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ABSTRACT

The ubiquity of embedded computational systems has exploded in recent years

impacting everything from hand-held computers and automotive driver assistance to

battlefield command and control and autonomous systems. Typical embedded comput-

ing systems are characterized by highly resource constrained operating environments.

In particular, limited energy resources constrain performance in embedded systems of-

ten reliant on independent fuel or battery supplies. Ultimately, mitigating energy con-

sumption without sacrificing performance in these systems is paramount. In this work

power/performance optimization emphasizing prevailing data centric applications in-

cluding video and signal processing is addressed for energy constrained embedded sys-

tems.

Frameworks are presented which exchange quality of service (QoS) for reduced

power consumption enabling power aware energy management. Power aware systems

provide users with tools for precisely managing available energy resources in light of

user priorities, extending availability when QoS can be sacrificed. Specifically, power

aware management tools for next generation bistable electrophoretic displays and the

state of the art H.264 video codec are introduced. The multiprocessor system on chip

(MPSoC) paradigm is examined in the context of next generation many-core hand-held

computing devices. MPSoC architectures promise to breach the power/performance

wall prohibiting advancement of complex high performance single core architectures.

Several many-core distributed memory MPSoC architectures are commercially avail-

able, while the tools necessary to effectively tap their enormous potential remain largely

open for discovery. Adaptable scalability in many-core systems is addressed through a

scalable high performance multicore H.264 video decoder implemented on the repre-

sentative Cell Broadband Engine (CBE) architecture. The resulting agile performance

scalable system enables efficient adaptive power optimization via decoding-rate driven

sleep and voltage/frequency state management. The significant problem of mapping
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applications onto these architectures is additionally addressed from the perspective of

instruction mapping for limited distributed memory architectures with a code overlay

generator implemented on the CBE. Finally runtime scheduling and mapping of scal-

able applications in multitasking environments is addressed through the introduction of

a lightweight work partitioning framework targeting streaming applications with low

latency and near optimal throughput demonstrated on the CBE.
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Chapter 1

INTRODUCTION

ENIAC, “the world’s first operational, general purpose, electronic digital computer,”

was commissioned by the United States Army for the purpose of computing artillery

trajectories [118]. Solutions tediously calculated with pencil and paper by scores of

engineers during the Second World War could suddenly be produced with astonishing

speed and accuracy thanks to electronic digital processing.

Those original machines weighing in at several tons and dependent on immense

power budgets have steadily given way to ever smaller, lighter, faster, and more energy

efficient machines capable of solving a myriad of previously unimaginable problems. In

addition, such machines in the embedded domain are capable of performing such tasks

in the harshest possible environments under extraordinarily demanding constraints. The

processing power of those original massive ballistics calculators has been dwarfed by

processing systems literally embedded inside individual artillery rounds today.

The importance and pervasiveness of Embedded computing systems have ex-

ploded in recent years. Embedded systems have become nearly ubiquitous in every-

day objects, and demands on computational power in such systems continue to rise.

Today, we commonly see high performance signal processing and complex control

systems present in everything from automobiles to mobile phones. Handheld devices

once designed to perform niche tasks such as mobile phone service, photography, voice

and video recording, music and video presentation, navigation, portable gaming, and

personal data management have moved substantially toward converging into a single

multifunctional device.

As the complexity and computational demands on such systems increase, a need

for improved system architectures such as multiprocessor systems on chip (MPSoCs)
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and improved power and performance techniques continues to grow. The motivations

for developing power and performance enhancements in embedded systems are easy to

highlight when considering embedded applications in military operations.

In the context of artillery projectiles, ballistics information once processed well

in advance and based on necessary assumptions about atmospheric conditions and even

the Earth’s rotation can today be carried out in flight for dramatic improvements to ac-

curacy and precision. The task of remotely engaging hostile targets on the battlefield

has gone from what was once truly Napoleon Bonaparte’s art to a genuine science.

What once required barrages, with today’s technology, can be accomplished with a

single round.

The role of digital computation on the battlefield has grown well beyond the

artillery tables motivating early digital computers. Nearly every facet of military op-

erations depends on intense embedded computation. While sophisticated aircraft and

naval systems have traditionally dominated the military embedded systems domain,

the presence and sophistication of embedded systems in ground based equipment has

dramatically increased over the past two decades. Everything from Battle Command

Systems, communications, radar, sensors, guided ordinance, and deeply integrated un-

manned and autonomous systems depend on the abilities of resource constrained em-

bedded computational systems.

Overcoming power limitations in such systems is paramount since any form of

energy comes at a premium on the battlefield. Logistics capabilities are a fundamen-

tal bottleneck in any operation. Limited transportation resources and often dangerous

conditions on important supply routes means that every ounce of logistical payload can

come at extraordinary cost. For the US Army in Afghanistan, estimates of the fully

burdened cost of getting a single gallon of fuel to the end user in combat are as high

as $1000 [102] – literally $1,000/gallon.
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Power to run electronic devices comes from petroleum dependent electric gen-

erators or batteries, both of which are capable of heavily burdening supply chains at all

levels. Such costs are evident in remote areas of Afghanistan where hostile activity and

limited transportation routes, which are also extremely difficult to secure, can require

helicopters for any successful resupply effort. If an assumption can be made that em-

bedded computing systems are here to stay, this problem provides ample motivation in

the search for solutions to the energy cost problem in embedded computation.

1.1 Addressing Energy Resource Constraints

The power supply problem in embedded systems may be addressed through both power

and performance optimizations. The energy efficiency of a computational system, given

in energy per unit of computation, imposes a constraint on the amount of achievable

computational throughput in terms of available energy. Power and performance op-

timization enables increased workloads under fixed energy constraints or fixed work-

loads under more restrictive energy constraints, indicating improved energy efficiency.

Research aimed at improving energy efficiency in embedded systems covers a

broad array of principles and techniques at every level of computer design abstraction.

Significant areas of research include device physics, improved lithographic techniques,

power and signal distribution design and materials, novel logic circuits such as thresh-

old logic, reduced complexity techniques for basic arithmetic operations, power aware

architectural layouts etc. At higher levels of abstraction, we see techniques including

power and clock gating, low energy state management, voltage and frequency manage-

ment, multicore and distributed architectures with data and functional parallelization

techniques, programming and compiler techniques such as minimizing memory access

and other types of overhead, operating system scheduling techniques. System level

techniques include power aware, user and context aware power management schemes,
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and other improvements such as the introduction of improved batteries and power sup-

plies and low power peripheral device technologies.

In this work power and performance optimizations center on two primary ap-

proaches. The first approach supports power aware systems introduced in the follow-

ing section. The second, larger approach, centers on effective utilization of multipro-

cessor systems on chip (MPSoCs) which have become the dominant architectures in

response to the power/performance barrier experienced in microprocessor design in the

last decade. The MPSoC paradigm is discussed further in Section 1.1.2.

1.1.1 Power Aware Systems

Consider a situation where a portable multimedia device user wants to watch a video

program for the duration of an airline flight, but remaining battery power only affords

video for half the duration. Under these circumstances users are willing to sacrifice

Quality of Service (QoS) in exchange for increasing the time the service is available.

Power Aware applications provide users the flexibility to exercise this type of trade-off.

The concept of Power Aware devices as presented by Lian et al. [100] asserts

that a device such as a handheld computer or smart phone should be able to choose

an appropriate power saving mode by direct user input, based on the user’s history, or

automatically by sensing the environment. In essence, an array of system performance

modes enable device users to prioritize certain kinds of behavior in exchange for im-

proved power performance. Examination and implementation for two such schemes

are presented in the following chapters. Brief introductions are given below in Sec-

tions 1.2.1 and 1.2.2.

1.1.2 Multiprocessors

Historically, integrated circuit complexity has marched upward largely in accordance

with Moore’s law describing the geometric annual doubling of the number of transis-
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tors on an integrated circuit due to two dimensional downscaling of feature sizes [117].

Thanks to increasing architectural complexity in conjunction with increasing clock

speeds and reduced operating voltage, processor performance had followed a similar

trend before hitting a power/performance barrier in the last decade. The primary con-

tributing factors in the emergence of this barrier have been power and thermal density,

and submicron device subthreshold leakage current. The increasing performance and

density of transistors suggests that power density, or unit energy per unit time per unit

area, would reach a point at which heat generated due to energy dissipation could not

be removed from the chip fast enough to maintain a stable operating temperature. Ad-

ditionally, contributing to this problem was the increasing contribution of transistor

subthreshold leakage current to overall chip power consumption. Not only were power

densities becoming unsustainable so was overall power consumption.

To overcome the power/performance wall, it is necessary to consider the re-

lationship between power, P, operating voltage, V , and operating frequency, f . This

relationship can be given by the approximation P = Cswitching ·V2 · f + V · Ileakage. Where

Cswitching describes capacitances in the circuit which are charged and discharged during

operation and is associated with active power consumption, while Ileakage describes the

sub-threshold leakage current which characterizing the transistor technology and is as-

sociated with passive power consumption. Processor performance can be increased

by increasing the system clock frequency, but higher processor frequencies require

increasing the operating voltage since circuit capacitances must be charged and dis-

charged more quickly. In effect, increasing clock frequency results in a cubic increase

in power consumption and is consequently not viable once the power/performance bar-

rier is reached. Increasing performance through other means, however, can provide the

necessary conditions for surmounting the power/performance wall.

Thanks to the massive numbers of transistors available in integrated circuits,

it is possible to place multiple or even many processing elements (PEs) on a single
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chip. Ideally, while running the multiprocessor system at a fixed frequency and volt-

age, performance will scale linearly with the number of processors added to the system

while increasing power requirements only linearly. Since increasing clock frequency

to achieve the same performance gains would result in a geometric increase in power

consumption, the multiprocessor system gives improved performance while circum-

venting the power/performance wall. This principle has driven the recent dramatic rise

of multicore and parallel processing solutions. Given appropriate implementation from

both the architecture and programming perspective, multiple smaller and simpler com-

putational cores can outperform a single core processor in terms of power, throughput,

and latency, while operating at slower, less power hungry voltages and frequencies.

The MPSoC paradigm takes advantage of the huge number of transistors avail-

able in state of the art integrated circuits to implement multicore processors and mul-

tiple system components on the same chip. Processing elements, application specific

cores, data networks, routers, memory elements, and a litany of other components are

regularly integrated on the same chip, often reducing circuit area requirements and

eliminating off-chip communication latencies and power considerations which would

otherwise be required. The MPSoC is thus a logical design for embedded systems

where chip size, power, and efficiency are important.

The primary difficulty garnering significant attention with multiprocessors in

general arises from the need to efficiently program them. Historically dominant sin-

gle core programming schools produce code which can be difficult or impossible to

map efficiently onto multiprocessors. The problem can be loosely described in terms

of Amdahl’s law regarding the parallelization limits of programs. Multicore speedup is

limited by the non-parallelizable portion of the code [9]. The problem for automating

multicore programming arises from the need to identify which portions are sequential,

then separate and evenly partition the remaining work across available PEs. Address-

ing the mapping of a complex codebase, automated program mapping, and power and
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performance efficient implementations of programs for arbitrary MPSoCs are the mo-

tivating problems addressed here. Contributions addressing these problems are briefly

introduced below in Sections 1.2.3, 1.2.4 and 1.2.5.

1.2 Contributions

Overviews of the contributions presented in this work are given in the following sec-

tions. Detailed presentations are found in the subsequent chapters.

1.2.1 Power Aware QoS Managemet for Bistable Displays

At the system level, we can address our limited energy budget by identifying the most

power hungry system elements and finding ways to improve their efficiency. One im-

portant subsystem commonly seen in handheld embedded devices is the liquid crystal

display (LCD). LCDs have long been dominant in a myriad of handheld embedded

handheld devices and military applications such as the Handheld Terminal Unit [53],

but they can consume as much as 60% of the system’s entire power budget [36]. New

technologies such as bistable electrophoretic displays (EPDs) can significantly reduce

power requirements. In certain applications, such as electronic books, EPD power con-

sumption can be many orders of magnitude less than LCDs. In addition, the bistable

nature of the display presents opportunities which can be exploited in power aware sys-

tems. In Chapter 2 power benefits of EPDs are addressed along with a display driving

scheme which significantly reduces power consumption and enables power aware sys-

tem management by taking advantage of the display’s bistable memory properties at

video frame rates where the EPD power advantage is otherwise diminished [17].

1.2.2 Power Aware QoS Management in H.264 Decoding

Digital signal processing (DSP) applications are among the most important in embed-

ded systems. Most video, imaging, communications and other sensor applications are

extremely dependent on efficient DSP implementations. A particularly important ap-
7



plication is video decoding needed to display and analyze encoded video streams used

for reconnaissance, surveillance, and communications. H.264 is a state of the art video

coding and decoding (codec) standard which gives a substantial compression advantage

over previous standards. High compression enables significant improvements in video

quality when transmitted over bandwidth limited wireless networks, such as those used

to download data from unmanned aerial vehicles (UAVs), thanks to reduced bitrates.

In Chapter 3 a power aware supporting scheme enabling users to trade quality of ser-

vice for increased throughput and reduced power consumption in the H.264 CODEC

is presented [16].

1.2.3 Low Power High Performance Scalable Multicore Video Decoding

The power/performance barrier introduced in Section 1.1.2 is addressed, at least in part

through the transition to MPSoCs, where the computational workload is spread across

multiple, often reduced complexity, processing elements running at reduced clock fre-

quencies. However, as previously discussed, programming for this system has intro-

duced new problems as well as new opportunities. Chapter 4 describes a multicore

implementation of the H.264 video decoder on the IBM Cell Broadband Engine (CBE)

designed to scale with increasing processor array sizes in multicore SoCs. In addition,

a novel multicore dynamic frequency and voltage management scheme in introduced

and examined on the CBE [14].

1.2.4 Instruction Mapping in Scratchpad Memories

In addition to moving toward multicore chip designs, the introduction of reduced power

memory structures such as scratchpad memories can help to reduce overall system

power consumption. SPMs have reduced physical complexity when compared with

cache memory, but they also hand the burden of memory management, once conducted

in hardware, over to the programmer or compiler. The additional burden for program-
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mers can be significant. A lightweight heuristic for constructing instruction mappings

in SPMs is presented with the H.264 analysis in Chapter 4. A more thorough investi-

gation of instruction mapping techniques in addition to more advanced heuristics are

further presented in Chapter 5 [15].

1.2.5 Lightweight Run-Time Stream Scheduler

As the number of cores available in multicore SoCs grows, the problem of extracting

parallelism from applications and efficiently mapping them onto many cores in order

to maximize processor utilization becomes increasingly difficult. Stream programming

is a paradigm designed to aid programmers in explicitly exposing parallelism in their

applications to the compiler. Unfortunately the proliferation of multicore architectures

and their often independent programming models means that sophisticated compiler

tools and developer effort are still required to successfully implement a single applica-

tion on two or more different hardware configurations.

The problem is exacerbated by the coming need for multitasking multiple appli-

cations with user-defined priorities onto a multicore processor. Availability of hardware

resources including the number of processing elements will change dynamically at run-

time, suggesting that all possible configurations must be addressed if a compile-time

approach is used. Efficient algorithms for generating and managing such mappings,

particularly run-time implementations are still an important research area. In Chapter

6 a lightweight runtime stream scheduler is presented addressing these issues. The ba-

sic requirements for an automated multicore model are laid out, a high performance

solution for mapping applications onto available resources is presented, and simulated

performance as well as an implementation and evaluation on the Cell Broadband En-

gine are examined [13].
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Chapter 2

POWER AWARE QUALITY OF SERVICE MANAGEMENT IN

ADVANCED BISTABLE DISPLAY TECHNOLOGY

Today displays represent a significant fraction of the power required by common hand-

held portable computing devices. Displays often account for anywhere from 30-60%

of the power consumption in these devices, primarily due to backlight power consump-

tion in the ubiquitous Liquid Crystal Displays (LCD) [36]. A typical QVGA display

in a handheld device may consume 220mW of power, 91% of which is directly con-

sumed by the backlight [121]. Maturing alternative technologies such as bistable Elec-

trophoretic Displays (EPD) offer promising possibilities for significant power savings

by eliminating the backlight and providing a zero power capability when displaying

a static image.

A smart driver concept is introduced here for next generation full motion and

color EPDs taking advantage of the image stability these displays offer even when

the device is turned off, effectively making the display itself a form of static memory.

The smart driver offers substantial power savings of between 30% and 50% of display

switching power while displaying video when compared to a naive driver without loss

of quality by selectively updating only portions of the image which change from one

frame to the next. We also introduce a more aggressive lazy driver which seeks to im-

prove power savings even further albeit in exchange for video quality. Both methods are

analogous to inter-frame compression used in common video compression algorithms.

As a suite of operating modes the smart and lazy drivers enable an array of options to

power aware systems working to extend resource availability based on the user’s needs.

A great deal of effort has gone into optimizing power consumption in LCDs

[57], and as battery powered computing devices become increasingly powerful and

pervasive, that effort continues to grow in importance. As lower power display tech-
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(a) Detail of colloidal suspension cap-
sules

(b) electrophoretic display
on plastic

Figure 2.1: Capsules containing colloidal suspension in an EPD display.

nologies like EPDs become more capable, the effort to optimize those technologies for

use with handheld devices will also increase. Currently EPDs are the technology of

choice for electronic paper due to the small amount of energy required, very high con-

trast, and suitability for use in flexible displays. As EPD technology improves, this type

of display will increase in importance. With handheld computing devices growing more

powerful and more versatile, they will require larger lower power displays than those

found in portable devices today. Imminent improvements to full color and full mo-

tion capability in EPDs justifies looking into optimization of these devices under those

conditions. EPD switching power consumption is not directly evaluated in comparison

with LCDs here; however, we find that the power consumed in an EPD with a refresh

rate comparable to an LCD displaying full motion video are of the same order. The 9%

of the LCD’s power budget which goes into updating and maintaining the displayed

image is comparable to the total energy consumed by an EPD in the same environment.

2.1 Previous Work

A great deal of effort has gone into optimizing power consumption in LCDs [36] [40]

[57] [106] [107]. As battery powered computing devices become increasingly powerful

and pervasive, such efforts continue to grow in importance. As lower power display

technologies like EPDs become more capable, the effort to optimize those technologies

for use with handheld devices will also increase.
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Electrophoretic display technology has been studied for decades. Dalisa [49]

and Hopper et al. [69] characterized and examined the performance and manufacturing

considerations in such displays in the 1970’s. More recently, as EPDs began finding

commercial success and feasible manufacturing methods, there has been an increased

interest in these displays. Comiskey et al. [45] describes an electrophoretic ink and its

manufacturing process leading to the founding of Eink Corp., the leading manufacturer

of electrophoretic ink. Inoue et al. [79] and Takao et al. [146] present EPD display

systems. Previous EPD models are presented by Vermael et al. [153] as well as Hopper

et al. These models lay the groundwork for the power model used in this work.

2.2 EPD Technology

EPDs use the electrophoretic force of an electric field on charged pigment particles in

an encapsulated colloidal suspension to alter the appearance of a display image. When

charged pigment particles are forced to the front of the display though electrophoresis,

the capsule appears the color of the pigment particles. Two color particle displays use

capsules like the one illustrated in Figure 2.2a. Here particles of opposite charge and

color are switched between the front and back of the display to produce pixel color.

This process can produce color and contrast comparable to printed paper.

An important distinction between LCD and EPD technology is the concept of

bistable pixels. In a bistable display, individual pixels are stable in both "on" and "off"

orientations so that an image once established on the display will remain there, even

if the display is turned off. This is an extremely useful property, which is particularly

interesting when power conservation is important. LCDs must be refreshed continually

in order to maintain an image, even if the image is constant, while an EPD may retain

an image for months after the device has been turned off. It is this distinction which

drives the concepts presented in this work.
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2.2.1 Advantages

EPDs have a number of properties which are highly desirable in portable battery pow-

ered devices. High contrast in ambient light eliminates the requirement for a backlight

found in all transmissive LCD display devices. The display’s purely reflective nature

also makes it suitable for use with night vision devices, an application for which emis-

sive display technologies are poorly suited. The bistable nature of EPDs means that

once an image is drawn on the display, there is no need to refresh or even power the

display until a new image must be drawn. For static viewing applications, such as text

viewing, once the image is drawn the display might be powered down for minutes,

hours, or even days until the viewer is ready to go to the next page. This bistable prop-

erty can mean substantial power savings in handheld devices. Figure 2.1 also demon-

strates that display resolution is not limited by microcapsule size. Image resolution is

actually dependent only on the size or shape of the electrodes in the backplane.

2.3 Power Characterization of EPD at the Subpixel Level

2.3.1 Electrophoretic Capsule

In order to characterize the power consumed by these next generation displays, it is

necessary to understand the amount of energy required to move a pigment particle in

the colloidal solution across an EPD capsule and the amount of leakage current we

should expect to occur in the capsule. The physical characteristics of EPD capsules

are based on contemporary examples of EPD display technology. Table 2.1 lists the

fundamental properties chosen for power characterization. Each display pixel is divided

into three subpixels corresponding to the RGB color components in the display. Power

is characterized at the subpixel level because each color component or subpixel has its

own data value and storage capacitor.
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Table 2.1: Simulated EPD attributes.

Value Unit
pigment particle radius (r) [22] 0.5 µm
pigment particle charge (q) [22] 4.8E-16 Coulomb

microcapsule diameter [79] 50 µm
supply voltage [153] 15 Volts

suspension resistivity [49] 1.0E12 Ωm
particle concentration [153] 2E16 part./m3

microcapsules/subpixel [79] 6 capsules

Capsule Switching Power The physical motion of charged pigment particles ac-

counts for most of the power actually consumed in each microcapsule. Here a method

for calculating capsule switching power is introduced. For simplification, the amount

of power consumed during particle motion is considered to be a constant dependent

upon the velocity of the particles as they transit the capsule. Particle motion inside the

capsule can be represented as a laminar flow, and the time required to establish laminar

flow after the electric field has been applied is very small with respect to the switching

timescale, even when we are considering full motion video at 60Hz. In [45] this time is

calculated at 55ns, while the frame-write period at 60Hz is approximately 17ms. Here

the velocity of each particle is considered as it traverses the capsule, assuming the par-

ticle travels the diameter of the capsule anytime the capsule is switched. The velocity

is determined by the distance which must be covered by the particles in the amount of

time it takes to write one frame at the driving frequency. From the particle velocity v

in meters per second, the applied voltage V , and the capsule diameter in meters d, the

mobility µ of the pigment particles in solution may be calculated [45] :

µ = v/E, where E = V/d (2.1)

In defining the 15V driving voltage, capsule diameter, particle radius, and par-

ticle charge, fixed properties of the next generation EPD must be considered. In order

to achieve the required mobility, it is necessary to identify the viscosity of the sus-
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Negatively charged black pigment particles

Transparent suspension fluid

Positively charged white pigment particles

(a) EPD capsule with a transparent electrode at the top making
the black pigment particles visible to an observer above after a
voltage is applied as shown.

(b) EPD capsule model with TFT gate and
component values simulated in LTSpice
[101].

Figure 2.2: EPD capsule physical and electrical characteristics.

pending fluid. Here we can manipulate the equation for mobility in [45]. Applying

the charge per pigment particle in Coulombs and the radius of the pigment particles in

meters we are able to find the viscosity needed to achieve switching times necessary

for the required frame refresh rate:

µ = q/12πrη

η = q/12πrµ
(2.2)

Using the values V = 15 volts, d = 50µm, r = 0.5µm, r = 0.5µm [22] and a

frame refresh rate of 60Hz, it turns out that we must have a viscosity no greater than

0.00255 Ns/m2 or 2.55 cP, which is much smaller than value used in [79].

To find the power consumed through physical movement of a single pigment

particle, we can determine the force acting on the particle in Newtons: N = qE where
15



Table 2.2: Subpixel power consumption.

Watts
Steady-state power consumption due to electrophoretic particle motion 3.24E-9

Capsule leakage power 8.84E-13

q is the particle’s charge in Coulombs, and E is the electric field inside the capsule as

described earlier. The work performed on each particle is this force multiplied by the

particle’s velocity, in this case 3.00E-3m/s · 1.44E-10 N = 4.33E-13 W per pigment

particle. Using the pigment particle concentration of 2 · 1018m−3, and multiplying by

the volume per capsule we have approximately 1300 particles in a capsule. It is not

necessary to distinguish between the positive and negatively charged pigment particles

for a two particle EPD in this calculation, as the work in either case is indistinguishable.

To calculate the power consumed at the subpixel level, this number is multiplied by the

number of particles per capsule, and the number of capsules per subpixel to find 3.24E-

9 W per subpixel during switching.

Capsule Leakage Power As long as a voltage is applied across the capsule, a small

amount of leakage current will flow through the fluid dependent on the resistivity of

the colloidal solution in the capsule. Typical resistivities should be > 1012Ω · cm [49].

Leakage power is calculated for each capsule based on resistivity ρ of the colloidal

solution. The height h and radius r of the capsule are used to determine its resistance:

R = ρh/πr2 (2.3)

Capsule leakage power is found using the capsule’s resistance and the operating

voltage: P = V2/R. Multiplying this value by the number of capsules per subpixel we

get a leakage power of 8.84E-13W per subpixel. Since this value is four orders of

magnitude smaller than the power consumed due to particle motion, it can be safely

ignored when calculating subpixel power consumption.
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2.3.2 Storage Capacitor

To achieve a frame rate acceptable for viewing video, the storage capacitor shown in

Figure 2.2b stores the energy needed to switch a display subpixel between two states,

such as black to white or white to black. With a storage capacitor, the display driver

can quickly write a row of pixels by charging the capacitor, and then move on while

the capsules are driven by the capacitor. The capacitor is charged during the row-

write operation, and the particles in the EPD capsules complete their motion under the

electric field provided by the charged capacitor during the period of one frame-write

operation. At 60 Hz, the frame-write period is approximately 16.7ms. The row-write

period is determined by the number of pixel rows in the display. Here 320x240 QVGA

is used, where 240 is the number of rows in the image. Dividing the frame-write period

by the number of rows gives us a row-write period of 0.0694ms.

The storage capacitor must charge during the row-write period, and then main-

tain the switching voltage across a subpixel through one frame-write period while per-

forming the work required to switch the subpixel in the same period. The amount

of energy lost from the capacitor during a frame-write period is calculated from the

amount of work per subpixel derived earlier multiplied by the amount of time the work

is performed, in this case the frame-write period: 3.24E-9W · 1.67E-2s = 5.23E-11 j.

Using the spice model shown in Figure 2.2b, we can calculate the amount of energy

lost in the storage capacitor based on the voltage drop during the frame-write period.

In the presented model, with an 8.6pF storage capacitor, the subpixel loses 0.47 volts

from 14.53V when the capacitor is charged to 14.06V at the end of the frame-write

period, expending 5.78E-11j.

The total power consumed in writing to each subpixel is completely dependent

on the size of the storage capacitor. At the beginning of each row-write cycle, the

storage capacitor is shorted to ground to discharge the remaining energy. This is done
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because the image information stored in the associated subpixel is assumed to be stable.

The next pixel value is also likely to require the opposite charge used to attain the

current state, in which case discharging the capacitor reduces the energy required by

the driver to charge the capacitor to the opposite polarity [106].

2.3.3 Thin Film Transistor (TFT)

EPD drivers must use active matrix pixel addressing since the electrophoresis of the

pigment particles does not have a threshold voltage. Passive matrix addressing will

invariably affect an entire row and column when a single pixel is addressed [49] [69]

[146], while active matrix pixel arrays are switched at the pixel level using a TFT to

protect pixels from signals intended for other rows. The EPD driver writes a row of

display data at a time by applying the appropriate row image voltage values to the

columns in the addressing matrix and applying a separate row strobe to turn on the

TFT switches for each row in sequence [106].

2.4 Improved Driver Concept

2.4.1 Naive Driver

Standard display drivers update every pixel on the display each time the frame is re-

freshed. Constantly refreshing pixels is important to the operation of LCD displays

because after a charge has been applied to place an LCD pixel in the desired state, the

pixel immediately begins moving back to its quiescent state. As a result, LCD displays

must be refreshed constantly even if the image displayed remains static. Similarly, the

naive EPD driver updates every pixel in the display according to the frame refresh rate.

2.4.2 Smart Driver

Without any requirement to refresh a static image, the display driver need only write the

image once. An image might remain on the display with the display driver and even the

display itself turned off for days. This property enables some possibilities for smarter
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ways to update moving images. When displaying a video with an EPD, a smart driver

would know that it need not update the display faster than the frame rate of the video

displayed. Such a scheme results in immediate power savings, as a display capable of

updating at 60fps showing a video at 32fps instantly conserves energy by only updating

the display when a new frame arrives at half the native rate with no loss of performance.

Common user interfaces present largely static screens such as a user desktop.

Interacting with the display interface frequently results in small changes to the dis-

played image as is the case with drop-down menus and mouse pointer motion. Only a

very small fraction of pixels actually change from one frame to the next. In this case a

smart driver might very efficiently reduce the amount of work performed at each frame

refresh by updating less than 1% of the pixels during each refresh. This concept ex-

tends to full motion video and is analogous to inter-frame compression used for MPEG

video. Even at 60fps, some fraction of the pixels on the display will likely remain un-

changed from one frame to the next. The smart driver can detect these static portions

of the image by comparing RGB values on the display to those in the new frame, and

choosing not to address them when the new frame is written. While choosing to up-

date only pixels that have changed from one frame to the next, the display driver will

conserve energy without any loss of image quality in a bistable display.

2.4.3 Lazy Driver

The concept of a smart driver for a bistable display can be taken a step further. If

power conservation is paramount, the user might be interested in enabling power aware

management features and sacrificing image QoS for power savings. A lazy driver can

further reduce power consumption by loosening the definition of a pixel which is un-

changed from one frame to the next. The lazy driver might only compare the most

significant part of a pixel’s color value and then only update pixels which have changed

by some threshold amount before bothering to update them during a frame refresh. For
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example, the color value of a pixel is represented with a 24 bit number. The three

bytes in this number represent the three primary colors in the order red, green, and

blue. The lazy driver might compare only the most significant 7, 6, 5, or 4 bits of

each byte instead of comparing all 8 as in the smart driver to determine whether a pixel

should be updated or not. In effect by doing less work to compare the image on the

display with the next frame to be displayed, the lazy driver further conserves energy

by updating fewer pixels depending on how many bits were compared. The lazy driver

might produce significant power savings over a smart driver, but it also degrades the

image quality of the displayed video. Image degradation can increase significantly as

the number of bits compared decreases.

2.5 EPD Smart Driver Simulation

2.5.1 Bistable Display Simulator

In order to characterize the potential power savings achieved by upgrading the bistable

display driver, a simulator in Java has been developed which takes as its input a se-

quence of bitmap images extracted from video benchmarks. Each image is a frame

from the original video.

Seven QVGA video segments were extracted from MP4 files provided by Ele-

card Ltd. [104]. The simulator calculates the power consumed by a naive driver updat-

ing every pixel of every frame, the smart driver which updates only pixels that differ

from one frame to the next, and six iterations of the lazy driver which compares only

the most significant bits of each subpixel value for the next frame with the same bits

from the image currently on the display.

