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ABSTRACT

Service based software (SBS) systems are software systems consisting of ser-

vices based on the service oriented architecture (SOA). Each service in SBS systems

provides partial functionalities and collaborates with other services as workflows to

provide the functionalities required by the systems. These services may be developed

and/or owned by different entities and physically distributed across the Internet. Com-

pared with traditional software system components which are usually specifically de-

signed for the target systems and bound tightly, the interfaces of services and their

communication protocols are standardized, which allow SBS systems to support late

binding, provide better interoperability, better flexibility in dynamic business logics,

and higher fault tolerance.

The development process of SBS systems can be divided to three major phases:

1) SBS specification, 2) service discovery and matching, and 3) service composition

and workflow execution. This dissertation focuses on the second phase, and presents

a privacy preserving service discovery and ranking approach for multiple user QoS re-

quirements. This approach helps service providers to register services and service users

to search services through public, but untrusted service directories with the protection

of their privacy against the service directories. The service directories can match the

registered services with service requests, but do not learn any information about them.

Our approach also enforces access control on services during the matching process,

which prevents unauthorized users from discovering services.

After the service directories match a set of services that satisfy the service users’

functionality requirements, the service discovery approach presented in this dissertation

further considers service users’ QoS requirements in two steps. First, this approach

optimizes services’ QoS by making tradeoff among various QoS aspects with users’

QoS requirements and preferences. Second, this approach ranks services based on how
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well they satisfy users’ QoS requirements to help service users select the most suitable

service to develop their SBSs.
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Chapter 1

INTRODUCTION AND MOTIVATION

Services in information and technology systems are usually referred to software pro-

grams or systems running in the background to perform tasks with or without user

interactions. For example, the Apache service hosts web sites for users and waits for

visitors, and the windows performance service automatically monitors system activi-

ties, such as CPU usage and memory usage. In service oriented architectures (SOA),

services are generally defined as ”repeatable activities that can be characterized as ca-

pabilities or the access to capabilities” and ”SOAs support thinking and organizing in

terms of services with distributed capabilities which may be under the control of differ-

ent ownership domains, and is an architectural style as well as a paradigm for business

and IT architecture” [1].

The concept of SOA was first introduced by Alexander Pasik in 1994 when he

was working on middleware [2], and was rapidly developed and accepted as an in-

novative paradigm for distributed computing, especially with the emergence of web

services [3] and a set of related standardized protocols [4, 5, 6]. To develop a sys-

tem with services, called service-based system (SBS), developers first decompose the

requirements of the whole system to a set of requirements of services. Each service

provides partial functionalities of the whole system, and collaborates with other ser-

vices through message based communications. This process is similar to the object-

oriented paradigm which develops large systems as a set of small objects. However, in

object-oriented paradigm, objects’ interfaces, message formats and structures are usu-

ally privately specified and implemented within the organization or heavily rely on the

software/hardware configurations. In SOA, all services’ interfaces and message proto-

cols are specified with platform independent standards, such as WSDL [4] and SOAP

[5]. SOA makes it much easier for developers to reuse existing services in the new
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Figure 1.1: An online shopping SBS system with four services

systems rather than to develop the systems from scratch.

For example, an online shopping system can be decomposed to 1) a shopping

service to provide an interface for customers to browse and search products, 2) an order

service to generate orders for customers, 3) a payment service to charge customers, and

4) a shipping service to ship paid products to customers. All of these services are

separate but collaborate together as a workflow showing in Figure 1.1.

SOA can accelarate the development of the above system by allowing devel-

opers to composing existing services rather than developing new services. The first

phase of composing existing services is to find appropriate services that satisfy system

requirements. This task is challenging because services may be developed and owned

by different organizations and physically distributed in Internet. The developers of the

onine shopping system can manually search services and find that Yahoo’s Store List-

ings is a kind of shopping service, and the public payment gateway like authorize.net is

a service that can be composed as a payment service. Then, the developers read docu-

ments and learn how to invoke these services in their own system. This manual service

discovery process is time consuming and inefficient. An automatic service discovery is

preferred.

1.1 Service Discovery and Matching

Service discovery is one of the key problems of SOA and SBS development. One kind

of service discovery approach is to broadcast the request for the service in the whole

network, such as the peer-to-peer service discovery [7] and WS-Discovery [8]. In such

approaches, service providers manage their own services, and service users broadcast

2



their service requests in the whole network whenever they want to find services. The

service providers who receive the requests first check whether their own services can

satisfy the requests. If yes, the service providers respond the service user (i.e., the SBS

developer); otherwise, the service providers either forward the requests to other service

providers or abandon the requests. Although this kind of broadcasting approaches can

eventually find the requested services if they exist, it generates a lot of network traffic

and is a slow process.

Another kind of service discovery approach requires a number of service direc-

tories, where service providers publish their services and service users find services. A

centralized service directory is similar to a yellow book. However, while yellow books

organize local business contact information and support search on business types and

locations, centralized service directories need to organize services and support search

on service functionalities, which are much more complex than contact information.

The general pattern of discovering services through service directories is illus-

trated in Figure 1.2 with three phases:

First, service providers (i.e., the developers or organizations who develop or

host services) register services in the service directory. The information included in the

service registrations depends on the implementation of the service directory. For exam-

ple, in UDDI [6], a standard implementation of service directory, service registrations

include the meta information about services and their providers, and a set of technical

detail information called t-models.

Second, service users (e.g., SBS developers) look for services through the ser-

vice directory by sending service requests to the service directory. The service direc-

tory will match registered services with the service requests, and forwards the matched

services with their invocation information to the service users.

Third, after the service users find the needed service in the service directory, the

3



Figure 1.2: The pattern of discovering services through service directory

service users invoke the found services directly.

1.2 Challenges

In this section, we will discuss the major challenges in designing service discovery

protocols with centralized service directories for SOA.

Untrusted Service Directory

Compared with broadcasting service discovery, service discovery with centralized ser-

vice directories is more efficient but also needs to release a lot of information about

services and service users to the service directories, which may reveal the privacy of

service providers and users. Hence, when a service directory is not trusted by service

providers or service users, they may refuse to register or lookup services through it. An

untrusted service directory is harmful because of the following two problems:

1. The untrusted service directory may abuse the services or release the services to

service users who have no permission to use these services.

2. Service registrations and requests may contain confidential information about

service providers and requesters, which is required for service discovery to match

services and requests but should not be revealed even to the service directory.

4



The first problem is to restrict access to services. Although a set of WS-Security

standards [9] have been proposed to handle the authentication and authorization of ser-

vice users, these standards require a trusted service authorizer to enforce these stan-

dards. Other secure service discovery protocols, such as SSDS [10] and UPnP security

[11], also require a similar trusted authorizer as WS-Security standards. All of these do

not work with the assumption that the service directory itself is untrusted. Furthermore,

the first problem also requires that even the existence of services should be protected

from unauthorized users. Otherwise, unauthorized users can launch denied-of-service

attacks against these services.

The second problem is to protect the privacy of service providers and users. On

the one hand, service providers rely on the service directory to store their services’ in-

formation, and service users rely on the service directory to match registered services

with their requests. On the other hand, service providers do not want the service direc-

tory to know which services they provided, and service users do not want the service

directory to know which services they are looking for. These seeming incompatible

requirements make the second problem challenging.

The Quality of Service

Besides the functionalities provided by services, the qualities of services (QoS), such

as throughput, response time, reliability and security, are also critical for service users

[12]. Service discovery should verify whether the registered services’ QoS satisfy user-

s’ QoS requirements as well as functionality requirements, which requires the service

directory to collect services’ QoS information.

Several performance monitoring mechanisms [13, 14, 15] are proposed to mon-

itor services’ QoS either continuously or periodically. The monitored QoS informa-

tion is reported to the service directory, and integrated with service registrations us-

ing the extension of WSDL [16, 17, 18], the extension of BPEL [19], or the exten-
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sion of UDDI [20, 21, 22]. Furthermore, several QoS quality models and ontologies

[23, 24, 25, 26, 27] are also proposed to organize services’ QoS and incorporate service

requesters’ QoS requirements in the service requests. However, for some QoS aspects

such as security, it is difficult to measure services’ QoS on these aspects through mon-

itoring. Although it is able to rate services’ security as qualitative levels, such as very

secure, secure, and not secure, a more precise quantitative metric is required to make

sure that users’ security requirements are satisfied by the services.

Second, even for the QoS aspects which QoS can be measured through monitor-

ing, monitors can only passively collect services’ QoS information, but cannot predict

or adjust services’ QoS, which restricts services’ flexibilities in satisfying users’ various

QoS requirements. Developing quantitative metrics for those observable QoS aspects

supporting QoS adjustments allow services to make tradeoff among various QoS as-

pects to better satisfy users’ QoS requirements. For example, an adaptive encryption

service should adjust its behaviors according to current situation to optimize its QoS

on different aspects. In a friendly environment like business intranet where security is

not critical, the service should use weak but cheap security mechanisms to improve its

QoS on other aspects. But in an environment where a lot of attacking activities have

been detected, the service should use strong security mechanisms even if QoS on other

aspects is sacrificed.

QoS-based Service Ranking

The third challenge is also related to services’ QoS. When there are more than one

service that satisfy users’ requirements on both functionalities and QoS, service users

only need one service, and hence have to make a selection among all avaialble services.

Service users alway prefer services that best satisfy their requirements. However, it is

difficult to find the best service among services with equivalent functionalities, when

service users have requirements on multiple QoS aspects.
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First, when the selection among services needs to consider multiple QoS aspects

simultaneously, services may perform good on one aspect but bad on another aspect.

For example, there may be two services. One service has high throughput with high

price, and another service has low throughput but with low price. In this case, the rank

between these two services is related to users’ specific QoS requirements and users’

preferences on throughput and price. To compare services’ QoS on multiple aspects,

all of these QoS should be aggregated together with users’ preferences on these aspects.

Second, because services’ QoS on different aspects are measured with different

units and value ranges. Services’ QoS on different aspects is neither comparable nor

be simply aggregated. Furthermore, while some QoS aspects such as throughput and

delay which are easy to measure quantitatively as numbers, other QoS aspects such as

security and usability are difficult to be measured quantitatively. These QoS aspects are

usually measured qualitatively as coarse quality levels. It is not clear how to aggregate

qualitative and quantitative QoS measurements.

1.3 Contributions

The overall goal of this dissertation is to help service providers and users to protect

themselves from untrusted service directories, and still use service directories to find

services that best satisfy their functionality and QoS requirements. The main contribu-

tions of this dissertation includes:

1. A privacy-preserving service discovery and matching protocol with untrusted ser-

vice directory. This protocol encourages service providers and users to register

and lookup services in public service directories without worrying about their

privacy. Because public service directories are more open than private service

directories, and can accept service registrations and service lookup requests from

more organizations, they are helpful in increasing the number and diversity of

available services, and hence promote the development of SBS systems.
7



2. A quantitative security metric, which measure services’ security with security

configuration vectors. This is the first quantitative security metric considering

the vulnerabilities of the design of security algorithms and attackers’ attacking

power.

3. An approach to developing quantitative metrics for observable QoS aspects. The

developed metrics allow services to measure their QoS on these aspects without

monitors, but directly through their parameter values. All parameters are con-

trollable by services. By adjusting parameters, services can provide customized

services to users with tradeoff among QoS aspects.

4. A QoS-based service ranking algorithm. It helps users to select the best services

when there are more than one service satisfying their functionality requirements.

This algorithm ranks all available services based on the satisfaction of services’

QoS on users’ QoS requirements. The higher a service is ranked, the better the

service satisfies users’ QoS requirements.

1.4 Organization

In Chapter 2, the background and related work are discussed. In Chapter 3, the overall

approach of discovering and selecting services with untrusted service directory is pre-

sented. In Chapter 4, a privacy-preserving service discovery and matching protocol is

presented to protect both service providers’ and users’ privacy from untrusted service

directory. The privacy-preserving service discovery and matching protocol only return-

s services that both satisfy users’ functionality requirements and are accessible for the

users who send requests. For services that the user has no permission to access, even

the existence of the service is protected from the user. In Chapter 5, a set of QoS aspects

and their metrics are discussed. This chapter also discusses how to specify users’ QoS

requirements in their service requests. In Chapter 6, quantitative metrics are developed

for security and observable QoS aspects. All of these metrics measure services’ QoS
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with a set of parameters, which allow services to provide differential service for their

users by making tradeoff among various QoS aspects. In Chapter 7, the QoS-based

service ranking algorithm is presented to rank the services returned by the service di-

rectories according to their QoS and users’ QoS requirements, which help users to find

the services that best satisfy their both functionality and QoS requirements. Chapter 8

concludes this dissertation and proposes some future research problems in this research

path.
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Chapter 2

BACKGROUND AND RELATED WORK

In this chapter, the background information about service and SOA is first introduced

to answer some basic questions, such as ”What are service and SOA?”, ”Why do we

need service and SOA and what are the advantages of service and SOA?”, and ”How to

use service and SOA?”. Then, we briefly surveyed the literatures on service discovery

and matching and service QoS.

2.1 Services and SOA

With the growing size and complexity of software systems, the complexity of inter-

operability among different system components may increase quadratically with the

number of system components because every component needs to communicate with

all other components. For large software systems, it quickly becomes uncontrollable

and a disaster of system development and management. To improve interoperability,

Enterprise Integrate Bus (EIB) and Enterprise Application Integration Bus (EAI bus)

introduce a global bus which serves as a middleware among all system components. As

shown in Figure 2.1, because all system components only communicate directly with

the bus and the communications between any two system components are through the

bus, the complexity of interoperability becomes proportional to the number of system

components. When a new component is added to the system, only the communication

between the new component and the bus needs to be handled. EIB and EAI bus sim-

plifies the communication among system components, but also hides the interactions

among them. In EIB and EAI bus, individual system components are independent,

all business logics heavily rely on the global bus to transfer, exchange and integrate

messages among individual components. While EIB and EAI bus aims at providing a

communication middleware for system components, SOA also improves interoperabil-

ity of components in large scale systems but also covers other aspects, such as flexible
10



Figure 2.1: The interoperability of systems with and without bus

business process, reliability, and security.

Advantages of SOA

SOA has the following advantages

• Better interoperability. Large scale systems usually integrate some heterogenous

system components from existing legacy systems or systems developed by other

organizations. To handle the interoperability of such systems, data transforma-

tion is essential for transforming the data and messages among heterogenous

components. EIB and EAI transform all components’ data and messages to the

format used by the global bus which is usually privately defined within the or-

ganization. From the perspective of SOA, each system component is a service

or a set of services. SOA defines all services’ interfaces with WSDL [4] and the

messages among services with SOAP [5], both of which are XML-based spec-

ifications and open standardized. Hence, SOA enables interoperability not only

within components from the same system but also among any services as long as

they follow WSDL and SOAP, even though these services are distributed across

networks, provided by different organizations, and/or implemented with differ-

ent techniques. The better interoperability makes SOA a better choice in rapid
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development of large scale systems from existing services [28, 29].

• Loose coupling. SOA allows users to invoke services only based on services’

interfaces without their actual access addresses. A mediator that is responsible

to manage services will lookup appropriate services for users according to in-

terfaces, and then forward users’ requests to the access addresses of the found

services. Hence, the service users and services are loosely coupled, and the ser-

vices’ interfaces and their underlying implementations are also loosely coupled.

The benefits of loose coupling include but not limit to

– Flexible business logics. Business logics can be developed based on ser-

vices’ interfaces rather than actual services. When the business logics change,

only the compositions of services’ interfaces are needed to be modified ac-

cordingly. The mediator will find services to satisfy the new business logics

automatically. There is no change to services.

– Fault tolerance. When a service fails, SOA can dynamically redirect users’

requests to another service which supports the same interface [30]. The

dynamical redirection means that 1) users’ requests will be redirected to

another service automatically without interruption, and 2) the destination

of the redirection is dynamically determined during the run time.

– Load balance. When there are more than one service providing the desired

interfaces, SOA can distribute users’ requests among all of these services

to achieve the best quality and utilization of services. And, according to the

system overload, system’s capacity can be adjusted by adding more services

or removing some existing services to save resources.

– Flexible binding. Services’ bindings are communication protocols between

services and their users, such as HTTP and HTTPS. A service can support

more than one bindings. With the help of interface-based invocation, users

12



and business logics can decide which kinds of services will be invoked dur-

ing the design time, but postpone the decision on communication protocols

to the run time. For example, the business logic can switch between the

HTTP and HTTPS protocols according to current transportation security

requirements without changing the business logic.

• Security. Besides the security mechanisms provided by the network infrastruc-

tures such as SSL and Kerbores, SOA provides additional security mechanisms

for the message layer, such as WS-Security [9], WS-Policy [31], XML-Encryption

and XML-Signature [32]. Furthermore, SOA can implement security mecha-

nisms as services, and reuse the security mechanisms whenever and wherever

the security functionalities provided by the security mechanisms are required.

For example, SOA can implement an AES encryption service to encrypt incom-

ing traffics, which can be used anywhere when AES encryption is required.

