VehicleLocation>
<Street>2665 Post Avenue</Street>
<City>Sedona</City>
<State>AZ</State>
<Zip>86336</Zip>
<Country>United States</Country>
</VehicleLocation>
</Vehicle>

Table 5.1: Sample output of LINQ query containing part relational and part XML re-
sult.

5.3 View Definition and Creation

Each agent in the DEPA framework selectively materializes the common subexpres-

sions across heterogeneous data sources for efficient processing of different queries

registered with it. Common subexpressions are detected from various queries repre-

sented using a mixed multigraph model as described in chapter 4. Since the common

subexpressions are across heterogeneous data sources, the materialized views can be
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either pure relational, pure XML or a hybrid combination of the two. This research is

exploring the use of LINQ as the MVDL for defining and persisting these views. Any

typical MVDL has two counterparts. There is a semantic definition of the view that

decides which qualifying tuples from the base data sources are used to populate the

view and there is a persistence definition that denotes how the view is materialized or

persisted for later use. Similarly, in order to use LINQ as the MVDL, the LINQ query

serves as the semantic definition for the qualifying tuples. However, the LINQ frame-

work does not offer any capabilities/functionalities to persist the results from the LINQ

query. Thus, this chapter focuses on designing two algorithms: one view definition

algorithm to construct a LINQ query from the set of common subexpressions that will

serve as the semantic view definition; and the second view creation algorithm that will

create an appropriate data structure to persist the output from the LINQ query. Since

the views can be either purely relational, purely XML or a hybrid of relational and

XML data sources, the algorithm detects that particular scenario and generates either

a Create Table statement for a relational or a hybrid view or an XML Schema

for a pure XML view. Both the algorithms access the metadata repository and the

modified multigraph to generate the two statements from the common subexpressions.

Figure 5.1 shows the high-level process view of the two algorithms indicating the input

requirements and the output generated.

Figure 5.1: Process for defining and creating views.
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The view definition and creation statements are created using the common

subexpressions, and the metadata objects for the corresponding base data sources from

the metadata repository. While creating these view statements, the algorithm uses dif-

ferent data structures to fill the relevant information into the View structure described

in Figure 5.2. The View data structure comprises of the information necessary to

identify (ViewName and ViewType) and create the view (ViewDefinition and

ViewCreation). The View structure also maintains a list of common subexpres-

sions from which the view is created (csubs), the list of view attributes that defines

the structure of the view (attributes), the list of base data sources from which the

view is derived (BaseDataSources). To create the LINQ-based view definition,

the common subexpressions are transformed into the corresponding where clauses,

the base data sources are used to create the from clauses and the select clauses are

created using the attributes of the view. The detailed algorithm for the view defini-

tion and creation statements is described in the following section along with a working

examples that illustrates the use of the data structures.

Figure 5.2: UML diagram for view data structures.
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Materialized View Definition Algorithm

Let Q be the set of the queries that share all the common subexpressions csub in the

set CSet. Each csub can be either of selection type Selectcsub or of join type Joincsub.

The View data structure is used to maintain all the relevant information regarding the

original data sources from which the view is derived, the set of common subexpressions

CSet which defines the semantics of the view and other necessary information to build

and maintain the view. The details are shown in the UML diagram in Figure 5.2.

The materialized view definition algorithm has two parts. The first part of the

algorithm takes the partially filled view structure V and creates the view definition

V.ViewDe f inition in LINQ language. This LINQ query decides which tuples from the

base data sources qualify to be in the view V . The view V defined by the LINQ query

needs to be persistent in nature. The second part of the algorithm creates the view

creation statement V.ViewCreation using the view structure V and corresponding meta-

data level information of the base data sources. The following pseudo code describes

the algorithm for creating the view definition V.ViewDe f inition.

Algorithm: ViewDe f inition

Input: The final modified Multigraph G′(N′,SE ′,JE ′,NE ′), the set of common subex-

pressions CSet, the partially filled view structure V and its corresponding required data

structures shown in Figure 5.2, and the original queries Q.

Output: Materialized View Definition in LINQ language V.ViewDe f inition.

Pseudo code:

Let V.ViewName be the name of the materialized view V . Let V.ViewDe f inition =“”.

Let V.BaseDataSources be the set of base data sources from which the view V is de-

rived. Each object in V.BaseDataSources contains the information regarding the base

data source and its corresponding metadata object.

/* Since the views can be of hybrid nature and in order to execute the hybrid LINQ

queries correctly, it is required that for such hybrid LINQ queries the first base data
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source should be an XML data source (only applicable to hybrid LINQ queries).*/

Sort V.BaseDataSources based on V.SourceType to group all the XML data sources

together at the beginning of the list.

For each ds ∈V.BaseDataSources

Generate an alias dsalias for ds.SourceName to be used in the LINQ from clauses.

/* For example: Create alias T 0 for first data source in the list, T 1 for the second

data source in the list and so on. */

ds.Alias = dsalias;

For each ds ∈V.BaseDataSources

V. f romClauses=V. f romClauses ∪ {“ f rom ” + ds.Alias+“in ” + ds.SourceName}

If ds.SourceType = 0 /*Source is a relational table */

/* Get all the attributes and their data types for ds and add the attributes to

the list of view attributes. */

attribList = ds.Metadata.getAttributes();

For each attrib ∈ attribList

Generate an alias attribAlias for attrib to be used in the LINQ select

clauses.

V.attributes =V.attributes ∪ new ViewAttribute(attrib, attribAlias, 0,

attrib.datatype, null);

V.selectClauses=V.selectClauses ∪ {attribAlias+“= ” +ds.Alias+“.”

+attrib};

Else if ds.SourceType = 1 /*Source is an XML document */

/* Get the XML schema for ds, extract partial XML schema relevant for the

view and a new XML attribute to the list of view attributes. */

Let attribPartialXMLSchema be the extracted partial XML Schema.
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V.attributes =V.attributes ∪ new ViewAttribute(null, ds.Alias, 1,“XML”,

attribPartialXMLSchema);

V.selectClauses =V.selectClauses ∪ {ds.Alias+“= ” +ds.Alias};

End if

EndFor

For each csub ∈CSet

/*From each csub, replace each data source name with its corresponding alias

from V.BaseDataSources.*/

If csub is a Selectcub

tempExpression = csub.DS.Alias+ csub.Path+ csub.Attribute+“ ” +

csub.Operator +“ ” +csub.Value;

Else if csub is a Joincub

tempExpression= csub.Le f tDS.Alias+csub.Le f tPath+csub.Le f tAttribute

+“ ” +csub.Operator+“ ” +csub.RightDS.Alias+ csub.RightPath +

csub.RightAttribute;

End if

V.whereClauses =V.whereClauses ∪ {tempExpression};

EndFor

/* Build the final where clause string by concatenating all the individual where clauses.

*/

Let w = |V.whereClauses|;

f inalwhereClause =“where ”;

For i = 0 to w−2

f inalwhereClause = f inalwhereClause+ v.whereClauses[i]+“ and \n”;

f inalwhereClause = f inalwhereClause+ v.whereClauses[w−1]+“ \n”;

/* Build the final select clause string by concatenating all the individual select clauses.
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*/

Let s = |V.selectClauses|;

f inalselectClause =“selectnew{”;

For i = 0 to s−2

f inalselectClause = f inalselectClause+ v.selectClauses[i]+“,\n”;

f inalselectClause = f inalselectClause+ v.selectClauses[s−1]+“};”

/* Build the final from clause string by concatenating all the individual from clauses.

*/

Let f = |V. f romClauses|;

For i = 0 to f −1

f inal f romClause = f inal f romClause+ v. f romClauses[i]+“\n”;

V.ViewDe f inition = f inal f romClause+ f inalwhereClause+ f inalselectClause+“;”;

To illustrate the working of the materialized view definition algorithm, this sec-

tion continues with the same example from chapter 4 section 4.4. To recapitulate, the

following Listing 5.3 shows the two queries under consideration for detecting common

subexpressions.

Query Q1:
XElement VRDb = XElement.Load("VehicleRecords.xml");
var query1 =
from li in LicenseInfo
from vr in VRDb.Elements("Vehicle")
where li.points > 10 &&

li.status == "expired" &&
vr.Element("VehicleLocation").Element("State").Value.Equals("AZ

") &&
vr.Element("DriverInfo").Element("DriverLicense").Value.Equals(

li.DriverLicense)
select new {/* project needed fields */};

Query Q2:
XElement VRDb = XElement.Load("VehicleRecords.xml");
var query2 =
from li in LicenseInfo
from vr in VRDb.Elements("Vehicle")
where li.class = "D" &&

li.points > 12 &&
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li.status == "expired" &&
vr.Element("VehicleLocation").Element("State").Value.Equals("AZ

") &&
vr.Element("DriverInfo").Element("DriverLicense").Value.Equals(

li.DriverLicense)
select new {/* project needed fields */};

Listing 5.3: Sample LINQ queries.

After applying the common subexpression detection algorithm from chapter 4

section 4.2, four common subexpressions are detected as shown in Listing 5.4 below:

CS1 : LicenseInfo.Status == "expired"
CS2 : VRDb/Vehicle/VehicleLocation/State == "AZ"
CS3 : LicenseInfo.Points > 10
CS4 : LicenseInfo.DriverLicense == VRDb/Vehicle/DriverInfo/

DriverLicense

Listing 5.4: Common subexpressions.

The corresponding filled data structure of common subexpressions csubs used

in conjunction with the view structure is shown in Table 5.2.

Consider that these common subexpressions are to be materialized into a view

with ViewName as V 1 (the name of the view is automatically generated based on how

many views are previous defined in that DEPA. As the view definition algorithm exe-

cutes, the view data structure gets filled with appropriate values and they are as shown

below in multiple tables. Since the view is based on two data sources, relational data

source LicenseInfo and XML data source VRDb, the ViewType is 2. It is difficult

to show all the values for the view structure V in one single table and hence for clarity,

the values are grouped together and shown separately. The BaseDataSources and their

attributes are shown in Table 5.3. Note that not all the attributes are shown here. But

the actual view data structure contains all the attributes from the LicenseIn f o relational

table and one attribute for the XML column for the data from XML data source V RDb

(VehicleRecords.xml).

The algorithm uses the common subexpressions csubs, BaseDataSources and

their Attributes to create the various LINQ clauses required to construct the view defi-
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nition statement. The f rom clauses, where clauses and the select clauses are shown in

Table 5.4.

Finally, all the different clauses are combined together to form the final LINQ-

based view definition. This statement is shown in Table 5.5.

Materialized View Creation Algorithm

The view definition statement constructed by the previous algorithm will determine the

qualifying tuples for the view. However, the LINQ framework does not provide any

mechanism or operator to materialize this view. This dissertation has designed an al-

gorithm that will generate the corresponding view creation statement that will assist in

persisting the view. Based on the type of the view, the following pseudo code uses all

the partially filled data structures from the view definition algorithm to generate mate-

rialized view creation statement V.ViewCreation, which will persist the view locally to

the DEPA.

Algorithm: ViewCreation

Input: The final modified Multigraph G′(N′,SE ′,JE ′,NE ′), the set of common subex-

pressions CSet, the original queries Q, and the materialized View definition in LINQ

language V.ViewDe f inition created using the algorithm ViewDe f inition, and the view

structure V and its corresponding required data structures shown in Figure 5.2.

Output: The view creation statement V.ViewCreation that can be used to create the

actual view in the database. If the view is pure relational or hybrid in structure, then the

V.ViewCreation statement is a create table statement that will define a table in relational

database. If the view is pure XML in structure, then the V.ViewCreation statement is

the XML Schema corresponding to the XML view.

Pseudo code:

From the ViewDe f inition algorithm, the view structure V and its corresponding rele-

vant data structures contain all the necessary information regarding the structure of the

view.
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Let V.ViewCreation =“”.

