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ABSTRACT  

   

Yield is a key process performance characteristic in the capital-intensive 

semiconductor fabrication process.  In an industry where machines cost millions 

of dollars and cycle times are a number of months, predicting and optimizing 

yield are critical to process improvement, customer satisfaction, and financial 

success.  Semiconductor yield modeling is essential to identifying processing 

issues, improving quality, and meeting customer demand in the industry. 

However, the complicated fabrication process, the massive amount of data 

collected, and the number of models available make yield modeling a complex 

and challenging task.   

This work presents modeling strategies to forecast yield using generalized 

linear models (GLMs) based on defect metrology data.  The research is divided 

into three main parts.  First, the data integration and aggregation necessary for 

model building are described, and GLMs are constructed for yield forecasting.  

This technique yields results at both the die and the wafer levels, outperforms 

existing models found in the literature based on prediction errors, and identifies 

significant factors that can drive process improvement.  This method also allows 

the nested structure of the process to be considered in the model, improving 

predictive capabilities and violating fewer assumptions.   

To account for the random sampling typically used in fabrication, the 

work is extended by using generalized linear mixed models (GLMMs) and a 

larger dataset to show the differences between batch-specific and population-

averaged models in this application and how they compare to GLMs.  These 
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results show some additional improvements in forecasting abilities under certain 

conditions and show the differences between the significant effects identified in 

the GLM and GLMM models.  The effects of link functions and sample size are 

also examined at the die and wafer levels.   

The third part of this research describes a methodology for integrating 

classification and regression trees (CART) with GLMs.  This technique uses the 

terminal nodes identified in the classification tree to add predictors to a GLM.  

This method enables the model to consider important interaction terms in a 

simpler way than with the GLM alone, and provides valuable insight into the 

fabrication process through the combination of the tree structure and the statistical 

analysis of the GLM.   
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Chapter 1 

INTRODUCTION 

Yield is a key process performance characteristic in the capital-intensive 

semiconductor fabrication process.  Semiconductor yield may be defined as the 

fraction of total input transformed into shippable output (Cunningham, Spanos, & 

Voros, 1995).  Hu (2009) points out that yield analysis usually has two purposes: 

to determine the root cause of yield loss and to build accurate models to predict 

yield.  From a manufacturing viewpoint, it is also extremely important to predict 

yield impact based on in-line inspections (Nurani, Strojwas, Maly, Ouyang, 

Shindo, Akella, et al. (1998).  In an industry where machines cost millions of 

dollars and cycle times are a number of months, predicting and optimizing yield 

are critical to process improvement, customer satisfaction, and financial success.   

    Since the 1960s, semiconductor yield models have been used in the 

planning, optimization, and control of the fabrication process (Stapper, 1989). A 

comprehensive review of these methods is given by Kumar, Kennedy, 

Gildersleeve, Albeson, Mastrangelo, and Montgomery (2006). Many of these 

methods focus on using defect metrology information, sometimes referred to as 

defectivity data, to predict yield.  While several other measurements, such as 

critical dimensions and electrical tests, are taken as wafers are fabricated, 

defectivity data seem to be the most influential in current yield modeling practice.    

    Defectivity measures come from a wafer-surface scan that identifies 

unusual patterns such as particles, scratches, or pattern defects.  These scans are 

performed after different layers of the wafer have completed processing (see 
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Figure 1).  The scans are time consuming, so only a few wafers are sampled to 

monitor the process and to predict yield.  Several types of data may be recorded 

for each defect, including the die the defect appears on, the size of the defect, and 

the location of the defect on the die.  In addition, a sample of the defects is often 

selected for classification based on SEM images.   

 

Figure 1. Semiconductor manufacturing process.  The semiconductor 

manufacturing process involves a series of steps that are repeated for each layer.  

Defect scans are often done following each layer’s processing, and wafer sort 

testing is performed when the chips have completed processing. 

 

 Another type of test is performed at wafer sort.  At this stage, the wafers 

have completed the fabrication process, and each die on the wafer is tested for 

functionality.  Dice that pass this test move on to be assembled and packaged 

before a final test is performed and the good product is shipped to the customer.  

At wafer sort, the dice are grouped into bins.  Passing dice are placed into one bin, 
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while failing dice are separated by their failure modes into a number of different 

bins.   

 One of the challenges of working with semiconductor measurements is the 

size of the massive datasets available with computer-aided manufacturing.  While 

these data record many important process parameters and test results, integrating 

them into a usable form is a considerable problem.  Often, process data from tools 

are stored in one database, defectivity data in another database, and electrical and 

wafer sort data in yet a third database.  Obtaining a dataset that contains 

defectivity data and the corresponding wafer sort data can require skilled 

knowledge of two different systems and the ability to query in both.  Aggregating 

the data into a more useable form for model building is also a time-consuming 

task.   

 Another challenge is developing an adequate yield model.  Yield models 

in the literature that use defect metrology data have neglected to properly account 

for the nested structure of the data and have assumed independence among the 

data.  Dice are grouped together on wafers, and wafers are processed together as 

lots, making this assumption questionable at best.  The yield models in the 

literature have overlooked this potential source of variation.  Also, most current 

modeling is done at the wafer level, which loses the vast amounts of information 

available at the die level.  In industry, many companies develop their own 

proprietary yield models that are not available in published literature.  Some of 

the most common methodologies used for these models include employing 

classical linear regression and tree-based classification using various predictors.   
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 Additional approaches used to predict yield and improve processing 

include using kill ratios (Lorenzo, Oter, Cruceta, Valtuena, Gonzalez, & Mata, 

1999; Yeh, Chen, & Chen, 2007), using unified defect and parametric data 

(Burglund, 1996) and using process and parametric data in a hierarchical 

generalized linear model (GLM) (Kumar, 2006).  Defectivity data have also been 

used to identify gross failures due to clusters of defects.  Spatial filters (Wang, 

2008) and tests for spatial randomness (Fellows, Mastrangelo, & White, Jr., 2009) 

have been developed to help identify non-random clusters.  Supervised learning 

can also be beneficial, as shown by Skinner, Montgomery, Runger, Fowler, 

McCarville, Rhoads, et al. (2002) and Hu (2009), for yield models that use 

parametric data as predictors.  Classification and regression tree (CART) 

techniques are recommended as a means to develop a “best path” to high-yield 

outputs and a path to avoid for low-yield outcomes (Skinner, et al., 2002).  

However, the predictive power of CART models is limited (Hu, 2009) and can 

have limitations due to the process parameters data not being available at the 

same time and due to the process and design interactions that are not considered 

in this approach (Bergeret & Le Gall, 2003). 

The literature suggests GLMs have not been applied to model 

semiconductor yield from defectivity data, yet this approach is appealing because 

GLMs are most appropriate for response data that follow a distribution in the 

exponential family (i.e. binomial or Poisson) and can handle the nested data 

structure and the die-level data (Montgomery, Peck, & Vining, 2006).   
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The purpose of this dissertation is to present a modeling strategy that 

guides practitioners to develop die- and wafer-level GLM- or generalized linear 

mixed model (GLMM)-based yield models using defect metrology data.  An 

example using real semiconductor yield data is presented that illustrates the 

strengths of this approach in comparison to other yield models.  This work also 

explores the effects of outliers on GLM models and the impact of using nested 

models at the die level, the differences between die- and wafer- level modeling, 

the differences between population-averaged and batch-specific random effects 

modeling, and the impact of integrating CART methods with logistic regression.  

These GLM models can be applied to determine which process steps are 

significant, to identify specific wafers or locations on wafers that warrant further 

investigation for improvements, and to predict future yields based on intermediate 

data, thus fulfilling the two purposes of yield analysis mentioned by Hu (2009) 

with a strategy that is easy for practitioners to use and implement.  

This work is organized by first presenting a review of the literature in 

Chapter 2 and by describing the data and the methods used to develop a useful 

dataset for modeling in Chapter 3.  Chapter 4 shows the results of applying GLMs 

to model these yield data.  Chapter 5 considers random effects by applying 

GLMM techniques and showing differences between population-averaged and 

batch-specific approaches.  Chapter 6 discusses a methodology of integrating 

CART techniques with those of logistic regression for improved models.  The 

conclusions are presented in Chapter 7 along with recommendations for future 

work.   
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Chapter 2 

LITERATURE REVIEW 

 While there are many measures of process performance, the number one 

index of success in the industry is yield (J. A. Cunningham, 1990).  There is some 

skepticism amongst practitioners when it comes to yield modeling techniques; 

still, their usefulness in the planning, optimization, and control of semiconductor 

fabrication cannot be overlooked (Stapper, 1989).  As improving productivity and 

cost effectiveness in the industry become more critical with increasing market 

competition, improving productivity and cost effectiveness is vital (Nag, Maly, & 

Jacobs, 1998).   

There are many challenges in creating a reasonable yield model.  One of 

these is utilizing the massive datasets available with computer-aided 

manufacturing.  Process parameters are constantly being recorded for each layer 

of fabrication.  Defects are found and classified at each layer as well.  Electrical 

test data and bin sort counts are also recorded, usually all in different databases.  

Since ownership of these data collection tools is usually segmented, the 

integration of the many types of data is no small task (Braun, 2002).   Other 

challenges arise with computational complexity of the models and with ensuring 

the assumptions made in yield formulas accurately represent the process.   

Despite the challenges, yield models have the opportunity to reap large 

rewards for semiconductor manufacturers.  Dance & Jarvis (1992) state that 

implementing yield models has “made it possible for process engineers to 

quantify their own process sector’s influence on [electrical] test yield” (p. 42).  
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Instead of waiting months to get final test results, the model can be used to insure 

process improvement.  This is possible when the yield models are linked with 

statistical process control methods, driving process improvement (Dance & Jarvis, 

1992).  

 Yield models are an important part of yield learning, which consists of 

eliminating one source of faults after another until an overwhelming portion of 

manufactured units function according to specification (Weber, 2004).  Yield 

learning is especially important as new products start up.  Companies must 

maximize yield as early as possible while still releasing a product before 

competitors launch.  Weber (2004) states that the yield-learning rate tends to be 

the most significant contributor to profitability in the semiconductor industry.  If 

the yield-learning ramp could be improved by six months, the cumulative net 

profit would more than double; if the yield ramp is delayed by six months, two-

thirds of the profit is eliminated (Weber, 2004).     

 According to Nag et al. (1998), the yield learning rate depends on the 

relationship between particles, defects, and faults and the ease of defect 

localization that in turn depends on the following: 

1. Size, layer and type of defect 

2. Ability to analyze the IC design 

3. Probability of occurrence of catastrophic events 

4. The effectiveness of the corrective actions performed 

5. The timing of each of the events mentioned 

6. The rate of wafer movement through the process (p. 164). 
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Because yield models reflect the relationships between particles, defects, and 

faults, they are important tools in yield learning and, consequently, profitability.   

 

Semiconductor Yield Modeling 

 Many different yield models have been developed and used since the 

1960s.  Stapper (1989) provided a history of many of these models, and Kumar, et 

al. (2006) also briefly discussed historical models before expanding the discussion 

to more recent models.  In understanding the changes in yield modeling 

throughout the years, it is valuable to observe how yield modeling began and how 

it has changed to better account for the rapidly-changing semiconductor 

fabrication processes.  This review will also demonstrate that, while advances are 

still being made, improved models that utilize the vast amount of data available 

and provide decision rules early in the process have not yet been developed.     

 

Initial Yield Models 

 As Wallmark (1960) examined the effects of shrinkage in integrated 

circuits, he calculated yield using 

 

N

i SY )100/1(    (2.1) 

  

for an N-stage device that has shrinkage such that S out of every 100 stages 

cannot be used.  Wallmark used this result in a binomial distribution to estimate 

yield of an integrated circuit (IC) with redundant transistors.  While this model 
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became inappropriate in later years as the interconnect wiring evolved from 

repairable methods to IC methods because this yield loss was not considered in 

the model, Wallmark was the first to model the IC yield of circuits with fault 

tolerance (Stapper, 1989).   

 Hofstein and Heiman also examined the problems of yield and tolerance.  

They observed the primary failure mechanism at the time to be a faulty gate 

insulator, likely caused by pinholes in the oxide layer that led to a short circuit 

(Hofstein & Heiman, 1963).  Assuming the oxide defects were randomly 

distributed on the surface of the silicon crystal and that the area of the pinhole was 

much smaller than the area of the gate electrodes, they used the Poisson model to 

predict yield for a device with N transistors, 

 

)( DAN GeY


  (2.2) 

 

where AG is the active area of the gate in each transistor and D is the average 

surface density of the defects.  While later work showed the assumptions used in 

this model to be incorrect, the relationship between defects and gate area has been 

useful as yield models evolve with the complexity of the process.   

 

Murphy’s Yield Model 

 Murphy (1964) constructed a yield model that accounted for variations in 

defect densities from wafer to wafer and die to die.  Using f(D) as the normalized 
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distribution function of dice in defect densities, Murphy proposed the overall 

device yield to be 

 





0

)( dDDfeY DA  (2.3) 

 

where D is again the density of defects per unit area, and A is the susceptible area 

of the device.  Murphy observed that distribution was bell-shaped, but due to the 

variation expected with the distribution from production line to production line, 

he used the triangular distribution as an approximation to simplify the 

calculations, 

 

2

0

01









 




AD

e
Y

AD

 (2.4) 

 

where D0 is the mean defect density.  This equation assumed that only one type of 

spot defect occurred.  Murphy (1964) noted this limitation, knowing that the 

occurrence of different types of defects may or may not be independent.   

 The defect density distribution, f(D), later became known as a compounder 

or mixing function with the yield formula being referred to as a compound or 

mixed Poisson yield model (Stapper, 1989). 

 



  11 

Seeds’ Yield Formula 

 Seeds (1967), like Murphy, also assumed that the defect densities vary 

from wafer to wafer and from die to die.  He used the exponential distribution to 

model defect densities where 0

/
/)( 0 DeDf

DD
  and produced the yield formula 

 

AD
Y

01

1


 . (2.5) 

 

Seeds’ method of determining yield for blocks of chips has since come to be 

known as the window method, where an overlay of windows is made for each set 

of chip multiples.  The number of defect-free windows is counted and the yield 

determined for each window size (Stapper, 1989).   

 Seeds’ data confirmed Murphy’s predictions, but showed that Murphy’s 

yield formula underestimated the yield due to the larger standard deviation in the 

triangular distribution.     

 

Dingwall’s Model 

In 1968, A. G. F. Dingwall (as cited by Cunningham, 1990) presented a 

yield model in the form 

 

 
3

01 / 3Y D A


  . (2.6) 
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Moore’s Model 

 Moore (as cited by Cunningham, 1990) published a yield model that he 

claimed was most representative of Intel’s processing in the form of 

 

0D A
Y e


 . (2.7) 

 

Cunningham (1990) compares several of these models and concluded Moore’s 

and Seeds’ models can be grossly inaccurate.   

 

Price’s Model 

Price (1970) criticized prior models that used an initial model that 

predicted yield falling off exponentially as circuit area increased, stating that this 

decay was less than exponential.  Price argued the previous use of Boltzmann 

statistics, considering all spot defects to be distinguishable was inappropriate.  He 

proposed using Bose-Einstein statistics to first derive Seeds’ model and then for r 

independent defect-producing mechanisms having defect densities D1, D2, …, Dr 

modeled yield as 

 

)/11()/11)(/11(

)/11(

21 NADNADNAD

N
Y

r

r







. (2.8) 

 

Price stated the experimental measurement of defect densities due to a single 

defect-producing mechanism was made more tractable with this model.   
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 While this approach was used in practice for a time, the assumption that 

the defects are indistinguishable was found to be inappropriate for IC fabrication.  

Murphy (1971) pointed out Price’s error lay in confusing the highly specialized 

quantum mechanics terms “distinguishable” and “particle” with their everyday 

usage.  In general, when defects are counted, they are distinguishable (Stapper, 

1989).  Price’s model has not stood the test of time and has not been developed 

further.  

 

Okabe’s Model 

 Okabe, Nagata, and Shimada (1972) proposed a model that took into 

account different processing steps, assuming that critical areas and defect 

densities were the same for all layers.  For a process with n process steps, the 

model had the form 

 

nnAD
Y

)/1(

1

0
  (2.9) 

 

and was derived from Murphy’s model using the Erlang distribution for the 

compounder.  
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 Negative Binomial Yield Model 

 The negative binomial yield model was the first model to consider defect 

clustering.  This model is also derived from Murphy’s but uses the gamma 

distribution as the compounder.  This produces 

 

  )/1( ADY  (2.10) 

 

where  is a parameter related to the coefficient of variation of the gamma 

distribution that is a rational number greater than zero (Stapper, 1989).  Stapper 

(1976) was one of the first to consider defect clustering.  The negative binomial 

model’s parameter  was used to represent a clustering parameter.  The negative 

binomial model has been used extensively, though when severe clustering is 

present, the formula becomes inadequate (Stapper, 1989).   

 Another concern with the negative binomial model is how  should be 

determined.  Cunningham (1990) relates values of  to different levels of 

clustering and connects them to other yield models.  This is shown in Table 2. 

Table 2.1.  Relationships between negative binomial model and other models 

based on values for alpha. 

 

Clustering Value of  Yield Model 

None About 10 to   Poisson 

Some 4.2 Murphy 

Some 3 Dingwall 

Much 1 Seeds 
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If the company has similar, mature products,  may be determined by curve 

fitting for that factory environment.  For different or new products, Cunningham 

(1990) describes a method for determining , but the approach is not straight 

forward.  Cunningham (1990) gives a formula for calculating , as 

 

2




 



 (2.11) 

 

where   is the mean of the number of defects per die, and 2  is the variance, but 

he mentions that this calculation can yield results that are quite scattered and 

sometimes negative.  Cunningham describes how  may be determined using the 

defects on the wafers by using surface particle maps and an overlaid grid of 

different sizes.  Using averages of defect densities from these grids, Cunningham 

(1990) proposed using 

 

 
2

2

1
/

1 /avg
avg

  
 




. (2.12)     

 

This approach does not always give positive values either, though, and produces 

different calculated values for  for the different grids.   
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Poisson Mixture Yield Models 

 Reghavachari, Srinivasan, and Sullo (1997) developed the Poisson-

Rayleigh and Poisson-inverse Gaussian models furthering the expansion of 

Murphy’s model.  With the Poisson-Rayleigh model, they investigate the special 

case of using a Weibull distribution with =2.  This results in the yield model 

 

   
2 1/ 2

0 0 01 exp / /Y AD AD erfc AD   
 

 (2.13) 

 

Using the inverse-Gaussian distribution, Reghavachari, et al. (1997) constructed 

the Poisson-inverse Gaussian mixture yield model of 

 

1/ 2

02
( ) exp 1 1A

AD
Y L A 



   
      
     

 (2.14) 

 

where   is a shape parameter and 0D  is a scale parameter.  In comparisons with 

other mixing distributions, such as the exponential, half Gaussian, triangular, 

degenerate and gamma, Reghavachari, et al. (1997) showed the Poisson-gamma 

(negative binomial yield model) and the Poisson-inverse Gaussian mixtures are 

sufficiently robust to emulate all the other models, supporting the prevalent use of 

the negative binomial model.  Reghavachari, et al. (1997) point out the limitations 

of these models through a discussion on the impact of reference regions used in 

the models, which may be chip die areas, specific regions within wafers such as 
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groups of chip areas, entire wafers, or even batches of wafers.  They show these 

models are not sufficient to completely characterize the spatial patterns of defects 

generated and that different specifications of such regions lead to different levels 

of aggregations in the spatial distribution of defects, which must be well 

understood to properly estimate the parameters of the model and to obtain good 

results.  

 

Clustering and Critical Area Analysis 

 The type, size, and arrangement of defects have played a part in more 

recent yield models and process-improvement efforts.  Nahar (1993) points out 

that defects may be classified into one of three categories.  Point defects include 

oxide pinholes, isolated particles, or process-induced defects.  Line defects can be 

scratches, step lines, or other defects that have high length-to-width ratios.  Area 

defects are a third category and include misalignment, stains, and wafer cleaning 

problems.  Kuo and Kim (1999) indicate it is useful to classify defects as random 

or nonrandom.  Random defects occur by chance, such as shorts and opens or 

local crystal defects.  Nonrandom defects include gross defects and parametric 

defects.   

 These different classifications of defects support the development of 

models that take into account clustering in methods different from the negative 

binomial model in Equation 2.10.  Clusters of defects can be, in general, classified 

as either particle or process related, with particle-related clusters being assignable 

to individual machines and process-related clusters being attributable to one or 
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more process steps not meeting specification requirements (Hansen, Nair, & 

Friedman, 1997; Fellows, Mastrangelo, & White, Jr., 2009).  Hansen, Nair, and 

Friedman (1997) developed methods for routinely monitoring wafer-map data to 

detect significant spatially clustered defects that are of interest in yield prediction 

and process improvement.  White, Jr., Kundu, and Mastrangelo (2008) show how 

the Hough transformation can be used to automatically detect such defect clusters 

as stripes, horizontal and vertical scratches, and diagonal scratches at 45° and 

135° from the horizontal.  This technique also works well to detect defect patterns 

such as scratches at arbitrary angles, center defects, and edge defects, but is not 

useful in detecting defect clusters that cannot be so characterized, such as ring 

defects.  Fellows, Mastrangelo, and White, Jr. (2009) compare a spatially 

homogeneous Bernoulli process (SHBP) and a Markov random field (MRF) for 

testing the randomness of defects on a wafer.  Wang (2008) proposes an approach 

that applies a spatial filter to the defect scan data, then uses kernel eigen-

decomposition of the affinity matrix for systematic components to determine the 

number of clusters embedded in the dataset.  Spectral clustering is applied to 

group the data in a high-dimensional kernel space before a decision tree is used to 

generate the final classification results.  These detections techniques have not yet 

been incorporated into formal yield models and are more applicable currently in 

process improvement and problem solving in the fab. 

 The size and location of defects is considered in critical area analysis.  

Zhou, Ross, Vickery, Metteer, Gross, and Verret (2002) discuss using critical area 

analysis (CAA) to help quantify how susceptible a device may be to particle 
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defects.  The critical area of a die is described as the area where, if the center of a 

particle of a given size lands, the die will fail.  (See Stapper, 1989, for a helpful 

illustration.)  The probability of failure depends on the defect size, the layout 

feature density, and the failure modes, such as short or open (Zhou, et al., 2002).  

There is a unique critical area for each defect size and for each layer in the die 

(Nurani, et al., 1998).  Yield is estimated by using a generalized Poisson-based 

model, given as 

 

    









 

N

i

i

crit

ii dRRfRADY
1

0
exp  (2.15) 

 

where i is the layer index, N is the number of layers, R is the defect radius, D is 

the defect density, and    ,  critA R f R  are the critical area and the defect size 

probability density functions of the defect radius, respectively (Nurani, et al., 

1998).  

 Zhou, et al. (2002) describe the unique benefits of this approach due to it 

allowing factory planners to anticipate yields for a new product more precisely 

than the simple estimation using die area and defect density.  This approach 

requires much information, though.  The architecture of the device must be known 

and assessed as to what size of defects may cause faults in the various layers.  The 

defect size distribution, while widely believed to be of 31/ x type for smaller 

defects (Stapper, Armstrong, & Saji, 1983) is variable (Stapper & Rosner, 1995) 

and must be known or estimated.  Scaling must be done to manipulate the critical 
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area as suggested by Zhou, et al. (2002).  Defect types may need to be considered 

for different yield impacts (Nurani, et al., 1998), and all failure modes may not be 

considered. Thus, this modeling approach is complex and limiting. 

 

Kill Ratios 

 Defect type and size can be used to determine a measure called a kill ratio 

which is also used in industry to estimate yield and to enable engineers to find 

processing problems.  Kill ratios link defectivity data and unit probe data.  

Lorenzo, et al. (1999) define a kill ratio as bad chips with one defect divided by the 

sum of bad chips with one defect and good chips with one defect.  Kill ratios can be 

used whether assuming the visual defects are randomly distributed on a wafer or 

assuming the presence of defect clustering (Yeh, Chen, Wu, & Chen, 2007).  

These ratios have been praised for their impact in providing trend charts of “dead 

chips,” in identifying “losing layers” of processing, and in examining yield losses 

for a single wafer (Lorenzo, et al., 1999). 

A limitation with kill ratios is they, like many of the yield models that rely 

only on defect data, only consider cosmetic defects while other problems can also 

lead to failure.  They also do not consider the impact of a die having multiple 

defects or where the defects occur in the process.  Another drawback is that as 

process technologies change, defect densities and their yield impact also change, 

so kill-ratios must be regenerated for each new product generation (Nurani, et al., 

1998).  
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Unified Defect and Parametric Model 

 As the semiconductor industry moves to smaller design rules, process 

parameter variations now cause significant and functional yield problems (Braun, 

2002).  Parametric yield loss problems also dominate over defect-related yield, 

particularly during the early start-up phase of a new process (Berglund, 1996).  

This suggests both defect management and parametric control are necessary for 

effective yield management, rather than a single focus on defect problems.  In 

prior models, a constant multiplier, called the area usage factor (AUF), has been 

used to account for parametric defects (Ham, 1978).  This model is given by 

 


 dDeDfYY AD)(0  (2.16) 

 

or can also be used presented using the negative-binomial model: 

 

  )/1( 00 ADYY . (2.17) 

 

 Berglund (1996) suggests the assumption of a die-size-independent area 

usage factor fails to accommodate the die-size dependence of the total failure 

area.  He takes the parametric data into consideration in the formula where L is 

length of the die, W is width of the die, D0 is the mean defect density and s is the 

defect size 

 



  22 

})2/()((exp{}exp{ 2

0000 ssWLDLWDY  . (2.18) 

 

This two-parameter model is easier to use for analysis and provides good 

agreement with the data.  It is also applicable to both point defect yield problems 

as well as combinations of defects, larger size defects, and parametric yield 

limiters (Berglund, 1996).   

 

Hierarchical Generalized Linear Yield Model 

 Kumar (2006) focuses on process and parametric data to introduce the 

concept of using a hierarchical generalized linear model (hGLM) approach to 

model yield in the form of bin counts.  To overcome the problems of infeasibility 

of using all process and test variables in a model, Kumar (2006) proposes to break 

the system into smaller, more manageable subprocess models, estimate the key 

characteristics for each subprocess, and combine all the information to estimate 

the higher-level key performance characteristics, such as yield.  The subprocess 

modeling is begun by exploratory data analysis, by discussions with process 

experts in the industry, and by review of process reports.  The relationships 

between the key subprocess and the in-line electrical (or parametric) test are 

modeled.  These submodels are then combined into a metamodel that is used to 

estimate bin count.  Kumar (2006) shows the expected value and variance of the 

parameters associated with the submodels and with the metamodel are unbiased 

when the submodels are assumed to be orthogonal to each other.  These are also 

unbiased under the independence assumption.  His results also show that the 
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expected bias or residual in the metamodel is reduced with each additional 

inclusion of an independent submodel.  The use of the metamodel shows better 

results than using the parametric data alone to model yield.   

This work was expanded by Chang (2010) to make it more general and 

applicable, using GLMs rather than assuming normality as Kumar (2006) did.  

Chang (2010) also proposed a method that does not require orthogonality, 

expanding the application to those beyond designed experiments and develops a 

model selection technique based on information criterion to find the best sub-

process for the intermediate variables.   

 Before this hGLM method was introduced, all yield models have included 

defect data in their calculations.  However, Kumar (2006) and Chang (2010) don’t 

include this element in their models, relying on process data and parametric data 

to make the prediction.  Chang (2010) indicates that defectivity data were not 

included in the model due to the small number of lots available that had 

defectivity, parametric, and process data available for the hGLM.  Still, the use of 

the process data introduces the ability for practitioners to make decisions 

regarding continued processing given low yield probabilities much sooner, 

enabling savings of time and money (Cunningham et al., 1995).         

 

Classification and Regression Trees (CART) 

 Skinner, et al. (2002) examine modeling and analysis of wafer probe data 

using parametric electrical tests as predictors by applying traditional statistical 

approaches,  such as clustering and principal components and regression-based 
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methods, and introducing the application of classification and regression trees 

(CART).  CART produces a decision tree built by recursive partitioning with 

predictor variables being used to split the data points into regions with similar 

responses, allowing the modeler to approximate more general response surfaces 

than standard regression methods (Skinner, et al., 2002).  While CART did not 

provide a more accurate prediction than the regression methods used in the study, 

the model is easier to interpret and can provide a “recipe” for both high-yield and 

low-yield situations, which are some of its prime advantages (Skinner, et al., 

2002). 

