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ABSTRACT

This dissertation consists of three essays. The first essay studies quality

increases in the medical sector. A large and growing share of income is spent on

medical goods and services each year. Existing measures of the price and quantity

of medical goods and services do not take changes in quality into account. Ample

micro evidence suggests the quality of medical goods and services has, in fact, im-

proved over time. This essay estimates changes in medical quality at the aggregate

level. To do so, this essay develops and estimates a dynamic structural model of

the demand for medical purchases. The main result of this essay is that the quality

of medical goods and services has increased by 2.2 percent per year between 1996

and 2007. One implication is that, after adjusting for changes in medical quality, the

relative price of medical goods and services fell by 0.5 percent per year over this

period, whereas Bureau of Labor Statistics estimates suggest it rose by 1.6 percent

per year.

The second essay develops a method to infer the life cycle profile of the quality of

medical care in accumulating of health capital and the depreciation rate of health

capital. To do so, this essay develops a life cycle model of the demand for medical

purchases in which individuals invest in health capital. The use of these methods

is illustrated by inferring the life cycle profile of the quality of medical care and the

depreciation rate of health capital for 25-84 year old males between 1996 and 2007.

The third essay studies implementable outcomes in partnership games. In this set-

ting, it is well known that contracts which satisfy budget balance cannot implement

efficient outcomes. Then, it is natural to ask which outcomes can be implemented.

This essay characterizes the outcomes of all budget balancing contracts. With stan-

dard regularity conditions on production and utility functions, all outcomes which

can be implemented by a budget balancing contract can be implemented by a lin-

ear contract. This implies that, with respect to welfare, we can consider a compact
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set of implementable outcomes without loss of generality. The budget-balancing

contract whose outcome maximizes welfare, therefore, exists.
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Chapter 1

MEASURING QUALITY INCREASES IN THE MEDICAL SECTOR

1.1 Introduction

A large and growing fraction of US income is spent on medical goods and

services, such as heart attack treatments and prescription drugs. Over the past

fifty years, the share of income devoted to medical expenditures has more than

tripled, rising from 5% to over 15%. A fundamental question is, what are

Americans getting for their money? One answer is provided by the Bureau of

Labor Statistics (BLS). It provides estimates of the purchase price of medical

goods and services, allowing one to calculate the quantity of medical goods and

services purchased by households.

A key problem with the BLS price index is that it does not take into account

changes in the quality of medical purchases. Moreover, there is ample evidence

that the quality of medical goods and services has increased over time. For

example, Heidenreich and McClellan (2001) studies the treatment of heart attacks.

Between 1975 and 1995, thirty-day mortality rates following heart attack treatment

fell significantly, from 27.0% to 17.4%. Based on clinical studies, they find that

most of the reduction in mortality is due to improvements in the quality of treatment

over time. Many other studies find similar results for other conditions.1 If these

patterns hold in the aggregate for medical goods and services, then the BLS price

index overstates the growth in the price of these goods, and correspondingly

underestimates the true quantity of medical goods and services consumed.

The objective of this paper is to estimate the change in the quality of

medical purchases over time at the aggregate level. The key problem is that many

factors affect health outcomes. Isolating the role of medical goods and services in

1 See, e.g., Cutler and McClellan (2001), Dugan and Evans (2005), Lucarelli
and Nicholson (2009), and Shapiro, Shapiro, and Wilcox (2001)

1



determining health outcomes is difficult, making it difficult to measure medical

quality. To illustrate this problem, consider a simple example. Suppose individuals

in 1996 each take one “year 1996" pill, and 90 percent of these individuals survive

to 1997. Individuals in 2007 each take one “year 2007" pill, and 95 percent of

these individuals survive to 2008. Why did survival rates change over time?

Without more information, there is a continuum of possibilities. On one hand,

changes in pill quality may be responsible for all of the observed change in

survival rates. On the other hand, pill quality may not have changed at all, and

changes in other factors are responsible for the change in survival. People in 2007

may smoke at lower rates, eat less red meat, exercise more, breathe higher quality

air, or work at less stressful jobs. As a result, information on survival rates and

medical utilization is not enough to infer medical quality. In order to measure the

quality of medical goods and services, one must carefully correct for the role of

non-medical factors – such as the lifestyle and environmental factors listed

previously – in determining survival.

One way to solve this problem is to consider the demand for medical goods

and services. The parameters which affect survival rates – non-medical factors

and medical quality – also affect the demand for medical purchases. In particular,

the marginal value of medical purchases depends on the quality of medical

purchases and on non-medical factors. Non-medical factors determine the

potential for medical purchases to improve health outcomes, and medical quality

affects the rate at which medical purchases improve health outcomes. The more

individuals have to gain by seeking treatment, either because medical quality is

high or non-medical factors are poor, the higher the marginal value of medical

purchases. As a result, medical decisions reveal information about the ability of

medical goods and services to improve health outcomes. Utilizing a model in

which health outcomes and medical purchases are endogenous, the quality of

2



medical goods and non-medical factors can be inferred using observations of

medical purchases and health outcomes.

This paper implements this solution in order to estimate changes in the

quality of medical goods and services at the aggregate level. To do so, I develop a

dynamic structural model of demand for medical goods and services. This model

has three key features: medical purchases are endogenous, survival rates are

endogenous, and non-medical factors affect survival rates. I estimate this model

using data on medical purchases and survival rates for males in the US between

1996 and 2007. My estimates suggest that medical quality has increased rapidly

over this period, by about 2.2% per year. This implies that the relative price of

medical goods and services, after adjusting for quality change over time, has

actually fallen by about 0.5% per year. This is in sharp contrast to BLS estimates in

which the relative price of medical goods and services has risen by 1.6% per year

over this period. Another implication is that growth in real GDP is underestimated.

Measures in the national accounts suggest that real GDP has grown by 3.1% per

year over this period. My estimates, which take into account changes in medical

quality, suggest that real GDP has grown by 3.4% per year over this period.

This paper is related to several others in the literature which study changes

in the quality of medical goods and services over time. Lichtenberg and Virabhak

(2007) finds that newer drugs are more productive than older drugs, in the sense

that newer drugs produce better health outcomes. If older drugs are being

replaced by newer drugs over time, the quality of prescription drugs is increasing

over time at the aggregate level. This paper estimates medical quality at the

aggregate level rather than among a subset of medical goods. Cutler and

McClellan (2001) surveys five condition-level studies of changes in the costs and

benefits of new medical treatments. They find that improvements in health

outcomes generally exceed increases in treatment costs. They conjecture that,
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properly measured, the relative price2 of medical goods and services is actually

declining over time at the aggregate level. This paper evaluates that conjecture.

This paper is also related to another group of papers which study aggregate

medical expenditures in the US. Hall and Jones (2007) argues that it is reasonable

to believe that the current share of income devoted to medical expenditures is

optimal, and that it is also reasonable to believe it will be optimal to spend an even

higher share of income on medical goods in the future. Suen (2006) studies the

rise in medical expenditures and life expectancy in the US since 1950, and argues

that all of the rise in medical expenditures and sixty percent of the rise in life

expectancy can be explained by increases in income and improvements in medical

technology. In order to address these questions, both papers make assumptions

about the growth rate of medical quality at the aggregate level. I complement these

papers by developing methods to estimate the quality of medical goods. Better

estimates of medical quality will allow for improved answers to these questions.

The paper is organized as follows. In Section 2, the model is presented and

various modeling assumptions are discussed. In Section 3, the data is described.

In Section 4, the estimation procedure is outlined. Section 5 presents results, and

Section 6 concludes.

1.2 Model

In this section, I develop a dynamic model of demand for medical goods similar to

the model in Hall and Jones (2007). The economy is populated by cohorts of

finitely-lived individuals. Each individual is endowed with a lifetime stream of

income. Agents value medical consumption and non-medical consumption.

Individuals value medical consumption because of the associated increases in

2 This study uses relative price to mean the price relative to the Consumer Price
Index (CPI). I avoid this usage of relative price because medical prices are a com-
ponent of the CPI, but are not a component of the non-medical consumption price
index.
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period utility and the probability of surviving to the next period. Survival rates also

depend on exogenous non-medical factors. I discuss various modeling

assumptions after specifying the model.

Demographics

Time is discrete, and starts at year t=0. Each year, a new cohort of individuals is

born at age 1. Individuals are indexed by their age a and the time period t in which

they make decisions. Individuals in each (a, t) group are identical, i.e. I abstract

from within-cohort heterogeneity. The mass of individuals of age a in period t is

ωa,t. In each period, agents allocate income to purchases of medical goods,

non-medical consumption, and assets. A fraction sa,t survive to the next period.

Individuals live a maximum of T years.

Medical Quality

Individuals value medical goods and services xa,t for two reasons. First, they value

the associated increases in the current period’s survival rate, and second, they

value to associated increases in the current period’s utility flow. Quality Aa,t is a

measure of the degree to which medical goods increase the survival rate and

utility flow for individuals of age a in period t. One can think of xa,t as the number

of pills that an individual purchases, and Aa,t as the quality of each pill. This

quality measure is defined so that the product of the quality and quantity of

medical goods is the measure of their ability to improve health outcomes. Quality,

quantity pairs (A1, x1) and (A2, x2), then, are valued equally by individuals if

A1x1 = A2x2. With this in mind, I define medical consumption to be the product of

the quality and quantity of medical purchases.
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Preferences

Individuals order life cycle profiles3 of medical consumption, non-medical

consumption and survival rates {Aaxa, ca, sa}Ta=1 according to

T∑
a=1

{
a−1∏
i=1

si}βau(ca, Aaxa) (2.1)

where {
a−1∏
i=1

si} is the probability that an individual lives to age a, and β > 0 is the

discount factor. The utility of death is normalized to zero.

The period utility function u is written as:

u(ca,t, Aa,txa,t) = α log(ca,t) + (1− α) log(Aa,txa,t) + φ (2.2)

where 0 ≤ α ≤ 1 is the weight that individuals place on non-medical consumption

and φ is a constant.4

Survival Function

An individual’s survival rate sa,t = g(Aa,txa,t, ψa,t) depends on non-medical factors

ψa,t, the quantity of medical goods, and the quality of medical goods. The function

g is written as:

g(Aa,txa,t, ψa,t) = ψa,t + (1− ψa,t)
Aa,txa,t

Aa,txa,t + 1
(2.3)

where ψa,t ∈ [0, 1] denotes the role of non-medical factors in the survival function.

