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ABSTRACT  
   

In the current millennium, extensive use of computers and the internet 

caused an exponential increase in information. Few research areas are as 

important as information extraction, which primarily involves extracting 

concepts and the relations between them from free text. Limitations in the 

size of training data, lack of lexicons and lack of relationship patterns are 

major factors for poor performance in information extraction. This is because 

the training data cannot possibly contain all concepts and their synonyms; 

and it contains only limited examples of relationship patterns between 

concepts. Creating training data, lexicons and relationship patterns is 

expensive, especially in the biomedical domain (including clinical notes) 

because of the depth of domain knowledge required of the curators.  

Dictionary-based approaches for concept extraction in this domain are not 

sufficient to effectively overcome the complexities that arise because of the 

descriptive nature of human languages. For example, there is a relatively 

higher amount of abbreviations (not all of them present in lexicons) compared 

to everyday English text. Sometimes abbreviations are modifiers of an 

adjective (e.g. CD4-negative) rather than nouns (and hence, not usually 

considered named entities). There are many chemical names with numbers, 

commas, hyphens and parentheses (e.g. t(3;3)(q21;q26)), which will be 

separated by most tokenizers. In addition, partial words are used in place of 

full words (e.g. up- and downregulate); and some of the words used are 

highly specialized for the domain. Clinical notes contain peculiar drug names, 

anatomical nomenclature, other specialized names and phrases that are not 

standard in everyday English or in published articles (e.g. “l shoulder inj”). 

State of the art concept extraction systems use machine learning algorithms 
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to overcome some of these challenges. However, they need a large annotated 

corpus for every concept class that needs to be extracted.  

A novel natural language processing approach to minimize this limitation in 

concept extraction is proposed here using distributional semantics. 

Distributional semantics is an emerging field arising from the notion that the 

meaning or semantics of a piece of text (discourse) depends on the 

distribution of the elements of that discourse in relation to its surroundings. 

Distributional information from large unlabeled data is used to automatically 

create lexicons for the concepts to be tagged, clusters of contextually similar 

words, and thesauri of distributionally similar words. These automatically 

generated lexical resources are shown here to be more useful than manually 

created lexicons for extracting concepts from both literature and narratives. 

Further, machine learning features based on distributional semantics are 

shown to improve the accuracy of BANNER, and could be used in other 

machine learning systems such as cTakes to improve their performance. 

In addition, in order to simplify the sentence patterns and facilitate 

association extraction, a new algorithm using a “shotgun” approach is 

proposed. The goal of sentence simplification has traditionally been to reduce 

the grammatical complexity of sentences while retaining the relevant 

information content and meaning to enable better readability for humans and 

enhanced processing by parsers. Sentence simplification is shown here to 

improve the performance of association extraction systems for both 

biomedical literature and clinical notes. It helps improve the accuracy of 

protein-protein interaction extraction from the literature and also  improves 
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relationship extraction from clinical notes (such as between medical problems, 

tests and treatments). 

Overall, the two main contributions of this work include the application of 

sentence simplification to association extraction as described above, and the 

use of distributional semantics for concept extraction. The proposed work on 

concept extraction amalgamates for the first time two diverse research areas 

–distributional semantics and information extraction. This approach renders 

all the advantages offered in other semi-supervised machine learning 

systems, and, unlike other proposed semi-supervised approaches, it can be 

used on top of different basic frameworks and algorithms. 
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SECTION A: PROLOGUE 

This section introduces a challenge in automatic extraction of information 

from text and the overall approach taken to overcome the challenge. 

How does one overcome the inherent ambiguity present in human written 

text – be it in literature or in narratives, be it in semantics or syntax, be it in 

identifying concepts or expressing relations between two concepts in a 

sentence? This is the challenge. 

Can a computer learn semantics of words to extract concepts such as 

proteins, drugs and diseases? Can one help by giving it some context? Can a 

computer parse the complex syntax of text well enough to extract the 

associations between the concepts in a sentence? Can one help it by 

paraphrasing, or simplifying the sentence a bit? An approach is presented to 

do these things. 

This research involves in-depth application of natural language processing, 

machine learning and also distributional semantics. A background on these 

topics is presented in Chapter 2. 

The methods and evaluations related to automatic incorporation of semantics 

for extracting concepts are presented in Section B. Section C describes the 

methods and evaluations related to simplification of syntax for association 

extraction. Finally, a summary of the entire research and the implications are 

discussed in Section D. 
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1. INTRODUCTION 

Biomedical information extraction involves automatically extracting biomedical 

concepts such as genes, treatments, tests and medical problems from 

unstructured texts, such as clinical notes and biomedical literature, and also 

extracting the binary associations between them.  

1.1 Overview of the problem and approach 

Importance of information extraction from clinical narratives: The 

health care industry in the United States is one of the largest players in the 

national economy, with trillions of dollars of market share and  more than a 

billion clinical documents per year (Heinze, Morsch, & Holbrook, 2001).  

Information from these documents could lead to improved health care 

outcomes by enabling secondary uses of the data such as tracking 

performance, optimizing resources, appraising treatments and alerting the 

community about potential post-marketing adverse drug effects. The 

unstructured format of the non-coded (free text) parts of clinical documents is 

a barrier for mining valuable data, so advanced natural language processing 

methods are required. This involves automatically extracting the different 

concepts and also the relations between the concepts. 

Importance of information extraction from biomedical literature: The 

study of protein-protein interactions and other molecular events is a central 

tenet of modern translational and genomic research. Publications centering on 

reports of such atomic events abound. The manual extraction of these events 

from the literature currently consumes the time of trained curators that 

deposit them in databases such as DIP, MINT or IntAct. Manual curation, 

however, despite years of effort has only made a small dent (around 7%) into 
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the volume of publications believed to report protein-protein interactions 

(Chitta Baral et al., 2005). Thus, automatic extraction of such facts is a 

priority for biomedical text mining researchers. This involves first extracting 

individual concepts such as genes or proteins and then extracting the 

associations between them. 

A limitation in concept extraction: Most basic systems that extract 

concepts and relations use rule- or pattern-based approaches with the help of 

lexicons; however, such approaches are not reliable in biomedical information 

extraction because of the complex ways used while referring to a concept or 

an association, as elaborated below.  

In biomedical literature, the inter-annotator agreement rate for part of speech 

annotation is approximately 87% (Yuka Tateisi & Jun’ichi Tsujii, 2004). There 

is a relatively higher amount of usage of abbreviations (not all of them in 

lexicons) compared to everyday English text. Sometimes abbreviations are 

modifiers of an adjective (e.g. CD4-negative). Thus, not all abbreviations are 

nouns and hence named entities. There are many chemical names with 

numbers, commas, hyphens and parentheses (e.g. 1,25(OH)2D3, beta-(1,3)-

glucan, t(3;3)(q21;q26)). Most tokenizers separate these terms. In addition, 

partial words are used in the place of full words (e.g. alpha- and beta-catenin, 

up- and downregulate, transcription factor(s)). Moreover, some of the words 

used are highly specialized for biomedical domain (e.g. p53, c-Abl). 

Clinical notes share all the above attributes, thereby making extraction of 

concepts from both biomedical literature and clinical notes too difficult to be 

addressed by a simple rule-based or dictionary-based system. Clinical notes 

contain peculiar drug names, anatomical nomenclature, other specialized 
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names and phrases that are not standard in everyday English such as urinary 

incontinence, benign positional vertigo, l shoulder inj, po pain medications, a 

c5-6 acdf, st changes, resp status and o2 sats. There is also a high incidence 

of abbreviation usage and many of the abbreviations have a different 

meaning in other genres of English. For example: ASA (Acetyl Salicylic Acid, 

not as soon as), NAD (Nicotinamide Adenine Dinucleotide, here not no acute 

distress) and NC (No Change, not not clear). 

Dictionary-based approaches are not sufficient to effectively overcome these 

complexities that arise because of the descriptive nature of human languages. 

Supervised machine learning based approaches offer a promising alternative. 

All supervised machine learning algorithms such as Conditional Random Fields 

(Lafferty, A. McCallum, & Pereira, 2001) require a training set labeled with 

concepts. The i2b2/VA NLP shared task corpus is such a corpus of clinical 

notes labeled with medical problems, tests and treatments. The GENIA corpus 

(J. D. Kim, Ohta, Y. Tateisi, & J. Tsujii, 2003) is a corpus of biomedical 

abstracts labeled with 46 biomedical concepts such as proteins, RNA and cell. 

Since such methods are statistical, a large corpus with as many relevant 

examples as possible yields an accurate system. However, because of privacy 

concerns, large corpora of clinical text are not available for research 

purposes, and thus the annotated sets that are publicly available are even 

smaller in size. The corpora available for certain semantic types and relations 

in biomedical literature and clinical notes are also limited because of the 

domain expertise and effort needed for annotation.  

Approach to minimize the limitation in concept extraction: This work 

proposes to use unannotated data from biomedical texts to design a semi-
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supervised machine learning approach for the purpose of extracting concepts. 

There is an earlier system in the biomedical domain owned by IBM Watson 

Research Center (Ando, 2007) that used a large amount of unannotated data 

for winning the BioCreative II gene mention shared task. That system used a 

computationally expensive machine learning algorithm called Alternating 

Structure Optimization (ASO). They start with 5 million PubMed abstracts and 

prune the sentences which do not contain words that appear less than 25 

times. C. Liu & Ng (C. Liu & Ng, 2007), who applied ASO to Semantic Role 

Labeling states, “Some of our experiments are limited by the extensive 

computing resources required for a fuller exploration. However, we have been 

unable to use unlabeled data to improve the accuracy.” This work is proposing 

the use of unannotated data through construction of a vector-based similarity 

model using Random Indexing which is much faster than previous methods 

(processing the entire Medline corpus takes around 30 minutes using an octa-

core Xeon server and 16GB RAM). This approach is thus scalable to huge 

unannotated corpora and will promote widespread use of unannotated data 

for the task of clinical concept extraction.  

A limitation in association extraction: Sentences in biomedical literature 

are significantly more complex than those in newspaper articles because of 

higher average sentence length (Jonnalagadda et al., 2009), higher perplexity 

measures (Elhadad, 2006), greater lexical density, and increased number of 

relative clauses and prepositional phrases (Gemoets, 2004). Clinical notes are 

“not well-written, noise prone, ungrammatical and with much cryptic content” 

(Y. Wang, 2009). Some of the sentences are too complex to be correctly 

interpreted by the association extraction system. Presented below are 

sentences from one of the clinical notes from the i2b2/VA shared task corpus 
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where a relation is not detected by a state of the art system. The concepts 

that are associated in the gold standard are highlighted. 

 He 'd been having lower abdominal pain for approximately the past 

week , a symptom for which he 's been admitted in the past . 

After discussing this with his PCP , Leon was clear that the patient had 

had recurrent DVTs and ultimately a PE and his PCP felt strongly 

that he required long-term anticoagulation . 

11. Mesalamine 400 mg Tablet , Delayed Release ( E.C. ) Sig : Three ( 

3 ) Tablet , Delayed Release ( E.C. ) PO TID ( 3 times a day ) as 

needed for ulcerative colitis w/o recent severe flares . 

The baseline system was able to detect the associations when the above 

sentences were respectively simplified as below. 

lower abdominal pain is a symptom . 

The patient had had recurrent DVTs and ultimately a PE . 

Delayed Release ( E.C. ) Sig : Three Tablet Delayed Release ( E.C. ) 

PO TID as needed for ulcerative colitis w/o recent severe flares . 

Approach to minimize the limitation in association extraction: 

Simplifying sentences and then using the simpler sentences for protein-

protein interaction extraction might improve the overall accuracy. Impact on 

accuracy on extracting relationships in clinical narratives will also be 

evaluated. This result might also apply for general relationship extraction. If 

the assumption that sentence simplification aids relationship extraction is true 



 7 

for both biomedical literature and clinical notes, it would encourage 

researchers in other fields to use sentence simplification to improve 

relationship extraction and similar tasks. 

In what follows, these proposed approaches are formally hypothesized and 

the evaluation approaches are specified. The subsequent sections (B and C) 

detail the experiments. 

Publications: This work resulted in the below peer-reviewed research 

papers. 

1. Siddhartha Jonnalagadda, Graciela Gonzalez. BioSimplify: an open 

source sentence simplification engine to improve recall in automatic 

biomedical information extraction. In Annual Proceedings of AMIA 

2010, Washington D.C., November 13-17, 2010  

2. Jörg Hakenberg, Robert Leaman, Nguyen Ha Vo, Siddhartha 

Jonnalagadda, Ryan Sullivan, Christopher Miller, Luis Tari, Chitta Baral, 

Graciela Gonzalez. Efficient extraction of protein-protein interactions 

from full-text articles. IEEE/ACM TCBB. 2010  

3. Siddhartha Jonnalagadda, Robert Leaman, Trevor Cohen and Graciela 

Gonzalez. A Distributional Semantics Approach to Simultaneous 

Recognition of Multiple Classes of Named Entities. CICLing, LNCS 

6008. 2010  

4. Siddhartha Jonnalagadda, Graciela Gonzalez. Sentence Simplification 

Aids Protein-Protein Interaction Extraction. The 3rd International 
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Symposium on Languages in Biology and Medicine, Jeju Island, South 

Korea, November 8-10, 2009 

5. Siddhartha Jonnalagadda, Luis Tari, Jörg Hakenberg, Chitta Baral and 

Graciela Gonzalez. Towards Effective Sentence Simplification for 

Automatic Processing of Biomedical Text. In Proc. of the NAACL-HLT, 

Boulder, USA, June 2009 

Software published. In addition to the research accomplishments, the 

software contributions achieved are included below. 

1. Updates to BANNER (http://banner.sourceforge.net) to use 

distributional semantic features 

2. Minor feature updates to Semantic Vectors package 

(http://code.google.com/p/semanticvectors) to enable using start list. 

3. SimFind, a rule-based concept extraction system using distributional 

semantics (http://www.public.asu.edu/~sjonnal3/SV_ NER_src.zip) 

4. A sentence simplification system using Link Grammar parser 

(http://biosimplify.sourceforge.net) 

5. Another sentence simplification system using Phrase Structure 

Grammar parser (http://biosimplify.sourceforge.net) 

6. A clinical relations extraction system (available as part of 

http://biosimplify.sourceforge.net) 
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1.2 Specification of the problem and approach 

 This work introduces the notions that distributional semantic methods can be 

applied for concept extraction in general, and also in biomedical1 and clinical2 

domains; and that simplifying the biomedical and clinical sentences can 

improve extraction of relationships. Figure 1.1 presents the overview of this 

work.  

 

For concept extraction in any domain, the main challenge is the scarcity of 

annotated examples and that no such large corpus can practically be created 

without raising privacy concerns. The first hypothesis is that the 

distributional information of terms in unannotated corpora can be 

used to compensate for the limited vocabulary present in a small 

                                           
1 biomedical = scientific biomedical literature 
 
2 clinical = electronic medical record text 
 

Figure 1.1: Overview of techniques used 
 

The overall goal is to extract concepts and relationships from 

biomedical literature and clinical notes. ML refers to a state-of-the-art 

machine learning system. “ML + Distributional Semantics” refers to 

using distributional semantics to improve ML. Sentence simplification 

is technique proposed to improve relationship extraction. 

Information Extraction from Biomedical 

literature and Clinical notes

Concept Extraction

ML + Distributional 

Semantics

Relationship Extraction

Sentence 

Simplification
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annotated corpus and allow more accurate concept recognition. 

Existing state of the art machine learning systems in both the domains will be 

extended by adding distributional semantic features, respectively, to extract 

medical problems and treatments from clinical narratives and to extract 

proteins from biomedical literature text. Improvement in accuracy after 

adding distributional semantic features (using the i2b2/VA NLP shared task 

corpus as a gold standard for the clinical domain and BioCreative shared task 

corpus for the biomedical domain) would validate the first hypothesis. 

For extracting relationships, a small training corpus means that grammatical 

variants of patterns that express relationships will be limited and might not 

contain the patterns present in the test set. The second hypothesis is that 

through sentence simplification the variants in grammatical patterns 

present in the test data could be normalize in order to detect the 

corresponding relationships. If relationship patterns obtained from the 

simplified sentences of a training set are used against sentences of a test set 

simplified to a certain level, then it could improve the accuracy of automatic 

relationship extraction. Improvement in accuracy after using sentence 

simplification (as evaluated on the i2b2/VA NLP shared task gold standard for 

clinical domain and the AIMED corpus for the biomedical literature domain) 

would validate this approach. 

Hypotheses: 

Hypothesis 1: Distributional information from unannotated corpora can be 

used to compensate for limited corpus vocabulary. If similarity derived from 

such distributional information is used, then it could improve the accuracy of 

automatic extraction of concepts from text.  
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Method 1: Adapt regular orthographic and linguistic features known to 

be useful for concept extraction to create a baseline system and create 

a new concept extraction system by including the distributional 

semantic features. 

Evaluation 1: The concept extraction system will be tested for 

extracting gene mentions from biomedical literature and also 

for extracting medical problems, tests and treatments from 

clinical notes. The performance will be compared against the 

baseline system that is equivalent in all respects other than not 

using distributional semantic features. Improvement in 

performance in either domain would prove Hypothesis 1. 

Improvement in performance over both domains would validate 

the generalizability of Hypothesis 1. 

 

Hypothesis 2: Sentence simplification can compensate for limited grammatical 

variation in a training corpus. Relationship patterns obtained from the training 

set might not capture all possible ways of expressing a relationship. If 

relationship patterns obtained from the training set are used against 

sentences of a test set simplified to a certain level, then it could improve the 

accuracy of automatic relationship extraction. 

Method 2: Design a system that automatically creates the set of all 

simpler sentences that can be composed from the original sentence. 

Method 3: Use sentence simplification as a post-processing step for 

relationship extraction in biomedical and clinical domains. 
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Evaluation 2: Method 3 will be tested for extracting protein-

protein interactions from biomedical literature and also for 

extracting relationships between concepts from clinical text. 

The performance will be compared against a system that is 

equivalent in all respects other than not using sentence 

simplification features. Improvement in performance in either 

domain would prove Hypothesis 2. Improvement in 

performance over both domains would validate the 

generalizability of Hypothesis 2. 
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2. BACKGROUND 

This dissertation is about a novel approach to the task of extracting concepts 

and relationships from text using distributional semantics and sentence 

simplification. Distributional semantics is an emerging field arising from the 

notion that the meaning or semantics of a piece of text (discourse) depends 

on the distribution of the elements of that discourse in relation to its 

surroundings. The goal of sentence simplification is to reduce the grammatical 

complexity of surroundings while retaining the relevant information content 

and meaning to enable enhanced processing by parsers, and better 

readability for humans. This research is primarily centered around concept 

extraction and association extraction, the fundamental blocks of text mining. 

However, it is easier to understand these with a general overview of natural 

language processing which is first revised. Sentence simplification, a novel 

method of syntactic processing of natural language text is also introduced in 

this section. 

The subsequent sections introduce concept extraction and relation extraction 

in general, and also in the context of biomedical literature and clinical notes. 

In addition, related literature is also reviewed briefly. 

We believe this is the first work that applies distributional semantics for the 

task of information extraction. Thus, distributional semantics is explained 

extensively in the next section.  

The subsequent sections describe Support Vector Machine and K-Means 

algorithm which will be used in Chapter 4 to automatically classify and cluster 

the semantic vectors for the terms. 
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2.1 Natural Language Processing 

Text mining involves information extraction which is the discovery by 

computer of new, previously unfound information, by automatically extracting 

information from different written resources (Hearst, 1999). Information 

extraction primarily constitutes concept extraction, also known as named 

entity recognition, and relation extraction, also known as association 

extraction.  Natural Language Processing (NLP) is the art of text mining. NLP 

deals with written text at level of documents, words, grammar, meaning and 

context. 

At the level of documents, the entire document is split into individual 

sentences. While simple rules such as based on punctuation marks and capital 

letters could help in achieving a reasonable accuracy, more accurate methods 

employ statistical techniques. For example, Tomanek, Wermter, & Hahn, 

2007 (Tomanek, Wermter, & Hahn, 2007) demonstrate that the use of 

Conditional Random Fields machine learning substantially improves the 

accuracy. 

At the level of words, the sentences need to first broken into individual 

tokens or words. This process is known as tokenization and is executed using 

rules such as those used by Apache Lucene3. However, there are also 

machine learning based tokenizers such as that implemented by OpenNLP4 

using MaxEnt algorithm. Also at the level of words, the base form of each 

word could be found using a process known as lemmatization. The base form 

of the word, also known as lemma, is independent of its part of speech or a 

                                           
3http://lucene.apache.org/java/2_3_0/api/org/apache/lucene/analysis/standa
rd/StandardTokenizer.html 
 
4 http://opennlp.sourceforge.net 
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morphological variation. Stem, usually used as an approximation for lemma, 

is that part of the word which is common to all inflected forms. For example, 

from “deduced”, the lemma is “deduce”, but the stem is “deduc”, because 

there are words such as “deduction”. Computational methods such as Porter 

Stemmer algorithm (Porter, 1980) are used to strip the suffixes and 

normalize the inflections automatically. 

At the level of grammar, the part of speech of the word could be determined 

using statistical models such as Hidden Markov Model. Several open source 

tools such as OpenNLP, Lingpipe5 and Dragon Toolkit6 provide such models 

customized for specific genres of text. Most part of the speech taggers output 

the corresponding tags for each word as described in the Penn Tree Bank 

manual (Marcus, Santorini, & Marcinkiewicz, 1993). For example, the 

sentence – “A good correlation was found between the grade of Barrett's 

esophagus dysplasia and high p53 positivity.” would be tagged as “A_DT 

good_JJ correlation_NN was_VBD found_VBN between_IN the_DT grade_NN 

of_IN Barrett's_NNP esophagus_NN dysplasia_NN and_CC high_JJ p53_NN 

positivity_NN ._.”, where DT is determiner, JJ is adjective, NN is singular 

noun, VBD is past tense verb, VBN is past participle verb, IN is preposition, 

NNP is singular proper noun and CC is coordinating conjunction. For detailed 

information about the Penn Tree Bank format part of speech tags, refer to the 

documentation at (Marcus et al., 1993) or ftp://ftp.cis.upenn.edu/pub/ 

treebank/doc/tagguide.ps.gz. Also at the level of grammar is phrase 

chunking and parsing. 

