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ABSTRACT
Social situational awareness, or the attentiveness to one’s social surroundings, including

the people, their interactions and their behaviors is a complex sensory-cognitive-motor task

that requires one to be engaged thoroughly in understanding their social interactions. These

interactions are formed out of the elements of human interpersonal communication includ-

ing both verbal and non-verbal cues. While the verbal cues are instructive and delivered

through speech, the non-verbal cues are mostly interpretive and requires the full attention

of the participants to understand, comprehend and respond to them appropriately. Unfor-

tunately certain situations are not conducive for a person to have complete access to their

social surroundings, especially the non-verbal cues. For example, a person is who is blind

or visually impaired may find that the non-verbal cues like smiling, head nod, eye contact,

body gestures and facial expressions of their interaction partners are not accessible due to

their sensory deprivation. The same could be said of people who are remotely engaged in a

conversation and physically separated to have a visual access to one’s body and facial man-

nerisms. This dissertation describes novel multimedia technologies to aid situations where

it is necessary to mediate social situational information between interacting participants.

As an example of the proposed system, an evidence-based model for understanding the ac-

cessibility problem faced by people who are blind or visually impaired is described in detail.

From the derived model, a sleuth of sensing and delivery technologies that use state-of-the-

art computer vision algorithms in combination with novel haptic interfaces are developed

towards a) A Dyadic Interaction Assistant, capable of helping individuals who are blind to

access important head and face based non-verbal communicative cues during one-on-one

dyadic interactions, and b) A Group Interaction Assistant, capable of provide situational

awareness about the interaction partners and their dynamics to a user who is blind, while

also providing important social feedback about their own body mannerisms. The goal is to

increase the effective social situational information that one has access to, with the conjunc-

ture that a good awareness of one’s social surroundings gives them the ability to understand

and empathize with their interaction partners better. Extending the work from an important

social interaction assistive technology, the need for enriched social situational awareness
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is everyday professional situations are also discussed, including, a) enriched remote inter-

actions between physically separated interaction partners, and b) enriched communication

between medical professionals during critical care procedures, towards enhanced patient

safety.

In the concluding remarks, this dissertation engages the readers into a science and technol-

ogy policy discussion on the potential effect of a new technology like the social interaction

assistant on the society. Discussing along the policy lines, social disability is highlighted

as an important area that requires special attention from researchers and policy makers.

Given that the proposed technology relies on wearable inconspicuous cameras, the discus-

sion of privacy policies is extended to encompass newly evolving interpersonal interaction

recorders, like the one presented in this dissertation.
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Chapter 1

SITUATIONAL AWARENESS IN EVERYDAY SOCIAL INTERACTIONS

People participate in social interactions every day with friends, family, co-workers and

strangers. A strong set of social skills is important for a successful and productive life. For

example, they help us make new friends, or make good first impressions at job interviews.

Sociologists believe that social interactions are the underpinnings of our modern society,

and are essential for social development and acceptance of an individual within our society.

Such interpersonal interactions consists of exchanges of verbal and non-verbal communica-

tive cues. The essence of humans, as social animals, is well exemplified in the way humans

interact face-to-face with one another. Even in a brief exchange of eye gazes, humans com-

municate a lot of information about themselves, while assessing a lot about others around

them. Though not much is spoken, plenty is always said. We still do not understand the

nature of human communication and why face-to-face interactions are so significant for us.

Social interaction refers to any form of mutual communication between two in-

dividuals (dyadic interactions) or between an individual and a group (group interactions)

[3]. Such communications typically involve many types of sensory and motor activities,

as deemed necessary by the participants of the interaction. Social, Behavioral and De-

velopmental Sociologists emphasize that the ability of individuals to effectively employ

expressive behavior is essential for the social and interpersonal functioning of our society.

Such social behaviors not only facilitate bilateral communication, but also provide a vital

loop for shaping social behavior, towards developing efficient and effective social and com-

municative skills. Further, researchers have revealed an unconscious tendency in humans to

imitate the mannerisms of their interaction partners. An increasing number of experiments

have suggested that this tendency is very primeval, and that imitation plays an important

role in building trust and confidence between individuals.

Unfortunately, non-verbal behavior (such as imitation) are sometime inaccessible,

such as the case where the interacting participants are communicating over telephones and
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not able to access the other’s communicative social cues, or in the case where one or more

of the interacting individuals is visually disabled, and finds it more difficult to receive non-

verbal social cues.

1.1 Components of Social Interactions

From a neurological perspective, social interactions result from the complex interplay of

cognition, action and perception tasks within the human brain. For example, the simple act

of shaking hands involves interactions of sensory, perceptual, motor and cognitive events.

Two individuals who engage in the act of shaking hands have to first make eye contact,

exchange emotional desire to interact (usually happens through a complex set of face and

body gestures, such as smile and increased upper body movements), determine the exact

distance between themselves, move appropriately towards each other maintaining interper-

sonal distance that is appropriate for their cultural setting, engage in shaking hands, and

finally, move apart, assuming a conversational distance, which is invariably wider than the

handshake distance. Verbal exchanges may occur before, during or after the handshake

itself. This example shows the need for sensory (like the visual senses of face and bod-

ily actions, and auditory verbal exchange), perceptual (like understanding expressions, and

distance between individuals), and cognitive (like recognizing the desire to interact, and

engaging in verbal communication) exchange during social interactions.

Historically, social interactions have been studied in the context of human interper-

sonal communication dynamics under two important categories [4], namely,

• Verbal communication: Explicit communication through the use of words in the form

of speech or transcript.

• Non-verbal communication: Implicit communication cues that use prosody, body

kinesis, facial movements, and spatial location to communicate information that may

stand alone or overlap with verbal information.
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Figure 1.1: Relative importance of a) verbal vs. non-verbal cues, b) four channels of non-
verbal cues, and c) visual vs. audio encoding and decoding of bilateral human interpersonal
communicative cues. Based on the meta-analysis presented in [1].

1.1.1 Non-verbal communication cues

In everyday social interactions, people communicate so effortlessly through both verbal and

non-verbal cues that they are not aware of the complex interplay of their voice, face and

body in establishing a smooth communication channel. While the spoken language plays

an important role in communication, speech accounts for only 35% of the interpersonal

exchanges. Nearly 65% of all information communication happens through non-verbal cues

[5]. Out of this large chunk, 48% of the communication, is through visual encoding of face

and body kinesis and posture, while the rest is encoded in the prosody (intonation, pitch,

pace and loudness of voice) [6]. A closer look at the various non-verbal communication

modes reveals the importance of the multi-modality of social exchanges (See Figure 1.1).

A component of the non-verbal cueing that is not in the figure is social touch. As will be
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seen later, touch is an important aspect of social interactions that has only recently gained

attention, and is now being studied extensively by behavioral psychologists.

1.1.1.1 Social Sight and Social Hearing

Unlike speech, which is mostly under the conscious control of the user, non-verbal commu-

nication channels are engaged from a subconscious level. Though people can increase their

control on these channels through training, individuals are not always able to control their

non-verbal cues. The unconscious revealing of one’s emotional state through non-verbal

channels is referred to as leakiness [7] and sensitive humans have learnt (possibly evolu-

tionarily) to efficiently pick up these leaked signals during social interactions. For example,

people can read very subtle body mannerisms to sense the mental state of their interaction

partner. Interpretation of eye gaze is a classic example of this human ability to pick up

subtle cues. Through the interaction partner’s eyes, individuals can detect interest, focus,

involvement, and role play, to name a few.

Figure 1.2: Relative communicative information plotted against its leakiness. Speech forms
the verbal channel. Face, body and voice form the non-verbal communication channels.
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On the leakiness scale, it has been found that the voice (not speech, but the prosody,

intonation, pitch and volume) is the leakiest of all channels, implying that the emotions of

people are revealed first in their voice, before any of the other channels are engaged. The

voice is followed by body, face and finally the verbal channel, speech. The leakiness is

plotted on the abscissa of Figure 1.2 with the ordinate showing the portion of the total

information encoded in the three non-verbal communication channels. It can be seen that

the face communicates the largest portion of non-verbal cues, the body communicates the

next largest, and the prosody (voice) communicates the smallest, although it is the first

channel to leak emotional information.

1.1.1.2 Social Touch

Apart from visual and auditory channels of social stimulation, humans rely on social touch

during interpersonal interactions. For example, hand shake represents an important aspect

of social communication conveying confidence, trust, dominance and other important per-

sonal and professional skills [8]. Social touch has also been studied by psychologists in

the context of emotional gratification. Wetzel [9] demonstrated patron gratification effects

through tipping behavior when waitresses touched their patrons. Similar studies have re-

vealed the importance of social touch and how conscious decision making is connected

deeply with the human affect system. In the recent years there has been an increased inter-

est in the role of social touch in the enrichment of remote interactions [10] [11] in terms of

an individual’s social awareness and social presence.

In the next section, we discuss the concept of Social Situational Awareness, the

importance of encoding and decoding of the social sight, hearing and touch information,

and the need for individuals to be aware of their social situation for effective social com-

munication.

1.2 Social Situational Awareness

Social Situational Awareness (SSA) is the ability of individuals to receive the visual, au-

ditory and touch-based non-verbal cues, and respond appropriately with their voice, face
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and/or body (touch and gestures). Figure 1.3 represents the concept of consuming social

cues and reacting accordingly to the needs of the social situation. Social cognition bridges

stimulation and reciprocation, and allows individuals to interpret and react appropriately to

non-verbal cues.

Figure 1.3: Social situational awareness in human social communications

The Transactional Communication Model [12] suggests that during any face-to-

face interaction, the interpretation of the social stimulation, and the corresponding social

response, are influenced by factors including culture, physical and emotional state, experi-

ence, memory, expectation, self concept, and attitude of the individuals involved in the in-

teraction. In order to effectively process and react to the social stimulation, individuals must

be able to receive and synthesize these factors. The measure of a mediating technology’s

ability to support social situational awareness (such as, telecommunication technology for

remote interactions or social assistive technologies for the disabled population) is its ability

to engage the social cognition of an individual by providing access to the above mentioned
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factors and thereby evoke appropriate social reciprocation.

1.2.1 Social Situational Awareness in Everyday Social Interactions

1.2.1.1 SSA in Dyadic Interactions

Human communication theories have studied dyadic or bilateral interaction between indi-

viduals as the basis for most communication models. Theories of leadership, conflict and

trust are based on dyadic interaction primitives, where the role of the various non-verbal

cues is heightened, due to the face-to-face nature of dyadic interactions. Eye contact, head

gestures (nod and shake), body posture (conveying dominance or submissiveness), social

touch (hand shake, shoulder pat, hug, etc.), facial expressions and mannerisms (smile, sur-

prise, inquiry, etc.), eye gestures (threatened gaze, inquisitive gaze, etc.) are some of the

parameters that are studied closely in dyadic understanding of human bilateral communica-

tion [13].

z Enriching SSA in mediated dyadic communication is best done by extraction and

delivery of face, body and voice-based behaviors between interacting individuals.

1.2.1.2 SSA in Group Interactions

Group dynamics refer to the interactions between members of a team assembled for a com-

mon purpose. Teams of medical professionals operating on a patient, a professional team

meeting to accomplish a certain goal, or a congressional meeting to discuss regulations

are all examples of groups of individuals with a shared mental model of what needs to be

accomplished. Within such groups, communication behaviors play a vital role in determin-

ing the dynamics and the outcome of the meeting. Zancanaro et al. [14] and Dong et al.

[15] presented one model for identifying the role played by each of the participants in a

group discussion. They identified two distinct categories of roles for the individuals within

the group: (1) the socio-emotion roles, and (2) the task roles. The socio-emotional roles

included the protagonist, attacker, supporter and neutral, and the task roles included the

orienteer, seeker, follower and giver. These roles were dependent heavily on the emotional

states of the individuals participating in the group interaction. Good teams are those where
7



individual team members and their leaders are able to compose and coordinate their affect

towards a smooth and conflict free group interaction. Effective leaders are those who can

read the emotional state (i.e. affect) of each group member, make decisions about each

individual’s roles, and steer the group towards effective and successful decisions. Inability

to assess the affective cues of team members might have significant consequences ranging

from unresolved conflicts and underproductive meetings to the death of a patient.

z Enriching SSA in mediated group interactions is best done by extraction and delivery

of team’s interaction dynamics (as well as the group’s mutual and group affect) to other

participating members of the team, such as a remotely located team member or a co-located

individual who is disabled.

Inadequate social awareness can lead to interactions where individuals are not en-

gaged cognitively, and find it difficult to focus their attention on the communication. This

can occur in the case of remote interactions, perceptual disabilities of some team members,

and situations where medical professionals are operating simultaneously on a patient. In

such cases, SSA enrichment technologies should be designed to provide a richer interaction

experience for individuals involved either in dyadic or group interactions.

1.2.2 Learning Social Awareness

Figure 1.3 represents a simple unidirectional model of social stimulation and reciprocation.

In reality, social awareness is a continuous feedback learning system where individuals are

learning through prediction, reciprocation, observation, and correction of their behaviors.

It is this learning mechanism that allows people to adapt their behaviors from one culture

to another - here we refer to the term culture broadly, encompassing work culture, social

culture in a new environment, and culture of a new team. Figure 1.4 shows the continuous

feedback loop involved in social learning systems, based on the model of human cognition

as proposed by Hawkins [16].

People exposed to everyday social interactions learn social skills from the three

different social stimulations (social sight, social hearing, and social touch). When faced
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Figure 1.4: Social learning systems with continuous learning feedback loop.

with a new environment, individuals exercise their learned social skills to predict what

social actions are appropriate in the new setting. Once executed, they observe and assess

their counterparts, to determine if their behavior is appropriate or not for the new setting.

Such learning continues until their social rule set adapts to the new environment.

Psychologists have been studying the nature of learning that happens in individuals

who move from Western to Eastern cultures and vice versa. Largely, USA and Japan have

been the countries of choice based on their economic equality and cultural contrasts [17]. In

the West, large body movements and excitement in the voice are considered to be typical,

and to a large degree are encouraged as a good social skill. Similar behavior in the East

are considered to be inappropriate in professional settings and, to a large extent, indecent.

An individual displaying any such inappropriate mannerisms or gestures will receive social

feedback from his counterparts in the form of everyone staring at the individual, and re-

ducing their interaction with the individual. Thus, social awareness is based on a learned

set of rules about the environment within which the individual is present and this learning

process requires continuous monitoring of the various social channels of stimulation. De-

privation of any one of these channels can adversely affect the ability of an individual to

learn social actions and responses that are pertinent to a new social situation. Thus, enrich-

ing SSA not only offers the means for individuals to make appropriate social decisions, but

also cognitively trains them towards effective social judgments.

Rest of the chapter argues that the social information impoverishment characteris-
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tic of some interaction scenarios can result in social separation. Examples of such social

scenarios are introduced in Chapter 2 as motivations for the development of proposed tech-

nologies that mediate social interpersonal interactions. An effort is made to identify the

social separation created due to physical separation of interaction partners, and to contrast

these situations with information impoverishment due to sensory/physical disabilities in co-

located interaction partners. The following section highlights some of the important factors

that are important to successful non-verbal communication.

1.3 Factors that are important ro successful non-verbal communication

The success of non-verbal communication is influenced by various factors, some of which

are dependent on the interaction partners and some of which depend on the environment

where they are interacting. Psychologists have classified these factors into three categories

[5]:

(a) Factors related to the communication environment

(b) Factors related to the physical characteristics of the communicators

(c) Factors related to the behaviors of the communicators

Below, these three categories are each discussed in detail, providing a high level view of

their influence on non-verbal communication between individuals.

1.3.1 Factors related to the Communication Environment

The communication environment (or surroundings where the interactions are taking place)

makes a difference in how humans respond or react to each other [18] [19]. For example,

lengthy periods of extreme heat [20] are known to increase discomfort, increase irritability,

reduce work output, and produce unfavorable evaluations of others. Along with interaction

partners, the environment can either have a positive or a negative influence on the emotional

state of an individual. For example, wide open spaces and natural environments are known

to be conducive for psychological stability [21]. Though such environmental factors are just
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perceptual, they influence how humans react to each other. Some of the important environ-

mental factors that affect interpersonal communication and non-verbal cueing are shown in

the Table 1.1. This table lists eight environmental factors and provides important references

from the behavioral psychology literature that discusses the influence these factors have on

the non-verbal communication.

Table 1.1: Eight factors of the environment that can affect interpersonal communication.

The Communication Environment
Familiarity of the environment [22] [23]
Colors in the environment [24] [25]
Other people in the environment See next two subsections.
Architectural Designs [26]
Objects in the environment [27]
Sounds [28] [29]
Lighting [30]
Temperature [20]

1.3.2 Factors related to the Physical Characteristics of the communicators

The physical appearance of a person is an important factor for non-verbal communication.

People form impressions of their communication partner as soon as they engage with them.

The human body communicates important sociological parameters such as status, interest,

and dominance. Researchers have found both cultural and global preferences in overall

body image, and any deviations from the norm affects interactions between people. For

example, facial babyishness [31] has been found to affect judgment of facial attractiveness,

honesty, warmth and sincerity. Deviations from the babyishness has been correlated to

reductions in the judgment of these positive traits. Another example is the clothing that

people wear. It has been found that first impressions are positive if the interviewer and

interviewee are clothed similarly [32]. Table 1.2 shows ten important aspects of a person’s

physical appearance that affect interpersonal interactions. Various psychological studies

have been conducted to better understand human perception of character. Although very

little is known about how norms for character perception are established, the subject is being

studied vigorously, especially in the context of group behaviors and personal mannerisms
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within work environments [33]. Similar to Table 1.1, Table 1.2 lists the important physical

characteristics that can affect communicative behaviors of interaction partners and provides

references from the behavioral psychology literature.

Table 1.2: The physical characteristics of a communicator that can affect interpersonal
communications.

The Physical Characteristics
The human facial attractiveness [31] [34] [35]
Body shape [36] [37]
Height of a person [38]
Self image [39]
Body color [40]
Body smell [41] [42] [43]
Body hair [44]
Clothing [32] [45]
Personality [46] [47]
Body decoration or artifacts [48]

1.3.3 Factors related to the Behaviors of the Communicator

The last of the three categories of factors that affect non-verbal communication is the be-

havior of the communicators. The term behavior is used loosely here, as it encompasses

both the static posture and the dynamic movements of the communicators. Of the three

categories of factors discussed here, the behavior category is the most important. Most of

the emotional information is delivered through the behavior of individuals during social in-

teractions. Gestures, Posture, Touch, Face/Head, Eye Behaviors and Voice form the basic

subdivisions in behavioral non-verbal cueing. These important aspects of non-verbal cueing

are discussed below with references to various related works in the behavioral psychology

that highlight the importance of these behaviors in mutual social interactions.

1.3.3.1 Gesture

Gestures are dynamic movements of the face and limbs during interpersonal communica-

tion. Together, they convey information that can be complimentary to speech, or supple-

mentary to verbal communication. Gestures are typically classified based on their occur-
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rence with speech. Accordingly, there are

(a) Speech-independent gestures, or emblems (like shrug, thumbs up, victory sign etc), that

are mostly visual in nature, and convey the user’s response to the situation [49] [50].

(b) Speech-related gestures, or illustrators (pointing to a thing, drawing a shape while de-

scribing etc) [51].

(c) Punctuation gestures, that emphasize, organize, and accent important segments of a

communication, like pounding the hand or raising a fist in the air.

1.3.3.2 Posture

Posture refers to the temporary limb and body positions assumed by individuals during

interpersonal interactions. Posture is effective for communicating important non-verbal

cues, such as leadership, dominance [52], submissiveness and social hierarchy [53]. For

example, people who show a tendency toward dominance tend to extend their limbs while

sitting, thereby displaying an overall larger body size. Similarly, submissiveness seems to

be correlated to reducing the overall body size, by keeping the limbs together. Both gestures

and postures are influenced heavily by the cultural background of the individuals, and also

vary with the geographical location [54] from where they hail.

1.3.3.3 Touch

Social touch is a very important aspect of non-verbal communication in humans. Devel-

opmental biologists believe that the first set of sensory responses in a human fetus is touch

[55]. From a social context this sensory channel useful for conveying interpersonal cues

such as interest, intimacy, warmth, confidence, leadership and sympathy [56]. Touch is a

powerful means of unconscious interaction, and people who are very good in their social

skills rely upon touch a lot [57]. The sense of touch (Haptic Communication [58]) has been

studied by psychologists with respect to its role as a human sensory system. More recently,

haptics has been studied by technologists with respect to the role it might play in human
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machine interfaces that augment or replace visual and auditory interfaces [59] with touch

encoded data.

1.3.3.4 Face/Head

While the aspects of permanent facial appearance are important in the recognition of the in-

dividual, from a non-verbal communication perspective, the primary function of the face is

directed towards communicating emotions and expressions. In fact face, together with the

head, is the primary channel for non-verbal communication. Humans are efficient in con-

veying and interpreting information through subtle movements of their face and head. The

facial appearance of an individual is due to (1) their genetic makeup, (2) transient moods

that stimulate the facial muscles, and (3) chronically held expressions that seem to become

permanent. Reliance on the face for non-verbal cues develops from a very young age. At

the age of only 2 months, infants are adept in understanding facial expressions and manner-

isms [60]. The human face has very fine muscular control, allowing it to display complex

patterns that are widely understood among humans while being very individualistic [61].

The human visual system is able to interpret subtle differences between people’s faces due

to genetic makeup (i.e. person’s identity through face recognition), as well as transient

changes (i.e. facial expression and emotion recognition), and permanent expressions on the

face (i.e. default or neutral face of individuals).

The understanding of the human facial expression space was immensely increased

by the work of Ekman, Frisen [62] and Izard [63] in the late 1970s. They independently

measured precise facial movement patterns, and correlated individual localized movements

with facial expressions on the human face. While Izard developed these patterns on infants,

the Facial Action Coding System (FACS) developed by Ekman and Frisen has become the

defacto standard for measuring facial expressions and emotions in individuals. FACS allow

researchers to encode facial movements into accurate contraction and relaxation of facial

muscles. Based on these facial actions, Ekman and Frisen developed a classification of

facial expressions based on six basic emotions, namely Happiness, Sadness, Anger, Disgust,

Fear and Surprise. The emotions have been found to be common across cultures and age
14



Table 1.3: FACS communicative actions on the human face

1 Inner Brow Raiser 24 Lip Pressor
2 Outer Brow Raiser 25 Lips part
4 Brow Lowerer 26 Jaw Drop
5 Upper Lid Raiser 27 Mouth Stretch
6 Cheek Raiser 28 Lip Suck
7 Lid Tightener 29 Jaw Thrust
9 Nose Wrinkler 30 Jaw Sideways
10 Upper Lip Raiser 31 Jaw Clencher
11 Nasolabial Deepener 32 Lip Bite
12 Lip Corner Puller 33 Cheek Blow
13 Cheek Puffer 34 Cheek Puff
14 Dimpler 35 Cheek Suck
15 Lip Corner Depressor 36 Tongue Bulge
16 Lower Lip Depressor 37 Lip Wipe
17 Chin Raiser 38 Nostril Dilator
18 Lip Puckerer 39 Nostril Compressor
19 Tongue Out 41 Lid Droop
20 Lip stretcher 42 Slit
21 Neck Tightener 43 Eyes Closed
22 Lip Funneler 44 Squint
23 Lip Tightener 45 Blink

46 Wink

levels. This fact has further motivated technologists to base human machine interaction on

the detection of these emotion primitives.

The Facial Action Coding System (FACS): FACS is a systematic description of all

possible facial movements in terms of muscular contractions and relaxations, as displayed

by the various facial muscles, shown in Figure 1.5. There are 46 Action Units (AU), that

form the basis of FACS. Each facial feature movement patterns is represented by 5 distinct

levels of movement (A, B, C, D and E) which represent the intensity of their movement.

These 46 movements are combined to represent the movements of facial features such as

lips, eye brow, and chin during all communicative interactions. Table 1.3 shows the AUs

that form the basis of FACS based facial coding with the appropriate number and a short

description of the associated facial feature movement.
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Figure 1.5: The facial muscles responsible for facial expressions and gestures.

1.3.3.5 Eye

The human eye plays an important role in non-verbal communication among interacting

individuals. This involvement of human eyes is emphasized by the functions that gaze and

mutual gaze play in everyday human interpersonal communication [64]. People use gaze to

facilitate smooth verbal interactions that lead to information exchange [65]. The function

of gaze has been classified into four important functional categories [66]. These include

1.4 Facilitating Social Interactions through the Enrichment of Social Situational

Awareness

From the above discussions, it can be argued that the social interactions between individ-

uals can be affected positively by enriching their social situational awareness. That is, by

enhancing their access to social cues that could more fully engage them socially, thereby

more effectively eliciting social reciprocation. The rest of this dissertation discusses the

importance of social cue enrichment under various social conditions and explores one im-

portant application of human interpersonal communication enrichment in people who are
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Table 1.4: The role of the eyes in human interpersonal communication.

Regulating the flow
of communication

One of the most important functions of gaze is the regulation of
verbal communication in bilateral and group communications.
People use gaze to shift focus, bring the attention of a group of
people to one thing, turn taking in group conversations [67] and
eliciting responses from communication partners [68].

Monitoring feed-
back from the
listener

Gaze provides a means for individuals to get feedback during
conversations and communications. Feedback is very important
while people converse. Humans study the eyes of the listener to
decide whether to inject or eliminate verbal information from the
conversation [69].

Reflecting cognitive
activity of the com-
municator

Both listeners and speakers tend not to gaze at others when they
are processing complex ideas or tasks. Studies have shown that
people can answer better when they close their eyes and are al-
lowed to process their thoughts [70]. Thus, cognitive processing
is displayed very elegantly through eye gaze patterns.

Expressing emo-
tions

Along with the facial muscular movements, the eyes play a vital
role in the expression of emotions. In fact, in human computer in-
teraction research, it has been found that relying on the eyes and
the eyelids alone can provide more accurate affect information
than relying on the entire face [71]. Verbal communication tends
to move the lips and the mouth quickly and randomly. This can
make image and video processing of expressions very difficult.
Some of the more recent spontaneous expression recognition re-
search is focusing exclusively on the eyes for this reason.

visually impaired. In doing so, emphasis is placed on (1) understanding the importance and

priority of social signals, (2) developing sensing technologies that can extract social cues

from the communicative environment, and (3) developing technologies that can deliver ex-

tracted social information to the users of the enrichment technology with a minimal sensory

and cognitive load.

1.5 Organization of the Dissertation

The dissertation is organized as shown in the Table 1.5
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Table 1.5: Organization of the dissertation.

Chapter 2 Discusses the need for enriching social situational awareness in
everyday personal and professional lives of individuals.

Chapter 3 Highlights the importance of enriching social situational aware-
ness for individuals who are blind and visually impaired and lays
foundation for the bulk of the work presented in this dissertation.

Chapter 4, 5, 7 & 8 Discusses various technologies that can enable users who are
blind and visually impaired to access social signals that are im-
portant for having a rewarding social interaction with sighted
counterparts. The details of these chapters will become clear
once the reader has been introduced to the various social situ-
ations that require attention, as detailed in Chapter 3.

Chapter 6 & 10 Discusses various technologies that can enable any processed so-
cial signals to be delivered to people who are blind and visually
impaired, without overloading any of the their senses, like hear-
ing or touch.

Chapter 11 In wake of introducing technologies that interject into the per-
sonal lives of individuals (lives of not only those who are dis-
abled but also their interacting partners) this chapter highlights
the need for researchers to consider the impact of social medi-
ation technologies on the society. While the discussions do not
impart strict policies, this chapter initiates a conversation towards
adopting important technology policies in the emerging assistive
technology domains.
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Chapter 2

NEED FOR ENRICHING SOCIAL SITUATIONAL AWARENESS

Social situational awareness (as described in Figure 1.3) can have a tremendous impact on

the quality of one’s personal and professional life as well as one’s ability to relate to their

social surroundings. This chapter introduces three important example situations where there

is an increased need to enrich social situational awareness.

1. where a person with a disability is interacting in a social situation with sighted coun-

terparts.

2. where two or more people are interacting from remote locations.

3. where medical teams are interacting to perform an operation on a patient.

2.1 Disability Induced Social Signal Attrition

Due to the fact that a large portion of human-human interpersonal communication hap-

pens through complex non-verbal cueing, individuals who are disabled face myriad levels

of difficulty when it comes to interpreting and responding to everyday social interactions.

The difficulty varies based on the kind of disability and the intensity of the disability one

faces. Non-verbal cues are mostly interpretative and not instructive as verbal cues (such as

speech) are. In a bilateral interpersonal interaction, while speech encodes all the informa-

tion, non-verbal cues facilitate an elegant means for delivery, interpretation and exchange

of the verbal information. People with sensory, perceptive, motor and cognitive disabilities

may not be able to receive or process these non-verbal cues effectively. Though most indi-

viduals learn to make accommodations for the lack of a primary information channel, and

lead a healthy personal and professional life, the path towards learning effective accommo-

dations could be positively effected if social signals could be enriched for the benefit of

these individuals. We focus on the topic of building technologies that can mediate inter-

personal interactions for people who are disabled and we specifically focus on the issues
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emanating from the lack of sensory visual channel, like in the case of people who are blind

or visually impaired.

2.1.1 Visual Impairment - a hinderance to smooth social interactions

As seen in Figure 1.1, most non-verbal cues are perceived visually. While some of these

cues are delivered along with speech, nonverbal cues such as posture or gestures is inac-

cessible to someone with a significant visual impairment or blindness. This deprives these

individuals of vital communicative cues that normally enrich the experience of social inter-

actions, and puts them at a disadvantage in daily social encounters. For example, during

a group conversation it is common for a question to be directed to an individual without

using his or her name - instead, the gaze of the questioner indicates to whom the question

is directed. In such situations, people who are blind find it difficult to know when to re-

spond because they cannot determine the direction of the questioner’s gaze. Consequently,

individuals who are blind might be slow to respond or they might talk out of turn, possibly

interrupting the conversation. This can lead to isolation and reduced sense of engagement

with the ongoing interactions.

Compounding these problems, sighted individuals are often unaware of the role

their own non-verbal cues in their social interactions, and they often fail to make appro-

priate adjustments when communicating with people who are blind. When people who

are blind find themselves in such a social interaction, they might be reluctant to ask the

sighted person to make adjustments to their disability, because they do not want to burden

friends and family. The combination of all these factors can lead people who are blind to

become somewhat socially isolated [72]. Ironically, while people who are blind and visu-

ally impaired face difficulties in social interactions, research in rehabilitation training for

these populations suggests that these individuals need to increase their social interaction to

improve their acceptance in mainstream careers.

Recently, Jindal-Snape [73] [74] [75] carried out extensive research in understand-

ing social skill development in blind and visually impaired children. She has studied in-
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dividual children who are blind from India, where the socio-economic conditions do not

provide for trained professionals to work with children who have disabilities. Her semi-

nal work in understanding the social needs of children who are blind have revealed two

important aspects of visual impairment that prevent social interactions. These include:

(i) The inability to learn social skills due to the lack of vision.

(ii) The lack of reinforcement feedback on one’s mannerisms.

2.1.1.1 Inability to learn social skills due to the lack of vision:

Jindal-Snape observed that significant others in the environment often fail to give verbal

replacement for their bodily actions, and even when they do, it is not meaningful or under-

standable to an individual who is visually impaired - for example, nodding one’s head in

reply to a question or gesturing. Lack of meaningful verbalizations could make it difficult

for visually impaired persons to comprehend a conversation [74] [75] and, at times, may

stop conversing. Similar studies carried out by Celeste [76] indicated that social interven-

tion by parents and teachers are very important in the formative years of a child with visual

impairment. Developing on the work by [77], which emphasizes that short-term feedbacks

are never effective, Celeste insists that professionals must identify strategies related to so-

cial skills that work, provide consistent support and follow children longitudinally to ensure

effective development of social skill set.

People who are sighted do not necessarily have the training to interact with individ-

uals who are blind or visually impaired. Thus, unconsciously they tend to neglect people

who are blind. For example, sighted people use eye contact as a primary means of keep-

ing the attention of people they communicate with. While conversing with a person who

is blind or visually impaired, sighted individuals expect eye contact. The lack of such a

feedback distracts the sighted individuals to assume wandering attention or disinterest from

the visually impaired individual. Research indicates that blind individuals with the abil-

ity to accommodate the expectations of their sighted counterparts have great potential for

personal and professional growth.
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2.1.1.2 Lack of visual reinforcement feedback on one’s mannerisms:

When individuals display behaviors in any social setting, they receive feedback through

their peer’s reactions. These reactions could either reinforce or dissuade those behaviors

depending upon whether they are deemed appropriate or not, respectively. Due to their in-

ability to receive visual feedback, people who are blind or visually impaired do not receive

this feedback from their social counterparts. People who are visually impaired at a very

young age are at a particular disadvantage in learning appropriate social actions and man-

nerisms. Development of asocial stereotypic body mannerisms are one such case where

positive reinforcement through visual stimulation is necessary to cull certain developmen-

tal behaviors (such as body rocking) that would have otherwise weaned off gradually as the

child gets into adulthood.

Most people who are blind or visually impaired eventually learn to partially com-

pensate for the lack of visual cues by using other cues, such as audio. It maybe possible

that the path towards learning such accommodations could be positively effected through

the use of technology that mediates interpersonal interactions. Specifically, children with

visual disabilities find it very difficult to learn social skills while growing amongst sighted

peers, thus avoiding social isolation and psychological problems [73].

Social disconnect due to visual disability has also been observed at the college

level, where students start to learn professional skills, and independent living skills. Any

assistive technology that can enrich interpersonal social interactions could prove beneficial

to the visually disabled or blind people during this learning process. Technology specialist

Shinohara [78] [79], observed the everyday activities of a college student named Sara who

was blind [80]. Shinohara categorized Sara’s daily needs into functional categories and

identified 5 important aspects of Sara’s life where she could benefit from assistance. These

include (in order of importance)

• increased socialization.
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• increased independence in doing things.

• increased control over things she does.

• feedback from objects around her.

• increased efficiency in her activities.

As seen from the list, socialization was a very important aspect of this college student’s

needs. Shinohara concluded that technology that support socialization for people with vi-

sual impairment is absolutely necessity.

2.2 Social Signal Attrition during Remote Interpersonal Interactions

The globalization of economies has required that people communicate across geographical

distances efficiently and effectively in real (or near-real) time. This has increased interna-

tional and inter-cultural interactions where people with different cultures are working to-

gether to accomplish common tasks. Intercultural interactions cause socio-emotional stress

due to differences in work ethics, communication protocols and the role of hierarchy in

management. Such stress is typically managed well through dyadic face-to-face interac-

tions, which is known to reduce cultural stress and communicative misunderstandings [81].

Unfortunately, face-to-face dyadic interactions are not always possible, and people might

need to rely on telecommunication technologies to bridge geographical separation. Exist-

ing technology solutions that are closest to simulating face-to-face interactions (such as

telepresence environments) are typically limited to more scheduled, highly structured, and

formal interactions. Furthermore, all current telecommunication technologies that support

virtual collaborations suffer from emotional impoverishment, due to the limited social sit-

uational awareness among participating members of the interaction. In this section, we

highlight some of the important problems faced by remotely distributed teams when the

interpersonal communication is restricted to virtual telecommunications.

Kock et al. [82] expands on various studies in the area of professional communi-

cation to elaborate on the various problems faced in enriching remote interactions between
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geographically isolated individuals. In doing so, they identify several important challenges

for e-collaborations, including

• Theoretical Challenges: Lack of theoretical understanding of media-based human-

human communications.

• Human/User Challenges: Lack of understanding of the human dynamics that make

interpersonal interactions so important to humans.

• Technical Challenges: Lack of technology to provide seamless social presence across

geographical boundaries.

• Conceptual Challenges: Shear complexity of the problem given the above three chal-

lenges.

Discussions in Chapter 3 will discuss the similarities between the above four chal-

lenges encountered when mediating remote person-to-person interactions, and the chal-

lenges encountered when developing mediating assistive technologies for people who are

blind or visually impaired.

Most remote collaboration technologies rely on media richness to compensate for

the lack of social presence. Early behavioral psychology studies supported this approach

with Media Richness Theory [81]. To provide media richness despite communication band-

width limitations, researchers employed avatar-based communication. However, this ap-

proach was not well-received and subsequent studies have shown the need for media nat-

uralness in telecommunication, more so than just media richness [83]. The naturalness

here refers to the sensitivity of the human communicative system to the subtle movements

and gestures shown by the face, body and head during social interactions. In the context

of naturalness, it is important to cite Robert et al. [84], who addressed the question of

how much naturalness is necessary to involve the participants effectively in the interaction.

They addressed notions that more social presence in media is always better and through

experiments they theorize that, “the use of media high in social presence induces increased
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motivation but decreased ability to process information, while the use of media low in so-

cial presence induces decreased motivation but increased information processing ability.”

Their work in the potential negative consequence of high social presence further increases

the need to understand how social interactions across large geographical boundaries can

be bridged. In this dissertation, we argue that the social engagement of individuals can be

enriched through the use of novel multimodal social situational awareness technologies that

prevent overloading of any one sensory channel of the participants and encourages distri-

bution of the social signal delivery across various under utilized human sensory channels.

An industry survey [85] of 1592 individuals who collaborated remotely, carried out

by RW3 CultureWizard - a company focused on improving international collaborations -

reported difficulties that are representative of (1) lack of commitment in remote interactions

and (2) inability of virtual teams to correspond and communicate as effectively as face-to-

face teams. “Respondents found virtual teams more challenging than face-to-face teams in

managing conflict (73%), making decisions (69%), and expressing opinions (64%). The top

five challenges faced during virtual team meetings were insufficient time to build relation-

ships (90%), speed of decision making (80%), different leadership styles (77%), method of

decision making (76%), and colleagues who do not participate (75%).” These results can

suggest a need for Social Situational Awareness in group settings. In the classical model for

group dynamics, Bruce Tuckman [86], defines four stages in the formation of an efficient

group. Forming, Storming, Norming and Performing describe the typical process that the

groups go through before delivering at their best. The stages of Storming and Norming

are deeply connected to the individual group member’s abilities to communicate, coordi-

nate and empathize with their fellow group members. The socio-emotional interactions

between the group members dictate how quickly (or slowly) a group will progress from the

Formative first stage to Performing fourth stage [87].

Further, when the participants were asked about the personal challenges faced dur-

ing virtual team meetings, they reported inability to read non-verbal cues (94%), absence

of collegiality (85%), difficulty establishing rapport and trust (81%), difficulty seeing the
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whole picture (77%), reliance on email and telephone (68%), and a sense of isolation

(66%).” Delivering non-verbal cues, establishing trust and rapport, and easing isolation

are all factors that are important for increasing one’s social connection to their interaction

partners, be it remote or face-to-face. This result is in accordance with psychology stud-

ies carried out on e-collaborations. The review of Media Richness and Social Presence

theories by Kock [88] highlights problems that are very similar to those described by the

CultureWizard studies.

As seen from the discussions above, remote social interactions rely on the social

presence and situational awareness of the interacting participants. Enriching any of the so-

cial cues (sight, hearing or touch) through remote means could potentially improve commu-

nication dynamics. As will be discussed in Chapter 6, various attempts have been made to

mediate complex interpersonal interaction signals across physical separation. In the follow-

ing section, we discuss an interesting social interpersonal communication issue that arises

within a professional environments, specifically critical care medical teams, and show how

social situational awareness is of utmost importance.

2.3 Social Signal Attrition in Medical Teams

Modern day critical care facilities require the simultaneous efforts of multi-disciplinary

medical professionals (such as doctors, surgeons, nurses and anesthesiologists) to operate

on a single patient. This imposes a mandatory requirement on the professionals to work

as a team. Unlike many other professional teams who choose their members after careful

deliberation, medical teams are assembled dynamically, based on whichever medical pro-

fessionals are available on the hospital floor at the time of emergency. Further, these teams

might last for a very short duration of time (the duration dictated by the emergency) dissolv-

ing after the need has been met with different teams forming for subsequent emergencies.

Studies show that teams that establish well articulated communication between members

perform well under the stressful environment. Unfortunately, this is not true of all medical

teams and one individual’s stress may very well propagate through the team, breaking down

mutual communication and support, leading to the patient’s death.
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Table 2.1: Survey on the challenges of remote interaction.

Challenges in virtual teams compared to face-to-face teams

Top five challenges faced during virtual team meetings

Personal challenges during virtual team meetings
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Figure 2.1: TeamSTEPPS: Team Strategies and Tools to Enhance Performance and Patient
Safety

The importance of studying a group of physicians entering a medical situation as

a single operating unit began to appear in the focus of behavioral scientists with the publi-

cation of the Institute of Medicine (IoM) report titled To Err is Human: Building a Safer

Health System in Dec 1999. One of the four core messages from the report identified that

patient life is lost not because of the failure of an individual, but due to the failure of the

team. Since this report, Agency for Healthcare Research and Quality (AHRQ) and Depart-

ment of Defense (DoD) have focused on team failure from an Evidence-Based Medicine

perspective and released Team Strategies and Tools to Enhance Performance and Patient

Safety (TeamSTEPPS) [89] as the standard for team training in health care. The core of

TeamSTEPPS, designed to be a training tool that promotes teamwork among the multi-

disciplinary members of a dynamically-formed medical team, focuses on the need to have

four important team attributes among the members, namely,

(a) Leadership

(b) Mutual support

(c) Communication
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(d) Situation monitoring (or a shared mental model)

As seen from Figure 2.1, TeamSTEPPS focuses on the individual physician and the

team’s ability to work together as a system. Leadership, Communication, Situation Mon-

itoring and Mutual Support were all derived from earlier DoD and AHRQ lead studies in

medical team management and are based on the underlying principles of: Team Leader-

ship [90], Mutual Performance Monitoring [91], Backup Behavior [92], Adaptability [93],

Team/Collective Orientation [94], Shared Mental Model [89] [93], Mutual Trust [95] and

Closed loop Communication [92] (For a detailed analysis of each of these principles, please

see King et al. [96].) Most of these principles are in turn derivatives of the social skill set of

the individuals who make up the medical team that is responsible for the patient safety. It

has been shown that, in cases of medical errors leading to loss of life, communication break-

down between one or more team members resulted in an avalanche of problems, eventually

resulting in death.

2.3.1 Importance factors affecting team performance

2.3.1.1 Group Dynamics

As discussed briefly in Section 1.2.1.2 of Chapter 1 Group Dynamics focuses on studying

the various components of group interactions, including inter-agent communication [97],

productivity of a given group [98], level of understanding of each other’s potentials and

limitations, job satisfaction and combined creativity of a team [99] to name a few. In recent

years, interest in understanding group dynamics in work environments has tremendously

increased in interdisciplinary teams involving computer scientists and socio-behavioral psy-

chologists in the area of Computer Supported Collaborative Work (CSCW) [100]. In the

context of medical teams, group dynamics focuses on the ability of the physicians and spe-

cialists to intercommunicate their needs. During emergency situations, group dynamics

facilitates the emergence of a Shared Mental Model [101], which enables all the profes-

sionals to relate to each other in terms of what needs to be done towards resuscitating the

patient.
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2.3.1.2 Leadership

Theories of leadership have proposed evidence-based models for explaining qualities ex-

emplified in successful leaders. From bureaucratic leaders to political leaders, the models

used to explain the qualities of leaders vary dramatically. There is no single accepted def-

inition of what a leader should represent, as the problem of identifying a leader is highly

contextual in nature. Recently, the functional model of leadership has been developed to

describe team leaders as having self regulation which translates to learning, performance

and adaptability. These models allow the study of dynamic teams that are formed for very

short durations (such as medical response teams) and allow monitoring of each individual

and their contribution to the team activity [102]. Kozlowski et al. have described a dynamic

multi-goal model for team leadership as shown in Figure 2.2. Based on this model, they

describe effective leaders as those who can not only assess simultaneously their own goals

while keeping track of team goals in a dynamically evolving situation.

Figure 2.2: Multi goal model of self regulation for effective team leadership.

While Figure 2.2 shows the behavioral choice of the leader to be a vital component

of self regulation and team regulation, very little study has been focused on the effect of

leader’s socio-emotional state (assessed through their social situational awareness) on team
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dynamics. Recently Sy et al. [103] have demonstrated how important it is for the leader to

control and regulate his/her affect cues within dynamically formed teams. The mood of the

leader propagates through the team, and can have net positive or negative effect on the team

outlook and performance. The dynamic nature of team formation is further complicated in

medical teams as the responsibility shifts very quickly from one specialist to another, as

they operate on the patient [104].

Behavioral psychologists have been studying the impact of socio-emotional states

(especially stress induced socio-emotional states) on the performance of professionals and

conclude that the direct artifacts of stress include deprecated decision making, failure in

leadership and breakdown of mutual support. Further research shows that enriching the

social situational awareness of the professionals will reduce stress and potentially improve

team performance. Further, assessing the socio-emotional and communication skills of

the professionals within the critical care unit will provide an unfettered advantage towards

determining metrics of team performance under stress. To this end, three parameters have

been identified as important towards advancing patient safety in critical care environments:

1. Automated monitoring of group dynamics to determine communication breakdowns.

2. Automatic evaluation of the social affinity between team members.

3. Leadership evaluation and nomination through long term monitoring of individuals.

2.3.2 The emerging science of medical team social assessment

In light of the important issues related to group interactions and leadership, Krishna et

al. [105] [106] have suggested a study of three important challenges of medical teams

through critical care simulation as discussed below. They propose to study interdisciplinary

medical residents as they respond to simulations of critical care scenarios. Teams before

and after TeamSTEPPS training will be assessed based on their leadership, mutual support,

communication and situation monitoring. Below, the simulation facility and the proposed
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research directions are discussed in detail, highlighting the importance of social situational

awareness among the medical team members.

