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ABSTRACT

One of the seminal results in extremal combinatorics, due to Erdős, Ko and

Rado, states that if F is an intersecting family of r-subsets of an n-element set,

i.e. for any A,B ∈F , A∩B 6= /0, then |F | ≤
(n−1

r−1

)
if r ≤ n/2. Furthermore, when

r < n/2, the only structure which attains this extremal number is that of a star. A

major part of this dissertation considers extensions of the Erdős–Ko–Rado theorem

motivated by a graph-theoretic generalization due to Holroyd, Spencer and Talbot.

A conjecture of Holroyd and Talbot is proved for a large class of graphs, namely

chordal graphs which contain at least one isolated vertex. A stronger result is also

shown to exist for a special class of chordal graphs obtained by blowing up edges

of a path into complete graphs.

Next, a well-known generalization of the EKR theorem due to Frankl is con-

sidered. For some k ≥ 2, let F be a k-wise intersecting family of r-subsets of

an n-element set, i.e. for any F1, . . . ,Fk ∈ F , ∩k
i=1Fi 6= /0. If r ≤ (k−1)n

k
, then

|F | ≤
(n−1

r−1

)
. A stability version of this theorem is proved using an analog of

Katona’s circle method. A graph-theoretic generalization of Frankl’s theorem anal-

ogous to a theorem of Bollobás and Leader is also formulated and proved.

A collection of families A1, . . . ,Ak is called cross-intersecting if for any i, j ∈

[k] with i 6= j, A ∈Ai and B ∈A j implies A∩B 6= /0. Hilton proved a best possible

upper bound on the sum of the cardinalities of uniform cross-intersecting subfam-

ilies. In this thesis, extensions of Hilton’s theorem are formulated and proved for

chordal graphs and cycles.

One of the motivations in formulating these graph-theoretic generalizations for

EKR theorems is a long-standing conjecture of Chvátal for hereditary set systems.

A set system F is said to be hereditary if for any F ∈F , if G ⊆ F , then G ∈F .

Chvátal’s conjecture states that the set of maximum-sized intersecting subfamilies

of a hereditary set system contains a star. It can be observed that the family of
ii



all independent sets in a graph is hereditary. A different class of hereditary vertex

families in a graph is studied, namely the family of all cycle-free vertex subsets

of a graph. Finally, a powerful tool of Erdős and Rado is used to prove Chvátal’s

conjecture for hereditary families with small rank.
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Chapter 1

INTRODUCTION

The primary focus of this dissertation lies in the area of extremal combinatorics,

in particular intersection theorems in extremal set theory. A starting point in this

line of research is the following question. Consider a collection of subsets of an

n-element set X , such that no pair of subsets in the collection is disjoint. Call it

an intersecting family. How large can such an intersecting family be? As it turns

out, this question is surprisingly easy to answer. An intersecting family of subsets

can have size at most 2n−1, because for any subset A, at most one out of the pair

(A,X \A) can be in the family. Furthermore, one of the structures which attains

this extremal number is the family of all subsets which contain a specific element,

called a maximum star. In general, a family F with ∩F∈F F 6= /0 is called a star.

A related question is the following: For a set X = [n] = {1, . . . ,n}, and r≥ 1, let(X
r

)
be the family of all subsets of X of size r, also called the complete r-uniform

hypergraph on n vertices, and let A ⊆
(X

r

)
be intersecting. How large can A be? If

r > n/2, any pair of r-subsets have a non-empty intersection, but the case r ≤ n/2

is non-trivial. In the paper that initiated the study of intersecting set systems, Erdős,

Ko and Rado [21] proved the following seminal result.

1.1 The Erdős–Ko–Rado Theorem

Theorem 1.1.1 (Erdős–Ko–Rado). For a set X = [n] and 2≤ r ≤ n/2, if A ⊆
(X

r

)
is intersecting, then |A | ≤

(n−1
r−1

)
.

Moreover, Hilton and Milner [32], as part of a stronger result, proved that if

r < n/2, then equality holds iff A =
(X

r

)
x = {A : A ∈

(X
r

)
,x ∈ A}; in other words,

A is a maximum r-uniform star centered at x.
1



The original inductive proof in [21] used the so-called shifting (or compres-

sion) method, a widely used technique in extremal set theory. Frankl [26] gives

an excellent survey of the use of this technique. There have been other interesting

proofs too. Daykin [14] proved the theorem using the Kruskal-Katona theorem,

while Katona [39] gave what was probably the simplest proof, an elegant argument

using double counting. Later in the chapter we briefly review shifting and Katona’s

method, the two main techniques we extensively use in our arguments.

The Erdős–Ko–Rado theorem is one of the fundamental theorems in combina-

torics, and has inspired a large number of beautiful results, many of which have

found applications not only within combinatorics, but also in the fields of informa-

tion theory and probability. A particularly elegant application to probability was

by Liggett [43], who proved a result on sums of independent Bernoulli random

variables using the bound in Theorem 1.1.1.

The broader area of extremal combinatorics has applications to the theory of

computing. For instance, the fundamental lower bounds problem, which is to prove

that a given function cannot be computed within a certain amount of time or space,

is an extremal problem, and techniques from extremal set theory have been exten-

sively used to prove results of this type. A striking example was due to Razborov

[54], who used the Sunflower Lemma of Erdős and Rado [23] to prove a lower

bounds theorem for monotone circuits.

Many of the outstanding achievements in the field also have connections with

other areas of mathematics; for instance, Szemerédi’s regularity lemma [59] was

born out of a conjecture in number theory, while the Kruskal-Katona theorem, par-

ticularly the version due to Lovasz, led to seminal work of Bollobás and Thomason

[7] which proved the existence of thresholds for monotone properties.

A very fine survey of the the avenues of research, pursued as extensions of the
2



Erdős–Ko–Rado theorem, in the 1960’s, 70’s and 80’s, is presented by Deza and

Frankl [15]. In this chapter, we will present some of the most important directions,

and ones most relevant to the focus of this thesis.

Generalization for t-intersecting families

The most natural extension of the theorem is to t-intersecting r-uniform families,

i.e. r-uniform families in which every pair of subsets intersect in at least t elements

for some t ≥ 1. As with the case t = 1, the problem is interesting only when n >

2r− t, since otherwise,
([n]

r

)
is t-intersecting. This problem was first considered

by Erdős et al. in their seminal paper, who proved the t-intersecting version of the

EKR theorem for sufficiently large n (in terms of t and r). The following theorem

appears in Bollobás [5], with a slightly better bound on n than the one obtained by

Erdős et al.

Theorem 1.1.2. Let 2 ≤ t < r, n ≥ 2tr3, and suppose F ⊆
([n]

r

)
is t-intersecting.

Then, |F | ≤
(n−t

r−t

)
, and equality holds if and only if F is a t-star, i.e. F = {A ∈([n]

r

)
: [t]⊆ A}.

However, the t-star structure is not the only candidate for creating a large t-

intersecting family. For 0≤ k≤ r− t, let Lk = [t+2k]. Now, consider the following

families. Let Fk = {A ∈
([n]

r

)
: |A∩Lk| ≥ t + k}. It is not hard to see that for each

0≤ k ≤ r− t, Fk is a t-intersecting family.

The following proposition, about the sizes of the Fi’s can be easily verified.

Proposition 1.1.3. 1. If n > (t +1)(r− t +1), then |F0|> max 1≤k≤r−t |Fk|.

2. If n = (t +1)(r− t +1), then |F0|= |F1|.

3. If n < (t +1)(r− t +1), then |F0|< |F1|.

3



Frankl [25] conjectured that one of the families Fk (0 ≤ i ≤ r− l) has max-

imum cardinality among all t-intersecting families. In particular, by Proposition

1.1.3, he conjectured that if n≥ (t+1)(r− t+1), then for any t-intersecting family

on [n], |F | ≤
(n−t

r−t

)
. Frankl [25] proved this conjecture for all t ≥ 15 and Wilson

[61] later proved this for all t. Finally, Ahlswede and Khatchatrian [1] gave an

outstanding proof of what is now called the “complete intersection theorem”, by

finding the size and structure of the extremal families for all values of n, including

when n < (t +1)(r− t +1). One of the many remarkable achievements of this the-

orem was to highlight a deep connection between intersection theorems in finite set

theory and computational complexity theory. Indeed, the t = 2 case of the theorem

was a crucial component in the work of Dinur and Safra [18] which proved that

approximating the Minimum Vertex Cover problem to within a factor of 1.3606 is

NP-hard.