                                           
5 http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html 
 
6 http://dragon.ischool.drexel.edu/ 



 16 

A phrase is a collection of consecutive words that are functional units of a 

clause and can be primarily classified as noun phrase, verb phrase, 

prepositional phrase and so on. Phrase chunking, also known as shallow 

parsing, is the process of identifying all the phrases that are not nested. For 

example, in the sentence – “John Smith will eat the beans.”, there is a noun 

phrase - John Smith, a verb phrase - will eat and a noun phrase - the beans. 

Parsing is the process of determining the complete grammatical structure of a 

sentence with respect to a given formal grammar. Some parsers such as 

Stanford parser (Klein & C. D. Manning, 2003) utilize phrase structure 

grammar to represent the output. In phrase structure grammar, rules are 

represented by a tree whose nodes are the different pharses in the sentence 

and the edges indicate relationship between different pharses. For example, 

the sentence – “The strongest rain ever recorded in India shut down the 

financial hub of Mumbai, snapped communication lines, closed airports and 

forced thousands of people to sleep in their offices or walk home during the 

night, officials said today.” could be parsed as below: 

(S 
    (S 
      (NP 
        (NP (DT The) (JJS strongest) (NN rain)) 
        (VP 
          (ADVP (RB ever)) 
          (VBN recorded) 
          (PP (IN in) 
            (NP (NNP India))))) 
      (VP 
        (VP (VBD shut) 
          (PRT (RP down)) 
          (NP 
            (NP (DT the) (JJ financial) (NN hub)) 
            (PP (IN of) 
              (NP (NNP Mumbai))))) 
        (, ,) 
        (VP (VBD snapped) 
          (NP (NN communication) (NNS lines))) 
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        (, ,) 
        (VP (VBD closed) 
          (NP (NNS airports))) 
        (CC and) 
        (VP (VBD forced) 
          (NP 
            (NP (NNS thousands)) 
            (PP (IN of) 
              (NP (NNS people)))) 
          (S 
            (VP (TO to) 
              (VP 
                (VP (VB sleep) 
                  (PP (IN in) 
                    (NP (PRP$ their) (NNS offices)))) 
                (CC or) 
                (VP (VB walk) 
                  (NP (NN home)) 
                  (PP (IN during) 
                    (NP (DT the) (NN night)))))))))) 
    (, ,) 
    (NP (NNS officials)) 
    (VP (VBD said) 
      (NP-TMP (NN today))) 
    (. .)) 
 
The parsers representing the output using phrase structure grammar 

predominantly use Penn Tree Bank format. For detailed information about the 

Penn Tree Bank format phrase tags, refer to the documentation at (Marcus et 

al., 1993) or ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/root.ps.gz. 

Some of the parsers, such as Link Grammar (Sleator, 1998) utilize 

dependency grammar where a dependency graph is used to represent the 

output. In a dependency graph, nodes are the different tokens in the 

sentence and the edges indicate relationship between the individual tokens. 

Link grammar has a specific dependency format; however, there are general 

dependency formats such as Stanford dependency format (Marneffe, 

MacCartney, & Christopher D. Manning, 2006). For the example sentence, 

dependencies in Stanford format would be: 

det(rain-3, The-1) 
amod(rain-3, strongest-2) 
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nsubj(shut-8, rain-3) 
nsubj(snapped-16, rain-3) 
nsubj(closed-20, rain-3) 
nsubj(forced-23, rain-3) 
advmod(recorded-5, ever-4) 
partmod(rain-3, recorded-5) 
prep_in(recorded-5, India-7) 
ccomp(said-40, shut-8) 
prt(shut-8, down-9) 
det(hub-12, the-10) 
amod(hub-12, financial-11) 
dobj(shut-8, hub-12) 
prep_of(hub-12, Mumbai-14) 
conj_and(shut-8, snapped-16) 
ccomp(said-40, snapped-16) 
nn(lines-18, communication-17) 
dobj(snapped-16, lines-18) 
conj_and(shut-8, closed-20) 
ccomp(said-40, closed-20) 
dobj(closed-20, airports-21) 
conj_and(shut-8, forced-23) 
ccomp(said-40, forced-23) 
dobj(forced-23, thousands-24) 
prep_of(thousands-24, people-26) 
aux(sleep-28, to-27) 
xcomp(forced-23, sleep-28) 
poss(offices-31, their-30) 
prep_in(sleep-28, offices-31) 
xcomp(forced-23, walk-33) 
conj_or(sleep-28, walk-33) 
dobj(walk-33, home-34) 
det(night-37, the-36) 
prep_during(walk-33, night-37) 
nsubj(said-40, officials-39) 
tmod(said-40, today-41) 
 
Also at the level of grammar, sentences could be paraphrased or simplified. 

The problem of simplifying long sentences in common English text has been 

studied before, notably by (Chandrasekar & Srinivas, 1997), (J. Carroll, 

Minnen, Canning, Devlin, & Tait, 1998) in their Practical Simplification of 

English text project or PSET and (Siddharthan, 2006). The goal of syntactic 

simplification is to reduce the grammatical complexity of a text while retaining 

the relevant information content and meaning to enable better processing by 

parsers, and better readability for humans. The work of (Chandrasekar & 

Srinivas, 1997) is aimed at improving processing by parsers, while that of 
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(Carroll et al, 1998) and (Siddharthan, 2006) seek to enhance readability for 

humans. In the former work, the goal was to preserve both semantic content 

and grammatical correctness, but not necessarily cohesiveness. The latter 

projects aim to create sentences that are shorter, grammatically correct, 

information-preserving and cohesive (property that the context of a discourse 

element can be inferred from its precedents). Sentence simplification is also 

applied in text summarization systems like SumBasic (Vanderwende, Suzuki, 

Brockett, & Nenkova, 2007) where the focus is to preserve only the important 

content. This approach, called sentence shortening or sentence compression, 

does not necessarily preserve semantic content.  

At the level of semantics, distributional semantics (introduced subsequently) 

is helpful to automatically infer the similarity of words using unannotated text 

data. At the level of pragmatics or context, section names could provide 

that information. 

2.2 Extracting concepts 

The problem of extracting the relevant concepts automatically from text is 

also known as “Named Entity Recognition and Classification (NERC)”, or 

“Named Entity Recognition (NER)”. The problem of Named Entity Recognition 

and Classification was studied in Computer Science for almost two decades 

(Rau, Res, Center, & Schenectady, 1991) and there has been significant 

progress in the field. Earlier attempts were predominantly dictionary or rule-

based systems; however, most of the modern systems use supervised 

machine learning where a system is trained to recognize named entity 

mentions in text based on specific (and numerous) features associated with 

the mentions that the system learns from annotated corpora. Thus, machine 
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learning based methods are dependent on the specific technique or 

implementation details and the features used for it.  

In the former category, generative models (Naïve Bayes Classifier and Hidden 

Markov Models) and instance-based classifiers (Logistic Regression and Naïve 

Bayes Classifier) are less accurate for extracting concepts or named entities 

from text than sequence-based discriminative models like Conditional Random 

Fields (Minka, 2005; Sutton & A. McCallum, 2007). Advances in machine 

learning, such as active learning and semi-supervised learning, still need to 

be thoroughly explored for concept extraction.  

Most of the contemporary high-performing tools use non-semantic features 

such as parts of speech, lemmata, regular expressions, prefixes and n-grams. 

The high computational cost associated with using deep syntactic and 

semantic features largely restricted the NERC systems to the orthographic, 

morphological and shallow syntactic features.  

Another common limitation of NERC systems based on machine learning 

techniques, such as conditional random fields, is the significant computational 

needs when training on a large, rich corpus like GENIA. While such 

probabilistic graphical models have been used for multi-class NERC (J. R. 

Finkel & C. D. Manning, 2009a; A. McCallum & W. Li, 2003; Burr Settles, 

2005; Song, E. Kim, G. G. Lee, & Yi, 2004), these are typically trained for less 

than six entities and are not particularly computationally efficient. 

2.2.1 Concept extraction from biomedical literature 

State of the art for NER in biomedical domain is at par with that in general 

domain. Semantic features of varying degrees of sophistication have been 

used previously in systems like ABNER (Burr Settles, 2005) and the joint 



 21 

parser and NER tool developed in Stanford by (J. R. Finkel & C. D. Manning, 

2009a).  

ABNER, a pioneering system for Biomedical NERC using conditional random 

fields, uses list-look up techniques based on 17 dictionaries that map 

individual tokens to their semantic types. The dictionaries include those 

corresponding to Greek letters, amino acids, chemical elements, known 

viruses, genes, chromosome locations, proteins, cell lines, and abbreviations. 

However adding these semantic features to the existing word-level features 

actually had a deleterious effect of decreasing the f-measure by 0.3%.  

Finkel’s tool uses the distributional similarity model built by (Clark, 2000) to 

determine the cluster to which a particular token belongs to. The clusters 

were built apriori from the British National corpus and English Gigaword 

corpus. The major limitations of this approach are that Clark’s model uses 

only the immediate adjacent tokens to calculate the distributional similarity 

and that the ambiguity in the semantic type of the token depending upon the 

larger context is not taken into consideration. It is also reported that because 

they were able to find only 200 clusters, it resulted in slower inference and no 

improvement in performance was reported.  

On the other hand, most of the state-of-art NERC systems such as BANNER 

(Leaman & G. Gonzalez, 2008), that has an F-score accuracy of 82% for 

recognizing protein names, do not use any semantic features including 

distributional semantic features for want of evidence for scalability and impact 

on performance.  
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2.2.2 Concept extraction from clinical notes 

The first application of information extraction in clinical domain can be 

attributed to (Hirschman, Grishman, & Sager, 1976) for converting a corpus 

of x-ray reports on patients with breast cancer into a structures database 

using a theory of sublanguage of grammars (Sager, 1975). Medical Language 

Extraction and Encoding System (MEDLEE (Carol Friedman, 1997)) 

automatically generates coded information from general clinical notes using 

rule-based approach in addition to finding modifiers.  

MetaMap (Aronson, 2001), an initiative of NLM to map text to UMLS 

metathesarus, uses large lexicon and it is still being actively used. A direct 

application of MetaMap for detecting medical problems (S. Meystre & P. J 

Haug, 2005) shows that it has an F-score accuracy of 75% for that task and a 

recent open-source tool HITEX (Zeng et al., 2006) uses MetaMap to map 

concepts to UMLS strings.  

More recently, hospital systems are moving forward in developing open 

source clinical information extraction systems, such as cTakes (Guergana K 

Savova, Kipper-Schuler, Buntrock, & Chute, 2008), which uses naïve bayes 

classifier with lexical and syntactic features to achieve 56% strict F-score 

accuracy in identifying clinical named entities such as diseases, 

signs/symptoms, anatomical sites and procedures.  

Some other clinical extraction projects include (Chuang, Carol Friedman, & 

Hripcsak, 2002; Fiszman, W. W. Chapman, Evans, & P J Haug, 1999; P J 

Haug et al., 1995; P J Haug, Ranum, & Frederick, 1990; Stephane Meystre & 

Peter J Haug, 2005; Stéphane Meystre & Peter J Haug, 2006; Schadow & 

McDonald, 2003; Taira & Soderland, 1999; Wicentowski & Sydes, 2008; Hua 
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Xu & Carol Friedman, 2003). However, as pointed out in a comprehensive 

review of clinical concept extraction (S. M. Meystre, G K Savova, Kipper-

Schuler, & Hurdle, 2008), clinical NLP is currently lagging behind biomedical 

NLP because of insufficient experience of NLP researchers with clinical text 

and rarity of annotated corpora. For a systematic review on automatic clinical 

coding and concept classification systems, refer to (Stanfill, Williams, Fenton, 

Jenders, & Hersh, 2010) 

2.3 Extracting relationships 

The concepts extracted in the NER step are constructing blocks for extracting 

knowledge from text for useful applications like sentiment analysis and 

relationship extraction. Mathematically, obtaining more information involves 

finding n-tuples of extracted concepts satisfying a defined function. For 

example, according to (Hu & B. Liu, 2004), an opinion is the 5-tuple of the 

target object, feature of object, the opinion holder, the time when it is 

expressed, and the sentiment value or class of the opinion holder on the 

feature of the object at that time. According to (Bach & Badaskar, 2007), the 

problem of relationship extraction is to find the n-tuples for a relation – r(e1, 

e2, …, en). In the biomedical domain, relationship extraction is primarily 

studied as interaction between proteins. In clinical domain, relationship 

extraction involves finding associations between medical problems, tests and 

treatments. In general, relationship extraction is as straightforward as finding 

whether there is an association or not. There are often attempts to classify 

the kind of association. In the biomedical domain, the BioNLP shared task (J. 

D. Kim, Ohta, Pyysalo, Kano, & J. Tsujii, 2009) for event extraction attempted 

classifying association between proteins or genes as: 1) gene expression, 2) 

transcription, 3) protein catabolism, 4) localization, 5) binding, 6) 
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phosphorylation, 7) positive regulation and 8) negative regulation. In the 

clinical domain, the i2b2/VA NLP shared task7 is attempting to classify 

relationships between tests and problems as whether: 1) test reveals the 

medical problem, and 2) test conducted for the medical problem; and 

relationships between treatment and medical problem as whether: 1) 

treatment improves medical problem, 2) treatment worsens medical problem, 

3) treatment causes medical problem, 4) treatment is administered for 

medical problem, or 5) treatment is not administered for medical problem. 

Relationship extraction from clinical notes is still in its beginning stages, 

unlike in the biomedical domain, where there are a number of well-

established systems (Ahmed, Chidambaram, Davulcu, & Chitta Baral, 2005; 

Blaschke, 1999; Bunescu et al., 2005; Katrin Fundel, Kuffner, & Zimmer, 

2007; Hakenberg et al., 2010; M. Huang, Zhu, & M. Li, 2006; Lawrence 

Hunter et al., 2008; Jang et al., 2006; S. Kim et al., 2008; Edward M. 

Marcotte, Xenarios, & Eisenberg, 2001; Ono, Hishigaki, Tanigami, & Takagi, 

2001; Phuong, D. Lee, & LeeKwang, 2003; Schneider, Kaljurand, & Rinaldi, 

2009; Temkin & Gilder, 2003; Thomas, Milward, Ouzounis, Pulman, & M. 

Carroll, 2000; L. Wong, 2001), with some already publicly available (M. 

Huang et al., 2006; S. Kim et al., 2008; Rebholz-Schuhmann, Arregui, 

Gaudan, Kirsch, & Jimeno, 2007).  

2.3.1 Protein-Protein interaction extraction 

The study of protein-protein interactions and other molecular events is a 

central tenet of modern translational and genomic research. Publications 

centering on reports of such atomic events abound, and their manual 

extraction from the literature occupies many trained curators that deposit 

                                           
7 https://www.i2b2.org/NLP/Relations/ 
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them in databases such as DIP, MINT, or IntAct. Manual curation, however, 

despite years of effort, has only made a small dent (calculated at around 7%) 

into the volume of publications believed to report protein-protein interactions. 

Automatic extraction of such facts is a foremost priority for biomedical text 

mining researchers; however, the accuracy if the systems is still inadequate. 

The BioCreative II effort (Krallinger, Leitner, & Valencia, 2007) to compare 

the PPI extraction tools of 16 international teams revealed that the best 

system had an F-score of only 0.30. Although this is the performance for the 

combined task of relationship extraction and gene normalization, the fact 

remains that there is still much to be done in this area. While the different 

reported methods for interaction were reported that use syntactic trees, 

counting co-occurrences of proteins, lemmatization and so on, the best 

systems from BioCreative II and BioCreative II.5, respectively (W. 

Baumgartner et al., 2008) and (Hakenberg et al., 2010) use pattern matching 

after de-identification of certain words or word patterns to improve matching. 

2.3.2 Relationship extraction from clinical notes 

Unlike in biomedical domain, relationship extraction is still in beginning stages 

in the clinical domain with only a couple planned for general use (Angus 

Roberts, Robert Gaizauskas, Mark Hepple, & Yikun Guo, 2008; Uzuner, 

Mailoa, Ryan, & Sibanda, 2010). One of the most sophisticated systems is 

ONYX (Christensen, Harkema, P. J Haug, Irwin, & W. W. Chapman, 2009) 

which uses probabilistic context free grammar to extract surface-of-part 

relationship and location-of-condition relationship with an ERROR of 70%. 

Most existing systems for finding relationships between clinical concepts use 

measures of simple co-occurrence (E. S. Chen, G. Hripcsak, H. Xu, Markatou, 

& C. Friedman, 2008), or variations of it like chi-square (X. Wang, Chused, 
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Elhadad, C. Friedman, & Markatou, 2008) and point wise mutual information 

(X. Wang, G. Hripcsak, & C. Friedman, 2009). Some of the recent work is 

using machine learning techniques (A. Roberts, R. Gaizauskas, M. Hepple, & 

Y. Guo, 2008) and dependency trees (X. Zhou, Han, Chankai, Prestrud, & 

Brooks, 2006) to extract relationship between an entity and the modifiers 

around (not necessarily a specific entity-type) it. 

2.4 Distributional semantics 

Distributional semantics is an emerging area of research arising from the 

notion that the semantics of a piece of text (discourse) can be inferred from 

the distribution of the elements of that discourse in relation to their 

surroundings. Methods of distributional semantics derive measures of 

semantic relatedness between terms and text passages from large bodies of 

unannotated natural language text (for a review, see (T. Cohen & Widdows, 

2009)). These measures of relatedness have been shown to correlate with 

human estimates of relatedness; however, little is known about how best to 

apply them to support structured prediction tasks (such as parsing), or 

sequence labeling tasks such as named entity recognition (Turian, 

Opérationnelle, Ratinov, & Bengio, 2010).  

2.4.1 Random indexing 

Geometric models of distributional semantics represent each term as a vector 

in high-dimensional space. Each dimension of this space correspond to a 

context in the corpus, such as (co-occurrence near) another term or (co-

occurrence within) a document. Consequently, a vocabulary of terms is 

represented as a term-by-context matrix. However, since distributional 

semantics models constructed based on millions of documents and/or millions 

of terms would be unmanageable in size, distributional models approaching 
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corpora of this magnitude tend to reduce dimensionality. Traditional 

dimensionality reduction techniques, such as Singular Value Decomposition 

(SVD), are computationally expensive (the commonly utilized algorithm for 

SVD is cubic in complexity (Trefethen & Bau, 1997)). Recently, Random 

Indexing (Kanerva, Kristofersson, & Holst, 2000) emerged as a promising 

alternative to the use of SVD for the dimension reduction step in the 

generation of term-by-context vectors. Random Indexing and other similar 

methods are motivated by the Johnson–Lindenstrauss Lemma (W. B. Johnson 

& Lindenstrauss, 1984) which states that the distance between points in a 

vector space will be approximately preserved if they are projected into a 

reduced-dimensional subspace of sufficient dimensionality. Random Indexing 

scales at a rate that is linear to the size of the data, and has the added 

advantage that it is not necessary to represent the term-document or term-

term matrix in memory: dimension reduction occurs “on-the-fly” as each new 

context is encountered. This is accomplished by assigning to each document 

(in term-document models) or term (in sliding window models) a sparse high-

dimensional (on the order of 1000) elemental vector, a vector comprising of 

mostly zero elements with a small number (on the order of 10) set to either 

+1 or -1. These non-zero elements are determined at random, and on 

account of the sparseness of the vectors this results in a set of vectors that 

are highly likely to be orthogonal or close-to-orthogonal to one another (that 

is to say, they are likely to have few non-zero dimensions in common). 

Semantic vectors for each term are then generated as the normalized vector 

sum of the vectors representation the contexts in which they have occurred. 

The major advantages of Random Indexing over established methods 

employing SVD for dimension reduction are scalability and the capacity for 
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incremental updates. Hence, for a small size of corpus like i2b2/VA corpus, 

there are supervised dimensionality reduction techniques such as LDA (Linear 

Discriminant Analysis) that use SVD computation and could replace Random 

Indexing for designing kernels based on training set annotations. LDA, while 

having the limitation of being inapplicable for reducing dimensionality in 

unlabeled data, is widely applied in NER before and it will be unsurprising if 

kernels built using LDA perform better than the kernels built using Random 

Indexing that is an unsupervised dimensionality reduction method and does 

not exploit the labels of the data. Random indexing is more suitable when 

applied to a huge unlabeled corpus such as hundreds and thousands of clinical 

notes or clinical abstracts.  

2.4.2 Syntagamatic and Paradigmatic relationships 

Recent work (notably (Sahlgren, Holst, & Kanerva, 2008)) in distributional 

semantics explored the differences between relations extracted depending on 

the type of context used to construct a model. Sahlgren and other authors 

(Rapp, 2002) distinguish between two types of relationships between terms 

captured by distributional models, which they designate as “syntagmatic” and 

“paradigmatic” relations, terminology derived from the work of Swiss linguist 

Ferdinand de Saussure (Saussure et al., 1922). If two terms co-occur 

significantly in the same discourse, they are said to be in syntagmatic 

relationship. Examples include term pairs such as Barack and Obama, p53 

and tumor, APOE and AD, and poliomyelitis and leg. If two terms can 

substitute for each other in a sentence (i.e. they occur in similar local 

contexts throughout the corpus), they are said to be in a paradigmatic 

relationship. For example, (President) Bush and (President) Obama, p53 

(gene) and gata1 (gene), AD and SDAT (synonyms), and poliomyelitis and 
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polio (also synonyms). Since terms in paradigmatic relationship generally do 

not occur together in the same context, extracting such a relationship 

typically requires 2nd order (inter-document) analysis, while a 1st order (intra-

document) analysis is sufficient to extract syntagmatic relationships. The NER 

task involves finding words that could conceivably replace the token to be 

labeled without disturbing syntactic structure, i.e., finding words that are 

paradigmatically related. In scientific language, domain semantics also 

determines which terms could replace one another (Z. S. Harris, 2002). 