2.3.2.1 The Mayo Clinic Multidisciplinary Simulation Center:

Mayo Clinic has invested in the development of a state-of-the-art Multidisciplinary Simu-

lation Center providing many advantages in learning team performance and hospital emer-

gency code training. The center was designed to reflect the complexity of the live clinical

environment. The physical, electronic, microcultural and macrocultural environments have

been replicated in order to create a practice field for clinical situations. The physical envi-

ronment includes artifacts such as the bed, sink, cabinets, flooring, doors and lights. The

electronic environment replicated with monitors, intravenous pumps, electronic medical

records, pharmaceutical dispensing system, decision support software and computers. The

micro cultural environment is provided by the inter professional team, and the macro cul-

tural environment is provided by embedding the simulation center within the hospital. The

patient clinical situations are replicated by combinations of high fidelity simulators, virtual

reality simulators, standardized patient actors, and low fidelity simulators. Experts have

developed standardized simulation scenarios, curriculum and debriefing specific to learner

or team performance levels.

Within this environment, a high resolution audio and video capture system has

been unobtrusively placed for performance monitoring and archiving. Data is saved to an

internet-based learning management system with individual and team portfolios permitting

immediate local or asynchronous remote review and feedback. Teams practice rare or life

threatening event management in an error-forgiving environment gaining experiences which

have been shown to improve patient safety [107]. Some of the highlights of simulated team

training include,

• A hospital based center, with clinical microsystems reflecting the live environment

• High fidelity simulators, virtual reality trainers, simulated electronic medical record

32



• Wireless biometric monitoring, an audio-video architecture for simulation suites, in

situ, and in vivo performance archive

• An internet-based learning management system, with individual and interprofessional

team portfolios

• Expert developed, standardized curriculum and debriefing

• Curriculum customizable to the learner or team performance level

• An error-forgiving clinical experience, enhancing patient safety

• Deliberate practice with supervised instruction in life-threatening event management

• Experience with uncommon scenarios

• Leadership training and debriefing using “Crisis Resource Management” principles

2.3.2.2 Challenges in Social Situational Assessment and Training

Challenge 1: Automated monitoring of group dynamics to determine communication break-

downs: Current team performance analysis systems are mostly based on retrospective video

stream analysis collected during simulations of hospital emergency codes. The analyses are

mostly based on expert opinions of what happened during the critical incidents of the simu-

lation [108] [109]. Unfortunately, expert’s time is very valuable and post-simulation analy-

ses may not get sufficient attention, due to heavy hospital loads. For a long time researchers

have questioned how communication between medical team members vary over the pe-

riod of the emergency code execution [110]. However, very little is understood about the

basics of the communication patterns during emergency situations, mostly due to the lack

of automated annotation systems that do not require expensive specialist time. Automated

team performance analysis systems that focus on detecting specific instances of communi-

cation breakdown occurring during emergency code simulation could greatly enhance our

understanding of team work and how it can be enhanced through training.
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Challenge 2: Automatic evaluation of the social affinity between team members: Sociograms

(social affinity maps) have been used historically to determine the interpersonal match be-

tween members of a team or an organization. Sociograms are obtained through the process

of sociometry [111], which quantitatively measures the relationships of individuals who ex-

ist within a social space. As mentioned earlier, in medical teams, the social space happens

to be the emergency room where the team assembles with very little or no time to determine

who are the members of the team. Sociometry is achieved through a set of evaluations that

can assess the social interactions between individuals. The measurements could be done

within the environment where the individuals interact (the medical team) or outside (casual

interactions). Technologies developed to assess sociometric affinity between professionals

could in turn provide quantitative evaluations of the social interactions between individuals.

Sociograms developed at a hospital level could offer effective tools for quick team forma-

tions. Teams formed out of specialists, technicians and nurses who are closer to one another

on the sociogram could offer a team with relatively less emotional stress. Socially closer

individuals will also exhibit better communication, thereby increasing team performance.

Challenge 3: Leadership evaluation and nomination through long term monitoring of indi-

viduals: Theories of leadership have proposed evidence-based models for explaining qual-

ities exemplified in successful leaders. Recently, the functional model of leadership [112]

has been developed to describe team leaders as having self regulation which translates to

learning, performance and adaptability. These models allow the study of dynamic teams

that are formed in very short durations (like medical response teams) and allow monitor-

ing of each individual and their contribution to the group activity. Kozlowski et al. [112]

also describe a dynamic multi-goal model for team leadership which models effective lead-

ers as those who can not only assess their own goals but also keep track of team goals,

while approaching a dynamically evolving situation. Technologies developed towards un-

derstanding and modeling human interactions and communications can provide the tools

needed to measure leadership qualities through long-term monitoring.

In summary, social situational awareness is an important aspect for medical pro-
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fessionals entering into dynamic team settings requiring effective communication between

team members. Enriching the awareness of one or more of its members will directly reflect

on their performance as a team and hence the patient safety.

2.4 The Research Focus of this Dissertation

From the above sections, it is evident that enriching social situational awareness is an es-

sential component of enriching interpersonal interactions for both the personal and the pro-

fessional lives of individuals. Further, as can be seen from the three distinct discussions

on the need for social interpersonal communication, there is no single underlying theory

of social interactions and social situational awareness that can be immediately leveraged

towards developing models of enrichment. Years of research into human-human behavioral

dynamics have resulted in theories that are only grounded in coarse human communication

experiments. It has proven very difficult to finely define the nuances of human interactions,

especially in dynamic contexts. Modeling the complex nature of human interpersonal com-

munications under all contexts of interaction is a grand challenge. Kock et al. [113] offer

this opinion through an evolutionary model for human electronic communications where

they argue that humans evolve continuously within their cultural contexts and no one theory

can describe the inner workings completely. Kock in his seminal discussion “The Ape that

Used Email: Understanding E-communication Behavior through Evolution Theory” [88]

argues that a) Media Naturalness, b) Innate Schema Similarity and, c) Learned Schema Va-

riety, are the foundations for human communication, where, media naturalness refers to the

ability of humans to express subtleties in a natural way through a medium of remote com-

munication, innate schema similarity is the similarity in communication patterns shared by

members of a common culture, while learned schema variety refers to the individual dif-

ferences that makes each person learn as they coexist within a culture. It is this similarity

versus variety that makes each person both a member of the culture, yet an individual on

their own.

Acknowledging this complexity, the research highlighted in this dissertation as-

sumes an Evidence-based modeling approach to enriching human-human interpersonal in-
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teractions through multimedia mediation. As the name suggests, Evidence-based modeling

is based on observations of typical attributes of the problems at hand, and proposes to

address those problems in a specified context, with little or no generalization beyond the

boundaries of that context. Evidence-based models are common in medical practices where

the outcomes of prescribed health care are not considered to be objectively measured due

to individual patient factors, and can never be proven rigorously through scientific process.

A popular remark [114] on Evidence-based Medicine (EBM) or Evidence-based Practice

(EBP) reads,

EBM/EBP recognizes that many aspects of health care depend on

individual factors such as quality-of-life and value-of-life judg-

ments, which are only partially subject to scientific methods.

Though it has pitfalls, Evidence-based Medicine has been successful in saving lives [114]

and increasing the perceived quality of life.

Based on the above observations, the research described in the rest of the disserta-

tion follows an evidence-based method aimed at enriching interpersonal interactions among

individuals. Further, this dissertation focuses on the first area introduced in this chapter, me-

diating interpersonal interactions for people who are blind and visually impaired.

2.4.1 The Handshake Example: An Example of Evidence-based Understanding of Social

Situational Awareness

In Section 1.1 of Chapter 2, the handshake scenario was introduced as an example of the

complexity involved with even simple social interactions. Here we reintroduce the hand-

shake and describe how it presents challenges to people who are blind and visually im-

paired.

What seems to be a simple act of shaking hands between two individuals is ac-

tually a rather complex interplay of cognitive sensorimotor events. Two individuals who

engage in shaking hands first make eye contact, signal a desire to interact (usually through

face and body gestures, such as smile and increased upper body movements), determine
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the necessary distance between themselves, move appropriately towards each other while

respecting the interpersonal distance factors relevant to their particular cultural setting, en-

gage in shaking hands, and finally, move apart, assuming a conversational distance which

is invariably greater than the handshake distance. Verbal exchanges might or might not oc-

cur before, during or after the hand shake itself. This example shows the need for sensory

(visual senses of face and bodily actions, as well as auditory verbal exchange), percep-

tual (understanding expressions, and social distance between individuals), and cognitive

(recognizing the desire to interact, and engaging in verbal communication) activity during

everyday social interactions.

People who are blind or visually impaired face numerous challenges when it comes

to interactions such as handshake. They are not able to process the visual cues of where

someone is standing with respect to themselves (especially in a group setting), they cannot

determine if anyone has made eye contact with them (indicating a desire to interact), and

they may not be able to determine exactly how far their interaction partners are located,

and in what direction. As a result, they typically initiate a handshake by standing in place

and extending their arm in a handshake posture in the direction where they believe their

interaction partner to be, hoping to draw the attention of their sighted counterparts. In

dyadic interactions, this strategy is likely to elicit a handshake. However, when there is a

group of sighted individuals who are all interacting among themselves, this strategy might

cause momentary confusion, as members of the group attempt to resolve uncertainty about

who should respond.

Figure 2.3 represents an evidence-based model of delivering social situational aware-

ness to an individual who is blind such that he/she can carry out a handshake social inter-

action amidst a group of sighted individuals. Note that the Proxemics Model presented in

the figure refers to the interpersonal spaces that people occupy on a day-to-day basis and

it is heavily influenced by the culture in which one resides [115]. We plan to develop and

evaluate such evidence-based models as guides for the development of assistive technolo-

gies that can communicate important non-verbal cues. Chapter 3 discusses in detail how
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Figure 2.3: Evidence-based Model for Social Situation Awareness to promote handshake
non-verbal cueing in the visually impaired and blind population.

evidence-based models of social situations for people who are blind and visually impaired

were constructed for use in guiding the development of mediating technologies.
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Chapter 3

ASSISTIVE MEDIATION TECHNOLOGY FOR INDIVIDUALS WHO ARE

VISUALLY IMPAIRED

The overarching problem of disability-induced social signal deprivation was described in

detail in Section 2.1. Further, the adverse effects of the lack of social situational awareness

for people who are visually impaired were highlighted as,

• the inability to learn social skills due to the lack of visual feedback

• the lack of reinforcement visual feedback on one’s mannerisms

This chapter discusses research in the related areas of a) computer vision based non-verbal

cue sensing, b) social signal processing, c) human-computer interfaces, d) multimedia tech-

nology for computer human interactions and e) assistive technology design and develop-

ment. The results of this research inform evidence-based models for social signal enrich-

ment. Also presented are the results of a survey aimed at better understanding the problems

faced by people who are visually impaired as they engage in social interactions with their

sighted counterparts, which provides a basis for developing assistive technology for medi-

ating social interactions.

3.1 Automatic Detection of Non-verbal Cues and Observations

Affective Computing research has quantitatively studied both verbal and non-verbal cues

displayed by the humans during social communication. Signal streams from various sen-

sors, including visual sensors (e.g. cameras), audio sensors (e.g. microphones) and various

physiological sensors (such as EEG, EMG, and galvanic skin resistance sensors) have been

used to sense human emotional states. A good review of research work in Affective Com-

puting can be found in [116]. This research has enabled a better understanding of human

physiological signals, with respect to emotional states, and the results have been used to

facilitate human-computer interaction (HCI). In theory, a system that can remotely detect
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non-verbal social cues could also be used as an assistive device to provide social feedback

to people with disabilities. The emphasis here would not be so much on interpreting these

cues as on presenting raw social cue data to the user, and allowing the user to interpret them.

However, very little research has been done towards finding intuitive methods for present-

ing raw social cue data to humans. [117] developed a haptic chair for presenting facial

expression information. It was equipped with vibrotactile actuators on the back of the chair

that represented specific facial features. Experiments conducted by the researchers showed

that people were able to distinguish between six basic emotions. However, this solution had

the obvious limitation that the user needed to be sitting in the chair to use the system.

Observation 1: Assistive technology designed to facilitate social interaction should

be portable and wearable, so that the users can employ them in various social circum-

stances without imposing significant restrictions on their activities.

People with disabilities (like blindness or Autism) are not always able to perceive

or interpret implicit social feedback to guide them in improving their communication com-

petence. However, they might be able to use explicit feedback provided by a technological

device. Rana and Picard [118] developed a device called Self Cam, which provides ex-

plicit feedback to people with Autism Spectrum Disorder (ASD). The system employs a

wearable, self-directed camera that is supported on the user’s shoulder to capture their own

facial expressions. The system attempts to categorize the facial expressions of the user

during social interactions to evaluate the social interaction performance of the ASD user.

Unfortunately, the technology itself plays a role in the social interactions in which they are

used, becoming more of a social distraction for both participants than an aid.

Observation 2: Assistive technology designed to facilitate social interactions should

be implemented in such a way that it does not itself become a social distraction.

Vinciarelli et al. [119] describe the use of technologies for understanding social

interactions within groups, specifically targeting professional environments where individ-

uals make decisions as a group. They analyze body mannerisms and prosody to extract

nonverbal cues that they use to do group dynamics analysis. They rely on simple sensors
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in the form of wearable tags [120] (which detect face-to-face interaction events) along with

prosody analysis to determine turn taking, emotional state of the speaker, and distance to

an individual. Pentland describes these signals captured during group interactions as [121]

honest signals. Some of his recent work [122] in the area of social monitoring attempts to

capture these signals and provide feedback to individuals about their social role within a

group. The use of social feedback is illustrated elegantly in their work but their approach

required all members of the group to carry sensors all through the study. This proved to

be a viable and productive approach for studying group dynamics, but is not viable as a

strategy for the implementation of an assistive technology, as it is not realistic to assume

that everyone who interacts with a person who has a disability will wear sensors.

Observation 3: Assistive technology designed to facilitate social interactions should

be designed in such a way that it can be worn exclusively by the user, and is able to monitor

both sides of the interaction.

In two independent experiments [123] and [124], researchers developed a social

feedback device that provides intervention when a person with visual impairment starts to

rock their body in a stereotypical manner. [123] designed a device that consisted of a metal

box with a mercury level switch that is worn on the user’s head. A tone generator was

activated when the user bent his upper body beyond a certain tilt angle. The authors tested

the device on a congenitally blind individual who exhibited extreme body rocking and they

conclude that the use of any assistive technology is useful only temporarily while the device

is in use. They observe that the body rocking behavior returned to baseline levels as soon as

the device was removed. Since the time of this experiment, behavioral psychology studies

have explored short term feedback for rehabilitation [74], and these studies support the

above observation that short-term feedback can even be detrimental to rehabilitation, and

subject’s case invariably worsens. Further, Jindal-snape emphasizes the need for long-term

feedback that should target a slow, yet sustained rehabilitation to overcome stereotypic

behaviors. Unfortunately, due to the prohibitively large design of the device developed

by these researchers, it was impossible to have the individual wear the device over long
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durations.

Observation 4: Assistive technology designed towards social assistance and be-

havioral rehabilitation should be used over long durations in such a way that the feedback

is slowly tapered off over a significantly longer duration of time.

In [124] researchers used a ‘Drive Alert’ (i.e. a driver alerting system that audibly

signals drivers when they start to fall asleep and their head droops forward) to detect body

rocking, and to provide audio feedback to a congenitally blind 21 year old student. The re-

searchers found that they were able to control body rocking effectively, but the device could

not differentiate between body rocks and some other functional body movements. This de-

vice, primarily built to sense drooping in drivers, provides no opportunity to differentiate

between a body rock and a functional droop. The resulting large number of false alarms

discouraged the user from employing the device.

Observation 5: Assistive technology designed to facilitate behavioral rehabilitation

should be effective in discriminating social stereotypic mannerisms from other functional

movements to keep the motivation of device use high.

3.1.1 Design principles for social assistive and rehabilitative devices

Based on the above observations, a device developed to facilitate the social interactions

of people with sensory or cognitive disabilities might do so by, (a) detecting social cues

during social interactions and delivering that information to the user in real time to enable

empathy, or (b) detecting the user’s own stereotypic behaviors during social interactions and

communicating that information to the user in real time to provide social feedback. The first

device would be classified as an assistive technology, while the second might be classified

as a rehabilitative technology. Ideally, such a device would be based on the following design

principles:

Design principle 1: The device should be portable and wearable so that it can be

used in any social situation, and without any restriction on the user’s everyday life.
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Design principle 2: The device should employ sensors and personal signaling de-

vices that are unobtrusive, and do not become a social distraction.

Design principle 3: The device should include sensors that can detect the social

mannerisms of both the user and other people with whom the user might commu-

nicate.

Design principle 4: The device should be comfortable enough to be worn repeat-

edly for extended periods of time, to allow it to be used effectively for rehabilita-

tion.

Design principle 5: The device should be able to reliably distinguish between the

user’s problematic stereotypic mannerisms and normal functional movements, to

ensure that it will be worn long enough to achieve rehabilitation.

The remainder of this chapter looks at incorporating these design principles into a social in-

teraction assistant targeted at enriching social situational awareness for individuals who are

blind and visually impaired. The next section reviews relevant research aimed at identifying

non-verbal cues with computer vision techniques.

3.2 Related Work in Computer Vision Research towards Sensing Factors that Contribute

to the Overall Non-verbal Communication Picture

One of the goals of computer vision research is to develop pattern recognition and machine

learning techniques that emulate the abilities of the human visual system. Computer vision

research has matured over the past two decades to a point where many of the capabilities of

human vision are now being emulated.

Table 3.1: Related Work in Automatic Detection of Interaction Environment Cues
Interaction Environment

Scene Change De-
tection

Background Model-
ing

Face and Object De-
tection

Environment Analy-
sis

Proxemics [125] [126] [127]
Objects in the scene [128] [129] [130] [126]
Natural vs manmade
environment

[128] [131]
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Table 3.2: Related Work in Automatic Detection of 1) Physical Characteristics of the Communicator, and 2)Behavior of the Communicator

Person Recog-
nition

Clothing
Recognition

Body Part Seg-
mentation

Facial Feature
Segmentation

Gender Race
Recognition

Facial Motion
Analysis

Body Motion
Analysis

Eye Detection Eye Tracking

Physical Characteristics of the Communicator

Race and Body
Color

[132] [133]
[134]

[135]

Body Shape [136] [137] [138] [139] [140] [141]
[132] [133]
[134] [142]

[135] [137]

Body Decora-
tion

[143]

Facial Hair [144]
Eye Glasses [145] [146]
Clothing [138] [139]
Hair [140] [147]
Age [148]
Gender [136] [135] [149]
Identity [150] [138]

[151] [152]
[153]

[154]

Behavior of the Communicator

Description of
facial features

[155] [154]

Body Manner-
isms

[156] [157]
[158]

[135] [159] [160]
[161] [162]

Eye Gestures [146] [163] [164]
Gaze [165] [166] [167] [165] [168]
Expressions
and Emotions

[153] [145] [155] [116] [144]
[145] [169]
[170]

[171] [164]
[162]

[172] [163]

Personality [136] [157] [135] [161]
Posture [136] [134] [155] [160] [144]
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The rows in Table 3.1 and 3.2 represents the various non-verbal cues listed in Sec-

tion 1.3.1 through 1.3.3, while the columns represent the computer vision techniques being

used in state-of-the-art computer vision research to detect those non-verbal cues. For ex-

ample, Table 3.2 shows that [136] addressed posture by recognizing who the person is, and

using that information to interpret the data accordingly. In contrast [134] used body part

segmentation, [155] approached it through facial feature segmentation, and [160] and [144]

evaluated posture by analyzing the motion patterns of the limbs.

3.3 Requirements Analysis for a Social Assistive Technology: Evidence Aggregation

As a part of the evidence-based model for developing the social interaction assistant, af-

ter identifying important design principles for assistive technologies (See Section 3.1), this

section focuses on collecting evidence from the user community about the kinds of infor-

mation that they felt would enrich their social interactions.The goal in doing this was to

focus the development of the assistive technology human factor issues that would provide

perceived quality of life improvements. In order to identify unmet needs of the visually

impaired community, two focus groups were conducted1. These groups consisted primarily

of people who are blind, as well as disability specialists and parents of students with visual

impairment and blindness where conducted.

The members of these focus groups who were blind or visually impaired were

encouraged to speak freely about their challenges, in coping with daily living. During

these focus groups, the participants agreed on many important problems. However, the

problem of engaging freely with their sighted counterparts was highlighted as a particularly

1 In order to understand the assistive technology requirements of people who are blind, we conducted two
focus group studies (one in Tempe, Arizona USA - 9 participants, and another in Tucson, Arizona USA - 11
participants) which included:

1. Students and adult professionals who are blind,

2. Parents of individuals who are blind

3. Professionals who work in the area of blindness and visual impairments.

There was unanimous agreement among participants that a technology that would help people with visual
impairment to identify people, or to hear a description of them would significantly enhance their social life.
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important problem that was not being adequately addressed by assistive technologies2.

While various other examples were cited by focus group participants, the inabil-

ity to access non-verbal cues were considered to be of highest priority. These discussions

produced the following list of 8 social needs often experienced by people with visual im-

pairments.

1. Knowing how many people are standing in front you, and where each person is standing.

2. Knowing where a person is directing his/her attention.

3. Knowing the identities of the people standing in front of you.

4. Knowing something about the appearance of the people standing in front of you.

5. Knowing whether the physical appearance of a person who you know has changed since

the last time you encountered him/her.

6. Knowing the facial expressions of the person standing in front of you.

7. Knowing the hand gestures and body motions of the person standing in front of you.

8. Knowing whether your personal mannerisms do not fit the behavioral norms and expec-

tations of the sighted people with whom you will be interacting.

This list of 8 needs can be reduced to 2 basic categories of needs with regards to

social interactions and social situational awareness were identified:

1. The need for access to the non-verbal cues of others during social interactions

2. The need for feedback about how one is perceived by others during social interactions.

2The following quotes are examples given by the focus group participants:

• “It would be nice to walk into a room and immediately get to know who are all in front of me before
they start a conversation”.

• One young man said, “It would be great to walk into a bar and identify beautiful women”.
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These two categories of needs were found to agree with the results of studies con-

ducted by Jindal-Snape [74] with children who were visually impaired. She identified these

two needs as Social Learning and Social Feedback, respectively.

To further understand the relative importance of non-verbal communication primi-

tives, an online survey was carried out. The online survey consisted of eight statements that

corresponded to the previously identified list of needs. Respondents indicated the level of

their agreement with each statement using a Five-point Likert scale, the metrics being (1)

Strongly disagree, (2) Disagree, (3) Neutral, (4) Agree, and (5) Strongly agree. The ques-

tions in the survey were used to infer the importance of non-verbal cues for social learning

and social feedback. The survey was anonymously completed by 28 people, of whom 16

were blind, 9 had low vision, and 3 were sighted specialists in the area of visual impairment

and vocational training.

3.3.1 Results from the Online Survey

3.3.1.1 Average Response

Table 3.3 shows the eight statements about social interactions that were evaluated with

individuals who are blind and visually impaired. The results are sorted by descending

importance, as indicated by the survey respondents (the question numbers correspond to

the need listed in the previous section). The mean score is the average of the respondents

on the 5 point scale that was used to capture the opinions. A score closer to 5 implies that

the respondents strongly agree with a certain question and that they consider inaccessibility

to that particular non-verbal cue to be important deterrent to their social interactions. On

the other hand, a score closer to 1 represents the respondent did not consider the access to a

specific non-verbal cue to be important during their social interactions.

3.3.1.2 Response on Individual Questions

Figure 3.1 shows the histogram of responses for the 8 Questions that were asked as part of

the survey. Each subplot refers to a single question and shows the number of times users

responded to that particular question with answers from 1 to 5 on the Lickert Scale. Each
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Table 3.3: Average Likert Score on the 8 statements obtained through an Online Survey.

Question No. Statements Mean Score
8. I would like to know if any of my personal man-

nerisms might interfere with my social interac-
tions with others.

4.5

6. I would like to know what facial expressions oth-
ers are displaying while I am interacting with
them.

4.4

3. When I am standing in a group of people, I would
like to know the names of the people around me.

4.3

7. I would like to know what gestures or other body
motions people are using while I am interacting
with them.

4.2

1. When I am standing in a group of people, I would
like to know how many people there are, and
where each person is.

4.1

2. When I am standing in a group of people, I would
like to know which way each person is facing,
and which way they are looking.

4.0

5. I would like to know if the appearance of others
has changed (such as the addition of glasses or a
new hair-do) since I last saw them.

3.5

4. When I am communicating with other people, I
would like to know what others look like.

3.4

histogram adds up to a total of 28 that corresponds to the 28 participants that took part in

the online survey.

3.3.1.3 Response Ratio

Figure 3.2 shows the number of times the respondents chose to answer the 8 questions with

their agreement or disagreement. The y-axis has been normalized to 100 points. The graph

shows that respondents chose to answer the most by agreeing (Likert Scale 4) with the 8

questions. Followed closely behind was the strong agreement (Likert Scale 5) with the

questions asked in the survey. The respondents chose to answer the least through strong

disagreement (Likert Scale 1) to what was asked in the survey.

As described earlier, the 8 questions corresponding to the social needs of the indi-

48



Figure 3.1: Histogram of Responses grouped by Questions

viduals were identified from the focus group survey that was conducted. Thus, the questions

presented in the online survey questions were biased towards the needs of everyday social

interactions of individuals who are blind and visually impaired. Thus, the implicit assump-

tion while preparing this survey itself is that most of these items have been identified as

being important and that only a priority scale needs to be extracted. This implicit assump-

tion is immediately brought out by looking at the frequency with which the respondents

answer with their agreement (Likert Scale 4) and strong agreement (Likert Scale 5).

3.3.1.4 Rank Average Importance Map for Various Non-verbal Cues

As explained earlier and as can be seen from Figure 3.2, the questionnaires were biased and

the frequency of the responses is not Gaussian. This bias implies that using sample mean

of the Lickert Scale responses will immediately show the same bias. This is due to the

Gaussian iid assumption that is made while extracting the mean for the answers. In order to
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Figure 3.2: Response Ratio

overcome this non-Gaussianity, we resort to non-parametric mean for the responses. Rank

average of the responses is estimated instead of the typical mean of the responses for each

of the question. Please see Appendix A for the algorithm to determine the Rank Average.

Since no assumptions on the distribution of the response are made, unlike the mean, the rank

average gives a non-parametric method for comparing the responses of the individuals. The

ranks can be either assigned ascending or descending with respect to the responses, i.e. rank

1 could mean all responses that were answered with strongly disagree (numeral 1), or rank

1 could mean all responses that were answered with strongly agree (numeral 5).

In the Figure 3.3, we have assigned rank 1 to strongly disagree. This is for the sake

of visual convenience. Thus, higher the average rank, higher is that group’s response from

the respondents. Comparing Figure 3.3 to Table ??, it can be seen that the same ordering of

priority can be seen through mean and rank average. But the mean tends to show very little

variation between responses due to the bias that is present in the questions. On the other

hand the rank average provides a good comparison scale.
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Figure 3.3: Rank average of the 8 questions

3.4 Evidence-based Model for the Proposed Social Interaction Assistant

The important observations from the above results include,

• Respondents are highly concerned about how their body mannerisms are perceived

by their sighted peers (based on the response to Question 8 on the survey).

• Facial expressions form the most important visual non-verbal cue that individuals

who are blind or visually impaired feel they do not have access to (based on Question

6 on the survey). This correlates with the studies into non-verbal communication that

highlights the importance of facial mannerisms and gestures, which are mostly visual

in their decoding.

• Followed by facial expressions, body mannerisms seem to be of higher importance

for individuals who are blind and visually impaired (based on Question 3 of the sur-

vey).

• The responses to questions 7, 1 and 2 suggest that respondents would like to know the

identities of the people with whom they are communicating, relative location of these
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people and whether their attentions are focused on the respondent. This corresponds

to knowing the position of their interaction partners when they are involved in a

bilateral or group communication. People tend to move around, especially when they

are standing, causing people who are blind to lose their bearing on where people

were standing. This can result in individuals addressing an empty space assuming

that someone was standing there based on their memory.

• The responses to questions 4 and 5 indicate that there was a wide variation in respon-

dents’ interest in (4) knowing the physical appearance of people with whom they are

communicating and (5) knowing about changes in the physical appearance of people

with whom they are communicating (See Figure 3.1. Many respondents indicated

moderate, little, or no interest in either of these areas.

Figure 3.4: Social Interaction Assistant System Architecture.

3.5 System Architecture for a Social Interaction Assistant: An Evidence-based

Assessment of Requirements

From the observations made on the development of a social interaction assistant, we con-

clude that the device should be portable, wearable and inconspicuous, and be able to provide

access to visual cues, while enabling social feedback. To this end, we propose a system that
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consists essentially of a set of body worn sensor suite capable of extracting important social

signals from the environment, while at the same time using a suite of actuators that commu-

nicate extracted data back to the user without overloading their sensory system. Figure 3.4

shows the system architecture of the social interaction assistant, the realization of which is

delayed until the components are described in the later chapters. Note the use of specific

user input channel into the social interaction assistant along with the sensor suite. This

provides unique opportunity for the user to control some of the basic functionalities of the

system itself. The details of these user chosen functionalities will become apparent in the

later chapters.

3.6 Organization of the Later Chapters

Following the organization of the dissertation presented in Table 1.5, Table 3.4 presents a

detailed view of the chapters 4 through 10 that highlights the various social signal sensing

and delivery within the context of developing a social mediation technology for helping

people who are blind and visually impaired.
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Table 3.4: Organization of the dissertation.

Chapter 4 Discusses the importance of providing social feedback to indi-
viduals who are disabled about their body mannerisms of how
they are contributing to the social exchange that they are having
with their sighted counterpart.

Chapter 5 Discusses the importance of facial expressions in social inter-
actions and highlights technologies developed towards enabling
access to dyadic interaction cues for users who maybe blind or
visually impaired.

Chapter 6 Discusses and demonstrates technologies that can allow people
who are blind and visually impaired to receive facial expressions
of their interaction partners, with limited or no sensory loading.

Chapter 7 Discusses technologies that enable identification of interaction
partners through facial biometrics. While developing this tech-
nology, the algorithms take advantage of the social context where
they are being used and identifies people through person-specific
facial landmarks, similar to human recognition of other individ-
uals.

Chapter 8 Discusses technologies that could aid people who are blind and
visually impaired to gain access to the social scene (number of
people in front of them, their location, their identities and relative
distance) in front of them.

Chapter 9 Discusses technologies that can track individuals who are in the
social scene in front of the user who is blind and visually im-
paired. Tracking the individuals is important to ensure that the
user’s are provided with accurate information on the social scene
structure.

Chapter 10 Discusses technologies that can deliver the social scene data, ex-
tracted as discussed in Chapter 8 & 9, while making sure that the
user’s do not face sensory overload.
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Chapter 4

ENRICHING SOCIAL FEEDBACK: SENSING STEREOTYPIC BEHAVIORS

From the evidence-based modeling of the needs of the social interaction assistant, it was

clear that people who are blind and visually impaired required social feedback on their

body mannerisms more than any other social information. This is understandable as they

don’t receive any form of self-report on their behaviors if their sighted counterparts resort

to unconscious non-verbal reactions that are visual in nature. It has been noticed that people

who are blind become very conscious of this inability to receive social feedback and they

resort to rather timid expression of body or face based gestures. While this prevents them

from unconsciously displaying behaviors that may be considered atypical for the social

setting, this also results in them appearing too rigid and asocial. That is, there exists a

fine balance of bodily expressions which define the boundaries of cultural norms, which

sensorially able people can learn through observation, but is inaccessible to people who are

blind. In this chapter we discuss a variant of this above problem, residual stereotypic body

rocking in adults who are blind and visually impaired. The problem is delineated in light

of enriching social situational awareness and a solution is discussed along with a means of

alleviating the condition.

4.1 Stereotypic Body Behaviors

Stereotypic behavior refers to any mannerism or utterance that is repetitive and non func-

tional in nature [173] [174]. Stereotypy occurs in a large portion of the general population

in various forms, although aggressive forms have been associated with sensory and cogni-

tive disabilities in individuals. For example, individuals who are blind have the tendency to

develop body rocking, head weaving, head drooping, and eye poking [175], while, individu-

als who are deaf have a propensity to develop various repetitive vocal behaviors [176][177].

Cognitive disabilities (both acquired, like brain injury and congenital, like autism and men-

tal retardation) are associated with stereotypic behaviors like body rocking, hand flapping,

jumping, and marching in place [178].
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Though harmless by itself, Stereotypy can become a hindrance to social interac-

tions and social acceptance [179]. Reference [124] introduces a 21 year old congenitally

blind student who has an extreme case of body rocking (both while sitting and standing)

that has become an obstruction to his career and an independent vocational evaluation states

that a reduction in the student’s body rocking was absolutely necessary for any form of em-

ployment. Stereotypy is a concerning problem in children, for whom peer acceptance is

very important for their healthy growth and development of good social skills [180]. Chil-

dren with stereotypic behaviors become victims of teasing thereby leading to social iso-

lation, bullying and social segregation leading to negative self esteem. Aggravating these

problems, social segregation and isolation have long term psychologically effects on the

individual rendering an overall poor social skill set. Studies have shown that poor social

skills are a leading cause for psychological problems such as depression, loneliness, and

social anxiety [72].

Stereotypy, like any other human behavior, is very person specific. But socio-

behavioral studies have shown that there are commonalities in these behaviors and there

are broad classifications that can be identified in stereotypy prevalent in the general popu-

lation. Eichel [181] introduces taxonomy for mannerisms that people with blindness and

visual impairment tend to display. He identifies that body rocking appears on top of the

most commonly seen behavior stereotype. A review of literature [182] further supports

the claim that body rocking and head related mannerisms, including head weaving and

drooping, are distinctive behaviors exhibited by individuals who have sensory or cognitive

disabilities. For example, [175] discusses the case of a blind student who has developed ex-

treme body rocking stereotype. The student bends in a 30 degree arc when he is sitting and

when standing, places a foot well ahead of him and bends forward in an even greater arc.

Such stereotypes can hinder the interactions of these individuals with friends and family,

eventually leading to isolation and social inadequacy in their personal and professional life.
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4.2 Focus of the chapter

Having identified stereotypic body behaviors to be an important deterrent in social accep-

tance of individuals with cognitive or physical disabilities, we focus on the possibility of

building a rehabilitative and/or assistive technology towards providing feedback to individ-

uals about their stereotypic body behavior. Specifically, we focus on body rocking, as it

tops the list of most widely seen stereotypic behaviors. To this end, our research aims to

answer three important questions:

1. Is there any evidence of individuals responding to rehabilitation for reducing stereotypic

body rocking behavior?

2. If yes, what is the state-of-the-art technology available to detect and notify individuals

of their rocking behavior?

3. Is it possible to build a device that detects body rocking condition and how well can it

distinguish body rocking from other functional activities of daily living?

We answer the first question by looking into the immense literature available in

behavioral psychology which has been studying behaviors in humans and their response

to rehabilitation and assistance. To answer the second and third questions, we focus our

attention towards wearable computing solutions that have gained a lot of momentum in the

recent past. In specific, we develop an argument for an inclusive framework that uses state-

of-the art motion sensors with effective learning algorithms for detecting stereotype body

rocking. As mentioned above, body rocking seems to be the most widely seen stereotype

behavior and we use it as a basis for our argument that current level of technology can pro-

vide immense opportunities for developing rehabilitative and assistive technology solutions

for reducing or controlling stereotypic behaviors.
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4.3 Background and Related Work

4.3.1 Foundations for social rehabilitation of behavioral stereotypes

For over three decades, researchers in behavioral psychology have been publishing case

studies on individuals who exhibit stereotypic body rocking. Most of these studies have

targeted at reducing or controlling stereotypic body rocking. The methodologies used by

these researchers, though varying in nature, can be broadly classified into two important

categories.

4.3.1.1 Intervention

: Intervention relates to any form of feedback provided to an individual at the moment of

exhibiting stereotype behaviors. Researchers have attempted to reduce body rocking by pro-

viding audio and/or tactual intervention whenever an individual started to rock. They have

tried aversive punishment as well as less restrictive positive feedback in such situations.

Felps and Devlin [124] issued an annoying tone in the ears of the subject while [182] used

a recording of stone scratching on blackboard as the feedback tone whenever the individual

started rocking. Both reported that the subjects responded well to the intervention. In con-

trast, [183], [183] and [184] have used verbal praise, physical guidance, verbal reprimands,

and brief time-outs as intervention tools. Most of these researches have shown that inter-

vention has worked in reducing and controlling body rocking without the use of aversive

techniques. Aversive or not, these techniques validate a claim that it is possible to control

or reduce body rocking (or any other stereotypic body mannerism) through feedback.

4.3.1.2 Self Monitoring

: In contrast to intervention, self-monitoring does not stop at intervening into the activities

of the individual. It attempts to teach these individuals subtle cognitive skills to replace

the current mannerism with more socially acceptable behavior, exercise, or medications.

McAdam and O‘Cleirigh [175] identifies that self monitoring is a very effective way of

reducing the body rock behavior. They introduce the case of a congenitally blind individual
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who is trained (with constant monitoring and positive feedback) to count the number of

body rocks he goes through. Researchers noticed that the individual slowly waned off

body rocking as he came to recognize and count his body’s oscillatory movements. The

research concludes that a well designed self monitoring program could benefit in reducing

stereotypic body rocking. Shabani, Wilder and Flood [178] presents the case of a 12 year

old child who was diagnosed with attention deficit hyperactivity disorder (ADHD) having

an excessive body rocking and hand flapping stereotypy. The authors introduce an elaborate

and positively rewarding self monitoring scheme that allows the child to improve on his

behavior effectively. A follow-up with the child’s teacher indicated that the social outlook of

the child had improved over the course of rehabilitation and the case further reiterates ability

to rehabilitate individuals with stereotypic behavior. Estevis and Koenig [185] introduces

a cognitive approach to reducing body rocking on an 8 year old congenitally blind child

through self monitoring. Teachers or family members would tap on the shoulders of the

child when he started rocking, while the child was taught to recite his own monitoring

script. The authors conclude that rocking can be significantly reduced through notification

to the individual combined with self monitoring.

Supporting such case studies of behavioral mannerisms, psychologists have been

studying intervention and feedback as an integral component of social development. Feed-

back can be defined as the provision of evaluative information to an individual with the aim

of either maintaining present behavior or improving future behavior [186]. According to

[187], feedback is critical to social development because after an individual receives infor-

mation about his or her performance, he or she can make the necessary modifications to

improve social skills. Most social skills develop during early years and in order for children

to evaluate themselves accurately and to modify social skills, it is essential that children

to be given feedback [73] [75], since without clear feedback, the children are unable to

identify how their social behavior differs from others or is perceived by others in the envi-

ronment [188]. Based on these studies there is enough evidence that feedback that offers

intervention, possibly followed by a well planned self-monitoring program could benefit in

reducing or controlling body rocking behavior.
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4.3.2 Need for Assistive or Rehabilitative Technology

The feedback needed for intervention usually comes from people in and around these indi-

viduals who have stereotypic behavior. It has been observed that significant others in the

environment often fail to give feedback, and even when they do, it is not meaningful or

understandable to individuals who need rehabilitation - for example, in case of individuals

who are blind or visually impaired, nodding one’s head in reply to a question or gesturing

[74] would be futile. Meaningful feedback is important, not only for social interaction, but

for accurate self-evaluation by individuals. Most times people within the vicinity of indi-

viduals with needs fail to offer these crucial feedbacks. Many times, the individuals with

needs feel guilty or obligated to ask for help from others in their environment. The ability to

augment or replace this significant individual(s) in the environment with a reliable feedback

mechanism is the aim and goal of all assistive technology solutions (In an independent on-

line survey conducted by [189], the researchers found that people who are visually impaired

would expressed the need for an assistive technology that would provide feedback on their

own social mannerisms and offer a potential to improve their social outlook). Focusing on

the development of such a technology that effectively detects body rocking and provides

feedback to an individual is the goal of this paper. While we focus only on intervention

through feedback, in the Future works section we highlight some ideas for extending the

proposed framework into self-monitoring tools.

4.3.2.1 Past research into building assistive technology to detect body rocking

Transon [123] developed a head mounted switching device that would trigger a tone when

an individual starts to rock. The device consisted of a metal box with a mercury level switch

that detects any bending actions. The feedback was provided with a tone generator that was

also located inside the metal box. The entire box was mounted on a strap that the user

wears around his/her head such that the speaker aligns with the ears. The authors tested it

on a congenitally blind individual who had severe case of body rocking and they conclude

that the use of any assistive technology is useful only temporarily while the device is in
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use. They state that the body rocking behavior returned to baseline levels as soon as the

device was removed. Since the time of this experiment, behavioral psychology studies have

explored short term feedback for rehabilitation [74] and these studies support the above

observation that short time feedback is most of the times detrimental to rehabilitation and

subject’s case invariably worsens. Unfortunately, due to the prohibitively large design of

the device developed by these researchers, it was impossible to have the individual wear the

device over long durations. Thus, any technology developed for behavioral rehabilitation

should be small and researchers should target the use over long durations in such a way that

the feedback is slowly tapered off over a significantly longer duration of time.

Similar to the pervious experiment, [124] used a ’Drive Alert’ (driver alerting sys-

tem that monitors head droop) to detect body rocking and provide feedback to a congenitally

blind 21 year old student. The research concludes that they were able to control body rock-

ing effectively, but the device could not differentiate between body rocks from any other

functional body movements. This device, primarily built to sense drooping in drivers pro-

vides no opportunity to differentiate between a body rock and a droop. Use of such devices

could only be negative on the user as a large number of false alarms would only discour-

age an individual from using any assistive technology. Assessing these above technologies,

we resort to two important design dimensions in every step of the building of our assistive

device.

1. Size and placement of the device: We argue that any assistive device developed for the

sake of improving social outlook of an individual should respect the appearance of a

person in his/her social circle and should provide a solution that is discrete and non

intrusive. We call this the Acceptance dimension.

2. Ability to discriminate rocking from other functional activities: False feedback even

over a short period of time could be discouraging for an individual to continue using

his/her assistive tool. It is imperative that the device be able to distinguish between the

stereotypy from any other form functional activities effectively to keep the motivation of

device use high. We call this the Motivation dimension.
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The proposed methodology uses these two design dimensions while addressing the

need of a new assistive technology.

4.4 Methodology

Recently, human activity detection and recognition using motion sensors have taken a front

seat in technology and behavioral research. This is due to the availability of micro mech-

anized electronic systems (MEMS) that have started to implement complex mechanical

systems at a micro scale on integrated circuit chips. These offers advantages like reliability,

cheaper cost of production, smaller form factor and above all extremely precise measure-

ment with least or no maintenance. One such sensor is the accelerometer that is capable of

measuring the effect of gravity on three perpendicular axes. When mounted on any moving

object, the opposing motion (opposing gravity) of the entity allows these sensors to measure

the speed and direction of motion. Integrating the magnitude and orientation information

over time it is possible to accurately measure the exact motion pattern of the moving en-

tity. These accelerometers have been used by researchers to track motion activity in almost

every joint of the human body [190]. Researchers have used single, double or triple orthog-

onal axis accelerometers to detect various activities of humans. They all follow the same

underlying supervised learning architecture with difference in learning algorithm used. A

simplified representation of the same is shown in Figure 4.1.

Five bi-axial accelerometers are used in [190], along with a decision tree classifier

to detect and recognize 20 different activities of daily life. They report a recognition rate of

over 85%. In [191], the authors evaluated different meta classifiers for recognizing seven

lower body motion patterns from a single biaxial accelerometer data and reported the best

performance for boosted Support Vector Machines (SVM) [192] with a subject indepen-

dent accuracy of 64%. Since each dimension of the accelerometer data is similar to audio

waveform, popular Hidden Markov Models [193] can be used to learn motion patterns.

Reference [194] used HMM to learn the accelerometer data for specific tasks performed by

participants and reports a recognition rate of over 90%. In [195], researchers have used two

accelerometers placed on the arms of Kung-Fu practitioner and report a recognition accu-
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Figure 4.1: Training and testing phases of a typical learning framework found in literature.

racy of 3 Kung-Fu arm movements at 96.6%. Research work [196] demonstrates the use of

accelerometer data to not only recognize activity, but also localize people within a building.

Though the technique is rudimentary, the authors report a high accuracy in recognition of

activities while localization still remains a research topic. [197] have demonstrated the use

of accelerometers in not only monitoring movements, but also static posture of the human

body. They report a recognition rate of 95% using four sensors placed on the chest, thigh,

forearm and wrist of participants. Extending this work, [198] have demonstrated an assis-

tive technology solution that uses low cost accelerometers on stroke patients and monitor

their posture and walking patterns. Using this information, a feedback is provided to the

patient to self-correct their posture and walking pattern.