1.2 Chvátal’s Conjecture

We’ve seen that the maximum size of an intersecting subset of the power set of a

set [n], denoted henceforth by 2[n], is at most 2n−1 and that the maximum star is one

of the structures which achieves this size. It turns out that the star is not the only

extremal structure in this case. We can construct another extremal family when n is

odd and n≥ 3. Consider the family G = {G⊆ [n] : |G|> n/2}. Clearly the family

is intersecting, since every set has size more than half the size of the ground set and

from every (A,X \A) pair in 2[n], we have picked exactly one set, more precisely

the larger set so the size of the family is 2n−1. It is also trivial to note that G is

not a star of size 2n−1 since it does not contain any singletons. We say that the set

system 2[n] is EKR since the set of maximum-sized intersecting subfamilies of 2[n]

contains a star. Similarly, we say that the family of r-subsets of [n], denoted by

4



([n]
r

)
, is strictly EKR for n > 2r, since every member in the set of maximum-sized

intersecting subfamilies is a star. Note that by our preceding observations, 2[n] is not

strictly EKR. We also point out that when n= 2r,
([n]

r

)
is EKR, but not strictly EKR.

The following simple construction demonstrates this. Let H = {H ∈
([n]

r

)
: 1 /∈H}.

Thus, H consists of all r-subsets of [2r]\{1}, and is intersecting. It also has size(2r−1
r

)
=
(2r−1

r−1

)
.

We turn our attention back to the power set 2[n]. 2[n] is a special example of a

hereditary family, also referred to in the literature as an ideal or a downset. A family

F is said to be hereditary if A∈F and A′⊆A implies that A′ ∈F . Chvátal conjec-

tured that with regards to maximum intersecting subsets, all hereditary set systems

exhibit behavior similar to 2[n]. More precisely, he conjectured the following.

Conjecture 1.2.1 (Chvátal). If F is a hereditary family, then F is EKR.

There are a few results which verify the conjecture for specific hereditary fami-

lies. Among the most important ones is a result of Chvátal himself [12]. Let F be

a hereditary family on a set X , which has a total ordering of its elements induced

by a relation �. Chvátal proved the conjecture when F is compressed. Snevily

[57] further extended Chvátal’s theorem and proved the conjecture when the family

is compressed with respect to a specific element x. In Chapter 5, we will discuss

these, and other related results in greater detail, and consider this conjecture for

hereditary families with small rank.

1.3 Erdős–Ko–Rado For Graphs

Partially motivated by Chvátal’s conjecture, and earlier results of Berge [4] and

Bollobás-Leader [6], one of the recent generalizations of Theorem 1.1.2 considers

hereditary families of vertex sets of a graph G. It is not hard to observe that the

family of all independent vertex sets (subsets of vertices containing no edges) of
5



a graph G is hereditary. In particular, Holroyd, Spencer and Talbot [34] consider

uniform subfamilies of this family. For a graph G, vertex v∈V (G) and some integer

r ≥ 1, denote the family of independent sets of size r of V (G) by I (r)(G) and

the star subfamily {A ∈ I (r)(G) : v ∈ A} by I
(r)

v (G). Call G (strictly) r-EKR if

I (r)(G) is (strictly) EKR.

Earlier results by Berge [4], Deza and Frankl [15], and Bollobas and Leader

[6], while not explicitly stated in graph-theoretic terms, hint in this direction. The

following interesting conjecture was posed by Holroyd and Talbot [35]. For graph

G, let µ(G) be the minimum size of a maximal independent set.

Conjecture 1.3.1. Let G be any graph and let 1≤ r ≤ 1
2 µ; then G is r-EKR(and is

strictly so if 2 < r < 1
2 µ).

One of the main contributions of this dissertation involves verifying this con-

jecture for a large class of graphs, in particular encompassing earlier results by

Borg-Holroyd [10] and Holroyd et al. [34]. Call a graph G chordal if every cycle

in G, of length at least 4, has a chord, i.e. an edge between non-adjacent vertices of

the cycle.

Theorem 1.3.2 (Hurlbert, Kamat). If G is a disjoint union of chordal graphs, in-

cluding at least one isolated vertex, and if r ≤ 1
2 µ(G), then G is r-EKR.

The isolated vertex condition, in the hypothesis of the theorem, allows us to

determine the center of a maximum star in the graph (in a graph with an isolated

vertex, it is not hard to show that one of the maximum stars is centered at the

isolated vertex). More importantly, it makes it easy to extend Theorem 1.3.2 in the

direction of Chvátal’s conjecture in the form of the following corollary for a class

6



of hereditary families. Let I (≤r)(G) be the hereditary family of all independent

vertex sets of size at most r.

Corollary 1.3.3. If G is a disjoint union of chordal graphs, including at least one

isolated vertex, and if r ≤ 1
2 µ(G), then I (≤r)(G) satisfies Conjecture 1.2.1.

In Chapter 2, we will give a proof of Theorem 1.3.2 and also consider similar

problems for trees and other classes of chordal graphs without isolated vertices.

1.4 k-wise Intersection Theorems

A natural extension of the notion of intersection is k-wise intersection, for k ≥ 2.

Call F ⊂
([n]

r

)
k-wise intersecting if for any F1, . . . ,Fk ∈F ,

⋂k
i=1 Fi 6= /0. One of

the main results for k-wise intersecting families is the following generalization of

the EKR theorem, due to Frankl [28].

Theorem 1.4.1 (Frankl). Let F ⊂
([n]

r

)
be k-wise intersecting. If r≤ (k−1)n

k
, then

|F | ≤
(n−1

r−1

)
.

It is trivial to note that the k = 2 case of Theorem 1.4.1 is the Erdős–Ko–Rado

theorem. This theorem of Frankl led to the following problem of Katona’s, for the

case k = 3. Suppose, for some s ≥ 0, we require the condition F1 ∩F2 ∩F3 6= /0,

only for those triples which satisfy |F1 ∪F2 ∪F3| ≤ s. For which values of s does

this condition give the Erdős–Ko–Rado bound, i.e. for which s values is |F | ≤(n−1
r−1

)
. Frankl and Furedi [29] proved, for large n, that for the range 2r ≤ s ≤ 3r,

the extremal number, as well as the extremal structures remain unchanged. More

precisely, they proved the following theorem.

Theorem 1.4.2. Let F ⊆
([n]

r

)
be such that for any F1,F2,F3 ∈F satisfying |F1∪

F2∪F3| ≤ 2r, F1∩F2∩F3 6= /0 holds. Then, |F | ≤
(n−1

r−1

)
, with equality holding if

and only if F is a star.
7



In this thesis, we will be mostly interested in Theorem 1.4.1, and its general-

izations along the lines of the Erdős–Ko–Rado property for graphs defined in the

previous section. More particularly, for a graph G and r ≥ 1, let M r(G) denote

the family of all vertex sets of size r containing a maximum independent set, and

let H r(G) = I r(G)∪M r(G), where, as before, I r(G) denotes the set of all in-

dependent vertex sets of size r in G. For a vertex x ∈ V (G), let H r
x (G) = {A ∈

H r(G) : x ∈ A}. Define I r
x (G) and M r

x (G) in a similar manner. We restrict

our attention to the case when G = Mn, the perfect matching graph on 2n vertices

(and n edges). Note that |H r
x (Mn)| = 2r−1(n−1

r−1

)
when r ≤ n and |H r

x (Mn)| =

22n−r( n−1
r−n−1

)
+ 22n−r−1(n−1

r−n

)
, when r > n. We will consider k-wise intersecting

families in H r(Mn), and prove the following analog of Frankl’s theorem.

Theorem 1.4.3. For k ≥ 2, let r ≤ (k−1)(2n)
k

, and let F ⊆H r(Mn) be k-wise

intersecting. Then,

|F | ≤

 2r−1(n−1
r−1

)
if r ≤ n, and

22n−r( n−1
r−n−1

)
+22n−r−1(n−1

r−n

)
otherwise.