2.4.3 Different models of context 

Distributional models derive representations for terms such that terms 

occurring in similar contexts across a set of documents in a corpus have 

similar representations. However, the definition of what constitutes a context 

differs across models. For example, Latent Semantic Analysis (LSA) uses an 

entire document as a context. In LSA, one builds a term-document matrix 

and find the semantic representation for words and documents through 

singular value decomposition (SVD). In contrast, other models such as the 

Hyperspace Analogue to Language (Lund & Burgess, 1996) use as a context a 

sliding window that is moved through the text corpus to generate a term-

term matrix, T, where T[i, j] is the number of times the word representing the 

jth column appears in the vicinity of the word representing the ith column. Two 

words are said to be in vicinity of each other if and only if the number of 

words separating them is less than an integer parameter known as the sliding 

window radius. Hence, when a small sliding window is used, this model 

captures paradigmatic relationships, as two words that can substitute for one 

another will frequently occur within similar (if not identical) narrow sliding 

windows.  Sahlgren argues that using a small sliding-window rather than an 
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entire document as a context is better suited to extracting paradigmatic 

relations, and supports this argument with empirical results. For example, 

narrow sliding windows are shown to preferentially generate associations 

between terms of the same part of speech, and between synonymous terms, 

when compared to term-document based models or wider sliding windows 

(Sahlgren, 2006). 

2.4.4 Hyperspace analogue to language model (HAL) 

HAL (Lund & Burgess, 1996) is an extension of the basic sliding window 

model where one also factors in: a) the direction in which a word occurs with 

respect to the other, and b) the actual distance between the two words. The 

cooccurence strength is weighted inversely according to the number of words 

separating them. The direction is taken care of by having two columns for 

each word, with one column representing the number of weighted 

occurrences to the left and the other column representing the number of 

weighted occurrences to the right. Table 2.1 shows an example matrix 

computed for “she was increasingly using her right side” using a window 

width of six words. Although HAL captures the direction of the words and the 

distance between them, it does not precisely capture the word order. 

The elemental vectors for each term were created using Random Indexing. A 

random permutation function (π) is generated. A permutation function is a 

function that maps each element in a collection to a different element or the 

same element if no two elements are mapped to the same element. This 

permutation function, π, is applied to each elemental vector to obtain a 

permutation. 
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Table 2.1: Example for HAL matrix computation 
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she 0 6 5 4 3 2 1 0 0 0 0 0 0 0 

was 0 0 6 5 4 3 2 6 0 0 0 0 0 0 

increasingly 0 0 0 6 5 4 3 5 6 0 0 0 0 0 

using 0 0 0 0 6 5 4 4 5 6 0 0 0 0 

her 0 0 0 0 0 6 5 3 4 5 6 0 0 0 

right 0 0 0 0 0 0 6 2 3 4 5 6 0 0 

side 0 0 0 0 0 0 0 1 2 3 4 5 6 0 

The numbers in first 7 columns represent the word in the column to the right 

of the word in the row. The numbers in last 7 columns represent the word in 

the column to the right of the word in the row. The closer the words, the 

higher the weight. 

To build the contextual vectors for each occurrence of the term, the weighted 

original elemental vectors of each term occurring to the right in the sliding 

window are added to the weighted permuted elemental vectors of each term 

occurring to the left in the sliding window. The term-term matrix such as the 

one in Table 2.1 is used for this calculation. For example, the contextual 

vector for the word “using” in the sliding window is calculated as follows: 

�������� 	  6 � ���� �  5 � ������� � 4 � ����� �  4 � ������� � 5 � �������� � 6 �
 ����������������, 

where c(t) is the contextual vector for term t in that sliding window, e(t) is 

the elemental vector of term t and π(υ) is the permuted vector of the vector 

υ. 

The semantic vector for a term is obtained by adding the contextual vectors 

obtained at each occurrence of that term. 



 

2.4.5 Permutation-based

Figure 2.1: Example for permuted vector computation

v1, v2, v3, v4, and v5 respectively 

underwent, angiography, on and 5

by shuffling the vector by |i| positions to the right or left depending on the 

sign of i. The final semantic vector for the term is then generated by adding 

the vectors generated at its each occurrence.

Sahlgren's permutation-

order, thus accounting for the sequential structure of language. The order of 

the word signifies the grammatical role and 

This method is an alternative implementation to the convolution and 

superposition operations used by BEAGLE 

Tony Plate’s Holographic Reduced Representation (HRR) 

encode word-order information in word spaces. Sahlgren’s method captures 

word information by permutation of vector coordinates

computationally light alternative 

Nevertheless, similar performance improvements have recently been achieved 

using HRR in the frequency domain 
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based sliding window model 

: Example for permuted vector computation

respectively are the randomly generated vectors for She, 

underwent, angiography, on and 5-9-92. p(v,i) would be the vector obtained 

shuffling the vector by |i| positions to the right or left depending on the 

sign of i. The final semantic vector for the term is then generated by adding 

the vectors generated at its each occurrence. 

-based method (Sahlgren et al., 2008) encodes word

order, thus accounting for the sequential structure of language. The order of 

ord signifies the grammatical role and thus the meaning of the word. 

This method is an alternative implementation to the convolution and 

superposition operations used by BEAGLE (Jones & Mewhort, 2007) (based on 

Tony Plate’s Holographic Reduced Representation (HRR) (Plate, 2002)

order information in word spaces. Sahlgren’s method captures 

word information by permutation of vector coordinates, which is a 

computationally light alternative to BEAGLE’s convolution operation

similar performance improvements have recently been achieved 

using HRR in the frequency domain (De Vine & Bruza, 2010). To achieve this, 

: Example for permuted vector computation 

 

the randomly generated vectors for She, 

92. p(v,i) would be the vector obtained 

shuffling the vector by |i| positions to the right or left depending on the 

sign of i. The final semantic vector for the term is then generated by adding 

encodes word-

order, thus accounting for the sequential structure of language. The order of 

the meaning of the word. 

This method is an alternative implementation to the convolution and 

(based on 

(Plate, 2002)) to 

order information in word spaces. Sahlgren’s method captures 

which is a 

to BEAGLE’s convolution operation. 

similar performance improvements have recently been achieved 

. To achieve this, 
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Sahlgren et al. first randomly generate sparse high-dimensional elemental 

vectors for each term, and use permutation, specifically shuffling of 

coordinates (shifting of all of the non-zero values of a sparse elemental vector 

to the left or right according to the relative position of terms) to replace the 

convolution operator. In this way, a different close-to-orthogonal elemental 

vector is generated for each term depending on its position within the sliding 

window. A semantic term vector for each term is then generated as the linear 

sum of the permuted elemental vectors for each term co-occurring with this 

term in a sliding window. An example is shown in Figure 2.1. This 

permutation function is reversible, allowing for construction of order-based 

queries (such as a query to find terms occurring one position to the right of 

the term “president”). 

2.5 Support Vector Machines (SVM) 

It was shown previously that distributional semantic measures help in text 

categorization (Sahlgren & Cöster, 2004), where SVM was used as the 

machine learning system for benchmarking. This work will be using 

Conditional Random Fields (CRF) (Lafferty et al., 2001) as the machine 

learning system as a baseline and SVM will be used for generating features 

after creating boundaries using the concepts labeled in the training corpus as 

support vectors. These boundaries help us create the lexicons of concepts. 

SVM (Cortes & Vapnik, 1995) is designed to draw hyper-planes separating 

two class regions such that they have a maximum margin of separation. 

Thus, it is useful for drawing boundaries for regions that are desirable in an 

N-dimensional space. The optimal hyper planes are achieved by solving the 

Quadratic Programming equation. There are many implementations to solve 

the problem, such as Platt's Sequential Minimal Optimization (SMO) (Platt, 
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1998) algorithm, for fast training of SVMs using sequential minimum 

optimization and Fan's algorithm (Fan, P. H. Chen, & C. J. Lin, 2005), that 

uses second order information to achieve fast convergence. 

SVM can also be extended to multi-class classification by reducing it to 

multiple binary classification problems. The outputs from the individual 

classifiers are ensembled to predict the final class. Most common ways to do 

this is: a) one of the labels to the rest (one-versus-all) or b) between every 

pair of classes (one-versus-one). In the first case, there are N binary 

classifications. The label that has the highest output function is assigned. In 

the second case, there are N(N-1)/2 binary classifications. The label that is 

assigned in the most classifications is finally assigned. 

2.6 K-Means Clustering 

Most of the work in concept extraction that uses distributional features use 

clustering techniques such as Brown’s clusters and Clark’s clusters (Clark, 

2000). A drawback with such methods is that it is not possible to assign 

cluster to a newly encountered word. Clustering is a kind of unsupervised 

learning that assigns class labels to data without using prior training 

information. Algorithms that start with the individual elements and arrive 

finally at clusters are called agglomerative algorithms, while those that start 

with all the elements together and eventually arrive at the clusters are called 

divisive algorithms. They can also be classified as partitional (those that 

partition the elements) and hierarchical (those that construct the hierarchy of 

the elements). 

K-means, an agglomerative partitional algorithm, groups elements into pre-

specified number of clusters. The goal is achieved by minimizing the 
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aggregate distances of the elements from the centroid. The K means to be 

found are randomly assigned first and the clusters are then found by 

assigning elements to the closest centroid. The new centroids are found from 

the clusters and the process is repeated till the same centroids are found in 

successive iterations. This algorithm might get stuck at local optima, a known 

limitation with all algorithms which have multiple local optima. This problem is 

overcome by running multiple iterations and choosing the most optimal 

solution. This algorithm will be used to create distributionally similar words. 



 36 

SECTION B: NAMED ENTITY RECOGNITION WITH LIMITED 

TRAINING DATA 

This section shows how a computer can learn semantics of words to extract 

concepts such as proteins, drugs and diseases. This is achieved by giving it 

some context obtained by computing similarity between the words using their 

distribution in the respective wordspaces. These measures of relatedness 

have been shown to correlate well with human estimates of relatedness; 

however, little is known about how best to apply them to support structured 

prediction tasks (such as parsing), or sequence labeling tasks such as named 

entity recognition (Turian et al., 2010).   

Chapter 3 presents a new method that utilizes distributional semantics to 

transcend limitations imposed by small training corpora for concept 

extraction. It also demonstrates how to effectively derive semantics for a 

particular domain such as clinincal narratives. Different distributional 

semantic models are considered and optimal parameter values are calculated. 

Chapter 4 demonstrates the adaptability of this approach of imparting 

semantic knowledge by using it to improve extraction of gene mentions from 

the literature. 

Chapter 5 shows how distributional semantics can be used to solve multi-label 

classification by automatically extracting around 50 nested classes from 

GENIA, a biomedical NER corpus. 
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3. DISTRIBUTIONAL SEMANTICS AIDS CLINICAL CONCEPT 

EXTRACTION  

Extracting concepts (such as drugs and diagnoses) from clinical narratives 

constitutes a basic enabling technology that is a prerequisite to unlocking the 

knowledge within to support more advanced reasoning applications. For 

example, diagnosis explanation, disease progression modeling and intelligent 

analysis of the effectiveness of treatment. The recent release of annotated 

training sets of de-identified clinical notes has contributed to the development 

and refinement of methods to achieve this end. However, as the annotation 

process is human-intensive, these training data are limited in their breadth 

and scope presenting a limitation for systems using supervised machine 

learning. A novel natural language processing approach is proposed to 

transcend this limitation by automatically extracting concepts from clinical 

notes using a combination of supervised machine learning and an 

unsupervised approach based on distributional statistics. 

A sliding-window based variant of the Random Indexing approach is selected 

as a means to estimate the relatedness between terms in the corpus. This 

model is used to identify additional features for machine learning. A 

sequential discriminative classifier is implemented using Conditional Random 

Fields algorithm for extracting the medical problems, treatments and tests 

from clinical notes. The additional features added to each term are the N 

terms that are most similar to it, as measured using the distributional 

approach. 

The evaluation is performed using the i2b2/VA concept extraction corpus. It is 

observed that incorporating features based on the distributional statistics of 
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terms across a large unlabeled corpus significantly aids concept extraction. 

The micro-averaged f-measure for exact match increased from 80.31% to 

81.75% and the micro-averaged inexact f-measure increased from 89.73% to 

90.94%. The significance of the improvement is 100.0% as measured using 

bootstrap resampling technique. 

Distributional semantic features significantly improve the performance of 

concept extraction. 

3.1 Methods 

Harris’ sublanguage theory (Z. Harris, 1991) suggests that the constraints of 

language in a specialized domain include domain semantics in addition to 

purely grammatical constraints, suggesting the applicability of a semantic 

grammar in which domain semantics are an integral component of syntax. In 

highly constrained genres of texts like biomedical literature and clinical notes 

(C. Friedman, Kra, & Rzhetsky, 2002), there are inherent inequalities of the 

likelihood of certain patterns of words occurring. As a corollary, high 

probability combinations convey implicit information. For example, sentences 

such as Patient X received drug Y are more common than sentences such as 

Doctor X received drug Y. Thus, a sentence pattern A received B could be 

decoded to assume that A might refer to patient and B might refer to 

treatment. Thus, the concept extraction task can be seen as finding a class of 

terms that could conceivably replace the token to be labeled without 

disturbing the surrounding syntactic structure. Consequently, substituting an 

antibiotic for a protein would still disturb syntax even though they are both 

nouns. Hence, the concept extraction task relates to the finding of terms that 

are paradigmatically related.  
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For concept extraction using supervised machine learning methods, the main 

challenges are the scarcity of annotated examples, the level of expertise 

required to generate these examples, and the fact that no such large corpus 

of clinical text can practically be shared without raising privacy concerns. The 

proposed hypotheses was that information derived from the distribution of 

terms in a larger, unannotated corpus can be used to compensate for the 

limited vocabulary present in a small annotated corpus and allow more 

accurate concept recognition. To evaluate this hypothesis, distributional 

semantic features are added to commonly used features to extract medical 

problems and treatments from clinical narratives. Improvement in accuracy 

after adding distributional semantic features (using i2b2/VA NLP shared task 

corpus as gold standard) would validate the utility of these additional 

features. 

Building a sliding-window based model involves:  

• Constructing elemental term vectors of pre-determined dimension N 

and seed S, where N-2*S dimensions are zeroes, S dimensions are 

+1s, and S dimensions are -1s. To ensure that these elemental vectors 

have a high probability of being mutually orthogonal, or close-to-

orthogonal, S<<N. 

• Computing the semantic vector representation of the term based on 

the terms surrounding each occurrence of the term.  

This process is performed using the open source Semantic Vectors package 

(Widdows & T. Cohen, 2010), which supports the generation of basic, 
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direction-aware and permutation-based sliding window models using Random 

Indexing for dimension reduction. 

Figure 3.1: Overall architecture of the clinical concept extraction 

system 

 

The design of the system to identify treatment, test and medical problem 

entities includes components that are needed only offline (dark gray), both 

offline and online (light gray) and only online (white). 

Features from an existing system BANNER (Leaman & G. Gonzalez, 2008) are 

adapted to create the baseline. BANNER uses the Conditional Random Fields 

algorithm implemented in MALLET(AK McCallum, 2002). Any concept 

extraction system using similar algorithm can easily adapt the proposed set-

up. Our system will be trained on i2b2/VA NLP training corpus using a) 

sentence-level features; b) lexicon from UMLS, DrugBank, Drugs@FDA and 
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MedDRA; and c) distributional semantic features based on the large 

unannotated corpus. Creating the distributional semantic features involves 

tuning the parameters and finding the optimal model among different 

distributional semantic models. The best model would be used to create a 

kernel for adding distributional semantic features. After the systems are 

trained and tuned offline and a CRF machine learning model is created, 

processing a sentence from a clinical record involves the same set of NLP 

features used for training.  

3.1.1 Choice of unlabeled data 

All the documents (349 annotated clinical notes and 827 unannotated clinical 

notes) provided as part of the i2b2/VA training set and all the MEDLINE 

abstracts that are indexed as pertaining to “clinical trials” are used as 

unlabeled data. There are 447k MEDLINE abstracts indexed as pertaining to 

“clinical trials”. 

3.1.2 Choice of the paradigmatic model 

An inverted index of the chosen unlabeled data and Semantic Vectors  

software (Widdows & T. Cohen, 2010) is used to find the vector model of each 

term in the abstracts that appears at least twice. The different paradigmatic 

model algorithms considered are the positional model, the directional model 

and the positional+basic model. The directional model approximates the HAL 

model by permuting the terms occurring before the target term in one specific 

way and the terms occurring after the target term in another specific way. 

The positional+basic model is the combination of the positional and basic 

sliding window models where the semantic vector of a term is the vector sum 

of the corresponding semantic vectors in the positional model and the basic 

model. 
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The parameters of the vector model that could be customized are: a) 

dimensions of the final vector space, b) seed length, c) half-window size of 

the models. The following methodology was used for deciding the optimal 

parameter values: 

• Experiment with dimensions of sizes 100, 500, 1000, 1500 and 2000; 

and chose the optimal number of dimensions.  

• Experiment with seeds of sizes 5, 10, 15, and 20; and chose the 

optimal seed length. 

• Experiment with half-windows of sizes 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 

separately for each paradigmatic model algorithm; and chose the 

optimal half-window size.  

For efficient testing, the below automatic word categorization test before 

annotating all the clinical concepts was first performed.  

3.1.3 Automatic word categorization test 

The automatic word categorization test is designed to test the ability to 

correctly categorize terms.  To model paradigmatic relationships, the model 

that performed the best in the experiments in the automatic word 

categorization test is chosen. This test is similar to part-of-speech test 

performed by (Sahlgren, 2006) to study the differences between different 

wordspace models. Sahlgren studied the extent to which different 

distributional models retrieved nearest neighboring terms that shared a part 

of speech with a cue term. He used two settings which he referred to as strict 

and lax. Both of them are variants of k-nearest neighbor algorithm – the first 
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one has k=1 and the second one has k=10 – where all the neighbors are 

treated equally.  

All the UMLS single word phrases are divided into 4 categories: problem, 

treatment, test and none. A term is problem if its UMLS semantic type is 

pathologic functions, disease or syndrome, mental or behavioral dysfunction, 

cell or molecular dysfunction, congenital abnormality, acquired abnormality, 

injury or poisoning, anatomic abnormality, neoplastic process, 

virus/bacterium, sign or symptom. A term is treatment if its UMLS semantic 

type is therapeutic or preventive procedure, medical device, steroid, 

pharmacologic substance, biomedical or dental material, antibiotic, clinical 

drug, or drug delivery device. A term is test if its semantic type is laboratory 

procedure or diagnostic procedure. These definitions are taken from the 2010 

i2b2/va concept extraction corpus annotation guidelines:  

https://www.i2b2.org/NLP/Relations/assets/Concept%20Annotation%20Guide

line.pdf 

This test is performed for different paradigmatic models proposed in the 

previous section. For each model, 10 nearest neighbors are found for each 

term. The term itself is removed from the nearest neighbor list. Each of the 4 

categories had a weight equal to the sum of the cosines of the neighbors that 

belong to the category. The category with the highest score is assigned to the 

term. This automatically determined word category is compared to the actual 

word category. For example, thoracotomy has 6 treatment neighbors (.79 + 

.86 + .82 + .82 + .79 + .81 = 4.89) and 3 test neighbors (.82 + .80 + 

.82=2.44). Hence, thoracotomy is correctly classified as treatment. Thus, it is 

known whether the assignment is a true positive, false positive, false 
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negative, or true negative with respect to each category. In each case, the 

individual recall and precision as well as micro-averaged recall, precision, F-

score and accuracy was recorded. This automatic word categorization test is 

also a variant of k-nearest neighbor algorithm with k=9. 

3.1.4 Adding distributional semantic features to machine learning 

system 

The kernel K over the terms in the i2b2/VA corpus is then constructed, where  

���1, �2� 	
 !
"
!#

cosine of the semantic vector representations of w1 and w2,
if both terms exist in the i2b2

VA corpus
zero,if either of the terms do not exist in the corpus

: 

The kernel is used to automatically build a thesaurus of terms. Each entry in 

the thesaurus consists of a token from the i2b2/VA NLP corpus and N most 

similar terms (also from the i2b2/VA corpus) based on the distributional 

semantics. Computing the kernel (K) scales linear in the number of 

dimensions of each vector and quadratic in the number of terms in the 

i2b2/VA corpus. Computing the thesaurus (with a pre-determined number of 

similar terms from the kernel) scales linear to the number of terms. On the 

whole, it scales linearly with respect to the number of dimensions of each 

vector and quadratic in the number of term vectors. Using the pre-computed 

kernel instead of directly computing thesaurus online saves computing the 

cosines (O(N) time complexity) during the construction of present thesaurus 

and more importantly for multiple values of parameter N, the number of 

similar terms.  

The 1st order Conditional Random Fields (CRF) algorithm, as implemented by 

MALLET, is used. The time complexity of CRF algorithm is O(L2*N*M*F*I), 
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where L is the number of labels, N is the number sequences (sentences), M is 

the average length of the sequences, and F is the average number of the 

features, and I the number of iterations. It is observed (Leaman & G. 

Gonzalez, 2008) that the accuracy is almost the same for all label types such 

as – IO, IOB and IOBEW, where I stands for labeling a token to be Inside, O 

for Outside, B for Beginning, E for End and W for Within. The IO notation is 

chosen for labeling to minimize time complexity. Thus, 4 labels - Iproblem, 

Itest, Itreatment and O are used since 3 concepts are annotated. In addition 

to all the features used in a state of the art Biomedical NER system known as 

BANNER (Leaman & G. Gonzalez, 2008), three additional feature types based 

on: 1) thesaurus, 2) vector representation of the token, and 3) dictionaries 

are added (see Table 3.1). 

Table 3.1: List of features used 

Feature 

name 

Type Description 

Dictionary Semantic UMLS, DrugBank, Drugs@FDA and MedDRA 

Distributional Semantic Distributional thesaurus and Dimensions of 

terms (word embeddings) 

Section Pragmatic Name of the section in which the sentence 

appears 

Part of 

speech 

Syntactic Part of speech of the token in the sentence 

Others Lexical Lower case token, Lemma, Prefixes, 

Suffixes, n-grams, Matching patterns such 

as beginning with a capital, etc. 
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Figure 3.2: Number of dimensions vs. Performance 

 

The performance initially increases and remains almost constant after 1000 

dimensions 

Figure 3.3: Number of seeds vs. Performance 

 

The performance does not change with the number of seeds used in the 

model 
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Figure 3.4: Window radius in Positional model vs. Performance 

 

The performance is the highest at the window  radius of 2 corrobarating with 

results from similar experiments by Sahlgren 
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Figure 3.5: Window radius in directional model vs. Performance 

 

The performance is the highest at the window radius of 6. 