Data mining has also been used in other areas of the semiconductor 

industry.  Hu (2009) uses CART to detect the source of yield variation from 

electrical test parameters and equipment, and Braha and Shmilovici (2002) use 

data mining techniques to improve a cleaning process that removes micro-

contaminants. 

Data mining can be defined as an activity of extracting information from 

observational databases, wherein the goal is to discover hidden facts (Anderson, 

Hill, & Mitchell, 2002).  Some of the advantages of the CART method are that 

this approach does not contain distribution assumptions and that these trees can 

handle data with fewer observations than input variables.  CART is also robust to 

outliers and can handle missing values (Anderson, et al., 2002).  It can be used 

effectively as an exploratory tool (Hu, 2009), which is of considerable interest 

when dealing with such large datasets.  The goal with CART is to minimize 
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model deviance and to maximize node purity without over-fitting the model 

(Skinner, et al., 2002). 

Method. 

Figure 2.1 illustrates the binary tree structure used in CART.  Binary 

recursive partitioning splits the dataset into nodes.  After split 1 is done, the data 

are divided into two nodes, x2 and x3 in Figure 2.1.  The data in these nodes 

continue to be split into subsequent nodes until terminal nodes are formed.  

Terminal nodes are shown by the boxes in Figure 2.1 and are denoted by Ti. 

 

Figure 2.1.  The binary tree structure of CART.  This structure consists of nodes 

that continue to be split until terminal nodes are formed.   

 

The entire construction of a CART decision tree revolves around three 

elements.  These include the section of the splits, the decision of when to declare 

a node terminal or to continue splitting it, and the assignment of each terminal 

node to a class (Breiman, Friedman, Olshen, and Stone, 1984).  Good splits are 

x1 

x2 x3 

T1 T2 T3 
x4 

T4 T5 

Split 1 

Split 2 Split 3 

Split 4 
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defined by their purity.  The impurity of a node for a classification tree can be 

defined as 

 

 ( ) (1| ), (2 | ),..., ( | )i t p t p t p j t  (2.19) 

 

where i(t) is a measure of impurity of node t, p(j|t) is the node proportions (e.g., 

the cases in node t belonging to a certain class j), and  is a non-negative 

function (Brieman, et al., 1984).  The measure of node impurity by the Gini index 

of diversity (Brieman, et al., 1984) is defined as  

 

( ) ( | ) ( | )
j i

i t p i t p j t


 . (2.20) 

 

This Gini method is the default for CART 5.0 (CART for Windows user’s guide 

(Version 5.0), 2002).  Other splitting criteria have been developed and used and 

are described in depth in Brieman, et al. (1984).  

Terminal nodes are created when there is no significant decrease in 

impurity by splitting the node.  This is measured by  

 

( , ) ( ) ( ) ( )R R L Li s t i t p i t p i t     (2.21) 
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where s is a candidate split, and Rp  and Lp  are the proportions of observations of 

the parent node t that go to the child node tR and tL, respectively (Chang & Chen, 

2005).  The best splitter is one that maximizes ( , )i s t .   

 Once a tree is “grown,” the next step is to prune the tree.  This creates a 

sequence of simpler trees.  This process begins with the saturated tree with very 

few observations in each terminal node and, selectively pruning upward, produces 

a sequence of sub-trees until the tree eventually collapses to the tree off the root 

node (Chang & Chen, 2005).  This pruning is done to guard against overfitting 

(Brown, Pittard, & Park, 1996).  Overfitting occurs when the decision tree 

constructed classifies the training examples perfectly, but fails to accurately 

classify new unseen instances (Braha & Shmilovici, 2002).  Pruning relies on a 

complexity parameter which can be calculated through a cost function of the 

misclassification of the data and the size of the tree (Chang & Chen, 2005).  To 

determine this cost-complexity parameter, first, the misclassification cost for a 

node and a tree must be determined.  The node misclassification cost can be 

defined as  

 

( ) 1 ( | )r t p j t   (2.22) 

 

and the tree misclassification cost can be defined as  

 

( ) ( ) ( )
r T

R T r t p t


  (2.23) 
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The cost-complexity measure for each subtree T, R(T), can be defined, then, as 

 

( ) ( ) | |R T R T T    (2.24) 

 

Where | |T  is the tree complexity, which is equal to the number of terminal nodes 

of the subtree, and   is the complexity parameter which measures how much 

additional accuracy is added to the tree to warrant additional complexity (Chang 

& Chen, 2005).  Alpha varies between 0 and 1, and by gradually increasing this 

parameter, the smaller | |T  becomes to minimize ( )R T , and a sequence of 

pruned subtrees is generated (Chang & Chen, 2005).   

 To choose the best pruned tree that avoids overfitting, cross-validation is 

conducted.  This may be done by using techniques such as resubstitution, test 

sample estimation, V-fold cross validation, or N-fold cross-validation (Brieman, 

et al., 1984). 

 Other Applications. 

 CART has been used to model a variety of data in applications.  

Khoshgoftaar and Allen (2002) apply CART to predicting fault-prone software 

modules in embedded systems, and Khoshgoftaar and Seliya (2003) compare two 

CART models with other approaches for modeling software quality.  Neagu and 

Hoerl (2005) use CART methods to define a “yellow zone” for predicting 

corporate defaults.  Scheetz, Zhang, and Kolassa (2009) apply classification trees 
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to identify severe and moderate vehicular injuries, and Chang and Chen (2005) 

use tree-based data mining models to analyze freeway accident frequencies in 

Taiwan.  CART is commonly applied to medical studies as well.  For example, 

Kurt, Ture, and Kurum (2008) use CART to predict coronary heart disease, and 

Ture, Kurt, Kurum, and Ozdamar (2005) use this approach to predict 

hypertension.  These two papers show how the decision tree structure of CART is 

similar to medical reasoning and how it can be used to complement statistical 

approaches such as logistic regression.   

  

Statistical Approaches 

 Though many yield models have been introduced over the last five 

decades, there is still a need for a model that can accurately model yield for a 

semiconductor process for both purposes of process improvement and of 

forecasting yield.  The assumptions made in these past models are not generally 

valid, and the complexity of some approaches and the data required can also be 

limiting factors.  An approach is needed that examines the impact of a defect 

being located on a specific processing layer to help detect significant yield 

impacts for those layers.  Also, these models of the past do not model yield at the 

die level, losing much of the information that is captured during expensive defect 

scans, and forcing modelers to use average defect densities across wafers or lots.  

The past models also do not consider the nested structure of the process, where 

dice are fabricated together on wafers, and wafers are processed together in lots.  
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In addition, interactions between various factors are not considered, such as 

considering the impact of having a defect on a die on multiple layers.  For 

additional discussion of the assumptions made in yield models, see Ferris-Prabhu 

(1992).  Statistical approaches, such as using regression techniques, offer a 

solution for these problems.  Ordinary least squares (OLS) regression, GLMs, and 

GLMMs are described in this section. 

Ordinary Least Squares Regression 

For response data that are normally distributed, linear regression models 

often fit well.  These models are in the form 

 

0 1 1 ... p py x x       
. (2.25) 

 

The coefficients, 0 1,  ,  p   , are estimated using the method of least squares.  

These models assume the residuals to be normally distributed with mean equal to 

zero and constant variance as well as independence between the observations.  If 

these assumptions are violated, the model is not adequate (Montgomery, Peck & 

Vining, 2006).   

Generalized Linear Models (GLMs) 

 Due to the non-normality of the pass/fail response variable for yield, 

techniques such as ordinary least squares regression are not adequate for 

semiconductor yield models.  To properly model a non-normal response whose 
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distribution is a member of the exponential family, generalized linear models may 

be successfully employed.  The exponential family includes the normal, Poisson, 

binomial, exponential, and gamma distributions.  

Generalized linear models (GLMs) were introduced by Nelder and 

Wedderburn (1972).  They combined the systematic and random (error) 

components of a model characterized by a dependent variable, a set of 

independent variables, and a linking function.  The systematic component is the 

linear predictor part of the model, the random component is the response variable 

distribution (or error structure), and the link function between them defines the 

relationship between the mean of the ith observation and its linear predictor 

(Skinner, et al., 2002).  This approach uses the maximum likelihood equations, 

which are solved using an iterative weighted least squares procedure (Nelder and 

Wedderburn, 1972).  GLMs provide an alternative to data transformation methods 

when the assumptions of normality and constant variance are not satisfied 

(Montgomery, Peck, & Vining, 2006).  One of the most commonly used 

generalized linear models is logistic regression. 

 Logistic regression accounts for cases that have a binomial response, such 

as proportion or pass/fail data.  The logistic model for the mean response ( )E y  is 

given by 

 

0 1 1( ... )'

1 1
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1 1 p pi x x
E y

e e
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 

x β
. (2.26) 

 



  32 

The parameters are estimated using maximum likelihood.   

 There are three links commonly used in logistic regression models:  the 

logit, the probit, and the complimentary log-log links.  These are expressed as 

 

Logit 

exp( ) 1
( )

1 exp( ) 1 exp( )
E y  

  

'

' '

x β

x β x β  (2.27) 

 

 

Probit ( ) ( )E y  'xβ  (2.28) 

 

  

Complimentary Log-Log ( ) 1 exp[ exp( )]E y    'xβ . (2.29) 

 

 

For the logit link, odds ratios are calculated that aid interpretation of the 

predictors.  The odds ratio can be interpreted as the estimated increase in the 

probability of success associated with a one-unit change in the value of the 

predictor variable (Montgomery, Peck, & Vining, 2006).  Odds ratios are 

calculated for each predictor by  
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
   (2.30) 

 

where ˆ
RO  is the odds ratio for the predictor variable being examined, and ˆ

i  is 

the coefficient in the model corresponding to the predictor variable.  For example, 
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if a model predicting failing dice has defectsx985.046.2 βx
'

, an increase of one 

defect will have an impact of an increased probability of failing dice of  

exp(0.985) = 2.678.  These ratios are not calculated for the probit or 

complimentary log-log links.   

 For each of the link functions, the significance of individual regressors is 

determined using Wald inference, which yields z-statistics and p-values similar to 

the t-tests done in linear regression to test  

 

0 : 0jH  
 (2.31) 

 

1 : 0jH  
. (2.32) 

 

 Model adequacy is determined by goodness-of-fit tests.  Three statistics 

are often used: the Pearson 

, Deviance, and the Hosmer-Lemeshow values.  

Deviance can also be used to evaluate possible overdispersion, which can 

underestimate regressors’ standard errors.  For more on the theory and application 

of logistic regression models, see McCullagh and Nelder (1989), Hosmer and 

Lemeshow (2000), and Myers, Montgomery, Vining, and Robinson (2010). 

 Logistic regression is used more often than any other member in the 

family of generalized linear models with wide applications to biomedical, 

business management, biological, and industrial problems.  GLMs have also been 

applied to design experiments with non-normal responses (Lewis, Montgomery, 
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& Myers, 2001), to monitor multi-stage processes (Jearkpaporn, Borror, Runger, 

& Montgomery, 2007) and to analyze reliability data (Lee & Pan, 2010). Software 

packages such as Minitab and JMP simplify developing such models. 

 

Generalized Linear Mixed Models (GLMMs) 

 One of the assumptions with GLMs is that the data are independent, 

suggesting the experimental run has been completely randomized.  In many cases, 

factors in a process or experiment may be difficult or costly to change, making 

this randomization impractical. Observations within these groups, which may be 

split plots of split-plot designs or longitudinal data where an individual is tracked 

over time, for example, are correlated, thus violating this assumption (Robinson, 

Myers, and Montgomery, 2004).    

Generalized linear mixed models (GLMMs) extend the GLM to include 

various covariance patterns, enabling the GLM to account for correlation present 

in random effects (Robinson, et al., 2004).  The random effects models can also 

relate to methods of dealing with forms of missing data or with random 

measurement error in the explanatory variables (Agresti, 2002).   

Breslow and Clayton (1993) first proposed GLMMs, and work by 

Wolfinger and O’Connell (1993) refined the technique.  This advance has had a 

significant impact on research, demonstrated by the 2004 ISI Essential Science 

Indicator identifying Breslow and Clayton (1993) as the most cited paper in 

mathematics in the previous decade (Dean & Nielson, 2007).  The GLMMs 

explicitly model variance components and can be written as a batch-specific 
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model or as a population-averaged model.  These two approaches have different 

methods and scopes of inference for prediction.   

 Batch-specific model. 

 Also known as subject-specific models, batch-specific models are most 

useful in repeated measures studies where individual profiles of subjects across 

time are of interest (Myers, et al., 2010).  These models produce estimates of the 

mean conditional on the levels of the random effects.   

 Similar to linear mixed models, random effects GLMs are defined by 

y = μ+ε , where  

 

ZγXβμ )(g . (2.33) 

 

Here, g is the appropriate link function, and γ  and ε are assumed to be 

independent.  This gives the conditional mean for the thj  cluster as  

 

       
jjjjjn ggE

i
γZβXηγy   11|  (2.34) 

 

where 
jny is the vector of responses at the thj cluster, g is the link function, jη  is 

the linear predictor, jX  is the  jn p  matrix of fixed effect model terms 

associate with the thj  cluster, and β  is the corresponding  1p  vector of fixed 

effect regression coefficients.  For the random effect portion, jγ  is the  1q  
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vector of random factor levels associated with the thj cluster, and jZ  is the 

corresponding matrix of predictors for the thj cluster (Myers, et al., 2010).  The 

thj cluster has jn  observations.   

 This mixed model involves some assumptions as well.  The conditional 

response, γy | , is assumed to have an exponential family distribution, and each of 

the random effects are assumed to be normally distributed with mean zero and the 

variance-covariance matrix of the vector of random effects in the thj cluster is 

denoted jG .  The jG  is typically assumed to be the same for each cluster 

(Myers, et al., 2010). 

 Population-averaged model. 

 When interest is in estimating more general trends across the entire 

population of random effects rather than at the specific levels, a population-

averaged model is more appropriate (Myers, et al., 2010). While a popular 

approach for estimating the marginal mean using the batch-specific models is to 

set 0ˆ γ  since 0γ )(E , this estimate of the marginal mean will differ from that 

found using the population-averaged approach, and the estimated fixed effect 

parameters will also differ for the two approaches (Myers, et al., 2010) with the 

conditional effects usually being larger than the marginal effects, though the 

significance of the effects is usually similar (Agresti, 2002).   

 The marginal mean is more tedious to obtain due to the nonlinearity in 

GLMMs, so often approximations must be used.  This is done by linearizing the 



  37 

conditional mean using a first-order Taylor series expansion about ( )E η Xβ and 

gives the approximation of the unconditional process mean as 

 

      Xβγ|yy 1 gEEE . (2.35) 

 

This approximation will be exact for a linear link function and is more accurate 

when the variance components associated with δ  are close to zero (Myers, et al., 

2010).  

 The population-averaged model requires that a covariance structure be 

defined for the error term.  This is a major difference from the batch-specific 

approach.  For split-plot designs, the correlation matrix, R , generally has a 

compound symmetric structure (Robinson, et al., 2004).  For a random effect such 

as following a subject over time in a longitudinal study, R  may take on a first-

order autoregressive (AR-1) structure.   

 Robinson, et al. (2004) found that in examining the application of both 

approaches to a split plot experiment, that when the prediction of an average 

across all subjects (batches, in this case) is of interest, it is better to model the 

unconditional expectation of the response than the conditional expectation.  The 

population-averaged model is appealing for prediction purposes, but the quality of 

this model is heavily dependent on the assumption that the group of random 

subjects or clusters is a true representation of the whole (Robinson, et al., 2004).  
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Parameter estimation. 

With GLMs, the independence of the data makes the log likelihood well-

defined and the objective function for estimating the parameters simple to 

construct (SAS, 2006).  This is not the case for GLMMs.  The objective function 

may not be able to be computed due to cases:  

1.  where no valid joint distribution can be constructed,  

2. where the dependency between the mean and the variance places 

constraints on the possible correlation models that simultaneously 

yield valid joint distributions and desired conditional distributions, or  

3. where the joint distribution may be mathematically feasible but 

computationally impractical (SAS, 2006).    

Two basic parameter estimation approaches have been suggested in the 

literature: to approximate the objective function and to approximate the model 

(SAS, 2006).  Integral approximation methods approximate the log likelihood of 

the GLMM and use the approximated function in numerical optimization using 

techniques such as Laplace methods, quadrature methods, Monte Carlo 

integration, and Markov Chain Monte Carlo methods (SAS, 2006).  The 

advantage of this approach is that it provides an actual objective function for 

optimization.  This singly iterative approach has difficulty in dealing with crossed 

random effects, multiple subject effects, and complex marginal covariance 

structures (SAS, 2006). 

Linearization methods are used to approximate the model, using 

expansions to approximate the model by one based on pseudo-data with fewer 
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nonlinear components (SAS, 2006).  These fitting methods are usually doubly 

iterative.  First, the GLMM is approximated by a linear mixed model based on 

current values of the covariance parameter estimates.  The resulting linear mixed 

model is then fit, also using an iterative process.  Upon convergence, the new 

parameter estimates are used to update the linearlization.  The process continues 

until the paramenter estimates between successive linear mixed model fits change 

within a specified tolerance (SAS, 2006). 

Linearization-based methods have the advantage of including a relatively 

simple form of the linearized model, allowing it to fit models for which the joint 

distribution is difficult or impossible to obtain (SAS, 2006).  While this approach 

handles models with correlated errors, a large number of random effects, crossed 

random effects, and multiple types of subjects well, the method does not use a 

true objective function for the overall optimation process, and the estimates of the 

covariance paramenters can be potentially biased, especially for binary data (SAS, 

2006).  PROC GLIMMIX uses linearizations to fit GLMMs.   

The default estimation technique, restricted pseudo-likelihood (RPL), is 

based on the work of Wolfinger and O’Connell (1993).  The Pseudo-Model 

begins with  

 

      μηZγXβγ|Y   11 ggE   2.36 

  

where )(~ G0,γ N  and   2/121var RAAγ|Y / .   
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The first-order Taylor series of μ about β
~

and γ~ yields 

 

       γγZΔββXΔηη ~~~~~11   gg  2.37 

 

where 
 


 ~,

~

~















η

Δ
1g

is a diagonal matrix of derivatives of the conditional 

mean evaluated at the expansion locus (Wolfinger & O’Connell, 1993).  This can 

also be expressed as 

 

   ZγXβγZβXημΔ
1   ~~~~ 1g  2.38 

 

The left-hand side is the expected value, conditional on γ , of  

 

   PγZβXηYΔ
1   ~~~~ 1g  2.39 

 

and 

 

  11/21/21
ΔRAAΔγ|P


~~

var . 2.40 

 

Thus, the model 

 

εZγXβP   2.41 
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can be considered.  This is a linear mixed model with pseudo-response P , fixed 

effects β , random effects γ , and    γ|Pε varvar  . 

Now, the marginal variance in the linear mixed pseudo-model is defined 

as 

 

  12/12/1 ~~
'  ΔRAAΔZGZθV  2.42 

 

where θ is the  1q  parameter vector containing all unknowns in G  and R .  

Assuming the distribution of P  is known, an objective function can be defined 

based on this linearized model.  The restricted log pseudo-likelihood (RxPL) for 

P is  

 

         2log
2

log
2

1

2

1
log

2

1 11 kf
lR





XθVX'rθVr'θVpθ,  2.43 

 

With   pVX'XVX'Xpr
11  .  f denotes the sum of the frequencies used in 

the analysis, and k denotes the rank of X .  The fixed effects parameters β  are 

profiled from these expressions, and the parameters in θ  are estimated by 

optimization techniques, such as Newton-Raphson.  The objective function for 

minimization is  pθ,Rl2 .  At convergence, the profiled parameters are 

estimated as  
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    




 






pθVXXθVXβ
11

ˆˆˆ  2.44 

 

and the random effects are predicted as 

 

  rθVZGγ ˆˆˆˆ
1

 . 2.45 

 

Using these statistics, the pseudo-response and error weights of the linearlized 

model are recomputed and the objective function is minimized again until the 

relative change between parameter estimates at two successive iterations is 

sufficiently small (SAS, 2006).  For more on parameter estimation, see Wolfinger 

and O’Connell (1993), SAS (2006), and Myers, et al. (2010). 

Applications. 

 GLMMs have been applied widely in epidemiology (Fotouhi, 2008), but 

have also been used to model events such as post-earthquake fire ignitions 

(Davidson, 2009), electrical power outages due to severe weather events (Liu, 

Davidson, & Apanasovich, 2007), credit defaults (Czado & Pfluger, 2008), plant 

disease (Madden, Turecheck, & Nita, 2002), and workers’ compensation 

insurance claims (Antonio & Beirlant, 2007).  GLMMs can also be used in 

designed experiments (Robinson, et al., 2004) and robust design and analysis of 

signal-response systems (Gupta, Kulahci, Montgomery, & Borror, 2010).  Myers, 

et al. (2010) and Agresti (2002) include additional examples of applications of 

GLMMs. 
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Chapter 3 

DATA REFINING FOR MODEL BUILDING 

The semiconductor industry is rich in data with many measurements being 

taken at hundreds of points throughout the fabrication process.  Analyzing these 

data begins to become troublesome due to the amount of data available.  The first 

step in preparing to develop any semiconductor yield model is to collect, 

integrate, and aggregate the data.  Often, this can be the most time-consuming 

step in model creation. The datasets collected in computer-aided manufacturing 

are massive in size and complex due to the sampling strategies used that do not 

necessarily correspond with one another in levels of aggregation, the number of 

sample wafers selected for different tests, or the actual sample wafers used.  This 

chapter describes the data that were collected from an SRC-member company that 

were used in the analysis provided in Chapters 4-6.  The data collection, 

integration, and aggregation process is described in detail to aid practitioners in 

completing these steps in following the modeling strategies described in the 

following chapters. 

 

Overall Description of Data 

The device studied is a non-volatile memory chip with RAM, ROM, and 

flash components.  It has a 32-bit microcontroller and is used in applications such 

as engines, tractors, printers, and basically anything that is not a personal 

computer.  It uses communication design rule (CDR1) technology.  Each 8” wafer 
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contains 226 dice and takes 10-12 weeks to process.  A cross section of the device 

is provided in Figure 3.1.   

 

Figure 3.1.  Cross section of semiconductor device from an SRC-member 

company.  The different layers of processing are shown. 

 

In developing a data test bed for this and future research, four areas of evaluation 

were considered: 1) process data, 2) defectivity data, 3) class probe, and 4) unit 

probe. 

Process Data. 

As lots move through the fabrication process, many measurements are 

taken at different stages to gauge how the process is performing.  For example, 

critical dimension measurements may be taken after an etching process to ensure 

the correct amount of material was etched.  These process measurements also 

measure critical dimensions and overlay for the photo processes, remaining 
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oxides at etch, changes in oxide thicknesses, etch endpoint times, and more.  

Several process parameters are recorded at each layer of fabrication.   

Process data are automatically recorded in a tool, such as DataLog.  

Though DataLog can have data integrity issues, it is used commonly in examining 

process data in SPC graphs.  DataLog isn’t a tool often used by the device 

engineer.  He or she relies more on the defectivity, class probe (also referred to as 

parametric or electrical test), and yield data.  If there is a processing concern, he 

or she directs questions to the process owner.   

Data are pulled from DataLog by using what is known as an Area – 

Logbook – Process or ALP.  An area will usually denote the type of process and 

measurement.  For instance, E_CD_SEM measures the critical dimensions for the 

etch process.  The “logbook” is often a specified piece of equipment or a specified 

layer for the part.  Often the “process” is the part name or an equipment name.  

Queries can be used to extract raw or summary data and can be limited by date.  

The process data extracted for this project are those applicable to the device of 

interest during the time period of April 1, 2006 through September 30, 2006. 

Process data are measured on two wafers from each lot after each layer of 

fabrication (see Figure 3.3).  The data files compiled for this project include both 

the raw and summary data for each process parameter.  This allows researchers to 

examine the control charts, such as the one shown in Figure 3.2 for defect density, 

as well as using the raw or summary data for modeling purposes.  Some of the 

process measurements included in this data set are given in Table 3.1. 
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Figure 3.2. X-bar and R chart for Defect Densities for the device studied.  The 

raw data extracted from the process allow researchers to examine the process in 

many different ways, including the use of control charts to detect special cause 

variation. 

 

Table 3.1.  Process Measurements in Dataset 

Process Measurements recorded 

 

Yield Defect counts and defect densities 

Critical dimensions CD bar 

CD bar delta to target 

Etch Etch endpoint time 

Overlay X offset 

Y offset 

Oxide Pre-oxide thickness 

Post-oxide thickness 

Remaining oxide Remaining oxide 

Damaged silicon 

Diffusion thickness Thickness 

Top, center, and bottom wafer ranges 
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Defectivity. 

Defects are detected by comparative techniques using high-powered visual 

equipment.  Defects are found by a machine comparing one die to the next and 

noting any differences.  If there is a difference between the two die, a third dice is 

checked to determine which one contains the defect.  These data are often used to 

look at significant problems with a wafer.      

At the SRC-member company contributing to this project, defectivity is 

measured using KLA machines and is recorded in a system called KLARITY.  

KLARITY stores both die- and wafer-level data.  However, KLARITY is not 

directly linked to the database that contains the unit probe data for the die.  A 

program has been written to link the two when both types of corresponding data 

are needed.    

The size of the defect is usually not of concern to the engineers.  However, 

the visual images produced from selected defects are often key in determining the 

root causes for problems.  Device engineers can access these images from their 

computers easily.  Defects such as scratches can be easily seen at a high level, and 

SEM (Scanning Electron Microscope) images are also available.  These images 

help the engineer quickly determine if the defect will cause a fatal flaw in the 

dice.  Sometimes defects will cause a die to fail at unit probe (known as a fault), 

but other times (this is somewhat dependent on the location on the die and the 

critical area), the die will function properly regardless of the defect.   

KLA data are recorded at ten layers of this device.  They are given in 

Table 3.2.   
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Table 3.2.  Description of the Layers Involved in Defectivity Scans 

Layer Description 

Layer 1 Active 

Layer 2 Poly 1 

Layer 3 Flash 

Layer 4 Flash Drain 

Layer 5 Salicide 

Layer 6 Contact 

Layer 7 Metal 1 

Layer 8 Via 1 

Layer 9 Metal 2 

Layer 10 Metal 3 

 

Defectivity measures are not performed on every wafer.  For this device, 

they are usually conducted on every tenth lot that is fabricated.  From each of 

these test lots, two wafers (#2 and #21) are tested (see Figure 3.3).  The dataset 

includes the wafers that had KLA data that were tested at unit probe between June 

1, 2006 and September 30, 2006.  This dataset includes 136 lots.   

The KLA data in the dataset compiled include the lot number, wafer 

number, x- and y- coordinates of the die, the layer where the testing was 

performed, the defect number (such as the 10
th

 defect found, etc.), the 

classification if the defect was classified, and the corresponding bin code from 

unit probe.  

The process data and the defectivity data are the two types of in-line test 

measures available in the dataset.  Toward the end of the fabrication process, class 

probe and bin data are collected.  Figure 3.3 shows the frequency of the wafer 

testing for the various data types and the inconsistencies present in the sampling 

structure across the different data types.   
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CLASS PROBE 
(9 SITES) 

(wafers 1, 12, 25) 

DEFECTIVITY 
(10 LAYERS) 
(every 10 lots,  

wafers 2, 21) 

1 Lot = 25 Wafers 

BIN DATA 
by die 

(pass/fail or bin 
counts) 

PROCESS DATA 
(2 wafers each lot tested at 
every layer, wafers 1 & 2) 

In-line Tests 
End-of-line Tests 

 

Figure 3.3. Sampling strategies by lot for different data types. Process data are 

taken from wafers 1 and 2 in each lot.  For lots selected for defectivity scans, 

wafers 2 and 21 are scanned.  Class probe tests are done on wafers 1, 12, and 25 

for a lot, but are conducted on 9 designated sites on the wafer.  Bin data are 

recorded for each die after wafer probe has been completed.   

 

Class Probe. 

Class probe data are recorded from electrical tests performed on the 

“streets” of the wafer.  These tests are conducted at different reticule sites that 

vary from device to device.  For the device studied in this research, there are 9 

places where the wafers are tested for parametric data, such as L-Effective, W-

Effective, and threshold voltage (VT).  Due to this type of test, these data are 

recorded at the wafer level, not the die level.   

These data are helpful to engineers in determining where in the process 

problems may have occurred that impact functionality of the device.  There are 

over 400 parameters that are tested at class probe, but these are only done on 
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wafers 1, 12, and 25 for each lot.  However, reliability tests, which include 17 or 

18 parameters, are performed on 5 sites on every wafer for this device.  These are 

stored differently in dataPOWER so device engineers as well as process engineers 

are able to use the information. 