2.5.2 Simulator Power Characterization

The display is modeled such that the elements in Figure 2.2b represent a subpixel, or

a single RGB component color of each pixel. Power is calculated separately for each
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subpixel according to the figures in Section 2.3. The total energy added to the row of

capacitors during a row write is used to determine the power consumed during a row

write operation. At the beginning of each row write, the storage capacitor is shorted to

ground, quickly discharging any stored energy.

The continuous power consumed by the display is determined by the series

of row-writes which occur sequentially as each frame is written to the display. The

row power is calculated based on the total number of pixels written. The rate of power

consumption over the total row during one row write period represents the power during

that time period. The total power calculated for the next row represents the power

consumed during the next row-write period. When the end of the frame is reached, the

next frame begins with the first row.

Power consumption is calculated for every pixel which is written during a

frame-write. In the case of the naive driver, every pixel is re-written. The smart driver

only updates pixels when any 8 bit RGB component in the next frame is different from

the current displayed image. The lazy drivers only compare the first 8 − n bits of each

RGB component for each pixel, where n is the number of least significant bits ignored

during the comparison.

2.5.3 Smart Driver vs. Naive Driver

In Figure 2.3a, the instantaneous simulated display switching power consumption is

plotted over 29 frames of baroness. The x-axis represents each row written in turn

over the course of 29 frames such that every 240 steps along the x-axis represent the

instantaneous power over the course of one frame-write. The y-axis gives the power

consumed in Watts for each row. The naive driver results in constant power consump-

tion represented by the flat line at 11.3mW. The squares mark the average instantaneous

power consumed over the course of each frame by the naive driver. The smart driver

produces a display image identical to the naive driver, but with the instantaneous power
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Table 2.3: Driver configurations.

Driver Image degradation Power savings
Naive No degradation 0%
Smart No degradation 3%-50%
Lazy Selectable degradation 3%-91%

consumption swinging between 0.0mW and 11.3mW. This video is in a “letterbox”

format with a black stripe at the top and bottom of each frame. This constant portion of

the image corresponds to zero power consumption by the smart driver at the beginning

and end of each frame. The triangles mark the average at the end of each frame for

the smart driver. The simulated smart driver resulted in power savings averaging 33%

across 7 video clips with savings ranging from 3% to 50% without any degradation

to the displayed image.

2.5.4 Lazy Driver vs. Smart and Naive Driver Results

Figure 2.3a shows a plot of the average power consumed by each frame over the course

of 29 frames of baroness for each driver configuration. Each line plotted represents

a different driver configuration for the same video. The relative power consumption

using the lazy driver is anywhere from 35-90% less than the naive driver with both

drivers updating at 60Hz.

In order to characterize the quality of service for each of the drivers, the Peak

Signal-to-Noise Ratio (PSNR) is used to compare the resulting image to the original

image. A PSNR value 100dB is used to indicate no change from the original image.

Lower PSNR values represent lower quality images. Typical values for compressed

video are 20-40dB. The lazy drivers achieve significant power savings, but at increasing

degradation to image quality.

Figure 2.3c illustrates the relationship between power savings and loss of image

quality. In all cases, the PSNR value of the naive and smart drivers are 100dB indicating

no measurable change from the original image. When asking the lazy driver to compare
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(a) Original quality. (b) Last 5 bits ignored, PSNR
value for this frame is 30.5dB.

(c) Last 6 bits ignored, trail left by
basket moving from left to right
is clearly visible, PSNR value is
24.6dB.

Figure 2.4: Detail from baroness frame 29

fewer bits while deciding whether to update a pixel, the power consumption decreases

as the image quality declines. Ignoring 1 bit resulted in a very small power savings and

no image degradation in all 7 videos. Ignoring 6, 5, 4, 3, or 2 bits corresponds to the

first five points plotted on each line with PSNR values ranging from 20dB to 60dB.

Assuming that the lowest PSNR value we are willing to accept is 30dB, clearly

in all cases ignoring 6 bits results in unacceptable image quality, while all other con-

figurations result in acceptable image quality. In this case we would choose to have

the driver ignore 5 bits minimizing power consumption with acceptable loss of image

quality. It is also interesting to note that when the lazy driver is configured to ignore 3,

2, or 1 bits, the PSNR values are greater than 40dB, which is better than typical video

compression. Figure 2.4 illustrates the original image quality, compared with degraded

video frames ignoring 5 and 6 bits after 29 frames.
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2.6 Conclusion

A method for calculating power consumption in EPD capsules based on the physical

motion of pigment particles inside the capsule has been presented. Additionally, smart

driver and lazy driver schemes have been presented providing display power savings

of up to 50% for these devices without reduction in quality of service with additional

savings where reduced quality of service is acceptable. These improved driver schemes

are applicable to any bistable or image-stable display. Degradation in quality of service

was found to be very small in certain lazy driver configurations. Such power savings

using smart bistable display implementations can substantially reduce resource con-

straints for low power embedded systems.

2.6.1 EPD Switching Time

Slow switching speed remains a dominant issue with EPDs. EPDs typically require

relatively high supply voltages to obtain desirable response times. Most EPD pixels

today are driven at around 15V which is somewhat high compared to LCD (4.5V) [56].

The switching frequency of the cells is limited by the viscosity of the suspending fluid

and the physical motion of charged particles. EPDs historically have switching times

on the order of tens to hundreds of milliseconds when driven at reasonable voltages for

portable devices with few devices currently operating at the fast end [49] [22]. LCDs

on the other hand are easily able to switch on the order of 10 milliseconds [23]. Opti-

mizing the switching speed of EPD capsules is primarily a problem of maximizing the

mobility of the pigment particles in suspension. Pigment particle mobility, described

in Equations (2.1) and (2.2), is dependent upon several factors. Increasing the sup-

ply voltage can improve response times, but here the 15V common in EPDs today is

considered an upper limit of what we would like in a battery powered device. Increas-

ing the charge we can attach to pigment particles increases their mobility for a given
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electric driving field, but engineers must be careful with large charges attached to the

pigment particles as associated ions in the solution can screen the electrical field reduc-

ing the efficiency of the capsule [143]. Reducing the pigment particle size increases its

mobility, but will reduce the charge which can be attached via the surfactant and may

increase the risk of agglomeration reducing the lifespan of the capsule [49]. Finally,

reducing the viscosity of the suspension fluid increases particle mobility, but viscosity

must be considered along with the specific gravity which must be carefully matched

with the specific gravity of the pigment particles to stabilize the colloidal solution and

enable image retention [49].

2.6.2 Grayscale in a Bistable Display

Another important problem with EPDs is the difficulty in achieving grayscale. Because

of the bistable nature of these displays, putting a pixel into an intermediate state re-

quired to display anything other than black or white can be problematic. The state of

the pigment particles inside a capsule is not well defined for interim states required to

achieve grayscale. Grayscale can be achieved through area ratio scaling using vary-

ing numbers of subpixels to achieve relative lightness or darkness in a pixel; however,

the levels of gray achievable through this method are limited by the number of sub-

pixels that can be addressed [79]. It is possible to partially switch a pixel resulting in

partial transition from black to white or white to black. This is currently done by eras-

ing or blanking the display, then precisely controlling the amount of energy applied

to achieve the desired state. Without first resetting the display to a known state, the

amount of energy and the supply voltage polarity required to achieve a specific state is

directly dependent upon the current state of the pixel where state is characterized by

the imprecise location of the pigment particles inside the associated capsules.
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Chapter 3

POWER AWARE QUALITY OF SERVICE MANAGEMENT

FOR EMBEDDED H.264 DECODING

The Power Aware H.264 system presented here provides user selectable degrees of

power saving effort in exchange for controlled QoS reduction. The goal is to reduce

the amount of computation required to decode the H.264 stream. This goal is achieved

by skipping carefully selected blocks during video stream decoding. Based on the

number of skipped blocks, the resulting speed-up in the decoder may be predicted and

Dynamic Voltage and Frequency Scaling (DVFS) used to reduce power consumption.

The presented H.264 encoder-decoder system classifies macroblocks in each frame into

slice groups using Flexible Macroblock Ordering (FMO) described in the H.264 stan-

dard [157]. The prioritization algorithm determines which blocks in each frame are the

most expendable and organizes them into slices accordingly. Slice groups correspond-

ing to different QoS measures are then selectively omitted from the decoding process

based on user preference. The effect on QoS and power savings using two types of

error concealment are compared. Simple Copy Forward Error Concealment (CF-ERC)

provides replacement data from the previous frame with a very inexpensive copy based

solely on macroblock location. Motion Vector Error Concealment (MV-ERC) is more

computationally expensive, but provides substantially improved QoS.

The experimental results in Section 3.6 demonstrate that both techniques are

capable of enabling significant power savings of up to 53% and 29% compared to the

fully decoded video stream. In some cases, particularly using Motion Vector error con-

cealment, the power savings are significant, while degradation to QoS is minimal. Sig-

nificantly, the encoded stream is also compatible with standard H.264 decoders without

support for the slice dropping scheme.

Previous work will be discussed in Section 3.3, in Section 3.4 the encoder-
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decoder system is introduced, and modifications to the JM version 12.4 reference en-

coder and decoder [63] are discussed. The experimental setup is explained in Section

3.5 followed by results and conclusion.

3.1 H.264

The H.264/Advanced Video Coding (AVC) codec is part of the MPEG-4 suite of mul-

timedia standards. The first revision of the standard, completed in May 2003, sought

to address increasing demand on video bandwidth associated with growing services

like High Definition Television and network based streaming video applications [157].

H.264 implements a number of improvements over previous video codecs which col-

lectively result in reductions of up to 50% in bandwidth requirements for the same

level of image quality. The savings result from extensive analysis and optimization in

the encoder which serves to minimize redundancy in the video stream, but comes at a

significant cost in computational complexity. The H.264 decoder’s complexity is about

2.4 times that of a comparable H.263/MPEG2 decoder [72].

Reduced bandwidth makes H.264 bitstreams particularly useful for hand-held

applications using video streams transmitted over a wireless network where bitrates are

limited and bandwidth comes at an absolute premium. In addition, storage capacity

in a mobile device may also be limited. Unfortunately the increased computational

complexity that comes with reduced bandwidth has obvious negative consequences for

portable devices relying on battery power supplies.

3.2 Quality of Service

In this work, QoS is objectively defined as the level of distortion introduced into a

video at the individual frame level and across several frames as a result of discarding

residual data from macroblocks. Peak Signal to Noise Ratio (PSNR) calculated between

the unmodified video and the same video with discarded data is used. A PSNR value
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around 25dB is considered acceptable here for a low power mode. Values close to

35dB and higher are considered acceptable for more expensive computations. This

range corresponds with the expected PSNR performance of a lower quality low bit-

rate video stream vs. a high bit-rate [66]. More details are provided in Section 3.4.3.

The Video Quality Measurement Tool from MSU is used to collect PSNR data for

individual video frames [119].

3.3 Previous Work

Several publications have focused on the effects of network packet loss on streaming

video quality, methods for recovering from packet loss and encoder optimizations de-

signed to improve video streams’ robustness against packet loss. Krasic et al. [94]

introduces a priority drop scheme which manages prioritized data flow on a network

for frame dropping, and dynamically variable coefficient quantization enabling graceful

QoS degradation under variable network conditions. The encoded stream is suited for

similar packet prioritization, but without necessary modifications to the video coding

standard. Additionally, reducing quantization levels in the decoder does not provide

significant computational savings relative to block or frame dropping, and slice drop-

ping provides better resolution version of frame dropping. Huang et al. [74] analyzes

the video stream in the compressed domain, pruning the compressed data based on a

model which estimates the effect on distortion. This scheme is aimed at mobile de-

vices on a network where each device has limited computational ability considered

by the video server which appropriately modifies the compressed data stream. The

transcoding scheme focuses on computational constraints while minimizing the intro-

duced distortion, but it relies heavily on frame dropping and does not provide measured

distortion injection in contrast to the present approach.

Video decoding workloads are notoriously variable. Significant effort has gone

toward predicting workload for the purpose of DVFS for power optimization. Son et
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al. [139] gives two methods for predicting workload in MPEG streams in order to effec-

tively scale frequency and voltage. Henning et al. [66] describes a method for dynami-

cally choosing IDCT algorithms in order to exchange quality for energy. Hua et al. [73]

introduces three techniques for taking advantage of multimedia applications tolerant to

deadline misses enabling opportunities for DVFS. Here, data points are dropped from

the stream exchanging quality for power savings; however, unlike the present scheme,

the impact of individual data points on QoS is not considered.

3.4 Power Aware H.264 Application

The encoder-decoder pair is implemented by modifying the JM H.264/AVC reference

encoder and decoder version 12.4. The goal was to free the decoder from the maximum

amount of computation while minimizing the degradation introduced into the decoded

video stream. This is accomplished by selectively skipping or dropping from the video

stream blocks which introduce the least amount of distortion into the video output.

The decoder need not perform dequantization or inverse integer transform operations

on the dropped blocks, effectively reducing the time required to decode a given video

stream. The resulting speedup enables application of Frequency and Voltage Scaling

for potentially significant reductions in power consumption.

The encoder generates H.264 video streams inserting an I frame every twelfth

frame from which no blocks will be dropped followed by eleven P frames with priori-

tized blocks. The Group of Pictures (GOP) sequence used is:

{I, P, P, P, P, P, P, P, P, P, P, P}

The I frame uses intra-coding exclusively so that no previously introduced errors can

propagate beyond this frame which is decoded independently from any previously de-

coded frame. The P frames in the sequence use inter-coding in which blocks from each

frame may be reconstructed using data from the previous I or P frame in the video
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sequence. These inter-coded frames will propagate errors from one frame to the next

when a motion vector points to areas in the previous frame impacted by dropped blocks.

At this point B frames which use motion vectors in both the forward and reverse

direction are avoided in order to simplify analysis of the decoded video stream. How-

ever, adding B frames to the encoded stream in the future will improve bandwidth ef-

ficiency, and reduce the propagation of distortion introduced by dropped macroblocks.

Since B frames are not normally used as reference frames for Copy Forward or Mo-

tion Vector Copy operations, blocks dropped from B frames will not propagate at all.

Additionally, inserting a B frame between two P frames means that the effect of dis-

tortion spreading to multiple blocks through multiple motion vectors is limited to one

stage over three frames instead of two as is the case with a sequence of three P frames.

Adding B frames to the stream does; however, increase the computational load on the

decoder, potentially reducing power efficiency.

3.4.1 Error Concealment

H.264 includes provisions for error concealment to minimize video quality degradation

in the event of lost data such as dropped network packets or missed decoding deadlines.

Error concealment functions typically replace an entire missing frame or block with

buffered data from a previously decoded frame. In the JM reference software, “con-

ceal by copy” replaces a missing block with its predecessor from the previous frame.

A “conceal by trial” replaces the missing macroblock after evaluating the surrounding

blocks to find one whose motion vector points to data minimizing the distortion at the

edge of the missing block. These two actions loosely correspond to the error conceal-

ment actions taken by the two decoder schemes. The “conceal by copy” method is used

for error correction in the simple CF-ERC decoder, and a modified version of “conceal

by trial” for the MV-ERC decoder. Since available blocks are selectively dropped in

the decoder, any motion vector data calculated for a given macroblock is still available
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to us. This provides the opportunity to replace the macroblock using its motion vector

data rather than a simple copy forward. This method is guaranteed to introduce the

minimum amount of distortion into the video stream as the unmodified H.264 motion

compensation algorithm in the encoder has carefully selected the motion vector data

for each block to do exactly that.

3.4.2 Error Propagation

Error introduced in one video frame decreases as it propagates forward due to leak-

age in the prediction loop [92]. Although distortion introduced through macroblock

dropping need only be considered over the course of a window of several frames [92],

errors for a given frame can be approximated as the sum of the propagation errors since

the last I frame [93].

Errors introduced through macroblock dropping propagate to the next frame

each time a macroblock in the following frame references the dropped block via motion

vector. All or part of the distortion caused by the dropped macroblock is carried forward

when each dependent block in the following frame is reconstructed from its correct

residual data added to the distorted data present in the previous (reference) frame.

The amount of error or distortion introduced into the video stream by a single

macroblock (MB), is defined in terms of Mean Squared Error (MSE). In this work, MSE

defined between the nth block in the current frame m, MBm
n and the block in the same

location from the previous frame, MBm−1
n is given by

MSE(MBm
n )

= 1
162

∑15
i=0

∑15
j=0 ||MBm

n (i, j) − MBm−1
n (i, j)||2

(3.1)

where A(i, j) is the Y component of the pixel at position (i, j) in the 16× 16 pixel block

A. The frame distortion, Dm, is derived from the sum of MSE(MBm
n ) values across all
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n macroblocks in the frame

Dm =

n−1∑
i=0

MSE(MBm
i ) (3.2)

The total distortion of frame m, D̂m can be estimated as the sum of the distortion due to

dropped macroblocks added to the distortion already present and propagated forward

from the previous frame

D̂m = Dm + D̂m−1 (3.3)

Since the presented system does not drop macroblocks from I frames, and I frames are

decoded independently without inter-coding, the distortion in any I frame is considered

to be zero. Thus, the total distortion, D̂ present in the first P frame, m following an

I frame is D̂m = Dm.

We can adjust for the attenuation of distortion from the previous frame, D̂m−1,

by multiplying by an empirically determined scaling factor 0 ≤ α ≤ 1 before adding

Dm giving

D̂m = Dm + α · D̂m−1 (3.4)

where α ≤ 1.

3.4.3 Encoder Modification

The modified JM12.4 reference encoder prioritizes and orders blocks within each frame

according to the amount of distortion, MSE(MB) we would introduce into the stream if

the block were dropped by the decoder. Blocks with the smallest MSE are considered

more expendable, and are placed at the beginning of the list. Blocks with larger MSE

are considered more important and are placed at the end of the list.

After prioritizing the macroblocks, the encoder begins dividing the blocks into

6 slice groups numbered from 0 to 5. The most expendable blocks are placed in slice
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group 5 which will be the first slice dropped in the decoder. The most important blocks

are placed in slice group 0 which is never dropped in the decoder. Each slice group has

associated with it an acceptable level of total distortion, D̂m which acts as a threshold

when assigning macroblocks to slice groups. The threshold is estimated from user

selected Y-component PSNR values for each slice group. PSNR is given by

PSNR = 10 · log10

(
MAX2

MSE

)
(3.5)

where MAX is the maximum pixel value, in this case 255. Given a desired value for

PSNR, we can calculate the associated MSE by

MSE =
MAX2

10PSNR/10 (3.6)

Since this value is an average across all macroblocks in one frame, we multiply MSE

by the number of macroblocks in the frame to find the allowable distortion or distortion

threshold for slice group s, Ds. For CIF video, 352 × 288 gives us 22 × 18 blocks, or

396 macroblocks per frame, and Ds = 396 · MSE.

The encoder builds slice groups for each frame starting at the low distortion end

of the prioritized macroblock list and adding macroblocks to the lowest priority slice

group as long as the sum of their distortions does not exceed the previously calculated

distortion threshold for that slice group. The result is a slice group for each distortion

threshold such that dropping any slice and all higher numbered (more expendable)

slices results in a level of distortion described by the distortion threshold for the dropped

slice. During this process, the encoder also checks each macroblock’s distortion in all

three components (YUV) against an individual macroblock threshold and immediately

adds failing blocks to slice 0. This check prevents the encoder from adding blocks

when plenty of room for additional distortion is available to an expendable slice group,

but adding it would introduce obvious artifacts into the video stream.
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Glencoe Idle Power Consumption
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Figure 3.1: Glencoe DVFM characteristics.

In the current implementation, the threshold is defined as 1/5 the smallest of the

most distorted blocks from the previous 20 frames in the Y component and 1/2 of the

average distortion for the U and V components.

3.4.4 Decoder Modification

The JM12.4 reference decoder has been modified to drop slices from the modified

H.264 stream in accordance with a user selected mode. The user chooses a desired

level of QoS performance in order to reduce power consumption in the decoder by

selecting the number of slice groups to keep in the stream. For example, placing the

decoder in 6 slice mode will not drop any slices. On the other hand, placing the decoder

in 1 slice mode will drop slice 1 and any higher numbered slices, decoding only the

most important set of MBs, slice 0. Based on the user selected mode, the decoder

performs error concealment to replace data in the skipped slices. Two decoders have

been implemented—one using macroblock CF-ERC and the other using MV-ERC as

described in section 3.4.1.

The decoding loop treats I frames and slice groups numbered smaller than the

mode number normally, reading and decoding each macroblock. Slice groups with

identification numbers equal or greater than the mode number are skipped in the de-

coder. The CF-ERC decoder simply does not read or decode blocks in these slices so
35



that they are treated as lost by the error concealment function. The error concealment

function is also modified to ensure that conceal by copy is the only method used for

error concealment, avoiding the conceal by trial function in order to minimize com-

putational complexity for performance reasons. The MV-ERC decoder does read each

macroblock in a dropped slice in order to obtain the associated motion vector data, but

the coefficient data is not read, and the block is never decoded. Each block from a

dropped slice is marked as lost in order to trigger error concealment, and a modified

version of the conceal by trial function is used to recover the motion vector data for

each marked macroblock copying data from the previous (reference) frame in accor-

dance with the motion vector information.

In the testbed, preliminary results indicated that using motion vectors for er-

ror concealment in all three video components (YUV) was so computationally expen-

sive that it wiped out any savings achieved through avoiding integer transform and

dequantization operations. The process of rebuilding blocks by performing motion

compensation can take 55% of the decoder’s effort [34]. As a result, motion vector

error concealment is used only for the Y component, and simple copy forward to re-

place dropped UV data.

The CF-ERC decoder provides better power performance than the MV-ERC al-

ternative. In addition to skipping block decoding, it avoids the expenses of recovering

motion vector information from the video stream and later dereferencing it to perform

error concealment. However, the improved power performance implies reduced QoS.

Although the encoder classifies blocks based on their distortion with respect to the same

block (same position) used in CF-ERC, the MV-ERC method will regularly reconstruct

a replacement block with less distortion resulting in improved QoS as discussed in

Section 3.4.1.
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Table 3.1: Benchmark video subset.

Video Brief Description
akiyo_cif news reader

container_cif container moving in harbor
highway_cif rolling highway
soccer_cif fast panning and action

tempete_cif zoom out with falling leaves
waterfall_cif zoom out on distant waterfall
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Figure 3.2: Power figures by slice dropping mode for Copy Forward (a), and Motion
Vector ERC (b). The PSNR charts show QoS performance for each decoder mode on
tempete_cif for Copy Forward (c) and Motion Vector ERC (d).

3.5 Experimental Setup

H.264 video streams were generated for 16 benchmark videos using the modified JM12.4

encoder. These streams were then decoded through the two modified JM12.4 decoders

on a Linux server, with an Intel(R) Xeon(TM) CPU running at 2.80GHz with 4GB

RAM and on the Intel Glencoe Development Platform running Linux 2.6.9 on the

XScale-PXA270 rev 4, with 64MB RAM. Power measurements were obtained for a

subset of the 16 benchmark videos using the PXA270 Vcore voltage touch point on the
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Glencoe Development Platform with a Keithley 2000 Multimeter sampling at 100Hz

with the decoder running each video in each mode. Voltage samples were collected

and analyzed in Labview to obtain an average power reading over several iterations of

1024 samples each. These results are presented in the next section. The Linux port for

the Glencoe Development board includes a utility for Dynamic Voltage and Frequency

Management (DVFM) [78]. Frequencies are set by giving the utility a clock multiplier,

L, and a turbo mode multiplier, 2N. The base clock frequency of 13MHz is multiplied

by L · N to obtain the desired frequency [80].

In order to obtain a piecewise-linear power function in terms of L and 2N, it was

necessary to fix the 2N value. A value of 2N = 3 has been chosen, giving the suitable

although non-ideal function of power in terms of frequency for system idle seen in

Figure 3.1. Frequencies used range from the default value of 468Mhz to 273MHz

indicated in the chart with L values from 24 down to 14. This range of frequencies

crosses three available voltage levels as can be seen in the figure. The high step on

the left corresponds to VDD = 1.5V , the middle step corresponds to VDD = 1.4V ,

and the low step on the right corresponds to VDD = 1.3V . The power performance

chart for the idle Glencoe board gives an idea of the power savings we should expect

at various frequencies after implementing DVFM in the decoder. Reductions in VDD

provide significant power savings as expected from the quadratic relationship between

power and supply voltage, P = Cswitching · V2 · f .

The goal is to characterize the decoders’ power performance given H.264 streams

generated by the modified encoder. In the first step, the relative speedup experienced

by the decoder when dropping slices is found and compared with the speed of the de-

coder decoding all slices. Relative speedup determines our ability to slow the decoder

with frequency scaling in order to reduce power consumption. To collect decoder tim-

ing data, a 100 frame modified H.264 video stream was generated for each test video.

Decoder frame rate data was then collected over several iterations for each video in
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Table 3.2: Speedup and DVFM frequency for decoder in 1-slice mode for Copy For-
ward and Motion Vector decoders.

CF MV
Video Speedup f(MHz) Speedup f(MHz)

akiyo_cif 25% 351 9% 429
container_cif 57% 312 16% 409.5
highway_cif 43% 331.5 6% 448.5
soccer_cif 30% 370.5 5% 448.5

tempete_cif 65% 292.5 14% 429
waterfall_cif 57% 312 17% 409.5

Table 3.3: Power and PSNR for decoder in 1-slice mode for Copy Forward and Motion
Vector decoders.

CF MV
Video P PSNR(dB) P PSNR(dB)

akiyo_cif 29% 43.0 7% 43.8
container_cif 50% 34.9 29% 37.6
highway_cif 33% 34.5 2% 35.7
soccer_cif 27% 28.7 0% 32.7

tempete_cif 53% 24.1 5% 30.1
waterfall_cif 51% 30.5 29% 33.8

each slice dropping mode on the Linux server and the Glencoe board in order to verify

the Glencoe’s performance.

The frame rate the Glencoe decoder achieves for the full six slice video is taken

as the nominal frame rate against which improved frame rates for slice dropping modes

are compared for frequency scaling purposes. For instance, if the decoder in 1 slice

mode decoding akiyo_cif finishes 25% earlier than the same video fully decoded, then

we can slow the clock by 25% and still decode at the same frame rate. The adjusted

frequency is given by f ′ = t′ · fdefault/t where t′ is the improved decoding time, and

fdefault is the default frequency 468MHz. The calculated f ′ value must be adjusted up

to the next available frequency in the DVFS scheme. For akiyo_cif, the calculated fre-

quency, f ′ = 348.7MHz must be adjusted up to the next available frequency, 351MHz

at VDD = 1.4V .

3.6 Results

Timing results for the CF-ERC and MV-ERC decoders in 1-slice mode are given in

Table 3.2 with the computed DVFM frequency used for each video on the Glencoe
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(a) akiyo_cif

(b) soccer_cif

Figure 3.3: Example of last P frame decoded before next GOP demonstrating image
quality for the Copy Forward (middle) and Motion Vector Error Concealment (right)
vs. the fully decoded video (left).

board. The associated power savings for a given video and frequency are listed in Ta-

ble 3.3 along with average P frame PSNR. Significant power savings were obtained

from the CF-ERC decoder, in some cases without significant impact on PSNR. The

MV-ERC decoder achieves much smaller power savings due to the significant com-

plexity of handling motion vectors during decoding, but it does a much better job of

preserving image quality.

The power measurements obtained for each video and decoder slice dropping

mode are shown for both decoders in Figures 3.2a and 3.2b. The impact of voltage

scaling is evident as power drops significantly each time reducing frequency makes a

lower VDD available as predicted in Figure 3.1. Performance varies for both CF and

MV schemes with variations in the transmitted video stream. There may be signifi-
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cant variation in MB inter-dependence and motion-vector densities from one scene or

even one frame to the next. The MV-ERC scheme is particularly susceptible to these

variations due to the expense of decoding with motion estimation.

Power savings in the Copy Forward encoder were significant, ranging from

27% to 53% for 1 slice mode over the fully decoded video. QoS for these videos

proved to be well controlled for each video, although the decoder does not achieve a

strict PSNR for the same decoding mode across different videos. Figure 3.2c clearly

indicates distinct PSNR levels for each decoder mode. Figure 3.2d demonstrates the

improved QoS associated with Motion Vector Error Concealment, seen in the upward

shift of the PSNR plot lines. Figure 3.3 presents subjective image data from two videos

for comparison between the two schemes. In the chart, the left image is the fully

decoded reference image, the center image uses CF-ERC, and the right image has been

constructed using MV-ERC. Image artifacts are more prevalent in the CF-ERC decoder,

while they are much less noticeable in the MV-ERC frames.

The two videos with the lowest PSNR values decoded using the CF-ERC de-

coder see the largest QoS improvement when the MV-ERC decoder is used. An exam-

ple of QoS performance of both encoders is presented over all slide dropping modes

for tempete_cif in Figures 3.2c and 3.2d.

3.7 Conclusion

The presented H.264 block prioritization scheme enables significant power savings in

concert with DVFM. The objective QoS measurements indicate acceptable quality per-

formance, but there are several opportunities for improvement. The subjective quality

of the decoded videos can be improved through further tuning of the parameters in

the encoder to reduce artifacts in the decoded image, particularly focusing on distin-

guishing foreground objects from background. Tuning a number of other factors may

also improve performance. Some examples are reducing the number of slice groups
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which decreases decoding complexity and bandwidth, considering motion vector data

in addition to distortion data when prioritizing MBs, using motion vectors less aggres-

sively in the decoder for MV-ERC, considering B frames, and varying the GOP size

between I frames.
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Chapter 4

POWER MANAGED SCALABLE H.264 VIDEO DECODING

High resolution video coding is an example of a computationally expensive application

in which real time performance is very difficult to achieve without dedicated hardware.

Advances in video parallelization promise to unlock the strengths of MPSoCs and de-

liver high performance video processing while reducing power consumption to meet

tight constraints in embedded applications.

The H.264/Advanced Video Coding (AVC) standard is the current state of the

art codec designed to achieve dramatic compression ratios necessary for the storage

and transmission of large format, high quality video. Unfortunately the high compres-

sion achieved with the H.264 standard comes at a cost of significant increases in en-

coding/decoding complexity, posing a problem for hardware developers and end users.

The computational complexity is a problem for the embedded world in particular where

power consumption and processing speed come at a premium. To further complicate the

issue, because the codec is designed specifically to compress video image data by dis-

covering and eliminating redundancy within and between frames, the encoded stream

is a nightmare of data interdependencies from the multicore programmer’s perspective.

In this work a scalable parallelized implementation of the H.264/AVC decoder

is presented for the Cell Broadband Engine (CBE) addressing workload and data par-

titioning in the face of complex data dependencies, and performance and processing

element (PE) scalability in terms of throughput in the context of embedded multicore

architectures. PE scaling also enables extremely high agility to precisely match the tar-

get decoding rate, proving valuable for run time power management. Although efficient

multicore implementations alone offer tremendous power advantages over monolithic

designs, dynamic power management makes significant additional power savings pos-

sible. A dynamic power management (DPM) scheme designed to improve power per-
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Figure 4.1: H.264 decoder.

formance in the parallelized H.264 decoder is demonstrated which takes advantage of

agile PE scaling to maximize the effects of Dynamic Frequency and Voltage Manage-

ment (DVFM) for just in time frame decoding while minimizing frame deadline misses.