If r <
(k−1)(2n)

k
, then equality holds if and only if F = H r

x (Mn) for some x ∈

V (Mn).

It can be seen that the k = 2 case of Theorem 1.4.3 is the theorem of Bol-

lobás and Leader [6] we referred to in the earlier section. Note that when r ≤ n,

H r(Mn) = I r(Mn).

Theorem 1.4.4 (Bollobás-Leader). Let 1 ≤ r ≤ n, and let F ⊆ I r(Mn). Then,

|F | ≤ 2r−1(n−1
r−1

)
. If r < n, equality holds if and only if F = I r

x (Mn) for some

x ∈V (Mn).

8



1.5 Stability for Erdős–Ko–Rado theorems

One of the other interesting questions that is a natural extension in this line of

inquiry, is to ask what happens when the extremal family is excluded, i.e if we

suppose that there is no element contained in all sets of the family, i.e. ∩F = /0.

This problem was solved by the result of Hilton and Milner [32], who gave an upper

bound on the size of non-star intersecting families, and discovered the structure of

these “second best” families.

Theorem 1.5.1. Suppose r < n/2, and F ⊆
([n]

r

)
is an intersecting family such that

∩F∈F = ∩F = /0. Then, |F | ≤
(n−1

r−1

)
−
(n−r−1

r−1

)
+1. Equality holds if and only if

F ' {F ∈
([n]

r

)
: 1 ∈ F,{2, . . . ,r+1}∩F 6= /0}∪{2, . . . ,r+1}.

While the original proof of this theorem is complicated, simpler proofs exist,

one of them due to Frankl and Furedi, which uses shifting. In our brief introduction

to the shifting technique, we will present this proof.

Note that a different way of stating Theorem 1.5.1 is the following: For r < n/2,

if F ⊆
([n]

r

)
is intersecting and |F |>

(n−1
r−1

)
−
(n−r−1

r−1

)
+1, then ∩F 6= /0, in other

words, F has the structure of a star, although possibly not of the maximum size.

The above form of the Hilton-Milner theorem leads nicely to the problem of

stability analysis of extremal theorems, an area that has attracted a lot of attention

in recent years. We will briefly present this line of investigation here, and discuss it

in more detail while discussing our main result in this area in Chapter 3.

The classical extremal problem is to determine the maximum size, and possi-

bly structure, of a family on a given ground set of size n, which avoids a given

forbidden configuration F . For example, the Erdős–Ko–Rado theorem finds the

maximum size and structure of a set system on the set [n], which does not have

a pair of disjoint subsets. Often, only a few trivial structures attain this extremal
9



number. In case of the EKR theorem, the only extremal structure, when r < n
2 , is

that of a star in
([n]

r

)
. A natural further step is to ask whether non-extremal fam-

ilies, which have size close to the extremal number, also have structure similar to

any of the extremal structures. This approach was first pioneered by Simonovits

[56], to answer a question in extremal graph theory, and a similar notion for set

systems was recently formulated by Mubayi [50]. The Hilton-Milner [32] theorem,

as we observed earlier, by giving an upper bound on the maximum size of non-

star intersecting families, proves a stability result for the Erdős-Ko-Rado theorem.

Other stability results for the Erdős–Ko–Rado theorem have been recently proved

by Dinur-Friedgut [17], Keevash [40], Keevash-Mubayi [41] and others.

In this thesis, we will be interested in stability analysis for k-wise Erdős–Ko–

Rado theorems, in particular Theorem 1.4.1. Our main result will be the following.

Theorem 1.5.2. For some k ≥ 2, let 1 ≤ r < (k−1)n
k , and let F ⊆

([n]
r

)
be a k-

wise intersecting family. Then for any 0 ≤ ε < 1, there exists a 0 ≤ δ < 1 such

that if |F | ≥ (1− δ )
(n−1

r−1

)
, then there is an element v ∈ [n] such that |F (v)| ≥

(1− ε)
(n−1

r−1

)
.

We note that if F is k-wise intersecting, for some k ≥ 2, then it is intersecting.

Hence, if r < n/2, the results obtained in the papers mentioned above suffice, as

stability results for Theorem 1.4.1. Consequently, the main interest of our theorem

is in the structural information that it provides when n/2≤ r < (k−1)n/k.

1.6 Cross-intersection Theorems for Graphs

Consider a collection of k subfamilies of 2[n], say A1, . . . ,Ak. Call this collec-

tion cross-intersecting if for any i, j ∈ [k] with i 6= j, A ∈ Ai and B ∈ A j implies

A∩B 6= /0. Note that the individual families themselves do not need to be either non-

empty or intersecting, and a subset can lie in more than one family in the collection.
10



We will be interested in uniform cross-intersecting families, i.e. cross-intersecting

subfamilies of
([n]

r

)
for suitable values of r. There are two main kinds of prob-

lems concerning uniform cross-intersecting families that have been investigated, the

maximum product problem and the maximum sum problem. One of the main results

for the maximum product problem due to Matsumoto and Tokushige [45] states that

for r ≤ n/2 and k ≥ 2, the product of the cardinalities of k cross-intersecting sub-

families {A1, . . . ,Ak} of
([n]

r

)
is maximum if A1 = · · · = Ak = {A ⊆

([n]
r

)
: x ∈ A}

for some x ∈ [n].

We will be more interested in the maximum sum problem, particularly the fol-

lowing theorem of Hilton [31], which establishes a best possible upper bound on

the sum of cardinalities of cross-intersecting families and also characterizes the

extremal structures.

Theorem 1.6.1 (Hilton). Let r≤ n/2 and k≥ 2. Let A1, . . . ,Ak be cross-intersecting

subfamilies of
([n]

r

)
, with A1 6= /0. Then,

k

∑
i=1
|Ai| ≤


(n

r

)
if k ≤ n/r, and

k
(n−1

r−1

)
if k ≥ n/r.

If equality holds, then

1. A1 =
([n]

r

)
and Ai = /0, for each 2≤ i≤ k, if k <

n
r

,

2. |Ai|=
(n−1

r−1

)
for each i ∈ [k] if k >

n
r

, and

3. A1, . . . ,Ak are as in case 1 or 2 if k =
n
r
> 2.

It can be observed that Theorem 1.6.1 is a generalization of the Erdős-Ko-Rado

theorem [21] in the following manner: put k > n/r, let A1 = · · · = Ak, and we

obtain the EKR theorem.

11



There have been a few generalizations of Hilton’s cross-intersection theorem,

most recently for permutations by Borg ([8] and [9]) and for uniform cross-intersecting

subfamilies of independent sets in graph Mn which is the perfect matching on 2n

vertices, by Borg and Leader [11]. Borg and Leader proved an extension of Hilton’s

theorem for signed sets, which we will state in the language of graphs as follows.

Theorem 1.6.2 (Borg-Leader [11]). Let r≤ n and k≥ 2. Let A1, . . . ,Ak⊆J r(Mn)

be cross-intersecting. Then

k

∑
i=1
|Ai| ≤


(n

r

)
2r if k ≤ 2n/r, and

k
(n−1

r−1

)
2r−1 if k ≥ 2n/r.

Suppose equality holds and A1 6= /0. Then,

1. If k ≤ 2n/r, then A1 = J r(Mn) and A2 = · · ·= Ak = /0,

2. If k ≥ 2n/r, then for some x ∈V (Mn), A1 = · · ·= Ak = J r
x (Mn), and

3. If k = 2n/r > 2, then A1, . . . ,Ak are as in either of the first two cases.

In Chapter 4, we will consider extensions of this result to any disjoint union of

complete graphs and further investigate this problems for other classes of graphs.

In particular, we restrict our attention to cross-intersecting pairs, i.e. we fix k = 2

and prove cross-intersection theorems for larger classes of graphs, namely chordal

graphs and cycles.

1.7 Proof Techniques
Shifting

Set systems typically have little structure, so shifting is a technique that frequently

makes them easier to work with. More importantly, it preserves many of the prop-

erties of the set system, such as size and intersecting nature, so it proves useful

12



when proving intersection theorems. The technique was first employed by Erdős et

al. in the original proof of the EKR theorem. In this section, we will first define

the operation, present some simple, yet useful properties of the operation, and then

present an inductive proof of the bound in the EKR theorem. We will also present

a proof of the Hilton-Milner theorem, due to Frankl and Furedi. In both cases, our

approach will be similar to the one of Frankl [26].