The function g is twice continuously differentiable, increasing, strictly concave, and

takes values in [0, 1). The 1 in the denominator in the second term on the

3 To avoid cumbersome notation, life cycle profiles are not indexed by time here
4 This term is commonly used in environments with endogenous survival rates

(see, e.g., Hall and Jones (2007), Becker et al (2005)). This term is important
because the level of period utility matters in models with endogenous survival rates.
In particular, if period utility is lower than the value of death in each period, then
individuals do not value decreases in mortality.
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right-hand side is a scaling parameter, and can be normalized to one without loss

of generality.5

Budget

An individual’s period budget constraint is written as:

ca,t + θa,tp
x
t xa,t + ka+1,t+1 ≤ ya,t +Rka,t (2.4)

where θa,t is the share of medical expenses paid by the individual, pxt is the

purchase price of medical goods and services relative to non-medical

consumption, xa,t is purchases of medical goods, ka,t is asset, R is the net return

on assets, and ya,t is income net of transfers. The price of non-medical

consumption is normalized to be one in each period. Assets are constrained to be

non-negative in all periods. Income net of transfers ya,t is written as

ya,t = wa,t +Bt − Pa,t (2.5)

where wa,t denotes the period endowment, Pa,t denotes health insurance

premiums paid by individuals, and Bt denotes accidental bequests. Accidental

bequests are redistributed evenly in each period, and are written as:

Bt+1 =
T∑
a=1

(1− sa,t)ka+1,t+1 (2.6)

Decision Problem

In each period, individuals choose non-medical consumption, purchases of

medical goods and services, and the amount of assets to carry forward to the next

5 Notice that, if this term is doubled, all Aa,t are doubled, and xa,t remains fixed,
sa,t does not change. This term scales the estimates of Aa,t
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period, contingent on survival. This decision problem is written as follows:

va,t(ka,t) = Max
xa,t,ca,t,ka+1,t+1

[u(ca,t, Aa,txa,t) + βsa,tva+1,t+1(ka+1,t+1)] (2.7)

subject to: ca,t + θa,tp
x
t xa,t + ka+1,t+1 ≤ ya,t +Rka,t

sa,t = g(Aa,txa,t, ψa,t)

ka+1,t+1 ≥ 0

Decomposing Medical and Non-Medical Factors

The goal of this exercise is to estimate medical quality. To do this, the roles of

medical and non-medical factors in determining survival rates must be

decomposed. In other words, Aa,t and ψa,t must be disentangled using

observations of medical spending decisions xa,t and realized survival rates sa,t in

the data. Recall the survival function in equation (2.3). Given observations of

medical purchases and survival rates and this functional form, there is a curve of

pairs (ψa,t, Aa,t) such that survival rates in the model match the data. As

mentioned previously, without considering more information, it could be that

medical purchases increased survival rates from 0 to sa,t, or that medical

purchases had no effect at all on survival. Mathematically, the problem is that the

two unknowns cannot be disentangled using a single equation.

In order to disentangle the two unknowns, the demand for medical goods

and services is taken into consideration. Mathematically, this means that two

equations are used to disentangle the two unknowns. The intuition behind this

approach is that the demand for medical purchases, derived from equation (2.7), is

increasing in Aa,t6, and decreasing in ψa,t. The demand for medical purchases will

rise if they become more effective at reducing mortality, and decrease if an

individual’s initial survival rate increases. Survival rates are increasing in each

6 This is true for values of Aa,t that are reasonably low. Estimates of Aa,t fall
within this range
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variable Aa,t and ψa,t. Fixing all other factors, this implies that, for each age, time

observation, there is a unique pair (ψa,t, Aa,t) such that model predictions for the

corresponding individual’s survival rate and demand for medical purchases

matches the data.

Discussion

The period utility function u depends on medical consumption. This feature of the

model captures the fact that medical expenditures are important for current

well-being as well as longevity. The parameter α is the weight that individuals

place on utility from medical consumption. Quality growth is assumed to be the

same for both uses of medical goods and services: survival and contemporaneous

utility. This assumption is made for practical reasons, since the utility flow from

medical expenditures is not observable. I explore the implications of this

assumption in Section 5.

One feature of the budget constraint is that individuals pay for a fraction of

medical expenses out of pocket. This is an important assumption because, on

average, individuals pay for a small portion of their medical expenses directly. Most

expenses are paid indirectly through public or private insurance. The marginal cost

of one dollar of medical expenses for individuals, then, is generally much lower

than one dollar. I want to emphasize that this is a coarse approximation of the

institutional details that determine the marginal cost of medical purchases for

individuals. In reality, individuals with different types of health insurance face

different co-payment schedules for different types of treatment. This simplification

provides an approximation of the average marginal cost that these individuals face.

In this model, medical expenditures affect this period’s survival rate, but not

an agent’s survival rate in the next period – ψa+1,t+1 – contingent on surviving to

the next period. To a certain degree, medical expenditures are an investment in
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future health.7 I explore the implications of this assumption in greater detail in the

appendix. Another simplifying assumption is that there is no heterogeneity within

cohorts. In reality, there are big differences in medical expenditures within cohorts.

Presumably, this is due to heterogeneity with respect to non-medical factors within

these cohorts. One concern is that abstracting from within-cohort heterogeneity

may lead to incorrect estimates of the medical quality. I explore this assumption in

greater depth in the appendix.

1.3 Data

In this section, I describe the data that is used to estimate the model, and

document facts related to medical expenditures and survival rates in the US for

25-84 year old males over the period 1996-2007. The data used here are annual

and come from the Medical Expenditure Panel Survey (MEPS) and the Social

Security Administration (SSA). The MEPS also reports data on income and

medical expenditures at the individual level. I use this individual-level data to

construct age-level data in each period by averaging across individuals in that age,

time group. The MEPS reports medical payments by source. To calculate the

average co-payment rate that individuals pay, I calculate the share of total medical

expenses that are paid by each group. Out-of-pocket payments make up a small

fraction of medical expenses, and there is considerable variation in the

out-of-pocket share across age, time groups. The share of medical expenses paid

out of pocket generally declines with age and time. This pattern is shown in

Figure 2.5. The MEPS also reports the share of single-person health insurance

premiums that are paid by employers and employees, which is used to calculate

the health insurance premiums paid by employees.

The SSA reports mortality rates, realized and projected, at every age for

every ten-year period between 1990 and 2100. I construct mortality rates in years

7 For a theoretical treatment of this topic, see Grossman (1972)
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that are not reported using linear interpolation. Figure 1 shows the change in

mortality rates by age between 1996 and 2007. This figure shows that mortality

rates declined over this period. Among all groups, mortality declined by an

average of twelve percent.

Figure 1.1: Percent Decline in Mortality Rate, 1996-2007

Figure 2 shows medical expenditures relative to income by age averaged

over 1996 to 2007. The share of income devoted to medical expenditures rises

quite sharply with age.

Figure 3 shows medical expenditures relative to income among 25-84 year

old males between 1996 and 2007. The share of income devoted to medical

expenditures rises, on average, over the time period.

1.4 Estimation

In this section, I outline the estimation procedure. Model parameters are chosen

as follows. The parameter β is chosen to be .96, and the return on savings R is

chosen to be 1/β. Some model parameters are chosen directly by matching their

observed empirical counterparts. These parameters determine income (wa,t),
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Figure 1.2: Average Medical Expenditure Share of Income by Age, 1996-2007

Figure 1.3: Average Medical Expenditure Share of Income by Year, 25-84 Year Old
Males
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Figure 1.4: Average Co-Payment by Age Group, 1996-2007

purchase prices (pxt ), premiums (Pa,t), and co-payment rates (θa,t).8 Future values

of these parameters with empirical counterparts are projected based on available

observations. In particular, income, prices, and premiums are projected forward

assuming that they have a linear time trend. Co-payment rates are held fixed at

their 2007 values. Individuals older than 85 are not included in the MEPS. I

assume that individuals 85 and older have income, premiums, and co-payment

rates are equal to those of 84 year-olds. Time zero in the model corresponds to

1996, the first year for which MEPS data is available. Age 1 in the model

corresponds to 25 years old, and decisions are made over T = 75 periods. All

agents die with probability one at age 100.

The constant term in flow utility φ is chosen so that the value of a statistical

life for 35-44 year-olds in 2000 in the model is 9.9 million dollars,9 matching the

8 Note that this is a measure of the average co-payment rate, as opposed to the
marginal co-payment rate.

9 This procedure is also used by Hall and Jones (2007) to choose the constant
term in the period utility function.
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estimate in Aldy and Viscussi (2008).10 The value of a statistical life is the present

value of an individual’s expected consumption stream over the remainder of their

life. Following Kniesner, Viscusi, and Ziliak (2006), the average value of a

statistical life for 35-44 year-old males in 2000, which I will call V SL, is calculated

as follows:

V SL =
1

10

∑
a=35:44

1

u′(ca,2000)
va,2000(ka,2000)

where, for convenience, the indexes correspond to the actual age and year as

opposed to the age and year indexes. Recall, also, that v is the value function in

equation (2.7).

I restrict the set of medical quality parameters. In each year, medical quality

is the same within three age groups: 25-64 year-olds, 65-74 year-olds, and 75-99

year-olds.11 Medical quality will be the same, for example, for all individuals aged

25-64 in each year. These time series are called A25−64,t, A65−74,t, and A75−99,t.

These groups are chosen because I want as few groups as possible subject to

matching the data well. Model predictions for medical spending improve

dramatically if quality is estimated for three groups rather than one or two. Adding

more groups results in a minor reduction in the difference between model

estimates and data. I estimate these quality parameters for each year between

1996 and 2007. After 2007, medical quality grows at a constant rate γi,A equal to

the average growth rate for group i between 1996 and 2007.

The basic strategy is to choose the remaining parameter values so that

model predictions for medical expenditures and survival rates closely match the

data. The main problem lies in the fact that there are a very large number of ψa,t

10 There is considerable variation in estimates of the value of a statistical life. For
a survey, see Viscussi and Aldy (2003). I will explore the sensitivity of this choice
of the value of a statistical life in Section 5.

11 Note that the third group effectively consists of 75-84 year-olds, as data for
individuals over 84 isn’t used to estimate the parameter
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parameters to estimate. This problem is solved by converting the estimation

procedure into a fixed point problem. This procedure is detailed in the appendix.

This procedure is very effective at choosing a parameter vector for which model

decision rules and survival rates closely match the data. I demonstrate the fit in

figures 5 and 6. In figure 5, I plot the time series for average medical expenditure

shares for 25-64, 65-74, and 75-84 year-olds between 1996 and 2007 in the

estimated model and in the data. In figure 6, I plot the time series for average

survival rates for 25-64, 65-74, and 75-84 year-olds between 1996 and 2007 in the

estimated model and in the data. The value of a statistical life for 35-44 year-olds

in 2000 in the model is equal to 9.9 million dollars, matching the previously

mentioned target.

Figure 1.5: Average Medical Expenditure Share of Income by Age Group, 1996-
2007

1.5 Results

This section presents the results of the estimation. Non-medical factors ψa,t for

each age group in 1996 and 2007 are reported graphically in Figure 1.7.

15



Figure 1.6: Survival Rates by Age Group, 1996-2007

Non-medical factors have improved among all groups over this period. The largest

improvements are among the elderly.

Parameter estimates for preference parameters and medical quality are

reported in Table 1.1. One important observation is that the parameter α is very

close to one, meaning that individuals put a small weight on utility from medical

consumption. The parameter φ is calibrated as discussed in the previous section,

and no standard error is computed.

Quality growth for each age group is plotted for each year between 1996

and 2007 in Figure 1.8. Since I am interested in quality change over time, I

normalize medical quality for each group to be one in 1996 in the figure.12 Quality

has increased among all three groups. Medical quality is growing at about the

same rate among the two elderly groups, and faster among the youngest group.

12 There are level differences among the groups. As you’ll notice in Table 1,
medical quality is higher among younger groups. This is likely due to the decline
in the immune system associated with aging (see Holliday (1995)), among other
factors.
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Table 1.1: Parameter Estimates: Standard Errors in Parentheses

Preference Parameters
α .993 (4.21e-4)
φ 9.68

Medical Quality Parameters Ages 25-64 Ages 65-74 Ages 75-99
1996 1.36e-5 (0.98e-6) 1.17e-5 (0.36e-6) 1.00e-5 (0.13e-6)
1997 1.42e-5 (0.97e-6) 1.21e-5 (0.33e-6) 1.06e-5 (0.11e-6)
1998 1.43e-5 (1.07e-6) 1.24e-5 (0.35e-6) 1.01e-5 (0.15e-6)
1999 1.40e-5 (1.36e-6) 1.25e-5 (0.32e-6) 1.02e-5 (0.17e-6)
2000 1.52e-5 (1.17e-6) 1.25e-5 (0.28e-6) 1.05e-5 (0.16e-6)
2001 1.59e-5 (1.07e-6) 1.32e-5 (0.29e-6) 1.07e-5 (0.16e-6)
2002 1.61e-5 (1.09e-6) 1.35e-5 (0.27e-6) 1.13e-5 (0.12e-6)
2003 1.77e-5 (0.78e-6) 1.36e-5 (0.28e-6) 1.11e-5 (0.14e-6)
2004 1.75e-5 (0.87e-6) 1.40e-5 (0.25e-6) 1.14e-5 (0.13e-6)
2005 1.86e-5 (0.85e-6) 1.37e-5 (0.30e-6) 1.20e-5 (0.12e-6)
2006 1.83e-5 (1.15e-6) 1.37e-5 (0.30e-6) 1.17e-5 (0.15e-6)
2007 1.91e-5 (0.92e-6) 1.43e-5 (0.26e-6) 1.20e-5 (0.18e-6)

This result is likely driven by the relative growth rate of medical expenditures

across groups. Expenditures grew faster among the non-elderly than the elderly,13

which implies that the marginal value of medical expenditures grew faster among

the young.