Some parameters are closely linked to specific processes.  For instance, if 

a problem occurs with the L-Effective, the device engineer knows the process 

most likely responsible for this deviation, whereas when problems occur with W-

Effective, which is formed in several different steps, it is harder to determine the 

root cause. 

 The dataset compiled includes class probe data for all wafers tested 

between June 1, 2006 and September 30, 2006.  In addition, the company 

provided a list of 109 “watchdog” parameters that are more important to refine the 

search from the 400+ to these.  The engineer also provided a list of about 40 of 

these “watchdog” parameters that he considers most important. 

 

Unit Probe. 

The unit probe (sometimes called wafer sort) data are needed to determine 

the final adequacy of the product.  Testing is performed to determine if the die are 

good or bad.  When a die fails, its failure is categorized into a specific “bin.”  

These various bins are coded for a variety of failure modes.  These failures can be 

viewed on a wafer map as shown in Figure 3. 4. 
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Figure 3.4.  A wafer map.  Different colors of dice on the wafer map indicated 

different failure bin assignments based on unit probe tests. 

 

For this device, two passes of testing are required.  The first pass includes 

all functional testing.  If a wafer passes the first pass of testing, each die is 

classified into BIN 250, and it is baked for 72 hours before the memory is 

checked for retention.  If a die passes this second test, it is classified as “BIN 1” 

and is shippable.  If the wafer fails the first pass, it will be scrapped unless there 

are special circumstances such as the engineer hasn’t readjusted the specification 

limits after a change.  The engineer may indicate if the wafer should be retested.  

Hence, sometimes there are multiple sets of bin data for the same wafer.  The 

failure limits for specific bins are kept in a specific program where the data can be 

easily accessed by the engineer to examine specific failures.   
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Use of the Dataset 

 

 As described in Chapter 1, this dissertation focuses on developing 

modeling strategies using GLMs to predict wafer sort outcomes at unit probe 

testing based on defect counts on the process layers.  The other components of 

this dataset (class probe and process data) have been useful in furthering the work 

of Kumar (2006) through the work of Chang (2010) at the University of 

Washington.  These data have been used to help further advance the methodology 

of hGLMs described in Chapter 2.  The remainder of this chapter will describe the 

steps taken to refine the defect count and wafer sort data from their raw forms in 

the dataset to a useable form for modeling purposes.  

 

Data Refining for GLM Model Building 

 Data Integration. 

For GLM models that use defectivity data for predictors, the defect 

metrology data and the wafer sort yield data first need to be integrated by die for 

die-level analyses to be performed.  This can be done a number of ways, including 

automatic or manual methods.  If using software such as DataPower, these data 

may already be integrated and be easy to extract together.  If multiple databases 

are used to store the various types of data recorded during the fabrication and 

testing process, though, running queries in both can sometimes require advanced 

coding expertise, especially if the location coordinates of the dice are constructed 

differently for different tests, specifically, defect metrology and wafer sort. 



  53 

Data Aggregation. 

Perhaps the most time-consuming task is taking the integrated data and 

aggregating them into a form that will be usable for model building.  Table 3.3 

contains an example of raw, integrated data extracted from a database.  Rows 

showing dice with multiple defects on a layer are highlighted in bold text.  While 

these integrated data contain the lot number, wafer number, layer number, die 

location (given in x- and y-coordinates), and the final bin assigned at wafer sort 

for each identified defect found during the scan, this arrangement of the data is 

not useful for common statistical packages such as Minitab or JMP that can create 

the desired models.  For example, in Table 3.3, the die from Lot 1, Wafer 2, with 

coordinates (9, 1) has one defect on Layer 1 and three defects on Layer 2, so it is 

displayed on four different rows.  The data need to be aggregated such that each 

die (or wafer for wafer-level modeling) is a row, and the total number of defects 

in each layer is given in a separate column with the column containing the wafer 

sort test result remaining.  An example of the necessary aggregation is shown in 

Table 3.4.  Here, the die from Lot 1, Wafer 2 with coordinates (9, 1) is 

summarized in a single row showing it had one defect detected in Layer 1 and 

three defects on Layer 2.  Also, if using a binomial response (pass or fail), the 

failure bin data should be converted to reflect the appropriate binomial response 

rather than a specific bin number as shown in the far right column. 
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Table 3.3.  Raw Data for Each Defect After Integration 

 

Lot ID 

Wafer 

ID Layer ID 

Die Coordinate 

X 

Die Coordinate 

Y 

Failure Bin 

Number 

1 2 1 2 7 1 

1 2 1 4 3 1 

1 2 1 5 7 1 

1 2 1 8 8 24 

1 2 1 8 16 1 

1 2 1 9 1 7 

1 2 1 11 17 1 

1 2 1 13 16 1 

1 2 1 18 8 1 

1 2 1 18 9 7 

1 2 1 18 10 1 

1 2 2 1 9 1 

1 2 2 1 9 1 

1 2 2 3 12 1 

1 2 2 4 15 1 

1 2 2 5 6 1 

1 2 2 5 8 1 

1 2 2 5 10 42 

1 2 2 7 11 1 

1 2 2 9 1 7 

1 2 2 9 1 7 

1 2 2 9 1 7 

1 2 2 10 1 77 

1 2 2 11 1 1 

1 2 2 11 1 1 

 

Defectivity measures were taken after each of ten layers in the fabrication 

process.  These measures include a count of the number of defects found on each 

layer for a particular die.  Die x- and y-coordinates were used to calculate radial 

distance from the center and also to assign a die quadrant category.  An example 

of the types of data used for model building is shown in Table 3.5.  Additional 

factors, such as defect size, stepper fields, indicator variables for killer or non-

killer classified defects, and location of the defect within the die may also be 

included as predictors, but these data were not available in the dataset.
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Table 3.4.  Aggregated Data for Individual Dice 

LotID WaferID DieX DieY 

Defects 

on Layer 

1 

Defects 

on Layer 

2 Bin Fail = 1 

1 2 1 9 0 2 1 0 

1 2 2 7 1 0 1 0 

1 2 3 12 0 1 1 0 

1 2 4 3 1 0 1 0 

1 2 4 15 0 1 1 0 

1 2 5 6 0 1 1 0 

1 2 5 7 1 0 1 0 

1 2 5 8 0 1 1 0 

1 2 5 10 0 1 42 1 

1 2 5 11 1 0 1 0 

1 2 5 15 1 0 1 0 

1 2 6 15 1 0 1 0 

1 2 7 3 1 0 1 0 

1 2 7 11 0 1 1 0 

1 2 7 15 1 0 1 0 

1 2 8 8 1 0 24 1 

1 2 8 16 1 0 1 0 

1 2 9 1 1 3 7 1 

1 2 10 1 0 1 77 1 

1 2 11 1 0 2 1 0 

1 2 11 17 1 1 1 0 

1 2 13 16 1 1 1 0 

1 2 18 8 1 1 1 0 

1 2 18 9 1 1 7 1 

1 2 18 10 1 1 1 0 

 

Table 3.5.  Subset of Data for Analysis 

 

Lot 

Number

Wafer 

ID

Die 

X

Die 

Y

Radial 

Distance

Die 

Quadrant

Layer 

1

Layer 

2

Layer 

3

Layer 

4

Layer 

5

Layer 

6

Layer 

7

Layer 

8

Layer 

9

Layer 

10

Response 

(Fail = 1)

1 2 2 7 7.28 3 1 0 0 0 0 0 0 0 0 0 0

1 2 2 10 7.07 2 0 0 0 0 0 1 0 0 0 0 0

1 2 2 11 7.28 2 0 0 1 0 0 0 0 0 0 0 0

1 2 2 12 7.62 2 0 0 1 0 0 0 0 0 0 0 0

1 2 3 12 6.71 2 0 1 0 0 0 0 0 0 0 0 0

1 2 4 3 7.81 3 1 0 0 0 0 0 0 0 0 0 0

1 2 5 6 5.00 3 0 1 0 0 0 0 0 0 0 0 0

1 2 5 7 4.47 3 1 0 0 0 0 0 0 0 0 0 0

1 2 5 11 4.47 2 1 0 0 0 0 0 0 0 0 0 0

1 2 5 15 7.21 2 1 0 0 0 0 0 0 0 0 0 0

1 2 6 3 6.71 3 0 0 1 0 0 0 0 0 0 0 0

1 2 6 15 6.71 2 1 0 0 0 0 0 0 0 0 0 0

1 2 7 2 7.28 3 0 0 0 1 0 0 0 0 0 0 0

1 2 7 3 6.32 3 1 0 0 0 0 0 0 0 0 0 0

1 2 7 5 4.47 3 0 0 1 0 0 0 0 0 0 0 0

1 2 7 7 2.83 3 0 0 0 0 1 0 0 0 0 0 1

1 2 7 11 2.83 2 0 1 0 0 0 0 0 0 0 0 0  
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Managing outliers. 

With the large quantities of data available in the semiconductor industry, 

there is a question of which data, if any, should be removed for model building.  

While many algorithms exist to detect outliers, clear cutoffs for removing data are 

difficult to determine.  Figure 3.4 illustrates the large number of possible outliers 

looking at the total number of defects per die.  For the die-level training set, the 

median is 1.0, but the mean is 2.571 defects per die.  Also, the third quartile is 2.0 

and the maximum value is 218.  This demonstrates the presence of unusual 

observations that may have a strong impact on model building. 

To explore the effects of removing outliers, the models built in the study 

described in Chapter 4 were built three times from the training dataset.  The 

distribution for the die-level training dataset showed the 97.5
th

 percentile to be 9 

total defects on a die, and the 95
th

 percentile was 5 total defects on a die.  The dice 

with more than 9 and more than 5 total defects were removed from the data set 

using a one-sided trimmed means outlier detection approach with p=0.025 and 

p=0.05, respectively.   Hu and Sung (2004) show trimmed means to be an 

appropriate method for outlier detection that has higher efficiency than using 

median.  This method unifies mean and median in a dataset.  While their study 

uses two-sided trimmed means with p=0.15, this more conservative approach will 

allow the most common occurrences of defect distributions on layers to be 

examined while constructing useful models.  No points were removed from the 

test dataset that was used for validation purposes described in Chapters 4, 5, and 

6. 
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Figure 3.5.  Summary statistics for total defects per die.  The figure indicates a 

large number of outliers are present in the dataset that may have a strong 

influence on the model. 

 

 The collected, integrated, aggregated, and trimmed data can be used to 

easily develop strong prediction models for yield from defectivity data.  The 

GLM modeling strategies of this work are described in Chapters 4-6. 
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Chapter 4 

SEMICONDUCTOR YIELD MODELING USING GENERALIZED LINEAR 

MODELS 

Introduction 

As shown in Chapter 2, many approaches have been taken to model 

semiconductor yield, but these models make a number of assumptions that are not 

valid for the nature of the process and the data being collected.   Ferris-Prabhu 

(1992) shows the accuracy of yield predictions depends just as much on the 

accuracy of the assumed average defect densities as upon the choice of yield 

model.  Generalized linear models (GLMs), described in Chapter 2, offer a way to 

construct models making fewer assumptions as well as a means of modeling the 

data in more detail by creating die-level models that can take advantage of the raw 

data available, instead of relying on lot- or wafer-level summaries.  This approach 

of die-level modeling can also consider nested effects. 

In some multi-factor experiments, the levels of one factor are similar but 

not identical for different levels of another factor.  This is called a nested (or 

hierarchical) design.  Nested designs are often used in analyzing processes to 

identify the major sources of variability in the output.  In a two-stage nested 

design, the levels of factor B are nested under the levels of factor A.  That is, the 

levels of B are unique for each level of A.  For example, for the semiconductor 

industry, wafers are nested within lots. 

 Since the dice are processed together on a wafer, and wafers are grouped 

together in a lot, independence from die to die cannot be assumed.  To account for 
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this nested structure, a practitioner must include the nested variables in the model 

analysis.   The wafers included in Lot 1 are not the same wafers included in Lot 2 

and so on.  This is illustrated in Figure 4.1. 

 

  

Figure 4.1. Nested structure for wafers. 

 

At the die level, the model is a three-stage nested structure with dice 

(grouped by quadrants, radial sections, or other categories) nested within wafer, 

which is nested within lot.  This assumes independence between the dice in each 

quadrant or other chosen grouping.  This concept is illustrated in Figure 4.2. 

 

Figure 4.2. Nested structure for dice. 
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Model Building Using Logistic Regression 

The dataset used in this phase of the research consisted of defectivity data 

for 36 wafers from 18 lots and the corresponding wafer sort data given for each 

die on those wafers that had at least one defect recorded.  This included 4,413 

dice. These wafers were found to be an appropriate random sample of wafers 

produced over time for the industrial product’s dataset.  In order to assess the 

validity of the models, the dataset of 18 lots was divided into a training dataset of 

12 lots and a test dataset of 6 lots.  The 12 lots used for the training dataset were 

chosen at random from the 18 lots.  The data from these 12 selected lots were 

used consistently to construct the wafer- and die-level models.   

Both die- and wafer-level models were developed using the training data 

set of 24 wafers (12 lots).  For the die-level model, predictor variables included 

lot, wafer, radial distance, die quadrant, and the count of defects found on each of 

the ten layers.  Non-nested and nested models were created to observe differences 

between the two, with the nested model created by nesting wafer within lot and 

die quadrant within wafer, assuming independence between the die within a die 

quadrant.  For the wafer-level model, predictor variables included lot, wafer, and 

the count of defects found on each of the ten layers of the wafer.  No nested 

models were created at the wafer level due to a lack of degrees of freedom with 

the current sampling structure.  Minitab software was used to build these logistic 

regression models.  Full models used all predictor variables, and reduced models 

were created through backward elimination using factors found to be significant 

at the =0.1 level.  All factors were considered to be fixed in these analyses. 
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Results 

 

 The results and discussion are organized primarily into examining the die-

level analysis and the wafer-level analysis.  Within each one, the nested structure 

is discussed, the significance of outliers is examined, and the different link 

functions used in logistic regression are compared.  Validation is assessed, and a 

comparison to other yield models from the literature is also provided. 

Die-Level Logistic Regression. 

To demonstrate the problems with using standard linear regression models 

for this binary response, the entire training dataset (N=2967) was first analyzed 

using multiple linear regression. Figure 4.3 shows the residual plots for this 

model.  The normal probability plot indicates that the errors are not normally 

distributed.  The residuals versus the fitted values plot shows a distinct pattern, 

rather than showing random behavior.  The histogram of the residuals again 

shows non-normality.  These results indicate the linear model is inadequate since 

the assumptions for this model, including: 

1. The relationship between the response and the regressors is linear, at 

least approximately, 

2. The error term  has zero mean, 

3. The error term  has constant variance 
2
, 

4. The errors are uncorrelated, and 

5. The errors are normally distributed (Montgomery, Peck, & Vining, 

2006) 
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are violated.  While this model does identify radial distance and the defect counts 

on Layers 4, 5, 7, 8, 9, and 10 as significant (=0.1), the R-squared predicted 

value of 0.0% and the residual plots indicate this modeling approach should not 

be used. 
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Figure 4.3. Residual plots for a multiple linear regression model based on the 

training dataset with no outliers removed.  

 

Next, the die-level training data were modeled without considering the 

nested structure of the data using logistic regression which is more appropriate for 

the binomial response.  The logit link was used.  The results are summarized in 

Table 4.1.  This model identifies Lots 15 and 16, Radial Distance, and Layers 4 

through 10 as significant at the =0.1 level.  The Pearson method for goodness-

of-fit indicates this model is not very good (p-value = 0.000), but the Hosmer-

Lemeshow test yielding a p-value equal to 0.539 indicates that it may be 
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adequate.  This model, however, assumes independence between the die, which is 

not valid considering the nature of the fabrication process. 

 

Table 4.1.  Die-Level Non-Nested Logistic Regression Model Results for Full 

Training Data Set (N=2967) 

 

Significant Factors 

(alpha = 0.1) 

p-value 

Lot 15 0.040 

Lot 16 0.010 

Radial Distance 0.001 

Layer 4 0.003 

Layer 5 0.001 

Layer 6 0.002 

Layer 7 0.000 

Layer 8 0.071 

Layer 9 0.000 

Layer 10 0.000 

 

Next, the nested structure was modeled using the entire training dataset. 

This analysis gives much more information.  Instead of only identifying 

significant lots, this model shows there to be a significant difference between 

Wafer 1 and Wafer 2 in Lots 4 and 16.  The logit link model also shows 6 die 

quadrants to be significantly different from Die Quadrant 1 on the same wafer 

(=0.1).  This model again indicates Radial Distance is significant, and lists 

Layers 4 through 10 as significant predictors.   

 All three link functions were used to build models with the nested 

structure using the entire training dataset as well as with the two trimmed training 

datasets.  These results are presented in Table 4.2.  While the results were similar 

among the links, the probit model did not converge after 5000 iterations, and did 

not identify Layer 7 as significant at the 0.1 level for the full training dataset.  
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Also, the complimentary log-log link shows the best value for the Hosmer-

Lemeshow goodness-of-fit test.  It also found an additional die quadrant to be 

significant.   

Table 4.2.  Comparison of Link Functions and Outlier Methods (Die-level, 

Nested) 

 
 All Training Set Data 

N=2967 

Outliers Removed (2.5% 

trimmed) 

N=2896 

Outliers Removed (5% 

trimmed) 

N=2845 
 Logit Probit Complime

ntary Log-

Log 

Logit Probit Complimen

tary Log-

Log 

Logit Probit Complimen

tary Log-

Log 
Significa

nt Factors 

 

Wafer 

2(4) 

Wafer 

2(16) 

Rad. Dist. 

6 Die 

Quadrants 

Layers 4-

10 

Wafer 

2(4) 

Wafer 

2(16) 

Rad. Dist. 

6 Die 

Quadrants 

Layers 4-

6, 8-10 

Wafer 2(4) 

Wafer 2(16) 

 

Rad. Dist. 

7 Die 

Quadrants 

 

Layers 4-10 

Wafer 

2(4) 

Wafer 

2(16) 

 

Rad. Dist. 

6 Die 

Quadrants 

Layers 2-

10 

Wafer 

2(4) 

Wafer 

2(16) 

Rad. 

Dist. 

8 Die 

Quadrant

s 

Layers 2-

10 

Wafer 2(4) 

Wafer 2(14) 

Wafer 2(16) 

Rad. Dist. 

7 Die 

Quadrants 

 

Layers 2-10 

Wafer 

2(4) 

Wafer 

2(16) 

 

Rad. Dist. 

7 Die 

Quadrants 

Layers 2-

10 

Wafer 2(4) 

Wafer 

2(16) 

 

Rad. Dist. 

8 Die 

Quadrants 

Layers 2-

10 

Wafer 2(4) 

Wafer 2(14) 

Wafer 2(16) 

Rad. Dist. 

7 Die 

Quadrants 

 

Layers 2-10 

G 

(p-value) 

301.988 

(0.000) 

292.343 

 (0.000) 

250.004 

(0.000) 

314.462 

(0.000) 

312.256 

(0.000) 

261.638 

(0.000) 

319.679 

(0.000) 

321.005 

(0.000) 

318.729 

(0.000) 

Pearson  

(p-value) 

1837716 

 (0.000) 

3143.77 

 (0.000) 

2 x 1012 

(0.000) 

2930.44 

(0.005) 

2914.42 

(0.009) 

1 x 1012 

(0.000) 

2771.85 

(0.121) 

2770.59 

(0.125) 

2769.46 

(0.128) 

Deviance 

(p-value) 

3427 

(0.000) 

3436.21 

 (0.000) 

3478.56 

(0.000) 

3288.97 

(0.000) 

3291.18 

(0.000) 

3341.8 

(0.000) 

3202.48 

(0.000) 

3201.16 

(0.000) 

3203.43 

(0.000) 

Hosmer-

Lemesho

w (p-

value) 

8 

(0.463) 

8.95 

(0.347) 

5.1079 

(0.746) 

4.04 

(0.853) 

2.26 

(0.972) 

3.254 

(0.917) 

7.42 

(0.492) 

6.24 

(0.620) 

5.79 

(0.671) 

Somers’ 

D 

0.38 0.36 0.38 0.38 0.38 0.37 0.39 0.39 0.38 

Notes: Probit link did not converge within 5000 

iterations. 

Complimentary Log-Log link converged 

within 100 iterations. 

Complimentary Log-Log link converged 

within 100 iterations. 

 

One disadvantage of the use of the nested model is the number of degrees 

of freedom required for analysis.  Many more parameters are estimated using the 

nested structure.  At the die level, the replication needed is available within the 

die quadrant groupings (if the practitioner is willing to assume that dice within the 

same quadrant are independent).  In this study, for the 12 lots of training data, 107 

parameters are estimated, requiring 1 degree of freedom (df) for the intercept, 11 

df for lot, 12 df for wafer (1 df for every lot), 72 df for die quadrant (3 df for 

every lot/wafer combination), plus 1 df for every covariate added to the model (11 

df total for radial distance plus defect counts from 10 layers).  While this nested 
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approach works well for the die-level analysis with dice grouped into quadrants, 

there are problems when modeling the wafer level.  This will be discussed in 

more detail with the wafer-level analysis. 

Removing outliers also had an impact on the models.  When all dice 

having more than 9 total defects were removed from the dataset, there were still 

2896 dice in the training data.  Using nested models, the logit, probit, and 

complimentary log-log link functions were compared.  A summary of the results 

is given in Table 4.3.  These results show two more layers (Layers 2 and 3) to be 

significant at the =0.1 level.  Also, the Pearson goodness-of-fit tests show 

improvement in the logit and probit models.  The Hosmer-Lemeshow goodness-

of-fit statistics are also improved over keeping the outliers in the dataset.    

 Removing 5% of the outliers (die with more than 5 total defects) left 2845 

dice in the dataset.  The analyses were conducted again with these data using the 

nested structure and all three link functions.  These results are also presented in 

Table 4.3.  These models produce the same significant factors as the model that 

uses 97.5% of the data with the exception of this logit model identifying an 

additional die quadrant as significant.  The Pearson goodness-of-fit tests are 

improved to show these models to be adequate at the 0.05 level of significance.  

The Hosmer-Lemeshow statistics show lower p-values for these models, 

compared to those from the 97.5 percentile data, suggesting that this test may be 

more robust when including outliers.   

 When used for predictive purposes, the model does not need to include 

variables for specific lots, wafers, and die quadrants since they will not be the 
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same as those used in the original model.  While these variables are important in 

identifying potential quality excursions and may aid in troubleshooting in the 

fabrication process, the continuous variables of radial distance and the defect 

counts for the layers are of most use for predicting future yield.  The reduced 

nested logit model for the 5% trimmed training dataset that will be used for 

calculating expected probabilities and for validating the model can be expressed 

as 

 

P =
'

1

1 e X β
 (4.1) 

 

where 'X β = -2.30820 + 0.0664864(Radial Distance) + 0.456202(Layer 2) + 

0.222156(Layer 3) + 0.322290(Layer 4) + 0.322418(Layer 5) + 0.877724(Layer 

6) + 0.867638(Layer 7) + 0.553416(Layer 8) + 0.947011(Layer 9) + 

0.720564(Layer 10). 

 

 

Die-Level Logistic Regression Validation. 

 The model was validated using a test dataset containing 6 lots (12 wafers) 

of data.  No outliers were removed from this dataset, which contained 1,446 dice.  

The logit models built from the training dataset (5% trimmed) were used to 

calculate expected probabilities for these test data.   

Figure 4.4 shows the predictive power of the die-level GLM models by 

looking at the actual and predicted number of passing dice on a wafer.  In Figure 

4.4(a), the non-nested die-level logistic regression model is shown for the actual 
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and predicted values from both the training data (5% trimmed) used to create the 

model and to the test data.  Results from Seeds’ Model (Y4) are also shown for 

comparison.  (Seeds’ Model was chosen as a baseline due its lower MAD and 

MSE measures, shown in Figure 4.6.)  This figure shows the model fits the 

training data very well, but the predictive power is less with the model applied to 

the test data showing the predictions to underestimate the actual yield.  This 

model significantly outperforms Seeds’ model in predictive power, though.   

 Figure 4.4(b) is a similar chart that shows the nested, reduced die-level 

model applied to the training and test data.  Here, the nested GLM model predicts 

higher values than actual for the training data, but the predicted values are very 

near the actual results for the test dataset, which is a demonstration of the 

predictive power of this approach.  Again, Seeds’ Model is shown for 

comparison. 

There have been several yield models proposed in the literature that use 

defect count data to predict performance as described in Chapter 2. Many of these 

models are described in (Kumar, Kennedy, Gildersleeve, Abelson, Mastrangelo, 

& Montgomery, 2006) and are briefly shown in Table 4.3. In these models, the 

variables used are defined as: 

0 defects per area

defects per area from process step 

area of a die

area of a wafer

=number of processing steps

=clustering parameter

i

w

D

D i

A

A

n








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Non-Nested Full Logistic Regression Model

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Actual Number of Passing Dice with Defects

P
re

d
ic

te
d

 N
u

m
b

e
r 

o
f 

P
a
s
s
in

g
 D

ic
e
 w

it
h

 D
e
fe

c
ts

Training data - Full
Non-Nested Model

Test Data - Full Non-
Nested Model

Training Data - Y4

Test Data - Y4

Actual=Predicted Line

Note: Models used are based on the training dataset with 5% of the data trimmed.  In the test data, no outliers were removed before applying the models.   

(a) 
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(b) 

Figure 4.4. Predicted vs. actual yield for die-level logistic regression models.     

(a) Predicted vs. actual for non-nested full die-level logistic regression models 

compared to Seeds’ Model (Y4).  (b) Predicted vs. actual for nested die-level 

reduced logistic regression models compared to Seeds’ Model (Y4).  These charts 

show the predictive power of the models applied to the training data used to build 

them and to the test dataset. These results reflect the predicted and actual number 

of failing dice with defects within a wafer. 
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Table 4.3. Existing Yield Models 

 

Popular Name Model 

Classic Poisson Model 0

1

D A
Y e


  

Binomial Yield Model   0

2 1 /
wD A

wY A A   

Murphy’s Yield Model: 0
2

3

0

1
D A

e
Y

D A

 
  
 

 

Seeds’ Yield Model: 
4

0

1

1
Y

D A



 

Dingwall’s Yield Model:  
3

5 01 / 3Y D A


   

Moore’s Yield Model: 0

6

D A
Y e


  

Price’s Yield Model: 
7

1

1

1

n

i i

Y
D A




  

Price’s General Model:  8 01 /
n

Y D A n


   

Negative Binomial Model: 
9 0(1 / )Y D A     

          

 In Figures 4.5 and 4.6, the die-level GLM models are compared to those 

from the literature. Figure 4.5 shows the expected probability for each of the nine 

models given in Table 4.3 at the die level.  The value for the negative binomial 

(Y9) clustering parameter () was calculated using the method proposed by 

Cunningham (1990) shown in Equation 2.12.  This produced an average alpha 

value of 3.33.  Figure 4.5 shows the actual performance of the die either passing 

(1) or failing (0).  While earlier models have been formed to handle wafer-level 

analysis, they can be applied at the die-level to predict a yield percentage for all 

the dice on a wafer.  The GLM model gives a range of yield probabilities that 

more closely reflect expected behavior without the degree of underestimation that 

the earlier models produce, as demonstrated in Figure 4.5.  These GLM models, 

which consider which layer the defects are found on, can give a more precise 
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prediction than models that consider only the total number of defects.  For a die 

having one, two, or three defects, the models from the literature predict much 

lower yields than the GLM models.  Since most die have three or fewer defects 

(95.1% of the die in this dataset have 1, 2, or 3 defects), accurate predictions at 

these levels are of great importance.  While it is not desirable to overestimate the 

yield, the magnitude of these underestimated yields can have a negative impact on 

decision making and may lead a manufacturer to have excess work in progress in 

the fab.   
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Figure. 4.5. Expected probabilities of dice passing vs. number of defects per die.  

This die-level model comparison illustrates the value of the die-level modeling.  

The GLM models predict higher yield for 1-3 defects per die and reflect a varying 

range based on factors beside total defect counts on a wafer. Actual results are 

either 0 (fail) or 1 (pass). 
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Additional advantages of this die-level GLM approach can also be seen 

when comparing the mean absolute deviation (MAD) and the mean squared error 

(MSE) for the models.  These are shown Table 4.4 and illustrated in Figure 4.6 

with the MSE and MAD values being found by applying the models to the test 

data and assessing how well the predicted values fit the actual results.  MAD is 

the average of the absolute deviations for each die, and the MSE is the average of 

the squared errors (the actual minus predicted value) for the dice.  The lower the 

number for either of these measures, the better the model matches the actual data.   