Let RV = |ds| | ds ∈V.BaseDataSourcesandds.SourceType = 0;

Let XV = |ds| | ds ∈V.BaseDataSourcesandds.SourceType = 1;

If XV ≥ 1andRV ≥ 1

V.ViewType = 2 /* View is of Hybrid type */

Else if XV ≥ 1andRV = 0

V.ViewType = 1 /* View is of XML type */

Else if XV = 0andRV ≥ 1

V.ViewType = 0 /* View is of Relational type */

End if

If RV ≥ 1 /* The view V is created from at least one relational base data source */

CreateStatement =“Createtable ”+V.ViewName+“(\n”;

Let attribcount = |V.Attributes|;

For each i = 0 to attribcount −2

attrib =V.Attributes[i];

CreateStatement =CreateStatement +attrib.AttribAlias+“ ” +

attrib.AttribDataType + “,\n”;

attrib =V.Attributes[attribcount −1];

CreateStatement =CreateStatement +attrib.AttribAlias+ “ ” +

attrib.AttribDataType + “\n”;

CreateStatement =CreateStatement+“);”

V.ViewCreation =CreateStatement;

End if

/* Create a single XSD from all the individual partial XML Schemas in V.Attributes.

The root node of this resultant XML Schema is V.ViewName.*/

If XV ≥ 1andRV = 0 /* The view V is pure XML in structure */
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/* LINQ query to add V.ViewName as the root level element, add “Subtree” as the

XML element to combine all the partial XML Schemas in a sequence. */

V.ViewCreation =XML Schema output from the LINQ query;

End if

To illustrate the working of this algorithm, consider the partially filled view

structure V and the additional supporting data structures that were filled during the

execution of the view definition algorithm. In this case, the view is based on two

data sources i.e. one relational data source LicenseInfo one XML data source

VehicleRecords.xml. Since the bases data sources contain at least one relational

data source, the ViewType is 2 and hence, the view creation statement is a Create

Table statement. This statement will create a table in the relational database with

relational data columns for all the attributes from the LicenseInfo table and one

XML type column for the XML data from VehicleRecords.xml. The view cre-

ation statement is shown in Table 5.6.

Thus, the view definition and creation algorithms generate a LINQ-based view

definition that can be used to semantically determine the qualifying tuples going into

the view persisted using the view creation statement. The View data structure is stored

in the metadata repository since the View structure will play an important role in the

incremental maintenance of the materialized view.

5.4 Summary

This chapter has explored the use of LINQ as the materialized view definition language

to define materialized views local to each agent in the DEPA environment. LINQ pro-

vides the capabilities to query heterogeneous data sources through a single query and

allow the data to be retained in their original format. Thus, a LINQ-based material-

ized view can be either purely relational or purely XML or a hybrid combination of the

two. The view definition algorithm described in this chapter uses the detected common
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subexpressions across the heterogeneous data sources to generate a LINQ query that

can be used to populate the materialized view with the qualifying tuples. This algo-

rithm accesses the metadata for the base data sources from the metadata repository and

populates the View data structure with the necessary information to create the LINQ

view definition. This research has proposed a view creation algorithm that will persist

the results from LINQ queries depending on the type of the base data sources to enhance

the functionalities of the LINQ framework. The example in the chapter illustrated the

workings of both the algorithms and the sample LINQ-based view definition and the

corresponding creation statement. After the materialization of the views, the changes

occurring over the base data sources need to be captured and used in the incremental

maintenance of these views, which is described in the next chapter.
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Chapter 6

INCREMENTALLY MAINTAINING MATERIALIZED VIEWS

A distributed event stream processing framework can take advantage of materialized

views for efficient processing of the various queries defined over heterogeneous data

sources. Materialized views are defined over such heterogeneous data sources so that

the original queries can be rewritten to access the materialized views instead of recom-

puting the view using the base data sources. This will avoid long trips to original data

sources since the views are materialized locally in the system. However, as the base

data sources change, it is necessary to update the materialized views in order to reflect

these changes. Materialized views can either be re-derived completely from the updated

base data sources or incrementally updated using the changes. This chapter is focusing

on the incremental maintenance of materialized views defined over heterogeneous data

sources, such as relational tables and structured XML documents. The chapter first

explains the change-data-capture mechanisms and the typical structure of the logical

change records in commercial database management systems used in this research. A

common delta structure is proposed that can be used to update the views incrementally.

The chapter explains the use of triggers and stored procedures to transform the logical

change record structures from the relational databases into this common delta format.

Once the changes are captured in this delta structure, then the event stream processor

can stream these changes to their respective DEPAs within the framework. This chap-

ter then introduces the concept of magic sets and their use in optimizing non-recursive

queries in relational database systems. This dissertation is exploring the use of magic

sets to efficiently materialize the views over both relational and structured XML data

sources as well as the subsequent use of the magic tables to propagate the relevant

changes to the views and thus, incrementally updating the materialized views. Finally,

the working of the algorithm is illustrated by a detailed example over the criminal jus-

tice data model.
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6.1 Capturing Changes in DEPA

The changes or deltas to the underlying heterogeneous data sources must be captured

and propagated to a DEPA at which a view is materialized based on the changed data

sources. The delta will then be used in the incremental view maintenance algorithm

described later in the chapter. Since one of the goals of this research is to provide a

proof-of-concept implementation within the DEPA framework, this section addresses

how changes can be captured for both relational and XML data sources. Specifically the

change data capture process is described for two commercial database systems, SQL

Server 2008 enterprise edition and Oracle 11g enterprise edition. The mapping of the

specific formats of the change information for each database system is performed to a

common delta structure, which is then streamed to the appropriate DEPA. In addition,

the changes to XML documents must also be captured. These changes are modeled

as individual source update trees (SUTs) based on the XQuery update language [[63]].

The SUTs are incorporated in a proposed XML delta structure and streamed within the

DEPA framework. An overview of the process is shown in Figure 6.1 with the details

of the capturing and streaming of the changes being described in the remainder of the

section.

Common Relational Delta Structure

Each agent in the DEPA framework takes advantage of the locally defined materialized

views for efficient query processing. The changes occurring on the base data sources

are captured and are used to incrementally update these views. This research is ex-

ploring the research challenge of capturing the deltas in their native format and stream-

ing these changes to the respective agents using an event stream processor. Since the

change capture mechanisms vary for each database management system, this research

is proposing a common relational delta structure as shown in Table 6.1 for the use

within the DEPA framework. The first attribute deltakey is the unique delta id that

serves as the primary key for the delta table. The second attribute start lsn is the
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Figure 6.1: Capturing changes in heterogeneous data sources.

unique transaction id assigned by the individual database management system. This

transaction id can be used to group all the changes captured during a single transaction.

The operation attribute identifies the type of the change operation. The changes

can be either delete, insert, or update, which includes both the old values and the new

values. The rest of the attributes are the column attributes from the original relational

table that is configured for capturing changes.

There are advantages of using a common relational delta structure within the

DEPA framework. The deltas captured by the commercial systems contain additional

log information that is needed for the internal workings of the specific database system.

This information is not required for the incremental view maintenance. Thus, the size

of the common delta structure is less than the size of the original deltas captured by

the database systems. Also, a stream processor needs either a unique timestamp or a

primary key to determine the order of the tuples received or processed. The change
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Column Names Data Type Description
deltakey int Unique sequence number associated with the

commit transaction for the change.
start lsn int Transaction ID associated with the commit

transaction for the change. This column is
important because the transaction ID is re-
quired to associate the two update rows for
old values and the new values.

operation int Identifies the data manipulation language
(DML) operation associated with the
change. Can be one of the following:
1 = delete
2 = insert
3 = update (old values)
Column data has row values before execut-
ing the update statement.
4 = update (new values)
Column data has row values after executing
the update statement.

Source Table
Columns

Varies The remaining columns in the Delta table are
the columns from the original table that were
identified as captured columns when the cap-
ture instance was created.

Table 6.1: Proposed common relational delta structure.

data capture mechanisms provided by the commercial systems do not have a primary

key that is understandable by the stream processor. This common delta structure has a

primary key that will allow the deltas to be streamed to the agents. The stream processor

can use either the pooling method (pull method) to grab the new deltas or use the

notification method (push method) that will notify the stream server of the new changes

so that CEP server can get the new deltas and pass them on to the DEPA. With the use

of the common relational delta structure, the changes from different relational database

systems can be transformed into a common format that is understandable by the DEPAs

and that can be streamed within the framework.
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Deltas over Relational Sources

This section elaborates on how two popular commercial relational database systems

capture changes and how the change information is mapped to the common relational

delta structure for use in the DEPA framework. SQL Server 2008 enterprise edition

uses a feature called Change Data Capture (CDC). The database must be enabled to

use this feature by running a script through a sysadmin privilege account, as shown

in Listing 6.1.

-- ================================
-- Enable Database for CDC template
-- ================================
USE <Database Name>
GO

EXEC sys.sp_cdc_enable_db
GO

Listing 6.1: Script to enable a database for CDC.

Thus, to enable the CriminalJustice database or TPCH Database, replace <Data-

base Name> with “CriminalJustice” or “TPCH”. To disable or stop the database for

CDC, run the script shown in Listing 6.2.

-- =================================
-- Disable Database for CDC Template
-- =================================
USE <Database Name>
GO

EXEC sys.sp_cdc_disable_db
GO

Listing 6.2: Script to disable a database for CDC.

Once the database is enabled, then the DEPA user or programmer can enable a

particular table or all the tables from that database registered with the DEPA. In order to

enable a particular table for CDC, run a script through the regular database user account

as shown in Listing 6.3.

-- =======================================================
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-- Enable a Table for All and Net Changes Queries template
-- =======================================================
USE <Database Name>
GO

EXEC sys.sp_cdc_enable_table
@source_schema = N’<Schema Name>’,
@source_name = N’<Table Name>’,
@role_name = N’MyRole’,
@supports_net_changes = 1
GO

Listing 6.3: Script to enable a table for CDC.

In order to disable a particular table for CDC, run a script through the regular

database user account as shown in Listing 6.4 .

-- =======================================================
-- Disable a Table for All and Net Changes Queries template
-- =======================================================
USE <Database Name>
GO

EXEC sys.sp_cdc_disable_table
@source_schema = N’<Schema Name>’,
@source_name = N’<Table Name>’
GO

Listing 6.4: Script to disable a table for CDC.

Once the database and the tables are configured for CDC, there are series of

action steps performed by SQL Server 2008. For each table enabled for CDC, there

is a corresponding CDC table with the name <Schema Name> <Table Name> CT

created within the cdc schema. For example, if a supplier table from the dbo schema

is enabled for CDC then the corresponding cdc.dbo supplier CT table is created. The

typical structure of a CDC table is shown in Table 6.2.

The change information from SQL Server 2008 needs to be mapped to the com-

mon delta format. Listing 6.5 shows the trigger that maps a tuple inserted into the CDC

table to a tuple in the delta table. This will also reduce the size of the delta and remove

unwanted information.

CREATE TRIGGER <Trigger Name>
ON cdc.<CDC Table Name>
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AFTER INSERT
AS
Begin
INSERT into dbo_<Delta Table Name>
select [__operation],

cast([__start_lsn] as int),
,all the columns from the original table on which CDC is

enabled
from inserted

End

Listing 6.5: Script to map CDC table to delta structure.

Column Names Data Type Description
start lsn binary(10) Log sequence number (LSN) associated with

the commit transaction for the change.
end lsn binary(10) Reserved
seqval binary(10) Sequence value used to order the row

changes within a transaction.
operation int Identifies the data manipulation language

(DML) operation associated with the
change. Can be one of the following:
1 = delete
2 = insert
3 = update (old values)
Column data has row values before execut-
ing the update statement.
4 = update (new values)
Column data has row values after executing
the update statement.

update mask varbinary
(128)

A bit mask based upon the column ordi-
nals of the change table identifying those
columns that changed.

Source Table
Columns

Varies The remaining columns in the change table
are the columns from the source table that
were identified as captured columns when
the capture instance was created. If no
columns were specified in the captured col-
umn list, all columns in the source table are
included in this table.

Table 6.2: A typical Change-Data-Capture table in SQL Server 2008.

92



The remainder of this section provides details on the Oracle Logical Change

Records (LCRs), which contain the deltas captured over relational tables, and the pro-

cess to transform them into the common relational delta format. Configuring and set-

ting up the change data capture mechanism in the Oracle server is more complex and

requires certain steps with admin privileges and some steps with regular user privileges.