Let [n] be the ground set, and let F ⊆
([n]

r

)
be an intersecting family. For

1≤ i < j ≤ n, define a shifting operation for a set F ∈F as follows:

Si j(F) =

 (F−{ j})∪{i} if i /∈ F, j ∈ F,(F−{ j}∪{i} /∈F , and

F otherwise.

Based on this definition, we can define the corresponding shifting operation for the

family F as follows.

Si j(F ) = {Si j(F) : F ∈F}.

We will now present the following well-known lemma about shifting.

Lemma 1.7.1. Suppose F ⊆
([n]

r

)
is intersecting. Then,

1. |Si j(F )|= |F |.

2. Si j(F ) is r-uniform.

3. Si j(F ) is intersecting.

Proof. It is clear, from the definition of shifting itself, that the first two parts of

the lemma are trivial. So, we will only prove the final part of the lemma. Let

F1,F2 ∈ Si j(F ), and suppose F1∩F2 = /0. Now, let G1,G2 be such that Si j(Gk) = Fi,

for k ∈ {1,2}. Since G1∩G2 6= /0 but F1∩F2 = /0, we have j ∈ G1∩G2. Moreover,

we also have j /∈ F1∩F2 and i /∈ F1∩F2. Without loss of generality, suppose j /∈ F1.
13



Then, F1 = G1 \ { j}∪ {i}. However, we then have F2 = G2. Now, since j ∈ G2

but i /∈ G2, and G2 was not changed by the shifting operation Si j, this means G′2 =

G2 \ { j}∪{i} ∈F . This gives |F1∩F2| = |(G1 \ { j}∪{i})∩ (G′2 \ {i}∪{ j})| =

|G1∩G′2|> 0, which completes the proof of the lemma.

It is not hard to see that by carrying out the shifting operation on F with all i j

pairs, with i < j, we end up with a shifted family G , i.e. a family with the following

nice structure. For all 1≤ i < j ≤ n, we have Si j(G ) = G . Before we proceed to a

proof of the bound in Theorem 1.1.1, we will prove another lemma, about shifted

families, which will prove that for a family that is shifted and intersecting, any two

elements in it will intersect on the first 2k− 1 elements of [n]. More precisely, we

prove the following.

Lemma 1.7.2. Suppose F is r-uniform, intersecting and shifted. Then, for all

A,B ∈F , A∩B∩ [2r−1] 6= /0.

Proof. We will give a proof by contradiction. Pick a counterexample which maxi-

mizes A∩ [2r−1]. Let j > 2r−1 such that j ∈A∩B. Since j > 2r−1, A∪B 6⊆ [2r−

1]. Now, pick an i /∈ A∪B, such that i≤ 2r−1, and replace A by A′ = A\{ j}∪{i}.

Since F is shifted, A′ ∈F , and A′∩B∩ [2r−1] = /0, and we obtain a counterexam-

ple, where A′∩ [2r−1] > A∩ [2r−1]. This contradicts the maximality of original

counterexample, completing the proof.

A Proof of the EKR theorem using shifting

We now proceed to prove the bound in Theorem 1.1.1, using shifting.

Proof of Theorem 1.1.1. Let n ≥ 2r, and suppose F is an r-uniform, intersecting

family on [n]. We do induction on r. The statement is trivial when r = 1, so suppose

r ≥ 2. We now do induction on n. Suppose n = 2r. Now, for any F ∈ F , its
14



complement, which also has cardinality r, [n] \F /∈ F . This gives us the bound

|F | ≤ 1
2
(2r

r

)
=
(2r−1

r−1

)
. So suppose n > 2r. Using Lemma 1.7.1, we can assume F

to be shifted. We define the following families. For 0 ≤ i ≤ r, let Fi = {F ∩ [2r] :

F ∈F ,F ∩ [2r] = i}. By Lemma 1.7.2, F0 is empty and each Fi is intersecting.

By the induction hypothesis for r, for 1 ≤ i ≤ r− 1, we get |Fi| ≤
(2r−1

i−1

)
. When

i = r, we get |Fr| ≤
(2r−1

r−1

)
by the induction hypothesis for n. Now, given F ∈ Fi,

at most
(n−2r

r−i

)
sets G ∈F have G∩ [2r] = F . This gives us the required bound, as

follows.

|F | ≤ ∑
1≤i≤r

|Fi|
(

n−2r
r− i

)
≤ ∑

1≤i≤r

(
2k−1
i−1

)(
n−2r
r− i

)
≤
(

n−1
r−1

)
.

Proof of the Hilton-Milner theorem

Proof of Theorem 1.5.1. Let F be a family that satisfies the hypothesis of the theo-

rem, i.e. F ⊆
([n]

r

)
, with r < n/2, and suppose ∩F∈F F = ∩F = /0. We can assume

F is of maximal size. Consider the effect of an arbitrary shift operation Si j, for

some i < j. By the properties of the shifting operation, Si j(F ) is intersecting, but

there are two possibilities: either ∩Si j(F ) = /0 or Si j(F ) has a star structure. If the

former is true, keep applying shift operations till be obtain a shifted family which

satisfies the hypothesis of the theorem. So, suppose the latter is true. To simplify,

we can assume (relabeling, if necessary) that the operation S12 results in the family

attaining the star structure. It is not hard to observe that 1 ∈ ∩S12(F ). This also

implies that {1,2}∩F 6= /0 for all F ∈F . By maximality of F , we can assume that

H = {G ∈
([n]

r

)
: {1,2} ⊂ G} ⊂F . Also, note that ∩F = /0.

Now, apply all Si j operations for 3≤ i< j≤ n. H ⊆F implies that ∩Si j(F ) =

/0. Eventually, after all the above Si j operations, we get a family, which we denote

by F , satisfying Si j(F ) =F for 3≤ i < j≤ n. This shifted property of F implies
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that {i,3,4, . . . ,r+1} ∈F for i ∈ {1,2}. This gives us
([r+1]

r

)
⊆F , because H ⊆

F . Now, applying any Si j operation, even with i= 1,2 will leave
([r+1]

r

)
unchanged,

and the property ∩F = /0 will be maintained. So, we have shown that in proving

Theorem 1.5.1, we can assume that the family is shifted. Now, F being shifted

implies that
([r+1]

r

)
⊆F .

We now proceed by induction on n. Define the families Fi as before, i.e. Fi =

{F ∩ [2r] : F ∈F , |F ∩ [2r]| = i}. From Lemma 1.7.2, each Fi is intersecting. In

particular, F0 = /0, and using the fact that
([r+1]

r

)
⊆F , we also get F1 = /0. We

will now prove the following proposition.

Proposition 1.7.3. 1. |Fi| ≤
(2r−1

i−1

)
, if 2≤ i < r.

2. |Fr| ≤
(2r−1

r−1

)
−
(r−1

r−1

)
+1.

Proof. Assume first that ∩F 6= /0. Now, since
([r+1]

r

)
⊆ F , no set of the form

{l∪{A} : A∈
({r+2,r+3,...,2r}

i−1

)
} can be in F , since it would have empty intersection

with some set from
([r+1]

r

)
. This implies |F | ≤

(2r−1
i−1

)
−
(r−1

i−1

)
, giving the required

bound. So suppose ∩F = /0. Now, Fi satisfies the assumptions of the main the-

orem, so by the induction hypothesis (of the proof of the main theorem), we get

|Fi| ≤
(2r−1

i−1

)
−
(2r−i−1

i−1

)
+1, which leads to the required bound. The case i = r is

trivial, since, as seen before, F ≤ 1
2
(2r

r

)
=
(2r−1

r−1

)
, which gives us the bound. �

Now, for any S ⊆ [2r], there are at most
(n−2r

r−|S|
)

sets F ∈F with F ∩ [2r] = S.

