
Extensions to a Unified Theory of the Cognitive Architecture

by

Nishant Trivedi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2011 by the
Graduate Supervisory Committee:

Patrick Langley, Chair
Kurt VanLehn

Subbarao Kambhampati

ARIZONA STATE UNIVERSITY

May 2011

ABSTRACT

Building computational models of human problem solving has been a long-

standing goal in Artificial Intelligence research. The theories of cognitive architectures

addressed this issue by embedding models of problem solving within them. This thesis

presents an extended account of human problem solving and describes its implementa-

tion within one such theory of cognitive architecture—ICARUS. The document begins

by reviewing the standard theory of problem solving, along with how previous versions

of ICARUS have incorporated and expanded on it. Next it discusses some limitations of

the existing mechanism and proposes four extensions that eliminate these limitations,

elaborate the framework along interesting dimensions, and bring it into closer align-

ment with human problem-solving abilities. After this, it presents evaluations on four

domains that establish the benefits of these extensions. The results demonstrate the

system’s ability to solve problems in various domains and its generality. In closing, it

outlines related work and notes promising directions for additional research.

i

To Dr. Isaac Asimov whose brilliant and imaginative works of fiction picked my

interest as a child and continue to inspire me.

ii

ACKNOWLEDGEMENTS

I am thankful to Dr. Pat Langley for his continued guidance and support during

my association with him as a Master’s student. I learned a lot of valuable lessons

during this time that will be helpful to me in my professional pursuits in the future.

I would like to extend my appreciation to the members of my committee, Dr. Kurt

VanLehn and Dr. Subbarao Kambhampati for their feedback and comments on my

thesis. I am grateful to Mr. Glenn Iba for his help in the overall design of the ICARUS

architecture and his implementation of supporting modules as well as for lending his

expert advice in matters related to programming in LISP. I would like to thank Mr.

Ankur Sharma for the interesting discussions and innovative ideas that we shared. I

owe tons of gratitude to my parents who have always believed in me and extended

their unquestioning support in all of my endeavors. Finally I would like to thank Mr.

Gautam Singh, Mr. Arvind Aylliath, Ms. Trupti Nair, Mr. Pritam Gundecha, Mr.

Niranjan Kulkarni, Mr. Reiley Jeyapaul, Mr. Vinay Hanumaiah and all my friends at

Arizona State University and elsewhere for sharing the lighter side of life with me and

keeping the journey interesting.

iii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iv

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 Introduction . 1

2 The ICARUS Architecture . 5

2.1 Knowledge Representation . 6

2.2 Conceptual Inference . 9

2.3 Skill Execution . 10

2.4 Problem Solving . 12

2.5 Limitations of Problem Solving in ICARUS 14

3 Extensions to the Problem-Solving Mechanism 16

3.1 Problem-Based Organization of Goals 16

3.2 Alternate Problem Formulations . 17

3.3 Improved Search Control . 18

3.3.1 Constraints . 18

3.3.2 Heuristics . 20

3.4 Chaining Over Negated Goals . 20

3.5 Representational Extensions . 21

3.6 Summary Remarks . 22

4 An Extended Problem-Solving Mechanism 23

4.1 Selecting Bindings . 23

4.2 Selecting a Focus Goal . 26

4.3 Selecting a Skill . 26

4.4 Execution and Updating the Environmental State 27

4.5 Backtracking and Failure Recovery . 29

iv

Chapter Page
5 Experimental Evaluations . 31

5.1 Problem Solving in Tower of Hanoi 31

5.2 Testing System Scalability . 32

5.3 Demonstrating the Benefits of Constraints 34

5.4 Demonstrating the Benefits of Heuristics 37

5.5 Summary Remarks . 40

6 Related Research . 42

7 Directions for Future Work . 44

8 Conclusion . 46

BIBLIOGRAPHY . 47

APPENDIX . 49

A LISP Code . 49

v

LIST OF TABLES

Table Page

2.1 Sample ICARUS concepts in the Blocks World domain 8

2.2 Sample ICARUS skills in the Blocks World domain 8

2.3 Sample percepts from the Blocks World domain 9

2.4 Sample beliefs from the Blocks World domain 10

3.1 Sample Constraints from Logistics and Blocks World Domains 19

3.2 Sample Problem from the Blocks World Domain 22

3.3 Sample Intention from the Blocks World Domain 22

4.1 Pseudocode for the Extended Problem Solver 24

5.1 Tower of Hanoi Operator . 32

vi

LIST OF FIGURES

Figure Page

2.1 An Overview of ICARUS . 6

2.2 Classification of ICARUS Memories . 7

2.3 Bottom-up Belief Inference . 10

2.4 Top-down Skill Execution . 11

5.1 System Runtime in Depots Domain as a function of Problem Complexity . 34

5.2 System Runtime in Logistics Domain as a function of Problem Complexity 36

5.3 Number of Nodes Explored in Logistics Domain 37

5.4 Number of Nodes Rejected in Logistics Domain 38

5.5 System Runtime in Gripper Domain as a function of Problem Complexity . 40

vii

Chapter 1

Introduction

Building computational systems that model human cognition has been one of the long-

standing goals of the AI research community. Psychological studies of human cogni-

tion have shown that it involves interactions among a variety of processes, each related

to a distinct mental function. One capability that differentiates humans from other an-

imals is the ability to solve novel problems in unfamiliar situations. Early research on

this topic introduced representational formalisms, performance processes, and learning

mechanisms that continue to play a role in current computational models of human

cognition. Moreover, models developed in this tradition have been precise about both

the structure and processes that underlie cognition. In this thesis, we describe one such

framework for modeling intelligent behavior and propose extensions to its account of

problem solving.

The first complete theory of problem solving outlined by Newell, Shaw, and

Simon [18], made a number of claims about human cognition. The most basic was

that problem solving involves processing of list structures, which is closely related to

the physical symbol system hypothesis [21]. Another important claim, the problem

space hypothesis, stated that problem solving involves search through a space of prob-

lem states generated by applicable operators. In particular, Newell et al. claimed that

much of human problem solving uses a class of search methods known as means-ends

analysis [20]. In this type of search, a problem solver first determines the differences

between the goal state and the current state. Next it selects one of these differences

and an operator that would remove it. Finally, it either applies the operator to bring

about the change or creates a subproblem that would transform the current state into

one where the selected operator is applicable. As the problem solver gains experience,

it acquires domain-specific knowledge that lets it work forward from the current state,

1

rather than chaining backward, to achieve the goal with little or no search [15].

More recently, Langley and Rogers [14] noted some limitations of the standard

theory. In particular, they observed that problem solving:

• occurs in the context of a physical environment.

• abstracts away from physical details and returns only to implement the solution.

• is not a solely mental activity but interleaves reasoning with execution.

• can lead to dead ends that requires restarting on the problem

• can trigger learning that transforms problem solving into informed skill execu-

tion.

Langley and Rogers addressed the limitations of the standard theory by embedding this

extended acount of problem solving into a theory of cognitive architecture.

A cognitive architecture, by definition [13, 17], provides both a theoretical

framework for modeling human cognition and software to support the creation of in-

telligent agents. In particular, it specifies a unified theory of mental phenomena that

remains constant across domains and over time. Thus a cognitive architecture includes

structures and processes that underlie the workings of the mind. This includes short-

term and long-term memories that store goals, beliefs, and knowledge that an agent

utilizes. They also specify the representation of this content and its organization in

memory. Finally, cognitive architectures describe the processes that operate on these

elements including performance mechanisms that use the content and learning mecha-

nisms that alter it.

There has been substantial research on cognitive architectures resulting into a

variety of architectures that differ in their assumptions about the representation, utiliza-

2

tion, and acquisition of knowledge. However, most cognitive architectures share these

basic claims:

• Short-term memories contain dynamic information and are distinct from long-

term memories, which store more stable content. Short-term memories are char-

acterized by low capacity, fast access, and rapid storage. In contrast, long-term

memories are associative with high capacity, rapid retrieval, and slow storage.

• Both short-term and long-term memories contain elements that are modular in

that they can be composed dynamically during performance and learning.

• The memory elements are represented as symbolic list structures and the ones in

long-term memory are accessed by matching their patterns against elements in

short-term memory.

• Cognitive behavior occurs in discrete cycles that match patterns in long-term

memory against short-term elements, then use selected structures to carry out

mental or physical actions.

• Learning is incremental and tightly interleaved with performance, with structural

learning involving the monotonic addition of new symbolic structures to long-

term memory.

Moreover, most research on cognitive architectures focuses on creating intelligent agents

that exist over time, since human cognition operates in this setting.

In this thesis we focus on one such cognitive architecture—ICARUS—and re-

port work on extending its capabilities. In the next chapter, we review the operation of

ICARUS and limitations of its problem-solving module. We then outline some exten-

sions that address these limitations and describe their implementation details. Chapter

5 presents some hypothesis about the system’s behavior and experiments that support

3

them. Chapter 6 examines related research in this area and in closing, chapter 7 outlines

directions for future work.

4

Chapter 2

The ICARUS Architecture

As described earlier, cognitive architectures specify a framework to support modeling

of intelligent behavior. They make assumptions about representation, inference, exe-

cution, problem solving, learning, and other aspects of cognition. ACT-R [1] and Soar

[11] are two well-known cognitive architectures. The ICARUS architecture [12] shares

important claims with them, including the assumptions that cognition operates in dis-

tinct cycles and that it involves symbolic processing. But ICARUS also makes certain

distinctive claims, such as:

• Mental structures are grounded in perception and action.

• Concepts and skills encode different aspects of knowledge, and they are stored

as distinct but interconnected cognitive structures.

• Each element in a short-term memory has a corresponding generalized structure

in some long-term memory and is generated by instantiating the latter.

• The contents of long-term memories are organized in an hierarchical manner that

defines complex structures in terms of simpler ones.

• The skill hierarchy is acquired cumulatively, with simpler structures being learned

before more complex ones.