Based on all these findings, we hypothesize that an accelerometer based motion de-

tector should be capable of capturing body rocking data and should be able to discriminate

between rocking and other functional activities. We specifically chose the motion sensor

and learning algorithm based on previous work done at our institute with the detection of

seven simple body activities [199]. Researchers analyzed the performance of discrimina-

tive classifiers like AdaBoost, Support Vector Machines and RLogReg for recognizing these

seven different activities and concluded that AdaBoost classifier offered the best recognition
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rate at 94%. Based on these results, in this paper, we extend the use of AdaBoost learning

framework into body rock detection. We discuss the use of two AdaBoost classifiers - the

classical AdaBoost [200] and the more recent Modest AdaBoost [201] for detecting and

discriminating body rocking effectively. Our focus in the paper is directed towards under-

standing the generalization capabilities of the two AdaBoost learning models so that false

positive rate is reduced while keeping the true positive rate high.

4.4.1 Motion Sensors - Design choice along the “Acceptance” Dimension

In order to keep the motion detector discrete, we have chosen state-of-the-art tri-axial

accelerometer package, ZStar III [202], marketed by Freescale Semiconductor. The ac-

celerometer is shown in the inset of Figure 4.2. The device (including a coin battery as a

power source) is an inch in diameter and less than eighth of an inch in thickness thereby al-

lowing an elegant integration into everyday clothing. Figure 4.2 shows the typical use of the

accelerometer in the proposed application for detecting body rocking. The accelerometer

has a very high sensitivity with protection against excessive g-force damage. The sensors

wirelessly connect to a PDA and/or cell phone through IEEE 802.15.4 (ZigBee) wireless

standards. The use of low power consumption electronics for both acceleration sensing and

wireless communication allows this device to work for hours at length on a single coin bat-

tery. Further, the advanced sleep mode implementations allow the device to stay at nano

watt power mode during non-operation. The proposed solution allows for prolonged use

of the device to the effect of an assistive technology thereby maintaining a longer duration

feedback based rehabilitation regimen.

processing element for the current study was a Windows Mobile Operating System

based PDA running on a 400Mhz XScale processor. The software components (described in

detail in Section III-B of the proposed solution were placed on the PDA that could be carried

by a user without any extra load. The proposed assistive technology is an addition to the

Social Interaction Assistant proposed in [203]. The software component implementation

is generic to be ported to most modern cell phones that possess enough processing power,

but is always under utilized for its capacity. The feedback (an audio tone) is currently
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Figure 4.2: The proposed hardware for use in the detection of body rocking stereotypic
behavior. The accelerometer, in comparison with a US quarter, is shown in the inset. The
three axes marked in the image shows the orientation of the accelerometer as it is placed on
the head.

being provided through a Bluetooth headset that is paired with the processing element.

The choice of this feedback device was again based on the idea that Bluetooth headset has

everyday acceptance among the masses and is no longer seen as a social distraction. In

future, we plan to explore the use of delivery modalities that transcends the typical visual

and audio medium. We intend to use haptic cues to inform the participant not only their

rocking behavior but more complex self-monitoring routines that could allow the user to

withdraw from the rocking behavior effectively.

Figure 4.3 shows a typical data stream collected from the accelerometer shown

in Figure 2 during rocking and non-rocking functional behavior. The three data streams

correspond to the three axis of the accelerometer each sampled at 100 Hz. It can be seen

that the data stream under rocking conditions are visually distinguishable when compared to

non-rocking functional movements. The following section highlights our choice of learning

framework and features we extracted from these data stream in order to achieve reliable

rocking and non-rocking discrimination.
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Figure 4.3: Data stream for the tri-axial accelerometer. The three streams correspond to the
three axes. The figure shows non-rocking events followed by rocking and then followed by
non-rocking.

4.4.2 Extracting Body Rock Information from Motion Sensor Data - Design choice along

the “Motivation” Dimension

As mentioned before, the work presented in this paper builds on top of the work presented

in [199] where the authors use two accelerometers placed one at the ankle and the other on

the thigh to distinguish between simple activities like walking, running, standing etc. They

proved the use of an aggregated AdaBoost classifier system that was built out of simple

linear classifiers to achieve activity recognition. Unfortunately, the work does not provide

any assessment on the generalization capabilities of their aggregate classifier. We extend

their work into the problem of body rock detection using only one accelerometer placed

on the back of the person’s head. Below, we discuss the various features that we extract

from the accelerometer data and introduce the variant of AdaBoost that generalizes on its

training set very well (termed Modest AdaBoost). We show results of our experiments and

discuss our reasoning to believe how the new AdaBoost framework is able to generalize on

body rocking data when compared to classical AdaBoost used by [199].
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4.4.2.1 Features:

Since we are using a tri-axial accelerometer, we obtain three orthogonal axis data through

rocking and non-rocking events. In order to capture the temporal variation in the accelera-

tion data, we accumulate the input stream on each axis for a fixed duration T seconds and

all features are extracted on this packet of acceleration data. As a part of the assessment,

we determine the best packet length for the task of body rock detection. Further, successive

packets are extracted with a fixed duration of overlap between them.

We chose five sets of features that were extracted on the three axes of accelerometer

data. For the sake of clarity, we cluster these sets into two groups based on whether they

were chosen due to popular use in the accelerometer data processing community or due to

the author’s insights into the body rocking data.

Group 1 - Popular features used by the motion analysis research community [190]

[199]: We choose the following three sets each of which were applied on all three axes of

acceleration data, henceforth referred to as x, y, z axis data.

1. Mean of x, y, z data over the duration of packet.

2. Variance of x, y, z data over the duration of packet.

3. Correlation between the three axes (x-y, y-z and z-x) over the duration of packet.

Group 2 - Authors insights into body rocking data: Inspecting the accelerometer

data shown in Figure 3, it can be seen that the Z axis changes from random signal pattern

to more of a sinusoidal pattern when the individual’s behavior transitions from non-rocking

to rocking. Thus we choose two sets of features which we hope would capture this non-

sinusoid to sinusoid transition between events. These features include

4. The first order differential power on all three axes - Sinusoidal signals change gradually

over time such that the averaged sum square energy in the temporal first order differential
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of the signal should be less when compared to a random signal where the first order

differential can have very high variations and hence higher power.

5. Fourier Transform variance and kurtosis on the Z-axis only - An effective way to cap-

ture power distribution of a signal into sinusoids is by using Fourier Transform. We

hypothesize that the non-sinusoid to sinusoid transitions can be captured by quantita-

tively measuring the power spread spectrum of the Z-axis accelerometer data. We model

the power spread to be a Gaussian and extract the variance and kurtosis (peaking) of the

spread to determine if there is rocking or not.
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Table 4.1: Features for Body Rock Detection: Group 1

Group 1
Set 1

Mx =
1
N

N
∑

i=1
xi

1. Mx

Definition: Mean on the temporal dimension.
2. MyAxes affected: x, y, z

Number of contributing features: 3
Feature Identification Numbers: 1, 2, 3

3. Mz

Set 2

Vx =
1

N−1

N
∑

i=1
(xi−Mx)

2

4. Vx

Definition: Variance on the temporal dimension.
5. VyAxes affected: x, y, z

Number of contributing features: 3
Feature Identification Numbers: 4, 5, 6

6. Vz

Set 3

Cxy =
1

N−1

N
∑

i=1
(xi−Mx)(yi−My)

7. Cxy

Definition: Cross Correlation between axes.
8. CyzAxes affected: x, y, z

Number of contributing features: 3
Feature Identification Numbers: 7, 8, 9

9. Cxz
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Table 4.2: Features for Body Rock Detection: Group 2

Group 2
Set 4

Dx =

√
N
∑

1=2
(xi− xi−1)

2

10. Dx

Definition: First order differential power.
11. DyAxes affected: x, y, z

Number of contributing features: 3
Feature Identification Numbers: 10, 11, 12

12. Dz

Set 5

13. Fvz

If, Freqk =
{
− γ

2 , . . . ,0, . . . ,
γ

2

}
γ is the sampling Frequency

Definition: Gaussian fit power spread spec-
trum - Variance and Kurtosis.

Xk =
N
∑

i=1
xne−

2πi
N kn, k = {1, . . . ,N}

Axes affected:z

14. Fkz

Number of contributing features: 2 then
Feature Identification Numbers: 13, 14

FFT Variance: Fv =
N
∑

i=1
Xk(Freqk)

2

FFT Kurtosis: Fk =
N
∑

i=1
Xk(Freqk)

4

The figures shown in the last column plots mean values of data from positive rocking samples and negative rocking samples as bars. The
variance on the same is shown as vertical error lines around the mean. The lighter (blue when viewed in color) shaded bar are values from the
positive class, whereas the darker (pink when viewed in color) bar are values from the negative class.
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Thus, the features used in our study can be categorized as belonging to two groups

with three sets in Group 1and two sets in Group 2. Each set has varying number of features

based on what parameter the set is extracting from the temporal accelerometer data. Based

on the descriptions above, the entire feature set has a total of 14 features. We identify each

of these by their respective Feature Identification Numbers. Table 1 shows the two groups

and the different sets under the group with typical values of these features under rocking

and non-rocking behavior.

4.4.2.2 Learning Algorithm:

As discussed in introduction of this section, we compare the performance of two AdaBoost

learning frameworks to determine which one can generalize the best on the training data.

The two algorithms are introduced briefly below. For further details, the reader is referred

to appropriate references provided within the subsections.

(a) Classical AdaBoost Learning Framework: AdaBoost learns any classification

problem by working with a set of weak classifiers. Weak classifiers are those classifiers that

use simple decision steps to categorize data into one of two pools - positives or negatives

(In all our experiments, we used a three level decision tree [204] as the simple classifier).

AdaBoost proceeds by ranking the labeled training data as being simple to complex based

on how many weak classifiers are needed to learn each of the examples. The process con-

tinues on an iterative manner until all the training examples are learnt or till the allowed

number of learning cycles are exhausted. Let, X be the input to a learning algorithm, in our

case the features extracted as explained in the previous step, and Y be the label of what class

the data belongs to, in our case, Y = {1,−1} implying rocking, non-rocking, respectively.

Values at each dimension of input X can be considered to characterize the incoming data

in some manner and the task of the learning algorithm is to learn these representational

values of the input dimensions that allow the algorithm to distinguish between rocking and

non-rocking. AdaBoost does this learning by using a large set of simple (weak) learners (or

classifiers) that act on each of the dimension of the input data with the determined goal of

distinguishing rocking from non-rocking. The final decision of the complete learning mod-
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ule is a combined opinion of all the simple learners that make up the system. The beauty of

AdaBoost implementation is that the human intervention into the learning process stops at

identifying what simple (weak) learners to use and what feature pool to operate on. Selec-

tion of number of weak learners, selection of input dimension on which the weak learners

have to act, and the confidence to place on the decision of each of the weak learner is all

determined by the algorithm during the training phase. Once the algorithm is trained, the

final learnt rocking/non-rocking classifier can be represented as

L(x) = sign

[
N

∑
i=1

wi fi(x)

]
(4.1)

where, x: An instance of all possible rocking patterns X. L: The final learnt clas-

sifier that can distinguish input x as rocking or non-rocking. f: The simple (weak) learner.

N: The total number of weak learners that make up the complete learner L. w: Weight as-

sociated with each weak learners output. This corresponds to the confidence placed in each

weak learner by the Boosted system.

From a learning perspective, in each step of the iterative learning, the AdaBoost

algorithm implements a greedy optimization to pick a set of weak learners that minimize

exponential classification error of the picked simple classifiers as shown below

Errork =
M

∑
i=1

e−yi.L(xi) (4.2)

where, y: Label of the input instance x M: Total number of examples in the training

set k: Learning iteration number

Further, based on each iterative step, a distribution (Dm) is created over the training

set examples to represent their complexity (difficulty to learn). For example, in a given

iteration, an example that could be solved is assigned a lower distribution weight while,

a sample that was not learnt in that iteration step is assigned a higher weight. The lower

weight on the learnt example implies that this example will be stressed less in the next

learning iteration while all other examples which could not be solved will become the focus
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for picking new weak learners. Moving from one iteration to the next, all the weak learners

from the past k iterations are added into a pool of selected weak learners leading up to the

final classifier L.

(a) Modest AdaBoost Learning Framework: All learning algorithms, including Ad-

aBoost suffer from the problem of over fitting or over learning. This is due to the fact that

training sample sets of positives and negatives can never be representative of all the possi-

ble samples that the algorithm will face in its operational life span. Since the learning is

limited to a restricted set of examples, there is always the problem of over fitting into this

small set and thereby loosing the ability to generalize their learnt knowledge to all other

possible examples. To this end, many alternatives have been proposed to AdaBoost that

will allow the algorithm to generalize better. We introduce Modest AdaBoost [201] which

was recently proposed towards better generalization capabilities and has been shown to be

powerful on various machine learning datasets. Unlike the classic AdaBoost where the

distribution penalizes only examples that are not learnt in the previous iteration, Modest

AdaBoost penalizes for examples that are not learnt and also examples that are learnt very

well (over fitting). This is done by projecting all the examples in the training pool on to

four separate distributions,

1. P(+1)
m = P(Dm)(y =+1∩L(x)): Probability of the learner, as measured on Dm, predicting

an input instance x correctly as being rocking when the label also represents it to be

rocking.

2. P(−1)
m = P(Dm)(y =−1∩L(x)): Probability of the learner, as measured on Dm, predicting

an input instance x correctly as being non-rocking when the label also represents it to be

non-rocking.

3. P̄(+1)
m = P(D̄m)(y = +1∩ L(x)): Probability of the learner, as measured in the inverse

distribution (D̄m), predicting an input instance x correctly as being rocking when the

label also represents it to be rocking.
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4. P̄(−1)
m = P(D̄m)(y = −1∩L(x)): Probability of the learner, measured in the inverse dis-

tribution (D̄m), predicting an input instance x correctly as being rocking when the label

also represents it to be rocking.

Conditions 1 and 2 penalize the classifier on examples that are not learnt during a

training iteration, whereas 3 and 4 penalize examples that are already learnt in the previous

iteration which was learnt again in the current iteration. Combining these four measures as

fm =
(

P(+1)
m (1− P̄(+1)

m )−P(−1)
m (1− P̄(−1)

m )
)
(x) (4.3)

provides a means for penalizing the learner for not classifying an example and also

for over fitting an example. This provides a means for modest learning of the final com-

bined classifier L. We hypothesize that the choice of a learning algorithm that generalizes

well will provide the opportunity to allow better non-rocking detection thereby hopefully

increasing discrimination ability for the assistive device. This would directly reflect upon

the motivation of the user to get feedback only when he/she is rocking and not performing

other functional activities.

4.5 Data Collection

Two separate data collections were carried out, one in a controlled setting while the other

in a more uncontrolled naturalistic everyday research laboratory setting. The controlled

setting data collection was used for training and lab testing the device, whereas the uncon-

trolled naturalistic setting was used to determine how well the learning algorithm was able

to generalize when used for an extended period of time as an assistive tool.

4.5.1 Controlled Data Collection:

Data was collected on ten participants who did not have any known stereotype rocking

behavior. The goal of the experiments was to collect data for training the system to dif-

ferentiate rocking from non-rocking behavior. To this end, we devised three separate data
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collection routines where the subjects were required to do rocking and non-rocking tasks as

naturally as possible. The details of the routines are as follows:

4.5.1.1 Routine A: Rocking data

Participants were allowed to choose from a rocking chair or a stool or sitting on the ground,

so they could rock as comfortably and naturally as possible. We found some cultural pref-

erences to the way people choose to rock. The subjects were asked to rock for a total of 20

complete cycles.

4.5.1.2 Routine B: Non-rocking data

The participants were asked to do activities that did not involve rocking. They moved

around the experimental setup reading posters, operating computers, interacting with ev-

eryday office equipments and included some functional body motions similar to rocking

like, stooping down to pick up objects, rapidly bending down to pick up objects etc. Data

was collected for a total of 30 seconds.

4.5.1.3 Routine C: Test data

Since rocking can happen at any given instance, we collected data where subjects did vari-

ous activities and interspersed them randomly with rocking. The goal is to determine how

fast and accurately our system can detect such rocking occurrences. In all of these data

streams, rocking instances were manually identified and marked for the sake of ground

truth. Figure 3 shows the combination of rocking and non-rocking activities by the partici-

pants. It can be noticed that there is a clear demarcation between the two activity zones.

4.5.2 Uncontrolled Data Collection:

The uncontrolled data was collected towards testing the generalization capabilities of the

learnt system. To this end, the body rock detection system was worn by the primary au-

thor during everyday laboratory activities. Body rock detection was provided as a feedback

through a pair of headphones in the form of an audio beep. Five trails of four separate
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ten minute data collections were done. Two of the four were done with classic AdaBoost

whereas the other two were done with Modest AdaBoost. Further, under each of these two

classifiers, one data collection measured how many false positives were detected, whereas

the second data collection counted how many rocking actions went undetected. During

all these data collection the researcher counted the number of false positive or false neg-

atives using a handheld thumb counter. This experiment was conducted purely to test the

generalization capability of the learnt classifier.

4.6 Experiments

Experiments were carried out for comparing the performance of the classic AdaBoost

framework with Modest AdaBoost for the specific tasks of determining

a. The length of a temporal packet of data needed to effectively distinguish rocking from

non-rocking.

b. The accuracy with which the two classifiers can distinguish between rocking from non-

rocking.

c. The generalization capabilities of the two classifier systems.

To this end the rocking samples collected in Routine A (discussed under Section

4.5.1.1) and Routine B (discussed under 4.5.1.2) were used as labeled positive (rocking)

and negative (non-rocking) data for training the AdaBoost classifiers. Data collected under

Routine C (discussed in Section??) were used for testing the learnt classifiers. The results

from this analysis were used for determining a. and b. above. We varied the packet length

on the data stream and determined the recognition rate on the test data. While the packet

length was varied, a constant overlap was maintained between successive packets. This

overlap was determined empirically to be 0.5 seconds or 50 samples (100 Hz sampling

rate). With the ground truth already provided for the test set, we were able to determine the

accuracy of the two classifiers.
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To determine c., we resorted to using the data collected in Section 4.5.2. The pri-

mary author of the paper used the device to collect false positive and false negative data

in order to determine how well the classifiers generalized on the training data. Further, we

analyzed the working of the two classifiers in a piece wise manner by breaking down the

features into individual sets (Sets 1 through 5 as identified in Table 4.1 and Table 4.2 and

Set 6 that included all 14 features) and understanding the functional ability of the classifiers

under individual feature sets. This allowed for an in-depth analysis of the workings of the

two classifiers. In Section VII, we discuss the generalization capability of the two classifiers

by heuristic analysis of the piecewise operational modes.

All our experiments were carried out with the aid of the AdaBoost Matlab library

developed by Graphics and Media Lab at the Dept. of Computer Science at Moscow State

University1.

4.7 Results

Figures 4.4 and Figure 4.5 shows the box plot [205] of packet length (T secs) versus recog-

nition rate for classic AdaBoost and Modest AdaBoost frameworks, respectively. The ab-

scissa represents the length of the data stream (in seconds) used for the analysis, while the

ordinate represents the recognition rate. Training and testing were all carried out on the

data collected as depicted in Section 4.5. The horizontal line inside the box represents the

median (second quartile) of recognition rates over the ten subject’s data. The lower end of

box presents the first quartile (25 percentile) and the upper end of the box represents the

third quartile (75 percentile). Thus the box surrounds the center 50 percentile ranges of

recognition results. This box is also called the Inter-Quartile Range (IQR = third quartile -

first quartile). The dotted extremity represents the minimum and maximum recognition rate

under a certain packet length among the ten subjects. Any outlier (an outlier is greater than

1.5 IQR from the median in any direction) is marked by an asterisk.

Table 4.3 presents the results from the experiment carried out to determine the

1A. Vezhnevets and V. Vezhnevets, GML AdaBoost Matlab Toolbox 0.3, Graphics and Media Lab, Moscow
State University, 2007.
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Figure 4.4: Packet length to recognition rate comparison under the classic AdaBoost frame-
work.

Figure 4.5: Packet length to recognition rate comparison under the Modest AdaBoost
framework.
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generalization capabilities of the two classifiers. The entries in the table are counts as

measured by the researchers of the number of false positives and false negatives counted

manually while using the device for body rock detection and feedback. Five trails were

carried out of 10 minutes each for determining these numbers. False positives represent

the number of times the device falsely gave feedback when the user was not involved in

rocking. It is important that this rate be minimal as too many false feedbacks would be

discouraging for the user to continue using the assistive aid. The false negative represents

the number of times the device did not detect that the user was rocking. This metric could

be correlated to the failure of the device to perform its functional task.

Table 4.3: Experiments with naturalistic data

Generalization Capabilities Classic AdaBoost Modest AdaBoost
False Positives per Minute1 86 44
False Negatives per Minute1 20 9
1 Averaged over 10 minutes

Figure 4.6 and Figure 4.7 shows the piecewise analysis of the classic AdaBoost

and Modest AdaBoost frameworks. Subfigure (a) shows the performance of each feature

set considered one at a time in detecting body rocking; feature set 6 corresponds to the use of

all 14 features together. For example, column 1 in Figure 4.6(a) represents the recognition

performance using only temporal mean along x, y and z axis tested on all ten subjects. The

bar graph in (a) shows the mean performance rate while the superimposed box plot shows

the performance at first, second and third quartile as discussed earlier.

Subfigure (b) represents the Receiver Operating Characteristics (ROC) [206] for

the same six feature sets as in subfigure (a). ROC is plotted a false positive rate (FPR)

versus true positive rate (TPR). The better the performance, the curve moves towards the

(1,1) co-ordinate. For example, in Figure 4.6(b) Set 6 with all features is performing better

than feature set 1 as Set 6 curve is closer towards (1,1) while the feature set 1 curve is almost

along the diagonal of the plot. The diagonal of the ROC plot represents a recognition rate

of 50% i.e. random pick.

Subfigure (c) is a derivate of the ROC curves in subfigure (b). Each bar in the graph
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(a)

(b)
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(c)

(d)

Figure 4.6: Piecewise performance analysis of the classic AdaBoost classifier framework;
(a) Recognition rates under use of individual feature sets; (b) The Receiver Operating Char-
acteristics (ROC) under the use of individual feature sets; (c) Area under the curve (AUC)
for each feature set as estimated from the ROC; (d) The number of simple classifiers used
by the aggregated AdaBoost classifier. Each set and each feature representation in the clas-
sifier pool are separately marked. In all the graphs Set 1 through 5 are as explained by
Tables 4.1 and 4.2. Set 6 represents a set containing all 14 features from Tables 4.1 and 4.2.
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(a)

(b)
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(c)

(d)

Figure 4.7: Piecewise performance analysis of the Modest AdaBoost framework; (a) Recog-
nition rates under use of individual feature sets; (b) The Receiver Operating Characteristics
(ROC) under the use of individual feature sets; (c) Area under the curve (AUC) for each
feature set as estimated from the ROC; (d) The number of simple classifiers used by the
aggregated AdaBoost classifier; Each set and each feature representation in the classifier
pool are separately marked. In all the graphs Set 1 through 5 are as explained by Tables 4.1
and 4.2. Set 6 represents a set containing all 14 features from Tables 4.1 and 4.2.
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is representing the area under the corresponding curve (AUC) in (b). An area of 1 represents

an ideal classifier with no false positive or false negatives, while an area of 0.5 represents

randomness in the classifier output. AUC can be used to immediately determine the curve

with the best performance.

Subfigure (d) is an understanding of how the aggregated AdaBoost classifier is

built. As discussed above, AdaBoost classifier uses a collection of simple classifiers to

achieve the final classifier. We plotted the number of times a particular feature is being used

by the aggregate classifier. Further, the features are grouped into 5 sets corresponding to

the five feature sets identified in Table 1. Columns belonging to the same set have the same

top count which corresponds to the total simple classifiers used form that set. Each column

within the set represents how many classifiers are used on each feature within that set. The

count on the individual feature is represented by the bottom color along each column. For

example, consider set 4 in Figure 4.7(d), features with identification number 10, 11 and 12

form this set (corresponding to the first order differential power from x, y and z axis of the

accelerometer data) and have a top count of 646 simple classifiers. Within the group, the z

axis differential power dominates the other two by having a count of 374.

4.8 Discussion of Results

Before discussing the results of the experiments conducted on the accelerometer data, we

step back to the first research question that we identified in Section 4.2, Is there any evidence

of individuals responding to rehabilitation for reducing stereotypic body rocking behavior?

From the Psychology background work presented in Section 4.3, we believe that there is

enough evidence that individuals with sensory or cognitive impairment respond to rehabili-

tation through assistive devices. Specifically, the experiments highlighted in Section 4.3.2.1

support the claim that body rocking can be decreased by providing immediate feedback to

the individual.

Regarding the second research question, what is the state-of-the-art technology

available to detect and notify individuals of their rocking behavior? We identified the state-
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of-the-art motion sensor that is small enough in form factor to become part of one’s every-

day clothing. Further, we designed this device to be discrete so that the user does not feel

any intrusion into their everyday activities. The software can be run on any mobile process-

ing device that the user already carries like a cell phone or PDA. This allows the users to

use the device without carrying any additional load. Our solution to this research question

caters to the Acceptance design dimension that we identified in Section 4.3.2.1 1.

Focusing on the third research question, Is it possible to build a device that detects

body rocking condition and how well can it distinguish body rocking from other functional

activities of daily living? We turn our attention to the various results presented in Section 4.7

to prove the efficiency of our proposed method in detecting body rocking and distinguishing

it from other non-rocking behavior.

4.8.1 Packet Length, and Detection Efficiency

From Figure 4.4 and Figure 4.7, it is evident that the recognition rates for the two classifiers

are comparable and the median recognition rate ranges from 89% to 95%. Based on these

numbers, the best performance was achieved at a sample length of 1.5 seconds or 150

samples per packet. Packet length of 150 samples has the highest recognition rate on both

the classifiers. Comparing this packet with the 2 seconds packet length or 200 samples

per packet, we notice that the 2 seconds packet is very close behind and it has a smaller

1.5 IQR box. Thus, the variance in the recognition rates between 10 subjects is lesser in

the 200 samples packet length, implying that the results are more consistent. Further, we

noticed that the average natural rocking motion of the 10 subjects was around 27 rocks a

minute (i.e. 27 rocks in 60 seconds or 2.22 seconds per rock; this is supported by results

from [207]), which implies that a latency of 2 seconds was the closest to the time duration

of a single rocking action. As mentioned earlier, all experiments were carried out with an

overlap 0.5 seconds or 50 samples between successive packets. Combing these two results,

we have

1. Optimum Packet Length 2 seconds or 200 samples with 0.5 seconds or 50 samples
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overlap between packets.

2. Best Detection Rate @ 2 seconds packet length ≈ 94% under both classifiers

4.8.2 Generalization Capabilities

From Figure 4.4 and Figure 4.7, it is very difficult to distinguish any performance benefits

between classic AdaBoost and Modest AdaBoost. But analyzing Table 4.3, we can notice a

dramatic difference in the performance of the Modest AdaBoost when compared to classic

AdaBoost. The number of false positives is down from 86 to 44 over a ten minute period.

That is, the user receives nearly half less number of false feedback with Modest AdaBoost

framework when compared to the classic AdaBoost. This was not evident in the detection

tests that were carried out with data collected from Routine C (Section IV - A 3.). We asked

the question of why there is an increased performance in Modest AdaBoost and why there

is a discrepancy between the test results from Routine C and the naturalistic data capture

(Section 4.5.1.3). The answer to these questions lies in the generalization capabilities of the

two classifiers. We noticed that most of the false feedback provided by classic AdaBoost

occurred while the user was sitting and not rocking. In hind sight, we realized a slight

discrepancy in our non-rocking (negative class) data collection. While capturing data under

Routine B (as explained in Section 4.5.1.2) the participants were asked to perform various

tasks that did not involve rocking to use as negative training set. We realized that most of

the participants performed tasks that involved some form of walking or standing activities

while they did no activity that involved sitting and not rocking. Thus, just sitting activity

was a non-rocking event that was not represented in the training data set. We hypothesize

that classic AdaBoost over trained on the non-rocking data while Modest AdaBoost, which

is penalized for learning the training set very well, had a better generalization. Extending

this heuristic analysis to a more formal analysis, we look at the piecewise performance of

the two classifiers. Comparing the ROC curves from Figure 4.6 (b) with Figure 4.7 (b), it

can be seen that feature set 2 - Variance and feature set 4 - First Order Differential Power

performed the best following Set 2 - All features set. Now comparing Figure 4.6 (d) with

Figure 4.7 (d) it can be seen that Modest AdaBoost distributed it simple classifiers such that
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there were more classifiers representing the two feature sets 2 and 4. On the other hand, the

classic AdaBoost’s distribution of simple classifiers is unexplainable as feature set 1 - Mean

- seems to have received more representation than set 4. Mean had the worst performance

as an individual feature set as can be verified by the ROC curve that comes closest to the

diagonal on the plot hinting that the performance is barely above random guess. Contrasting

this with Modest AdaBoost selection, Mean is in the bottom two sets among the five feature

sets. This bad performance of Mean as a feature set can be understood by looking at the

graph shown in the first row and last column of Table 1. It can be seen that the Mean

acceleration values between rocking and non-rocking are not significantly different. Table

4.1 Row 2 and Table 4.2 Row 1 highlights the capabilities of Variance and First Order

Differential Power in distinguishing rocking from non-rocking. This is further confirmed

by the ROC graph.

Feature 4 having the highest distribution of simple classifiers under Modest Ad-

aBoost (Figure 4.7 (d)), within this feature set we can see that the highest number of simple

classifier is assigned to feature 12 which corresponds to First Order Differential Power on

z axis. As can be verified from Figure 4.3, the best distinguishing character between non-

rocking and rocking patterns seems to be the transformation of a random signal pattern on

z-axis to a deterministic sinusoidal waveform. If this can be the true identity of the rock-

ing data stream, feature 12 would capture it in the best possible manner by measuring the

power in the first order differential of the temporal signal. Using this feature as the most

reliant feature would provide a good basis to support the final classifier selected by Modest

AdaBoost.

We are now ready to answer the last research question stating that the use of ap-

proximately 2 seconds (or 200 samples @ 100 Hz sampling rate) packet length used with a

learning framework biased towards generalized learning (like Modest AdaBoost) would be

a good assistive technology solution for detecting and giving feedback towards stereotypic

body rocking. We can extend the same argument to other body mannerisms that involve

any form of repetitive body part movement.
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In this chapter, we have addressed the topic of detecting stereotypic body manner-

isms, specifically body rocking, and propose a technology solution for providing an assis-

tive technology that may reduce or control body rocking. We have discussed the hardware

and software components of the proposed system in detail and offer a thorough analysis on

the learning framework that provides generalization benefits to allow this framework to be

extended to detection of any body mannerism. Investigations are in progress to determine

how incoming samples of acceleration data can be labeled automatically by the system

based on the AdaBoost classifier’s classification confidence metrics. This would provide

opportunity for self-learning [208] modes where the device can readily understand and

learn data points that were not available in the training set. Combining such self-learning

into a generalized learner would provide immense opportunities for not only body manner-

ism detection, but for solving future data mining problems where typical lab setting training

data collection would just not be sufficient to train a robust classifier.
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Chapter 5

SENSING FACIAL EXPRESSIONS IN DYADIC INTERACTIONS

As described in Chapter 3, the evidence towards facial expression recognition precedes

other non-verbal cue sensing and delivery. This is supported by the argument that most

part of the non-verbal cues occur through visual facial mannerisms as described in Figure

1.1. The face encodes a lot of information that is both communicative and expressive in na-

ture. Unfortunately, the face is a very complex data generator and the encodings on the face

are very individualistic in nature. Evolving computing technologies have been focused on

developing solutions towards understanding the nature of facial mannerisms and gestures,

but most of this research has been focused on the development of sensors and algorithms

that understand user’s emotional state for a human-machine interaction scenario. Such in-

teractions are mostly unilateral in nature and focused primarily on developing technologies

that will allow the machine to interpret the user’s emotional state. That is, the machine be-

comes the primary consumer of the affective cues. But from the perspective of an assistive

technology the extracted facial expression primitives have to be augmentations that enrich

human-human interpersonal interaction, where the machines not only interpret communi-

cator’s affective state, but also deliver affect information through novel affect actuators to

the user of the technology. That is, the technology needed in a social interaction assistant is

not a consumer, but a mediator.

Affect information is causal in nature and understanding what the expression or

mannerism means requires an understanding of the context in which it took place. State-of-

the-art computational models developed towards understanding context are very simplistic

and performs only nominally even under very well controlled laboratory conditions. Con-

trary to such a setting, assistive technologies provide some respite to the complexities by

allowing the user to make all the cognitive decisions. That is, while human computer inter-

faces need to mimic sensing, cognition and delivery, assistive technologies for people who

are blind have to look at sensing and delivery alone and include the human cognition in the

loop. This requires precise sensing of the facial and head movements while delivering as
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much information back to the user as possible through technologies that do not overload

the user with information but provides just the right level of information to allow them to

cognitively process this information.

Facial expressions are of utmost importance when humans interact on a one on one

basis as explained in Section 1.2.1.1 of Chapter 1. That is, facial expressions become very

relevant when the person who is blind is involved in a dyadic interaction with his/her sighted

counterpart. To this end, it is essential that the technologies developed towards enabling the

user to access facial expressions be a) able to precisely sense facial movements, b) able to

deliver facial expression information seamlessly to the user through non-visual modality.

Below we consider the challenges of dealing with facial expressions in a dyadic interaction

scenario.

5.1 Design Considerations

The human face is very dynamic when it comes to generating important non-verbal commu-

nicative cues. Subtle movements in the facial features can convey great amounts of infor-

mation. For example, slight opening of the eyelids conveys confusion or interest, whereas a

slight closing of the eye lids conveys anger or doubt. Thus, the human face can be consid-

ered to be a very high bandwidth information stream, where careful design considerations

need to be taken into account if this data has to be encoded optimally and effectively through

other modalities.

In the past, most researchers and technologists have resorted to auditory cueing

when information has to be delivered to persons with visual disabilities; but there is a strong

growing discomfort in the target population when it comes to overloading their hearing.

People with visual disabilities have a natural tendency to accommodate for the lack of a

primary sensory channel by relying on hearing. For example, with the aid of ambient noise

in a room, they can gauge approximately how big a room is. Thus, when designing assistive

devices aimed at social aid, we need to carefully consider how to deliver high bandwidth

data streams to users relating to the facial movements of interaction partners. Touch or
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haptic based delivery is a growing area of research which is relatively underutilized, except

for Braille. In the next chapter, we explore the use of vibrotactile cueing (on the human

hand through a Haptic Glove) towards delivering facial expression data to the user. Below

we provide the overall application scenario for the proposed dyadic interaction assistant the

details of which are presented in this and the next chapter.

5.2 Dyadic Interaction Assistant - Proposed Solution

Dyadic interactions represent a large portion of social interactions between individuals; and

during dyadic interactions, it is very important to assess the communicator’s face, head and

body-based gestures and mannerisms. The dyadic interaction assistant is meant to convey

important facial and head mannerisms of the interaction partner that might correlate to

communicative gestures like head nod, head shake, doubt, anger, frustration, happiness,

interest, etc. See Figure 5.1 for a typical dyadic interaction setting. The device incorporates

an automated table top face tracker which acts as the input to the system while allowing any

extracted data to be delivered on a wearable haptic display called the Haptic Glove.

Figure 5.1: Typical use of the dyadic interaction assistance scenario, a third person perspec-
tive on the use case scenario.

The dyadic interaction assistant was designed to be a compact device that can be
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carried into meetings where an individual who is blind or visually impaired could place it

in front of his/her interaction partner. The device, as shown in Figure 5.2, consists of a

micro pan-tilt mechanism that is controlled from a PDA like computing platform. Real-

time face detection (as explained in the previous section) tracks the face of the interaction

partner and captures only the face image for further processing. We use the FaceAPI, a

commercially available facial feature tracking package to determine the locations of all the

facial features including eyelids, eye brows and the mouth. Figure 5.3 shows a typical

output of the FaceAPI software.

Figure 5.2: Face tracker with an auto-focus camera and a micro pan-tilt mechanism.

This chapter focuses on the sensing of facial expressions using the proposed dyadic

interaction assistant. Since facial expressions are all visual in nature, the proposed solution

uses computer vision solutions to track the face of the interaction partner and extracts all

the necessary facial feature information for decision making and delivery. The following

section gives a summary of the current state-of-the-art in computer vision based facial ex-

pressions recognition algorithms. Following this discussion, the proposed methodology for

extracting the expression primitives are detailed.

5.3 Facial Expression Recognition - State of the art

Computer based facial expression recognition is mostly centered around the process of iden-

tifying the various facial mannerisms and gestures of individuals through the use of mostly
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Figure 5.3: Typical use of the dyadic interaction assistance scenario, a third person perspec-
tive on the use case scenario.

electrooptical cameras. While recent developments relate to their recognition using infrared

[209], thermal [210] and face electromyogram (EMG) [211], in this chapter, we restrict to

the discussions of EO camera based facial expression recognition as the primary sensor

on the dyadic interaction assistant is restricted to the use of an auto-focus Complementary

Metal Oxide Semiconductor (CMOS) camera.

Most facial expression recognition algorithms treat the underlying problem as a

classification problem and group spatio-temporal facial actions into predetermined bins of

specific facial gestures or mannerisms. Popular classifications include the Ekman [212]

grouping of 6 basic facial expression of emotion, including Happy, Sad, Surprise, Fear,

Anger and Disgust. These classes are distinguished from the otherwise Neutral expression

of the individual’s face.

Table 5.3 below shows a compilation of the state-of-the-art in facial expression

recognition algorithms. Note that the table is an extension of the 2009 work that was pub-

lished by Zaho et al. [213].

93



Table 5.1: State-of-the-art facial expression recognition algorithms and their performance.
Exp: Spontaneous(S) / Posed expression (P); Per: Person Dependent(P) / Independent (I); Class: Number of classes; Sub: Number of subjects;
Type: Data Type: Video (V) / Image(I); % Acc: Percentage Accuracy; ?: missing entry.

Ref. Features Classifier Performance
Exp Per Class Sub Type % Acc

[214] AAM SVM S I 2 21 ? 81
[215] Gabor SVM + HMM S I 3 AUs 17 V 98
[216] [217] Gabor AdaBoot SVM S P I 17 AUs 119 + 12 I 93 + 90.5
[218] 12 motion units Tree DBN HMM P D I 6 5 + 53 V 66.5 + 73.2
[219] Shape Models, Gabor LDC S I 3 AUs 21 I 76
[220] 24 facial points DBN P D 6 30 V 77
[221] Intensity NN P ? 7 ? I 68
[156] Shape fea, Optic flow C4.5 Bayes Net P ? 8 4 I 100
[222] FAPs Neurofuzzy network S I 3 ? I 78
[223] Shape fea DBN S ? 2 8 V 95.3
[224] Facial and head gesture GP SVM HMM NN S ? 2 8 V 86
[225] Pixel diff of mouth GP SVM HMM NN S I 2 24 V 79
[226] Intensity of face Decomposable model P I 6 8 + 16 V 61
[227] Gabor AdaBoost SVM S I 2 26 V 72
[228] AAM SVM S P I AUs 100 ? 95
[229] Facial profile Rule-based P I 27 AUs 19 V 86.3
[230] Frontal profile facial points Rule and case based P I 9 8 I 83
[231] 12 motion units kNN S I 4 53 + 28 V 93 + 95
[232] Gabor AdaBoost DBN P I 14 AUs 100 + 10 I 93 + 93
[233] Motion history SNoW kNN P I 15 AUs 19 + 100 V 61 + 68
[234] 8 facial points Gentle Boost SVM S P I 2 27 + 32 + 65 V 90
[233] 20 facial points Gentle SVM S P I 2 52 V 94
[235] Shape fea, Intensity NN S ? 7 14 I 84
[236] 3D surface LDA P I 6 60 I 83
[237] Geometric ratio GMM P I 4 47 I 75
[238] Harr AdaBoost P I 11 AUs ? I 92
[216] Intensity kNN HMM S P 6 97 + 21 V 90.7 + 82
[239] Texture with LPP SVDD S D 2 2 I 87
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5.4 Design Considerations for Dyadic Interaction Assistant

As seen from the Table 5.3, facial expression recognition algorithm is a mature area with

various solutions being suggested towards myriad applications ranging from biometrics

to human computer interfaces. In contrast, the requirements in the proposed application

is focused towards mediating human-human communication and thus imposes important

constraints like,

• Real-time interpretation of the facial expressions and gestures: People who are blind,

or disabled in general, prefer not to rely on technologies that do not respond to their

needs immediately and reliably. Survey of early adoption of assistive technologies

show that the technology need not accomplish a large range of tasks, but the tasks

being performed should be executed reliably and in useful time [240]. Range of

facial expressions range from a few hundredths of a second to couple of seconds at

max ([5], Page 322). It is essential that the facial expression recognition algorithms

be able to respond within this time frame to enable seamless interactions with sighted

counterparts.

• Ability for the user to choose varying levels of facial information of their interaction

partner: In our interactions with the user community, it has become evident that each

user has his/her own requirement of the details of the facial information that they

receive from their interaction counterparts. For example, in a professional setting,

individuals preferred to receive information that was delicate and down to detail,

while in a personal setting, they preferred that the device does not overwhelm the

user with facial interaction information.

• Ability to switch between subject-dependent and subject-independent facial expres-

sion recognition: Social interactions vary between personal interactions with friends

and family to professional meetings with strangers that the user may meet only once.

An important aspect of social interaction is the ability to relate to an individual’s per-

sonal mannerisms and gestures. This is especially true in personal interactions and
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behavioral psychology studies shows the inherent need for individuals to recognize

and reenact their interaction partner’s gestures (popularly termed as the Chameleon

Effect). From the sensing perspective, thus it is important that the algorithm be able

to adapt to generic facial expression recognition, while also be able to adapt to sub-

tle changes in a single subject’s facial movements. That is, the algorithm requires

the benefit of switching between subject-dependent and subject-independent facial

expression and gesture recognition.

In the following section, we describe a recently proposed framework for facial ex-

pression recognition, termed as the Temporal Exemplar-based Bayesian Network, which

demonstrates the ability to satisfy the needs itemized above. We first describe the frame-

work and provide justification for its suitability to address the identified requirements.

5.5 Temporal Exemplar-based Bayesian Network (TEBN) for Facial Expression &

Gesture Sensing

A Bayesian Network is a interdependency graph representing the influence of various events

on a desired outcome. A Bayesian Network is the extension of the Bayes Rule of condi-

tional probabilities to multiple acyclically interdependent variables. For example, consider

the problem of estimating the probability of a lawn being wet, under the possibilities that

it could have rained, or the sprinklers could have turned on. The probability of wet grass

P(wg) then depends on the probability of raining P(r) and the probability of sprinkler turn-

ing on P(s). Thus, the joint probability P(wg,s,r) can be written as

P(wg,s,r) = P(wg/r,s).P(s).P(r) (5.1)

Further, most sprinklers can be assumed to be dependent on whether it rained or

not, there by making the probability P(s) dependent on the rain. Incorporating this into the

above equation,

96



P(wg,s,r) = P(wg/r,s).P(s/r).P(r) (5.2)

Graphically, the above equation can be represented as shown in Figure 5.4,

Figure 5.4: Example Bayesian Network.

Typically, the various conditional probabilities associated with the graph are de-

termined through statistical analysis of observations. Most often, the analysis results in

inductive models that generalize the training observations to all test cases. In contrast, the

Exemplar-based Bayesian Network determines the conditional probabilities transductively

on a case-by-case basis of the test set. Thus, the network is dynamic, allowing the condi-

tional densities to transform based on the input test condition. Also, the network accounts

for the temporal transmission of decision probabilities from time instance t to t + 1. This

transmission is also modeled into the network through a Markovian process. The details of

the implementation follows, as described in [241].

Given any facial expression image sequence I(t) with M number of frames, the goal of

TEBN is to provide a posterior conditional probability of the sequence belonging to a pos-

sible set of N facial expression labels Yi. N depend on the application under consideration.

Thus, the conditional probability can be defined as

P(Yi/(I(t),H(t))) =
P(I(t)/(Yi,H(t)))P(Yi/H(t))

P(I(t)/H(t))
(5.3)
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If we assume that the image sequence I(t) is independent of the past history H(t), given

that we know the expression label Yi and introducing the exemplar layer Li(t) as all the

knowledge from which the labels Yi will be derived, the likelihood in the equation 5.3 can

be rewritten as,

P(I(t)/(Yi,H(t))) = P(I(t)/Li(t))P(Li(t)/Yi) (5.4)

Thus,

P(I(t)/(Yi,H(t))) =
P(I(t)/Li(t))P(Li(t)/Yi)P(Yi/H(t))

P(I(t)/H(t))
(5.5)

Neglecting the scaling factor in the denominator, the network can be defined by three layers,

namely, Observation Layer, Exemplar Layer, and Prior Knowledge Layer, as shown in the

Figure 5.5. The three layers shown in the figure contribute towards the final decision on the

nature of the facial expression. Note that this example represents a classification problem

where the six basic human expression (Happy, Sad, Surprise, Anger, Fear and Disgust) are

considered to be the prime focus. In the later sections, we describe how this framework can

be adopted to suit dyadic interaction assistance requirements.