It is beyond the scope of this dissertation to provide all the details on configuring the

CDC for Oracle. However, there is good documentation by Oracle as well as by vari-

ous external websites and blogs that provide step-by-step commands and scripts to run

and setup the Oracle database server for capturing the deltas [[22, 64, 65]]. A typical

structure of the LCR captured in Oracle server is shown in Table 6.3.

Similar to the CDC structure in SQL Server 2008, the LCR in Oracle 11g server

contains extra information, which is not required for view maintenance. Thus, this LCR

structure is transformed into the common delta structure previously shown in Table 6.1.

This transformation to a common delta structure has the advantage of keeping the deltas

coming from different data sources in the same format. In order to do this transforma-

tion, there are 2-3 steps to be performed. The first step is to create a corresponding

table to store the delta. Once the table is created and the Oracle streams are configured,

then a stored procedure can be written to capture the different types of operations from

the LCRs and transform them into the common delta structure. The general outline of

the stored procedure is shown in Listing 6.6.

CREATE OR REPLACE PROCEDURE <stored proc name as dml handler>(in_any
IN ANYDATA) IS

lcr SYS.LCR$_ROW_RECORD;
rc PLS_INTEGER;
command VARCHAR2(30);
old_values SYS.LCR$_ROW_LIST;
new_values SYS.LCR$_ROW_LIST;
BEGIN

-- Access the LCR
rc := in_any.GETOBJECT(lcr);
-- Get the object command type
command := lcr.GET_COMMAND_TYPE();
-- Perform actions based on the type of the command
IF command IN (’INSERT’) THEN
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-- Set the operation type = 2
-- Obtain the new values and format the new_values records

accordingly and insert the row into the delta table
END IF;
IF command IN (’DELETE’) THEN

-- Set the operation type = 1
-- Obtain the old values and format the new_values records

accordingly and insert the row into the delta table
END IF;
IF command IN (’UPDATE’) THEN

-- Perform two step process
-- Step 1

-- Set the operation type = 3
-- Obtain the old values and format the new_values

records accordingly and insert the row into the delta
table

-- Step 2
-- Set the operation type = 4
-- Obtain the new values and format the new_values

records accordingly and insert the row into the delta
table

END IF;
END;

Listing 6.6: Stored procedure to transform LCR into the common delta structure.

Once the stored procedure is compiled without any errors, then this stored procedure

has to be associated with the original base data source on which changes will occur.

This is called associating the DML handler with the database object. A typical DML

handler is shown in Listing 6.7. Since there are three types of changes (INSERT,

DELETE and UPDATE) that can occur to a database object, there has to be 3 separate

commands to associate a DML handler to the database object. Listing 6.7 shows an

example of an INSERT DML handler. Similarly, remaining two DML handlers can be

written.

BEGIN
DBMS_APPLY_ADM.SET_DML_HANDLER(

object_name => <data source name>,
object_type => ’TABLE’, -- this research is monitoring

only objects of type ‘‘Table’’ in the Oracle database
operation_name => ’INSERT’, -- Change this to DELETE and

UPDATE for rest of the operations
error_handler => false,
user_procedure => <DML handler name>,
apply_database_link => NULL);

END;

Listing 6.7: Associating the DML handler to the base data source.
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Column Names Data Type Description
source database name VARCHAR2 The database where the DDL state-

ment occurred.
command type VARCHAR2 The type of command executed in

the DDL statement. Can be one of
the following: delete, insert, update.
There are other command types possi-
ble. However, they are not relevant for
this research.

object owner VARCHAR2 The user who owns the object on
which the DDL statement was exe-
cuted.

object name VARCHAR2 The database object on which the DDL
statement was executed.

tag RAW A binary tag that enables tracking of
the LCR.

transaction id VARCHAR2 The identifier of the transaction.
scn NUMBER System Change Number. The SCN at

the time when the change record for a
captured LCR was written to the redo
log.

old values LCR$ ROW LIST List of the old values for the columns
of the object that is changed.

new values LCR$ ROW LIST Corresponding list of the new values
for the columns of the object that is
changed.

Table 6.3: Logical Change Record structure in Oracle 11g.

Once the setup is ready, then as the changes occur to the base data source, then

they are queued over the Oracle Stream queue in the form of LCRs. These LCRs are

grabbed by the DML handler and based on the operation type, the DML handler inserts

the appropriate delta in the common delta format into the delta table. Now, the Sybase

CEP stream processor can be configured to access this delta table, procure the new

deltas and stream them over to the respective DEPA for incremental view maintenance.

Deltas over XML Sources

Deltas for XML data sources are more difficult to capture. One approach is to ap-

ply a diff process that compares the revised XML document to the original XML
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document. The structure of the output from the diff algorithm is implementation

dependent [[30, 66, 67]].

Another approach is based on using XQuery’s update language [[63]] to up-

date the XML document. The XQuery update specification defines a Source Update

Tree (SUT) that represents a valid change on the source document. Unfortunately, the

structure of the SUT is also dependent on the XQuery processor implementation.

For the purpose of this dissertation, the assumption is that the changes are made

over the XML documents using the XQuery update language. The SUT is assumed to

be in a format based on the work in [[68]]. This delta format encompasses the typical

changes to the XML documents and provides the information needed to support the

proposed incremental view maintenance in the DEPA framework. The change opera-

tions that are valid for an XML document are insert, delete, and replace. The replace

operation is similar to the update operation in relational databases. There are other

types of operations, such as rename, and move, which can be applied to an XML tree

structure. However, for the purpose of this dissertation, only the 3 basic operations of

insert, delete and replace are considered. The typical XML delta structure that is used in

this research is shown in Listing 6.8. Similar to the relational delta structure, the XML

delta operation can be either 1 for delete, 2 for insert, 3 for replace with old values,

and 4 for replace with new values. The TransID is a binary transaction ID generated to

distinguish deltas coming from different transactions and also to group the deltas with

update operations (3 and 4) together. Since this research is exploring incremental view

maintenance over structured XML data sources only, the SUT contains all the relevant

nodes needed to traverse to the exact node location in the XML document. Also, it is

assumed that the insert operation will insert the subtree at the end of the document.

<DELTA Root Node>
<Delta>

<DeltaKey>1</DeltaKey>
<Operation>2</Operation>
<TransID>x734ab65f</TransID>
<Source Document root node>
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<!-- subtree that is to be inserted into the XML document -->
</Source Document root node>

</Delta>
</DELTA Root Node>

Listing 6.8: XML delta structure.

6.2 Using Magic Sets for Incremental View Maintenance

The magic-sets transformation (MST) is a well-known query optimization technique

that transforms the original query to use multiple auxiliary tables, called magic tables,

that filter irrelevant data. The concept of magic sets was first introduced for recursive

queries in deductive databases [[69–71]]. However, most of the commercial database

systems follow the relational model, and hence, MST has also been explored in terms

of optimizing relational queries [[72–74]].

The MST algorithm transforms a query in two steps. In the first step, the query

is adorned with annotations to the predicates that indicate which arguments are bound

and which are not [[75]]. The bound (b) and free (f) adornments distinguish between

the bound and free arguments of a goal [[76]]. There is also a condition (c) adornment

for propagating constraints other than equality [[77]]. Once the query is adorned, then

the magic-sets transformation rules are applied in the second step that generate the

auxiliary tables, which help in filtering out irrelevant data. As the MST transformations

are applied, the original query is rewritten to use the newly created auxiliary tables.

Experimental results have shown that applying MST to the relational queries sometimes

transforms the nonrecursive query into a recursive one. This has to be avoided since

most of the commercial relational database systems do not support recursion [[78]]. In

order to solve this problem, a variation of MST has been proposed to avoid introducing

recursion in SQL queries [[78, 79]].

This extended magic-sets transformation (EMST) is a variation of MST that is

used in purely nonrecursive systems [[72,79]]. Prior implementations of the magic-sets

transformations were for recursive queries that needed two steps to optimize the query:

the first step to adorn the query and the second step to apply magic sets transforma-
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tion rules. The EMST algorithm for non-recursive queries combines these two steps

into one single step. This approach has been implemented in the Starburst relational

database system [[78, 79]]. The EMST algorithm creates the magic tables while the

original query is adorned with b, c, and f adornments. This one-step EMST algo-

rithm reduces the complexity of the adornment process and allows arbitrary conditions

(equality or non-equality) to be pushed down into the auxiliary tables providing better

and stable optimization for relational queries. The queries are represented in a Query

Graph Model (QGM) before applying the EMST or MST algorithm [[80]]. The EMST

algorithm traverses the query graph in depth-first order applying the adornment pro-

cess and transformation rules to each box in the graph. Once the adorning process is

complete, auxiliary magic tables are created while applying the transformation rules.

There are 3 types of magic tables depending on the predicates that are pushed

down to create the magic tables. A magic-box contains bindings relevant to the query

including the equality predicates and the join ordering from the query definition. Typi-

cally, the magic-box is created when the adornment does not contain any c adornment.

The magic-box can be either a select box, a join box or a union box. A condition-

magic-box contains the bindings relevant to the inequality predicates from the query

definition. The condition-magic-box is constructed to handle the inequality predicates

that are pushed down during the EMST processing of a box that contains a c adornment.

Finally, the supplementary-magic-box contains the bindings related to the equality con-

straints to filter out irrelevant tuples early in the execution plan. The supplementary-

magic-box is also created during the EMST processing of a box from which the equal-

ity predicates can be pushed down close to the data source to facilitate the intermediate

computation that contributes relevant tuples to the associated magic box.

The EMST processing of each box from the query graph depends on the type

of the operation associated with the box. The operation type decides whether the box

allows a quantifier (table reference to a new table) to be added to the box for the new
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magic table replacing the existing quantifier for the original table. The box that allows

such rewriting of quantifiers possible is called an AMQ (Accepts Magic Quantifier) box

while the box that does not allow this rewrite is called an NMQ (No Magic Quantifier)

box. A Select-box is always an AMQ box, whereas union, groupby, difference are

NMQ boxes.

Magic sets transformations have also been applied to queries over XML data

sources [[81,82]]. The XQuery queries are compiled and represented in the query graph

model, similar to the model used to represent relational queries [[82]]. The query rewrit-

ing rules from [[80]] are extended to support transformations on XML queries. Using

these rewriting rules, the predicates and the navigational constructs (XPath expressions)

are pushed down close to the XML data source to take the advantage of XML index.

This XQuery optimization is implemented in DB2 pureXML which is a hybrid rela-

tional and XML database management system [[82]]. Magic sets query optimization

has also been explored for the XPath language by translating the XML document into

a logic program using Prolog [[81]]. Once the XML document is represented using

facts and rules into a Prolog-based logic program, then the magic sets transformations

are applied to various XPath expressions. Both these approaches along with the magic

sets algorithm for non-recursive queries have explored the use of magic sets for either

XML data sources only or relational data sources only. The LINQ-based materialized

view definitions in the DEPA framework may be defined over both relational and XML

data sources. Hence, the research challenge is to explore the use of magic rules on the

queries over combined relational and XML data sources.

6.3 Incremental View Maintenance Algorithm

The Incremental View Maintenance (IVM) algorithm presented in this dissertation uses

the extended magic sets transformation rules to optimize the queries defined over com-

bined relational and XML data sources. The algorithms described in chapter 5 created

a LINQ-based materialized view definition from the detected common subexpressions
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over heterogeneous data sources. The IVM algorithm presented in this section applies

the EMST rules for non-recursive queries to this view definition to create the magic

(auxiliary) tables. The data structures that are maintained to define and create LINQ-

based materialized views are reused in the IVM algorithm. The magic tables created

during the magic sets transformations will retain the data in their native format depend-

ing on the type of the data sources from which the magic tables are created. Thus, if

a magic table is derived from only relational data sources, then the magic table will

be in relational format. If the base data sources are in XML format, then the magic

table will be in XML. For hybrid combinations of relational and XML data sources, the

magic tables will use the same data structure as the materialized view defined in chap-

ter 5. For the purpose of this research, Select-Project-Join (SPJ) queries in SQL are

considered without self-joins. The XQuery queries are restricted to For-Where-Result

(FWR) clauses and XPath expressions to forward axes (/, //, *) and simple boolean

predicates. Finally, LINQ queries are restricted to using From-Where-Select clauses.