Aggregate Medical Quality

I construct an estimate of aggregate medical quality At using estimates of

group-specific medical quality in each period. To do so, I compute the

expenditure-weighted average of medical quality among the three groups. The

time series for aggregate medical quality is presented in Figure 9. My estimates

imply that medical quality rose by 25 percent over this period.

I use the time series for medical quality to compute the relative

quality-adjusted price of medical goods and services pQAt using the relative price

13 This pattern is also noted in Meara, White, and Cutler (2004)
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Figure 1.7: Lifestyle Factors ψa,t by Age

Figure 1.8: Quality of Medical Goods and Services
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Figure 1.9: Aggregate Medical Quality

index constructed by the BLS pBLSt and quality At of medical purchases as follows:

pQAt =
pBLSt

At

The time series for both relative price indexes are reported in Figure 10. Based on

BLS estimates, the relative price of medical goods increased by twenty percent

over this period. My estimates suggest that, after taking changes in the quality of

medical purchases into account, the relative price of medical goods and services

fell by five percent over this period.

Recall that measures of the output of the medical sector in the national

accounts do not take changes in the quality of medical purchases into account.

The use of this accounting convention is inconsistent with my findings that the

quality of medical purchases has increased over time, implying that real medical

output is under-measured in the national accounts. This, in turn, implies that real

output is under-measured in the national accounts. I measure the extent to which

real GDP growth is under-measured do to mis-measurement of the output of the
19



Figure 1.10: Price Indexes for Medical Goods and Services

medical sector. To do so, I use data from the National Health Expenditure

Accounts for estimates of the size of the medical sector. I use estimates from the

National Income and Product Accounts for real GDP. To calculate my revised

estimates of GDP, I assume that quality growth in the medical sector is the same

as my estimates suggest. This is an important caveat because I used only a

subset of the population to make my estimates. My estimates suggest that,

between 1996 and 2007, real GDP grew at 3.4% per year, while reported real GDP

great at 3.1% per year. These estimates of real GDP are reported in Figure 1.11.

Sensitivity

My main finding is that the quality of medical goods and services has increased

quite rapidly between 1996 and 2007. In this section, I perform sensitivity analysis

to see if this result depends critically on various assumptions regarding specific

parameter values or projections for future variables. I estimate the model for

alternative values of β and using alternative projections for income and survival
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Figure 1.11: Real GDP

rates. For both survival rates and income, I estimate the model in the case that

their growth rate after 2007 is five percent higher or lower than baseline

projections. I also explore the implications of assumptions regarding utility from

medical consumption. I estimate the model in the case that α = 1, meaning that

individuals get no utility from medical consumption. I also estimate the model in

the case that the quality of medical goods and services in increasing the utility flow

is constant over time. Recall that I choose φ so the value of a statistical life for

35-39 year-olds in 2000 is 9.9 million dollars. I do the same exercises in the cases

that this value is two million dollars and four million dollars. Over all of these

alternative specifications mentioned here, medical quality growth varied within one

percentage point of the baseline estimate of 25 percent.

I also explore the implications of various modeling assumptions on the

estimation of medical quality. To do this, I generate synthetic data using extended

versions of the model to explore the extent to which various modeling assumptions
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affect estimates of medical quality in two frameworks. In the first, medical

consumption today affects survival rates today and tomorrow. In the second, there

is heterogeneity within age, time groups with respect to non-medical factors ψ. In

both cases, I use the synthetic data generated in these extended models to

estimate medical quality using the methods developed in the paper. In both cases,

these abstractions lead to potentially large differences in estimates of medical

quality. In particular, the degree to which the baseline model differs from the model

which generates the synthetic data determines the extent to which baseline

estimates of medical quality differ from the actual values of medical quality. The

models used to generate the synthetic data and more detailed results are

presented in the appendix. I want to emphasize that both extension are very

simple, and are meant to provide coarse approximations of the impact of these

abstractions on the estimation of medical quality. A complete treatment of these

topics is beyond the scope of this paper.

In this paper, I’ve argued that the quality of medical goods and services has

increased in the US between 1996 and 2007. One alternative hypotheses is that

medical quality has not changed, and increases in medical purchases have been

driven by changes in income and other factors. In principal, this hypothesis could

be consistent with observed changes in medical purchases and survival rates. In

particular, it could be the case that people are spending more because the

marginal value of medical expenditures increases over time despite medical

quality remaining constant. This increase in the marginal value of medical

expenditures could be due to decreases in ψa,t or increases in future utility va,t,

possibly due to changes in income.

This hypothesis can be evaluated in the context of this model. To do this, I

estimate the model assuming that quality remains constant across time. To be

precise, I assume that medical quality parameters remain constant across time for
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the three age groups. I place no restrictions on other parameters, and choose

them in the same manner used previously. In the best fit scenario, model

predictions for medical purchases are very inconsistent with data. In particular, the

model predicts that, on average, medical expenditures as a share of income would

decline over this period. I present this in Figure 1.12. The observed patterns in

medical expenditures and survival rates are inconsistent with zero medical quality

growth in this framework.

Figure 1.12: Counterfactual Medical Expenditure Share by Year, 25-84 Year Old
Males

Validation

An important principle in developing structural models is validating the model. One

common approach is to generate predictions from the model and compare them

with the actual outcomes from an âĂIJout-of-sampleâĂİ data source not used to

estimate the parameters themselves. In this model, and many others, the model

predictions depend on unobserved variables that are not directly measured,

making such out-of-sample validation impossible. In particular, model predictions
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depend on unobservable parameters ψa,t and Aa,t. As a result, differences in

these unobserved parameters, rather than the poor fit of the model itself, may

explain any differences between the model’s predictions and the actual outcomes

of the out-of-sample population. Fang et al. (2007) develop an approach for

validating such models for which out-of-sample validation is infeasible. They

suggest determining whether or not the mechanisms associated with the

unobservable parameters in the model are operative. In this setting, this means

testing the qualitative predictions of the model. In particular, this means

determining whether an individual’s initial survival rate ψ and medical quality Aa,t

affect medical decisions in the predicted direction.14

Evidence on the effect of an individual’s initial survival rate on medical

demand will be taken from MEPS data. I will show that low self-reported health

status leads to high medical demand after correcting for age, year and income.

Individuals in the MEPS report health status ranging from excellent, corresponding

numerically to 1, to poor, corresponding numerically to 5. One important caveat is

that self-reported health status is not a perfect measure of an individual’s initial

survival rate. However, it is reasonable to believe that self-reported health status is

an indicator of one’s initial survival rate, and it is practical to use self-reported

health status since initial survival rate is not observed. I use MEPS data to

estimate the coefficients in the following equation:

xi,h = αhdi,h + β0ai,h + β1a
2
i,h + β2ti,h + β3wi,h + εi,h

where i corresponds to the individual, h denotes an individual’s health status

ranging from 1 to 5, di,h is a dummy for health status equaling 1 if health status

equals h, and εi,h is a normally distributed error term which is i.i.d. across

individuals.

14 Note that, by definition, the unobservable parameters affect survival rates in
the predicted direction.
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The results are presented in Table 1.2 The coefficients of interest are the

αh parameters. Results are in line with qualitative predictions of the model; as

self-reported health status declines, the demand for medical goods and services

increases. As a result, the model prediction that the demand for medical goods

and services increases with ψ seems reasonable.

Table 1.2: Parameter Estimates: 95.0% CI in Parentheses

Health Status Parameters
α1 247.5 (200.1,295.0)
α2 394.3 (344.3,444.3)
α3 825.8 (772.7,879.0)
α4 2536.1 (2465.2,2607.0)
α5 6380.8 (6280.5,6481.2)

Other Parameters
β0 -45.2 (-47.6, -42.8)
β1 1.04 (1.01, 1.06)
β2 50.7 (46.6, 54.8)
β3 2.09e-3 (1.51e-3, 2.67e-3)

Since measures of medical quality are not directly observable, evidence on

the effect of changes in medical quality on medical demand will be taken from

existing research on specific medical treatments. Evidence from specific medical

treatments suggests that improvements in medical quality has two effects. First,

quality improvements lead to increases in the number of individuals taking

advantage of the type of treatment. Shapiro, Shapiro and Wilcox (2001)

demonstrate that improved quality of cataract surgery led to higher demand for

that surgery. Duggan and Evans (2005) demonstrate that improvement in the

quality of antiretroviral drugs led to a sharp increase in the share of individuals with

HIV who took one or more HIV drugs. Second, the introduction of higher quality

medical treatments leads individuals to substitute new high quality treatments for

older treatments.15 This trend is demonstrated in a number of studies, including

15 In other words, the introduction of new, high quality medical goods reduces the
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Lucarelli and Nicholson (2009) for colorectal cancer patients, and Krone et. al.

(2010) for stent patients. These studies, along with the previously mentioned

evidence from MEPS, suggest that the mechanisms associated with the latent

variables in this model are, in fact, operative.

1.6 Conclusion

In this paper, I estimate the quality of medical goods and services in the US. To do

so, I develop and estimate a dynamic structural model of the medical decision. My

estimates suggest that there have been large increases in the quality of medical

goods and services in the US since 1996. One important implication of this finding

is that the relative price of medical goods and services, adjusted for changes in

quality, has actually declined over this period. Another important implication is that

living standards have risen faster over this period than standard measures

suggest.

The methods in this paper can be extended to address a large number of

interesting problems. The one that is most interesting, in my view, is the

comparison of health care systems across countries. A large variety of health care

delivery systems are employed around the world. Many popular comparisons of

the quality of medical care across countries focus on the relationship between

medical spending and life expectancy. It is impossible, of course, to infer the

quality of a health care delivery system using these two observations on their own.

There is sure to be incredible value in effectively measuring the quality of these

systems, and moving toward more efficient health care delivery systems, in the

United States and around the world.

market share of lower quality treatments
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Chapter 2

ON THE ACCUMULATION AND DEPRECIATION OF HEALTH CAPITAL OVER

THE LIFE CYCLE

2.1 Introduction

In the US and around the world, the share of resources allocated to medical goods

and services is growing rapidly. Despite the great importance of the medical

sector, little is known regarding the return to the medical goods and services that

are purchased. Further, policy, through programs like Medicare and Medicaid,

plays a large role in determining medical spending. In order to understand the

effects of these policies, the medical decision process needs to be carefully

modeled, and the model needs to be parameterized to be consistent with

observed data.

In this paper, I develop a model of the accumulation and depreciation of

health capital over the life cycle, similar to that of Grossman (1972). In this model,

individuals allocate income to medical purchases, which affect their health capital

stock, and non-medical consumption, which affect their period utility. An

individual’s health stock, in turn, affects the probability of surviving in each period

of their life. The key parameters in this model determine the quality of medical

purchases with respect to the accumulation of health capital, and the depreciation

rate of health capital across an individual’s life cycle. The key difficulty in inferring

these parameters lies in the fact that an individual’s survival rate in each period

depends on the stock of health capital that was brought into the period, the

quantity of medical purchases, and the quality of medical purchases. Because two

of these variables are unobserved, survival rates are not enough to infer the

unobserved parameters.