Development Process of Service-based Systems

Services and SOAs enable rapid development of software systems from existing ser-

vices, which generally includes the following three phases:

1. SBS Specification. The first phase of the development of SBS is to specify the

SBS as a workflow composed with a set of abstract activities (i.e., services’ inter-

faces) with specification languages such as BPEL4WS [33] and OWLS [24]. A

good survey of SBS specification can be found in [34]. This process can be done

manually by the developers [33, 35, 36, 37, 38] or automatically with AI plan-

ning techniques [24, 39, 40]. Each abstract activity in the workflow represents

one operation, which takes the outputs of previous activities as inputs, processes

the inputs, and sends the processed results to subsequent activities as outputs.
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2. Service Discovery and Matching. In this phase, the SBS developers need to

implement each abstract activity in the workflow with concrete services through

centralized service directories [6, 8] or service discovery broadcasting in peer-to-

peer systems [7].

3. Service Composition and Workflow Execution. When all abstract activities in the

workflow have been implemented by concrete services, the workflow is ready for

execution. After taking necessary initial inputs from users, the services are in-

voked in the order specified by the workflow. The data is shared and processed

among all services to conduct the final results of the workflow. During the exe-

cution process, if one service fails, SBS can try to match another service for the

corresponding activity, or to develop a new workflow to avoid that activity if no

other suitable services for that activity are available.

2.2 Service Discovery and Matching

Service discovery and matching protocols are required to find services and verify if the

founded services satisfy service users’ requirements. Depending on where the proto-

cols look for services, service discovery and matching protocols can be distributed [7]

or centralized [6]. Distributed protocols have to broadcast the service requests to all

service providers and match each service providers’ services with the service requests,

and centralized protocols match services in the centralized service directory, where all

service providers register their services. Currently, most service discovery protocols

are centralized, such as Service Location Protocol (SLP), Jini, UDDI, and Bluetooth

[3]. Compared with distributed protocols, centralized protocols are more efficient, but

also suffer from some new security challenges. First, because all service discovery and

matching operations are through the centralized service directory, the service directory

knows a lot of information about both service registrations and requests, which may be

sensitive. Second, after service providers register their services in the service directory,
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the service directory has full control on the service registrations, and can expose these

service registrations to any users even when the service providers do not want to reveal

their service to these users.

Privacy Preserving Service Discovery and Matching

To protect services from malicious service users and vice verse, several secure service

discovery protocols, such as SSDS [41] and UPnP security [11], have been developed

to address the mutual authorization and authentication between services and service

users. All of these protocols need a trusted service directory to honestly enforce the

authentication and authorization, and have no protection for service and service users if

the service directory itself is untrusted. The trustworthiness of service directories was

first discussed in [42], where service registrations are protected from untrusted service

directories with symmetric encryption. But this approach requires a trusted third party

to maintain all symmetric encryption keys. In the same paper, they also proposed to

store the hash values of the service registrations’ keywords in service directories. Be-

cause hash functions are one way functions, the untrusted service directory cannot learn

the service registrations’ keywords from their hash values. However, hash functions

are deterministic, and therefore the untrusted service can determine whether a service

registration contains a specific keyword by comparing the hash values of service regis-

trations’ keywords with the hash value of the specific keyword. The PrudentExposure

protocol [43, 44] protects service users’ queries from service directories by wildcard

search. To hide the service users’ requests from the service directory, this protocol

downloads all available service registrations in the service directory, which leads to

huge communication overhead. So far, no service discovery protocol can search ser-

vice directories without exposing the privacy information of both service providers and

users to the untrusted service directory. This problem is challenging because it requires

the service directory to match a service registration against a service request without
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knowing both of them.

Private Information Retrieval

Private Information Retrieval (PIR) schemes allow users to query databases without

revealing their queries [45, 45, 46, 47, 48, 49, 50, 51, 52]. It is similar to the privacy p-

reserving service discovery and matching protocols, which allow users to query service

directories without revealing their requests. However, PIR schemes only guarantee that

the untrusted database does not know which data the user is looking for, but have no

protection on the privacy of data. That is, PIR schemes assume that the data is public

but centrally stored in the database which maybe untrusted; the user, without a local

copy, wishes to retrieve some data items from the database. A naive solution of PIR

is to download the entire database and let users to retrieve the information from the

local copy of data, which obviously preserves users privacy. However, this solution’s

communication complexity is equal to the size of the database, which is unpracticable

for large databases. Thus, the main focus of the design of PIR schemes is to reduce the

communication complexity.

The first non-trivial PIR scheme was first introduced by Chor et. al. [45]

in 1995, in which they successfully reduced the communication complexity to O(k ·

n1/logk) with k > 2 copies of the database. Following his work, much effort has been

devoted to further reduce the communication complexity of PIR schemes with multiple

copies of the database. Currently, the best result is nO(loglogk/klogk) presented in [47].

Another research direction of PIR schemes is to achieve low communication

complexity without copying the database. The first result in this direction is also pre-

sented by Chor et. al. [45]. They claimed that single database PIR does not exist, if the

database has unlimited computing power. Thus, an interesting question is whether sin-

gle database PIR exists if the database’s computing power is restricted to probabilistic

polynomial turning machine. In [46], Kushilevitz and Ostrovsky gave a positive answer
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to this question by constructing a single database PIR with communication complexity

O(2
√

lognloglogN). Kushilevitz and Ostrovsky showed that their scheme does not reveal

the query to the database if the underlying Goldwasser-Micali public-key encryption

scheme [53] is secure, whose security in turn relies on the discrete logarithmic assump-

tion. Like the research about multiple database PIR, much works have been done to

further reduce the communication complexity with various algebraic properties. The

current best result O(log2n) is achieved by several groups [48, 49, 50].

Besides the effort of improving efficiency, the functionality of PIR is also ex-

tended to support more applications. The first extension is to support retrieving a block

of data within one query [45, 52]. The second extension is to support keyword search

in PIR [54], which allows the user to retrieve data from the database with keyword

search. The third extension is to support private database [51], which only reveals the

data what the user asks without any others. All of these three extensions are essential

for the practical usage of PIR, but still do not provide sufficient support for privacy

preserving service discovery and matching, which requires that the privacy of both the

user and the data is protected.

Privacy Preserving Search

The first privacy preserving search schemes (PPS) was introduced by Dawn Xiaodong

Song, David Wagner and Adrian Perrig [55]. Similar to PIR schemes, PPS schemes also

protect data queries from untrusted servers, but they can support general data queries

besides database queries. The fundamental problem of PPS schemes is how to store

encrypted data in untrusted servers and enable the servers to search the encrypted data

based on users’ requests. According to the approaches of solving this fundamental

problem, existing PPS schemes can be classified as following three categories.

• Searching based on special data structures. In this setting, the data stored in
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the public servers are organized with a special data structure. Peekaboo [56], de-

scribes the keywords as (key, value) pairs, and then stores the keys and the values

in different servers separately. The confidentiality of the data is ensured when

the servers storing keys and the servers storing values do not cooperate together

to attack the system. SSE [57] organizes all documents in some linked lists. All

documents containing the same keywords are linked together and encrypted by

an encryption chain. To search the encrypted data by keywords, a look-up table is

constructed to link the keyword and entrance of the according linked list togeth-

er. Hence, whenever an entrance of the look-up table is identified, the database

can locate the linked list and then successfully decrypts all related documents.

Because the constructions of both the linked lists and the look-up table require

the knowledge of the content of the data, all of them are constructed and submit-

ted to the public servers by the data owner. This restriction implies that the user

cannot search other users’ data. In the setting of service discovery and matching,

it means that service discovery and matching protocols developed with this kind

of techniques can only allow service users to search services that provided by

themselves, which significantly limit the reusability and availability of services.

• Searching based on trusted third parties. In this setting, the protection and the

searching ability of the data is relied on the trusted third parties. An encrypted

and searchable audit log is builded in [58] with the help of the trust third parties.

The log is encrypted by its keywords as public keys, whose secret keys are pre-

served by the trusted third parties. The users search the encrypted data by first

submitting their queries to the trusted third parties who will return a set of secret

keys to the users. The security of this approach is heavily based on the trustiness

of these third parties. Furthermore, the trusted third parties are involved in the

process of each search request.

• Searching based on special encryption schemes. In this setting, the searching
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ability is implemented by encrypting the keywords with special encryption algo-

rithms. While the normal encryption schemes only require that the users except

secret key owners cannot learn any information from the ciphertexts, encryption

schemes designed for keyword searching should allow users to check whether a

ciphertext satisfies some conditionals, such as whether the ciphertext is the en-

cryption of a given plaintext. The symmetric encryption scheme presented in

[55] allows the secret key owners to search the encrypted data stored in the pub-

lic servers without decryption. The asymmetric encryption schemes presented in

[59, 60, 61] allows the public servers to search the data without the knowledge of

the data content, when a special trapdoor is provided by the data owner. Except

the exact keyword matching, the range search is allowed with the attributed-based

encryption [62, 63] or hidden vector encryption [64]. Besides these encryption

algorithms specially designed for keyword searching, homomorphic encryption-

s [65] are also wildly used to construct privacy preserving searching systems

[66, 67, 68, 69].

UDDI Server

Universal Description Discovery and Integration (UDDI) is an XML-based specifica-

tion language for describing service registrations and looking up services in service

directories. UDDI is first proposed by OASIS as an open standard for service discov-

ery and supported by many companies, including Microsoft, IBM, and SAP.

The core data structure of UDDI is shown in Figure 2.2 from http://uddi.

org/pubs/uddi-v3.0.2-20041019.htm. Services (i.e., businessService) in UDDI

server are organized with their providers (i.e., businessEntry). Each service has one or

more access points (i.e., bindingTemplate), which may support different communica-

tion protocols. The tModels are used to describe services, such as their interfaces and

categories. For example, a tModel can be used to specify a WSDL document [4]. If
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Figure 2.2: The core data structure of UDDI

two services share the same tModel, it means that these two services provide the same

functionalities defined in the WSDL document. Hence, a major advantage of using

UDDI in service discovery is that we can search services with tModels (i.e., services’

functionalities). The UDDI server will return a managed URL. Service users invoke

services through this managed URL, but do not need to know which service is invoked.

The UDDI server dynamically binds this URL with a service, and will automatically

redirect the request sent to this URL to another service if the current service fails.

Besides searching services through tModel, the UDDI server also supports to

search services with businessService, businessEntry, bindingTemplate, or their combi-

nations.

2.3 Service QoS

Besides the functionalities, the quality of services (QoS) is another essential factor that

should be considered in selecting services for the development of SBS.
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Service QoS Specification

While services’ functionalities can be modeled as operations with inputs and outputs

[4], there is no universal pattern to model and specify services’ QoS due to the variety of

QoS aspects. Moreover, some QoS aspects, like security, are difficult to be quantitative-

ly and accurately measured. Several QoS quality models and ontologies are proposed

to formally organize and specify various QoS aspects with their metrics and interrela-

tions, such as WSQM [23], OWL-S [24], WSMO [25, 26], and WS-Agreement [27].

These QoS specifications are then integrated with extended web services standards,

such as the extension of WSDL [16, 17, 18], the extension of UDDI [20, 21, 22], and

the extension of BPEL [19].

Because security is an important QoS aspect, a lot of researches have studied

how to specify services’ security requirements. BPEL4WS [33] integrates WS-Security

[9] to protect the confidentiality and integrity of messages transmitted among services.

The security requirements on how services deliver or process messages are supported

by [42, 70]. [42] incorporates services’ security capabilities and security constraints

in the description of service contract, which enables the centralized service directory

to match services based on both activity signatures (i.e., the inputs and outputs) and

security requirements. This approach validates security requirements before the execu-

tion of workflow during the design time. To validate security requirement during the

runtime, another extension based on λ -calculus is presented in [70], which validates

security requirements by model-checking all services’ behaviors. QoS requirements

are addressed in [71] which first finds services matching the signature and then calcu-

lates the accumulated QoS of the workflow with found services. If the accumulated

QoS already violates the QoS requirements, the service matching mechanism discard-

s this service and continues to find other services. Otherwise, the service matching

mechanism realizes the activity with the found service and continues to find services
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for proceeding activities.

When the requirements on some QoS aspects are difficult to be specified ex-

actly. Moderated Fuzzy Discovery Method (MFDM) [72] and Intuitionist Fuzzy Sets

(IFS) [73] are used to specify QoS requirements. For example, users can specify their

requirement and preference as ”The service is very cheap” and ”The price of the service

is very important” instead of ”The price of the service should be less than one dollar

per hour” and ”The importance weight of the service’s price is 0.9”.

Service QoS Monitoring and Measurement

When services’ interfaces are designed during the design time and will not change

during the running time, services’ QoS dynamically changes with services’ available

resources, the number of users served, the running environments, and many other fac-

tors. In [15], a runtime QoS monitor was developed to continuously monitor services’

resources, users’ activities, and services’ QoS. While the monitoring on services’ re-

sources requires access to the software and hardware platforms that host the services,

there are other techniques developed to monitor and measure services’ QoS without the

access to services’ platforms.

The concepts of user feedbacks and reputations are borrowed from the filed of

trust management and social network to measure services’ QoS in [74, 75, 76]. In these

works, services’ QoS is measured based on their users’ feedbacks. However, users’

feedbacks may be biased by their expectations or preferences, and be different even for

the same service providing the same QoS. Furthermore, malicious users may provide

false negative or positive feedbacks to affect the measurement of services’ QoS. Hence,

an important problem in measuring services’ QoS with feedbacks is how to detect and

remove inaccurate feedbacks. In [74], inaccurate feedbacks are detected based on de-

viations from the majority opinion. For example, if most users give good feedbacks to

a service, a too bad feedback for this service is considered as fake, and will damage
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the feedback’s provider’s reputation. In [75], users’ feedbacks are evaluated based on

the usefulness of users’ feedbacks, which is evaluated with Bayesian networks. Feed-

backs from users with low reputation have small weights in measuring services’ QoS.

In [76], more factors are considered in the evaluation of users’ reputation, including the

social relations between the services’ providers and users. Also, services provided by

the same service providers are assumed to share similar feedbacks.

Data ming techniques are used in [77, 78] to measure services’ QoS by an-

alyzing their historic data, which assume that services’ QoS satisfies some statistic

properties and then predict services’ future QoS from their historic QoS.

QoS Tradeoff among Various QoS Aspects

An adaptive service should be able to change its configurations or behaviors to provide

customized QoS for different service users. Application level differentiated services

[79, 80]control performance for different classes of service users. When the system re-

sources are limited, fewer resources are allocated for normal users, and more resources

are reserved to guarantee good performance for premium users. Furthermore, when

resources are extremely limited and even the performance required by premium users

cannot be fully satisfied, feedback controlled web services [81, 82] are proposed to ad-

just resource allocation to meet the most critical performance requirements, such as the

delay in real-time systems.

These approaches require the control on the system resource allocation strate-

gies, which are usually controlled by operating systems. For example, in [79], services

provide two kinds of priorities by controlling process pool size and process priorities.

In [82], services guarantee their delay by dynamically adjusting connection scheduling

and process reallocation.

Security is another very important QoS aspect of services. There are a lot of

researches on SOA security, including the protection of services from malicious con-
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sumers through authentication and authorization [83, 84, 85, 86], and the protection of

messages through XML encryption and signature [32]. However, the impact of these

security mechanisms on the systems’ performance has not been well addressed.

In [87], the services made tradeoff between the usefulness of its data and the

privacy protection of the data by selectively deleting some information from the data.

When more information is deleted, the data contains less privacy information but also

becomes more useless. This approach works only for applications that do not require

complete data. The key length was used in [88] to control the tradeoff between secu-

rity and delay. Once a service’s delay exceeds a pre-defined threshold, the adaptive

security policies defined in [88] would automatically reduce the key length to the next

smaller value until the service’s delay is reduced below the threshold again. While this

approach only considers key lengths in the tradeoff between security and delay, a more

precise security model QoSS was presented in [89] to control security strength. The

QoSS model defines a set of security levels from high to low with parameters including

the strength of cryptographic algorithm, key length, percentage of packets authenti-

cated, security functions, confidence of policy-enforcement in remote login, and the

robustness of authentication mechanism. The idea of classifying security to a set of

discrete levels was also used in [90]. All of these approaches measure security quali-

tatively but not quantitatively, and hence cannot make precise tradeoff among security

and other QoS aspects.

2.4 QoS-based Service Selection

QoS-based service selection is to select the service with the best QoS. If only one QoS

aspect is considered, the service selection is easy by ordering services’ QoS on this

aspect. However, the service selection is challenging when more than one QoS aspect

are needed to be considered.

First, different QoS aspects have different unites and value ranges. Services’
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QoS on different QoS aspects have to be normalized before aggregation. Suppose

there are m services S1,S2, · · · ,Sm and their qualities on a specific QoS aspect are

q1,q2, · · · ,qm. In [91], each qi (1 ≤ i ≤ m) is normalized to qi/avg(q1,q2, · · · ,qm),

where avg(q1,q2, · · · ,qm) is the average quality of all services. In [92], qi is normalized

to (qmax− qi)/(qmax− qmin) or (qi− qmin)/(qmax− qmin), where qmax and qmin are the

best and worst qualities among all services. These normalization approaches only con-

sider the QoS of all available services without users’ QoS requirements and preferences

on various QoS aspects. For example, if all services’ qualities are too worse to satisfy

users’ requirements or all services’ qualities perfectly satisfy users’ requirements, the

differences among their qualities on this QoS aspect cannot generate additional benefit

or penalty to users, and hence should not affect the service ranking.

Second, the selection among services is not only based on services’ QoS but

also based on users’ QoS requirements. To integrate users’ QoS requirements in the

normalization, Comuzzi and Pernici divided the range of services’ QoS on each QoS

aspect to several discrete levels [93]. Different levels represent users’ different degree

of satisfaction. All services’ QoS within the same level are normalized to a same num-

ber. Hence, if two services’ QoS have no difference from the perspective of users, the

actual difference between these two services’ QoS has no effect in the service ranking.