Figure 2.1 depicts the overall structure of ICARUS and shows the basic processes

that drive it. These are conceptual inference, skill execution, and problem solving, each

of which utilize some form of knowledge about the problem domain. In this section,

we first describe how this knowledge is encoded and discuss the representational as-

sumptions on which it relies. Next we examine each of the ICARUS processes in turn.

5

Problem
Solving

Skill
Execution

Belief
Memory

Inference

Perceptual
Buffer

Motor
Buffer

Percepts

Actions

Concept
Memory

Goal
Memory

Skill
Memory

Figure 2.1: An Overview of ICARUS

2.1 Knowledge Representation

To be able to solve problems, an agent must represent knowledge about the problem

domain and reason over it. ICARUS represents this kind of knowledge in two distinct

forms, concepts and skills. Concepts describe situations that can arise in the problem

domain and can be used to reason about the current state of the world. Skills, on

the other hand, describe the operations available in the problem domain and can be

used to alter the world in ways that achieve goals. Another important distinction made

by ICARUS is between long-term and short-term knowledge structures. Concepts and

skills are long-term elements that the architecture instantiates with relevent bindings

and applies in specific situations. The corresponding short-term knowledge structures

are beliefs and intentions that are relevant on a given cognitive cycle. As shown in the

figure 2.2, the architecture has a separate memory for each type of structure.

Among the long-term structures, concept definitions are similar to Horn clauses
6

Belief
Memory

Intention
Memory

Conceptual
Memory

Skill
Memory

Conceptual
Contents

Procedural
Contents

Generic
Structures

Instantiated
Structures

Figure 2.2: Classification of ICARUS Memories

[8] and consist of a head and a body. The head is a logical literal with pattern-match

variables and is instantiated when a belief is inferred from a concept. The body con-

sists of conditions that match against percepts or beliefs that refer to other concepts.

Concepts are organized in a hierarchy. Ones that refer only to percepts are known

as primitive concepts and sit at the lowest level of this hierarchy. Non-primitive con-

cepts, on the other hand, refer to other conceptual predicates. Table 2.1 shows three

sample ICARUS concepts from the Blocks World domain. Here the terms preceded by

a question mark (?) symbol are pattern-match variables. The first two concepts are

primitive since they specify only perceptual matching conditions via the :percepts and

:tests fields. However, the last concept refers to other conceptual predicates through the

:relations field and hence is an example of a non-primitive concept.

The second type of long-term structure—skills—resemble STRIPS operators

[6] and also consist of a head and a body. The head specifies the predicate that a skill

achieves and is used to index it. The body of a skill is formed of perceptual conditions,

application conditions in form of conceptual predicates, and references to subgoals or

actions. As the name suggests, application conditions specify a set of literals that must

be true for the skill to be applicable. A primitive skill refers to actions that an agent can

execute directly to change the world state. In contrast, a non-primitive skill specifies

7

Table 2.1: Sample ICARUS concepts in the Blocks World domain

((holding ?block)
:percepts ((hand ?hand status ?block) (block ?block)))

((hand-empty)
:percepts ((hand ?hand status ?status)) :tests ((eq ?status nil)))

((stackable ?block ?to)
:percepts ((block ?block) (block ?to))
:relations ((clear ?to) (holding ?block)))

subgoals that ICARUS should satisfy in order to achieve the head. These subgoals in

turn refer to other skills that should be executed to carry out the parent skill. Thus, skills

are organized in a hierarchy that is similar in structure to conceptual memory. Table

2.2 shows two example ICARUS skills, again taken from the Blocks World domain. The

skill with (holding ?block) as its head is primitive, since it specifies actions that can

be executed directly in the world, placing it at the lowest level of the skill hierarchy.

However, the second is a non-primitive skill, since it specifies two subgoals that refer

to other skills in the domain. As with concepts, terms with a question mark (?) symbol

denote pattern-match variables.

Table 2.2: Sample ICARUS skills in the Blocks World domain

((holding ?block)
:percepts ((block ?block) (table ?from height ?height))
:start ((pickupable ?block ?from))
:actions ((*grasp ?block) (*vertical-move ?block (+ ?height 50))))

((stackable ?block ?to)
:percepts ((block ?block) (block ?to))
:start ((hand-empty))
:subgoals ((clear ?to) (holding ?block)))

During its operation, different ICARUS processes instantiate these long-term

knowledge structures based on the current state of the world—which is summarized by
8

the percepts on each cognitive cycle. We now describe the processes that the architec-

ture uses to generate short-term structures.

2.2 Conceptual Inference

The first process invoked by ICARUS is conceptual inference, which is responsible

for generating beliefs. The architecture operates in cycles, each of which updates the

perceptual buffer that contains descriptions of all visible objects in the environment.

These descriptions—called percepts—specify an object’s type, a unique identifier, and

zero or more attribute-value pairs. As the agent interacts with the environment, its

actions may change attributes of some visible objects or it may encounter new objects.

Perceptual information reflects these updates in the agent’s environment. Table 2.3

shows some example percepts from the Blocks World domain that describe four blocks,

a table, and the positions of these objects.

Table 2.3: Sample percepts from the Blocks World domain

(block A xpos 0 ypos 2 width 2 height 2)
(block B xpos 0 ypos 4 width 2 height 2)
(block C xpos 0 ypos 6 width 2 height 2)
(block D xpos 0 ypos 8 width 2 height 2)
(hand H1 status empty)
(table T1 xpos 0 ypos 0 width 20 height 2)

After ICARUS has updated the perceptual buffer, it invokes an inference module

that transforms the perceptual information into a set of beliefs about the current state

of the environment. Inference uses concept definitions to infer beliefs and adds them to

a short-term memory. Thus beliefs are instances of generic concepts cast as relational

literals. Table 2.4 shows some beliefs based on the perceptual information in Table 2.3.

The inference mechanism operates in a bottom-up, data-driven manner. It starts

with the updated percepts and matches them against conditions in concept definitions

to produce beliefs that are instances of primitive concepts. These beliefs in turn trigger
9

Table 2.4: Sample beliefs from the Blocks World domain

(clear D)
(four-tower A B C D)
(hand-empty)
(on B A)
(on C B)
(on D C)
(on-table A T1)

inferences of non-primitive concepts and so on. The inference process continues until

all the beliefs implied by percepts and concept definitions have been generated. Figure

2.3 shows a schematic representation of this process.

Figure 2.3: Bottom-up Belief Inference

2.3 Skill Execution

Once ICARUS has inferred beliefs about the current state of the world, a skill execution

module utilizes this information to carry out actions in the environment. While making

decisions, this module refers to its goals, which are instances of known concepts, and

skills, which describe how to accomplish these goals. Although ICARUS can have

10

multiple top-level goals, it can attend to only one goal at a time. Hence the first step

in skill execution is to select an unsatisfied top-level goal with the highest priority after

which it retrives a skill with a head that matches this goal.

Unlike the inference mechanism, skill execution proceeds in a top-down man-

ner. It finds a chain of skill instances such that the topmost skill indexes the agent’s

goal. Moreover this chain descends through the skill hierarchy using subskill links,

unifying arguments in a consistent manner with those of parents, and ends in a primi-

tive skill. We call such a chain through the skill hierarchy that has a primitive skill as

the leaf nodes as a skill path. Figure 2.4 presents this process in schematic terms.

Figure 2.4: Top-down Skill Execution

The execution module only considers skill paths that are applicable. A skill

path is applicable if, along the path, no concept instance that corresponds to a goal is

satisfied, the conditions of the primitive skill at the leaf are satisfied, and, for each skill

in the path not executed in the previous cycle, the conditions are satisfied. The last

condition lets ICARUS distinguish between the initiation and continuation of skills that

take many cycles to achieve their effects. To this end, ICARUS retains the skill path

selected during the previous cycle along with its variable bindings.
11

ICARUS also includes two preferences that influence the execution on every

cycle and serve to provide a balance between reactivity and persistence. The first one

applies when the architecture must choose between two or more subskills. It drives

ICARUS to select for execution the first subskill for which the corresponding concept

instance is not satisfied. This supports reactive control, since it essentially reconsiders

subskills that were completed previously but had their effects undone by unexpected

events and reexecutes them to rectify the situation. The second one guides ICARUS’

choice among two or more applicable skill paths. It prefers paths that share more

elements with the start of the skill path executed on the previous cycle. This biases the

agent towards continuing with higher-level skills already being executed until the goals

associated with them are achieved or the skills becomes inapplicable.

2.4 Problem Solving

As described earlier, the execution module selects and executes skills that achieve the

current goal and continue doing so until all top-level goals are satisfied or until it hits an

impasse [22]. An impasse occurs when the module fails to find an applicable skill path

through the skill hierarchy. This causes ICARUS to invoke its problem-solving module,

which utlizes a variant of means-ends analysis [20] to chain backward from the goal.

The problem-solving process relies on a structure called the goal stack, which stores

subgoals and skills that achieve them. The top-level goal is the lowest element in this

stack. Although problem-solving in ICARUS is similar in some ways to means-ends

analysis, it differs in two important ways. First, it has a bias towards eager execution

so that it carries out in the environment any skill as soon as it becomes applicable. This

results in a tight interleaving of problem solving and execution. Second, the problem

solver can chain off not only the application conditions of skills but also definitions of

concepts whose head matches the current goal.

When invoked, the problem solver pushes the current unsatisfied goal G onto

12

the goal stack. On each cycle it checks if G has been achieved, in which case it pops

G and focuses on G’s parent. In case G is a top-level goal, the module halts. If G is

not satisfied, ICARUS retrieves all primitive skills that have G as one of their effects.

To choose among these candidate skills, the system examines the conditions for each

and selects the one with the fewest unsatisfied primitive components in the current

enviromental state. In case of ties, it randomly selects one from this set. If all of the

selected skill’s conditions are met, the architecture executes it until the associated goal

is achieved, which is then popped from the goal stack. If the conditions of the selected

skill is not satisfied, the system pops it onto the stack, making it the current goal, and

the problem solver directs its attention to it. Upon achieving the condition, ICARUS

pops the goal stack and since executes the skill. 1

If the problem solver fails to find any skill clause that achieves G, it tries to find

a concept definition whose head matches G and uses it to generate subgoals. The sys-

tem then identifies which subgoals are not satisfied, selects one at random and pushes

it onto the goal stack. The problem solver then attempts to achieve this goal which

causes additional chaining off skill conditions and/or concept definitions. On achiev-

ing the subgoal, the architecture pops the goal stack and turns it attention to any other

unsatisfied subgoals. Achievement of all subgoals means that G is satisfied, so the

system pops the stack and focuses on the parent of G.