To overcome this problem, I model the demand for medical purchases. The

key to this exercise is that survival rates in period t are increasing in medical
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quality in period t, and decreasing in the depreciation rate of health capital in

period t− 1,1 while the demand for medical purchases in period t is increasing in

both medical quality in period t in the depreciation rate of health capital in period

t− 1. As a result, observations of medical purchases and survival rates in period t

can be used to infer the the quality of medical care in period t and the depreciation

rate of health capital in period t− 1.

The paper proceeds as follows. In section two, a present a basic version of

the model. In section three, I discuss inference in the basic model. In section four,

I present the full model. In section five, I present the data which will be used in the

quantitative analysis. In section six, I discuss inference in the full model. In section

seven, I present and discuss the results. In section eight, I discuss the sensitivity

of the results to various modeling assumptions, and in section nine I conclude.

2.2 Basic Model

In this section, I develop a simple dynamic model of demand for medical goods

similar to Lawver (2011), extended to allow for investment in health capital over the

life cycle. The economy is populated by a cohort of ex-ante identical individuals

which live three periods. Each individual is endowed with a lifetime stream of

income and an initial health stock. Agents value medical consumption and

non-medical consumption. Individuals value medical consumption because of the

associated increases in the probability of surviving to the next period and in

tomorrow’s beginning of period health capital stock. Survival rates in each period

depend on an individual’s health capital at the beginning of the period and medical

consumption. Individuals value non-medical consumption because it increases

their period utility.

1 The higher the depreciation rate in period t − 1, the “sicker" an individual will
be in period t.
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Demographics

Time is discrete, and indexed by a. There is one cohort of individuals which live a

maximum of three periods, corresponding to a = 0, 1, 2. There are two sub-periods

in each period, hereafter referred to as ’beginning’ and ’end,’ denoted by i = 0, 1.

Subscripts denote the time period a and the superscript denotes that the

sub-period within time period a. Health capital is the only variable which varies

across sub-periods. Individuals are indexed by a, and are identical. Individuals are

endowed with health capital H0
0 at the beginning of period 0. In each period,

individuals allocate income to purchases of medical goods and non-medical

consumption. A fraction sa survive to the next period.

Health Capital

Individuals invest in health capital over the life cycle. Health capital at the

beginning of period at age a is denoted H0
a , and health capital at the end of the

period is denoted H1
a . Health capital at the end of each period is a function of

health capital at the beginning of each period as well as medical consumption ma

according to the following function g:

H1
a = g(H0

a ,ma)

Function g is increasing in both arguments, and concave in medical

consumption. I restrict function g, which I will call the health capital accumulation

function, to be in the following form:

g(H0
a ,ma) = H0

a(1 +ma)

At the end of each period, health capital depreciates. Health capital in the

beginning of the next period is written as:

H0
a+1 = (1− δa)H1

a
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where δa denotes the depreciation rate of health capital, which depends on the

time period.

Medical Quality

Individuals value medical purchases xa because of the associated increase in end

of period health capital. Increasing end of period health capital has two effects.

First, it increases the current period survival rate. Second, it increases health

capital at the beginning of the next period contingent on survival. I define medical

consumption ma to be the product of the quantity of medical purchases xa and the

quality of medical purchases Aa. Medical quality, then, determines the rate at

which each unit of medical purchases increases an individual’s end of period

health capital.

Preferences

Individuals value expected lifetime streams of non-medical consumption according

to the following utility function:

∑
a

βafa({mj}a−1
j=0 , H

0
0 )u(ca)

where fa({mj}a−1
j=0) denotes the probability that an individual survives to age a as a

function of medical consumption before age a and initial health capital H0
0 , and u is

the period utility function, which is increasing and concave. The utility from death

is normalized to zero. I restrict u to be in the following form:

u(ca) = log(ca) + b

where b is the constant term in the flow utility function. This term is

important in models with endogenous survival rates. Since the level of the value of

death is normalized to zero, the level of utility during while alive is an important

determinant of the optimal level of medical purchases.2

2 For further discussion, see Hall and Jones (2007)
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Survival Function

The probability that an individuals survives to the next period is a function of an

individual’s end of period health capital. An individual’s period mortality rate is the

inverse of end of period health capital. An individual’s period survival rate, then, is

written:

sa = 1− 1

H1
a

Budget

Individuals are endowed with a lifetime stream of income, with period income

endowment written ya. In each period, individuals allocate income to medical

purchases xa and non-medical consumption ca. The relative price of medical

purchases is the same in all periods, and is denoted p.

Individual Decision Problem

The individual decision problem is written as follows:

Va(H
0
a) = max

xa,ca
[u(ca) + βsaVa+1(H0

a+1)]

subject to: ca + pxa = ya

H1
a = g(H0

a , Aaxa)

H0
a+1 = (1− δa)H1

a

sa = 1− 1

H1
a

2.3 Inference in the Basic Model

The key exercise here is to use the model to infer unobserved parameters using

observations of medical purchases xa and survival rates sa. The unknown

parameters in this model determine the life cycle profile of medical quality Aa,

health capital depreciation rate δa, and beginning of period health capital H0
a . Note

that, by construction, the life cycle profile of H1
a can be inferred directly by
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observations sa. Since this is a three period model, health capital in the final

period is irrelevant to the decision process, and the depreciation rate of health

capital in the second to last period is also irrelevant to the decision process. Since

medical consumption and health capital do not enter into the period utility function,

individuals will make no medical purchases in the final period. The relevant

exercise in this simple setting, then, is to use observations of xa and sa in periods

0 and 1, along with observations of income and prices, to infer H0
a and Aa in

periods 0 and 1, and δ0.

The Mechanics of Inference

The key to inference in this setting is working backwards. In period 2, independent

of an individual’s health capital, individuals will allocate all of their income to

non-medical consumption because medical purchases are not valuable in the final

period of life. As a result, V2(H0
2 ) = u(y2) for all H0

2 . Since V2(H0
2 ) does not

depend on H0
2 , δ1 does not affect the individual’s decision problem. Further, by

definition, H1
1 = 1/(1− s1). The two relevant unobserved parameters in period 1,

then, are H0
1 and A1.

It is straightforward to infer H0
1 and A1 from observation of x1 and s1. The

key idea is that s1, taking x1 as given, is increasing in both H0
1 and A1, while the

optimal level of x1 is decreasing in H0
1 , and increasing in A1. As a result, there is a

single pair (A1, H
0
1 ) such that model predictions for survival rates and medical

purchases match observations of these variables. One important thing to note is

that this relationship between model parameters and the medical purchase

decision is consistent with the data.3 Once A1 is inferred, V1(z) can be calculated

for all possible values of beginning of period 1 health capital, denoted z in the

function.

3 For more detail, see Lawver (2011)
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Once H0
1 and A1 are inferred, it is straightforward to infer H0

0 , A0, and δ0

from observation of x0 and s0. The depreciation rate in period 0 δ0 can be

calculated directly once H0
1 has been inferred since H1

0 is known. By definition,

δ0 = 1−H0
1/H

1
0 . Once δ is inferred, H0

0 and A0 can be inferred in the same

fashion as H0
1 and A1. Once again, taking all other parameters as fixed, there is a

single pair (A0, H
0
0 ) such that model predictions for match observations for

survival rates and medical purchases.

This approach is similar to the approach employed in Lawver (2011) in a

model in which medical purchases affect an individual’s period survival rate, but

have no effect on an individual’s period survival in the next period. This paper

extends the methods of Lawver (2011) in order to infer the life cycle profile of

health capital depreciation rates in a model with health capital investment.

A Numerical Example

Here, I present an example to detail the mapping between observations and model

parameters numerically. To do so, I infer model parameters for a variety of

observations of medical expenditure decisions and survival rates in periods 0 and

1. I allow the observation of one variable to vary at a time in order to present the

effect that changes in observations have on changes in the inferred model

parameters.

In the baseline case, I choose ya = 50000, p = 1, β = .96, b = 10,

observed survival rates are s0 = s1 = 0.98, and observed medical purchases are

x0 = x1 = 5000, and x2 = 0.4 In the following numerical exercises, I will allow each

of x0, x1, s0, and s1 to vary. In each figure, the variable on the x-axis will be an

index of the variable which will be varied in the exercise, with index value 50

corresponding to the baseline observation of the variable. The variable on the

4 Recall that individuals do not value medical purchases in period two, because
they do not affect lifetime utility.
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y-axis corresponds to the inferred value of the parameter relative to the baseline

parameter value.

Figure 2.1: Inferred Model Parameters Relative to Baseline Estimate For Variation
in x0

In the first numerical exercise, I allow x0 to vary between 4500,

corresponding to an index value of 0, and 5500, corresponding to an index value of

100, and keep observations of the other three variables fixed. As shown in the

figure, an increase in the observation of x0 leads to an increase in the inferred

value of A0, a decrease in the inferred value of H0
0 , and no change in the inferred

value of other parameters. Parameters A1 and H0
1 are inferred directly from period

1 observations, therefore changes in period 0 observations have no effect on

them. Parameter δ0 is inferred from period 1 observations and s0. This implies that

changes in x0 have no effect on the inferred value of δ0.

An increase in x0 implies that the marginal value of medical spending
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increased at the baseline medical spending level. Since nothing in periods one or

two changed, this must have been generated by either an increase in A0, a

decrease in H0
0 , or both. An increase in A0 without a decrease in H0

0 would lead to

an increase in the equilibrium period zero survival rate, and a decrease in H0
0

without an increase in A0 would lead to a decrease in the equilibrium period zero

survival rate,5 therefore both A0 must have increased and H0
0 must have

decreased in order to generate the increase in period zero medical spending

without any change in the period zero survival rate.

Figure 2.2: Inferred Model Parameters Relative to Baseline Estimate For Variation
in x1

In the second numerical exercise, I allow x1 to vary between 4500,

corresponding to an index value of 0, and 5500, corresponding to an index value of

100, and keep observations of the other three variables fixed. As shown in the

figure, an increase in the observation of x1 leads to increases in the inferred

5 Both can be shown using a simple revealed preference argument.
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values of A1, δ0, and H0
0 , and decreases in the inferred values of H0

1 and A0. The

changes in the inferred values of A1 and H0
1 are straightforward, and generated in

a similar fashion to the changes in A0 and H0
0 discussed in the first numerical

exercise. A decrease in H0
1 without a change in H0

1 implies that the inferred value

of δ0 increased.

The changes in the inferred values of H0
0 and A0 are very small, and are

not quite as straightforward. Here, two things which affect the value of medical

spending in period zero are changed. If the value of medical spending had

changed, then a change in x0 would be expected. Parameters A0 and H0
0 , then,

must change in order to generate no change in x0 to counteract the effects of other

factors on the value of period one medical spending. First, an increase in medical

spending in period one implies that non-medical consumption decreased in period

one, which implies that the value living to period one declined, decreasing the

marginal value of medical spending in period one. Second, an increase in δ0

increases the value of medical spending in period zero.6 As shown in the figure,

there is a very small increase in the inferred values of A0 and a very small

decrease in the inferred value of H0
0 , implying that the second effect dominated the

first only slightly.

In the third numerical exercise, I allow s0 to vary between .975,

corresponding to an index value of 0, and .985, corresponding to an index value of

100, and keep observations of the other three variables fixed. As shown in the

figure, an increase in the observation of x0 leads to increases in the inferred

values of A0, H0
0 , and δ0, and no change in the inferred value of other parameters.

Parameters A1 and H0
1 are inferred directly from period 1 observations, therefore

changes in period 0 observations have no effect on them. A change in s0, by

definition, increases H1
0 without a change in H0

1 , which implies that the inferred

6 EXPLAIN
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Figure 2.3: Inferred Model Parameters Relative to Baseline Estimate For Variation
in s0

value of δ0 increased.