5.5.1 The Observation Layer

As described earlier, we use the results from the FaceAPI software as the inputs into the

facial expression recognition algorithm. As shown in Figure 5.6, 36 points returned by the

software are used as the input observation vector,X(t) into the TEBN. The length of this

observation vector, N, is 2x36 = 72, corresponding to (x,y) coordinates of the 36 facial

fiducial. Structurally, the 72 data points are arranged as a linear vector X(t) that represents

the structural configuration of the facial features at time instant t. As time progresses, the

vector X evolves into an expression or gesture. X(t) extracted at each frame is used for

choosing K examples from each of the N expression classes, 6 in the example described in

Figure 5.5.
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Figure 5.5: Temporal Exemplar-based Bayesian Network for facial expression recognition.

Figure 5.6: 36 Facial fiducial points tracked with FaceAPI software. Both x and y coordi-
nates from all 36 points are used for facial expression recognition.
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Given that all training data is available at sequence of images, I(t), we choose to represent

each frame of the image just by their FaceAPI tracked points. Thus, in the above equations,

I(t) can be conveniently replaced with X(t), the 72 point vector of tracked points. Note that

this is done only to reduce the computational load. Later, in the experiments section, we

demonstrate the possibility of representing I(t) through other image features.

Thus, equation 5.4 can be rewritten in terms of the extracted features X(t) as,

P(X(t)/(Yi,H(t))) ∝ P(X(t)/Li(t))P(Li(t)/Yi)P(Yi/H(t)) (5.6)

5.5.2 The Exemplar Layer

The Exemplar Layer represents the aggregate knowledge for every test facial expression to

be evaluated by the TEBN. As the name suggests, given a test sample of image sequence,

It(t) , for which we need to estimate the facial expression label, Yit , the exemplar layer is

constructed dynamically to best represent the test data. Thus, the exemplar layer Li(t) is

chosen from the training pool, E(t), by comparing It(t) with every candidate image se-

quence in E(t). For each of the expression labels, Yi, i = {1, . . . ,N}, k nearest neighbor

points are chosen in E(t) to represent the test data. We chose Euclidean distance between

the test observations Xt(t) and all observations XE(t) from the training pool E(t). Once the

k nearest neighbors have been identified for the given test sequence, the Bayesian Network

is developed by representing the test point Xt(t) as the weighted average of Li j training

points chosen from the training pool. The examples Li j, i = {1, . . . ,N}& j = {1, . . . ,k} rep-

resents k examples taken from N expression classes. Figure 5.7 shows the steps involved in

developing the Exemplar Layer for any given test point Xt(t) and highlights the problem of

finding wi j such that

Xt(t) =
N

∑
i=1

k

∑
j=1

wi jLi j (5.7)
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Figure 5.7: Deriving the exemplar layer of the TEBN based on every test point Xt(t).

5.5.2.1 Computing P(X(t)/Li j(t)): Representing the test data in terms of existing

examples

If any test point X(t) can be represented as the sum average of a set of chosen example

training data, in our case Li j(t) (chosen based on k nearest neighbors of X(t)), the likelihood

P(X(t)/Li j(t)) can be computed as

P(Li j(t)/X(t)) =

k
∑
j=1

wi j(t)

N
∑

i=1

k
∑
j=1

wi j(t)
(5.8)

and,

101



P(X(t)/Li j(t)) =
P(Li j(t)/X(t))P(X(t)

P(Li(t))
(5.9)

where, P(Li(t)) can be considered as a proportionality constant and the probability of oc-

currence of any X(t) is considered to be equal. Thus,

P(X(t)/Li j(t)) ∝ P(Li j(t)/X(t)) (5.10)

Determining wit(t) given test point X(t) and examples Li j(t): In [241], the problem of

determining wi j(t) is posed as a entropy maximization problem,

Maximize

(
−

N
∑

i=1

k
∑
j=1

wi j(t) ln(wi j(t))

)
(5.11)

Subjectto
N
∑

i=1

k
∑
j=1

wi j(t) = 1

N
∑

i=1

k
∑
j=1

wi j(t)Li j(t) = X(t)

(5.12)

The above problem is a convex optimization problem with the local maxima being the

same as the global maxima. Appendix B shows the solution to be problem using Newton’s

method and the steps shown in subsection B.2.1 of Appendix B shows the algorithm for

determining the weights wi j associated with Li j.

5.5.2.2 Computing P(Li(t)/Yi): Determining the prior probability of chosen examples

w.r.t the complete training data

The Exemplar-based Bayesian model assumes that all the known knowledge of the problem

is embedded within the complete training set E(t). Thus, given a subset of the examples,

Li j(t) that is extracted from the training set, the likelihood of a given expression label, Yi

can be obtained as the ratio of likelihood of occurrence of the selected training samples over

all the training samples in the database. This can be achieved through,
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P(Li(t)/Yi) =

∑
x∈Li

P(x)

∑
x∈E

P(x)
(5.13)

The probability P(x) can be determined through Kernel Probability Density Estimation as

P(x) =
1

nhD (5.14)

Assuming φ to be a Gaussian Density function,

φh(z) =
1

(2π)D/2 exp−1
2

zT z (5.15)

where, h represents the window width and an optimal value for this can be found (See [242]

for more information) as,

hopt = σ

{
4

n(2D+1)

} 1
D+4

(5.16)

σ2 is the average marginal variance on the D dimensions of the data in the set E.

5.5.3 The Prior Knowledge Layer

Facial expressions evolve over time and the rate at which one displays a certain facial ex-

pression varies from one individual to another. Further, some of the facial expressions show

commonalities that exhibit temporal correlations. For example, consider the expressions

Fear and Surprise as shown in the Figure 5.8. The movements on the upper half of the face

are very similar in the two expressions, but not alike. The differences in the final expression

label depends on the curvature and the opening of the mouth. Thus, a temporal evaluation

of any facial expression requires that the frame train be analyzed as an evolving probability

confidence over time history H(t).
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Figure 5.8: Comparison of Fear and Surprise facial expressions.

5.5.3.1 Computation of P(Yi/H(t)): Temporal propagation of expression probabilities

The temporal nature of the TEBN is embedded in the propagation of probabilities across

time (video frames). That is, propagation of expression probability from time t to t +1, can

be represented as a function of the transition probability given the frame history,

P(Yi/X(1, . . . , t)) =
N

∑
j=1

P(Yi/(Yj,X(1, . . . , t−1))P(Yj/X(1, . . . , t−1)) (5.17)

Considering a Markovian nature of probability propagation, we can rewrite the above equa-

tions as,

P(Yi/X(1, . . . , t)) =
N

∑
j=1

P(Yi/Yj)P(Yj/X(1, . . . , t−1)) (5.18)

In the above equation, the propagation is centered only on the transition probability P(Yi/Yj).

It is difficult to determine the transition probabilities before hand as they are dependent on

the length of the video stream and also dependent on the duration of the expression in ques-

tion. Hence, the transitions are determined while the expression evolves in the video frames.

To this end,
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1. Define a transition matrix T of size NxN, to describe transitions between any of the

N expressions.

2. Initialize T to 1s.

3. At at given time instance, t, the transition probability, P(Yi/Yj) can be obtained as

P(Yi/Yj) =
Tji(t))

N
∑

k=1
Tjk(t)

(5.19)

4. On an iterative basis update T matrix based on a frame-by-frame transition from

expression i to j. That is, increment the entry Ti j by 1, if the t−1 frame is assessed

to be expression Yi, through P((YX(t) = Yi)/X(1, . . . , t− 1)) and the expression label

transitions to Yj at time frame t, through P((YX(t) = Yj)/X(1, . . . , t−1)).

5.6 Discussion of Design Considerations: TEBN perspectives

Having discussed the TEBN framework, we highlight the importance of using TEBN for ad-

dressing the three important design constraints that were highlighted in Section 5.4. Below

we highlight the importance of TEBN framework in addressing this design considerations.

• Real-time interpretation of the facial expressions and gestures: The TEBN frame-

work enables real-time performance. See the experiments section to determine the

time taken towards each expression assessment.

• Ability for the user to choose varying levels of facial information of their interaction

partner: The number of decision levels that the TEBN can have is controlled by

the design of the exemplar layer. In the discussions a single layer (6 expression)

TEBN was discussed, but the same can be extended to incorporate more classes of

expression bases like the Actions Units (AU), various intensity of AUs or the raw

movement data itself. That is, the number of elements representing N in the above

discussions can be extended based on the classifications desired by the application,

scenario and user choice.
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• Ability to switch between subject-dependent and subject-independent facial expres-

sion recognition: Subject dependence and independence can be easily controlled

through the determination of the example pool from which the data is being selected

for building the TEBN. If the identity of an interaction partner can be established

before the expression analysis, it is possible to build X(t), the test vector as a sum

of expressions that belong to that specific individual, Lr
i , where i ∈ {1, . . . ,N} repre-

sents the N expressions and r ∈ {1, . . . ,R} represents the total number of individuals

in the database. On the other hand, if the interaction partner’s identity cannot be es-

tablished, all expression examples independent of the subject identity can be used for

building the exemplar layer for X(t).

5.7 Experiments

5.7.1 Data

All experiments were carried out on the Cohen-Kanade Facial Expression Database [243]

version 1. Version 1 (the original or initial release (Kanade, Cohn, & Tian, 2000)) includes

486 sequences from 97 posers. Each sequence begins with a neutral expression and pro-

ceeds to a peak expression. The peak expression for each sequence is fully FACS (Ekman,

Friesen, & Hager, 2002; Ekman & Friesen, 1979) coded and given an emotion label. The

emotion label refers to what expression was requested rather than what may actually have

been performed. In order to validate the emotion that was displayed, the final expression

images of the 486 sequences were displayed to unbiased participants through a web portal.

Each emotion image was displayed to the user and requested to label them as belonging

to one of 7 classes, Happy, Sad, Surprise, Fear, Disgust, Surprise and Neutral. During the

screening process, it was noticed that some of the subjects did not display expressions as re-

quested (either displayed neutral expression through the sequence or displayed exaggerated

facial mannerism unlikely of requested emotion). Hence all the participants who labeled

the expression images were required to label on a scale of 1 to 5, the genuineness of the

expression displayed, 1 being least correlation to genuine expression and 5 being most gen-

uine. Based on the user responses, we identified 182 sequences where subjects displayed
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emotions that were named as being genuine up to a scale level of 4 or 5. These sequences

were then used for testing the TEBN.

In this chapter, we discussed the use of a Temporal Exemplar-based Bayesian Net-

work to determine the facial expressions of the interaction partner. Given that the dyadic

interaction assistant is able to extract these facial expression cues, it is thus required to de-

liver this information back to the users who are blind. This is a challenge in itself as the

very high bandwidth information delivered by a human face could easily overload the user.

As explained before, the next chapter investigates the use of the human perception of touch

to develop novel haptic interfaces for delivering highly dynamic facial expressions.
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Chapter 6

DELIVERING DYADIC INTERACTION CUES THROUGH VIBROTACTILE

STIMULATIONS

Over the past few decades, the environments in which humans live and operate have be-

come increasingly information rich. Audio and visual modalities have been occupied by

more than one source at the same time. Increasing audio-visual stimulations in the human’s

surroundings have increased the need for divided attention, which competes with the need

for selective and sustained attention to complete a task at hand [244]. While audio and

video have evolved as a medium for immersing humans in rich sensory experience, touch

[245], taste [246] and smell [247] have only recently being considered for sensory augmen-

tation and substitutions - note the subtlety between augmentation and substitution. When

augmenting the already utilized sensory channels, the newer medium is not in demand to

reproduce all of the information, but only enrich the already delivered experience. On the

other hand, substitutions have to deliver information that was once being provided by a

certain sensory channel on a newer medium, while maintaining similar or lesser cognitive

load.

Vision is the primary sense organ for most mammals and for a few primates, in-

cluding humans, trichromatic vision is so highly evolved [248] that a major portion of the

neuronal pathway in the brain is dedicated to sensing, perceiving and cognizing visual stim-

uli. This allows the human vision to process high intensities of data that stimulates the eyes

- Koch et al. estimated that human eyes, with 106 ganglion cells, could transmit up to 10

Mbits/s [249] to the brain. Hence substituting vision with any other sensory channel is a

challenging task that requires appropriate design taking into account the high intensity of

data generated by visual stimuli.

In this chapter, we present a visuo-haptic sensory substitution device that intends

to replace visual channel with somatosensory vibrotactile stimulations for delivering the

facial expression data that was derived from the dyadic interaction assistant, as described
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in the pervious chapter. A prominent visuo-haptic sensory substitution system is the TVSS

(Tactile-Visual Sensory Substitution) [250] that substitutes visual data into a 400 point tac-

tile array worn on the back of the user. A similar effort by Rahman et al. [251] focused on

delivering facial emotions of interaction partners using vibrators installed on a chair such

that the user’s back is in direct contact with the vibrators. Both of these technologies have

the obvious disadvantage that the user is restricted to a seated position with immobile aug-

mentations. Recently we have explored the use of vibrotactile technologies on a belt like

form factor for delivering direction and distance information [252]. Unfortunately, the waist

(combined with a belt like form factor) did not prove suitable for delivering high intensity

data like facial expressions. Table below presents some of the popular haptic technologies

developed for communicating high bandwidth interpersonal interaction data. While these

provide opportunity to appreciate the possibility of haptic information delivery, the end goal

was not clearly defined towards delineating fine facial movements that are deemed impor-

tant in typical dyadic social interactions. First we investigate various haptic interpersonal

communication technologies that have been developed over the past several years, follow-

ing which we discuss the choice of technology and any specific justifications for its use in

delivering facial expressions.

6.1 Related Work in Haptic Interpersonal Communication Interfaces

Haptics has recently seen a uphill trend in terms of the number of interfaces that are being

suggested by academia and the industry. It is not surprising to notice a plethora of devices

that are intended for personal interpersonal communications. Tables 6.1 through 6.4 discuss

various interpersonal communication technologies that were mostly developed for enrich-

ing remote interactions between humans. This list provides an appreciation for the types

of technologies that have been implemented in the human-human communication enrich-

ment space. Following these tables, we discuss the technology that we propose to use for

delivering facial expression information.
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Table 6.1: Haptic interpersonal interaction enrichment devices

Device Actuation Major Or-
gan

Non-
verbal
Cue

Application User Ex-
perience

Device Device

inTouch
[253]

Vibration
Pressure
Texture

Hand Social
Touch

-
Interpersonal
commu-
nication
through
remote
touch

No Testing

The Bed
[254]

Pressure
Texture
Tempera-
ture

Body Social
Touch

Remote in-
terpersonal
intimate
communi-
cation Self
report

System
found to
produce
feelings of
intimacy.

HandJive
[255]

Pressure
Proprio-
ception

Hand Handshake
Touch

Interpersonal
commu-
nication
through
new cueing
language

No Data

HyperMirror
[256]

Pressure Shoulders interpersonal
distance,
relative
position,
crossing
paths

-Remote
crossing of
paths.
-Initiating
interac-
tion in
strangers
across
distance.
Tap to
initiate
conversa-
tion.

Eye con-
tact was
made
across dis-
tant users.
Tap signal
aroused
attention.
Crossing
paths
initiated
conversa-
tions.
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Table 6.2: Haptic interpersonal interaction enrichment devices contd.

Device Actuation Major Organ Non-verbal
Cue

Application User Experi-
ence

Device

Com Touch
[257]

Vibration Pres-
sure

Hands Touch Emo-
tions

Bidirectional
operation.
24 subject
tested. Remote
participant
squeezes one
end and a
recipient at the
other end feels
vibrations.

Subjects came
up with their
own cueing.
83% of par-
ticipants used
at least one
gesture. 67%
developed their
own gestures.

Haptic Instant
Messenger
[258]

Audio Vibra-
tions

Hands Emotions Based on user
selections at a
remote loca-
tion, haptic and
audio codes are
transmitted to
the receiver.

No user testing.

Hug over Dis-
tance
[259]

Pressure Pro-
prioception

Upper Body Touch Hug At one end
the user rubs
tummy of a
stuffed toy
and based on
the pressure
applied, air
bags are filled
at the remote
end to simulate
hug.

Air compressor
at the receivers
end makes a lot
of noise. Six
couple focus
group found the
concept weird.
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Table 6.3: Haptic interpersonal interaction enrichment devices contd.

Device Actuation Major Organ Non-verbal Cue Application User Experience Device
VinroBod
[260]

Pressure, Tem-
perature

Hands Touch Convey remote
interpersonal
cues.

15 subjects found
the device useful
and intuitive

What’s Shaking
[260]

Vibration Tem-
perature

Hands Proxemics Heat corresponds
to the number of
people.
Vibration cor-
responds to
the amount of
activity in the
environment

12 subjects found
the glove intu-
itive and were
able to identify
activity around
them.

Tele Handshake
[261]

Proprioception Hnads Touch Remote hand-
shake between
interaction part-
ners

65% Satisfaction
55% Convincing
60% Intiutive
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Table 6.4: Haptic interpersonal interaction enrichment devices contd.

Device Actuation Major Organ Non-verbal
Cue

Application User Experi-
ence

Device

TapTap
[262]

Pressure Shoulders Touch Tap Solenoids and
vibrators used
on the shoulder
to simulate
tapping.

8 men and 8
women tested
on the device
found based
on the tap, it
reminded them
of someone.

United Pulse
[263]

Vibrations Finger Intimacy Vibrators on
the ring stimu-
lated to initiate
communica-
tion between
remote couple.
Simulated heart
beats were
delivered

20 couples
tested with
the device. 22
liked the idea.
5 were irritated.

Haptic Chair
[251]

Vibrations Back Emotions Vibrations
corresponding
to emotions
are delivered to
the back of the
user.
Has sensing
of the emo-
tions inbuilt
through vision
technologies

3 expressions
tested. 100%
recognition
on expres-
sions. 10%
of participants
complained of
cognitive load.
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6.2 Proposed Visuo-Haptic Sensory Substitution Device

In order to deliver the high bandwidth visual facial expression data, we resort to choosing

a modality for communication and the human body organ where the data will be delivered

to. To this end, we chose vibrotactile stimulaters for encoding the facial movement patterns

to temporal vibrations. Further, the facial expressions themselves were delivered as spatial

pattern on a matrix of haptic actuators placed in contact with the dorsal surface of the

fingers, which allows both spatial and temporal mapping of vibration patterns. The fingers

have the largest tactile representation in the brain after the tongue. Together, the fingers

have the largest projection on the cortical surface, similar in sensitivity to the tongue and

lips (See Figure 6.1 [2]). The concentrated neuronal mapping of the fingers allow for a

very high sensitivity (both spatial and temporal resolution) making them an ideal candidate

for sensory substitution. Further, to allow functional operation of the user’s hands, the

vibratos are placed on the dorsal surface of the fingers. The following table shows a list of

applications that have called for the use of haptic glove based solutions.

Figure 6.1: Somatosensory homonculus as mapped through magnetoencephalography [2].
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Table 6.5: Related work in the development of haptic gloves for information delivery

Ref. Application No. of
vibrators

Location of vibra-
tors

Vibration Pattern Encoding Experiments User Study

[264] Convey color infor-
mation to people
who are blind.

3 Distal phalanges of
index, middle and
ring fingers (T).
- Three phalanges
of the index finger.
(O)

- Continuous on all
three vibrators (S).
- 0.5s time gap be-
tween vibrators (D).

- Encode R, G and
B channel to each of
the 3 vibrators.
- Amplitude of vi-
bration proportional
to the intensity of
the color channel.

- Convey only col-
ors individually (C).
- Allow users to ex-
plore a down sam-
pled color image us-
ing a mouse (I).

- 5 participants who
are blind.
-2 sighted partici-
pants.
- COS: 71%
- CTS: 87%
- ITS: 100%
- IOD: 67%
- IOS: 92%
- COD: 87%
- CTD: 90%

[265] Vibrotactile cueing
to improve tar-
get acquisition in
virtual 2D environ-
ment using mouse
as input.

4 -2 on the lower part
of the palm just
above the wrist.
- 2 on the back of
the lower palm just
above the wrist.

- 100ms vibratory
cues to indicate di-
rection of the target
and on-target sig-
nals.
- Frequency of the
vibration was pro-
portional to the di-
rection and distance
from the target loca-
tion.

- Two vibrators
were turned on to
indicate arrival on a
target.

- Expt 1 tested
vibrators on the
front and back of
palm.
- Expt 2 tested
continuous dis-
tance cueing with
suppressing or in-
creasing frequency
as the target is
approached.

- The location of
the tractors did
not have an effect.
Front and Back
worked the same.
- Suppressing the
frequency as the
user approaches the
target worked better
than enhancing.

[266] Vibrotactile array
for delivering dis-
tance to an obstacle
from a wheelchair
driven by a visually
impaired person.

9 Array on the front
of the palm in a 3x3
matrix.

- Warning signals
- Spatial obstacle
location signal.
- Direction con-
veyance to the
user.

- Warning signal vi-
brates all vibrators.
- Spatial location of
an obstacle is sent
in the particular
motor with near,
medium and far
range to obstacle.
- Direction cue
vibrates the center
motor with two
pulses and then vi-
brates motor of the
desired direction.

- No user testing
done yet

- No user testing
done yet
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Table 6.6: Related work in the development of haptic gloves for information delivery contd.

Ref. Application No. of
vibrators

Location of vibra-
tors

Vibration Pattern Encoding Experiments User Study

[267] [268] Vibrotactile cues
for navigating sur-
geons hand during
surgery.

4 See Figure. - Continuous vibra-
tions based on the
amount of off target
displacement

- Optical tracking of
visual markers on
the surgeons hand is
translated to vibro-
tactile cues to give
off-center informa-
tion.

- Subjects were re-
quired to move a
surgical tool to the
target location.
- Subjects react to
varying impulse in-
put as required.

No quantification
provided in the
paper.

[268] Field of view in
front of individual
who is blind is cap-
tured with a cam-
era and translated
to vibrotactile cues
corresponding to a
depth map.

No data No specific infor-
mation provided.

- Magnitude of vi-
bration is directly
proportional to dis-
tance to obstacle.
- Frequency of vi-
bration is inversely
proportional to the
confidence in depth
measurement.

The image from the
camera is used to
determine a depth
map of obstacles in
front of the user and
is translated into vi-
brotactile cues.

Two obstacle
courses were set
within the labora-
tory environment
and the participants
were required to
navigate the course.
Course 1:

Course 2:

- 9 participants,
3 blind and 6
with low vision. -
Course 1: Traveled
the minimal hitting
path 65% with their
existing navigation
aid and increased to
75% with the glove.
- Course 2: Trav-
eled the minimal
hitting path 65%
with their existing
navigation aid and
decreased to 57%
with the glove.
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Table 6.7: Related work in the development of haptic gloves for information delivery contd.

Ref. Application No. of
vibrators

Location of vibra-
tors

Vibration Pattern Encoding Experiments User Study

[269] [270] Framework for
delivering haptic
data along with
audio video data
from an entertain-
ment perspective.
Specifically, adding
a haptic layer to
the MPEG 4 audio
video coding.

76 Vibrotactors are
added all over the
glove both on top
and bottom of the
hand. No specific
configuration pat-
tern is discussed in
the paper.

Custom designed
vibration patterns
that take into
account all the
vibrators on the
glove.

Manually encoded
by entertainment
specialists based on
the movie and the
scene.

No user study. No user study.

[271] Using vibrators to
convey slip infor-
mation in a prehen-
sile glove.

5 Fingertips of the
five fingers.

Motion sensors (op-
tical motion sensor
similar to the one
used in an opti-
cal mouse) mounted
outside the glove on
the finger tips mea-
sure the slip of an
object. The slip in-
formation measured
as optic flow is con-
veyed to the vibra-
tor as varying fre-
quency.

Slip motion is pro-
portional to the fre-
quency of vibration.

12 subjects.
Users placed the
glove on a surface
that was laterally
pulled from under
the glove and the
reaction time was
measured by asking
the participants to
press a button with
their free hand.
Experiment was
conducted with
bare hands, with
a prehensile glove
without vibrators
and with the slip
glove.

Mean reaction time:
Bare hand: 0.214s
Normal Glove:
1.669s
Slip Glove: 0.483s
Percent Failure:
Bare hand: 0%
Normal Glove:
27.8%
Slip Glove: 5.6%
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These technologies have proved the viability for glove based vibrotactile sensory

augmentations. Adding to these findings, the experiments described in this paper addresses

the vibrotactile sensory abilities of the dorsal surface of the fingers, especially for sensory

substitution.

6.3 The Vibrotactile Glove

Figure 6.2: The Vibrotactile Glove.

As shown in Figure 6.2, 14 shaftless vibration motors are installed on the dorsal

surface of the phalanges of a stretchable anti-static glove - corresponding to the 14 pha-

langes of the human hand. Each vibrator has an effective displacement of 1.5mm @ 55Hz

with an effective acceleration along X, Y and Z of Xg = 0.38g, Yg = 0.29g and Zg = 1.08g,

respectively, with Z axis perpendicular to the skin. The g here refers to the acceleration due

to gravity, which is equal to 9.8m/s2 roller via a serial port that is translated to USB for

interfacing with any generic computing element. The USB port also provides the necessary

power for the operation of the glove. Through these commands, the microcontroller allows

precise simultaneous control of three dimensions of vibrations, namely, the intensity of vi-
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bration, the location of vibration and the duration of vibration. The location of vibration is

controlled by choosing the appropriate output port of the microcontroller; the duration of

vibration is controlled by the onboard timer; the intensity of the vibration is controlled via

simulated Pulse Width Modulation (PWM) on the output ports. In order to isolate and pro-

tect the controller from the vibration motor induced back-EMF (electromotive force) two

7-array Darlington transistors with opto-isolation are used between the controller and the

motors.

Figure 6.3: Localization and spatio-temporal cueing software used for the vibrotactile
glove.

The software to control the vibrations on the glove is shown in Figure 6.3. Two

independent programs where developed to explore the localization capabilities of users,

and for testing the ability of users to identify spatio-temporal cues, the saptio-temporal cues

here refer to the facial expressions that were being delivered from the Temporal Exemplar-

based Bayesian Network decision system. The number of spatio-temporal patterns were

decided based on the number of classes N that were chosen in the TEBN, in our case 6

corresponding to the 6 basic human expressions. We also added one more class, Neutral
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class, to represent that the interaction partner was not displaying any expression. The serial

port interface for the glove is designed similar to the popular Hayes AT command set.

Activation commands are passed as ASCII strings that are interpreted by the microcontroller

to activate the appropriate motor for the requested duration and intensity of vibration. The

details of the cueing patterns are presented in the next section.

6.4 Haptic Cueing to Test Localization and Spatio-Temporal Mapping

6.4.1 Localization

To determine how well users were able to perceive the vibratory patterns on the phalanges,

vibrators were excited at randomly selected locations. Each excitation was applied at 100%

intensity and duration of 5 seconds. The localization experiments were focused on studying

the vibrotactile detection capabilities of the individual phalanges, fingers as a whole, and

groupings based on the distance of the phalanges from the palm (distant, intermediate and

proximal phalange) as shown in Figure 6.4.

Figure 6.4: Phalange naming convention and grouping based on the anatomical distances.
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6.4.2 Spatio-Temporal Cueing

While the versatility of the VibroGlove allows it to be used for various applications, here

we discuss the specific application of delivering the six basic facial expressions, along with

the neutral face, of an interaction partner to a user who is visually disabled. Humans rely

heavily on the shape of the mouth and the eye area to decipher facial expressions. Motivated

from this, we focused only on the mouth area to design spatio-temporal haptic alternates

for facial expressions. We used only the three central fingers on the glove: 9 vibrators, as

shown in Figure 4. In order to represent the seven facial expressions, we designed haptic

expression icons that were motivated by two important factors: 1) Icons similar to the visual

emoticon that are already in popular use, like Happy, Sad, Surprise and Neutral, where

the mouth shapes prominently represent the expression, and 2) Icons like Anger, Fear and

Disgust where the mouth area alone does not convey the expression, thereby forcing us

to create haptic icons that could evoke a sense of the expression in question. Figure 6.5

provides details of the haptic expression icons. All 7 patterns were designed to be 750ms

long with each motor vibrating for at least 50ms. These numbers were determined based

on pilot studies where we found that participants could not isolate vibrations if the duration

was less than 50ms long. Further, patterns longer than 800ms were considered to be too

long by the participants, while patterns shorter than 600 ms were confusing, and training

phase accuracies were unacceptable.

6.4.2.1 Group 1 - The visual emoticon motivated haptic icons:

The Group 1 haptic expression icons primarily represent popular emoticons that are in wide

use within the Instant Messaging community. These icons mostly model the shape of the

mouth.

1) Happy is represented by a ∪ shaped pattern,

2) Sad by an inverted ∪,
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Figure 6.5: Mapping of Group 1 and Group 2 haptic expression icons to the central three
fingers (9 Phalanges) of the vibrotactile glove. In the expression mapping chart, Columns 1
to 3 represent the expression. Column 4 shows the spatial mapping of vibrations. Column
5 shows the temporal mapping of the vibrations.
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3) Surprise by a circle©, and

4) Neutral by a straight line —.

6.4.2.2 Group 2 - The auxiliary haptic icons:

Anger, Fear and Disgust cannot be conveyed through the appearance of mouth alone. To

this end, we resorted to defining haptic patterns that were unique from what was already

defined for Group 1, while keeping in mind a need to represent the underlying expression

in question.

1) Anger is represented by successive vibrations on six lower phalanges representing an

open mouth showing teeth during an expression of anger;

2) Fear is represented by very brief vibrations on the dorsal phalanges of the central 3 fin-

gers in three quick successive vibration sequences representing a fast emotional response

that people show towards fear, and

3) Disgust is represented through a vibration pattern going from right to left on the bottom

phalanges of the central fingers corresponding to a slightly opened mouth during the

display of disgust.

6.5 Research Hypothesis

6.5.1 Localization

While testing the localization capabilities of the haptic glove, three distinct and correlated

hypotheses were tested. These hypotheses are related to the individual phalange localiza-

tion, localization per finger, and localization on the phalange groups based on their distance

from the palm.

6.5.1.1 Hypothesis 1:

a) The recognition rates per phalange will be above chance (50%);
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b) The mean recognition rate per phalange will not be significantly different between any

two phalanges.

6.5.1.2 Hypothesis 2:

a) The recognition rates per finger will be above chance (50%);

b) The mean recognition rate per finger will not be significantly different between two

fingers.

6.5.1.3 Hypothesis 3:

a) The recognition rates per phalange group (distal, intermediate, proximal) will be above

chance (50%);

b) The mean recognition rate per phalange group will not be significantly different between

two phalange groups.

6.5.2 Spatio-Temporal Cueing

Similar to the localization experiments, the hypotheses relating to the spatio-temporal cue-

ing relates to the ability of the users to recognize the individual expression and also the two

groups of expressions as identified in Section IV B.

6.5.2.1 Hypothesis 4:

a) The recognition rates for the spatio-temporal expression patterns will be above chance

(50%);

b) The mean recognition rate per expression will not be significantly different between any

two expressions.

6.5.2.2 Hypothesis 5:

a) The recognition rates per expression group (Group 1 and 2) will be above chance (50%);

b) The mean recognition rates between the two groups will not be significantly different.
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6.6 Experiments and Analysis Methodology

Two independent and consecutive experiments were conducted to test the localization and

spatio-temporal cue identification capabilities of uses. Participants were engaged for the

entire time of the two experiments and the localization experiments preceded the spatio-

temporal cueing experiments. In the spatio-temporal experiments, along with the accuracy

of recognizing the spatio-temporal vibrotactile cues, we were also interested in knowing

how quickly the participants were able to recognize the expressions. The duration for

recognition is very important in social interactions as the human face changes drastically

over short time. Experiments have shown that expressions vary anywhere from 1 to 5 sec-

onds ([5], Page 322). Conforming to these time scales, it is important that any device

developed towards enriching social experience should react in real-social-time towards fa-

cilitating smooth interpersonal interaction.

6.6.1 Participants

The experiments were conducted with one individual who was blind and 11 other partic-

ipants who were sighted but blindfolded during the experiment. It is important to note

that the individual who was blind had lost his sight after 25 years of having vision. To

a large extent, this individual could correlate with the Group 1 haptic expressions, of the

spatio-temporal cueing experiment, to his visual experiences from the past. None of the

participants had any obvious medical conditions that prevented them from perceiving the

vibrotactile stimulations on their right hand.

6.6.2 Procedure

Once the subjects wore the glove, they were seated in a chair with a blindfold and asked

to keep their hand on their lap in the most comfortable position. Both the localization and

spatio-temporal cueing experiments were conducted in three successive phases, namely,

Familiarization phase, Training phase and Testing phase.
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Familiarization Phase: Subjects were first familiarized with the various vibration patterns

by presenting them in order - each phalange for the localization experiment and each

facial expression for the spatio-temporal experiments. During this phase, the corre-

sponding location or the facial expression was spoken aloud by the experimenter. The

familiarization was continued until the subjects were comfortable in remembering all

the locations and expressions.

Training Phase: The familiarization was followed by the training phase in which all the

fourteen vibration locations and seven facial expression patterns were presented in

random order, in multiple sets, and subjects were asked to identify them by speaking

them out. The experimenter confirmed any correct response, and corrected incor-

rect responses. Subjects had to demonstrate 100% recognition on at least one set

of all fourteen locations and seven expressions before moving to the testing phase.

Note that, the speaking was replaced by the use of a keyboard in the spatio-temporal

experiments where the participants were asked to type their answers directly into a

keypad having 7 keys corresponding to the 6 basic expressions and the neutral face.

The keypad allowed us to capture the exact time taken by the participants to arrive at

the decision and respond with a key press. A 15 minute time limit was placed on the

training irrespective of the training accuracy.

Testing Phase: The testing phase was similar to the training phase except the experimenter

did not provide feedback to subjects, and each location and expression pattern was

randomly presented 10 times making a total of 14 locations x 10 trials = 140 local-

ization results, 7 expressions x 10 trials = 70 expression results. The subjects were

given 5 seconds per trial to respond.

6.6.3 Analysis

In order to test the hypotheses presented in Section 6.5 (relating to the localization and

spatio-temporal cueing experiments), three related analyses were carried out, namely, a)

location or expression recognition rate, b) One-way analysis of variance (ANOVA) on the
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recognition accuracies, and c) Tuckey Honestly Significant Difference (HSD) test to deter-

mine the mutual performance of location and expression results. The details of the three

techniques are discussed below.

6.6.3.1 Recognition Accuracies

As the name suggests, the recognition accuracies measure the average true positive rate

of recognition on the localization and expression recognition experiments. Along with the

mean recognition rate, the deviation in the recognition rates across the 11 participants is

also shown.

6.6.3.2 ANOVA

One-way analysis of variance is a statistical tool used for comparing two or more sample

groups to test null hypothesis that the samples were drawn from different populations using

an F-distribution. The F statistic is derived from the sample means and the group means.

Following the central limit theorem, if the samples are drawn from the same population, the

variance between group means have to be smaller than the sample variance. A higher ratio

of the variances justifies the null hypothesis, else it’s rejected. The results of ANOVA are

reported as p-value scores from the F-statistic with the dimensions (k-1) and (n-1), where

the k is the number of groups and n is the number of samples. Lower the p-value higher is

the chance of accepting the null hypothesis and vice versa.

6.6.3.3 Tuckey HSD

While ANOVA tests for a chance that the samples could have been derived from differ-

ent populations, the Tuckey Honestly Significant Difference (HSD) test relies only on the

group means to determine if there is a significant difference between groups of samples. A

significant difference calls for reasoning to suspect/explain performance differences within

groups derived from a single sample set. Unlike ANONA, where all the groups and samples

are combined into the dimensions of comparison, HSD allows individual group-wise com-

parisons, providing for an opportunity to identify which groups are performing differently
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from others. Mostly reported as a ratio of the group mean difference and the standard group

mean error, it is possible to quickly identify the significant group differences. In the results

section below, the group means and the standard errors are plotted as circles and whiskers,

respectively. Significant difference is established when one group’s standard error stretch is

beyond the scope of any of the other groups.

6.7 Results of the Experiments

In this section, five sets of results are presented. Each set presents the three analyses that

were described in Section 6.6.3. Three of the five sets correspond to the localization exper-

iments, while the other two correspond to the spatio-temporal experiments.
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6.7.1 Localization Experiments

6.7.1.1 Phalange Level Localization

(a)

(b)

(c)

Figure 6.6: (a) Recognition Accuracies; (b) ANOVA; (c) HSD
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6.7.1.2 Finger Level Localization

(a)

(b)

(c)

Figure 6.7: (a) Recognition Accuracies; (b) ANOVA; (c) HSD
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6.7.1.3 Phalange Position Localization

(a)

(b)

(c)

Figure 6.8: (a) Recognition Accuracies; (b) ANOVA; (c) HSD
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6.7.2 Spatio-Temporal Experiments

6.7.2.1 Individual Spatio-temporal Patterns

(a)

(b)

(c)

Figure 6.9: (a) Recognition Accuracies; (b) ANOVA; (c) HSD

132



6.7.2.2 Comparison of Spatio-temporal Cueing groups

(a)

(b)

(c)

Figure 6.10: (a) Recognition Accuracies; (b) ANOVA; (c) HSD
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From Figure 6.6 through 6.11, it can be seen that the part (a) of the five research

hypotheses can be answered immediately. Users of the device found it convenient to local-

ize vibration patterns and identify expressions easily. The localization recognition accuracy

was at 92% (SD: 7.5%), while the expression recognition rate was measured at 89% (SD:

5.9%). This validates the null hypothesis that the users were able to localize and identify

vibrotactile patterns well above average.

Investigating part (b) of the five hypotheses reveals interesting insights into the

user’s abilities to detect and localize vibrotactile stimulations. From Figure 6.6(b) and

6.6(c) it can be concluded that Hypothesis 1(b) is accepted; both ANOVA HSD tests reveal

no significant difference between phalange performances. Similarly from Figure 6.7(b) and

6.7(c), it can be concluded that there is no significant difference in the performance between

fingers. Figure 6.9(b) and 6.9(c) accepts the Hypothesis 4(b) and we see no significant

difference in the mean performance of the seven spatio-temporal cueing patterns of facial

expressions.

In contrast, from Figure 6.8(b) and 6.8(c), we see that the Hypothesis 3(b) is re-

jected as user performance diminished at the proximal phalanges. This could be attributed

to the fact that the vibration motors are very closely placed next to one another at the prox-

imal phalanges which may cause inter-motor vibrations. From Figure 6.11(b) and 6.11(c),

we see that Group 2 performance was much higher than Group 1 rejecting the Hypothe-

sis 5(b). Studies are underway to determine the nature of the haptic cues in Group 2 that

make them significantly better than Group 1. This could have been due to the fact that

Group 2 cues were designed based on extensive user feedback when compared to Group 1

expressions which were designed based on popular visual emoticons.

Figure 6.7 shows the confusion matrix for all the seven expressions. The diagonals

correspond to the bar graph shown in Figure 6.6. The off-diagonal elements represent

the confusion between expressions. These off-diagonal elements provide insight into the

parameters that control effective and responsive haptic patterns. While subjects confused

Sad and Neutral expressions with various others (mostly in Group 1), Anger and Surprise
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Figure 6.11: Confusion Matrix across the 12 participants. The rows are the stimulation and
the columns are the responses of the participants. Each row adds to 100% (rounding error
of 1%).

show exchangeability, where there is strong confusion between each other. Fear and Disgust

are strongly isolated from the rest of the expressions as they were very well recognized by

the subjects.

Figure 6.8 shows the average recognition performance and the average time of re-

sponse for the subject who is blind. The individual was able to recognize most of the

expressions at 100%, over the 70 trails.

6.7.2.3 Time for Recognition:

Figure 6.9 shows the average time taken by the subjects per expression when they recog-

nized the haptic patterns correctly (cyan), and when they misclassified them (red). The bar

graph shows excess or shortage of response time around the mean value. It can be seen

that correct identification happened in just over a second (1.4s). When the subjects were

not sure of the haptic pattern, they took more time to respond. This can be seen from the

inverse correlation of the response time and recognition rates in Figure 6.6. The pattern for
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Figure 6.12: Average recognition rate and response time for the subject who is blind, for
over 70 trails.

Sad had the worst performance of 81% and the corresponding response time was the high-

est (2s). Pattern for Fear had the best performance (98%) and least response time (765ms).

This analysis can be extended to the Group level where Group 1 has a higher recognition

time when compared to Group 2. Whenever the subjects responded wrong, they seem to

take more time, as seen by the average incorrect response time of 2.31s (red), almost a sec-

ond more than the response time for correct responses. We could not find any significant

relevance between the response time for incorrect answers and the recognition rate graph.

We conclude that subjects were responding with random answers once they crossed a self

imagined time limit less than the 5 seconds that was provided.

6.8 Conveying Facial Expressions through Dyadic Social Situational Assistant

In this chapter we demonstrated a novel interface, a vibrotactile glove, for delivering seven

facial expressions as part of dyadic social situational assistant. We have explored only
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Figure 6.13: Average response time for all 12 participants. Four important results are shown
above, 1) Avg. correct response time per expression (Cyan), 2) Avg. incorrect response time
per expression (Red), 3) Avg. correct response time for Group 1 (Blue), and 4) Avg. correct
response time for Group 2 (Magenta).

the seven classes based on the output of the Temporal Exemplar-based Bayesian Network

(TEBN). If the number of classes could be increased (possibly to transmit more detailed

information about the face, like Action Units of the face), the same could be done on the

glove to incorporate the extension of the number of spatio-temporal classes. While the seven

spatio-temporal mappings were chosen here based on their visual emoticon (Group 1) and

based on the emotion that they communicated (Group 2), but if the number of classes are

extended, very careful design choices would need to be made on how to extend the spatio-

temporal classes without causing a sensory overload on the participants.

In the next chapter we focus on the problem of recognizing the interaction partners

based on facial biometrics. We highlight the importance of face recognition in the social

context.
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Chapter 7

BIOMETRICS IN SOCIAL CONTEXT: IDENTIFYING INTERACTION PARTNERS

Social interactions and social communication dynamics are very specific to the interacting

partners. Social interactions of every individual with another varies depending on how

they are related on the social fabric. As identified by the individuals who are blind on the

online survey of important non-verbal cues (Chapter 3, identity of the interaction partner

was considered as being important. In our discussions with the user population, we realized

that the identity of individuals is very important while being in group discussions as they

would like to know who is located where and what a certain individuals facial expressions

are.

Camera-based face recognition has the potential for recognizing people at a dis-

tance, without their explicit involvement. More recently, as a result of threats to public

safety, some public places (such as in Glasgow and London) have been heavily populated

with video surveillance cameras. On average, a person moving through London is captured

on video over 5 times a day. This offers an unprecedented basis for developing and testing

face recognition as a biometric for security and surveillance.

Given this great potential, it is not surprising that many private corporations have

attempted to develop and deploy face recognition systems, as an adjunct to existing video

security and surveillance systems. However, the performance of these systems has been

disappointing. One of the most difficult problems that face recognition researchers en-

counter in surveillance applications is that face databases of miscreants typically contain

only frontal and profile views of each person’s face, with no intermediate views. Surveil-

lance videos captured of the same person with the same camera in the same lighting condi-

tions might have face images that look quite different, due to pose angle variations, making

it very difficult to compare captured face images to those in a database. Combine this prob-

lem with the fact that miscreants are highly motivated to disguise their identity, and the fact

that face databases often contains thousands of faces, and the problem seems insurmount-
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able.

Given all of these complicating factors, it is premature to rely upon face recogni-

tion systems for detecting miscreants in public places. On the other hand, the use of face

recognition in controlled access applications (where users are highly motivated to cooper-

ate, and where face database images can be both captured and tested with the same camera

under the same illumination conditions) is certainly within the limitations of current face

recognition algorithms.

7.0.1 Employing face recognition to facilitate social interactions

However, the application of face recognition within the proposed social situational aware-

ness context is moderately challenging, but still potentially within the realm of possibility.

This problem is simplified considerably by the fact that, on a day-to-day basis most people

encounter a limited number of people whom they need to recognize. It is further simplified

by the fact that people typically don’t attempt to disguise their appearance in social situa-

tions. When a new person is encountered, the system could employ face detection to extract

and save a sequence of face images captured during a conversation. This would provide a

wide variety of facial expressions and pose angles, that could be stored in a database, and

used for training a face recognition algorithm.

As people use such an assistive device over an extended period of time, they will

learn both its abilities and its limitations. Conjectural information from the system can then

be combined with the user’s other sensory abilities (especially hearing) to jointly ascertain

the identity of the person. This synergy between the user and the system relaxes some of

the stringent requirements normally placed on face recognition systems.

However, such an assistive technology application still poses some significant chal-

lenges for researchers. One problem is the extreme variety of in lighting conditions encoun-

tered during normal daily activities. While there are standards for indoor office lighting that

tend to provide diffuse and adequate lighting, lighting in other public places might vary

considerably. For example, large windows can significantly alter lighting conditions, and
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incandescent lighting is much more yellow than florescent lighting. Outdoor lighting can

be quite harsh in full sunlight, and much more blue and diffuse in shadows. A person who

is blind might not be aware of extreme lighting conditions, so the system would need to ei-

ther (1) be tolerant of extreme variations or (2) recruit the user to ameliorate those extreme

conditions.

In summary, the development of an assistive face recognition system for people

who are blind provides a more tractable problem for face recognition researchers than secu-

rity and surveillance applications. It imposes a somewhat less stringent set of requirements

because (1) the number of people to be recognized is generally smaller, (2) facial disguise

is not a serious concern, (3) multiple pose angles and facial expressions of a person can be

captured as training images, and (4) the person recognition process can be a collaborative

process between the system and the user.