Background is provided in the next section followed by previous work in Sec-

tion 4.2. The parallelization scheme is presented in Section 4.3. The parallelized de-

coder implementation and optimizations are presented in Section 4.4. Raw perfor-

mance results for the parallelized decoder are discussed in Section 4.5. The agile PE

scaling and the DPM scheme are presented in Section 4.6. Finally experimental setup,

results and discussion of the decoder’s power performance are given in Section 4.7

followed by conclusions.

4.1 Background

4.1.1 IBM Cell Broadband Engine

The Cell Broadband Engine (CBE) has the potential to provide exceptional perfor-

mance for complex data intensive operations such as H.264 video decoding given an

effective parallelization scheme. In designing a decoder parallelization scheme for the

CBE, limitations such as available bandwidth for communication between processing

units, memory limitations for code, data, stack, and heap in the SPU, and the need for

synchronization management in the PPU must be considered. See Appendix B for a

brief overview of the CBE.
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while !slice_end {

     decode_slice() }

for i < MBs_per_row {

     decode_mb_cabac(mb[i]) }

for i < MBs_per_row{

     hl_decode_mb(mb[i]) }
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Figure 4.2: FFmpeg main MB decoding loop, a. Intra decoding functions, b. Inter
(motion compensation) decoding functions.

4.1.2 H.264

The H.264 codec is commonly used for mass video storage applications such as Blu-

ray Disc and broadcast/streaming video where minimizing bandwidth and storage space

without loss of perceived video quality is extremely important. As HD and larger for-

mat video becomes more popular, this kind of improvement in storage efficiency is

increasingly urgent. However, due to the increase in computational complexity asso-

ciated with H.264, the cost of decoding 1920x1080 resolution HD streams cannot be

ignored. Decoder implementations capable of handling real time HD decoding without

dedicated hardware acceleration are exceedingly rare.

FFmpeg is a popular open source audio and video conversion and streaming

project capable of handling a wide range of video and audio codecs based on the libav-

codec library [19]. Since FFmpeg supports a large number of codecs and encapsula-

tion, the code base is large with over 250k lines. The present decoder implementa-
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tion’s base code is the FFmpeg command line tool source code configured to include

only the H.264 decoder and YUV encoder. Unused source files (associated with other

codecs) are removed.

The data structures and control flow built into the FFmpeg H.264 decoder cen-

ter on decoding one Macroblock (MB) at a time. The decoder maintains a tree of

elements and structures rooted in a decoding context data structure which holds the

current decoding state, including modes and data associated with the current MB, ar-

rays for accessing information about neighboring MBs, references to the current output

picture and any reference pictures etc. A pointer to this structure is passed from one

function to the next conveying the state of the decoder and the MB under consideration.

Fig. 4.2 illustrates key control flow elements and functions of the main MB

decoding loop within decode_slice(). After returning from the entropy decoding phase,

decode_mb_cabac(), the context structure is filled with all information and block data

needed to decode the current MB. This data is passed to hl_decode_mb() where the MB

is predicted, residual data is recovered, and deblocking is performed on the resulting

image data which is stored in a current picture buffer. An important program flow

characteristic is that this process is repeated for each MB until the decoder reaches the

end of the current slice when control exits the loop and writes the frame to the output

if there are no more slices. This process is repeated for each slice in the video.

4.2 Previous Work

4.2.1 Parallelized Video Processing

H.264 parallelization, particularly targeting encoding and high resolution decoding in

real-time has been an active area of research. Detailed analysis of opportunities for

parallelization in the encoder and decoder across several levels of data partitioning and

some functional partitioning schemes are available. Meenderinck et al. [112] provides a

good survey of previous encoder and decoder efforts including MPEG-1, MPEG-2, and
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H.263 codecs. Encoding presents some unique problems with respect to parallelization

compared with decoder implementations such as increased reference data sizes and

memory requirements, but the inherent data dependencies are essentially the same for

both applications leading to similar advantages and disadvantages for each of the basic

parallelization methods.

Efforts to improve encoder performance include coarse grained data partition-

ing exemplified by work from Intel in the context of hyper-threading technology for

frame and slice level parallelization as well as opportunities for SIMDization [35] [98].

Rodríguez et. al [133] evaluates a combination of GOP and frame level paralleliza-

tion. Jacobs et. al [84] proposes a slice level data partitioning scheme. Roitzsch [134]

uses slice level parallelism and workload prediction metrics to achieve load balancing.

Coarse grained data partitioning can require vast resources, as even at the sub-frame

slice level a large number of slices in flight simultaneously represents a very large

memory requirement and long latencies. A finer grained MB level data partitioning

scheme for the H.264 encoder is presented by Sun et al. [144] where regions of MBs

are assigned to each processor to meet intra dependencies.

Functional partitioning schemes for H.264 encoding have also been evaluated.

Chen et al. [33] examines functional partitioning for hardware oriented pipelining,

while Jagmohan et al. [85] implements frame level data partitioning and functional

partitioning within each frame on the CBE. From a pool of work tasks, each SPU is as-

signed either motion vector estimation, spatial transform and quantization, or entropy

encoding for a complete frame. Hwang et al. [75] uses data flow graph transformations

to functionally partition encoder subsystems, but with limited scalability.

Several H.264 decoder studies and implementations are also available. Tol et

al. [151] looks at functional and data partitioning and present an argument for the use of

data partitioning for scalability. Chong et al. [43] looks at tracking data dependencies in

the front end for parallelization addressing issues that make static scheduling difficult
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or impossible in video coders. Alvarez et al. [6] presents a characterization of the H.264

decoder’s performance emphasizing HD and suggesting better media architecture sup-

port and multiprocessor support. Major et al. [105] describes an implementation using

dynamically reconfigurable instruction cell based architecture with code tailoring for

instruction level optimization. Zhao and Liang [161] presents a wavefront paralleliza-

tion data partitioning and task scheduling scheme for the H.264 encoder.

In their study on parallel scalability of video decoders, Meenderinck et al. [112]

[111] examines the amount of parallelism which can be extracted from the decoder

and present a 3D wavefront scheme for extremely high scalability. They look at data

structures and dependencies, and point out scalability problems with slice, frame, and

intra coded MB levels of data parallelism. Alvarez [5] discusses the scalability of MB-

level parallelism for H.264. Seitner et al. [136] gives a simulation based comparison

of several MB level parallelization approaches with resource-restricted environments

in mind. Their single-row approach effectively describes the scheme implemented in

this work for the CBE. The reported advantages of this scheme are good scalability

and reduced synchronization complexity. Seitner points out that the disadvantage of

this scheme is the relatively high inter-processor data dependency which can result in

increased bandwidth requirements.

Comparable CBE H.264 decoder implementations have been presented by the

author [14], Baik et al. [12], Chi et al. [37], and Cho et al. [39]. In Baik’s imple-

mentation, parallelism is derived at the inter coded block level where intra block-

dependencies need not be addressed. The design utilizes both data and functional

partitioning by allocating MBs from inter coded frames among the available SPUs in

a load balanced fashion, and dedicating an additional SPU to deblocking. The PPU

manages entropy decoding, intra decoding, and other related overhead. Compared to

Baik, the implementation presented in the present work achieves greater scalability

since the data dependencies imposed by intra coded blocks whether the frame is an
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intra (I) or inter (P,B) coded frame are addressed. Unlike Baik, it also distributes the

deblocking effort, and removes all decoding activities from the PPU except for the in-

herently non-parallelizable entropy decoder, minimizing the impact of the PPU as a

throughput bottleneck.

Chi and Cho have presented subsequent scalable H.264 decoder implementa-

tions on the IBM Cell building on the previous MB row parallelization CBE imple-

mentation presented by the present author in [14]. Chi et al. implemented the single-

row 2D wavefront scheme for the CBE similar to the one presented in [14] as well as

an MB level task pool. The results demonstrate that the single-row approach provides

near ideal performance and scalability. Chi’s implementation assumes an infinitely fast

entropy decoder, decoding the video stream offline and enabling demonstration of effec-

tive decoder scalability beyond the limitations of the entropy decoding implementation.

The implementation consumes more than 50% of available SPU scratchpad memory by

storing a full row of MBs for use in inter SPU communication. This data structure can

reduce communication bandwidth requirements, but it may also limit opportunities for

increased image resolutions.

Cho takes essentially the same parallelization approach with the additional step

of parallelizing the entropy decoder at frame level with the help of multithreading in the

CBE’s PPU. The implementation also executes MB data transformations in the SPU in

order to facilitate DMAs which are normally frustrated by the noncontiguous represen-

tation of MBs in memory. Manually executed SIMD optimizations as well as SIMD

compiler optimizations are also implemented for improved performance. Performance

optimizations with respect to available instruction memory vs. required data memory

are not specifically addressed beyond the need to avoid repeated code overlay misses

by avoiding switches between MB decoding and deblocking stages.

Both Chi’s and Cho’s implementations serve to validate the single-row paral-

lelization approach implemented in [14] for H.264 performance and scalability. In
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the present work, the previous implementation has been extended to explore dynamic

power management in the context of scalable H.264 decoding.

4.2.2 Dynamic Video Power Management

DPM has a long history, including the use of sleep states, and voltage and frequency

scaling. Weiser et al. used instructions per unit energy as a metric to evaluate schedul-

ing for power management, including frequency and voltage scaling in 1994 [156].

Burd et al. [28] presented a system architecture for dynamic voltage scaling in 2000.

In general, DPM can be characterized as an online problem optimized in the

face of competing criteria such as available energy vs. video frame deadlines. The

survey and tutorial from Irani et al. [83] provides a good foundation in competitive and

adversarial power management strategies.

A great deal of work has gone toward improving effectiveness of frequency and

voltage scaling for video applications. In real time video decoding applications typi-

cal of embedded hand held devices, frequency throttling proves problematic due to the

need for accurate workload prediction with respect to deadlines. HD video decoding

in particular has proven difficult to implement using DPM in recent commercial pro-

cessors [58]. Overhead, mispredictions and over throttling lead to unacceptable frame

jitter, interrupting playback and degrading video quality.

Several previous efforts have been directed at improving power performance

in single core video processing applications. Much of the work hinges on accurately

anticipating the complexity of the upcoming work element in order to select the lowest

clock frequency to meet the deadline and minimize energy consumption. Workload

prediction efforts can be broadly classified as either online or offline.

Mesarina et al. [114] presents an offline preprocessing algorithm for MPEG

streams exchanging Quality of Service (QoS) for energy and exploring the effect of
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buffer constraints. In [16], Baker et al. present a power aware energy for QoS ex-

change scheme for H.264 by prioritizing work in the encoder for selective workload

scaling enabling DVFM in the decoder. Akyol et al. [3] describes an improved proac-

tive complexity model to address the increased difficulty in predicting future workloads

in the H.264 decoder. Their system depends on complexity hints embedded in the video

stream offline by the encoder, and utilizes larger buffer sizes of up to 16 frames which

may not be feasible in many embedded applications, particularly at higher video res-

olutions. Offline solutions can provide more accurate workload prediction at runtime,

but offline analysis may be prohibitively expensive or impossible in applications such

as real-time capture, transmission, and display.

A frame level online MPEG workload prediction algorithm is presented in Choi

et. al [41] which attempts to mitigate deadline misses by dividing the work into frame

dependent and frame independent components. In the event of overly aggressive fre-

quency scaling for the frame dependent workload, a potential deadline miss may be

preempted by compensating with a higher frequency in the relatively fixed independent

frame workload. Another online work estimation DVFM scheme is presented by Son et

al. [139] using slack time and frame drop rates of a GOP as metrics to drive frequency

state selection. Pouwelse et al. [129] presents a runtime workload modeling scheme us-

ing frame size and type for the H.263 codec relying on video streams augmented with

frame size information. Lee et al. [96] proposes and evaluates a frame level technique

along with other coarse grained offline and online techniques.

Single core power management schemes for video decoding with online work-

load estimation tend to use relatively coarse grained work units for analyzing workload

prediction as well as power management state selection. Such techniques are suscep-

tible to significant deadline violations which must be corrected by either speeding up

subsequent frames or implementing large frame buffers. Frequent frequency and volt-

age changes are possible with modern processors, and as we will see, fine grained mul-
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ticore work distribution enables very precise power state management with extremely

accurate power state to workload matching. The presented MPSoC scheme takes ad-

vantage of agile PE scaling to circumvent the overhead and shortcomings associated

with workload prediction. Thanks to fine grained decoding rate control, power man-

agement states are effectively used to substantially reduce power consumption, simul-

taneously reducing deadline misses and frame buffer requirements.

Recently along with increased hardware support for runtime power manage-

ment, work targeting DPM in the context of multicore architectures has gained impor-

tance. Annavaram et al. [11] uses an emulation test bench to explore DPM for asym-

metric multicore processors by executing sequential portions of the code at high clock

rates, and parallelizable portions on multiple cores at lower clock rates. Li et al. [99]

discusses DPM for parallel computation on MPSoCs. The problem is addressed two

dimensionally in terms of available frequencies and available processors. The imple-

mented DPM manager and scheduler effectively addresses MPSoC DPM with a binary

search heuristic, but their technique relies on fixed workloads which is unrealistic in

applications such as video decoding. Cho et al. [38] presents a model for minimizing

power consumption in multicore systems which accounts for the amount of parallelism

available in the program, and technology specific properties of the MPSoC character-

ized by the ratio of static power consumption to dynamic power consumption. For

systems in which PEs can be put to sleep individually, Cho reports that minimum total

energy is not dependent on the total number of PEs used during execution while the en-

ergy efficiency is optimized when the maximum number of cores is used in the parallel

portion of the code. This principle suggests that for rate sensitive parallel applications,

DPM schemes like the one presented in the paper which use the maximum number of

cores at the slowest possible frequency will approach ideal power performance.
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Figure 4.3: Frame types.

4.3 Parallelization Scheme

4.3.1 H.264 Parallelization Opportunities

Frame Level

The video stream is composed of a series of video frames organized into many Groups

of Pictures (GOPs) with a sequence of frames starting with an I frame followed by a

sequence of P and B frames. The I frame is independently coded, but the P and B

frames have data dependencies with other frames in the GOP. Fig. 4.3 illustrates the

dependency relationships between the GOP, I, P, and B frames. The GOP is not de-

pendent on another GOP for decoding purposes which exposes a level of parallelism.

However, GOP level parallelism imposes an enormous memory requirement for HD

resolution and embedded applications in particular and can experience undesirable la-

tencies [112]. Frame level parallelism is also possible based on the dependencies be-

tween P and B frames, but this level of parallelism is generally not scalable beyond two

or three simultaneous frames and still imposes significant memory requirements.

Slice Level

Within the image frame another straightforward scheme for parallelization presents it-

self at the slice-level. Slices are groups of independently encoded MBs within a frame

which could be decoded independently in parallel. The current FFmpeg H.264 decoder

already supports thread parallel decoding at this level. Unfortunately, H.264 encoded

video frames are not generally encoded using a large number of slices which limits par-
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(0-8) are indicated with the direction of an arrow into the 4x4 pixel block in the figure.
Mode 2 is the DC mode. The empty pixels in the 4x4 block are predicted using an
algorithm to sweep the indexed pixels in the direction of the arrow.
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Figure 4.5: Data dependencies of the 4x4 edge filtering algorithms are indicated by the
diamond ended horizontal an vertical lines. The filter may use four pixels on either side
of the top horizontal or the left vertical border of the 4x4 block and may modify three
pixels on either side.

allel scalability. Although increasing the number of slices in an encoded video frame

can improve error correction performance when streaming over a lossy network, in-

creasing the number of slices also reduces the compression efficiency of the encoder by

eliminating many opportunities for exploiting redundancies in the data. For this reason

H.264 encoded videos commonly use one slice per frame.
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Figure 4.6: Dependencies and synchronization between three PEs. Each row of MBs in
a video frame are assigned to one PE in round-robin order. P1 has completed the first
row and started working on row 4. P2 is working on MB A and P1 is working on MB
C whose dependencies have been satisfied. P3 is stalled on MB B awaiting completion
of MB A.

Macroblock Level

Another possibility for parallelization is at the MB level, inter coded blocks are always

independent from other inter coded blocks in the same frame exposing a tremendous

amount of data parallelism, possibly thousands of MBs per frame in HD video. When

considering intra coded MBs on the other hand, it is necessary to deal with inter-block

dependencies within the frame. Consequently, some blocks must be decoded before

others within the same frame.

Fig. 4.4 illustrates the possible prediction modes used to decode an intra coded

MB. In case of mode 0 (Vertical), the bottom row of pixels from the MB in the previous

row, directly above the current MB, is used to predict or partially reconstruct the current

MB. Fig. 4.5 illustrates the data dependencies associated with the 4x4 deblocking filter.

The filter depends on almost the same neighboring blocks as intra prediction, only

requiring more pixels from those blocks. It is clear from the figure that there are no

intra dependencies on MBs in any other row while decoding the first row of a frame,

but intra coded MBs in all other rows depend on MBs in the previously decoded rows.
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Figure 4.7: Scalable decoder partitioning scheme. Dotted lines represent communica-
tion signals. DMA transfers between SPUs and main memory are not indicated. The
PPU loop generates one row at a time of entropy decoded MBs. A PPU-SPU signal as-
signs the row to an SPU and notifies the SPU that data is ready for decoding. The SPU
loop completes decoding each MB in the row and returns the results to main memory.
Except for synchronization signals, data is passed from SPU to SPU via the current
picture store in main memory.

4.3.2 Single MB Row Partitioning Scheme

The presented H.264 decoder parallelization scheme implemented on the CBE focuses

on data parallelism at the Macroblock level. Dependencies between Intra-coded MBs

are addressed by partitioning a video frame into rows of MBs and assigning one full

row of MBs to each decoding core. The scheme assigns a row of MBs to a single SPU,

the next row is assigned to the next SPU and so on in round-robin fashion. Fig. 4.6 il-

lustrates inter SPU data dependencies and row to SPU assignment. A stall occurs when

unfinished decoding of the reference MB from the previous row results in unresolved

data dependencies as seen in MB B in the figure. Note that horizontal dependencies

occur only within an SPU.

The data and functional partitioning schemes are illustrated in Fig. 4.7, and

Fig. 4.2 highlights the dividing line between PPU and SPU in the control flow graph.
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Figure 4.8: Data structure modifications reducing memory requirements in the local
store. W is the width of the video frame in macroblocks.

Decoding overhead and entropy decoding tasks are executed in the PPU. One row of

decompressed MBs is set aside for each SPU in raster scan order. The SPUs retrieve the

data as required using DMA transfers and must handle synchronization required to meet

intra dependencies. Since all MBs are issued in row order regardless of their prediction

mode, we can easily handle dependency synchronization requirements for intra coded

MBs whenever they occur in a P or B frame in addition to I frames. A theoretical analy-

sis of similar parallelization schemes for the H.264 encoder is presented in Appendix C.

4.4 Implementation

4.4.1 Data Structures

A critical first step in executing any decoding software on the Cell SPUs is under-

standing and managing memory requirements. The SPU’s 256kB Local Store (LS) is

relatively generous by current distributed memory MPSoC standards, but it cannot hold

the approximately 30k lines of code plus data we will need for MB decoding. Fig. 4.8

illustrates modifications to the decoding context structure, H264Context, for use in the

SPU. Only the subset of the decoding context represented by data actually used for MB

decoding are loaded into the SPU. Those data fields which are fixed over the course of

an MB row are referred to as static, represented in the SPU LS once by the H_STATIC

structure in the figure. The data fields which vary from one MB to the next are referred
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to as dynamic, and the associated data structure, H_DYNAMIC, is replicated in the SPU

depending on the number of MBs loaded. Instances of the dynamic memory structure

present represent a sliding window of MBs along the SPU’s assigned row.

4.4.2 Code Overlay

The 256KB SPU Local Store scratchpad memory is partitioned and shared among the

program instructions, program data, the execution stack, and heap for any dynamically

allocated structures. In this work, the stack size is constrained by the tree depth of

the function call graph for the portion of H.264 decoder code to be executed on the

SPU. The basic structure of this function call graph is seen in Fig. 4.2. Stack memory

requirements for this portion of the decoder are well bounded as there are no recursive

function calls. Although the tree is wide, it is also relatively shallow, with a (somewhat

simplified) depth of three as seen in the figure. It is experimentally determined through

modifying the available SPU LS that the stack may approach 100KB which must be

reserved in the LS memory map to prevent a stack overflow. This stack requirement

leaves us with only 156KB of LS space for data and instructions.

The width of the tree as indicated in Fig. 4.2 suggests a large number of pos-

sible functions may be called. The implementation includes just under 200 functions

totaling approximately 160KB in total LS memory requirements. Additionally, while

minimizing memory requirements where possible, the implementation requires at least

50KB in data memory to operate on four MBs at a time. With the 100KB require-

ment for stack/execution memory, 100KB of available memory in the 256KB LS must

accommodate the 160KB of code.

This 60KB memory shortage is overcome using a technique called code overlay

which allows us to map multiple segments of code to a single address in the LS, and

manage which code segments are available in the scratchpad memory. An overlay man-

ager manages a table to track which functions are available and uploads called function
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code when it is found to be missing from the LS. The overlay manager implements a

direct mapping scheme with a user defined mapping to write missing functions into the

LS. The user provides a linker script which describes the overlay mapping. The overlay

mapping is defined in terms of segments and regions. Each segment refers to a specific

block of code, and a region refers to a specific location in the memory mapping. If two

code segments are mapped to the same region, then they will share the same address

in memory, and only one may be present in the LS at a time. An example of the code

overlay memory mapping framework is provided in Fig. 4.9.

The linker supports mapping one object file to each segment. Object files may

be placed into their own segments or grouped together to form a larger segment. Since

the resolution at which the linker handles code segments is the object file, the config-

urability of the implementation may be controlled with respect to the LS memory map

by arranging source code into separate source files for each potential code segment.

Practically, this means placing the source code for each function into a separate source

file in order to achieve the greatest resolution. In this way, we have the freedom to

implement an SPU mapping which addresses the sequence in which functions will be

called and the possibility of additional overhead associated with each function call. In

this section it is assumed that each function is mapped to a segment, and each segment

has only one function mapped. Consequently, the term function is used interchange-

ably with segment here.

When an absent function is loaded into the LS, the interfering function which

is present and mapped to same region is overwritten. The implication is that anytime a

function is called and its code is missing from the LS, tasks which stall program exe-

cution must be executed resulting in additional function call overhead. This overhead

comes from a small cost of the overlay manager’s table lookup, and the potentially sig-

nificant cost of a DMA operation to bring the missing code into the LS. While working

to design an overlay mapping which not only enables the SPU executable to fit into the
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Figure 4.9: Example code overlay mapping showing a 4K section of memory with ad-
dresses labeled across the bottom. Memory is divided into regions. Multiple segments
may be mapped to the same region or address. Region sizes are determined by the
largest segment they contain. Functions or object files are mapped to segments, and
multiple objects may be mapped to the same segment.

LS, but also gives us the greatest benefit in terms of performance or throughput, it is

this overhead which must be addressed.

Designing an Overlay Mapping

In order to maximize performance with respect to code overlays, it is necessary to min-

imize the number of overlay miss penalties incurred. Given a trace of the program

execution and the overlay mapping, the number of miss penalties can be determinis-

tically identified and an optimal mapping scheme is possible. This is true of many

digital signal processing algorithms. Unfortunately, H.264 presents some problems

which make finding a general optimal solution impossible. Uncertainty derives from

the many possible modes and cases which must be handled such as the nine intra pre-

diction possibilities for each 4x4 block of pixels, anywhere from one to 32 motion

vectors for each inter-coded MB, a series of decisions and filters for each edge of each

4x4 block etc. The effect is that the decoder’s execution trace will vary dramatically

across individual videos, frames, and MBs. In the presence of restricted memory re-
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Figure 4.10: Example function call graph.

sources, no one solution will give optimal results for every video. Even if it is possible

to use a decoding execution trace to find an optimal overlay mapping, solving for the

optimal solution remains prohibitive since it is necessary to consider the interactions of

hundreds of functions to choose from an astronomically large set of feasible mappings.

To address this issue, heuristic steps taking into account key areas of interfer-

ence between functions in the function call graph are investigated, and profiling infor-

mation is used to help with understanding which functions are called most frequently.

The example function call graph in Fig. 4.10 illustrates a key point about interference

between functions and profiling data. The nodes in the graph are given in function

call order from left to right with each function looping 5 or 10 times. The execution

sequence on the right indicates how many times the given function has instructions is-

suing, and consequently must be present in the LS. Profiling data tells us that f 21() is

called 50 times, but it is clear that the number of times its caller, f 11(), appears in the

execution trace is 80 due to its caller-callee relationship with f 20() and f 21(). f 11()

is exposed to at least 60% more interference than any other function even though the

profiler tells us it has been called at least 50% less often than any other function.

An example of this type of function is hl_decode_mb(), as indicated in Fig. 4.2.

This function calls a wide range of other functions, and contains several loops with

function calls as in the example above. Such key functions also tend to have elevated

weights with respect to code overlay costs, as they tend to require more memory, con-
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Figure 4.11: Code overlay mapping performance for two videos. Each chart shows the
worst case single region flat overlay, step one results after pulling key functions out of
the flat region, and step two results after pulling priority profiling functions out. The
horizontal bars indicate frame rates plotted on a time scale.

tributing further to the cost of a miss through increased DMA delays any time they

must be loaded into the LS.

Overlay Design Approach

Step 1: The first step in the current approach is to ensure that interference due to

key functions is always addressed. The starting point is a single region containing ev-

ery function. This flat overlay mapping represents the worst case performance, but it

also ensures that the code will fit into the SPU LS, as no further vertical compression

is possible. The function call graph is examined to identify and prioritize key func-

tions according to their overlay overhead cost. The cost is a function of the number of

functions they are expected to call including any functions called from within loops,

the priority of the called functions as discussed below, and the key function’s size.

Functions with the correct structure, but which do not have interference relationships

with important leaf functions may be given low priority and ignored. Key functions

are removed from the original region and placed into a new region as long as mem-

ory is available. The SPU portion of the call graph in Fig. 4.2 has two key functions,

hl_decode_mb() and mc_part().
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Step 2: Next it is possible to continue improving overlay performance as long

as memory is available. The overlay mapping from the previous step overlays many

functions with each other in the same region, as with those associated with inter pre-

diction in Fig. 4.2. Since many of those functions are called with very high frequencies,

they tend to interfere with one another. By profiling several videos, we can identify and

prioritize the functions which tend to have very high call frequencies, and select those

with the highest priority to be removed to a new region. Each move is guaranteed to

improve performance as long as any other function in the losing region is called. We

can continue to move high priority functions out of the shared memory location into

new regions until there is no more room in memory. At this point we have prioritized

and removed interference costs for the most expensive functions in the code.

The metrics used to determine function priorities are empirically determined.

Function size is a factor, but in reality we find that for the vast majority of functions,

it contributes only to the consumption of available memory space, and not to perfor-

mance of the overlay scheme. The reason for this is the intrinsic overhead of the DMA

operation which we find results in nearly identical DMA delays for functions close to

2KB in size and smaller. There are only a few exceptions in the codec where the DMA

time is impacted by function size, and these tend to be key functions which were put

into their own regions in the first step.

Overlay Performance

Overlay mapping performance is presented in Fig. 4.11. The effect of overlay mapping

optimizations is consistent across different videos. It’s also clear from the figure that

the speedup in terms of decoding time from optimizing out a few key functions in step

1 is similar to the step 2 speedup which applies to more than 100 additional functions.
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4.4.3 Synchronization

The dashed lines in Fig. 4.7 represent the required synchronization signals. Although

the SPU-SPU signals are implemented using a 128bit DMA, all PPU-SPU signals have

been implemented using the blocking SPU in and out mailboxes. A PPU-SPU sig-

nal occurs when row data is ready and the row-designated SPU is notified that work

can begin. SPUs notify the PPU of their busy state by passively placing a message in

their out box which the PPU checks before overwriting an SPU’s dynamic MB data

structure array.

Image data is not transferred between SPUs in this implementation. Instead,

SPU n writes its results back to main memory before reporting any progress to SPU

n+1 via DMA into the next SPU’s LS. Each SPU checks the progress of its predeces-

sor before working on blocks with unresolved dependencies. Once the previous SPU

reports sufficient progress, resolving any necessary dependencies, a DMA is initiated

to acquire data for intra decoding and deblocking.

4.4.4 Further Optimizations

Performance improvements achieved using methods outlined in the following subsec-

tions are presented in Table 4.1. The improvements given are compared to the opti-

mized code running on six SPUs without the individual optimization implemented.

Direct Memory Access (DMA)

DMA operations can be time consuming and are fundamental to multicore program-

ming on the CBE. Poorly scheduled DMA operations can have dramatic adverse im-

pact on performance. Video decoder throughput has been maximized by minimizing

the number of DMA operations, minimizing the size of DMA operations, and schedul-

ing DMA barriers in order to minimize stalls due to outstanding memory accesses.
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Optimization Improvement
DMA Scheduling 8.5%

Inlining 7.2%
SIMD Compiler 2.1%
IDCT unrolling 0.3%

Table 4.1: Optimization improvements.

The parallelized decoder implementation requires four important memory operations:

1. Before beginning the row decoding process, SPUs must retrieve the static MB data

structure. 2. Before decoding a group of MBs, image data from the previous row for

deblocking (which includes data needed for intra prediction) must be gathered. 3. Dur-

ing motion compensation, referenced image data must be retrieved for each motion

vector. 4. Decoded image data must be returned to main memory. DMA completion

barriers are pushed as far out as possible in order to hide the DMA operation with

other work in the SPU. In this way it is possible to significantly reduce or prevent stalls

associated with DMA barriers.
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Inlining

The process of dividing the FFmpeg source code into separate object files for each func-

tion has the side effect that the gcc compiler is no longer capable of inlining functions

as specified in the original source code. Due to the importance of code overlay perfor-

mance, it is not always desirable to inline the same functions in the parallelized code as

the original sequential code. Since inlining changes the size of the calling function by

inserting the callee into its code, the DMA overheads and LS memory are both affected.

Experiments indicate that in most cases inlining did not improve performance, and in

some cases reduced performance. However, a couple of very small functions, av_clip()

and copy_block(), which are called with extremely high frequencies enabled significant

performance improvements when rewritten as macros to force inlining.