This observation, with the above proposition gives us the required upper bound as
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follows.

|F | ≤
r

∑
i=1

(
n−2r
r− i

)
|Fi|

≤ 1+
r

∑
i=2

(
n−2r
r− i

)((
2r−1
i−1

)
−
(

r−1
i−1

))
= 1+

(
n−1
r−1

)
−
(

n− r−1
r−1

)
. (1.1)

Katona’s circle method

Arguably the most elegant, and certainly the simplest proof of the Erdős–Ko–Rado

theorem was given by Katona [39], who devised what is now referred to as the

circle method. Moreover, for a number of suitably structured generalizations (see

Bollobas-Leader [6], for one example), this method can often be extended to give

short, simple proofs. In this small section, we will reproduce this proof, which

includes a proof of the bound in Theorem 1.1.1, and the characterization of the

extremal families. We will also discuss some applications of this method to other

settings.

Katona’s proof of the EKR theorem

Proof. We begin by defining a cyclic order on [n] to be a bijection from the set [n]

to itself. We say that a set F of size r is an interval in a cyclic order f if there exists

an i ∈ [n] such that F = { f (i), f (i+ 1), . . . , f (i+ r− 1)}. Note that in the proof,

addition will be carried out mod n, more precisely, i = i− n if i > n. We say that

F begins in i and ends in i+ r−1, and contains the points i, i+1, . . . , i+ r−1. As

before, let F be a r-uniform, intersecting family on [n], with r < n/2. The main

part of the proof will be the following lemma.
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Lemma 1.7.4. Let f be a cyclic order on [n]. Then, there are at most r elements in

F which are intervals in f .

Proof. Suppose A ∈ F is an interval in f . Let A = { f (i), . . . , f (i+ r− 1)}, for

some i ∈ [n]. Now, for i≤ j ≤ i+ r−2, let Ai be the set that ends in i and let Bi be

the set that begins at i+1. Since r ≤ n/2, for each i, Ai∩Bi = /0, so at most one out

of Ai and Bi can be an interval in f . Since there are r−1 (Ai,Bi) pairs, this gives us

the required bound. �

Now, regarding two cyclic orders as identical if one can be obtained from the

other by rotation, there are (n− 1)! cyclic orders, and each F ∈F is an interval

in r!(n− r)! cyclic orders, we get the following inequality, using Lemma 1.7.4.

|F |r!(n− r)! ≤ r(n− 1)!, which simplifies to the required bound |F | ≤
(n−1

r−1

)
.

Next, let r < n/2 and suppose equality holds. Then, for each cyclic order f , there

are exactly r elements in F that are intervals in f . It is not hard to see that in this

case, each of the r intervals will contain a common point. Now, let r < n/2 and sup-

pose there are exactly r elements in F that are intervals in a cyclic order f . With-

out loss of generality, suppose the common point is r. Let A1 = { f (1), . . . , f (r)}

be the set that ends in r and let A2 = { f (r), . . . , f (2r−1)} be the set that begins in

r. Let b ∈ [n] such that b∩ (A1∪A2) = /0. Now, A′ = A1 \{ f (i)}∪{b} /∈F , since

A′∩A2 = /0. Consider a cyclic order g where g(n) = b, g(k) = f (k), when 1≤ k≤ r,

and the rest of the bijection is defined arbitrarily. By Lemma 1.7.4, there are r sets

in F that are intervals in g. Now, since A′ /∈F , but A1 ∈F , this means that the r

sets in F that are intervals in g also contain the same common point, i.e. r. This

clearly shows that {F : f (r) ∈ F, |F |= r} ⊆F , completing the proof.
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Cayley graphs and application to Stability analysis

In our proof of Theorem 1.5.2, we will use a special generalization of Katona’s cir-

cle method, first formulated by Keevash [40]. We will briefly describe the method

here, while a more detailed exposition will be presented while giving the actual

proof of the theorem in Chapter 3.

Keevash’s method considers the Cayley graph of the symmetric group Sn, with

the adjacent transpositions as the generating set. Using a result of Bacher [3], it was

shown by Keevash that this Cayley graph has desirable expansion properties. Ka-

tona’s lemma states that for an intersecting family F ⊆
([n]

r

)
, there are exactly r sets

which are intervals in a cyclic order (which can now be regarded as a permutation

on the set {1,2, . . . ,n−1}), then they all contain a common point. Call such cyclic

orders v-complete, with respect to F , where v is the point common to all inter-

vals. If we take an intersecting family which has size close to the extremal number,

which is
(n−1

r−1

)
, we can show that there are many complete cyclic orders. The rest of

this strategy involves consideration of the subgraph of the above-mentioned Cayley

graph (on Sn−1) containing all the complete cyclic orders, and finding a large com-

ponent in this subgraph, using the expansion properties of this graph. An argument

similar to the one used to characterize the extremal structures in Katona’s proof can

then be used to conclude that this large component contains complete cyclic orders

which are v-complete, for some vertex v.

Application to Erdős–Ko–Rado graphs

Graphs generally have complicated structure, and a generalization of Katona’s method

to any graph seems extremely hard to formulate. However, for certain vertex-

transitive graphs, in particular those where all the independent sets are “identical”,

it seems possible for Katona’s method to be generalized, by finding a suitable class
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of structures to average over. One of the classic examples of this is Theorem 1.4.4,

the result of Bollobás and Leader [6] which proves that if G = Mn, where Mn is a

perfect matching on 2n vertices (and n edges), G is r-EKR for all r≤ n. We present

the short proof of the bound in that theorem, which is very similar to Katona’s

method.

Proof of Theorem 1.4.4. Let V (Mn) = {1, . . . ,2n}, E(Mn) = {i i+n : i ∈ [n]}, 1 ≤

r ≤ n and suppose F ⊆J r(Mn) is intersecting. We will consider cyclic orders

on this vertex set, but since we are interested in only those r sets which are in-

dependent sets, we consider only certain cyclic orders, which we call good cyclic

orders. Consider those cyclic orders on V (Mn) where for every i ∈ [n], its neighbor

is exactly n vertices apart. To put more precisely, if we denote a cyclic order by a

function f : V (Mn)→ [2n], then for every i ∈ [n], f (i+n) = f (i)+n, where addi-

tion is carried out mod n, i.e. f (i)+ n is equal to f (i)+ n or f (i)− n depending

on which lies in [2n]. It is not hard to observe that, considering two cyclic orders

equivalent under rotation, there are 2n−1(n− 1)! good cyclic orderings on V (Mn).

Consider a set M ∈F . In how many good cyclic orders is M an interval? The an-

swer is r!(n−r)!2n−r. Since r≤ n= 1/2(2n), we can use Lemma 1.7.4 to conclude

that for any fixed good cyclic order f , at most r sets from F can be intervals in f .

This gives us the following inequality, r!(n− r)!2n−r|F | ≤ r(n− 1)!2n−1, which

simplifies to |F | ≤ 2r−1(n−1
r−1

)
, as required.

Note that a few reasons why this method could be generalized was because

there exists at least one good cyclic ordering, i.e. one ordering where all intervals

are independent sets in Mn. Secondly, not only is Mn vertex-transitive, it has an

even stronger property: every independent set in Mn is identical, in the sense that

every independent set in Mn lies in the same number of good cyclic orderings. It
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seems possible that this strategy can be generalized in other settings with similarly

desirable properties, for example the family of all perfect matchings in a complete

graph of even order. In this thesis, we will employ a generalization of this method

to prove an extension of Theorem 1.4.4 for k-wise intersecting families.
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Chapter 2

GRAPHS WITH ERDŐS–KO–RADO PROPERTY

The Erdős–Ko–Rado property for graphs is defined in the following manner.

For a graph G, vertex v ∈ V (G) and some integer r ≥ 1, denote the family of

independent r-sets of V (G) by I (r)(G) and the subfamily {A ∈ I (r)(G) : v ∈ A}

by I
(r)

v (G), called a star. Then, G is said to be r-EKR if no intersecting subfamily

of I (r)(G) is larger than the largest star in I (r)(G). If every maximum sized

intersecting subfamily of I (r)(G) is a star, then G is said to be strictly r-EKR. This

can be viewed as the Erdős–Ko–Rado property on a ground set, but with additional

structure on this ground set. In fact, the Erdős–Ko–Rado theorem can be restated

in these terms as follows.

Theorem 1.1.1 (Erdős–Ko–Rado). The graph on n vertices with no edges is r-EKR

if n≥ 2r and strictly r-EKR if n > 2r.