Figure 3.6: Window radius in Positional+Basic model vs. Performance 

 

The performance is the highest at the window radius of 4. 
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Figure 3.7: Comparison of different models 

 

Positional+Basic and Directional model perform slightly better than the 

Positional model  

3.2 Results 

3.2.1 Automatic word categorization results 

Figures 3.2 – 3.7 show how the experiment is conducted. Both F-score 

(2*TP/(2*TP+FP+FN)) and accuracy ((TP+TN)/(TP+TN+FP+FN)) is 

measured while fine-tuning  each parameter. The advantage of using F-score 

is that in the NER (concept extraction) task, true positives are more important 

than true negatives. The advantage of using accuracy is that it is invariant to 

label switching which means the value does not change when a label is 

changed from positive to negative. Thus, the goal was to optimize both F-

score and accuracy. There were situations when one of the two was almost 

constant and the other varied. In such situations, the setting where the 

latter’s value is higher is chosen. The positional vector model is used as 

baseline to decide the optimal number of dimensions and seed length which 

are the parameters for the Random Indexing algorithm. These parameters are 
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general to the application of Random Indexing for the clinical text. Once these 

parameters were fine-tuned, they were used for benchmarking different 

sliding window algorithms amongst each other.  

The accuracy and F-score increased rapidly in the beginning as the number of 

dimensions increased. However, the accuracy and F-score beyond 1000 

dimensions were almost constant. Since time complexity is linearly 

proportionate to the number of dimensions, 2000 dimensions were used. The 

accuracy and F-score were constant as the number of seeds was increased. 

Therefore, 5 seeds were used.  

The window radius is then changed for the three models – the positional 

permutation vector model, the directional permutation vector model, and the 

positional+basic model. As expected, the performance varies differently in 

each case with increase in the window radius. The positional model had the 

highest accuracy and F-score at a window radius of 2. This corroborates 

similar experiments by Sahlgren (Sahlgren, 2006; Sahlgren et al., 2008). For 

directional model, the performance increased till the window radius was 

increased to 6 and it decreased after that. The positional+basic model 

performed better than the positional model and the best accuracy and F-score 

was achieved at the window radius of 4. 

3.2.2 Concept extraction results 

Two of the parameters involved in use of the most optimum model found in 

the previous section are: a) the number of most similar words to consider, 

and b) the minimum similarity between the similar word and the original 

token. The optimal number of most similar words to use was found to be 20. 

With a threshold on the cosine similarity between the similar words and the 
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original token, the performance was slightly decreasing. Consequently, the 

threshold was set to 0, i.e., all the 20 nearest words were used irrespective of 

their cosine value. Table 3.2 compares the results with using different models 

with these settings.  

Table 3.2: Comparison of concept extraction performance with 

different models 

# Model Rexact Pexact Fexact Rinexact Pinexact Finexact 

1 Non Distributional 

semantic features 

78.10 82.65 80.31 88.66 90.84 89.74 

2 1 + Distributional 

Semantic features 

using i2b2 corpus 

78.71 83.20 80.89 89.02 91.27 90.13 

3 2 + Positional model 

based features using 

Medline Clinical Trials 

79.85 83.74 81.75 89.84 91.61 90.72 

4 2 + Directional model 

based features using 

Medline Clinical Trials 

79.92 83.50 81.67 90.26 91.63 90.94 

5 2 + Positional+basic 

model based features 

using Medline Clinical 

Trials 

79.81 83.55 81.64 90.05 91.63 90.83 

The highest scores are in bold and the lowest scores are in italics. Rexact is the 

micro-averaged recall for exact match. Pexact is the micro-averaged precision 

for exact match. Fexact is the micro-averaged F-score for exact match. Rinexact 

is the micro-averaged recall for inexact match. Pinexact is the micro-averaged 

precision for inexact match. Finexact is the micro-averaged F-score for inexact 

match. 
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The results for the system trained on the competition training corpus and 

tested on the testing corpus, but without any distributional semantic features 

and that of the best system with distributional semantic features (direction-

based, 2000 dimensions, 5 seeds and window radius = 6) are in the below 

Table 3.3. 

Table 3.3: The accuracy of baseline (subscript 1) vs. system 
with distributional semantic features (subscript 2)  

Type R1 R2 P1 P2 F1 F2 

Concept exact span 80.4 82.0 85.1 85.6 82.7 83.7 

Class exact span 78.1 79.9 82.7 83.5 80.3 81.7 

Problem exact span 80.0 81.9 83.6 84.7 81.8 83.2 

Treatment exact span 80.2 81.6 85.8 86.1 82.9 83.8 

Test exact span 81.3 82.4 86.6 86.5 83.4 84.4 

Problem matching class  78.6 80.5 81.6 83.0 80.0 81.7 

Treatment matching class 77.0 79.1 82.9 83.4 79.8 81.2 

Test matching class 78.6 80.0 84.1 84.4 81.3 82.1 

Concept inexact span 89.0 90.5 94.2 94.6 91.6 92.5 

Class inexact span 88.9 90.3 90.8 91.6 89.7 90.9 

Problem inexact span 89.7 91.5 93.8 94.7 91.7 93.1 

Treatment inexact span 88.3 89.6 94.4 94.3 91.2 91.9 

Test inexact span 88.8 90.1 94.7 94.8 91.6 92.4 

Problem inexact span matching class 87.6 89.5 90.9 92.2 89.2 90.8 

Treatment inexact span matching class 84.2 86.2 90.6 91.0 87.3 88.5 

Test inexact span matching class 85.1 86.7 91.0 91.5 87.9 89.1 

R=Recall, P=Precision, F=F-score. 

It is encouraging to see that addition of distributional semantic features 

increases both the recall and precision in all cases. Bootstrap Resampling 

(Noreen, 1989) with 1000 repetitions on the test corpus showed the 

improvement after adding the distributional semantic features is highly 
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significant (confidence=100%). However, the improvement because of adding 

local distributional semantic based features after adding distributional 

semantic features from clinical trials was insignificant (confidence=56.6%). 

Hence, it might also be concluded that addition of distributional semantic 

features using a large unannotated corpus is sufficient and need not be 

supplemented by distributional semantic features from smaller corpora. It 

was also found that using the dimensions of vector representations as tokens 

decreases the accuracy of the system. This could be due to dimensionality 

curse which exponentially increases the size of the training set needed based 

on the number of features used. 

3.3 Discussion 

3.3.1 Comparison with other systems 

The results section showed that the system significantly improves with 

respect to the accuracy of extracting concepts after adding distributional 

semantic features. However, the practical significance of the improvement is 

best determined by how much it contributes to improving state of the art. 

Thus, the performance of the system was compared against the top systems 

in the i2b2/VA concept extraction task 2010 in which 22 international teams 

have submitted multiple runs as shown in Figure 3.8. Our baseline system 

(without distributional semantic features) ranked 7th both in F-scores 

measured using exact match and inexact match. It is to be noted that best 

system uses the relatively novel technique of using semi-HMM trained 

through Collin’s structured perceptron. Systems with ranks 2-5 use 

proprietary (non-public) components. System 6 uses Conditional Random 

Fields algorithm similar to us. After adding distributional semantic features, 

the F-score as measured by inexact match is better than systems 3-6. The F-



 

score as measured by exact match is almost the same as systems 4

better than system 6. 

features to a supervised machine learning system significantly improves the 

state of art. 

Figure 3.8: Comparison of top 
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asured by exact match is almost the same as systems 4

better than system 6. This suggests that adding distributional semantic 

features to a supervised machine learning system significantly improves the 

: Comparison of top clinical concept extraction systems

NRC = National Research Council Canada. deBruijn et al.;  VU = Vanderbilt 

Univ. Xu et al.; Erasmus = Erasmus Univ. Kors et al.; SCAI = SCAI. Hofmann 

et al.; Sydney = Univ. Sydney. Patrick et al.; George = Georgetown Univ. Liu 

ASUbefore = local baseline; ASUafter = local baseline after 

adding distributional semantic features. 
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best system submission for i2b2/VA concept extraction task) and Naïve Bayes 

(used in cTakes system) to achieve incremental improvements. Our method is 

adaptable to other domains within Biomedical Informatics such as biomedical 

literature and health news and also to other domains. Another important 

feature of the method is that it allows secondary use of clinical notes. 

3.3.2 Analysis of the output 

The output of the baseline is compared with the output of the final version 

after adding distributional semantic features. The final version has more true 

positives [2202 vs. 1382] (hence, less false negatives) and less false positives 

[2535 vs. 2803]. All these contributed to an increase in both precision and 

recall. This phenomenon is found for all the concepts aggregately and also for 

each concept separately. The annotations that are different in both versions 

are analyzed. There are, of course, more new terms in the true positives [360 

vs. 283] and true negatives [496 vs. 439] newly found in the final version. 

This corroborates the hypothesis that the performance increases because of 

being able to give a semantic representation for the newly found terms, and 

also because of a more accurate semantic representation of the existing 

terms. It was also found that approximately half of extra true positives found 

[1068 out of 2202] contained terms that were predicted to belong to the class 

based on the weighted K-NN algorithm (refer to “Automatic word 

categorization” subsection in the methods section). This correlation is 

interesting, especially because the distributional semantic features are only a 

fraction of all the features used. 

3.3.3 Limitations 

The unlabeled data currently used are clinical trials from Medline. The 

improvement might have been higher if one used clinical notes from hospital 
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records since that would also capture semantics of non standard words used 

in the clinical notes. Future work should include comparison of the features 

with other models such as Collobert and Weston’s word embeddings 

(Collobert & Weston, 2008), Brown’s word clusters (Brown, Desouza, Mercer, 

Pietra, & Lai, 1992) and Clark’s word clusters (Clark, 2000).  

3.4 Conclusion 

In sum, the results indicate that distributional semantic features aid clinical 

concept extraction. The next step would be to use clinical records as 

unlabeled data to expect more increase in accuracy, since there would be 

more words of the same type as problem, treatment and test, and similar 

context around different words.  
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4. DOMAIN KNOWLEDGE FOR CONCEPT EXTRACTION WITHOUT 

DICTIONARIES 

One of the most time-consuming tasks of an NLP researcher who is trying to 

adapt their concept extraction system for a different domain is to create 

(compile if such a resource is available) and curate the lexicons. The other 

time consuming tasks are: a) annotating a corpus and b) feature selection. 

Annotation of a corpus is necessary for any supervised machine learning 

system and active learning (B. Settles, 2004) might decrease the amount of 

corpus that needs to be annotated. Although feature selection is helpful in 

decreasing the number of useful features, it was not found to be helpful in 

increasing accuracy (Klinger & Friedrich, 2009) with state of the art 

algorithms such as Conditional Random Fields algorithm. 

Thus, lexicons are primary resources for domain adaptation in addition to an 

annotated corpus. It is found that adding such domain specific information 

improves the performance of named entity recognition, although in a few 

systems an increase in performance was not found (Burr Settles, 2005; 

Guodong Zhou, Dan Shen, Jie Zhang, Jian Su, & S. Tan, 2005). The focus of 

this chapter is to explore the possibility of creating lexical resources 

automatically for the purpose of incorporating domain knowledge using 

distributional information inferred from unlabeled corpora. To this end three 

types of lexical resources are considered: a) lexicons for the concepts to be 

tagged, b) clusters of distributionally similar words, and c) thesaurus of 

distributionally similar words. These resources would be constructed using 

high dimensional vector space created from large text from that domain, such 

as Medline abstracts for genes and unlabeled clinical notes from hospitals for 

clinical concepts. 
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4.1 Methods 

The architecture of the system is in Figure 4.1. This design of the concept 

extraction system is to identify treatment, test and medical problem entities 

in clinical notes and identify proteins in biomedical literature. Our system is 

trained using: a) sentence-level features using training corpus, b) lexicon 

created, compiled and curated by humans for each domain, and c) 

distributional semantic features based on a large unannotated corpus of 

domain-relevant text. After the systems are trained, a CRF-based machine 

learning model is created to process input sentences using the same set of 

NLP features. The output will be the sentence with the concepts tagged. 

4.1.1 Large unlabeled corpus 

For clinical concept extraction, 447K Medline abstracts that are indexed as 

Figure 4.1: Overall architecture of the system 
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pertaining to clinical trials are used as the unlabeled corpus. For protein 

concept extraction, all the Medline abstracts of the 2008 baseline8 are used as 

the large unlabeled corpus. 

4.1.2 Directional model 

Directional model takes into account the direction in which a word occurs with 

respect to another by having two columns for each word. One column 

represents the number of occurrences to the left and the other column 

represents the number of occurrences to the right. The semantic vector for a 

term is obtained by adding the contextual vectors obtained at each 

occurrence of the term. The process of Random Indexing and directional 

model takes around a minute for thousands of documents and a few hours for 

the entire PubMed. 

4.1.3 SVM-based features 

SMO algorithm (Platt, 1998) implemented in WEKA (Witten, Frank, & Hall, 

2011) is used to construct the support vectors. The respective training corpus 

is used to obtain the terms and their labels. For example, in clinical concept 

extraction, each term can either belong to one or more of the classes: 

problem, treatment, test or neither of these. The objective in creating the 

categories for different terms is to obtain samples of regions in the 

distributional hyper-space that contain terms from the desired (problem, 

treatment, test and neither) semantic types so that the boundaries can be 

drawn using SVM. Each term is labeled as Iproblem, Itest, Itreatment or 

Inone. To remove ambiguity, terms that belong to more than one category 

are neglected. Each term has a representation in the distributional hyper-

                                           
8 
http://www.nlm.nih.gov/archive//20090811/bsd/licensee/2008_stats/2008_L
O.html 
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space of 2000 dimensions. The parameter of each dimension is a feature (or 

attribute) for the SVM. Six binary SVM classifiers are generated - one for each 

pair of the category that can be used to predict the class of any term. During 

the execution of the training and testing phase of the machine learning 

algorithm, the class predicted by the SVM classifiers for each term is used as 

a feature for that term. 

The features for protein tagging are constructed similarly. 

4.1.4 Adding clustering-based features 

K-means clustering algorithm implemented in WEKA is used to group the 

terms in the training corpus into 200 clusters using distributional semantic 

vectors. The cluster identifier assigned to the target term is used as a feature 

for the Conditional Random Fields based system for concept extraction. This 

feature is similar to the Clark’s automatically created clusters (Clark, 2000) 

used by (J. R. Finkel & C. D. Manning, 2009b), where the same number of 

clusters are used. 

4.1.5 N-Nearest neighbors-based features 

Cosine similarity of vectors is used to find the 20-nearest terms for each 

term. These nearest terms are used as features for the respective target 

term. 

4.1.6 Lexicons created by humans 

For the clinical concept extraction, UMLS, DrugBank, Drugs@FDA and 

MedDRA are used to create dictionaries for medical problems, treatments and 

tests. The guidelines of the i2b2/VA NLP concept extraction task 

(https://www.i2b2.org/NLP/Relations/assets/Concept%20Annotation%20Guid

eline.pdf) are followed to identify the corresponding UMLS semantic types for 
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each of the 3 concepts. The other three resources are used to add more 

terms to the existing lexicon. In an extensive evaluation on the nature of the 

resources by (Gurulingappa, Klinger, Hofmann-Apitius, & Fluck, 2010), UMLS 

and MedDRA were found to be the best resources for extracting information 

about medical problems among several other resources. 

For the protein tagging, the 344K word lexicon compiled and curated for 

BANNER (Leaman & G. Gonzalez, 2008), one of the best protein tagging 

system (Kabiljo, Clegg, & Shepherd, 2009) was used. This lexicon can be 

downloaded from 

https://banner.svn.sourceforge.net/svnroot/banner/trunk/dict/single.txt. This 

lexicon was constructed using the BioCreative II gene normalization training 

set (Morgan et al., 2008). 

4.1.7 Sentence level features 

Several local orthographic and linguistic features such as lower-case token, 

lemma, prefixes, suffixes, n-grams, matching patterns such as beginning with 

a capital and part of speech were also used. 

4.1.8 Training corpus 

For clinical concept extraction, the fourth i2b2/VA NLP shared task corpus 

(https://www.i2b2.org/NLP/Relations) for extracting concepts of the classes - 

problems, treatments and tests is used. The corpus contains 349 clinical 

notes as training data and 477 clinical notes as testing data.  

For protein tagging, the BioCreative II Gene Mention task (Wilbur, L. Smith, & 

Tanabe, 2007) corpus 

(http://biocreative.sourceforge.net/biocreative_2_gm.html) is used. The 

corpus contains 15000 training set sentences and 5000 testing set sentences. 
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4.1.9 Conditional Random Fields algorithm 

BANNER that internally uses Conditional Random Fields (CRF) algorithm as 

implemented by MALLET (AK McCallum, 2002) is being used. The time 

complexity of CRF algorithm is O(L2*N*M*F*I), where L is the number of 

labels, N is the number sequences (sentences), M is the average length of the 

sequences, F is the average number of the features and I the number of 

iterations. The number of iterations is much higher during the training than 

during testing. 4 labels were used for the clinical concept extraction - 

Iproblem, Itest, Itreatment and O, respectively for inside a problem, test, 

treatment and none. For protein tagging, the default IOB notation (I=inside, 

O=outside, B=beginning) was used. 

4.2 Results 

Table 4.1: Clinical concept extraction – comparison of different 

features 

Setting 

Exact 

F 

Inexact 

F 

Exact 

Increase 

Inexact 

Increase 

ASU_Basic 77.9 88.2     

ASU_noDict 79.4 89.2 1.5 1 

ASU_Dict 80.3 89.7 2.4 1.5 

ASU_noDict+DistSem 81.4 90.8 3.5 2.6 

ASU_Dict+DistSem 81.9 91 4 2.8 
 

Table 4.1 shows the F-score for exact match increased over the baseline 

(ASU_Basic - which uses only the words themselves as features) after adding 

different local features (ASU_noDict) by 1.5%. After dictionary features are 

added (ASU_Dict), it increased by 2.4%. On the other hand, if only 

distributional semantic features were added without using dictionary 

(ASU_noDict+DistSem), it would have increased by 3.5%. It increases only 

by 0.5% more, if the dictionary features were also used along with 
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distributional semantic features (ASU_Dict+DistSem). The F-score for inexact 

match follows a similar pattern. 

Table 4.2: Clinical concept extraction – comparison of SVM-based 

features with N-Nearest Neighbors-based features 

Setting 

Exact 

F 

Inexact 

F 

Exact 

Increase 

Inexact 

Increase 

ASU_Dict 80.3 89.7     

ASU_Dict+SVM 80.6 90 0.3 0.3 

ASU_Dict+NN 81.7 90.9 1.4 1.2 

ASU_Dict+NN+SVM 81.9 91 1.6 1.3 
 

The F-score for exact match increased by 0.3% after adding SVM-based 

features, whereas it increased by 1.4% after adding N-nearest neighbor-

based features. The F-score slightly increased further with the use of both 

features. The F-score for inexact match follows a similar pattern. 

Table 4.3: Clinical concept extraction – Comparison of Clustering-

based features with other distributional semantic features 

Setting 

Exact 

F 

Inexact 

F 

Exact 

Increase 

Inexact 

Increase 

ASU_Dict 80.3 89.7     

ASU_Dict+CL 80.8 90.1 0.5 0.4 

ASU_Dict+NN+SVM 81.9 91 1.6 1.3 

ASU_Dict+NN+SVM+CL 81.7 90.9 1.4 1.2 
The F-score for exact match increased by 0.5% after adding clustering-based 

features, whereas it increased by 1.6% after adding N-nearest neighbor-

based and SVM-based features. The F-score slightly decreased with the use of 

both of the features. The F-score for inexact match follows a similar pattern. 

The evaluations for clinical concept extraction reveal that the distributional 

semantic features are better than traditional dictionary features. The accuracy 

further increases when both manually created dictionaries and distributional 

semantic feature types are used.  This shows distributional semantic features 
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not only supplement manually developed dictionaries, but also complement 

them. Further, the N-nearest neighbor features are better than SVM-based 

features and Clustering-based features. 

Table 4.4: Protein tagging - Impact of distributional semantic 

features on BANNER 
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1 rank 1 system 88.48 85.97 87.21 6-11 
2 rank 2 system 89.30 84.49 86.83 8-11 
3 BANNER_Dict + DistSem 88.25 85.12 86.66 8-11 
4 rank 3 system 84.93 88.28 86.57 8-11 
5 BANNER_noDict+DistSem 87.95 85.06 86.48 10-11 
6 rank 4 system 87.27 85.41 86.33 10-11 
7 rank 5 system 85.77 86.80 86.28 10-11 
8 rank 6 system 82.71 89.32 85.89 10-11 
9 BANNER_Dict 86.41 84.55 85.47 - 
10 rank 7 system 86.97 82.55 84.70 - 
11 BANNER_noDict 85.63 83.10 84.35 - 

 

In Table 4.4, the performance of BANNER with distributional semantic 

features (3) and without distributional semantic features (9) is compared with 

the top ranking systems in the most recent gene mention task at the 

BioCreative shared tasks. Each system has an F-score that has a statistically 

significant comparison (p<0.05) with the teams indicated in the Significance 

column. The significance is estimated using Table 1 in Biocreative II gene 

mention task report (Wilbur et al., 2007). The performance of BANNER with 

distributional semantic features and no dictionary features is better than 

BANNER with dictionary features and no distributional semantic features. This 
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demonstrates again that distributional semantic features (that are generated 

automatically) are more useful than dictionary features (that are usually 

compiled and curated manually). 

The improvement after adding the distributional semantic features to BANNER 

is significant. The absolute ranking of BANNER with respect to other systems 

in the competition improves from 8 to 3. However, the rank 1 system does 

not have significantly better F-score than BANNER with distributional semantic 

features. Distributional semantic features are again more useful than 

dictionary features. The advantage of the features is that they are 

independent of the machine learning system used and can be used to further 

improve the performance of forthcoming algorithms. For example, the 

variants of CRF algorithm proposed in (C.-N. Hsu et al., 2008; Y. Li, H. Lin, & 

Yang, 2009). 

4.3 Conclusion 

Our evaluations using clinical notes and biomedical literature validate that 

distributional semantic features are useful to automatically obtain domain 

information irrespective of the domain and can reduce the need to create, 

compile and curate dictionaries. 
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5. A DISTRIBUTIONAL SEMANTICS APPROACH TO SIMULTANEOUS 

RECOGNITION OF MULTIPLE CLASSES OF NAMED ENTITIES 

Recent advances in distributional semantics allow us to efficiently create 

paradigmatic models that encode word order. Sahlgren et. al.’s permutation-

based variant of the Random Indexing model was used to create a system to 

simultaneously recognize multiple entity classes mentioned in natural 

language, which is validated on the GENIA corpus which has annotations for 

46 biomedical entity classes and supports nested entities. Using distributional 

semantic features only, it achieves an overall micro-averaged F-measure of 

67.3% based on fragment matching with performance ranging from 7.4% for 

“DNA substructure” to 80.7% for “Bioentity”. 