Both Seeds’ Model (Y4) and the Negative Binomial (Y9, =3.3) show good 

performance for the literature models, but the Reduced Nested Logit GLM model 

shows a 34.6% improvement in MSE and a 31.1% improvement in MAD over the 

best-performing Seeds’ Model (Y4).   

 

Table 4.4.  Mean Squared Error (MSE) and Mean Absolute Deviation (MAD) for 

Model Comparisons at the Die Level Using Test Data 

 

 

Y1 Y3 Y4 Y5 Y6 Y7 Y8 Y9 

Full 

Nested 

Logit 

Reduced 

Nested 

Logit 

Full 

Non-

Nested 

Die-

Level 

Logit 

Multiple 

Linear 

Regressi

on 

MSE 0.412 0.377 0.289 0.358 0.371 0.309 0.394 0.362 0.190 0.189 0.188 0.592 

MAD 0.583 0.566 0.517 0.556 0.572 0.522 0.574 0.558 0.356 0.356 0.397 0.650 
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Die-Level Error Measures for Models Using Test Data for Predictors 

(No Outliers Removed)
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Figure 4.6. Mean Absolute Deviation (MAD) and Mean Squared Error (MSE) 

results comparing GLM models with other models from the literature and 

multiple linear regression when applied to the test dataset with no outliers 

removed.  Lower values of MAD and MSE indicate the model is closer to the 

actual yield values. 

 

 The predictive power of these GLM models can also be seen by examining 

the predicted probabilities for the various models summed together at a high level 

of aggregation.  Figure 4.7 shows the predicted number of passing dice for each 

model for the entire test dataset (1446 dice).  For each model, the actual number 

of passing and failing dice for the 6 lots in this dataset is shown to demonstrate 

which models best predict the actual yield of dice that have at least one defect.   
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Number of Dice Predicted to Pass with Test Data (Die-Level Models)
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Figure 4.7. Number of dice predicted to pass compared to actual passing dice and 

failing dice with defects.  This figure shows the expected number of passing dice 

for the entire test dataset (N=1,446) for various models.  The die-level GLM 

models show the closest predictions at this level of aggregation (6 lots) as well, 

with the nested logit models using logistic regression showing the most accurate 

predictions. 

 

Wafer-Level Logistic Regression. 

 Often, process data are recorded by wafer during fabrication.  

Measurements such as thicknesses, defect densities, critical dimensions and etch 

rates are recorded for sample wafers from lots.  Therefore, it is useful to consider 

a wafer-level analysis that may correspond more easily to these other measures.   

While the die-level analyses used a nested structure to account for the lack 

of independence between die on different wafers and lots, this approach is not 

available for a full model wafer-level analysis due to the sampling procedure in 

place (in this dataset, two wafers per lot) and the aggregation levels used.  The 
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training dataset for the wafer level contains twelve lots (24 wafers).  To utilize the 

nested structure for modeling, one degree of freedom is needed for estimating the 

constant, eleven degrees of freedom for the lots, twelve for the wafers, and ten for 

the product layers.  Even if only the lots and wafers are considered in the nested 

model, the model is saturated, and goodness-of-fit statistics cannot be calculated.  

While adding more lots to the dataset may seem like a feasible solution to this 

problem, as additional lots of data are added (2 wafers each), two more 

parameters need to be estimated, so the full model will always be saturated.  

While other standard diagnostics, such as absolute deviation, can be used to 

evaluate the usefulness of these models in the absence of goodness-of-fit 

statistics, a nested model at the wafer level is not recommended as a strong 

approach due to the limited helpful information that it would provide given these 

constraints. 

Non-nested models were created for the training dataset at the wafer-level 

using the three link functions and predictors of Lot, Wafer, and the defect counts 

from the ten process layers.  The results are shown in Table 4.5.  The logit and 

probit models identify Lots 6 and 8 as significantly different from Lot 1 and also 

indicate that Layer 8 is statistically significant.  The complimentary log-log model 

indicates the same two lots as significant, but does not show Layer 8 to be 

significant at the =0.1 level.  The goodness-of-fit tests are favorable for all three 

links, indicating these should be good models.   

Though these models appear to be good, outliers may be impacting the 

results.  Table 4.5 also shows the results of the models created after the dice with 
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more than 9 total defects (upper 2.5%) were removed from the dataset.  These 

analyses show no lots are significantly different from Lot 1, and a different layer, 

Layer 9, is identified as significant (=0.1).   

Table 4.5.  Comparison of Link Functions & Outlier Methods (Wafer-level, Not-

nested) 

 
 All Training Set Data 

N= 24 wafers (2967 dice) 
Outliers Removed (97.5th 

percentile) 

N= 24 wafers (2896 dice) 

Outliers Removed (95th 

percentile) 

N= 24 wafers (2845 dice) 
 Logit Probit Complimen

tary Log-

Log 

Logit Probit Complimen

tary Log-

Log 

Logit Probit Complimen

tary Log-

Log 

Significant 

Factors 

(=0.10) 

Lot 6 

Lot 8 

Layer 8 

Lot 6 

Lot 8 

Layer 8 

Lot 6 

Lot 8 

 

Layer 9 Layer 9 Layer 9 Layer 9 Layer 9 Layer 9 

G 

(p-value) 

52.381 

(0.000) 

52.368 

(0.000) 

52.337 

(0.000) 

51.402 

(0.000) 

51.399 

(0.000) 

51.392 

(0.000) 

51.168 

(0.000) 

51.158 

(0.000) 

51.137 

(0.000) 

Pearson  

(p-value) 

0.0280972 

(0.867) 

0.0401750 

(0.841) 

0.0713576 

(0.789) 

0.0341 

(0.853) 

0.0370 

(0.847) 

0.0440120 

 (0.834) 

0.0239 

(0.877) 

0.0334 

(0.855) 

0.0547531 

(0.815) 

Deviance 

 (p-value) 

0.0281218 

(0.867) 

0.0402199 

(0.841) 

0.0714682 

(0.789) 

0.0341 

(0.853) 

0.0370 

(0.847) 

0.0440098 

(0.834) 

0.0239 

(0.877) 

0.0334 

(0.855) 

0.0547564 

(0.815) 

Hosmer-

Lemeshow 

(p-value) 

0.0151858 

(1.000) 

0.0211868 

(1.000) 

0.0358298 

(1.000) 

0.0064 

(1.000) 

0.0068 

(1.000) 

0.0075645 

(1.000) 

0.0062 

(1.000) 

0.0086 

(1.000) 

0.0187298 

(1.000) 

Somers’ D 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

 

 Similar results were obtained from the training dataset with the upper 5% 

of the outliers removed (more than 5 total defects in a die).  These results are 

presented in Table 4.5 as well.  Goodness-of-fit measures have not improved 

considerably, so the wafer-level analysis seems to be more robust against outliers 

than the die-level study, but there are differences in which predictors are 

identified as significant.   

 

Wafer-Level Logistic Regression Validation. 

 Since the results were similar for both of the refined datasets, the model 

for the training set with 5% of the outliers removed was used for validation.  

Since there were no significant differences between the links, the logit link was 
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used to form the full model using Equation 4.1 where 'X β =1.40356 - 

0.027(Layer 1) + 0.00393(Layer 2) + 0.002937(Layer 3) + 0.01582(Layer 4) - 

0.038756(Layer 5) + 0.0237897(Layer 6) - 0.005593(Layer 7) - 0.00848(Layer 

8) - 0.041995(Layer 9) + 0.030685(Layer 10).   

 The reduced model for the wafer level was formed using backward 

elimination.  Using this method, the predictors were eliminated one by one 

according to which had the smallest z-statistic (largest p-value).  First, due to their 

high p-values and inability to be used in predictive modeling, Lot and Wafer were 

removed, followed by Layer 2, Layer 1, Layer 4, Layer 8, Layer 3, Layer 6, Layer 

5, and Layer 10, respectively.  A cutoff value of =0.1 was used, as done with the 

previous models.  This reduced model takes the form 

)9*0174814.07*0065599.0917234.0(1

1
LLe

P


  (4.3) 

to predict the proportion of dice that will pass.  This reduced model had p-values 

of 0.030, 0.027, and 0.555 for the Pearson, Deviance, and Hosmer-Lemeshow 

goodness-of-fit tests, respectively. 

 The validity of the wafer-level GLM models can be assessed in ways 

similar to those used for the die-level models.  Figure 4.8 shows a plot of the 

actual yields compared to the predicted yield values for dice with defects from the 

wafer-level full and reduced models, the die-level nested reduced model, and 

Seeds’ Model. As seen in the die-level plot, the GLM models are closer to the 

actual values than the underestimating Seeds’ Model, but a good amount of 

variability is seen in the wafer-level results.  Figure 4.8 demonstrates that the die-



  77 

level nested GLM model has the greatest and most consistent predictive power for 

these data.  

Figure 4.9 shows the predicted yields for each model as well as the actual 

yield for each of the 24 wafers in the dataset.  In this chart, it is clear that the 

models from the literature consistently underestimate the yield.  While the GLM 

models (full logit and reduced logit) are closer to the actual yields, their behaviors 

are not as smooth as the other models.  This can be explained both by the fact that 

these models take into account more specific information (the number of defects 

on specific layers on a die rather than the average defects per die) and by the fact 

that there can be other contributors to yield loss other than defect counts alone.  

The die-level nested reduced logit model shows very good performance to these 

test data, though, both in being nearest to the actual yield and in showing more 

stable behavior as is also shown in Figure 4.8. 

 The behavior of the models shown in Figure 4.9 shows varying levels of 

correlation to the actual yield results.  To assess correlation, Pearson correlation 

coefficients may be calculated and compared for the different models.  These 

results are shown in Table 4.6.  The results show the models from the literature 

(Y1 through Y9) are significantly correlated to the actual results at the =0.1 

level of significance.  The wafer-level GLM models do not share this distinction.  

The highest correlation is seen with the die-level nested reduced logit GLM model 

with a Pearson correlation coefficient of 0.819 and a p-value of 0.001 showing 

this model has by far the strongest correlation to the actual results. 
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Predicted vs. Actual Wafer-Level Yields for Dice with Defects
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Figure 4.8. Predicted vs. Actual Yield of Dice with Defects.  This figure applies 

the wafer-level GLM models, a die-level model, and Seed’s Model to the test data 

(no outliers removed).  While the GLM models are closer predictions than Seed’s 

Model, the die-level model shows the best performance in terms of both accuracy 

and precision. 
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Figure 4.9. Wafer-level yield model predictions for the test data.  The historical 

models (Y1-Y9) underestimate the actual yield significantly.  The GLM models 

are nearer to the actual yield values, but the wafer-level full model GLM shows 

much variability.  The wafer-level reduced logit GLM’s stable prediction gives 

little value.  Of the GLM models, the die-level model shows closer predictions to 

the actual yields as well as strong correlation to the changes from wafer to wafer. 
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Table 4.6.  Comparison of Pearson correlation coefficents between models and 

actual yields using test data 

 

Model 

Pearson Correlation 

Coefficient with 

Actual Yields for Test 

Wafers 

P-value 

Y1 0.498 0.099 

Y2 0.498 0.099 

Y3 0.498 0.099 

Y4 0.497 0.100 

Y5 0.498 0.100 

Y6 0.497 0.100 

Y7 0.508 0.091 

Y8 0.498 0.099 

Y9 (alpha = 3.33) 0.498 0.100 

Wafer-Level Full Logit GLM 0.078 0.809 

Wafer-Level Reduced Logit GLM -0.048 0.881 

Die-Level Nested Reduced Logit GLM 0.819 0.001 

 

At the wafer level, the MSE and MAD values calculated using the test 

data and applying each of the 12 models are shown in Table 4.7.  These are also 

presented graphically in Figure 4.10. The wafer-level full logit GLM model 

shows a 56.6% improvement over the next best model from the literature (Y4) in 

terms of MSE, and 73.8% improvement in terms of MAD.  Even more 

impressive is the die-level nested reduced logit GLM that shows a 68.9% 

improvement in MSE and a 90.1% improvement in MAD over Seeds’ Model 

(Y4).  
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Table 4.7.  Mean Squared Error (MSE) and Mean Absolute Deviation (MAD) for 

Model Comparisons at the Wafer Level (%) 

 

 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 

Wafer-
Level 

Full 

Logit 
GLM 

Wafer-

Level 
Reduced 

Logit 

GLM 
(BE) 

Die-Level 
Nested 

Reduced 

Logit 
GLM 

MAD 0.52 0.52 0.48 0.37 0.46 0.50 0.49 0.50 0.46 0.162 0.219 0.116 

MSE 0.27 0.27 0.23 0.14 0.21 0.25 0.24 0.25 0.22 0.037 0.057 0.014 
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Figure 4.10. Mean Squared Error (MSE) and Mean Absolute Deviation (MAD) 

measures for the nine models from the literature and the GLM models.  The GLM 

models significantly outperform previous models in these measurements of error 

with the best model being the die-level nested reduced logit GLM. 

Summary 

 A number of conclusions are drawn from this phase of study.  First, 

generalized linear models, such as logistic regression, can be used to successfully 

model semiconductor yield based on defect data.  This empirical modeling 

approach can be applied to devices of various sizes and types.  While this 
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approach does not develop a general model that can be used across different 

products, the simplicity of this modeling strategy makes it easy to apply to 

individual products to optimize yield prediction accuracy.   

These generalized linear models have two primary advantages.  First, the 

die-level models created can predict yield very well.  This can be beneficial in 

product planning (for both the product and the process) and for yield 

improvement efforts for the device.  While this approach is recommended 

primarily for application to ongoing products, the models may provide a good 

basis for predicting yield for new products that are similar to a device already 

modeled.  A second advantage is in the power these models have to identify 

significant predictor variables.  This can be helpful in diagnosing problems and 

finding areas of improvement that can improve quality and reduce testing time.  

For example, in the die-level nested GLM models, defects found in Layer 1 were 

not found to be significant.  This suggests that defects on Layer 1 may not need to 

be scanned and detected for this device.  Elimination of these measures for a layer 

can save valuable processing time and improve overall equipment effectiveness 

(OEE).  In addition, the layers or even specific wafers that are identified as 

significant in the building the model can be explored in more detail to better 

understand their influences on yield, and any process problems may be corrected.  

This information can be especially helpful for processing new devices as yields 

usually start lower and improve as the new process is optimized.  Identifying and 

solving process and quality issues early in a product’s life cycle can help a 

company reduce costs. 
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While this modeling strategy using GLMs is shown to be very effective, a 

practitioner needs to carefully consider and evaluate the types of models 

constructed and selected for use.  Wafer-level GLM analyses, while showing 

adequate goodness-of-fit results, can be misleading and are not as accurate at 

prediction as die-level models in this study.  At the wafer level, very few 

fabrication layers are identified as significant, and the predictive power of these 

models is limited.  Also, the nested structure cannot be used at the wafer level 

unless more wafers are sampled and are sorted into groups.  Given constraints on 

scan equipment and process times, regularly testing additional wafers is not a 

feasible option for semiconductor manufacturers.     

 Die-level nested models are most effective for these data.  There are not 

significant differences between the different link functions, even with the large 

sample sizes used.  The nested structure provides more detailed information about 

significant predictors, including specific wafers and die quadrants, and it removes 

the need to assume independence between all dice.  The nested die-level logistic 

regression models also show the best predictive power at both the die- and wafer- 

levels of aggregation.    

Outliers can have a strong impact on model adequacy and on which 

predictors are significant for the model.  The best results were obtained by 

removing the dice that had more than 5 total defects.  (This corresponded to the 

top 5% of the total defects per die.)  Validation testing on this model using a test 

dataset that included outliers proved the predictive capability of these models. 
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Chapter 5 

SEMICONDUCTOR YIELD MODELING USING GENERALIZED LINEAR 

MIXED MODELS 

Introduction 

The results shown in Chapter 4 indicate the promise of using GLMs for 

semiconductor yield modeling.  These fixed-effects models do not have the ability 

to account for the random sampling that is necessary in a fab environment, 

though.  GLMs assume complete randomization, but commonly in practice only 

certain lots and/or wafers are sampled for defect scans.  For the data studied in 

this research, only two wafers of twenty-five in every tenth lot were scanned for 

defects.  While the nested GLM models account for the hierarchical structure of 

the sampling, they do not consider the nested effects as random.  This suggests a 

violation of the GLM assumptions and indicates generalized linear mixed models 

(GLMMs) should be used to account for random effects such as lot and wafer.   

Recall from Chapter 2 that there are two approaches when using GLMMs, 

the batch-specific model and the population-averaged model.  The formulas for 

the expected values for these models are found in Equations 2.34 and 2.35 for the 

batch-specific and the population-averaged models, respectively.  The batch-

specific approach includes the random effects and provides predictions for each 

different random factors setting.  Population-averaged models are designed to 

provide a more general trend across an entire population.  In modeling 

semiconductor yield, both these approaches are appropriate for different types of 

applications.  Batch-specific models allow estimates of slopes and/or intercepts 
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for each random factor setting, which can be helpful in identifying significant 

differences or in creating models for those specific effects (i.e. locations, patients, 

etc.).  The population-averaged models create a marginal model that accounts for 

the random factors but does not provide estimates for them in the model and is 

used primarily for predicting across the population as a whole.   

In some GLMM modeling applications, the random effects are clear.  For 

example, a medical study may follow a particular participant over time, or a 

designed experiment may need to be run in split plots for hard-to-change factors.   

Sometimes, though, the random effects modeling may not be this straightforward.  

Especially with a case having multiple random effects, determining which random 

effects should be used in modeling and which GLMM structure is most 

appropriate must be carefully considered.   

A modeling strategy for using GLMMs to model semiconductor yield can 

be useful to practitioners and may also provide guidelines that can be applied in 

other areas and industries as well.  The advantages of this approach include being 

able to identify random effects, such as specific lots or wafers, that are 

significantly different from a baseline and to account for the random effects in the 

model without incorrectly assuming them to be fixed as with a GLM approach. 

This research extends that from Chapter 4 by using an extended dataset to 

study the impact of using GLMMs, both batch-specific and population-averaged 

models, in various forms to model semiconductor yield.  The effects of using 

different link functions and using different sample sizes will also be studied and 

discussed.  This chapter is organized to first describe the dataset used in the 



  85 

analysis.  The model building approach is described in the next section.  Next, the 

die-level results for the models are presented, followed by the wafer-level results 

and a summary.   

 

Data Description 

 The data used in this phase of the research were obtained and cleaned as 

described in Chapter 3 and as used in Chapter 4, but this dataset is larger than the 

one used in Chapter 4 to advance the study.  The data used in this phase included 

126 lots (252 wafers) for the device described in Chapter 3.  Of these, 168 wafers 

(84 lots) were randomly selected to be used for training the data, and 84 wafers 

(42 lots) were chosen for testing the models.  At the die-level, 23,296 dice were 

used as the training dataset, after removing outliers that contained more than nine 

defects.  The test dataset was made up of 11,240 dice.  No outliers were removed 

from the test dataset to better assess model validity.   

 

Model Building 

 Several models were constructed using the training dataset.  These models 

were examined at both the die and wafer levels and were analyzed for 

comparisons at various sample sizes and using different link functions.  A matrix 

displaying the models developed is shown in Table 5.1.  The GLM models and 

the GLM nested models are analogous to those described in Chapter 4.  As in 

Chapter 4, predictor variables for the die-level models included Lot, Wafer, 

Radial Distance, Die Quadrant, the number of layers with defects, and the count 
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of defects found on each of the ten layers.  For GLM models, the lot and wafer 

factors were included as fixed effects in the model.  In nested GLM models, the 

Wafer(Lot) nested effect was included as fixed.  In the GLMM models, Lot, 

Wafer, or the Wafer(Lot) nested effects were included in the models as random 

effects.  At the wafer level, Radial Distance and Die Quadrant were no longer 

considered as factors, and the predictors included the total number of layers with 

defects and defect counts for each layer as summed across the entire wafer.   

 

Table 5.1.  Models Analyzed for Comparisons 

Models Sample Sizes 

(Number of 

Wafers) 

Links Type of 

GLMM Effect 

GLM 30, 168 

60, 90, 120, 150 

Logit, Probit, CLL 

Logit 

None 

Nested GLM 30, 168 

60, 90, 120, 150 

Logit, Probit, CLL 

Logit 

None 

GLM with 

Overdispersion 

30, 168 

60, 90, 120, 150 

Logit, Probit, CLL 

Logit 

None 

Lot Random 30, 168 

60, 90, 120, 150 

Logit, Probit, CLL 

Logit 

G and R 

Lot Random with 

Overdispersion 

30, 168 

60, 90, 120, 150 

Logit, Probit, CLL 

Logit 

G 

Wafer (Lot) 30, 168 

60, 90, 120, 150 

Logit, Probit, CLL 

Logit 

G and R 

Wafer (Lot) with 

Overdispersion 

30, 168 

60, 90, 120, 150 

Logit, Probit, CLL 

Logit 

G 

Wafer Random 30, 168 

60, 90, 120, 150 

Logit, Probit, CLL 

Logit 

G and R 

Wafer Random with 

Overdispersion 

30, 168 

60, 90, 120, 150 

Logit, Probit, CLL 

Logit 

G 

   

 Something to consider in building these GLMM models is which degrees 

of freedom method to use in the analysis.  The default in SAS 9.2 PROC 
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GLIMMIX for GLMs and GLMs with overdispersion is the RESIDUAL method.  

The default for random-effects models with only R-side effects and the subject 

option specified (population-averaged models) is the BETWITHIN method, 

which divides the residual degrees of freedom into between-subject and within-

subject components.  For G-side random effects (batch-specific models), the 

default method is CONTAIN, which uses the containment method.  Another 

option for modeling is the KENWARDROGER option, which involves inflating 

the estimated variance-covariance matrix of the fixed and random effects and then 

computes Satterthwaite-type degrees of freedom from the adjustment.  

Sattherthwaite degrees of freedom require more computing time, and the small 

sample properties are not extensively studied (SAS, 2006). For the models 

presented in this chapter, the default degrees of freedom methods were used in 

SAS. 

   Another option in the model building requires selecting the type of the 

covariance structure.  The default method in SAS PROC GLIMMIX for the 

RANDOM statement is TYPE=VC, or variance components, which uses a simple 

diagonal covariance matrix and models a different variance component for each 

random effect (SAS, 2006).  For random effects that follow a subject over time, 

AR(1) or ARMA(1,1) may be desirable types to specify.  Another option is the 

TYPE=CS, which specifies the compound-symmetry structure and has constant 

variance and constant covariance.  This structure arises naturally with nested 

random effects, such as split-plot experiments (SAS, 2006).  For the models 

described in this chapter, the G-side random effects (batch-specific models) used 
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TYPE=VC, and the R-side random effects (population-averaged) models used 

TYPE=CS to indicate the nested structure of the data.  Examples of the SAS code 

used for these models are included in Appendix A. 

    

Results 

To help develop a strategy for using GLMMs in semiconductor yield 

modeling, many models were built in order to answer the following questions: 

1. What are the differences between different GLMM modeling approaches 

and how do they compare to GLM models? 

2. How does using different link functions affect GLMM models? 

3. How does sample size impact GLMM model results? 

The first question was addressed by modeling the data with different random 

effects and comparing them to GLM models.  Logit, probit, and complimentary 

log-log functions (Eq. 2.27, 2.28, and 2.29, respectively) were used to compare 

the differences at samples sizes of 30 wafers and 168 wafers.  To examine the 

impact of using different sample sizes on the models, subsets of the training 

dataset were used: 30 wafers (3797 dice), 60 wafers (7900 dice), 90 wafers 

(11,868 dice), 120 wafers (16,537 dice), and 150 wafers (20,872 dice).  The 

results of the study are broken up in to die- and wafer-level results. 

 

Die-Level Model Results 

 The die-level models with different link functions were very similar within 

the sample size used.  The significant factors (=0.1) in the models are given for 
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the GLM models in Table 5.2 and for the GLMM models in Table 5.3.  Table 5.2 

shows there are very few differences between the models formed from the logit, 

probit, and complimentary log-log functions.  Factors that differ between the 

models are underlined in Table 5.2.    

Table 5.2.  Significant Fixed Effects for Die-Level GLM Models from t-tests  

 
 30 Wafers 168 Wafers 

Model Logit Probit CLL Logit Probit CLL 

GLM Intercept 

Lots 2, 4, 6, 10, 

14, 23  

TotLayWithDefs 

RadDist 

L2 

L6 

L7 

L8 

L9 

L10 

Intercept 

Lots 2, 4, 6, 10, 

14, 23  

TotLayWithDefs 

RadDist 

L2 

L3 

L6 

L7 

L8 

L9 

L10 

Intercept 

Lots 4, 6, 10, 14, 

23  

TotLayWithDefs 

RadDist 

L2 

L6 

L7 

L8 

L9 

L10 

Intercept 

Lots10, 11, 16, 

17, 23, 24, 25, 

51, 64, 77, 87, 

100, 106, 111, 

120, 121, 123, 

134 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Intercept 

Lots 10, 11, 16, 

17, 23, 24, 25, 

51, 64, 77, 87, 

100, 106, 111, 

120, 121, 123, 

134 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Intercept 

Lots 10, 16, 17, 23, 

24, 25, 64, 77, 87, 

99, 106, 120, 121, 

134 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, L6, 

L7, L8, L9, L10 

 

Nested 

GLM 

Intercept 

Waf 21(4) 

Waf 2(10) 

Waf21(10) 

Waf 2(16) 

Waf 2(23) 

Waf21(23) 

TotLayWithDefs 

RadDist 

DieQuad2(2) 

L2 

L6 

L7 

L8 

L9 

L10 

Intercept 

Waf 21(4) 

Waf 2(10) 

Waf21(10) 

Waf 2(16) 

Waf 2(23) 

Waf21(23) 

TotLayWithDefs 

RadDist 

DieQuad2(2) 

L2 

L6 

L7 

L8 

L9 

L10 

Intercept 

Waf 21(4) 

Waf 2(10) 

Waf21(10) 

Waf 2(16) 

Waf 2(23) 

Waf21(23) 

TotLayWithDefs 

RadDist 

DieQuad2(2) 

L2 

L6 

L7 

L8 

L9 

L10 

Intercept 

Waf 2(2) 

Waf21(4) 

Waf 2(6) 

Waf21(6) 

Waf 2(10) 

Waf21(10) 

Waf 2(14) 

Waf21(14) 

Waf 2(19) 

Waf21(20) 

Waf 2(23) 

Waf21(23) 

& 54 other 

wafers 

TotLayWithDefs 

RadDist 

DieQuad 2(2), 

2(21) 

L1, L2, L3, L4, 

L5, L6, L7, L8, 

L9, L10 

Intercept 

Waf 2(2) 

Waf21(4) 

Waf 2(6) 

Waf21(6) 

Waf 2(10) 

Waf21(10) 

Waf 2(14) 

Waf21(14) 

Waf 2(19) 

Waf21(20) 

Waf 2(23) 

Waf21(23) 

& 56 other 

wafers 

TotLayWithDefs 

RadDist 

DieQuad 2(2), 

2(21), 3(21) 

L1, L2, L3, L4, 

L5, L6, L7, L8, 

L9, L10 

Intercept 

Waf 2(2) 

Waf21(4) 

Waf 2(6) 

Waf21(6) 

Waf 2(10) 

Waf21(10) 

Waf 2(14) 

Waf21(14) 

Waf 2(19) 

Waf21(20) 

Waf 2(23) 

Waf21(23) 

& 61 other wafers 

TotLayWithDefs 

RadDist 

DieQuad 2(2), 

2(21), 3(21) 

L2, L3, L4, L5, L6, 

L7, L8, L9, L10 

GLM 

with 

OD 

Intercept 

Lots 2, 4, 6, 10, 

14, 23 

TotLayWithDefs 

RadDist 

L2 

L6 

L7 

L8 

L9 

L10 

Intercept 

Lots 2, 4, 6, 10, 

14, 23 

TotLayWithDefs 

RadDist 

L2 

L3 

L6 

L7 

L8 

L9 

L10 

Intercept 

Lots 4, 6, 10, 14, 

23 

TotLayWithDefs 

RadDist 

L2 

L6 

L7 

L8 

L9 

L10 

Intercept 

Lots 10, 11, 16, 

17, 23, 24, 25, 

51, 64, 77, 87, 

100, 106, 120, 

121, 123, 134 

TotLayWithDefs 

RadDist 

DieQuad 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Intercept 

Lots 10, 11, 16, 

17, 23, 24, 25, 

51, 64, 77, 87, 

100, 106, 120, 

121, 123, 134 

TotLayWithDefs 

RadDist 

DieQuad 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Intercept 

Lots 10, 16, 17, 23, 

24, 25, 64, 77, 87, 

99, 106, 120, 121, 

134 

TotLayWithDefs 

RadDist 

DieQuad 2,3 

L2, L3, L4, L5, L6, 

L7, L8, L9, L10 

=0.1 

 

The differences between different link functions is more apparent in the 

GLMM models, not in the different predictors indicated as significant, but rather 

in the problems with the models not converging.  This is shown in Table 5.3.  
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Table 5.3.  Significant Effects for Die-Level GLMM Models from t-tests (=0.1) 

 30 Wafers 168 Wafers 

Model Logit Probit CLL Logit Probit CLL 

Lot 

Random 

(G)  

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Intercept 

TotLayWithDefs 

RadDist 

DieQuads 2, 3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Random Lots: 

10, 16, 17, 23, 

24, 25, 61, 67, 

77,  86, 87, 99, 

120, 121, 128 

Did not converge. Did not converge. 