This discrete normalization approach requires users to decide how to divide the range

of services’ QoS to discrete levels. Although mid-level splitting techniques can be used

to help users [94], it still requires a lot of interactions with users. Another disadvantage

of this approach is that services’ QoS are normalized to a set of discrete levels coarsely,

and hence cannot distinguish two services with similar qualities on all QoS aspects. Fi-

nally, it normalizes different QoS aspects independently, and does not consider users’

preferences on different QoS aspects.

Third, services’ QoS on different QoS aspects have to be aggregated together.

Let service Si’s qualities on n QoS aspects be (qi1,qi2, · · · ,qin), which are normalized
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to (normi1,normi2, · · · ,normin). Because each normalized QoS normi j is within an u-

nique range, services’ qualities on different QoS aspects can be aggregated together

for service selection. Typically, the aggregation is implemented by adding the nor-

malized QoS together with weight factors [95]. That is, the service Si will be ranked

based on the value of ∑w j ∗normi j, where the weight w j represent users’ preference

on the j-th QoS aspect. Users assign larger weights for QoS aspects that are more

important for them, and smaller weights for other QoS aspects. This aggregation ap-

proach ranks and selects services only based on services’ QoS. To consider users’ QoS

requirements, the Euclidian distance between services’ QoS and users’ QoS require-

ments is used to rank services [92]. That is, the service Si will be ranked based on the

value of (∑(norm j−norm∗j)
2)1/2, where (norm∗1,norm∗2, ,norm∗n) is users’ normalized

QoS requirements on each QoS aspect. In [93], a price model is used for aggregation

of services’ QoS on multiple QoS aspects. The price model converts a service’s QoS

qualities on each QoS aspect to a price, and adds all prices together as the service’s

total price, and ranks services based on their total prices.
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Chapter 3

OVERALL APPROACH

This dissertation studies techniques about privacy preserving service discovery protocol

with QoS-based service ranking. Compared with general service discovery protocols

which look for services simply based on users’ functionality requirements, the service

discovery techniques developed in this dissertation have several desirable character-

istics, which are discussed in Section 3.1. Then, the system infrastructure providing

support for such service discovery and the overview of the service discovery procedure

is presented in Section 3.2.

3.1 Characteristics of Privacy Preserving Service Discovery and Ranking for

Multiple User QoS Requirements

A privacy preserving service discovery and ranking approach is a special kind of ser-

vice discovery protocol. Besides helping service users to look for services in the ser-

vice directory providing the required functionalities, it also has the following desirable

characteristics:

• Service providers and users can use a public service directory to register services

and find services without worrying about their privacy. All information about

services stored in the service directory is encrypted, and all users’ requests sent

to the service directory are also encrypted. The service directory matches regis-

tered services with service requests without learning any information about both

service registrations and service requests besides the matching results.

• The existence of services registered in the service directory is only exposed to

users who are authorized to access these services, and is hidden from users who

have no permission to access these services. If the service’s provider does not

authorize a service user to access the service, the service directory cannot reveal
27



the service to the unauthorized user, and the service user cannot find the service

in the service directory with any service request.

• Service users can specify their requirements on both functionalities and QoS in

the service requests. Services that satisfy the functionality requirements but do

not satisfy the QoS requirements will not be returned to the users.

• Services can provide differential QoS for their users with various QoS require-

ments. Services control their QoS through a set of parameters. By adjusting the

values of these parameters, services make tradeoff among various QoS aspects

with different tradeoff strategies.

• Services returned by the service directory are ranked based on the satisfaction

of service users’ QoS requirements. If the service directory returns multiple ser-

vices, all of these services satisfy both functionalities and QoS requirements of

the service user. And, the better the service satisfies the user’s QoS require-

ments, the higher the service is ranked among all returned services. Hence, the

top ranked service is the best service that the service user should use.

3.2 Overview of The Approach

The system infrastructure supporting privacy preserving service discovery and ranking

is illustrated in Figure 3.1, which includes four entities, the service directory (SD), the

QoS monitor (QM), the trusted third party (TTP), and the service ranker (SR). In this

system infrastructure, service providers (SP) register services and service users (SU)

discover services with the following four major steps.

Step 1) Service Matching on Functionality. In this step, services are matched only

based on their functionalities.

Step 1.1) Key Initialization. SP and SU initialize encryption and decryption

key pairs and access keys with TTP. The encryption and decryption key
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Figure 3.1: The system architecture and procedure of privacy preserving service dis-
covery and ranking for multiple user QoS requirements

pairs are used to encrypt and decrypt services’ registration information s-

tored in SD. The access keys are used to control the access to services. SU

can search and access a service if and only if he/she possesses the correct

access key to this service.

Step 1.2) Service Registration. SP encrypts services’ information including the

meta information describing services’ functionalities, and technical details

about service invocation. All of these information is encrypted with the

encryption key from TTP before submitted to SD. Without the decryption

key, SD cannot learn any information about the registered service.

Step 1.3) Service Request. Once SU wants to find services in SD, SU prepares

a service request, which includes his/her requirements on both services’

functionalities and QoS. The service request is encrypted with the encryp-

tion key from TTP in Step 1.1) before sent to SD. Without the decryption
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key, SD cannot learn any information about the submitted service request.

Step 1.4) Service Matching. When SD receives a service request from SU, it

matches all registered services’ functionalities with the functionality re-

quirements of SU. All matched services are forwarded to SR as well as the

QoS requirements of SU. During the matching process,SD never decrypts

any encrypted services or encrypted service requests. Hence, all services

forwarded to SR are kept encrypted. Furthermore, if SU cannot access a

service, the service will not be forwarded even it satisfies SU’s functionali-

ty requirements.

Step 2) QoS Tradeoff. In this step, all services that satisfy SU’s functionality require-

ments are ranked based on their QoS.

Step 2.1) QoS Monitoring. Once SP registered services in SD, the registered

services are monitored by QM. Services’ QoS are periodically reported to

QM.

Step 2.2) QoS Reporting. To help SR to enforce SU’s QoS requirements and

rank all satisfied services, QM reports the QoS information of all services

forwarded by SD in Step 1.4) to SR.

Step 2.3) QoS Tradeoff. With the list of encrypted service from SD and their

QoS information from QM, SR checks whether these services satisfy SU’s

QoS requirements. All services that do not satisfy the QoS requirements are

removed from the list. For all services remained in the list, SR optimizes

their QoS by making tradeoff among various QoS aspects according to SU’s

QoS requirements.

Step 3) Service Ranking. SR ranks all optimized services based on how well the ser-

vice satisfy SU’s QoS requirements. The better the service satisfies QoS re-
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quirements, the higher the service is ranked. At the end, the list of ranked and

encrypted services is returned to SU.

Step 4) Service Invocation. From the list returned by SR, SU selects the top service

or several services. SU decrypts the selected encrypted services and starts to use

the service by invoking it.
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Chapter 4

PRIVACY PRESERVING AND CONTROLLED ACCESS SERVICE DISCOVERY

AND MATCHING

This chapter presents a privacy preserving and controlled access service discovery and

matching protocol, which allows the untrusted service directory to 1) accept encrypted

service registrations from service providers, 2) accept encrypted service requests from

service users, 3) match encrypted service registrations with encrypted service requests

through keywords, and 4) enforce the access control policies of services. Meanwhile,

the untrusted service directories cannot learn any information about service registra-

tions and requests besides the matching results.

4.1 Problem Statement

A privacy preserving and controlled access service discovery and matching protocol

is an augmented service discovery and matching protocol, which also involves three

kinds of participants: service providers SP, service users SU and service directories

SD. There may be multiple distributed SDs where SP register services and SU search

services. For the sake of simplicity, we consider only one SD, which is untrusted

and tries to learn some information about services and requests. Furthermore, SUs’

searching capability is controlled. That is, SU can only search services that he/she

has the permission to access. The privacy preserving and controlled access service

discovery and matching protocol is defined as follows.

Definition 4.1 (privacy preserving and controlled access Service Discovery and Match-

ing). Let SP be the provider of a service registration s consisting with meta informa-

tion and technique details about service invocation. SP encrypts s with a set of keyword

Keyword and a set of access keys AccessKey, and registers the encrypted s in the service

directory SD. The service user SU searches services by submitting a service request to
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SD. The service request is encrypted with an access key ak and a keyword k. The priva-

cy preserving and controlled access service discovery and matching protocol matches

the encrypted s with the encrypted service request, which satisfies the following three

funtionality requirements:

1. SU can decrypt the encrypted s, only when s matches his/her service request.

2. If SU can access s, i.e, ak ∈ AccessKey, SD matches the encrypted s with SU’s

service request successfully if and only if k ∈ Keyword.

3. If SU cannot access s, i.e, ak /∈ AccessKey, SD cannot match the encrypted s with

SU’s service request no matter whether k ∈ Keyword.

Furthermore, the privacy preserving and controlled access service discovery and match-

ing protocol also satisfies the following three security requirements:

1. The encrypted s does not reveal any information about s and its AccessKey and

Keyword.

2. The encrypted service requests do not reveal SU’s access keys and keywords to

SD and other service users.

3. SU as well as SD cannot match the encrypted s if they do not have the correct

access key.

In the Definition 4.1, the set Keyword can be used to describe services’ func-

tionalities and the set AccessKey can be used to specify access policies to services.

Hence, the service discovery and matching is based on services’ functionalities.

The first two security requirements protect SP’s registrations and SU’s requests

from the untrusted SD, and the third security requirement controls the access to ser-
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vices. The first two security requirements are satisfied if s and the service request are

encrypted with semantic secure encryption algorithms. In this chapter, we first encrypt

s and service request with a semantic secure symmetric encryption scheme and a ran-

dom encryption key k, which ensures that SD cannot learn any information about the

service and the service request from the encrypted s and the service request without the

encryption key k. To enable SU to decrypt the encrypted s, we hide k with AccessKey.

When SU has the correct access key, SU can recover k and then decrypt s.

4.2 Preliminaries

In this section, we present the basic techniques used in the construction of our privacy

preserving and controlled access service discovery and matching protocol.

Semantic Secure Encryption Algorithms

An encryption algorithm generally consists with an encryption key ek, an decryption

key dk, an encryption operation E and an decryption operation D. For symmetric en-

cryption algorithms such as DES and AES, the encryption key and the decryption key

are the same, i.e., ek = dk. For asymmetric encryption algorithms such RSA and ElGa-

mal, the encryption key and the decryption key are different, i.e., ek 6= dk. The encryp-

tion operation E encrypts a message m to a ciphertext C with ek. That is, E(m,ek) =C.

And, the decryption operation D decrypts the ciphertext C back to the message m with

dk. That is, D(C,dk) = m.

An encryption algorithm is semantic secure if and only any adversary cannot

learn any information about m from C without the knowledge about dk. If we give C to

the adversary with another random message R with the same length of C, the adversary

cannot distinguish C from R within polynomial time. Formally,

|Pr[A (C, I) = 1]−Pr[A (R, I) = 1]|< ε
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where A is the adversary, ε is a negligible number, and I is used to model addition-

al information available for A . According to I, semantic security can be classified

as chosen-plaintext semantic security, chosen-ciphertext semantic security, and others.

More information about semantic secure encryption algorithms and their design tech-

niques can be found in the Chapter 5 of [96].

Pairing

Pairing is a basic concept in ellipse curves. Since the construction of the first pairing-

based key exchange protocol [97], pairing has been widely used to construct secure

algorithms and protocols. A pairing is a mapping e from G1×G1 to G2, where G1

and G2 are two groups of the same prime order q. The bilinear mapping has three

properties:

1. (Bilinearity) For any P,Q ∈G1 and a,b ∈ Z, we have e(Pa,Qb) = e(P,Q)ab

2. (Non-Degeneracy) There exists two elements P,Q ∈G1 satisfying e(P,Q) 6= 1

3. (Computability) For any P,Q ∈ G1, there exists efficient algorithm to compute

e(P,Q)

There are a lot of security assumptions about bilinear mapping. In this chapter,

we will use the assumption of Bilinear Diffie-Hellman Problem (BDH), which assumes

that no probabilistic polynomial algorithm can compute e(P,P)abc from (P,Pa,Pb,Pc)

with non-negligible probability.

Homomorphic Encryption

Homomorphic encryption schemes are special cryptosystems supporting operations on

the ciphertexts directly without decryption. Let C1 and C2 be two ciphertexts of two

messages m1 and m2 encrypted with a homomorphic encryption scheme correspond-

ingly. There exists an efficient algorithm to compute the encryption of m1⊕m2 from
35



C1 and C2 without decryption. According to the operation ⊕, there are two types of

homomorphic encryption schemes: additively homomorphic encryption schemes such

as Pailler [65] and multiplicative homomorphic encryption schemes such as RSA and

ElGamal. For example, let (e,n) be the encryption key of RSA, and m1 and m2 be two

messages, RSA can compute the encryption of m1m2 as

(m1m2)
e = (m1)

e(m2)
e(mod n)

Most of existing homomorphic encryption schemes can only support either ad-

dition or multiplication but not both. Hence, an interesting problem is how to design

a fully homomorphic encryption scheme to support both addition and multiplication.

This problem is well recognized in the cryptography communities since the develop-

ment of RSA. Until 2005, the first encryption scheme supporting both operations was

designed by Boneh, Goh, and Nissim [98], named as BGN encryption scheme. BGN

encryption is designed to compute the encryption of m1,1m1,2 + · · ·+mn,1mn,2 from

the encryptions of m1,1,m1,2, · · · ,mn,1,mn,2, and can support unlimited additive oper-

ations but only one time multiplicative operation on each encryption. In 2009, Craig

Gentry in IBM presented the first fully lattice-based homomorphic encryption scheme

which supports any numbers of additive and multiplicative operations in any orders

[99]. However, the performance of this encryption scheme is unpractical.

The parameters of the BGN encryption scheme include two cyclic groups G,G1

with the same order n = q1q2, where q1 and q2 are two large primes. Let g,h = uq2 be

two generators of the group G. The BGN scheme encrypts the data m as the element

gmhr in the group G, where r is a random number. Under the subgroup decision as-

sumption [100], the BGN scheme provides semantical security, and has the following

two properties:

1. (Verifiable) Given the encryption gmhr and the data m′, it is efficient to verify

whether m = m′ by checking whether (gmhr)q1 = gq1m′ .
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2. (Homomorphic) Given two encryptions gm1hr1 and gm2hr2 , it is efficient to com-

pute the encryption of m1 +m2 as gm1hr1 ·gm2hr2 , and the encryption of m1m2 as

e(gm1hr1 ,gm2hr2), where e is a bilinear map from G×G to G1.

BGN encryption can only support small plaintexts if the decryptions on the

encryption of these plaintexts are required, because BGN’s decryption operations need

to find m from gm (i.e., solve the discrete logarithm problem) which is believed to be

hard for large m and g in a high order cyclic groups G. In this chapter, we will use

the BGN encryption scheme to construct the privacy preserving and controlled access

service discovery and matching protocol. Because we just need to verify whether a

ciphertext is the encryption of one given data, and never decrypt any encryption, the

high complex decryption operation of BGN is avoided.

Two-Party Private Intersection Predicate Evaluation

The two-party private intersection evaluation (PIPE) problem is introduced by Kiayias

[101], where two parties (A,B) evaluate whether the intersection of their set SA and SB

is empty. PIPE has the following properties:

1. (Correctness) For any two sets SA and SB, the output of PIPE(SA,SB) belongs

to {0,1}, and PIPE(SA,SB) = 1 if and only if SA∩SB 6=∅.

2. (Security) Neither A nor B nor a third party can get more information about the

sets SA and SB by executing the PIPE protocol than the output of PIPE(SA,SB).

The first PIPE protocol is shown by Freedman et. al. [66] through repre-

senting set’s elements as polynomials’ roots. For example, the set S with n elements

{s1,s2, · · · ,sn} can be represented as n roots of a n-degree polynomial as

f (x) = (x− s1)(x− s2) · · ·(x− sn)
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With this polynomial representation, we can verify whether the element a is in

the set S through polynomial evaluation. If f (a) = 0, a ∈ S; otherwise, a /∈ S. This

idea is further extended by Kissner et. al. [68] to support more set operations including

union and element reduction, and is used to design a privacy preserving search scheme

in [67], which however is unpractical due to oblivious pseudorandom functions used

in the scheme, whose construction requires m
(2

1

)
- OT protocols [102, 103] and one

exponentiation.

4.3 Building Blocks

In this section, we present two useful building blocks in the construction of privacy

preserving and controlled access service discovery and matching protocol.

Controlled Search

Controlled search is to control the search capability on one set by another set. We

design this algorithm with the polynomial representation of sets as [66, 68]. The set S

with s elements can be represented as s roots of a s-degree polynomial f (x). With this

polynomial representation, we can search the element a in the set S through polynomial

evaluation. If f (a) = 0, a ∈ S; otherwise, a /∈ S. In this subsection, we construct a

polynomial FS1,S2(x) to search (a,b) in S1× S2, where S1 and S2 are two sets. For all

a ∈ S1,b ∈ S2, FS1,S2(a)+FS1,S2(b) returns the index of a in the set S1, which should be

in the range {1,2, · · · , |S1|}; otherwise, the value of FS1,S2(a)+FS1,S2(b) is random. We

call such polynomial FS1,S2(x) for the set S1 and S2 as the controlled search polynomial

for S1 and S2 because anyone who knows at least one element of the second set S2 can

use it to search the elements of the first set S1.