There are some results giving EKR-type theorems for different types of graphs.

The following theorem was originally proved by Berge [4], with Livingston [44]

characterizing the extremal case.

Theorem 2.0.5 (Berge [4], Livingston [44]). If r ≥ 1, t ≥ 2 and G is the disjoint

union of r copies of Kt , then G is r-EKR and strictly so unless t = 2.

Other proofs of this result were given by Gronau [30] and Moon [49]. Berge [4]

proved a stronger result.

Theorem 2.0.6 (Berge [4]). If G is the disjoint union of r complete graphs each of

order at least 2, then G is r-EKR.



A generalization of Theorem 2.0.5 was first stated by Meyer [47] and proved by

Deza and Frankl [15].

Theorem 2.0.7 (Meyer [47], Deza and Frankl [15]). If r ≥ 1, t ≥ 2 and G is a

disjoint union of n ≥ r copies of Kt , then G is r-EKR and strictly so unless t = 2

and r = n.

In the paper which introduced the notion of the r-EKR property for graphs,

Holroyd, Spencer and Talbot [34] prove a generalization of Theorems 2.0.6 and

2.0.7.

Theorem 2.0.8 (Holroyd et al. [34]). If G is a disjoint union of n ≥ r complete

graphs each of order at least 2, then G is r-EKR.

The compression technique used in [34], which is equivalent to contracting an

edge in a graph, was employed by Talbot[60] to prove a theorem for the kth power

of a cycle.

Definition 2.0.9. The kth power of a cycle Ck
n is a graph with vertex set [n] and

edges between a,b ∈ [n] iff 1≤ |a−b mod n| ≤ k.

Theorem 2.0.10 (Talbot [60]). If r,k,n≥ 1, then Ck
n is r-EKR and strictly so unless

n = 2r+2 and k = 1.

An analogous theorem for the kth power of a path is also proved in [34].

Definition 2.0.11. The kth power of a path Pk
n is a graph with vertex set [n] and

edges between a,b ∈ [n] iff 1≤ |a−b| ≤ k.

Theorem 2.0.12 (Holroyd et al. [34]). If r,k,n≥ 1, then Pk
n is r-EKR.
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It can be observed here that the condition r ≤ n/2 is not required for the graphs

Ck
n and Pk

n because for each of the two graphs, there is no independent set of size

greater than n/2, so the r-EKR property holds vacuously if r > n/2.

The compression proof technique is also employed to prove a result for a larger

class of graphs.

Theorem 2.0.13 (Holroyd et al. [34]). If G is a disjoint union of n ≥ 2r complete

graphs, cycles and paths, including an isolated singleton, then G is r-EKR.

The problem of finding if a graph G is 2-EKR is addressed by Holroyd and

Talbot in [35].

Theorem 2.0.14 (Holroyd–Talbot [35]). Let G be a non-complete graph of order n

with minimum degree δ and independence number α .

1. If α = 2, then G is strictly 2-EKR.

2. If α ≥ 3, then G is 2-EKR if and only if δ ≤ n−4 and strictly so if and only

if δ ≤ n−5, the star centers being the vertices of minimum degree.

Holroyd and Talbot also present an interesting conjecture in [35], which we first

stated in Chapter 1 and recall here.

Definition 2.0.15. The minimum size of a maximal independent vertex set of a

graph G is the minimax independent number, denoted by µ(G).

It can be noted here that µ(G)= i(G), where i(G) is the independent domination

number of graph G. We now restate the conjecture of Holroyd and Talbot.

Conjecture 1.3.1. Let G be any graph and let 1≤ r ≤ 1
2 µ; then G is r-EKR (and is

strictly so if 2 < r < 1
2 µ).
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This conjecture seems hard to prove or disprove; however, restricting attention

to certain classes of graphs makes the problem easier to tackle. Borg and Holroyd

[10] prove the conjecture for a large class of graphs, which contain a singleton as a

component.

Definition 2.0.16 (Borg, Holroyd [10]). For a monotonic non-decreasing (mnd)

sequence d= {di}i∈N of non-negative integers, let M =M(d) be the graph such that

V (M) = {xi : i ∈ N} and for xa,xb ∈V (M) with a < b, xaxb ∈ E(M) iff b≤ a+da.

Let Mn = Mn(d) be the subgraph of M induced by the subset {xi : i ∈ [n]} of V (M).

Call Mn an mnd graph.

Definition 2.0.17 (Borg, Holroyd [10]). For n > 2, 1 ≤ k < n− 1, 0 ≤ q < n, let

Ck,k+1
q,n be the graph with vertex set {vi : i∈ [n]} and edge set E(Ck

n)∪{vivi+k+1 mod n :

1≤ i≤ q}. If q > 0, call Ck,k+1
q,n a modified kth power of a cycle.

Borg and Holroyd [10] prove the following theorem.

Theorem 2.0.18. Conjecture 1.3.1 is true if G is a disjoint union of complete multi-

partite graphs, copies of mnd graphs, powers of cycles, modified powers of cycles,

trees, and at least one singleton.

One of the main results in this dissertation extends the class of graphs which

satisfy Conjecture 1.3.1 by proving the conjecture for all chordal graphs which

contain a singleton. It can be noted that the mnd graphs in Theorem 2.0.18 are

chordal.

We also define a special class of chordal graphs, and prove a stronger EKR

result for these graphs. Finally, we consider similar problems for two classes of

bipartite graphs, trees and ladder graphs.
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2.1 Chordal Graphs

Definition 2.1.1. A graph G is a chordal graph if every cycle of length at least 4

has a chord.

It is easy to observe that if G is chordal, then every induced subgraph of G is

also chordal.

Definition 2.1.2. A vertex v is called simplicial in a graph G if its neighborhood is

a clique in G.

Consider a graph G on n vertices, and let σ = [v1, . . . ,vn] be an ordering of

the vertices of G. Let the graph Gi be the subgraph obtained by removing the

vertex set {v1, . . . ,vi−1} from G. Then σ is called a simplicial elimination ordering

if vi is simplicial in the graph Gi, for each 1 ≤ i ≤ n. We state a well known

characterization of chordal graphs, due to Dirac [19].

Theorem 2.1.3. A graph G is a chordal graph if and only if it has a simplicial

elimination ordering.

It is easy to see, using this characterization of chordal graphs, that the mnd

graphs of Definition 2.0.16 are chordal.

Proposition 2.1.4. If Mn is an mnd graph on n vertices, Mn is chordal.

Proof. It can be seen that ordering the vertices of Mn, according to the correspond-

ing degree sequence d, as stated in Definition 2.0.16, gives a simplicial elimination

ordering.

Note that, with or without the non-decreasing condition on the sequence d, the

resulting graph is an interval graph — use the interval [a,a+ da] for vertex xa —

which is chordal regardless.
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We prove Theorem 1.3.2, which is the non-strict part of Conjecture 1.3.1 for

disjoint unions of chordal graphs, containing at least one singleton.

Theorem 1.3.2. If G is a disjoint union of chordal graphs, including at least one

singleton, and if r ≤ 1
2 µ(G), then G is r-EKR.

We also consider graphs which do not have singletons. Consider a class of

chordal graphs constructed as follows.

Let Pn+1 be a path on n edges with V (Pn+1) = {v1, . . . ,vn+1}. Label the edge

vivi+1 as i, for each 1≤ i≤ n. A chain of complete graphs, of length n, is obtained

from Pn+1 by replacing each edge of Pn+1 by a complete graph of order at least 2 in

the following manner: to convert edge i of Pn+1 into Ks, introduce a complete graph

Ks−2 and connect vi and vi+1 to each of the s− 2 vertices of the complete graph.

Call the resulting complete graph Gi, and call each Gi a link of the chain. We call

vi and vi+1 the connecting vertices of this complete graph, with the exception of G1

and Gn, which have only one connecting vertex each (the ones shared with G2 and

Gn−1 respectively). In general, for each 2 ≤ i ≤ n, call vi the (i− 1)th connecting

vertex of G. Unless otherwise specified, we will refer to a chain of complete graphs

as just a chain. We will call an isolated vertex a trivial chain (of length 0), while

a complete graph is simply a chain of length 1. Call a chain of length n special if

n ∈ {0,1} or if n≥ 2 and the following conditions hold:

1. |Gi| ≥ |Gi−1|+1 for each 2≤ i≤ n−1, and

2. |Gn| ≥ |Gn−1|.