Lot 

Random 

(G) with 

OD  

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Did not converge. Did not converge. 

Wafer 

(Lot) G 

Intercept 

TotLayWithDef

s 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Random: 

2(10), 2(11), 

2(16), 2(23), 

21(23) 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Did not converge. Did not converge. 

Wafer 

(Lot) G 

with OD 

Intercept 

TotLayWithDef

s 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Random: 

2(10), 2(11), 

2(16), 2(23), 

21(23) 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Did not converge. Intercept 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, L6, 

L7, L8, L9, L10 

Wafer(Lot) 

Random: 

2(10), 2(11), 2(16), 

21(17),  

2(23) 

& 26 other wafers 

Wafer G Intercept 

TotLayWithDef

s 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

G matrix not 

positive definite 

(no WafID est) 

 

Intercept 

TotLayWithDef

s 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

G matrix not 

positive definite 

(no WafID est) 

 

Intercept 

TotLayWithDefs 

RadDist 

L2, L6, L7, L8, 

L9, L10 

G matrix not 

positive definite 

(no WafID est) 

 

Intercept 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

G matrix not 

positive definite 

(no WafID est) 

Intercept 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

G matrix not 

positive definite 

(no WafID est) 

Intercept 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, L6, 

L7, L8, L9, L10 

G matrix not 

positive definite (no 

WafID est) 

Wafer G 

with OD 

Intercept 

TotLayWithDef

s 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

G matrix not 

positive definite 

(no WafID est) 

 

Intercept 

TotLayWithDef

s 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

G matrix not 

positive definite 

(no WafID est) 

 

Intercept 

TotLayWithDefs 

RadDist 

L2, L6, L7, L8, 

L9, L10 

G matrix not 

positive definite 

(no WafID est) 

 

Intercept 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

G matrix not 

positive definite 

(no WafID est) 

Intercept 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

G matrix not 

positive definite 

(no WafID est) 

Intercept 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, L6, 

L7, L8, L9, L10 

G matrix not 

positive definite (no 

WafID est) 

Lot 

Random 

(R) 

Intercept 

TotLayWithDef

s 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Intercept 

TotLayWithDef

s 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Did not 

converge. 

Intercept 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Intercept 

TotLayWithDefs 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Did not converge. 

Wafer(L

ot) 

Random 

(R) 

Intercept 

TotLayWithDef

s 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Intercept 

TotLayWithDef

s 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Intercept 

TotLayWithDefs 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Did not 

converge. 

Intercept 

TotLaywithDefs 

RadDist 

DieQuads 2,3 

L1, L2, L3, L4, 

L5, L6, L7, L8, 

L9, L10 

Did not converge. 
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 For the GLMM models shown in Table 5.3, the logit link seems to work 

best for nested random effects in batch-specific models with smaller sample size, 

since it is the only link function that returned a solution with Wafer(Lot) random 

for 30 wafers.  The complimentary log-log function was the only link function to 

converge with the Wafer(Lot) random effect for the 168-wafer sample size, 

though.  At the larger sample size, at least one of the link functions gave a 

solution, except in the cases when Lot was a random G-side effect with 

overdispersion and when Wafer(Lot) was a G-side random effect.  Since the 

significant factors are so similar between the different link functions when they do 

converge, if convergence is an issue, changing the link function may be the best 

adjustment to make first. 

 None of the link functions used in Table 5.3 were able to estimate random 

intercepts for Wafer due to the G matrix not being positive definite for the batch-

specific models.  The population-averaged models with Wafer as a random effect 

also had problems as they did not converge within reasonable computing time, 

even with the small samples.  This may be due to only having two wafers (2 and 

21) identified to compare since the Wafer(Lot) random effects, which consider 

each wafer individually rather than simply the position of the wafer in the lot, 

produced meaningful results. 

 In comparing the GLM models to the GLMM models, there are some 

interesting similarities.  The same factors are identified as significant in the GLM 

and GLM with overdispersion as with the population-averaged models (for both 
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Lot and for Wafer(Lot) random) with the exception of L3 being identified as 

significant in all the GLMM R-side models, but only the probit link GLM model. 

 The GLMM batch-specific models with Wafer(Lot) as a random effect 

have fewer wafers identified as significant (=0.1) than the nested GLM model, 

and there are also some differences between the wafers that are identified in the 

models.  These are shown in Figure 5.1 for the 30-wafer models.   Figure 5.2 

shows a sample of the wafers found to be significant in the 168-wafer models by 

looking only at wafers identified through Lot 23 so as to be consistent with the 

30-wafer models.  In comparing the figures, more wafers are identified in the 168-

wafer models for nested GLM structures (six wafers in the 30-wafer sample to 12 

wafers in the 168-wafer sample), while the GLMM models both had five wafers 

identified as significant.  Both Figures 5.1 and 5.2 show that the GLMM models 

identify significant wafers not detected by the nested GLMs that have high yields 

(87.17% for Lot 11, Wafer 2 and 88.94% for Lot 17, Wafer 2).  The nested GLMs 

identify wafers as significant that the GLMMs neglect, and these wafers appear to 

have some potential patterns, such as edge defects on Lot 2, Wafer 2 and Lot 4, 

Wafer 21 and a cluster on Lot 6, Wafer 2.  These patterns may be of interest to 

process engineers in helping detect and solve problems in the fabrication process.   

As shown in examining the differences between the models created using 

only 30 wafers and those that used 168 wafers, sample size can play a part in 

modeling outcomes as well.  To study this more, logit models were constructed 

using 30, 60, 90, 120, 150, and 168 wafers to compare the outcomes.  These are 

shown in Tables 5.4, 5.5, and 5.6. 
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Nested GLM Only Both GLM and 

GLMM models 

GLMM Wafer(Lot) G-

side Only 

Lot 4, Wafer 21 

 

Lot 10, Wafer 2 

 

Lot 11, Wafer 2 

 
Lot 10, Wafer 21 

 

Lot 23, Wafer 2 

 

 

 Lot 23, Wafer 21 

 

 

 Lot 16, Wafer 2 

(Wafer map not 

available.) 

 

Figure 5.1. Significant wafer maps comparing 30-wafer logit models.  Wafer 

maps for the wafers identified as significant in nested GLM models and GLMM 

models using Wafer(Lot) as a G-side random effect have some differences and 

similarities.  The GLMM model seems to identify an unusually good wafer (Lot 

11, Wafer 2) as well as wafers with poor yield.  The nested GLM model identifies 

some unique wafers that may be of interest due processing problems with possible 

pattern defects showing (e.g. edge defects on Lot 4 Wafer 21). 
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Nested GLM Only Both GLM and 

GLMM models 

GLMM Wafer(Lot)  

G-side Only 

Lot 2, Wafer 2 

 

Lot 14, Wafer 2 

 

Lot 10, Wafer 2 

 

Lot 11, Wafer 2 

 

Lot 4, Wafer 21 

 

Lot 14, Wafer 21 

 

Lot 23, Wafer 2 

 

Lot 17, Wafer 2 

 

Lot 6, Wafer 2 

 

Lot 19, Wafer 2 

 

 Lot 16, Wafer 2  

(Wafer map not 

available.) 

Lot 6, Wafer 21 

 

Lot 20, Wafer 21 

 

  

Lot 10, Wafer 21 

 

Lot 23, Wafer 21 

 

  

Figure 5.2.  Significant wafer maps comparing 168-wafer complimentary log-log 

models.  Again, the GLMM model identified high-yield wafers, and the nested 

GLMM identified some wafers that may have important patterns.
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Table 5.4.   Die-level significant factors for GLM models using various sample 

sizes (logit link function, =0.1) 

 
Model 30 Wafers 60 Wafers 90 Wafers 120 Wafers 150 Wafers 168 Wafers 

GLM Intercept 

Lots 2, 4, 6, 10, 

14, 23  

TotLayWithDef 

RadDist 

L2 

L6 

L7 

L8 

L9 

L10 

Intercept 

Lots 7, 10, 

11, 16, 17, 

23, 24, 25 

TotLayWith

Def 

RadDist 

DieQuad2 

L2, L5, L6, 

L7, L8, L9, 

L10 

 

Intercept 

Lots 10, 16, 17, 

23, 32, 57, 60, 

61, 67 

TotLayWithDef 

RadDist 

DieQuad 2 

L2 

L6 

L7 

L8 

L9 

L10 

Intercept 

Lots 7, 11, 16, 

17, 18, 19, 20, 

21, 24, 25, 26, 

31,  34, 35, 39, 

41, 43, 44, 46, 

48, 50, 51, 64, 

74, 76, 77, 87, 

92, 95 

TotLayWithDef 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Intercept 

Lots 2, 4, 6, 10, 14, 19, 

20, 23, 26, 29, 31, 32, 

33, 37, 39, 43, 44, 47, 

50, 57, 60,  61, 62, 63, 

67,  68, 69, 72, 73, 75, 

78, 80, 82, 86, 89, 90, 

91, 95, 96,  99, 101, 

107, 112, 114, 115, 

116, 117, 120 

TotLayWithDef 

RadDist 

DieQuads 2, 3 

L2, L3, L4, L5, L6, 

L7, L8, L9, L10 

Intercept 

Lots10, 11, 16, 

17, 23, 24, 25, 51, 

64, 77, 87, 100, 

106, 111, 120, 

121, 123, 134 

TotLayWithDef 

RadDist 

DieQuads 2,3 

L2, L3, L4, L4, 

L5, L6, L7, L8, 

L9, L10 

 

Nested 

GLM 

Intercept 

Waf 21(4) 

Waf 2(10) 

Waf21(10) 

Waf 2(16) 

Waf 2(23) 

Waf21(23) 

TotLayWithDef 

RadDist 

DieQuad2(2) 

L2, L6, L7, L8, 

L9, L10 

Intercept 

Waf 2(7) 

Waf21(7) 

Waf 2(11) 

Waf 2(16) 

Waf 2(17) 

Waf21(17) 

Waf21(19) 

Waf 2(20) 

Waf 2(21) 

& 11 other 

wafers 

TotLayWith

Def 

RadDist 

Die Quad2(2) 

L2, L5, L6, 

L7, L8, L9, 

L10 

Intercept 

Waf 2(10) 

Waf 2(11) 

Waf 2(16) 

Waf 2(17) 

Waf21(17) 

Waf21(19) 

Waf 2(20) 

& 13 other 

wafers 

TotLayWithDef 

RadDist 

DieQuad 21(2) 

L2, L4, L6, L7, 

L8, L9, L10 

Intercept 

Waf 2(10) 

Waf 2(11) 

Waf 2(16) 

Waf21(17) 

Waf 2(23) 

& 14 other 

wafers 

TotLayWithDef 

RadDist 

Die Quad 2(2), 

21(2), 21(3) 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

 

Intercept 

Waf 2(2), Waf21(2), 

Waf 2(4), Waf21(4),  

Waf 2(6), Waf21(6), 

Waf 2(10), Waf21(10), 

Waf21(11), Waf 2(14), 

Waf21(14), Waf 2(19), 

Waf21(20), 

Waf21(21), 

Waf 2(23), Waf21(23) 

& 65 other wafers 

TotLayWithDef 

RadDist 

DieQuads 2(2), 21(2), 

21(3) 

L1, L2, L3, L4, L5, 

L6, L7, L8, L9, L10 

Intercept 

Waf 2(2) 

Waf21(4) 

Waf 2(6) 

Waf21(6) 

Waf 2(10) 

Waf21(10) 

Waf 2(14) 

Waf21(14) 

Waf 2(19) 

Waf21(20) 

Waf 2(23) 

Waf21(23) 

& 54 other wafers 

TotLayWithDef 

RadDist 

DieQuad 2(2), 

2(21) 

L1, L2, L3, L4, 

L5, L6, L7, L8, 

L9, L10 

GLM 

with 

OD 

Intercept 

Lots 2, 4, 6, 10, 

14, 23 

TotLayWithDef 

RadDist 

L2, L6, L7, L8, 

L9, L10 

Intercept 

Lots 7, 10, 

11, 16, 17, 

23, 24, 25, 34 

TotLayWith

Def 

RadDist 

DieQuad 2 

L2, L5, L6, 

L7, L8, L9, 

L10 

Intercept 

Lots 10, 16, 17, 

23, 32, 57, 60, 

61, 67 

TotLayWithDef 

RadDist 

DieQuad2 

L2, L6, L7, L8, 

L9, L10 

Intercept 

Lots 7, 11, 16, 

17, 18, 19, 20, 

21, 24, 25, 26, 

31, 34, 35, 39, 

41, 43, 44, 46, 

48, 50, 51, 64, 

74, 76, 77, 87,  

92, 95 

TotLayWithDef 

RadDist 

DieQuads 2, 3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Intercept 

Lots 2, 4, 6, 10, 14, 19, 

20, 23, 26, 29, 31, 32, 

33, 37, 39, 43, 44, 47, 

50, 57, 60, 62, 63, 68, 

69, 72, 73,  75, 78, 80, 

82, 89, 90, 91, 95, 96, 

101, 107, 112,  114, 

115, 116, 117, 120 

TotLayWithDef 

RadDist 

Die Quads 2, 3 

L2, L3, L4, L5, L6, 

L7, L8, L9, L10 

Intercept 

Lots 10, 11, 16, 

17, 23,24, 25, 51, 

64, 77, 87, 100, 

106, 120, 121, 

123, 134 

TotLayWithDef 

RadDist 

DieQuad2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

 

Table 5.4 shows the GLM models constructed at the die-level for different 

sample sizes.  As the sample size used to build the models changes, the significant 

factors change as well, with more significant factors being identified at the larger 

sample sizes.  The most noticeable change in predicting significant layers comes 

between the 90-wafer and 120-wafer models.   



  96 

Table 5.5 also shows the differences across these different sample sizes, 

but this table highlights the factors found to be significant in batch-specific 

GLMM models using the logit link function.  As with the link model comparisons 

in Table 5.3, convergence was again an issue for these GLMM models. None of 

the models using a 90-wafer sample converged using the logit link.  The sample 

sizes over 60 wafers had convergence issues for the Wafer(Lot) random effect 

models, and the G-matrix was not positive definite for any of the models using 

Wafer as a random effect, thus preventing any wafer position (2 or 21) from being 

identified as significant. Including the overdispersion parameter does not have an 

impact on these die-level models, suggesting there is not overdispersion present in 

the GLMM models, and Table 5.4 shows only very slight differences between the 

GLM and the GLM with overdispersion (OD) models.   

Table 5.6 shows the population-averaged GLMM models using the 

different sample sizes and the logit link.  Convergence issues again hindered 

drawing many conclusions.  The 30-wafer model using Wafer as an R-side 

random effect took considerable computing time before producing the output that 

the model did not converge, so large sample sizes were not tried for this type of 

model.  For the models that did converge, there seems to be very little difference 

between the significant fixed factors identified in the batch-specific GLMM and 

the population-averaged GLMM models.     
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Table 5.5.  Die-Level Significant Factors for GLMM Batch-Specific Models using 

Various Sample Sizes (logit link function, =0.1) 

 
Model 30 Wafers 60 Wafers 90 Wafers 120 Wafers 150 Wafers 168 Wafers 

Lot 

Random 

(G) 

Did not 

converge. 

Intercept 

TotLayWithDef 

RadDist 

DieQuad2 

L2, L6, L7, L8, 

L9, L10 

Random lots: 

10, 16, 17, 23, 24, 

29, 32 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Intercept 

TotLayWithDef 

RadDist 

DieQuads 2, 3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Random Lots: 10, 

16, 17, 23, 24, 25, 

61, 67, 77,  86, 

87, 99, 120, 121, 

128 

Lot 

Random 

(G) with 

OD 

Did not 

converge. 

Intercept 

TotLayWithDef 

DieQuad 2 

L2, L6, L7, L8, 

L9, L10 

Random lots: 

10, 16, 17, 23, 24, 

29, 32 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Did not converge. 

Wafer 

(Lot) G 

Intercept 

TotLayWithDef 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Random: 

2(10), 2(11), 

2(16), 2(23), 

21(23) 

Intercept 

TotLayWithDef 

RadDist 

DieQuad2 

L2, L6, L7, L8, 

L9, L10 

Random: 

2(10), 2(11), 

2(16), 2(23), 

21(23), 2(25), 

2(32), 21(46) 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Did not converge. 

Wafer 

(Lot) G 

with OD 

Intercept 

TotLayWithDef 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Random: 

2(10), 2(11), 

2(16), 2(23) 

21(23) 

Intercept 

TotLayWithDef 

RadDist 

DieQuad2 

L2, L6, L7, L8, 

L9, L10 

Random: 

2(10), 2(11), 

2(16), 21(17), 

2(23), 21(23), 

2(25), 2(32), 

21(46) 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Did not converge. 

Wafer G Intercept 

TotLayWithDef 

RadDist 

L2,L3, L6, L7, 

L8, L9, L10 

G matrix not 

positive definite 

(no WafID est) 

 

Intercept 

TotLayWithDef 

RadDist 

DieQuad2 

L2, L4, L6, L7, 

L8, L9, L10 

G matrix not 

positive definite 

(no WafID est) 

 

Did not 

converge. 

Intercept 

TotLayWithDef 

RadDist 

DieQuads 2, 3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

G matrix not 

positive definite 

(no WafID est) 

Intercept 

TotLayWithDef 

RadDist 

DieQuads 2, 3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

G matrix not 

positive definite 

(no WafID est) 

Intercept 

TotLayWithDef 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

G matrix not 

positive definite 

(no WafID est) 

Wafer G 

with OD 

Intercept 

TotLayWithDef 

RadDist 

L2,L3, L6, L7, 

L8, L9, L10 

G matrix not 

positive definite 

(no WafID est) 

Intercept 

TotLayWithDef 

DieQuad2 

L2, L4, L6, L7, 

L8, L9, L10 

G matrix not 

positive definite 

(no WafID est) 

 

Did not 

converge. 

Intercept 

TotLayWithDef 

RadDist 

DieQuads 2, 3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

G matrix not 

positive definite 

(no WafID est) 

Intercept 

TotLayWithDef 

RadDist 

DieQuad2, 3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

G matrix not 

positive definite 

(no WafID est) 

Intercept 

TotLayWithDef 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

G matrix not 

positive definite 

(no WafID est) 
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Table 5.6.  Die-Level Significant Factors for GLMM Population-Averaged 

Models using Various Sample Sizes (logit link function, =0.1) 

 
Model 30 Wafers 60 Wafers 90 Wafers 120 Wafers 150 Wafers 168 Wafers 

Lot Random 

(R) 

Intercept 

TotLayWithDef 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Intercept 

TotLayWithDef 

RadDist 

DieQuads 2,3 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Wafer(Lot) 

Random (R) 

Intercept 

TotLayWithDefs 

RadDist 

L2, L3, L6, L7, 

L8, L9, L10 

Did not 

converge. 

Did not 

converge. 

Intercept 

TotLayWithDef 

RadDist 

DieQuad2 

L2, L3, L4, L5, 

L6, L7, L8, L9, 

L10 

Did not 

converge. 

Did not converge. 

Wafer (R) Did not converge. (Did not try 

due to 

computing 

time for 30 

wafers) 

(Did not try 

due to 

computing 

time for 30 

wafers) 

(Did not try due 

to computing 

time for 30 

wafers) 

(Did not try 

due to 

computing 

time for 30 

wafers) 

(Did not try due to 

computing time 

for 30 wafers) 

 

Die-Level Model Validation 

 While one key goal of using GLM or GLMM modeling strategies may be 

to identfiy significant factors for understanding a process, another application is to 

use the models for predictive purposes.  These models can be validated by testing 

their prediction errors and comparing them to previously published historic yield 

models.  Several of these yield models are described in Chapter 2 and are 

summarized in Table 4.3.  One difference between the historical yield models 

presented in Chapter 4 and those presented in this chapter is the value used for 

alpha in the negative binomial yield model (Y9).  Stapper and Rosner (1995) 

suggest a value of =2 for the negative binomial model gave the best results in 

their work over a 16-year period, so =2 was used in computing the negative 

binomial predicted values in this chapter.  The GLM and GLMM models in this 

chapter were validated using a test dataset of 84 wafers containing 11,445 dice.  
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None of the dice were removed from this dataset so the models’ robustness to 

outliers could be examined.   

 Figures 5.3 and 5.4 show the mean absolute deviation (MAD) and mean 

squared error (MSE) values for eight historical models (Y1-Y9) and GLM and 

GLMM models created with the logit link with sample sizes of 168 wafers and 30 

wafers.  When determining the MAD, the difference between the actual value 

(one for a passing die and zero for a failing die) and the predicted probability of 

the die to pass are calculated, then these absolute values are averaged for the test 

dataset.  The MSE values are found by first squaring the MAD value for each die 

and then finding the average for the dice in the test dataset.  These figures show 

values averaged for the entire test dataset (all data), the dice with fewer than ten 

defects on them, and the dice with ten or more defects on them to examine the 

models’ predictive abilities for dice that have an unusually large number of 

defects on them.   

 The MAD values for the GLM and GLMM models in Figure 5.3 show 

these approaches give much better predictions than the historical models.  The 

best results came from the nested GLM model created from 168 wafers with a 

value of 0.384, a 24.7% improvement over the best historical model, Seeds’ 

model (Y4 MAD=0.51).  The GLMM models were consistent in prediction errors 

across models that used different random effects (Lot, Wafer, Wafer(Lot)), across 

the different sample sizes (30 and 168 wafers), and across the different 

approaches used for the GLMM (batch-specific G-side effects or population-

averaged R-side effects).  One interesting result is that for dice that had ten or 
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more defects, models built from the 30-wafer dataset produced the least amount 

of error.  The 30-wafer GLM, GLMM with Wafer(Lot) G-side, Wafer G-side with 

overdispersion, Lot R-side, and Wafer(Lot) R-side models all shared the lowest 

MAD value of 0.302.    

Y1 Y3 Y4 Y5 Y6 Y7 Y8 Y9 GLM
Nested 

GLM
Lot G

Wafer 
G

Lot R GLM
Nested 

GLM
Wafer(
Lot) G

Wafer 
G

Wafer 
G with 

OD
Lot R

Wafer(
Lot) R

Historical Models 168 Wafers 30 wafers

All data 0.562 0.549 0.510 0.540 0.553 0.514 0.640 0.622 0.412 0.384 0.407 0.408 0.409 0.389 0.390 0.402 0.461 0.402 0.407 0.404

Fewer than 10 defs/die 0.566 0.553 0.513 0.544 0.557 0.517 0.645 0.627 0.413 0.385 0.409 0.409 0.411 0.391 0.392 0.404 0.464 0.404 0.408 0.406

10 or more defs/die 0.332 0.333 0.345 0.333 0.336 0.332 0.343 0.351 0.317 0.315 0.317 0.317 0.317 0.302 0.303 0.302 0.307 0.302 0.302 0.302
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Figure 5.3. Mean absolute deviation (MAD) for die-level yield models.  The 

MAD for the GLM and GLMM models significantly outperforms the historical 

models. 

 

 Figure 5.4 shows the MSE values for the same models and supports 

similar conclusions.  The best performing historical model (Y4) has a MSE value 

of 0.287.  The best performing GLM and GLMM models come from the 168-

wafer dataset, where the GLM, Lot G-side, Wafer G-side, and Lot R-side all have 

MSE values of 0.205, which is a 28.6% improvement over the Y4 model.  Since 

larger deviations have more weight in MSE values after being squared, these 

results show that the predictive power of the GLMM models from larger sample 
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sizes can be just as strong as GLM models and even stronger than nested GLM 

models.   

Y1 Y3 Y4 Y5 Y6 Y7 Y8 Y9 GLM
Nested 

GLM
Lot G

Wafer 
G

Lot R GLM
Nested 

GLM
Wafer(
Lot) G

Wafer 
G

Wafer 
G with 

OD
Lot R

Wafer(
Lot) R

Historical Models 168 Wafers 30 wafers

All data 0.401 0.368 0.287 0.350 0.357 0.309 0.573 0.525 0.205 0.210 0.205 0.205 0.205 0.210 0.210 0.208 0.227 0.209 0.208 0.208

Fewer than 10 defs/die 0.403 0.369 0.286 0.351 0.358 0.309 0.578 0.530 0.204 0.210 0.204 0.204 0.204 0.209 0.209 0.208 0.227 0.208 0.208 0.208

10 or more defs/die 0.332 0.329 0.298 0.329 0.320 0.312 0.286 0.268 0.260 0.250 0.258 0.258 0.258 0.249 0.248 0.252 0.248 0.255 0.251 0.252
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Figure 5.4. Mean squared error (MSE) for die-level yield models.  The MSE for 

GLM and GLMM models significantly outperforms the historical models. 

 

 Another way the model results can be compared is by looking at the 

number of dice predicted to pass on a wafer compared to the actual number of 

passing dice.  Figures 5.5 and 5.6 show these results plotted for the 30-wafer and 

168-wafer models using the logit link and compared to the actual values in the test 

dataset.  For the 30-wafer models shown in Figure 5.5, the GLM and GLMM 

models all show much better predictions than Seeds’ Model (Y4), which is 

included for comparison.  The GLMM model using Wafer as a G-side random 

effect gave predictions consistently lower than normal, but the addition of the 
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overdispersion factor to this model improved the performance to be much closer 

to the actual values and more in line with the other GLMM models.  From this 

figure, the GLM and nested GLM models appear to give higher predicted values 

than the GLMM models.   
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Figure 5.5. Predicted vs. actual number of passing dice on a wafer for the 30-

wafer models using the logit link.  Seeds’ model (Y4) is shown for comparison. 

 

 Figure 5.6 shows a similar chart for the models created with the 168-wafer 

training dataset.   Again, the GLM and GLMM models clearly provide better 

predictions than the best historical model, Y4, for these data.  With this larger 

sample size, the Wafer G-side random effect model does not underestimate as it 

did for the smaller sample size.  This shows at larger sample sizes, the model is 

robust even when the G matrix is not positive definite. Also, in this figure the 

overestimation by the nested GLM model is more apparent.  These figures show 



  103 

the predictive power of the GLMM models, both batch-specific and population-

averaged, is strong and outperforms historical models, such as Seeds’ model. 
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Figure 5.6.  Predicted vs. actual number of passing dice on a wafer for the 168-

wafer models using the logit link.  Seeds’ model (Y4) is shown for comparison. 

 

Wafer-Level Model Results 

 Wafer-level analyses may be beneficial as well, and studying the different 

levels of aggregation in this research helps determine the advantages of both 

approaches.  At the wafer level, the nested GLM models cannot be constructed, as 

in Chapter 4, due to a lack of degrees of freedom with the particular nested 

structure and sampling used.  With this exception, all the models in Table 5.1 

were run at the wafer level to study the effects of sample size and link functions 

as well as the differences between the GLM and various GLMM models.  The 
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significant factors for the wafer-level models comparing link functions for 30-

wafer and 168-wafer datasets are summarized in Table 5.7. 

Table 5.7.  Significant Fixed Effects for Wafer-Level Models from t-tests (=0.1) 

 
 30 Wafers 168 Wafers 

Model Logit Probit CLL Logit Probit CLL 

GLM None None None None None None 

Nested GLM 

WafID(LotN
o) 

(Not enough 

df) 

(Not enough 

df) 

(Not enough 

df) 

(Not enough 

df) 

(Not enough 

df) 

(Not enough 

df) 

GLM with 

OD 

TotLayWith

Defs 

TotLayWith

Defs 

None Intercept 

Lots 16, 17, 

23, 24, 25, 
87 

L9 

L10 

Intercept 

Lots 16, 17, 

23, 24, 25, 
87 

L9 

L10 

Intercept 

Lots 17, 23, 

24,  87, 120 
L9 

L10 

Lot Random 

(G)  

None 

G-matrix not 

pos. def. 

None 

G-matrix not 

pos. def. 

None 

G-matrix not 

pos. def. 

None 

G-matrix not 

pos. def. 

None 

G-matrix not 

pos. def. 

None 

G-matrix not 

pos. def. 