For two sets S1 = {a1,a2, · · · ,as} and S2 = {b1,b2, · · · ,bt}, we design the con-

trolled search polynomial FS1,S2(x) for S1 and S2 as a (s+ t) degree polynomial, which
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Input: The controlled search polynomial FS1,S2(x) for sets S1,S2, and two elements
ak,k

Output: ak’s index in the S1, if ak ∈ S1 and k ∈ S2; 0, otherwise

Compute FS1,S2(ak)+FS1,S2(k) ;

if 1≤ FS1,S2(ak)+FS1,S2(k)≤ |S1|
then

return FS1,S2(ak)+FS1,S2(k)

else
return 0

Figure 4.1: The algorithm ControlledSearch(FS1,S2(x),ak,k).

satisfies

FS1,S2(x) =

 r+ i, x = ai ∈ S1

−r, x ∈ S2

(4.1)

where r is a random number. The random number r is integrated in the representation

of the polynomial and will never be expressed explicitly.

The algorithm ControlledSearch(FS1,S2(x),ak,k) shown in Figure 4.1 verifies

whether ak ∈ S1 and k ∈ S2 by evaluating FS1,S2(x)(ak)+FS1,S2(x)(k).

The correctness of the algorithm ControlledSearch is stated as the following

theorem.

Theorem 4.2. Let S1 = {a1,a2, · · · ,as} and S2 = {b1,b2, · · · ,bt} be two sets. The

output of the algorithm ControlledSearch(FS1,S2(x),ak,k) satisfies

1. If ak ∈ S1 and k ∈ S2, the algorithm ControlledSearch(FS1,S2(x),ak,k) always

returns the index of ak in the set S1.

2. Given two random elements a and b, the probability of FS1,S2(a) +FS1,S2(b) ∈

[1,s] does not exceed s(s+ t)2|R|/|D|2, where s is the size of S1, t is the size of S2,

D is the domain of the polynomial FS1,S2(x), and R is the range of the polynomial
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FS1,S2(x).

Proof 1. According to the definition of controlled search polynomial given in

(4.1), for any ak ∈ S1 and k ∈ S2, FS1,S2(ak)+FS1,S2(k) = r + i− r = i , where

i is the index of ak in the set AccessKey. The algorithm will return i.

2. Suppose the polynomial FS1,S2(x) is a function mapping from the domain D to

the range R. First, we prove that |{x|FS1,S2(x) = a}| ≤ s + t for any random

element a ∈ R. Define the polynomial F(x) as FS1,S2(x)− a, which is also a

(s+ t)-degree polynomial. For every element x′ ∈ {x|FS1,S2(x) = a}, we have

F(x′) = FS1,S2(x
′)− a = 0. That is, all elements in the set {x|FS1,S2(x) = a} are

the roots of the polynomial F(x). Because a (s+ t)-degree polynomial has at

most s+ t roots, we have |{x|FS1,S2(x) = a}| ≤ s+ t. That is, for any random

a ∈ R,

Pr[FS1,S2(x) = a|x ∈ D]≤ s+ t
|D|

For the random elements a and b, the probability of 1≤ FS1,S2(a)+FS1,S2(b)≤ s

is estimated as

Pr[1≤ FS1,S2(a)+FS1,S2(b)≤ s]

= ∑
r∈R

Pr[FS1,S2(a) = r] ·Pr[−r+1≤ FS1,S2(b)≤−r+ s]

≤ ∑
r∈R

s

∑
i=1

Pr[FS1,S2(a) = r] ·Pr[FS1,S2(b) =−r+ i]

≤ ∑
r∈R

s

∑
i=1

s+ t
|D|
· s+ t
|D|

≤ s(s+ t)2|R|
|D|2
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Input:
1) The encrypted coefficients EC = {Epk(an),Epk(an−1), · · · ,Epk(a0)}
2) The encrypted point EP = {Epk(bn),Epk(bn−1), · · · ,Epk(b0)}
3) The target value c

4) The encryption key pk and the verification key vk of the BGN scheme

Output: 1, if f (b) = c; 0, otherwise

Compute the encryption of f (b) as C = ∏
n
i=0 e(Epk(ai),Epk(bi)) ;

if Cvk = e(g,g)vk·c then

else
returns 1

return 0

Figure 4.2: The algorithm Verify(EC,EP,c, pk,vk).

Privacy Preserving Polynomial Evaluation

Privacy preserving polynomial evaluation is to evaluate f (a) without the knowledge

of the polynomial f (x) and the element a. We design this algorithm with the BGN

encryption scheme [98].

Let Epk be the BGN encryption algorithm with the encryption key pk, and q1 be

the verification key vk. From the BGN scheme’s properties, we construct the algorithm

Verify to securely verify whether f (b) = c in Figure 4.2. The algorithm takes five inputs

EC,EP,c, pk,vk, where EC is the encrypted coefficients of the polynomial f (x), EP is

the encrypted point b, c is the target value, pk,vk are the encryption key and verification

key of the BGN scheme.

The correctness and privacy of the algorithm Verify are stated as the following

theorem.

Theorem 4.3. Let f (x) = anxn+an−1xn−1+ · · ·+a1x+a0 be an n-degree polynomial.

Let EC,EP,c, pk,vk be the five parameters defined in the Verify algorithm. We have
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1. If f (b) = c, the algorithm Verify(EC,EP,c, pk,vk) returns 1.

2. Given EC,EP, pk, no adversary can distinguish the polynomial f (x) from a ran-

dom n-degree polynomial R(x), or distinguish the element b from a random ele-

ment r in polynomial time with non-negligible probability, if the BGN encryption

scheme is semantically secure.

3. Given EC,EP, pk,vk and a random element r, the adversary cannot compute the

polynomial f (x) and the element b in polynomial time if the discrete logarithm

problem is hard.

Proof 1. Let G,G1,g and h be parameters of BGN encryption scheme introduced

in Section 4.2, where G,G1 are two cyclic groups with the same order n = q1q2,

and g,h = uq2 are two generators of the group G. vk = q1 is the verification

key. For a data m, the BGN scheme encrypts m as Epk(m) = gmhr, where r is a

random number. Furthermore, because both g and h are generators of the same

group, there exist r0 ∈ Z that h = gr0 .

According to the bilinearity of the mapping e from G×G to G1, we have

C =
n

∏
i=0

e(Epk(ai),Epk(bi))

=
n

∏
i=0

e(gaihri,1 ,gbi
hri,2)

=
n

∏
i=0

e(gai,gbi
) · e(gai,hri,2) · e(hri,1,gbi

) · e(hri,1 ,hri,2)

=
n

∏
i=0

e(g,g)aibi
· e(g,h)airi,2 · e(g,h)biri,1 · e(h,h)ri,1ri,2

=
n

∏
i=0

e(g,g)aibi
· e(g,h)airi,2+biri,1+ri,1ri,2r0

= e(g,g)∑
n
i=0 aibi

· e(g,h)∑
n
i=0 airi,2+biri,1+ri,1ri,2r0

= e(g,g) f (b) · e(g,h)r
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, where r = ∑
n
i=0 airi,2 +biri,1 + ri,1ri,2r0. If f (b) = c, we have

Cvk = (e(g,g) f (b) · e(g,h)r)q1

= e(g,g)q1· f (b) · e(g,uq1q2)r

= e(g,g)vk· f (b) · e(g,1G)r

= e(g,g)vk·c

Hence, the Verify algorithm returns 1.

2. Because the encryption of the BGN scheme is semantically secure which mean-

s that the adversary cannot distinguish the encryption from another random string

with the same length, no information about f (x) and b is revealed from CE,EP, pk.

3. When the adversary has the verification key vk, the adversary is able to determine

whether a ciphertext is the encryption of the given data. It is because the verifica-

tion vk enables the adversary to compute gx from Epk(x). However, the adversary

cannot compute the x from Epk(x) without solving the discrete logarithm prob-

lem. That is also the reason why the original BGN encryption scheme requires

that the plaintext must be small. Hence, from EC,EP, pk,vk and r, the adver-

sary cannot compute the f (x) and b in polynomial time if the discrete logarithm

problem is hard.

4.4 Main Construction

In this section, the main construction of our privacy preserving and controlled access

service discovery and matching protocol is presented.

Overview

Our privacy preserving and controlled access service discovery and matching protocol

consists of five algorithms: Initialization, ServiceRegistration, ServiceRequest, Ser-
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viceMatch, and ServiceRetriever. It also involves four entities: the trusted third party

TTP, the service provider SP, the service user SU, and the service directory SD. These

five algorithms match the Step 1.1), Step 1.2), Step 1.3), Step 1.4), and partial Step 4)

in Figure 3.1. The details of the constructions of these five algorithms are described in

the following:

• Initialization: TTP initializes all parameters of the BGN encryption schemes,

including the encryption key pk = {n,g,h,e,G,G1} and the verification key vk =

q1. TTP also initializes a secure symmetric encryption scheme SE and a hash

function H which maps any string to the space of the encryption keys of E.

• ServiceRegistration(m,AccessKey,Keyword): When SP wants to share the ser-

vice s with the access keys AccessKey and keywords Keyword, SP constructs

the controlled search polynomial FAccessKey,Keyword(x) presented in Section 4.3

for the sets AccessKey and Keyword, and then encrypts s and the coefficients of

FAccessKey,Keyword(x). The algorithm consists of the following steps:

1. SP describes the technique detail information about invocation as s, and

describes the service’s functionalities as Keyword = {k1,k2, · · · ,kt}. SP

also shares a set of access keys ak with service users. If SP allows an user

to access the service, SP puts the user’s access key in the set AccessKey,

denoted as AccessKey = {ak1,ak2, · · · ,aks}.

2. SP generates a polynomial FAccessKey,Keyword(x) = as+txs+t + · · ·+a1x+a0

satisfying

FAccessKey,Keyword(x) =

 r+ i, x = aki ∈ AccessKey

−r, x ∈ Keyword

where r is a random number. The coefficients a+ s+ t, · · · ,a1,a0 can be

computed with Newton interpolation formulae.
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3. SP encrypts the coefficients of FAccessKey,Keyword(x) using the BGN encryp-

tion and the encryption key pk as

EC = {Epk(as+t),Epk(as+t−1), · · · ,Epk(a0)}

= {gas+t hrs+t ,gas+t−1hrs+t−1, · · · ,ga0hr0}

where rs+t ,rs+t−1, · · · ,r0 are (s+ t +1) random numbers.

4. SP computes a random encryption key rk = H(grm) for the symmetric en-

cryption scheme SE, where rm is a random number. The service information

s is encrypted as SE(s,rk).

5. To enable authorized users who possess an access key in AccessKey to de-

crypt the encryption of s, SP computes C = {grm/ak1, · · · ,grm/aks}

6. SP registers the servicy by storing the encrypted service registration S =

(SE(s,rk),EC,C) in SD.

• ServiceRequest(ak,k): With a access key ak and a keyword k, SU generates the

encrypted request Q and submits it to SD.

Q = {Epk(aks+t + ks+t),Epk(aks+t−1 + ks+t−1), · · · ,Epk(ak0 + k0)}

• ServiceMatch(S,Q): When SD receives the encrypted request Q from SU, SD

matches the encrypted service registration S with the encrypted request Q through

polynomial evaluation discussed in Section 4.3. This algorithm could be seemed

as a secure version of the Controlled Search algorithm in Figure 4.1. The algo-

rithm consists of the following steps:

1. SD scans the encrypted service registration S = (SE(s,rk),EC,C).

2. For all 1≤ i≤ s, SD runs the algorithm Verify(EC,Q, i, pk,vk) described in

Figure 4.2.
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3. If there is an i,(1≤ i≤ s) that the algorithm Verify(EC,Q, i, pk,vk) returns

1, SD sends the encryption SE(s,rk) to SU with the i-th element grm/aki in

the set C.

• ServiceRetriver(SE(s,rk),grm/aki): If SU searches service with (ak,k) and re-

ceives SE(s,rk) and grm/aki from SD, SU reconstructs the symmetric encryption

key as rk = H((grm/aki)ak) and then use rk to decrypt the encryption SE(s,rk).

4.5 Correctness and Security

We prove that our privacy preserving and controlled access service discovery and match-

ing protocol presented in Section 4.4 satisfies the three functionality requirements stat-

ed in the Definition 4.1.

Theorem 4.4 (Correctness). The privacy preserving and controlled access service dis-

covery and matching protocol presented in the Section 4.4 is correct.

1. If SE(s,rk) and grm/aki are returned correctly, the algorithm ServiceRetriver will

compute the random encryption key rk correctly.

2. When ak ∈ AccessKey which means that SU can access the service, the algorithm

ServiceMatch will return the encrypted service if k ∈ Keyword; otherwise, the

algorithm returns nothing.

3. When ak /∈ AccessKey which means that SU cannot access the access, the proba-

bility that the algorithm ServiceMatch returns the encrypted service is negligible

for any keyword k.

Proof 1. In the algorithm ServiceMatch(S,Q), SD repeatedly calls the algorithm

Verify with different parameters i. The algorithm Verify with the parameter i re-

turns 1 only when FAccessKey,Keyword(ak)+FAccessKey,Keyword(k) = i. According to

the definition of the function FAccessKey,Keyword(x), this means that i is the index
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of ak in the set AccessKey. That is, ak = aki. Hence, when the algorithm Ser-

viceRetriver receives the inputs SE(s,rk) and grm/aki from SD, SU reconstructs

the random encryption key rk correctly as

H((grm/aki)ak) = H((grm/aki)aki) = H(grm)

2. If ak ∈ AccessKey and k ∈ Keyword, the definition of the controlled search poly-

nomial ensures that FAccessKey,Keyword(ak) +FAccessKey,Keyword(k) = i, where i is

the index of the ak in the set AccessKey. Hence, when SD uses the algorithm

Verify in the i-th time, the algorithm Verify(EC,Q, i, pk,vk) will return 1 and

then the algorithm ServiceMatch(S,Q) will return SE(s,rk) and the i-th element

grm/aki in the set C to SU. This is ensured by the Theorem 4.3 and the following

equations.

n

∏
i=0

e(Epk(ai),Epk(aki + ki))

=
n

∏
i=0

e(Epk(ai),Epk(aki)Epk(ki))

=
n

∏
i=0

e(Epk(ai),Epk(aki))
n

∏
i=0

e(Epk(ai),Epk(ki))

=
n

∏
i=0

Epk(aiaki)
n

∏
i=0

Epk(aiki)

= Epk( f (ak))Epk( f (k))

= Epk( f (ak)+ f (k))

= Epk(i)

3. Because SU does not have the correct access key and has no information about

the set Keyword, SU can only generate a service request with a random chosen

access key ak and a random chosen keyword k. According to the Theorem 4.2,

for the random ak and k, the probability that SD returns services does not exceed

s(s+ t)2|R|/|D|2, where D,R are the domain and the range of the polynomial

FAccessKey,Keyword(x). In our protocol, the domain D is {0,1}N , where N is the
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longest length of the access keys. The range R is the plaintext space of the BGN

encryption scheme, whose size is q1q2. Therefore, the error probability becomes

negligible if N are large enough.

In the following, we prove that our protocol also satisfies the three security

requirements stated in the Definition 4.1.

Theorem 4.5 (Security). The privacy preserving and controlled access service discov-

ery and matching protocol presented in the Section 4.4 is secure, and has the following

properties:

1. Without the correct access key ak, the adversary including the unauthorized SU

and SD cannot decrypt the encrypted s generated in the algorithm ServiceRegis-

tration with non-negligible probability.

2. Without the correct access key ak, in the algorithm ServiceMatch, the adversary

including the unauthorized SU and SD cannot determine whether k ∈ Keyword

with probability larger than 1/2 non-negligibly.

3. Without the correct access key ak, the adversary including SU and SD cannot

compute the access key ak and the keyword k from the output of the algorithm

ServiceRequest without resolving the discrete logarithm problem.

Proof 1. All information about the service stored in SD is the encryption SE(s,rk)

and the set C = {grm/ak1, · · · ,grm/aks}. Because we assume that the symmetric

encryption scheme SE is semantically secure, no information about s is revealed

if the adversary cannot compute the encryption key rk = H(grm), where rm is

a random number. If the adversary has no information about gak for any ak ∈

{ak1, · · · ,aks}, the set C reveals no information about rm. Then, the adversary
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cannot reconstruct the encryption key rk and decrypt the encryption E(m,rk)

with non-negligible probability.

In our protocol, two messages about the ak are available for the adversary. The

first is the encrypted request Q from SU. The second is the encrypted polynomial

FAccessKey,Keyword(x) stored in SD.

For Q = {Epk(aks+t + ks+t),Epk(aks+t−1 + ks+t−1), · · · ,Epk(ak0 + k0)}, the in-

formation about the access key ak is hidden by the keyword k. The probability

that the adversary correctly remove the keyword k from the encrypted query is

at most 1/|Directory|, where the Directory is the set of all possible keywords.

However, even when the keyword k has been guessed correctly, the adversary

only learns gak. According to the DDH assumption, the probability that the ad-

versary computes grm from grm/ak and gak is still negligible. Therefore, from Q,

the probability that the adversary decrypts the encryption E(m,rk) successfully

is negligible.