Since x0 is fixed, an increase in s0 implies that either A0 increased, H0
0

increased, or both. An increase in A0 without an increase in H0
0 would lead to an

increase in x0, and an increase in H0
0 without an increase in A0 would lead to an

decrease in x0, therefore both must have increased in order to generate an

increase in s0 without a change in x0.

In the fourth numerical exercise, I allow s1 to vary between .975,

corresponding to an index value of 0, and .985, corresponding to an index value of

100, and keep observations of the other three variables fixed. As shown in the

figure, an increase in the observation of x1 leads to increases in the inferred

values of A0, A1, and H0
1 , and decreases in the inferred values of H0

0 and δ0. The

changes in the inferred values of A1 and H0
1 are straightforward, and generated in
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Figure 2.4: Inferred Model Parameters Relative to Baseline Estimate For Variation
in s1

a similar fashion to the changes in A0 and H0
0 discussed in the third numerical

exercise. An increase in H0
1 without a change in H0

1 implies that the inferred value

of δ0 decreased.

The changes in the inferred values of H0
0 and A0 are generated by similar

forces as in the second numerical exercise. Once again, two things which affect

the value of medical spending in period zero change. First, an increase in the

period one survival rate implies that the value living to period one increased

because of the increase in the expected utility of surviving to period two. Second,

a decrease in δ0 decreases the value of medical spending in period zero. In this

cases, the result of these effects was an decrease in the value of medical

spending, meaning an increase in A0 and a decrease in H0
0 are necessary in order

to generate no change in observations of x0 and s0.
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2.4 Full Model

In this section, I extend the model developed in section two in order to study the

accumulation and depreciation of health capital over the life cycle in the US. I

extend the model along three dimensions: individuals live at most fifteen periods

instead of three, corresponding to the seventy-five year time horizon between ages

25 and 100, individuals pay for a share θa of medical expenditures out of pocket,

and individuals can accumulate savings, denoted ka, over their life cycle in order to

smooth their lifetime non-medical consumption stream. The economy is populated

by a cohort of ex-ante identical individuals which live at most fifteen periods,

corresponding to a = 0, 1, ..14. Each individual is endowed with a lifetime stream

of income and an initial health stock H0
0 , and no initial assets.

Budget

Individuals are endowed with a lifetime stream of income, with period income

endowment written ya. In each period, individuals allocate their income

endowment and savings income to medical purchases xa, non-medical

consumption ca, and tomorrow’s savings sa+1. The relative price of medical

purchases is denoted p, and the net return on savings is denoted R. Individuals

pay a fraction θa of their medical expenditures out of pocket, in line with the fact

that a large portion of medical expenses a financed indirectly via public and private

insurance. Savings is constrained to be non-negative in each period, and

accidental bequests are not redistributed.
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Individual Decision Problem

The individual decision problem is written as follows:

Va(H
0
a , ka) = max

xa,ca,ka+1

[u(ca) + βsaVa+1(H0
a+1)]

subject to: ca + θapxa + ka+1 = ya +Rka

ka+1 ≥ 0

H1
a = g(H0

a , Aaxa)

H0
a+1 = (1− δa)H1

a

sa = 1− 1

H1
a

2.5 Data

The goal of this exercise is to infer the life cycle profile of the quality of medical

purchases Aa, and the depreciation rate of health capital δa in the US. To do so, I

will use data on the life cycle profile of medical purchases, survival rates, and other

variables for males7 in the US between 1996 and 2007 to construct an average life

cycle profile. In order to do this exercise, three data sources are used. The data

used here are annual and come from the Medical Expenditure Panel Survey

(MEPS), the Bureau of Labor Statistics (BLS) and the Social Security

Administration (SSA). This data is used to construct observations of survival rates

sa, medical purchases xa, co-insurance rates θa, and income endowments ya for

each 5-year age group from 25-99,8 and the relative price of medical purchases p.

BLS data is used to construct the relative price of medical purchases by averaging

the relative price of medical purchases between 1996 and 2007.

The MEPS reports data on income, medical expenditures, and

out-of-pocket medical expenditures at the individual level for males 25-84. The

7 Males are studied here for simplicity, as their medical decisions of males are
not affected by pregnancy.

8 25-29 year olds, 30-34 year olds, etc.
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also report average health insurance premium payments made by employees. For

individuals under 65, an individual’s income endowment is defined to be their

income, as reported by MEPS, minus the average health insurance payment made

by employees. For individuals 65-84, the income endowment is defined to be

income as defined in MEPS. I use the individual-level data to construct age-level

data in each period by averaging across individuals in the age group in all time

periods. To calculate the average co-insurance rate θa that individuals pay, I

calculate the share of total medical expenses that are paid by each group. Overall,

out-of-pocket payments make up a small fraction of medical expenses, and

generally declines with age. This pattern is shown in Figure 2.5. Income

endowments and co-insurance rates for individuals 85 to 99 are chosen to be

equal to their corresponding values for 80-84 year olds, because MEPS data is not

available for these age groups. Medical purchases are calculated by determining

average medical spending in each group, and dividing by the average relative

price of medical purchases p.

The SSA reports mortality rates at every age for 1990, 2000, and 2010. I

construct mortality rates in years that are not reported using linear interpolation.

The mortality rate sa is defined to be the probability that an survives in each of the

years making up period a. For a = 0, this corresponds to the probability of

surviving from age 25 to age 30. Figure 2.6 shows the life cycle profile of survival

rates over this period.

Figure 2.7 shows the life cycle profile of medical expenditures relative to

income. As shown in the figure, the share of income devoted to medical

expenditures rises sharply with age.

2.6 Inference in the Full Model

The unknown parameters in this model determine the life cycle profiles of the

quality of medical purchases in the accumulation of health capital Aa and of the
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Figure 2.5: Co-Insurance Rate by Age Group

depreciation rate of health capital δa, the constant term in the period utility function

b, the discount rate β, and the net return on assets R. I will assume that the yearly

discount rate is .96, implying that β = .965. I will assume that R = 1/β − 1.

The key exercise here is to use the model to infer the life cycle profiles of

the unobserved parameters using observations of the life cycle profiles of medical

purchases xa and survival rates sa. The unknown parameters in this model

determine the life cycle profile of medical quality Aa, health capital depreciation

rate δa, and beginning of period health capital H0
a . The key to this exercise, as in

the basic model, is to work backwards. In the final period, an individual’s health

capital stock does not affect their decisions, and therefore the depreciation rate of

health capital in the second to last period does not affect decisions. As a result, it
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Figure 2.6: Survival Rate by Age Group

is straightforward to infer medical quality and beginning of period health capital in

the final period, and therefore the depreciation rate of health capital in the second

to last period. Given that these parameters have been inferred, it is straightforward

to work one step backward. I will detail these steps in this section.

Outline of procedure

Here, I will outline the procedure used to infer model parameters over the life

cycle. First, I guess the value of the constant term in the period utility function b.

Then I infer all other model parameters, taking b as given. Then I calculate the

implied value of statistical life for 35-44 year olds, and use this information to

update the guess of b. I repeat this process until the value of statistical life in the

model is consistent with the estimate in Aldy and Viscusi (2008).
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Figure 2.7: Medical Expenditures Relative to Income by Age Group

To infer model parameters other than b, taking the value of b as given, I

proceed iteratively. In the first step, I guess the life cycle profile of savings, A11,

and δ10. I use this to calculate the value of living to period 12. Then, working

backwards, I infer model parameters starting with A11, H0
11, and δ10. Then, I check

the intertemporal Kuhn-Tucker conditions to see if the guessed savings decision is

consistent with optimal decision making. If it isn’t, I update the savings decision

rule so the intertemporal Kuhn-Tucker conditions are satisfied.9 I also check

whether the guessed values of A11 and δ10 are consistent with the inferred values

of the same parameters. I update the guess of A11 and δ10, as well as the guess

for the savings profile, until this process converges.

9 Note that the only complication arises because asset holdings are constrained
to be non-negative
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Decision Rule Computation

The basic strategy used throughout this procedure in each stage of this procedure

is to guess parameters, compute medical purchase decision rules as a function of

the parameters, and update the guess of the parameters based on the comparison

of the implied decision rules with the data. Here, I will detail the strategy used to

compute medical decision rules.

One complication in this exercise is that the value function depends on the

stock of health capital that individuals bring into each period, and therefore the

medical purchase decision depends on the marginal value of increases in the

health capital stock. This type of problem is typically solved by computing the value

function over a wide range of values of the health capital stock. I take another

approach. The key to my approach is that parameters are inferred starting in the

final period. In period t, given that all δt and all future parameters and decision

rules are known, it is straightforward to calculate the marginal value of medical

purchases as a function of At and H t
0 without differentiating the value function with

respect to the health capital stock. The key to this is that, in period t, the

probability of surviving to each time period can be written as a function of today’s

beginning of period health capital stock, today’s medical consumption, all future

medical consumption levels, and health capital depreciation rates starting period t.

This is because st+1 depends on mt+1 and H0
t+1, which depends on H0

t , mt, and

δt. Extending this forward, one can write st+i as a function of H0
t , {δt+j}i−1

j=0, and

{mt+j}ij=0. For convenience, let hti(H0
t , {δt+j}i−1

j=0, {mt+j}ij=0) be the function

describing survival rates in period t+ i as described previously. The marginal

value of a unit of medical consumption in period t, then, can be written as:∑
i=0:T−t

∂hti
∂mt

βi+1u(ct+i+1)

where each term in the summation describes the marginal increase in discounted
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period t+ i+ 1 utility with respect to medical consumption10 in period t. From here,

it is straightforward to solve for the period t allocation which solves the consumer’s

maximization problem, taking current and future period parameters as given.

Value of Statistical Life

Following Hall and Jones (2007), the parameter b is chosen to match an estimate

of the value of a statistical life. In particular, I will choose b so that 34-44 year olds

value their lives at 9.9 million dollars,11 based on the estimate from Aldy and

Viscusi (2008).12 The value of a statistical life is the dollar value of an individual’s

expected utility stream. Following Kniesner, Viscusi, and Ziliak (2006), the value of

a statistical life for 35-44 year-olds, which I will call V SL, is calculated as follows:

V SL =
1

2

V2(H0
2 , k2)

u′(c2)
+

1

2

V3(H0
3 , k3)

u′(c3)

where Va corresponds to the value function at age a. Recall that the value of a

statistical life is the dollar value of an individual’s expected utility stream. The value

function, evaluated at the realized values of health capital and assets, is the

individual’s expected utility stream. To calculate the dollar value of the expected

utility stream, it is divided by u′(ca), the marginal utility of wealth.

Model parameters for 85-99 year olds

One complication in this procedure is that MEPS data does not include

observations for these age groups. It is important to include these groups because

the decisions of younger individuals depend on the value of living to these ages.

Because of this, I assume that δ11, δ12, and δ13 are equal to δ10, ie that the health

10 One can easily convert this in to the marginal increase in discounted period
t+ i+ 1 utility with respect to medical purchases.

11 There is considerable variation in estimates of the value of a statistical life. For
a survey, see Viscussi and Aldy (2003). I will discuss the sensitivity of results to the
choice of the value of a statistical life in Section 8.

12 Their estimate corresponds to the value of life for individuals in this age group
in 2000, which is roughly the midpoint of my sample.
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capital depreciation rate is constant after ages 75-79. Given this assumptions, it is

straightforward to calculate H0
12, H0

13, and H0
14 using observations of survival rates.

The proceeds iteratively. In the first stage, I guess δ10, which determines the health

capital depreciation rate for the older groups. Then, I choose parameters A12, A13,

and A14 so that model predictions for survival rates are consistent with the data for

these age groups. Then, I infer model parameters for individuals under 85. Then, I

update the guess of δ10, and repeat this procedure until convergence.