Lot Random 
(G) with OD  

Intercept 
TotLayWith

Defs 

L1, L6, L9, 
L10 

Random lots: 
4, 10, 17, 19 

Intercept 
TotLayWith

Defs 

L1, L6, L8, 
L9, L10 

Random lots: 
4, 10, 17, 19 

TotLayWith
Defs 

L1, L6, L8, 

L9, L10 
Random lots: 

4, 10, 17, 19 

Intercept 
L2, L9, L10 

Random lots: 

24 

Intercept 
L2, L9, L10 

Random lots: 

24 

Intercept 
L2, L9, 

L10 

Random 
lots: 

24 

Wafer(Lot) 

G 

(No p-values 

produced) 

G-matrix not 
pos. def. 

(No p-values 

produced) 

G-matrix not 
pos. def. 

(No p-values 

produced) 

G-matrix not 
pos. def. 

(No p-values 

produced) 

G-matrix not 
pos. def. 

(No p-values 

produced) 

G-matrix not 
pos. def. 

(No p-values 

produced) 

G-matrix not 
pos. def. 

Wafer(Lot) 

G with OD 

(No p-values 

produced) 
G-matrix not 

pos. def. 

(No p-values 

produced) 
G-matrix not 

pos. def. 

(No p-values 

produced) 
 

Did not 

converge. 

Did not 

converge. 

(No p-values 

produced) 
G-matrix not 

pos. def. 

Wafer G None 

G-matrix not 
pos. def. 

None 

G-matrix not 
pos. def. 

None 

G-matrix not 
pos. def. 

None 

G-matrix not 
pos. def. 

None 

G-matrix not 
pos. def. 

None 

G-matrix not 
pos. def. 

Wafer G with 

OD 

TotLayWith

Defs 
L1, L4, L7, 

L8, 

L9, L10 
Random 

wafers: 

none 

TotLayWith

Defs 
L1, L4, L7, 

L8, 

L9, L10 
Random 

wafers: 

none 

TotLayWith

Defs 
L1, L4, L7, 

L8, 

L9, L10 
Random 

wafers: 

none 

Intercept 

L2, L9, L10 
G-matrix not 

pos. def. 

Intercept 

L2, L9, 
L10 

G-matrix not 

pos. def. 

L2, L9, L10 

G-matrix not 
pos. def. 

Lot Random 
(R) 

Intercept 
TotLayWith

Defs 

L1, L6, L9, 
L10 

Intercept 
TotLayWith

Defs 

L1, L6, L9, 
L10 

TotLayWith
Defs 

L1, L6, L8, 

L9, L10 

Intercept 
L2, L9, L10 

 

Intercept 
L2, L9, L10 

 

Intercept 
L2, L9, L10 

 

Wafer(Lot) 

Random (R) 

TotLayWith

Defs 
L1, L4, L7, 

L8, L9, L10 

TotLayWith

Defs 
L1, L4, L7, 

L8, L9, L10 

TotLayWith

Defs 
L1, L4, L7, 

L8, L9, L10 

Intercept 

L2, L9, L10 
 

Intercept 

L2, L9, L10 
 

Intercept 

L2, L9, 
L10 

 

Wafer (R) TotLayWith
Defs 

L1, L4, L7, 

L8, L9, L10 

TotLayWith
Defs 

L1, L4, L7, 

L8, L9, L10 

TotLayWith
Defs 

L1, L4, L7, 

L8, L9, L10 

Did not 
converge. 

Did not 
converge. 

L2, L4, L9, 
L10 
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There are several interesting differences to observe in these model 

comparisons.  First, at the wafer level, neither the GLM model nor the batch-

specific GLMM models identified any effects as significant unless the 

overdispersion parameter was included in the model.  Also, the GLM model with 

overdispersion for the 30-wafer models only identified at most one significant 

factor.  From a process improvement standpoint, this is a limitation of the GLM 

models at small sample sizes.  At larger sample size (168 wafers), the GLM 

models were able to identify more significant factors, but they did not identify 

Layer 2 as significant like the GLMM models for the 168-wafer dataset did.  They 

did, though, identify more lots as significant (considering them as fixed effects) 

than the batch-specific GLMM did. 

As shown in Table 5.7, there are very few differences in significant factors 

across link functions at either the small or the large sample size.  There are not as 

many convergence problems with these wafer-level models as there were with the 

die-level models, which enable better understanding of the differences between 

the links.  These wafer-level data suggest the complimentary log-log link seems to 

work better than the probit or logit links for the large sample size of 168 wafers in 

delivering a solution. 

There are also some interesting similarities and differences in comparing 

the GLMM models.  In comparing the batch-specific (including the 

overdispersion parameter) and the population-averaged GLMM models, the same 

predictive factors were identified as statistically significant in both types of 

GLMM for random effects of Lot and of Wafer.  The batch-specific model was 
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able to identify specific significant lots.  This suggest there is some robustness in 

model selection since choosing either the batch-specific or the population-

averaged approach delivered the same results in terms of identifying the same 

significant fixed effects.  For the 30-wafer models, there were differences in the 

results between the GLMM models that used only Lot as a random effect and 

those that used Wafer or Wafer(Lot) as a random effect.  These differences are 

not seen in the 168-wafer models, with the exception of the complimentary log-

log link with Wafer as an R-side random effect identifying an additional 

significant layer (L4).  This consistency suggests that at large sample sizes, the 

choice of the random effect used in the model may not be critical to obtaining 

useful results.   

The GLMM models in Table 5.7 that included Wafer(Lot) or Wafer as 

random G-side effects had problems with the G matrix not being positive definite 

(except for the 30-wafer models that included Wafer as a G-side random effect 

and included an overdispersion parameter).  The wafer-level population-averaged 

GLMM models did not not have as many convergence issues as the die-level 

models did, though two of the links did not converge for the 168-wafer models 

using Wafer as an R-side random effect.  None of the die-level models converged 

using Wafer as an R-side random effect, so the ability to obtain results for this 

model at the wafer level is an important difference to consider. 

Since the nested GLM model cannot be assessed at the wafer level, it was 

interesting to see these results show that the nested Wafer(Lot) random effect 

could produce results for the population-averaged model.  Also, these results were 
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the same as both the batch-specific models (with overdispersion) and the 

population-averaged models that considered Wafer alone random for the 30-wafer 

models.   

To better understand the impact of sample size in the wafer-level models, 

the same GLM and GLMM models were constructed for samples of 30, 60, 90, 

120, 150, and 168 wafers using the logit link function.  These models are 

summarized in Table 5.8, which shows the significant factors identified for model 

(=0.1).  As in Table 5.7, the results show that for all of the sample sizes used, 

the models did not identify significant factors for GLM and GLMM batch-

specific models that did not include an overdispersion parameter.  Also, the batch-

specific models with Wafer(Lot) as a random effect did not produce results, even 

when the overdispersion parameter was included.   

One important question is: what is an appropriate sample size for these 

wafer-level models?  In looking at the significant factors identified for each model 

across the different sample sizes, these results show that the results seem to 

stabilize at 150 wafers with there being no differences between the 150-wafer and 

168-wafer GLMM models’ significant effects.  Note that this is not the case for 

the GLM model.  A sample size of 150 wafers may be too large, though, for 

population-averaged models including Wafer as a random effect.  For this type of 

model, no results were returned for datasets including 120 or more wafers.  It is 

also of interest to see at what sample size the indifference between the GLMM 

models begins.  At 90 wafers, all of the converging GLMM models (batch-

specific with overdispersion and population-averaged) identify the intercept, L9,  
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Table 5.8.  Significant Effects for Wafer-Level Models from t-tests (logit link, 

=0.1) 

 
Model 30 Wafers 60 Wafers 90 Wafers 120 

Wafers 

150 Wafers 168 Wafers 

GLM None None None None None None 

Nested GLM (Not enough df) (Not 

enough 

df) 

(Not 

enough 

df) 

(Not 

enough 

df) 

(Not enough 

df) 

(Not 

enough df) 

GLM with OD TotLayWithDef

s 

L6 Intercept 

 

Intercept 

Lots 16, 

24, 25, 87 

Intercept 

Lots 

10, 14, 23 

57, 61, 67, 

114, 120 

L2, L9, L10 

Intercept 

Lots 16, 17, 

23, 24, 25, 

87 

L9, L10 

Lot Random 

(G) 

None 

G-matrix not 

pos. def. 

None 

G-matrix 

not pos. 

def. 

None 

G-matrix 

not pos. 

def. 

None 

G-matrix 

not pos. 

def. 

None 

G-matrix not 

pos. def. 

None 

G-matrix 

not pos. 

def. 

Lot Random 

(G) with OD 

Intercept 

TotLayWithDef

s 

L1, L6, L9, L10 

Random lots: 

4, 10, 17, 19 

Intercept 

L8, L10 

Random 

lots: 

None 

Intercept 

L9, L10 

Random 

lots: 

None 

Intercept 

L2, L9 

Random 

lots: None 

Intercept 

L2, L9, L10 

Random 

lots:  24, 120 

Intercept 

L2, L9, 

L10 

Random 

lots: 

24 

Wafer(Lot) 

Random (G) 

(No p-values 

produced) 

G-matrix not 

pos. def. 

(No p-

values 

produced) 

G-matrix 

not pos. 

def. 

(No p-

values 

produced) 

G-matrix 

not pos. 

def. 

(No p-

values 

produced) 

G-matrix 

not pos. 

def. 

(No p-values 

produced) 

G-matrix not 

pos. def. 

(No p-

values 

produced) 

G-matrix 

not pos. 

def. 

Wafer(Lot) 

Random (G) 

with OD 

(No p-values 

produced) 

G-matrix not 

pos. def. 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Did not 

converge. 

Wafer 

Random (G)  

None 

G-matrix not 

pos. def. 

None 

G-matrix 

not pos. 

def. 

None 

G-matrix 

not pos. 

def. 

None 

G-matrix 

not pos. 

def. 

None 

G-matrix not 

pos. def. 

None 

G-matrix 

not pos. 

def. 

Wafer 

Random (G) 

with OD 

TotLayWithDef

s 

L1, L4, L7, L8, 

L9, L10 

Random 

wafers: 

none 

L10 

G-matrix 

not pos. 

def. 

Intercept 

L9, L10 

G-matrix 

not pos. 

def. 

Intercept 

L4, L9 

G-matrix 

not pos. 

def. 

Intercept 

L2, L9, L10 

G-matrix not 

pos. def. 

Intercept 

L2, L9, 

L10 

G-matrix 

not pos. 

def. 

Lot Random 

(R) 

Intercept 

TotLayWithDef

s 

L1, L6, L9, L10 

Intercept 

L8, L10 

Intercept 

L9, L10 

Intercept 

L2, L9 

 

Intercept 

L2, L9, L10 

Intercept 

L2, L9, 

L10 

 

Wafer(Lot) 

Random (R) 

TotLayWithDef

s 

L1, L4, L7, L8, 

L9, L10 

Intercept 

L8, L10 

Intercept 

L9, L10 

 

Intercept 

L4, L9 

Intercept 

L2, L9, L10 

Intercept 

L2, L9, 

L10 

 

Wafer 

Random (R) 

TotLayWithDef

s 

L1, L4, L7, L8, 

L9, L10 

L8, L10 Intercept 

L9, L10 

 

Stopped 

because of 

infinite 

objective 

function. 

Stopped 

because of 

infinite 

objective 

function. 

Did not 

converge. 
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and L10 as significant.  There are some slight differences for the 120-wafer 

models with the models using Lot as a random effect identifying the intercept, L2, 

and L9 as significant while the Wafer (G-side) and Wafer(Lot) (R-side) models 

show the intercept, L2, and L9 to be significant.  Any differences between 

significant factors across different types of GLMM models appear to be resolved 

for models containing 150 wafers or more.        

 

Wafer-Level Model Validation 

 As with the die-level models, MAD and MSE can help compare the 

predictive power of the GLM and GLMM models compared to the historical 

models.  At the wafer-level, these comparisons were made using the models 

developed for the 30-wafer and 168-wafer datasets.  Adjusted models were also 

considered.  These adjusted wafer-level models took the wafer-level GLM or 

GLMM and adjusted the forecasted yield from predicting that of the entire wafer 

to instead forecast the yield for only the defective dice.  For example, the wafer-

level GLMM prediction may be 75% yield for a wafer.  This prediction, however, 

is really modeling the proportion of dice that have defects and pass, not a 

proportion of all the dice on the wafer.  The adjusted models take this into account 

and assume that all non-defective dice will pass.  To illustrate this, consider a 

wafer (Lot 8, Wafer 2 in the training dataset) that has 226 total dice on the wafer, 

154 of them with detectable defects on at least one layer.  Of these defective dice, 

101 of them pass.  The wafer-level GLM predicts 63.7% yield.  The adjusted 

yield is found simply by taking: 
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%.26.75
226

)154226(154*637.0

 waferon the dice Total

dice defective-non ofnumber  dice defective passing ofnumber  Predicted
yield model Adjusted









 

The actual yield for this wafer is 76.11% (172 passing dice), so the adjusted yield 

gives a much more accurate forecast and is fitting, considering the data used to 

build the GLM and GLMM models is based only on dice containing defects.   

 Die-level models were also included in these comparisons by summing the 

prediction probabilities for all the dice on a wafer to predict how many dice on the 

wafer would pass.  These values were also adjusted while assuming non-defective 

dice will pass.  For example, for Lot 8, Wafer 2, the die-level nested GLM 

predicted probabilities sum to 106.38 for the wafer.  The adjustment simply takes: 

%.9.78
226

)154226(38.106



 

 Figure 5.7 displays the mean absolute deviation (MAD) values for the 

historical yield models Y1-Y9, the wafer-level GLM and GLMM models from 

both the 30-wafer and 168-wafer datasets, the adjusted wafer-level models, and 

the adjusted die-level models.  These values are calculated using the actual yields 

from the wafers in the test dataset (84 wafers).  The chart shows that all the GLM 

and GLMM models signficantly outperform the historical models.  The best of the 

previously published models is Y4, Seeds’ model, with a MAD value of 0.336 and 

an MSE value of 0.1205.  Figure 5.7 shows a number of interesting relationships 

between the models.  First, wafer-level GLM and GLMM models from the larger 

sample size (168 wafers) are very consistent in their prediction errors, regardless 

of the form of the model.  This is not the case for the 30-wafer models, where 



  111 

much more variation can be observed.  For the non-adjusted wafer-level models, 

the GLM shows the lowest MAD (0.144 for 168 wafers and 0.174 for 30 wafers), 

but for the adjusted wafer-level models, the lowest errors come from the batch-

specific GLMM with Lot and overdispersion random (MAD=0.048 for the 168-

wafer model and 0.093 for the 30-wafer model) and the population-averaged 

model with Lot random (MAD=0.048 for the 168-wafer model and 0.092 for 30-

wafer model), outperforming the GLM slightly.   
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Figure 5.7. Mean absolute deviation (MAD) for wafer-level yield models.  The 

MAD for the GLM and GLMM models significantly outperforms the historical 

models with the lowest values coming from the die-level adjusted GLM models. 

 

 The die-level adjusted models are also consistent across model type for the 

larger 168-wafer sample size, with the exception of the nested GLM having a 

higher MAD.  At the 30-wafer sample size, the GLMM models, with the 
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exception of the GLMM with Wafer as a G-side random effect, give better 

predictions than the GLM or nested GLM models.   

 The lowest MAD value comes from the die-level adjusted GLM model 

from 168 wafers (0.040), but as Figure 5.7 shows, adjusted wafer-level models 

from a large sample (168 wafers) are nearly as accurate (within 1% yield) and are 

simpler to obtain for a wafer-level prediction purposes. 
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Figure 5.8. Mean squared error (MSE) for wafer-level yield models.  The MSE 

for the GLM and GLMM models significantly outperforms the historical models 

with the lowest values coming from the die-level adjusted GLM models. 

 

 The mean squared errors for the models, shown in Figure 5.8, also support 

these conclusions.  Again, the GLM and GLMM models significantly outperform 

the historical models, with the models coming from a larger dataset (168 wafers) 

being more accurate and consistent across model type than those created from the  
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Figure 5.9. Predicted vs. actual wafer yields for wafer-level historical models Y1-

Y9.  The historical models significantly underestimate the actual yield. 
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Figure 5.10. Predicted vs. actual wafer yields for adjusted wafer-level GLM and 

GLMM models.  These models all give very similar predictions and are much 

nearer the actual yield values than the historical models shown in Figure 5.9. 
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30-wafer dataset.  Again, the die-level adjusted models give the lowest values 

(MSE= 0.0026 for the 168-wafer die-level adjusted GLM), but the adjusted wafer-

level results from the 168-wafer dataset perform nearly as well (MSE=0.0042 for 

GLMM with Lot (G) and overdispersion and for GLMM with Lot (R)). 

 The predictive power of these models compared to the models of the past 

can also be shown by looking at the actual and predicted yields for the wafers in 

the test dataset.  Figures 5.9 shows the actual and predicted values using the 

historic models Y1-Y9.  Similar to the results seen at the die-level, these models 

severely underestimate the actual wafer yield.   Figure 5.10 shows the adjusted 

wafer-level GLM and GLMM models’ predicted values plotted against the actual 

wafer yield for the 168-wafer dataset.  As shown in the MAD and MSE charts, 

there is very little difference between these models in terms of predicted values, 

and all these models are very near the actual yield values for the wafers in the test 

dataset.    

Summary 

 Using GLMMs is a clear extension of using GLMs to model 

semiconductor yield, given the random sampling that is inherent in the fabrication 

process.  This study compared many different GLMM approaches to GLM 

models using different link functions and sample sizes.  The results in this study 

can guide a practitioner in using GLMMs as a modeling strategy to forecast 

semiconductor yield and as a process improvement tool for identifying critical 

layers that are most sensitive to defects and specific lots and wafers that may need 

further investigation.   
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 One limitation of the study was the lack of convergence in many of the 

models examined.  This may be due to the degrees of freedom method used.  

Preliminary models using the Sattherwaite degrees of freedom method (ddfm) for 

wafer-level models did not have as many problems with convergence, so using 

this method or the Kenward-Rogers approach, both available in PROC 

GLIMMIX in SAS, may provide more conclusive results when the default 

settings do not.  

 The results from this research can provide a meaningful modeling strategy 

for yield modeling or other applications, but the approach depends on the 

researcher’s objectives.  Different information is provided by the models at 

different levels of aggregation and through the different model types.  

For a focus on process improvement, the die-level models described here 

can be very helpful in identifying significant process layers impacted by defects 

and in distinguishing important wafers or lots for further investigation.  The 

GLMM models include high-yield wafers in those found to be significant, while 

the GLM models identify more wafers and tend to identify more low-yield wafers 

as significant.  Some of the wafers identified by the GLM model appear to have 

some pattern defects, so this identification, either done at the end of the line as 

with this study or earlier in the fabrication process, may be helpful in detecting 

processing issues that can be resolved to boost yield on future wafers.  

Conversely, the high-yield wafers identified by the GLMM model may be helpful 

in studying optimal operating conditions that can be replicated in future 

fabrication.  Also, at the die level GLM models identified a much larger number 
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of lots or wafers as significant compared to the GLMM models.  This additional 

detection may lead to some false alarms in process improvement efforts, meaning 

some of the wafers or lots identified may actually be different from the baseline 

due to random effects rather than systematic problems. 

Due to the convergence issues, it is not clear if one link function 

consistently outperforms the others at the die level, but there were very few 

differences between the results using different link functions when they all 

provided results.  The die-level models did give the best predictions of wafer yield 

in terms of MAD and MSE, even for the small 30-wafer sample size.  This 

suggests that if only a small dataset is available for modeling, die-level models 

should be used to predict wafer yield.   

For a focus on wafer-level predictions that have little error and are robust 

as to model type, adjusted wafer-level models from large sample datasets can 

work very well.  Sample sizes over 150 wafers seem to work best for wafer-level 

modeling, and the complimentary log-log link seems to work best for generating 

results at this larger sample size.   

The wafer-level GLM and GLMM models all identified fewer significant 

factors than the die-level models, with the 150-wafer models selecting only L2, 

L9, and L10 as significant.  These differences between the die- and wafer-level 

modeling may make a strong difference in detecting problems, and since the die-

level models take advantage of more complete and specific information, the die-

level models are most useful for process and yield improvement efforts.   
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The GLM and GLMM models significantly outperformed the models of 

the past in terms of prediction error.  GLMM models offer a modeling approach 

that accounts for the random factors in a system without violating the assumptions 

of the model.  This work shows that the GLMM models do this while providing 

additional insight into the process and maintaining or even improving prediction 

power compared to using GLMs.   
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Chapter 6 

SEMICONDUCTOR YIELD MODELING INTEGRATING CART AND 

GENERALIZED LINEAR MODELS 

Introduction 

 The approach used in building classification and regression trees (CART) 

is described in Chapter 2 and in full detail by Brieman, et al. (1984).  Recall the 

main steps involved in CART are (1) building the tree through binary recursive 

partitioning by minimizing the impurity of the nodes, (2) pruning the tree using a 

cost-complexity parameter, and (3) selecting the best tree to avoid overfitting by 

using cross-validation techniques.  This approach has shown promise in a variety 

of applications. 

 Many articles have been published that compare the use of classification 

trees with other approaches such as logistic regression.  Costanza and Paccaud 

(2004) compare the use of linear regression, logistic regression, classification 

trees, and regression trees to predict occurrences of dyslipidemia.  Skinner, et al. 

(2002) compare the use of cluster analysis, principal components, ordinary least 

squares regression, logistic regression, and CART to determine the cause of low 

yield wafers from unit probe testing.  Chang and Chen (2005) consider CART 

models and negative binomial regression models to analyze freeway accident 

frequency.  Khoshgoftaar and Seliya (2003) use CART-least squares, CART-least 

absolute deviation, S-PLUS, multiple linear regression, artificial neural networks, 

and case-based reasoning and compare these modeling techniques applied to 
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predicting software quality. Predicting essential hypertension was studied by 

Ture, et al. (2005) as they applied CART, Quick, Unbiased, Efficient Statistical 

Tree (QUEST), logistic regression, Flexible Discriminant Analysis (FDA), 

Multivariate Addititve Regression Splines (MARS), Multi-Layer Perceptron 

(MLP) and Radial Basis Function (RBF) neural networks to compare the models.  

These studies demonstrate the value of CART for handling large datasets that do 

not fit the assumptions required for more traditional statistical techniques.  

 CART’s tree structure is easy for users to interpret and understand.  If 

sufficient data are available to form the model, good predictions can be achieved 

using CART.  The CART approach also is beneficial as a supplemental tool to 

other modeling techniques that provides a different type of information through 

the trees that are generated, including a “recipe” for groups such as high yield.  

Limitations mentioned include the limited predictive power of CART and the 

need for large datasets to construct meaningful models.   

 Some work has also been done to integrate CART or decision trees with 

other techniques to build new modeling approaches.  Choi and Lee (2010) 

develop a method for selecting retaining wall systems to prevent failures.  While 

previous studies in this area have used machine-learning techniques, the training 

datasets had to be very large to produce adequate prediction values.  These large 

amounts of data are not feasible in the excavation area, so Choi and Lee (2010) 

demonstrate a different approach.  They first use a series of logistic regression to 

determine significant factors, reduce multicollinearity, and adjust certain outcome 

groups.  Next, the derived explanatory variables were examined against general 
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findings documented in the literature and were reviewed by process experts (Choi 

& Lee, 2010).  The third step of the process was to develop these explanatory 

variables into a binary decision tree based on their impact on outcomes.  

Threshold values at each node were determined using ROC curves.  The resulting 

decision tree showed high prediction rates (82.6% for retaining walls), which was 

much improved over using a data-mining algorithm along that produced a 

decision tree with accuracy of 58.7% (Choi & Lee, 2010). 

 Chandra, et al. (2009) use a variety of approaches to determine important 

factors and prediction accuracy for survival of dotcom companies, also called 

“click-and-mortar” corporations.  They compare using multilayer perceptrons 

(MLP), CART, support vector machines (SVM), random forest (RF), and logistic 

regression (LR) to their dataset of 24 financial ratios for 240 dotcom companies.  

They compared both full and reduced (10 of the 24 financial ratios determined 

from t-tests) models and also explored the use of ensembling and boosting to 

improve the accuracy of the method.  Ensembling, which aims to exploit each 

constituent model’s unique features to capture different patterns in the dataset 

(Chandra, et al., 2009), was used to combine the results from RF, CART, and 

SVM by majority voting.  For the dotcom data, Chandra, et al. (2009) found this 

ensembling approach did not improve the accuracy of the model compared to the 

individual classifying methods.  Boosting focuses on producing a series of 

classifiers and attempts to produce new classifiers that are better able to predict 

examples for which the current ensemble’s performance is not adequate (Chandra, 

et al., 2009).  This is a more hierarchical approach where the misclassified 
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samples from using one approach, such as RF, are then modeled using another 

approach, such as CART.  Any samples that are still misclassified by the second 

step (CART) are modeled using yet as third approach, such as MLP.  Chandra, et 

al. (2009) found that this technique of boosting using RF+SVM+MLP to give the 

most accurate predictions.  

 Kuhnert, Do, and McClure (2000) consider combining CART, 

multivariate adaptive regression splines (MARS), and logistic regression to 

improve on logistic regression modeling by using the variable importance 

rankings from CART to aid in identifying important variables and also in 

visualizing each variable’s contribution to the response being modeled.  As they 

apply their approach to motor vehicle accident data, they show how using these 

approaches together can improve understanding of significant factors (risk factors 

such as seat belts and speeding), interactions (age and experience), and groups of 

special interest (middle-aged “rural” drivers).  The approach of modeling with all 

three methods first contributed to a stronger logistic regression model by using the 

age*experience interaction identified by MARS and creating two logistic 

regression models after splitting the data into groups determined by CART 

(splitting by age < 27.5 years and age > 27.5 years), which allowed for better 

interpretation of the interaction (Kuhnert, et al., 2000).   

 Fu (2004) took a similar approach by using loglinear models and CART 

together to examine occurrences of low birth weight and preterm birth.  The use 

of both CART and loglinear models produced more information about potential 
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relationships between the variables than using either approach alone.  Using these 

methods jointly produced the benefits of both, including the odds ratios and 

ability to deal with multiple responses simultaneously for the loglinear model and 

the strength of being able to be used for predictive classification from the CART 

model.  These methods are complementary for data analysis (Fu, 2004). 

 These integrated techniques show promise but do not fully explore the 

ways CART can be used with GLMs.  For semiconductor yield modeling using 

defectivity data, Krueger, Montgomery, and Mastrangelo (2011) found die-level 

GLM models to best outperform yield models of the past (also described in 

Chapter 4), but interaction terms between the process layers were not considered.  

This is also the case for the GLMM models described in Chapter 5.  Considering 

all the two-way interaction terms in the model would require an additional 45 

predictor variables, significantly adding to the complexity of the model.  

Additional interactions may be present as well.  CART’s tree structure classifies 

each data point into a terminal node that is reached by following a series of 

splitting nodes.  These terminal nodes form groups that may be statistically 

significant (as mentioned in Skinner, et al., 2002) and can be detected as such 

using a GLM.  These groups may be of particular interest in developing “recipes” 

for reproducing those outcomes.  Also, the CART tree can quickly identify which 

interactions may be of most interest to include in the GLM as predictors. 

 The purpose of this chapter is to describe a methodology that integrates 

CART and GLMs in a way that enhances the modeling results and interpretation 
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for process improvement and outcome prediction.  An example using 

semiconductor yield data is provided to demonstrate the benefits of this integrated 

approach.  This chapter is organized to first describe the methodology, then 

discuss the results, and summarize the findings.    

Methodology 

 This integrated approach includes two main components: first, building 

decision trees using a method such as CART to determine terminal nodes and 

important interaction terms in the dataset and, second, building a GLM model 

using the factors in the dataset as well as indicator variables from the terminal 

nodes of the classification trees.   The approach is described in detail and 

demonstrated through an example using semiconductor yield data. 

Building Trees 

 Often in exploratory data mining, prior knowledge of the data may not 

exist.  While a process owner may understand the important process factors and 

logical interactions, sometimes this information is unknown, such as for a new 

product or process or when only limited previous analyses have been performed.   

 Recall from Chapter 2 that nodes are split to minimize impurity based on a 

given method.  The Gini splitting method is a well-known and commonly used 

standard splitting rule (see Equation 2.20).  Other possible splitting criteria 

include symmetric Gini, entropy, class probability, twoing, and ordered twoing 

(CART for Windows User’s Guide, Version 5.0, 2002).   
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 An Example from Semiconductor Yield Modeling. 