Single Instruction Multiple Data

One of the major strengths of the CBE is its SIMD capabilities, available in both the

PPU and SPU. The portion of code implemented for the PPU is not well suited for

SIMD instructions, but there are many opportunities for SIMD execution in the SPU

code. Some intra prediction functions, IDCT, and deblocking have properties suitable

for SIMDization. The PPC Altivec functions available in the FFmpeg source provide

this targeted improvement, but the Altivec functions must be transcoded to execute on

the SPU, and have not been included in this work. Extensive experimentation with

IBM’s SIMDizing compiler, spu-xlc, on applicable functions achieved limited SIMD

improvement. Alvarez et al. [6] also reported very limited performance improvement

in integer transform functions using SIMD.
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Video Description
Amazing Caves cave scenery
Coral Reef Adv. active underwater scenes

Discoverers night sky, lab workers
Robotica fast panning and action

Speed sporting activities
Storm Chasers flight, storm clouds

T2 dark scene from cinema preview
Magic of Flight glider, fast panning
Rules of Attr. modern multiframe cinematography
To the Limit mountain climbing

Table 4.2: Benchmark videos.

4.5 Raw Decoder Performance Results

The benchmark videos used to test the decoder implementation were taken from Micro-

soft’s WMV HD demonstration page [115], and are listed in Table 4.2. The source

videos were transcoded into H.264 1920x1080 (1080p) format at five different bit rates

from 2.5Mbps to 16Mbps CAVLC and CABAC using the x264 H.264 encoder [154]

integrated into FFmpeg. The videos were encoded using the x264 presets: baseline,

normal, and hq. Also tested was a modified version of the normal preset with B frame

encoding removed, referred to in Fig. 4.13 as modified-normal.

Decoder performance is measured on the Sony’s Playstation 3, 3.2 GHz Cell

Processor (limited by Sony for access to six of the CBE’s eight SPUs) running Linux

Fedora 9. Data was collected for ten videos, four encoder preset configurations, and

five bit rates, decoding on 1-6 SPUs. Performance results are presented in Fig. 4.13.

The presented charts indicate performance for the modified-normal and normal pre-

sets using CAVLC encoding as well as normal and hq presets using CABAC encoding

for each video by bit rate. Each bar indicates the performance in terms of decoding

frame rate for 1-6 SPUs with each SPU adding to the frame rate. Fig. 4.12 illustrates

the contribution of various decoder components to the overall frame rate. The largest
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Figure 4.13: Raw parallelized performance results.

contributors are MV decoding and deblocking, making them important for further op-

timization and SIMD vectorization.

Results presented by Baik et al. for Samsung’s parallelized decoder [12] im-

plemented on four SPUs show an average frame rate of 20.5fps across four 1080p test

videos CAVLC encoded with B frames at 2.5Mbps. The presented implementation

achieves an average 25.23fps or a 23% improvement when decoding similarly encoded

video streams on four SPUs. Substantial further improvements are achieved due to
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enhanced scalability using additional SPUs as seen in Fig. 4.13a. For videos encoded

at the same bitrate, but using the higher quality and much more expensive CABAC

encoder and x264’s hq encoding settings, the decoder still slightly outperforms Baik’s

implementation [12] even when limited to four cores. The implementation achieved

a “best case” average framerate of 34.94fps on 2.5Mbps modified-normal CAVLC en-

coded video streams on six SPUs, and a “worst case” entropy decoder limited average

framerate of 15.43fps on 16Mbps hq CABAC encoded video streams.

Decoder performance results suggest that additional cores will allow further

performance improvement for most videos. In some cases, at higher bit rates the PPU

entropy decoder becomes dominant, and no further gains are possible even with addi-

tional SPUs. This is evident in Fig. 4.13d, with the reduced or missing performance

blocks for SPUs 5 and 6 at 8Mbps and higher. CABAC encoded videos are costlier to

decode in the PPU, so maximum frame rates are more limited compared to CAVLC.

When decoder performance is not completely limited by the entropy decoder, it is clear

that the improvement gain from each additional SPU is slightly reduced from the pre-

vious SPU due to increased demand on the PPU and memory bandwidth requirements.

However, the frame rate improvement with the addition of SPU 6 still averages 11.3%

across all tested bitrates and 12.6% for bitrates below 12Mbps for CAVLC. The average

improvement due to SPU6 for CABAC encoded videos is limited by the PPU/entropy

decoder dominance beyond four SPUs at higher bitrates, but still averages 6.6% across

all tested bitrates and 9.3% for bitrates below 12Mbps.

4.6 Power State Management Policies

4.6.1 Advanced Configuration and Power Interface

The Advanced Configuration and Power Interface (ACPI) specification [67], seeks to

standardize processor power management interfaces. The ACPI standard defines pro-

cessor performance states P0 − Pn, where each P state is associated with a frequency-
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Table 4.3: Video decoder configurations.

C Managed Processor scaling through the PE scheduler is
active, and each PE is automatically transi-
tioned from C0 to C3 according to the sleep
policy described in Section 4.6.5.

C+P Managed The C Managed configuration is implemented
with the addition of P state management ac-
cording to the policies described in Section
4.6.6.

Full Speed No processor scaling is implemented. All
available PEs are utilized and running at P0.
This configuration without C state manage-
ment produces the normal power consumption
used against all reported power figures.

Table 4.4: C State power consumption.

C0active C0idle C3 [68]
P 1.0 0.4 0.2

Table 4.5: P State power consumption [81].

P0 P1 P2 P3 P4 P5 P6 P7
fscale 1.00 0.91 0.84 0.74 0.65 0.57 0.48 0.39

Volts (V) 1.12 1.09 1.06 1.03 0.99 0.96 0.93 0.90
P 1.00 0.86 0.75 0.62 0.51 0.42 0.33 0.25

voltage pair. P0 gives the maximum performance while higher numbered states give

successively reduced speed and power consumption by lowering frequency and volt-

age points. State Pn is the system’s lowest performance state utilizing the smallest

amount of energy.

ACPI also specifies four processor power states or sleep states, C0 − C3. All P

states are a subset of state C0, the only C state in which instructions are executed.

Higher numbered states represent successively deeper sleep with lower power and

longer wakeup latencies.

Current state of the art processors offer sophisticated fine grained DPM support.

The recent ACPI compliant multicore offerings from AMD and Intel are capable of

supporting independent C states and clock frequencies for individual core and “uncore”

architectural elements [58] [8] [82]. Future processors may be expected to support

independent dynamic voltage scaling for each core as well.
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4.6.2 Agile Performance Scaling

The quality of a video decoding power management scheme depends on achievable

power consumption rates as well as the frequency and severity of any frame deadline

misses. Optimal decoder performance is realized by selecting the slowest possible P

state still meeting the frame decoding deadline. To achieve near optimal performance,

the scalability of the parallelized video decoding implementation is exploited to match

as closely as possible the ideal decoding rate for each frame.

The goal is to finish decoding each frame as close to its deadline as possible.

The inter frame decoding time given in seconds, t f rame, is defined as the inverse of the

desired frame rate. For example, at 25fps, the time available to decode each frame is

1/25 = 40ms. From t f rame, a target row decoding time is calculated defining a target

decoding rate. The target row time, trow, is given by t f rame, the resolution dependent

number of MB rows, n, and, tinter, the inter frame time associated with any work oc-

curring between finishing the last MB of the previous frame and the start of the first

MB in the current frame:

trow =
t f rame − tinter

n

For each new MB row, the PE scheduler evaluates decoding progress with respect

to the target row decode rate. Fig. 4.14 gives an example of target decoding rates

for individual frames. The number of PEs selected for use, m, is either incremented

or decremented by the scheduler at the beginning of each row depending on whether

measured decoding progress is behind or ahead of the target progress indicated by the

dotted sawtooth in the figure. If measured progress is lagging, m is incremented, if

measured progress is ahead of target progress, m is decremented. The implementation

on the Sony PS3 with 6 SPUs available will not be increment m beyond 6.

Fig. 4.14 illustrates dependencies between PEs and shows how dynamic PE
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PE0

a.

b.
PE1 PE2 PE3 PE4 PE5

Figure 4.14: Processing element performance scaling.

scheduling occurs. In the parallelized decoder implementation, instead of PE3 con-

tinuously polling PE2, on which it depends for progress updates, PE2 actively pushes

progress information to PE3. For this reason, when a PE is assigned an MB row, it is

also assigned a target PE. When PEs 0 through 2 are busy and PE3 is next to receive

an MB row, PE3’s target depends on the value of m. In the example, if m > 4, relation-

ship a in the figure is instantiated and the next row will be assigned to PE4. Otherwise

dependency b is instantiated and the next row will go to PE0.

Fig. 4.16a illustrates the performance scaled parallel system’s behavior. The

value of m is represented with a ‘+’ for each MB row. The scheduler’s agility is evi-

dent in its immediate response to workload variations, very closely matching the target

decoding rate. In frames 0 and 2, m is almost immediately maximized and remains at

its maximum value because the system fundamentally lacks resources needed to meet

the target decoding rate.

4.6.3 Dynamic Voltage and Frequency Management

DVFM, also known as Dynamic Voltage and Frequency Scaling (DVFS), is a com-

mon technique for minimizing power consumption in computing systems [71] [128].

Dynamic processor power consumption, P, is quadratically dependent on its operating

voltage, V, and linearly dependent on clock frequency, f as given by the well known

relationship P ∝ V2 f .

Reducing operating voltage has a profound effect on dynamic power making it a

focus of DVFM schemes. Lowering clock frequency enables a lower operating voltage,

substantially improving power consumption but increasing execution times. Effective
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DVFM policies attempt to choose the lowest possible frequency still meeting any given

time constraints. In video decoding, minimum power consumption is achieved by se-

lecting a frequency for each frame such that frame decoding finishes at precisely the

frame deadline. Running the processor at full speed typically results in slack time be-

tween the end of frame decoding and the frame deadline. Optimizing away slack time

by slowing the clock frequency, which enables reduced operating voltage, is the key to

successful DVFM for video decoding.

4.6.4 Sleep States

In addition to DVFM, which only addresses active power, static or leakage power may

be dramatically reduced through the use of various low power idle or sleep states. Ag-

gressive sleep states may completely disable system clocking and even disconnect af-

fected systems from the supply voltage. More aggressive configurations can reduce

overall system power consumption to very near zero, but require substantially more

time and energy than less aggressive configurations. In general DPM policies are de-

signed to put idle processors to sleep so that the power saved in the sleep state is greater

than the power and time costs associated with entering and leaving the low power state.

4.6.5 Sleep State Selection

In this implementation, the system’s C or sleep states are managed autonomously by

each PE. Hardware activation of sleep modes is emulated with a simple time out. Only

the deepest sleep state required by ACPI, C3, is considered. When the system has been

idle for five times the round-trip transition latency from C1 to C3, the PE is placed

into state C3.
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Figure 4.15: PE allocation and P (voltage-frequency pair) state selection. The flow
chart illustrates rate controlled PE allocation and P state selection. The number of PEs,
n, is either incremented or decremented depending on how decoding time matches the
target time for each MB row. The operating frequency, f (in effect the current P state)
is increased only when PE scaling is not possible.

4.6.6 DVFS State Selection

The P state manager makes frequency and voltage point selections as a second or-

der response to target decoding rate matching performance. PE scaling decisions are

designed to maintain the target rate directly, whereas P state decisions depend on the

status of the PE scheduler. The implemented slow as possible P state management pol-

icy encourages moving to a lower power, i.e. higher numbered, P state when possible,

selecting higher performance states only when absolutely necessary. In essence, while

74



0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

0 1 2 3 4 5 6

P
Es

C
u

m
u

la
ti

ve
 R

o
w

 T
im

e
 (

m
s)

Frame Number

Target Frame Time Performance: C Managed (Stormchasers:20fps)

Measured Cumulative Frame Time

Target Cumulative Frame Time

PEs Selected intert
rowt

framet

(a) Fixed frequency PE scheduling: The number of PEs requested is always minimized to
maintain the target decoding rate.

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

0 1 2 3 4 5 6

P
Es

/F
re

q
u

en
cy

 S
te

p

C
u

m
u

la
ti

ve
 R

o
w

 T
im

e 
(m

s)

Frame Number

Target Frame Time Performance: C+P Managed (Stormchasers:20fps)

Measured Cumulative Frame Time
Target Cumulative Frame Time
SPU Frequency Step
PEs Selected 

(b) Frequency and Voltage state management: The light solid line illustrates run-time fre-
quency transitions. Reduced operating frequency forces the scheduler to request more PEs
than were needed in the fixed frequency configuration.

Figure 4.16: PE scaling to meet target decoding times in a system with six PEs.
Processing of each frame is represented with a slope beginning after tinter, progressing
at trow per MB row, and finishing at t f rame. Measured row decoding time is plotted
against the target time. The total number of PEs requested at the beginning of each MB
row is indicated by the ‘+’.

the PE scheduler is tasked with meeting the target decoding rate, the P state manager

is charged with running the system as slowly as possible.

The PE scaling and P state decisions are made at the beginning of each MB row

as illustrated in Fig. 4.15. When the frame decode time is slower than the target time

performance is augmented, but decrementing the P state (incrementing frequency) is

only chosen for this purpose when no additional PEs are available. On the other hand,

when the decoder is ahead of schedule, the P state is always incremented (frequency is
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decremented), and number of PEs is decremented unless the decoder is considered

to be on schedule.

Additionally, a tracking metric is implemented to dampen or accelerate P state

transitions when necessary. The metric variable is incremented or decremented prior to

P state selection. P state modifications are made only if the metric exceeds predefined

high and low threshold values indicating the need to raise or lower the P state. As an

example, the metric is used to dampen transitions to slower performance states while

the decoder works the last few MB rows. This is achieved by reducing the dampening

metric increment value. The effect is to reduce the likelihood of misapplied slowing at

frame end, reducing deadline violation probability.

4.7 Power Management Results

4.7.1 Experimental Setup

Video Decoder

The performance scaling scheme and DPM policies have been implemented to run on

the CBE’s PPU as part of the decoding loop responsible for entropy decoding. Timing

instrumentation has also been added to support the processor scaling and DPM schemes

in the PPU. SPUs are instrumented with timing functions for reporting the duration

activity while decoding each row.

The decoder has also been instrumented to accurately emulate frequency scaling

in both the PPU and SPUs by executing computed delays immediately prior to any syn-

chronization activity or idle periods. Delay durations are computed based on the active

frequency scaling factor, fscale, which takes a real value in the range [0, 1]. A scaling

factor fscale = 1 represents the fastest available clock frequency, while smaller values

represent clock speed as a ratio of the maximum frequency f = ftarget/ fmax. The imple-

mented factors are presented in Table 4.5. The executed delay time, tdelay, is calculated

using time measured since the last synchronization activity or idle period, tactive, by
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Figure 4.17: Power Performance at 10,
20, and 30fps target rates. C Managed
mode includes only PE scaling and C
or sleep state management, while C+P
Managed mode additionally includes
P or DVFM state management. The
normal power configuration uses full
speed + max PEs, and the optimal
power figures are calculated based on
idealized power state selections for just
in time frame decoding.
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Figure 4.18: Jitter distribution around
the target frame completion time indi-
cated as 0ms at 10, 20, and 30fps target
rates. Frequency and voltage are dra-
matically reduced without introducing
significant deadline misses.

tdelay =
tactive

fscale
− tactive

In addition to required frequency scaling delays, latencies associated with switch-

ing between P states and C states must be considered. For power management emu-

lation, latency values have been chosen based on reported figures for the Intel Xeon

5600 series processor. The P state transition latency used in the system is 2µs [82].
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The reported round trip C0-C3 latency used is 40µs [58]. Introducing appropriate com-

puted delays into the decoder provides extremely precise behavioral emulation of a

frequency scaled parallelized H.264 video decoder.

Power Model

The frequency scaled decoder provides accurate behavior and timing information for

all PEs in the power managed parallel video decoding system. Active and idle time

information for each PE are collected at MB row resolution and analyzed using the

processor power model. Power ratios chosen for C and P state power consumption

are given in Tables 4.4 and 4.5 respectively. All power ratios are given relative to the

average processor power consumption given the processor is not idle and is operating

in the highest performance state, P0. This is the maximum operating power for the

processor defined to have a value of 1. All lower performance processor states’ power

consumption are defined in terms of the maximum operating power.
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4.7.2 Power Performance Results

Processor Scaling and DVFM

The runtime behavior of the PE scheduler and P state managers are illustrated in Fig. 4.16.

Fig. 4.16a in contrast with Fig. 4.16b illustrates the behavior of PE scaling in the ab-

sence and presence of frequency scaling. When the workload drops, the scheduler

immediately responds by reducing the number of active PEs signaling the P state man-

ager to reduce performance. Consequently, the PE scheduler tends to use the maximum

number of cores while the system runs at a reduced frequency, approximating optimal

system behavior predicted by Cho et al. [38].

Overall Power Performance

The charts in Fig. 4.17 illustrate power performance across all benchmarks at 10, 20,

and 30fps. Power performance is given for the C and C+P configurations described

in Table 4.3. Optimal performance has been calculated from the reported total work

required across all PEs by the Full Speed decoder. To calculate optimal power, total

work is distributed evenly across all PEs giving a best case decoding time. This time

is scaled using the smallest available core frequency which will not violate the frame

deadline. The total energy consumed in each processor is calculated from the scaled

decoding time at the appropriate power rate from Table 4.5 and any remaining idle time

at the C3 power rate given in Table 4.4. The energy consumed during t f rame gives the

optimal power figure for each frame. A power breakdown for the C+P managed system

is illustrated in Fig. 4.19 along with the target optimal power performance.

All power figures are normalized to the Full Speed decoder without C state

management. Fig. 4.17 illustrates the increasing power advantage as available frame

slack time increases at reduced frame rates. On average, the C+P managed configu-
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ration comes within 11% of the optimal power performance, and out-performs the C

managed configuration by 10%.

Deadline Accuracy

Experiments have shown that frame deadline misses, or jitter, may be the most im-

portant factor in perceived video quality [30]. Frequently large frame buffers are used

to address the jitter problem but these can introduce undesirable latencies and large

memory requirements posing problems for resource constrained embedded systems in

particular. Buffering even a few video frames can be extremely costly. This is par-

ticularly true of high resolution frames such as HD. A single raw 1080p video frame

requires 6.2MB of buffer memory.

Fig. 4.18 illustrates the deadline accuracy of the C+P managed decoder. The

power management scheme is found to not introduce significant jitter. When the sys-

tem is under reduced stress, as in the 10 and 20fps charts, the number of significant

deadline misses is small. When the system faces a heavy workload, the number of sig-

nificant misses will dramatically increase. However, all of the misses greater than 10ms

experienced by the C+P managed decoder are unavoidable, meaning that the decoder

cannot make the deadline even when running at the highest operating frequency and

using the maximum number of PEs.

4.8 Conclusion

Parallelizing the FFmpeg H.264 decoder on the CBE requires immense effort due to the

codec’s notorious complexity, but there are substantial opportunities for parallelization

and optimization. Primary implementation issues arise from SPU memory limitations

and the large size and complexity of the source code and H.264 specification, synchro-

nization requirements, and data dependencies. Significant scalable performance gains

have been demonstrated from parallelization of the H.264 decoder and its implemen-
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tation on the Cell Broadband Engine. We can expect to see an increasing number of

cores in embedded applications and processors like the CBE, amplifying the need for

scalability as efforts continue to improve performance in the face of physical barriers

for monolithic processors.

A processor scaling DPM framework capable of extracting valuable power sav-

ings for parallelized video decoders has been presented. Agile performance scaling in

the H.264 decoder enables precise decoding rate control which can be translated into

effective power state management for near optimal power performance while success-

fully avoiding deadline misses. Future work includes addressing possible advantages

of workload estimation, and applications for performance processor scaling in multi-

threading multicore processors.
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Chapter 5

HIGH PERFORMANCE INSTRUCTION MAPPING

FOR SCRATCHPAD MEMORIES

Performance and power consumption are critical design considerations in embedded

systems. System memories may consume half of the limited power budget [86], which

has motivated a tremendous amount of work aimed at improving memory performance

and efficiency. scratchpad memories have grown dramatically in importance in recent

years, particularly as performance requirements for embedded systems become more

like those traditionally associated power hungry general purpose desktop computers.

Scratchpad memory (SPM) enhanced embedded processors provide fast and

power efficient compiler/programmer managed storage for accessing instructions and

memory. Performance is improved over a local cache by eliminating overhead and

limiting unpredictability due to hardware cache management. scratchpad memories

(SPMs) are software managed data and instruction storage structures integrated into a

processor or MPSoC architecture much the same as system cache. The SPM enables

performance and silicon area advantages over the system cache by shedding hardware

required for cache management and relying on compile time and programmer directives

to adequately manage its use. How best to utilize the SPM is a difficult problem which

has been heavily explored over the past decade.

There are a number of approaches for selecting what to place into the SPM and

when to place it there. In the problem considered here a code partition is defined on

the SPM, and a large code set must be dynamically mapped into the available space by

assigning multiple segments of code to the same address in memory. An example of this

situation is the IBM Cell Broadband Engine (CBE) which provides eight Synergistic

Processing Units (SPUs) each with a software managed 256KB Local Store SPM. In the

CBE model, all code to be executed in an SPU must be mapped to the local SPM [127].
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See Appendix B for additional details on the CBE. This model promises to become

increasingly important as multicore SoCs make their way into multitasking handheld

devices. Here each processing core may be assigned a compute intensive task such as

video coding in a real-time resource constrained environment.

In this work a Code Overlay Generator (COG) Algorithm for identifying high

performance overlay mappings designed to minimize overhead is introduced. Two ex-

tensions to the COG algorithm are presented and the performance of the implemen-

tations against a previously published algorithm and the automatic overlay mapping

generator in the IBM Cell SPU compiler, spu-gcc are compared.

In the next section previous and related work are discussed. Details on code

overlays are given in Section 5.2 and overlay performance and cost models are intro-

duced in Section 5.3. The COG algorithm and extensions are presented in Section 5.4

followed by an analysis of expected performance compared to the previous algorithms

in Sections 5.5 and 5.6. The experimental setup and results are presented in Section

5.7, followed by Conclusions.

5.1 Previous Work

There are many good references highlighting the large amount of work related to op-

timal partitioning and assignment for SPM. Most of the available work targets energy

minimization which generally corresponds to reducing the number of memory misses

during program execution, as additional overhead incurred due to a miss results in

greater energy consumption than with a memory hit. The scheme seeks to minimize

instruction misses.

Existing work may be categorized into either instruction mapping, data map-

ping schemes, or both, as well as either static or dynamic allocation techniques. A code

overlay mapping generator for dynamically mapping instructions to memory at runtime

has been developed. The implementation does not require profiling information at com-
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Figure 5.1: Example GCCFG (a) before and (b) after reduction.
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Figure 5.2: Flat call graph structure. Note that this structure appears twice, headed by
functions a and f, in the graph of Figure 5.1b since loops may be interpreted as multiple
instances of the same function node.

pile time. Also presented is an improved scheme for modeling relationships between

code objects at runtime to better predict instruction memory misses based on structural

analysis of the program. Good overviews of the large body SPM related efforts is given

by Egger et al. [55], Verma et al. [152], and Janapsatya et al. [86].

Several previous efforts focus on temporal locality of code. Early work in this

area investigates the concurrency of code modules based on branches of the execu-

tion call graph [48] [140], but do not consider the effects of control structures such as

loops. Similar to the present work, Steinke et al. [141] views the problem in terms of

minimizing memory accesses, and evaluates the structure of the program in terms of
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basic blocks and functions to formulate an ILP problem. Udayakumaran et al. present

an algorithm which looks at timestamps in code sections to determine temporal lo-

cality [149], Janapsataya et al. [86] introduces a concomitance metric which relies on

profiling trace data, and Angiolinie et al. presents a dynamic programming algorithm

which also requires trace data [10]. Egger et al. [55] implements a paged SPM manage-

ment and prefetching scheme. These schemes rely on profiling information which can

be impractical or inflexible particularly where program execution paths vary widely

on different input data.

Verma et al. [152] and Pabalkar et al. [124] are most similar to the work pre-

sented here. Verma uses a first-fit heuristic to assign objects to the SPM, but their

scheme results in a static mapping which omits objects that do not fit by placing them

back in main memory. Pabalkar’s algorithm faces a related problem when attempting

to assign all code modules to the SPM due to potential deadlock which is not han-

dled. More details on SDRM deadlock are provided in Section 5.5.2. Additionally,

the existing overlay mapping generation algorithm included in the spu-gcc compiler

provided for the CBE by IBM addresses the current problem [130], but the algorithm

gives limited performance except under special conditions. Results are compared with

the SDRM and spu-gcc solutions in this presentation.

5.2 Code Overlay

Code Overlay is a technique for mapping instruction code onto available memory in

which the code would not otherwise fit. In designing an overlay mapping, available

memory is partitioned into one or more fixed regions to which one or more code seg-

ments may be assigned. Every segment assigned to a given region is mapped to the

same address in the SPM. The size of a region in memory is precisely that of its largest

mapped segment. Code may be stacked into segments so that the start address of the

second code element follows the end address of the first element and so on.
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Table 5.1: Function control relationships.

function calls one function calls another function
function calls in loop function call within a loop

conditional function calls a function conditionally calls function
recursive function calls a function calls itself

Normally instructions may be assigned to segments at object file, function, or

basic block resolution, and any number of elements may be assigned to one segment. In

this work, overlays are created using function or object file resolution, where an object

file may contain one or more functions. The object file resolution is a limitation of the

GNU gcc linker, ln. When the code overlay scheme is implemented and the code is

executed, each memory region always contains exactly one code segment at any given

time during execution. When instructions are requested which are not currently present

in the SPM, the appropriate segment is loaded into its assigned region overwriting the

current segment. This event is referred to as an overlay miss. Each miss has an asso-

ciated overhead which is defined as the amount of time expended to load the missing

segment. This overhead is proportional to the size of the code segment. The cumulative

overhead in terms of time associated with execution of a program using a specific over-

lay mapping is the mapping’s total cost. Additional details and CBE implementation

considerations have been provided in the previous chapter at Section 4.4.2.

5.3 Overlay Miss Model

By analyzing source code, we can identify key characteristics which will be impor-

tant for producing an accurate model of program behavior to effectively reduce overlay

misses during execution. Accomplishing this miss reduction requires identifying any

functions in the code which might be mapped to the same memory address, or over-

layed, and determining the relationships between them expected to result in overlay

misses.
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5.3.1 Graphical Representation of Code

In order to create an abstract graph representation of the input program, it is neces-

sary to address four important control flow relationships between functions as shown

in Table 5.1. An enhanced Control Flow Graph (CFG) referred to as a Global Call

Control Flow Graph (GCCFG) as presented by Pabalkar et al. [124] is constructed.

The GCCFG is similar to the CFG, but with control flow relationships explicitly repre-

sented as nodes. Figure 5.1 illustrates an example GCCFG which might be generated

by identifying jumps or function calls, loops, and conditional statements in the source

code. In this work, analysis is performed on cfg output generated by gcc using the

-fdump-tree-cfg switch [60]. The cfg dump is parsed to collect control information

at the granularity of basic blocks from which loops and function call information is

collected. The implementation is currently limited to function level resolution by the

existing overlay manager available for the CBE used in the experiments. The function

level graph generated from cfg data is simplified in four steps:

1. First we ignore recursive function calls as indicated in the graph at function b.

Since we are concerned with interference between functions, the effect of a re-

cursive call is that the code necessary to run the called function is already in

memory, resulting in no overlay miss.

2. In the second step, we will treat functions inside conditional statements includ-

ing function pointers, which may represent multiple functions, as if they interfere

with one another in much the same way as if they were called outside of any

conditional control structure. The impact of this transformation on the model’s

accuracy is dependent on a large number of variables including the detailed be-

havior of the code on a given input. We observe that two conditionally executed

functions called by the same parent can have an interference relationship simi-
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lar to that of two functions called by the same parent outside of any conditional

control structure. Without actually executing the code, it is not possible to fully

anticipate this relationship at compile time. We do know that if each of two ex-

clusive conditionally executed functions are called at any time during program

execution then there will be interference between them limited by the number of

times the parent function is called.

3. Next we identify and remove loop augmenting edges from the original GCCFG.

These are edges between two functions which also have a loop node between

them as in the edge (a, b) in Figure 5.1a. The effect of the loop augmenting edge

is to increase the number of iterations in the loop by the number of augmenting

edges. We do not know the size of the loop to begin with, so we will ignore the

additional edges by subsuming them into the augmented loop node.

4. Finally, we generate implicit loops from the original GCCFG whenever we find

multiple edges between two nodes, as seen between a and f in the figure. Since

calling the same function multiple times is equivalent to calling the function from

within a loop, we insert an implicit loop node to the graph between the calling

and called functions and remove all but one edge.

Now we have produced the simplified GCCFG structure in Figure 5.1b. In the follow-

ing sections we begin characterizing interference relationships and costs.

5.3.2 Counting Overlay Misses

For each function, we will identify base, return, and total interference values. The base

interference, Ib, represents the number of times we expect a function to be called during

program execution. Starting from the root node we assign Ib a value of one. Based on

the assumption that no code is present in the SPM at the start of program execution,

every function will have an overlay overhead of at least one miss on its first call.
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Base interferences are assigned by traversing the graph depth first. When we

visit a child, Ib remains the same as the parent node unless we pass through a loop

between them. Each time we descend through a loop node, the current value of Ib is

multiplied by a loop factor. A factor of 10 is used in Figure 5.1b. When returning

upward through a loop node, Ib is divided by the loop factor. In this way, a base

interference is assigned to each function node with geometrically increasing values

as we descend into loops.

Definition 1 Base interference, Ib( f ) is the number of times a function is expected to

be called during program execution, i.e. the number of times the function must be in

memory due to a call from another function.

The return interference, Ir, for each function represents the number of times the

function must be present in memory due to function call returns. If we consider the call

graph in Figure 5.2, the order in which the functions must be present in memory is

< a, b, a, c, a, ..., a, n, a >

Notice that the parent function, a, must be present in memory for all n− 1 function call

returns, where n is the number of functions in the graph.

The value of Ir for each function is the sum of the Ib value of its immediate chil-

dren, which includes the children of any loop nodes but not the loop nodes themselves.

As an example, functions a with immediate children b, c, d, f and f with immediate

children g, h in Figure 5.1b have Ir values 1030 and 110 respectively. All other func-

tions in the graph have Ir( f ) = 0, as they do not call other functions.

Definition 2 Return interference, Ir( f ) is the number of times a function is expected to

call other functions, i.e. the number of times the function must be in memory due to a
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return from a function call:

Ir( f ) =
∑
∀c

Ib( fc) : fc is an immediate child of f

Now we may calculate the total interference, It, for each function as the sum of its

base interference and return interference values. Total interference represents the total

number of times we expect each function must be present in memory during program

execution. It is important to highlight that in the absence of conditionals, if we have the

actual loop sizes recorded in the GCCFG, then It( f ) will precisely represent the actual

number of times the function must be present in memory during program execution.

This may also be interpreted as the number of overlay misses we expect if all functions

share the same memory address in a single region.

Definition 3 Total interference, It( f ): The total number of times the function, f, must

be in memory: It( f ) = Ib( f ) + Ir( f )

Taking the sum of total interferences for every function, f, in program, P, we find the

number of overlay misses expected in the worst case:

interferencemax =
∑
∀i: fi∈P

It( fi)

Worst case overlay performance occurs when available memory restricts overlay map-

pings to a single region the size of the largest function in the program. This circum-

stance represents the smallest possible size for a valid mapping. With one function per

segment, interference overhead occurs between every function during every function

call and return. Again, in the absence of conditionals, and given the actual loop sizes

in advance, interferencemax represents the actual worst case overhead of the program

in terms of overlay misses.