For the encrypted polynomial FAccessKey,Keyword(x), the probability that the adver-

sary finds a correct access key ak is less than the probability that the adversary

finds two random elements a and b satisfying 1 ≤ f (a) + f (b) ≤ s times the

probability that b ∈ Keyword. That is

Pr[ak ∈ AccessKey]< Pr[1≤ f (a)+ f (b)≤ s] ·Pr[b ∈ Keyword]

According to the Theorem 4.2 and the discussion in the proof of the Theorem

4.4, we have

Pr[ak ∈ AccessKey]<
N

(q1q2)2 ×
1
t

where {0,1}N is the space of the access key, q1,q2 are parameters of the BGN

encryption scheme, t is size of the set Keyword. When the parameters q1,q2 are

large enough, the probability that the adversary guesses the correct access key is

negligible.
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2. Similar to the access key, in our protocol, two messages about the Keyword are

available for the adversary. The first is the encrypted request Q from SU. The

second is the encrypted polynomial FAccessKey,Keyword(x) stored in SD.

For Q, the information about the keyword k is hidden by the access key ak. The

probability that the adversary correctly remove the access key ak from the en-

crypted query is negligible, when the space of the access key is large enough.

For the encrypted FAccessKey,Keyword(x), to determine if a keyword k ∈ Keyword,

the adversary has to verify whether FAccessKey,Keyword(k) = r, where r is a ran-

dom number used in the construction of FAccessKey,Keyword(x). Because the adver-

sary does not know any access key in AccessKey and any keyword in Keyword,

the adversary cannot distinguish r from any random numbers. Therefore, given

a keyword k, the probability that the adversary successfully determine whether

FAccessKey,Keyword(k) = r cannot be non-negligibly larger than random guessing,

whose probability is 1/2.

3. From the encrypted request Q, the adversary cannot learn more information than

{gaki+ki|1≤ i≤ s+ t}. The adversary cannot compute ak and k from these infor-

mation due to the hardness of the discrete logarithm problem.

4.6 Extension for Other Types of Matching

In this section, we will extend our privacy preserving and controlled access service dis-

covery and matching protocol to support conjunction keywords matching and capability-

based service matching.

Conjunction Keywords Matching

In the protocol presented in Section 4.4, the service matching will succeed if one key-

word is matched. Single keyword matching is easy but may not be accurate enough.
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For example, the service matching with the keyword Print will return all print services.

With the support of conjunction keywords matching, it is able to specify the request of

HP’s print service with two keywords HP and Print.

Our privacy preserving and controlled access service discovery and matching

protocol can be easily extended to support conjunction keyword matching. In the Ser-

viceRequest algorithm, if SU wants to search services with n keywords {k1,k2, · · · ,kn},

SU generates the encrypted request Q as

Q = {Epk(aks+t +
n

∑
j=1

ks+t
j /n),Epk(aks+t−1 +

n

∑
j=1

ks+t−1
j /n), · · · ,Epk(ak0 +

n

∑
j=1

k0
j/n)}

Then, when the ServiceMatch algorithm invokes the Verify algorithm to match services,

the Verify algorithm runs as

C =
s+t

∏
i=0

e(Epk(ai),Epk(aki +
n

∑
j=1

ki
j/n))

=
s+t

∏
i=0

e(g,g)ai·aki+ai·∑n
j=1 ki

j/n · e(g,h)airi,2+ri,1(aki+∑
n
j=1 ki

j/n)+ri,1ri,2r0

= e(g,g)∑
n
i=0(ai·aki+ai·∑n

j=1 ki
j/n) · e(g,h)∑

n
i=0(airi,2+ri,1(aki+∑

n
j=1 ki

j/n)+ri,1ri,2r0)

= e(g,g) f (ak)+∑
n
j=1 f (k j)/n · e(g,h)r′

,where r′ = ∑
n
i=0(airi,2 + ri,1(aki +∑

n
j=1 ki

j/n)+ ri,1ri,2r0).

When {k1,k2, · · · ,kn} ⊆ Keyword, f (ki) = −r, where r is the random number

used in the construction of polynomial f (x) as defined in (4.1). Hence, if ak = aki ∈

AccessKey and f (aki) = r+ i,

C = e(g,g) f (ak)+∑
n
j=1 f (k j)/n · e(g,h)r′

= e(g,g)r+i+∑
n
j=1−r/n · e(g,h)r′

= e(g,g)i · e(g,h)r′

SD will returns SE(s,rk) and grm/aki to SU in the algorithm ServiceMatch, be-
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cause

Cvk = e(g,g)i·vk · e(g,h)r′·vk

= e(g,g)i·vk

That is, the service successfully matches with the request with n keywords

{k1,k2, · · · ,kn}.

Capability-based Service Matching

Service matching based on services’ capabilities was first presented by Paolucci et al.

[104]. The motivation of capability-based service matching is to search services on

the basis of what they provide. While UDDI describes services by their name and

attributes, capability-based service matching describes services in terms of inputs, out-

puts, preconditions and effects.

In capability-based service matching, SP registers four categories of keywords

to describe their services’ inputs, outputs, preconditions and effects of the service. SU

searches services with four separate keywords for inputs, outputs, preconditions and

effects. These keywords will be matched together, and only services that match all four

keywords from different categories are matched.

Similar to conjunction keyword matching, capability-based service matching

also matches multiple keywords. While conjunction keyword matching only requires

the number of matched keywords, capability-based service matching additionally re-

quires that these matched keywords come from the four different categories. To sep-

arate keywords from different categories, we can add unique prefix for keywords in

each category. For example, for all keywords describing services’ input, we can add a

prefix ”Input-”. Then the capability-based service matching can be implemented as the

conjunction keyword matching shown in Section 4.6.
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Another approach of capability-based service matching is to design four differ-

ent controlled search polynomial for each categories of keywords, and SU submits four

service requests to SD for inputs, outputs, preconditions and effects correspondingly.

SD returns the encrypted service to SU only if the service matches all of four service

requests simultaneously.

4.7 Performance Evaluation

In this section, we will evaluate the performance of the privacy preserving and con-

trolled access service discovery and matching protocol. We will use the UDDI server

introduced in 2.2 and shipped with Windows 2003 Server from Microsoft to organize

services in the service directory, and implement a set of security services to support

AES encryption and decryption operations. All security services share the same inter-

face, but have different QoS and different tradeoff parameters. All services are hosted

in a personal computer with E8400 3GHz CPU and 4G memory.

Integration of Additional Service Information in UDDI

UDDI does not specify the structure of the tModels, and hence makes it possible to

integrate additional information with the services’ registrations, such as services’ cate-

gories or keywords [105], or services’ QoS information [22].

In [22], the following three kinds of approaches are discussed to integrate ser-

vices’ QoS in UDDI.

• Type based approach. This approach creates a set of tModels for each QoS as-

pect, and specifies services’ qualities on one QoS aspect as the corresponding

tModel’s value. Hence, if a service has QoS information on n QoS aspects, its

UDDI registration needs to includes n tModels.

• Keyword based approach. This approach creates a general tModel for all QoS
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aspects. All QoS aspects share the same tModel, but use two pairs of key name

and key value to specify the name of the QoS aspect and the services’ quality on

this aspect.

• Ontology based approach. This approach describes the relations among QoS as-

pects with ontologies, which formally specifies the semantic of QoS description.

Hence, by specifying the ontologies with tModels, this approach can ensure the

consistency among all QoS descriptions integrated in the UDDI registation.

We simplify the second approach, and use it to integrate services’ keyword

sets and access key sets. We define the PPS tModel. To include services’ keywords

and access keys with their UDDI registration, services’ registrations can include the

PPS tModel in its instance information, and add the URL to an external document as

the PPS tModel’s overview document URL, which includes detail information about

keywords and access keys.

Using separate documents to store additional information rather than merge all

information in a huge documents have several advantages. First, it is much easier and

faster to validate small XML documents than large documents. Second, the UDDI can

selectively load the XML documents of additional information only when such infor-

mation is required, which save UDDI server’s resources. Third, separating services’

additional information from their registrations makes service providers easier to update

these additional information.

privacy preserving and controlled access Service Discovery and Matching

We implement the privacy preserving and controlled access service discovery and match-

ing protocol with the GMP library (http://gmplib.org/) for high precision arith-

metic and the PBC library (http://crypto.stanford.edu/pbc/) for the implemen-

tation of the privacy preserving polynomial evaluation presented in Section 4.3.
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Table 4.1: The time of operations required by the privacy preserving and controlled
access service discovery and matching protocol, where s is the size of the keyword set
and t is the size of the access key set. The data is collected at a personal computer with
E8400 3GHz CPU and 4G memory

Operation Times with different key size (ms)
128 256 512 1024

Construction of controlled search polynomial 3.33 3.33 3.33 3.33
Encryption of BGN 8.43 41.02 254.28 1757.86

Additive homomorphic operation of BGN 0 0.01 0.12 0.217
Multiplicative homomorphic operation of BGN 12.18 74.79 552.53 4187.60
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Figure 4.3: The time required by the algorithm Initialization

The basic operations required by the five algorithms presented in Section 4.4

are listed in the Table 4.1.

From the Table 4.1, we can see that the most expensive operations are the en-

cryption and the multiplicative homomorphic operation of BGN. The encryption is

required by the algorithm ServiceRegistration and algorithm ServiceRequest. The mul-

tiplicative homomorphic operation is required by the algorithm ServiceMatch. The time
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Figure 4.4: The time required by the algorithm ServiceRegistration
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Figure 4.5: The time required by the algorithm ServiceRequest
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Figure 4.6: The time required by the algorithm ServiceMatch

required by all algorithms is listed in the Table 4.2, and shown in the Figure 4.3, Figure

4.4, Figure 4.5, and Figure 4.6.

• Algorithm Initialization. This algorithm initializes parameters. Especially, it

needs to construct two cyclic groups G,G1 with the same order n = q1q2, where

q1 and q2 are two large primes. This algorithm uses a random algorithm to find

large primes which is the most expensive operation and dominates the time of the

whole algorithm. The random algorithm generally needs more time to find longer

primes but the actual time is not stable due to the randomness of the algorithm.

Hence, from Table 4.2 and Figure 4.3, we can see that the time increases for

longer key size and is independent with the size of keyword set and access key

set. And, there is no clear relation between the time and the size of keyword set

and access key set when the key size is fixed.

• Algorithm ServiceRegistration. This algorithm encrypts services’ registrations
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with their keyword set and access key set. It constructs controlled search poly-

nomial and encrypts the polynomial’s coefficients. To register a service with s

keywords and t access keys, this algorithm needs to encrypt s+ t coefficients.

Hence, from Table 4.2 and Figure 4.4, we can see that the time increases linearly

with the increasing of (s+t). Because the encryption of BGN is slower for larger

key size, the time also increases with the increasing of key size.

• Algorithm ServiceRequest. This algorithm encrypts the keywords and the ac-

cess keys used by the service users in searching services in the service directory.

To generate a valid service request for a service with a (s+ t)-degree controlled

search polynomial, the keywords and the access keys need to be encrypted (s+ t)

times. Hence, from Table 4.2 and Figure 4.5, we can see that the time also in-

creases linearly with the increasing of (s+ t). Let TEnc,l be the time of encrypt-

ing one message with BGN and the key size l. To generate a service request

for all services in the service directory, the time required by the algorithm Ser-

viceRequest is O(N ·TEnc,l), where N is the largest degree of all services’ con-

trolled search polynomials, which is independent with the number of services in

the service directory.

• Algorithm ServiceMatch. This algorithm matches service requests and services

by evaluating services’ controllable search polynomials with encrypted coeffi-

cients and points. The evaluation of a (s+ t)-degree controlled search polyno-

mial requires (s+ t) additive homomorphic operations and (s+ t) multiplicative

homomorphic operations of BGN. Hence, from Table 4.2 and Figure 4.6, we can

see that the time increases linearly with the increasing of (s+ t).

• Algorithm ServiceRetrieve. This algorithm decrypts the encrypted service reg-

istrations when the algorithm ServiceMatch matches the services successfully.

It only requires one decryption operation of the symmetric encryption algorith-

59



m (i.e, AES algorithm in our experiment), one hash operation, and one discrete

power operation, all of which are very fast. Hence, from Table 4.2, we can see

that the time is 0 which means that the time is much shorter than one millisecond.

The evaluation results show that the privacy preserving and controlled access

service discovery and matching protocol is very efficient with key size 128 and key

size 256. With key size 512, the matching of a service can finish within half minutes,

which is reasonable for small number of services. When the key size is 1024, the

protocol needs half minute to four minutes to match a service, which is too long.
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Chapter 5

QOS ASPECTS AND QOS REQUIREMENTS

All Step 1.3), Step 2) and Step 4) of the overall approach presented in Chapter 3 require

services’ QoS information and/or service users’ QoS requirements. While services’

functionalities can be modeled as operations with inputs and outputs [4], there is no

universal pattern to model and specify services’ QoS due to the variety of QoS aspects.

5.1 QoS Aspects

The following is a set of example QoS aspects.

• Delay. Delay is measured as the average waiting time of service users between

sending a request message to the service and receiving a response message from

the service. The unit of individual service request’s delay is seconds, which

may be very small like several microseconds, or infinitely large when the service

request is banned or thrown away by the service. For a service, its delay is

measured as the average delay of all requests, i.e., seconds per request.

• Price. Price is measured as the amount of money that service users have to pay

for the usage of services, which may be 0 or very large. The unit of price is

the same unit of money. A service can charge its users based on the time or the

frequency of usage.

• Throughput. Throughput is measured as the maximum number of request mes-

sages that the service can accept per second. The unit of throughput is number

per second, which may be 0 when the service does not accept any requests, or

very large when the service is very powerful. There is no theoretical upper limit

for the throughput.
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• Capability. Capability is measured as the largest request message that the ser-

vice can accept, which may be 0 for empty messages or very large. The unit of

capability is bit. There is also no theoretical upper limit for the capability.

• Availability. Availability is measured as the percentage of time that the service is

available for invocation since the registration of the service in the service direc-

tory. Availability is a number from 0% to 100%.

• Security. Service’s security quality includes a set of QoS aspects, such as con-

fidentiality, integrity, authentication and authorization. Unlike above QoS on

performance, there is no nature metric for security. Possible security metrics are

discussed in Chapter 6.

• Reliability. Reliability is measured as the percentage of users’ requests that have

been correctly processed and responded. Reliability is a number from 0% to

100%. Reliability is similar to availability but more restrict. When the service

is unavailable, it definitely unreliable. But, even when the service is available,

it still can be unreliable. Hence, services’ reliability is always smaller than their

availability.

• Reputation. Reputation is a special kind of QoS different from all above QoS

aspects. While above QoS aspects are measuring services’ performance, reputa-

tion is used to measure the accuracy of the measurement of other QoS aspects,

especially when the QoS monitor relies on services to report their QoS. In this

case, services with lower reputation may cheat the monitor by reporting better

QoS. The unit of reputation is a number from 0 representing no reputation to 1

representing perfect reputation.

All of these QoS aspects are applicable for all kinds of services. However, for

specific services, more QoS aspects may need to be considered. For example, for online

62



Table 5.1: Examples of QoS aspects for general services

Category QoS Aspect Unit Lower Upper
Bound Bound

Cost QoS
Delay seconds / request 0 ∞

Price dollar 0 ∞

Utility QoS

Throughput # request / second 0 ∞

Capability bits 0 ∞

Availability percentage 0 100
Security percentage 0 100

Reliability percentage 0 100
Reputation null 0 1

video services, an important QoS aspect is the video resolution. For voice communica-

tion services, jitter is another very important QoS aspect. More QoS aspects for specific

services can be found in [106]. Although there are a lot of QoS aspects, all QoS aspects

can be generally classified as the following two categories:

• Cost QoS. For Qos aspects in this category, smaller values represent better qual-

ities. Delay and price belong to this category.

• Utility QoS. For QoS aspects in this category, larger values represent better qual-

ities. Throughput, capability, availability, security, reliability, and reputation be-

long to this category.

All QoS aspects listed above are summarized in Table 5.1.

5.2 QoS Requirement Specification

Suppose SU has requirements on n QoS aspects {c1,c2, · · · ,cn}. For each QoS aspec-

t c j, SU specifies his/her QoS requirement of c j as a tuple req j = {l j,u j,w j,r j} as

follows

• The l j and u j are SU’s expected lower and upper bounds of the QoS on c j.
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• The w j is the importance weight of the requirement req j (i.e., SU’s preference

on c j), which can be specified as either a numeric value within [0,1] or one of

the fuzzy linguistic term from {Don’t care, Unimportant, Medium, Import, Very

important} when SU does not know which weight value should be specified.

• The r j is SU’s confidence in all the values of l j, u j and w j specified in req j, which

is a value within (0,1].

Expected QoS l j and u j

The l j and u j are SU’s expected lower and upper bound of services’ qualities on the

QoS aspect c j. If c j is a utility QoS such as delay, l j represents the least acceptable

quality, and u j represents the expected best quality. If c j is a cost QoS such as price,

l j represents the expected best quality, and u j represents the least acceptable quality. If

a service’s quality of c j is worse than the least acceptable quality, the service’s quality

does not satisfy SU’s requirements and will not be returned to SU. On the other hand,

if a service’s quality on c j is better than the expected best quality, the service’s quality

has already perfectly satisfied SU’s requirements, but better quality does not provide

additional benefit for SU. Hence, all services’ qualities are the same for SU if their

qualities on c j are larger than u j when c j is an utility QoS asepct or smaller than l j

when c j is a cost QoS aspect, no matter how larger or smaller of their actual qualities.