 For the die-level data, the dataset included 18 possible predictors.  These 

are shown and described in Table 6.1.  Dice with more than nine defects were 

removed as outliers based on the results described in Chapter 4, leaving a training 

dataset of 23,296 dice that were used to build the trees.  The number of defects on 

layers is found from a wafer scan performed after certain processing steps have 

been completed as described in Chapter 3.  Krueger, et al. (2011) found the die-

level data to be most accurate in GLM predictions for semiconductor yield 

modeling of this type, so the die-level data, rather than wafer-level data are used 

in this modeling approach.   

 Classification trees may be built in a number of different ways, and 

several options can be specified in the CART 5.0 software from Salford Systems 

based on methods developed by Breiman, Friedman, Olshen, and Stone (1984).  

To begin the tree building, this step is assumed to be exploratory in nature, 

without detailed prior knowledge.  Due to the binary nature of the data, 

classification trees were chosen for the modeling.  Case weights, prior 

probabilities, and misclassification costs were not specified for the dataset.  Since 

the dataset of 23,296 records was well over 3,000 records, 10-fold cross-

validation was selected to evaluate the performance of the results.  The Gini 

splitting rule is the default splitting technique, and was selected for this work, 

though since “Favor even splits” was set to zero and a unit cost matrix used, the 

Gini, symmetric Gini, twoing, and ordered twoing splitting methods will produce 
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identical results.  These splitting rules provide the greatest variety of differences 

for multilevel targets (CART for Windows User’s Guide (Version 5.0), 2002).  

For these binomial data, the splitting rule choice is not as critical.  Gini splitting 

works to produce small nodes with only one target class prevailing and works best 

for binary responses.   

Table 6.1.  Die-Level Predictors  

Predictor Variable Description  Predictor Variable Description 

Lot Classification 

variable (84 levels in 

training data) that 

indicates which 

sampled lot the data 

are from. 

 Wafer Classification variable 

(2 levels) that indicates 

which sampled wafer 

the data are from. 

Die X x-coordinate for the 

die. 

 Die Y y-coordinate for the die. 

Die 

Quadrant 

From the (x,y) 

coordinates, dice 

were assigned a 

quadrant. 

 Radial 

Distance 

From the (x,y) 

coordinates, a radial 

distance was calculated. 

Total 

Layers 

with 

Defects 

A count of the 

number of layers 

that contain at least 

one defect. 

 Total 

Defects 

per Die 

A count of the total 

defects present on the 

die. 

L1 Number of defects 

detected on Layer 1. 

 L2 Number of defects 

detected on Layer 2. 

L3 Number of defects 

detected on Layer 3. 

 L4 Number of defects 

detected on Layer 4. 

L5 Number of defects 

detected on Layer 5. 

 L6 Number of defects 

detected on Layer 6. 

L7 Number of defects 

detected on Layer 7. 

 L8 Number of defects 

detected on Layer 8. 

L9 Number of defects 

detected on Layer 9. 

 L10 Number of defects 

detected on Layer 10. 
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 First, trees were built with different combinations of predictor variables to 

assess which tree would be best for use in GLM model building.  Four trees were 

built with the die-level training dataset.  These four trees are outlined in Table 6.2 

and are shown in Figure 6.1.  Table 6.2 includes the predictors for each tree, the 

number of important predictors determined by CART, the number of terminal 

nodes, the percentage of terminal nodes that were identified as nodes that 

outperformed the root node, and the percent of predicted class that was correct.  In 

looking at the predictions, the column for 0 (Fail) indicates the percentage of 

actual failing dice that were predicted to fail.  The column for 1 (Pass) indicates 

the percentage of actual passing dice that were predicted to pass.   For example, in 

the dataset, there are 7,819 failing dice and 15,477 passing dice.  Tree 3 predicts 

that 5,044 of the actual failing dice will fail and that 2,775 of them will pass 

(64.51% predicted class correct).  Tree 3 also predicts 9,322 of the actual passing 

dice will pass and 6,155 of them will fail (60.23%). 

Tree 1 used all of the available predictors from the dataset.  Lot and Wafer 

were deemed unimportant by CART with variable scores (out of 100) of 0.  Lot 

and Wafer were removed from the list of predictors for building Tree 2.  Tree 2 

found one of the device layers with defects (L8) to be unimportant (variable score 

of 0), but each of the device layers are of interest in the initial tree building for 

modeling.   

To try a simpler tree, the x- and y-coordinates (Die X and Die Y) were not 

included as predictors in Tree 3.  The use of the die coordinates in Tree 1 did not 

seem to help the model as only one split came from Die Y and none from Die X.  
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Die Y had a variable score of 2.33 and a Die X variable score of 0.34 for Tree 1.  

Tree 2 had 4 spits using Die X and 1 split using Die Y.  Die X had a variable 

score of 4.89, and Die Y had a variable score of 3.21 for Tree 2.  Since these 

coordinates were used to determine the Die Quadrant and Radial Distance 

predictors for each die, which give a better positional indicator (i.e. identifying 

center or edge defects), it was reasonable to drop these coordinates as predictors 

in developing Tree 3. These were also the predictors used in the GLM models 

developed by Krueger, et al. (2011) with the exception of including Total Defects 

per Die.   

Table 6.2.  Preliminary Tree Building Results 

Prelimi-

nary 

Tree 

Predictors Included Number 

of 

Important 

Predictors 

Number 

of 

Terminal 

Nodes 

Percentage 

of Terminal 

Nodes that 

Outperform 

Root Node 

Percent Predicted 

Class Correct 

0 (Fail) 1 (Pass) 

1 Lot, Wafer, Die X, 

Die Y, Radial 

Distance, Die 

Quadrant,  Total 

Layers with Defects, , 

L1-L10, Total 

Defects on Die  

16 23 12/23 = 

52.2% 

61.96% 65.58% 

2 Lot, Wafer, Radial 

Distance, Die 

Quadrant,  Total 

Layers with Defects, 

L1-L10, Total 

Defects on Die 

14 24 12/24 = 

50% 

61.44% 63.57% 

3 Radial Distance, Die 

Quadrant,  Total 

Layers with Defects,  

L1-L10, Total 

Defects on Die 

13 25 13/25 = 

52% 

64.51% 60.23% 

4 Radial Distance, Die 

Quadrant,  Total 

Layers with Defects,  

L1-L10 

13 53 20/53 = 

37.7% 

64.06% 62.12% 
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Figure 6.1.  Preliminary tree structures using different predictors.  These figures 

show the variables used for splitting and indicate if a node is better than the root 

node (dark red) or not as good as the root node (light blue).  (a) Corresponds to 

Tree 1 in Table 6.2 with 18 predictors and 23 terminal nodes. (b) Corresponds to 

Tree 2 in Table 6.2 with 16 predictors and 24 terminal nodes. (c) Corresponds to 

Tree 3 in Table 6.2 with 14 predictors and 25 terminal nodes. (d) Corresponds to 

Tree 4 in Table 6.2 with 13 predictors and 53 terminal nodes. 
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Tree 4, shown in Figure 6.1(d), used the same predictors as Tree 3, except 

Total Defects per Die was removed as a predictor.  This change had a strong 

impact on the tree, creating 53 terminal nodes and a much more complex structure 

than the other trees.   

From these four trees, Tree 3 was chosen to be the best.  This tree includes 

the predictors used in Krueger, et al. (2011), plus the “Total Defects per Die” 

count.  The inclusion of “Total Defects per Die” simplifies the tree considerably 

from what is seen in Tree 4.  Also, of Trees 1 through 3, Tree 3 has the largest 

number of nodes that are identified as being better than the root node with only a 

small increase in the number of terminal nodes needed.  The details of Tree 3 are 

shown in Figure 6.2.  The information displayed included the splitting values for 

nodes, the tree structure, and the number of passing, failing, and total dice in each 

terminal node.  Each terminal node also includes a bar at the bottom that indicates 

the proportion of passing dice in the node.  In the bars, the royal blue (black) 

portion is the proportion of passing dice, and the red (gray) portion is the 

proportion of failing dice.  

 

Creating Models 

 Once the appropriate tree has been selected, the information from the tree 

can be used in developing a generalized linear model.  This can be done in 

different ways.  When the goals of the study may include learning about certain 

groups (such as high-yield or low-yield, high-risk or low-risk) to determine a 

“recipe” for achieving or avoiding these outcomes, the terminal nodes from 
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CART are quite helpful.  These terminal nodes can be used as indicator variables 

that give information about important interactions for these groups that are then 

included in the GLM.  The use of indicator variables is well described in Chapter 

8 of Montgomery, Peck, and Vining (2006).  This approach can determine which 

terminal nodes are statistically significant and help the user by providing a better 

understanding of the important factors and interactions for those particular 

groups. 

 Another approach is to use the CART-constructed tree to identify 

important two-way interactions more quickly by looking at the splits and 

implementing these interaction terms into the GLM model as predictors.   This 

can simplify model building if a large number of factors and interactions are part 

of the dataset by letting the modeler avoid having to include all the interaction 

terms and then reducing the model through backward elimination or other 

techniques.   

 Reduced models, using the terminal nodes or the interaction terms from 

the CART tree, can be developed to achieve parsimony using backward 

elimination techniques.  Using this approach, factors are eliminated one-by-one 

from the model on the basis of their p-values, starting with the highest p-values, 

and proceeding until all the factors in the model have the desired level of 

significance.  Forward selection and step-wise regression may also be used 

(Montgomery, Peck, & Vining, 2006).  
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FIGURE 6.2.  Tree 3 structure.  These details include splitting criteria and 

terminal node data including the number of dice in each class and the percent of 

the total dice in that node.  The bar at the bottom of each terminal node shows the 

proportion of failing dice red (gray) and the number of passing dice royal blue 

(black) in the node.  
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Table 6.3.  Terminal Node Information for Tree 3 

Terminal 

Node 

Number of 

Dice (Total) 

Number of 

Failing Dice 

Number of 

Passing Dice 

Probability 

Passing 

1 176 66 110 0.625 

2 1182 311 871 0.737 

3 128 50 78 0.609 

4 244 71 172 0.709 

5 280 117 163 0.582 

6 444 130 314 0.707 

7 265 110 175 0.614 

8 1631 477 1154 0.708 

9 431 169 262 0.608 

10 945 360 585 0.619 

11 1041 246 795 0.764 

12 490 92 398 0.812 

13 959 404 555 0.579 

14 1303 204 1099 0.843 

15 4499 896 3603 0.801 

16 1766 809 957 0.542 

17 538 190 348 0.647 

18 89 19 70 0.787 

19 385 112 273 0.709 

20 728 278 450 0.618 

21 244 75 169 0.693 

22 272 79 193 0.710 

23 234 99 135 0.577 

24 273 63 210 0.769 

25 4729 2392 2337 0.494 

  

An Example from Semiconductor Yield Modeling. 

 Once the best tree is chosen for the semiconductor data, indicator variables 

may be used to show which terminal node in the tree each die fits into.  For Tree 

3, there are 25 terminal nodes.  Each die will fall into one of the terminal nodes.  

For example, a die having defects on more than one layer and a total number of 

defects greater than 2 will be in Terminal Node 25.  Dice that have defects on 

only one layer and have at least one defect in Layer 3 will be classified into 
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Terminal Node 15.  Indicator variables can be quickly constructed in Excel by 

using the splitting criteria and “If” statements to give values of “1” for the 

terminal node a row of data falls into and a value of “0” for all other terminal 

nodes.  For 25 terminal nodes, 24 indicator variables are used for a full model. 

 GLM models can be constructed by adding these indicator variables as 

predictors in the model.  Several models were constructed using SAS 9.2 and 

PROC GLIMMIX (see Appendix A for SAS code) to compare various 

approaches. These GLM models included full and reduced logit models with only 

the main effects used as predictors, full and reduced models using the main effects 

and the terminal node indicator variables as predictors, full and reduced models 

using the main effects and the terminal nodes identified by CART as 

outperforming the root node (red nodes) as predictors, a reduced model from 

using the main effects and the interactions identified in the CART tree for the 

predictors, and a reduced model using the main effects and all two-way 

interactions in the model as predictors.  The terms used in these models are shown 

in more detail in Table 6.4. 

 The models constructed using only the main effects are similar to those 

described in Chapter 4 but are built using this larger dataset.  The models built 

with the terminal nodes develop a model that is adjusted by the coefficient for the 

terminal node a row of data falls into, giving the resulting models a form that 

resembles having different intercepts for a line.  The significant terminal nodes 

can be determined by reducing the model through backward selection or another 

method.   
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CART also provides information that describes each terminal node as 

being a better or worse classifier than the root node.   (Recall this percentage was 

used to help select the best tree in Table 6.2.)  Nodes that outperform the root 

node are marked in different shades of red on the resulting tree while nodes that 

do not outperform the root node are marked in blue.  These selected terminal 

nodes may also be of interest in model building, and reduced models can again be 

formed from these predictors.  All of the models described to this point were 

reduced through backward elimination using the t-test values and a level of 

significance of =0.1 since the F-test and t-test p-values are the same for the 

GLM with only the main effects, and the models with terminal nodes included did 

not produce F-values.   

While the use of terminal nodes themselves give an increased 

understanding into significant groupings and interactions that pertain to them, 

more general modeling can be done with the interaction terms from the CART 

tree.  By following the various branches of the tree, different interaction terms can 

be quickly identified.  For example, Figure 6.3 shows L1 branching off an L3 

node in two places, indicating a possibly significant interaction between these two 

factors.  This branching occurs near the root node, suggesting this interaction term 

(L1*L3) may be one of the strongest for these data.  Including this interaction 

term in the GLM model can confirm this through the t-test and F-test results.  

Another example of finding possible interactions from the CART tree is shown in 

Figure 6.4, which shows in more detail the bottom, left-hand side of the tree and 

the relevant interactions.  This figure shows interactions L5* L4, L4* L10, 
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L10*L6, L6*RadDist, and RadDist*DieQuad that may be significant.  These 

interaction terms, along with RadDist*L10, L1*L4, RadDist*L7, and 

L7*DieQuad found in other parts of the tree were included one of the models that 

was then reduced through backward elimination using the F-test values and a 

level of significance of =0.1.   

 

Figure 6.3. CART tree showing interactions between factors.  Here, near the root 

node, a connection is seen between L3 and L1 in two places on the tree.  The 

position of this interaction and its repetition indicate that it may be a significant 

interaction term that should be included in the model. 

 

 Another model was built by first including all two-way interactions 

between the main effects and then reducing the model by backward elimination.  

There were 66 two-way interactions included with the 12 factors considered (L1-

L10, RadDist, and DieQuad).  The total layers with defects (TotLaywithDefs) and 
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the total defects per die (TotDefPerDie) were not used in creating interaction 

terms due to multicollinearity.  Reduced models were constructed by removing 

factors and interactions one at a time based on the F-values with a level of 

significance of =0.1.  The terms contained in the reduced model are shown in 

Table 6.4.  

 

Figure 6.4.  Bottom of CART tree showing interactions between factors. Here, 

near the bottom of the tree, more interactions are shown.  These include 

interactions between L5 and L4, L4 and L10, L10 and L6, L6 and RadDist, and 

RadDist and DieQuad. 
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All of the models were built using the logit link in PROC GLIMMIX.  Though 

PROC GLIMMIX is designed to analyze GLMMs, if no random effects are 

specified, SAS runs in GLM mode and provides the same analysis as PROC 

GENMOD.   

Results 

Table 6.4 displays the model coefficients and p-values for significant 

factors and interactions obtained from the t-tests for the different models using a 

level of significance of 0.1.  There are some interesting differences between the 

models.  In considering the reduced models, the models with only the main effects 

or the main effects with the terminal nodes from CART included eliminate Layer 

1 as significant while the models containing interaction terms retain Layer 1.  The 

reduced models using the CART terminal nodes eliminate radial distance as a 

significant predictor, suggesting that this location parameter is important only in 

connection with the other variables as described through the terminal node 

recipes.  Radial distance is included as a splitting factor in terminal nodes 1-8 and 

19-22, several of which are included in the reduced models containing terminal 

nodes.  The reduced model from including all the possible two-way interactions 

deems Layer 8 as insignificant, but interactions between Layers 8 and Layer 1, 

Layer 2, and Radial Distance are significant in the model.  The reduced model 

using interactions taken from the CART tree indicated 11 interactions to be 

significant, matching with 11 of the 21 identified through backward elimination 

from the model that examined all two-way interactions.    
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Table 6.4.  Coefficients and p-values for GLM Models 

 

Models 
Predictors  Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value 
Intercept 1.656 <.0001 1.654 <.0001 1.253 <.0001 1.225 <.0001 1.068 <.0001 1.008 <.0001 1.781 <.0001 1.611 <.0001 
TotalLayWit 
hDefs 

-0.248 <.0001 -0.236 <.0001 -0.174 0.0001 -0.189 <.0001 -0.133 <.0001 -0.143 <.0001 -0.234 <.0001 -0.228 <.0001 

RadDist -0.017 0.0244 -0.016 0.0269 -0.013 0.1206 -0.010 0.1986 -0.043 <.0001 -0.006 0.714* 
DieQuad1 -0.047 0.2479 -0.048 0.2401 -0.050 0.2236 -0.050 0.2218 -0.049 0.2296 -0.050 0.2284 -0.043 0.2972 0.341 0.0127 
DieQuad2 -0.190 <.0001 -0.191 <.0001 -0.177 <.0001 -0.182 <.0001 -0.182 <.0001 -0.176 <.0001 -0.187 <.0001 0.353 0.0069 
DieQuad3 0.089 0.0283 0.088 0.0293 0.091 0.0285 0.105 0.0093 0.083 0.044 0.090 0.0279 0.093 0.0218 0.280 0.0214 
DieQuad4 0.000 . 0.000 . 0.000 . 0.000 . 0.000 . 0.000 . 0.000 . 0.000 . 
L1 0.035 0.2289 -0.035 0.303 -0.008 0.7989 0.093 0.0054 0.121 0.0011 
L2 -0.299 <.0001 -0.307 <.0001 -0.180 <.0001 -0.185 <.0001 -0.177 <.0001 -0.172 <.0001 -0.306 <.0001 -0.408 <.0001 
L3 -0.074 <.0001 -0.079 <.0001 -0.125 <.0001 -0.128 <.0001 -0.106 <.0001 -0.105 <.0001 -0.060 0.0003 -0.069 <.0001 
L4 -0.193 <.0001 -0.202 <.0001 -0.113 0.009 -0.119 0.0027 -0.108 0.0078 -0.100 0.0113 -0.174 <.0001 -0.227 <.0001 
L5 -0.086 0.0376 -0.094 0.021 -0.038 0.399 -0.033 0.4513 -0.294 0.0225 
L6 -0.423 <.0001 -0.431 <.0001 -0.278 <.0001 -0.286 <.0001 -0.291 <.0001 -0.286 <.0001 -1.302 <.0001 -1.346 <.0001 
L7 -0.265 <.0001 -0.273 <.0001 -0.159 <.0001 -0.169 <.0001 -0.159 <.0001 -0.155 <.0001 -0.545 <.0001 -0.594 <.0001 
L8 -0.246 <.0001 -0.251 <.0001 -0.162 <.0001 -0.166 <.0001 -0.155 <.0001 -0.149 <.0001 -0.255 <.0001 
L9 -0.468 <.0001 -0.477 <.0001 -0.336 <.0001 -0.343 <.0001 -0.335 <.0001 -0.331 <.0001 -0.472 <.0001 -0.881 <.0001 
L10 -0.633 <.0001 -0.643 <.0001 -0.464 <.0001 -0.483 <.0001 -0.426 <.0001 -0.420 <.0001 -0.902 <.0001 -1.007 <.0001 
Tnode1 -0.337 0.0651 -0.306 0.0549 
Tnode2 0.243 0.0281 0.245 0.0009 0.377 <.0001 0.405 <.0001 
Tnode3 -0.173 0.3926 
Tnode4 0.279 0.0967 0.251 0.0887 0.407 0.0058 0.403 0.0062 
Tnode5 -0.241 0.1142 -0.285 0.027 
Tnode6 0.068 0.6184 0.197 0.0752 0.207 0.0607 
Tnode7 -0.344 0.0215 -0.378 0.0027 
Tnode8 0.112 0.2778 0.234 0.0004 0.221 0.0007 
Tnode9 -0.269 0.051 -0.293 0.0088 
Tnode10 -0.026 0.8232 
Tnode11 0.322 0.0063 0.297 0.0007 0.448 <.0001 0.451 <.0001 
Tnode12 0.527 0.0004 0.451 0.0002 0.652 <.0001 0.625 <.0001 
Tnode13 -0.052 0.626 
Tnode14 0.751 <.0001 0.670 <.0001 0.846 <.0001 0.844 <.0001 
Tnode15 0.605 <.0001 0.573 <.0001 0.705 <.0001 0.712 <.0001 
Tnode16 -0.179 0.011 -0.191 0.0004 
Tnode17 0.092 0.3952 
Tnode18 0.674 0.0118 0.630 0.0165 0.731 0.0056 0.737 0.005 
Tnode19 0.372 0.0033 0.396 0.0006 0.447 0.0002 0.487 <.0001 
Tnode20 0.051 0.5882 
Tnode21 0.229 0.1291 0.299 0.0387 0.297 0.0394 
Tnode22 0.389 0.0074 0.367 0.0077 0.455 0.001 0.458 0.0009 
Tnode23 0.108 0.4589 
Tnode24 0.566 0.0003 0.510 0.0006 0.607 <.0001 0.615 <.0001 
Tnode25 0.000 . 
L1*L2 -0.152 0.0442 
L1*L3 -0.132 <.0001 -0.137 <.0001 
L1*L8 -0.229 0.0038 
L2*L4 0.205 0.0054 
L2*L7 0.124 0.0585 
L2*L8 0.156 0.0465 
L2*L9 0.162 0.027 
L2*L10 0.154 0.0829 
L4*L5 -0.390 0.0004 -0.348 0.0025 
L4*L6 -0.263 0.0875 
L4*L10 0.189 0.0372 0.210 0.0225 
L5*L10 0.207 0.0614 
L7*L9 0.175 0.0011 
L7*L10 0.124 0.0934 
L9*L10 0.211 0.0087 
RadDist*L5 0.034 0.0798 
RadDist*L6 0.136 <.0001 0.142 <.0001 
RadDist*L7 0.042 0.0014 0.040 0.0026 
RadDist*L8 -0.052 <.0001 
RadDist*L9 0.051 0.0006 
RadDist*L10 0.045 0.0086 0.041 0.0184 
RadDist*Die 
Quad 1 

-0.059 0.0045 -0.062 0.003 

RadDist*Die 
Quad 2 

-0.092 <.0001 -0.092 <.0001 

RadDist*Die 
Quad 3 

-0.029 0.1299 -0.030 0.1297 

RadDist*Die 
Quad 4 

0.000 . 0.000 . 

* Note that the reduced model from including all two-way interactions was developed using the F-values from the Type III test for fixed effects, which gave a p-value of <0.0000 for RadDist. 

Main Effects Only 
Main Effects Only  

- Reduced 
All Terminal  

Nodes from CART 

All Terminal  
Nodes from CART  

- Reduced 
Red Nodes from  

CART 
Red Nodes from  
CART - Reduced 

Interactions from  
CART - Reduced 

 All Interactions -  
Reduced 
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Validation 

The models were tested for validity by using a test set of data consisting of 

11,445 dice with defects from 84 wafers.  No outliers were removed from the test 

dataset.  The model coefficients were used to determine prediction probabilities 

for each die.  These predicted values were compared to the actual pass or fail 

outcomes, and measures of mean absolute deviation (MAD) and mean squared 

error (MSE) were calculated.  The MAD and MSE values were also calculated at 

the wafer level by summing the expected probabilities for each wafer and 

comparing that value to the actual number of passing dice on the wafer in the test 

dataset.  The charts showing the MAD and MSE values for each of the models 

used is shown for the die level in Figure 6.5, and the MAD and MSE values for 

each model at the wafer level is presented in Figure 6.6.   

The MAD and MSE values for the die level in Figure 6.5 show that the 

differences between the models’ predictive powers are very small.  Also, recall 

from Chapter 4 that the main effects GLM model outperformed the existing 

semiconductor yield models significantly.  Figure 4.6 compared the die-level 

MAD and MSE of GLM models against historical yield models, showing the die-

level full nested, reduced nested, and full non-nested GLMs to have nearly the 

same amount of error from the actual results.  (Note that the full, non-nested logit 

GLM shown in Figure 4.6 is the same as the model referred to as “Main Effects 

Only” in this study.)  Figure 4.10 showed the wafer-level comparisons, with the 

die-level nested reduced GLM having the least amount of error.  Figure 6.6 shows 

the wafer-level comparisons for the models from this study, furthering the work 
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of Chapter 4.  At the die-level, all of the models in this study have nearly the same 

predictive power, with the best model in terms of MAD being the model 

containing only the main effect with a value of 0.3995.  The worst MAD value 

was from the model that included the interactions taken from examining the 

CART tree and using them as predictors in the model, giving a value of 0.4240.  

One result to note here is that the use of the terminal nodes, either all of the 

terminal nodes or only those shown by CART to be better than the root node, with 

the main effects as predictors in the model outperformed the predictive ability of 

CART alone.  This is true for the MSE values as well as the MAD values. The 

best MSE value came from the model that included all the two-way interactions 

and was then reduced (MSE=0.2048), but was followed closely by the main 

effects only reduced model, the main effects plus terminal nodes reduced model, 

and the main effects plus CART-selected terminal nodes full and reduced models, 

all with MSE=0.2049.  The MSE values give more weight to larger errors because 

the values are squared, suggesting that the models with lower MSE values are 

closer to the predicted values more often.    

As Figures 6.5 and 6.6 show, adding the terminal nodes from CART does 

not improve the predictive strength of the model, though this addition does not 

significantly diminish the predictive strength either.  The advantage of including 

these terminal nodes lies in being able to determine which nodes are significant 

and can be most helpful in process improvement efforts.  With CART able to 

produce many nodes in an optimal tree (i.e. Tree 4 in Figure 6.1), this can be of 

great value to practitioners. 
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Main Effects 
Only

Main Effects 
Only - Reduced

Main Effects + 
CART Terminal 

Nodes

Main Effects + 
Terminal 

Nodes-
Reduced 

Main Effects + 
CART Selected 

Terminal 
Nodes

Main Effects + 
CART Selected 

Terminal 
Nodes -
Reduced

Main Effects + 
Interactions 

from CART -
Reduced

Main Effects + 
All 2-way 

Interactions -
Reduced

Main Effects + 
2-way 

Interactions 
(Reduced) + 

Terminal 

Nodes

CART Only

MAD 0.3995 0.4077 0.4056 0.4057 0.4058 0.4059 0.4240 0.4063 0.4044 0.4147

MSE 0.2090 0.2049 0.2050 0.2049 0.2049 0.2049 0.2110 0.2050 0.2048 0.2079

Number of Parameters 14 13 38 26 27 24 20 35 59
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Figure 6.5. Die-level MAD and MSE for model comparisons. This chart shows 

that at the die-level, the MAD and MSE values for the models are all very similar. 
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Figure 6.6.Wafer-level MAD and MSE for model comparisons.  This chart shows 

larger differences in the MAD and MSE values for the models at the wafer level.   
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 The models can also be compared in terms of predictive power by 

examing charts of predicted vs. actual values of passing dice on a wafer using the 

test dataset.  The models are all very close to one another, so the results of these 

charts are separated to retain clarity.  Figure 6.7 shows the predictions using 

CART alone.  The predicted values are very well clustered around the line for the 

actual passing dice.  Figure 6.8 shows the full and reduced models for using only 

the main effects as predictors in the model.  The reduced model produces slightly 

lower values than the full model, though both fit the actual data very well.  Figure 

6.9 shows the full and reduced models for using the main effects and the terminal 

nodes as predictors.  Here, the reduce model predictions are nearly exactly the 

same as the full model’s predicted values.  The predictions also fit the actual data 

very well.   

 

Figure 6.7. Wafer-level predictions for test dataset using CART alone. 
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Figure 6.8. Wafer-level predictions for test dataset – Main effects only.  This 

shows the preadicted values from using GLM full and reduced models with only 

the main effects as predictors.  

 

 

 
Figure 6.9. Wafer-level predictions for test dataset – Main effects plus CART 

terminal nodes.  This shows the predicted values from using GLM full and 

reduced models with the main effects and the terminal nodes from CART as 

predictors.  
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 Figure 6.10 displays the predictive power of the models containing the 

main effects plus the terminal nodes that CART identified as being better than the 

root node.   Again, the reduced model points are centered on the full model points 

with both fittin the data well.  Figure 6.11 shows the model that contains the main 

effects plus the interactions taken from the CART tree as predictors.  This model 

consistently underestimates the actual yield of the wafer.  It appears that it may be 

a better predictor for low-yield wafers (<70 wafers passing) than the other 

models, but at higher yields, this is the worst-performing model.  The full and 

reduced models that included the main effects plus the two-way interactions is 

shown in Figure 6.12.  Here again, the reduced model predictions are nearly the 

same as the full model, and there is no significant visual difference between these 

models and those in Figures 6.9 and 6.10.  All of the models show strong 

predictive power with the exception of the models shown in Figure 6.11. 