In an attempt to provide such an assistive face recognition system, we have devel-

oped a new methodology for face recognition that detects and extracts unique features on

a person’s face, and then uses those features to recognize that person. Contrast this with

conventional face recognition algorithms that might avoid the use of a few distinguishing

features because that approach might make the system very vulnerable to disguise.

7.1 Face Recognition in Humans

For decades, scientists in various research areas have studied how humans recognize faces.

Developmental psychologists have studied how human infants start to recognize faces, cog-

nitive psychologists have studied how adolescents and adults perform face recognition;

neuroscientists have studied the visual pathways and cortical regions used for recognizing

faces, and neuropsychologists have attempted to integrate knowledge from neurobiologi-

cal studies with face recognition research. Computer vision researchers are relatively new

to this area, and have attempted to develop face recognition algorithms using image pro-

cessing methods. Only recently have computer vision researchers been motivated to better

understand the process by which humans recognize faces, in order to use that knowledge to
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develop robust computational models. Their new interest has lead to more inter-disciplinary

face recognition research, which will likely aid our understanding of face recognition.

New studies have shown that humans, to a large extent, rely on both the featural

and configural information in face images to recognize faces [272]. Featural information

provides details about the various facial features, such as the shape and size of the nose,

the eyes, and the chin. Configural information defines the locations of the facial features,

with respect to each other. Psychologists Vicki Bruce and Andrew Young [273] agree with

this dual representation, saying that humans create a view-centric description of a human

face by relying upon feature-by-feature perceptual input, which is then combined into a

structural model of the face.

Sadar et al. [274] showed that characteristic facial features are important for rec-

ognizing famous faces. For example, when they erased eye-brows from famous people’s

faces, face recognition by human participants was adversely affected. Young [275] showed

that human participants were confused when asked to recognize faces that combined facial

features from different famous faces. These studies suggest that the details of facial features

are important in the recognition of faces.

However, [276] showed that the relative locations of the facial features was also

very important for the recognition of faces. They collected face images of famous person-

alities, and then changed the aspect ratio of those images, such that the height was greatly

compressed, while the width was emphasized. Surprisingly, all the resulting face images

were still recognizable, despite their contorted appearance, as long as the relative locations

of the features were maintained within the distorted image. This study suggests that humans

can flexibly use the configural information when recognizing faces.

Another important area of research in the human perception of faces has been in

understanding the medical condition of face blindness, called prosopagnosia. People with

prosopagnosia are unable to recognize faces including their own. Until recently it was as-

sumed that prosopagnosia was acquired often as a result of a localized stroke. However

new evidence suggests that a substantial portion of the general population have a congenital
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form of prosopagnosia [277]. Kennerknecht et al. [278] conducted a survey of 789 stu-

dents in 2006 which showed that 17 (2.5%) suffered from congenital prosopagnosia. These

students went about their daily life without realizing their disorder in face recognition.

Other studies at the Perception research centers at Harvard and Univ College of

London have shown that prosopagnosics recognize people using unique personal character-

istics, such as hair style, gait, clothing, and voice. These findings suggest that the detection

of unique personal characteristics might provide a basis for face recognition systems to bet-

ter recognize people. Since current methods of face recognition have met with only limited

success, it makes sense to explore the use of this alternative approach.

Research in Own-Race Bias (ORB) in face recognition [279] has also revealed

some interesting results regarding human face recognition capabilities. David Turk et al.

found that, when humans are presented with new objects or new faces, they initially learn

to recognize those objects and faces based on their distinctive features. Then, as familiar-

ity increases, they incorporate configural information, moving towards holistic recognition.

This study suggests that distinctive features are important during the initial stages of face

recognition, and that configural information subsequently provides additional useful infor-

mation.

Distinctive facial features can take many different forms. For example, after a

first encounter with a person who has a handlebar moustache, we readily recognize that

person by the presence of his distinctive feature. Similarly, a person with a large black

mole on her face will be remembered by first-time acquaintances by that feature. Given the

current limited understanding of how humans recognize faces, it makes sense to use these

observations as the basis for a new approach to face recognition.

The research described in this chapter is based on the approach of identifying dis-

tinctive facial features that can be used to distinguish each person’s face from other faces

in a face database. In recognition of the role played by configural information in the later

stages of face recognition, it also takes into account the location of these features with

respect to each other. The results of our research suggest that this approach can be very
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effective for distinguishing one person’s face from other faces.

7.2 Our Approach to Face Recognition

Having introduced the potential for using characteristic person-specific features for face

recognition, we now turn our attention towards the development of a method for discovering

such features, and for using them to index face images. Then we propose a novel method-

ology for face recognition, using person-specific feature extraction and representation. For

each person in a face database, a learning algorithm discovers a set of distinguishing fea-

tures (each feature consisting of a unique local image characteristic, and a corresponding

face location) that are unique to that person. This set of characteristic facial features can

then be compared to the normalized face image of any person, to determine the presence or

absence of those features. Because a unique set of features is used to identify each person

in the database, this method effectively employs a different feature space for each person,

unlike other face recognition algorithms that assign all of the face images in the database to

a locality in a shared feature space. Face recognition is then accomplished by a sequence of

steps, in which query face images is mapped into a locality within the feature space of each

person in the database, and its position is compared to the cluster of points in that space that

represents that person. The feature space in which the query face images are closest to the

cluster is used to identify the query face images.

Having introduced the conceptual theory behind a person-specific characteristic

feature extraction approach to face recognition, we now propose in the subsequent sections

a method for detecting and extracting such features from face images, and for constructing

a feature space that is unique to each person in the database.

7.3 Feature Extractors

The task of face recognition is inherently a multi-class classification problem. For every

face image X , there is an associated label y that is the name of the class, i.e. the name

of the person depicted in the image. While X represents the image of the person, there is

no inherent constraint on whether the image is a color RGB, HUV or YCbCr image, or a
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gray-scale image with a gray-scale range of 0 to 255, or even spectral representation that

is extracted from the face image using Fourier transform or Wavelets. Irrespective of the

image representation, the basis vectors spanning that representation are called features. The

feature space spanned by these basis vectors is partitioned by the decision boundaries that

ultimately define the different classes in the multi-class problem of face recognition. In this

work, we choose a particular set Gabor filters as feature detectors, and each of those feature

detectors for each person in the database, and that set of Gabor filters spans a unique feature

space for that person.

7.3.1 Gabor Features

Gabor filters are a family of functions (sometimes called Gabor Wavelets) that are derived

from a mother kernel (a Gabor Function) by varying the parameters of the kernel. As with

any wavelet filters, the Gabor filters extract local spatial frequency content from the under-

lying image. Gabor Filters specifically capture the spatial location and spatial orientation of

the intensity variations in the image underneath the filter’s location. By varying the spatial

frequency and the spatial scope of the filters, it is possible to extract a Gabor coefficient

that partially describes the nature of the image underneath it. The coefficients obtained by

filtering a locality in a face image with a set of different Gabor Filters are called Gabor

Features.

7.3.1.1 Use of Gabor Filters in Face Recognition

Gabor filters have been widely used to represent the receptive field sensitivity of simple

cell feature detectors in the human primary visual cortex. Recognizing this fact, Gabor

features have been widely used by face recognition researchers. Over the last few years, the

extensive use of Gabor wavelets as generators of feature spaces for face recognition, has

led to objective studies of the strength of Gabor features for this application. For example,

Shan et. al. [Shan2004] reviewed the strength of Gabor features for face recognition using

an evaluation method that combined both alignment precision and recognition accuracy.

Their experiments confirmed that Gabor features are robust to image variations caused by
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the imprecision of facial feature localization. As indicated by Gkberk et. al. [280], several

studies have concentrated on examining the importance of the Gabor kernel parameters

for face analysis. These include: the weighting of Gabor kernel-based features using the

simplex algorithm for face recognition [281], the extraction of facial subgraphs for head

pose estimation [282], the analysis of Gabor kernels using univariate statistical techniques

for discriminative region finding [283], the weighting of elastic graph nodes using quadratic

optimization for authentication [284], the use of principal component analysis (PCA) to

determine the importance of Gabor features [285], boosting Gabor features [286] and

Gabor frequency/orientation selection using genetic algorithms [287].

A relevant work on Gabor Filters for face recognition that is closely related to the

research presented here is by Wiskott and von der Malsburg [288]. Their work [289] [290]

[291] [292], [288] proposes a framework for face recognition that is based on modeling

human face images as labeled graph. Termed Elastic Bunch Graph Matching (EBGM),

the technique has become a cornerstone in face recognition research. Each node of the

graph is represented by a group of Gabor filters/wavelets (called ”jets”) which are used

to model the intensity variations around their locations. The edges of the graph are used

to model the relative location of the various jets. Since the jets represent the underlying

image characteristics, it is desirable to place them on fiducial points on the face. This is

achieved by manually marking the locations of the facial fiducial points using a small set

of controlled graphs that represent “general face knowledge”, which represents an average

geometry for the human face. In our work, a genetic algorithm is used to obtain the spatial

location of the fiducial points. Besides automating the process of locating these points, our

work identifies spatial locations on the face image that are unique to every single person,

rather than relying on an average geometry.

Closely following the work of Wiskott et al., Lyons et al. [293] proposed a tech-

nique that uses Gabor Filter coefficients extracted at 1) automatically located rectangular

grid points or 2) manually selected image feature points. These coefficients are then used

to bin face images based on sex, race and expression. The technique relies on a combined
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Principal Component Analysis (PCA) dimensionality reduction and Linear Discriminant

Analysis (LDA) classification over the extracted Gabor coefficients, to achieve a pooling of

images. While the classification task is not related directly to identifying individuals from

face images, this technique also demonstrates the ability of Gabor Filters to extract features

that can encode subtle variations on facial images, providing a basis for face identification.

7.3.1.2 Gabor Filters

Mathematically, Gabor Filters can be defined as follows:

Ψω,θ (x,y) =
1

2πσxσy
·Gθ (x,y) ·Sω,θ (x,y) (7.1)

Gθ (x,y) = exp

{
−

(
(xcosθ + ysinθ)2

2σ2
x

+
(−xsinθ + ycosθ)2

2σ2
y

)}
(7.2)

Sω,θ (x,y) =
[

exp{i(ωxcosθ +ωysinθ)}− exp
{
−ω2σ2

2

}]
(7.3)

where,

• Gθ (x,y) represents a Gaussian Function.

• Sω,θ (x,y) represents a Sinusoid Function.

• (x,y) is the spatial location where the filter is centered with respect to the image axis.

• ω is the frequency parameter of a 2D Sinusoid.

• σ2
dir represents the variance of the Gaussian (and thus the filter) along the specified

direction. dir can either be x or y. The variance controls the region around the center

where the filter has influence.

From the definition of Gabor filters, as given in Equation 7.1, it is seen that the

filters are generated by multiplying two components: a Gaussian Function Gθ (x,y) (Equa-

tion 7.2) and a Sinusoid Sω,θ (x,y) (Equation 7.3). The following discussions detail the two

components of Equation 7.1.
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7.3.1.3 Gaussian Function

The 2D Gaussian function defines the spatial spread of the Gabor filter. This spread is

defined by the variance parameters of the Gaussian, along the x and y direction together

with the orientation parameter θ . Figure 7.1(a) shows a 3D representation of the Gaussian

mask generated with σx = 10 and σy = 15 and rotation angle θ = 0. The image in Figure

7.1(b) shows the region of spatial influence of an elliptical mask on an image, where the

variance in the x direction is larger than the variance in the y direction.

Figure 7.1: (a) 3D representation of a Gaussian mask; σx = 10, σy = 15 and θ = 0
(b)Image of the Gaussian mask σx = 10, σy = 15 and θ = 0

Typically the Gaussian filter has the same variance along both the x and y directions,

that is σx = σy = σ . Under such conditions the rotation parameter θ does not play any role

as the spread will be circular.

7.3.1.4 Sinusoid

The 2D complex Sinusoid defined by Equation 7.3 generates the two Sinusoidal compo-

nents of the Gabor filters which (when applied to an image) extracts the local frequency

content of the intensity variations in the signal. The complex Sinusoid has two components

(the real and the imaginary parts) which are two 2D sinusoids that are phase shifted by π

2

radians. Figure 7.2(a) shows the 3D representation of a Sinusoidal signal (either real or

imaginary) at ω = 0.554 radians and θ = 0 radians, while Figure 7.2(b) and 7.2(c) show an
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image of the real and imaginary parts of the same complex Sinusoid, respectively. It can be

seen that the two filters are similar, except for the π radian phase shift.

Figure 7.2: (a)3D representation of a Sinusoid Sω,θ

(b)Image representation of the real part of the complex Sinusoid ℜ{Sω,θ}
(c)Image representation of the imaginary part of complex Sinusoid ℑ{Sω,θ}

Multiplying the Gaussian and the sinusoid generates the complex Gabor filter, as

defined in Equation 7.1. If σx = σy = σ , then the real and imaginary parts of this complex

filter can be described as follows.

ℜ{Ψω,θ (x,y)}=
1

2πσ2 ·Gθ (x,y) ·ℜ{Sω,θ (x,y)} (7.4)

ℑ{Ψω,θ (x,y)}=
1

2πσ2 ·Gθ (x,y) ·ℑ{Sω,θ (x,y)} (7.5)

Figure 7.3(a) shows the 3D representation of a Gabor filter (either real or imagi-

nary) at ω = 0.554 radians, θ = 0 radians, and σ = 10 and Figure 7.3(b) and 7.3(c) show

an image with the real and imaginary parts of the complex filter.

In order to extract a Gabor feature at a location (x,y) of an image I, the real and

imaginary parts of the filter are applied separately to the same location in the image, and a

magnitude is computed from the two results. Thus, the Gabor filter coefficient at a location
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Figure 7.3: (a)3D representation of a Gabor filter Ψω,θ

(b)Image representation of the real part of Gabor filter ℜ{Ψω,θ}
(c)Image representation of the imaginary part of Gabor filter ℑ{Ψω,θ}

(x,y) in an image I with a Gabor filter Ψω,θ is given by

CΨ (x,y) =
√

(I (x,y)∗ℜ{Ψω,θ (x,y)})2 +(I (x,y)∗ℑ{Ψω,θ (x,y)})2 (7.6)

In our experiments, a Gabor filter bank was created by varying three parameters of

Ψω,θ : (1) the frequency parameter ω , (2) the orientation parameter θ , and (3) the variance

parameter σ . We chose five values for each of these parameters thereby generating 125

different Gabor filters.

• ω =
(
2(− f+2)/2 ·π

)
where, f = {0,1,2,3,4}

• θ =
(

π

2 ·
1
5 · t
)

where, t = {0,1.25,2.5,3.75,5}

• σ = {5,10,15,20,25}

7.4 The Learning Algorithm

The proposed method uses the above described Gabor filters to find distinguishing features

(and corresponding feature locations) within a face image. That is, for each person in the

database, the algorithm finds a set of Gabor filters which, when applied at their correspond-

ing (x,y) locations within the image will produce coefficients that are unique for that indi-

vidual. This means that all of the 125 Gabor filters in the filter bank are applied at each and
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every location of each of the individual’s face images, and then tested for their ability to dis-

tinguish every individual. Given a 128×128 face image, there will be 128×128×125×n

filter coefficients that will be generated per face image per person, where n is the number of

characteristic features to be extracted for each person. This must be computed for every per-

son in the training set, which further increases the search space. To search such a vast space

of parameter values (the size of the Gaussian mask, the frequency of the complex sinusoid,

the orientation of the entire Gabor filter, and the (x,y) location where the filter is placed)

it is important that some scheme for effective search be incorporated into the system. To

this end, we have chosen Genetic Algorithms to conduct the search. For each person in the

training set, all of the face images that depict to that person are indexed as positives, while

all of the other face images in the database are indexed as negatives. Dedicated Genetic

Algorithm based search is conducted with these positive and negative images, with the aim

of finding a set of Gabor filters and filter locations that distinguish all the positives from the

negatives.

7.4.1 Genetic Algorithms

When the parameter space is vast (as it is in our case) a Genetic Algorithm (GA) searches

for the optimum solution by randomly picking parameter sets and evolving newer ones

from the best performers. This happens over many generations, hopefully resulting in the

optimum set of parameters. To start the search, the GA generates a random set of parents.

Each parent is characterized by the presence of a chromosome. The chromosome internally

encodes all the parameters that are used by the parent to perform the intended operation. In

our case, the intended operation is face recognition. The parent uses the parameters that are

found in its chromosome to derive the Gabor features on the positive and negative images.

Based on the ability of these features to distinguish a face from all others in the

database, the parent is ranked within its population. This rank is also referred to as the

fitness of the parent. The ranking of all the parents, based on their fitness, marks the end

of a generation, and a new generation needs to be created. New generations are formed

based on three important aspects of GAs, Retention, Cross Over and Mutation. A portion
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of the newer generation is derived from the older generation, using the above mentioned

methods, and the rest of the new generation is created randomly, maintaining the same

overall number of parents between generations. Once a new population has been formed,

the process of ranking parents occurs (as explained earlier) and a new generation is born

out of that ranking. This iterative process continues until the parents in a certain generation

are fit enough to achieve the given task (with the desired amount of success) or until the

desired number of generations have evolved.

7.4.1.1 Use of Genetic Algorithms in Face Recognition

GAs have been used in face recognition to search for optimal sets of features from a pool of

potentially useful features that have been extracted from the face images. Liu et al. [294]

used a GA along with Kernel Principal Component Analysis (KPCA) for face recogni-

tion. In their approach, KPCA was first used to extract facial image features. After feature

extraction using the KPCA, GAs were employed to select the optimal feature subset for

recognition - or more precisely the optimal non-linear components. Xu et al. [295] used

GAs along with Independent Component Analysis to recognize faces. After obtaining all

the independent components using the Fast ICA algorithm, a genetic algorithm was intro-

duced to select optimal independent components.

Wong and Lam [296] proposed an approach for reliable face detection using ge-

netic algorithms with eigenfaces. After histogram normalization of face images and compu-

tation of eigenfaces, the ’k’ most significant eigenfaces were selected for the computation

of the fitness function. The fitness function was based on the distance between the projec-

tion of a test image and that of the training-set face images. Since GAs are computationally

intensive, the search space for possible face regions was limited to possible eye regions

alone.

Karungaru et al. [297] performed face recognition using template matching. Tem-

plate matching was performed using a genetic algorithm to automatically test several po-

sitions around the target, and to adjust the size of the template as the matching process
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progressed. The template was a symmetrical T-shaped region between the eyes, which

covered the eyes, nose and mouth.

Ozkan [298] used genetic algorithms for feature selection in face recognition. In

this work, the Scale Invariant Feature Transform (SIFT) [299] was used to extract features.

Since SIFT was originally designed for object recognition in general, genetic algorithms

were used to identify SIFT features, which are more suitable to face recognition.

Huang and Weschler [300] developed an approach to identify eye location in face

images using navigational routines, which were automated by learning and evolution using

genetic algorithms. Specifically, eye localization was divided into two steps: (i) the deriva-

tion of the saliency attention map, and (ii) the possible classification of salient locations

as eye regions. The saliency map was derived using a consensus between navigation rou-

tines that were encoded as finite state automata (FSA) exploring the facial landscape and

evolved using genetic algorithms (GAs). The classification stage was concerned with the

optimal selection of features and the derivation of decision trees for confirmation of eye

classification using genetic algorithms.

Sun and Yin [301] applied genetic algorithms for feature selection in 3D face

recognition. An individual face model was created from a generic model and two views

of a face. Genetic algorithms were used to select optimal features from a feature space

composed of geometrical structures, the labeled curvature types of each vertex in the indi-

vidualized 3D model.

Sun et al. [302] approached the problem of gender classification using a genetic

algorithm to select features. A genetic algorithm was used to select a subset of features

from a low-dimensional representation, which was obtained by applying PCA and removing

eigenvectors that did not seem to encode information about gender.

As is evident from these citations, many feature-based approaches towards face

recognition use genetic algorithms for feature selection. However, these approaches em-

ploy a single feature space derived from a set of face images. We believe that it is more
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effective to employ aimed at extracting person-specific features, and that an effective way

to do this is by using genetic algorithms. As observed by [279], humans initially learn to

recognize faces based on person-specific characteristic features. This suggests that better

recognition performance might be achieved by representing each person’s face in a person-

specific feature space that is learned using GAs.

The following paragraphs describe how we employed GAs to solve the problem of

finding person-specific Gabor features aimed at face recognition.

Figure 7.4: A typical chromosome used in the proposed method.

7.4.1.2 The Chromosome

Each parent per generation encodes the parameters of a set of Gabor filters in the form of

a chromosome. In our implementation, each Gabor filter is represented by five parameters.

If there are n Gabor filters, parameters for all of these filters are encoded into the chromo-

some in a serial manner, as shown in Figure 7.4. Thus the length of the chromosome is

5n. The number of Gabor filters being used per face image determines the length of the

chromosome. As shown in Figure 7.4, each parameter in the chromosome is encoded as a
153



gene. The boundaries of these genes defines the regions where the chromosome undergoes

both the crossover and mutation. The genes can be considered as the primary element of

the parent responsible in the evolution.

Figure 7.5: Stages in the creation of the first generation of parents

7.4.1.3 Creation of the first generation

Figure 7.5 depicts the first generation of parents, which are created randomly. Each parent’s

chromosome is filled randomly with parameter values where, each parameter value is within

the allowed range for that parameter. Thus, in our experiment, each parent potentially has

the parameters needed for it to perform face recognition using Gabor filters for feature

extraction.

Once these parents are created, each parent in the gene pool is evaluated based on

its capacity to perform face recognition. To this end, a fitness function is defined, which

takes into account the ability of each parent to distinguish an individual from all others

based on the most distinguishing features on the individual’s face.

This fitness function also takes into account the similarity of the extracted features,

and discourages the selection of features that are highly correlated with each other. This
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Figure 7.6: Deriving newer parents from the current generation

ensures that the face images will be searched for multiple distinguishing characteristics.

Subsection 7.5.3.1 explains in detail the fitness function used in our experiments. The

parents with the best fitness are ranked higher, and have the highest probability of being

picked for using genetics the next generation. At the end of the rank ordering process,

the parents are arranged in a descending order, based on their fitness. This rank ordering

determines the probability of each parent being used to create the subsequent generation. If

a parent has a higher fitness, it will have a higher probability of being cloned into the next

generation, or of otherwise being involved in reproduction.
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7.4.1.4 Creation of the newer generations

The newer generations are created from the older population using clones, mutants, and

crossovers of the fittest parents. To better search for the optimal parameter set, new random

parents are created every generation. This reduces the likelihood that the algorithm will get

stuck in a local minimum in the search space.

Figure 7.6 shows crossover creates a newer generation, using the fittest parents

from the older generation.

The number of offsprings created from mutation, cloning, and crossover are de-

termined by parameters of the Genetic algorithm. The number of clones, mutants, and

corssovers are controlled by the following parameters:

1. Cloning Rate This parameter controls the number of parents from the previous gener-

ation that will be retained without undergoing any changes in their genetic structure.

2. Crossover Rate This parameter controls the number of offsprings that will be born

from crossing the parents from the previous generation.

3. Mutation Rate This parameter determines how many of the crossed offsprings will

then be mutated.

4. Cloning Distribution Variance After determining the number of offsprings be to

cloned, the index of the parents for cloning are chosen using a normal distribution

random number generator, with the mean zero and variance equal to this parameter.

Since the parents from the previous generation have been rank ordered in descending

order of fitness, the zeroth parent will be the top performer (which coincides with

the mean of the random number generator, and has the highest probability of getting

picked).

5. Crossover Distribution Variance This parameter (which is similar to the Cloning

Distribution Variance) is used to choose the index of the parents who will undergo
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Crossover.

Figure 7.7: Typical crossing of two parents to create an offspring

7.4.1.5 Crossover

As discussed earlier, the parents for crossover are selected by a random number generator.

Between these parents, the points of crossover are determined by choosing locations of

crossover randomly. As seen in the Figure 7.7, these locations are arbitrary gene boundary

locations and at these locations the gene content from the two parents gets mixed. The

offspring thus created now contains parts of the genes coming from the contributing parents.

The motivation for this step is the fact that, as more and more generations pass, the fittest

parents undergoing crossover will already contain the better sets of parameters, and their

crossing might bring together the better sets of parameter values from both the parents.

7.4.1.6 Mutation

In addition to the process of crossover at gene boundaries in the chromosome, the values

of some parameters within the genes might be changed randomly. This is illustrated in the
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Figure 7.8: Mutation of a newly created offspring

Figure 7.8. Such mutations help in exploring the local parameter space more thoroughly.

Mutations can be seen as small perturbations to the larger search that explores the vast

parameter space, searching for the global minima.

7.5 Methodology

Most feature-based face recognition methods use feature detectors that are not tailored

specifically for face recognition, and they make no attempt to selectively choose feature

detectors based specifically on their usefulness for face recognition. The method described

in this paper uses Gabor wavelets as feature detectors, but evaluates the usefulness of each

particular feature detector (and a corresponding (x,y) location) for distinguishing between

the faces within our face database. Given the very large number of possible Gabor feature

detectors and locations, we use a Genetic Algorithm (GA) to explore the space of possibil-
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ities, with a fitness function that propagates parents with a higher ability to distinguish be-

tween the faces in the database. By selecting the Gabor feature detectors and locations that

are most useful for distinguishing each person from all of the other people in the database,

we define a unique (i.e. person-specific) feature space for each person.

7.5.1 The FacePix (30) Database

All experiments were conducted with face images from the FacePix (30) database [303].

FacePix(30) was compiled to contain face images with pose and illumination angles anno-

tated in 1 degree increments. Figure 7.9 shows the apparatus that is used for capturing the

face images. A video camera and a spotlight are mounted on separate annular rings, which

rotate independently around a subject seated in the center. Angle markings on the rings are

captured simultaneously with the face image in a video sequence, from which the required

frames are extracted.

Figure 7.9: The data capture setup for FacePix(30)

This database has face images of 30 people across a spectrum of pose and illu-
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mination angles. For each person in the database, there are three sets of images. (1) The

pose angle set contains face images of each person at pose angles from +90 to 90 (2) The

no-ambient-light set contains frontal face images with a spotlight placed at angles ranging

from +90 to -90 with no ambient light, and (3) The ambient-light set contains frontal face

images with a spot light placed at angles placed at angels from +90 to -90 in the presence

of ambient light. Thus, for each person, there are three face images available for every

angle, over a range of 180 degrees. Figure 7.10 provides two examples extracted from the

database, showing pose angles and illumination angles ranging from -90 to +90 in steps of

10. For earlier work using images from this database, please refer [304]. Work is currently

in progress to make this database publicly available.

Figure 7.10: Sample face images with varying pose and illumination from the FacePix(30)
database

We selected at random two images out of each set of three frontal (0) (Figure 7.11)

images for training, and used the remaining image for testing. The genetic algorithms used

the training images to find a set of Gabor feature detectors that were able to distinguish each

persons face from all of the other people in the training set. These feature detectors were

then used to recognize the test images.

In order to evaluate the performance of our system, we used the same set of training

and testing images with face classification algorithm based on low-dimensional representa-

tion of face images extracted through Principal Component Analysis [305]. Specifically,

the performance of the implementation of PCA-based face recognition followed by [306]
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Figure 7.11: Sample frontal images of one person from the FacePix(30) Database

was used in our experiments.

7.5.2 The Gabor Features

Each Gabor feature corresponds to a particular Gabor wavelet (i.e. a particular special fre-

quency, a particular orientation, and a particular Gaussian-defined spatial extent) applied to

a particular (x, y) location within a normalized face image. (Given that 125 different Gabor

filters were generated, by varying ω , σ and θ in 5 steps each, and given that each face

image contained 128×128 = 16,384 pixels, there was a pool of 125×16384 = 2,048,000

potential Gabor features to choose from.) We used an N-dimensional vector to represent

each person’s face in the database, where N represents the predetermined number of Ga-

bor features that the Genetic Algorithm selected from this pool. Figure 7.12 shows an

example face image, marked with 5 locations where Gabor features will be extracted (i.e.

N = 5). Given any normalized face image, real number Gabor features are extracted at

these locations using Equation 7.6. This process can be envisioned as a projection of a

16,384-dimensional face image onto an N dimensional subspace, where each dimension is

represented by a single Gabor feature detector.

Thus, the objective of the proposed methodology is to extract an N dimensional

real-valued person-specific feature vector to characterize each person in the database. The

N (x, y) locations (and the spatial frequency and spatial extent parameters of the N Gabor

wavelets used at these locations) are chosen by a GA, with a fitness function that takes into
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Figure 7.12: A face image marked with 5 locations where unique Gabor features were
extracted

account the ability of each Gabor feature detector to distinguish one face from all the other

faces in the database.

7.5.3 The Genetic Algorithm

Every GA is controlled in its progress through generations with a few control parameters

such as,

• the number of generations of evolution (ng)

• the number of parents per generation (np)

• the number of parents cloned per generation (nc)

• the number of parents generated through cross over (nco)

• the number of mutations in every generation (nm)

In our experiments, the GA used the following empirically-chosen GA parameters:

ng = 50, np = 100, nc = 6, nco = 35 and nm = 5.
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7.5.3.1 The Fitness Function

The fitness function of a genetic algorithm determines the nature of the search conducted

over the parameter space. For face recognition applications, the fitness function is the ca-

pacity of a parent to classify the individuals accurately. In our proposed method, the fitness

function needs to take both the Gabor features and the corresponding feature locations into

consideration when evaluating face classification. We define here a fitness function that has

two components to it. One determines the capacity of the parent to isolate an individual’s

face image from the others in the database, and the other evaluates whether the feature is re-

dundant with other extracted features (i.e. whether a feature detector produces coefficients

that are highly correlated with the coefficients produced by another feature detector.) Thus

the fitness F can be defined as

F = wDD−wCC (7.7)

where D is the distance measure weighted by wD, and C represents the correlation

measure which measure the similarity between the coefficients that have been extracted.

The correlation measure C is weighted by the factor wC.

If a parent extracts features from a face image that distinguish one individual from

all the others very well (compared to the other parents within the same generation) then

the distance measure D will be the largest for that parent, making its fitness F large. If the

correlation between the extracted features is small, C will be small, which also makes the

fitness F large. Thus, the correlation measure serves as a penalty for extracting the same

feature from the face image multiple times, even though that particular feature might be the

best distinguishing feature on that face.

The correlation between coefficients was used instead of spatial separation to counter

the problem of similar features being extracted, because the Gabor filters might not be able

to represent the underlying image characteristic completely. If there are some large image
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features on the face (such as beard) that require multiple Gabor features within a certain spa-

tial locality. Setting a hard lower limit on this spatial separation might lead to insufficient

representation of that large image feature, in terms of the Gabor filters.

Consider a parent searching for a unique set of M Gabor filters to distinguish one

individual’s face from all other faces. Let this set of filters be referred to as S. Thus,

S = {G1,G2, · · · ,GM} where, Gm represents the mth Gabor filter.

If the set all individuals in the database is referred to as I =
{

i1, i2, · · · , i j
}

with J

number of individuals, then for every individual i in I a set Si has to be extracted. To achieve

this, all the images in the database depicting individual i are marked as positives, and the

ones not depicting that individual are marked as negatives. Let the set of positive images

be referred to as Pi (with L number of images) and the set of negatives be referred to as

N (with K number of images). Thus, Si = {G1i,G2,i, · · · ,Gmi}, Pi = {p1i, p2i, · · · , pli} and

Ni = {n1i,n2i, · · · ,nki} are the sets of Gabor filters, positive images and negatives images

set respectively for the individual i.

• The Distance Measure D

A parent trying to recognize an individual i with a Gabor filter set Si can be thought

of as a transformation that projects all of the face images from the image space to a

M-dimensional space, where the dimensions are defined by the M Gabor filters in the

set Si. Thus, all of the images in the two sets Pi and Ni can be considered as points on

this M-dimensional space. Since the goal of the genetic algorithm is to find the set

Si which best distinguishes the individual i from others, in our method we search for

the M dimensional space (defined by a parent) that best separates the points formed

by the sets Pi and Ni. Figure 7.13 is an illustration of hypothetical set of face images

projected on a 2 dimensional space defined by a set of 2 Gabor filters Si = {G0,G1}.

As shown in the figure, the measure D is the minimum of all the Euclidian distances

between every positive and negative points.
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Thus, D can be defined as follow:

D = min
∀ l,k

[δM (φM(pli),φM(nki))] (7.8)

where,

δM(A,B) =
√

(a1−b1)2 +(a2−b2)2 + · · ·+(am−bm)2 is the M-dimensional Eu-

clidian distance between A and B. ax and bx corresponds the xth-coordinate of A

and B respectively

φM(X) is the transformation function that projects image X from the image space to

the M-dimensional space defined by the set of Gabor filters.

Figure 7.13: Distance Measure D for the fitness function

• The Correlation Measure C

In the proposed method, in addition to having every parent selecting the Gabor filter

set Si that can best distinguish the individual i from all the others in the database, it

is necessary to ensure that this set of Gabor filters does not include filters that extract

identical image features. If there were no such constraint, the algorithm might find

one very distinguishing image feature on the face image and, over generations of

evolution, all of its Gabor filters might converge to this one image feature. To avoid

this, the correlation measure C determines the correlation between the image features

extracted at all the locations pointed to by the chromosome. To test for correlations
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between the Gabor features at the different spatial locations, we use the entire set of

125 Gabor filters to thoroughly characterize the textural context at these locations.

Assuming that there are M Gabor features that we are looking for on the face image of

individual i, let (xm,ym),m = 1,2, . . . ,M be the M points that have been selected ge-

netically in the chromosome. To find the correlations of the image features extracted

at each of these points, the N Gabor filters Gi, i = 1,2, . . . ,N are used to characterize

each of the points. Let the coefficients of such a characterization be represented by a

matrix A. Thus, matrix A is M×N in dimension, where the rows correspond to the

M locations and N = 125 refers to the Gabor filter coefficients. Thus,

A =



g(1,1) g(1,2) . . . g(1,N)

g(2,1) g(2,2) . . . g(2,N)

...
...

...
...

g(m,1) g(m,2) . . . g(m,N)


(7.9)

where, g(m,n) is the coefficient obtained by applying the nth Gabor filter to the image

at the point (xm,ym).

The Correlation measure can now be defined in terms of matrix A as follows

C = log(det(diag(B)))− log(det(B)) (7.10)

where, diag(B) returns the diagonal matrix corresponding to B, and B is the covari-

ance matrix defined by B = 1
N−1(AAT ).

Examining the Equation 7.10, it can be seen that the first log term gets closer to the

second log term when the off diagonal elements of B reduces. The diagonal elements

of the matrix B corresponds to the variance of the M image locations, whereas the off

diagonal elements correspond to the covariance between pairs if locations. Thus, as

the covariance between the image points decreases, the value of the overall correla-

tion parameter decreases.
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• Normalization of D and C

In order to have an equal representation of both the Distance measure D and the

Correlation term C in the fitness function, it is necessary to normalize the range of

values that they can take. For each generation, before the fitness values are used to

rank the parents, parameters D and C are normalized to range between 0 and 1.

Dnorm =
D−DMin

DMax−DMin
(7.11)

Cnorm =
C−CMin

CMax−CMin
(7.12)

where, the Max represents the maximum value of D or C in a single generation across

all the parents and Min refers to the minimum value.

• Weighting factors wD and wC

The influence of the two components of the fitness function are controlled by the

weighting factors wD and wC. We used the relation wC = 1−wD to control the two

parameters simultaneously. With this relationship, a value of wD ≈ 1 will subdue the

effect of the Correlation measure, causing the genetic algorithm to choose the Gabor

filters on the most prominent image feature alone. On the other hand, wD ≈ 0 will

subdue the Distance measure, deviating the genetic algorithm from the main goal

of face recognition. Thus an optimal value for the weight wD has to be estimated

empirically, to suit the face image database in question.

7.6 Results

To evaluate the relative importance of the two terms (D and C) in the fitness function, we

ran the proposed algorithm on the training set several times with 5 feature detectors per

chromosome, while changing the weighting factors in the fitness function for each run,

setting wD to 0, .25, .50, .75, and 1.00, and computing wC = (1−wD). Figure 7.14 shows

the recognition rate achieved in each case.
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Figure 7.14: The recognition rate versus the number Gabor feature detectors

We then ran the proposed algorithm on the training set 5 times, while changing the

number of Gabor feature detectors per parent chromosome for each run to 5, 10, 15, 20, and

25. In all the trials, wD=0.5. Figure 7.15 shows the recognition rate achieved in each case.

7.6.1 Discussion of Results

Figure 7.14 shows that the recognition rate of the proposed algorithm when trained with

5, 10, 15, 20, and 25 Gabor feature detectors increases monotonically, as the number of

Gabor feature detectors (N) is increased. This can be attributed to the fact that increasing

the number of Gabor features essentially increases the number of dimensions for the Gabor

feature detector space, allowing for greater spacing between the positive and the negative

clusters.

Figure 7.15 shows that for N = 5 the recognition rate was optimal when the dis-

tance measure D and the correlation measure C were weighted equally, in computing the

fitness function F. The dip in the recognition rate for wD = 0.75 and wD = 1.0 indicates the

significance of using the correlation factor C in the fitness function. The penalty introduced
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Figure 7.15: Recognition rate with varying wD

by C ensures that the GA searches for Gabor features with different textural patterns. If no

such penalty were be imposed, the GA might select Gabor features that are clustered on one

salient facial feature, such as a mole.

The best recognition results for the proposed algorithm (93.3%) were obtained with

25 Gabor feature detectors. The best recognition performance for the PCA algorithm was

reached at about 15 components, and flattened out beyond that point, providing a recog-

nition rate for the same set of faces that was less than 83.3%. This indicates that, for the

face images used in this experiment (which included substantial illumination variations) the

proposed method performed substantially better than the PCA algorithm.

7.6.2 Person-specific feature extraction

When the FacePix(30) face database was built, all but one person were captured without

eyeglasses or a hat. Figures 7.16(a) and 7.16(b) show the results of extracting 10 and 20

distinguishing features from that person’s face images. The important things to note about

these results are:
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1. At least half of the extracted Gabor features (8 of the 10) and (10 of the 20) are

located on (or near) the eyeglasses.

2. As the number of Gabor features was increased from 10 to 20, more Gabor features

are seen toward the boundaries of the images. This is due to the fact that the genetic

algorithm chooses Gabor feature locations based on a Gaussian probability distri-

bution that is centered over the image, and decreases toward the boundaries of the

images.

Figure 7.16: 10 and 20 person-specific features extracted for a particular individual in the
database

These results suggest that person-specific feature extraction might be useful for face

recognition in small face databases, such as those typical of a social interaction assistance

device for people who are blind.

7.7 Face Recognition in Social Situational Awareness Context

As mentioned earlier, the proposed person-specific approach to evolutionary feature selec-

tion in face images is well-suited for applications such as those that enhance social inter-

action for people who are blind, because people do not generally disguise their appearance

in normal social situations, and even when some significant change occurs (such as a man

shaving off his beard) the system can continue to evolve as it captures new images with

each encounter.
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In summary, while there have been many different feature-based approaches to face

recognition over the last two decades of research, we have proposed a novel methodology

based on the discovery and extraction of person-specific characteristic features to improve

face recognition performance for small face databases. This approach is aimed at facili-

tating social interaction in casual settings. The use of Gabor features, in tandem with a

genetic algorithm to discover characteristic person-specific features has been inspired by

the human visual system and is based on knowledge that has been developed about the

process by which humans recognize faces. We believe that more needs to be learnt about

human face recognition, and that as more is learnt, the knowledge can be put to use to

develop more robust face recognition algorithms.

In the following three chapters, we discuss the problem of sensing and conveying

Proxemics (interpersonal spaces), which is an important component of social interactions

and social situational awareness. These chapters, together, provide sensing and delivering

of the proxemics information.
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Chapter 8

ENRICHING GROUP INTERACTIONS: SENSING PROXEMICS AND THE SOCIAL

SPACE

An important aspect of social interactions is the relative spatial location of the interacting

partners. Definition of what a culture is correlates very closely to the accepted norms of

interpersonal distance and the behavioral attributes displayed by the interacting partners. In

behavioral psychology, influences of interpersonal distances on social interactions between

people have been studied for over four decades. The term proxemics, coined by Edward

T. Hall, describes influence of interpersonal distances in animal and man [307]. The fol-

lowing list describes the American proxemic distances; note that such distances vary with

culture and environment. A part of learning that visually able individuals go through is

to understand what these norms are very quickly by observing interactions between other

individuals who are familiar with the culture. People who are visually impaired might find

the lack of access to this important information inconvenient. An important aspect of the

technologies proposed in the next three chapters is to provide information to the users a

means of accessing the social scene.

1. Intimate Distance (Close Phase): 0-6 inches

2. Intimate Distance (Far Phase): 6-18 inches

3. Personal Distance (Close Phase): 1.5-2.5 feet

4. Personal Distance (Far Phase): 2.5-4 feet

5. Social Distance (Close Phase): 4-7 feet

6. Social Distance (Far Phase): 7-12 feet

7. Public Distance (Close Phase): 12-25 feet

8. Public Distance (Far Phase): 25 feet or more
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In Section 1.2.1.2 of Chapter 1, we described the importance of group interactions

and a high level view of the dynamics in group interactions. An important aspect of this

group interaction is communicating the interpersonal distances and dynamics of individ-

ual’s movements within the interpersonal space. In this chapter we describe a computer

vision approach towards localizing individuals in the interpersonal space of the user of the

social situational awareness device.

From the sensing perspective we extract the social scene structure, through the use

of face detection/person detection and tracking, towards determining the number of people

in the user’s visual field, where people are located relative to the user, coarse information

related to gaze direction (pose estimation algorithms could be used to extract finer estimates

of pose), and the approximate distance of the person from the user based on the size of the

face image. The camera is mounted on a pair of glasses that allow the camera to be directed

by the user in which ever direction possible. The camera also tracks individuals as they

move in the space in front of the users. Through the use of detected faces and a tracking

algorithm it is possible so sense all the individuals within the interaction space and their

relative location and movement in front of the user. This chapter describes the challenges

involved in detecting faces within a scene and determining their exact size in order to deter-

mine the distance to the user. The following chapter describes tracking individuals within

the social space, especially when they are moving in front of the users.

8.1 Accurate Face Detection

Face detection has become an important first step towards solving plethora of other com-

puter vision problems like face recognition, face tracking, pose estimation, intent monitor-

ing and other face related processing. Over the years many researchers have come up with

algorithms, that have over time, become very effective in detecting faces in complex back-

grounds. Currently, the most popular face detection algorithm is the Viola-Jones [308] face

detection algorithm whose popularity is boosted of by its availability in the open source

computer vision library, OpenCV. Other popular face detection algorithms are identified in

[309] and [126].
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Most face detection algorithms learn faces by modeling the intensity distributions in

upright face images. These algorithms tend to respond to face-like intensity distributions in

image regions that do not depict any face as they are not contextually aware of the presence

or absence of a human face. These spurious responses make the results unsuitable for

further processing that requires accurate face images as inputs, such as the ones mentioned

above. Figure 8.1 shows an example where a face detection algorithm detects two faces -

one true and the other false.

Figure 8.1: An example false face detection.

The problem of false face detection has motivated some researchers to develop

heuristic approaches aimed for validating the face detection results. Most of these heuris-

tics integrate primitive context into the problem by searching for skin tone in the output

subimages. However, this simple approach often fails to distinguish faces from non-faces,

because face detectors often fail to center the cropping box precisely around the detected

face. This produces a significant patch of skin colored pixels, but only a partial face. This

centering problem can be dealt with by extracting the skin colored regions and comparing

their shape to an ellipse. While such heuristics, are simple, and somewhat effective, their

validation is not reliable enough to meet the needs of higher level face processing tasks.
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Further, they do not provide a confidence metric for their validation.

Figure 8.2: Block diagram.

This chapter treats the problem of face detection validation in a systematic man-

ner, and proposes a learning framework that incorporates both contextual and structural

knowledge of human faces. A face validation filter is designed by combining two statistical

modelers, 1) a human skin-tone detector with a dynamic background modeler (Module 1),

and 2) an evidence-aggregating human face silhouette random field modeler (Module 2),

which provides a confidence metric on its validation task. The block diagram in Figure 8.2

shows the functional flow of data through the two modules in the proposed framework. The

details of the statistical models and their learning will be presented later in the paper, which
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is organized as follows. Section 2 reviews some of the earlier research. Section 3 intro-

duces the proposed framework, with details on the learning process. Section 4 discusses

the experiments carried out to test the proposed framework. Section 5 presents the results

while Section 6 discusses them. Section 7 concludes the paper and discusses future work.

8.2 Related Work in Accurate Face Detection

As mentioned earlier, the problem of face detection validation has not been treated method-

ically before, though the problem has been handled by many as an integral component of

face detection algorithms. All the past work in this area can be broadly characterized into

two groups: a) Low level image feature models mostly based on skin color such as [310],

[311] and [312], and b) High level facial feature models such as [313], [314] and [315].

The low level skin color based approaches try to reduce computational complex-

ity by first identifying skin color in images so that search can be reduced. Most of the

times, simple geometrical properties of the retained skin regions are used to determine if

the region is a face. Such simplification of faces into trivial geometrical structures results

in false detections. The facial feature based methods achieve face detection by individually

identifying the integral components of a face image such as eyes, nose, etc. Though these

schemes could be robust, the associated computational load is high. Interested readers could

find more related references in [126] and [309]. The framework proposed in this paper uses

statistically learnt knowledge about human faces to overcome computational complexity

thereby augmenting face validation to existing face detection algorithms seamlessly.