The architecture is a 2-stage pipeline as shown in Figure 5.1. The entire 

corpus is broken into more than 18000 documents, each of which contains a 

unique sentence of the GENIA corpus. A Lucene index is built for this set of 

documents. The term and document vectors are built using the Semantic 

Vectors package.  

The corpus is divided into two halves – one half is the training set and the 

other half is the test set. The Lucene tokenizer breaks the sentence into 

tokens and the SimFind algorithm is used to find the token in the training set 

that is most similar to the target token. The entity class of the similar token is 

then assigned to the target token. SimFind therefore takes into consideration 

the surrounding context when determining the semantic type of each token 

while previous methods considered the semantic type of the token 

independent of the context.  
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Figure 5.1: SimFind's system architecture 

SimFind is a rule-based system that uses distributional semantic information 

to annotate biomedical concepts in text. 

In this research, the estimates of similarity provided by Random Indexing 

were utilized for two purposes. Firstly, as token labels are context-dependent, 

the 100 most similar sentences from the training set that are similar to the 

vector sum of the terms belonging to the target sentence were found. Next, 

the first token from the similar sentences that is same as the target token or 

similar to it was found. Thus, the SimFind algorithm takes into account all the 

other tokens present in the sentence and it also does not assume that the 
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target token is present in the training set. The pseudo code for the algorithm 

is explained in Table 5.1. 

Table 5.1: SimFind Algorithm 

SimFind(targetToken, Line){ 
   List simSentences = 

getSimilarSentences(Line,100); 
   List goldenTokenLabel = 

getTokenLabels(simSentences); 
   STEP1: 
   FOREACH (goldenTokenLabel) 
      IF (goldenTokenLabel has targetToken as 

token) 
        return goldenTokenLabel;   
   STEP2: 
   IF (token IN STOPLIST) 
      return <token,NONE>; 
   terms = 1;  
   STEP3: 
   terms *= 10; 
   

<equivTokens,simIndex>=getSimWords(targetTok
en,terms); 

   FOREACH (equivToken) 
      FOREACH (goldenTokenLabel) 
         IF (goldenTokenLabel has targetToken as 

token) 
           return goldenTokenLabel; 
   IF (simIndex>0.5) 
      goto STEP3; 
   return <token, NONE>; 

} 

The SimFind function is 
the core method which 
retrieves the sentences 
which share the same 
context as the target 
sentence and for each 
token in the target 
sentence. The 
algorithm first checks 
for the earliest 
appearance of the 
target token in the set 
of similar sentences 
arranged in the order of 
similarity. The next 
step should be to 
search for the presence 
of the tokens similar to 
the target tokens. 
However, to minimize 
the total time taken, 
eliminate the tokens 
which appear too 
frequently in common 
English and hence are 
highly unlikely to be 
part of a biomedical 
entity. 

getSimilarSentences(line, numberOfResults){ 
   break line into tokens using Lucene Tokenizer; 
   form query vector by computing the sum of 

tokens; 
   search for similar documents in Random Index 

Vectors; 
   set the number of results to be 

numberOfResults; 
   listOfSimilarSentences are the sentences from 

the training set which correspond to these 
documents; 

   return listOfSimilarSentences; 
} 

The 
getSimilarSentences 
function is responsible 
for finding the specified 
number of sentences 
from the training set 
that are similar to the 
vector sum of the terms 
belonging to a given 
sentence in the test 
set.  

getSimWords(targetToken, count){ 
   form query vector as targetToken; 
   search for similar terms in Random Index 

Vectors; 

The getSimWords 
function is responsible 
for fetching the tokens 
in the corpus similar to 
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   set the number of results to be count; 
   return list of similar terms; 
} 

a given token. 

getTokenLabels(simSentences){ 
    for each token in simSentences 
    find the label from the xml annotation and 

add <token, label> to listOfTokenLabels; 
    return listOfTokenLabels; 
} 

The getTokenLabels 
function is used to get 
the semantic type of 
the tokens in an 
annotated sentence.  

 

The algorithm used the list of 421 stop words created by Fox (Fox, 1989) 

from the Brown corpus to improve the efficiency of SimFind. These stop words 

were selected to be maximally efficient and effective in filtering the 

semantically neutral words. There are several options for the labeling model. 

The simplest is the IO model, which indicates whether the token is inside an 

entity or outside an entity, which is the model employed for this work. 

Another possible model is IOB, where each token is labeled to be either 

beginning of an entity, inside an entity, or outside an entity. There are also 

systems using IOBEW model which in addition label for the end of the entity 

and one-word entity. In the recent evaluation of BANNER (Leaman & G. 

Gonzalez, 2008), an NERC tool, which used a corpus annotated with 

biomedical entities for recognizing gene entities, the difference between the 

performances of these three labeling models was found to be less than 1%. 

Each token can belong to multiple semantic types as GENIA annotates nested 

entities. Since there are 36 entity classes at leaf level (J. D. Kim et al., 2003), 

there are 236 possible types of labels with the IO model. 

NERC systems are typically evaluated using exact matching, which requires 

that both the left and right boundary match exactly. For many applications, 

however, determining the exact boundary is not necessary and it is sufficient 

to determine whether the sentence contains an entity of the specified type or 
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not and its approximate location. Thus, recently more realistic matching 

techniques like core-term matching and fragment matching are becoming 

prominent (Tsai et al., 2006). In core-term matching, the system’s annotated 

named entity must contain a core term of the named entity in the gold 

standard. This requires that every annotation in the corpus should also 

mention which is the core-term. In a corpus like GENIA with around 100,000 

entities, this would require an excessive amount of annotation resources. In 

fragment matching, each token is treated separately. This provides a measure 

of how much fraction of the entity is matched and is thus more realistic than 

conventional exact matching and loose partial matching.  

Since it is shown that 5x2 validation is statistically more powerful than 10x1 

validation (Dietterich, 1998), 5x2 validation was used. Table 5.2 presents the 

precision, recall and F-score measures achieved by the system on all the 

entities annotated in the GENIA corpus except the biologically irrelevant 

entities like Protein N/A, DNA N/A, and those with insufficient data. It also 

provides the count of true positives, false positives, and false negatives in 

each case. For most of the entities, this work is one of the first to use GENIA 

for evaluation. Hence the results also serve as comparison for all NERC 

systems that would be evaluated using GENIA corpus. In addition, for each 

entity the F-score for a hypothetical system that randomly assigns a positive 

or negative in the ratio of the number of actual true or false cases, 

respectively was calculated. If a corpus has t tokens belonging to a particular 

entity class and f tokens not belonging to that entity class, a system which 

randomly assigns tokens to that class in proportion to the known proportion 

of positives and negatives would result in both precision and recall 

approximating  t/(t+f). The F-score of the random system would therefore 



 71 

also be approximately t/(t+f), which serves as a quantitative estimate the 

difficulty of NERC task for a specific entity class. This quantity is labeled 

Random F-score in Table 5.2. 

Table 5.2: SimFind results for the GENIA entities 
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Bio-entity 78.9 82.5 80.7 60479 16131 12868 26.22 

Substance 77.0 79.6 78.3 46587 13796 11976 20.92 

Organic 
compound 

77.0 79.5 78.2 46244 13792 11944 
20.82 

Compound 77.0 79.5 78.2 46382 13822 11980 20.82 

Amino acid 69.4 71.1 70.3 27331 11917 11091 13.69 

Protein 69.2 71.0 70.1 26692 11864 10890 13.37 

Lipid 66.1 67.0 66.5 1243 637 618 0.66 

Virus 65.6 67.3 66.4 1641 862 797 0.86 

Source 61.4 66.2 63.7 10434 6554 5326 5.62 

Atom 62.0 60.2 61.1 150 92 99 0.10 

Nucleotide 57.0 64.4 60.5 114 86 63 0.05 

Other organic 
compound 

62.1 58.9 60.5 2105 1285 1470 
1.28 

Protein molecule 60.9 59.4 60.1 13194 8456 9014 7.87 

Organism 59.6 58.8 59.2 2085 1412 1460 1.23 

Amino acid 
monomer 

61.2 53.1 56.9 256 162 225 
0.15 

Mono Cell 69.4 45.9 55.3 100 44 118 0.10 

Inorganic 57.1 53.3 55.1 97 73 85 0.66 

Natural source 52.0 57.6 54.6 6017 5560 4427 3.76 

Carbohydrate 63.2 45.7 53.1 43 25 51 0.05 

Nucleic acid 51.0 54.2 52.6 9181 8803 7752 6.05 

DNA 48.3 52.6 50.4 7829 8366 7051 5.31 

DNA domain or 
region 

44.4 48.5 46.4 5889 7362 6253 
4.35 

Cell type 42.7 50.7 46.3 3046 4089 2968 2.14 

Cell line 44.0 44.9 44.5 2375 3022 2912 1.87 

Artificial source 43.9 44.3 44.1 2442 3118 3074 1.98 

RNA 47.0 41.2 43.9 707 797 1011 0.61 

Body part 39.6 45.0 42.1 148 226 181 0.10 

Other name 42.6 40.0 41.3 11591 15645 17367 10.31 

Protein domain 
or region 

41.9 38.8 40.2 606 842 958 
0.56 

Protein complex 40.4 40.1 40.2 1509 2226 2256 1.33 
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Protein family or 
group 

34.0 39.8 36.7 3761 7289 5697 
3.36 

Peptide 41.9 32.7 36.7 149 207 307 0.15 

RNA molecule 36.5 36.7 36.6 453 783 777 0.40 

Multi Cell 36.5 34.7 35.6 315 547 593 0.30 

Polynucleotide 44.9 27.0 33.7 62 76 168 0.10 

Protein subunit 31.2 31.1 31.2 379 834 838 0.40 

DNA molecule 24.6 22.6 23.6 174 533 597 0.30 

Tissue 22.8 23.7 23.3 151 510 486 0.20 

RNA family or 
group 

28.3 15.7 20.2 67 170 360 
0.15 

Protein 
substructure 

12.2 16.5 14.0 21 151 106 
0.05 

DNA family or 
group 

12.8 14.5 13.6 270 1844 1588 
0.66 

DNA substructure 6.1 9.3 7.4 11 170 107 0.05 

Overall Score 66.3 68.4 67.3 34233
0 

17418
0 

15790
9 

 

 

The entities in Table 5.2 are arranged in descending order of their F-scores 

based on the system. It is encouraging to see that more than half of the 

entity classes have an F-score greater than 50% just based on distributional 

semantic features and also the huge differences between F-score and Random 

F-score. The system also has a considerable good overall micro-averaged F-

score of 67.3% which is calculated by adding the respective true positives, 

false positives and false negatives of each entity class. It took around 5 

minutes to build the semantic vectors from the documents belonging to the 

GENIA corpus and around 3 hours to produce results for the testing set which 

constitutes more than 9000 sentences. This suggests that this framework is 

scalable and could have significant impact on the precision and recall of a 

more complex system.  

There have been several attempts (Byrne, 2007; J. R. Finkel & C. D. Manning, 

2009b; Gu, 2006; Marquez, Villarejo, Marti, & Taule, 2007; D. Shen, J. 

Zhang, G. Zhou, J. Su, & C. L. Tan, 2003; G. D. Zhou, 2006; G. Zhou, J. 
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Zhang, J. Su, D. Shen, & C. Tan, 2004) using machine learning to find nested 

entities in text with many entities like GENIA corpus. These systems limit 

themselves to work for less than six entities at a time due to computational 

cost. Since this framework also recognizes nested entities, it can be used to 

provide features that can be quickly calculated and can replace the features 

with slower inference. Figure 5.2 attempted to analyze the errors made by 

the system by characterizing the confusion between the entity classes. An 

entity class A is said to have confused entity class B, if and only if either at 

least one of the false positives of B actually belongs to A or at least one of the 

false negatives of B was considered by the system to belong to A. The 

confusion percentage of entity class A relative to entity class B can be defined 

as the percentage of times A confuses B for a given corpus and a given cross-

fold validation. Such knowledge helps us in discovering, refining or validating 

relationship between entity classes and creating more meaningful ontologies. 

Information on which entity classes damage the results of the target entity 

class will be valuable in creating more efficient and powerful rules or features. 

For example: 34% of the mistakes in classifying “RNA domain or region” were 

caused because of “DNA domain or region”; 44% of the mistakes caused in 

classifying “Protein complex” were caused by “Protein molecule”; and 23% of 

the mistakes caused in classifying “Lipids” were caused by “Protein molecule”. 

In a significant number of cases, most of the confusions were caused by the 

immediate siblings as would be expected, but there were many exceptions. 

For example: “RNA domain or region” with “DNA domain or region”; “Lipids” 

with “Protein molecule”; and “DNA domain or region” with “Protein family or 

group”. This reflects both the ambiguity inherent in natural language and also 

the fact that while the GENIA ontology reflects a consideration of the major 
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properties of an entity, the local context of a mention may be more indicative 

of a single property that may be shared with entities which are otherwise 

significantly different. 

Figure 5.2: Depiction of which entities cause confusion for each 

entity 

Each dotted arrow shows which biologically-relevant leaf-level entity class (at 
head of the arrow) causes most confusion for each leaf-level entity class (at 
the tail of the arrow) with the corresponding confusion percentage below its 

name 
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SECTION C: DISCOVERING MORE PATTERNS FOR ASSOCIATION 

EXTRACTION 

A computer should parse the complex syntax of text well enough to extract 

the associations between the concepts in a sentence. One can help it by 

paraphrasing, or simplifying the sentence.  

In this section, a method to use link grammar parser’s dependency output to 

simplify sentences for the purpose of improving extraction of protein-protein 

interaction from literature is first presented. In the second chapter of the 

section, an improvement in the method to use parse trees (or constituency 

trees), a more common way of expressing syntax for sentence simplification 

is described. In addition, a shotgun approach of using simplified sentences for 

relationship extraction is validated.  

In the third chapter of the section, a machine learning based method to 

extract relations between medical problems, tests and treatments in clinical 

notes is presented. The impact of sentence simplification for extracting these 

associations is determined. 
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6. DEPENDENCY-BASED SENTENCE SIMPLIFICATION 

Accurate systems for extracting Protein-Protein Interactions (PPIs) 

automatically from biomedical articles can help accelerate biomedical 

research. Biomedical Informatics re-searchers are collaborating to provide 

meta-services and advance the state-of-art in PPI extraction. One problem 

often neglected by current Natural Language Processing systems is the 

characteristic complexity of the sentences in biomedical literature. This 

chapter reports on the impact that automatic simplification of sentences has 

on the performance of a state of the art PPI extraction system, showing a 

substantial improvement in recall (8%) when the sentence simplification 

method is applied, without significant impact to precision. 

6.1 Introduction 

One of the challenges in parsing biomedical text is that it is significantly more 

complex than articles in typical English text. Different analysis show other 

problematic characteristics, including inconsistent use of nouns and partial 

words (Yuka Tateisi & Jun’ichi Tsujii, 2004), higher perplexity measures 

(Elhadad, 2006), greater lexical density, plus increased number of relative 

clauses and prepositional phrases (Gemoets, Rosemblat, Tse, & Logan, 2004), 

all of which correlate with diminished comprehension and higher text 

difficulty.  These characteristics also lead to performance problems in terms of 

computation time and accuracy for parsers that are trained on common 

English text corpus. 

Three categories of sentences were identified: 1) normal English sentences, 

like in Newswire text, 2) normal biomedical English sentences – those 

sentences which can be parsed without a problem by Link Grammar, and 3) 
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complex biomedical English sentences – those sentences which cannot be 

parsed by Link Grammar. Aside from the known characteristics mentioned 

before, sentences in the third group tended to be longer (18% of them had 

more than 50 words, while only 8% of those in group 2 and 2% of those in 

group 1 did). It has been observed that parsers perform well with sentences 

of reduced length (Chandrasekar & Srinivas, 1997; Siddharthan, 2006).  

6.2 Corpora 

There are currently many publicly available corpora of biomedical texts, the 

most popular among them being BioInfer, GENIA, AIMed, HPRD 50, IEPA, LLL 

and BioCreative I task corpus. Among these corpora, BioInfer includes the 

most comprehensive collection of sentences and careful annotation for links of 

natural parser, in both the Stanford and Link Grammar schemes. Therefore, 

BioInfer corpus, version 1.1.0 (Pyysalo, Salakoski, Aubin, & Nazarenko, 

2007), containing 1100 sentences is chosen for evaluating the effectiveness 

of the simplification method on the performance of syntactic parsers. The 

AIMed corpus contains annotation for 197 abstracts which were identified by 

the Database of Interacting Proteins (DIP) to have PPIs and 29 more which do 

not have PPIs. In each sentence, all the proteins and all the pair-wise 

interactions among them are annotated. AIMed is publicly available at 

ftp://ftp.cs.utexas.edu/pub/mooney/biodata/interactions.tar.gz. AIMed corpus 

is used for evaluating the impact of sentence simplification for PPI extraction. 

6.3 Methods 

The method includes non-syntactic and syntactic transformations, detailed 

next. 



 78 

6.3.1 Non-syntactic transformation 

There are three steps in the approach: 1. preprocessing through removal of 

spurious phrases, 2. replacement of gene names, 3. replacement of noun 

phrases. 

To improve the correctness of the parsing, each biomedical sentence is first 

preprocessed to remove phrases that are not essential to the sentence. This 

includes removal of section indicators, which are phrases that specify the 

name of the section at the beginning of the sentence, plus the removal of 

phrases in parentheses (such as citations and numbering in lists). Also, 

partially hyphenated words are transformed by combining with the nearest 

word that follows or precedes the partial hyphenated word to make a 

meaningful word. For instance, the phrase “alpha- and beta-catenin” is 

transformed into “alpha-catenin and beta-catenin”. 

Occurrences of multi-word technical terms and entity names involved in 

biomedical processes are common in biomedical text. Such terms are not 

likely to appear in the dictionary of a parser (perplexity is high), and will force 

it to use morpho-guessing and unknown word guessing. This is time 

consuming and prone to error. Thus, unlike typical text simplification that 

emphasizes syntactic transformation of sentences, the approach utilizes a 

named entity recognition engine, BANNER (Leaman & G. Gonzalez, 2008), to 

replace multi-word gene names with single-word placeholders. Replacement 

of gene names with single elements is not enough, however, and grammatical 

category (i.e. singular or plural) of the element has to be considered. Lingpipe 

shallow parser (Alias-i, 2006) for biomedical text identifies noun phrases and 

replaces them with single elements. A single element is considered singular 

when the following verb indicates a third-person singular verb or the 
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determiner preceded by the element is either “a” or “an”. Otherwise it is 

considered as plural and an “s” is attached to the end of the element. 

6.3.2 Syntactic transformation 

The problem of simplifying long sentences in common English text has been 

studied before, notably by Chandrasekar & Srinivas (1997) and Siddharthan 

(2006). However, the techniques used in these studies might not totally solve 

the issue of parsing biomedical sentences. For example, using Siddharthan’s 

approach, the biological finding “The Huntington's disease protein interacts 

with p53 and CREB-binding protein and represses transcription”, and 

assuming multi-word nouns such as “CREB-binding protein” do not present a 

problem, would be simplified to: 

“The Huntington's disease protein interacts with p53. The Huntington's 

disease protein interacts with CREB-binding protein. The Huntington's disease 

protein represses transcription.”  

Figure 6.1: Linkages after simplification of the original sentence 

 
 

• GENE1: human CREB binding 
protein 

• GENE2: CBP 
• GENE3s: CBP 
• REPNP1s: RTS patients 

Original sentence ST: The gene for the human CREB binding protein, the 

transcriptional coactivator CBP,   is included in the RT1 cosmid, and mutations 

ST1: 

ST2
: 

c1 

c3 c4 

c2 
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Our method transforms it to “GENE1 interacts with GENE2 and GENE3 and 

represses transcription.” Both decrease the average sentence length, but the 

earlier distorts the biological meaning (since the Huntington’s disease protein 

might not repress transcription on its own), while the latter signifies it. 

While replacement of gene names and noun phrases can reduce the sentence 

length, there are cases when the sentences are still too complex to be parsed 

efficiently. The example in Figure 6.1 illustrates a simple algorithm that 

utilizes linkages (specific grammatical relationships between pairs of words in 

a sentence) of the Link Grammar parser (Sleator, 1998) and punctuations for 

splitting sentences into clauses. Each linkage has a primary link type in 

CAPITAL followed by secondary link type in short. The intuition behind the 

algorithm is to try to identify independent clauses from complex sentences. 

The first step is to split the sentence ST into clauses c1, c2, c3 and c4 based on 

commas. c1 is parsed using the Link Grammar parser, but c1 cannot be a 

sentence as there is no “S” link in the linkage of c1. c2 is then attached to c1 

and the linkage of “c1, c2” does not contain a “S” link as well. “c1, c2, c3.” is 

recognized as a sentence, since the linkage contains an “S” link, indicating 

that it is a sentence, as well as the linkage of c4. So the algorithm returns two 

sentences ST1 and ST2 for ST. 

This adhoc approach to syntactic simplification is a first step, but it did not 

have a method to determine whether a simplified sentence is grammatically 

correct or not. So, the subsequent sections first address the problem of 

accurately determining the grammatical correctness of a sentence and then 

describe a rule-based approach for splitting sentences. 
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6.3.3 Grammatical correctness of a sentence 

For the sentence "He is an amazing.", the Stanford parser gives a complete 

constituent tree as if it were a grammatically correct sentence, while the Link 

Grammar parser (Sleator, 1998) correctly gives an incomplete linkage leaving 

behind "an", thus saying that “He is amazing.” is the closest grammatically 

correct sentence. However, Link Grammar gives too many false negatives. In 

fact, Link Grammar does not find a complete linkage for more than 33% of 

the 1100 sentences in BioInfer corpus, all of which are grammatically correct 

(Jonnalagadda et al., 2009). 

The statistical parsers generally give more false-positives than dependency 

parsers as they try to make a 'best guess' at a badly-constructed sentence, 

given that robustness in the face of poor grammar is more desirable. Most of 

the evaluation of the performance of parsers (for example, (Clegg & 

Shepherd, 2007)) is done using a corpus of grammatically correct English 

sentences. Those results are not relevant in the context where the primary 

task is to determine the correctness of a sentence. (Foster, 2007) uses an 

automatically generated Tree bank of grammatically incorrect sentences, but 

rightly notes that the correct combination of grammatically correct and 

incorrect training data for a statistical parser has yet to be created. The 

statistical parsers trained using only grammatically correct sentences will not 

be able to catch errors not found in the training data. 