 
Figure 6.10. Wafer-level predictions for test dataset – Main effects plus CART-

selected terminal nodes.  This shows the preadicted values from using GLM full 

and reduced models with the main effects and the terminal nodes (selected by 

CART as being better than the root node) as predictors.  
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Figure 6.11. Wafer-level predictions for test dataset – Main effects plus 

interactions from CART.  This shows the preadicted values from using a GLM 

reduced model with the main effects and the interactions identified from the 

CART tree as predictors.  

 

 

 
Figure 6.12. Wafer-level predictions for test dataset – Main effects plus all two-

way interactions reduced model.  This shows the preadicted values from using a 

GLM reduced model with the main effects and all the two-way interactions for 

the data as predictors.  Another model with these predictors plus the 25 terminal 

nodes from CART used as predictors is also shown.   
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Terminal Nodes and Interactions 

 The reduced model that contained the main effects and the terminal node 

indicator variables from CART included 15 of the terminal nodes as statistically 

significant (=0.1).  Terminal nodes 1, 2, 4, 5, 7, 9, 11, 12, 14, 15, 16, 18, 19, 22, 

and 24 were included in the reduced model.  These terminal nodes, their recipes, 

and the percent of passing dice that fall into the nodes in both the training and the 

test datasets are shown in Tables 6.5 and 6.6.  Recall the main effects of radial 

distance and the defect counts of Layer 1 and Layer 5 were eliminated from the 

reduced model due to lack of significance. This indicates that the contribution of 

these factors may be well accounted for by the interactions contained in the 

terminal nodes.  Indeed, Layer 1 occurs as part of the recipe in 14 of the 15 

terminal nodes in the reduced model, and Layer 5 is present in seven of the 15 

terminal nodes included in the reduced model.   

 Much can be learned by reading the tree from CART and should be 

considered when drawing conclusions about the results.  Terminal Node 25 is 

selected when there are at least two layers with defects and at least three defects 

on the die.  Of the dice falling into this node in the training dataset, only 49.4% 

pass.  Thus, the terminal nodes in this tree focus on the occurrences where there 

are very few(less than three) defects present and can help focus improvement 

efforts for these areas.  Practitioners may also be interested in learning more about 

the interactions present with these dice in Terminal Node 25.  The data may be 

separated, and an additional tree or GLM could be constructed for this purpose.   
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 Terminal nodes 1-15 all have defects on only one layer while terminal 

nodes 16-25 have defects on at least 2 different layers.  The interactions suggested 

by the recipes, then, have interesting interpretations.  For example, the recipe for 

Terminal Node 1 includes dice that have only one defect that is on Layer 2, Layer 

7, Layer 8, or Layer 9, and falls between the center of the wafer and a radial 

distance of 1.71.  From the training data, only 62.5% of these dice pass.  Because 

L1, L3, L4, L5, L6, and L10 are included in the recipe for Terminal Node 1, 

interactions between these effects may seem likely, but since the splits indicate 

that for this node, these layers all have zero defects, any interaction between them 

is difficult to interpret.  One advantage is that the early processing layers (Layer 1 

is the first layer of the die.) are part of the terminal node recipes, so it may be 

possible to predict yield earlier in the production process using only the data from 

these steps. 

 Another advantage may be in using the splitting criteria toward the bottom 

of the tree to learn more about potential processing issues.  Figure 6.14 illustrates 

a wafer map showing the areas for the location of the dice for the first eight 

terminal nodes from the CART tree.  The percentage of dice that passed in each of 

the nodes using the training dataset is also included.  These nodes include radial 

distance in their branches and have only one defect on one layer and have no 

defects on Layers 1, 3, 4, 5, 6, and 10.  This indicates that for dice with a defect 

on Layer 2, 7, 8, or 9, the position of the defect makes the largest impact on the 

resulting yield.  The figure indicates that there may be processing issues that 

impact yield when a defect from these layers is found in the outer radius in 
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Quadrant 2 (Terminal Node 5, 58.2% passing) or in the center of the die 

(Terminal Node 1, 62.5% passing).  There is also a small region in Quadrant 2 

that has lower yield (Terminal Node 3, 60.9% passing) and in Quadrants 1, 3, and 

4 (Terminal Node 7, 61.4% passing) that may be of help to process and defect 

metrology engineers in identifying potential causes for the problems.  This type of 

analysis can be very constructive for practitioners.   

 

 
 

Figure 6.13. Wafer map showing the radial and quadrant regions that apply to 

terminal nodes 1-8 from the CART tree.  These terminal nodes include dice that 

have only one defect occurring on layer 2, 7, 8, or 9.  The percentages shown 

indicate the proportion of dice predicted to pass in that node. 
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Another interesting finding of this study is that the GLM model that used 

all the terminal nodes from CART and was then reduced identified different 

terminal nodes than the model that used the terminal nodes that CART identified 

as being better than the root node.  While there was some consistency between the 

two, there were only 13 CART-identified nodes, compared to the 15 nodes 

reduced from the model that contained all 25.  Both approaches identified 

Terminal Nodes 2, 4, 11, 12, 14, 15, 18, 19, 22, and 24 as significant.  Differences 

include the reduced model from using all the terminal nodes identified Terminal 

Nodes 1, 5, 7, 9, and 16 as significant, while the CART-identified node model 

included Terminal Nodes 6, 8, and 21.  These differences suggest it may be 

beneficial for practitioners to use GLMs to identify important terminal nodes 

instead of relying solely on CART’s identification of the better terminal nodes.  

Another interesting difference between the models is seen in comparing 

the model that was reduced after starting with all the two-factor interactions with 

those using CART terminal nodes.  The interactions found to be statistically 

significant were not all described by the branching of the CART tree.  Table 6.7 

shows the interaction terms and the terminal nodes from CART that contain both 

of the factors in the interactions (not necessarily immediately following each 

other).  Interactions containing L2, L8, and L9 are not included in the criteria for 

terminal nodes in the CART tree.  This may indicate that these layers show 

important interactions with defects on other layers when there are more total 

defects on the die.  Recall that any die with three or more defects was classified 
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into Terminal Node 25 without further splitting.  This difference displays another 

advantage of using GLMs for yield modeling and process improvement.   

Table 6.7.  Significant Interaction Terms and the Terminal Nodes that Contain 

Both Factors 

 

Interaction Terms Terminal nodes from CART containing 

the combination of factors 

L1*L2 None 

L1*L3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 16, 17, 18, 19, 20, 21, 22, 23, 24  

L1*L8 None 

L2*L4 None 

L2*L7 None 

L2*L8 None 

L2*L9 None 

L2*L10 None 

L4*L5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 

L4*L6 1, 2, 3, 4, 5, 6, 7, 8, 9 

L4*L10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

L5*L10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

L7*L9 None 

L7*L10 19 

L9*L10 None 

RadDist*L5 1, 2, 3, 4, 5, 6, 7, 8 

RadDist*L6 1, 2, 3, 4, 5, 6, 7, 8 

RadDist*L7 20, 21, 22 

RadDist*L8 None 

RadDist*L9 None 

RadDist*L10 1, 2, 3, 4, 5, 6, 7, 8, 19, 20, 21, 22 

RadDist*DieQuad 3, 4, 5, 6, 7, 8, 20, 21 

 

 

Summary 

Using CART terminal nodes as predictors in the GLM model has not been 

proposed before.  This approach uses two main steps: building an appropriate tree 

and then constructing the GLM model.  This integrated use of CART and GLMs 

shows strong promise in both the areas of prediction and in improving process 
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understanding and root cause analysis for occurrences of interest.  This technique 

does not have a significant impact on yield prediction, producing only slightly 

more error than the GLM with main effects alone, suggesting CART trees may be 

used well for prediction in this way.   

 Though the differences in prediction are minute between models 

including terminal nodes and those containing two-way interactions, the process 

implications and understanding can differ between these models and should be 

strongly considered when choosing a final approach.  For example, if terminal 

node of interest is not split in the CART tree, interactions important for these 

observations will not be shown on the tree.  If using two-way interactions directly 

in a model, it is best to include all possible interactions and then reduce the model 

rather than relying on CART branches to help identify important interactions.  

This latter approach resulted in the worst prediction errors seen in this study.    

As shown in Chapter 4, the application of GLMs to semiconductor yield 

modeling is a much-improved approach over yield models of the past.  The work 

shown in this chapter demonstrates other approaches that can produce nearly as 

accurate predictions while providing additional information critical to process 

improvement.   
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Chapter 7 

CONCLUSIONS 

This research contributes to the existing literature in a number of ways.  

This work uses generalized linear models, in different forms, to predict 

semiconductor yield based on defect count data, an approach to yield modeling 

that has not been explored before.  This exploration has been done to understand 

how different GLM approaches can aid practitioners in problem solving and 

decision making.  The validity of these GLM modeling strategies has been 

demonstrated by applying GLMs to a test dataset with success and by comparing 

the predicted values with those from models in the literature.   

 The use of fixed-effects GLM models showed an advantage in using die-

level data to model yield, with this approach producing less forecasting error than 

both wafer-level models and historical models.  The die-level models identified 

several fixed factors as significant, which could lead to better process 

understanding and improvement.  The die-level modeling approach also allows 

the practitioner to consider the nested structure of the data, accurately reflecting 

the process of dice being produced together on a wafer, and wafers being 

processed together in a lot.  Models built by trimming 5% of a training dataset as 

outliers produced the best goodness-of-fit results, but trimming 2.5% of the data 

produced very similar models.  These models, created using 24 wafers as a 

training dataset and tested using 12 additional wafers of data, showed a 34.6% 

improvement in MSE and 31.1% improvement in MAD for the reduced, nested 

die-level GLM models compared to the best-performing historical model, Seeds’ 
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model.  These results demonstrate the potential of applying GLMs to these data 

for the purposes of accurate yield forecasting and process improvement.   

 While the GLM models account for the binomial response data, they 

assume all factors to be fixed.  This assumption is not true for the random 

sampling that is commonly used in the fabrication process.  A GLMM model 

allows a modeler to identify both random and fixed effects and to create models 

using a batch-specific or population-averaged approach, depending on the 

modeling objectives.  GLMM models created using a large dataset of 168 wafers 

demonstrated this approach yields similar prediction error to the GLM models, 

even improving them under some conditions.  The GLMM model results differ 

from the GLM results in a number of ways.  First, different wafers are identified 

as significant, with the GLMM models identifying fewer wafers and including 

wafers with high yields as well as low yields.  The GLM models selected more 

wafers as significant, but these were all lower-yield wafers.  These GLM-

identified wafers appeared to display some pattern defects, which may be helpful 

in process improvement and trouble-shooting, but the larger number of lots and 

wafers identified may also lead to false alarms by indicating a wafer to be 

significant when, in fact, it has no substantial problems.   

 The GLMM study showed differences between link functions used in the 

model (logit, probit, and complimentary log-log) to be very minor when all three 

link functions produced results.  Convergence issued plagued the die-level study, 

and changing the degrees of freedom method may be useful in obtaining results if 

the default settings do not work.  Also, if one link function doesn’t return results 
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due to convergence concerns, another link function can be easily tried and trusted 

to produce meaningful output.  As with the GLM study, the die-level GLMM 

models produced the best results in terms of prediction error, but they were 

closely followed by wafer-level adjusted models that account for the dice without 

defects on the wafer as well as the dice with defects that were considered in the 

model.  Wafer-level models are consistent across model type (batch-specific or 

population-averaged; lot, wafer, or wafer(lot) modeled as a random effect) for 

large sample sizes over 150 wafers.   

 Finally, this research contributes to the literature by introducing a method 

for integrating CART with GLMs.  This technique uses the terminal nodes from a 

classification tree as indicator variables for prediction in the GLM model.  This 

approach adds value to the practitioner by providing prediction results nearly as 

good as those produced by the GLM alone while giving additional insight into 

potential process interactions that can be valuable in process improvement.  This 

integrated approach takes advantage of both the easy-to-understand tree structure 

of the classification tree and the statistical analysis of the GLM to identify 

significant interactions and to construct an accurate yield forecasting model.   

 This work has potential use for practitioners and researchers alike.  While 

this study showed the validity of these approaches by applying the methods to 

semiconductor yield modeling, these same techniques can be applied in other 

areas that also exhibit non-normal responses.   The improvements in forecast 

accuracy and value in identifying key process factors may be important for many 

different applications. 
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Limitations 

 This study, which describes a modeling strategy using GLMs, does have 

limitations.  In exploring and developing this strategy, data from only one 

semiconductor device were used to build and validate the models.  This was a 

mature device, so this approach may not work well for new products without 

considering additional factors.  The data for this device was from a four-month 

period and did not include information on defect size, defect type, or defect 

location on the die for the dice.   

 The response variable used for this work was the pass/fail result for each 

die (or proportion of passing dice for the wafer) and did not consider different 

types of failure modes.  A similar approach may be employed to predict bin 

counts (counts of specific failure modes) using Poisson regression. 

 This research focused on using defect scan data for yield modeling and did 

not consider the process or parametric data for the wafers.  Die failure can be due 

to non-defect related causes, but these were not considered in this modeling 

approach due to the limited corresponding data available. 

  

Future Work 

While this work illustrates the potential of using GLMs to model 

semiconductor yield, there are many ways this research can be extended.  Using 

more or different predictor variables, such as defect type (killer or non-killer), 

defect size, and the location of the defect within a chip (within critical area or 

not), may improve the prediction capabilities of these models even more.  These 
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predictors may add value to the models also in the process insight they could 

contribute by identifying which of these additional factors are critical in 

fabrication.  In addition, the device studied in this research was a mature product.  

Evaluating these modeling strategies for newer products in early stages of their 

life cycles can provide more direction on how generally these techniques may be 

applied to forecast yield. 

Models that focus on using only intermediate factors from early in the 

process (such as front-end processing layers) may also be of interest in guiding 

processing and scheduling decisions.  For example, early prediction during the 

process can help practitioners to decide whether to continue processing wafers 

with a number of early defects or to instead start fabricating new wafers, to create 

forecasts designed more for planning purposes, and to reliably meet customer 

demand.  These models may take into account process data recorded during 

fabrication as well as the defect counts detected on the front-end layers of the 

wafer.   

 Practitioners may also find useful a method that would identify at which 

prediction probabilities a die should be classified as “passing” or “failing” dice for 

prediction purposes.  These cutoffs can be created based on the models described 

in this research.  Different cutoff values could be compared using sensitivity and 

specificity measures and by comparing the areas under ROC curves (see Hosmer 

& Lemeshow, 2000).   These cutoff values could be use to make decisions 

concerning continued processing for wafers that have already been impacted by 

defects. 
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 Another area of future work may be in creating systems that can automate 

data collection, integration, and cleaning for the purposes of forming these types 

of models, making them more accessible to practitioners and more user-friendly.  

This automation could also be extended to include coding that would create the 

models (GLM, GLMM, CART, etc.) of interest to the user as well as model 

comparisons that could suggest the best performing models for the specific 

application.  This coding may also include creating methods for integrating 

classification trees and GLMs (or GLMMs) in SAS or other software.      

 Another area of extention may be in using GLMs and GLMMs to detect 

special differences on wafers.  Currently, gross failure defect patterns on wafers 

are often manually identified in industry, though research has been published that 

studies automating this process (Hansen, Nair, and Friedman, 1997; Fellows, 

Mastrangelo, and White, Jr., 2009).  GLMMs may be used to consider the 

clustering of defects as random effects that can give more information about 

predicted yields as well as in automatically identifying these clusters that are 

usually caused by processing issues.   

 Finally, the actual yield and the yield values calculated from the dice with 

defects are different, as shown in Figure 7.1, suggesting that factors other than 

defects contribute to yield losses.  Other types of data are recorded during wafer 

fabrication, including process data and parametric electrical test data.  Integrating 

these process or parametric data with the defectivity data may produce even 

stronger and more useful GLM models for decision making.  This integration may 

be done with a hierarchical approach, as suggested by Kumar (2006), or through 
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another method.  As discussed, there are many opportunities for this work to be 

extended and advanced based on the results of this research and the needs of the 

semiconductor industry.  
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Figure 7.1. Actual and calculated yields for wafers.  The actual yield values for 

the wafers in the test dataset are different from those calculated using only the 

information from the dice with defects.  These differences account for some of the 

error in the GLM yield models.  
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SAS CODE 

SAS Code for Chapter 5 

Die Level 

 

GLM 

 
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =  LotNo WafID TotLayWithDefs RadDist DieQuad L1 L2 L3 

L4 L5 L6 L7 L8 L9 L10/  

dist=binomial link=probit solution; 

run; 

ods graphics off; 

ods html close;  

 

 

Nested GLM 
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =  WafID(LotNo) TotLayWithDefs RadDist DieQuad(WafID) 

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10/  

dist=binomial link=logit solution; 

run; 

ods graphics off; 

ods html close;  
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GLM with Overdispersion 
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

 

model Pass =  LotNo WafID TotLayWithDefs RadDist DieQuad L1 L2 L3 

L4 L5 L6 L7 L8 L9 L10/  

dist=binomial link=logit solution; 

random _residual_; 

run; 

ods graphics off; 

ods html close;  

 

 

Lot Random G  
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =  TotLayWithDefs RadDist DieQuad L1 L2 L3 L4 L5 L6 L7 

L8 L9 L10/  

dist=binomial link=probit solution ; 

random int / subject = LotNo  g s; 

run; 

ods graphics off; 

ods html close;  

 

 

Lot Random with Overdispersion G  
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =  TotLayWithDefs RadDist DieQuad L1 L2 L3 L4 L5 L6 L7 

L8 L9 L10/  

dist=binomial link=cll solution ; 

random int / subject = LotNo  g s; 

random _residual_; 

run; 

ods graphics off; 

ods html close;  
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Wafer(Lot) G 

 
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =  TotLayWithDefs RadDist DieQuad L1 L2 L3 L4 L5 L6 L7 

L8 L9 L10/  

dist=binomial link=logit solution ; 

random int / subject =WafID(LotNo)  g s; 

run; 

ods graphics off; 

ods html close;  

 

Wafer(Lot) with Overdispersion G 
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =  TotLayWithDefs RadDist DieQuad L1 L2 L3 L4 L5 L6 L7 

L8 L9 L10/  

dist=binomial link=logit solution ; 

random int / subject =WafID(LotNo)  g s; 

random _residual_; 

run; 

ods graphics off; 

ods html close;  

 

 Wafer G 
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =  TotLayWithDefs RadDist DieQuad L1 L2 L3 L4 L5 L6 L7 

L8 L9 L10/  

dist=binomial link=cll solution ; 

random int / subject = WafID  g s; 

run; 

ods graphics off; 

ods html close;  



  171 

Wafer with Overdispersion G 
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =  TotLayWithDefs RadDist DieQuad L1 L2 L3 L4 L5 L6 L7 

L8 L9 L10/  

dist=binomial link=probit solution ; 

random int / subject =WafID  g s; 

random _residual_; 

run; 

ods graphics off; 

ods html close;  

 

 

Lot Random R 
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RmPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =   TotLayWithDefs RadDist DieQuad L1 L2 L3 L4 L5 L6 

L7 L8 L9 L10/  

dist=binomial link=logit solution ; 

random _residual_ / sub=LotNo type=cs rside  cl s; 

run; 

ods graphics off; 

ods html close;  

 

 

Wafer(Lot) R 
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RmPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =   TotLayWithDefs RadDist DieQuad L1 L2 L3 L4 L5 L6 

L7 L8 L9 L10/  

dist=binomial link=logit solution ; 

random _residual_ / sub=WafID(LotNo) type=cs rside  cl s; 

run; 

ods graphics off; 

ods html close;  
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Wafer R 
ods html; 

ods graphics on; 

proc glimmix data=sasuser.thirtywafersdielevel method=RmPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

model Pass =   TotLayWithDefs RadDist DieQuad L1 L2 L3 L4 L5 L6 

L7 L8 L9 L10/  

dist=binomial link=logit solution ; 

random _residual_ / sub=WafID type=cs rside  cl s; 

run; 

ods graphics off; 

ods html close;  
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Wafer level 

 

GLM 

 
ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =  LotNo WafID TotLayWithDefs L1  L2 L3 L4 L5 l6 

L7 L8 L9 L10/  

dist=binomial link=probit solution ; 

run; 

ods graphics off; 

ods html close;  

            

            

Nested GLM 
ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =  WafID(LotNo) TotLayWithDefs L1  L2 L3 L4 L5 

l6 L7 L8 L9 L10/  

dist=binomial link=logit solution ; 

run; 

ods graphics off; 

ods html close;  

           

            

GLM with OD: 
ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =  LotNo WafID TotLayWithDefs L1  L2 L3 L4 L5 l6 

L7 L8 L9 L10/  

dist=binomial link=probit solution ; 

random _residual_; 

run; 

ods graphics off; 

ods html close;  
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Lot Random (G-side) 
ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =   TotLayWithDefs L1  L2 L3 L4 L5 l6 L7 L8 L9 

L10/  

dist=binomial link=logit solution ; 

random int / subject = LotNo g s; 

run; 

ods graphics off; 

ods html close;      

 

Lot Random (G-side) with Overdispersion 

 
ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =   TotLayWithDefs L1  L2 L3 L4 L5 l6 L7 L8 L9 

L10/  

dist=binomial link=cll solution ; 

random int / subject = LotNo g s; 

random _residual_; 

run; 

ods graphics off; 

ods html close;  

            

 

Wafer(Lot) Random (G-side) 
ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =   TotLayWithDefs L1  L2 L3 L4 L5 l6 L7 L8 L9 

L10/  

dist=binomial link=logit solution ; 

random int / subject = WafID(LotNo) g s; 

run; 

ods graphics off; 

ods html close;    
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Wafer(Lot) Random (G-side) with Overdispersion 
ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =   TotLayWithDefs L1  L2 L3 L4 L5 l6 L7 L8 L9 

L10/  

dist=binomial link=logit solution ; 

random int / subject = WafID(LotNo) g s; 

random _residual_; 

run; 

ods graphics off; 

ods html close;  

           

 

Wafer Random (G-side) 
ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =   TotLayWithDefs L1  L2 L3 L4 L5 l6 L7 L8 L9 

L10/  

dist=binomial link=logit solution ; 

random int / subject = WafID g s; 

run; 

ods graphics off; 

ods html close;         

     

 

Wafer Random (G-side) with Overdispersion 
ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =   TotLayWithDefs L1  L2 L3 L4 L5 l6 L7 L8 L9 

L10/  

dist=binomial link=logit solution ; 

random int / subject = WafID g s; 

random _residual_; 

run; 

ods graphics off; 

ods html close;  
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Lot Random (R-side) 
ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RmPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =   TotLayWithDefs L1  L2 L3 L4 L5 l6 L7 L8 L9 

L10/  

dist=binomial link=logit solution ; 

random _residual_ / sub=LotNo type=cs rside  cl s; 

run; 

ods graphics off; 

ods html close;  

            

 

Wafer(Lot) Random (R-side) 
 

ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RmPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =   TotLayWithDefs L1  L2 L3 L4 L5 l6 L7 L8 L9 

L10/  

dist=binomial link=logit solution ; 

random _residual_ / sub=WAfID(LotNo) type=cs rside  cl s; 

run; 

ods graphics off; 

ods html close;  

         

 

 

Wafer Random (R-side)        

         

ods html; 

ods graphics on; 

proc glimmix data=waferleveltrainingdata310 method=RmPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo; 

PropPassed = PassingDice/DiceWithDef; 

model PropPassed =   TotLayWithDefs L1  L2 L3 L4 L5 l6 L7 L8 L9 

L10/  

dist=binomial link=cll solution ; 

random _residual_ / sub=WAfID type=cs rside  cl s; 

run; 

ods graphics off; 

ods html close;  
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SAS Code for Chapter 6 

Die-Level Model with Fixed Effects and Terminal Nodes 

ods html; 

ods graphics on; 

proc glimmix data=sasuser.cartdiedata method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

*Method=RSPL for G-side, RMPL for R-side; 

class WafID LotNo DieQuad; 

 

model Pass1 =  TotalLayWithDefs RadDist DieQuad L1 L2 L3 L4 L5 L6 

L7 L8 L9 L10  

Tnode1 Tnode2 Tnode3 Tnode4 Tnode5 Tnode6 Tnode7 Tnode8 Tnode9 

Tnode10 Tnode11 Tnode12 Tnode13 Tnode14  

Tnode15 Tnode16 Tnode17 Tnode18 Tnode19 Tnode20 Tnode21 Tnode22 

Tnode23 Tnode24 Tnode25 

/ dist=binomial link=logit solution ddfm=kr; 

run; 

proc print data=glimmixout; 

run; 

ods graphics off; 

ods html close;  

 

Die-Level Full Model with Interactions from CART Tree 3 

ods html; 

ods graphics on; 

proc glimmix data=sasuser.cartprobdiedata method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo DieQuad; 

model Pass1 =  TotalLayWithDefs RadDist  DieQuad L1 L2 L3 L4 L5 

L6 L7 L8 L9 L10   

 L1*L3 L4*L5 L4*L10 L10*L6 L6*RadDist  RadDist*DieQuad L1*L4 

L1*L10 L10*RadDist L7*RadDist L7*DieQuad 

/ dist=binomial link=logit solution ; 

 

run; 

ods graphics off; 

ods html close;  
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Die-Level Reduced Model with Interactions from CART Tree 3 

ods html; 

ods graphics on; 

proc glimmix data=sasuser.cartprobdiedata method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo DieQuad; 

model Pass1 =  TotalLayWithDefs RadDist  DieQuad L1 L2 L3 L4  L6 

L7 L8 L9 L10   

L1*L3 L4*L5 L4*L10 L6*RadDist RadDist*DieQuad L10*RadDist 

L7*RadDist  

/ dist=binomial link=logit solution ; 

 

run; 

ods graphics off; 

ods html close;  

 

 

Die-Level Model with All 2-way interactions 

ods html; 

ods graphics on; 

proc glimmix data=sasuser.cartprobdiedata method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo DieQuad; 

model Pass1 =  TotalLayWithDefs RadDist  DieQuad L1 L2 L3 L4 L5 

L6 L7 L8 L9 L10   

L1*L2 L1*L3 L1*L4 L1*L5 L1*L6 L1*L7 L1*L8 L1*L9 L1*L10 

L2*L3 L2*L4 L2*L5 L2*L6 L2*L7 L2*L8 L2*L9 L2*L10 

L3*L4 L3*L5 L3*L6 L3*L7 L3*L8 L3*L9 L3*L10 

L4*L5 L4*L6 L4*L7 L4*L8 L4*L9 L4*L10 

L5*L6 L5*L7 L5*L8 L5*L9 L5*L10 

L6*L7 L6*L8 L6*L9 L6*L10 

L7*L8 L7*L9 L7*L10 

L8*L9 L8*L10 

L9*L10 

RadDist*L1 RadDist*L2 RadDist*L3 RadDist*L4 RadDist*L5 RadDist*L6 

RadDist*L7 RadDist*L8 RadDist*L9 RadDist*L10 

DieQuad*RadDist DieQuad*L1 DieQuad*L2 DieQuad*L3 DieQuad*L4 

DieQuad*L5 DieQuad*L6 DieQuad*L7 DieQuad*L8 DieQuad*L9 

DieQuad*L10 

 

 

/ dist=binomial link=logit solution ; 

 

run; 

ods graphics off; 

ods html close;  

 



  179 

Die-Level Reduced Model with Interactions 

ods html; 

ods graphics on; 

proc glimmix data=sasuser.cartprobdiedata method=RsPL 

plots=(residualpanel(type=noblup unpack) 

residualpanel(type=blup) 

studentpanel(type=noblup)); 

class WafID LotNo DieQuad; 

model Pass1 =  TotalLayWithDefs RadDist  DieQuad L1 L2 L3 L4 L5 

L6 L7  L9 L10   

L1*L2 L1*L3 L1*L8 L2*L4 L2*L7 L2*L8 L2*L9 L2*L10 L4*L5 L4*L6 

L4*L10 L5*L10 L7*L9 L7*L10 L9*L10 

RadDist*L5 RadDist*L6 RadDist*L7 RadDist*L8 RadDist*L9 

RadDist*L10 DieQuad*RadDist        

 

/ dist=binomial link=logit solution ; 

 

 

run; 

ods graphics off; 

ods html close;  
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