Model parameters for 25-84 year olds

The procedure to determine model parameters for 25-84 year olds works

backwards. To infer parameters in period t, taking δt and all future parameters as

given, as proceed as follows. First, I guess Ãt. Then, I calculate the H̃0
t which

solves H1
t = g(H̃0

t , Ãtxt), where xt denotes the observation of medical purchases

in the data. I then calculate decision rules as a function of Ãt and H̃0
t , and

compare the medical purchase decision implied by the model with the medical

purchase decision in the data. Based on the decision rule implied by my guess of

Ãt, I update my guess of Ãt, and repeat this process until it converges.

2.7 Results

In this section, I present and discuss the results of the main exercise. In particular,

I will report the life cycle profiles of the quality of medical care and of the

depreciation rate of health capital. Figure 2.8 shows the life cycle profile of δa. As

shown in the figure, the depreciation rate of health capital is generally increasing

over the life cycle. One surprising result is that the depreciation rate. This result is

not so surprising once one takes into account that the 5-year mortality rate

between ages 65-69 is 3.8 times higher than the mortality rate between ages

50-54, while the mortality rate between ages 80-84 is 3.2 times higher than the

mortality rate between ages 65-69.
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Figure 2.8: Life Cycle Profile of δa

Figure 2.9 shows the life cycle profile of Aa, normalized so that the average

value of Aa equals one. As shown in the figure, the quality of medical care is

highest for 25-29 year olds, almost three times higher than average. Medical

quality declines steady until ages 55-59, and rises afterward, rising most sharply

for 80-84 year-olds. This result is likely due to variation in the types of treatment

that individuals purchase over the life cycle, and variation in the quality of each

type of treatment. According to MEPS data, the highest portion of expenditures for

25-44 year-old males are for trauma-related conditions. For 45-64 year-olds, the

highest portion of expenditures are for cancer, and for 65-84 year-olds the highest

portion of medical expenditures are for heart conditions. More work is needed to

decompose the quality of medical care in general for each age group into the
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quality of medical care for each type of treatment for each age group.

Figure 2.9: Life Cycle Profile of Aa

2.8 Sensitivity

In this section, I report the inferred model parameters for a variety of specifications

of the model. The goal of this exercise is to understand the importance of various

modeling assumptions in the mapping between the data and the model

parameters. In particular, I explore the extent to which the specification of the

period utility function and the health capital accumulation function affect the

results. I also explore the extent to which the targeted value of statistical life effects

results. I will focus on the effect that changes in the specification of the model

have on the inferred values of medical quality, as these values are much more

sensitive to the changes that I consider than the inferred values of the depreciation
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rate of health capital.

I will consider period utility functions in the following form:

u(ca) =
c1−γ
a

1− γ
+ b

Recall that the baseline specification corresponds to the case that γ = 1. In Figure

2.10, I report results from the main quantitative exercise in the case that γ equals

.5, .8, 1.2, and 2, and compare them to the baseline case in which γ = 1. I scale

the reported values of medical quality so that the average medical quality in the

baseline case is equal to one. As shown in the figure, the inferred values of the

quality of medical care are most sensitive at ages 25-29 and 80-84, and least

sensitive between ages 40 and 70. In general, as shown in the figure, a higher γ

implies that medical quality must be higher. The reason for this is that the higher γ

is, the slower the marginal utility of non-medical consumption declines, and

therefore, for a fixed level of consumption, the higher the quality of medical care

must be in order to equate the marginal value of medical and non-medical

consumption.

I will now consider health capital accumulation functions in the following

form:

g(H0
a ,ma) = H0

a(1 +mη
a)

Recall that the baseline specification corresponds to the case that η = 1. In Figure

??, I report results from the main quantitative exercise in the case that η equals .8,

and .9, and compare them to the baseline case in which η = 1. I scale the

reported values of medical quality so that the average medical quality in the

baseline case is equal to one. As shown in the figure, changes in η have a large

effect on the inferred values of medical quality for every age group. For η = .9, the

inferred values of medical quality are roughly doubled for all age groups, and for

η = .8, the inferred values of medical quality are roughly quintupled for all age
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Figure 2.10: Inferred Medical Quality Profile For Variation in γ Relative to Average
Medical Quality for γ = 1

groups. The reason for this is that the marginal increase in the survival rate with

respect to medical consumption is decreasing in η. Then, for a fixed level of

medical purchases, a lower value of η implies that a higher level of medical quality

is necessary in order for the marginal value of medical purchases to be equal to

the marginal value of non-medical consumption.

In Figure 2.11, I investigate the extent to which changes in η scale the life

cycle profile of medical quality by plotting the quality of medical care relative to the

average quality of medical care for each η. As you can see in the figure, the life

cycle profiles look almost identical after each profile is normalized so the average

value is equal to one. This implies that changing η, over this range, effectively
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Figure 2.11: Inferred Medical Quality Profile For Variation in η, Relative to Average
Medical Quality for η = 1

scales the life cycle profile of the quality of medical care, while having a minor

impact on the its shape.

In Figure 2.13, I report results from the main quantitative exercise in the

case that I choose b so that the value of statistical life for 35-44 year olds is 9

million dollars and 11 million dollars, and compare them to the baseline case in

which the corresponding value is 9.9 million dollars. I scale the reported values of

medical quality so that the average medical quality in the baseline case is equal to

one. As shown in the figure, increases in the targeted value of statistical life lead to

increases in the inferred values of medical quality for every age group. The reason

for this is that, fixing the level of consumption in each period, an increase in the
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Figure 2.12: Inferred Medical Quality Profile For Variation in η, Relative to Average
Medical Quality for each η

targeted value of statistical life leads to an increase in the inferred value of b, and

therefore an increase in the level of utility in each period. As a result, an increase

in the targeted value of a statistical life leads to an increase in the marginal value

of medical purchases, holding all else constant. Then, for a fixed level of medical

purchases, a higher value of the value of statistical life implies that a lower level of

medical quality is necessary in order for the marginal value of medical purchases

to be equal to the marginal value of non-medical consumption. As seen in the

picture, similar to the case of variation in η, changes in the targeted value of

statistical life scale the inferred values of medical quality, and do not have a large

impact on the shape of the life cycle profile of medical quality.
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Figure 2.13: Inferred Medical Quality Profile For Variation in the Value of Statistical
Life, Relative to Average Medical Quality in the Baseline Case

2.9 Conclusion

This paper studies the accumulation and depreciation of health capital over the life

cycle. The key contribution of this paper is the development of methods to infer the

quality of medical purchases in the accumulation of health capital, and the rate at

which health capital depreciates over the life cycle. This is an important

contribution because the quantitative analysis of policy related to the allocation of

resources to medical purchases requires careful modeling of the medical decision

process, and careful inference of the associated parameters. The methods

developed here can be extended to study a wide variety of topics, including the

change in medical quality and the depreciation rate of health capital over time, and
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variation in medical quality and the depreciation rate of health capital across

various demographic characteristics, including race, region, and educational

attainment. These methods can also be extended to evaluate and design policy

along various dimensions.
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Chapter 3

A NOTE ON SHARING RULES IN TEAMS

3.1 Introduction

Consider the "Moral Hazard in Teams" game, introduced by Holmstrom (1982). It

is well-known in this setting that many outcomes, including nearly all efficient ones,

cannot be implemented using balanced-budget contracts, which I will call sharing

rules. I show that, with standard regularity conditions on production and utility

functions, all outcomes that can be implemented by a sharing rule can be

implemented by a linear contract, in which all agents receive a constant share of

output plus a transfer. Because of this, a compact set of implementable outcomes

can be considered without loss of generality. Then, the sharing rule whose

outcome maximizes welfare exists.

A large volume of work has attempted to solve the partnership problem in

other settings. In particular, work has been focused on the implementation of

efficient or almost-efficient outcomes in slightly different environments (see, e.g.,

Legros and Matsushima (1991), Legros and Matthews (1993), and Obara and

Rahman (2009)). Nandeibam (2002) breaks from this literature, and attempts to

characterize implementable outcomes given standard primitives and relatively

smooth budget balancing contracts.

In this paper, I extend the work of Nandeibam (2002) . In that paper, he

proves that all interior outcomes which can be implemented using a piecewise

continuously differentiable contract can be implemented by a linear contract.

Then, outcomes can be implemented by simple linear contracts, or by complex

contracts which are not piecewise continuously differentiable. This set is a large,

and non-compact, subset of the contract set. I extend this by considering the entire

set of contracts, and proving that linear contracts can implement all implementable

outcomes. This result is analagous to the Revelation Principle. Of all of the
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complex possibilities for sharing rules, none can implement outcomes which are

different than those of simple, linear contracts.

I am able to prove this result by characterizing the set of potential left and

right-hand derivatives of contracts about all equilibria. Using this characterization

and elementary methods, I prove that contracts are differentiable about all

equilibrium output levels, and therefore all equilibria can be implemented by a

linear contract. This result is true because the budget balance condition on

contracts forces marginal utility to be zero at any interior Nash Equilibrium for all

players. Any budget balancing contract must be, by definition, increasing one for

one with output in the aggregate, linking the marginal utilities of the agents.

The rest of the paper is organized as follows. In section 2, I present the

details of the model. In section 3, I prove the main result in the case of two agents,

and I prove that the welfare-maximization problem is well-defined in section 4. I

extend the main result to the n-agent case in section 5. I conclude in section 6.

3.2 Model

In this model, n agents are engaged in team production. Each agent i chooses a

non-negative effort levels ai ∈ R+, which is unobservable. Let a = (a1, .., an)

denote an action profile. The action profile a determines output f : Rn
+ → R+. A

contract p : R+ → Rn specifies how output is divided between agents. Individual

effort is unobservable, and contracts must be contingent on total output. Individual

i has preferences over consumed output and exerted effort given by the utility

function U i : R× R+ → R, with the first argument denoting the amount of output

that the agent consumes. Following Nandeibam (2002) , I consider primitives with

standard regularity conditions. The production function f is continuously

differentiable, strictly increasing and concave on R2
++. An individual i’s utility

function U i is continuously differentiable, concave and strictly increasing in the first

argument, concave and strictly decreasing in the second argument, with
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U i
2(x, 0) = 0 and U i

2(x,∞) =∞. I normalize f(0, .., 0) = 0 and U i(0, 0) = 0. I

break from Nandeibam (2002) only in the assumption that marginal utility from

good one eventually declines to zero. This assumption is necessary for the welfare

maximization problem to be well-defined. Otherwise, a social planner may want to

write a contract which transfers infinite consumption to one agent.

I consider all contracts p satisfying budget balance, which means for all

y ∈ R+,
∑
pi(y) = y. Let BB(n) denote the set of budget balancing contracts

which divide output between n agents. Let NE(p) denote the set of Nash

Equilibria given contract p. An outcome (x∗, a∗) is implementable if there exists a

contract p such that a∗ ∈ NE(p) and x∗ = pi(f(a∗)) for all i.

3.3 Main Result

I prove that all outcomes that are implementable by a budget balancing contract

can be implemented by a linear contract. I do so in a few steps by characterizing

contracts about a Nash Equilibrium output level. First, I prove that contracts are

continuous about the equilibrium. Then, I characterize the set of left and

right-hand derivatives about the equilibrium. I use this characterization to prove

that all equilibria can be implemented using a linear contract. For illustrative

purposes, I prove the result in the two-agent case. I extend this to the n-agent

case in the next section. As a consequence of this result, the welfare maximization

problem is also well-defined in this case.

To begin, I will restrict attention to Nash Equilibria in which all players

choose interior actions. It is straightforward to extend the result to Nash Equilibria

in which at least one player provides zero effort. I will prove this for the two-player

case first. The proof for the n-player case, as I will show, is a simple extension of

the proof for the two-player case. To be precise, I will prove the following: For all

p ∈ BB(2), all a ∈ NE(p), there exists s1 such that the linear contract
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q(y) = [s1y, (1− s1)y] implements (p(a), a).