The actual DMA overhead of an overlay miss in terms of time can be calculated

from DMA size. Therefore, we can estimate the actual worst case overhead cost due to
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overlay misses in terms of time by summing the products of total cost and calculated

DMA overhead for each function.

5.3.3 Interference Between Functions

In order to establish the quality of an overlay mapping, we must define the interfer-

ence relationship between code segments. To simplify the analysis, we will restrict the

contents of a code segment to a single function, and equate segment interference with

function interference. We will explore the potential benefits of clustering functions

into segments in Section 5.4.6.

Definition 4 Interference between functions, inter(u, v) is the number of times two

functions, u, and v are expected to replace each other in memory if both are mapped to

the same region.

We consider two types of interference relationships defined by the lowest common an-

cestor (LCA), between two functions, u and v. LCA(u, v) is defined as the loop or

function ancestor common to both u and v which has the greatest depth in the GCCFG.

LCA(u, v) = lowest common ancestor between u and v

For example in Figure 5.1b, LCA(c, g) = a, LCA(g, h) = f . The two types of inter-

ference are as follows:

1. Neither u nor v are the LCA. In this case, neither function is a descendant of

the other and the base interference of the LCA node determines the interfer-

ence between the two functions. In Figure 5.1b, inter(b, d) = Ib(L1) = 10, and

inter(g, h) = Ib( f ) = 10.

2. Either u or v is the LCA. Here, the function which is not the LCA, say v is

a descendant of the other function u. The interference between the two func-

tions is determined by the sum of the base interference of the LCA node and
91



Algorithm 1 Interference cost algorithm.
FIND INTERFERENCE BETWEEN FUNCTIONS

1: F {initialized set of all functions}
2: LCA(u, v) {initialized common ancestors ∀u, v ∈ F}
3: Ib( f ) {initialized base interferences ∀ f ∈ F}
4: shield(u, v) {initialized reference to the function which shields u from v}
5: inter(u, v) {uninitialized function interferences}
6: for ∀u, v : u, v ∈ F, u < v do
7: if u = LCA(u, v) then
8: inter(u, v) = Ib(u) + Ib(shield(u, v))
9: else if v = LCA(u, v) then

10: inter(u, v) = Ib(v) + Ib(shield(v, u))
11: else
12: inter(u, v) = base(LCA(u, v))
13: end if
14: end for

the base interference of the first child function of the LCA node on the path to

the descendant function. In Figure 5.1b, inter(a, d) = Ib(a) + Ib(d) = 1001, and

inter(a, h) = Ib(a) + Ib( f ) = 11.

In cases where two functions have more than one lowest common ancestor, as is the

case when one of the functions is called from several parts of the GCCFG, we consider

the interference relationship between them to be dominated by the common ancestor

which gives the largest interference.

5.3.4 Code Overlay Cost

Algorithm 1 computes interference relationships between all functions in the GCCFG.

The loop starting at line 5 iterates through all edges of the interference graph defined as

the fully connected graph with one node for each function, and each edge representing

the interference between two functions.

In line 6 we check whether the LCA, s, of two nodes u, and v, is neither u nor

v, in which case the interference cost between the nodes is the base cost of s. The base

cost of the LCA represents the number of times one function would replace the other in
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memory if they are mapped to the same region. In Figure 5.1b the interference between

g and h is 10, the base cost of f. The algorithm has complexity O (nm).

Otherwise, in line 9 we know that either u or v is the common ancestor, and the

interference between the two nodes is the sum of the base costs of the ancestor node and

its first child on the path from ancestor to descendant. In Figure 5.1b, the interference

cost between a and h is base (a) + base ( f ) = 1 + 10.

The first function on the path from the LCA to the descendant function deter-

mines the interference relationship because from the ancestors perspective any function

call initiated within this child node is indistinguishable from the memory presence of

the child itself. Considering functions a and f again, if they are in the same region,

their interference is illustrated with the trace

< a, ( f ) , a, ( f ) , ... >

The two functions alternate in memory with each call to f and return to a. If we consider

placing the entire GCCFG branch headed by f into a single region, the functions will

swap one another out in memory as given by the trace

< a, ( f , g, f , h, f , ..., f ) , a, ( f , g, f , h, f , ..., f ) , ... >

Here the displacement between a and h is again once for every call to f and return to a.

We say that f is shielding a from the interference effects of its descendants.

Definition 5 A function, u, shields its parent function, s, from interference costs asso-

ciated with all of its descendants, T such that when s, and T ′ ⊆ T are mapped to the

same region, shield(s, t) = u : ∀t ∈ T ′ where u is the shielding function (graph node),

and inter(s,T ′) B inter(s, u).

The shielding property of interference relationships between function proves

important in making decisions about assigning functions to regions and in predicting
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the cost or quality of overlay regions and mappings as a whole which are discussed

below in Section 5.4.1.

5.3.5 SDRM and spu-gcc Interference Definitions

In the SDRM algorithm presented in [124], interference costs are calculated similarly,

but only base costs are considered. The interference used is the minimum of the two

base costs for callee-callee relationships where neither node is the common ancestor,

and the base cost of the descendant is used for caller-callee relationships. This differ-

ence is further addressed in Section 5.4.2. The cost is multiplied by the sum of the two

function sizes since function size is understood to correlate with performance/energy

overhead in the event of an overlay miss. The SDRM algorithm is analyzed in Section

5.5. Interference costs in the spu-gcc compiler are only considered between parent-

child nodes, and are equivalent to the base cost of the child node [130]. The spu-gcc

algorithm is briefly analyzed in Section 5.6.

5.4 COG Algorithm Framework

5.4.1 COG Overlay Cost Model

The cost of an overlay miss is defined as the actual associated DMA overhead in terms

of time calculated from the size of the DMA. The cost associated with a given overlay

mapping is the sum of the costs of its regions. We will first study the interferences be-

tween functions assigned to the same region in order to determine region costs. Func-

tions assigned to separate regions do not interfere with one another, as they do not

share the same address space in memory.

The calculation used to find interference between two functions has been de-

scribed in Section 5.3.3. These interferences are the basis for calculating interference

between functions and regions. The interference between a function, u, and an overlay
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region, R, is given by:

inter f R(u,R) = max
∀v:u,LCA(u,v)

(inter(u, v)) +
∑

∀v:u=LCA(u,v)

inter(u, v) (5.1)

In Equation 5.1 we consider two sources of interference in the GCCFG structure

between a function, u, and all other functions assigned to the same region:

1. The first type of interference is associated with all functions in the region which

are not descendants of the function under consideration, i.e. u is not the LCA.

The first term on the right side of the equation gives the interference due to non-

descendant functions in the region. Only the maximum interference is considered

here since in general the number of times a function is overwritten between calls

depends only on one common ancestor, s, due to its shielding u from all other

non-descendant functions in the region. From Definition 5 we know that any

other functions in the region are shielded from u. If there were another function

in the region on the path from s to u, it would have an interference cost greater

than or equal to inter(s, u), and it would be shielding u from s.

2. The second term on the right side of Equation 5.3 gives the interference of u in

R due to the descendants of u in R, i.e. u is the LCA. Again, by Definition 5,

for each of the immediate children, t, of u, the interference between u and any

or all of the descendants of t is exactly inter(u, t). Consequently, the interference

between u and all of its descendants is the sum of the interference costs between

u and any of its immediate children with descendants in the region.

The expected cost of an overlay region is derived from the interference or num-

ber of overlay misses between its functions, and the DMA overhead associated with

each overlay miss. DMA overhead is the actual cost of an overlay miss in terms of time

spent retrieving the missing code segment. The time required to execute the DMA,
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which will be referred to as simply cost, is a function of the size of the missing func-

tion, u:

cost(u) = time needed to DMA size(u) Bytes (5.2)

The actual DMA overhead function giving cost in seconds as a function of DMA size

is empirically determined by measuring DMA performance on the target architecture.

This function as determined for the CBE is described as part of the simulation dis-

cussion in section 5.7.1. Expected overhead cost of a function assigned to a region

is given by:

cost f R(u,R) = cost(u) · inter f R(u,R) (5.3)

The total expected overlay overhead cost associated with one region is the sum of the

costs of all of its assigned functions given by:

costR (R) =
∑
∀u:u∈R

cost f R(u,R) (5.4)

Algorithm 2 is used to calculate function in region cost. Finally, the total ex-

pected overlay overhead associated with an overlay mapping, OVL, is the sum of the

costs of all of its assigned regions:

costmapping (OVL) =
∑

∀R:R∈OVL

costR(R) (5.5)

The value obtained from costmapping (OVL) is used to classify overlay mappings accord-

ing to expected performance, enabling classification of solutions in terms of expected

performance.

5.4.2 COG Algorithm

The Code Overlay Generator (COG) Algorithm is designed to produce overlays which

result in the smallest possible number of misses. Once interference costs have been
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Algorithm 2 Function cost in region algorithm.
1: LCA(i, j) {initialized common ancestors}
2: R {overlay region}
3: u {function to be evaluated in region R}
4: F = R\{u} {all functions in R other than u}
5: FR = ∀v s.t. v ∈ R : v , u { all functions in R other than u}
6: Fc {immediate children of f }
7: interd = 0 {descendants’ interference }
8: internd = 0 {non-descendants’ interference }
9: inter (i, j) {initialized interference relationships}

10: for ∀v : v ∈ F do
11: if u = LCA(u, v) then
12: if shield(u, v) ∈ Fc then
13: interd = interd + inter(u, v)
14: Fc = Fc\{shield(u, v)} {an immediate child cost is added at most once}
15: end if
16: else
17: if inter(u, v) > internd then
18: internd = inter(u, v)
19: end if
20: end if
21: end for
22: return cost = c(u) · (interd + internd)

Algorithm 3 Code Overlay Generator Algorithm.
1: OVL {set of r empty overlay regions}
2: R {an overlay region in OVL}
3: Rmin {overlay region with minimum cost}
4: inter (i, j) {initialized interference costs}
5:

⇀

F {functions sorted from largest to smallest total interference}
6: for ∀ f : f ∈

⇀

F from largest to smallest total interference do
7: Rmin = R s.t. cost f R( f ,R) : ∀R ∈ OVL is minimized
8: add f to Rmin

9: end for
10: return OVL

calculated and we have a method for empirically analyzing the quality of function to

region mappings, we can construct an algorithm to generate high performance overlays.

The algorithm works on a fixed number, r, of regions and generates overlay

mappings designed to minimize misses. It does not consider function sizes. As a

result, we will not know the size of the generated overlay mapping until the algorithm

is complete. To account for mapping size and find the best overlay mapping for a given
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memory size, we first calculate the lower bound on the number of regions which will

fit in memory. This bound is determined by selecting functions from a list sorted in

descending order by size. Then starting with the largest function, we place them end to

end until the sum of the sizes of n+1 selected functions exceeds the available memory,

M. We then begin generating overlay mappings starting at r = n, increment r for each

iteration and solve again.

The solution with the lowest overlay cost is retained after each iteration. Since

some mappings with more regions may have smaller sizes, we can find better solutions

by continuing to search after solutions start to exceed the available memory until a

mapping reaches a factor such as 2M or the number of regions is equal to the number

of functions. COG is presented as Algorithm 3.

For each function, f, to be assigned from the list of functions sorted by total

interference, COG calculates cost f R( f ,R) for each region in line 7. The current function

is assigned to the region in which this cost is minimized. In the worst case the algorithm

is run n times for overlay mappings with 1 to n regions, n functions are allocated each

run and at most n comparisons are made for each function to find the best region for

a computational complexity of O
(
n3

)
.

5.4.3 COG-Expansion

After running COG, we may have unused bytes remaining in the available SPM mem-

ory. In the event COG returns a solution with unused memory space at least as large

as the smallest function, we can improve the overlay’s performance by creating new

regions and moving functions into them. The simple extension to the COG algorithm

given as Algorithm 5.4.2, is called COG Expansion (COG-E). In line 8, the algorithm

removes functions to new regions beginning with the function having the greatest total

cost as long as they fit into remaining memory and the source region contains more than
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Algorithm 4 Code Overlay Generator-Expansion Algorithm.
1: remaining_mem = unused instruction memory
2: OVL {overlay solution from COG}
3: R {an overlay region in OVL}
4: Rmin {overlay region in with minimum cost}
5:

⇀

F {functions sorted from largest to smallest total interference}
6: while memory_size − size(OVL) > min_ f unction_size do
7: for ∀ f : f ∈

⇀

F from largest to smallest total interference do
8: if size( f ) < remaining_mem then
9: remove f from it’s current region

10: create a new region and add f
11: remaining_mem = total_mem − size(OVL)
12: end if
13: end for
14: for ∀ f : f ∈

⇀

F from largest to smallest total interference do
15: Rmin = R s.t. cost f R( f ,R) : ∀R ∈ OVL is minimized
16: add f to Rmin

17: end for
18: end while

one function. If a function does not fit into remaining memory we skip it and continue

to the next function in descending order of total interference.

In order to further improve the solution, in line 15 we check for opportunities

to reduce overlay cost by testing the functions again from greatest to least total inter-

ference to see if their cost in their currently assigned region is less than their cost in

a new region as long as the move does not increase the size of the new region. This

process can cause the overlay size to shrink since the largest functions from some re-

gions may have been moved to larger regions. We can take advantage of this reduction

in overlay size by running the algorithm again until remaining memory is too small to

hold the smallest function. We can avoid increasing the computational complexity of

the algorithm by limiting the outer loop to some small number of iterations.

Increasing the number of regions in this way is guaranteed to reduce overlay

cost since removing a function from a region with multiple functions must reduce the

region’s interference cost if multiple functions are called in that region, and adding a

function to an empty region incurs no cost. The complexity of the expansion algorithm
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Algorithm 5 Code Overlay Generator-Compression Algorithm.
1: OVL {overlay solution from COG}
2: R {an overlay region in OVL}
3: Rlargest {largest region in terms of memory size}
4: while size(OVL) > mem_available

and numregions(OVL) > 1| do
5: for f = largest_function(R)∀R : R ∈ OVL\Rlargest do
6: Rmin = R s.t. cost f R( f ,R) : ∀R ∈ OVL is minimized
7: add f to Rmin

8: end for
9: end while

is determined by the second for loop (line 14). The complexity of the for loop and

consequently the COG-E algorithm is O
(
n2

)
.

5.4.4 COG-Compression

As a second extension to the COG algorithm, consider COG Compression (COG-C).

When COG returns an overlay mapping which is too large to fit in the SPM, we attempt

to compress the size of the overlay until it will fit. This is done by evaluating regions

other than the largest one and systematically moving their largest assigned function

into a larger region. Each such function move can reduce the size of the overlay if all

remaining functions are smaller than the largest function. Once the overlay is small

enough to fit into available memory, we stop and return to the COG Algorithm where

the compressed overlay is retained if it has a lower cost than the best solution so far.

These steps are illustrated as Algorithm 5.4.3. The complexity of the algorithm is again

limited by restricting the outer loop to a small constant size. The loop at line 5 runs

for n iterations with at most n comparisons per iteration giving the COG-C algorithm

a complexity of O(n2).

5.4.5 COG, Unified Algorithm

In practice, the three COG algorithms presented can be run simultaneously to select the

solution with best predicted overlay performance. Since COG is the first step of each
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algorithm for each number of regions, the first step in the unified algorithm is to run the

COG algorithm. When the COG solution is found to be smaller than available memory,

we will run COG-E to find an improved solution which better utilizes memory. In the

event that the COG solution is found to be larger than available memory, we run COG-

C in an effort to find a mapping with reduced size and improved performance over the

last valid COG solution with fewer regions. As is the case in the previously described

algorithms, we retain the best solution at each step, and return the overall best solution

after exhausting the region search space.

The computational complexity of the combined algorithm is again O
(
n3

)
, since

we find a solution for each number of regions in the search space only once, and ex-

ecute at most one COG extension algorithm per iteration. Although this method will

return the solution with the best predicted performance from among COG and its two

extensions, it is not guaranteed to return the mapping which gives the best real world

performance, as compile time evaluation of the solutions is limited by the accuracy of

the performance model.

5.4.6 Clustering Functions into Segments

A function clustering algorithm was implemented to improve performance at low mem-

ory sizes compared with spu-gcc. As discussed in Section 5.6, the spu-gcc algorithm

outperforms COG and SDRM when memory size restricts overlays to one region. By

clustering functions into larger segments, performance improvements are possible, par-

ticularly for extremely memory constrained solutions.

The implemented clustering algorithm works on edges of the interference graph

much like the SDRM implementation. The main difference is that edges are used to

combine functions into one segment rather than separate them into regions. The inter-

ference graph is generated for the assigned functions of each region in the mapping,

and interference edges are sorted from greatest to smallest cost. Starting with the most
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expensive edge, we remove it from the sorted list and add its associated functions back

to the region by combining them into a single segment if their combined size does

not exceed the original region size or an empirically determined threshold value or we

place them into two separate segments if the combined size is too large. If one of the

functions is already assigned to a segment, then the other function is added to that seg-

ment using the same criteria such that the second function is either added to the existing

segment, or a new segment is created. After all edges have been consumed, the new

segmented region is returned and integrated into the overlay mapping.

5.5 SDRM Analysis

5.5.1 SDRM Cost Model

In the SDRM algorithm [124], interference costs are calculated similarly to the method

presented here for COG, but only base costs are considered. The incorporation of return

interference is an important new contribution in the presented model. In SDRM the

interference used is the minimum of the two base costs for callee-callee relationships

where neither node is the common ancestor, and the base cost of the descendant is

used for caller-callee relationships. This value is multiplied by the sum of the two

function sizes since function size is understood to correlate with performance/energy

overhead in the event of an overlay miss. In addition, the SDRM model calculates

region cost based on the sum of interferences between all functions assigned to the

region without accounting for the effects of shielding on function interference. In order

to make valid comparisons between the COG and SDRM models, the DMA cost model

as described in Equation 5.2 is used when calculating SDRM region costs instead of

using function sizes directly.

5.5.2 Deadlock

SDRM uses the interference costs described in Section 5.5.1 to construct an overlay

mapping. The interference costs are annotated on edges between functions in an in-
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Figure 5.3: (a) SDRM deadlock example GCCFG. (b) SDRM deadlock example, func-
tions a and b have been assigned first because they share the most expensive edge in
the interference graph, function c cannot be placed in memory because its size is larger
than the largest region plus remaining memory in the SPM.

terference graph. These edges are sorted from most expensive to least expensive. The

most expensive edge is selected and each of its associated functions are added to newly

created overlay regions, then the next edge is selected. If there is not enough unused

memory to create a new region, the function is added to one of the existing regions

such that the cost of adding the function is minimized. In the worst case, the SDRM

algorithm makes n comparisons to select a region by traversing n2 edges, for a com-

putational complexity of O
(
n3

)
.

The scheme can run into trouble as illustrated in the example GCCFG in Fig-

ure 5.3a. The interference graph shows that the most expensive edge occurs between

functions a and b. Figure 5.3b illustrates the behavior of the SDRM algorithm for the

given SPM size. The algorithm first selects the edge (a, b) adding functions a and b to

new regions in the SPM. When c is selected, it is found to be larger than the size of

either region plus the remaining SPM memory. The consequence is that the algorithm

hangs without producing a solution.
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5.5.3 Performance Case Study

Figure 5.2 illustrates a flat call graph structure commonly found in computer programs.

After inspecting the call graphs for each of the benchmarks, it turns out that on average

67% of the functions are direct members of such structures even when counting only

instances of the structure with at least four nodes. Given the data structure in the fig-

ure and assuming all functions are the same size, the interference graph generated by

SDRM has the same weight on every edge. The resulting overlay is given in Figure

5.4a. COG generates the alternative mapping shown in Figure 5.4b. The difference

derives from the fact that COG considers the return cost between function a and its

children where the SDRM algorithm does not. The memory resident function traces

for SDRM are R1 :< a, c, a, ..., a, n − 1, a > and R2 :< b, d, ..., n >. For COG the traces

are R1 :< a > and R2 :< b, c, ..., n >. It is clear that the return costs of a inflate the num-

ber of misses in the SDRM mapping. The cost of each mapping can be given in terms

of misses for the SDRM and COG solutions with n functions and r regions as follows:

misses(SDRM) = n + n
r − 1 (5.6)

misses(SDRM) = n + n
2 − 1 = 3n

2 − 1 ≈ 3
2n : r = 2 (5.7)

104



Table 5.2: Simulation results vs. SDRM.

ldec. ispl. gsm
COG-E n/a 39% 68%
COG-C n/a 38% 24%

COG n/a 38% -18%
COG v. gcc 87% 70% 76%

lim
r→n

(
misses(SDRM) = n + n

r − 1
)

= n (5.8)

The COG mapping has a cost given by:

misses(COG) = 1 + r · (n−1)
r = n (5.9)

Equations 5.6 and 5.9 describe the number of overlay misses experienced by the SDRM

and COG solutions respectively. Equations 5.7 and 5.8 indicate that in the case of

the structure in Figure 5.2, the SDRM solution is at best equal to the COG solution

described in Equation 5.9 as the number of regions approaches the number of functions

(i.e. as available memory increases), and at worst 50% more expensive than COG

in the case of a two region solution given in Equation 5.7. Increasing the number of

regions improves the SDRM solution, but COG is optimal even when there are only

two regions, as n is the smallest possible number of misses.

5.6 spu-gcc Analysis

The spu-gcc automatic overlay algorithm is described in [130]. It has a lower complex-

ity, working on at most n2 edges, of O
(
n2

)
. The algorithm clusters highly interfering

neighboring functions into the same segment as long as the segment fits in the mem-

ory region. Interference costs in the spu-gcc compiler are considered only between

parent-child nodes [130], and are equivalent to the base cost of the child node in the

scheme presented here.

A key distinction between this algorithm and COG/SDRM is that it relies exclu-

sively on code segments rather than regions to group functions into an overlay mapping.
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The compiler algorithm always returns a mapping with exactly one region. Each seg-

ment may contain one or more functions, unlike SDRM and COG, both of which ignore

the potential benefit of placing multiple functions into one segment.

Since COG and SDRM use a separate segment for each function, performance

for any solution generated with a single region gives worst-case performance because

every function call results in a call and return miss. For this reason the spu-gcc solu-

tion is expected to outperform COG and SDRM when the solution consists of just one

region. However, large segments quickly become a handicap in the spu-gcc algorithm

as the size of available memory is increased. Performance is hampered with larger

segment sizes because any misses during program execution result in memory access

overhead which is a function of segment size. As the region size grows further, perfor-

mance begins to improve again, approaching the optimal with every function always in

the SPM mapped to one segment containing the entire program. These effects will be

highlighted in the discussion of experimental results.

In the experiments, spu-gcc overlays have been generated for the set of bench-

marks using the auto-overlay option described in the IBM Cell Programmer’s guide

[77]. The benchmark source code was modified by adding a large data buffer which

consumes sufficient LS space to force the compiler to generate multiple code segments

in order to fit the instructions in memory. Larger buffer sizes result in smaller over-

lay mapping sizes. By examining the compiler output for a range of buffer sizes, it is

possible to determine the configurations needed to generate spu-gcc overlay solutions

that sweep the program size. The size of the automatically generated overlay mappings

is found by parsing the compiler generated spu memory map file to find the largest

segment in the compiler’s one region solution.
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Table 5.3: Simulation benchmarks.
benchmark functions max overlay(B) min overlay(B)

ldecod 471 430,532 20,060
ispell 110 88,312 6,104
gsm 72 34,768 6,444
sha 8 1,702 717

rijndael 7 11,428 4,468
dijkstra 6 1,623 656
patricia 5 2,956 1,497

Table 5.4: CBE benchmarks.
benchmark functions max overlay(B) min overlay(B)

cjpeg 210 129,320 3,736
ffmpeg 106 100,012 7,072

gsm-untoast 41 12,504 2,172

5.7 Experimental Results

5.7.1 Experimental Setup

Benchmarks and Memory Setup The benchmarks used for experimentation are pre-

sented in Tables 5.3 and 5.4. A distinct set of benchmarks is used for simulation based

analysis (Table 5.3) and execution on the CBE (Table 5.4). For each benchmark mem-

ory sizes needed to test performance across a meaningful range of available SPM in-

struction memories are selected. Benchmarks with smaller code sizes have been swept

from the smallest possible overlay mapping size, defined by the size of the largest

function in the program, up to the total size of the program, or the sum of sizes of all
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functions. This sweep is done in 15 steps for small benchmarks. For larger benchmarks

the sweep is done in 10 steps and ranges from the smallest possible overlay mapping

to one half of the full program size. These ranges can be found in Tables 5.3 and 5.4

along with the number of functions present in each benchmark.

Benchmarks with less than 10 functions are considered small. When selecting

benchmarks for testing, every effort has been made to utilize available benchmarks with

a large number of functions. Previous work, including SDRM [124], have only given

results for benchmarks with very few functions. Results achieved using larger bench-

marks are more interesting for two reasons. Benchmarks with 10 or fewer functions

can actually be solved optimally in a reasonable amount of time using brute force and

memoization methods, defeating the original motivation for a heuristic approach. Also,

when analyzing results for small benchmarks, performance is often erratic and highly

dependent on quantum effects of individual function to region assignments.

Simulation Overlay mapping performance has been evaluated for the benchmarks

in Table 5.3 by simulating the memory access overhead of the CBE between main

memory and the SPU Local Store due to code overlay misses. Inputs to the simulator

are execution trace data, function sizes, and the overlay mapping to be evaluated.

Benchmark execution traces were generated by instrumenting the source code

with print statements. The trace consists of function names in the order in which they

must to be present in memory during program execution. Each function in the program

has been modified to emit its name into the output trace upon entry and immediately

following any function calls present in the function body. The resulting trace accounts

for function calls and returns as described in Section 5.3.2, enabling accurate account-

ing of interference between functions.

The simulator maintains a table representing the state of the overlay map in

memory as the trace is consumed. Miss overhead is recorded whenever a function
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appears in the trace and does not reside in the memory table, and the overlay map state

table is updated to indicate the appropriate code segment is present. It is important to

note that rather than an approximation, the number of misses recorded for each function

in the simulator is identical to the number which would have been observed during

actual execution. DMA overhead cost of a benchmark function, f , in the simulation is

calculated as a function of segment size according to real DMA overhead measurements

taken on the testbench CBE which can be modeled to within an average error of 0.4%

using the following equation:

DMA_cost( f ) =


3.9E-5 · size( f ) + 0.17µs :size( f ) <= 2kB

7.3E-5 · size( f ) + 0.1µs :size( f ) > 2kB

The approximated DMA cost curve is plotted against the measured curve in Figure

5.5. DMA overhead costs are accumulated as the simulator executes. The total over-

head returned at the end of the input trace is the data point plotted in the performance

evaluation charts seen in Figure 5.12 on page 116

IBM Cell Implementation The benchmarks in Table 5.4 have been modified to run

using user defined overlay mappings with function level resolution on a single CBE

SPU. The SPU compiler, spu-gcc, is capable of taking a user defined linker script as an

input in order to map code into LS memory according to the user’s overlay scheme [77].

When specifying the mapping of functions to segments and segments to regions, code

objects must be specified in the script as individual object files. Consequently, in order

to implement and evaluate arbitrary code overlay mappings at function level resolution,

each function must be placed in a separate source file.

In order to obtain performance results on the CBE, linker scripts describing

overlay solutions for each algorithm at each tested memory size are generated. Next

each benchmark is compiled once for each linker script, resulting in a separate exe-

cutable for each data point. The benchmarks are also instrumented to print total ex-
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Figure 5.6: Performance results.

ecution time information after each run. The executables are then run multiple times

and the resulting timing data is averaged to obtain the final data point as presented in

Figures 5.6a and 5.6b.

5.7.2 Results

In Figures 5.6a and 5.6b, notice that the COG extension algorithms, COG-E and COG-

C, both produce better performing overlays than the unextended COG algorithm and

SDRM, particularly when memory is severely restricted. The limited performance of

the unextended algorithm is due to the fact that it can produce solutions which do
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Figure 5.7: Overall performance and prediction results.

not fully utilize available memory as corrected by the COG-E algorithm, and the ex-

tension algorithms tend to produce solutions with more regions. The relationship be-

tween an overlay mapping’s performance and number of regions is further evaluated

in Section 5.7.2.

The overall performance results comparing SDRM and the COG extension al-

gorithms are given in Figures 5.7a and 5.7b. The size of each benchmark is also indi-

cated on the graph in terms of number of functions. There are several instances where

the SDRM algorithm fails to generate a solution due to deadlock during overlay map-
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ping generation. In particular, for the problem space on ldecod and ispell in Figure

5.7a, the SDRM algorithm does not return a solution for any data point. For other

benchmarks, as seen in the SDRM trace in Figure 5.12a, SDRM generates solutions for

some memory sizes, typically on the larger end of the sweep. On average, the COG

extension algorithms out perform SDRM by 38% in the simulated benchmarks, and by

16% in benchmarks executed on the CBE in terms of overlay overhead.

As mentioned above, performance analysis is more meaningful when the num-

ber of functions in the program is larger. For the smallest benchmarks, rijndael, dijk-

stra, sha, and patricia, quantum effects due to the small number of functions amplifies
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the impact of individual mapping decisions. This effect is clear in the overlay perfor-

mance results as illustrated in Figure 5.9. The SDRM solution in the figure has been

impacted in particular by a compile time decision which has a substantial negative im-

pact on the performance of its solutions above 6kB of instruction memory, where we

would normally expect performance to improve.

Number of Regions and Performance The solution generated for the smallest pos-

sible overlay mapping is always limited to one region, where the solution for the largest

possible overlay mapping normally contains a region for each function. Figure 5.10 il-

lustrates the number of regions in solutions generated by each algorithm for gsm. The

three COG algorithms generate the same solution when available memory is restricted

to the size of the largest function as indicated by the convergence of the three traces

on the left. The mapping algorithms again produce identical solutions once memory

size matches the total program size at the upper right in the graph since each func-

tion can be assigned to its own region. The SDRM solution is shown to have fewer

regions at this point in the graph because in the SDRM model, functions whose com-

mon ancestor is main are assigned no interference cost in the interference graph and as
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a result may end up sharing a region although space is available in memory to create

new regions and separate them.

Mapping solutions with more regions are expected to give lower overhead costs,

as only functions mapped to the same region can interfere with one another. From

Figure 5.10 it can be observed that solutions with larger region counts generally do

perform better as evident in the corresponding performance chart in Figure 5.12a. In

particular, the spu-gcc solution which is limited to one region, experiences a substantial

performance disadvantage as available memory enables solutions with more regions

from COG and SDRM.

Performance Model Accuracy This assessment of performance model accuracy is

based on the ability of each model to predict, given two overlay mappings, which map-

ping will actually give better performance. Performance predictions from the COG and

SDRM models are plotted for each simulation benchmark and compared against the

simulated performance results.