Siddharthan (Siddharthan, 2006) comments that it is difficult to automatically 

determine the grammatical correctness of a sentence; so he evaluates them 

manually. However, it will be very useful for the task of simplification to have 

an efficient method to automatically compare the syntactical soundness of the 

simplified parts to the original part before committing the simplification. This 
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section proposes using the combination of the number of null links and 

disjunct cost from the cost vector returned by the Link Grammar (version: 

4.5.3) to get an estimate of the grammatical correctness. 

Figure 6.2: Link Grammar’s output 

 

Figure 6.3: Link Grammar’s another output 

 

The vector “UNUSED” and “DIS” in the cost vector indicate the number of null 

links and disjunct cost, respectively. Figure 6.2 is the output for the sentence 

“This is an amazing.” Here “an” from the original sentence is removed to 

suggest the closest grammatically correct sentence.  

Figure 6.3 is the output for the sentence “This is an dangerously.” The null 

count for both the sentences is 1, but the suggestion for the second sentence 

– “This is dangerously.” is less grammatically correct than the suggestion for 
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the first sentence – “This is amazing.” This difference in grammatical 

correctness is reflected by the disjunct cost or DIS vector; the DIS vector for 

the second sentence is 2 while that for the first sentence is 0. Disjunct cost, 

also called Connector cost, represents the level of inappropriateness (caused 

by using less frequent rules) in the linkage. 

Every sentence can be uniquely associated with the 2-tuple of null count and 

disjunct cost. It is reasonable to assume that a null count (which represents 

unwanted words) needs more attention than the disjunct cost (which 

represents less likely linkages). Since null counts and disjunct costs are 

typically less than 10 (i.e., one-digit numbers), for the purpose of easy 

comparison and for capturing the 2-tuples in one dimension, a new cost 

vector GRAM is defined to be equal to 10*UNUSED + DIS. It is an easy proof 

that GRAM value is equivalent to the 2-tuple of null count and disjunct cost, 

under the assumption that the disjunct cost of the corresponding collection of 

sentences is not more than 10. 

Any syntactic simplification will be approved only if the resulting sentences 

are collectively at least as grammatically correct as the original sentence 

alone, i.e., the sum of GRAM values of the parts should be less than or equal 

to the GRAM value of the original sentence. For example, the GRAM value of 

the sentence – “These effects were associated with significantly lower blood 

pressure, though within the normal range, in captopril-treated versus control 

animals.” is 20 (UNUSED = 2, DIS = 0; skipped “though” and “versus”). One 

suggestion from BioSimplify for splitting into the two sentences is: “These 

effects were associated with significantly lower blood pressure.” and “Within 

the normal range, in captopril-treated versus control animals.”, whose 
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respective GRAM values are 0 (UNUSED =0, DIS =0) and 22 (UNUSED =2, 

DIS =2). Since the sum of GRAM values of the parts (22) is more than the 

GRAM value of the original sentence (20), this suggestion is rejected. This 

approximates how a human would discern, because the second sentence was 

not grammatically correct. The second suggestion from BioSimplify was to 

split it into the two sentences – “These effects were associated with 

significantly lower blood pressure in captopril-treated versus control animals.” 

and “Significantly lower blood pressure is though within the normal range.”, 

whose respective GRAM values are 10 (UNUSED =1, DIS =0; skipped 

“versus”) and 10 (UNUSED =1, DIS =0; skipped “though”). Since the sum of 

GRAM values of the parts (20) is same as the GRAM value of the original 

sentence (20), this suggestion is accepted. In fact, if the second sentence was 

instead “This blood pressure is still within the normal range,” the GRAM value 

of the constituents would be lesser than that of the original sentence. This 

would also be possible in the future with more advanced implementations for 

resolving relative and appositive clauses in the syntactic simplification. 

6.3.4 Overview of rules for simplification 

This work implemented the rules for prefix subordination, infix subordination 

and if-then coordination (details in Siddharthan, 2003). These rules were also 

adapted recently by SimText (Ong, et al., 2008), a text simplification system 

for improving the readability of medical literature, but without a mechanism 

to judge the grammatical correctness. The notion of the GRAM value (as 

described in the prior section) as a way to automatically judge the syntactical 

soundness of the simplified parts as compared to the original sentence was 

also added. There are seven rules in total – three for conjunction and two 

each for relative clauses and apposition.  
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The referring expression (Siddharthan, 2003) for the relative clause is 

determined using the “MX” link from the link grammar output and that for 

appositive clauses is determined using the “R” link from the link grammar 

output. In addition, all the describing phrases that occasionally occur at the 

beginning of the sentence like the underlined phrases in: “These results 

suggest that affixin is involved in reorganization of subsarcolemmal 

cytoskeletal actin by activation of Rac1 through alpha and betaPIXs in skeletal 

muscle.” and “As reported previously, alphaPIX was specifically co-

immunoprecipitated by anti-affixin and anti-betaPIX antibodies.” are 

removed. 

6.4 Impact of simplification on the PPI extraction 

The BioCreative Meta Server (BCMS) platform (Leitner et al., 2008) is a 

framework provide meta-services for information extraction in molecular 

biology. There are 12 research labs providing BCMS servers, but currently (as 

the outcome of BioCreative II) the publicly available servers only give 

information on whether the abstract with a given PubMed ID contains at least 

one PPI or not. This section is studying whether simplification of a sentence 

helps PPI extraction systems, so it was more appropriate to use a tool which 

operates on single sentences. For this reason, and the fact that it uses parse 

tree information, PIE (Kim et al., 2008) was selected as an ideal tool for 

evaluating BioSimplify. PIE is available as an online web service that can test 

any sentence(s) for presence of PPIs, not just a PubMed abstract. More 

information about the usage of PIE is available at http://bi.snu.ac.kr/pie. PIE 

returns positive or negative for each sentence depending on whether or not it 

detects a PPI in it. 
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Table 6.1 shows some examples where BioSimplify simplified a sentence and 

helped correct the output of PIE. The sentences in which PIE reported a PPI 

are marked in bold. 

Table 6.1: Examples of impact of BioSimplify in improving 

association extraction 

Original Sentence Simplified Sentence Comment 

Unlike human IL - 6 ( 
which uses many 
hydrophilic residues ), 
the viral cytokine 
largely uses 
hydrophobic amino 
acids to contact gp130, 
which enhances the 
complementarity of the 
viral IL - 6 - gp130 
binding interfaces. 

Unlike human IL - 6, 
the viral cytokine largely 
uses acids to contact 
gp130. 
gp130 enhances the 

complementarity of 

the viral IL - 6 - 

gp130 binding 

interfaces. 

 

False negative 
converted to True 
positive. 

BioSimplify has split 
the sentences into two 
parts (in addition to 
preprocessing and 
replacing noun 
phrases) and made it 
easy for PIE to identify 
the PPI.  

LEC also induced 
calcium mobilization, 
but marginal 
chemotaxis via CCR5. 

LEC also induced 

calcium mobilization, 

but chemotaxis via 

CCR5. 

Replacing noun 
phrase with single 
word helps to 
concentrate on PPI 
indicating words and 
structure 

The sequences that 
confer on FGF - 7 its 
specific binding to KGFR 
have not been 
identified. 

The sequences 

confer on FGF - 7 its 

specific binding to 

KGFR . 

The sequences have 
not been identified. 

Splitting sentences 
again uncovers the PPI 
indicated in part of the 
sentence. 

It has been shown 
that LIGHT triggers 
apoptosis of various 
tumor cells including 
HT29 cells that express 
both lymphotoxin beta 
receptor ( LTbetaR ) 
and HVEM / TR2 
receptors. 

LIGHT triggers 
apoptosis of cells 
including cells. 
Cells express both 

lymphotoxin beta 

receptor and HVEM / 

TR2 receptors. 

 

Noun phrase 
replacement, 
preprocessing and 
sentence splitting 
together separate the 
PPI containing part of 
the sentence for easy 
identification 

Thus, Phe93 and 
Phe205 are important 
binding determinants 
for both EPO and EMP1, 
even though these 
ligands share no 
sequence or structural 
homology, suggesting 
that these residues may 

Thus, Phe93 and 

Phe205 are 

determinants for both 

EPO and EMP1. 

These ligands share 
no sequence or 
structural homology, 
suggesting that these 
residues may represent 

Splitting sentences 
again uncovers the PPI 
indicating part of the 
sentence. 
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represent a minimum 
epitope on the EPOR for 
productive ligand 
binding. 

a minimum epitope on 
the EPOR for binding. 

We have crystallized a 
complex between 
human FGF1 and a two 
- domain extracellular 
fragment of human 
FGFR2. 

We have 

crystallized a complex 

between human FGF1 

and a two - domain 

fragment of human 

FGFR2. 

Even a little amount 
of simplification 
sometimes highly 
influences the PPI 
extraction. 

The structural 

arrangement in the 

active site is 

consistent with a 

mostly associative 

mechanism of 

phosphoryl transfer 

and provides an 

explanation for the 

activation of Ras by 

glycine - 12 and 

glutamine - 61 

mutations. 

The structural 
arrangement in the 
active site is consistent 
with a mostly 
associative mechanism 
of transfer. 

Arrangement provides 
an explanation for the 
activation of Ras by 
glycine - 12 and 
glutamine - mutations. 

False positive 
converted to true 
negative. 

BioSimplify 
transformed the 
sentence and helped 
PIE in deciding that 
there is actually no PPI 
in the sentence, though 
there seems to be one 
because of the 
complexity of the 
sentence. 

 

Figure 6.4 explains the evaluation steps. Considering a sentence as a positive 

if PIE detects a PPI in either the original sentence or in its simplified version 

should, in theory, lead to a system with higher recall without negatively 

affecting precision. For explanation, let us assume this set-up. BioSimplify 

transforms each sentence into at least one sentence that could be different 

from the original. Suppose it transforms a sentence A into A1,…,An for n>0. 

There are four possible outcomes: a) A is falsely assigned positive by PIE: 

Irrespective of whether A1,…,An are falsely assigned positive, there is no 

change in the precision and recall. b) A is correctly assigned negative: It is 

highly unlikely that the system which performed well with A, commits a 

mistake on the simpler parts – A1,…,An; so the precision is less likely to 

decrease and the recall would be the same irrespective of the performance of 

the system on A1,…,An. c) A is correctly assigned positive: Irrespective of the 
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performance of the system on A1,…,An, there is no change in the precision 

and recall. d) A is falsely assigned negative: Though the system failed to 

identify PPI in A, the simplified segments A1,…,An could allow a PPI extraction 

system to identify a PPI.  

Figure 6.4: Evaluating impact of sentence simplification on PPI 

extraction 

A N D  
C O M B I N A T I O N

b i o S i m p l i f y
A b s t r a c t  

f r o m  A I M e d

S i m p l i f i e d  
A b s t r a c t

P I E P I E

R e m o v e  
A n n o t a t i o n s

O R  
C o m b i n a t i o n

R e s u l t s  
f o r  o r i g i n a l  
s e n t e n c e s

R e s u l t s  f o r  
S i m p l i f i e d  
s e n t e n c e s

A I M e d

C o m p a r i s o n  o f  
d i f f e r e n t  m e t h o d s  

W o r k  F l o w  f o r  E a c h  A b s t r a c t

 

Thus, addressing the false negatives (case d) without increasing false 

positives (case b) would increase both the recall and precision of the system. 

Cases a) and c) do not affect the system’s performance. Case b presents a 

slight likelihood for a decrease in precision (where the simplified sentence 
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triggers a false positive), but because this (in theory) happens sparsely - in 

2% of the cases while processing the AIMed corpus - and there is a high 

likelihood of increase in recall and precision by resolving false negatives (case 

d), overall the system would have a higher recall with almost the same 

precision when processing simplified sentences. This set-up is referred to as 

OR combination. An alternate set-up where a sentence is considered 

positive only when PIE identifies a PPI in both the original sentence and the 

corresponding simplified sentence would be referred to as AND 

combination. 

PIE was used to test for the presence of PPIs in 942 sentences before and 

after simplification. PIE reports whether a sentence with a potential PPI has a 

high probability of having a PPI or just a moderate probability. Any sentence 

in which PIE identifies a PPI with at least a moderate probability is considered 

as positive. These sentences are from 76 PubMed abstracts in AIMed with ids 

between 8816798 and 11470772 (this selection was based on DIP), and 14 

PubMed abstracts chosen with PubMed ids between 11780382 and 11790884 

for negative examples of interaction. Overall, out of the 942 sentences in 

these abstracts, 270 contain PPI(s). Each abstract was processed as 

illustrated in Figure 6.4. The aggregate results of PIE on all the sentences and 

their simplified counterparts are presented in Table 6.2. 

Table 6.2: Results of PIE on selection from AIMed 

Category Recall Precision F-score 

Before simplification 53% 49% 51% 
After simplification 55% 52% 53% 
AND combination 47% 53% 50% 
OR combination 61% 48% 54% 
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6.5 Conclusion 

The results of evaluation and error analysis allow us to conclude that 

BioSimplify, although still needing improvements, leads to improved PPI 

extraction results using PIE, which already uses syntactic information from 

parse trees. The results indicate that a system for sentence simplification 

used as a preprocessing step for natural language processing could improve 

the accuracy of PPI extraction process and other association extraction 

processes. 
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7. PARSE TREE-BASED SENTENCE SIMPLIFICATION 

The last chapter presented a method of sentence simplification that is 

dependent on the output of the Link Grammar in a very specific dependency 

format. BioSimplify is optimized for accurate and flexible biomedical 

information extraction, and thus uses the output from parsers in the standard 

Penn Tree Bank (PTB) format. This is a reasonable choice considering that 

there has been significant increase in the accuracy of parsing biomedical text 

from 80% in 2005 (Lease & Charniak, 2005), to 84% in 2008 (McClosky & 

Charniak, 2008), and to 88% in 20099 measured according to F-score and it 

facilitates inclusion of the simplification algorithm in different NLP pipelines. 

This choice also decouples the simplification process from the parsing step, 

allowing it to be done separately or to take advantage of the availability of 

collections of pre-processed sentences like the NLP web service provided by 

NCIBI (Ade, Wright, & Jagadish, 2009) or the PTDB (L. Tari et al., 2009) 

database of Arizona State University. This chapter uses Penn trees obtained 

from McClosky parser (McClosky & Charniak, 2008) which has an F-score of 

88% for parsing biomedical text. BioSimplify can also be used with Penn trees 

produced from other parsers like Stanford parser and Link Grammar that can 

produce PTB-style (Marcus et al., 1993) output and also from Penn trees 

created apriori. Our goal is to produce all possible grammatically correct 

simplified sentences, assuming the available Penn tree is completely accurate.  

7.1 Introduction 

Explaining the limitation of the bag of words model, linguist Zellig Harris 

pointed out (Z. Harris, 1954): “language is not merely a bag of words but a 

tool with particular properties … The linguist’s work is precisely to discover 

                                           
9
 http://www.cs.brown.edu/~dmcc/biomedical.html 
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these properties.” When discourse analysts try to discover these properties, 

they usually break the sentence into simpler clauses. It should be noted 

however that a single independent clause or simple sentence as defined by 

(Quirk, Greenbaum, Leech, & Svartvik, 1985), may still be complex. Consider 

for example the following sentence, which even if one were to break it into 

simpler clauses, it would still be a complex: We have identified a new TNF-

related ligand, designated human GITR ligand (hGITRL), and its human 

receptor (hGITR), an ortholog of the recently discovered murine 

glucocorticoid-induced TNFR-related (mGITR) protein. (Gee, 1999) advises 

that critically analyzing the discourse involves separating and unpacking 

clauses from sentences and phrases to understand all the perspectives. 

Automatically creating this set of simplified sentences for the purpose of 

information extraction on biomedical text is the subject of this paper. While 

existing NLP methods for information extraction already use grammatical 

information of text in the form of features like POS tags, parse trees and 

dependencies – informally known as “bag of NLP”, the usual focus is to 

choose one optimal such parsing for further processing. Our approach is 

rather a “shotgun” approach: use grammatical information in elemental 

chunks that can then be combined and recombined to generate many 

sentences from one (different perspectives) in order to maximize the 

likelihood that an automatic extraction engine can find in one (or several) of 

them the information contained in the original sentence. Thus, BioSimplify 

outputs the set of all sentences it can generate from the original sentence 

such that they are: 1) implied by the original sentence, 2)grammatically 

correct and 3) shorter than the original sentence. 
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7.2 Methods 

While trying to understand how to break a sentence into simpler parts, this 

work focused on how sentences grow, and devised methods to undo the 

expansion. (Halliday, 1985) states that there are three ways for such 

expansion: 1) elaborating an existing basic structure, 2) extending it by 

addition or replacement and 3) enhancing its environment. These basic 

guidelines were used to design rules (listed in Table 7.2) for creating simpler 

sentences out of a complex one. The rest of this section presents the Noun 

Phrase Replacement module and the Syntactic Simplification algorithm along 

with the rules (Tables 7.1 and 7.2).  

Table 7.1: Syntactic Simplification algorithm. 

synSimp(t), where t is the Penn tree of the given sentence: 

1) Initialize simpTrees, the ordered set containing the Penn trees of all 
simplified sentences, with the Penn tree of the original sentence 

 

2) FOR EACH subtree of t traversed in the order of depth-first traversal 

 -        perform necessary simplifications at that node which are the 
simplifications that need not be repeated for all the parents to this node 

 

3) Add the present tree to simpTrees 

 

4) FOR EACH unprocessed tree in simpTrees 

-         FOR EACH subtree of t traversed in the order of depth-first traversal 

-                  perform the simplifications for this node 

-                  add new trees in simpTrees if applicable 

 

5) return the sentences represented by the trees in simpTrees 
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7.2.1 Noun phrase replacement 

A noun phrase in English consists of an optional determinative, an optional 

premodifier, a mandatory head noun, and an optional post-modifier (Quirk et 

al., 1985). Noun Phrase chunkers usually return the noun phrases of the 

smallest length, excluding postmodifiers. Hence, the last word of an identified 

noun phrase is the head noun. Previously, Hakenberg et al. (Hakenberg et al., 

2010) introduced the preprocessing step of replacing noun phrases in the 

sentences with their head noun. However, removal of the optional 

determinative makes the sentence grammatically incorrect, while removal of 

the premodifier still gives a grammatically correct sentence. So, in this work, 

only the premodifiers are removed. For example, the noun phrase “the 

recently discovered murine glucocorticoid” is replaced with “the 

glucocorticoid”. The part-of-speech (POS) tags in the sentence are identified 

using Lingpipe10, one of the most widely used POS taggers trained on GENIA 

biomedical corpus11. The OpenNLP maximum entropy method12 was then used 

to identify the noun phrases in the sentence. The other chunkers thatcould be 

considered are GATE chunker, GENIA Tagger, Lingpipe and Yamacha. For 

noun phrase chunking, GENIA Tagger and OpenNLP perform the best (F-score 

of 90% on GENIA Corpus), but OpenNLP is more usable in the system 

workflow as it is written in Java, while the GENIA Tagger is written in C++. To 

remove the premodifiers, all the tokens other than the head noun and the 

starting determinative or numeral (if they exist) are removed from the noun 

phrases.  

                                           
10

 http://alias-i.com/lingpipe 
 
11

 http://www-tsujii.is.s.utokyo.ac.jp/~genia/topics/Corpus/  
 
12

 http://maxent.sourceforge.net 
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7.2.3 Syntactic Simplification 

While POS taggers only indicate the grammatical role of a particular word, a 

parse tree represents the syntactic structure of the whole sentence, giving 

complete details on how the words in it are related to each other. Sentence 

simplification systems (Chandrasekar & Srinivas, 1997; S. Jonnalagadda & G. 

Gonzalez, 2009; Vanderwende et al., 2007) usually have parsers as integral 

part of their algorithm, while there are few systems (Siddharthan, 2006) that 

use only POS. The latter aim for fast simplification at the point of application, 

while the former give a higher importance to accuracy of the output. 

BioSimplify is optimized for accurate and flexible biomedical information 

extraction, and thus uses the output from parsers. 

Table 7.2: Syntactic simplification rules with explanation and 

examples 

Rule Explanation Example Result 

S ~ {S}. 
S contains NP 
S contains VP 

Adds all simple 
sentences 
(phrases present 
in a larger 
sentence, but in 
themselves are 
a grammatical 
sentence) 

In differentiating C2C12 cells, 
E2F complexes switch and DNA 
synthesis in response to serum 
are prevented when MyoD DNA 
binding activity and the cdks 
inhibitor MyoD downstream 
effector p21 are induced. 

MyoD DNA binding 
activity and the cdks 
inhibitor MyoD 
downstream effector p21 
are induced. 

NP[NP1 VP1*] 
~ [NP1] {NP1 
"can be" VP1} 
*VP1 starts 
with a gerund, 
present 
participle or 
past participle  

NP 
Postmodification 
by verb phrase 
(separate the 
verb phrase that 
provides extra 
information 
about the noun 
phrase, but is 
not related to 
the whole 
sentence)  

The cloning of members of these 
gene families and the 
identification of the protein-
interaction motifs found within 
their gene products has initiated 
the molecular identity of factors 
(TRADD, FADD/MORT, RIP, 
FLICE/MACH, and TRAFs) 
associated with both of the p60 
and p80 forms of the TNF 
receptor and with other 
members of the TNF receptor 
superfamily. 

The cloning of members 
of these gene families 
and the identification of 
the protein-interaction 
motifs has initiated the 
molecular identity of 
factors… 
The protein-interaction 
motifs can be found 
within their gene 
products. 

NP[NP1 
ADJP1] ~ 
[NP1] {NP1 
"can be" 
ADJP1 } 
 

NP 
Postmodification 
by adjective 
phrase (similar 
to above) 

Src homology domain-2 
(SH2)/SH3 domain - can be 
containing adapters such as 
Grb2, Crk, and Crk-L, which 
interact with guanine nucleotide 
exchange factors specific for the 
Ras family. 

… interact with guanine 
nucleotide exchange 
factors. 
Guanine nucleotide 
exchange factors can be 
specific for the Ras 
family. 