It is evident that the problem-solving module makes decisions about selection

of skills and the order in which it should achieve subgoals. There is a possibility that the

system will make an incorrect choice so that for a given subgoal it runs out of options.

Alternatively ICARUS can reach the maximum depth of the goal stack. When either

of these situations occur, ICARUS pops the failed goal, stores it with its parent goal

to avoid possible repetition in future, and backtracks to explore other options. Thus,

1Danielescu et al. [4] report a modified version of problem solver that can also
operate on non-primitive skills with multiple conditions, any number of which can be
unsatisfied.

13

overall the problem-solving process resembles backward-chaining, depth-first search

through the problem space. However, it has a low memory load since it retains only the

current stack and interleaves problem solving with execution whenever possible.

2.5 Limitations of Problem Solving in ICARUS

In our experience with using ICARUS to create intelligent agents, we noted that, al-

though the architecture incorporates the main claims of the standard theory of problem

solving and its extensions, there still remain some limitations. These manifest as diffi-

culties in programming, excessive amounts of search, and complete inability to handle

certain problem types. Analysis suggests that both the representational commitments

of the system and the design of the component processes are responsible for these

drawbacks.

One issue is that, problem solving in ICARUS is driven by individual goal el-

ements. This means that, when a problem solution requires the architecture to satisfy

a set of goals, the programmer must define a concept that encapsulates this set under

a single predicate which can then be used as the top-level goal. In addition to requir-

ing extra effort for the programmer, the single-goal representation prevents the system

from reasoning about goal interactions. Another limitation arises from the way in which

ICARUS chooses subgoals during problem solving. Recall that it matches each condi-

tion of a skill or concept definition against the beliefs and picks one out of those that are

unsatisfied. The conditions are a conjunctive set and depending on the structure of the

underlying problem space there can be more than one ways to partially satisfy them.

Unfortunately, by matching the conditions individually, the problem solver cannot use

this important information.

Another limitation relates to the uninformed choice of subgoals and skills.

Since the architecture does not support specification of constraints or control rules [3]

that can select, reject, or prioritize subgoals. Whether such constraints are embedded

14

in problem descriptions or learned from experience, they can play an important role in

reducing the amount of search involved in problem solving. We have noted that the

ICARUS problem solver carries out much less directed search than humans on the same

task. Its reliance on domain-specific knowledge in form of concepts and skills helps

when it is available, but for unfamiliar domains it fails to employ domain-independent

heuristics that, for humans, informs the choice of skills.

Finally, the current version of the problem solver cannot deal with negated skill

conditions with the same generality as it can handle positive conditions. In fact the

system can achieve an unsatisfied negated condition only if there is a skill that produces

that negation as an effect. In absence of such a skill it cannot chain off the negation of

a defined concept whose head matches the condition. In the next section, we propose

extensions to ICARUS ’ problem-solving mechanism that address these limitations.

15

Chapter 3

Extensions to the Problem-Solving Mechanism

In the previous chapter we examined the working of ICARUS and described the limita-

tions of its problem-solving module. We now present extensions to the architecture that

address these limitations. These introduce sets of goals in form of problems, alternative

problem formulations, heuristics and control rules to guide search, and the capability

to chain over negated goals. In the rest of the chapter we describe each extension in

detail. We conclude the chapter by presenting the new cognitive structures introduced

as a result of these changes.

3.1 Problem-Based Organization of Goals

Recall from chapter 2 that ICARUS’ goals describe some aspect of a situation that is

desired by an agent, and that they are similar to beliefs except that they can have

pattern-match variables that must be bound and can appear in a negated form. Also

recall that the problem solver treats goals as individual elements. We claim that prob-

lem solving in humans is organized around goal sets that describe desirable classes of

states for an agent. Traditional AI planners have addressed this issue by specifying a

set of conjunctive goals. We have extended the architecture’s knowledge representa-

tion to include problems, which consist of a set of goals that can share variables. For

example, ((on ?x ?y)(on ?y ?z)) is a set of goals from the Blocks World domain with

two members.

The introduction of problems implies that the architecture, rather than checking

for the achievement a single goal, must ensure that it has satisfied all the goals that

form a problem. Another important implication of this representation is that chain-

ing backwards off inapplicable skills or concepts must produce subproblems instead

of individual subgoals. Thus, as the problem solver progresses towards a solution, it

16

should form a chain of subproblems linked via skill instances. This chain has the top-

level problem at its head and terminates in a subproblem which has all of its members

satisfied in the current situation.

3.2 Alternate Problem Formulations

Previously, we saw that ICARUS’ problem-solving mechanism randomly matched sub-

goals against beliefs and pursued the first one that was unsatisfied. However, we have

seen that this approach ignores the information about the organization of the under-

lying problem space. In the new framework, problem solving attempts to transform

the current state into one that satisfies the problem and relies on the differences be-

tween the two to do so. This makes it clear that there can be more than one way to

characterize these differences, each of which corresponds to a distinct problem for-

mulation that partially satisfy the given goal set. This requires the system to choose

among different possible formulations of the current problem. An example from the

Blocks World domain should clarify this idea. Assume that a problem requires achieve-

ment of three conjunctive goals—{(on ?x ?y) (on ?y ?z) (on ?z ?w)}—and that in the

current belief state (on A B) and (on B C) hold true. One possible set of bindings

{?x→ A, ?y→ B, ?z→C} leads to the single unsatisfied goal (on C ?w). But the other

possibility {?y→ A, ?z→ B, ?w→C} produces a completely different goal (on ?x A).

We posit that this ability to render alternative problem formulations is an im-

portant aspect of human problem solving and justifies the need of an extra level of

decision making. We have included this step in the new version of ICARUS in the form

of selection of different bindings for the pattern-match variables in the problem. Thus,

whenever the architecture encounters a new problem or creates a subproblem, it first

generates possible bindings by comparing the problem with the belief state and selects

one from the available choices. This selection drives the behavior of the agent since it

determines which differences it must reduce to arrive at a solution.

17

3.3 Improved Search Control

In the extended framework, there are three main sources of search during problem

solving: the choice of bindings to determine the difference between the current state

and the goal state, the order of goal achievement, and the choice among different skills

or multiple instances of the same skill that achieve a given goal. As mentioned earlier,

in the older version these choices either did not exist or were uninformed, resulting

in excessive search. To overcome this, the new problem solver includes two different

search control mechanisms that reduce the probability of making the wrong decisions

and enable more informed search in the problem space. We now examine each of these

mechanisms in turn.

3.3.1 Constraints

The first mechanism introduces the ability to use constraints to guide the architecture’s

choice of bindings as well as the selection of a single goal from the set of goals. The

latter choice arises because ICARUS retains the ability to focus on one goal. We in-

clude two types of constraints that operate either on bindings or on goals, using a dis-

tinct memory structure to represent each of them. This structure consists of head (an

identifier for the constraint), type, and conditions. While the type specifier is used to

determine the applicability of a constraint, the conditions specify literals that should be

satisfied in order for it to be active. These refer to the agent’s goals or to the current

belief state with the latter being optional.

Additionally, constraints that apply to goals include directives that specify some

action that the architecture should take when they are active. Table 3.1 lists three sam-

ple constraints from different problem domains. As we describe later, ICARUS employs

each type of constraint in a different manner. For constraints on bindings, it substitutes

each possible set into the conditions and rejects the set if they are not satisfied. An

18

example should clarify this idea. Assume that ICARUS is trying to solve a problem that

specifies a single goal (truck− at ?truck L03) with the restriction that trucks cannot

travel across cities. Furthermore, assume the current belief state consists of the be-

liefs: {(truck T 01) (truck T 02) (location L01) (location L02) (location L03) (truck−

at T 01 L01) (truck− at T 02 L02) (di f f erent − city L02 L03)}. Then the (city−

reachable) constraint in Table 3.1 would direct the system to reject the binding choice

T 02 for the variable ?truck since it is not in city of the target location L03.

Table 3.1: Sample Constraints from Logistics and Blocks World Domains

((city-reachable)
:type bindings-constriant
:goal-conditions ((truck-at ?truck ?location))
:belief-conditions ((truck-at ?truck ?curr-location)

(different-city ?location ?curr-location)))

((order-goals)
:type goal-constriant
:goal-conditions ((on ?x ?y)(on ?y ?z))
:delete ((on ?x ?y)))

((clear-block)
:type goal-constriant
:goal-conditions ((on ?x ?y))
:belief-conditions ((on ?w ?x))
:add ((not (on ?w ?x))))

In contrast, the architecture uses constraints on goals to impose an ordering

on candidate goals by rejecting some candidates in favor of others or add new goals

with higher priority. To give an example, if the problem solver is trying to satisfy a

problem with goals {(on ?x ?y) (on ?y ?z)} then the (order−goals) constraint would

direct it to achieve the goal (on ?y ?z) before (on ?x ?y) which makes sense intu-

itively. On the other hand if the current belief state described a situation in which some

other block is on ?x, the (clear−block) constraint would add a new high priority goal

(not (on ?w ?x)), steering ICARUS to satisfy the negation before it considers any of the
19

problem goals.

3.3.2 Heuristics

The second mechanism equips the problem solver with two domain-independent heuris-

tics that inform the selection of skills. The first prefers skill instances that would

achieve more unsatisfied goals in the current problem over the ones that achieve fewer

goals. The intuition behind this is to reduce the number of steps required to solve a

problem. It also provides a means of masking the primitive skills with fewer effects

with higher-level skills that produce more results. To illustrate, say the current goals

are {(on A B) (on B C)} and the current beliefs are {(on−table A) (on−table B) (on−

table C))}, then this heuristic will prefer the (three− tower ?x ?y ?z) skill with effects

{(on ?x ?y) (on ?y ?z)} over the (stack ?x ?y) with the effect (on ?x ?y).