For the gsm benchmark predictions made by the COG model in Figure 5.11b

and predictions using the SDRM model in Figure 5.11c are presented. The actual re-

sults are shown for comparison in Figure 5.11a. By inspection it can be found that, as

expected, the SDRM cost model tends to give overly optimistic predictions for solutions

generated by the SDRM algorithm. This is evident when comparing the SDRM trace in

Figure 5.11b with the SDRM trace in Figure 5.11c. The ability of each model to predict

performance is empirically tested by counting the number of times they have correctly

predicted which overlay solution actually performed better independently for every pair

of algorithms in COG, COG-E, COG-C, and SDRM. The results of these comparisons

are presented in Figure 5.8. On average, across all benchmarks, COG correctly pre-

dicted overlay performance 6.5% more often than the SDRM performance model.

114



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5000 10000 15000 20000 25000 30000 35000 40000

Ex
p

e
ct

e
d

 O
ve

rl
ay

 C
o

st
 (t

h
o

u
sa

n
d

s)

Memory Available for Instructions (Bytes)

Algorithm Performance in Simulation: gsm

SDRM

COG

COG-E

COG-C

(a) Simulated performance results for gsm.

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000 10000 15000 20000 25000 30000 35000 40000

Ex
p

e
ct

e
d

 O
ve

rl
ay

 C
o

st
 (t

h
o

u
sa

n
d

s)

Memory Available for Instructions (Bytes)

COG Expected Performance: gsm

SDRM

COG

COG-E

COG-C

(b) COG cost model performance prediction for gsm.

0

2000

4000

6000

8000

10000

12000

14000

0 5000 10000 15000 20000 25000 30000 35000 40000

Ex
p

e
ct

e
d

 O
ve

rl
ay

 C
o

st
 (t

h
o

u
sa

n
d

s)

Memory Available for Instructions (Bytes)

SDRM Expected Performance: gsm

SDRM

COG

COG-E

COG-C

(c) SDRM cost model performance prediction for gsm.
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Figure 5.12: Simulation performance results: gsm.

Segment Clustering Performance Performance results for the segment clustering

algorithm are shown for gsm in Figure 5.12a without segment clustering and in Figure

5.12b with segment clustering. The segment clustering algorithm gives us a solution

which outperforms the spu-gcc algorithm by 21% at smaller memory sizes. The al-

gorithm enables limited improvement for larger memory sizes for several reasons. As

discussed in the spu-gcc analysis in Section 5.6, larger segment sizes tend to handi-

cap performance due to increased DMA overhead. For that reason, performance im-

provements are not apparent for larger memory sizes, although the alternative overlay
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generators still significantly outperform spu-gcc in those configurations thanks to re-

gionalization of the code.

5.8 Conclusion

In this work, a code overlay generator designed to map instructions onto limited scratch-

pad memories for improving performance in embedded systems has been presented. In

addition, an overlay mapping cost model for identifying good solutions at compile

time without the benefit of profiling information is described. The algorithm performs

better than the previously published heuristic, while eliminating the deadlocking prob-

lem experienced in the previous work. The algorithm is also demonstrated to perform

substantially better than the scheme provided with the IBM Cell Broadband Engine

compiler, spu-gcc.

Algorithms for gathering functions into segments for improved performance

have also been presented. Substantial overlay performance improvements are extracted

in the presence of extremely limited memory constraints by including a step to cluster

functions into segments. Gains are more limited with function clustering when more

memory is available, and improvement in this area, in addition to exploring possibilities

for reducing the computational complexity of the heuristic and code prefetching are

subjects of future work.
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Chapter 6

LIGHTWEIGHT RUN-TIME SCHEDULING

FOR MULTITASKING MULTICORE STREAM APPLICATIONS

The recent rise of multicore architectures has led to dramatic changes in the traditional

view of application development. Most applications have historically been developed

for monolithic cores with little consideration for the need to identify available paral-

lelism. Smart compilers can extract and express such parallelism opportunities to a

certain degree. However, in order to fully extract potential temporal and spatial paral-

lelism from an application, a new programming model is required. After more than a

decade of concerted effort aimed at compilers capable of automatically identifying and

exploiting parallelism in a given application, a common impression is that such a tool

would truly need to be “impossibly smart” as Gordon et al. suggested in 2002 [62].

Stream programming formats have garnered significant attention in recent years

for specifying applications in multimedia, signal processing, networking and graphics

domains. Streaming languages enforce exposure of spatial and temporal parallelism

in a program, thereby enabling the compiler to effectively analyze program constructs

to produce efficient mappings for multicore architectures. Still, numerous challenges

must be overcome. The wide variation in the structure and instruction set architectures

of available multicore processors implies that a distinct optimizing compiler is neces-

sary for each target system. Even if several architectures are based around the same

instruction set, in general a separate and specialized set of optimizations still must be

developed for each configuration.

Given the fast moving world of embedded processor design where commercial

processor development cycles can be as short as two years [137], providing optimized

compilers for state of the art architectures becomes an enormous challenge. Another

challenge stems from the lack of flexibility in optimized mappings produced with an
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Figure 6.1: Stream graphs representation and PASS actor ordering.

off-line or compile-time approach. The generated design cannot easily account for

run-time variations in resource availability which are important in multi-tasking en-

vironments.

In essence, a re-targetable stream program optimization scheme is extremely

desirable due to the importance and proliferation of stream processing architectures

such as the IBM Cell Broadband Engine (CBE) [127] and the Imagine Processor [90]

[91] as well as graphics processing units (GPUs) from NVIDIA [64] and AMD/ATI [1].

This work addresses the problem of generating flexible streaming application

implementations that can dynamically adopt to variable resource requirements at run-

time. The solution presented here involves two steps. In the first step, static compile

time analysis is used to generate a resource agnostic canonical schedule. The canon-

ical schedule then serves as a basis for dynamic optimizations computed by the run-

time scheduler with the objective of maximizing throughput under variable resource

constraints.
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6.1 The Stream Programming Model

The stream model is a good fit for data-centric applications such as digital signal pro-

cessing (DSP) including video and audio coding and decoding as well as various com-

munication standards and protocols, much of which today are common in billions of

handheld devices such as the billion cell phones sold worldwide in 2007 alone [110]

[150]. As data-centric and embedded software applications continue to grow in impor-

tance, parallelization for improved energy efficiency and performance is critical.

Typical streaming applications operate on a stream of similar data elements

such as image pixels in video and image processing or digitized antenna samples in

software radios. The data stream is transformed by one or more compute intensive

work kernels, referred to here as actors. Actors either consume data from a stream or

produce data to form a stream, communicating with one another through explicit chan-

nels, normally with the aid of first in first out (FIFO) buffers. The arrangement of actors

and the communication channels between them describe a stream graph. Streaming ap-

plications tend to exhibit high levels of data parallelism and producer-consumer data

locality. An extremely detailed historical perspective on stream computing dating back

to the 1960’s is presented by Stephens [142].

In the stream programming model, applications are represented as a dataflow.

An actor may implement a work kernel which is executed repeatedly on a stream of

data elements, consuming the stream while simultaneously generating a transformed

output data stream. Actors and buffers are mapped to cores and memories respectively

in the processor. Atomic data elements either produced or consumed by a given actor

are referred to as tokens. The consumption of tokens from the FIFO by an actor is

referred to as popping, writing to the FIFO is called pushing, and reading tokens from

the FIFO without popping them from the buffer is referred to as peeking.
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The stream program may be represented as a stream graph. The stream graph

in Figure 6.1a contains 6 actors, of which a and e serve a specialized split-join function

enabling multiplexing, demultiplexing, or duplication of the data stream. The com-

munication memory buffers are implicit in the directed edges of the graph. When the

execution of an individual actor is dependent solely on tokens from other actors, asyn-

chronous execution in a distributed memory environment is possible. A stream program

exposes independent code segments within the program as independent actors. Asyn-

chronously executable actors denote functional parallelism present in the application.

Additionally, when actors do not carry an internal state, i.e. execution of instance n of a

stateless actor a, denoted an, is not dependent on execution am : m , n, multiple copies

of the same actor can run simultaneously across various cores consuming a multiplexed

input stream, taking advantage of data parallelism. Actors carrying internal states are

referred to as stateful. Individual executions of stateful actors are not independent from

one another, eliminating the possibility of executing multiple instances simultaneously.

Under the stream programming model, the onus of identifying task and data

parallelization opportunities in a given algorithm rests on the programmer rather than

the compiler. The compiler takes the stream representation with exposed parallelization

opportunities and generates appropriate mappings and schedules based on available re-

sources. Mappings refer to the assignment of each actor to run on one or more cores,

and the schedule describes the number of times and order in which mapped actors

are executed.

6.2 Previous Work

Stream languages lay the groundwork for programmers to work within the stream

model and produce efficiently parallelizable code. Existing stream programming lan-

guages and compilers include StreamIt [147] and Spindle [46] providing basic frame-

works for structured data flow programming, Brooke [27] and NVIDIA’s CUDA [122]

121



for GPUs, StreamC [109] targeting the Imagine architecture, and Spiral [131] for map-

ping high performance linear transforms onto parallel architectures among others. The

runtime scheduler presented here takes graph data generated by the StreamIt compiler

front end with the StreamIt benchmarks used at its inputs.

Significant effort has been directed at developing and improving automated par-

allelization and mapping of various programs onto the growing number of data parallel

and multicore architectures. Much of this effort has been focused heavily on “embar-

rassingly” data parallel applications such as those used in many scientific computing

applications including many high resolution physical models or intractably large so-

lution space search algorithms. Commercial parallelization frameworks are currently

available with a focus on these highly data parallel applications. Examples include

MATLAB’s Parallel Computing Toolbox [44] or NVIDIA’s CUDA [47]. These frame-

works share some similarities with the stream language approach in that the program-

mer is in general required to identify available parallelism in the code whether through

Message Passing Interface (MPI), or other intrinsics. However, in contrast with the

stream programming model, reduced structural formalism leaves significant work to

the compiler where deducing opportunities for partitioning and load balancing when

mapping to arbitrary architectures can be intractable.

6.2.1 Architectures and Static Compilation Techniques

Approaches to the multicore mapping and scheduling problem can be broadly classified

as static (offline or compile-time) and dynamic (online or run-time) or a combination

of the two. Previous stream scheduling work includes several static compiler tech-

niques on various dataflow architectures. In general, the static or compiler mapping

and scheduling approach provides highly optimized solutions when advance knowl-

edge of hardware configurations is available. Static scheduling algorithms tend to pro-

vide extremely high performance solutions, but at the expense of high computational
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complexity and low reconfigurability at runtime. For this reason, existing techniques

tend to target very specific architectures.

The Imagine stream processor is described as a co-processor with a general

purpose processor serving as host [88]. Imagine explicitly targets data parallelism and

SIMD optimizations in data streams and inter actor or kernel producer-consumer data

locality. The architecture utilizes a stream register file (SRF) to store a large number

of tokens which are loaded into ALU clusters for simultaneous execution, after which

the results are returned to the SRF. Notably, the system is designed as a distributed

register file architecture which requires careful communication scheduling, but signif-

icantly reduces power, area, and delay performance when contrasted with a traditional

monolithic central register file architecture. Scheduling algorithms for Imagine focus

on efficiently allocating the SRF, exploiting producer-consumer locality, and maximiz-

ing concurrency [89].

The kernelC compiler targeting Imagine implements very large instruction word

(VLIW) control and data flow analysis, mapping and communication scheduling of

kernels onto the processing elements. The StreamC compiler works on the stream

graph to efficiently map required buffers onto the SRF statically such that buffers have

sufficient space available to avoid additional memory accesses [108] [109]. Although

the Imagine processor does a great job of exploiting producer-consumer locality of data

associated with communication via inter kernel data streams mapped to the SRF, the

sequential execution of all kernels in a complex stream graph can limit locality. This

limitation is due to the fact that there may be many stages between execution of a kernel

writing to the SRF and the kernel reading those results.

The Merrimac architecture [51] is essentially a scaled version of Imagine with

a similar instruction set. Merrimac is designed to offer very low cost computational

throughput by exploiting the low cost of adding large numbers of arithmetic units

thanks to the effective expansion of silicone real estate, while addressing the high cost
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of communication bandwidth which is in turn exacerbated by the expansive real estate.

Again exploiting the locality of data in streaming applications means that given the right

underlying architecture, compilers can map actors onto processing elements such that

the majority of communication takes place through very short channels at substantially

reduced cost in comparison with broadcast, cross-chip, or off-chip communication. Das

et al. [52] uses operation or actor ordering to reduce off-chip communication and hide

memory latencies. The strip mining technique, a form of loop unrolling for vector pro-

cessors [159] [103], is exploited to reduce the local memory requirement or eliminate

memory spilling by looping through a series of software kernels over suitably sized

slices of the data stream.

Burger et al. [29] introduced a class of instruction set architectures called Ex-

plicit Data Graph Execution (EDGE) to address the failure of increasingly complex and

cumbersome superscalar processors to achieve sufficient parallelism. EDGE’s main

characteristic is described as direct instruction communication, the notion of deliver-

ing the result of a computation directly from the producer to the intended consumer

without intermediate register read and write operations.

The TRIPS processor is a dataflow processor using the EDGE ISA targeting in-

struction level parallelism with a two dimensional grid of ALUs. Using a block-atomic

execution model, the compiler groups instructions into atomic hyperblocks which are

fetched, executed, and committed together on the ALU grid. The TRIPS compiler

attempts to create large hyperblocks with large amounts of instruction level paral-

lelism. Unfortunately there are several factors limiting the compiler’s ability to con-

struct blocks large enough to fully utilize the ALUs. A limited number of memory

reads and writes are allowed per hyperblock, and all hyperblocks are defined to be sin-

gle entry. As a consequence, it can be difficult for the compiler to build hyperblocks

nearing the 128 instruction limit. Unlike Imagine, this model does not require explicit

scheduling for communication and instruction execution, instead relying on instruction
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data predication executing many instructions simultaneously as long as ALU resources

are available. Data predication makes run-time scheduling an inherent component of

the TRIPS architecture as instructions are automatically executed as soon as their in-

puts are available, but the basic block to processing element and instruction to ALU

assignments are done statically.

Raw is an early example of a fine grained stream architecture presented by

Waingold et al. in 1997 [2] [155]. Raw has been designed to reduce hardware com-

plexity through the use of many simple tiled processing elements and to help usher in

the current era of billion-transistor computer chips. By exposing communication and

memory details to the compiler, static partitioning, placement, routing, and schedul-

ing optimizations at the instruction level significantly reduce the need for expensive

hardware management.

The Raw compiler system performs an idealized partitioning of tasks based on

the number of available tiles. Threads are then mapped to cores attempting to mini-

mize communication latency, followed by generation of the required network routing

and a global schedule. A static global schedule reduces the need for synchronization at

runtime. Additionally, configurable logic enables custom instructions designed by the

compiler framework to further optimize individual tiles for targeted performance im-

provements based on the thread to tile mapping. Exposure of inter PE communication

details to the compiler in the Raw architecture has the advantage of reducing communi-

cation overhead and increasing predictability thanks to detailed offline scheduling, but

the additional complexity vs. an asynchronous network communication architecture

also suggests that runtime schedulers may have difficulty generating high performance

schedules with sufficient turnaround.

The StreamIt compiler takes a variable grained approach to static stream schedul-

ing. Thies et al. [148] introduces several general compiler optimizations for the StreamIt

language along with analysis of their correctness. Phased schedules are introduced
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as a compromise to achieve the reduced code size of single appearance schedules

(SAS) [123] with the reduced latency and buffer requirements of a predicated pull

schedule.

The StreamIt framework presented by Gordon et al. [62] targeting Raw gen-

erally follows the steps laid out for Raw above [155] with partitioning, mapping, and

scheduling phases. By merging (fusing) or splitting (fissing) actors 1 in the stream graph

appropriate granularity for the target architecture is achieved. Fusion and fission can

be done vertically, in effect respectively lowering or raising the number of steps in a

pipeline, or horizontally, respectively decreasing or increasing the number of parallel

streams in a portion of the graph. Using a greedy algorithm to ensure load balancing,

actors are either fused into larger actors until the number of actors shrinks to match the

number of tiles in the architecture or fissed until the number of actors grows to match

the number of tiles in the target architecture. Simulated annealing is used to produce a

mapping with low communication overhead. Lastly, communication paths and timing

are generated as required by the software exposed Raw architecture.

In their subsequent work, Gordon et al. [61] improve exploitation of data par-

allelism in their stream scheduling algorithm by coarsening granularity in the stream

graph before fissing aggregated stateless actors and reducing the communication and

synchronization costs associated with fissing actors without the coarsening step.

The Cell Broadband Engine (CBE) shares some fundamental characteristics

with Raw. Both architectures use a distributed memory model with a scalable com-

munication network, and in both models, memory access and inter processing element

communication are software exposed. Unlike Raw, the individual processing elements,

referred to as synergistic processing elements (SPEs) in the CBE architecture, have

a relatively large scratchpad memory suitable for coarse grained stream graph parti-

tioning. Additionally, the CBE network is based on an addressed ring rather than a
1Actors are referred to as filters in StreamIt.
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statically scheduled grid. The CBE is also a heterogeneous architecture with a general

purpose control plane processor referred to as the power processing element (PPE).

The multicore streaming layer (MSL) presented by Zhang et al. [160] provides

an abstracted interface for stream compilers targeting the CBE with the goal of imple-

menting required explicit communication primitives, simplifying buffer management,

and reducing the complexity associated with high-level scheduling and load balancing

optimizations. The framework is implemented for the CBE with the existing StreamIt

compiler infrastructure and optimizations, but the system could be ported to alternate

architectures with the benefit of enabling reuse of the stream compiler front end and

optimizations for multiple target architectures.

Additional stream schedulers specifically targeting the CBE include stream graph

modulo scheduling (SGMS), a StreamIt based scheme employing an ILP formulation

for optimally unfolding the stream graph and balancing workloads across cores and a

heuristic step assigning actors to pipeline stages from Kudlur et al. [95]. This work is

extended by Choi et al. [42] with additional real-time and buffer constraints.

Che et al. [32] improves upon SGMS with a two-step compile time scheduler for

StreamIt also targeting the CBE which considers code overlay and instruction mapping

to the limited scratchpad memory. In the first step, an integer linear programming

formulation is described to optimally partition workloads across processing elements

including fusing and fissing of actors. Next, a greedy heuristic is used to efficiently

map code onto available memory using code overlays.

Park et al. [126] presents a static technique referred to as team scheduling tar-

geting the ELM Architecture [18] [50] which is characterized by a distributed memory

with hierarchical data registers and software managed communication similar to Raw.

The benchmarks are converted to elk [125], which is based on StreamIt adding multi-

ple input/output streams and variable rate. Park’s implementation attempts to improve
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upon SGMS by handling situations where buffer requirements may not be stable as is

the case with variable-rate streams and improved handling of feedback loops. Team

scheduling works to group individual actors assigned to the same processing element

such that there is no need to check for availability of input data within the team and

synchronization occurs only after executing all executions of all actors in the team.

Communication costs are amortized for individual teams by increasing the number of

actor executions per synchronization. By decoupling synchronization for different parts

of the stream graph, both latency and buffer requirements are reduced.

6.2.2 Dynamic Runtime Techniques

Dynamic scheduling for dataflow applications promises to improve performance in

comparison to static scheduling in circumstances where detailed knowledge of the

runtime environment is unavailable at compile-time, or when resource availability is

expected to vary at runtime as with multitasking. Existing static approaches tend to

be limited by the need for detailed knowledge about the target architecture and accu-

rate work estimates for scheduled actors needed to implement effective load balancing.

When considering handheld devices which are increasingly proving to be dominant

computation tools in general, user interaction is critically important. As users start and

stop applications while expecting hardware to perform well while executing multiple

applications with changing priorities, static mapping and scheduling decisions become

less effective as the possible system state space grows with the increasing number of

available processing elements. Wiggers et al. [158] makes such an argument for run-

time scheduling and demonstrate that, in particular for dataflow based applications,

runtime scheduling can be managed at a high level of abstraction with predictable be-

havior and resource requirements.

In addition to the previously presented Multicore Streaming Layer, Zhang et

al. [160] presents a dynamic scheduling scheme for the CBE. The authors argue that

128



dynamic scheduling is beneficial when the behavior of the stream program is less pre-

dictable, particularly in terms of predicted actor execution times which is important for

accurate load balancing. Their approach relies exclusively on input predicated execu-

tion of actors in the stream graph, with the PPU assigning or subscribing work to avail-

able SPUs at run-time. SPU-SPU communication is not implemented according to the

authors due to limited SPU scratchpad memory limitations. Such communication may

also be ineffective in this scheme because actors are not given affinity to particular pro-

cessing elements in effect requiring main memory storage of all generated data streams.

Although it targets scalar rather than streaming code, Bellens et al. [20] presents

a runtime parallelization and scheduling framework CellSs which takes notations from

the programmer identifying code segments to be executed on an SPE and based on a

dependency graph, executes as many of those segments as possible concurrently. Tasks

are statically assigned to SPEs, and runtime queues are maintained for each SPE with

waiting tasks issued when SPEs are idle. The system will also reallocate tasks to an

idle SPE at runtime if its queue becomes empty and work is available. The results

indicate the system performs very well on deeply data parallel applications, but it is

less effective on applications with complex dependency graphs.

Blagojevic et al. [24] presents multigrain parallel scheduling (MGPS), com-

bining task-level and loop-level parallelization schemes for the CBE by making load

balancing decisions at run-time. The implementation is based on an embarrassingly

parallel DNA analysis tool configured for parallel execution using the Message Passing

Interface (MPI) protocol. CBE performance is first enhanced through manual vector-

ization of key code segments. The MGPS scheme seeks to use task level parallelism

within the MPI framework as long as there are enough concurrently executable tasks

to keep the SPEs occupied. When task-level parallelism is insufficient, an intra-task

loop-level scheme is used to spread the work of a single task across multiple SPEs.

The scheme is limited by the compile-time assignment of all tasks to all processing
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elements, as well as the additional overhead associated with runtime task to processing

element assignment and limited use of inter SPE communication.

MGPS is improved in [25] with runtime profiling of important program exe-

cution phases to improve sub-task loop granularity decisions by the online scheduler

for evolutionary performance improvement. This is done by assigning actor work to

processing elements at the execution level such that although actor ordering and de-

pendencies are addressed based on the actor level stream graph, work associated with

stateless individual actors may be spread across two or more processing elements. The

scheduler presented here is also designed to take advantage of low cost run-time pro-

filing enabling generation of accurate evolutionary schedules and addressing limited

compile-time knowledge about actor workloads as well as workloads which vary as

a function of the input data. Similar to the previous implementation, the work fo-

cuses on two DNA analysis benchmark algorithms both exhibiting high levels of data

or task level parallelism, but performance results on the CBE do not come within 60%

of optimal using 8 SPEs.

The work that comes closest to the presented implementation is the Flextream

algorithm from Hormati et al. [70]. Their algorithm is based on an offline ILP generat-

ing a parallelized solution assuming all resources are available and an online heuristic

dynamically modifying the offline solution according to available resources. The re-

quirement for detailed architecture configuration information and generation of a par-

allelized solution off-line ties the approach to a particular configuration of the target

architecture, limiting its portability and reusability.

Further, as the offline interim solution is optimized for maximum resource avail-

ability, it can be expected that performance of the online heuristic is more limited with

respect to the theoretically optimal solution when resources are most constrained and

thus most unlike the reference schedule. In contrast the presented approach generates

a canonical schedule offline for the stream program which is then dynamically paral-
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lelized at run-time based on available resources, and which performs more efficiently

when those resources are most constrained. Significantly, unlike the existing effort re-

quiring estimates of actor execution times or even profiling data, the offline portion of

the presented framework is fully independent of such requirements.

6.3 The Lightweight Runtime Scheduler Framework

The lightweight stream scheduler is designed to maximize run-time flexibility in the

absence of information at compile time about the number of cores available in the target

architecture or their memory sizes. Additionally, the run-time algorithm is designed to

be as lightweight as possible enabling dynamic resource reallocation in the presence

of dynamic multi-tasking while finding solutions with near-optimal load balancing and

throughput. A high level view of the scheduler framework is presented in Figure 6.2.

The assumption is made that limited information is available about the target

architecture at compile time. In this work the problem of compiling source code for

specific instruction set architectures is not addressed. The target architecture is also

assumed to be a multicore processor with many identical or similar cores and limited

distributed memory similar to the CBE. Additionally, it is assumed the stream program

may be modeled as a Synchronous Data Flow (SDF) [97] [87]. The SDF model is a data

flow formalism in which permissible periodic sequential schedules may be statically

determined because the number of data tokens consumed and generated in each actor

are fixed and known at design time.

6.3.1 Offline Analysis

The offline portion of the scheduling algorithm aims to provide the run-time system

with enough information to identify a schedule which will maximize parallelism at run-

time. The stream language compiler relies on the application programmer to identify

opportunities for task and data level parallelism as expressed in the stream data flow
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graph. The offline algorithm takes the canonical graph representation of the stream

program as generated early in the StreamIt compiler process. The canonical graph

represents the programmer’s view of the application before any transformations are

performed on the graph.

Hormati et al. [70] takes the approach of finding a detailed offline solution for

a specific target hardware assuming maximum availability of resources. Similar to

compile time schedulers presented in [95] and [32], Hormati uses an Integer Linear

Programming (ILP) technique which may be extremely time consuming or even in-

tractable for large code sizes and large numbers of target cores even given just tens of

actors or cores, limiting scalability. In [95] a 32 core solution for vocoder with 96 ac-

tors takes 2 minutes. In the present work the opposite approach is taken. A lightweight

system generates a general periodic single core solution in a few milliseconds, and

gives the run-time scheduler a basis for generating efficient multicore schedules.

Periodic Admissible Sequential Schedule (PASS)

The PASS [87] is a sequential single core schedule for a given SDF graph which can

be executed periodically on an infinite stream of input data. A PASS for the given

stream program defines the number of executions of each actor in the graph such that

after executing the schedule once, tokens are consumed from the input stream, tokens

are generated on the output stream, and the number of tokens in all FIFO buffers is

bounded, i.e. the number of tokens in FIFOs does not grow to ±∞.

In the case of acyclic stream graphs it is possible to generate a PASS in which

all FIFO buffers are empty before the first schedule execution (except for input FIFO

buffers from source). In general a PASS may require non-empty FIFO buffers based

on the sequence of actor executions. If an actor b from the PASS illustrated in Fig-

ure 6.3 on page 139 appears in the schedule before its input token has been generated

by actor a, then a token must be present in the FIFO, as an initial buffer condition.
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Figure 6.2: Scheduler framework.

This situation also occurs in the stream model when actors peek at tokens in their in-

put FIFO without popping them from the FIFO. As we are interested in a dynamically

re-targetable and parallelizable PASS schedule, we will deliberately consider and con-

struct only sequences that do not require non-zero initial FIFO buffer conditions. Such

a sequence can be easily generated by ordering actor executions so that no actor ap-

pears in the PASS prior to any other actor for which it has any dependency. An actor

f is dependent on another actor a if there is a directed path from a to f in the stream

graph as is the case in Figure 6.1a.

If the graph contains any backward edge which results in a cycle, then the initial

buffer condition tokens are unavoidable. The current StreamIt benchmark programs

do not include backward edges, and cycles are currently not handled in the presented

system, although they may be addressed by clustering all actors in the cycle together

as a single stateful actor, or by treating all actors in the loop as stateful thus enabling

pipelining within the loop.

An in-order sequence of actors is easily computed by traversing the graph depth

first, adding an actor to the sequence only once all of its parents have been added. As an

example, we traverse the graph in Figure 6.1b on page 119 as indicated by the lettered

labels, visiting the left-most child at each step in the depth first traversal. When we

first encounter actor g, we have the sequence < a, b, c, d >. We find that a parent of
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g, i.e. f , has not been added to the sequence. We do not add g to the sequence but

instead return so that the next actor encountered is e as indicated by Arrow 1 in the

figure. Now the algorithm returns < e, f , g > but does not add k since its parent j is not

in the sequence. The algorithm continues at the point indicated by Arrow 2 to complete

the ordering of actors with < h, i, j, k >.

The sequence generated tends to maintain temporal locality of actors in pipelines

consisting of linear sequences of actors. Since each actor in the pipeline is dependent

only on the output of its predecessor, the depth first fully in-order sequence tends to

minimize buffer memory requirements thanks to buffer reuse and communication re-

quirements thanks to actor locality during sequential execution of the PASS.

In addition to determining a desirable sequence of actor executions we must

also determine the number of executions required of each actor to satisfy the bounded

buffer requirement. This can be solved as a system of linear equations as described

by Jantsch [87]. The implementation presented here uses a simple method of finding

the least common multiples (LCMs) of push and pop values on each edge giving the

number of executions required for each associated actor as LCM/push for the parent

and LCM/pop for the child, then ensuring that the same execution number is associated

with each edge of each actor. The final PASS is composed of all actors in their depth

first in-order sequence with each actor repeated according to the calculated number of

executions. For the example graph in Figure 6.1b, the calculated PASS comprised of

individual actor executions is represented by the sequential schedule

PAS S =< a0, a1, b0, c0, d0, e0, f0, g0, h0, h1, i0, j0, k0 > (6.1)

6.3.2 Run-time Scheduling

The run-time scheduling algorithm takes as its inputs the canonical stream graph rep-

resenting the stream application, the PASS generated by the offline algorithm, and in-

formation about the target architecture including number of cores and core memory
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size. The online algorithm attempts to optimally balance work among the available

cores without exceeding available memory. An optimally balanced workload results in

ideal throughput performance because it minimizes the amount of time any processing

element will be idle due to pipeline stalls.

We define the theoretical optimal work per core, Wopt, for any schedule as the

total work required to execute the sequential PASS once, WPAS S , divided by the number

of cores, n

Wopt =
WPAS S

n
(6.2)

If work is given in clock cycles, i.e. time, then the theoretical optimal throughput,

Topt, is calculated as

Topt =
1

Wopt
(6.3)

In designing a multicore schedule, there are two primary obstacles to achieving op-

timal throughput.

• The optimal throughput calculation assumes actor workloads can be distributed

based on a continuous domain. In reality actors have discrete atomic workloads,

and optimally balancing work across all cores may be impossible. In such cases

the resulting throughput is limited by the core with the greatest workload, Wmax.

Without perfect load balancing, the maximum achievable throughput, Tmax is then

1/Wmax, and since Wmax must be larger than Wopt : Tmax < Toptimal.

• Data communication can dramatically limit throughput. In the case of CBE

and other similar processors communication overheads can be amortized through

double buffering.

The first step in the online scheduling algorithm is to calculate initial schedule

parameters based on the generated PASS and available resources. Here we calculate an

unrolling factor and a theoretical optimum or target core workload, Wopt.
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Schedule Unrolling

The unrolling factor, j, is defined as the number of PASS instances in the periodic

parallel schedule of the stream graph [87]. In essence, the work load in j iterations

of the PASS is distributed as evenly as possible across multiple cores to generate the

multicore mapping. If an unrolling factor is used, WPAS S is multiplied by the unrolling

factor to find the total work, Wtotal, to be distributed among available cores, and we

replace Equation 6.2 with Equation 6.5.