We prove the following results for special chains.

Theorem 2.1.5. If G is a special chain, then G is r-EKR for all r ≥ 1.
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Theorem 2.1.6. If G is a disjoint union of 2 special chains, then G is r-EKR for all

r ≥ 1.

We will also consider similar problems for bipartite graphs. A basic observation

about complete bipartite graphs, along with an obvious generalization for complete

multipartite graphs, is mentioned below.

• If G = Km,n and m≤ n, then G is r-EKR for all r ≤ m
2 .

• If G = Km1,...,mk , with m1 ≤ m2 ≤ . . .≤ mk, then G is r-EKR for all r ≤ m1
2 .

It is easy to see why these hold. If B⊆J r(G) is intersecting, then each A∈B

lies in the same partite set. Clearly, if 2r ≤ m ≤ n, then G is r-EKR by Theorem

1.1.2. A similar argument works for complete multipartite graphs as well.

Holroyd and Talbot [35] proved Conjecture 1.3.1 for a disjoint union of two

complete multipartite graphs.

If we consider non-complete bipartite graphs with high minimum degree, it

seems that they usually have low µ (always at most min{n− δ ,n/2}). Instead, in

this paper, we consider bipartite graphs with low maximum degree in order to have

higher values of µ (always at least n
∆+1 ). In particular, we look at trees and ladder

graphs, two such classes of sparse bipartite graphs.

One of the difficult problems in dealing with graphs without singletons is that

of finding centers of maximum stars. We consider this problem for trees, and con-

jecture that there is a maximum star in a tree that is centered at a leaf.

Conjecture 2.1.7. For any tree T on n vertices, there exists a leaf x such that for

any v ∈V (T ), |J r
v (T )| ≤ |J r

v (T )|.

We prove this conjecture for r ≤ 4.
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Theorem 2.1.8. Let 1≤ r≤ 4. Then, a maximum sized star of r-independent vertex

sets of T is centered at a leaf.

We will also prove that the ladder graph is 3-EKR.

Definition 2.1.9. The ladder graph Ln with n rungs can be defined as the cartesian

product of K2 and Pn.

It is not hard to see that, for Ln, µ(Ln)≤ dn+1
2 e. In fact, we show that equality

holds.

Proposition 2.1.10.

µ(Ln) =

⌈
n+1

2

⌉
.

Proof. The result is trivial if n ≤ 2, so let n ≥ 3. Suppose µ(Ln) < dn+1
2 e and let

A be a maximal independent set of size µ(Ln). Then, there exist two consecutive

rungs, say the ith and (i+ 1)st in Ln, with endpoints {xi,yi} and {xi+1,yi+1} re-

spectively, such that {xi,yi}∩A = /0 and {xi+1,yi+1}∩A = /0. Let u = xi, v = xi−1

and w = yi if i > 1, otherwise, let u = xi+1, v = xi+2 and w = yi+1. A∪ {u} is

not independent, since A is maximal. Then, v ∈ A and A∪{w} is independent, a

contradiction.

Theorem 2.1.11. The graph Ln is 3-EKR for all n≥ 1.

An Erdős–Ko–Rado theorem for chordal graphs

We begin by fixing some notation. For a graph G and a vertex v ∈V (G), let G− v

be the graph obtained from G by removing vertex v. Also, let G ↓ v denote the

graph obtained by removing v and its set of neighbors from G. We note that if G is

a disjoint union of chordal graphs and if v ∈ G, the graphs G− v and G ↓ v are also

disjoint unions of chordal graphs.
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We state and prove a series of lemmas, which we will use in the proof of Theo-

rem 1.3.2.

Lemma 2.1.12. Let G be a graph containing an isolated vertex x. Then, for any

vertex v ∈V (G), |J r
v (G)| ≤ |J r

x (G)|.

Proof. Let v∈V (G), v 6= x. We define a function f : J r
v (G)→J r

x (G) as follows.

f (A) =

 A if x ∈ A, and

A\{v}∪{x} otherwise.

It is easy to see that the function is injective, and this completes the proof.

Lemma 2.1.13. Let G be a graph, and let v1,v2 ∈ G be vertices such that N[v1]⊆

N[v2]. Then, the following inequalities hold:

1. µ(G− v2)≥ µ(G);

2. µ(G ↓ v2)+1≥ µ(G).

Proof. We begin by noting that the condition N[v1] ⊆ N[v2] implies that v1v2 ∈

E(G).

1. We will show that if I is a maximal independent set in G− v2, then I is

maximally independent in G. Suppose I is not a maximal independent set in

G. Then, I∪{v2} is an independent set in G. Thus, for any u ∈ N[v2], u /∈ I.

In particular, for any u ∈ N[v1], u /∈ I. Thus, I∪{v1} is an independent set in

G− v2. This is a contradiction. Thus, I is a maximal independent set in G.

Taking I to be the smallest maximal independent set in G−v2, we get µ(G−

v2) = |I| ≥ µ(G).
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2. We will show that if I is a maximal independent set in G ↓ v2, then I ∪{v2}

is a maximal independent set in G. Of course, I ∪{v2} is independent, so

suppose it is not maximal. Then, for some vertex u ∈G ↓ v2 and u /∈ I∪{v2},

I∪{u,v2} is an independent set. Thus, I∪{u} is an independent set in G ↓ v2,

a contradiction.

Taking I to be the smallest maximal independent set in G ↓ v2, we get µ(G ↓

v2)+1 = |I|+1≥ µ(G).

Corollary 2.1.14. Let G be a graph, and let v1,v2 ∈G be vertices such that N[v1]⊆

N[v2]. Then, the following statements hold:

1. If r ≤ 1
2 µ(G), then r ≤ 1

2 µ(G− v2);

2. If r ≤ 1
2 µ(G), then r−1≤ 1

2 µ(G ↓ v2).

Proof. 1. This follows trivially from the first part of Lemma 2.1.13.

2. To prove this part, we use the second part of Lemma 2.1.13 to show

r−1≤ 1
2

µ(G)−1 =
µ(G)−2

2
≤ µ(G ↓ v2)

2
− 1

2
.

Let H be a component of G, so H is a chordal graph on m vertices, m ≥ 2.

Let {v1, . . . ,vm} be a simplicial elimination ordering of H and let v1vi ∈ E(H) for

some i ≥ 2. Let A ⊆J r(G) be an intersecting family. We define a compression

operation f1,i for the family A . Before we give the definition, we note that if A is

an independent set and if vi ∈ A, then A\{vi}∪{v1} is also independent.

f1,i(A) =

 A\{vi}∪{v1} if vi ∈ A,v1 /∈ A,A\{vi}∪{v1} /∈A , and

A otherwise.
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Then, we define the family A ′ by

A ′ = f1,i(A ) = { f1,i(A) : A ∈A }.

It is not hard to see that |A ′|= |A |. Next, we define the families

A ′
i = {A ∈A ′ : vi ∈ A},

Ā ′
i = A ′ \A ′

i , and

B′ = {A\{vi} : A ∈A ′
i }.

Then we have

|A | = |A ′|

= |A ′
i |+ |Ā ′

i |

= |B′|+ |Ā ′
i |. (2.1)

We prove the following lemma about these families.

Lemma 2.1.15. 1. Ā ′
i ⊆J r(G− vi).

2. B′ ⊆J (r−1)(G ↓ vi).

3. Ā ′
i is intersecting.

4. B′ is intersecting.

Proof. It follows from the definitions of the families that Ā ′
i ⊆J r(G− vi) and

B′ ⊆J (r−1)(G ↓ vi). So, we only prove that the two families are intersecting.

Consider A,B ∈ Ā ′
i . If v1 ∈ A and v1 ∈ B, we are done. If v1 /∈ A and v1 /∈ B, then

A,B ∈ A and hence A∩B 6= /0. So, suppose v1 /∈ A and v1 ∈ B. Then, A ∈ A .
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Also, either B ∈A , in which case we are done or B1 = B\{v1}∪{vi} ∈A . Then,

|A∩B|= |A∩B\{v1}∪{vi}|= |A∩B1|> 0.