The other heuristics examines the conditions of the skill instances and select

ones with fewer unsatisfied conditions over the ones with more. Intuitively, this tries

to reduce the number of steps required to achieve the current goal. An extreme case

occurs when all the conditions of a skill instance are satisfied, in which case it becomes

immediately applicable. Thus, if the architecture is trying to achieve the goal (on A ?x)

with beliefs specifying a situation in which {(on B C) (holding A)} hold, this heuristic

will prefer the skill instance (stack A B) over (stack A C) since in the former instan-

tiation both the conditions {(holding ?x) (not (on ?any ?y)} of the skill (stack ?x ?y)

are satisfied. As we report shortly, the effectiveness of two heuristics varies with the

number of primitive and non-primitive skills available to the system.

3.4 Chaining Over Negated Goals

Our final extension addresses ICARUS’ inability to chain off a negated condition, which,

like chaining off its positive counterparts, involves finding a concept whose head matches

the non-negated literal in the condition. But unlike the latter, negation involves univer-

20

sal quantification and hence the system needs to negate the relations of the matching

concept. Recall that conceptual relations are connected via conjunction and negating

them produces a disjunctive list in accordance to De Morgan’s law. Consequently, it is

sufficent to satisfy only one of the negated relations in the resulting list to achieve the

parent condition. But this requires special treatment during problem solving.

The new problem-solving module incorporates disjunctive problems, which are

created when the architecture chains off the negation of a defined concept. Such sub-

problems are composed of disjunctive goals and are labeled accordingly so that they are

considered as achieved when any member of the set becomes satisfied. Otherwise, the

rest of the system is oblivious to different types of problems and interleaves disjunctive

and conjunctive tasks as necessary.

3.5 Representational Extensions

Having described the modifications to ICARUS’ problem-solving mechanism, we now

examine the cognitive structures introduced by these changes. The first such structure

is the one used to represent problems in memory. It consists goals, bindings, focus, and

intention fields. It also contains a field to store a list of failure contexts relevant to the

problem and to store the parent intention of the problem. Finally it contains a flag that

specifies if the problem is disjunctive. Table 3.2 shows a top-level conjunctive problem

for a sample task in the Blocks World domain.

We also modified the structure of skills so that the head no longer requires to

refer to an instance of a known concept and restricted the use of action field to specify

only one action. Moreover, we introduced an explict structure to represent intentions

in memory. This inherits the head, conditions, effects, subskills, and action fields from

the corresponding skill structure. In addition, it contains: a bindings field that specifies

values for some or all of the pattern-match variables in the skill; a problem-parent field

that links it back to the problem for which it was generated; and a flag that identifies

21

Table 3.2: Sample Problem from the Blocks World Domain

(problem
:id 1
:goals ((on ?x ?y) (on ?y ?z))
:bindings ((?x . A) (?y . B) (?z . C))
:focus (on B C)
:intention (stack B C)
:intention-parent NIL
:disjunctive-problem? NIL
:failure-context NIL)

if the intention is currently executing. Table 3.3 shows the instance of a skill from the

Blocks World domain.

Table 3.3: Sample Intention from the Blocks World Domain

(intention
:head (stack ?block ?to)
:bindings ((?block . B)(?to . C))
:conditions: ((holding B) (clear C))
:effects: ((on B C) (hand-empty) (not (holding B)) (not (clear C)))
:subskills: NIL
:action: (*put-down ’B xpos (+ ypos height))
:executing? T
:problem-parent: (problem :id 1 . . .))

3.6 Summary Remarks

The extensions we have described let ICARUS solve classes of problems that it could not

handle earlier. In addition, the new problem solver carries out a selective exploration

of the problem space with a significant reduction in the amount of search involved. At

the same time, these mechanisms occasionally mislead it down to paths that later fail.

Both characteristics are also observed in human problem solving and we claim that our

extensions bring the architecture closer to human levels.

22

Chapter 4

An Extended Problem-Solving Mechanism

Having described the extensions to ICARUS’ problem-solving mechanism and the cog-

nitive structures introduced by them, we are now ready to examine their implementation

in detail. Before we begin, it is important to note that problem solving in the architec-

ture is tightly interleaved with skill execution and consequently we also needed to make

significant changes to its execution module. However, these do not fall within the scope

of the work reported in this thesis and we will mention them only in passing.

As described earlier, finding a solution to a problem involves search for a solu-

tion state in the problem space. Table 4.1 presents the pseudocode for this process that,

like its predecessor, uses a variant of means-ends analysis. As stated in the table, given

a problem, the system carries out one of the following four steps on every cycle: select

a problem formulation/bindings; choose a focus goal; select a skill; execute a skill and

update the problem; or backtrack and recover from failures. In the rest of the chapter

we describe each of these steps in detail.

4.1 Selecting Bindings

Recall that ICARUS uses problems to represent a set of goals it wants to achieve. While

trying to accomplish a problem, the architecture first compares the problem with the

current belief state to determine if the latter satisfies the goal set in a consistent man-

ner. If so, it directs attention to other problems or, having solved all problems, simply

halts. However, when a problem is not satisfied, the comparison produces one or more

differences in the form of bindings for the pattern-match variables in the goals, each of

which corresponds to a distinct way of formulating the problem.

The mechanism responsible for this comparison operates in four steps. First it

isolates from the set of goals those that the problem solver cannot accomplish since

23

Table 4.1: Pseudocode for the Extended Problem Solver

Solve(S)
If there is no active problem P,

Select P from stack S.
Else on each cycle,

If P does not have bindings,
Find bindings B such that.
B has not been tried before,
B satisfies any applicable binding constraint, and
Substituting B in P does not yield a problem that is similar

or harder than any parent of P.
If no such bindings B can be found,

If P is the top problem, fail and halt.
Else set active problem to P’s parent problem P′,

Fail on intention I of P′ and backtrack.
Else if B satisfies P

If P is the top problem, report success and halt.
Else set active problem to P’s parent problem P′,

Execute the intention I of P′.
Else set B as bindings of P.

If P does not have a focus goal
Select goal G such that,
G ∈ P, G is unsatisfied,
G hasn’t been tried before, and
G satisfies any applicable goal constraint.
If no such goal G can be found,

Fail on B and backtrack.
Else set G as the focus of P.

If P does not have an intention
Find skill S such that,
S achieves G,
S has not been tried before, and
S satisfies the skill selection heuristic.
If no such skill S can be found,

Find concept C whose head matches G
If no such concept C can be found,

Fail on G and backtrack.
Else create intention I from C and

Set I as intention of P.
Else create intention I from S and

Set I as intention of P.

24

none of the skills directly achieve them and the concepts to which they refer are either

primitive or consist of conditions that are unachievable themselves. We refer to such

goals as irreducible differences. Intuitively, any set of bindings that does not completely

satisfy the irreducible differences will fail eventually and we use the differences to

eliminate such bindings choices, with an aim to reduce the search in problem solving.

To this end, the system generates a set of intermediate bindings S= {I1, I2, . . . , In},

by computing all possible ways to completely and consistently satisfy every irreducible

difference. This process is recursive in nature and ICARUS starts by picking the first

difference and determining all beliefs that match against it. Every match provides dis-

tinct bindings for the chosen difference and for each such bindings, the architecture

recursively computes all possible bindings for the remaining literals. This continues

until it has considered all irreducible differences in this fashion.

After this, the mechanism turns to the remaining goals of the problem. It car-

ries out a greedy search through the space of all partial matches for these goals and

generates a partial match I′i corresponding to each intermediate bindings Ii, by substi-

tuting Ii into the problem and comparing the elements against the current belief state.

More specifically, for each Ii, ICARUS starts with an match set consisting of only the

irreducible differences and randomly selects one of the remaining goals that it has not

considered before. It then tries to find a belief that matches the goal in a manner that

is consistent with Ii. If it is successful in finding such a belief, the system extends Ii

by incorporating any new bindings and adds the goal to the match set. Processing all

goals in this manner, it produces a partial-match binding I′i . The system then repeats

the whole process for I j, where j 6= i,and continues to do so until it has considered all

elements of the set S.

The result is a set S′ = {I′1, I′2, . . . , I′n} of partial-match bindings corresponding

to S. The mechanism rejects any I′i that violates a binding constraint and selects one

bindings which, when substituted in the problem, satisfies the maximum number of
25

goal elements. In case of a tie, it makes a random choice and stores these bindings

in the corresponding field of the problem. This choice determines the goals that the

problem solver must satisfy and drives its later behavior.

4.2 Selecting a Focus Goal

The next step in the problem-solving process is to reduce the differences between the

problem and the current belief state as characterized by the selected bindings. To this

end, ICARUS selects one of the unsatisfied goals as its focus and stores it in the prob-

lem’s :focus field. The current implementation randomly picks one unsatisfied goal

from the problem goals but, as discussed in the previous chapter, it is possible to spec-

ify control rules or constraints that inform this selection. Recall that there are two types

of constraints that apply to goals. The first kind specifies an ordering on the goals

(based on expected difficulty, the interactions between goals, etc.) and when applicable

removes lower-order goals from the choices available to the system.

The second type instructs the architecture to pursue new, high-priority goals

that describe a state that falls on every solution path for the given problem. When the

constraint ceases to be active once and the system turns its attention to the problem

goals. As the problem solver makes progress towards a solution, it eventually selects

and achieves each of the problem goals and may also return to any previously satisfied

goal in case it was undone due to any actions. As in case of bindings, in event of a tie,

ICARUS makes a choice at random.