Thus, the view definitions derived from these types of queries also hold similar restric-

tions. These view definitions are represented in QGM and then the EMST rules are

applied. Since, the view definitions are simple, the boxes in QGM for this research

are AMQ boxes. The IVM algorithm based on the magic sets transformations is first

illustrated by an example before the presentation of the details of the algorithm.

Working of the IVM Algorithm

This section illustrates the incremental view maintenance algorithm using the running

Criminal Justice example in chapters 4 and 5. The example illustrated in this section

takes the same view definition and applies the IVM algorithm using magic sets. The

view definition is shown in Listing 6.9. The view V1 is derived from two data sources:

LicenseIn f o is the relational table and V RDb (VehicleRecords.xml) is the XML

document. The query is represented in QGM as shown in Figure 6.2. LicenseIn f o has

the adornment of f for all of its attributes. The node for the XML document has one
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single f adornment.

View V1:
var V1 =
from T0 in VRDb.Elements("Vehicle")
from T1 in LicenseInfo
where T0.Element("VehicleLocation").Element("State") == "AZ" &&

T1.Status == "expired" &&
T1.Points > 10 &&
T1.DriverLicense.Equals(T0.Element("DriverInfo").Element("

DriverLicense").Value)
select new { LicenseInfo_DriverLicense = T1.DriverLicense,

LicenseInfo_Class = T1.Class,
LicenseInfo_Points = T1.Points,
... ,
T0 = T0 };

Listing 6.9: Step 1 queries.

Figure 6.2: Initial query graph : step 1.

The IVM algorithm using magic sets traverses the QGM in depth-first order.

As the algorithm proceeds, it first considers the View V1 box which is an AMQ box.

Thus, all the predicates that it has can be pushed down. The adornment for this

box is fffbb...ffb since there are three variables, which are bound and rest of

them are free. The equality predicate T1.Status == ‘‘expired’’ is pushed

down to create a supplementary magic-box sm LicenseInfo. Once the box is cre-

ated, the quantifier T1 in the original view box is replaced by a new quantifier M1

created for the magic-box sm LicenseInfo. The adornment for the magic-box

sm LicenseInfo is fffbff...f since Status is the only variable that is bound
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and rest of the attributes from LicenseInfo are free. This is shown in Figure 6.3.

The queries corresponding to the new boxes are shown in Listing 6.10.

Figure 6.3: Modified query graph: step 2.

View V1:
var V1 =
from T0 in VRDb.Elements("Vehicle")
from M1 in sm_LicenseInfo
where T0.Element("VehicleLocation").Element("State") == "AZ" &&

M1.Points > 10 &&
M1.DriverLicense.Equals(T0.Element("DriverInfo").Element("

DriverLicense").Value)
select new { LicenseInfo_DriverLicense = M1.DriverLicense,

LicenseInfo_Class = M1.Class,
LicenseInfo_Points = M1.Points,
... ,
T0 = T0 };

var sm_LicenseInfo =
from T1 in LicenseInfo
where T1.Status == "expired"
select T1;

Listing 6.10: Step 2 queries.

There is another inequality predicate M1.Points > 10 for the View V1

box, which can be pushed down. This inequality predicate creates a condition-magic-

box cm LicenseInfo over the already existing supplementary magic-box sm Lice-
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nseInfo. Once this box is created, the quantifier M1 in the original view box is re-

placed by a new quantifier M2 created for the magic-box cm LicenseInfo. Since

the magic-box cm LicenseInfo uses the quantifier over the magic-box sm Licen-

seInfo, the adornment for cm LicenseInfo is fffbbff...f since there are

two variables (Status and Points), which are bound and the rest of the attributes are

free. The modified QGM and its corresponding revised queries are shown in Figure

6.4 and Listing 6.11, respectively.

Figure 6.4: Modified query graph: step 3.

View V1:
var V1 =
from T0 in VRDb.Elements("Vehicle")
from M1 in cm_LicenseInfo
where T0.Element("VehicleLocation").Element("State") == "AZ" &&

M1.DriverLicense.Equals(T0.Element("DriverInfo").Element("
DriverLicense").Value)

select new { LicenseInfo_DriverLicense = M1.DriverLicense,
LicenseInfo_Class = M1.Class,
LicenseInfo_Points = M1.Points,
... ,
T0 = T0 };
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var cm_LicenseInfo =
from M2 in sm_LicenseInfo
where M2.Points > 10
select M2;

var sm_LicenseInfo =
from T1 in LicenseInfo
where T1.Status == "expired"
select T1;

Listing 6.11: Step 3 queries.

Finally, the equality predicate T0.Element(‘‘VehicleLocation’’).

Element(‘‘State’’) == ‘‘AZ’’ can be pushed down to create a supplemen-

tary magic-box sm VRDb. The adornment for this box sm VRDb is b since the XML

file is bound by a certain element State. The revised QGM and its queries are shown

in Figure 6.5 and Listing 6.12, respectively.

View V1:
var V1 =
from M3 in sm_VRDb
from M2 in cm_LicenseInfo
where M2.DriverLicense.Equals(M3.Element("DriverInfo").Element("

DriverLicense").Value)
select new { LicenseInfo_DriverLicense = M2.DriverLicense,

LicenseInfo_Class = M2.Class,
LicenseInfo_Points = M2.Points,
... ,
M3 = M3 };

var sm_VRDb =
from T0 in VRDb.Elements("Vehicle")
where T0.Element("VehicleLocation").Element("State") == "AZ"
select T0;

var cm_LicenseInfo =
from M1 in sm_LicenseInfo
where M1.Points > 10
select M1;

var sm_LicenseInfo =
from T1 in LicenseInfo
where T1.Status == "expired"
select T1;

Listing 6.12: Step 4 queries.

After analyzing the View V1 box, the algorithm traverses down to the cm -

LicenseInfo box. The condition magic-box is derived from the supplementary
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Figure 6.5: Modified query graph: step 4.

magic-box sm LicenseInfo and the supplementary magic-box is not used any-

where else in the QGM. Hence these two boxes can be combined together to avoid the

creation of one extra magic-box. Thus, a new combined magic-box scm License-

Info is created, replacing the two magic-boxes cm LicenseInfo and sm Lice-

nseInfo. A new quantifier M4 replaces the quantifier M2. The new revised and

optimized QGM and the corresponding queries are shown in Figure 6.6 and Listing

6.13, respectively.

View V1:
var V1 =
from M3 in sm_VRDb
from M4 in scm_LicenseInfo
where M4.DriverLicense.Equals(M3.Element("DriverInfo").Element("

DriverLicense").Value)
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Figure 6.6: Modified query graph: step 5.

select new { LicenseInfo_DriverLicense = M4.DriverLicense,
LicenseInfo_Class = M4.Class,
LicenseInfo_Points = M4.Points,
... ,
M3 = M3 };

var sm_VRDb =
from T0 in VRDb.Elements("Vehicle")
where T0.Element("VehicleLocation").Element("State") == "AZ"
select T0;

var scm_LicenseInfo =
from T1 in LicenseInfo
where T1.Status == "expired" &&

T1.Points > 10
select T1;

Listing 6.13: Step 5 queries.

The algorithm continues to traverse the boxes one after the other but does not

find anything to push down or the necessity to create additional magic-boxes. The

algorithm stops when all the boxes are analyzed and no new modifications are made to

the QGM.
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The final set of queries shown in Listing 6.13 indicates that there are two

magic tables created. One for the relational table LicenseInfo and the other cre-

ated for the XML document V RDb (VehicleRecords.xml). The data format of

the magic tables is based on the type of the base data source. Thus, the magic table

scm LicenseInfo is relational in structure since the base data source License-

Info is relational. Similarly, the magic table sm VRDb is an XML document. These

magic tables are populated only once after the IVMMagicsets algorithm is applied.

Whenever future deltas are captured and streamed to the DEPA, the changes are first

used to update the magic tables and then are propagated to the view.

Assume that the deltas for LicenseInfo are streamed over to the DEPA

and are captured as a collection of objects in the list delta LicenseInfo. This

collection of deltas can be used in place of the LicenseInfo table in the query

scm LicenseInfo. This will return any qualifying tuples for the magic table that

need to be propagated up to the view. The set of queries that will access the delta Lic-

enseInfo collection to propagate the changes in the view due to changes in the

LicenseInfo table are shown in Listing 6.14.

var deltascm_LicenseInfo =
from deltaT1 in delta_LicenseInfo
where deltaT1.Status == "expired" &&

deltaT1.Points > 10
select deltaT1;

var sm_VRDb =
from T0 in VRDb.Elements("Vehicle")
where T0.Element("VehicleLocation").Element("State") == "AZ"
select T0;

var V1 =
from M3 in sm_VRDb
from deltaM4 in deltascm_LicenseInfo
where deltaM4.DriverLicense.Equals(M3.Element("DriverInfo").

Element("DriverLicense").Value)
select new { LicenseInfo_DriverLicense = deltaM4.DriverLicense,

LicenseInfo_Class = deltaM4.Class,
LicenseInfo_Points = deltaM4.Points,
... ,
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M3 = M3 };

Listing 6.14: Set of queries propagating deltas over LicenseInfo table.

In this case, only the delta object for the LicenseInfo table is used. The

magic table for VRDb is the same. Thus, only qualifying delta tuples are propagated to

the view definition. Similarly assume that the deltas streamed to a DEPA for the XML

document VRDb are collected in the list delta VRDb and hence the queries in Listing

6.15 can be used to propagate the relevant changes to the view.

var deltasm_VRDb =
from deltaT0 in delta_VRDb.Elements("Vehicle")
where deltaT0.Element("VehicleLocation").Element("State") == "AZ"
select deltaT0;

var scm_LicenseInfo =
from T1 in LicenseInfo
where T1.Status == "expired" &&

T1.Points > 10
select T1;

var V1 =
from deltaM3 in deltasm_VRDb
from M4 in scm_LicenseInfo
where M4.DriverLicense.Equals(M3.Element("DriverInfo").Element("

DriverLicense").Value)
select new { LicenseInfo_DriverLicense = M4.DriverLicense,

LicenseInfo_Class = M4.Class,
LicenseInfo_Points = M4.Points,
... ,
M3 = deltaM3 };

Listing 6.15: Set of queries propagating deltas over VRDb.

The same list delta LicenseInfo of deltas is used to update the magic

table scm LicenseInfo or the list delta VRDb is used to update the magic table

sm VRDb incrementally. Since the deltas can be either inserts, deletes or updates, the

magic table can be updated using the following rules. The rules presented below are for

updating the magic table scm LicenseInfo, however, similar rules can be written

for updating the XML-based magic table sm VRDb.

Let ∆LicenseIn f o be the set of deltas captured over the base data source Lic-

enseInfo and streamed to the DEPA. Thus,
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∆LicenseIn f o = ∆LicenseIn f o+∪∆LicenseIn f o−∪∆LicenseIn f ochanges where

∆LicenseIn f o+ are the tuples inserted into LicenseInfo,

∆LicenseIn f o− are the tuples deleted from LicenseInfo and,

∆LicenseIn f ochanges are the tuples where certain attributes of those tuples in License-

Info were changed.

Thus, scm LicenseInfo will be updated as follows:

scm LicenseIn f o = scm LicenseIn f o∪deltascm LicenseIn f o

where deltascm LicenseIn f o is the set of qualifying tuples.

Thus, the changes captured over the base data sources can be used first to incre-

mentally update the corresponding magic table if it is present for that particular view

definition. Once the qualifying deltas for the magic table are determined, those relevant

deltas are propagated to the view or the next magic table based on the set of queries and

the stratum number. This algorithm propagates only the relevant tuples thus avoiding

unnecessary tuples propagating to the view. Hence, the time taken to update the view is

very less as compared to naive approach of re-derivation of the view from the updated

base data sources.

Pseudo code of the IVM Algorithm

Let V be the materialized view that is defined using the detected common subexpres-

sions csubs over the heterogeneous data sources. The view definition is also represented

in a graph QG based on QGM [[80]]. The algorithm traverses the graph in depth-first

traversal order starting from the top query box, which, is the view definition.

Algorithm: IV MMagicsets

Input: The query graph QG representation of the view definition V.ViewDe f inition.