8.3 Proposed Framework

As shown in Figure 8.2, the framework essentially has two statistically learnt models, Mod-

ule 1 and Module 2, that are cascaded to form the face detection validation filter. The output

from a face detector is sent to Module 1, which distinguishes the skin pixels in the face re-

gion from the background pixels, thereby constructing a skin region mask. This skin region

mask then becomes the input to Module 2, which is essentially an aggregate of random field

models learnt from manually labeled (true) face detection outputs. The results of each ran-

dom field model within the aggregate are then combined, using rules of Dempster-Shafer
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Theory of Evidence [316]. This combining of evidence provides a metric for the belief

(i.e. confidence) of the system in its final validation. The two modules are detailed in the

following subsections.

8.3.1 Module 1: Human Skin Tone Detector with Dynamic Background Modeler

Most of the skin tone detectors used for human skin color classification use prior knowl-

edge, which is provided in the form of a parametric or non-parametric model of skin sam-

ples that are extracted from images - either manually, or through a semiautomated process.

In this paper we employ such an a priori model, in combination with a dynamic background

modeler, so that the skin vs. non-skin boundary is accurately determined. Accurate skin

region extraction is essential for Module 2, as it validates images based on their structural

properties. The two functional components of Module 1 are:

8.3.1.1 a-priori Bi-modal Gaussian Mixture Model for Human Skin Classification

A normalized RGB color space has been a popular choice among researchers for parametric

modeling of human skin color. The normalized RGB (typically represented as nRGB) of a

pixel X with Xr, Xg, Xb as its red, green and blue components respectively, is defined as:

XnRGB
i|i∈{r,g,b} =

Xi(
∑

∀i|i∈{r,g,b}

Xi

) (8.1)

Normalized RGB space has the advantage that only two of the three components, nR, nG

or nB, is required at any one time to describe the color. The third component can be derived

from the other two as:

XnRGB
i|i∈{nR,nG,nB} = 1−

 ∑
∀k|(k∈{nR,nG,nB},k 6=i)

Xk

 (8.2)

In our experiments, we found that skin pixels form a tight cluster when projected

on nG and nB space as shown in the Figure 8.3. The study was based on a skin pixel

database, consisting of nearly 150,000 samples, built by randomly sampling skin regions

from 1040 face images collected on the web as well as from FERET face database [317].

Further analysis also showed that the cluster formed on the 2D nG-nB space had two promi-

nent density peaks which motivated the modeling of skin pixels with a Bi-modal Gaussian
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Figure 8.3: Skin pixels in nRGB space.

mixture model learnt using Expectation Maximization (EM) with a k-means initialization

algorithm [318]. The Bi-modal Gaussian mixture model is represented as.

f skin
X |X=[nG,nB](x) = w1 fY1(x;Θ1 = [µ1,Σ1])+

w2 fY2(x;Θ2 = [µ2,Σ2]) (8.3)

8.3.1.2 Dynamically Learnt Multi-modal Gaussian Model for Background Pixel

Classification

As mentioned earlier, classification of regions into face or non-face requires accurate skin

vs. non-skin classification. In order to achieve this, we learn the background color sur-

rounding each face detector output dynamically. To this end we extract an extra region of

the original image around the face detector’s output, as shown in Figure 8.4. Since the size

of the face detector output varies from image to image, it is necessary to normalize the size.

This is done by downsampling the size of the original image to produce a face detector out-
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put region containing 90x90 pixels. The extra region pixels surrounding the face are then

extracted from the 100x100 region around this 90x90 normalized face region.

Figure 8.4: Extra region for background modeling.

Once the outer pixels are extracted, a Multi-modal Gaussian Mixture is trained

using EM with k-means initialization, similar to the earlier case with skin pixel model. The

resultant model can be represented as.

f non−skin
X |X=[R,G,B](x) =

m

∑
i=1

w(i) fYi (x;Θi = [µi,Σi]) (8.4)

where, m is the number of mixtures in the model. We found empirically that a value of

m = 2 or m = 3 modeled the backgrounds with sufficient accuracy.

8.3.1.3 Skin and Background Classification using the learnt Multi-modal Gaussian

Models

The skin and non-skin models, f skin
X |X=[nG,nB](x) and f non−skin

X |X=[R,G,B](x) respectively, are used for

classifying every pixel in the scaled face image obtained as explained in the Section 8.3.1.2.

Example skin-masks are shown in Figure 8.5. This example shows two sets of images - one

corresponding to a true face detection result, and another f alse face detection result.
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Figure 8.5: Example of true and false face detection.

The structural analysis through Random Field models explained in the next section

will describe the design concepts that will help distinguish between true and f alse face

detections shown in Figure 8.5.

8.3.2 Module 2: Evidence-Aggregating Human Face Silhouette Random Field Modeler

In order to validate the skin region extracted as explained in Section 8.3.1, we build statis-

tical models from examples of faces. We developed statistical learners inspired by Markov

Random Fields (MRF) to capture the variations possible in true skin masks (face silhou-

ette). The following subsections describes MRF models and the variant we created for our

experiments.

8.3.2.1 Random Field (RF) Models

In this work, we used a minor variant of MRFs to learn the structure of a true face skin mask.

MRFs encompass a class of probabilistic image analysis techniques that rely on modeling

the intensity variations and interactions among the image pixels. MRFs have been widely

used in low level image processing including, image reconstruction, texture classification

and image segmentation [319].

In an MRF, the sites in a set, S , are related to one another via a neighborhood

system, which is defined as N = {Ni, i ∈S }, where Ni is the set of sites neighboring i,

i /∈Ni and i ∈N j⇐⇒ j ∈Ni.

A random field X said to be an MRF on S with respect to a neighborhood system
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N , if and only if,

P(x)> 0,∀x ∈X (8.5)

P(xi|xS−{i}) = P(xi|xNi) (8.6)

where, P(xi|xS−{i}) represents a Local Conditional Probability Density function defined

over the neighborhood N . The variant of MRF that we created for our experiments relaxed

the constraints imposed by MRFs on N . Typically, MRFs requires that sites in set S be

contiguous neighbors. The relaxation in our case allows for distant sites to be grouped into

the same model.

We empirically found out that modeling the skin-region validation problem into

one single RF gave poor results. We devised 5 unique RF models with an Dempster-Shafer

Evidence aggregating framework that could not only validate the face detection outputs,

but also provide a metric of confidence. Thus, Equation 8.6 could be alternatively seen

as a set P(x) = {P1(x), . . . ,P5(x)}, each having their own neighborhood system N k =

{N 1,N 2, . . . ,N 5}, such that

Pk(xi|xS−{i}) = P(xi|xN k
i
) (8.7)

8.3.2.2 Pre-processing

As described earlier, each face detector output is normalized and expanded to produce a

100x100 pixel image, from which a binary skin mask is generated. A morphological open-

ing and closing operation is then performed on the skin mask (to eliminate isolated skin

pixels), and the mask is then partitioned into one hundred 10x10 blocks, as shown in Figure

8.6. The number of mask pixels (which represent skin pixels) are counted in each block,

and a 10x10 matrix is constructed, where each element of this matrix could contain a num-

ber between 0 and 100. This 10x10 matrix is then used as the basis for determining whether

the face detector output is indeed a face.
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Figure 8.6: Pre-processing.

8.3.2.3 The Neighborhood System

The determination of whether the face detector output is actually a face is based on heuris-

tics that are derived from anthropological human face models [320] and through our own

statistical analysis. These include:

1. Human faces are horizontally symmetrical (i.e. along any row of blocks Ri) about a

central vertical line joining the nose bridge, the tip of the nose and the chin cleft, as

shown in Figure 8.6. In particular, our analysis of a large set of frontal face images

showed that the counts of skin pixels in the 10 blocks that form each row in Figure

8.6 were roughly symmetrical across this central line.

2. The variations along the verticals (Ci’s) are negligible enough that in building a Local

Conditional Probability Density function, each Ri can be considered independent of

the other. That is, for example, modeling variations of C0 w.r.t C1 on R1 is similar

to modeling variations of C0 w.r.t C1 on any other Ri|i6=1. Thus, analysis of Local

Conditional Probability could be restricted to single Ri at a time, as shown in Figure

8.7.

The different neighborhood systems N k, used in the RF models, Pk(x|xN k), can

be defined as (Refer Figure 8.7):

N k =
{

C j| j∈{|k|,0−,0+}
}

(8.8)
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Figure 8.7: Neighborhood System.

8.3.2.4 Local Conditional Probability Density (LCPD)

To model the variations on the skin-region mask, we choose to build 2D histogram for each

of the 5 RF over their unique neighborhood system. The design of the dimensions were such

that they captured the various structural properties of true skin masks. The two dimensions

(represented in a histogram pool Hk) with individual element of the pool, z, can be defined

as:

• Hk|k={1,2,3,4} = {z}, where,

z = [xC0±
,δ (xC0±

,xC±k)],∀R j (8.9)

• Hk=5 = {z}, where,

z = [µ(xC0+
,xC0−

),µ(xC−4 ,xC+4)],∀R j (8.10)

where, xCk is the count of skin pixels in the block Ck. The two functions δ (., .) and

µ(., .) are defined as

δ (xC0±
,xC±i) =

 xC0+
− xC+i , i > 0

xC−i− xC0−
, i < 0

(8.11)

µ(a,b) =
a+b

2
(8.12)

In order to estimate the LCPD on these 5 histogram pools, we use Parzen Window Density

Estimation (PWDE) technique, similar to [242], with a 2D Gaussian window. Thus, each
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of LCPD can now be defined as

Pk(z) = 1

(2π)
d
2 nhd

opt

n
∑
j=1

exp

[
− 1

2h2
opt

(
z−Hk

j

)T
Σ−1

(
z−Hk

j

)]

where, n is the number of samples in the histogram pool Hk, d is number of dimen-

sions (in our case 2), Σ and hopt are the covariance matrix over Hk and the optimal window

width, respectively, defined as:

Σ =

 σ1 0

0 σ2

 , hopt =
σ1+σ2

2

{
4

n(2d+1)

}1/(d+4)

Figure 8.8 shows the 5 LCPDs learnt over a set of 390 training frontal face images.

Figure 8.8: Frontal face Local Conditional Probability Density (LCPD) models.
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8.3.2.5 Human Face Pose

During our studies we discovered that the structure of the skin-region varies based on the

pose of detected face as shown in Figure 8.9. Combining face examples from different pose

into one set of RFs seemed to dilute the LCPDs and hence the discriminating capability.

This motivated us to design three different sets of RFs, one for each pose. This was accom-

plished by grouping true face detections into three piles, Turned right (r), Facing front ( f ),

and, Turned Left (l).

Figure 8.9: Skin-region masks.

Thus, the final set of LCPDs could be described by the super set.

P(z) =
{

Pk|k={1,...,5}
m|m={r, f ,l} (z)

}
(8.13)

8.3.3 Combining Evidence

Given any test face detection output, z is extracted (as described in Equation 8.9 and 8.10)

and projected on the LCPD set P(z) to get a set of likelihoods lk
m. As in the case of any

likelihood analysis, we combined the joint likelihood of multiple projections using log-

likelihood function, Lk
m = ln

(
lk
m
)
, such that,

∏
∀z∈Hk

m

ln
(

lk
m(z)

)
= ∑
∀z∈Hk

m

Lk
m(z) (8.14)

Given these log-likelihood values, one can set hard thresholds on each one of them to vali-

date a face subimage discretely as true or f alse. We incorporated a piece-wise linear deci-

sion model (soft threshold) instead of a hard threshold on the acceptance of a face subimage.

This is illustrated in the Figure 8.10. Each LCPD Pk(z) was provided with an upper and
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lower threshold of acceptance and rejection respectively. The upper and lower bounds were

obtained by observing Pk(z) for the three face poses Pk
r, f ,l(z). Thus, any log-likelihood

values lesser than the lower threshold (LL) would result in a decision against the test input

(Probability 0), while any log-likelihood value greater that the upper threshold (LU ) would

be a certain accept (probability 1). Anything in between would be assigned a probability

of acceptance. In order to combine the decisions from the five LCPD Pk(Z), we resort to

Figure 8.10: Soft threshold.

Dempster-Shafer Theory of Evidence.

8.3.3.1 Dempster-Shafer Theory of Evidence (DST)

The Dempster-Shafer theory is a mathematical theory of evidence [316] which is a gener-

alization of probability theory with probabilities assigned to sets rather than single entities.

If X is an universal set with power set, P(X) (Power set is the set of all possible

sub-sets of X , including the empty set /0), then the theory of evidence assigns a belief mass

to each subset of the power set through a function called the basic belief assignment (BBA),

m : P(X)→ [0,1], when it complies with the two axioms. a) m( /0) = 0 and b) ∑
A∈P(X)

m(A) =

1. The mass, m(A), of a given member of the power set expresses the proportion of all

relevant and available evidence that supports the claim that the actual state belongs to A and

to no particular subset of A. In our case, m(A) correlates to the probability assigned by each

of LCPDs towards the subimage being a face or not.

The true use of DST in our application becomes clear with the rules of combining
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evidences which was proposed as an immediate extension of DST. According to the rule,

the combined mass (evidence) of any two expert’s opinions, m1 and m2, can be represented

as:

m1,2(A) =
1

1−K ∑
B∩C=A,A6= /0

m1(B)m2(C) (8.15)

where,

K = ∑
B∪C= /0

m1(B)m2(C) (8.16)

is a measure of the conflict in the experts opinions. The normalization factor, (1−K), has

the effect of completely ignoring conflict and attributing any mass associated with conflict

to a null set.

The 5 LCPDs, Pk(z), were considered as experts towards voting on the test input

as a face or non-face. In order to use these mapped values in Equation 8.15 - 8.16, we

normalized evidences generated by the experts to map between [0,1], and any conflict of

opinions were added into the conflict factor, K. For the sake of clarity, we show an example

of combining two expert opinions in Figure 8.11. The same idea could be extended to

multiple experts.

Figure 8.11: An example of combining evidence from two experts under Dempster-Shafer
Theory.

8.3.4 Coarse Pose estimation

Since the RF models were biased with pose information, we also investigated the possibil-

ity of determining the pose of the face based on the evidences obtained from the LCPDs.

We noticed that the LCPDs P3(z), P4(z) and P5(z) were capable of not only discriminat-

ing faces from non-faces, but were also capable of voting towards one of 3 pose classes,
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Looking right, Frontal, and Looking Left along with a confidence metric. Due to space

constraints, the procedure is not explained in detail, but it is similar to what was followed

for face versus non-face discrimination as explained in Section 8.3.3.

8.4 Testing the Abilities of the Face Detector

In all our experiments, Viola-Jones face detection algorithm [308] was used for extracting

face subimages. The proposed face validation filter was tested on two face image data sets,

1. The FERET Color Face Database, and 2. An in-house face image database created from

interview videos of famous personalities.

In order to prepare the data for processing, face detection was performed on all

the images in both the data sets. The number of face detections do not directly correlate

to the number of unique face images as there are plenty of false detections. We manually

identified each and every face detection to be true or f alse so that ground truth could be

established. The details of this manual labeling is shown below:

1. FERET

• Number of actual face images: 14,051

• Number of faces detected using Viola-Jones algorithm: 6,208

• Number of true detections: 4,420

• Number of f alse detections: 1,788 (28.8%)

2. In-house database

• Number of actual face images: 2,597

• Number of faces detected using Viola-Jones algorithm: 2,324

• Number of true detections: 2,074

• Number of f alse detections: 250 (10.7 %)

8.5 Results

In order to compare the performance of the proposed face validation filter, we defined four

parameters:
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1. Number of false detections (NFD)

NFD = Count of false detections

2. False detection rate (FDR):

FDR =
# of false detections

Total # of face detections
x100

3. Precision (P)

P =
# of true detections

# of true detections+# of false detections

4. Capacity (C)

C =

(
# of true detections

# of actual faces in database

)
−FDR

Table 8.1: Face detection validation results on FERET database.

Before Validation After Validation
NFD 1,788 208
FDR 28.8 % 3.35 %

P 0.7120 0.9551
C 0.026 0.281

Table 8.2: Face detection validation results on the in-house face database.

Before Validation After Validation
NFB 250 2
FDR 10.76 % 0.01 %

P 0.892 0.999
C 0.691 0.798

As explained in Section 8.3.4, the framework was extensible to perform coarse pose

estimation. Figure 8.12 shows the result of passing two frames of a video sequence as input

the face validation filter. The frames were extracted from a video of the same individual

exhibiting arbitrary facial motion. The frames were 0.55 seconds apart. As can be noticed,

the head pose is slightly different between the two frames. The pose estimation results are

shown below the two frames.
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Figure 8.12: Coarse pose estimation.

8.6 Discussion of Results

Performance analysis of the proposed face validation filter can be understood through the

four parameters defined in Section 8.5. NFB and FDR are direct measurements of the

number of mistakes (naming non-faces as faces) made by the face detection algorithm on

the two data sets. As can be verified from Table 8.1 and 8.2, there is a significant reduction

in the false detections through the introduction of the filter.

The precision parameter, P, can be perceived as the probability that a face detection

result retrieved at random will truly contain a face. It can be seen that the precision of

the system drastically improves with the introduction of the face validation filter thereby

assuring a true face subimage at the output.

The capacity parameter, C, measures the relative difference between face detection

and false detection rates of a face detection system. Alternately, C can be considered to

measure the net true face detection ability of any algorithm on a specific face data set. C

ranges from −1 to 1. −1 when none of the faces in the database are detected with all

reported detections being wrong. 1 when all the faces in the database are detected with no

false detections. It can be seen from Tables 8.1 and 8.2 that the capacity of the face detection

system, when combined with face validation filter, is significantly higher and moves towards

1. One can thus infer that the combined system has better true face detection ability.

190



Finally, Figure 8.12 shows the coarse pose estimation results. The two frames in

the figure shows cases when the face is slightly turned right, with one (A) turned more right

than the other (B). The face validation filter verifies that the faces are actually turned right

and the belief values represent a scale on the amount of rotation. Since we did not do any

specific mapping of the belief values to pose angle, we could not confirm quantitatively how

accurate the pose estimations were. Through visual consort, one can verify that the labeling

is meaningful.
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Chapter 9

SENSING DYNAMICS OF THE SOCIAL SCENE

As described earlier, determining the social scene and the dynamics of the social scene in

front of the user requires that the person be detected in the camera video stream and the they

be tracked through in the video stream to determine the relative location of the individuals

with respect to the user. That is, it is important to localize individuals in the video stream

provided by the camera and track them through time. The problem of person localization in

general is very broad in its scope and wide varieties of challenges such as variations in artic-

ulation, scale, clothing, partial appearances, occlusions, etc make this a complex problem.

Narrowing the focus, this chapter targets person localization in real world video sequences

captured from the camera of the social situational enrichment Assistant. Specifically, we

focus on the task of localizing a person who is approaching the user to initiate a social

interaction or just conversation. In this context, the problem of person localization can be

constrained to the cases where the person of interest is facing the user.

Figure 9.1: Person of interest at a short distance from camera

Figure 9.2: Person of interest at a large distance from camera

When such a person of interest is in close proximity, his/her presence can be de-

tected by analyzing the incoming video stream for facial features (Figure 9.1), as explained

in the previous chapter. But when such a person is approaching the user from a distance,
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the size of the facial region in the video appears to be extremely small. In this case, relying

on facial features alone would not suffice and there is a need to analyze the data for full

body features (Figure 9.2). In this chapter, we focus on improving the effectiveness of the

social interaction assistant by applying computer vision techniques to robustly localize peo-

ple using full body features. Following section discusses some of the critical issues that are

evident when performing person localization from the wearable camera setup of the SIA

9.1 Challenges in Person Localization from a wearable camera platform

A number of factors associated with the background, object, camera/object motion, etc.

determine the complexity of the problem of person localization from a wearable camera

platform. Following is a descriptive discussion of the imminent challenges that we encoun-

tered while processing the data using the SIA.

9.1.1 Background Properties

When the Social Interaction Assistant is used in natural settings, it is highly possible that

there are objects in the background which move, thus causing the background to be dy-

namic. Also, there are bound to be regions in the background whose image features are

highly similar to that of the person, thus leading to a cluttered background. Due to these

factors, the problem of distinguishing the person of interest from the background becomes

highly challenging in this context. Figures 9.3 and 9.4 illustrate the contrast in the data due

to the nature of the background.

9.1.2 Object Properties

As we are interested in person localization, it can be clearly seen that the object is non-rigid

in nature as there are appearance changes that occur throughout the sequence of images.

Further, significant scale changes and deformities in the structure can also be observed.

Also, when analyzing video frames of persons approaching the user, the basic image fea-

tures in various sub-regions of the object vary vastly. For example, the image features from

the facial region are considerably different from that of the torso region. Tracking detected
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Figure 9.3: Simple Background

Figure 9.4: Complex Background

persons from one frame to another will require individualized tracking of each region to

maintain confidence. This non-homogeneity of the object poses a major hurdle while ap-

plying localization algorithms and has not been studied much in the literature. Figure 9.5

shows the simplicity of the data when these problems are not present, while Figure 9.6

highlights complex data formulations in a typical interaction scenario.

Figure 9.5: Rigid, Homogeneous Object

Figure 9.6: Non-Rigid, Deformable, Non-Homogeneous Object

9.1.3 Object/Camera Motion

Traditionally, most computer vision applications use a static camera where strong assump-

tions of motion continuity and temporal redundancy can be made. But in our problem, as
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it is very natural for users to move their head continuously, the mobile nature of the plat-

form causes abrupt motion in the image space (Compare Figure 9.7 and Figure 9.9). This is

similar to the problem of working with low frame rate videos or the cases where the object

exhibits abrupt movements. Recently, there has been an increase of interest in dealing with

this issue in computer vision research [321] [322] [323] [324]. Some important applications

which are required to meet real-time constraints, such as teleconferencing over low band-

width networks, and cameras on low-power embedded systems, along with those which

deal with abrupt object and camera motion like sports applications are becoming common

place [324]. Though solutions have been suggested, person localization through low frame

rate moving cameras still remains an active research topic.

Figure 9.7: Static Camera

Figure 9.8: Mobile Camera

9.1.4 Other Important Factors Affecting Effective Person Tracking

As the SIA is intended to be used in uncontrolled environments, changing illumination con-

ditions need to be taken into account. Further, partial occlusions, self occlusions, in-plane

and out-of-plane rotations, pose changes, blur and various other factors can complicate the

nature of the data. See Figure 9.9 for example situations where various factors can affect

the video quality.

Given the nature of this problem, in this chapter we focus on the problem of robust

localization of a single person approaching a user of the SIA using full-body features. Issues
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Figure 9.9: Changing Illumination, Pose Change and Blur

arising due to cluttered background along with object and camera motion have been handled

towards providing robustness. In the following section we discuss some of the important

related work in the computer vision literature.

9.2 Related Computer Vision Work in Person Localization and Tracking

Historically, two distinct approaches have been used for searching and localizing objects in

videos. On one hand, there are detection algorithms which focus on locating an object in

every frame using specific spatial features which are fine tuned for the object of interest.

For example, haar-based rectangular features [325] and histograms of oriented gradients

[326] can develop detectors that are very specific to objects in videos. On the other hand,

there are tracking algorithms which trail an object using generic image features, once it is

located, by exploiting the temporal redundancy in videos. Examples of features used by

tracking algorithms include color histograms [327] and edge orientation histograms [328].

9.2.1 Detection Algorithms

As mentioned previously, detection algorithms exploit the specific, distinctive features of

an object and apply learning algorithms to detect a general class of objects. They use infor-

mation related to the relative feature positions, invariant structural features, characteristic

patterns and appearances to locate objects within the gallery image. But, when the object

is complex, like a person, it becomes difficult for these algorithms to achieve generality

thereby failing even under minute non-rigidity. A number of human factors such as vari-

ations in articulation, pose, clothing, scale and partial occlusions make this problem very

challenging.
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When assumptions about the background cannot be made, learning algorithms

which take advantage of the relative positions of body parts are used to build classifiers.

The kind of low-level features generally used in this context are gradient strengths and gra-

dient orientations [329] [326], , entropy and haar-like features. Some of the well-known

higher level descriptors are histogram of oriented gradients [326] and covariance features

[330]. Efforts have been made to make these descriptors scale invariant as well.

In order to make these algorithms real-time, researchers have popularly resorted to

two kinds of approaches. One category includes part-based approach such as Implicit Shape

Models [321] and constellation models [331] which place emphasis on detecting parts of

the object before integrating, while the other category of algorithms tries to search for rel-

evant descriptors for the whole object in a cascaded manner[332]. Shape-based Chamfer

matching [333] is a popular technique used in multiple ways for person detection as the

silhouette gives a strong indication of the presence of a person. In recent times, Chamfer

matching has been used extensively by the person detection and localization community.

It has been applied with hierarchically arranged templates to obtain the initial candidate

detection blocks so that they can be analyzed further by techniques such as segmentation,

neural networks, etc. It has also been used as a validation tool to overcome ambiguities in

detection results obtained by the Implicit Shape Model technique [334].

9.2.2 Tracking Algorithms

Assuming that there is temporal object redundancy in the incoming videos, many algorithms

have been proposed to track objects over frames and build confidence as they go. Generally

they make the simplifying assumption that the properties of the object depend only on its

properties in the previous frame, i.e. the evolution of the object is a Markovian process

of first order. Based on these assumptions, a number of deterministic as well as stochastic

algorithms have been developed.

Deterministic algorithms usually apply iterative approaches to find the best esti-

mate of the object in a particular image in the video sequence [332]. Optimal solutions
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based on various similarity measures between the object template and regions in the current

image, such as sum of squared differences (SSD), histogram-based distances, distances in

eigenspace and other low dimensional projected spaces and conformity to particular object

models, have been explored [332]. Mean Shift is a popular, efficient optimization-based

tracking algorithm which has been widely used.

Stochastic algorithms use the state space approach of modeling dynamic systems

and formulate tracking as a problem of probabilistic state estimation using noisy measure-

ments [335]. In the context of visual object tracking, it is the problem of probabilistically

estimating the object’s properties such as its location, scale and orientation by efficiently

looking for appropriate image features of the object. Most of these stochastic algorithms

perform Bayesian filtering at each step for tracking, i.e. they predict the probable state

distribution based on all the available information and then update their estimate according

to the new observations. Kalman filtering is one such algorithm which fixes the type of

the underlying system to be linear with Gaussian noise distributions and analytically gives

an optimal estimate based on this assumption. As most tracking scenarios do not fit into

this linear-Gaussian model and as analytic solutions for non-linear, non-Gaussian systems

are not feasible, approximations to the underlying distribution are widely used from both

parametric and non-parametric perspective.

Sequential monte-carlo based Particle Filtering techniques have gained a lot of at-

tention recently. These techniques approximate the state distribution of the tracked object

using a finite set of weighted samples using various features of the system. For visual object

tracking, a number of features have been used to build different kinds of observation mod-

els, each of which have their own advantages and disadvantages. Color histograms [327],

contours [336], appearance models, intensity gradients [337], region covariance, texture,

edge-orientation histograms, haar-like rectangular features [332], to name a few. Apart

from the kind of observation models used, this technique allows for variations in the filter-

ing process itself. A lot of work has gone into adapting this algorithm to better perform in

the context of visual object tracking.
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While both the areas of detection and tracking have been explored extensively, there

is an impending need to address some of the issues faced by low frame rate visual tracking

of objects. Especially in the case of SIA, person localization in low frame rate video is

of utmost importance. In this paper, we have attempted to modify the color histogram

comparison based particle filtering algorithm to handle the complexities that occur mobile

camera on the Social Interaction Assistant.

9.3 Conceptual Framework

As discussed in the previous section, detection and tracking offer distinctive advantages and

disadvantages when it comes to localizing objects. In the case of SIA, thorough object de-

tection is not possible in every frame due to the lack of computational power (on a wearable

platform computing platform) and tracking is not always efficient due to the movement

of the camera and the object’s (interaction partner’s) independent motion. Though there

are clear advantages in applying these techniques individually, the strengths of both these

approaches need to be combined in order to tackle the challenges posed by the complex

setting of the SIA. In the past, a few researchers have approached the problem of tracking

in low frame rate or abrupt videos by interjecting a standard particle filtering algorithm

with independent object detectors [338]. In our experience, the Social Interaction Assis-

tant offers a weak temporal redundancy in most cases. We exploit this information trickle

between frames to get an approximate estimate of the object location by incorporating a de-

terministic object search while avoiding the explicit use of pre-trained detectors. Due to the

flexibility in the design, particle filtering algorithms provide a good platform to address the

issues arising due to complex data. These algorithms give an estimate of an object’s position

by discretely building the underlying distribution which determines the object’s properties.

But, real-time constraints impose limits on the number of particles and the strength of the

observation models that can be used. This generally causes the final estimate to be noisy

when conventional particle filtering approaches are applied. Unless the choice of the par-

ticles and the observation models fit the underlying data well, the estimate is likely to drift

away as the tracking progresses. To mitigate these problems faced in the use of the SIA,
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we propose a new particle filtering framework that gets an initial estimate of the person’s

location by spreading particles over a reasonably large area and then successively corrects

the position though a deterministic search in a reduced search space. Termed as Structured

Mode Searching Particle Filter (SMSPF), the algorithm uses color histogram comparison

in the particle filtering framework at each step to get an initial estimate which is then cor-

rected by applying a structured search based on gradient features and chamfer matching.

The details of this algorithm are described in the next section.

9.4 Structured Mode Searching Particle Filter

Assuming that an independent person detection algorithm can initialize this tracking al-

gorithm with the initial estimate of the person location, this particle filtering framework

focuses on tracking a single person under the following circumstances, namely

• Image region with the person is non-rigid and non-homogeneous

• Image region with the person exhibits significant scale changes

• Image region with the person exhibits abrupt motions of small magnitude in the image

space due to the movement of the camera.

• Background is cluttered.

The algorithm progresses by implementing two steps on each frame of the incom-

ing video stream. In the first step (Figure 9.10), an approximate estimate of the person

region is obtained by applying a color histogram based particle filtering step over a large

search space. This is followed by a refining second step (Figure 9.11) where the estimate is

corrected by applying a structured search based on gradient features and Chamfer matching.

These two steps have been described in detail below.

9.4.1 Step 1: Particle Filtering Step

In the context of SIA, as the person of interest can exhibit abrupt motion changes in the

image space, it is extremely difficult to model the placement of the person in the current
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Figure 9.10: SMSPF - Step 1

image based on the previous frame’s information alone. When such data is modeled in the

Bayesian filtering based particle filtering framework, the state of each particle’s position

becomes independent of its state in the previous step. Thus, the prior distribution can be

considered to be a uniform random distribution over the support region of the image.

p
(
xi

t |xi
t−1 = p(xi

t)
)

(9.1)

As it is essential for particle filtering algorithm to choose a good set of particles, it

would be useful to pick a good portion of them near the estimate in the previous step. By
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Figure 9.11: SMSPF - Step 2

approximating this previous estimate to be equivalent to a measurement of the image region

with the person in the current step, the proposal distribution of each particle can be chosen

to be dependent only on the current measurement

q
(
xi

t |xi
t−1Zt

)
= q

(
xi

t |Zt
)

(9.2)

Though the propagation of information through particles is lost by making such an

assumption, it gives a better sampling of the underlying system. We employ a large vari-

ance Gaussian with its mean centered at the previous estimate for successive frame particle
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propagation. By using such a set of particles, a larger area is covered, thus accounting

for abrupt motion changes and a good portion of them are picked near the previous esti-

mate, thus exploiting the weak temporal redundancy. As in [327], we have employed this

technique using HSV color histogram comparison to get likelihoods at each of the particle

locations. Since intensity is separated from chrominance in this color space, it is reasonably

insensitive to illumination changes. We use an 8x8x4 HSV binning thereby allowing lesser

sensitivity to changes in V when compared to chrominance. The histograms are compared

using the well-known Bhattacharyya Similarity Coefficient which guarantees near optimal-

ity and scale invariance.

Figure 9.12: Structured Search

With the above step alone, due to the small number of particles which are spread

widely across the image, we can get an approximate location of the person. When such an

estimate partially overlaps with the desired person region, the best match occurs between

the intersection of the estimate and the actual person region as shown in Figure 9.12. But,

it is not trivial to detect this partial presence due to the existence of background clutter.

To handle this problem, we introduce a second step which uses efficient image feature

representations of the desired person object and employs an efficient search around the

estimate to accurately localize the person object.
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9.4.2 Step 2: Structured Search

As the estimate obtained using widely spread particles gives the approximate location of

the object, the search for the image block with a person in it can be restricted to a region

around it. We have employed a grid-based approach to discretely search for the object of

interest (a person) instead of checking at every pixel. By dividing the estimate into an m x

n grid and sliding a window along the bins of the grid as shown in Figure 9.13, the search

space can be restricted to a region close to the estimate. By finding the location which gives

the best match with the person template, we can localize the person in the video sequence

with better accuracy.

Figure 9.13: Sliding window of the Structured Search (Green: Estimate; Red: Sliding
window).

If this search is performed based on scale-invariant features, then it can be extended

to identify scale changes as well. In order to achieve search over scale, the estimate and the

sliding window need to be divided into different number of bins. If the search is performed

using smaller number of bins as compared to the estimate, then shrinking of the object can
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be identified while searching with higher number of bins can account for dilation of the

object. For example, if a (m-1) x (n-1) grid is used with the sliding window while a m x

n grid is used with the estimate, then the best match will find a shrink in the object size.

Similarly if an m x n grid sliding window is used with a (m-1) x (n-1) estimate grid, then

dilations can be detected. It can be seen that this search is characterized by the number of

bins m x n into which the sliding window and the estimate are divided. Based on the nature

of the problem, the number of bins and the amount of sweep across scale and space can

be adjusted. Currently, these parameters are being set manually, but the structured search

framework can be extended to include online algorithms which can adapt the number of

grid bins based on the evolution of the object.

If the object of interest was simple, then the best match across space and scale could

be obtained by using simple feature matching techniques. But, due to the complex nature

of the data, strong confidence is required while searching for the person region across scale.

To this end, we propose to perform the structured search by analyzing the internal features

of the person region as well as the external boundary/silhouette features and aggregating

the confidence obtained from these two measures to refine the person location estimate in

the image (Figure 9.14)

In literature, gradient based features have been widely used for person detection

and tracking problems and their applicability has been strongly established by various al-

gorithms like Histogram of Oriented Gradients (HoGs) [326]. Following this principle, we

have used the Edge Orientation Histogram (EOH) features [328] in order to obtain the in-

ternal content information measure. For this purpose, a gradient histogram template (GHT)

is initially built using a generic template image of a walking/standing person. This GHT is

then compared with the gradient histogram of each structured search block using the Bhat-

tacharyya histogram comparison as in [327] in order to find the block with the best internal

confidence. In our implementation, orientations are computed using the Sobel operator and

the gradients are then binned into 9 discrete bins. These features were extracted using the

integral histogram concept [339] to facilitate computationally efficient searching.
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Figure 9.14: Structured Search Matching Technique

Similarly, in order to obtain the boundary confidence measure, a generic person

silhouette template (GPT) (as shown in Figure 9.14) is used to perform a modified Chamfer

match on each of the search blocks. In general, Chamfer matching is used to search for a

particular contour model in an edge map by building a distance transformed image of the

edge map. Each pixel value in a distance transformed image is proportional to the distance

to its nearest edge pixel. In order to compare the edge map to the contour map, we convolve

the edge image with the contour map. If the contour completely overlaps with the matching

edge region, we get a chamfer match value of zero. Based on how different the edge map

is to the template contour, the chamfer match score will increase and move towards 1. A

chamfer match score of 1 implies a very bad match.
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While the theory of chamfer matching offers elegant search score, in reality, espe-

cially with clutter within the object’s silhouette, it is very difficult to get an exact match

score. In SIA, since the data is very noisy and complex, certain modifications need to

be made with the Chamfer matching algorithm in order achieve good performance. The

following section details a modified Chamfer match algorithm introduced in this work.

9.4.3 Chamfer Matching in Structured Search

As discussed above, Chamfer matching gives a measure of confidence on the presence of

the person within an image based on silhouette information. We have incorporated this

confidence into the structured search in order to detect the precise location of the person

around the particle filter estimate. An edge map of the image under consideration is first

obtained which is then divided into (m x n) windows in accordance with the structured

search and an elliptical ring mask is then applied to each of these windows as shown in

Figure 9.15. This mask is applied so as to eliminate the edges that arise due to clothing

and background thereby emphasizing the silhouette edges which are likely to appear in the

ring region if a window is precisely placed on the object perimeter. A distance transformed

image of the window is then obtained using the masked edges.

By applying the modified chamfer matching (with a generic person contour resized

to the current particle filter estimate), a confidence number in locating the desired object

within the image region can be obtained. Similar to the Chamfer matching as before, a

value close to 0 indicates a strong confidence of the presence of a person and vice versa.

As 1 is the maximum value that can be obtained by the chamfer match, this measure can be

incorporated into the match score of the structured search using the following equation.

BoundaryConf = (1−ChamferMatch) (9.3)

The standard form of Chamfer Matching gives a continuous measure of confidence

in locating an object in an edge map. But, in our case, when the elliptical ring mask is used

to filter out the noisy edges in each search block, this nature of Chamfer match is lost. Since
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Figure 9.15: Incorporating Chamfer Matching into Structured Search

the primary goal of the structured search is to find a single best matching location of the

person, it is more advantageous to use the filter mask at the cost of losing this continuous

nature of the chamfer match. Further, as it is very likely that the person region is close

to the approximate estimate obtained from the first step, one of the search windows of the

structured search is bound to capture the entire person object thus resulting in a good match

score.

From the above discussion, it can be seen that combining the knowledge about the

internal structure of the person region with the silhouette information results in a greater

confidence in the SMSPF algorithm. Further, using such complementary features in the

structured search robustly corrects the approximate estimate obtained from the particle fil-

tering step while handling various problems associated with search across scale.
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9.5 Experiments and Datasets

9.5.1 Datasets

The performance of the structured mode searching particle filter (SMSPF) has been tested

using three datasets where a single person faces the camera while approaching it. There are

significant scale changes in each of these sequences. Further, non-rigidity and deformability

of the person region can also be clearly observed. Different scenarios with varying degrees

of complexity of the background and camera movement have been considered. Following

is a brief description of these datasets.

(a) DataSet 1: Plain Background; Static Camera; 320x240 resolution

(b) DataSet 2: Slightly cluttered Background; Static Camera; 320x240 resolution

(c) DataSet 4: Cluttered Background; Mobile Camera; 320x240 resolution

Figure 9.16 shows the sample results on each of the datasets used.

9.5.2 Evaluation Metrics

In order to test the robustness of this algorithm and the applicability in complex situations,

its performance has been compared with the Color Particle Filtering algorithm [333]. As-

suming that a detection algorithm can detect persons in at least some frames, the image

region containing the person in each of the test sequences has been manually set. The

following two criteria have been used to evaluate their performance,

• Area Overlap (A0)

• Distance between Centroids (DC)

1Collected at CUbiC
2CASIA Gait Dataset B with subject approaching the camera 3

4Collected at CUbiC
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Figure 9.16: SMSPF Results

Manually labeled rectangular regions around the person in the image have been

used as the ground truth. Suppose gTruthi is the ground truth in the ith frame and tracki

is the rectangular region output by a tracking algorithm, then the area overlap criterion is

defined as follows

AO(gTruthi, tracki) =
Area(gTruthi∩ tracki)

AO(gTruthi∪ tracki)
(9.4)

The average area overlap can be computed for each data sequence as

AvgAOR =
1
N

N

∑
i=1

AO (9.5)

Similar to [340], we use Object Tracking Error (OTE) which is the average distance

between the centroid of the ground truth bounding box and the centroid of the result given

by a tracking algorithm
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OT E =
1
N

N

∑
i=1

√(
CentroidgTruthi−CentroidTruthi

)
(9.6)

In order to evaluate the performance of these algorithms using a single metric which

encodes information from both area overlap and the distance between centroids, we have

used a measure termed as the Tracking Evaluation Measure (TEM) which is the harmonic

mean of the average area overlap fraction (AvgAOR) and a non-linear mapping of the Object

tracking error (OTE).

T EM = 2∗ AvgAOR.e−k.OT E

AvgAOR+ e−k.OT E (9.7)

where k is a constant which exponentially penalizes the cases where the distance

between centroids is large.

9.6 Results

Particle Filtering has been widely used to handle complex scenarios by maintaining mul-

tiple hypotheses. As mentioned in [336], in order to handle abrupt motion changes, it is

essential that the particles are widely spread while tracking. Following this principle, we

have compared the performance of color particle filter (PF) [333] and the structured mode

searching particle filter (SMSPF) by using a 2-D Gaussian with large variance as the sys-

tem model. The position of the person and its scale have been included in the state vector.

In order to compensate for the computational cost of structured search, only 50 particles

were used for the SMSPF algorithm while 100 particles were used for the PF algorithm. A

10x10 grid with a sweep of 8 steps along the spatial dimension and 3 steps along the scale

dimension were incorporated in the structured search.

Figure 9.17 and Figure 9.18 illustrate the comparison of the area overlap ratio and

the distance between centroids at each frame of an example sequence. The sample frames

are shown beside the tracking results. From Figure 9.17(a), it is evident that the SMSPF

algorithm (red) shows a significant improvement over the color particle filter algorithm
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Figure 9.17: AO (Dotted Line: Color PF; Solid Line: SMSPF)

(green). Here, the area overlap ratio using SMSPF is much closer to 1 in most of the frames

while the color particle filter drifts away causing this measure to be closer to 0. The distance

between centroids measure also indicates a greater precision of the SMSPF algorithm as

seen in Figure 9.18(a) where the distance between centroids using color particle filter is

much higher than that with SMSPF(≈ 0).

Figure 9.19, Figure 9.20 and Figure 9.21 show the Tracking Evaluation Measure

(TEM) for Datasets 1, 2 and 3. In majority of the cases, the SMSPF algorithm outperforms

the color particle filtering algorithm with a higher TEM score.

The results presented as a comparison between Color PF and SMSPF shows that in-

corporating a deterministic structured search into the stochastic particle filtering framework

improves the person tracking performance in complex scenarios. The SMSPF algorithm

strikes a balance between specificity and generality offered by detection and tracking algo-

rithms as discussed in Section 2. It uses specific structure-aware features in the search in

order to handle non-homogeneity of the object and the cluttered nature of the background.

On the other hand, generality is maintained by using simple, global features in the parti-
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Figure 9.18: DC(Dotted Line: Color PF; Solid Line: SMSPF)

Figure 9.19: Evaluation Measure for DataSet 1
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Figure 9.20: Evaluation Measure for DataSet 2

Figure 9.21: Evaluation Measure for DataSet 3
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cle filtering framework so as to handle non-rigidity and deformability of the object. The

clear advantage of using the structured search can be observed on the complex Dataset 3

which encompasses most of the challenges generally encountered while using the Social

Interaction Assistant.
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Chapter 10

COMMUNICATING SOCIAL SCENE DYNAMICS

Like facial expression data extracted from a camera, the social scene data (group interac-

tion data) has a very high bandwidth and communicating this data to individuals who are

blind, requires that the data be modulated on a modality that does not interfere with the

user’s cognitive capacity. As described earlier, the use of audio cueing in such contexts

may not be of high value as it has the tendency to overload the user’s natural capacity to

sense their environment. To this end, as before, we resort to the use of haptic technologies

as augmented interface. Tables 6.1 through 6.4 introduced a plethora of haptic technolo-

gies used in communicating remote interpersonal data. While these technologies provided

means of communicating specific interpersonal data, no one technology provided means of

communicating distances and direction information to a user. To this end, we explored hap-

tic technologies specifically designed for communicating spatial orientations. This chapter

describes an alternative delivery modality: a vibrotactile belt that can convey non-verbal

communication cues to individuals who are blind or visually impaired. Specifically, we

focus on the non-verbal cue listed in Section 3.3.1 of Chapter 3: helping users perceive the

number of people in their visual field, and the relative direction and distance of each indi-

vidual with respect to the user. In some social situations, location information is available

through audible cues, but this is not always the case. For example, when a group of friends

approaches all of them may smile but only some may offer a verbal greeting, or a passing

co-worker may nod to you in the hallway without exchanging a verbal greeting. These non-

verbal communications are common occurrences, but are not accessible to someone who is

blind.

10.1 Proposed Framework of Social Scene Structure Delivery

As shown in Figure 10.1, the output of the face detection/tracking process (indicated by a

green rectangle on the image) provided by the camera on the Social Interaction Assistant is

directly coupled with a vibrotactile haptic belt. Every frame in the video sequence captured
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Figure 10.1: (a) Typical use of the social interaction assistant, a third person perspective on
the use case scenario, (b) An example of face detection being translated to vibrations on the
haptic belt.
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by the Social Interaction Assistant is divided into N regions equal to N vibrotactile actuators

on the haptic belt. In the example shown in the figure, there were 7 vibrators on the belt.

After face detection, the region to which the top-left corner of the face detection output

belongs is identified (as shown by the star in Figure 3). This region directly corresponds to

the tactor on the belt that needs to be activated to indicate the direction of the person with

respect to the user. The duration of a vibration indicates the distance between the user and

the person in his or her visual field. The longer the vibration, the closer the people are,

which is estimated by the face image size determined during the face detection process.