4.3 Selecting a Skill

After it has selected a focus goal G, ICARUS tries to find and instantiate a skill that

would achieve it. To this end, it retrieves all skill clauses that have effects which unify

with G. There can be more than one such skill clause; in fact, the same skill can match

more than once if it includes multiple effects having the same predicate as G. The

26

architecture selects one among the choices by employing the skill-selection heuristics

described in the previous chapter, again choosing randomly in case of a tie. As noted,

the extended problem solver includes two such heuristics which it applies differently

based on its configuration. The system instantiates the selected skill with the associated

bindings generated by matching G to create an intention which represents the system’s

provisory commitment to apply a partially bound skill and stores this in the problem’s

:intention field.

Upon selecting and storing an intention, ICARUS generates a subproblem from

its conditions. When all the goals of such a subproblem are satisfied in the present

state, the parent intention becomes applicable, and as we describe later, the architecture

initiates its execution in the environment. In contrast, if some goals remain unsatisfied,

the system attempts to solve the subproblem using the mechanisms we have already

discussed.

Sometimes the problem solver fails to find a skill with effects that match the

focus goal. In such a situation, it tries to find a non-primitive concept whose head

matches the focus and upon succeeding creates a pseudo-intention from the conditions

of the conceptual rule in order to apply it. It treates the pseudo-intention in the same

way as an intention based on a skill and proceeds to chain off the former by creating

a subproblem from its conditions. However, there is one difference: the satisfaction of

all goals for a subproblem created from a pseudo-intention does not lead to execution

but instead lets the system infer the head of the rule that generated the intention and

thus in turn satisfy the focus.

4.4 Execution and Updating the Environmental State

Recall that problem solving aims at converting the agent’s current state into one in

which its problem goals are satisfied and, to this end, it selects bindings, focus goals,

and intentions. Eventually it selects an intention all of whose conditions are satisfied in

27

the current state and thus is applicable. ICARUS then invokes its skill-execution module

on such an intention. If it is an instance of a primitive skill, the architecture executes the

action associated with the intention to change the environment. If not then the system

goes down the skill-hierarchy until it finds a primitive skill that it can execute. After

finishing this skill, it moves on to other subskills, ascending or descending the skill

hierarchy as necessary until all the effects of the parent skill are satisfied. Execution

then halts and passes control back to problem solving.

The problem solver selects a skill because it has effects matching the current

goal and execution of its corresponding intention to completion achieves that goal.

Moreover, it is also possible for a skill to achieve more than one goals. Thus skill ex-

ecution may lead to new bindings for variables in the satisfied goals. This, along with

the fact that goals in a problem can share variables that need to be bound consistently,

requires that ICARUS update the bindings of its current problem after each successful

execution. Hence when the control is passed back to the problem solver, it resumes

from the select bindings step and updates bindings to account for the effects of execu-

tion. It then moves on to other goals, selecting and executing skills to achieve them as

well as updating bindings.

The interleaving of selection of bindings, goals, and skills with execution can

lead to a state where all goals of the current problem P are satisfied. When this happens,

ICARUS marks P as solved and directs its attention to P’s parent P′. If P was created

from conditions of a skill, then its satisfaction leads to the execution of the intention

stored in P′. On the other hand, if the source was an inference rule, then accomplish-

ment of P leads to the inference of the rule’s head. Both of these satsify a goal in P′.

Finally, if P is a top-level problem, the architecture just halts.

28

4.5 Backtracking and Failure Recovery

As might be expected, problem solving does not always find a solution without facing

difficulties. There are three possible ways in which its choices can lead to failures. First,

it can realize that the bindings it selected for a subproblem make it equivalent to or more

difficult than some problem higher up in the problem chain, in that all the goal elements

of the ancestor unify with those of the subproblem. When it detects such a repetition, it

abandons the selected bindings and considers alternatives. Second, ICARUS can realize

that it is passing through the same environmental states repeatedly. To breakout of such

a loop, it abandons the first intention all of whose effects match a repeated state. To

support such detection, it stores the environmental states for comparison.

Finally, the architecture abandons any bindings, goals or, intentions that it has

not already rejected. In order to do this, it represents and stores choices that have failed

in the past by associating a set of failure contexts with each problem. If a context

consists only of bindings B, it means that the choice B did not work out. If it contains

both bindings B and a goal G, it denotes that the problem solver failed to accomplish

G with B as the bindings, whereas a context that includes bindings, a goal, and an

intention I implies that I failed to execute in the setting. Everytime ICARUS rejects a

choice for any of the reasons above, it creates and stores an appropriate failure context

with the current problem. Later, it utilizes these contexts to rule out candidates while

making a decision.

In the event that it fails due to any of the above causes, the system takes a step

back to consider other choices. Thus, when it fails on an intention I, it considers other

skills for the current focus goal G. If no such skills exist or if it has tried all options, it

rejects G and looks for other goals to set as the focus. Finally, if no other choices exist

for the focus goal, it abandons the current bindings B and considers different bindings.

If no alternatives remain, it gives up on problem P and the intention associated with P’s

29

parent.

Since ICARUS executes an intention as soon as it becomes applicable, it might

change the environment in ways that cause difficulty in satisfying other goals, in which

case it cannot backtrack mentally after taking the action. In such circumstances, the

architecture attempts to solve the problem from the current environmental situation,

eventually undoing the undesirable action if needed. This phenomenon is an unavoid-

able sideeffect of the eager execution stategy that the system employs to avoid keeping

entire solution plansin memory. Eventhough it has clear disadvantages, this strategy is

observed when humans attempt to solve complex problems.

30

Chapter 5

Experimental Evaluations

In the previous chapters we described extensions to ICARUS’ problem-solving mecha-

nism and made claims about the benifits offered by them. We now present evalutions of

the system that support these claims. To study the behavior of the extended problem-

solving mechanism, we carried out systematic experiments on it, employing various

problem domains that tested the architecture’s capabilities. In this chapter we describe

these experiments, for each of which we examine the hypothesis, dependent and inde-

pendent variables, knowledge provided, and the behavior of the system. We conclude

by summarizing the observations.

5.1 Problem Solving in Tower of Hanoi

Before conducting systematic experiments, we evaluated the system on the classic

Tower of Hanoi puzzle to establish that the modified problem solver worked as in-

tended. The puzzle specifies a set of disks that one must move from a source peg to a

target peg, one disk at a time. The challenge in this problem arises from the conditions

that govern movement of the disks. In particular, it is only possible to move an unob-

structed disk to the target peg which in turn should not have any smaller disks on it.

Table 5.1 shows the single skill we supplied to the architecture that allowed it to move

disks and encapsulated these conditions in form of negations.

For this demonstration, the top-level problem specified goals that were all grounded,

so there was no choice in bindings but the system still had to select one of these as its

focus, which produced some search. During problem solving, ICARUS repeatedly en-

counters situations in which one of the negated conditions is unsatisfied. Because no

skill achieves these conditions directly, the system chains off this condition and cre-

ates a disjunctive subproblem by negating the relations of a concept with a head that

31

Table 5.1: Tower of Hanoi Operator

((move ?disk ?from ?to)
:conditions ((peg ?from) (peg ?to) (disk ?disk)

(different-peg ?to ?from) (on-peg ?disk ?from)
(not (blocking-from ?smaller-from ?disk))
(not (blocking-to ?smaller-to ?disk ?to)))

:action (*move ?disk ?from ?to))
:effects ((on-peg ?disk ?to)

(not (on-peg ?disk ?from)))

matches the literal in the unsatisfied condition. The architecture must satisfy only one

of the goal elements to solve a disjunctive problem. There is some search involved in

achieving this goal and on doing so, it returns to a higher-level problem thus switching

between conjunctive and disjunctive goals before it has satisfied the top-level problem.

The old problem-solving module could not handle this task unless provided

with carefully crafted skills that achieved negations of defined concepts. Thus, success-

ful tests on this domain established that the modified problem solver could solve prob-

lems in the Tower of Hanoi domain with domain representation that was not kludged

and the ability to chain off negations helped in this. These results encouraged us to

carry out systematic experiments, to which we now turn.

5.2 Testing System Scalability

Our first experiment was aimed at demonstrating that the new version of ICARUS solved

problems with reduced effort over its ancestor. In particular, we claimed that the ex-

tended problem-solving mechanism carried out less search than the older version and

consequently scaled better. To test this hypothesis, we ran both the systems on problems

from the Depots domain, that varied in their complexity. The independent variables in

this experiment were the version of the system used and the complexity of the problem

as measured by the number of goals required to be satisfied. The dependent variable

32

was the CPU time taken to solve a problem.

Problems in the Depots domain specify a number of locations with stacks of

crates that an agent must move to a different location. The available operators include

using hoists to lift and drop crates and trucks to transport them. Satisfying a goal in-

volves loading a crate in a truck, driving it to a target location, and stacking it as desired.

Based on the initial configuration of crates, some tasks may also require moving other

crates in order to make this possible, so even for a problem with a particular complex-

ity, the length of the solution can vary with changes in the initial state. To ensure a fair

distribution of the results, for each level of problem complexity we measured the run

time of both systems on five different initial configurations and then averaged them to

get a final value.

Before examining the results, we briefly outline the working of the new system.

For this study, we gave the new version of ICARUS 12 conceptual rules that let it recog-

nize arrangements of crates, hoist location and status, and truck location and contents.

We also provided four primitive skills for hoisting and dropping a crate, loading or un-

loading a crate into a truck, and moving the truck. The system was configured to use

the minimum-unsatisfied-conditions heuristic to guide skill selection. Again, all goals

in the top-level problem were grounded, so the extended problem solver had no choice

of bindings. However, the system had to choose from many possible focus goals, from

which it picked at random. This choice in turn led to selection of a skill for dropping

the relevant crate and produced a subproblem based on its conditions.

Typically only one of these conditions was not satisfied—that some hoist be

holding the crate at the desired location. There were two skills that would achieve this

end, one that hoisted the crate and one that unloaded it from a truck. The heuristic led

the architecture to select the hoist skill, but later it realized that this required the crate

to be at the desired location. Detecting this loop, it backtracked and selected the unload

option. Continued reasoning along these lines eventually led to executable skills and
33

successful placement of the crate. ICARUS then repeated this entire process for each

crate, halting after it had transferred them all to their desired locations.