The view structure V and its supporting data structures are shown in Figure 5.2. The

supporting data structures will provide access to the metadata repository for the base

data sources.

Output: The modified query graph QG′ and the set of magic tables.
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Pseudo code:

Start traversing the QG graph in depth-first traversal order. Repeat /* Start processing

the node (box) */

Let B be the box under consideration.

/* EMST rules can be applied only to the boxes which are not the base data sources

*/

If B /∈V.BaseDataSources

For each q ∈ list of quantifiers in box B

/* All the predicates related to quantifier q can be pushed down only for

AMQ boxes*/

If B is an AMQ box

/* These predicates can be pushed down */

Mark each csub related to q ∈CSet

/* This is applied only to those QGMs which have join-orders. Rec-

ollect that the join-ordering in LINQ is determined by the ordering

of the from clauses*/

Determine the quantifiers that are eligible to pass information into

q.

Use predicate push-down rules to push down all the above deter-

mined predicates i.e. each marked csub ∈CSet.

Based on the group of predicates for the quantifier q, select an ap-

propriate bcf adornment α .

End If

Make q range over a box Bq with adornment α . If the box Bq does not

exist already, then create a new box Bq.

If α ̸= f f ... f

If B is an AMQ box
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If q has equality predicate

Create a supplementary magic-box by attaching “s ” to

the name of the base data source referenced by the quan-

tifier q. Push all the valid predicates down to the supple-

mentary magic-box. Remove the quantifier q from box

B and add a new quantifier for the newly created supple-

mentary magic-box.

Adjust the stratum numbers accordingly.

End If

If q has at least one condition predicate

Create a condition magic-box by attaching “c ” to the

name of the base data source referenced by the quantifier

q. Push all the valid equality as well as the condition

predicates down to the condition magic-box. Remove

the quantifier q from box B and add a new quantifier for

the newly created condition magic-box.

Adjust the stratum numbers accordingly.

End If

End If

End For

End If

Until the graph QG is traversed completely.

Once the magic tables are created using the algorithm IVMMagicsets, it is

possible that the QGM has some magic-boxes that can be optimized by combining

them together. This can be done especially with the supplementary magic-boxes and

condition magic-boxes on the same data source. This step traverses again through

the QGM starting from the root node, which is the view definition node and detects
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those magic-boxes, which are derived over the same data source and the magic-boxes

can be combined into single magic-box without affecting other boxes. For exam-

ple, there is a join magic-box m Person LicenseInfo that defines a join query

over Person table and LicenseInfo table. Consider that while applying the algo-

rithm IVMMagicsets, a supplementary magic-box s Person was created over the

Person table that filters people below the age of 25. Thus, the magic-box m Person -

LicenseInfo is modified to do a join over s Person and LicenseInfo table.

Since no other QGM box is using s Person box, one magic table creation can be

avoided by combining magic-box m Person LicenseInfo and s Person box

into one single box m s Person LicenseInfo that will contain the join condi-

tion as well as the predicate condition over the Person table. Thus, the magic sets

derivations can be optimized to create and retain less magic tables.

One last step in using magic sets for incremental view maintenance is to create

rule-sets for each base data source such that each rule-set will consume the deltas com-

ing over streams for that particular data source and propagate the changes up the QGM

till the changes reach the view. Once the deltas are propagated to the view level, then

they can be merged into the view to update the view incrementally. The stratum num-

bers associated with each level in the QGM can be used to determine the order of the

rule execution. The queries for all the boxes that have the same stratum number (same

depth in the QGM) can be executed in any order whereas the queries for the boxes at

different levels are ordered based on the ascending order of the stratum numbers.

6.4 Summary

Defining and maintaining materialized views using common subexpressions over het-

erogeneous data sources is expected to improve the performance of the system. Rewrit-

ing the original queries to access the locally defined materialized views avoids the long

trips to the distributed base data sources in the DEPA framework. Since the base data

sources may change, these changes need to be captured to incrementally update the ma-

112



terialized views. This chapter first elaborated on how these changes are captured in both

relational and structured XML data sources. The changes from two popular commer-

cial database systems were captured and mapped to a common relational delta format

for streaming within the DEPA framework. The changes for XML documents were

captured as source update trees and streamed as XML deltas. Both relational and XML

deltas were used in the developed view maintenance algorithm that uses the magic sets

query optimization approach to incrementally update the materialized views.
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Chapter 7

PROTOTYPE SETUP AND EVALUATION

This dissertation has focused on research challenges involved in defining and maintain-

ing materialized views over heterogeneous data sources in a distributed event stream

processing framework. Chapter 1 described an an overview of the DEPA framework

and a simple proof-of-concept implementation. Chapters 3 through 6 presented a

series of algorithms and data structures as part of the solution to these research chal-

lenges. This chapter describes the overall architectural design of the DEPA framework

and its implementation details. The distributed event stream processing prototype is

implemented using the C# language with .NET Framework 3.5, Coral8 Server 5.6.2,

SQL Server 2008, Oracle 11g, and XML files stored on a hard drive. The prototype

proof-of-concept DEPA framework is evaluated using sample scenarios based on the

Criminal Justice and the modified TPC-H enterprises.

7.1 DEPA Architecture

This dissertation research was partially supported by a grant from the National Sci-

ence Foundation (CSR 0915325). Through this support, the research group was able to

purchase three Servers and the necessary software to develop the prototype implemen-

tation of the DEPA framework to illustrate the definition and maintenance of materi-

alized views over heterogeneous data sources. The high-level architectural diagram of

the DEPA framework is shown in Figure 7.1.

The agents in the DEPA framework communicate with each other using event

and data streams. Each DEPA performs its own specific tasks and hence it maintains

a local repository of all the heterogeneous data sources, such as relational databases,

structured XML documents, event and data streams, and different query expressions

that access these distributed data sources. The agent also receives deltas from the mon-

itored data sources over streams so that these changes can be used in the incremental

maintenance of the materialized views. To develop the prototype environment for the
114



DEPADEPA

DEPA

Rela onal 

Database
XML DataRela onal 

Database

Event/Data 

Streams

Event/Data 

Streams

Monitored 

Database

Event/Data 

Streams

Local Storage

(Queries, Events, 

Materialized Views)

Metadata 

Repository

Figure 7.1: High-level overview of DEPA framework.

DEPA framework, the three servers are configured as part of Arizona State University’s

WAN network so that the servers can communicate with each other. The hardware con-

figuration of the prototype system is shown in Figure 7.2. The three servers are Dell

PowerEdge R300 with Xeon 3.0 GHz Processor with 4 GB ram and 160 GB hard drive

space. One of the servers provides access to the Oracle 11g Enterprise Database Server

installed on the Linux Enterprise Operating system. This version of the Oracle server

has the Oracle Streams enabled to capture the changes over the relational tables. An-

other server has a standalone SQL Server 2008 Enterprise edition running on top of

the Windows Server 2003 R2 64-bit operating system. This edition of SQL Server has

the capabilities of configuring and using the Change-Data-Capture feature to gather the

changes over the relational tables. The third server is configured as the actual DEPA

that communicates with the other two servers. The third server uses Sybase CEP (for-

merly known as Coral8) as the event stream processor. XML Stylus studio is used to

create and manipulate the XML documents. The Oracle LINQ provider by Devart is a

third-party LINQ provider used to access the Oracle database using LINQ to Entities.

The DEPA framework prototype is developed in the C# programming language using

Visual Studio 2008 SP1.
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Figure 7.2: DEPA architecture hardware and software specifications.

7.2 Evaluation using Criminal Justice Enterprise

The Criminal Justice enterprise was developed as part of this research to create sam-

ple scenarios for evaluation purposes. The enterprise is designed based on the Global

Justice XML Data Model (GJXDM) [[83]]. GJXDM is designed for the exchange of

information across law enforcement agencies at the municipal, county, state, and fed-

eral levels . However, GJXDM is complex and a vast data model and hence, a smaller

Criminal Justice enterprise was created to evaluate the DEPA framework. The Crim-

inal Justice enterprise consists of relational as well as XML data sources. The UML

diagram is shown in Figure 7.3. The enterprise stores the personal information regard-

ing people, such as their name, age, residential address, etc. Missing people records

and records related to parolees are also maintained as the part of this enterprise.The

enterprise also stores the driving license information for those people who have one.

The vehicle information is stored as XML document that contains vehicle description,

registration information, license plate number, and the people who are eligible to drive
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that vehicle. To illustrate a sample set of charges related to the GJXDM, this enterprise

stores information regarding missing vehicles, missing persons, and parolees. The en-

terprise also handles the different types of traffic violations and parole violations. The

classes in the UML diagram are annotated to indicate the XML data sources whereas

the rest of the classes are relational in structure. This model has been used to develop

and test the algorithms and the data structures throughout the chapters 1 through 6.

The system is first assessed to evaluate the performance of processing streams

over heterogeneous data sources using a LINQ query. The experiment is conducted to

find out the query execution time of processing streaming data over one relational and

one XML data source using a LINQ query with and without the use of a materialized

view. Consider a sample scenario involving speeding tickets cited by the photo radar

system on freeways. Assume that the photo radar speeding tickets are streamed over

an XML stream (SpeedingTickets). The Motor Vehicle Division (MVD) stores

vehicle records in an XML file (VehicleInfo) and the driver license information in a

relational database (LicenseInfo). The personal information (PersonalInfo) is

stored in an associated state-level relational database. In order to process each speeding

ticket, data is required from both the XML file as well as the relational tables so that

the speeding tickets can be mailed directly to the vehicle owner’s home address. The

LINQ query uses the speedingPlateNum from the SpeedingTickets stream

to process each violation as shown in Listing 7.1.

var VehicleInfo = XElement.Load(@"VehicleRecords.xml");

var VehicleDetailedInfo =
from Vehicles in VehicleInfo.Elements("Vehicle")
from Licenses in DBCon.LicenseInfo
from Persons in DBCon.PersonalInfo
where Licenses.LicenseNumber.Equals(Vehicles.Element("

DriverInformation").Element("DriverLicense").Value.ToString()
)

&& speedingPlateNum.Value.ToString().Equals(Vehicles.
Element("VehicleInformation").Element("PlateNumber").
Value.ToString())

&& Persons.SSN.Equals(Licenses.SSN)
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select new {/* project needed fields */};

Listing 7.1: LINQ query processing streaming data over relational and XML data
sources.

Assume that a materialized view is defined in the system such that it contains

related tuples for a vehicle with the license and the personal information of its regis-

tered owner. Such a view can be used to answer the query defined in Listing 7.1. This

materialized view combines both relational and XML data sources. Once the materi-

alized view is registered with the system, the original LINQ query can be rewritten to

query the materialized view instead of the original data sources. The modified LINQ

query that accesses the materialized view ViewPersonVehicle is shown in Listing

7.2.

var VehicleInformation = XElement.Load(@"VehicleRecords.xml");

var VehicleDetailInfo =
from mv in DBCon.ViewPersonVehicle
where speedingPlateNum.Equals(mv.VehicleInfoPlateNum)
select new {/* project needed fields */};

Listing 7.2: LINQ query processing streaming data over a hybrid relational and XML
view.

As expected, query execution in the DEPA environment using the material-

ized view shows significant performance improvement. Figure 7.4 shows the perfor-

mance difference between the execution time of both the LINQ queries shown above

as the XML speeding citations are received as streaming data. The graph clearly

indicates the expected performance improvement using the materialized view. The

PersonalInfo table contains 14500 tuples and the LicenseInfo table contains

500 tuples. The VehicleInfo XML file contains 500 records. The XML speed-

ing citations were received at a rate of 1 citation per second. The average time to

execute 120 XML speeding citations using the LINQ query over the original data

sources is 324 milliseconds. The average time to execute the same 120 citations us-

ing the LINQ query with the materialized view is 50 milliseconds. For this exam-

ple, the use of the materialized view for stream processing over heterogeneous data
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sources increases the query efficiency by an approximate factor of 6. The materialized

view ViewPersonVehicle contains 500 tuples as a result of the join between the

PersonalInfo table, the LicenseInfo table, and the VehicleInfo XML file.

0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Execu on 

Time in 

MilliSeconds

Streaming XML Tuples

LINQ Query without Materialized View LINQ Query with Materialized View

Figure 7.4: Criminal Justice: Comparing query execution time with and without using
materialized view.