If SU has no requirement on the expected least acceptable or best quality or

does not know how to specify them, l j and u j may be left blank in req j. In this case, l j

and/or u j can be estimated as follows:

First, if the metric for c j has upper bound and lower bound, l j and u j can be

set to its metric’s upper bound and lower bound respectively. For example, the QoS

availability in Table 5.1 has an upper bound 100% and a lower bound 0%. Hence, for

the QoS aspect availability, we can set l j = 0% and u j = 100% if their values are missed

in req j.
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Table 5.2: The mapping between linguistic terms and importance weight values.

Linguistic term Weight value
Don’t care 0
Unimportant 0.25
Medium (default value) 0.5
Important 0.75
Very important 1

Second, if the c j’s metric has no upper bound and/or lower bound such as price

in Table 5.1 which has a lower bound 0 but has no upper bound, the values of l j and u j

are defined as the lowest and largest qualities of all available services returned by SD.

Importance Weight w j

Because SU may have requirements on various QoS aspects, the importance weights

allow SU to express his/her preferences on various QoS aspects. The w j is a value

within [0,1]. A larger w j means that the corresponding QoS aspect is more important

for SU, and services’ qualities on this QoS aspect will have more impact on the service

ranking.

When SU does not know how to specify the preferences on QoS aspects with

numeric weights, SU can also specify preferences through linguistic terms. Linguistic

terms are mapped to weight values as Table 5.2. If SU does not specify w j in req j, the

default value 0.5 will be applied.

Confidence Value r j

The confidence value r j gives SU more flexibility to specify req j, whose value is within

(0,1]. A larger r j means that SU has higher confidence in the specification of all the

values of l j, u j and w j, and a smaller r j means lower confidence. If SU does not specify

r j’s value in req j, the default value 1 will be applied.

The value 1 means that SU is sure about his/her specifications of l j, u j and w j,
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and then services’ QoS will be evaluated exactly based on the specified values. A value

within (0,1) means that SU has some hesitation about the specifications, and hence the

values of l j, u j and w j will be adjusted accordingly during the evaluation of services’

QoS.

• l j is adjusted to l jr j, and u j is adjusted to u j/r j. That is, the range of acceptable

quality of c j is extended from [l j,u j] to [l jr j,u j/r j]

• For w j, it is adjusted as w′i → wiri + 0.5(1− ri). When r j = 1, there is no ad-

justment and w′i = wi. When r j is close to 0 (i.e., SU has little confidence in the

specifications), w′j approaches to the default value 0.5.
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Chapter 6

QOS MEASUREMENT

While services’ qualities on some QoS aspects can be measured through observation,

the qualities on some other QoS aspects are difficult to be quantitatively measured. In

this chapter, we first discuss how to quantitatively measure services’ security quality,

which is one of the most important QoS aspect and is difficult to be measured. Then,

we discuss how to develop quantitative metrics for those observable QoS aspects, such

as delay and throughput. All metrics developed in this chapter are based on a set of

parameters, which are adjustable by services and hence facilitate the tradeoff among

various QoS aspects.

6.1 Security Metric

Most existing security metrics are qualitative [90, 89], which measure services’ security

as several discrete security levels, such as low, medium, and high. Security mechanisms

in the higher level can provide better protection than those in the lower level. These se-

curity levels are usually manually defined by experts. For example, the National Securi-

ty Agency suggests that 128-bit AES encryption can provide SECRECT level security,

and 192-bit AES encryption can provide TOP SECRECT level security [107]. Another

example of classifying services’ security qualitatively is the online trusted third par-

ty authorizers. For example, TRUSTe (http://www.truste.com/), the world largest

privacy seal program provider, has certificated thousands of businesses like Microsoft,

IBM and eBay. These authorizers provide independent check of services’ data manage-

ment, security mechanisms, and reputations. They also check whether services satisfy

standard regulations, such as HIPPA for Healthcare information, COPPA for informa-

tion obtained from and/or about children, and GLBA for financial information. Based

on the results of check, services’ security can be classified to several levels. The major

disadvantage of qualitative security metrics is that qualitative security metrics are too
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coarse for fine control of services’ security. It cannot compare services within the same

security level.

Compared with qualitative security metrics, quantitative security metrics mea-

sure services’ security as numbers, and hence are much more accurate. A simple quan-

titative security metric can be defined as the number of vulnerabilities found by vulner-

ability scanners, the number of viruses detected by anti-virus software, or the number

of intrusions detected by intrusion detection systems. However, these measurements

only reflect the system’s current status, but not the actual strength to resist attackers. A

system with no intrusion detected only means that there is no attacker right now, but

does not guarantee that the system will be secure under attacks.

There are some other qualitative security metrics which measure services’ se-

curity by investigating the technical details of security mechanisms used by services

[108, 88]. These security metrics measure services’ security as the length of the key

used by the services’ security algorithms. For security algorithms, longer keys provide

stronger security strength than shorter keys. Hence, the key length correctly represents

the order relation of services’ QoS on security. However, the key length cannot ac-

curately represent the difference between services’ QoS on security because there are

other important factors besides key length affecting services’ security, such as algo-

rithm design, attacking approaches used by attackers, and attackers’ computing power.

For example, symmetric encryption algorithms and asymmetric encryption algorithms

have different requirements on the key length. To achieve the same security strength of

the symmetric encryption algorithm AES with a 256-bit key, the asymmetric encryp-

tion algorithm RSA needs a 15,360-bit key, and the elliptic encryption needs a 571-bit

key [109]. The security strength of security algorithms is not absolute, but relative to

the capability of attackers. To achieve the same security strength, systems suffering

from more powerful attackers have to use longer keys than systems with weak attacker-

s. Furthermore, for selective encryption algorithms which encrypt partial information
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instead of all information for better performance [110, 111, 112, 113], the percentage

of information encrypted also affects the security strength provided by the algorithms.

In this chapter, we will first use the security configuration vectors (SCV) to

specify the parameters of security mechanisms, and then estimate possible attackers’

computing power and their attacking technologies. The quantitative security metric

developed in this chapter measures security as the probability of protecting a message

from attackers’ one attack attempt. Hence, a larger security value means that attackers

need more effort to crack the protected message, and hence more secure.

Security Configuration Vector

The security configuration vector SCV is a set of security configuration parameters

that determine services’ security strength. If the service has multiple kinds of security

functionalities, such as confidentiality and integrity, the service may have multiple SCV

for each kind of security functionality correspondingly. SCV is defined as {F,A, l,v, p}.

• F is the security functionality supported by the services. It specifies the type

of security protection the service has, such as confidentiality, integrity, and non-

repudiation.

• A is the the algorithm used by the service to implement F . For confidentiality, A

could be DES or AES. For integrity, A could be SHA-1 Hash or Digital Signature.

• l is the length of the key used by A. A longer key provides higher security.

• v(A, l) is a function measuring the vulnerability of the algorithm A with l, which

defines the probability of attackers cracking a message protected with A and keys

with length l.

• p is the protection probability, which defines how much information of a message

will be protected by A.
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Vulnerability Function v(A, l)

The vulnerability function v(A, l) varies with the design and implementation of A and

the evolution of attacking techniques. The vulnerability of AES is measured through the

size of key space needed to be searched. For a brute-force attack, we have v(AES, l) =

2−l . The most recent related-key analysis for AES [114] shows that the key space

needed to be searched can be reduced to 2176 for 192-bits key length, and 2119 for

256-bits key length. Note that the complexity of AES with 256-bits key length is even

smaller than AES with 192-bits key length because of the bad key schedule design for

256-bits key length. The AES with 128-bits key length is not affected by the related-key

analysis, and all existing attacks that are better than the brute force attack are designed

for reduced transformation rounds. For example, the complexity of the most efficient

attack for AES with 128-bits key length is 222 with 7 rounds, and 244 with 8 rounds

[114], while the standard implementation for AES with 128-bits key length requires 10

rounds. Hence, we can estimate v(AES, l) as

v(AES, l) =


2−128, l = 128

2−176, l = 192

2−119, l = 256

For RSA and the general number field sieve attack (GNFS) [115], which is the

known most efficient integer factoring algorithm for integers with more than 100 bits,

the vulnerability function v(RSA, l) can be estimated as

v(RSA, l) =


0.93×10−23, l = 768

0.77×10−26, l = 1024

0.65×10−33, l = 2048
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Protection Probability p

While cryptography attempts to protect every bit of information, sometimes such ex-

tensive protection is unnecessary and unaffordable. Encrypting a part of messages

instead of the whole messages will dramatically reduce the overhead caused by secu-

rity mechanisms and still well prevents attackers from learning too much information.

Some selective encryption algorithms have been proposed for specific applications, like

image selective encryptions [110, 111] and video selective encryptions [112, 113].

According to SCV, for each message, only p percentage of the information in-

cluded in the message will be protected. Hence,

• With probability 1− p, the sensitive information included in the message is not

protected ,and attackers can get such information trivially with probability 1.

• With probability p, the sensitive information included in the message is protect-

ed. In this case, attachers can still get the sensitive information by trying to crack

the security mechanism, which probability is measured by v(A, l).

Attacking Power

Another consideration in the security metric is the attacker’s computing power, which

specifies how many times the attacker can attack the service within one second (i.e.,

the attacking speed) using given attacking approach. The attacker’s computing power

can be estimated based on the sensitivity of the protected information and the expected

protection period. First, the computing power of potential attackers for military systems

and commercial systems are different due to different sensitivity of the information.

Second, if the security mechanism is handling information that should be protected for

a very long period, the security mechanism needs to estimate the capability of attackers

in the expected period.
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Figure 6.1: The relations between security S and protection percentage p for the same
algorithm A with two different key lengths l1 and l2, where l1 > l2. S increases with the
increasing of p, and increases faster with longer l.

Security Metric

Given the SCV and the attacker’s computing power c, the probability of the attacker

to successfully gain sensitive information from a protected message in one second is

c · v(A, l). The overall security S(SCV,c) is defined as follows:

S(SCV,c) = 1− ((1− p)×1+ p× cv(A, l)) = p(1− cv(A, l)) (6.1)

For the same security algorithm A with two different key lengths l1 > l2, Figure

6.1 shows the relation between the security metric (6.1) and the protection percentage

p. As shown in Figure 6.1, the algorithm A can provide stronger security for the same

p0 with longer l1, and can achieves the same security S0 for longer l1.

6.2 Quantitative Metrics for Observable QoS Aspects

A QoS aspect is observable if services’ QoS on this QoS aspect can be measured by

observing services’ performance. For example, delay is an observable QoS aspect be-

cause it can be measured by recording requests’ arriving times and sending times and
72



computing their differences. On the other hand, security is unobservable because ser-

vices cannot monitor the number of packages that have been cracked by the attackers,

and then cannot compute the attackers’ success probabilities. Although it is much eas-

ier for services to measure QoS through observation, developing quantitative metrics

for observable QoS aspects similar to the security metric developed in Chapter 6 have

several advantages. First, measuring QoS through observation needs to continuous-

ly monitor services, which will consume system resources. Second, measuring QoS

through observation can only provide services’ current QoS, but cannot predicate fu-

ture QoS. Third, quantitative metrics with parameters enable services to control their

QoS and adjust QoS by changing the values of parameters.

To develop quantitative metrics for observable QoS aspects, we first need to

analyze which parameters/factors can affect services’ QoS on these aspects, denoted

as P = {p1, p2, · · · , pn}, and then find the relations between services’ QoS and the

parameter set P.

The Activity-State-QoS (ASQ) model developed in [15] can be used to develop

such metrics. The ASQ model collects services’ historic QoS data and the correspond-

ing system resources and configurations. ASQ model uses Mann-Whitney test [116]

to category all possible parameters and remove unrelated parameters. All remaining

parameters belong to P. The relations between services’ QoS and P are discovered

with linear regression and Tukey’s Honest Significant Difference test [117]. However,

services still have no fine control on their QoS with metrics developed with ASQ mod-

el, because the parameter set P used by the ASQ model includes both parameters that

services can control and available resources that services have no direct control. Better

metrics should be only based on controllable parameters.

In this chapter, we use the secure VoIP service S as an example to show how to

develop an quantitative metric for delay from a set of controllable parameters P. Un-

like ASQ model which completely relies on historic data to determine P and discover
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relations, we first determine P and build the model to explain how P affects S’s de-

lay through theoretical analysis, and develop the metric with P and a set of unknown

variables. Then, we estimate these unknown variables’ values by analyzing S’s historic

data. The metric developed in this chapter is more accurate and controllable than the

metrics based on observation and the metrics developed with ASQ model.

Delay Metric

The secure VoIP service S helps users to establish secure voice communication chan-

nels, which accepts voice data from the sources, encrypts the data, and then sends the

encrypted voice data to the destinations. The user SU of S concerns three kinds of QoS:

security, throughput and delay. The QoS on security is measured with SCV as the se-

curity metric (6.1), and the throughput is measured as the allowed number of incoming

requests per second.

S’s delay is the time between the source sending out voice data and the des-

tination receiving the encrypted voice data, which consists of three parts. The first

part is the delay generated by the network transmission, which is uncontrollable and

determined by network environment, routing algorithms and many other factors. The

second part is the time required by S to protect the voice communication. The third

part is the waiting time of requests. When the throughput is large and S cannot process

all requests on time, requests will be put in a waiting queue, which also increases the

delay. With current fast network devices, the last two parts dominates the whole delay.

Hence, we will ignore the first part, and measure S’s delay only with the time required

for protection and the waiting time due to large throughput. We choose the parameter

P as

P = {SCV, t}= {F,A, l,v, p, t} (6.2)

where SCV is the security configuration vector defined in Section 6.1, t is the

throughput.
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Generally, increasing the parameter t ∈ P for better throughput will increase the

waiting time of requests that cannot be processed on time and hence increase the delay.

Adjusting the parameters in SCV ∈ P for better security will increase the protection

time required by security enforcing mechanism and also increase the delay. There may

be various metrics to define S’s delay metric using P, but all these metrics should satisfy

the following conditions. For simplicity without loosing generality, we assume that the

size of SU’s requests are fixed, and each request message is divided to a set of packets

with the same size.

• While all packets of requests need to wait in the waiting queue when S cannot

handle requests on time, only partial packets need to be protected and hence

suffer from the delay generated by the protection. According to p, the number of

protected packet is t · p.

• When there is no traffic, i.e. t = 0, the delay should be 0 for any SCV . Hence, we

have D(SCV,0) = 0.

• When t is small, S can complete the processing of one request before the next

request coming in. That is, S has sufficient time to handle every request and

no request needs to wait. In this case, D is mainly determined by the the time

for protection, which is determined by SCV . Let T1(SCV ) be the traffic threshold

under which S can complete the processing of one request before the next request

coming in. Then, when t is smaller than T1(SCV ), i.e., 0 < t ≤ T1(SCV ), we

have D(SCV, t) = D1(SCV ), where D1(SCV ) is time of protecting one request.

Because we assume that each request has the same size, D1(SCV ) is a constant

related to SCV .

• When t exceeds T1(SCV ), S does not have sufficient system resources to protect a

request on time and send the encrypted request out before the next request coming

in. In this case, S will put requests in a waiting queue. Hence, when t keeps
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increasing, more requests will be put in the queue, which leads to longer waiting

time. That is, for the traffic t1 and t2 of two threads with T1(SCV ) < t1 < t2, we

have D(SCV, t1)< D(SCV, t2).

• The larger the t, the faster D increases as t increases. Hence, if T1(SCV )< t1 < t2,

∂D(SCV, t2)/∂ t2 > ∂D(SCV, t1)/∂ t1 > 0.

• When t keeps increasing and approaches the maximum bandwidth capability, S

will start to drop requests. Hence, there is an upper limit T2(SCV ) for t , which

then leads to an upper limit D2(SCV ) for the delay D. For the VoIP service

with time-out mechanisms, t may reach T2(SCV ) and D2(SCV ) before the system

resources are exhausted.

• When t approaches T2(SCV ), D approaches D2(SCV ). Hence, the increasing

speed of D will slow down when t approaches T2(SCV ).

• When t is fixed, more efficient algorithm A, shorter key length l, or smaller per-

centage p for protecting the requests will lead to smaller D.

Based on the above observation, we obtain the following D(SCV, t):

D(SCV, t) =


0, t = 0

D1(SCV ), 0 < t ≤ T1(SCV )

D1(SCV )+a1(1− e−a2(t−T1(SCV ))a3 ), t > T1(SCV )

(6.3)

where a1,a2,a3,T1(SCV ) and D1(SCV ) are five parameters related to SCV , but

independent of t.

Metric (6.3) is a sigmoid function which is usually used to describe a progres-

sion starting from a small value and then accelerating and approaching an upper limit.

For the metric (6.3), when t is less than T1(SCV ), D is a constant D1(SCV ). When the

traffic exceeds T1,D starts to accelerate and approaches the upper limit D1(SCV )+a1.
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Parameter Estimation

S collects its delay with different P (6.2), and estimates the values of the parameters

in the delay metric (6.3) through regression. The ideal case is that S can cover all

possible values of P and the corresponding delay, which however is impossible when

some variables in P are continuous. In the P for secure VoIP service S,

• F is discrete under the assumption that services only support a limited set of

security functionalities.

• A is discrete under the assumption that services only support a limited set of

algorithms.