Figure 5.1: System Runtime in Depots Domain as a function of Problem Complexity

Figure 5.1 shows the plots of the average time taken by both the system for

each level of problem complexity, with the error bars showing 95% confidence inter-

vals. Both the systems were able to solve all the problems and as can be seen, the

extended problem solver took much less time than the older version presumably be-

cause it carried out less search. This supports our initial hypothesis that the new system

scales better with respect to complexity, at least as measured by the number of goals.

5.3 Demonstrating the Benefits of Constraints

A second experiment focused on establishing benefits of using constraints to guide

search. We hypothesized that the availability of domain-specific constraints would re-

duce the amount of search involved in finding a solution to a problem. To operationalize

this hypothesis into a testable claim, we carried out a lesion study on the modified prob-

lem solver by evaluating it on problems in the Logistics domain. Thus, the independent

variables for this experiment were the absence or presence of constraints and the com-
34

plexity of problems as measured by the number of member goals in the problem. The

dependent variables were the CPU time taken to find a solution, the number of nodes

explored by the architecture, and the number of nodes out of these that failed.

The Logistics domain specifies a number of packages placed at locations that

are spread across different cities. Operations in the domain allow loading and unload-

ing of packages and provide trucks and airplanes to move them. Moreover, there are

restrictions on the movement of these vehicles, with trucks being able to move only

between locations within the same city and planes being able to move only between

airports. Problems typically involve moving one or more packages across locations us-

ing a combination of ground and air transport. Thus solving a problem requires loading

a package into a truck, driving it to an airport, unloading the package and loading it

onto an airplane, flying the plane to a different city and then using another truck to

deliver it to the target location. Unlike the Depots domain, problems in Logistics with

the same complexity are isomorphic and hence have the same solution length. Hence

we did not employ the averaging technique for measuring system run times.

In this experiment, we supplied ICARUS with 11 conceptual rules that let it rea-

son about the location of packages, trucks, and airplanes, the contents of trucks and air-

planes, and the type (airport or regular) and city of a location. We also furnished it with

four primitive skills that let it load or unload a package, drive trucks, and fly planes. As

before, the system was configured to use the minimum-unsatisfied-conditions heuris-

tic to guide skill selection. Once again, since all goals in the top-level problem were

grounded, there was no choice of bindings, but there was a choice in selection of focus

goals. This in turn led to selection of a skill that would unload a package from a truck

at the target location, leading the problem solver to create a subproblem from the skill’s

conditions.

One of these conditions specified that the truck should contain the package to

be unloaded, which led to selection of a skill to load the truck. Further backchaining
35

Figure 5.2: System Runtime in Logistics Domain as a function of Problem Complexity

induced selection of skill that would fly the package to a location where the truck

can be loaded. Continuing in this manner, the architecture finally selects a truck at

the source location and transports the package to the source city’s airport. The whole

process was then repeated for other packages. Whenever faced with the choice of a

truck for a specific location, ICARUS would look for constraints to guide this choice.

The constraints, if present, would cause it to reject trucks that could not travel to the

location under consideration, thus preventing the problem solver from making choices

that would eventually fail.

As the plots in Figure 5.2 show, the system with constraints ran substantially

faster, presumably because it carried out less search, than when constrainte were un-

available. Moreover, the extended problem solver also created fewer subproblems and

36

Figure 5.3: Number of Nodes Explored in Logistics Domain

had to abandon them less often when it employed constraints. This is evident from

the plots in Figures 5.3 and 5.4. These results support our claim that using constraints

reduces the amount of search involved in problem solving.

5.4 Demonstrating the Benefits of Heuristics

Our final study involved assessing the advantages of utilizing domain-independent

heuristics to guide search. The initial assumption was that, when employed individu-

ally, either heuristic—minimum-unsatisfied-conditions and maximum-effects-matched—

would provide comparable benefit in terms of reducing search over the case when none

was used. We carried out prelimiary experiments in the form of lesion studies in the

Depots and Logistics domains. We will not provide the details of these experiments

here, but the results from these studies did not support our assumption.

In fact, we found that while the conditions heuristic did help ICARUS perform

better than it did when it had no guidance in form of heuristics. However, there was

no evidence of any reduction in search and backtracking when using just the effects

37

Figure 5.4: Number of Nodes Rejected in Logistics Domain

heuristic and it provided almost no advantage over runs in which the problem solver

used neither heuristic. This suggested that the heuristic’s effectiveness may be linked

to the type of skills available to the agent. In particular, we had supplied ICARUS with

only primitive skills in both the Depots and Logistics domains. Since primitive skills

have only a few effects, they scored the same on the maximum-effects criterion and it

did not provide much of a help in skill selection.

This observation led to the hypothesis that the maximum-effects-matched may

provide more guidance in domains where the architecture has access to non-primitive

skills and the reduction in search in such case may be comparable to that achieved

by the conditions heuristic. To test this claim, we provided the system with higher-

level skills for the Gripper domain and ran it on problems of varying complexity in

two distinct settings using different heuristics. Thus the independent variables in this

case were the complexity of the problems in terms of the number of goals and the

type of heuristic used. The dependent measure was again the CPU time taken to solve

problems.

38

The Gripper domain involves several rooms, a number of balls, and a robot with

multiple grippers that can hold one object per gripper. Problems specify target rooms

for several balls that begin in a source room. Satisfaction of these goals requires an

agent to move particular objects to specified rooms, making as few trips as possible by

carrying multiple balls at a time. As in the Logistics domain, problems in Gripper with

the same complexity are isomorphic, so we did not run the system multiple times for

a particular complexity level. For this domain, we provided Icarus with ten concepts

for recognizing relevant situations, such as whether a gripper is holding an object and

whether the agent is holding as many objects as possible. We also gave the system four

skills, one of which was both hierarchical and recursive.

As before, the problem solver does not have to select bindings at the top level, as

all goals are grounded. It proceeds to select one goal as its focus and chooses the only

relevant skill for transporting a set of held objects. Because the skills conditions are

unsatisfied, ICARUS creates a subproblem to achieve them. After selecting bindings,

the subproblem has only one unmatched condition—that the agent should be holding

as many objects as possible—so this becomes the new focus goal. The system does

not include a skill that produces this as an effect, but it does have a definition for the

relevant concept. The problem solver repeatedly chains backward off this rule, leading

it to execute the primitive skill for picking up objects until it is holding the maximum

number possible. This in turn satisfies the conditions of the original skill instance,

causing ICARUS to move the robot to the target room. At this point, it repeatedly drops

objects until all grippers are free, then shifts to moving objects to a different room.

We observed in that, in the Gripper domain, both the heuristics offered sub-

stantial help to the problem solver in making progress towards a solution. However,

the system carried out a lot more search in runs where it did not utilize any heuristic

and consequently scaled poorly with increasing number of goals. In fact, as the plots

in Figure 5.5 show, the problem solver indeed takes less time, presumably because it

39

Figure 5.5: System Runtime in Gripper Domain as a function of Problem Complexity

performs less search, when using the maximum-effects-matched heuristic in the Grip-

per domain, and it scales better with respect to increasing problem complexity. These

results support our claim that the effectiveness of heuristics is linked to the type of oper-

ators available to choose from and in particular the maximum-effects-matched heuristic

proves helpful when the system has access to non-primitive skills.

5.5 Summary Remarks

In this chapter we described experimental evaluations of ICARUS’ extended problem-

solving mechanism. We saw that, with its ability to chain off negations, it could solve

problems in the Tower of Hanoi domain with a less handcrafted representation. We

also demonstrated that the new system carried out less search in comparison to its

ancestor and hence scaled better with increase in problem complexity. Moreover, we

established that use of constraints cuts down the search even more. Finally, we showed

how the effectiveness of the heuristics varies with the type of the knowledge available

for a problem domain. Thus the extensions proposed in this thesis not only extend the
40

architecture’s account of problem solving but also improve its performance, bringing it

closer to functionality observed in humans.

41

Chapter 6

Related Research

There has been a long history of research on computational models of problem solving

and hence it should not be surprising that some ideas similar to those we have proposed

have appeared elsewhere. We believe that we are the first to combine them in a uni-

fied framework, but we should still mention earlier efforts that have addressed similar

issues. In this chapter, we discuss the research related to the extensions we proposed in

chapter 3 in the same order as we discussed there.

Recall that our first extension was the introduction of a distinct memory struc-

ture called “problems” around which we organize the representation of the underlying

problem space. This idea is not new; traditional planners represent goals as conjunctive

sets and search in the space of these sets and the Soar [11] framework relies on the

notion of search through a problem space, although their approach differs from ours in

many details. Our approach also resembles that taken by the Prodigy [3] architecture,

which incorporates a representation of problems and subproblems in which goals are

embedded.

The introduction of problems lets ICARUS create subproblems when it chains

off operators or concepts. This idea appears first in the classic work on GPS [19] by

Newell and Simon as part of the “apply-operator” step. Laird et al. refer to backward

chaining as “operator-subgoaling” in their work on Soar. Our approach differs from

both in that it subgoals not only on operators but also on concepts, and its representation

of the resulting subproblems is more flexible since, as described earlier, it encapsulates

both conjunctive and disjunctive problems.

Our distinction between multiple problem formulations in terms of bindings

appears to be more novel. Prodigy also incorporated choice points for bindings, but

42

it relied on domain-specific control rules to guide selection in the absence of which it

made an arbitrary choice. ICARUS utilizes domain-specific constraints when available,

but it also incorporates a domain-independent process that compares problem elements

against the current state to generate partial matches, from which it selects one that is

maximal. No other work that examines the role of problem formulation in creating

problem spaces embeds such a process within problem solving itself.

Our idea of using domain-specific constraints to guide search is also not novel.

Prodigy included control rules that would select, reject, or prefer an operator, goal, or

binding. In a similar way, TLPlan [2] represents control knowledge in temporal logic

and utilizes it to control a forward-chaining planner. The recent work on landmarks

[7] by Hoffmann et al. also supplies planners with control knowledge which, like ours,

specifies ordering on problem goals based on their interactions.