The second performance evaluation is done to compare the time required for the

materialization of a hybrid view. The time required to materialize the view directly from

the base data sources without using magic tables is compared with the time required to

materialize the view using temporary magic tables. The third entry in the evaluation is

to persist the magic tables for the first time in a Dataset and then the subsequent view

materialization is done using the magic tables from the Dataset. This evaluation is done

for materializing the view definition as shown in Listing 7.3.

var VRDb = XElement.Load("VehicleRecords.xml");

View V2:
var V2 =

from T0 in VRDb.Elements("Vehicle")
from T1 in LicenseInfo
where T0.Element("VehicleLocation").Element("State") == "AZ" &&

T1.Status == "expired" &&
T1.Points > 10 &&
T1.DriverLicense.Equals(T0.Element("DriverInfo").Element("

DriverLicense"). Value)
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select new { LicenseInfo_DriverLicense = T1.DriverLicense,
LicenseInfo_Class = T1.Class,
LicenseInfo_Points = T1.Points,
... ,
T0 = T0 };

Listing 7.3: LINQ definition for a hybrid view over a relational and XML data source.

To measure the time required to materialize the view using magic tables, which

are not stored in a Dataset, the set of queries shown in Listing 7.4 are used. These set

of queries are obtained by applying the magic sets algorithm from chapter 6.

View V2:
var V2 =

from M3 in sm_VRDb
from M4 in scm_LicenseInfo
where M4.DriverLicense.Equals(M3.Element("DriverInfo").Element("

DriverLicense"). Value)
select new { LicenseInfo_DriverLicense = M4.DriverLicense,

LicenseInfo_Class = M4.Class,
LicenseInfo_Points = M4.Points,
... ,
M3 = M3 };

var sm_VRDb =
from T0 in VRDb.Elements("Vehicle")
where T0.Element("VehicleLocation").Element("State") == "AZ"
select T0;

var scm_LicenseInfo =
from T1 in LicenseInfo
where T1.Status == "expired" &&

T1.Points > 10
select T1;

Listing 7.4: Magic sets LINQ queries to materialize the view.

Finally, in the third option, while materializing the view for the first time, the

two magic tables sm VRDb and scm LicenseInfo are stored in a Dataset. Sub-

sequent re-materialization of the view is done by accessing the magic tables from the

Dataset. The queries for the magic tables sm VRDb and scm LicenseInfo remain

the same as shown in Listing 7.4, however, the final view query now accesses the magic

tables stored in the Dataset. Thus, the modified query for the view materialization using

magic tables from the Dataset is shown in Listing 7.5.
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View V2:
var V2 =

from M3 in sm_VRDbDataset
from M4 in Dataset.scm_LicenseInfo
where M4.DriverLicense.Equals(M3.Element("DriverInfo").Element("

DriverLicense"). Value)
select new { LicenseInfo_DriverLicense = M4.DriverLicense,

LicenseInfo_Class = M4.Class,
LicenseInfo_Points = M4.Points,
... ,
M3 = M3 };

Listing 7.5: LINQ query to materialize the view using magic tables stored in a Dataset.

The graph comparing different execution times captured over multiple runs is

shown in Figure 7.5. The LicenseInfo table contains 7000 license information and

the VRDb XML document contains 7000 XML records of vehicle information. The

total number of qualifying tuples for the view V2 is 722 records. The average time taken

to materialize the view without the use of magic sets is 02 minutes and 34 seconds. The

average time taken to materialize the view using magic sets (without storing them in

the Dataset) is 26 seconds. The average time taken to materialize the view using magic

sets stored in the Dataset is 5 seconds. This analysis indicates that the use of magic sets

(without Dataset) to materialize the view is approximately 6 times faster than without

the use of magic sets. The use of magic sets with Dataset to materialize the view is

approximately 5 times faster than using magic sets without the Dataset feature. Thus

for this example, using magic sets with storing them in a Dataset is approximately 30

times faster than view materialization without the use of magic sets. This is a significant

increase in efficiency in materializing the view using magic tables.

The final performance evaluation conducted over the criminal justice data model

scenario is to determine the number of tuples propagated to incrementally update the

view. The incremental view maintenance algorithm using magic sets is compared

against the semi-naive incremental view maintenance algorithm and the re-derivation

algorithm to persist the view from the updated base data sources. To perform the test

runs, deltas are generated at random over the two base data sources. Once these deltas
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Figure 7.5: Criminal Justice: Comparing view materialization time without using
magic tables, with magic tables (no Dataset) and with magic tables stored in Dataset.

are captured and transformed into the common delta structure, the event stream proces-

sor streams these deltas to the respective agent. As the agent receives the deltas, the

agent uses the different algorithms to update the view. The changes are generated to-

tally at random so as not to fabricate the results. Table 7.1 shows the different runs for

changes captured over the LicenseInfo table during the incremental maintenance

of the view using the different algorithms. One of the columns shows the total num-

ber of changes captured during each run. There is one column for the total number of

changes propagated using magics tables. Another column indicates the total number of

relevant changes propagated using the semi-naive approach, which is always the total

number of changes captured. Finally, the last column shows the number of tuples used

in the re-derivation of the view from the updated LicenseInfo table. The database is

returned to its default state between every evaluation of the different algorithms. Thus,

for every test case, the total number of starting tuples in the LicenseInfo table is

7000. The analysis indicates a significant reduction in the tuples that are propagated

using magic tables as compared to the semi-naive algorithm. The graphical compar-
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ison of the total number of relevant changes propagated using magic tables and the

semi-naive algorithm is shown in Figure 7.6.

Run
Total # of
Changes

# of changes propagated by
deltascm LicenseInfo

Re-derivation from
updated LicenseInfo

Using Magic Sets Naive Approach
1 60 9 60 6982
2 80 12 80 7000
3 120 14 120 7003

Table 7.1: Criminal Justice: Comparing # of changes propagated using IVM algo-
rithms.
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Figure 7.6: Criminal Justice: Comparing number of tuples propagated using magic
tables algorithm and semi-naive algorithm.

7.3 Evaluation using TPC-H Data Model

Most of the database research community has been using data models provided by

the Transaction Processing Performance Council (TPC) for benchmarking different

database systems [[50]]. This research is using the TPC-H data model as the other

data model for testing the DEPA environment. The TPC-H data model is specifically

designed for benchmarking ad-hoc, decision support systems. Since the TPC-H is a
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relational benchmark, this research has modified the enterprise by converting some of

the relational tables into XML documents. The UML diagram for the hybrid TPC-H

enterprise is shown in Figure 7.7. Similar to the Criminal Justice UML diagram, the

TPC-H UML diagram is also annotated to indicate the XML data sources. This section

illustrates the workings of the different algorithms and data structures using a more

complex example scenario over the TPC-H data model.

Consider the experimental setup as shown in Figure 7.19. The setup has access

to six heterogeneous data sources, three relational tables and three XML documents.

The Supplier relational table contains information related to suppliers who supplies

parts for certain projects. The information for each part is stored in the Part relational

table and the supply information for each part and its supplier is in the relational table

PartSupp. Customers order certain parts from the suppliers for their projects. The

Customers.xml file contains the customer information. The orders placed by the

customers are stored in the Orders.xml file and details on each item ordered is stored

in the LineItems.xml file.

Assume that there are four queries: one SQL query, one XQuery query and

two LINQ queries defined in one DEPA within the framework. These queries access

different data sources as shown in Listing 7.6.

var lineitemsXML =
XElement.Load("lineitems.xml").Elements("LINEITEM");

var ordersXML =
XElement.Load("orders.xml").Elements("ORDER");

var customersXML =
XElement.Load("customers.xml").Elements("CUSTOMER");

SQL Query Q1:
select /* project needed fields */
from supplier s, partsupp ps
where s.s_suppkey = ps.ps_suppkey and

s.s_nationkey = 24 and
ps.ps_availqty > 9000;

LINQ Query Q2:
var Q2 =

from li in lineitemsXML
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from ps in PARTSUPP
from p in PART
from s in SUPPLIER
where p.P_PARTKEY == ps.PS_PARTKEY &&

ps.PS_AVAILQTY > 9000 && ps.PS_PARTKEY == Int32.Parse(li.
Element("L_PARTKEY").Value) &&

Double.Parse(li.Element("L_QUANTITY").Value) > 10 &&
s.S_NATIONKEY == 24 && s.S_SUPPKEY == ps.PS_SUPPKEY

select /* project needed fields */;

LINQ Query Q3:
var Q3 =

from li in lineitemsXML
from o in ordersXML
from ps in PARTSUPP
from s in SUPPLIER
where Double.Parse(li.Element("L_QUANTITY").Value) > 10 &&

ps.PS_PARTKEY == Int32.Parse(li.Element("L_PARTKEY").Value)
&& ps.PS_AVAILQTY > 9000 &&

li.Element("L_ORDERKEY").Value == o.Element("O_ORDERKEY").
Value &&

s.S_SUPPKEY == ps.PS_SUPPKEY && s.S_NATIONKEY == 24
select /* project needed fields */;

XQuery Query Q4:
for $c in doc("customers.xml")/Customers/Customer
for $li in doc("LineItems.xml")/LineItems/LineItem
for $o in doc("Orders.xml")/Orders/Order
where $c/c_custkey = $o/o_custkey and

$o/o_orderkey = $li/l_orderkey and
$li/l_quantity > 10

return /* project needed fields */;

Listing 7.6: Sample queries defined over hybrid TPC-H model.

Once the queries are registered with the DEPA, the DEPA analyzes this set of

queries for multiple query optimization. The queries are represented in the mixed multi-

graph model by parsing each query. There are three separate Antlr-based parsers that

parse each query to provide access to different parts of the queries. The multigraph rep-

resentation of the four queries is shown in Figure 7.8. The DEPA then starts analyzing

the multigraph to detect any common subexpressions, which are marked as the candi-

dates for materialized views. The multigraph representation and the heuristics-based

algorithm to detect common subexpressions are presented in chapter 4.

The common subexpression detection algorithm starts selecting the edges based

on the heuristic rules described in the chapter 4. Rule 1 detects and selects the identi-

127



Fi
gu

re
7.

8:
M

ul
tig

ra
ph

re
pr

es
en

ta
tio

n
of

th
e

T
PC

-H
qu

er
ie

s.

128



cal selection conditions on the nodes S NationKey and L Quantity. Rule 1 also detects

identical and subsumed selection conditions on the node PS AvailQty. The identical

and subsumed selection conditions are indicated using dot-dash boxes as shown in

Figure 7.9. After taking the appropriate steps of actions from rule 1, the common

subexpression CS1 as Supplier.S NationKey =“24” is added to the list CSet and the

S NationKey node is replaced by a new node S NationKey= “24”. Similarly, the node

PS AvailQty is processed for combined identical and subsumed selection conditions

and the common subexpression CS2 as PartSupp.PS AvailQty > 1000 is added to the

list CSet and the PS AvailQty node is replaced by a new node PS AvailQty>1000. The

node L Quantity is also processed for identical selection conditions and the common

subexpression CS3 as LineItem.XML/LineItem/L Quantity >= 10 is added to the list

CSet and the L Quantity node is replaced by a new node L Quantity>=10. The modi-

fied multigraph is shown in Figure 7.10.

The algorithm continues on to use rule 2 to detect any identical and subsumed

join conditions from the graph. There are three identical join conditions in the graph.

Rule 2 processes the first join condition Supplier.S Suppkey = PartSupp.PS Suppkey

by creating a new node Supplier onS Suppkey=PS SuppKey PartSupp. After applying the

conditions from rule 2, the qualifying nodes, relevant selection, join and navigational

edges are now associated with the newly created node. The modified multigraph is

shown in Figure 7.11. The common subexpression Supplier onS Suppkey=PS SuppKey

PartSupp is added to the list CSet.

The second identical join condition LineItem.XML/LineItem/L Orderkey =

Order.XML/Order/O Orderkey is processed to create a new node LineItem.XML

onL Orderkey=O Orderkey Order.XML. The qualifying nodes and the edges are transferred

to this newly created node. The common subexpression LineItem.XML

onL Orderkey=O Orderkey Order.XML is added to the list CSet. The modified multigraph is

shown in Figure 7.12.
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Finally, the remaining identical join condition Supplier onS Suppkey=PS SuppKey

PartSupp.PS Partkey = LineItem.XML/LineItem/L Partkey is processed. A new node

Supplier onS Suppkey=PS SuppKey PartSupponPS Partkey=L PartKey LineItem.XML is created.