I begin by characterizing the contract about an equilibrium. For ease of

notation, let BB denote BB(2). I maintain the assumption that equilibria are

interior throughout.

Lemma 1 For all p ∈ BB and all a∗ ∈ NE(p), p(x) is continuous at f(a∗)

Proof. Let p ∈ BB and a∗ ∈ NE(p) be given. Suppose that p is not continuous at

f(a∗). Then, since p ∈ BB, there exists I > 0 such that for all ε > 0 there exists i

and z ∈ B(ε, f(a∗)) such that pi(z) > I + pi(f(a∗)). Then, since U i and f are

continuous, there exists bi sufficiently close to a∗i such that

U i(pi(f(a∗−i, bi)), bi) > U i(pi(f(a∗)), a∗i ). Then a∗ /∈ NE(p), contradicting

hypothesis. Therefore p is continuous at f(a∗).

I wish to characterize the sets of left and right-hand derivatives of the

payoff function about the equilibrium. To be more precise, let Ri(a
∗, p) be the set

of limits, as h→ 0, of

U i(pi(f(a∗i + |h|, a∗−i)), a∗i )− U i(pi(f(a∗)), a∗i )

|h|
(3.1)

Let Li(a∗, p) be defined analogously for the set of left-hand derivatives of player i’s

payoff function about the equilibrium. For ease of notation, I refer to these sets as

Ri and Li. Note that these sets are non-empty and bounded. In particular,

lim suph→0
pi(f(a∗i +|h|,a∗−i))−pi(f(a∗))

|h| ∈ Ri. Since contracts satisfy budget balance,

the existence of an infinitely sloped trajectory about the equilibrium would lead to a

positive deviation for at least one of the players. The relevant members of these

sets are those along which agents have the best possible deviations. To the right,

for example, agents would like to deviate along with trajectory with the highest

slope. With this in mind, let ri = sup{Ri} and li = inf{Li}. For ease of notation,

let c′i(a
∗
i ) = U i

2(pi(f(a∗)), a∗i ). Note that, since p is continuous at f(a∗), c′i is also
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continuous at a∗i . About an equilibrium, utility cannot be decreasing in effort to the

left, or increasing in effort to the right. This allows me to characterize ri and li.

Lemma 2 For all p ∈ BB, all a∗ ∈ NE(p), and all i, ri + c′i(a
∗
i ) ≤ 0 and

li + c′i(a
∗
i ) ≥ 0.

Proof. Let p ∈ BB, a∗ ∈ NE(p), i be given. Suppose, to the contrary, that

ri + c′i(a
∗
i ) > 0. Then there exists r ∈ Ri such that r + c′i(a

∗
i ) > 0. Then, since p is

continuous at a∗, there exists x > a∗i such that

U i(pi(f(a∗−i, x)), x) > U i(pi(f(a∗)), a∗i ). Then a∗ /∈ NE(p), contradicting the

hypothesis. Therefore ri + c′i(a
∗
i ) ≤ 0. Similarly, li + c′i(a

∗
i ) ≥ 0.

A trivial, but important, consequence of this is that li ≥ ri.

Next, I decompose the sets of derivatives into the derivative of the contract

and the derivative of the production function. By the chain rule, along differentiable

paths, I have dpi
dai

(f(a∗)) = p′i(f(a∗))U i
1(pi(f(a∗)), a∗i )fi(a

∗). Let

Sli = { Li

U i
1(pi(f(a∗)),a∗i )fi(a∗)

} and Sri = { Ri

U i
1(pi(f(a∗)),a∗i )fi(a∗)

}, denoting the left and

right-hand derivatives of the payoff function with respect to output at the

equilibrium. By budget balance, p1(y) + p2(y) = y. Therefore, along differentiable

paths, p′1(y) + p′2(y) = 1. Then, if a ∈ Sl1, 1− a ∈ Sl2. Let sli = inf{Sli}, and

sri = sup{Sri }. Then sl1 + sl2 = inf{Sl1}+ inf{Sl2} = inf{Sl1}+ 1− sup{Sl1} ≤ 1.

Similarly, sr1 + sr2 ≥ 1

Lemma 3 sl1 + sl2 = sr1 + sr2 = 1

Proof. Suppose, to the contrary, that sl1 + sl2 < 1. By Lemma 2, li ≥ ri, then, since

f is increasing, sli ≥ sri . Then, sr1 + sr2 ≤ sl1 + sl2 < 1, contradicting the fact that

sr1 + sr2 ≥ 1. Therefore, sl1 + sl2 ≥ 1. Therefore sl1 + sl2 = 1. Similarly, sr1 + sr2 = 1.
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Corollary 1 For each i, pi is differentiable at f(a∗), sli = sri and

slifi(a
∗) + c′i(a

∗
i ) = srifi(a

∗) + c′i(a
∗
i ) = 0

Proof. sl1 + sl2 = sr1 + sr2, sl1 ≥ sr1, and sl2 ≥ sr2. Then, trivially, sl1 = sr1 and sl2 = sr1.

Then, by Lemma 2, slifi(a
∗) + c′i(a

∗
i ) = srifi(a

∗) + c′i(a
∗
i ) = 0. By Lemma 3,

sl1 + sl2 = 1. Then inf{Sli} = sup{Sli}, implying left and right-differentiability.

Then,since, sli = sri , pi is differentiable at f(a∗).

This effectively characterizes the contracts, and allows us to prove that all

implementable outcomes in this setting can be implemented by a linear sharing

rule. Notice that, if one assumes piecewise differentiability of contracts, as in

Nandeibam (2002), then proving Corollary 1 is the only step necessary in order to

prove differentiability of the contracts at the equilibrium output level, completing the

characterization.

Proposition 1 For all p ∈ BB, all a∗ ∈ NE(p), there exists s1, s2, T such that the

linear contract q(y) = [s1y + T , s2y − T ] implements (p(a∗), a∗).

Proof. Let p ∈ BB, a∗ ∈ NE(p) be given. Let si = sli, and T = p1(f(a∗)− s1f(a∗).

By previous argument, siU
i
1(pi(f(a∗)), a∗i )fi(a

∗) + c′i(a
∗
i ) = 0. Then, since

U i(qi(fi(ai, a
∗
−i)), ai) is concave, a∗i is the best response to a∗−i. Therefore

a∗ ∈ NE(q). By construction, p(a∗) = q(a∗). Therefore q implements (p(a∗), a∗).

Therefore all outcomes implementable by budget balancing contracts can

be implemented by linear budget balancing contracts.

As I mentioned previously, it is straightforward to show that all boundary

outcomes can be implemented by a linear contract. Note that, since the marginal

cost of effort is zero on the boundary, at least one player will exert positive effort in

all equilibria. Consider an equilibrium of a contract p in which agent one exerts
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positive effort a∗1, and agent two exerts zero effort. Then the linear contract with

s1 = − c′1(a∗1)

f1(a∗1,0)
and T = p1(f(a∗1, 0)− s1f(a∗1, 0) implements the outcome. By

construction, agent one’s first order condition holds, and (1− s1) ≤ r2 ≤ −c′2(0),

implying that it is optimal for agent two to exert zero effort.

3.4 Welfare

I am left with the problem of maximizing welfare:

max
s1,T
{ max
a∈NE(s1,T )

[α1U1(s1f(a) + T, a1) + α2U2((1− s1)f(a)− T, a2)]} (3.2)

In order to prove that this maximization problem is well-defined, I need to

show that a compact set of implementable outcomes can be considered without

loss of generality. Since marginal costs converge to positive infinity and marginal

utility converges to zero, the set of outcomes in which welfare is greater than zero

is compact. Further, outcomes in which one player gets a negative share of output

are dominated by outcomes in which that player gets no share of output. This

allows us to consider a compact set of contracts without loss of generality.

Proposition 2 The welfare maximization problem in (2) is well definied.

Proof. Since marginal costs converge to positive infinity and marginal utility

converges to zero, the set of outcomes in which welfare is greater than zero is

compact. Then there exists a T such that T > T implies that welfare is negative.

Let s1 > 1, T be given. Then there exists (a1, 0) ∈ NE(s1, T ). From the first order

condition, marginal cost of effort is greater than marginal utility from consumption

for agent one in equilibrium. This equilibrium is Pareto dominated by

(a∗1, 0) ∈ NE(1, T ), since player two’s consumption has increased, and player one

has chosen the optimal level of effort subject to a2 = 0. Then, with respect to

welfare, we need only consider contracts with 0 ≤ s1 ≤ 1 and |T | ≤ T . Let

(an, Tn)n=1:∞ characterize a of these contracts converging to (a∗, T ∗). Then there
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exists a sequence (s1,n, Tn)n=1:∞ such that (an, Tn) ∈ NE(s1,n, Tn) for all n. Then,

since we consider a compact contract space, there exists a subsequence

converging to (s∗1, T
∗). Then, since the first order condition is continuous in all of

the variable, it follows that (a∗, T ∗) ∈ NE(s∗1, T
∗). Then the space of outcomes

implemented by these contracts is closed. Then the set of outcomes implemented

by these contracts in which welfare is nonnegative is compact. Then the welfare

maximization problem is well-defined.

3.5 n-Player Case

Until now, I have only considered the two-player case. The extension to the

n-player case is straightforward. Lemmas 1 and 2 follow immediately. The

extension of lemma 3 is not immediately obvious. In particular, if p1 is differentiable

along some path, 1− p1 is differentiable along the same path. If there are more

than two players, p2 is not necessarily differentiable along all of the same paths as

p1. However, there will be a path along which p1 and p2 will be differentiable, and

so on. Therefore, for all s ∈ Sln, there exists a path along which all pi’s are

differentiable. I will apply this to prove the inequalities
∑
sli ≤ 1 and

∑
sri ≥ 1 still

hold, allowing us to apply the same methodology to infer the the left and right-hand

shares sum to one.

Proposition 3
∑
sli ≤ 1 and

∑
sri ≥ 1

Proof. Suppose, to the contrary, that
n∑
i=1

sli = α > 1. Let ε = α−s1
2

. There exists

s1 ∈ Sl1 with s1 − sl1 < ε. Then, by budget balance, there exists {s̃li ∈ Sli}ni=2 such

that s1+
n∑
i=2

s̃li = 1. Then
n∑
i=2

sli −
n∑
i=2

s̃li > α− 1− ε. Then there exists s̃lj such that

slj − s̃lj > α−1−ε
n−1

> 0. Then slj 6= inf{Slj}, contradicting hypothesis. Then
n∑
i=1

sli ≤ 1.

Similarly,
n∑
i=1

sri ≥ 1.
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Using these inequalities and sri ≤ sli, I have 1 ≥
n∑
i=1

sli ≥
n∑
i=1

sri ≥ 1, and

therefore
n∑
i=1

sli =
n∑
i=1

sri = 1. The rest of the results follow immediately. Therefore,

I need only consider linear contracts for the n-player case as well. Further, the

problem of choosing the contract which maximizes welfare is also well-defined in

the n-player case.

3.6 Conclusion

The "Moral Hazard in Teams" game has been studied extensively. In particular,

there has been a large volume of work on the implementation of efficient or

almost-efficient outcomes in slightly different environments. Nandeibam (2002)

breaks from this literature, and attempts to characterize implementable outcomes

given standard conditions on primitives and relatively smooth budget balancing

contracts. I continue work along these lines by characterizing outcomes of

arbitrary budget balancing contracts. I prove that all outcomes that are

implementable by budget balancing contracts can be implemented by linear

contracts. One important implication is that, in seeking out the optimal sharing

rule, one needs only to consider the simple problem of choosing the best linear

contract.
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Appendix A

DETAILS OF ESTIMATION PROCEDURE
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In this appendix, I present the details of the procedure used to estimate

parameter values.