Of course, the use of heuristics for guiding problem-space search dates back to

the field’s beginning, but these have typically incorporated domain-specific knowledge

rather than generic calculations about relations between operators, goals, and states.

Traditional planning methods have used a set-difference heuristic to perform a reach-

ability analysis and guide the selection of operators. This is similar to our maximum

effects heuristic, an earlier version of which was reported by Jones and Langley [9].

Nejati [16] has explored the minimal unsatisfied conditions metric in a similar setting,

but we believe that we are the first to combine them in a single system.

To our knowledge, the use of disjunctive goals to handle chaining over complex

negated conditions is entirely novel. Most traditional planners do not operate in a closed

system and avoid this kind of reasoning with negations since it can possibly lead to

infinite loops. But ICARUS unifies problem solving with execution and problem state

updation and this closed loop allows it to avoid the possible pitfalls of reasoning with

unsatisfied negations.

43

Chapter 7

Directions for Future Work

In the previous chapters, we described ICARUS’ account of problem solving and demon-

strated its generality across domains. We also compared it with related approaches

and showed that the architecture offers broader capabilities than many of these efforts.

However, there remain some limitations in the current framework that we should ad-

dress in future work.

One drawback is that the current version of ICARUS does not include a learning

mechanism that reflects on traces of the problem solver’s efforts to achieve a given set

of goals. Humans display a clear ability to learn generalized structures from their past

behavior that aid them in solving similar problems in future. Indeed, the analysis of

a successful solution trace reveals information that can be used to learn generalized

goal constraints like those we described in chapter 3. More specifically, such a trace

contains information about order in which the problem goals were achieved, as well as

about the extra goals that the architecture generated. 1 In fact, Nejati [16] reports a

system which can learning such information by annotating successful traces. We can

adapt her approach to learn structures that can be used by the new problem solver.

However, it is also possible to learn new knowledge from problem-solving fail-

ures. To this end an extended version of the architecture could construct generalized

bindings constraints every time a system fails on a set of bindings. This process could

examine the traces to assign and propogate blame, terminating when it finds the condi-

tions responsible for the failure—an analysis similar to dependency directed backtrack-

ing [10]. The system could then encapsulate them into bindings constraints to eliminate

similar choices on future tasks.

1Recall that these goals describe a “landmark” [7] belief that would become true on
every solution path for the given problem.

44

Another limitation arises from the systematic nature of ICARUS’ problem-space

search. It has been observed that humans seldom perform a depth-first search, partly

due to the memory limitations that make it difficult to maintain a complete chain of

problems. de Groot [5] contends that chess players instead use progressive deepening,

a search strategy that explores a single path at a time and only remembers the first de-

cision and the quality of the outcome. Jones and Langley [9] use a similar technique of

iterative sampling in their EUREKA architecture to organize problem-space search. We

should include similar methods in our accounts of problem solving to enable memory-

limited, non-systematic search.

A third limitation of the architecture is that, unlike humans, it always carries out

backward-chaining search from goals. Observations of human behavior make it evident

that they sometimes resort to forward-chaining search with almost no explicit influence

from goals. This is especially true for domains like chess, in which goals are very ab-

stract and do not prove to be useful until late in the problem-solving process. To com-

plete ICARUS’ account of problem solving, we should incorporate a forward-chaining

search capability along with a mechanism that decides when to switch between the two

modes of search.

A final limitation is related to insight in finding solutions to problems. The

Gestalt psychologists observed that people find certain tasks quite difficult but, upon

reconsideration, see the answer very quickly, and no standard theory of problem solving

accounts for this behavior. One possible explaination suggests that humans modify the

structure of the problem space such that it transforms the task into one that contains a

solution. The next version of ICARUS should incorporate mechanisms that address this

intriguing phenomenon.

45

Chapter 8

Conclusion

In this thesis, we reviewed the key aspects of the standard theory of problem solving

including, but not limited to, the notions of physical symbol systems, problem space

search, heuristic search, and means-ends analysis. We also proposed extensions to the

theory and claimed that problem solving typically occurs in a physical context and is

interleaved with execution. We also asserted that problem solving remains at an abstract

level that insulates the solver from unnecessary details.

In addition, we described how ICARUS incorporates each of these theoretical

commitments at the architectural level and examined some limitations that still re-

mained unaddressed. We then outlines four extension that cover these limitations.

Some of these extensions appeared in the frameworks representational commitments to

problems, goals, and intentions, whereas others were linked to mechanisms for carry-

ing out goal-directed heuristic search through a problem space. We argued that ICARUS

implements these claims in a psychologically plausible manner, and we demonstrated

the architectures generality on problem solving in a variety of domains.

We will not claim that particular forms in which ICARUS implements these

ideas are the only alternatives, but they do provide an operational account that one can

use to develop specific models of problem solving on particular tasks. We should also

note that none of these ideas, in isolation, are new to ICARUS . All have appeared

elsewhere in the literature and many have been used in computational models. How-

ever, this does not diminish their relevance to unified theories of cognition, and, to

our knowledge, ICARUS is the first such theory to incorporate them all in a coherent

manner.

46

BIBLIOGRAPHY

[1] J. R. Anderson. Rules of the mind. Lawrence Erlbaum, Hillsdale, NJ., 1993.

[2] F. Bacchus and F. Kabanza. Using temporal logic to control search in a forward
chaining planner. In Proceedings of Second International Workshop on Temporal
Representation and Reasoning (TIME), Melbourne Beach, FL., 1995.

[3] J. Carbonell, O. Etzioni, Y. Gil, R. Joseph, C. Knoblock, S. Minton, and
M. Veloso. Prodigy: an integrated architecture for planning and learning. In ACM
Special Interest Group on Artificial Intelligence (SIGART) Bulletin, volume 2,
pages 51–55, 1991.

[4] A. Danielescu, D. J. Stracuzzi, N. Li, and P. Langley. Learning from errors by
counterfactual reasoning in a unified cognitive architecture. In Proceedings of the
Thirty-Second Annual Meeting of the Cognitive Science Society, Portland, OR.,
2010. Lawrence Earlbaum.

[5] A. D. De Groot. Thought and choice in chess. Mouton, The Hague, The Nether-
lands, 1965.

[6] R. Fikes and N. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. In Artificial Intelligence, volume 2, pages 189–208,
1971.

[7] J. Hoffmann, J. Porteous, and L. Sebastia. Ordered landmarks in planning. Jour-
nal of Artificial Intelligence Research, 22:215–278, 2004.

[8] A. Horn. On sentences which are true of direct unions of algebras. In The Journal
of Symbolic Logic, volume 16, pages 14–21, 1951.

[9] R. Jones and P. Langley. Retrieval and learning in analogical problem solving.
In Proceedings of the Seventeenth Annual Conference of the Cognitive Science
Society, pages 446–471, Pittsburgh, PA., 1995. Lawrence Earlbaum.

[10] S. Kambhampati. Formalizing dependency directed backtracking and explanation
based learning in refinement search. In Proceedings of the thirteenth national
conference on Artificial intelligence - Volume 1 (AAAI’96), volume 1, pages 757–
762. AAAI Press, 1996.

[11] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for general
intelligence. In Artificial Intelligence, volume 33, pages 1–64, 1987.

47

[12] P. Langley and D. Choi. A unified cognitive architecture for physical agents. In
Proceedings of the Twenty-First National Conference on Artificial Intelligence,
Boston, MA., 2006. AAAI Press.

[13] P. Langley, J. E. Laird, and S. Rogers. Cognitive architectures: Research issues
and challenges. In Cognitive Systems Research, volume 10, pages 141–160, 2009.

[14] P. Langley and S. Rogers. An extended theory of human problem solving. In Pro-
ceedings of the Twenty-Seventh Annual Meeting of the Cognitive Science Society,
Stressa, Italy, 2005.

[15] J. H. Larkin, J. McDermott, D. P. Simon, and H. A. Simon. Expert and novice
performance in solving physics problem. In Science, volume 208, pages 1335–
1342, 1980.

[16] N. Nejati. Analytical Goal-Driven Learning of Procedural Knowledge by Obser-
vation. PhD thesis, Stanford University, CA., 2011.

[17] A. Newell. Unified theories of cognition. Harvard University Press, Cambridge,
MA., 1990.

[18] A. Newell, J. C. Shaw, and H. A. Simon. Elements of a theory of human problem
solving. In Psychological Review, volume 65, pages 151–166, 1958.

[19] A. Newell and H. A. Simon. Gps, a program that simulates human thought. In H.
Billing (Ed.), Lernede automaten, Munich: Oldenbourg KG, 1961.

[20] A. Newell and H. A. Simon. Human Problem Solving. Prentice-Hall, Englewood
Cliffs, NJ, 1972.

[21] A. Newell and H. A. Simon. Computer science as an empirical enquiry. In Com-
munications of the ACM, volume 19, pages 113–126, 1976.

[22] K. VanLehn. Mind bugs: The origins of procedural misconceptions. MIT Press,
Cambridge, MA., 1990.

48

Appendix A

LISP Code

(defun backward-chain-problem-solve (problem)

(cond

;; Step 1. Select bindings

((null (problem-bindings-selected? problem))

(print "Selecting bindings.")

(let ((result nil))

(setq result (select-bindings problem))

(process-select-bindings-result problem result)))

;; Step 2. Select focus

((or (not (problem-focus problem))

(goal-literal-satisfied? (problem-focus problem)))

(print "Selecting focus.")

(setf (problem-intention problem) nil)

(setf (problem-focus problem) (select-focus problem))

(cond ((problem-focus problem)

(print "Focus selected, proceeding to select a skill for the focus")

(print (problem-focus problem)))

(t

(print "Failed to select focus for the current problem

with the given bindings. Backtracking.")

(create-and-store-failure-context (problem-bindings problem))

(setf (problem-bindings problem) nil)

(setf (problem-bindings-selected? problem) nil))))

;; Step 3. Select Skill

((not (problem-intention problem))

(let ((result-triple nil)

(intention nil)

(focus-breakup-triplet nil))

(print "Selecting skill.")