In this case also, the qualifying nodes and the edges are transferred to the newly

created node. The common subexpression Supplier onS Suppkey=PS SuppKey PartSupp

onPS Partkey=L PartKey LineItem.XML is added to the list CSet. The final modified multi-

graph is shown in Figure 7.13.

Since, there are no more identical or subsumed selection conditions or join con-

ditions to be analyzed, the algorithm terminates with six common subexpressions. CS1,

CS2, CS3, and CS4 are purely relational in structure where as CS5 is purely XML in

structure. CS6 is a hybrid join over two relational tables and one XML document. Since

this dissertation is focusing on defining and maintaining hybrid materialized views,

consider only those common subexpressions that contribute towards defining such a

view. The common subexpressions CS1, CS2, CS3, and CS6 can be materialized into

a hybrid view to answer the queries Q2 and Q3. The view definition and creation al-

gorithms described in the chapter 5 are applied to this set of common subexpressions.

The view definition and the creation statements for the materialized view based on the

four common subexpressions are shown in Listing 7.7.

var lineitemsXML =
XElement.Load("lineitems.xml").Elements("LINEITEM");

View V2:
View Definition =

from T0 in lineitemsXML
from T1 in SUPPLIER
from T2 in PARTSUPP
where T2.PS_AVAILQTY > 9000 && T2.PS_PARTKEY == Int32.Parse(T0.

Element("L_PARTKEY").Value) &&
Double.Parse(T0.Element("L_QUANTITY").Value) > 10 &&
T1.S_NATIONKEY == 24 && T1.S_SUPPKEY == T2.PS_SUPPKEY

select new {SUPPLIER_S_NATIONKEY = T1.S_NATIONKEY,
SUPPLIER_S_SUPPKEY = T1.S_SUPPKEY,
.... /* all the remaining columns from the SUPPLIER

table */
PARTSUPP_PS_AVAILQTY = T2.PS_AVAILQTY,
PARTSUPP_PS_PARTKEY = T2.PS_PARTKEY,
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.... /* all the remaining columns from the PARTSUPP
table */

T0 = T0
};

View Creation:
Create Table V2

(SUPPLIER_S_NATIONKEY int,
SUPPLIER_S_SUPPKEY string,
.... /* all the remaining columns from the SUPPLIER table */
PARTSUPP_PS_AVAILQTY int,
PARTSUPP_PS_PARTKEY string,
.... /* all the remaining columns from the PARTSUPP table */
T0 XML);

Listing 7.7: View definition and creation statements.

Once the view definition and creation statements are defined in the system, then

the magic-sets optimization technique can be applied to the view definition to create

magic tables. These magic tables are used to materialize the view as well as to prop-

agate the updates to incrementally update the view. The view maintenance algorithm

from the chapter 6 accepts the view definition from Listing 7.7 represented in a query

graph model (QGM) as shown in Figure 7.14. Since the view definition contains joins

over three data sources, the join ordering is determined by the order in which tuples

are utilized in the query computation. LINQ uses the right to left ordering, thus, the

PartSupp table is joined with Supplier, the result of which is then joined with the

LineItem.XML document. The revised queries are shown in Listing 7.8.

var lineitemsXML =
XElement.Load("lineitems.xml").Elements("LINEITEM");

var m_Supplier_PartSupp =
from T1 in SUPPLIER
from T2 in PARTSUPP
where T1.S_SUPPKEY == T2.PS_SUPPKEY
select new {SUPPLIER_S_NATIONKEY = T1.S_NATIONKEY,

SUPPLIER_S_SUPPKEY = T1.S_SUPPKEY,
.... /* all the remaining columns from the SUPPLIER

table */
PARTSUPP_PS_AVAILQTY = T2.PS_AVAILQTY,
PARTSUPP_PS_PARTKEY = T2.PS_PARTKEY
.... /* all the remaining columns from the PARTSUPP

table */
};
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Figure 7.14: Query graph model for the view definition.

var ViewDefinition =
from T0 in lineitemsXML
from M1 in m_Supplier_PartSupp
where M1.PARTSUPP_PS_AVAILQTY > 9000 &&

M1.PARTSUPP_PS_PARTKEY == Int32.Parse(T0.Element("L_PARTKEY
").Value) &&

Double.Parse(T0.Element("L_QUANTITY").Value) > 10 &&
M1.SUPPLIER_S_NATIONKEY == 24

select new {SUPPLIER_S_NATIONKEY = M1.SUPPLIER_S_NATIONKEY,
SUPPLIER_S_SUPPKEY = M1.SUPPLIER_S_SUPPKEY,
PARTSUPP_PS_AVAILQTY = M1.PARTSUPP_PS_AVAILQTY,
PARTSUPP_PS_PARTKEY = M1.PARTSUPP_PS_PARTKEY,
.... /* all the remaining columns from the

m_Supplier_PartSupp table */
T0 = T0
};

Listing 7.8: View queries for the TPC-H query graph model

As the magic sets incremental view maintenance algorithm traverses the QGM

in depth-first order, the box containing the view definition is processed first. Since the

box View V2 is an AMQ box, all the predicates inside this box can be pushed down.

The adornment for this box is fff...bbb...f, since there are three bound variables
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and rest of the attributes are free. Thus, the inequality predicate T0.Element("Line

-Item").Element("L Quantity") >= 10 is pushed down to create a condi-

tion magic box cm LineItemsXML. Once this box is created, the quantifier T0 in the

original view box is replaced by a new quantifier M2 created for this newly created

magic box. The adornment for the magic box cm LineItemsXML is b since there is

one variable binding. Similarly, the two predicates M1.S NationKey == 10 and

M1.PS AvailQty > 1000 are pushed down to the magic box m Supplier Part-

Supp. The adornment for the magic box m Supplier PartSupp is fff...bb

...f since the two variables M1.S NationKey and M1.PS AvailQty are bound

and rest of the variables are free. The modified QGM and the revised queries are shown

in Figure 7.15 and Listing 7.9, respectively.

Figure 7.15: Modified query graph model - step 1.

var lineitemsXML =
XElement.Load("lineitems.xml").Elements("LINEITEM");

var cm_LineItemsxml =
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from T0 in lineitemsXML
where Double.Parse(T0.Element("L_QUANTITY").Value) > 10
select new {T0 = T0};

var m_Supplier_PartSupp =
from T1 in SUPPLIER
from T2 in PARTSUPP
where T1.S_SUPPKEY == T2.PS_SUPPKEY && T1.S_NATIONKEY == 24 &&

T2.PS_AVAILQTY > 9000
select new {SUPPLIER_S_NATIONKEY = T1.S_NATIONKEY,

SUPPLIER_S_SUPPKEY = T1.S_SUPPKEY,
.... /* all the remaining columns from the SUPPLIER

table */
PARTSUPP_PS_AVAILQTY = T2.PS_AVAILQTY,
PARTSUPP_PS_PARTKEY = T2.PS_PARTKEY
.... /* all the remaining columns from the PARTSUPP

table */
};

var ViewDefinition =
from M2 in cm_LineItemsxml
from M1 in m_Supplier_PartSupp
where M1.PARTSUPP_PS_PARTKEY == Int32.Parse(M2.Element("

L_PARTKEY").Value)
select new {SUPPLIER_S_NATIONKEY = M1.SUPPLIER_S_NATIONKEY,

SUPPLIER_S_SUPPKEY = M1.SUPPLIER_S_SUPPKEY,
PARTSUPP_PS_AVAILQTY = M1.PARTSUPP_PS_AVAILQTY,
PARTSUPP_PS_PARTKEY = M1.PARTSUPP_PS_PARTKEY,
.... /* all the remaining columns from the

m_Supplier_PartSupp table */
T0 = M2
};

Listing 7.9: View queries for the TPC-H query graph model - step 1

As the algorithm continues to traverse down the query graph, there is noth-

ing more to process on the magic box cm LineItemsXML. The algorithm directly

processes the magic box m Supplier PartSupp. Since this magic box is also an

AMQ box, the two predicates T1.S NationKey == 10 and T2.PS AvailQty

> 1000 are pushed down. The first equality predicate T1.S NationKey == 10

creates a supplementary magic box sm Supplier and the quantifier T1 in the magic

box m Supplier PartSupp is replaced by a new quantifier M3 for the newly cre-

ated supplementary magic box. Similarly, the inequality predicate T2.PS AvailQty

> 1000 creates a condition magic box cm PartSupp. The quantifier T2 is also re-

placed by the new quantifier M4 in the magic boxm Supplier PartSupp. The final
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modified QGM and the revised queries are shown in Figure 7.16 and Listing 7.10,

respectively.

Figure 7.16: Modified query graph model - step 2.

var lineitemsXML =
XElement.Load("lineitems.xml").Elements("LINEITEM");

var cm_LineItemsxml =
from T0 in lineitemsXML
where Double.Parse(T0.Element("L_QUANTITY").Value) > 10
select new {T0 = T0};

var sm_Supplier =
from T1 in SUPPLIER
where T1.S_NATIONKEY == 24
select new {SUPPLIER_S_NATIONKEY = T1.S_NATIONKEY,

SUPPLIER_S_SUPPKEY = T1.S_SUPPKEY,
.... /* all the remaining columns from the SUPPLIER

table */
};

var cm_PartSupp =
from T2 in PARTSUPP
where T2.PS_AVAILQTY > 9000
select new {PARTSUPP_PS_AVAILQTY = T2.PS_AVAILQTY,

PARTSUPP_PS_PARTKEY = T2.PS_PARTKEY,
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PARTSUPP_PS_SUPPKEY = T2.PS_SUPPKEY,
.... /* all the remaining columns from the PARTSUPP

table */
};

var m_Supplier_PartSupp =
from M3 in sm_Supplier
from M4 in cm_PartSupp
where M3.SUPPLIER_S_SUPPKEY == M4.PARTSUPP_PS_SUPPKEY
select new {SUPPLIER_S_NATIONKEY = M3.SUPPLIER_S_NATIONKEY,

SUPPLIER_S_SUPPKEY = M3.SUPPLIER_S_SUPPKEY,
.... /* all the remaining columns from the

sm_Supplier table */
PARTSUPP_PS_AVAILQTY = M4.PARTSUPP_PS_AVAILQTY,
PARTSUPP_PS_PARTKEY = M4.PARTSUPP_PS_PARTKEY,
.... /* all the remaining columns from the

cm_PartSupp table */
};

var ViewDefinition =
from M2 in cm_LineItemsxml
from M1 in m_Supplier_PartSupp
where M1.PARTSUPP_PS_PARTKEY == Int32.Parse(M2.Element("

L_PARTKEY").Value)
select new {SUPPLIER_S_NATIONKEY = M1.SUPPLIER_S_NATIONKEY,

SUPPLIER_S_SUPPKEY = M1.SUPPLIER_S_SUPPKEY,
PARTSUPP_PS_AVAILQTY = M1.PARTSUPP_PS_AVAILQTY,
PARTSUPP_PS_PARTKEY = M1.PARTSUPP_PS_PARTKEY,
.... /* all the remaining columns from the

m_Supplier_PartSupp table */
T0 = M2
};

Listing 7.10: View queries for the TPC-H query graph model - step 2.

Similar to the performance evaluation on the Criminal Justice data model, per-

formance of the different components of the DEPA framework was tested using the

TPC-H data model. The time required to process the streaming data over one relational

table and one XML document from the TPC-H data model is compared with the time

required to process the streaming data using a materialized view over the same rela-

tional table and the XML document. The graph of both the recorded timings is shown

in Figure 7.17. The average time required to process 110 streaming tuples without the

use of materialized views is approximately 252 milliseconds, whereas the time required

to process the same 110 streaming tuples with the use of materialized views is approx-

imately 53 milliseconds. Thus, on this example, the streaming tuples are processed 5
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times faster with the use of a materialized view.
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Figure 7.17: TPC-H: Comparing time to process streaming data with and without using
materialized view.