An overall perspective of the system and its process flow is given below. When

a user encounters a person in his or her field of view, the face is detected and recognized

(if the person is not in the face database, the user can add it). The delivery of information

comprises two steps: Firstly, the identity of the person is audibly communicated to the user

(we are currently investigating the use of tactons [341] to convey identities through touch,

but this is part of future work). Secondly, the location of the person is conveyed through a

vibrotactile cue in the haptic belt, where the location of the vibration indicates the direction

of the person and the duration of vibration indicates the distance between the person and the

user. Based on user preference, this information can be repeatedly conveyed with every cap-

tured frame, or just when the direction or distance of the person has changed. The presence

of multiple people in the visual field is not problematic as long as faces are not occluded

and can be detected and recognized by the Social Interaction Assistant. We are currently in-

vestigating how to effectively and efficiently communicate non-verbal communication cues

when the user is interacting with more than one person.

10.2 Related Work in Haptic Vibrotactile Technology for Information Delivery

Of all the modalities that engage the human somatosensory system, vibrotactile stimulation

has become very popular in the recent past due to the sophistication and unobtrusiveness of

vibrotactile displays [342], as well as their portability and wearability [343]. But this new

modality is far from displacing the primary delivery modalities due to the fact that haptics

(touch) is a low bandwidth channel compared to audio or video. Previously, complex vi-
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bratory pulses have been designed using combinations of vibration dimensions [344][345],

such as vibration frequency, amplitude, duration, rhythm and location, and by using human

psychophysical perception (like sensory saltation [346]). There are infinite ways to map

meanings to vibration dimensions, but conceptually, there are two extremes: symbolic and

literal. On one end of the spectrum, tactons [341], or tactile icons, use a symbolic mapping

to arbitrarily assign meaning to vibration dimensions. On the other end, a literal mapping

assigns vibrotactile cues to intuitive somatosensory signals that humans are already ac-

quainted with, such as a shoulder tap to obtain one’s attention. Encoding schemes may also

fall somewhere in between such that the vibrotactile cues may be intuitive, but still require

training. Studies on symbolic and literal mappings have shown an extraordinary increase in

information delivery bandwidth for vibratory cues, thereby making a case for vibrotactile

stimulation as a potential alternative (or at least an augmentation) to audio and video.

Vibrotactile displays have been implemented in a variety of form factors including

desktop displays, handheld devices, and wearable systems, such as gloves [257], jackets

[347], and jewelry [263]. In this paper we focus our discussion to vibrotactile displays

worn around the waist, commonly referred to in the literature as haptic or vibrotactile

belts. Vibrotactile belts have found a number of applications including, but not limited to,

pedestrian navigation [348][349] [350] (vibrations guide users from a starting point to their

destination); balance control [351] for people with vestibular damage (vibrations convey

tilt information); virtual reality [352] (vibrations indicate collisions with virtual objects);

spatial orientation aids for pilots [353] and astronauts [354] (vibrations provide spatial ori-

entation towards magnetic north or Earth’s gravity vector in zero-gravity environments);

psychophysical study of human vibrotactile perception [345] [355] (experiments on vibro-

tactile spatial acuity, spatio-temporal pattern perception, saltation, etc.); and social interac-

tion assistant aids [252] for individuals who are blind or visually impaired (vibrations are

used to communicate nonverbal cues). Unlike other form factors, belts tend to be physically

discreet and part of almost all everyday clothing. A variety of vibrotactile belt designs and

implementations have been proposed in the literature (please refer to Section II for a detailed

analysis). However, existing designs have two primary limitations: (1) Limited applicabil-
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ity due to application-specific designs; and (2) Usability and performance requirements

tend to be secondary to functionality, thereby forcing readers to question the real-world use

of the application itself. This is the natural inclination of a technology-centric, as opposed

to human-centric, approach towards interface design. A human-centered design strategy

critically accounts for all users of the technology throughout the lifecycle of the design

and development of a human machine interface. In this work, we generalize the scope of

our users to include both customers: end users of a specific technology; and developers

(engineers, scientists, and researchers): those modifying the product for novel applications.

Our literature survey revealed over twenty vibrotactile belt designs from academic

publications and electronics hobby forums. We’ve selected a subset for discussion here

based on the maturity of their implementation and availability of information regarding

implementation details.

Cholewiak et al. [355] introduced a reconfigurable and scalable haptic belt design

for use in human haptic perception experiments, where vibration motors were wired di-

rectly to a waveform generator, and attached via Velcro onto an elastic belt. The belt was

specifically intended for psychophysical experiments, and its wired implementation lim-

its portability, ease of movement, unobtrusiveness and discreetness. Van Erp et al. [348]

presented a wireless, elastic vibrotactile belt for waypoint navigation. The belt consisted of

eight vibration motors with adjustable locations. The belt was controlled by a minicomputer

placed inside a backpack worn by the user. The paper provides no information regarding

the scalability of the belt, i.e., the option of removing or adding vibration motors. More-

over, it is unclear if the amplitude and/or frequency of the vibrations can be adjusted. For

studying human haptic perception, Jones and Ray [345] built a wireless haptic belt made of

fabric consisting of 8 vibration motors held by Velcro. A back display was also constructed,

which consisted of a four-by-four matrix of vibration motors. The locations of the vibra-

tion motors were adjustable, but the paper does not mention whether amplitude or timing

could be controlled, nor is there any mention of the capability to add or remove vibration

motors. Further, the bulkiness of the system, and its excessive cabling, could limit ease of
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movement, unobtrusiveness and discreetness.

ActiveBelt [350] is a wireless haptic belt for pedestrian navigation, among other

applications. The belt consisted of eight fixed vibration modules with elastic between vi-

bration sites and used a large, onboard processing unit. Dimensions of the vibratory signals,

such as frequency and timing, could be altered, but the reconfigurability and scalability of

ActiveBelt is limited given its fixed vibration motors. Further, although the paper claims

universal accessibility in that the belt can adapt to varying waist sizes, this may be only

partially true-from our own past experiences, extreme waist sizes (either very small or very

large) may not be able to use such an implementation.

Ferscha et al. [356] presented a wireless vibrotactile belt for spatial awareness.

Vibratory dimensions, such as intensity and timing, could be altered in a portable and

lightweight design. However, since the belt used eight fixed vibration motors, its recon-

figurability and scalability is limited. The Tactile Wayfinder [349], by Heuten et al., is a

wireless vibrotactile belt for pedestrian navigation. It has many of the same advantages

and disadvantages of Ferscha et al.’s belt design, but with a few differences; one advantage

being The Tactile Wayfinder has an available API for application creation.

Perhaps the most accomplished of the aforementioned belt designs is the TactaBelt

by Lindeman et al. [352], which consisted of eight vibration motors connected via Velcro to

neoprene. The vibration motors of the belt are reconfigurable and scalable, and their vibra-

tory dimensions are adjustable. Although the TactaBelt is functional and rich in features,

there is little to no discussion regarding the usability and performance of the belt-this is also

a reoccurring problem with all aforementioned belt designs. The rigidness and durability

of this belt is questionable given that vibration motors were attached to the belt via Velcro.

Whereas this solution may work in controlled environments, such as a virtual reality setup

in a laboratory, it’s unlikely to work well in real world conditions and under everyday use.

In [357], Ram and Sharf introduced The People Sensor: an electronic travel aid, for

individuals who are blind, designed to help detect and localize people and objects in front

of the user. The distance between the user and an obstacle is found using ultrasonic sensors
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Table 10.1: Design Requirements for Vibrotactile Belts

and communicated through the rate of short vibratory pulses, where the rate is inversely

proportional to distance. However, the researchers did not do any user testing to determine

the usefulness of their technology.

10.3 Design Requirements

Identifying the shortcomings of vibrotactile belt designs, reviewing existing design guide-

lines in the literature, and combining these with our own past experiences, we’ve compiled

a set of design requirements for vibrotactile belts, depicted in Table I.

In the above table, usability is the most important metric that captures the capa-

bility of a haptic platform to be used for exploring novel applications; in other words, if

there are usability issues in a research platform, it will bias the outcome of any research

experiment, thereby distracting the researcher from the true outcomes of an experiment.

Following usability, functionality takes the next higher precedence, as it allows a researcher

to configure the device to his or her novel application needs. Offering higher functionality

allows adaptability of the research platform to various experiments. Finally, performance
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captures the lenience offered by the platform during experimental use. Mostly, higher per-

formance reduces the researcher’s requirement to focus attention on the research platform,

and allows him/her to focus on the study itself. We discuss some of the existing work in

eliciting such design requirements for vibrotactile belt and add design considerations that

we have identified through our experience.

Regarding the usability of a vibrotactile belt, Lindeman et al. [352] described a

vibrotactile wearable device with limited cumber as one that is easy to put on or take off,

and doesn’t hinder movement with excessive wiring and bulky modules. Adding to this de-

scription of limited cumber, we include factors such as comfort and unobtrusiveness [358],

ergonomics, lightweight and adaptability to fit different waist sizes. A vibrotactile belt

should be intuitive so that it is easy to learn to use from both an end-user’s perspective,

as well as a developer’s perspective. The latter will have much more vested interest in re-

configuring the belt for his or her intended application. Lastly, a vibrotactile belt should

be discreet in that it is physically discreet and silent. As belts are a common part of ev-

eryday attire, keeping the design of vibrotactile belts close to accustomed dressing attire

will help gain wider acceptance among users. Vibration motors can be noisy, which when

used in public, can be distracting to those around us. Hence, vibrotactile modules should

be designed to reduce noise.

Lindeman et al. [352] proposed three functionality attributes: expressiveness, scal-

ability and reconfigurability as being important for a vibrotactile display. The first attribute,

expressiveness, was met by providing variability of vibration dimensions: intensity, timing

and location. However, the paper gives little detail about what exactly defines scalability

and reconfigurability of a vibrotactile belt. We extend their work to define scalability as

the capability to add/remove tactors to/from a vibrotactile belt without performance degra-

dation; and reconfigurability, which is related to the adaptability of the belt to different

applications and uses, is defined as the capability to (1) easily change the placement of tac-

tors on a vibrotactile belt, and (2) easily change the vibrotactile belt’s functions through an

Application Programming Interface (API). Lastly, portability is an important functionality
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influenced by its wearability and wireless connectivity. Attributes that describe performance

design requirements include durability, long wireless communication range, negligible la-

tencies in wireless communication, long battery life and replaceable/rechargeable batteries.

Although the importance of these attributes will largely depend on an application’s min-

imum performance requirements, it’s recommended that all of the proposed attributes be

taken into account when developing a versatile vibrotactile belt.

As mentioned earlier, the versatility and usefulness of existing vibrotactile belt

implementations are severely limited due to an application-specific focus. Such a non-

structured approach results in replication of work between researchers and developers. Our

goal, through this paper, is to establish a repeatable means of approaching the development

of vibrotactile belts. While we discuss most of the design issues in the context of develop-

ing vibrotactile belts, we are confident that these guidelines can be immediately extended

to any wearable vibrotactile display technology.

10.4 Implementation

10.4.1 Form Factor

A belt’s form factor ultimately determines its wearability and portability. To this end, we

attempted to make the belt as robust and wearable as possible (see Fig. 10.4.1). The control

box offers complete belt control along with wireless connectivity and battery power supply,

and measures 8 cm by 4 cm by 2 cm. The individual tactor modules enclose a separate

controller and a vibration motor, and measure 5.4 cm by 3.49 cm by 1.47 cm. The belt was

designed to be lightweight (harness: 92.14 g; each tactor: 21.26 g; and controller: 95.68 g),

comfortable and physically discreet.

The belt harness (flat nylon webbing) is easily adjustable to any waist size using

plastic buckles while the tactors and control box are on pocket clips and can be adjusted

appropriately per application, in seconds. This design was chosen over a Velcro based im-

plementation (popularly encountered in our literature survey) to achieve better adaptability

to different waist sizes; to hold tactors very close to the body during use; and to offer ro-

224



bustness and rigidity for real-world applications. The control box and the individual tactors

are connected over a 4 -wire I2C bus that carries power along with the data and clock.

This configuration, allows plug and play adding, removing and reconfiguring of tactors for

scalability and reconfigurability.

10.4.2 System Architecture

In order to provide two important functional requirements of expressiveness and scalability,

we employ a network of distributed controllers. The hierarchical system level design of

the belt, shown in Fig. 10.5, utilizes an independently functioning wireless main controller

(Haptic Belt Controller) enclosed within the control box, and auxiliary controllers (Tactor

Controllers) for monitoring and controlling each vibration motor, represented as tactors in

Figure 10.5.

While the main controller offers connectivity to a command control center (PC or

PDA), each tactor controller takes care of the micromanagement of vibrotactile cueing at

each vibration motor. This multi level hardware processing buffers commands, and conse-

quently allows for a higher performance and responsiveness of the system when compared

to a centralized processing system. Each sub-system encapsulates its functionality locally
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so that it provides functional independence from other sub-systems, all while achieving

this with minimal data transmissions. Any shared data is stored centrally on the main con-

troller and is distributed on power-up or redistributed after a configuration change. One

of the important design requirements of a haptic belt, reconfigurability, is the capability to

configure the belt’s parameters easily with the bare minimum software tools. To this end,

the belt connects through character terminal interface with Hayes AT command like serial

communication interface.

10.5 Hardware Design

10.5.1 Control Box

The control box receives all control messages transmitted from the command control center

(PC or PDA) to the haptic belt. As shown in Fig. 10.5, the most important components of

the control unit are as follows:
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10.5.1.1 Main Controller

A specific implementation of the popular Arduino Open Source hardware platform (based

on Atmel ATMeg168 microcontroller), called Funnel IO , was used for the main controller.

10.5.1.2 Bus Communication

One of the most important requirements for the design of the haptic belt was the need to

reduce the number of wires connecting tactors. It was this constraint which led to the use

of individual controllers at each of the tactors. Complementing this choice, I2C offered

the least number of wires with reliability. Thus, a four wire bus implementation, 2 wires

for power, one for data (SDA) and one for clock (SCL), was adopted. The implementation

allows up to 16 tactors on the belt simultaneously.

10.5.1.3 Power Supply

Much consideration was given to the possible use time of the belt when specifying and

sizing the power supply technology. Considering the space constraints, Lithium-polymer

chemistry provides the most charge density for its size, and so a single cell 3.7V 800 mAh

battery that allows up to 6 hours of continuous operation was chosen.

10.5.1.4 Wireless Hardware

Our performance requirements for the wireless module included transmission range of a

large room, and the inclusion of a separate microcontroller to manage transmission without

impacting general controller function. Either of two integrated wireless modules (Digi’s

XBee ZigBee module and Roving Network’s RN-41 Bluetooth module) were chosen to

connect to the Funnel board through a dedicated UART providing the necessary wireless

connectivity and control.
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10.6 Tactor Modules

As shown in Fig. 2, the tactor modules individually contain a microcontroller that negotiates

its role with the main controller through the I2C bus. An Atmel ATtiny88 microcontroller

forms the core of the tactor module. The PWM unit on the microcontroller is used for am-

plitude control and temporal rhythm generation, as described in Software Design (Section

10.7), while running independently from the main controller. A MOSFET driver provides

the necessary switching between the digital output and the motor actuations. Six GPIO

pins of the ATtiny88 are configured to read a DIP switch setting that assigns each tactor

module’s bus address. This address is used by the main controller to dynamically assign

the I2C bus address at startup. This eliminates the need to reprogram all tactor modules for

different applications/uses, thereby providing plug-and-play functionality. Vibrations are

actuated through use of a 12 mm coin-type shaftless vibration motor, which has a rotational

speed of 150Hz and a nominal vibration of 0.9g. The motors were mounted such that the

vibration axis is parallel to human skin causing a net lateral vibration along the skin.

10.7 Software Design

The software components of our proposed design contain two important aspects: the firmware,

which is programmed on the microcontrollers, and the User Interface (UI) that allows the

design of vibrotactile rhythm patterns and access to the operational modes of the haptic belt.

10.7.1 Firmware

As explained earlier, the proposed haptic belt system makes use of a distributed microcon-

troller network framework with a separate main controller and the tactor microcontrollers

for increased functionality and reliability. Below we discuss the important aspects of the

firmware for the two controllers.
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10.7.1.1 Main Controller Firmware

The main controller provides communication between the command control (through wire-

less protocols) and the tactors on the belt. The main controller’s firmware can be categorized

into 7 primary functional areas as shown in Fig. 10.2.

Figure 10.2: Main Controller implementation

(a) Wireless Communication Module: All communication from the command control cen-

ter (PC) is received through the ZigBee/Bluetooth wireless module. This module reads

and writes data to and from the hardware buffers in a continuous loop. All data received

is automatically sent to the Command Parser for further interpretation.

(b) Command Parser and ASCII User Interface: This module provides four primary user

modes, namely, a) new belt configuration; b) query current configurations; c) test vibro-

tactile patterns; and d) binary command mode. These modes allow the user to configure,

use and debug individual tactors and the belt as a whole.
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(c) Learn Command Module: In the proposed belt design, versatility is provided through

user definitions of the Temporal Rhythm Unit (TRU) and Temporal Rhythm Sequence

(TRS) (See Section VI.B). This module handles all the activities of the learning module

while building rhythm pattern definitions (TRS and TRUs). This module also sends all

new configurations to the Memory management module (via command parser) to be

stored in the on-chip memory.

(d) I2C Communication Module: This module is responsible for querying all tactors (or

any devices) on the bus and stores their addresses into a data table. This module is

also responsible for sending commands and receiving status codes from all the tactor

modules.

(e) Memory Manager: The ATmega168 controller has limited SRAM for runtime opera-

tions. The memory manager is implemented so that all rhythm definitions or text-based

menus can be stored and retrieved from the on-chip Flash memory. The command

parser handles the control flow to the memory manager.

(f) Activate Command Module: This module handles the binary encoding of a tactor acti-

vate command. It packages the requested rhythm (TRS) and magnitude (TRU) with the

appropriate cross-referenced tactor bus address and sends the command to the specific

tactor for activation.

10.7.1.2 The Tactor Controller

The second part of the system includes the hardware for the tactor module. As shown in

Figure 2, the tactor modules individually contain a microcontroller that negotiates its role

with the main controller through the I2C bus. In this section, we provide details of the

design choices and the implementation of the tactor.

The Vibration Motor: The vibrations are actuated in our tactor modules through the

use of 12 mm coin-type shaftless vibration motors manufactured by Precision Microdrives,

which have a rotational speed of 150Hz and a nominal vibration of 0.9g. These motors use

an off-center mass to actuate vibrations. When the motor is powered, the rotation of the
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shaft, and hence the eccentric mass, causes vibrations that is maximal along the direction

perpendicular to the rotational axis. In our implementation, we mounted the motor in such

a way that the vibration axis is parallel to human skin causing a net lateral vibration along

the skin. Recently, we have incorporated cylindrical vibration motors that are mounted such

that the vibration axis is perpendicular to the human skin. Experimental results with both

have not revealed significant difference in their vibration conveyance.

Dimensions of the Vibration Signal The three important dimensions of the vibration

signal, as delivered through our haptic belt, include a) the location of vibration, b) the

amplitude of vibration, and c) the timing and temporal rhythm of vibration:

(a) Location of Vibration: The location of vibration is reflected by the flexibility of our belt

which allows the easy movement, addition or removal of tactors from the belt strap.

This allows users of the belt to achieve any positional configuration that is desired for

the application in focus.

(b) Amplitude of Vibration: A pulse-width modulation (PWM) based amplitude control

(similar to digital sound modulation) is incorporated to control the intensity of vibra-

tions. The applied voltage is modulated in 20 microsecond intervals to achieve desired

levels of intensity. Although the design allows for a much smaller resolution, human

sensory mechanisms cannot practically distinguish them. Figure 10.3(a) and 10.3(b)

shows the duty cycles under 2 different magnitudes, and Figure 10.3(c) and 10.3(d)

shows sample waveform of the actuation signals generated by the tactor microcontroller

under 25% and 75% intensities.

(c) Timing and Temporal Rhythm of Vibration: Temporal rhythm patterns refer to the

actuation of the vibrators as discrete time pulses. Readers should not confuse these

temporal pulses with the pulse-widths used for magnitude control as described in the

section above. The vibration of any tactor on the belt is divided into discrete temporal

time events referred to as the Temporal Rhythm Unit (TRU), where each TRU is 50

ms long. The choice of 50 ms per TRU was determined experimentally, where we
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Figure 10.3: (a) 25%; (b) 75% Pulse-width modulation; (c) and (d) Vibration motor mag-
nitudes of 25% and 75% achieved using duty cycles with 25 pulses over a 50 ms vibration
period.

found that any vibration pulse of duration lesser than 50 ms was not perceivable to

the participants. All vibrations are defined in terms of the number of TRUs for which

the vibration motor should be ON or OFF. This sequence of ON-OFF patterns forms

a Temporal Rhythm Sequence (TRS). Note that any ON TRU can be controlled in

magnitude by incorporating the PWM amplitude control as explained in the previous

section. Two sample TRS are shown in Figure 10.4 below. The first sequence has 5

TRUs, ON-OFF-ON-ON-OFF, totaling 250ms with amplitude of 100%. The second

TRS has 4 TRUs, ON-OFF-ON-OFF, totaling 200ms with amplitude of 50%.

The tactor controller firmware communicates directly with the main controller firmware

as a slave device over the I2C bus and maintains the PWM timing for the local vibration

motor. A two-byte command structure is used between the main controller and the tac-

tors. Similar to the main controller firmware, the functionality of the tactor controller can

be categorized into five important roles (Fig. 10.5). While the communication module

and command parser are similar as above, the memory module and the low-level hardware

module (PWM module) form the critical components of the tactor module. The memory

manager module is responsible for temporarily storing the definition of the TRU and TRS

that are sent over to the tactors at boot up. At run time, a two-byte activate command se-

lects the appropriate TRU and TRS for each tactor, which the PWM module executes on

the vibration motor.
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Figure 10.4: Sample Temporal Rhythm Sequences (TRS) with different magnitudes of vi-
bration encoded on the Temporal Rhythm Units (TRU) (a) 100% Magnitude, (b) 50% Mag-
nitude.

Figure 10.5: Tactor Controller implementation
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10.8 User Interface

The user interface on the haptic belt currently supports two complementary formats: 1)

A console based Hayes AT command set-like interface for quick access to all functional-

ities of the belt, and 2) an Application Programming Interface (API) for more advanced

programming in higher level languages and for Graphical User Interface development.

Figure 10.6: a) Graphical User Interface on a Portable Platform. b) Temporal Rhythm
Sequence (TRS) Design Interface.

Currently, we have implemented a PC based and a PDA based GUI for controlling

and configuring the haptic belt. The GUI allows the design of complex vibrotactile rhythm

and spatio-temporal patterns. The API has the portability of supporting a wide range of

ubiquitous computing platforms, including mobile devices. In Fig. 10.6(a), we show the

PDA interface with highlights on some of the important features. While the functionalities

on the PC are very similar to the PDA version, additional features on the PC allow easy

configurability of the belt. The example feature shown in Fig. 10.6(b) shows the setup used

for designing a TRS. Users can select specific rhythms and vary the TRUs appropriately

based on the application. Each TRU is 50 ms long, and the entire TRS can be a maximum
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of 3 seconds long. The interface allows a user to compose a pattern of patterns by inter-

leaving TRSs. The case study discussed later in this paper used these controls to design

haptic patterns related to the study. Our graphical interface is similar to other haptic pattern

authoring software like posVibEditor [359], and provides a framework for rendering digi-

tally modulated vibration patterns. As there is a lack of standardization and open sourcing

among authoring tools for vibrotactile patterns, our efforts are unique in that our work is

available for download, as of this publication.

10.9 Experiments

The experiments presented here tested the haptic belt system for its use in conveying non-

verbal cues, specifically cues pertaining to where communicators are located in front of the

user in terms of direction and distance. Figure 10.1 shows seven vibrators located in the

front of the user in the form of a semicircle. This setup allowed us to focus on accurately

assessing the capabilities of the haptic belt.

10.9.1 Experiment 1: Localization of Vibrotactile Cues

Prior work [352] showed that reasonable localization accuracy-between 80% to 100% ac-

curacy depending upon tactor location-was possible with a belt design similar to what we

presented above. Our experiment is similar, but offers a few variations to verify the results

obtained in [352]. Subjects: 10 subjects (8 males and 2 females), of ages between 24 and

59, participated in this experiment. One of the subjects was blind; the rest were sighted.

Subjects had no known deficits related to their tactile sense of the waist area. Further,

no subjects had prior experience with haptic belts, but all subjects had some exposure to

vibrotactile cues (e.g., vibrations of a cell phone).

10.9.1.1 Apparatus:

The haptic belt described earlier was used for this experiment. Vibratory signals were 600

ms in length, and had a frequency and intensity well within the range of human perception.

In contrast to [352], cues are longer-600 ms compared to 200 ms-and we do not use head-
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phones to mask subtle vibration noise, nor do we randomly vary intensity with each cue;

the reason for these changes is that we are mostly concerned with how the belt as a com-

plete system accomplishes non-verbal communication, rather than the spatial acuity of the

waist. Hence, if a specific intensity of vibration feels different around the waist, and some

vibrations can be heard, and if these cues help in tactor localization, then this redundant

information should only add to the usability of the system.

10.9.1.2 Procedure:

Subjects put on the haptic belt over their shirt and around their waist such that the middle

tactor (#4) was centered at their navel, and the endpoint tactors (#1 and #7) were at their

left and ride sides, respectively. As the belt has LEDs that light up to indicate tactor acti-

vation (used for testing the belt), subjects were instructed to not look down at the belt any

time during the experiment. Next, subjects were familiarized with tactor numbering: the

experimenter activated tactors in order from #1 to #7, and spoke aloud the number of the

activated tactor. This process was repeated twice for each subject.

The training phase involved 35 trials where each tactor was randomly activated 5

times (with approximately 5 seconds between tactor activations) and subjects had to identify

the number of each activated tactor. A visual guide was provided for subjects to help recall

tactor numbers; this guide was a white board with a drawing of a semicircle (the belt) and

the numbers 1 through 7 (tactors) on the belt. Feedback was given during the training

phase to correct wrong guesses. The testing phase was similar to the training phase, but

involved 70 trials where each tactor was randomly activated 10 times, and feedback was not

provided. Subjects stood during the entire experiment.

10.9.1.3 Results:

The localization accuracy for each tactor (number of times identified correctly out of the

total number of times activated) was averaged across subjects and is shown in Figure 10.7

(indicated by the dots centered within each error bar), where error bars indicate 95% con-
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fidence intervals. The overall localization accuracy across tactors and subjects was (92.1

7.0)%.

Figure 10.7: Experiment 1 Results: Mean Localization Accuracy for each Tactor, Averaged
across Subjects, with 95% Confidence Intervals

10.9.1.4 Discussion:

An overall localization accuracy of (92.1 7.0)% (an improvement over that of [352]) is

promising and shows that our prototype haptic belt can be reliably used to indicate the

direction of someone in the user’s visual field. Moreover, 100% of misclassifications were

off by a single tactor location; hence, even when users made a mistake in localizing an

activated tactor, they still had a very good idea of the general direction of someone in their

visual field.

We hypothesize that the increase in accuracy is largely due to greater cue duration

(600 ms as opposed to the 200 ms used in [352]); it is well known that larger cue durations

make localization easier [353]. Moreover, redundant information provided by the belt, such

as subtle audible cues when tactors are activated, could have helped as well. Subjects found

tactors closer to the midline easier to localize, which agrees with the results found in the
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literature where spatial acuity improves near the sagittal plane [352] [353] given that spatial

acuity is better at anatomical reference points-in this case, the navel.

It is hypothesized in [352] that the tactors at the end of the semicircle, which rest at

the sides of the torso, act as landmarks and are easier to localize; but in our experiments, we

noticed that tactor #1 could be localized more accurately than tactor #7, as shown in Figure

4. We are investigating this asymmetric result.

10.9.2 Experiment 2: Signal Duration as Cue for Distance

Experiment 2 included two sub-experiments to examine the use of vibrotactile cues to in-

dicate both direction and distance. Experiment 2A focused on how well subjects could

perceive cue duration, regardless of tactor location. Experiment 2B tested how well sub-

jects could perceive both tactor location and cue duration at the same time.

10.9.2.1 Subjects:

The ten subjects introduced for Experiment 1 also performed Experiment 2A and 2B.

10.9.2.2 Apparatus:

The belt and signal properties were identical to those of Experiment 1 with the exception

of signal duration. For Experiment 2A and 2B, signal durations of 200 ms, 400 ms, 600

ms, 800 ms and 1000 ms were used. These durations may refer to any distance in the

implementation of the system; e.g., less than 2 ft (1000 ms), 2 ft to 4ft (800 ms), 4 ft to 6 ft

(600 ms), and so on.

10.9.2.3 Procedure:

In the first part of Experiment 2A, subjects were familiarized with the five cue durations.

All five durations were delivered to the user at each of the seven tactors from #1 to #7,

in order. The training phase for Experiment 2A involved 35 trials where each tactor was

randomly activated 5 times (one time for each of the 5 durations) with approximately 5

seconds between tactor activations. Subjects were instructed to guess only cue duration.
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The testing phase involved 70 trials with each tactor activated twice for each duration. As

in the training phase, subjects had to guess the duration of the cue, but no feedback was

provided. Immediately following Experiment 2A, subjects began Experiment 2B. First,

the familiarization and training phase of Experiment 1 were repeated. The testing phase

involved 70 trials similar to 2A, but subjects now had to guess both cue duration and tactor

location. As in Experiment 1, subjects stood the entire experiment, had access to a visual

guide and were told not to look at the belt.

10.9.2.4 Results:

Classification accuracy of duration (number of times identified correctly out of the total

number of times used) was averaged across subjects and is shown in Figure 10.8 (indicated

by the dots centered within each error bar), where error bars indicate 95% confidence in-

tervals. Note that the x-axis of Figure 5 lists durations as #1 (200 ms), #2 (400 ms), #3

(600 ms), #4 (800 ms) and #5 (1000 ms). The results for both Experiment 2A and 2B are

included in Figure 5. The overall classification accuracy of duration across tactors and sub-

jects was (73 3.6)% and (67 11.8)% for Experiment 2A and 2B, respectively. There were

not any noticeable differences in classification accuracy of duration between different tactor

locations in either part of the experiment.

10.9.2.5 Discussion:

In Experiment 2, subjects were able to easily identify durations of 200 ms and 400 ms,

most likely due to their short length. However, subjects had difficulty distinguishing be-

tween 600 ms, 800 ms and 1000 ms. Two subjects suggested that a logarithmic scale of 200

ms, 400 ms, 800 ms, 1600 ms, and so on, might improve recognition. However, longer cues

slow down use of the system, making it more difficult to use in real time. Another option

would be to use fewer cues (e.g., 200 ms, 500 ms and 1000 ms) to provide only coarse dis-

tance information. Regardless, the overall classification accuracy of duration at (73 3.6)%

is impressive, and accuracies for longer durations are satisfactory. The skill of subjects

at classifying lengths of vibrations varied, resulting in large variations in classification ac-
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Figure 10.8: Mean Classification Accuracy of Duration, Averaged across Subjects and Tac-
tors, with 95% Confidence Intervals. Durations listed in figure correspond to 200 ms (#1),
400 ms (#2), 600 ms (#3), 800 ms (#4) and 1000 ms (#5)

curacy for longer cue durations (see Figure 5). In any case, 94.7% of misclassifications

were off by only 200 ms (5.3% of misclassifications were off by 400 ms), which shows that

subjects were quite accurate with their estimates.

In Experiment 2B, overall classification accuracy of duration dropped to (67 11.8)%.

We hypothesize that this small drop in mean accuracy, as well as an increase in variance,

was due to the cognitive load of having to attend to both vibration duration and tactor loca-

tion. In any case, overall accuracy is still satisfactory, and 89% of misclassifications were

off by only 200 ms (11% of misclassifications were off by 400 ms). Overall tactor local-

ization accuracy for Experiment 2B was (94.3 5.7)% (averaged across subjects, tactors and

durations), which is similar to the localization accuracy of (92.1 7.0)% found in Experiment

1. Once again, 100% of misclassifications were off by a single tactor location. We conclude

that tactor locations are still easy to perceive even when cue length varies and attention must

be divided between cue duration and location.
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10.9.3 Experiment 3: Vibrotactile Rhythm as Cue for Distance

As an alternative to vibration duration, we also explored the use of vibrotactile rhythm to

deliver distance information.

10.9.3.1 Tactile Rhythm Design

The tactile rhythms used in our experiments were motivated by results reported in [344],

where just noticeable differences of vibrotactile duration were assessed. Subjects perceived

pulses of duration below 100ms as a poke or nudge. Between 100ms to 2000ms, the just

noticeable difference is an increasing curvilinear function of duration; although between

100ms to 500ms, the function is approximately linear. Based on these results, Geldard

[344] recommended three durations, specifically 100ms, 300ms and 500ms, for accurate

identification by subjects.

Tactile rhythms delivered using a vibrotactile belt were used in [348] to convey dis-

tance information during waypoint navigation. Time between vibratory pulses was varied

using one of two schemes: monotonic (rate is inversely proportional to distance) or three-

phase-model (three distinct rhythms mapped to three distances). Distinct tactile rhythms

are promising for use with multidimensional tactons [360] [361], which are vibratory sig-

nals used to communicate abstract messages [361] by changing the dimensions of the signal

including frequency, amplitude, location, rhythm, etc. Based on pilot test results, we chose

to pursue distinct rhythms over monotonic rhythms as users find it difficult to identify in-

terpersonal distances using monotonic rhythms as the vibratory signal varies smoothly with

changes in distance.

We conducted pilot studies to determine rhythm patterns that are convenient for

users to identify vibratory rhythms. Through use of a vibrotactile belt, we evaluated use of

five rhythms, each 10 seconds in length: 50ms vibrotactile pulses separated by pauses of

length 50ms, 100ms, 300ms, 500ms and 1000ms. Subjects found rhythms with pauses of

100ms, 300ms and 500ms difficult to discriminate between. Based on these findings, we
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selected the four rhythms depicted in figure 10.9; this design includes more separation of

pauses within 100ms to 500ms, and a small increase of 1000ms to 1200ms (much longer

durations may be too time consuming for communication [344]). In the Social Interaction

Assistant, these four tactile rhythms are mapped to interpersonal distances corresponding

to intimate, personal (close phase), personal (far phase) and social (close phase) space re-

spectively.

Figure 10.9: The on/off timing values of the four tactile rhythm designs, and corresponding
distances, used in the experiment.

10.9.3.2 Experiment

Aim: The aim of this experiment is to evaluate participants’ performance identifying the

tactile rhythms of figure 1 as they relate to interpersonal distances. Moreover, to ensure

that the proposed tactile rhythms do not hamper subjects’ ability to localize vibrations, as

evaluated in previous work [252] to convey directions, we evaluate how well subjects can

identify both cues as conveyed through tactons.

Hypotheses: (1) Subjects will achieve at least 90% accuracy at identification of tac-
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tile rhythms; (2) Subjects will achieve at least 90% accuracy at identification of vibration

locations; (3) Subjects will achieve at least 80% accuracy at identification of complete tac-

tons;(4) Subjects’ ability to localize vibrations will depend on the location of the vibration

motor (tactor) around the waist; (5) Subjects’ ability to identify tactile rhythms will depend

on the type of rhythm; and (6) Subjects’ ability to localize vibrations will not depend on

rhythm type, and vice versa.

Subjects: 11 males and 4 females of ages 22 to 60 (avg. 32) participated; one

subject is visually impaired.

Apparatus: An elastic vibrotactile belt [252] was used for this experiment. The

design of the belt was based on the experiments of Cholewiak, et al. [355]. The belt

consists of 7 tactors equidistantly placed in a semi-circle with the first, fourth and seventh

tactor at the user’s left side, navel, and right side, respectively. Each tactor consists of a

pancake motor of diameter 10mm and length of 3.4mm, and operates at 170Hz.

Procedure: Subjects wore the belt underneath their clothing and sat during the en-

tire experiment. Subjects had access to visual guides-a semi-circle with tactors #1-7 drawn

and interpersonal distances labeled as rhythms #1-4-to recall tactor and rhythm numbers,

respectively. First, subjects were familiarized with vibration location as it pertains to di-

rection. Each tactor was vibrated for 3 seconds, and the tactor number was called out by

the experimenter. Next, subjects were familiarized with tactile rhythms. Each rhythm was

presented for 7 seconds through the fourth tactor at the navel, and the rhythm number was

called out by the experimenter. Next, subjects began the training phase where they were

asked to identify the direction (through the location of the activated tactor) and distance

(through the type of rhythm) indicated by each tacton. All 28 tactons (4 tactile rhythms at

7 different locations/tactors) were randomly presented for 10 seconds each. Subjects were

encouraged to respond before the 10 seconds ended. Subjects had to achieve a recognition

accuracy of 80% or more on each tacton dimension to proceed immediately to the testing

phase; otherwise, the training phase was repeated (only 6 subjects had to repeat training,

and all passed on the second try). The experimenter corrected wrong guesses and confirmed
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correct guesses. The testing phase was similar to the training phase, except no feedback was

provided by the experimenter concerning right or wrong guesses, and each of the 28 tactons

was randomly presented 3 times for a total of 84 trials.

Results: The overall recognition accuracy follows (See Figure 10.10): location

(mean: 95%, SD: 4%), rhythm (mean: 91.7%, SD: 5.7%) and both (mean: 87%, SD:

8.5%). These results support hypotheses (1)-(3), and show that, overall, subjects had little

difficulty in recognizing rhythms and locations as they pertain to distance and direction,

respectively. Feedback from participants after the experiment further supported this. From

herein, reported ANOVA results are from a two-way ANOVA on complete tacton recogni-

tion accuracy through location and rhythm. The overall recognition accuracy of each tactor

location is shown in figure 2. Subjects felt that the vibrations of tactor #1 (left side), #4

(navel) and #7 (right side), were easier to localize compared to tactor #2, #3, #5 and #6.

This result is easy to explain as spatial acuity is better at anatomical reference points [355].

Although figure 10.10 does show a very small difference between recognition accuracies,

which supports what subjects reported, there was no significant difference between recogni-

tion accuracy of tactor locations [F(6,1232)=1.96, p=0.068], hence hypothesis (4) cannot be

accepted. The overall recognition accuracy of rhythms is shown in figure 10.11. Subjects

felt that rhythm #2 (personal-close) and #3 (personal-far) were more difficult to identify

than rhythm #1 (intimate) or #4 (social-close), which is supported by figure 3. A significant

difference between recognition accuracy of rhythms [F(3,1232) =5.70, p=0.001] supported

hypothesis (5). No interaction was found between location and rhythm for recognition ac-

curacy of complete tactons [F(18,1232)=0.91, p=0.569], supporting hypothesis (6).

After the experiment, subjects filled out 10-level Likert scales-1 (lowest) to 10

(highest). Subjects rated their ability to localize vibrations (mean: 8.4), identify rhythms

(mean: 7.4), intuitiveness of location to convey direction (mean: 9.7) and intuitiveness of

rhythm to convey distance (mean: 8.9). Overall, subjects felt that they could accurately

identify the proposed tactons, although identifying direction was easier than distance, and

both schemes were intuitive.
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Figure 10.10: Overall direction recognition accuracy of each tactor location with standard
deviations.

Figure 10.11: Overall distance recognition accuracy of each rhythm type with standard
deviations.
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10.10 Other Applications for the proposed technology

As briefly mention in Section I, haptic belts provide for a wide array of useful application

areas. Here, we elaborate on three specific application areas of haptic belts.

10.10.1 Navigation and Spatial Orientation

The most prevalent application for haptic belts is in the development of navigational [350]

[348] [349] and spatial orientation aids [362] [356], which have been well explored in aca-

demic research and hobby development. Conceptually, a haptic belt designed for navigation

will make use of a positioning system, either absolute (e.g., GPS, GLOSNASS or Galileo)

or relative (e.g., Inertial Navigational Units), along with a map of the locality to guide the

user from their current location to a desired destination as shown in Figure 5. Since the

vibrotactile actuators are mounted around the waist of the user, directional information is

conveyed through activation of the appropriate motor.

Humans generally work or move about by using geographical references, and with-

out them, it is easy to become disoriented. Haptic belt solutions can be used for these appli-

cations, along with absolute positioning sensors, to determine and convey specific reference

planes; e.g., a gyro based artificial horizon in the case of pilots [353], and the direction of

Earth in the case of astronauts [354].

Figure 10.12: Application of haptic belt as a navigational aid.
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10.10.2 Interpersonal Social Communication

At the intersection of research areas in social interaction, and that of human machine in-

terfaces, lies the relatively unexplored field of interpersonal social communication tech-

nologies [82]. Affective Computing [363] has been exploring various sensor and actuator

technology solutions toward better communication of social interpersonal signals with non-

verbal communication cues [189]. With the human body having the largest sensory and

perceptive surface, haptic displays, like our proposed vibrotactile belt, provide an oppor-

tunity toward enabling such communication of social signals. Over the last year, we’ve

been working toward a wearable system capable of communicating interpersonal positions

of interaction partners to someone who is visually impaired. In [252] [364], we developed

an assistive technology that is capable of determining, and conveying through a haptic belt,

the interpersonal distance and orientation of an individual who is standing in front of a user

who is blind. Computer vision techniques are used to extract the interpersonal distance and

orientation with respect to the user. The relative direction and distance of an interaction

partner is conveyed through the location and rhythm, respectively, of a vibration around the

user’s waist.

10.10.3 Generic Information Communication

Given proper functionality, specifically expressiveness, haptic belts can be used to convey

generic information through tactile icons [341], or tactons. Tactons are abstract, tactile mes-

sages, where meaning is mapped to the dimensions of the vibrations. Research has shown

users’ ability to quickly learn and interpret tactons [361]. For example, [360] demonstrated

that anesthesiologists have enhanced situational awareness toward adverse medical events

when a haptic belt is used to monitor a patient’s physiological data in the operating room.

Similarly, a haptic belt can be used to reduce visual and auditory cognitive load in military

personnel [362], especially pilots and dismounted soldiers within a combat zone. A haptic

belt could be used to communicate battlefield situational awareness when combined with

military intelligence information and radio technology. Likewise, situational awareness,
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spatial orientation and navigational information can be combined to provide real time lo-

cation information through a haptic belt to emergency responders who have entered a low

visibility and hazardous environment where visual and auditory modalities are overloaded

with information.

10.10.4 Case Study: Waist-worn Vibrotactile Display for Pedagogical Application for

Choreographed Dance

To evaluate the vibrotactile belt’s three important design parameters of usability, function-

ality and performance, we conducted a case study in which the belt was used for a novel

pedagogical application under realistic conditions. A two-fold, quantitative and subjective

analysis was conducted to evaluate real-world usability issues. In [365], we demonstrated

the general usability of the belt through a pilot study from the user’s perspective, but the

functional and performance metrics were not evaluated. In this paper, we delve into the de-

tails of the belt’s evaluation through its use as a research platform for a novel application of

teaching choreographed dance. While the usability analysis was done from the user’s per-

spective, the functional and performance analyses were done by an independent researcher

who designed and executed the dance study. The researcher was not part of the develop-

ment team and evaluated the proposed belt as a research platform to impart choreography

of simple dance steps to a mixed group of participants with and without dance experience.

It is important to note that the researcher who worked with the proposed belt (a) had never

used the vibrotactile belt; (b) had limited experience with haptic devices, and had never

designed vibrotactile spatio-temporal patterns; and (c) had a novel application design with

specific research objectives of determining how effectively choreography can be achieved

through wearable vibrotactile devices.

10.10.4.1 Related Work in the Use of Vibrotactile Cues for Teaching Dance

In the literature, vibrotactile stimulation to elicit motor movement can be divided into two

approaches: feedback-based and instruction-based, both of which are relatively new and

unexplored. While feedback based approaches track human body motion and provide feed-
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back whenever there is a deviation from a predefined path [366] [367], instruction-based

methods assign specific body movements to predesigned vibrotactile patterns, and expect

subjects to memorize this mapping. In [368], Drobny et al. developed a wireless sensory

system placed in the shoes of ballroom dancers. By measuring the force of taps, the system

recognizes any missteps and emphasizes beats acoustically to help partners get back in sync.

While this study was centered on a feedback based learning system, this case study uses an

instruction-based method for teaching dance (similar to various other pedagogical appli-

cations targeting physical activities such as snowboarding [369], bowing [370] [371] and

swimming [372]), where predefined spatio-temporal vibration patterns require participants

to demonstrate specific movements. To the best of the authors’ knowledge, the only other

work that explores instruction-based vibrotactile cues for teaching dancing is an approach

by Nakamura et al. [373] where vibrotactile cues instructed arm movements for traditional

Japanese folk dance. Unfortunately, the paper does not describe any of the proposed vibro-

tactile cues, and no statistical analysis was presented. Note that the cues proposed here are

for basic dance movements only; more complex dance movements will require further ex-

ploration by dance experts on the possible redesign of vibrotactile stimulators to be placed

in strategic locations on the body.

10.10.4.2 Subjects

11 males and 2 females of ages 21 to 60 (average: 30) participated in the dance study. No

subjects had any tactile impairment around their waist. 5 subjects had never danced before,

4 subjects had less than one year of dance experience, and 4 subjects had a least 5 years of

dance experience. The dance participants provided data for analyzing the usability of the

belt, while the independent researcher offered evaluations for the functionality and perfor-

mance of the belt. Although we would have preferred several researchers and/or developers

to assess the usability of our belt through their own novel applications and user studies, this

was not feasible due to time limitations and the need for a specific target application.
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10.10.4.3 Procedure

The belt was configured with 8 tactors placed equidistantly around each participant’s waist.