NP[NP1 PP] ~ 
[NP1] 

NP 
Postmodification 
by prepositional 
phrase is 
removed 

To explore the role of the 
different domains of the betaL 
subunit in IFNalpha signaling, we 
coexpressed wild-type alpha 
subunit and truncated forms of 

To explore the role in 
IFNalpha signaling, we 
coexpressed … 
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the betaL chain in L-929 cells. 
VP[MD VP1 , 
S*] ~ [MD 
VP1] 
*S contains VP 
and not NP 

VP 
Postmodification 
by verb phrase 
is removed 

T lymphocytes can be activated 
normally in response to either 
stimulus, demonstrating that the 
effects of the inactive CaMKIV on 
activation are reversible. 

T lymphocytes can be 
activated normally in 
response to either 
stimulus. 

VP[... , PP] ~ 
}, PP{* 
*Terminal 
prepositional 
phrase and 
preceding 
comma are 
removed from 
verb  phrase 

VP 
Postmodification 
by prepositional 
phrase is 
removed 

Because cell lines can lose their 
differentiated phenotype in 
culture across passages, 
documentation of gene 
expression must be determined 
for passage populations, for us 
to have knowledge of cell 
behavior in vitro. 

Because cell lines can 
lose their differentiated 
phenotype in culture 
across passages, 
documentation of gene 
expression must be 
determined for passage 
populations. 

NP[NP1 PRN] 
~ [NP1] [PRN 
- LRB - RRB]* 
*The left and 
right brackets 
are removed 
from the 
parenthetical 

Handling 
abbreviations: 
Replace with two 
sentences- one 
with 
abbreviation 
removed, the 
other with NP 
replaced by 
abbreviation 

Coexpression of the alpha and 
betaL subunits of the human 
interferon alpha (IFNalpha) 
receptor is required for the 
induction of an antiviral state by 
human IFNalpha. 

Coexpression of the 
alpha and betaL subunits 
of the human interferon 
alpha receptor is … 
Coexpression of the 
alpha and betaL subunits 
of the human IFNalpha 
is … 

NP[NP : S*] ~ 
[S*] 
*S contains VP 
or NP 

Section indicator 
is removed 

OBJECTIVE: To investigate the 
relationship between the 
expression of Th1/Th2 type 
cytokines and the effect of 
interferon-alpha therapy. 

To investigate the 
relationship between the 
expression of Th1/… 

S[S1* , NP VP] 
~ [NP VP] 
*S1 does not 
contain both 
NP and VP 

Content clause is 
removed 

To characterize these pathways, 
we focused on changes in the 
cyclin-dependent kinase 
inhibitors and their binding 
partners that underlie the cell 
cycle arrest at senescence. 

We focused on changes 
in the cyclin-dependent 
kinase inhibitors and 
their … 

NP[NP SBAR] 
~ [NP], {SBAR 
-WHNP + 
NP}* 
*Wh-NP in the 
relative clause 
is replaced by 
NP from main 
clause 

Relative Clause 
of this type is 
separated from 
the original  
sentence 

To characterize these pathways, 
we focused on changes in the 
cyclin-dependent kinase 
inhibitors and their binding 
partners that underlie the cell 
cycle arrest at senescence. 

…changes in the cyclin-
dependent kinase 
inhibitors and their 
binding partners. 
The cyclin-dependent 
kinase inhibitors and 
their binding partners 
underlie…  

VP[…, SBAR…] 
~ }, SBAR{ 

Relative Clause 
of this type is 
removed 

As [Ca2+]o increased, [Ca2+]i 
rapidly increased, as monitored 
by fluorometry. 

As [Ca2+]o increased, 
[Ca2+]i rapidly 
increased. 

VP , CC VP2] ~ 
[VP1] [VP2] 
PP [PP1, CC 
PP2] ~ [PP1] 
[PP2] 
ADJP[ADJP1 , 
CC ADJP2] ~ 
[ADJP1] 
[ADJP2] 

Coordination of 
verb phrases, or 
prepositional 
phrase, or 
adjective phrase 
is removed by 
separating the 
coordinates into 
different 
sentences 

These mechanisms must be 
understood in order to prevent, 
or combat, the emergence of a 
virulent, multidrug-resistant 
form of the bacillus that would 
be uncontrollable by means of 
today's treatment strategies. 
 

These mechanisms must 
be understood in order 
to prevent, the 
emergence of a virulent, 
multidrug … 
These mechanisms must 
be understood in order 
to combat , the … 

Column 1 is the mathematical notation for the rule and Column 2 is the 
verbal explanation of it. Readers interested in adapting the rules in their own 

environment might be more interested in Column1 than others. 
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The algorithm has a time complexity of O(n2*R), where n is the number of 

tokens in the sentence and R is the number of simplifications rules. The 

average time complexity is, however, O(nlog(n)*R).  One of the features of 

BioSimplify is avoidance of domain-specific rules. For example, the system 

does not replace entity names (like genes) with shorter alternatives as is 

done with the noun phrases in the present version and with the gene names 

in the earlier version (S. Jonnalagadda & G. Gonzalez, 2009). The system also 

avoided hard-coding the words in the rules created to split sentences with 

relative clauses. These measures enhance the domain adaptability of the 

system. Table 7.2 explains some of the simplification rules used. There are 

around 40 syntactic simplification rules available with the source code and 

documentation. The format for the rules is A[A1 A2 … An] ~ [B1...Bp] 

{C1…Cq} {D1…Dr} , where the variables are non-terminals in the parse tree. 

[A1 A2 … An] are the children of A in the original tree. [B1...Bp] are 

preserved from the original tree, {C1…Cq} are removed from the original tree 

and added as a separate tree, and {D1…Dr}  are removed from the original 

tree. To make sure that the rules are optimized for biomedical sentences, the 

researchers manually examined each sentence in GENIA biomedical corpus 

and designed rules that would create the largest possible “bag of simplified 

sentences” based on Halliday’s formalism for sentence simplification. Some 

rules are classified as necessary (Table 7.2), and are executed only once 

since that transformations based on those rules do not decrease the semantic 

content of the original sentence. However, some transformations, like the 

postmodification of noun phrases by prepositional phrases, often destroy the 

semantic content. For such transformations, the algorithm ensures that both 

the simplified sentences and the sentence from which they are derived are 
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preserved. Our rule-set consists of all the rules present in the most 

comprehensive rule-based system currently known (Siddharthan, 2006) – 

albeit using a different notation based on phrase structures – and includes 

many additional rules. Siddharthan’s system (Siddharthan, 2006) handles 

coordination only at the clause level, while this system handles it also at the 

phrase level. We also remove section indicators, content clauses, and 

postmodifiers of phrases not handled before. Premodification of noun phrases 

is handled at NP replacement stage. We currently do not handle pronoun 

resolution. 

7.3 PPI Extraction Evaluation 

For the purpose of evaluating the impact of sentence simplification, AIMed 

corpus and PIE (S. Kim et al., 2008) (a machine learning approach available 

as a web service that uses the parse tree information from the Collins 

statistical parser as its key component) were used. PIE returns two kinds of 

results – one with a high precision, which is called tight PIE; and the other 

with low precision, which is called light PIE. We also compare the present 

version of BioSimplify with the older version (S. Jonnalagadda & G. Gonzalez, 

2009) which is limited in its functionality because it only implements the rules 

described by (Siddharthan, 2006). The present version which has an average 

time complexity of O(nlog(n)*R) is faster than the older version which has a 

time complexity of O(n3*R), where n is the number of tokens in the sentence 

and R is the number of rules. The older version has domain specific 

optimizations (like replacing the gene names with single-word identifiers), 

which were not used in the newer version for portability. 
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7.4 Results and Conclusion 

 

Table 7.3: Results for applying Protein-Interaction Extraction 

system PIE (high precision setting) to sentences from AIMed, as 

compared to the same to sentences processed with BioSimplify. 

 Precision Recall F-score 
Original sentences 53 47 50 
Sentences simplified by older(S. Jonnalagadda 
& G. Gonzalez, 2009) BioSimplify 

55 44 49 

Sentences simplified by current BioSimplify 49 67 57 

 

 

Table 7.4: Results for low precision setting PIE 

 

We used PIE to test for the presence of PPIs before and after simplification in 

both the versions. The test set is from 18 PubMed abstracts in AIMed with ids 

between 9121766 and 9427624. Overall, out of the 189 sentences in these 

abstracts, 63 contain PPI(s). The aggregate results of PIE are presented in 

Tables 7.3 and 7.4. Precision, Recall, and F-score assume conventional 

meaning. Using BioSimplify improved the performance of light PIE by 9% in 

F-score and in recall by 24%. It also enabled an improvement in f- score by 

7% and in recall by 20% on tight PIE. These improvements are statistically 

significant based on the two-tailed paired t-test on the outputs (PPI 

present/absent) of PIE before and after simplification (p=1.3 X 10-5 for light 

PIE and p=7.2 X 10-8). Overall, the present version of BioSimplify performs 

much better than the older version. This is because using the “shotgun” 

model for simplification (many simpler sentences) instead of the original 

sentences improves the chances that the PPI engine will detect a relationship 

 Precision Recall F-score 
Original sentences 46 58 51 
Sentences simplified by older(S. Jonnalagadda 
& G. Gonzalez, 2009) BioSimplify 

51 64 57 

Sentences simplified by current BioSimplify 46 82 60 
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hidden in complex syntax. The precision of the present system is slightly 

lower than that of the older system because of the exhaustive simplification. 

This was not the case with the old system where the rules were based on 

Siddharthan's work and did not stress as much exhaustiveness of 

simplification. In situations where precision is much more important than 

recall, one could use only a subset of the rules that are empirically found to 

be more precise. The slight loss in precision could also be attributed to the 

removal of domain-specific features like replacing all gene names with unique 

identifiers. 

Three judges evaluated the precision and recall of the BioSimplify system 

itself by reading each simplified sentence produced. The evaluation criteria 

(grammatical correctness) and this post-hoc evaluation using judges follow 

the same model and rationale described by (Siddharthan, 2006). We used 

404 sentences from AIMed for this evaluation, for an estimated precision of 

90%. Since the evaluation for grammatical correctness is done post-hoc by 

humans, the recall could be overestimated, as it is cognitively difficult to think 

of all possible grammatically correct sentences. Our judges found less than 

1% new simpler sentences that were not  produced by the system. The 

corpus of 4511 biomedical sentences (out of which 2017 contain PPIs) 

produced from the original 404 is available at 

https://biosimplify.sourceforge.net. These sentences were artificially created 

by BioSimplify from AIMed corpus and are manually annotated to indicate the 

presence or absence of PPI(s). 
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8. SENTENCE SIMPLIFICATION FOR CLINICAL RELATION 

EXTRACTION 

In narrative clinical records, relations may exist between medical problems 

and treatments, medical problems and tests, and between medical problems 

and other medical problems. This chapter explains the approach to extracting 

these relations defined in the i2b2/VA 2010 shared task: 

1. Treatment improves a medical condition. 

2. Treatment worsens a medical condition. 

3. Treatment causes a medical problem. 

4. Treatment is administered for a medical problem. 

5. Treatment is not administered for a medical problem. 

6. Test reveals a medical problem. 

7. Test is conducted to reveal a medical problem. 

8. Medical problem indicates another medical problem. 

The machine learning features of the system designed are based on those 

proposed by (Uzuner et al., 2010) for a similar relation extraction task in 

clinical domain. It uses MaxEnt classifier as implemented by MALLET to 

annotate the relations found between medical problems, tests and treatments 

in clinical notes. To test the impact of sentence simplification on this task, 

BioSimplify developed by (Siddhartha Jonnalagadda & Graciela Gonzalez, 

2010) is used. The i2b2/VA shared task organizers 

(https://www.i2b2.org/NLP/Relations/) have annotated a training set and test 
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set for this specific relation extraction task to be used in the 2010 

competition. This corpus, containing 349 training set documents and 477 

testing set documents  will be used to test the impact of sentence 

simplification. For evaluation purpose, it is assumed that the correct concepts 

are available for the system from the annotators and the task is to extract the 

relations between the concepts. 

8.1 Machine learning features 

The baseline system is a machine learning system with different natural 

language based features at the level of words, syntax, semantics or 

pragmatics. Most of the features are based on those proposed in (Uzuner et 

al., 2010), however the feature extraction system is implemented originally in 

Java and is available as an open source in the BioSimplify project page13 

along with the code for sentence simplification. The table below lists all the 

features that are implemented. 

Table  8.1: List of features used for extracting clinical relations 

Feature name Feature 

Type 

Relative ordering of the candidate concepts Lexical 
Distance between the candidate concepts Lexical 
Presence of intervening concepts Lexical 
Tokens in concepts Lexical 
Concepts themselves Lexical 
Lexical unigrams, bigrams and trigrams around the concepts Lexical 
Tokens between concepts Lexical 
Verb phrases Syntactic 
Head words of the concepts Syntactic 
Tokens that are connected to concepts in dependency graph Syntactic 
Link path between the headwords of the concepts Syntactic 
Matches to manually created relationship patterns Syntactic 
Name of the section Pragmatic 
 

                                           
13 http://biosimplify.sourceforge.net 
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In order to extract the features in Table 8.1, the system tokenized each 

sentence, found the phrase chunks using the OpenNLP chunker14 and 

constructed a Penn Treebank format parse tree using the Stanford parser 

(Klein & C. D. Manning, 2003).  

It was found that using the information about the shortest path between the 

candidate concepts in the dependency graph of a sentence in literature helps 

in improving over-all accuracy (Ding, Berleant, J. Xu, & Fulmer, 2003) of 

relationship extraction. Hence, Uzuner et al. (Uzuner et al., 2010) used link 

path features from Link Grammar for extracting relations in clinical domain. 

However, Link Grammar is a rule-based system built for grammatical English 

sentences. As pointed out previously (S. Jonnalagadda & G. Gonzalez, 2009), 

it would not produce reasonable output for sentences that are not 

grammatically correct. It is well established that most of the sentences in 

clinical notes are grammatically incorrect sentences or phrases. Thus, the 

Stanford parser which is a statistical model is used, since it outputs the most 

probable parse tree given the tokens in the sentence. Work by Chapman et 

al. is currently in progress to create parse trees for sentences in clinical notes 

as part of the AMIA NLP working group annotation grant and the Sharp grant. 

It is possible to retrain the statistical model with the annotations specific to 

clinical notes to improve the performance. 

The parse tree which is in PTB format is converted to a dependency graph 

following Stanford format designed by Marneffe et al. (Marneffe et al., 2006). 

Dijkstra’s algorithm (Dijkstra, 1959) to find the shortest path between nodes 

in a graph is used to find the link path. The time complexity for this step is 

                                           
14 http://opennlp.sourceforge.net 



 104 

O(N2) (which is less than O(N3), the time complexity for constructing the 

parse tree), where N is the number of tokens in the sentence. 

In addition, Smith-Waterman local alignment algorithm (T. F. Smith & 

Waterman, 1981) is implemented to find if the candidate relation instance is 

similar in pattern to the patterns created manually from the true relations 

instances. To create the patterns, each sentence is reduced to the shortest, 

continuous snippet that contains both concepts from the ground truth as well 

as some keywords that indicate an interaction. To preserve only the 

keywords, the system removed all the stop words (Fox, 1989) in between the 

concepts. For example, the interaction where the treatment improved medical 

condition - hypertension was controlled on hydrochlorothiazide – is converted 

to the template “PROBLEM_ controlled TREATMENT_” so that the pattern 

matches other sentences or snippets such as, “She has an elevated 

cholesterol controlled with Zocor.” All the annotated concepts were replaced 

with the corresponding entity tags. For example, in the pattern “TEST_ 

revealed PROBLEM with PROBLEM and PROBLEM_”, the candidate concepts 

are represented by the first and last words suffixed by an underscore. The 

concepts that were not part of the relation were not suffixed by an 

underscore. The snippets thus automatically created were manually 

examined. Where ever insufficient information was contained to infer the 

relation they were corresponding to, the snippets were expanded using the 

least number of words from the right or left to have sufficient information for 

inferring the relation. The result of the match of the testing instance to each 

of the pattern is a feature. The different patterns that were used is presented 

in 

https://sourceforge.net/projects/biosimplify/files/ClinicalRelationPatterns.txt. 
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8.2 Choice of baseline for testing the impact of sentence 

simplification 

Three different baselines were created. The best of the three that also 

compares to state of the art systems will be chosen to test the impact of 

sentence simplification.  

The first baseline is a rule-based system that uses approximate matching 

based on local alignment with the clinical relation patterns. The threshold for 

the approximate match is fine tuned using “leave one out” validation.  In the 

leave one out validation, each sample is separately used for testing while the 

rest of the samples are used for training. This is a special case K-fold cross-

validation, where K is the number of samples. Multiple thresholds of 

approximate match (measured used Smith-Waterman distance) starting from 

0.5 to 1.0 in increments of 0.05 are used for testing. It is found that a 

threshold of 0.85 yields the best F-score with leave one out validation on the 

training set. 

The second baseline is the machine learning system which uses all of the 

features discussed in section 8.1 above. Different machine learning algorithms 

such as MaxEnt, AdaBoost, C45, Decision Tree, Naïve Bayes and Winnow as 

implemented in Mallet (AK McCallum, 2002) are tested using 10-fold cross 

validation on the training set. MaxEnt performed significantly better than the 

other algorithms and hence it was chosen to be used in the final system. 

The third baseline is also a MaxEnt-based machine learning system that uses 

all of the features discussed in section 8.1 above except the features using 

approximate pattern match.  
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Table  8.2: Performance of the three baselines at i2b2/VA shared task 

# Baseline name Recall Precision F-score 

1 Pattern matching 0.3614 0.3449 0.3530 
2 Machine learning with pattern 

feature 

0.7496 0.6513 0.6970 

3 Machine learning without pattern 
feature 

0.7518 0.6488 0.6965 

 

As shown in the Table, baseline 2, the MaxEnt-based machine learning 

system that uses all of the features discussed in section 8.2 has the best 

performance. Table 8.3 compares this system with the Top-10 systems 

submitted to the i2b2/VA relation extraction shared task. 

Table  8.3: Comparison of different teams at i2b2/VA shared task 

Rank Team Recall Precision F-score 

1  UTDallas, Roberts et al.   0.7534  0.7204  0.7365  

2  
National Research Council Canada, 
deBruijn et al. 

0.6933  0.7738  0.7313  

3  LIMSI, Grouin et al. 0.7076  0.7110  0.7093  

4  Univ. Sydney, Patrick et al. 0.6751  0.7307  0.7018  

5  Arizona State Univ., Gonzalez et al. 0.7496  0.6513  0.6970  

6  Salt Lake City VA, Divita et al. 0.6510  0.7459  0.6952  

7  TU Budapest, Solt et al.  0.7067  0.6384  0.6708  

8   NLM, Aronson et al. 0.6207  0.7183  0.6660  

9  Brandeis Univ., Anick et al. 0.6606  0.6654  0.6630  

10  OHSU VA 0.6401  0.6723  0.6558  

 

Our system placed 5th according to F-score among the 16 international teams 

that submitted annotations to the shared task. We rank second as per the 

levels of significance (shown in color). 

8.4 Using sentence simplification as the post-processing step 

The algorithm of BioSimplify is described in (Siddhartha Jonnalagadda & 

Graciela Gonzalez, 2010). Since the parse tree is available from the statistical 

parser used for creating link path related features, it is reused. Since creating 
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the parse tree has the highest time complexity (cubic in number of tokens in 

the sentence), using BioSimplify (linear in the number of clauses in the parse 

tree or approximately quadratic in the number of tokens in the sentence) 

does not significantly increase the total time taken.  

Figure 8.1: Architecture for testing the impact of sentence 

simplification 
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simplified sentence. Figure 8.1 describes the architecture for the analysis of 

the impact of sentence simplification. This architecture is similar to that is 

used in Chapter 7. 

8.5 Impact of sentence simplification 

Using the sentences resulted from BioSimplify with the trained machine 

learning system helped in converting 237 false negatives into true positives. 

However, 825 true negatives were also converted to false positives. The net 

effect leads to a slight decrease in F-score. The newly created false positives 

were examined manually. In almost all of the cases, the output of BioSimplify 

proved accurate. This means the errors were introduced because of errors in 

the trained machine learning system. A system with a high precision and low 

recall would have found the use of sentence simplification beneficial; 

however, the baseline system had high recall (75%) and low precision (65%) 

on the test set.  

Noting F-score disregards the confidence of the system in annotating a 

relation, comparison of the systems is made using the area of curve, more 

specifically AUC of the interpolated precision–recall curve (AUC iP/R) that is 

proposed in the FEBS Letters/BioCreativeII.5 experiment (Leitner et al., 

2010). In cases where there are more negative instances than positive 

instances, Leitner et al. argue that an ROC curve with recall (= sensitivity) on 

the x-axis and precision (= true positive rate) is more reasonable than using 

recall on x-axis and false positive rate (1 - specificity). The false positive rate 

(FP/(FP+TN)) is closer to zero for most systems given that the number of true 

negatives is usually very large. This is the also the case with i2b2/VA relation 

extraction task where the number of possible relations per sentence is in the 

order of square of the number of concepts per sentence, whereas the number 
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of actual relations annotated is usually much lesser than even the number of 

concepts. For example, in the training set, there were 9K relations and 45K 

concepts and in the testing set, there were 5K relations and 27K concepts.  

Further, an interpolated precision-recall curve, estimates the highest possible 

precision at each achievable recall, using the formula: 

 

 

where n is the total number of correct hits and pi is the highest interpolated 

precision for the correct hit j at rj, the recall at that hit. Interpolated precision 

pi is calculated for each recall r by taking the highest precision at r or any r’ > 

r. 

Figure 8.2 below compared the iP/R curves of the annotations with (blue) and 

without (red) simplification. 
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Figure 8.2: iP/R curves of annotations with and without use of 

sentence simplification 

 

The AUC for the annotations which used simplification is 0.684 and that when 

simplification is not used is 0.673. There is a slight increment in the area 

under curve.  

Further, Figure 8.3 below shows that sentence simplification helps in 

increasing F-score significantly when the system annotates only the relations 

it is confident of. This measure of confidence was available as part of Mallet’s 

output along with the label assigned to the instance. Though there is a slight 

drop in F-score initially, for annotations the system is highly confident about, 

the F-score is significantly higher. In a hospital situation, it is essential to only 

consider system’s output when there is a high probability that the output is 

correct, even at the cost of not being able to use the system’s guess for some 

cases.  