The second performance evaluation is done to compare the time required for

materializing the view with and without the use of magic tables. Also these timings are

compared with the time required to materialize the view using magic tables stored in

the Dataset. The graph showing these different timings is shown in Figure 7.18. The

average time taken to materialize the view using magic tables stored in the Dataset is

approximately 2.4 seconds. The average time taken to materialize the same view using

magic tables (not stored in the Dataset) is approximately 22.8 seconds, whereas the time

taken to materialize the same view directly from the base data sources is approximately

3 minutes and 22 seconds. Thus, for this test scenario, it can be concluded that the view

materialization using magic tables stored in Dataset is 7 times faster than using magic

tables, which are not stored in the Dataset. Similarly, the time required to materialize

the view using magic tables not stored in the Dataset is 8 times less than the time

required to materialize the view directly from the base data sources. All these test

evaluations show increased efficiency in processing streams over heterogeneous data
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sources using materialized views wherever possible and materializing the view using

magic tables stored in the Dataset.
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Figure 7.18: TPC-H: Comparing view materialization time with no magic tables, with
magic tables (no Dataset) and with magic tables stored in Dataset.

Similar to the test scenario for the Criminal Justice enterprise, a test case is de-

signed to compare the number of tuples propagated to the view definition using magic

sets and semi-naive algorithm. Table 7.2 compares the number of relevant change tu-

ples propagated to the view definition using the magic tables algorithm, the semi-naive

algorithm and the re-derivation algorithm. The graphical comparison of the number

of change tuples propagated using magic tables and the semi-naive algorithm is shown

in Figure 7.20. This test analysis also shows a significant reduction in the number of

tuples that are propagated using magic tables.

7.4 Summary

The distributed event stream processing framework supports materialized views over

heterogeneous data sources for efficient query evaluation, stream processing and event
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Run
Total # of
Changes

# of changes propagated by
deltasm Supplier

Re-derivation from
updated Supplier

Using Magic Sets Naive Approach
1 40 7 40 103
2 60 4 60 100
3 80 10 80 115

Table 7.2: TPC-H: Comparing # of changes propagated using IVM algorithms.
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Figure 7.20: TPC-H: Comparing number of tuples propagated using magic tables algo-
rithm and semi-naive algorithm.

detection. This chapter has first described the prototype developed as the proof-of-

concept for the DEPA framework. The prototype is built using two popular commercial

database systems and XML documents as the distributed heterogeneous data sources.

The performance of the various algorithms presented throughout this dissertation was

evaluated using two different data models. The detailed evaluation of the algorithms

was presented using the Criminal Justice data model. Later in the chapter, similar test

scenarios are developed and evaluated using the modified hybrid TPC-H data model.

The DEPA framework was evaluated for processing streams through a LINQ query

over heterogeneous data sources against processing the streams through the same LINQ

query using a hybrid materialized view over the heterogeneous data sources. The test

results indicated that use of materialized views improves the time for processing the
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streams. The materialization of the view that retains the data in their native format by

using the magic-sets query optimization technique is faster than the naive approach of

view computation directly from the base data sources. The magic tables decreases the

query evaluation time by early pruning process and propagating only relevant tuples for

the view materialization. The view materialization using magic sets is faster than the

naive materialization. However, in the original algorithm, magic tables are not stored in

the main memory for subsequent access. The incremental view maintenance algorithm

presented in this chapter stores these magic tables in the main memory using Datasets.

The view materialization using the in-memory magic sets is faster as compared to view

materialization using magic tables not stored in the main memory. Finally, this chapter

has evaluated the incremental view maintenance algorithm using magic tables against

the semi-naive approach for maintaining the views incrementally. This evaluation is

based on a metric of the number of change tuples propagated to the view definition.

Various evaluation scenarios have shown that using magic tables typically propagates a

significantly fewer number of qualifying delta tuples to the view for incremental main-

tenance than the semi-naive approach. Thus, defining and maintaining LINQ-based

materialized views significantly improves the performance of the DEPA framework.
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Chapter 8

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

8.1 Summary

Enterprise applications are becoming increasingly dynamic, requiring the monitoring

of streaming data and events in a distributed environment. The streaming data is pro-

cessed using continuous queries with access to persistent data sources. Events detect

complex and meaningful relationships among the data occurring over the streams in

conjunction with heterogeneous data sources. The active rules define the behavior of

the application in response to the detected events. Finally, there are queries posed to

the applications to generate meaningful results from various different data sources. All

these different query expressions access heterogeneous distributed data sources. Thus,

there are research challenges associated with developing these applications to improve

their performance by enhancing the querying capabilities in such systems. This re-

search has explored a framework using distributed event stream processing agents that

supports such application functionalities. Specifically, this dissertation has addressed

research challenges involved in defining and maintaining materialized views over het-

erogeneous data sources to support multiple query optimization.

In the DEPA framework, each agent maintains a set of different types of query

expressions, such as continuous queries, event definitions, and SQL, XML and LINQ

queries over heterogeneous data sources, such as relational databases and structured

XML documents. In order to provide metadata level access to different components

of the various query languages and the data sources, this research has designed and

implemented a SOA-based metadata repository. This repository can be updated at run-

time and is a useful component throughout the development of different components of

the DEPA environment. To support multiple query optimization, DEPA agents detect

common subexpressions across these various query expressions. The query expres-

sions are represented in a mixed multigraph model and a heuristics-based algorithm is
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used to detect the common subexpressions. The detected common subexpressions are

either relational or XML or a hybrid join over relational and XML data sources. These

common subexpressions are the candidates for materialized views.

In any database system, materialized views store the results of the computed

view locally to avoid the cost of recomputing the view every time the view is accessed.

This improves the query evaluation by reducing the cost of the query computation con-

siderably. One of the challenges addressed by this research is the definition and ma-

terialization of views when the heterogeneous data sources are retained in their native

format, instead of converting the data to a common model. LINQ is used as the ma-

terialized view definition language to define materialized views locally to each DEPA.

LINQ integrates the querying capabilities over heterogeneous data sources in a single

query and provides the option of retaining the data in their native format. The view def-

inition algorithm uses the detected common subexpressions to generate a LINQ query

that generate the qualifying tuples for the materialized views. An algorithm is devel-

oped that uses LINQ to create a data structure for the persistence of these hybrid views.

Materialized views are typically used to improve the performance of data ori-

ented applications. However, the views must be maintained against any changes oc-

curring in the base data sources. The materialized views can be updated either by re-

deriving the view completely from the updated base data sources or by capturing only

the changes occurring in the base data sources and using these changes to incremen-

tally update the views. A common delta structure is proposed to stream the relational

changes from two commercial database systems used within the DEPA framework. The

changes in XML documents are captured as source update trees and are also streamed to

the respective DEPAs. The incremental view maintenance algorithm presented in this

dissertation uses the concept of magic-sets query optimization to capture the stream-

ing changes in their native format to incrementally update the materialized views. The

magic-sets based algorithm uses the captured deltas to first incrementally update the
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magic tables and then propagate the relevant tuples for updating the view.

The prototype of the DEPA framework uses the Sybase Event Stream Proces-

sor, SQL Server 2008, Oracle 11g Server, XML documents and the C# programming

language with .NET framework 3.5. The framework and the associated algorithms in

this dissertation were evaluated using two different scenarios. One scenario is based on

a Criminal Justice enterprise and queries developed as the part of this research. Another

evaluation scenario is based on a modification of the TPC-H decision support bench-

mark to replace some relational sources with XML. The evaluation results indicate a

performance improvement of approximately 6 times on the representative scenarios

tested. Thus, defining LINQ-based materialized views and incrementally maintaining

them by using magic tables over relational and structured XML data sources improves

the performance of applications involving distributed event and stream processing.

8.2 Research Contributions

This dissertation has explored key database areas ranging from multiple query opti-

mization, the detection of common subexpressions, and incremental view maintenance

over heterogeneous data sources in a distributed event stream processing environment.

This research has resulted in a working prototype of distributed event stream processing

agents as envisioned in [[10]]. The prototype has been successfully tested and evaluated

based on the Criminal Justice and hybrid TPC-H scenarios. This dissertation research

has provided unique contributions in the area of multiple query optimization in a dis-

tributed event stream processing environment.

The service-based metadata repository developed for the DEPA framework is

unique. The repository provides extensive metadata for various data sources and query

expressions. Metadata is maintained for relational data sources, XML documents as

XML schema, as well as the event and data streams. In addition, the repository provides

metadata for the queries expressed in SQL, LINQ, XQuery, and the Sybase CEP CQL

languages. The design and implementation of this metadata repository has already been
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published [[84]].

Another contribution of this research is the definition of a mixed multigraph

model to represent the heterogeneous query expressions and its use in a heuristics-based

algorithm to detect common subexpressions over relational and structured XML data

sources. Prior research has investigated the representation and detection of common

subexpressions over a single data model - either relational or XML. The mixed multi-

graph model introduced in this research handles queries expressed over both relational

and XML data sources. The developed heuristics-based algorithm uses this distinctive

multigraph model to detect common subexpressions, which are the candidates for view

materialization.

The use of LINQ as a materialized view definition language over heterogeneous

data sources in a distributed event stream processing environment is novel. LINQ pro-

vides the capabilities to query heterogeneous data sources through a single query and

allow the data to be retained in their original format. Thus, a LINQ-based materialized

view can be either purely relational or purely XML or a hybrid combination of the two.

The presented view definition algorithm uses the common subexpressions to generate

a LINQ query that specifies the qualifying tuples for the materialized view. The view

creation algorithm defines an appropriate data structure that will persist these query

results, which are potentially the hybrid views.

Once materialized, these views must be updated to reflect changes to their base

data sources. This research has developed an algorithm to incrementally update the

materialized views defined in LINQ in response to either relational or XML changes.

A common relational delta structure is defined to capture and stream changes from two

popular commercial relational database systems. The XML deltas are also streamed in

the form of source update trees. Using the magic sets query optimization approach, the

view maintenance algorithm applies these deltas in their native format to incrementally

update the view.
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The implementation of the proof-of-concept DEPA framework using commer-

cially available software is another contribution of this work. A hybrid Criminal Jus-

tice enterprise that consists of relational and XML data sources was developed along

with sample scenarios to test the different algorithmic components of the DEPA envi-

ronment. The TPC-H decision-support relational benchmark was modified to support

XML data sources and the benchmarking SQL queries were rewritten in LINQ to query

the relational and XML data sources. Representative scenarios from the hybrid TPC-H

enterprise were also used in the assessment of the algorithms and the framework with

respect to the developed technologies, which demonstrates an improvement in perfor-

mance.

8.3 Future Research Directions

This dissertation has taken a first step towards representing SQL, LINQ and XQuery

queries in the same multigraph model to detect common subexpressions across the dif-

ferent query languages. Also, this dissertation has provided algorithms to define LINQ-

based materialized views over heterogeneous data sources and to use deltas in their

native format to incrementally update the materialized views using magic sets trans-

formations. However, in order to develop a fully functional distributed event stream

processing framework, there are additional research avenues to be explored.

There are open research issues to further explore with respect to detecting com-

mon subexpressions over the mixed multigraph model in which different types of query

expressions such as LINQ, SQL, and XQuery queries can be represented under the

same graph model. In selectively choosing the common subexpressions, either they

can be chosen to maximize the number of queries that can benefit from the material-

ized view or they can be chosen to maximize the number of common subexpressions

to be materialized. Various test scenarios can be used to determine which option is

beneficial to choose a set of common subexpressions to be materialized as views.

There are also future research opportunities with respect to the use of LINQ.
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There are limitations imposed by the default LINQ provider from the .NET framework

3.5 that restricts access to only one persistent relational database, requiring other data

sources to be in the main memory. However, this framework is extensible so that these

limitations can be addressed through the implementation of a custom LINQ provider.

Another research avenue to explore is the application of this work to monitoring

conditions within the DEPA framework. The monitoring of conditions in an active rule

specified using a Condition-Action format is similar to the incremental maintenance of

materialized views. When a change to a base data source occurs on which the condition

is defined, the system must use the delta to determine whether the condition is satisfied.

If the condition becomes true, then the relevant bindings from the change can be passed

to the execution of the corresponding action.
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