Wtotal = j ·WPAS S (6.4)

Wopt =
Wtotal

n
(6.5)

When the PASS is unrolled, the number of executions for each actor in the PASS are

multiplied by j. For example, an unrolling factor j = 2 implies that the number of

executions of each actor in the PASS is doubled. Larger values of j imply more ex-

ecutions in the unrolled PASS. The PASS from Equation 6.1 with an unroll factor of

2 becomes the schedule

S =< a0, a1, a2, a3, b0, b1, c0, c1, d0, d1, e0, e1,

f0, f1, g0, g1, h0, h1, h2, h3, i0, i1, j0, j1, k0, k1 >

(6.6)

PASS unrolling can dramatically improve opportunities for precise load balanc-

ing by increasing available resolution, k, defined as the ratio

k =
Wopt

Wmax_atomic
(6.7)

where Wmax_atomic is the maximum atomic work unit. Large values of k reflect high

resolution, indicating that all atomic work units are small relative to Wopt. Wmax_atomic

is defined as the larger of the maximum workload over all stateless actors, Wmax_asl,

and the maximum workload over all stateful actors multiplied by the unrolling fac-

tor, j · Wmax_as f :
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Wmax_atomic = max(Wmax_asl, j ·Wmax_as f ) (6.8)

Increasing the unrolling factor can linearly improve resolution leading to more precise

load balancing dependent upon the following conditions:

• Case I Wmax_as f = 0: If there is no stateful work, j is limited only by available

memory as discussed in Section 6.3.5. In the absence of memory limitations,

resolution grows linearly and infinitely with the unrolling factor.

lim
j→∞

k =
Wopt

Wmax_atomic
=

(
j·WPAS S

n

)
Wmax_asl

 = ∞ (6.9)

• Case II Wmax_as f > 0: In the presence of stateful actors, the maximum useful

unrolling factor derived from Equation 6.8 is given by

jmax =

⌈
Wmax_asl

Wmax_as f

⌉
(6.10)

If j < jmax, increasing j increases resolution as indicated in Equation 6.9 in Case I.

However, when j ≥ jmax, Wmax_atomic B j ·Wmax_as f and we have

k =
Wopt

Wmax_atomic
=

(
j·WPAS S

n

)
j ·Wmax_as f

=

(
WPAS S

n

)
Wmax_as f

(6.11)

In this case increasing j has no further impact on resolution.

In effect, so long as j · Wmax_as f < Wmax_asl resulting in Wmax_atomic B Wmax_asl,

increasing the unrolling factor raises resolution and opportunities for load balancing.

Once j ·Wmax_as f ≥ Wmax_asl, increases to j have no further effect on resolution or load

balancing efficiency while buffer memory requirements continue to grow.

Constrained Number of Useful Processors

The presence of stateful actors also imposes an absolute ceiling on theoretical perfor-

mance. While programs without stateful actors can theoretically be infinitely unrolled

137



and distributed across an arbitrary number of processing elements, stateful work inher-

ently limits the unrolling factor as described above, limiting the possible number of use-

ful processors, n. Since atomic work can never be divided across processors, throughput

can be at most 1/Wmax_atomic as n grows large, and Equation 6.5 is modified to give

Wopt = max
(Wtotal

n
,Wmax_atomic

)
(6.12)

From Equation 6.12, we find that the number of useful processors is limited by

n ≤ Wtotal/Wmax_atomic (6.13)

6.3.3 Actor Execution to Batch Assignment

In this step, all work in the unrolled PASS is partitioned into batches such that the work

assigned to each batch, Wbatch, is as close to Wopt as possible without exceeding it. The

unrolled PASS is represented as a vector of actor executions as illustrated in Figure

6.3 for the stream graph in Figure 6.1b with j = 1. The lettered boxes in the figure

represent atomic executions of actors. The amount of work associated with each actor

is represented by the width of the box, indicating 1, 2, or 3 units of work. In this case,

the PASS has a total work size, Wtotal = 16. We will partition the PASS for scheduling

on n = 4 available cores giving Wopt = Wtotal/n = 4. Actor executions are assigned to

the current batch in the order in which they appear in the PASS as seen in the figure.

When adding the next actor execution would cause Wbatch to exceed Wopt, a new batch

is created to which the execution is added.

Once the number of batches matches the number of available cores, after B3 is

complete in the example, the n batches, B0 − B3, are sorted from smallest to largest

according to their assigned work. In this case the order is < B0, B1, B2, B3 >. A new

series of batches is started with B′0 and a new target work size is calculated for each

new batch in the B′ series. For batch B′n, W ′
opt = Wopt − work(Bn). In the example, for

B′0, W ′
opt = Wopt −work(B0) = 1. New B′ batches are created in the same manner as the

original n batches with the exception that a new W ′
opt is calculated for each batch. The
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Figure 6.3: Execution to batch, and batch to processor assignment.

end result is that each member of B′ compliments a member of B so that the sum of

their assigned work, work(Bn) + work(B′n) is as close to Wopt as possible. This property

will be exploited in the batch to processor assignment stage.

As batches are constructed, information about internal and external buffers and

stage numbers is collected. Internal buffers are set aside as required, assigned to ac-

tors, and reused where possible. External buffers are set aside, along with source and

destination information and space to accommodate double buffering. Batches are as-

signed stage numbers based on their earliest possible execution determined by inter

batch communication dependencies. Batches are always assigned to the smallest pos-

sible stage number.

After actor execution to batch assignment is complete, a new atomic unit of

work is defined. An actor event is comprised of all executions associated with a single

actor which are assigned to the same batch. At run time, this set of actor executions

will always be executed atomically as a single event.

6.3.4 Batch to Processor Assignment

In this step, batches are assigned to available processors. If the total number of batches,

|B|, is less than or equal to the number of available cores, n, then each batch is as-

signed to a core and no further work is necessary. However, if |B| > n, we must merge

batches until |B| = n.
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While |B| > n, all batches are sorted from smallest to largest in terms of their

assigned work. In the example in Figure 6.3, the sorted list is < B′0, B
′
1, B0, B1, B2, B3 >.

Next batch B(|B|−1)−n is merged with B|B|−n, i.e. B′1 is merged with B0.

Fundamentally, the |B| − n batches with the smallest amount of assigned work

are treated as the extra batches. The batch from among the remaining n batches with

the smallest amount of assigned work is merged with the extra batch with the largest

amount of work until |B| = n. Finally each of the n batches are assigned to one of

the n cores.

6.3.5 Memory Constraints

Memory requirements associated with each core consist of the total buffer require-

ments for all intra processor FIFOs, buffers for incoming and outgoing inter processor

FIFOs including double buffering requirements, instruction memory, and any stack and

heap memory requirements. The largest memory requirement from among all cores as

determined by the multicore schedule tells us whether the generated schedule will fit

completely into distributed on-core memory or spilling of some buffers or instruction

code over to main memory is necessary.

The online scheduling algorithm minimizes memory usage to the greatest extent

possible. However, the PASS unrolling factor linearly increases buffer requirements as

it grows. For instance, for j = 2, doubling the number of executions of all actors in a

batch will double the amount of data generated during one execution of the batch. In

effect buffer requirements are doubled.

If the generated schedule is found to violate on-core memory constraints, a new

unrolling factor is computed and a new schedule is generated. Based on the linear

relationship between the unrolling factor, j, and buffer requirements, the new unrolling

factor, j′, is set to a fraction of j proportional to the ratio of the size of available memory

in a processing core, Mavailable, and the largest core memory requirement dictated by
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Table 6.1: StreamIt Benchmarks
benchmark actors % stateful total code size(B)
beamformer 57 75% 761
bitonic_sort 40 0% 136

channelvocoder 55 62% 3,815
dct 8 0% 239
des 53 8% 652
fft 17 0% 342

filterbank 85 38% 5,303
fm 43 33% 2,725

mpeg2_subset 23 4% 1,232
serpent_full 120 28% 7,248

tde-pp 29 3% 1,104
vocoder 114 60% 1,989

the generated schedule, Mmax:

j′ = j ·
Mavailable

Mmax
(6.14)

If Equation 6.14 gives j′ = j and j′ > 1 then j′ B j′ − 1. As long as the memory

constraint is violated and j > 1, j is set equal to j′, and the schedule is reconstructed. If

the unrolling factor has been reduced to one, and the memory constraint is still violated,

buffers must be relocated to main memory until the memory constraint is met. Relo-

cating, or spilling buffers or instructions to main memory introduces expensive com-

munication costs, and will generally reduce performance. The spilling mechanism’s

implementation and performance have not been evaluated in this work.

6.4 Experimental Setup

6.4.1 Simulation

The offline and online portions of the lightweight scheduler have been implemented

in C++ with instrumentation for collecting timing data on the scheduling algorithm.

Dynamic multicore schedules are generated for the 12 “asplos 06” StreamIt bench-

marks [7] described in Table 6.1 across ranges of available cores from 1 to 128, and

core memory sizes from 8KB to 256KB. For the simulated performance results, the

scheduling algorithm itself is run without threading on a dual core Pentium 4 processor

running at 3.2GHz with 1.5GB RAM and 512kB cache.
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Figure 6.4: Lightweight runtime scheduler implementation on the CBE.

Simulated performance numbers are reported in terms of steady-state through-

put and are computed based on the maximum of the maximum processor workload

and communication costs in the presence of double buffering. Using double buffer-

ing, throughput performance is dominated by communication overhead any time the

communication cost for any core is larger than the maximum workload from among

all cores. Throughput numbers for generated schedules are compared against the theo-

retical optimal throughput in the absence of memory constraints. As such, the optimal

performance figures reflect schedules generated using non-memory-restricted unrolling

factors and buffer sizes.
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6.4.2 Cell BE Implementation

The lightweight runtime stream scheduler is implemented on the CBE experimentally

validating simulated scheduler performance. An overview of the CBE implementation

is presented in Figure 6.4. The scheduler itself consists of the on-line scheduling algo-

rithm running on the PPU and an execution framework running on each SPU. The PPU

executes the online schedule generation algorithm as well as a data structure construc-

tion phase which formats the generated schedule for execution on each allocated SPU.

Each active SPU maintains an execution kernel whose state is controlled by

the PPU through mailbox messages. The SPU kernel enters a wait mode as soon as

the SPU thread is started. Once a start message is received from the PPU, the SPU

reloads its initialization control block previously updated by the PPU with pointers to

data structures defining the local SPU portion of the schedule. Once the schedule data

structures are loaded into the local store (LS), the SPU constructs local buffers and

associated headers in accordance with the uploaded schedule information. Once all

buffers have been established, each SPU delivers the addresses of local remote buffers

to the remote SPUs scheduled to use them.

The current SPU schedule execution scheme is fully asynchronous, with actors

executing whenever sufficient data is available on their inputs. The SPU kernel loops

through its assigned actor events in PASS order so that pipelines are always executed

sequentially and in order. If the first actor in a pipeline executes, then data is guaran-

teed to be available for the next actor in the pipeline and so on. The PPU generated

schedule also contains all of the stage assignment information needed to implement a

stage phased execution.

A pull-down data communication scheme is implemented for all SPU-SPU

producer-consumer data communication. Actors producing data for use by remote
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SPUs always write the data to a local buffer comprised of multiple identical buffer

components for double buffering purposes. When a local buffer component is filled by

the producer, a signal is transmitted to the consumer SPU updating an associated buffer

component pointer. The remote consumer SPU initiates a DMA transferring data from

the producer’s local buffer. Once complete, the consumer transmits a signal back to

the producer updating the associated buffer component pointer notifying the producer

that the buffer component is again available for writing. All communication signals

including data transfers are executed using non-blocking DMA operations. Prior to

actor execution, if any required inputs have DMAs in flight, the associated tag status

is checked. If the DMA is found to be complete, the input buffer data is marked as

valid, and actor execution can begin.

The CBE implementation includes all PE synchronization, buffer management,

and communication including producer-consumer buffer data transfers required to phys-

ically execute the benchmark programs. However, in the current implementation, file

reader-writer functionality is not implemented. Physical execution of the actor or func-

tion code is also not implemented. Instead a delay function is incorporated emulating

actor execution based on compiler work estimates or defined actor workloads. The de-

lay function utilizes the CBE timebase as a time unit rather than clock cycles which

have been used in the simulation. The timing utility used in the SPU relies on a decre-

menter register with resolution defined by the system timebase. The timebase decre-

menter is the highest resolution timer available in the SPU, but it represents a lower

resolution timer than the system clock. For the Cell Blade QS20 system at the Geor-

gia Institute of Technology, Sony-Toshiba-IBM Center of Competence used to collect

results in this work, the system timebase is defined at 14.318 million ticks per sec-

ond, or 223.5 clock cycles per tick based on the 3.2GHz system clock. Consequently,

throughput figures are effectively scaled down according to this ratio. Additionally,

because overhead costs associated with buffer management and actors’ pushing and
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Figure 6.5: Overall simulated performance results.

popping data are not similarly scaled, their real cost is substantially mitigated in the

presented performance results.

6.5 Results

6.5.1 Simulated Performance

Simulated throughput speedup figures for schedules generated by the online algorithm

are illustrated in Figure 6.5a for a core memory size of 256KB as in the CBE. Speedup

is calculated as the ratio of schedule throughput to single-core throughput. Shaded bars

indicate throughput achieved by the generated schedule for a given number of available

processing cores. White bars indicate additional theoretical optimal performance not

realized in the generated schedule.
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Ideally, the optimal speedup should match the number of available cores. Given

128 cores, we should expect to see a theoretical speedup of 128x over single-core so-

lutions as seen in Figure 6.5a for bitonic_sort, fft, and serpent_full. However, optimal

speedup is limited by the maximum atomic work as described in Section 6.3.2.

Schedules generated by the online scheduler give speedup figures closely match-

ing the theoretical optimal for most configurations. The average ratio of schedule

speedup to optimal speedup across all configurations shown in the figure is 92%. The

solutions for bitonic_sort are limited by communication costs because all of its actors

have very small work sizes and are unable to mask communication costs using double

buffering, particularly when large unrolling factors are used.

Also shown in Figure 6.5a are execution times for the online scheduling algo-

rithm indicated by a ‘+’ for each configuration. Scheduler execution times are linearly

dependent on the total number of actor executions in the generated schedule. In prac-

tice, execution times are more directly dependent on the number of actor events in the

schedule because the overhead of allocating memory to create a new event or batch

is much higher than the overhead associated with accumulating work for actor exe-

cutions. Large numbers of actors or processing elements in particular contribute to

the algorithm’s execution time. These factors contribute to larger schedule generation

times for bitonic_sort, dct, and serpent_full at 128 cores. The first two use large un-

rolling factors, 23 and 94 respectively. Serpent_full uses a small unrolling factor of

three, but has the largest number of actors, many of which are executed up to 128 times

in the unmodified PASS. Overall, the average online algorithm execution time for a

32 core configuration including stage assignment and buffer allocation is 1.35ms on

the Pentium platform described in Section 6.4.1. This suggests an improvement over

the average run-time of 15.9ms reported by Hormati [70] on a slightly different set of

benchmarks with fewer actors.

Figure 6.5b shows the ratio of schedule throughput to optimal throughput aver-
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Figure 6.6: Throughput performance vs. available memory in arbitrarily scalable
benchmarks.

aged over ranges of available processing elements. We omit single core solutions from

this average since they are always throughput optimal. Five of the benchmarks consis-

tently have solutions within 5% of the optimal across all ranges of available cores. Due

to better atomic resolution for smaller numbers of cores, particularly in cases where un-

rolling is not possible, the highest quality solutions tend to be found when the number

of cores is most restricted, i.e. 1-16 cores. This is significant, as optimum performance

is most critical when resources are most constrained.
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Memory Constraints

Given a memory constraint of 8KB, the online scheduler finds solutions for half of the

benchmarks, beamformer, bitonic_sort, dct, des, fm, and vocoder without the need to

spill memory objects into main memory. Five of the remaining benchmarks have solu-

tions that fit into a 16KB memory without spilling. The remaining benchmark, tde_pp,

requires more storage due to several actors with very large push and pop sizes of up

to 7KB. Consequently, some schedule cores still require spilling for memory sizes up

to 48KB, although this is well within the workable range of existing systems such

as the CBE.

For some benchmarks, particularly those without stateful actors, increasing the

available memory increases opportunities for unrolling the PASS, enabling extremely

well balanced solutions for large numbers of processing cores. The charts in Figure

6.6 illustrate the effect of increasing available memory on dct and fft throughput. So-

lutions are available for small memories, but throughput is limited due to restricted

PASS unrolling. As additional memory is made available, unrolling factors increase,

improving atomic work resolution and enabling better solutions. For both benchmarks,

near optimal solutions are possible for an arbitrary number of cores given adequate

memory resources.

6.5.2 CBE Performance

Overall performance results for the CBE are illustrated in Figure 6.7 with solutions gen-

erated for a 128kB memory size. As in the simulated results, throughput performance

tends to track closely with the optimal values. The two benchmarks, beamformer and

channelvocoder, with the most limited performance when using 16 SPUs have a max-

imum atomic work unit defined by large stateful actors, limiting opportunities for in-

creasing partitioning resolution through PASS unrolling. A number of the remaining
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Figure 6.7: Speedup over single core performance measured on the CBE vs. optimal
speedup.

benchmarks are also limited by stateful maximum atomic work, but the algorithm is

still able to find sufficient opportunity for near optimal load balancing. As seen in the

simulated results in Figure 6.5a, both of these benchmarks approach optimal perfor-

mance again as the number of cores increases to 32, since stateful work also limits

optimal performance. In generating CBE results, the online scheduling algorithm is

run on the PPE which is slower than the Pentium processor used to generate results in

the previous section. The average schedule generation time on the PPE was 3.9ms for

these benchmarks based on the data points in Figure 6.7.

Measured schedule throughput performance tracks the simulation results very

closely, serving to validate performance expectations for configurations beyond 16

cores in the simulated results. Figure 6.8 gives the normalized average performance

figures for the CBE implementation as well as the corresponding figures collected

through simulation. The average of absolute differences between the data points in

the two graphs is 2.0%.

Schedule Latency

For stream graphs without stateful work, a trivial parallel solution giving optimal through-

put speedup for an arbitrary number of PEs is available if we simply assign the entire

PASS to each PE. The downside to such a solution is that the schedule’s latency, defined
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Figure 6.8: CBE average performance figures with simulated figures for comparison.

by the time between schedule initiation and completion of the first results, is fixed by

latency in the single core schedule.

Schedule latency is determined by the time required for data tokens to propa-

gate through the schedule. For the single core schedule, the entire PASS is executed,

so that latency is equivalent to the sum of all actor work described by the PASS. When

the PASS is spread across multiple PE’s with actor execution level resolution, an actor,

a, which is executed n times in the PASS as an example may have n/2 executions as-

signed to two different PEs. Since actor work divided across PEs must be stateless, both

sets of actor executions may be executed in parallel and the time needed to complete

work associated with actor a in the PASS partitioned schedule is half of that needed in

the original PASS. In effect, spreading actor executions across PEs exploits data par-
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Figure 6.9: Latency: For each benchmark, latency is normalized to the single core
value. Each data point in the chart represents the normalized latency for n processing
elements averaged across all benchmarks.

allelism to both reduce the maximum PE workload increasing throughput, and enable

data parallel execution reducing latency.

Figure 6.9 illustrates measured latency normalized to the single core value for

1-16 PEs. Each data point is the average across all benchmarks. The effect of exploiting

data parallelism on latency reduction can be seen in the figure for 3-16 PEs. In general,

a large latency improvement occurs once the schedule is assigned three or more PEs.

Latency continues to fall as the number of cores increases up to 16 cores. For much

larger numbers of cores, the latency number is expected to rise again for arbitrarily

scalable benchmarks, as large unrolling factors are needed to exploit the available PEs,

eventually overcoming the latency benefits of data parallelism.

For the majority of benchmarks, the addition of a second core did not signif-

icantly impact latency. In three instances, bitonic_sort, dct and des, the addition of

a second core actually increased latency as expressed in Figure 6.9. This effect re-

sults from increasing the unrolling factor in the scheduler followed by construction of a

schedule which does not partition any actor work across PE boundaries. The result is a

purely task parallel schedule with increased total work. Task parallelization or pipelin-

ing improves throughput but not latency. Pure task level partitioning also accounts for

the lack of latency reduction in other benchmarks when adding a second core.
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Figure 6.10: Online profiling performance advantage.

Online Profiling and Schedule Refactoring

Executed actor emulation delays are initially based on the workload estimates generated

for each actor by the StreamIt compiler. In order to test the effectiveness of runtime

profiling on schedule improvement, a randomization function has been added to the

offline system enabling random scaling of the executed work estimates, W, within a

range, [W/n,W · n], such that W is the distribution’s median value. The scaled work

estimate is retained separately from the work estimate data used to generate online

schedules. The scaled value is used by the actor emulation delay function at run time

resulting in performance degredation.

This method makes possible evaluating the effectiveness of runtime profiling as

a means of improving performance in the face of inaccurate work estimates. Since the
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online scheduling algorithm enables run-time refactoring of the schedule, the scheduler

can overcome inaccurate offline work estimates which might otherwise significantly

impact throughput performance. This is an important benefit of the run time scheduler

over static scheduling.

The implemented runtime profiler uses the SPU decrementer to measure actor

execution and overhead costs. This information is periodically transmitted to a data

structure in main memory using non-blocking DMA transfers. When a new sched-

ule is generated by the PPU, the actor work estimates are replaced with the collected

profiling data prior to schedule generation. The resulting schedule is expected to pro-

duce improved throughput since the scheduler’s load balancing effort will more closely

match reality.

Representative performance increases are presented in Figure 6.10. The data

points presented represents the average of five separate sets of randomly generated ac-

tor work values constructed in accordance with the distribution described above. Sep-

arate scaling values of n = 1.5 in Figure 6.10a and n = 2 in Figure 6.10b have been

used. In the first figure, the overall average improvement after updating the sched-

ule based on profiling data is 7%. The performance improvement tends to increase

with the number of PEs used in the schedule. Since actual throughput is dependent

on whichever PE has the largest workload, increasing numbers of PEs expose the sys-

tem to more chances of poor performance in the face of inaccurate work estimates. At

16 PEs, the average throughput increase is 16% for n = 1.5. In the case of n = 2,

where work estimates range from half to twice the actual workload, the average im-

provement is 11%, 27% when using 16 PEs. These values represent average cases, but

performance in individual cases can be arbitrarily bad due to bad partitioning decisions

made by the scheduler using inaccurate actor workload data, a condition exemplified

by vocoder in Figure 6.10.
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Figure 6.11: Multitasking setup and execution. The PPU generates a schedule for
each stream program. Assigned SPUs are notified that a new schedule is ready. The
structures are uploaded and initializations are completed while the PPU continues with
the next program.

Multitasking performance

Multitasking applications on the multicore architecture is an important motivation for

development of a runtime scheduler. Given applications such as future handheld de-

vices with many core embedded processors, users will dynamically determine which

applications are running at any given time. Due to the large number of possible oper-

ating conditions in terms of available resources presented to each process, offline op-

timization of every configuration is undesirable or even intractable. The current CBE

implementation supports multitasking by concurrently running an arbitrary number of

benchmarks simultaneously limited only by the number of available processing ele-

ments.

Figure 6.11 provides a notional overview of system behavior when simultane-

ously executing multiple stream programs. Once a schedule is generated, the assigned

PE’s are notified that a new schedule is available. Each SPE uploads its control block

containing pointers to it’s dedicated schedule structures. The SPE specific structures

are uploaded, buffers are allocated and the execution kernel is initialized. SPUs with
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Figure 6.12: Multitasking scenario and throughput performance on the CBE.

external buffer dependencies exchange pointers to associated buffer headers located in

each SPU’s local store, and begin executing actors as data becomes available.

A multitasking execution case study is described in Figure 6.12a. The figure

illustrates a time series of run-time schedule mappings with up to five applications

running simultaneously. The PE resources assigned to each application are periodically

reassessed, resulting in a new mapping of applications to PEs. In addition, the number

of tasks changes over time as a new application, fm, is added in period two while one

of the original applications, des, is terminated before period three.
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Throughput performance for the simultaneously executing multicore bench-

mark schedules compared to running the same schedule as a single task on the CBE

is illustrated in Figure 6.12b. In general, the single task performance is matched in the

multitasking environment. Three of the benchmarks experience a noticeable decline in

performance in the multitasking environment. The presented data indicates an average

0.5% decline is seen in mpeg2_subset, a 1.6% decline in dct, and an average decline of

3.3% in fft. These three benchmarks happen to have the largest buffer communication

requirements, suggesting that increased contention for the CBE’s on-chip communica-

tion network in the multitasking environment is likely the primary contributer to their

reduced throughput performance.

6.6 Conclusion

In this work, a lightweight run-time stream program scheduling scheme has been pre-

sented. The offline algorithm generates a simple canonical sequence and single core

schedule with limited knowledge of the target architecture’s resources. The run-time

scheduler has been shown to quickly generate schedules with near optimal through-

put performance based on dynamically available resources such as an allocation of

processing cores and their memory constraint. Such a system is invaluable for multi-

tasking multicore processors representing the next generation of handheld embedded

computing systems.

Throughput performance has been simulated for multicore systems up to 128

cores over a range of memory sizes. An implementation of the online scheduler and

runtime framework for the CBE serves to validate the simulation results as well as offer

insights into online profiling, latency, and multitasking throughput performance.

Future efforts will focus on more sophisticated memory management techniques

such as a detailed analysis of memory spilling, and code and data overlay techniques

as well as improved buffer management and actor ordering within batches. Addition-
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ally, additional work is needed to address the geometry of available PEs and how best

to assign work to each element considering locality for communication and on-chip

network contention.
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Chapter 7

CONCLUSION

Embedded computing systems operating in unique and autonomous environments are

particularly sensitive to power and performance constraints. In addition, user expecta-

tions regarding everything from the type of tasks and services these systems can per-

form to battery life to context and user awareness continue to rise precipitously. The

increasing ubiquity of such systems in areas such as remote military operations under

a massive fully burdened cost of energy introduced in Chapter 1 serves to illustrate the

degree of urgency with which improved efficiency solutions are sought.

In this dissertation, several techniques in power/performance optimization have

been explored for substantially alleviating pressure on embedded systems to perform

in the face of tight resource constraints. Conclusions and areas for further investigation

have been included at the end of each chapter. From a broadened and more comprehen-

sive perspective, conclusions, assessments of this work’s contributions, and directions

for further research are presented in the following sections.

7.1 Power Aware System Management

The presented power aware system enabling techniques, including exchanging QoS for

power in advanced bistable display technology presented in Chapter 2 and the state

of the art H.264 video codec in Chapter 4, have been demonstrated to provide effec-

tive power management modes via the controlled introduction of quality distortion in

the user experience. The real power savings enabled through these power optimiza-

tion schemes provide performance options and operating modes genuinely empowering

users with valuable control over the target system’s behavior. Users, given the ability to

express their expectations for system performance by prioritizing power consumption
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vs. performance metrics, are rewarded with improved user experience and improved

utilization of the embedded computational system.

The video quality vs. power scheme as presented relies heavily on accurate

workload prediction in order to accurately select frequency voltage states to maximize

power savings. This estimate and profiling were done offline in the presented work.

Online estimation of the workload is an important area of research for video processing

in general and represents an area where further investigation is warranted. The video

block dropping scheme may also directly benefit from the agile core scaling and power

management scheme presented for H.264 in Chapter 5, which effectively avoids the

need for workload prediction all together while substantially alleviating buffering re-

quirements typical in such systems. Combining QoS states in the power aware scheme

with multicore processor and power scaling schemes is left for future work.

7.2 Multiprocessor Paradigm

The presented multicore power and performance enhancements ultimately contribute

to the feasibility of many core embedded MPSoCs. These enhancements substantially

address several of the difficulties associated with implementing applications for such ar-

chitectural models. Several lessons can be carried forward as embedded multiprocessor

systems move toward increasingly parallel architectures and workloads with increasing

emphasis on power efficient implementations.

Scalable parallel implementation of an extremely complex application, as with

the parallel H.264 video decoder presented in Chapter 4, has brought forth numerous

insights into difficulties associated with parallelizing an extremely large code base as

well as highlighting fundamental differences between traditional sequential execution

focused programming styles and emerging multicore centric methods such as stream

programming. A solid understanding of these characteristics is essential to successful

automated parallelization efforts. Additional investigation of improved data and stream
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centric implementations of the H.264 codec using the stream programming model,

which have yet to be realized, and their mappings for MPSoCs are warranted. Fu-

ture efforts will also benefit from further investigation of the H.264 encoder for which

preliminary results have been detailed in Appendix C.

Effectively automating implementation of applications for multicore architec-

tures is an important step toward successful adaptation of next generation embedded

MPSoCs. The two methods presented, automated instruction mapping for distributed

processing element local memories presented in Chapter 5 and dynamic scheduling for

multitasking multicore data-centric streaming applications presented in Chapter 6 have

been shown to realize near optimal solutions for difficult mapping problems. In the fu-

ture, combining instruction mapping with multicore stream scheduling can further im-

prove scheduler performance by reducing memory constraints in certain applications

within highly restricted memory environments.
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APPENDIX A

MOTIVATIONAL CASE STUDY
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A.1 Universal Tactical Handheld Device needs assessment

The following tasks are derived from the Network Centric concept of Army opera-

tions usually described as Command Control Communications Computing Intelligence

Surveillance Reconnaissance (C4ISR). The tasks are designed to fit into the Network

Centric model, have relevance to the current tactical Army and be feasibly imple-

mentable in an embedded multicore system.

1. Command and Control

a) Situational Awareness: Combat leaders make decisions based on their knowl-

edge of the current situation. Generally accurate understanding of the sit-

uation enables leaders to correctly assess the capabilities of their arrayed

forces and to more accurately anticipate the enemy’s actions.

i. GPS positioning and mapping for self and friendly forces.

ii. Integration of intelligence information on reported and observed en-

emy locations and activities.

b) Graphical Orders: Generate, transmit, display graphical orders as well as

capability for briefing and rehearsing the plan.

2. Communication

a) Software Defined Radio: A major effort currently underway within the US

Department of Defense is the standardization and implementation of widely

compatible communications waveforms and the physical radios capable of

implementing and using any of them without the need for hardware modifi-

cation. This is done using software defined radio (SDR) as part of the Joint

Tactical Radio System (JTRS) program.
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b) Information Security: Encryption and decryption for all data and voice

transmission.

c) Multiple simultaneous networks: Simultaneous communication with higher

and lower echelons, relay of sensor data, and possibly feed from external

sources such as theater and national collection assets.

3. Computing: A combination of sensing and computation enhances awareness.

Strong computational capabilities can rapidly turn raw sensor data into valuable

information about the environment and the enemy.

a) Data collected from a microphone array can quickly determine precise in-

formation about the direction and even location of hostile actions such as

small arms and mortar fire. Audio processing may be used to identify the

types of sources for sound events including voice identification of individ-

uals and weapons’ signatures.

b) Image and video analysis can quickly aid in the identification of targets,

enhance surveillance, or use facial characteristics to identify individuals

based on database information.