• l is discrete. Although l can be any integer in theory, security algorithms usually

have requirements on the lengths of keys. For example, AES can only supports

keys with the length {128,192,256}. Hence, the value of l is also discrete.

• v is discrete. The vulnerability is associated with the algorithm A and the attack-

er’s power. Because S cannot control the attacker’s power, it is usually estimated

with the worst case. Hence, the value of v is determined by A and l, both of which

are discrete.

• p can be either discrete or continuously depending on S’s implementation. For

continuous p, it can be any value between 0% and 100%. For discrete p, S can

set up several pre-defined p for users.

• t can be any positive integer and is continuous.

To construct different P for regression, S enumerates all possible combinations

of discrete variables in P. For continuously variables in P, S selects a set of values for
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each variable with uniform intervals, and then enumerates all possible combinations. If

there are too many combinations, S can randomly sample a subset of combinations.

We have implemented a set of security services supporting AES encryption al-

gorithm for confidentiality. The security configuration vector for these security services

is defined as SCVenc = {Con f identiality,AES,k,v, p}, where k is the key length select-

ed from {128,192,256} bits, v is the vulnerability function for AES algorithm, and p

is the protection percentage selected from {0,25,50,75,100}. That is, there are total

15 possible parameter configurations for SCVenc.

Generally, a longer key length requires more operations in encryptions and a

higher percentage requires the security service to encrypt more packets. Hence, the

security service with a longer key length or a larger protection percentage in SCVenc is

expected to generate a longer delay on packets. To study the relation among SCVenc, t

and the delay D, we run the experiment by gradually increasing the throughput t from

10 to 5,000 packets per second. Each packet has the same size as 1000 bits. We collect

the average packet delay D under different throughput.

For each SCVenc, we run the experiment for 10 seconds to find the average delay

of packets as training data, which includes twelve curves for the relations between

delay and throughput as shown in Figure 6.2. Figure 6.3 shows the delay metric D for

SCVenc = {Con f idence,AES,128,v,100}. To make D clearer for small t, Figure 6.4

shows the same data of Figure 6.3, but with log x-axes. From Figures 6.3 and 6.4, it is

clear that D increases with t as a sigmoid function like (6.3), which starts from a small

value and then accelerates and approaches to an upper limit.

The parameter regression results for all SCVenc are shown in Table 6.1, in which

the last two columns are the coefficient of determination and the adjusted coefficient of

determination [118], which are very close to 1. It indicates that our regression results

match the training data very well.
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Figure 6.2: The relations between throughput and delay with different key lengths.
Note that curves with the same protection percentage but different key lengths almost
coincide together because the protection percentage dominates the security strength.

Specifically, the D for SCVenc = {Con f idence,AES,128,v,100} shown in (6.3)

becomes

D(SCV, t) =


0, t = 0

4.5187, 0 < t ≤ 283.6797

4.5187+34.4231(1− e−0.0195((t−283.6797))0.6521
), t > 283.6797

(6.4)

These experimental results show the following properties:

• The key length l has no significant effect on the relation between the delay and

throughput. That is, the parameters a1,a2,a3,T1(SCV ) and D1(SCV ) of the delay

metric (6.3) are not significantly affected by l. In Figure 6.2, the twelve curves

are grouped into four groups according to p. For each group, there are three data

sets representing different l with same p, which coincide with each other. In

Table 6.1, when p is the same, all parameters’ values are very close for various

key lengths.
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Figure 6.3: The delay metric for SCVenc = {Con f identiality,AES,128,v,100} with
linear X-axes.

Table 6.1: Parameter Estimation for all SCVenc

P kl a1 a2 a3 T1 D1 Rsqr Adj Rsqr
25% 128 7.4962 0.0030 0.8364 995.5746 1.1166 0.9929 0.9926

192 7.8844 0.0060 0.7293 1031.053 1.1237 0.9936 0.9933
256 7.8718 0.0040 0.7872 992.1826 1.0953 0.9976 0.9975

50% 128 16.309 0.0040 0.8381 479.0611 2.0487 0.994 0.9938
192 16.365 0.0036 0.8565 473.8439 2.0651 0.9974 0.9973
256 16.4489 0.0031 0.8723 468.4268 2.0512 0.9962 0.996

75% 128 25.4971 0.0097 0.7377 345.332 3.0559 0.9962 0.9961
192 25.7254 0.0093 0.7394 344.0336 3.0773 0.9964 0.9963
256 25.5483 0.0083 0.76 341.5594 3.0899 0.9945 0.9943

100% 128 34.5291 0.0127 0.7141 252.7062 4.0311 0.9933 0.9931
192 34.8059 0.0131 0.7072 253.4914 4.0651 0.9971 0.997
256 34.4231 0.0195 0.6521 283.6797 4.5187 0.9952 0.995
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Figure 6.4: The delay metric for SCVenc = {Con f identiality,AES,128,v,100} with log
X-axes.

• Because p determines the actual number of packets encrypted, with the same l, p

dominates the relation between D and t. A larger p generates a longer D than a

smaller p and makes the D to increase faster than smaller p. In Figure 6.2, the

curve group with larger p is above that with smaller p, and is stepper. In Table

6.1, when p increases, the parameters a1 and a2 also increases, which speed up

the increasing of the D.

• Because the time that the delay starting to increase exponentially is determined

by the incoming throughput that needs to be encrypted, but not the overall through-

put of the service, a larger p generates a larger incoming throughput that needs to

be encrypted, when the throughput of the service is the same. In Figure 6.2, the

curve group with a larger p starts to increase earlier than the curve group with a

smaller p. In Table 6.1, the parameter T1 for larger p is smaller.

81



Table 6.2: Selected experimental data for SCVenc = {Con f idence,AES,128,v,100}

Throughput No. Packages Observed Avg. Predicated Avg. Deviation Error (%)
Delay D (ms) Delay D’ (ms) |D−D′|/D

10 100 7.739 4.0311 47.91%
30 300 4.0237 4.0311 0.18%
50 500 3.995 4.0311 0.90%
80 800 3.9963 4.0311 0.87%
100 1000 4.0363 4.0311 0.13%
300 3000 8.4901 10.2899 21.20%
500 5000 21.072 20.5645 2.41%
800 8000 27.5223 27.6184 0.35%
1000 10000 31.6228 30.3422 4.05%
3000 30000 37.1973 37.6511 1.22%
5000 50000 39.0438 38.4003 1.65%
8000 80000 39.5463 38.5434 2.54%

10000 100000 39.6344 38.5559 2.72%

• Even when p is not 100%, all packets including the unprotected packets still

consume some resources. In Figure 6.2, when the throughput is small and the

D has not started to increase exponentially, the curve group with larger p is also

above the curve group with smaller p. In Table 6.1, the parameter D1(SCV ) for

larger p is larger.

To verify the regressed metric, we ran the experiments again and collected the

data for SCVenc = {Con f idence,AES,128,v,100} with t from 10 to 10,000 as testing

data, and compare the observed average delay with the predicted average delay com-

puted from . Some sampling data is listed in Table 6.2, where the experiment was run

10 seconds for each traffic level. The deviation error in Table 6.2 shows that the above

regressed delay metric matches the real delay data very well. Because the security ser-

vice needs to create the encryption key at the beginning of encryption, when we started

the experiment from t = 10, the observed average delay includes both the delay caused

by key generation and encryption which leads to a large deviation error. The large

deviation error for t = 300 is due to the noises from system’s unstable performance.
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6.3 Tradeoff among Various QoS Aspects

One benefit of developing quantitative metrics for observable QoS aspects is that ser-

vices can control their qualities on all QoS aspects simultaneously through an unique

parameter set P. By using different values for P, services can provide various QoS for

their users, similar to application level differentiated services [79, 80].

For the secure VoIP service S, the delay metric developed above enables S to

control its qualities on security, throughput, and delay simultaneously through the same

parameter set P (6.2). S can deploy several service instances with various tradeoff

strategies and objective functions to provide differential services for its users.

Tradeoff Objective Function

The tradeoff objective function is the weighted sum of services’ qualities on all QoS

aspects. Because all QoS are measured through the unique parameter set P, the tradeoff

objective function can be defined on P as

G(P) = w1q1 + · · ·wn1qn1−w′1q′1−·· ·w′n2
q′n2

(6.5)

where w1, · · · ,wn1 are the weights for services’ qualities on the utility QoS as-

pects, and w′1, · · · ,w′n2
are the weights for services’ qualities on the cost QoS aspects.

A larger wi means that services’ qualities on ci is more important. All weights are nor-

malized to the range [0, 1] and satisfy w1+ · · ·+wn1 +w′1+ · · ·+w′n2
= 1. The tradeoff

objective is to find the best values for P to maximize G(P).

For the secure VoIP service S, the tradeoff objective function is defined as

G(SCV, t) = w1 · (p(1− cv(A, l)))+w2 · t−w3 ·D(SCV, t) (6.6)

where w1 +w2 +w3 = 1.

83



Minimum Requirement Validation

The QoS tradeoff among various QoS aspects enables services to provide differential

services for their users. Although these differential services have different emphasis on

QoS aspects, all of them should satisfy certain minimum requirements. Otherwise, the

service is useless. For the secure VoIP service S and the objective functions (6.6), we

denote its minimum requirements as D(SCV, t)< D0, t > T0, and S(SCV,c)> S0.

Due to the minimum security requirement, we have

S(SCV,c)> S0⇒ p >
S0

1− cv(A, l)
(6.7)

To satisfy the minimum throughput and delay requirements, we have

D(SCV, t)< D0

⇒

 D1(SCV )< D0, i f T0 ≤ T1

p < ( a3

√
(−ln(1− D0−D1(SCV )

a1
)/a2 +T1)/T0, i f T0 > T1

(6.8)

Note that (6.7) gives a lower bound for p, and (6.8) gives an upper bound for p.

Hence, to check whether the minimum requirements can be satisfied, we only need to

check whether the p between (6.7) and (6.8) exits, i.e., whether there exists an algorithm

A and key length l satisfying

S0

1− cv(A, l)
≤

a3

√
−ln(1− D0−D1(SCV )

a1
)/a2 +T1

T0
, i f T0 > T1 (6.9)

Delay Biased Objective Function

Given the throughput t, the delay biased objective function is a tradeoff objective func-

tion to minimize the delay without violating the minimum throughput requirement

t > T0 and the minimum security requirement S(SCV, t) > S0. For G(SCV, t) given

in (6.6), the delay biased objective function sets w1 = w2 = 0 and w3 = 1. In this case,
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to maximize G(SCV, t) is equivalent to minimize D(SCV, t). When the algorithm and

the key length are fixed, we can compute the lower bound for p from the minimum

security requirements according to (6.7).

Security Biased Tradeoff Function

The security biased tradeoff function is a tradeoff objective function to maximize the se-

curity without violating the minimum delay and throughput requirements. For G(SCV, t)

given in (6.6), the security biased tradeoff function sets w1 = 1 and w2 =w3 = 0. In this

case, to maximize G(SCV, t) is equivalent to maximize S. When the algorithm and the

key length are fixed, we can compute the upper bound for p from the minimum delay

requirements according to (6.8).

Tradeoff Objective Function with Largest Satisfaction

Users’ QoS requirements may be more complex than minimizing delay or maximizing

security. For example, when the service S already provides good security, users may

want to decrease delay rather than to improve security. On the other hand, when S’s de-

lay is very small, users may would like a better security more than smaller delay. In the

Chapter 7, we will develop the concept of satisfaction score which measures how well a

service satisfies users’ QoS requirements. When the service’s QoS on one QoS aspect

has already satisfied the users’ QoS requirements very well, further improvement on

this QoS aspect will have little contribution in the improvement of the service’s satis-

faction score. Hence, to maximize service’s satisfaction score, S needs to balance its

QoS on various QoS aspects according to the users’ QoS requirements. This property

of the satisfaction score makes it a good candidate of the tradeoff objective function.

6.4 Optimizing Services’ QoS with Adaptive Tradeoff

In this evaluation, we will evaluate our adaptive tradeoff and optimization approach

with the VoIP application where the security service is required to provide protection
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for the voice or video data stream. First, we setup QoS requirements for VoIP applica-

tions as follows and summarized in Table 6.3:

• Throughput. The throughput requirement depends on the sampling rate, the

voice compression algorithm, and the number of voice channels (i.e., the num-

ber of clients) that the security service would like to support. the International

Telegraph Union (ITU) has proposed a set of standards for the VoIP applica-

tions, such as the G.711 for general telephone with bit rate 64 kbit/s and the

G.729 for VoIP over low speed connection with bit rate 8 kbits/s (from http:

//www.lammertbies.nl/comm/info/VoIP-overview.html). If the security

services would like to support 100 voice channels simultaneously, we set the

least acceptable and the best QoS requirements for throughput as 800 kbps and

6400 kbps. The throughput requirement for VoIP applications is important but

not critical, because the throughput requirement can be reduced with silence sup-

pression. We set its importance as 0.8 with confidence 0.9.

• Delay. While the ITU G.114 recommendation states that the delays above 400

ms are unacceptable for VoIP applications, Qwest guarantees 50 ms delay in its

service level agreement. Hence, we set the least acceptable and the best QoS

requirements for delay as 400 ms and 50 ms. The delay requirement for VoIP

applications is critical, and we set as 1 with confidence 1.

• Security. The security requirement depends on the sensitivity of the voice data.

In this evaluation, we assume that the VoIP application is used for communicating

sensitive but not classified information, and set the least acceptable and the best

QoS requirements for security as 50% and 80%. The importance for security

requirement is set as 0.6 with confidence 0.6.
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Table 6.3: The QoS requirements for VoIP Applications

QoS aspect l u w r
Throughput 800 kpbs 6400 kpbs 0.8 0.9

Delay 50 ms 400 ms 1 1.0
Security 50% 80% 0.6 0.6

With the parameter estimated in Section 6.2, the adaptive tradeoff approach

optimizes the security services’ QoS, and finds the best values for P = {SCV, t} =

{F,A, l,v, p, t} as {Con f identiality,AES,128,v,100,6000}. With this set of values, the

security service’s satisfaction score is 0.7336 with the QoS requirements listed in Table

6.3. The security service cannot provide perfect QoS because it cannot satisfy the

expected best throughput.

If we change the delay requirement from (50,400,1,1.0) to (5,40,1,1.0), the

best values for P changes to {Con f identiality,AES,128,v,75,6000} and the satisfac-

tion score is reduced to 0.5185. This result shows that when the service user increases

his/her delay requirement, the security service needs to sacrifice its QoS on security to

maximize its satisfaction score.
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Chapter 7

QOS-BASED SERVICE RANKING

This chapter presents a QoS-based service ranking approach for SR to match SU’ QoS

requirements with services’ QoS and help SU to select the best service satisfying his/her

QoS requirements.

When SU submits service requests to SD, SU selects a set of QoS aspects, such

as throughput, delay, reliability, security, and price. For each QoS aspect, SU specifies

his/her QoS requirement on the QoS aspect as in Section 5.2, including the lower bound

and upper bound of the expected quality, the importance of this requirement, and the

confidence in this requirement specification. With the QoS information from QM,

SR first optimizes services’ QoS by making tradeoff among various QoS aspects as

discussed in Section 6.2, and then ranks services. While existing approaches rank

only services’ QoS from best to worst [91, 92] without the consideration of users’

requirements and preferences, the service ranking approach presented in this chapter

ranks services based on the degree of satisfaction of users’ QoS requirements. Hence,

when two services both perfectly satisfy users’ QoS requirements, these two services

have the same chance to be selected by the users even one service may have better QoS

than the other. The ranking based on satisfactions rather than QoS helps to increase

the availability of the services with the best QoS and improve the utilization of other

services.

7.1 Satisfactory Score

The ranking of services is based on how well services’ QoS satisfy users’ QoS require-

ments. In this section, we will define the satisfaction score and discuss how to compute

the satisfaction scores for services.

Let C = {c1,c2, · · · ,cn} be the QoS aspects selected by SU, and {S1,S2, · · · ,Sm}
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be the list of services returned from SD that satisfy SU’s functionality requirements.

The QoS of all services Si is represented as the following matrix

QoS


S1

...

Sm

=


q11 q12 · · · q1n

...
... · · · ...

qm1 qm2 · · · qmn

 (7.1)

where each row {qi1,qi2, · · · ,qin} represents the service the QoS of Si,1 ≤ i ≤

m, QoS on all QoS aspects after QoS optimization, and each column {q1 j,q2 j, · · · ,qm j}

represents all services’ QoS on the aspect c j,1 ≤ j ≤ n. SU specifies his/her QoS

requirements on each QoS aspect c j as req j as follows:

Req(c1, · · · ,cn) = (req1, · · · ,reqn) (7.2)

For each service Si, a set of satisfactory scores sci j is computed for all QoS

aspects c j, which are numbers within [0,1] measuring how well Si’s qualities on aspects

C satisfies Req(c1,c2, · · · ,cn). When sci j = 0, Si’s QoS qi j does not satisfy req j at all;

when sci j = 1, Si’s QoS qi j satisfies req j perfectly; when 0 < sc < 1, Si’s QoS qi j

partially satisfies req j. A larger sci j represents better satisfaction.

To compute the overall satisfaction scores of {S1,S2, · · · ,Sm} on SU’s QoS re-

quirements (7.2), all elements in the matrix (7.1) will first be normalized with normal-

ization functions Norm1 and Norm2 defined in Section 7.2 to the range [0,1], and then

compared to (7.2) with the satisfaction score function SSFw′ defined in Section 7.3 to

compute the satisfaction scores for each Si and each c j as

SC


S1

...