(setq result-triple (select-skill problem))

(cond (result-triple

(setq intention

(create-intention (second result-triple) (third result-triple)))

(setf (intention-problem-parent intention) problem)

(setf (problem-intention problem) intention)

(print "Skill selected")

49

(pprint-intention intention)

(make-problem-from-conditions intention)

(incf nodes-explored*))

;; Select-skill failed. Try concept chaining before recording failure.

(t

(print "Failed to select skill for the current problem with given

bindings and focus. Trying to chain on concept.")

;; Concept chaining.

(setq focus-breakup-triplet

(find-matching-concept (problem-focus problem)

:problem-bindings (problem-bindings problem)

:ignore-failure-context? nil))

(cond ((and focus-breakup-triplet

(second focus-breakup-triplet))

(setq intention

(create-dummy-intention-for-concept-chaining focus-breakup-triplet))

(setf (intention-problem-parent intention) problem)

(setf (problem-intention problem) intention)

(print "Concept found for chaining. Dummy intention for the

concept created.")

(pprint-intention intention)

(make-problem-from-conditions intention)

(incf nodes-explored*)

;;If chaining of a negative goal, flag the new problem as disjunctive.

(if (eq (car (problem-focus problem)) ’not)

(setf (problem-disjunctive-goal-list? active-problem*)

t)))

(t

(print "No concept found for concept-chaining for the focus of

the current problem. Backtracking.")

(create-and-store-failure-context (problem-bindings problem)

(problem-focus problem))

(setf (problem-focus problem) nil)))))))

(t

(warn "You should never be here in backward-chain-problem-solve."))))

(defun select-bindings (problem)

50

(let ((pos-literals nil)

(neg-literals nil)

(intermediate-bindings nil)

(results nil)

(selected-match nil)

(return-value nil))

;; Extend problem bindings with bindings from unchainable

;;goals of the problem.

(loop for pos-objective in (problem-pos-objectives problem)

do

(when (member (car pos-objective) pos-unchainable-conditions* :test #’eq)

(push pos-objective pos-literals)))

(loop for neg-objective in (problem-neg-objectives problem)

do

(when (member (caadr neg-objective) neg-unchainable-conditions* :test #’eq)

(push neg-objective neg-literals)))

(setq intermediate-bindings

(find-all-match-bindings-for-sorted-literals pos-literals

neg-literals

(problem-bindings

problem)

cstm*))

(setq results

(find-all-max-size-partial-matches-for-sorted-literals-for-binding-set

(problem-pos-objectives problem)

(problem-neg-objectives problem)

intermediate-bindings

cstm*))

(when results

(setq selected-match (random-choose results))

(cond ((and (problem-disjunctive-goal-list? problem)

(>= (length (car selected-match))

1))

(setq return-value (cons t (second selected-match))))

((and (null (problem-disjunctive-goal-list? problem))

(= (length (problem-goals problem))

(length (car selected-match))))

(setq return-value (cons t (second selected-match))))

(t

51

(setq return-value (cons nil (second selected-match))))))

return-value))

(defun process-select-bindings-result (problem result)

(cond ((null result)

;;This means failure. Store appropriate context in parent and pop-up.

(print "Failed to select bindings for the current problem. Backtracking.")

(cond ((problem-i-parent problem)

(setq active-problem* (intention-problem-parent (problem-i-parent problem)))

(create-and-store-failure-context (problem-bindings active-problem*)

(problem-focus active-problem*)

(problem-intention active-problem*))

(setf (problem-bindings active-problem*) nil)

(setf (problem-bindings-selected? active-problem*) nil)

(incf nodes-failed*)

)

(t

(warn "Failed to select bindings for the top level problem.")

(setq active-problem* nil))))

((null (car result))

;; This means that bindings were successfully found for a problem

;; that has unsatisfied goals.

(cond ((not (repeated-problem? problem

(cdr result)))

;; This problem has not been encountered till now. Proceed to focus selection.

(setf (problem-bindings problem) (cdr result))

(setf (problem-bindings-selected? problem) t)

;; Set both focus and intention to NIL to make sure new ones get chosen

(setf (problem-focus problem) nil

(problem-intention problem) nil)

(print "Bindings selected.")

(print (problem-bindings problem)))

(t

(print "Found a repeated problem! Reporting the current bindings as a failure.")

(create-and-store-failure-context (cdr result)))))

((car result)

;; This means that the bindings found are such that all goals of

;; the current problem are satisfied.

(cond ((and (problem-i-parent problem)

(intention-id (problem-i-parent problem)))

52

(cond ((and execution-loop*

(member (intention-head (problem-i-parent problem))

(get-repeating-intentions)

:test #’equal))

(print "Currrent intention matches a repeating intention.

Aborting its execution to break execution loop.

Backtracking.")

(reset-loop-traces)

(setq active-problem* (intention-problem-parent

(problem-i-parent problem)))

(create-and-store-failure-context (problem-bindings active-problem*)

(problem-focus active-problem*)

(problem-intention active-problem*))

(setf (problem-intention active-problem*) nil)

(incf nodes-failed*))

(t

(print "All skill conditions satisfied, proceeding to execution")

(set-executing-intention (problem-i-parent problem))

(setq active-problem* (intention-problem-parent

(problem-i-parent problem)))

(setf (intention-bindings (problem-i-parent problem))

(append (intention-bindings (problem-i-parent problem))

(cdr result)))

(establish-correspondence-for-intention-targets active-problem*)

(setf (problem-bindings-selected? active-problem*) nil))))

((and (problem-i-parent problem)

(null (intention-id (problem-i-parent problem))))

(print "All conditions of the chained-concept satisfied,

selecting new bindings and focus for parent problem.")

(setq active-problem* (intention-problem-parent (problem-i-parent problem)))

(setf (problem-bindings-selected? active-problem*) nil))

(t

(report-toplevel-problem-satisfied)

(setq active-problem* nil))))))

(defun select-focus (problem)

(let ((goals-added nil)

(unsatisfied-goals nil)

(goals-to-delete nil))

;; Step 1: Get all the goals in the current problem that are

;; unsatisfied and that have not failed before.

53

(loop for goal in (subst-bindings (problem-bindings problem)

(problem-objectives problem))

when (and (not (goal-literal-satisfied? goal))

(not (member-failure-context-list? (problem-bindings problem)

goal)))

do

(push goal unsatisfied-goals))

;; Step 2: Get all the goals added by add constraints and all the goals

;; deleted by ordering constraints.

(loop for constraint in constraint-memory*

when (constraint-active? constraint unsatisfied-goals)

do

(cond ((constraints-add constraint)

(setq goals-added (append (subst-bindings (constraints-bindings constraint)

(constraints-add constraint))

goals-added))

(print "Found an active add constraint."))

((constraints-delete constraint)

(setq goals-to-delete (append (subst-bindings

(constraints-bindings constraint)

(constraints-delete constraint))

goals-to-delete))

(print "Found an active delete constraint."))))

;; Step 3: Remove all goals marked for deletion.

(loop for goal in goals-to-delete

do

(setf goals-added (delete goal goals-added :test #’equal))

(setf unsatisfied-goals (delete goal unsatisfied-goals :test #’equal)))

;; Step 4: Select a focus.

(cond (goals-added

(random-choose goals-added))

(unsatisfied-goals

(random-choose unsatisfied-goals))

(t

nil))))

(defun select-skill (problem &optional (bind-unchainables? t))

;; members of candidate-skills are of the form (effect sclause bindings)

(let ((candidate-skills nil)

(focus-goal (problem-focus problem))

(selected-triple nil))

54

(loop for skill in sltm*

do

(loop for effect in (sclause-effects skill)

for (flag . bindings) = (unify-match focus-goal effect)

do

(when flag

(push (list effect skill bindings)

candidate-skills))))

(when debug*

(print "**** Candidates Matching Focus ****")

(mapcar #’print candidate-skills))

(when bind-unchainables?

(setf candidate-skills

(loop for (effect sclause bindings) in candidate-skills

append (find-all-candidates-satisfying-unchainable-conditions effect

sclause

bindings))))

(when debug*

(print "**** Candidates with Unchainable Bindings ****")

(mapcar #’print candidate-skills))

(loop with results = nil

for (effect sclause bindings rest) in candidate-skills

when (not (member-failure-context-list? (problem-bindings problem)

(problem-focus problem)

(create-intention sclause bindings)))

do

(push (list effect sclause bindings rest) results)

finally

(setq candidate-skills results))

(when candidate-skills

(case skill-selection-heuristic*

(:MAX-EFFECTS-MATCHED

(loop with best-quadruplets = nil

with max-value = -1

for quadruplet in candidate-skills

for current-value = (max-effects-matched-heuristic

(butlast quadruplet) problem)

do

(cond

((< max-value current-value)

(setq max-value current-value

best-quadruplets (list quadruplet)))

55

((= max-value current-value)

(push quadruplet best-quadruplets)))

finally

(setq selected-triple (random-choose best-quadruplets))))

(:MIN-UNSATISFIED-CONDITIONS

(loop with best-quadruplets = nil

with min-value = nil

for quadruplet in candidate-skills

for current-value = (min-unsatisfied-conditions-heuristic

(butlast quadruplet))

do

(cond

((or

(null min-value)

(> min-value current-value))

(setq min-value current-value

best-quadruplets (list quadruplet)))

((= min-value current-value)

(push quadruplet best-quadruplets)))

finally

(setq selected-triple (random-choose best-quadruplets))))

(:BOTH

)))

;; Restore original bindings and discard bindings generated

;; due to binding unchainable conditions.

(if selected-triple

(setf (nth 2 selected-triple) (nth 3 selected-triple)))

(butlast selected-triple)))

56

This LaTeX document was generated using the Graduate College Format Ad-
vising tool. Please turn a copy of this page in when you submit your document to
Graduate College format advising. You may discard this page once you have printed
your final document. DO NOT TURN THIS PAGE IN WITH YOUR FINAL DOCU-
MENT! font type: TimesNewRoman font size: 12

57