4. Intelligence Surveillance and Reconnaissance

a) Database capability: Store, manage and receive updates to intelligence databases.

Intelligently handle system queries and minimize missed opportunities due

to failure at piecing together relevant pieces of information into a coherent

picture.

A.2 Use-case Scenario

A use-case scenario consistent with current operations in Afghanistan is given here.

Various elements of the description are illustrated in Figure A.1. The hypothetical
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soldier worn "Squad Reconnaissance Device" (SRD) is employed in response to enemy

activity, in this case an attack on a local national police station seen in the figure (a).

The device is embedded organically into the force at the platoon or squad level. A

reconnaissance squad (b) in support of the deploying quick reaction force (QRF) is

tasked with investigating the attack which has been reported by Afghan police and

detonation sensors. The reconnaissance squad deploys a Raven UAV which can quickly

reach the site of the attack and begin reporting with surveillance video.

The squad receives the video feed via the SRD (c) which is also capable of

performing analysis such as automatic target recognition (ATR) on the incoming video

stream. The squad is able to control the UAV and collect information they need to

assess the activity in the target area and assist the deploying QRF as they plan and

execute their response. In addition to the QRF, the surveillance feed is transmitted to

a fire support platoon (d) who is able to cross reference the video data and intelligence

updates with requests for fire from the tactical operations center and the QRF. The

handheld device can communicate over multiple waveforms via the software defined

radio system, and retransmits the UAV signal over an alternate protocol.

Analysis is performed on the incoming video stream to help track and locate

dangerous objects and individuals at the scene of the attack such as identifying a po-

tential RPG (e), recording, and retransmitting information about its reported location

and updating the global intelligence database. The SRD also acts as a client of the

global database, integrating intelligence reports, and providing a map view of the battle

field with data overlays and analysis capabilities similar to ATR, such as line of sight

analysis on the terrain (f).

A high level overview of the system architecture is given in Figure A.2 The

available system components are designed to meet specific mission needs including

voice and data transmission across multiple networks and protocols, display interface

for video, mapping, and accessing intelligence information. Removable storage has
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Squad Reconnaissance Device (SRD)

RPG

BOMB

Figure A.1: System use-case, see Section A.2 for details.

been included for retaining information related to the mission, or uploading new maps

and other databases. A GPS module is necessary for accurate situational awareness

and reporting.

A multicore solution is important primarily due to the power constraint. A sin-

gle core processor with the power and required throughput and multitasking capability

will be extremely expensive in terms of power consumption if it could be built at all.

An ASIC solution for many of the DSP tasks needed for our system will be power

efficient, but would alleviate the flexibility we gain by implementing an array of pro-

cessors suitable to more general applications. As an example, the SDR waveforms and

video CODECs needed may be mission specific or experience multiple upgrades over

the life of the system. Hardware implementation of these algorithms will likely make

upgrading expensive or impossible. The Multicore SoC architecture is described in

more detail in the next section.
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Figure A.2: System architectural overview.

A.3 System Baseline

The fundamental requirement for the proposed architecture is taken from the Joint Tac-

tical Radio System (JTRS) Handheld Small Form Fit (HMS) requirement [65]. This

system is a handheld tactical Software Defined Radio (SDR) under development by the

JTRS Joint Project Office. A key design parameter is the requirement that the system

be compatible with the standard radio battery currently available in the inventory [116].

The BA-5390 Li/MnO2 is a current version. This battery provides 300 Wh energy ca-

pacity [26] which is used as a baseline for our design. The battery is currently larger

than would be feasible for a wrist-mounted unit, but upcoming battery and power sup-

ply technologies promise to provide relief in this area [26]. The handheld radio system

is required to run for 10 hours on one of these standard batteries.

Additionally, the radio is designed to transmit with a signal strength of be-

tween 0.0001 and 20 Watts. In this analysis it is assumed that the system will be

capable of transmitting on up to four channels with varying power and duration re-

quirements. Assuming an average continuous 20W radio transmission over 10 hours,
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Figure A.3: CBE-like architecture: Distributed memory heterogeneous networked mul-
ticore.

the remaining power budget from the BA-5390’s 300Wh is 100Wh, or 10W average

continuous power.

The proposed system architecture is modeled on the heterogeneous multicore

IBM Cell Broadband Engine. The CBE-like system architecture is shown in Figure

A.3. Performance figures used in this case study are predominantly taken from the

CBE itself. The use case and power constraints determine several factors in the sys-

tem’s design. The CBE’s PPU serves as a control processor, and provides general pur-

pose CPU functionality which is substantially backwards compatible with PowerPC

software. The PPU also offers good performance in control intensive applications over

its eight number crunching highly data parallel SPU accelerators.

A.4 Power Analysis

The current 45nm version of the CBE has seen power consumption improvements of

65% at 4GHz over the original 90nm design’s power consumption commonly reported

as PCBE ≈ [60W,80W] [54]. The first generation IBM Cell BE SPU has also been re-

ported to consume about PS PU ≈ 5Wat 4GHz [120] [21]. Based on the reported 65%

power improvement of 4th generation CBE in 45nm technology over the first gener-

ation 90nm technology [54], we can estimate power consumption in the latest gener-
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ation 45nm CBE to be PCBE ≈ [21W,28W]and the 45nm SPU power consumption

PSPU ≈ 1.75W.

In order to address the 10W power budget, we can first scale these power figures

by throttling the system frequency to achieve a linear reduction in power performance.

In the proposed system, the 4GHz system clock will be scaled back to 0.8GHz. The

chosen frequency is based on iterative observation of its effect on the expected power

performance and the total expected power consumption of the resulting multicore sys-

tem with respect to the use-case loading and the 10W power budget.

We make the simplifying assumption that any potential power reduction from

voltage scaling along with the reduced operating frequency will be offset by increased

leakage power due to the increased chip area and number of transistors in the proposed

system which is anticipated to include 16 accelerator cores, twice the number in the

CBE. With the additional frequency scaling factor we find that

fnew/ fold = 0.8GHz/4GHz = 0.2 (A.1)

P
′

CBE ≈ PCBE · 0.2 = [4.2W,5.6W] (A.2)

P
′

SPU ≈ PSPU · 0.2 = 0.35W (A.3)

Few specifics are available about the power performance of the CBE’s Element

Interconnect Bus (EIB) and IO operations, but we can infer a typical number from the

power performance of the total system and the total power consumption in the pro-

cessing elements. We will assume that higher complexity dual thread PPU consumes

power at twice the SPU’s rate, and calculate the total power due to processing elements

as 2PSPU + 8PSPU = 10 · 0.35W = 3.5Wgiving the range below for the EIB in the

CBE’s 9 core architecture:

P
′

EIB ≈ P
′

CBE − 3.5W =[1.7W,2.1W] (A.4)
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Table A.1: Frequency scaled CBE performance characteristics and Samsung DDR3
SDRAM specifications. Scaling factor CBE is 0.8GHz/4GHz=0.2.

Component Performance at
4GHz
(GFLOPS)

Scaled Perf.
at 0.8GHz
(GFLOPS)

Bandwidth at
4GHz
(GBps)

Scaled Band-
width at
0.8GHz (GBps)

SPU/MFC 32 6.4 25.6 5.12
Memory / I/O Access 89.6 17.92
Network on Chip 300 60
SDRAM 800MHz
[135]

12 12 (not scaled)

Throughput and bandwidth figures are also scaled by the factor given by Equation A.1.

The resulting values are given in Table A.1.

A.5 System Performance Requirements

(a) Control of a remote vehicle (UAV).

Low bandwidth communication, 128kbps using the Spektrum DSM2 commercial

r/c aircraft controller as a model [145].

(b) Collect video feed from remote vehicle.

H.264 decoding requires an estimated 1.1GFLOPS for CIF 352x288 video [72].

We use use VGA 640x480 video giving reasonable size and resolution for a hand-

held device. VGA has approximately three times the number of pixels or area

as CIF, so we estimate that there is three times the amount of work required or

3.3GFLOPS to decode the VGA video. We consider a data rate with reasonable

quality for the H.264 encoded video stream to be 0.13MBps (1Mbps).

Based on our parallelized H.264 decoder implemented on the CBE [14], 6 SPEs

were required to decode a full HD (1920x1080) video at 30fps. The clock speed

in that system is 3.2GHz which means the theoretical maximum computational

throughput for the SPU in that system is

(3.2MHz/4MHz) · 32GFLOPS = 25.6GFLOPS
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The number of GFLOPS we expect to require for decoding full HD video is

1920 × 1080
352 × 288

1.1GFLOPS = 22.5GFLOPS

22.5GFLOPS across 7 cores in the existing implementation is 3.2GFLOPS per core

or 12.5% of the 25.6GLOPS theoretical maximum for each SPU. This figure is

suspiciously low, but it may not be unrealistic for a few reasons: a) the throughput

is not expected to approach the theoretical maximum due to both the inability of the

software to perfectly utilize the ALUs and particularly b) considering the control

intensive nature of the H.264 CODEC, c) there are many synchronization pauses

during macroblock decoding due to the nature of the interdependencies in the video

CODEC and stream.

As indicated earlier, the VGA video theoretically requires 3.3GFLOPS to decode,

and the frequency scaled SPU is theoretically capable of 6.4GFLOPS as given in

Table A.1 Assuming the same ratio of throughput vs. the theoretical limit when

decoding the VGA video in the frequency scaled system as with decoding full

HD video in the real system, each frequency scaled SPU can handle 6.4GFLOPS ·

0.12 = 0.8GFLOPS of the total video decoding requirement. From this figure, we

estimate that 5 SPUs are required for decoding the VGA video at 30fps as indicated

in Table A.2.

(c) Use image analysis to positively identify an object or individual from a reconnais-

sance video stream.

In this case an Automatic Target Recognition (ATR) algorithm is used to iden-

tify a specific object in the video feed. An example of an ATR algorithm im-

plemented on the IBM Cell can analyze a 512x512 input image in 70ms using

6 SPUs and the PPU [31], approximately equivalent to 14fps for our VGA UAV

video stream. After frequency scaling the performance in this case is scaled by

the ratio of the frequency of the system used in [31] and our scaled frequency or
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0.8GHz/3.2GHz = 0.25, and we expect the system using 7 cores to be capable of

returning results for 0.25 · 14fps = 3.5fps.

(d) Use positioning information to locate self and others with integrated intelligence

on the enemy from multiple sources including the remote vehicle.

Integrated GPS device provides self position information. We expect that one pro-

cessing element will be required to collect and map friendly and enemy locations

received the data network. Low bandwidth positioning information and map gen-

eration is required.

(e) Relay video reconnaissance information to higher echelon.

System will retransmit the encoded 0.13MBps VGA video feed from the UAV

feed by re-encoding the unmodified incoming stream via the software defined radio

described next.

(f) Software Defined Radio (SDR) Requirements.

The SDR hardware requirements are taken from Hasan et. al. [65] where the pre-

sented system is designed to handle the worst case performance requirements from

among 5 JTRS waveforms without exceeding 50% of the system’s computational

capability for two channels simultaneously. In Table A.2 the required FLOPS are

given as twice the requirement given for the system by Hasan because we expect

to support four channels.

(g) Communicate via voice with other elements on the same voice network.

Low bandwidth voice communication included in SDR analysis.

(h) Encrypt/decrypt all incoming and outgoing data streams.

Encryption is included in SDR analysis. In reality this is most likely to be done

with dedicated hardware for security reasons.
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Figure A.4: EPD vs. LCD power performance without backlight.

(i) Display full frame rate video.

Expected power performance of the VGA Electrophoretic Display (EPD) has been

computed based on the cost of switching the screen according to the model from

[17]. The model does not account for the cost of the display driver circuitry which

has been calculated by extrapolating from the power consumption measured on the

Glencoe PXA270 Smartphone Development Board with a QVGA LCD display.

The power consumption measured in the LCD driver is scaled from a drive voltage

of 3.3V for the LCD to 30V for the EPD. The EPD display and driver are found

to consume 0.6W at 30Hz. In Figure A.4, the main power components illustrated

are processor power based on measurements of the Glencoe’s PXA270, and the

EPD power consumption for various video decoding frame rates. Processor idle

power is negligible in this chart. The dashed line indicates power consumption

in a comparable LCD display excluding the backlight which actually consumes

dramatically more power than what is indicated for the LCD alone in the figure.
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Table A.2: Estimated use case system requirements.

Requirement Stream
Bandwidth
(MBps)

Computational
Requirement
(MFLOPS)

Processing
Elements
Required

RAM Reqt.
(MB)

Approx. Avg.
Power (W)

SoC Scheduler 1 0.35
a. Remote UAV Cont. 0.016 1 0.35
b. VGA Vid. Dec. 63a 3,300 5b 256c 1.75
c. ATR Algorithm 1.1d 7e 2563 2.45
h. SDR (4 Ch.)f 1.1 (MIPS) 2 120 0.7
g. Mapping/Intel 1 0.35
I/O and NoC 2.1g

Display 0.6h

GPS Receiver 0.165 [138]
SDRAM 1.5 [135]
FLASH Memory 0.3[17]
RF Hardware 20

a 0.13MBps incoming stream +2 · 0.46MBbps decoded raw image stream.
bFrom calculations in Section b.
cBased on existing CBE Implementation.
dATR data rate calculated as SD Video data rate (640B ·480B ·3.5 f ps) for Y plane of decoded video

only.
eRequirement is based on ATR implementation in [31].
f Figures based on proposed system in [65], Hasan’s system supports two channels, so the figures

are doubled to support four channels in our system.
gFrom Equation A.4. We are using the total communication power from the scaled CBE processor,

which should be an upper-bound since the total bandwidth requirement in our system appears to be two
orders of magnitude smaller than the CBE theoretical throughput numbers in Table A.1.

hData from Figure A.4 assuming the system is displaying 30fps video.

A.6 Requirements Analysis

System performance requirements are consolidated in Table A.2 Our main goal is to

determine the number of processing elements required in our system, and a system

configuration which can handle the requirements of the use-case scenario. Due to the

10W power constraint, we are unable to simply design a hugely powerful system to

accomplish all of the necessary tasks. In the first step we estimate the total number of

processing cores which would be required. Based on the data and assumptions about

the tasks, it appeared that the number is on the order of 10-20. The figures in the table

are the result of an iterative analysis to determine the necessary clock frequency which

will bring power consumption in the CBE-like SoC within our threshold while retain-

ing sufficient computational power. An 800MHz clock was ultimately chosen which

is comparable to that used in existing embedded microprocessors, such as Marvell’s
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Monahan processor used in Hasan’s analysis [65], and the state of the art low power

embedded processors used in most high end handheld devices such as smart phones.

It also seems sensible to target 16 accelerator cores in the design as this number has

advantages in terms of logic, analysis, and scalability. In the end, the 800MHz target

operating frequency, and the workload partitioning described in Table A.2 indicates

that 16 cores are required in the target architecture.

The off-chip system bus is not thoroughly analyzed here. The throughput num-

bers for memory access and on chip communication have been extrapolated from the

CBE, first by scaling performance down with the clock frequency, then by assuming

that it does not improve with the doubling of the number of accelerator cores and the

regular NoC topology.

The system memory was chosen based on the power and performance of avail-

able technology. Memory bandwidth and power figures for Samsung’s 1GB 800MHz

DDR3 SDRAM are provided in Tables A.1 and A.2. We have not completed a thorough

analysis to demonstrate that 1GB of memory is not excessive or under-sized. Based on

the performance of existing CBE implementations which have 256MB main memory

and 256MB video RAM, we have doubled that figure in our system to 1GB of SDRAM.

Power figures for the various components are presented with explanatory notes

in Table A.2. Power figures are based either on commercial specifications for equivalent

components or on the expected number of processing cores required to execute them

on the system. Figure A.5 gives a breakdown of system power consumption by system

component. The first bar shows system power consumption without optimizations, and

using an LCD with backlight in place of the EPD display. The second bar shows the

performance after replacing the LCD with an EPD. The third bar indicates possible

power performance improvement due to the EPD smart driver concept presented in

Chapter 2. Notice that here the system power consumption has dropped from 30.3W

to 30.0W. The video decoding scheme presented in Chapter 3 can reduce SoC power
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Figure A.5: System and component power performance by optimization.

consumption a further 0.8W bringing the total system power to 29.2W to achieve our

baseline power budget requirement.

The improvements to system performance enabled by the other three contribu-

tions presented in this dissertation, the scalable parallel H.264 implementation in Chap-

ter 4, the overlay generator in Chapter 5, and the lightweight runtime stream scheduler

in Chapter 6 are not directly measurable here. We must consider the effect of necessar-

ily running the H.264 video decoder on a single processing core which is impossible

without the parallel scheme.

It is important to point out that there are currently no commercially available

implementations of such a decoding scheme, which makes it a major contribution to

the system in this analysis. If the video decoder were not parallelizable, we would

need a much more powerful core dedicated to this specific task. Based on the analysis

presented here, under the current CBE-like architecture a single accelerator core would

need to be clocked at 5 times the speed used in our design, or 4GHz. This is 25%

faster than the commercial system our design is based on, resulting in power numbers

similar to those presented in our analysis in the previous section prior to scaling down

the operating frequency, which clearly violates our power budget. Without an overlay
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Figure A.6: SoC power breakdown by component/task. The chart on the left shows
power consumption before implementing the H.264 decoder block dropping scheme,
and the chart on the right shows performance with the scheme.

management technique like the one presented in Chapter 5 these figures will only fur-

ther degrade, as the code overlay contributes up to 50% of the achievable frame-rate

in the decoder implementation from Chapter 4. The runtime scheduler presented in

Chapter 6 is not inherently required to the operation of this system, but without the

runtime scheduler the system is essentially stuck with the presented software suite and

processor allocations. Whereas it is imperative that the system be capable of adjusting

to other scenarios and other use cases.

A.7 Conclusion

Automatically identifying and extracting SIMD opportunities from algorithms in or-

der to improve utilization of wide issue architectures like the CBE’s SPU continues

to be a difficult problem. Our experience with the SIMDizing xlc compiler for CBE

from IBM showed only very small gains where large gains should be possible when

modifying the code by hand.

Memory bandwidth has traditionally been an issue which has been part of the

impetus for moving to multicore architectures. Processors like the CBE seem capable

of handling typical applications such as the example CBE implementations discussed

in this analysis (H.264 decode, ATR) and the use-case scenario presented here. Future
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systems may have many more cores, capable of handling many more concurrent appli-

cations, likely testing bandwidth limits. In addition chip to chip interconnects currently

used between the processor and memory will always be slow and relatively power hun-

gry. It seems desirable to include main memory or more on-chip memory in the SoC to

address such issues. Die area is also a problem. Techniques such as 3D stacks can help,

but they exacerbate thermal issues which essentially require better power management.

Scheduling and mapping tasks onto the available cores, considering limitations

of the regular topology of the on chip network to avoid bottlenecks is also important.

Such tools for dynamically managing a variable set of applications with sometimes

widely variable resource needs are not currently available. The runtime stream sched-

uler goes part of the way toward addressing this problem.

The proposed system is not necessarily inherently well suited for applications

with real-time deadlines and constraints. In particular, SDR and video decoding have

real-time constraints. The scratchpad memories used in the CBE like accelerator cores

helps to manage this problem by making memory accesses more predictable, but multi-

ple applications sharing cores in the same network may make communication latencies

less predictable as well.
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APPENDIX B

THE CELL BROADBAND ENGINE
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Figure B.1: IBM Cell Architecture [127]. PPE: Power Processor Element, PPU/PXU:
Power Processor Unit, EIB: Element Interconnect Bus, SPU/E: Synergistic Processor
Unit/Element, LS: Local Store, SMF: Synergistic Memory Flow Control, LS: Local
Store, SXU: SPU Core, MIC: Memory Interface Controller, BIC: Bus Interface Con-
troller.

The Cell Broadband Engine (CBE) is an innovative chip multiprocessor which strives

to achieve “supercomputer power” in an “everyday” processor. An architectural dia-

gram is provided in Fig. B.1. The CBE consists of a dual threaded general purpose

control/OS processor built on the Power PC architecture. The Power Processing Unit

(PPU) is connected to eight simpler PEs referred to as Synergistic Processing Units

(SPUs) via the Element Interconnect Bus (EIB). The SPUs have extensive support

for Single Instruction Multiple Data (SIMD) operations up to single precision float-

ing point, and are able to access main memory directly through a Memory Flow Con-

troller (MFC) which manages Direct Memory Access (DMA) activity in the SPU. Each

SPU includes a 128x128 bit register file and a scratchpad memory Local Store (LS) of

256KB which is shared between data and instructions [76].

As is the case with multicore and distributed memory architectures in general,

efficiently implementing parallel applications on the CBE requires good knowledge of

the architecture and its associated development tools. IBM has provided very good
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documentation and compiler tools for use by software developers [77] [130], but pro-

grammers targeting such an architecture face several specific challenges.

An important decision made by the CBE’s architects during the design pro-

cess was to reduce the complexity of both the PPU and SPUs by eliminating complex

hardware algorithms associated with speculative instruction execution and branch pre-

diction. Additionally, as the name suggests, the scratchpad memory in each SPU local

store does not offer any cache replacement functionality. As a consequence, the runtime

contents of the LS must be carefully managed by the programmer or the compile-time

framework [127]. Compared to traditional cache based programming models where

the programmer need not be concerned with memory allocation or data placement, this

requirement places a significant burden on the programmer or compiler.

A similarly compounding addition to the programmer’s workload is the need

to partition the program into appropriate subcomponents in a load balanced manner

across the available processing elements. Such a partitioning requires accurate knowl-

edge about the execution times of various code segments as well as a high level of

understanding of the implemented problem. The programmer or compilation frame-

work must identify sequential and parallel portions of code which can be translated

into functional and data level partitioning work partitioning and efficient mapping of

those components onto the available SPUs.
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APPENDIX C

H.264 ENCODER PARALLELIZATION ANALYSIS
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Figure C.1: The H.264 encoder [59].

C.1 Background

In order to analyze techniques for developing a parallel implementation of the H.264

encoder, we first need to look at its components. Figure C.1 illustrates the components

and data path in the encoder. Beginning with a series of input images or frames, the

prediction sub-path executes a search from among the possible modes and sources of

prediction data for each 16x16 pixel macroblock (MB) in the incoming video frame.

Essentially the goal of the prediction module is to find the best match for the present

MB from among all of the available (previously handled) image data. Next the differ-

ence is taken between the “predicted” MB and the actual MB to be reconstructed later.

The smaller the difference, or residual, between the two the less information needs to be

transmitted in the encoded stream and the more efficient the image compression. These

residual values for each MB are transformed from the spatial to the frequency domain

and then each data point is quantized discarding some information in the process.
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Figure C.2: Left, MB deblocking dependencies; center, Intra MB prediction dependen-
cies; and right, 2D wavefront, like colored MBs can be decoded independently from
one another.

Since the MB encoding process is lossy, it is necessary to implement the de-

coding process as part of the encoder shown as the decode path in Figure C.1. This is

done to ensure that the reference information used by the actual video decoder is the

same reference information used to make prediction decisions in the encoder. We have

previously implemented an H.264 decoder on the IBM Cell [14]. Our decoder imple-

mentation is based on the 2D wavefront [151] where each processing core is assigned a

row of MBs at a time, and synchronization between the processing elements accounts

for intra and deblocking dependencies. The basic scheme is illustrated in Figure C.2

and Figure C.3 and is fully applicable to the decoding path in Figure C.1.

The two main considerations in developing a scalable encoder implementation

for the MPSoC are, a) how will the work be partitioned so that work is easily reallocated

for different numbers of available cores, and b) does the work partitioning maximize

utilization of the available cores so that their workloads are well balanced. In order

to achieve acceptable load balancing and scalability, the focus here is on a data parti-

tioning approach rather than functional partitioning. The primary reason for this is the

limited realizable scalability generally available in functional partitioning. From ex-

perience we know that assigning a wide variety of tasks requiring a large code base in

order to achieve well balanced data partitioning is feasible based on our previous H.264
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Figure C.3: Data partitioning in our scalable parallel H.264 decoder implementation.
The SPU is the accelerator core from the IBM Cell Broadband Engine.

implementation. Efficient code overlay enables effective code management despite the

limited SPU scratchpad memory.

We have an idea about how to parallelize the decoder portion of the encoder

diagram. We would like to know how to parallelize the remaining portions of the

encoder. As is the case with entropy decoding, entropy encoding is not parallelizable

below frame level. For this reason, it may be assumed best left to a dedicated processor.

This block must achieve throughput at least as great as the remainder of the system,

otherwise it becomes the performance bottleneck. The “core coding” transform and

quantization blocks are not easily partitioned across multiple cores, as in the decoder,

since they also operate at the MB level. The prediction block on the other hand is highly

parallelizable. The prediction algorithms are essentially search engines, testing some

set of the possible prediction modes and motion vectors in order to find the best match

for the current block. There are no dependencies within the search space meaning that

it can be easily partitioned across multiple threads once the search space information is

available. The prediction algorithms are also very time consuming given that they are

searching for a match for a 16x16 matrix of pixels in an area of 80x80 or more pixels in

one or more reference frames, while at the same time interpolating the reference data
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Figure C.4: Encoder work breakdown as presented by Alvanos et al. [4].

points down to the quarter pixel, effectively increasing the motion vector search space

by a factor of 16 over the area mentioned above.

A drawback to the ease with which the prediction algorithms can be multi-

threaded using data partitioning is the fact that the MB under consideration faces pre-

cisely the same inter and intra dependencies as those faced in the decoder. In fact the

encoder faces tighter restrictions because in general it can examine all intra modes for

all MBs in the stream. For this reason, existing parallel encoder implementations op-

erate at the frame level, which tend to be unsuitable for embedded applications due to

enormous latencies and memory requirements.

The predictor cannot check the quality of the intra prediction modes until the

pixels from which the MB might be intra predicted are available. For that to happen,

they must have already been encoded and decoded. This indicates a tight coupling

between the encoder and decoder suggesting that they cannot be separated as with

encoding a full frame using many threads, then switching over and decoding the frame

with the same threads. It also suggests that using half of the available threads for

encoding and the other half for decoding will result in undesirable synchronization and

communication complexity and overhead.

199



Based on the above analysis, it appears that in order to achieve scalability and

avoid unwieldy synchronization problems, a dedicated thread or set of threads should

be involved in the encoding and decoding of each MB. The fact that intra dependencies

in the encoder are the same or more restrictive leads us to require the 2D wavefront

based parallelization scheme as in the decoder. The question remains with regard to

whether and how to partition the prediction work. Alvanos [4] has produced the data

in Figure C.4 based on the performance of the open source x264 encoder from Video-

LAN [154]. The bars in the figure show the relative time needed to execute various

components in the encoder. If we ignore the entropy encoding segment, assuming that

it will run on a dedicated core, we note from the figure that the prediction algorithms

consume approximately 70% of the remaining runtime. This figure suggests that en-

coding an MB can be sped up by something approaching that amount if we implement

the prediction algorithms across multiple threads for each MB.

C.2 Sequential Workload Partitioning Analysis

We would like to know whether it is better to partition the work by dividing the image at

MB row resolution or to partition the work by dividing the prediction work within each

MB among multiple processors. The first step is to determine the theoretical speedup

which is possible just from partitioning the image into MB rows and assigning a row

to each processor as we have already done in our decoder implementation. By making

the simplifying assumption that each MB requires a fixed amount of encoding time, we

can estimate frame decoding times in terms of the number of MBs per frame, M, as in

the analysis in [113]. Optimal frame decoding time is the ratio of MBs in the frame

given by the frame’s width, W, multiplied by its height, H, so that W × H = M, and

the number of processors used to decode the frame, N. Thus we have the minimum

number time slots needed to decode the video frame is M/N.

Figure C.5, focusing on the “completed” blocks on the upper left corner of the
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Figure C.5: 6 SPUs decoding a video frame. N: Number of processing elements. M:
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illustrated frame, shows the IBM Cell with 6 SPUs working on a video at the moment

when the 6th SPU starts decoding. Up to this point, fewer than 6 SPUs have been

working, after this point, all 6 SPUs are utilized until the last row is started, after

which each SPU becomes idle again after finishing its row. This “ramp-up” work has

taken 2N − 1 time slots, where N is the number of processors. The number of MBs

completed in the ramp-up phase is given by

(2N−2)·N
2 + N = N2 (C.1)

Once the last row of MBs is started, this final N2 MBs are again completed in 2N − 1

time slots. The remaining M − 2N2, MBs shown in white in the center of the frame

in Figure C.5, are encoded optimally, unlike the ramp-up and ramp-down MBs, in

(M − 2N2)/N timeslots. This gives us a total decoding time in MB timeslots, TN , for a

frame with M MBs encoding on N processing elements of

TN = 2(2N − 1) + M−2N2

N = 2N + M
N − 2 (C.2)

We would like to compare the performance of a system using one processor

for each MB row to an implementation which assigns multiple processing elements to
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(b) Encoder performance across configurations encoding HD 720p video.
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(c) Encoder performance across configurations encoding VGA video.

Figure C.6: .

Comparative encoder throughput performance, using a single core for each row or
multiple cores to reduce execution time of the sequential portion of MB encoder.

Results are given for multiple video resolutions: (a) 1080p, (b) 720p, and (c) VGA.

each row in order to parallelize the prediction algorithms. To do this, we first choose

the number of processors to be assigned to each MB row, Nrow. This gives us a new

notional value for N, N′ = bN/Nrowc, since assigning multiple processors to each row
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means that fewer rows can be encoded at once. Replacing N with N′ in Equation C.2

gives us the number of timeslots this implementation will take, prior to considering

speedup from parallelization of the prediction algorithms. This Figure can then be

scaled according to the expected parallelization speedup. The speedup is applied only

to the parallelizable fraction of the encoder work, p. The scaled performance result

is given in timeslots, T
′

N as:

T
′

N =
p(TN′ )

N′ + (1 − p)(TN′) (C.3)

By plotting TN and T
′

N over various configurations including number of cores used,

video resolutions, and p values, we can get a feel for how to partition the encoding

work. Results of this analysis are shown in Figure C.6.

C.3 Results

In all cases, throughput performance levels out once N > d(W + 1)/2e. This occurs for

N>61 in the case of full HD 1080p video where W = 120 as can be seen in Figure C.6a.

For each figure, two charts are given. The left chart shows the ratio of the absolute the-

oretical optimal decoding time, M/N, to the frame decoding time for different encoder

configurations. In each of these charts, the configurations are one processor assigned to

each MB row, and two processors assigned to each MB row with three possible values

of p from 0.6 to 0.9 based on the performance data previously presented in Figure C.4.

The charts on the right show throughput values, 1/T , for the same configurations as

well as the theoretical optimum. Data for Prow > 2 are not presented here because they

exhibited degrading performance as Prow grows larger.

C.4 Conclusion

It is observed from the graphs that assigning a single core per row is preferable to

assigning multiple processors to each row for smaller numbers of available processors.

For the smaller VGA video this number is around N = 18 whereas in HD 1080p it
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occurs near N = 44 for p = 0.7 Smaller p values can significantly reduce performance

for configurations with N > 1 due to reduced opportunity for parallelization in the

prediction algorithms.
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