Sm

=


sc11 sc12 · · · sc1n

...
... · · · ...

scm1 scm2 · · · scmn

 (7.3)
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Finally, each service Si’s overall satisfactory score sci is computed with the

combination function CF defined in Section 7.4 to combine {sci1, · · · ,scin} together,

which is used by SR to rank services.

7.2 QoS Normalization

Due to the variety of QoS aspects’ scales and value ranges, services’ qualities on d-

ifferent QoS aspects have to be normalized before aggregation. In this section, two

normalization functions Norm1 and Norm2 are presented for services’ qualities on u-

tility QoS aspects and cost QoS aspects respectively, which normalize qualities on all

aspects to the unique range [0,1] to enable uniform satisfaction score function indepen-

dent of QoS aspects’ units. For a service Si and a QoS aspect c j, a larger qi j means

better quality if c j is a utility QoS aspect, or worse quality if c j is a cost QoS aspect.

Hence, the QoS normalization function Norm1 for utility QoS aspects should increase

with qi j, and the Norm2 for cost QoS aspects should decrease with qi j. Norm1 and

Norm2 are defined as

Norm1(qi j) =


0, if qi j < l jr j

qi j−l jr j
u j/r j−l jr j

, if l jr j ≤ qi j < u j/r j

1, if qi j > u j/r j

(7.4)

Norm2(qi j) =


0, if qi j > u j/r j

u j/r j−qi j
u j/r j−l jr j

, if l jr j ≤ qi j < u j/r j

1, if qi j < l jr j

(7.5)

where req j = {l j,u j,w j,r j} is the requirement specified by SU on the QoS

aspect c j.

SU will not accept any service when qi j < l jr j if c j is an utility QoS aspect,

or qi j > u j/r j if c j is a cost QoS aspect. Furthermore, the service has no additional
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advantage to satisfy users’ QoS requirements if qi j > u j/r j for utility QoS aspect, or

qi j < l jr j for cost QoS aspect. For example, text-based online chatting services only

need small bandwidth, and hence one such service with 10 Mbps bandwidth and an-

other service with 100 Mbps bandwidth are equivalent for users although the second

service’s bandwidth is much larger than the first one’s bandwidth. While existing nor-

malization functions like [91, 92] generate a larger number for the service with 100

Mbps bandwidth, the Norm1 and Norm2 will normalize both services’ qualities to 1

which reflect the user’s requirements more accurately.

The Norm1 and Norm2 also adjust the range [l j,u j] to the range [l jr j,u j/r j]

according to the user’s confidence in u j and l j. Noted that the range [l jr j,u j/r j] is

equal to the range [l j,u j] when r j = 1, and larger than [l j,u j] when r j < 1.

7.3 Satisfactory Score Function

The satisfaction score function SSFw′ is used to computes the satisfactory scores sci j in

(7.3) for each service Si and each QoS aspect c j, which are numbers within [0,1].

Let ni j be the normalized value of qi j. SSFw′ should satisfy the following re-

quirements:

1. If the user does not care about services’ qualities on c j, the user will not specify

any QoS requirement for c j. Then, services’ qualities on c j will not be considered

in the ranking of services.

2. If the user only have a threshold requirement about services’ qualities on c j (e.g.,

the use does not care about the price as long as it is within the budget), the user

will use the same lower bound and upper bound in the QoS specification. That is,

all services’ qualities on c j are normalized to 1 if their QoS satisfies the threshold

or to 0 if their QoS does not satisfy the threshold. Hence, the SSFw′ does not need

to compute the satisfaction for the normalized QoS within (0,1).
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Figure 7.1: The relation between normalized QoS and satisfaction with a linear satis-
faction score function.

3. If the user defines a range of acceptable QoS, the SSFw′ should output 0 for all

services’ QoS below the range, and 1 for all services’ QoS above the range. That

is, SSFw′(0) = 0 and SSFw′(1) = 1.

4. If sci j is between 0 and 1, a larger sci j means that SU will be better satisfied with

Si’s QoS, and Si will be ranked higher in service selection.

A simple satisfaction function can just use the value of ni j as sci j as shown in

Figure 7.1, which is linear and satisfies all of the above three requirements. However,

this simple function assumes that the user’s satisfaction of a service is proportionate

to the service’s QoS which is not always true as shown in [94] and prospect theory in

economics [119, 120].

Because the expected lower bound and upper bound represent the range of min-
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imum acceptable QoS and best QoS. All QoS within this range is acceptable, but users

will be more satisfied with better QoS. Using the normalized QoS as satisfaction score

assumes that the satisfaction of services is only determined by the normalized QoS, and

services’ satisfaction will be doubled if their normalized QoS is doubled. However, the

prospect theory suggests that the satisfaction should be based on the gains and losses

relative to some reference point instead of absolutely determined services’ normalized

QoS.

If we define the reference point as ni j = 0.5 for each QoS aspect c j, users obtain

gains if they choose a service which normalized QoS is larger than 0.5, and suffer losses

if they choose a service which normalized QoS is smaller than 0.5. According to the

prospect theory, the satisfaction function should be concave for gains but convex for

losses. For example, the delay of VoIP services is usually expected to be within the

range (50 ms, 400 ms) as discussed in Section 6.4. Hence, the reference point of delay

in VoIP is 225 ms (Norm2(225) = 0.5). It is easier for users to discriminate a longer

delay from 150 ms to 200 ms, than to discriminate a longer delay from 50 ms to 100

ms because the pauses in speech are generally longer than 100 ms. Furthermore, It

is also easier for users to discriminate a longer delay from 250 ms to 300ms, than to

discriminate a longer delay from 350 ms to 400 ms because 350 ms has already longer

than most pauses in speech.

Satisfaction is subjective and may be different for different users even for the

exact same service. First, a user who usually talks fast may specify the range of ex-

pected delay in VoIP as (50 ms, 300 ms), while a user who usually talks slow may

specify the range as (150 ms, 400 ms). Because the normalization functions presented

in Section 7.2 normalize services’ QoS with users’ QoS requirements. The actual de-

lay of a normalized delay 0.5 will be different for different users. Second, even with

the same expected range, the relation between the satisfaction and the normalized QoS

also depends on users’ subjective feelings. For example, if a user is more sensitive
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Figure 7.2: The effect of parameter w′ on the function SSFw′ .

about the speed of speaking, the VoIP service’s satisfaction will change faster with the

same change in delay. That is, the satisfaction function becomes more steep around the

reference point.

Based on the prospect theory and above discussion, the satisfaction score func-

tion SSFw′ is defined as

sci j = SSFw′(ni j) =

 0.5(2ni j−1)1−w′+0.5, if ni j > 0.5

−0.5(−2ni j +1)1−w′+0.5, if ni j ≤ 0.5
(7.6)

where w′ is the adjusted importance weight of the QoS aspect c j as shown

in Section 5.2. For any value of the parameter w′, SSFw′(0) = 0, SSFw′(1) = 1,and

SSFw′(ni j) increases with the increasing of ni j ∈ [0,1]. Because larger ni j indicates

better QoS for both utility QoS and cost QoS, SSFw′(ni j) always outputs a larger satis-

factory score for better QoS.
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The satisfaction function (7.6) has the following properties:

• When w′ → 0, SSFw′ is becoming a linear function with ni j as SSF0 shown in

Figure 7.2.

• SSFw′ uses 0.5 as the reference point. In Figure 7.2, SSFw′(0.5) = 0.5 for any

w′.

• With the increasing of ni j, the increasing speed of SSFw′ accelerates at the begin-

ning until ni j = 0.5 where SSFw′ reaches the maximum increasing speed. After

ni j = 0.5, the increasing speed of SSFw′ starts to decrease. Finally, SSFw′ reaches

1 at ni j = 1. This trend is in accordance with the prospect theory [119, 120].

7.4 Combination Function

When the satisfaction scores for QoS aspects in (7.3) have been computed by the func-

tion SSFw′ , the combination function CF presented in this section computes overall

satisfaction scores for services by combining their satisfaction scores on various QoS

aspects together with weights.

The combination function CF is defined as

CF(Si) =
∑1≤ j≤n sci jw′j

∑q≤ j≤n w′j
(7.7)

where sci j is the Si’s satisfaction score on c j computed with (7.6), and w′i →

wiri +0.5(1− ri) is the adjusted importance weight w j of c j discussed in Section 5.2.

7.5 Case Study

This section gives an example to illustrate the QoS-based service ranking mechanism.

In this example, we assume that a developer of a voice communication system wants to

improve the system by providing secure peer-to-peer voice communication. Because

the voice communication system is developed as a SBS, the developer can select an
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existing encryption service to use in the system. The encryption service should accept

a data stream and output an encrypted data stream. Furthermore, the developer has QoS

requirements on the following four QoS aspects:

• Throughput. The encryption service can support at least 1000 packages per sec-

ond. Each package has 1000 bits. That is, the throughput of the service should

be at least 1Mbps.

• Delay. The encryption delay of each package should be less than 10 microsec-

onds.

• Security. The encryption service should provide approximate security protection

for voice communication of sensitive but not classified information. With the

security metric developed in Chapter 6, the encryption service should prevent

attackers from cracking messages with probability at least 60%. if the encryption

service can prevent attackers from cracking messages with probability 80%, it

provides sufficient security protection for the voice communication, and no need

to select an encryption service stronger than 80%.

• Price. The price of the service should be less than 1 dollar per day.

First, the developer specifies the QoS requirements as shown in Table 7.1, and

sends it to SR. Some parameters are blank because the developer does not know how

to specify them. Throughput and security are utility QoS aspects. Delay and price are

cost QoS aspects.

Suppose SD finds three encryption services S1, S2 and S3. Their QoS on the

required four QoS aspects are shown in Table 7.2. To rank these three services, SR

computes satisfaction scores for S1, S2 and S3 as follows
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1. SR sets values for parameters that are blank in Table 7.1. Because there is no

natural upper bound for the throughput, the parameter u for throughput will be

set to the largest throughput of all encryption services. The parameter w for price

will be set to the default value 0.5. Furthermore, all linguistic terms will be

mapped to values with Table 5.2, and all w will be adjusted with r as discussed

in Section 5.2. The adjusted QoS requirements are shown in Table 7.3.

2. SR normalizes throughput and security with Norm1 (7.4), and delay and price

with Norm2 (7.5). The normalized QoSs are shown in Table 7.4.

3. SR computes the satisfaction scores for each QoS aspect with SSFw′ (7.6) and

combines them together with (7.7). All satisfaction scores are shown in Table

7.5.

Hence, SR ranks services as S2 > S3 > S1, and returns the ranked services to

SU.

Table 7.1: User-Specified QoS Requirements on Usable Encryption Services

QoS aspect l u w r
Throughput 1Mbps 0.7 0.9

Delay 0 10 ms Important 0.8
Security 60% 80% Very important 1

Price 0 1 dollar/day 1

Table 7.2: The QoS of Encryption Services Returned By SD

Throughput Delay Security Price
S1 10 Mbps 10 ms 0.7 1 dollar/day
S2 1.5 Mbps 5 ms 0.8 0.5 dollar/day
S3 5 Mbps 1 ms 1 2 dollar/day
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Table 7.3: Adjusted User-Specified QoS requirements on Usable Encryption Services

QoS aspect l u w r
Throughput 1Mbps 10 Mbps 0.68 0.9

Delay 0 10 ms 0.74 0.8
Security 60% 80% 1 1

Price 0 1 dollar/day 0.5 1

Table 7.4: Normalized QoS of Encryption Services Returned By SD

Norm1 Norm2 Norm1 Norm2
(Throughput) (Delay) (Security) (Price)

S1 0.89 0.2 0.5 0
S2 0.06 0.6 1 0.5
S3 0.4 0.92 1 0

Table 7.5: Satisfaction Scores of Encryption Services Returned By SD

S1 S2 S3

Satisfaction Score on Throughput 0.96 0.02 0.20
Satisfaction Score on Delay 0.06 0.83 0.98

Satisfaction Score on Security 0 1 1
Satisfaction Score on Price 0 0.5 0
Overall Satisfaction Score 0.239 0.643 0.637
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Chapter 8

CONCLUSION AND FUTURE RESEARCH

The goal of this dissertation is to facilitate the development of SBS systems by help-

ing system developers find appropriate services and evaluate whether these services

can satisfy the SBS systems’ QoS requirements. On this dissertation, an approach to

discovering services in untrusted service directory without revealing the privacy of ser-

vice providers and users is proposed. The services returned by this approach are ranked

based on how well their QoS satisfy the service users’ QoS requirements after the QoS

optimization through adaptive tradeoff among various QoS aspects. In this chapter, we

summarize our research and discuss some future directions.

8.1 Research Summary

Specifically, our approach includes the following three major parts:

(1) Privacy preserving and controlled access service discovery. All current efficien-

t service discovery approaches require centralized service directories to organize

all available services and help service users to match their service requests with

services. However, if the centralized service directories are not trusted, they are

too powerful and may invade the privacy of service providers and users with-

out appropriate protection. To restrict these service directories’ capability but

still enable them to organize and match services, we have developed a privacy

preserving and controlled access service discovery and matching approach. With

this approach, all service registrations from service providers and service request-

s from service users are protected from the service directory through encryption.

The service directory cannot learn any information from encrypted service regis-

trations and requests besides the matching results.

(2) Quantitative QoS metrics and tradeoff among various QoS aspects. The devel-
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opers of SBS systems have requirements on both services’ functionalities and

QoS. To support the matching between services’ QoS and QoS requirements, we

have conducted research on developing quantitative metrics for QoS aspects, and

the adaptive tradeoff among various QoS asepcts:

• Quantitative QoS metrics. We have developed a security metric to measure

services’ security strength as the probability to withstand attackers. Besides

the key length which is the only factor used by existing quantitative security

metrics, our security metric also incorporates the vulnerability of algorithm

design and the attackers’ power. To get better flexibility in QoS tradeoff,

we also allow partial encryption by including the protection percentage as

one parameter of the security metric. For other QoS aspects that are usu-

ally measured through observation such as delay and throughput, we have

proposed an approach to develop quantitative metrics for these QoS aspects

also through parameters.

• Adaptive tradeoff among various QoS aspects. Because the metrics on all

QoS aspects are quantitative and are based on the same set of parameters

that can be controlled by the services, services can optimize their QoS ac-

cording to the users’ QoS requirements by making tradeoff among various

QoS aspects. We have presented an adaptive tradeoff approach and given

some tradeoff strategies.

(3) QoS-based service ranking. When there are multiple services providing equiva-

lent functionalities, QoS-based service ranking is to rank services’ QoS and help

users to make selection among these services. Compared with existing QoS-

based service ranking algorithms which rank services based on their QoS, we

have defined a satisfaction score function to compute how well a service’s QoS

satisfy the user’s QoS requirements, and presented a QoS-based service ranking

algorithm to rank services based on their satisfaction scores. The satisfaction
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scores allow users to select the best suitable services and can avoid to select

overqualified services.

8.2 Future Research

In order to further improve our approach, the following research should be conducted:

• Developing more efficient privacy preserving service discovery and matching.

Our current approach heavily relies on the additively and multiplicatively ho-

momorphic properties of the BGN encryption [98]. Because BGN encryption

requires to compute the pairing on a composite order group which is time con-

suming, our approach cannot support large keyword set or access key set if the

service directory need to return the matching results within reasonable respon-

sible time. The progress in the research of efficient homomorphic encryption

algorithms may lead to more efficient design of privacy preserving service dis-

covery and matching protocols.

• Developing more flexible access control approach to services.

Currently, our approach only supports simple key-based access control to ser-

vices. A user can access the service if and only if he/she possesses one of the

access key associated with the service, and there is no hierarchy structure within

all access keys. Recently, attribute-based encryption [121] has been proposed to

enable any user to decrypt the encryption as long as the user has some required at-

tributes [122]. All attributes can be organized as a hierarchy tree. The problem of

incorporating the attribute-based encryption algorithms is that our approach can

only hide the existence of services based on one access key and cannot support

the decryption policies used in the attribute-based encryption algorithms.

• Developing more quantitative metrics to cover more QoS aspects.
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Users may have requirements on a lot of QoS aspects, and some of them are very

difficulty to be quantitatively measured. In this dissertation, we have presented

the quantitative metric for security, which is one of the most important QoS as-

pects that cannot be easily measured quantitatively. However, other QoS aspects,

such as services’ reputations and business values, have not been thoroughly stud-

ied.

• Supporting more flexible and user-friendly QoS requirement specification.

Although our approach has greatly improved the flexibility of the QoS require-

ment specification by allowing users to define their expected best and least QoS,

and made it much easier for users to specify their QoS requirements by allowing

users to specify their preferences on QoS aspects through linguistic terms, spec-

ify their confidence on their specification, and leave the requirement parameters

blank if they do not know how to specify them. However, current supporting

on linguistic terms are primitive, more sophisticated approach on processing lin-

guistic terms is desirable to further help unexperience users to specify their QoS

requirements.

• Developing more satisfaction score functions.

Satisfaction scores represent how well a service’s QoS satisfy a user’s QoS re-

quirements, which is mutable and related to users’ personal perspectives. Hence,

the satisfaction is subjective and challenging to be modeled. Our proposed sat-

isfaction score function try to model the changing of the satisfaction with the

service’s QoS through the importance of each QoS aspect. It is interesting to

develop more functions to model satisfactions in different ways.
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