Decision Rule Computation

Decision rules are solved for computationally. At age a in period t, decision rules

can be determined uniquely as a function of current period variables and the

function va+1,t+1(k). Since individuals die with probability one after turning age

100, it is simple to compute the value of turning 99 for each k in each time period.

Using this value, we can work backwards to compute decision rules as a function

of a, t, and parameter values.

In order to avoid computing va,t(k) for all values of k, I take a two-step

approach. First, decisions are computed taking savings decisions as given. Then,

savings decisions are updated using the life cycle consumption profiles, and the

optimization problem is solved again. I repeat this process until no agents wish to

increase or decrease their savings. The initial level of savings for agents must also

be calculated. In order to do this, savings is projected backwards linearly for all

age groups at the end of each step in computing the savings decision.

Estimation Procedure

The preference parameter α, the quality parameters Ai,t and γi,A, and the initial

survival rate parameters ψa,t for ages 25-84 and years 1996-2067 must be

estimated. I will refer to a vector of these parameters as Θ throughout this section.

Recall that preference parameter φ is chosen so that the value of a statistical life

for 35-44 year-olds in 2000 is 9.9 million dollars. The basic strategy is to choose

the remaining parameter values so that model predictions for medical expenditures

and survival rates closely match the data. The main problem lies in the fact that

there are a very large number of ψa,t parameters to estimate. This problem is

solved by converting the estimation procedure into a fixed point problem.
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A mapping F from medical decision rules and survival rates into parameter

vectors is constructed, and another mapping G from parameter vectors into

medical decision rules and survival rates is constructed. These mappings are

constructed so that any fixed point of the composed mapping G ◦ F corresponds

to a parameter vector for which model predictions for medical decisions and

survival rates closely match the data. The mapping G maps parameter vectors

into model predictions for medical decision rules and survival rates. The mapping

F maps decisions rules x̃ and survival rates s̃ into the parameter vector which

maximizes the likelihood of the observed values xdataa,t and sdataa,t subject to the

constraint that model predictions for survival rates at decision rule x̃ are equal to s̃.

This restriction allows me to search over the medical quality parameters rather

than the medical quality parameters and the initial survival rate parameters. The

idea is to do a series of simple searches rather than one search which is much

more difficult computationally.

The mapping G from parameter vectors to medical decision rules and

survival rates is straightforward. It maps the parameter vector Θ into model

predictions for medical decisions x∗a,t(Θ), and survival rates s∗a,t(Θ) for each age in

each time period. To be precise:

Ga,t(Θ) = (x∗a,t(Θ), s∗a,t(Θ))

The mapping F maps medical decision rules x1 and survival rates s to the

parameter vector which maximizes the likelihood of observations subject to the

constraint that model predictions for survival rates at decision rule x̃ are equal to s̃.

In order to evaluate the likelihood of a parameter vector given observations,

L(Θ;xdata, sdata) , I assume that deviations from model predictions for the share of

income devoted to medical expenditures and deviations from model predictions for

1For convenience, I use this to mean the medical decision rule for all a,t
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survival rates are each independent and identically distributed. Deviations from

model predictions for the share of income devoted to medical expenditures and

survival rates are drawn from normal distributions with mean 0 and standard

deviation σm and σs, respectively. For a pair (x̃, s̃),

F (x̃, s̃) = arg max
Θ

[L(Θ;xdata, sdata)]

subject to g(x̃a,t, ψa,t) = s̃a,t ∀a, t

The main appeal of this approach is that it solving for F (x̃, s̃) is simple

computationally. Notice that, given the imposed constraint, the parameters Ai,t

and α summarize the entire parameter vector. In particular, parameter ψa,t can be

written as a function of x̃a,t, s̃a,t, and Aa,t as follows:

ψa,t =
s̃a,t(x̃a,tAa,t + 1)− x̃a,tAa,t

1

It is straightforward to solve for F (x̃) numerically, since it is now a maximization

problem over a manageable number of variables rather than thousands.

At a fixed point (x∗, s∗) of the composed mapping G ◦ F , along with the

corresponding parameter vector Θ∗ = F (x∗, s∗), model predictions for survival

rates and medical decisions are close the data, and medical decision rules are

consistent with utility maximization. Solving for this fixed point, then, is a good

estimation procedure in this setting.

The estimation procedure has been reduced to a fixed point problem. Now,

the fixed point must be approximated. An iterative method is used to approximate

the fixed point. There is a natural initial guess – the observed medical decision

rule and survival rate – for the periods for which data is available, and the

projection of this data for other years. Let (x0, s0) denote this initial guess. Starting

at this initial guess, I solve for the sequence (xi+1, si+1) = G(F (xi, si)). There is no
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guarantee, however, that this sequence converges. In order to guarantee that the

sequence converges, F is slightly perturbed.

Recall the problem of solving for F (x̃, s̃), which can be written as:

F (x̃, s̃) = arg max
Θ

[L(Θ;xdata, sdata)]

subject to g(x̃a,t, ψa,t) = s̃a,t ∀a, t

where Xi is a set. In order to ensure that the sequence of decision rule, survival

rate pairs (xi, si) converges, I choose a sequence of constraint sets Xi in the

maximization problem such that Xi converges to a singleton. I choose X0 to be

large, in the sense that likelihood is low at boundary values. I shrink the space by

a factor of 2/3 around the maximizing parameter vector Θ∗i iteratively. Since Xi

converges to a singleton, (xi, si) will also converge. In practice, shrinking the

parameter space is unnecessary; the procedure converges with or without this

perturbation of the problem.

Discussion

The fixed point approach, from a computational standpoint, is roughly equivalent to

adding one parameter vector that must be searched over directly. Consider solving

a minimization problem over one additional dimension. Without additional

information about the structure of the problem, the additional dimension must be

discretized, and the minimization problem must be solved for each grid point in the

additional dimension. Computation time, then, increases linearly with the number

of grid points in the additional dimension. Compare this to the iterative procedure

employed to solve for the fixed point. The computation time is increasing linearly

with the number of steps in the iterative process. The main advantage of the fixed

point approach is that I avoid searching over the large ψa,t space. I am able to

estimate thousands of additional parameters at the computational cost of adding

one additional parameter.
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Another approach is to assume ψa,t can be written as a parameterized

function of age and time. One advantage of this approach is that it dramatically

reduces the number of parameters that must be estimated. Despite the dramatic

reduction in the number of parameters that must be estimated, this approach is

more computationally intensive than the current method. This approach adds at

least two additional dimensions to the parameter space that must be directly

searched over, as opposed to the current method which searches for these

parameters indirectly, which is roughly equivalent computationally to directly

searching over one additional dimension. This approach is also likely to be less

accurate because of the restriction on the set of ψa,t parameters.
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Appendix B

EXTENSION: HEALTH INVESTMENT
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In this appendix, I detail the model that is extended to allow for health

investment that is used to generate synthetic data. The goal of this exercise is to

evaluate the accuracy of my methods in estimating the quality of medical

purchases in an environment in which individuals invest in their health. To do so, I

parameterize this model, and solve for optimal decision rules and realized survival

rates. I use these statistics to estimate the quality of medical purchases.

In this model, there is a group of individuals that make decisions in two

periods. Utility is written as:

u(c1,m1) + βg(m1, ψ1)[u(c2,m2) + βg(m1, ψ2(ψ1,m1))V ] (B.1)

where u is the period utility function detailed in Section 2, g is the survival function,

ψ2(ψ1,m1) is non-medical factors in period 2, and V is the value of surviving to

period 3. Notice that ψ2 is a function of medical consumption in period 1 as well as

non-medical factors in period 1. I restrict this function to be in the form

ψ2(ψ1,m1) = γψexog + (1− γ)(1− δ)g(m1, ψ1) (B.2)

where ψexog is an exogenous parameter. The interpretation of this function is that

an individual’s initial survival rate tomorrow is determined in part as a function of

today’s survival rate, and in part by other factors, such as lifestyle decisions, etc.

The baseline model corresponds to the case in which γ = 1. The function g is

written as:

g(m,ψ) = ψ + (1− ψ)
m

m+ 1
(B.3)

Individuals allocate income yt to medical goods and services xt and

non-medical consumption ct in each period t. The quality of medical goods and

services is A. All prices are equal to one. Agents cannot accumulate assets, and

choose allocations to maximize utility subject to their budget constraint.

I solve for optimal decision rules for a large number of parameterizations. I

estimate quality using the decision rules and survival rates generated by the model
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in period one. Note that, since medical consumption in period two only effects

survival rates in period two, period one is the only period in which estimates of

medical quality may differ from their true value. Since I am evaluating the

estimation of quality, I will fix the values of all parameters unrelated to the survival

function. I choose parameter values as follows: α = .993, V = 20, y = 50000,

ψ = .99, ψexog = .99, δ = .01, and β = .96. Qualitatively, results are not sensitive

to the choice of any of these parameter values.

I perform the estimation procedure for a wide range of values of A and γ. I

choose the range of A so that all estimated values of quality reported in the paper

are included in the range. I report the estimated and actual values of quality for

these parameterizations in Figure B.1. For γ less than 1, estimates of quality

Figure B.1: Medical Quality, Actual and Estimated, Heterogeneity Extension

exceed actual values of quality. The extent to which estimates exceed actual

values depends on the degree to which ψ2 depends on s1. The smaller γ, the

larger the estimation error. Abstracting from the impact of today’s medical
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expenditures on future survival rates can have a large impact on the estimation of

medical quality. The most likely consequence of this abstraction is that estimates

quality growth exceeds actual quality growth.
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Appendix C

EXTENSION: HETEROGENEITY
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In this appendix, I detail the model that is extended to allow for

heterogeneity within age, time groups that is used to generate synthetic data.

Specifically, I am interested in heterogeneity with respect to non-medical factors;

some individuals are sicker than others at the start of the period. The goal of this

exercise is to evaluate the accuracy of my methods in estimating the quality of

medical goods and services in an environment in which individuals invest in their

health. To do so, I parameterize this model. I solve for optimal decision rules and

realized survival rates in period 1. I use these statistics to estimate the quality of

medical goods and services.

In this model, there are two types of individuals, type 1 and type 2. Agents

make decisions in one period. Utility is written as:

u(ci,mi) + βg(mi, ψi)V (C.1)

where i indexes an individual’s type, u is the period utility function detailed in

Section 2, g is the survival function detailed earlier in this section, and V is the

value of surviving to period 2. The mass of individuals of type i is ωi. Individuals

allocate income y to medical goods and services xi and non-medical consumption

ci. The quality of medical goods and services is A. All prices are equal to one.

Agents choose allocations to maximize utility subject to their budget constraint.

I solve for optimal decision rules for a large number of parameterizations. I

estimate quality using the decision rules and survival rates generated by the

model. Since I am evaluating the estimation of quality, I assume that I already

know the values of all parameters unrelated to the survival function. I use the

following parameter values: α = .993, V = 20, y = 50000, ψ1 = .99, ωi = .8,

ω2 = .2, and β = .96. Qualitatively, results are not sensitive to the choice of any of

these parameter values. I perform the estimation procedure for a wide range of

values of A and ψ2. I choose the range of A so that all estimated values of quality
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reported in the paper are included in the range. I report the actual value and the

estimated value of medical quality for a variety of values of ψ and A in Figure C.1.

Figure C.1: Medical Quality, Actual and Estimated, Health Investment Extension

In general, estimates of quality fall below actual values of quality. This is

not the case for particularly low values of A, for which estimates of quality

substantially exceed their actual values. For most values of A, the larger the

degree of heterogeneity in the population, the larger the degree to which actual

values of medical quality exceed estimates of medical quality. Since I focus on the

growth rate of quality, one particular concern is that quality is in the range in which

estimated quality growth is much faster than actual quality growth. The most likely

consequence of abstracting from within-cohort heterogeneity in ψ is that I am

overestimating the growth rate of quality. Similar parameterizations yield similar

results.
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