Wilcoxon signed-rank test (http://faculty.vassar.edu/lowry/wilcoxon.html) 
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range of minimum confidence. Wilcoxon signed-rank test is used an 

alternative to the paired Student’s t-test, when the samples may not be 

assumed to be normally distributed. The increase in F-scores over the entire 

range of confidence was found to be significant (P < 0.0001).  

Figure 8.3: F-score vs. Confidence with and without use of sentence 

simplification 

 

On X-axis, the confidence for annotating. On Y-axis, the F-score of respective 

system if all annotations with at least the corresponding confidence. 
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Figure 8.4: F-score vs. Confidence  with and without use of sentence 

simplification (for confidence>0.4) 

 

Additionally, when better or equal performance is desired, even at low 

confidence intervals, labels of candidate instances created from simplified 

sentences could be used only when the confidence is greater than a set 

threshold. For example, Figure 8.4 shows the F-score with respect to the 

confidence of a system that uses the label from simplified sentences only 

when the confidence is at least 0.4.  
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candidate relation instance as positive. The objective of error analysis is to 

categorize the errors so that solutions to overcome or minimize might be 

identified. This would not only lead to better use of sentence simplification, 

but also improve the performance of the system overall. 

65 candidate instances (out of 825) were identified among the false positives 

introduced after sentence simplification was used. These candidate relation 

instances are manually verified by a medical doctor (Sarada Panchanathan) 

and by a biomedical informatics doctoral candidate (Siddhartha 

Jonnalagadda). The categories of errors identified are: 

1. Instances that the reviewers identified as true positives (20%): 

This could also mean that some of them are "ambiguous", since the local 

annotations conflict the official annotations. However, the fact that the 

reviewers identified them as true positives only after thorough inspection 

might indicate that a lot of "domain" knowledge might be needed for the 

system (or a reviewer) to annotate them correctly. The medical doctor 

commented, “I think that obvious relations are detectable by all doctors, but 

it is the less obvious ones that depend on expertise. Also, someone else who 

is more of an expert may find a relation that I did not.” 

2. Instances that occur together frequently (siblings) (25%): This 

occurs with respect to the relation type – "Problem Indicating Problem". 

Concepts that occur together frequently do not necessarily indicate each 

other. Example: In the sentence, “This is an 80 year old female with a history 

of Stage I breast cancer , hypertension , hyperlipidemia , who presents with a 

leukocytosis/bandemia , hypotension in the setting of dehydration and 

influenza .” leukocytosis/bandemia and  hypotension together might indicate 
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a different problem such as sepsis; however, they do not indicate one 

another. This situation also occurs when considering alternate diagnosis. 

3. Instances that are recognized, but are incorrectly classified (11%): 

These situations occur in some cases because the relationship is expressed in 

future tense, for example - “will reveal”,  instead of past tense, for example - 

"revealed". Example: “We will be obtaining a 24 - hour Holter monitor on 

discharge as well as setting Mr. **NAME[AAA] up for a prolonged ambulatory 

EEG in an attempt to capture these spells .” The test "a 24 - hour holter 

monitor" will be conducted to diagnose "these spells". However, since the 

future tense is not recognized and the relation is mistaken as “Test revealed 

Problem.” 

In some other cases in this category, the errors can be attributed to the 

presence of negation (implicit or explicit) that reversed the type of relation. 

Example: “Her delirium was felt possibly secondary to withdrawal versus toxic 

metabolic , but gradually improved slowly , and therefore patient did not 

receive treatment for barbiturate withdrawal .” The concept "withdrawal" 

should have been associated to the concept "treatment" as “Treatment Not 

Administered for Problem”. However, the candidate instance was incorrectly 

classified as “Treatment Administered for Problem”.  

4. Inability to parse clinical language, where the concepts are 

punctuated by clinical language to rule out a relation (8%): Example: 

Insulin 44 units NPH qam ; 8 units qpm ; Vasotec 2.5 qd ; Lasix 40 qd ; 

Mevacor 40 qd ; Cardizem CD 180 qd ; Ciprofloxacin for urinary tract infection 

; aspirin . The concept "cardizem cd"  is not related to "urinary tract 
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infection". Other ways of separating is through use of medical abbreviations 

such as s/p, h/o and PMH. 

5. Miscellaneous (36%): The reviewers identified these as cases where 

their occurrence together is coincidental and their classification as a relation is 

a random chance. 

Solutions: In situations where the relation between concepts is ambiguous-

based on the information in the sentence, domain knowledge through 

manually built dictionaries or automatically acquired semantics (T. Cohen & 

Widdows, 2009) might be useful. Most of the false positives are separated by 

punctuation marks such as ,./; and also punctuation markers in medical 

vocabulary such as s/p, h/o and PMH. Detecting negation and time (tense, or 

temporal order) will also help in correctly classifying instances. All these 

solutions will not only improve the impact of sentence simplification, but also 

the overall performance of the system. 

In addition, the lexical characteristics of those instances that are annotated as 

True Positive (error type 1) by two reviewers are compared with the rest. The 

two characteristics considered are: a) number of words in the sentence, and 

b) number of clauses in the parse tree of the sentence. The samples of 

observations are compared against the two sets of instances independently 

using Mann-Whitney U test (http://elegans.swmed.edu/~leon/stats/utest.cgi) 

with the below results in Tables 8.4 and 8.5. Mann-Whitney U test is used as 

an alternative to the unpaired Student’s t-test when the samples may not be 

assumed to be normally distributed. 
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Table 8.4: U Test Results for number of clauses 

n1 n2 U P (two-tailed) P (one-tailed) 

51 14 461.5 0.095416* 0.047708* 

normal approx 
z = 1.66758 0.0953998* 0.0476999* 

*These values are approximate. 

 

Table 8.5: U Test Results for word length 

n1 n2 U P (two-tailed) P (one-tailed) 

51 14 451.5 0.133812* 0.066906* 

normal approx 
z = 1.508 0.1315546* 0.0657773* 

*These values are approximate. 

n1 and n2 respectively are the number of introduced false positive samples 

that are annotated as false positives and those that are annotated as true 

positives. The p-value is less than 0.05 for the one-tailed test using the 

number of clauses even with such a small sample. These results suggest 

that relations may be missed more often by annotators when the 

sentences are complex.  

A comparison is also made between the lexical characteristics of the true 

positives introduced with sentence simplification and those of the false 

positives introduced with sentence simplification. Tables 8.6 and 8.7 fail to 

indicate a correlation based on word lengths and number of clauses. Table 8.8 

however indicates that the sentences in true positives are significantly more 

complex than the sentences in false positives (based on the average number 

of clauses per word). This suggests that sentence simplification might 

be more useful when relatively complex sentences are used.  
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Further, Table 8.9 shows that the number of concepts in false positive 

sentences is significantly more than those in true positive sentences. 

This appears to be due to error types 2 and 4 which also correlate with the 

number of concepts in the sentence. 

Table 8.6: U Test Results for word length II 

n1 n2 U P (two-tailed) P (one-tailed) 

825 237 102506.5 0.25359* 0.126795* 

normal approx 
z = 1.1399 0.254328* 0.127164* 

*These values are approximate. 

Table 8.7: U Test Results for number of clauses II 

n1 n2 U P (two-tailed) P (one-tailed) 

825 237 99789.5 0.625432* 0.312716* 

normal approx 
z = 0.487053 0.62622* 0.31311* 

*These values are approximate. 

Table 8.8: U Test Results for average number of clauses per word in 

a sentence 

n1 n2 U P (two-tailed) P (one-tailed) 

825 237 108586.5 0.009056* 0.004528* 

normal approx 
z = 2.60082 

0.00930006* 0.00465003* 

*These values are approximate. 

Table 8.9: U Test Results for number of concepts in a sentence 

n1 n2 U P (two-tailed) P (one-tailed) 

818 237 116163.5 8e-06* 4e-06* 

normal approx 
z = 4.65584 

3.22656e-06* 1.61328e-06* 

*These values are approximate 
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8.7 Conclusion 

The impact of sentence simplification in clinical relationship extraction is 

studied using state of the art baseline – a MaxEnt-based system using several 

NLP features. In sum, sentence simplification significantly aids clinical 

relationship extraction, especially in situations where relatively high 

confidence of annotation is expected from the system.  

In error analysis, the errors were categorized to help improve the overall 

system as well as the impact of sentence simplification. Further, the statistical 

tests suggest that human annotators face more difficulties with finding 

relations in complex sentences. The true positives found with sentence 

simplification are significantly more complex than the corresponding false 

positives. The number of concepts in these true positives is also significantly 

higher than those in the corresponding false positives. 
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SECTION D: OVERALL DISCUSSION AND CONCLUSIONS 

This dissertation examined the possibility of reducing the limitations when 

automatically extracting information from biomedical texts caused by the 

scarcity of sufficiently large annotated corpora. The chapters in Section B 

presented an unsupervised approach that addressed the challenge of limited 

vocabulary in the training data. This approach included the use of 

distributional semantics to automatically generate lexical resources. These 

resources were shown to be more useful for concept extraction than the 

traditionally used manually curated lexicons. An overall improvement was also 

observed in the accuracy of extracting named entities from biomedical 

literature and clinical notes when using this approach. Section C addressed 

the challenge of small corpora not having enough syntactic patterns for 

accurate recognition of relationships between concepts. Experiments in that 

section showed that sentence simplification can help association extraction. 

This section discusses future directions in concept and relationship extraction 

research suggested by the observed results and presents the overall 

conclusions one can draw from them. 
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9. DISCUSSION 

A summary of the overall accomplishments with references to the 

corresponding chapters is first presented. Implications of these 

accomplishments on the field of informatics are then discussed. Limitations of 

the work are also described. Finally, potential applications and extensions of 

the research are elaborated upon. 

9.1 Summary 

In Chapter 3, the method to adapt distributional semantics for use in concept 

extraction or named entity recognition was discussed. An evaluation of the 

method was performed using the i2b2/VA concept extraction task corpus thus 

demonstrating that the distributional semantic features significantly improve 

the performance.  In Chapter 4, the domain adaptability of the above method 

was demonstrated using the BioCreative II Gene Mention extraction task 

corpus. Further, a comparison of different types of distributional semantic 

measures was made. In Chapter 5, the applicability of distributional semantic 

measures for the more complex multi-label classification of named entities 

was demonstrated. 

In Chapter 6, a sentence simplification method using Link Grammar parser 

was presented. In Chapter 7, the sentence simplification method was 

improved to be able to use the output of any statistical parser as input and 

the utility of simplification was demonstrated for protein-protein interaction 

extraction. In Chapter 8, the same system was used to simplify sentences in 

clinical notes. Sentence simplification was shown to improve clinical 

relationship extraction, especially in situations where high confidence of 

annotation is expected from the system. 
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9.2 Implications for the field 

Through the work on concept extraction, two diverse research areas - 

distributional semantics and information extraction are amalgamated. A novel 

finding of this work is that semantic vector models could be used in extracting 

named entities. Previously, Gibb’s sampling is used to incorporate features 

from words that are not in immediate neighborhood (Jenny Rose Finkel, 

Grenager, & C. Manning, 2005) to address the label inconsistency problem. 

For example, from the sentence “.. the news agency Tanjug reported …”, they 

were able to correctly classify the named entity Tanjug used at the end of 

another sentence (“… airport, Tanjug said.”) as an organization rather than as 

a person. Finkel et al. evaluated the impact of the sampling features by 

measuring the increment in performance after adding them to a state of the 

art baseline system. The increment in performance was 1.3% in the task of 

extracting concepts from general English. Although 1.3% increment might 

seem slight, Finkel et al.’s work has been cited more than 250 times, and is 

generally considered significant. In comparison to Finkel et al.’s work, the 

features proposed in this work not only use information from sentences in the 

same paragraph or a document, but also from those sentences present 

elsewhere in the unlabeled documents. The method  proposed here using 

distributional semantics achieved a performance improvement of 2.0% in the 

task of extracting medical problems, tests, and treatments from clinical notes 

and 1.9% in the task of extracting gene mentions from biomedical literature. 

These improvements were measured against state of the art systems. It is 

hoped that this research, when published, compels similar interest in the NLP 

scientific community. 
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It is shown previously (J. R. Finkel & C. D. Manning, 2009a; Turian et al., 

2010) that statistically created word clusters (Brown et al., 1992; Clark, 

2000) could be used to improve named entity recognition. However, only a 

single feature can be derived from the clusters. Using distributional 

representations for concept extraction or similar NLP tasks has been 

considered an unsolved problem (Turian et al., 2010). This work not only 

demonstrated how distributional semantics could be used for concept 

extraction, but also that they are better than the feature based on clustering. 

Although there are other semi-supervised machine learning approaches such 

as ASO (Ando, 2007), most of these systems restrict themselves to a specific 

framework and algorithm. This is disadvantageous considering most state of 

the art concept extraction systems use supervised machine learning 

algorithms, such as CRF, and it would not interest researchers to replace 

these systems with a completely different framework and algorithm. Our 

approach was to use NLP features generated through unsupervised means 

within a supervised machine learning system. While this approach renders all 

the advantages offered in other semi-supervised machine learning systems, it 

also permits maximum flexibility in the choice of the basic framework of the 

set-up. In fact, a rule-based system that uses these unsupervised features or 

measures was also demonstrated in Chapter 5. 

The features created using the semantic vectors proved to be much more 

valuable than manually created lexical resources in the biomedical and clinical 

concept extraction tasks. This shows that these features help in domain 

adaptation for concept extraction which has immediate practical applications. 

In the medical domain, concept extraction is human intensive since different 
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systems focus on extremely specific problems such as extracting concepts 

related to congestive heart failure from chest radiology reports (Jeff Friedlin & 

McDonald, 2006) and identifying pancreatic cancer patients (J. Friedlin et al., 

2010). Systems that could be easily adapted to different domains help in 

decreasing human effort by minimizing the need to customize systems 

manually to hundreds of such tasks. 

Sentence simplification is shown to aid association extraction from biomedical 

literature and clinical notes. Sentences in biomedical literature and clinical 

notes are significantly more complex than articles in typical English text. After 

simplifying sentences using link grammar dependencies, the accuracy of Link 

Grammar parser and Charniak-McClosky parser in parsing biomedical 

literature increased. In addition, protein-protein interactions were extracted 

more accurately after simplifying sentences. A shotgun approach to using 

simplified sentences for association extraction is proposed in chapter 7. The 

same approach was applied to extract relations from clinical notes also with 

positive results. The methods proposed for sentence simplification and for use 

of simplified sentences in association extraction are unique and novel. 

The hypothesis that sentence simplification could be used to improve 

association extraction was subsequently verified by other researchers (Miwa, 

Sætre, Miyao, & Jun’ichi Tsujii, 2010). They also simplified sentences using 

deep parser and tested the impact using several protein-protein interaction 

corpora. Sentence simplification improved the accuracy of extracting protein-

protein interactions in the case of all the corpora. 
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9.3 Limitations 

The unlabeled data currently used are clinical trials from Medline. The 

improvement to concept extraction is expected to be higher if one uses 

clinical notes from hospital records since that would also capture semantics of 

non standard words used in the clinical notes. The semantic vectors of the 

terms could be extracted from the clinical notes in clinical data warehouses. 

However, it is not known whether the vectors themselves could reveal 

protected health information of patients. Research needs to done to 

determine such a possibility and if necessary redact information that 

compromise protected health information. 

Future work should include comparison of the features with other models, 

such as Collobert and Weston’s word embeddings (Collobert & Weston, 2008), 

which utilize neural network models to represent the syntactic and semantic 

information about the words in a dense, low dimensional feature space.  

A limitation in using distributional semantics is that the meanings of words 

often differ with the passage of time and for specialized disciplines. This 

phenomenon is known as semantic change or semantic shift. For example, 

the word “guy” which is originally used to mean “grotesque person” (as 

named after Guy Fawkes hanged an assassination attempt in 1605), now 

means “fellow”. The meaning of the word “case” changes with specialization 

(Traugott, 2002). In general domain, it means “circumstances in which one 

is”. In medical domain, it means “a patient”. In legal domain, it means “a law 

suit”. The extent of reliability of the semantic vectors created automatically, 

given the semantic shift possibility, need to be analyzed. 
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It is also curious that while pattern-based systems were efficient for 

extracting protein-protein interactions (Leitner et al., 2010), they were 

outperformed by machine learning systems while extracting relationships in 

clinical notes (Chapter 8). Would prior knowledge about the concepts help in 

some cases to determine whether there is a relationship between them? It 

would be interesting to analyze if distributional semantics is useful to 

automatically gain this automatic knowledge. 

The clinical relation extraction system could potentially perform more 

accurately if machine learning features to detect negation and temporality are 

employed. Given the flexibility of the clinical relationship extraction system’s 

architecture, existing systems for detecting negations and temporality (W. 

Chapman, 2001; L. Zhou, Parsons, & Hripcsak, 2008) could be integrated in. 

Post-processing using rules based on abbreviations such as s/p, h/o and PMH 

that impact the relationship between concepts would also improve 

performance. 

9.4 Potential applications and Future work 

 
Automatic coding of concepts and relations in clinical notes: Since 

systems for extracting concepts and relationships are still being explored, 

automatic coding is an emerging technology. In text mining pipeline, there is 

a further step after extracting concepts known as normalization and 

disambiguation. This step involves disambiguating polysemy and synonymy. 

Polysemy is the event of the same entity having different semantic meanings 

in two different contexts. For example, PPI could mean Inorganic Pyro 

Phosphate when the subject of discussion is about enzymes; it could mean 

Peptidyl prolyl cis-trans-isomerase when the discussion is about proteins; it 
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could also mean protein-protein interaction in other situations. The first step 

in normalization will be to assign different identifiers to polysemous entities. 

Synonymy is the event of two different entities having the same semantic 

meanings in all contexts. For example, AD and SDAT; poliomyelitis and polio 

are synonyms. The task of normalization for entities like Proteins involves 

using a dictionary, such as UniProt, where each entity is mapped to a unique 

id. Automatic coding systems not only need concept extraction, but also 

require normalization using different schemas, such as the International 

Classification of Diseases (ICD) or Current Procedural Terminology (CPT), and 

use-case-specific, non-standardized schemas, such as the presence or 

absence of a given condition. The entities in the schemas could be pre-

coordinated (coding as a single field) or post-coordinated (reassembled after 

storing individual components separately). Two problems associated with pre-

coordination (Lussier & Bodenreider, 2007) are: a) updates to the cross index 

could be slow because of the knowledge resources needed and b) 

computation ambiguity of the reuse of the concept. Given the ability of 

distributional semantics to detect words appearing in similar context and to 

predict the appropriateness of a concept to a context, both these problems 

could be addressed automatically. Distributional semantics also helps in 

automatically mapping “pre-coordinated” terms with “post-coordinated” 

expressions and vice-versa. 

Secondary use of clinical notes: The clinical notes in the hospital systems 

could be used to automatically create a conceptual thesaurus for the words in 

the notes. This thesaurus would be useful for annotating concepts in a 

machine learning system or a rule-based system. This thesaurus would be 

more useful for annotating the clinical notes within the hospital system, since 
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it is customized for that genre of text. However, chapter 3 used the clinical 

notes from the University of Texas, Houston to create a thesaurus and 

extracted relations in the i2b2/VA task (coming from a different hospital 

system). The F-score that is obtained is significantly better than the best 

combination thus far. In terms of comparison with other systems, the F-score 

of 91.3% with inexact match and 82.3% with exact match, ranks 2nd in terms 

of inexact match and 3rd in terms of exact match out of 22 international 

teams.  

Domain independent concept extraction: To adapt a machine learning 

system of a particular domain to another domain, domain specific information 

is needed. Firstly, domain specific resources, such as thesauri and lexicons, 

need to be created. In chapter 4, it is demonstrated that such resources can 

be automatically created using distributional information in text. In fact, the 

automatically created resources were more useful than the manually created, 

curated and compiled dictionaries. Secondly, and more importantly, one 

needs corpora annotated with labels indicating concepts. Is it possible to 

construct labeled corpora automatically? Can one use semantic information 

retrieval to find suitable text belonging to the domain? Can publicly available 

ontologies  be employed to simultaneously annotate concepts in the retrieved 

text? 

Summarization and question answering: Summarization of documents is 

useful for clinicians and policymakers to obtain a summary of guidelines or 

related literature. It is also useful to aphasia patients who would like to read 

summaries made of shorter sentences. Our work with sentence simplification 
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can be extended in the future for the task of summarization (as demonstrated 

through SumBasic (Vanderwende et al., 2007)).  

In addition, the simplified sentences could be translated to logical facts. 

Compilations of logical facts over large amount of text will make it possible to 

construct reasoning systems and potentially be useful for creating question 

answering systems such as Watson. 
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10. CONCLUSION 

How does one overcome the inherent ambiguity present in human written 

text – be it in literature or in narratives, be it in semantics or syntax, be it in 

identifying concepts or expressing relations between two concepts in a 

sentence? This is the challenge that inspired this research. Ideally, all the 

ambiguity should be resolved by annotating all possible examples necessary 

to identify concepts and relationships. However, this is not possible due to the 

amount of domain expertise and effort needed. Section B proposed an 

effective way to minimize this limitation using distributional semantics and 

sentence simplification. 

Humans learn semantics through experience. Attempts to impart semantic 

information to concept extraction systems is validated by the success of 

distributional semantic features in outperforming manual dictionary features. 

It is demonstrated that a computer can learn semantics through distributional 

statistics or geometry. Using concept extraction from the clinical notes as the 

first example, it is shown that distributional semantics is more useful than 

traditionally used dictionaries. This was measured by the increase in F-score 

accuracy on a baseline system that extracts medical problems, tests and 

treatments from clinical notes. Using distributional semantic measures 

calculated automatically saves the time spent in building and compiling 

dictionaries automatically. When the same methods are used for extracting 

protein names from biomedical literature, significant increase in F-measure is 

again achieved. This demonstrates that the distributional semantic features 

are significantly useful in automatically acquiring knowledge of any domain. 
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Humans deal with complex syntax by first breaking the sentence into simple, 

yet meaningful parts. Hence, an attempt is made to help a relation extracting 

system by paraphrasing or simplifying the sentence in different ways so that 

a relation might be identified in one of them. This experiment also yielded 

positive results in both biomedical literature and clinical notes. On the task of 

PPI extraction, use of sentence simplification improved the F-score by around 

7%, with an improvement in recall of around 20%. Even for clinical notes, the 

F-score of the clinical relation extraction system increased significantly in 

situations where high confidence on the annotations were expected from the 

system.  
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