Fig. 10.13 shows the configuration with tactor #1 is at the user’s left side, tactor #3 at the

user’s navel, tactor #5 at the user’s right side and tactor #7 at the user’s spine.

Figure 10.13: Arrangement of 8 Tactors around the Waist.

Subjects were informed that the purpose of the experiment was to assess how well

they can recognize vibrotactile cues. They were not told that they would be learning basic

dance moves to avoid giving any advantage to those with prior dance experience. Subjects

were given instructions regarding how to put on the belt, and were told to move tactors

along the length of the belt to match the configuration shown to them on a printed paper

(same as Fig. 10.13). First, subjects were familiarized with the different vibrotactile pat-

terns and the corresponding body movements (see Table II). Next, participants began the

training phase where they were asked to feel a vibrotactile pattern and perform the associ-

ated movement, then return to the starting position. 24 trials (12 vibrotactile patterns each

presented twice) were randomly presented. Subjects were encouraged to respond within

ten seconds. Subjects were required to achieve above 70% accuracy in order to move on

to the testing phase. The testing phase consisted of two parts. In the first part, the testing

phase was similar to training phase, but with 48 trials and no feedback. Before the second

part of the testing phase, participants performed another familiarization phase to help them

learn how to link individual moves. In this familiarization phase, participants performed

11 moves in sequence. Finally, participants performed two different dance sequences: a
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modified box step and a modified electric slide. The modified box step was repeated once,

and consisted of the following vibrotactile patterns of Table II, in order: A, B, J, I, F, E, K,

and L, as shown in Fig. 10.14. The modified electric slide was not repeated, and consisted

of the following patterns of Table II, in order: J, I, J, I, K, L, K, L, F, E, A, B, B, A, E, F,

K, L, K, L, J, I, J, I, A, B, F, E, F, E, A, and B, as shown in Fig. 8. A pause of 2 seconds

was given between the pattern presentations. During this phase, no feedback was given to

participants regarding right or wrong movements.

Figure 10.14: Modified Box Dance.

The independent researcher was given oral instructions (30 minutes) on the com-

ponents of the belt and its complete operation including its software. The researcher was

then allowed to configure the belt to his application. It took him 20 minutes to affix eight

tactors and a control box, wire them together, and place them in the desired configuration.

It took about 15 minutes to implement the vibrotactile cues for basic dance movements (left
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Table 10.2: Foot Steps Involved in the Choreographed Dance Movements.

ID Movement Vibrotactile Pattern
A Left foot forward (small step) 1 - 2 - 3
B Right foot forward (small step) 5 - 4 - 3
C Left foot forward (long step) 7 - 8 - 1 - 2 - 3
D Right foot forward (long step) 7 - 6 - 5 - 4 - 3
E Left foot back (small step) 1 - 8 - 7
F Right foot back (small step) 5 - 6 - 7
G Left foot back (long step) 3 - 2 - 1 - 8 - 7
H Right foot back (long step) 3 - 4 - 5 - 6 - 7
I Left foot right 1 - 2 - 3 - 4 - 5
J Right foot right 3 - 4 - 5
K Left foot left 3 - 2 - 1
L Right foot left 5 - 4 - 3 - 2 - 1

Figure 10.15: Modified Electric Slide Dance.

foot forward, right foot forward, etc.), and another 20 minutes to concatenate them into two

dance sequences (modified box step and modified electric slide).

10.10.4.4 Aim

To evaluate the usability of our vibrotactile belt, we relied upon survey questionnaires com-

pleted by participants after the experiment. To evaluate the functionality and the perfor-

mance, we relied upon the survey questionnaire completed by the researcher who worked

with our team on conducting the experiment. Both surveys asked questions that directly or

indirectly captured the various elements provided in Table 1. The usability questions for

participants were:
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Q1. How easy was it to put on the belt and adjust the location of the vibration motors?

Q2. How easy was it to take off the belt?

Q3. How easy was it to recognize vibrotactile patterns corresponding to specific body

movements?

Q4. How easy was it to move while wearing the belt?

Q5. How unobtrusive was the belt?

Q6. How comfortable was the belt?

Q7. How ergonomic was the belt?

Q8. How lightweight was the belt?

Q9. How well did the belt fit your waist size?

Q10. How would you rate the belt’s physical discreetness?

Q11. How silent were the belt vibration motors?

The functionality and performance questions for the researcher were:

Q1. How easy was it to create your desired configuration of the belt, which involved

adding/remove tactors, moving tactors around, wiring, etc. (take into account scala-

bility and reconfigurability)?

Q2. How easy was it to design your desired vibrotactile patterns using the GUI (take into

account the expressiveness of the system, and GUI usability)?

Q3. Was the portability of the belt, in terms of wearability and wireless capabilities, suit-

able for your intended application?

Q4. Was the durability of the belt suitable for your intended application?

Q5. Was the reliability of the belt suitable for your intended application?
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Q6. Was the wireless communication latency suitable for your intended application?

Q7. Was the battery life suitable for your intended application?

In order to determine how well the experiment itself faired, we devised 5 research

hypotheses for objective evaluation:

Q1. Subjects will achieve at least 90

Q2. Subjects will achieve at least 85

Q3. Subjects will achieve at least 85

Q4. No one spatio-temporal pattern is more difficult to identify than the other.

Q5. The moves of neither dance-modified box step or modified electric slide-will be more

difficult to recognize than the other.

Other than the objective evaluations, participants were asked questions directed

towards the dance experiment itself:

Q1. How easy was it to recognize the vibrotactile patterns?

Q2. How intuitive was the mapping between vibrotactile patterns and movements you had

to perform?

Q3. In the second part of the testing phase, you learned how to perform a dance sequence.

How well did you learn the dance through use of the vibrotactile patterns?

Q4. If you wanted to learn how to dance someday, how likely are you to use this system?

Q5. Do you think others would like to use this system to learn dance?

Q6. Have you danced before?

Q7. If you have danced before, how many years?

Q8. What is your preferred style of dance?
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10.10.4.5 Results

Usability: In order to understand the usability of the haptic belt through the subjective eval-

uation survey, we performed a one-way ANOVA on the data presented in Fig. 10.16. Con-

sidering a 5% significance test on the null-hypothesis that there is no significant difference

in the means of the 11 usability questions, a 10 DoF along the questions axis, and 11*(13-1)

= 132 DoF along the participant axis, F test results in [F(10,132)=3.29, p=0.0008], thereby

rejecting the null hypothesis. Further, as a post-hoc analysis, a Multiple Comparison Pro-

cedure on the linear one-way ANOVA (with significance level ?=0.05) shows that with

respect to question 2 (How easy was it to take off the belt?) and question 4 (How easy was

it to move while wearing the belt?), question 10 (How would you rate the belt’s physical

discreetness?) and question 11 (How silent were the belt vibration motors?) are signifi-

cantly different, thereby contributing to the rejection of the null hypothesis. On reviewing

the descriptive evaluation provided by the participants on the haptic belt, it was discovered

that question 10 relating to the physical discreteness was rated low due to the bulkiness of

controller box on the belt. For question 11, referring to the noise made by the vibration

motors, a redesign of the tactor modules is necessary to ensure that the vibration motors are

enclosed rigidly within the tactor module.

Question 4, relating to how easy it was to move wearing the belt, had the highest

mean value of 9.46 (SD 1.13). This question relates to the important aspect of whether the

belt allows the participants to move freely wearing the device. Any research platform has

to offer this movement flexibility so that the hindrance due to the platform does not bias

the user’s opinion of the experiment’s research questions. It was also seen that it was easy

to take off the belt (Question 2) when compared to putting it on and adjusting the location

of the vibrators (Question 1). The results are obvious as removing the belt necessitated

only releasing the plastic snap buckle, whereas, wearing the belt and locating the motors

necessitated the participant’s attention and effort.

Functionality and Performance: Fig. 10.17 shows the responses of the independent
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Figure 10.16: Usability Results.

researcher to the seven questions on functionality and performance. Since the belt was

reviewed by one independent researcher, no formal statistical analysis can be done on the

results. We report here our observations from what the researcher offered as explanations

to his survey. No problems were experienced by the researcher when reconfiguring the belt

or designing spatio-temporal patterns. In terms of the performance of the belt, portability,

durability and wireless communication latency were found to be fine. As can be seen from

Fig. 10, the two important drawbacks in terms of functionality and performance were found

in a) the reliability of the belt for the intended application (Question 5) and b) the battery

life of the haptic belt (Question 7). The failure to meet the necessary battery life on the belt

was realized by the developers through the experimental study itself. The choice of battery

manufacturer turned out to be a problem and has little or nothing to do with the design of

the power supply module for the belt. We also realized that the researcher found the battery

issue to be the main reason to consider the reliability of the belt to be low or not up to

expectation.

Quantitative Evaluation of the Dance Experiment: Fig. 10.18 shows participants’

recognition accuracies on the 12 spatio-temporal patterns that were delivered as part of
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Figure 10.17: Functionality and Performance Results.

the dance experiment. The overall recognition accuracy of vibrotactile patterns, averaged

across participants, was 97% (SD: 4.6%). The average accuracy for recognizing the indi-

vidual moves of the modified box step dance was 88% (SD: 20%), and the average accuracy

for recognizing the individual moves of the modified electric slide was 95% (SD: 7.5%).

Fig. 11 shows the results of the experiment where the participants performed the 12 patterns

based on the 12 spatio temporal sequences. These results support hypothesis (1), showing

that overall, participants had no difficulty recognizing the vibrotactile patterns. Using a

one-way ANOVA, no significant difference [F=1.87, p=0.0475] between average recogni-

tion accuracies of vibrotactile patterns was found. This supports hypothesis (4), and shows

that no single pattern was more difficult to recognize compared to the others. These results

also support hypotheses (2) and (3), showing that participants were able to link moves to-

gether to perform some basic dances. A one-way ANOVA was applied to the accuracies

achieved on the two dances, revealing no significant difference [F=1.55, p=0.2255] between

the average recognition accuracies of the two dances (modified box step and modified elec-

tric slide). This supports hypothesis (5), and shows that participants didn’t find one dance
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more difficult than the other, even though the electric slide is longer and more complex than

the box step. However, 3 out of the 13 participants scored very low on the modified box

step dance, after which they performed very well on the more complex electric slide dance.

We hypothesize that, for these participants, additional learning beyond the familiarization

phase was required to learn how to link movements together; we believe that this learning

took place during the modified box step dance steps. Reversing the dance sequences may

have avoided this, but we feel that performing box step dance before the electric slide dance

facilitated learning, as the box step dance is easier than the electric slide.

Figure 10.18: Pattern Recognition Results for Dance Experiment.

Subjective Evaluation of the Dance Experiment: Fig. 10.19 shows the subjective

user responses for questions 1 through 5 based on whether the participants were experi-

enced in dancing or not. Questions 6 through 8 explored the participants dance experience

level, and we found on average, participants had no experience with dancing to about 5

years. We set the average of all user experience (1.8 years) as a threshold to decide whether

participants were experienced or not.

Figure 10.19(a) shows the results of participants who were experienced (mean ex-

perience of 5.12 years), and (b) shows the results of participants who were inexperienced
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(mean experience 0.44 years). From Figure 10.19, it can be seen that the participants’

opinions varies widely between the experienced and inexperienced groups, except for ques-

tion 1, which enquired about the ease of recognizing the spatio-temporal patterns. The

mean response for question 1 was 8 (SD 1.16). When the participants were asked how

intuitive (Question 2) and useful (Question 3) the spatio-temporal patterns were, the expe-

rienced group seemed to desire having this sensory augmentation more than the inexperi-

enced group. Correlating this to the quantitative analysis, the experienced group achieved

99% accuracy (SD: 1.8%) in recognizing all the 12 spatio-temporal patterns, whereas, the

inexperienced participants achieved 95% accuracy (SD: 5.2%). We hypothesize that the

experienced dancers had no problem executing the dance step and hence could focus on the

vibrotactile pattern, whereas the inexperienced participants had to consciously process the

haptic cues and the movements. When the participants were asked how likely they would

use this device again (Question 4), or suggest this device to someone else (Question 5) to

learn dance, the results seem to indicate opposite of what was seen in the previous two

questions. The experienced dancers found this device rudimentary and not recommend-

able, whereas the inexperienced dancers seem to reluctantly agree to using or suggesting a

sensory augmentation.

10.11 Group Interaction Dynamics Through Haptic Belt

As mentioned above, the haptic belt forms a situational awareness system that is capable

of delivering not only the positional information of the interaction partners, but also their

dynamic movement in the environment in front of the user. This in turn would help the

people who are blind and visually impaired to understand the social scene in front of them.

In the following section, we show the social interaction assistant in its entirety for assisting

people who are blind and visually impaired in group interactions and dyadic interactions.
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(a)

(b)

Figure 10.19: Questionnaire Results from Dance Experiment for Experienced Dance Partic-
ipants (a) and Inexperienced Dance Participants (b). Responses from Q6-Q8 are excluded.
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Chapter 11

THE SOCIAL INTERACTION ASSISTANT & ITS ROLE IN SOCIETY

This dissertation introduces the concept of social situational awareness and discussed in de-

tail how to develop a social interaction assistant for aiding people who are blind and visually

impaired in everyday social interactions, through the use of a evidence-based modeling of

social needs of the target user population. Accordingly, we identified two important areas

of social interaction assistance, namely, the dyadic interaction assistance and the group in-

teraction assistance, while also providing a technology to provide immediate intervention

into any asocial stereotypic body mannerisms that they individuals might be displaying.

Figure 11.1 shows the Dyadic Interaction Assistant and the key highlights of the

proposed solution. Figure 11.1(a) highlights the use case scenario where the device con-

sists of a camera that is placed in front of the user and it pointed in the direction of the

interaction partner. The user in turn uses the Haptic Glove to receive all forms of inter-

pretations of the interaction partner’s face on the back of the hands. The camera used in

this application uses a micro servo mechanism to keep the face of the interaction partner

in focus and always centered within the video stream generated. This helps in ensuring

that the facial expressions are never missed in during the interactions. As part of the future

work, the user will be provided with a mechanism for controlling the amount of information

received from the interaction partner. The interface used by the user is highlighted as part

of the Group Interaction Assistant in Figure 11.2(b), termed as the Clicker. The control

interface uses a series of buttons using which the user can choose four levels of details of

the interaction partner’s face, namely,

Literal The facial mannerisms are literally translated to the fingers as vibrations, with the

system making no decisions on the nature of the facial movements.

Symbolic The facial movements are classified into groups that are previously chosen, such

as happy, sad, surprise, etc. (Example of 7 classes shown in Figure 11.1(b).
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Semi-Literal One step above the raw transfer of facial mannerisms. This could include

modeling the mouth as curves instead of simple points.

Semi-Symbolic One step below Symbolic representation, this level would provide higher

level information than just expression decisions, like the Action Units on the face.

(a)

(b)

Figure 11.1: Group Interaction Assistance; (a) Scenario for group interaction assistance,
(b) The integrated group interaction assistant.

Figure 11.2 shows the Group Interaction Assistant as described in the chapters

above. Figure 11.2(a) shows a use case scenario where the user who is blind is facing a

group of people in a meeting. The group interaction assistant gives some of the important

cues such as the position of the people, there movement around the user, eye gaze of the
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individuals, etc. The primary sensing and deliver mechanisms of the group interaction

assistant are shown the Figure 11.2(b). The sensing is based on the glasses that is worn by

the user with a camera mounted on the nose bridge of the glasses. The delivery is primarily

centered around the waist belt that acts as the haptic actuator. Along with the sensing and

delivering the proxemics information, the group interaction assistant also provides the user

with information about his or her own body mannerisms. To this end, the device uses a

motion sensor that is placed just below the neck of the user. This sensor is capable of

picking up body movements and in this application, focused on detecting body rocking.

The feedback could come in terms of the vibrations or using a earphone placed behind the

ear lobe so it does not affect the user’s hearing.

An important component of the group interaction assistant is the integration of

the facial biometrics into the proposed technology. This allows the user to not only know

where people are in front of them, but also know who exactly is located where. In future, we

propose to integrate the group and dyadic interaction assistants, there by allowing the user to

know exactly where any specific person is located and be able to focus the camera towards

that individual to receive their facial expression cues. To this end, we are developing a back

worn haptic face display that will be able to integrate into a jacket. This will allow the user

to feel the vibrations on their back without having to wear a glove explicitly. The controller

(Clicker) acts are the primary interface for the user to enable or disable features on the

device. Once the integration of the dyadic and group interaction assistants is complete, the

user should be able to surf their field of view and assess each individual intricately.

11.1 Role of Social Assistance in the Society: A Policy Discussion

Having introduced a novel concept in assistive technologies, namely the social interaction

assistant, we would like to spend sometime discussing the role of such a technology in the

society. The study of interactions of technology and society provides an opportunity to un-

derstand the real contribution of a certain technology or concept to the economic, social and

cultural future of a society. Especially since the proposed social interaction assistant bears

its roots in the social interaction issues that form the core of human societies, we find it in-
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(a)

(b)

Figure 11.2: Group Interaction Assistance; (a) Scenario for group interaction assistance,
(b) The integrated group interaction assistant.
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triguing to understand not only the broader impact of such a technology, but the need for it

in general. Further, recently, there has been a growing awareness on the role of technology

on society. This growth in interest can be correlated to various technologies that have un-

foreseen consequences on the public, which could have been averted if the artifacts of new

technology could have been studied before their mass proliferation. It is always impossible

to demonstrate the role a certain technology will assume as the parameters involved in as-

sessing the consequences are innumerable, the most problematic of which are the humans

and their behavior towards a certain technology. A clear example of such a technology in

the recent decades is the prolific use of cameras in every form of technology from surveil-

lance systems to reverse view cameras in cars. While the clear advantage of the technology

is demonstrated by its use, there are unprecedented privacy issues associated with the use

of cameras. Such privacy issues are heightened by the proposed technology where we con-

sider the use of wearable cameras on the user who is blind or visually impaired. While it

can be argued that the use of camera is restricted to the user alone and that no explicit user

images will not be saved on the device, it is impossible to inform all interacting partners

that there is a camera on the user and that they are being captured. Before getting into the

technology debates related to wearable cameras, we highlight the need for social assistance

in the society and make a policy case for the proposed social interaction assistant. Follow-

ing the social impact arguments, we discuss the implications of wearable cameras in public

space.

11.1.1 Social Disability: The hidden barrier to professional growth in the disabled

population

On February 12, 2009, Vice President Joe Biden announced the appointment of a Special

Assistant to the President for Disability Policy. By selecting the Associate Director of

White House Office of Public Engagement, Kareem Dale, to this post Obama became the

first President in the US history to have a special policy advisor overseeing disability issues.

One of the key components of Obama’s policy on disability is the effort to increase

access to employment for the disabled population. The White House website on Disability
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1 states:

President Obama is committed to expanding access to employment

by having the federal government lead by example in hiring people

with disabilities; enforcing existing laws; providing technical as-

sistance and information on accommodations for people with dis-

abilities; removing barriers to work; and identifying and removing

barriers to employment that people with public benefits encounter.

With this statement the Obama administration has identified some important em-

ployment issues associated with disability, but it seems to be focused only on bringing

people with disabilities into the labor force. Once they are in, people with disabilities face

a number of additional hurdles. The barriers identified by the administration fall short of

addressing how to retain this population in the work force and enable a self-propelled pro-

fessional growth.

What does it take to succeed in one’s career? Evidence shows that the social skills

of individuals and their ability to integrate themselves into the work environment are in-

credibly important. Social skills - such as making friends at workplace, ability to lead a

team, facilitating decision making in large teams, conveying confidence, etc. - all play a vi-

tal role in sustained professional growth. Unfortunately, people who are severely disabled,

like those who are blind, often find it difficult to assimilate into the social atmosphere of

their work place with the same ease of their functionally able counterpart.

“There is no professional growth without social skills”, explains Dr. Terri Hedg-

peth, director of Disabilities Resource Center on Arizona State University’s campus. Hedg-

peth has been blind her whole life and had to learn how to socially interact with her sighted

colleagues. For instance, she learned to turn her head towards her interaction partner to

mimic eye contact. She learned to hear people’s bodily movements to assess what they

were communicating non-verbally.

Hedgpeth doesn’t want to be offered any social leeway because of her disability,

1http://www.whitehouse.gov/issues/disabilities/ extracted Dec 11, 2010
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but strongly believes in training individuals who are blind and visually impaired to learn

the same social skills as their sighted peers. She laments the fact that currently there are

no federal programs, either vocational or academic, that trains people who are visually

impaired about important social skills in professional setting. Social training is generally

reserved for children and young adults who have a severe case of tics, like body rocking or

eye poking.

11.1.2 Effect on Social & Emotional Intelligence due to Disability

The social disconnect is not limited to visual impairment and blindness alone. Social im-

plications of disabilities can be seen across the spectrum from physical disabilities like

wheelchair and quadriplegia to cognitive disabilities like Autism. Studies in Cognitive

Psychology support the hypothesis that social interactions play a vital role in the overall

development of overall intelligence in humans, especially, in the development of Social

Intelligence (or Interpersonal Intelligence [374]) and Emotional Intelligence [375]. Social

and Emotional intelligence are vital components in an individual understanding the impor-

tance of other people and things in their surroundings. Without active social interactions, a

large part of the learning component is lost.

First defined by Edward Thorndike, Social Intelligence is ”the ability to understand

and manage men and women, boys and girls, to act wisely in human relations” [376]. Karl

Albrecht [377] argues that Social Intelligence is the basis for five important aspects for an

individual to mingle into his/her society, including, 1) Situational awareness, 2) Sense of

Presence, 3) Authenticity (or Individuality), 4) Clarity (of action), and 5) Empathy.

Along similar lines as social intelligence, neuro-psychologists have defined Emo-

tional Intelligence (EI) as the ability, capacity, and skill to identify, assess and manage the

emotions of one’s self, others and of groups of individuals. If disabilities, like visual disabil-

ity, becomes a barrier to seeing the emotion artifacts, the individuals might find themselves

lacking the ability to interact with their society at a level that is otherwise considered nor-

mal. Many models have been proposed in the past to explain EI, such as Ability based
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models [378], Mixed models [379] and Trait based models [380] and all these models point

towards the fact that reduction in social interactions can reduce the overall understanding

of an individual of their place in the society. Recently, EI metric scales have been used

to diagnose autism spectrum disorders, including autism and Asperger syndrome, seman-

tic pragmatic disorder or SPD, schizophrenia, and Attention-deficit hyperactivity disorder

(ADHD). These measurements have shown a direct correlation of one’s ability to increase

their overall emotional involvement within the society by increasing their social interac-

tions.

Primate researcher, Humphrey [381], has demonstrated the real-world effect of so-

cial interactions to cultural transmission of knowledge and the development of intelligence.

His studies with rhesus monkey have emphasized the positive influence of social interac-

tions on the development of general intelligence. For example, Helen (a rhesus monkey)

had her visual cortex surgically removed and studies were conducted on her recovery of

spatial vision. Over four years, isolated within the laboratory, Helen hardly recovered any

of her spatial knowledge. However, when she was taken out of the laboratory into the

real world and allowed to interact with objects and other monkeys, she regained three di-

mensional spatial vision within a few weeks. Humphrey argues that the interactions with

other monkeys were key to Helen’s learning of interactions (both with objects and other

monkeys). Could this be true with humans also?

From a neuro-physiological perspective, advanced functional brain imaging is en-

abling researchers to study the workings of human brain under various functional conditions

and they are confirming the role of social intelligence as an important aspect of human learn-

ing. Brothers [382] has worked extensively on the neuro-physiological patterns in primate

brains that are associated with social behavior. Her work has established the presence of

dedicated brain regions involved only in social cognition (Social cognition is the process-

ing of information that culminates in the accurate perception of dispositions and intentions

of other people). She has proposed a network of neural regions that comprise the social

brain and she argues that a malfunction of the any component of the social brain results in
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reduced social cognition. Her work has been recently bolstered by [19], where the authors

study autistics and controls under functional Magnetic Resonance Imaging (fMRI). The

subjects watched another person’s eye expressions, and guessed what that person was think-

ing or feeling. The fMRI images confirmed Brothers observations of STG and amygdala

activations during social cognition, and showed that people with autism display a cognitive

disability in the amygdala which prevents them from making appropriate mental inferences

of other people’s emotions or facial expressions. Authors conclude that a social brain does

exist, and that teaching children and adults social skills could offer a means of increasing

activations in the social brain. This conclusion is supported by the behavioral research in

autism that employs social interaction training and language skill training in children to

ameliorate the social deficits characteristic of autism spectrum disorders (ASD).

The disabled population faces social barriers due to their sensory, motor or cog-

nitive dysfunction. Overcoming this social barrier cannot happen overnight through ”en-

forcement of laws” as reported on the White House’s disability policy website. This has to

happen through strong dedicated programs that study the social barrier to employment in

the disabled population and offer effective solutions (social assistive aid, social education

programs and co-ed of disabled and non-disabled children to encourage mutual learning of

social skills, to name a few) to reduce the consequences of social disability.

11.1.3 Psychological Breakdown related to Social Skills

Recent studies by Segrin et al. [72] have shown that poor social skills are antecedents to

psychosocial problems including depression, loneliness, social anxiety, etc. The authors

conducted a battery of tests on college students to determine the effect of stress on the

students when they live at away from home. Figure 1 shows Depression and Loneliness

plotted against stress levels of undergraduate students. Depression was measured using the

Beck Depression Inventory [383], while Loneliness was measured on the UCLA Loneliness

Scale (version 3) [384] as an index into the students experience of loneliness. For both of

these tests, the participating students were categorized into high, medium and low social

skilled groups based on the Social Skills Inventory [385] (a battery of tests administered to
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determine the socialization ability of an individual).

Figure 11.3: Depression and Loneliness of students plotted against stress levels in high,
medium and low social skilled undergraduate students. (Please see text for the scales used
for the measurement.)

One can immediately identify a positive correlation between stress and an increased

experience of psychosocial problems in all the students, but the ones that rank higher on

social skills show higher resistance to stress and in turn higher resistance to mental break-

down. Students assessed with mild or lesser social skills were highly vulnerable to social

issues as the stress increased.

Similar results were found in [3] where the authors conclude that people with high

competence in communication are known to display immense capability towards adapting

their social behavior based on others in their surroundings. Such competence has been ac-

knowledged to reinforce social skills thereby creating a reinforcement feedback that allows

these individuals to be successful in their social endeavors [386] and in turn successful in

their life. In a tangential study, though Magnusson [387] was not looking for social interac-

tion needs in people, found that social interaction is an important dimension in the cognitive

organization of human behaviors. When college students were assessed individually, and

as a group, to determine how they classified everyday activities into different situations,

Magnusson discovered 5 dimensions (Principle Dimensions). These included two dimen-

sions based on whether the students perceived a situation as being positive (positivity) or

negative (negativity) influence on their behavior, two dimensions based on whether the situ-
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ations were active or passive, and finally, the fifth dimension was based on social interaction

with others. His study emphasizes how social interactions are perceived by individuals as

an important scale for judgments on their activity of daily living.

11.1.4 Societal Metrics of Social Disability

11.1.4.1 Comparison of Economic Status

The Americans with Disabilities Act was signed into law in 1990 by President George H.

W. Bush and from then on, pretty much the same verbiage has followed each successive

president’s agenda on disability employment. As a nation, we have been successful in

moving this segment of population into the work force, but still there is a large gap in

their professional success. On a wage comparison scale (data extracted from the 2008

American Community Survey (ACS) questionnaires2), the US visually impaired population

make on an average 32% less than general population of the same age. The US physically

challenged population makes 42% less. See Figure 11.4. When one includes education level

in these statistics, the results are even more disappointing. People with visual disability,

with post graduate education, make 47% less than the average population with post graduate

education and people with physical disability with post graduate degrees make 72% less

than the general population with similar degrees.

11.1.4.2 Comparison of Personal Lives

Similar to the wage comparison, we also focused on the personal lives of individuals with

disability and compared it with the personal lives of individuals without any disability.

The goal was to compare the companionship among the various populations and decipher

any correlations that may exist between disability and the number of times people got into

and out of civil unions. Hedgpeth explains that disability could come in the way of so-

2The ACS is a long format survey conducted on a yearly basis with the American public. The survey
is carried out in a format similar to the American decennial census survey. Current survey standard seeks
10% of the population (3 million individuals) and are requested to respond to a long format survey that asks
questions on the living standards, salary, family structure, housing quality etc. A long format of the survey can
be found in the Appendix C. The statistics used for the analysis here has 27990 individuals who were visually
impaired alone with no other associated disabilities, 155726 individuals with only physical disability and no
other disabilities, and 2591521 with no disabilities whatsoever.
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(a)

(b)

Figure 11.4: Comparison of annual wage of the visually impaired, physically disabled and
non-disabled population. (a) Compared by age group. (b) Compared by education level.
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(a)

(b)

Figure 11.5: Comparison of personal lives of visually impaired, physically disabled and
non-disabled population. (a) Number of times married. (b) Companionship status.
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cial personal interactions and many times disabilities could impose unforeseen pressure on

the marriage. Figure 11.5(a) shows a comparison of the number of times individuals were

married, as compared between visually disabled, physically disabled and the non-disabled

population. On an average the number of marriages is higher among the disabled population

and specifically higher among the physically disabled. Similar results are seen while com-

paring the companionship status of individuals who are disabled. There is a higher chance

of widowing, divorce and separation among the disabled populations when compared with

the non-disabled population.

Hedgpeth emphasizes the point that people skills are the most important tool for

professional success. Unfortunately, social disconnect is a repercussion of disabilities. It is

important to train the disabled population to circumvent their social disconnect, while we

train the rest of the population to understand and acknowledge this social barrier. To this

end, some of the concepts introduced as part of the social interaction assistant proposes to

address them by providing access to the social cues that are otherwise inaccessible to the

individuals who are disabled. While the discussions in this dissertation are restricted to sen-

sory disability, specifically vision disability, and discuss all the social problems associated

with it, the same could be said of the problems faced by people with other sensory disability

(like hearing loss). We reserve our discussions only to sensory disabilities as the problem of

determining appropriate adaptations for overcoming cognitive disabilities require research

that is beyond the scope of this document.

11.2 Wearable Cameras: Ethics & Privacy

Wearable cameras and cameras on smart phones have started a debate on their ethical use

and the possible misuse through infringement of privacy. As discussed earlier, the social

interaction assistant discussed in this dissertation poses a significant challenge in terms of

the ethical use and privacy as the camera used on the device is always recording (a term

that needs to be considered carefully based on the underlying technology) the interactions

of the user and their interaction partner. The discussion of wearable cameras and their role

in the society has been debated by a number of related areas including, privacy proponents,
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civil liberties union, law makers, law enforcement, security and surveillance experts and

finally the users. A very good example of a comprehensive discussion on the role of wear-

able cameras on the society can be found in [388]. Unfortunately, most of the times these

discussions happen after a certain technology takes root in the society and most of the times

it seems to be a retroactive fix to the privacy and ethics issue. In contrast, we would like to

bring these topics to the forefront of the technology development to ensure that the device

does not violate the ethics or privacy issues as far as possible. While the role a certain tech-

nology will play in the society can never be predicted with certainty before it is introduced

and certain level of acceptance has come into play, it is possible to direct the development

and deployment of the technology in directions that could result in fewer ethical barriers.

Morgan and Newton, in their discussions on the issue of Protecting Public Anonymity,

highlight an interesting exercise carried out at public policy class in Carnegie Mellon Uni-

versity. We reproduce their writings from [389] here for clarity on their exercise.

... For years, we have used a teaching case in Carnegie Mellons Department of En-

gineering and Public Policy, in which graduate students are asked to assume that

a basic smart car system is about to be implemented. They are asked to consider

whether the state should run a pilot study that would implement a number of ad-

vanced system functions, such as insurance rates that are based on actual driving

patterns, externality taxes for congestion and air pollution, and a system for vehicle

location in the event of accident or theft. We find that students immediately assume

a system architecture that includes real-time telemetering of all vehicle data to

some central data repository. Then they become deeply concerned about issues of

civil liberty, invasion of privacy, and social control, and often go on to construct

arguments that such applications should be banned.
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It is often not until students have worked on the problem for several hours that

someone finally stumbles on the insight that most of the difficulties they are con-

cerned about result from the default assumptions they have made about the systems

architecture. If information about vehicle location and driving performance is not

telemetered off vehicles on a real-time basis, but is instead kept on the vehicle, not

as a time series but in the form of a set of simple integral measures (such as a his-

togram of speeds driven over the past six months), then insurance companies could

access it twice a year with all the time resolution they need. If detailed records of

who drove where and when are not created, then most of the civil liberty problems

are eliminated. Many of the potential concerns raised by other system functions in

this teaching case can also be largely or entirely eliminated through careful system

design choices.

This example very well exemplifies the problems that technologists get into, if

proper care is not taken towards designing the system from ground up. Similar to the

case above, the social interaction assistant would really benefit from collecting all of the

interaction data from the users and using them for further machine learning and signal pro-

cessing. Unfortunately, this is not a viable solution as recording of video, especially of

others, without their knowledge could result in privacy violations. To this end, we highlight

on various steps that could be taken towards ensuring that the technology does not record

person identifiable data that have immediate consequence to a person or institution who are

not interested the application of social assistance. For example, consider face recognition

as a biometric, institutions are fighting the problem of securely storing the face images of

their employees or members who are allowed into a building. The loss of the face images

could immediately affect privacy of these individuals because images are human readable

and have applications in various areas. On the other hand, if instead of saving the human

readable face image, a certain proprietary encoding was applied to the face image and only

the resulting features (a machine learning terminology applied to the end result of a trans-

formed data) are saved, any loss of data could then be cordoned off from abuse by securing

or destroying the methods used to create the features.
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We highlight here some concepts that could potentially reduce the problem of eth-

ical and privacy concerns associated with the social interaction assistant.

• Never saving human readable data As explained in the earlier section, with the cur-

rent state-of-the-art in data representation technologies, it is possible to transform

the personal data from the users into features that only proprietary algorithms could

decode. By isolating the algorithm from the collected data, it should be possible to

secure the data from ever being available in a human readable format.

• Erasable Biometrics Erasable Biometrics is a newly emerging area of biometrics

where it is essential, by law, to remove all biometric data collected on an individual

when once he/she is not part of an institution that collected any such data. Pioneering

work in the are of biometrics use a data morphing model as shown in the Figure 11.6.

When an individual is added to an existing biometric database, he/she is assigned a

private key which is user-specific and can be destroyed if need be. All the biometric

data collected from the user will then be transformed from a global set of transfor-

mation parameters, which are then randomly encoded based on the private key. All

machine learning takes place on top of the transformed biometric data and never on

the actual data which is discarded immediately after its first use for registering the

user. When once a user prefers his data be removed from their system, the erasing

happens by destroying the user supplied private key. Since the key controls all the

transformation parameters, there is no way the transformed biometric data be ever

brought back into the human readable insecure format.

Having introduced Erasable Biometrics, it is possible that such techniques could be

adopted to ensure that any individual who prefers at a later time to be removed from

the social interaction assistant could then be considered erasable.

• Design intelligent sharing of data Uncontrolled sharing of digital data is becoming

a menace to the future of our society. Users prefer a certain level of sharing that

is impossible to prevent and at the same time care has to be taken to ensure that

important private information is not lost. To this end it is essential to design intelligent
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Figure 11.6: Framework for Erasable Biometrics

user sharing where information on interaction partners could be shared among users

who are blind.

• Other additional security features In an emerging society of digital data sources, se-

curity has emerged as an important issue and everyday security features like password

blocking, auto lock of device activity, theft control through tracking, etc. should be

considered as an essential component of the social interaction assistant design along

with the other constraints that were identified in Chapter 3. See [389] for an exhaus-

tive list of specific design criterions for preventing collection of user-specific data

from devices.

In conclusion, while social interaction assistant is well placed to make a tremendous

impact on the quality of life for individuals who are blind and visually impaired, there could

be possible ethical and privacy issues associated with the wearable camera on the user. (Not

to mention the awkwardness a user may have to face if he/she had to wear a t-shirt all the

time informing the interaction partner that they are being recorded.) This chapter tried to

highlight some of the important privacy issues and proposed solutions that could potentially

overcome some of them. As discussed earlier, it is very difficult to determine all the impact

that a certain technology will have ont he society before it is introduced into the user space,
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but it is always possible to hypothesize the potential risks that the designers may expose to

the society to. We have attempted such an exercise in the above discussion.
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Chapter 12

Conclusions & Future Work

In this dissertation, an evidence-based methodology towards enhancing social mediation

between individuals is presented. Specifically, the social mediation technologies described

here attempts to provide people who are blind and visually impaired to receive non-verbal

communication cues from their sighted counterparts. Chapter 2 discussed the need for

enriching social situational awareness in everyday personal and professional lives of indi-

viduals. Chapter 3 highlighted the importance of enriching social situational awareness for

individuals who are blind and visually impaired and lays foundation for the bulk of the

work presented in this dissertation. Chapter 4, 5, 7 and 8 discussed various technologies

that can enable users who are blind and visually impaired to access social signals that are

important for having a rewarding social interaction with sighted counterparts. The details

of these chapters will become clear once the reader has been introduced to the various so-

cial situations that require attention, as detailed in Chapter 3. Chapter 6 and 10 discussed

various technologies that can enable any processed social signals to be delivered to peo-

ple who are blind and visually impaired, without overloading any of the their senses, like

hearing or touch. Finally, Chapter 11 highlights the need for researchers to consider the

impact of social mediation technologies on the society. While the discussions do not impart

strict policies, this chapter initiates a conversation towards adopting important technology

policies in the emerging assistive technology domains.

The dissertation presents a framework towards understanding the importance of

social communication cues in various personal and professional environments. The dis-

sertation presents an empirical evidence of the need for non-verbal cue enhancement for

people who are blind and visually impaired. To this end, the technologies presented here

only represent one possible approach towards addressing the important issues of discon-

nected social non-verbal communication. This dissertation establishes a framework for

developing social mediation technologies each chapter from 4 through 11 presents possible

future directions in each of the individual directions. While these technologies represent a
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step towards advancing social mediation technologies, the material in this dissertation also

presents a policy discussion towards developing and promoting wearable cameras within

the everyday personal setting of our society. While a coarse level discussion of the policies

are presented here, it lays a groundwork for the various considerations that are needed in

propagating wearable cameras and social interpretation technologies into the future.
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APPENDIX A

ALGORITHM FOR ESTIMATING RANK AVERAGE OF GROUPS
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While analyzing the responses of participants to the online survey, the participants

responses for each question are represented as entries xi,q, where, i represents the ith partic-

ipant and q represents the qth question. i = 1, . . . ,N are the N participants who responded

on the survey, and q = 1, . . . ,Q are the Q questions. In the survey presented in Chapter 3,

N = 28 and Q = 8.

A.0.1 Procedure

Input: Each participants response is considered as an entry em into a pool E = {xi,q}, where,

m = 1, . . . ,M, and M = NxQ.

Ouput: The rank average for the Q groups (questions), R̄m.

Steps:

1. Group en ∈ E removing all group affiliations.

2. Order the entries from 1 to M and assign a rank riq.

3. Assign any tied values the average of the ranks they would have received had they not

been tied.

4. Rank Average for each group is then given as

R̄m =

∑
i∈Qm,q=m

riq

nm
(A.1)

Where, Qm represents the group m with the cardinality nm.

Since no assumptions on the distribution of the response are made, unlike the mean,

the rank average gives a non-parametric method for comparing the groups.
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APPENDIX B

CONVEX OPTIMIZATION USING NEWTON’S METHOD - ENTROPY

MAXIMIZATION UNDER LINEAR CONSTRAINTS
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B.1 Entropy Maximization under Linear Constraints Problem:

Maximize f (xi) =

(
−

N
∑

i=1
xi ln(xi)

)

Subject to g1(xi) =
N
∑

i=1
xi = 1

g2(xi) =
N
∑

i=1
xili = L

Given the objective and the constraints, Lagrange Multipliers is a popular method for com-

bining the objective and constraints into a single optimization strategy with a set of un-

knowns. If X = {xi} represents the optimization vector, Lagrange Multipliers rely on the

fact that at the optimal solution X∗ = {x∗i }, the gradients of the objective function and the

constraint should be proportional. Figure B.1 illustrates a problem of minimizing objective

f (x,y) under the constraint of g(x,y) = c.

Figure B.1: Find x and y to maximize f (x,y) subject to a constraint g(x,y) = c

The Lagrange Function Λ(X ,α,β ) becomes,

Λ(X ,α,β ) =

(
−

N

∑
i=1

xi ln(xi)

)
+α

(
N

∑
i=1

xi−1

)
+β

(
N

∑
i=1

xili−L

)
(B.1)
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Finding the various gradients, we have

δ f (xi)

δxi
= ln

(
1
xi

)
+1 (B.2)

δgi(xi)

δxi
= 1 (B.3)

δg2(xi)

δxi
= li (B.4)

From the theory of Lagrange Multipliers, we know that the gradient of the objective is equal

to the gradients of the constraints at the optimal solution x∗i . Thus,

∇ f (x∗i ) = α∇g1(x∗i )+β∇g2(x∗i ) (B.5)

g1(x∗i ) = 1 (B.6)

g2(x∗i ) = L (B.7)

which can be rewritten as,

ln
(

1
x∗i

+1
)
= α +β li, i = {1, . . . ,N} (B.8)

N

∑
i=1

x∗i = 1 (B.9)

N

∑
i=1

x∗i li = L (B.10)
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From B.8 we can write

x∗i = e1−α−β li = e1−αe−β li (B.11)

Equation B.11 can be rewritten as

x∗i =
e1−αe−β li

1
(B.12)

x∗i =
e1−αe−β li

N
∑

i=1
x∗i

from Equation B.9 (B.13)

x∗i =
e1−αe−β li

N
∑

i=1
e1−αe−β li

(B.14)

x∗i =
e−β li

N
∑

i=1
e−β li

(B.15)

This eliminates one set of Lagrange Multipliers, α . Now from Equation B.10

N

∑
i=1

x∗i li = L (B.16)

N

∑
i=1

 e−β li

N
∑
j=1

e−β l j

 li = L (B.17)

N
∑

i=1
e−β li li

N
∑
j=1

e−β l j

= L (B.18)

320



N

∑
i=1

e−β li =
N

∑
j=1

e−β l j L (B.19)

N

∑
i=1

e−β li(li−L) = 0 (B.20)

From Equation B.20 we identify the Lagrange Multipliers to be the β s and the solution to

the required xis can then be found through Equation B.15.

The β s can be found through numerical optimization and in the section below, we show the

use of Newton’s method for accomplishing the same.

B.2 Newton’s method

Newton’s method is a popular numerical optimization technique used to find the roots of an

function f (x) = 0.

From Equation B.20, we know that the β s form the root of the equation

f (β ) =
N

∑
i=1

e−β li(li−L) = 0 (B.21)

At each iteration the method approximates f (β ) by a quadratic function around β ,

and then takes a step towards the maximum/minimum of that quadratic function. Typically,

the quadratic approximation is obtained from the function itself through its second order

Taylor expansion.

f (β +∇β ) = f (β )+ f ′(β )4β +
1
2

f ′′(β )(4β )2

Newton’s method determines the next approximation for the roots, βn+1, by constructing a

tangent to the objective function, f (β ), at the point βn and determining the tangent’s roots,

i.e. determining the intersection of the tangent, f ′(βn), with the β axis.
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Thus, the next iteration for βn could be obtained by determining4β by setting the deriva-

tive of the objective function to 0.

f ′(βn) = 0 (B.22)

From the Taylor Expansion,

f ′(βn +4β ) = f ′(βn)+4β f ′′(βn)

f ′(βn)+4β f ′′(βn) = 0

4β =− f ′(βn)

f ′′(βn)

Thus, the next best approximation for the roots can be obtained as,

βn+1 = βn +4β

βn+1 = βn−
f ′(βn)

f ′′(βn)

The iterations are continued until the optimal solution is found within a numerical error

bound or until a predetermined number of iterations have been completed.

B.2.1 Newton’s Method for Estimating Weights wi j

Equation B.20 has a similar form as the Equation 5.11. The steps below shows the Newton

method optimization to determine the wi js.
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Step 0: Initialize

Φ =

 1 . . . 1 . . . 1 . . . 1

L11 . . . L1k . . . LN1 . . . LNk


βN×k+1 = [0, . . . ,0]T

x = [1 X(t)]T

ε = 10−3


(B.23)

Step 1

ui = expβ
T

Φ(:, i)

where,

u = [u1,u2, . . . ,uN×k]
T


(B.24)

Step 2

v j = x j−
N×k

∑
m=1

Φ( j,m)um

v = [v1,v2, . . . ,vD+1]

where, D is the dimension of the data


(B.25)

Step 3

gi j =
N×k

∑
m=1

Φ(i,m)Φ( j,m)um

where, G is the Jacobian Matrix

 (B.26)

Step 4

βNew = βOld +G−1v (B.27)

Step 5

If ‖ G−1v ‖> ε , go back to Step 1. (B.28)
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APPENDIX C

AMERICAN COMMUNITY SURVEY FORM - SAMPLE PAGES FROM 2008

SURVEY FORM
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