Finally, consider A,B ∈B′. Since A∪{vi} ∈A ′
vi

, A∪{v1} ∈A and A∪{vi} ∈

A . A similar argument works for B. Thus, |(A∪{v1})∩ (B∪{vi})|> 0 and hence,

|A∩B|> 0.

The final lemma we prove is regarding the star family J r
x (G), where x is an

isolated vertex.

Lemma 2.1.16. Let G be a graph containing an isolated vertex x and let v ∈V (G),

v 6= x. Then, we have

|J r
x (G)|= |J r

x (G− v)|+ |J (r−1)
x (G ↓ v)|.

Proof. Partition the family J r
x (G) into two parts. Let the first part contain all sets

containing v, say Fv, and let the second part contain all sets which do not contain

v, say F̄v. Then

Fv = J
(r−1)

x (G ↓ v) and F̄v = J r
x (G− v).

We proceed to a proof of Theorem 1.3.2.

Proof. The theorem trivially holds for r = 1, so suppose r ≥ 2. Let G be a disjoint

union of chordal graphs, including at least one singleton, and let µ(G) ≥ 2r. We

do induction on |G|. If |G|= µ(G), then G = E|G|, and we are done by the Erdős–

Ko–Rado theorem. So, suppose |G| > µ(G), and there is one component, say H,

which is a chordal graph having m vertices, m≥ 2. Let {v1, . . . ,vm} be a simplicial

ordering of H and suppose v1vi ∈ E(H) for some i≥ 2. Since the neighborhood of

v1 is a clique, we have N[v1] ⊆ N[vi]. Also, let x be an isolated vertex in G. Let

A ⊆J r(G) be intersecting.
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Define the compression operation f1,i and the families Ā ′
i and B′ as before.

Using Equation 2.1, Lemmas 2.1.12, 2.1.13, 2.1.15, 2.1.16, Corollary 2.1.14 and

the induction hypothesis, we have

|A | = |Ā ′
i |+ |B

′|

≤ |J r
x (G− vi)|+ |J (r−1)

x (G ↓ vi)|

= |J r
x (G)|. (2.2)

2.2 Graphs without isolated vertices

The main technique we use to prove Theorem 2.1.5 is a compression operation that

is equivalent to compressing a clique to a single vertex. In a sense, it is a more

general version of the technique used in [34]. We begin by stating and proving a

technical lemma, similar to the one proved in [34]. We will then use it to prove

Theorem 2.1.5 by induction.

Generalized compression techniques

Let H ⊆G with V (H) = {v1, . . . ,vs}. Let G/H be the graph obtained by contracting

the subgraph H to a single vertex. The contraction function c is defined as follows.

c(x) =

 v1 : x ∈ H, and

x : x /∈ H.

When we contract H to v1, the edges which have both endpoints in H are lost and

if there is an edge xvi ∈ E(G) such that x ∈ V (G) \V (H), then there is an edge

xv1 ∈ E(G/H). Duplicate edges are disregarded.

Also, let G−H be the (possibly disconnected) graph obtained from G by re-

moving all vertices in H.
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Lemma 2.2.1. Let G = (V,E) be a graph and let A ⊆J r(G) be an intersecting

family of maximum size. If H is a subgraph of G with vertex set {v1, . . . ,vs}, and

if H is isomorphic to Ks, then there exist families B, {Ci}s
i=2, {Di}s

i=2, {Ei}s
i=2

satisfying:

1. |A |= |B|+∑
s
i=2 |Ci|+ |

⋃s
i=2 Di|+∑

s
i=2 |Ei|;

2. B ⊆J r(G/H) is intersecting; and

3. for each 2≤ i≤ s,

a) Ci ⊆J r−1(G−H) is intersecting,

b) Di = {A ∈A : v1 ∈ A and N(vi)∩ (A\{v1}) 6= /0}, and

c) Ei = {A ∈A : vi ∈ A and N(v1)∩ (A\{vi}) 6= /0}.

To prove Lemma 2.2.1, we will need a claim, which we state and prove below.

Claim 2.2.2. Let H ⊆ G be isomorphic to Ks, s≥ 3. Let A ⊆J r(G) be an inter-

secting family of maximum size. Suppose A∪{vi},A∪{v j} ∈A for some i, j 6= 1

and c(A∪{vi}) = A∪{v1} ∈J r(G/H). Then A∪{v1} ∈A .

Proof. Since we have c(A∪{vi}) ∈J r(G/H), B = A∪{v1} ∈J r(G). Suppose

B /∈ A . Since A is an intersecting family of maximum size, A ∪{B} is not an

intersecting family. So, there exists a C ∈ A such that B∩C = /0. So, we have

C∩ (A∪{vi}) = vi and C∩ (A∪{v j}) = v j. Thus, vi,v j ∈C. This is a contradiction

since vi and v j are adjacent to each other.

Proof. (Proof of Lemma 2.2.1) Define the following families:

1. B = {c(A) : A ∈A and c(A) ∈J r(G/H)}; and

2. for each 2≤ i≤ s:
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a) Ci = {A\{v1} : v1 ∈ A and A\{v1}∪{vi} ∈A },

b) Di = {A ∈A : v1 ∈ A and N(vi)∩ (A\{v1}) 6= /0}, and

c) Ei = {A ∈A : vi ∈ A and N(v1)∩ (A\{vi}) 6= /0}.

If A,B∈A and A 6= B, then c(A) = c(B) iff A4B = {vi,v j} for some 1≤ i, j≤

s. Using this and Claim 2.2.2 (if s≥ 3), we have

|{A ∈A : c(A) ∈J r(G/H)}|= |B|+
s

∑
i=2
|Ci|.

Also, if A∈A , then c(A) /∈J r(G/H) iff A∈
⋃s

i=2 Di∪
⋃s

i=2 Ei. Thus, we have

|A |= |B|+∑
s
i=2 |Ci|+ |

⋃s
i=2 Di|+ |

⋃s
i=2 Ei|. By the definition of the Ei’s,

⋃s
i=2 Ei

is a disjoint union, so we have

|A |= |B|+
s

∑
i=2
|Ci|+ |

s⋃
i=2

Di|+
s

∑
i=2
|Ei|

It is obvious to show that B is intersecting since A is.

Let 2 ≤ i ≤ s. To see that Ci is intersecting, suppose C,D ∈ Ci and C∩D =

/0. But C ∪ {v1} and D∪ {vi} are in A and hence, are intersecting. This is a

contradiction.

Before we move to the proof of Theorem 2.1.5, we will prove one final claim

regarding maximum sized star families in G.

Claim 2.2.3. If G is special chain of length n, then a maximum sized star is centered

at an internal vertex of G1.

Proof. First note that for any i, there is a trivial injection from a star centered at a

connecting vertex of Gi to a star centered at an internal vertex of Gi, which replaces

the star center by that internal vertex in every set of the family. So suppose Q is

a star centered at a internal vertex u of any of the graphs Gi, i 6= 1. Let G1 = Km.

Consider the following cases.
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1. Suppose u is in G2. In this case, define an arbitrary bijection between the

m−1 internal vertices of G1 and any m−1 internal vertices of G2 containing

u, such that u corresponds to an internal vertex of G1, say v (note that this can

always be done, since if n = 2, then |G2| ≥ m, with one connecting vertex,

while if n≥ 3, then |G2| ≥ m+1, with two connecting vertices).

2. Suppose u is in some Gi such that i ≥ 3. Then, define an arbitrary bijection

between the m vertices of G1 and any m internal vertices of Gi including u

such that u corresponds to an internal vertex of G1, say v.

Next, consider any set in Q. If it contains a vertex w in G1, replace that vertex by b

and replace u by the vertex in Gi corresponding to w. If it does not contain a vertex

in G1, replace u by v. This defines the injection from Q to a star centered at v.

We now give a proof of Theorem 2.1.5.

Proof. Let J r
1 (G) be a maximum sized star family in G, where 1 is an internal

vertex of G1.

We do induction on r. The result is trivial for r = 1. Let r≥ 2. We do induction

on n (n is the number of links). For n = 1, result is vacuously true. If n = 2, then

for r = 2, we use Theorem 2.0.14 to conclude that G is 2-EKR while the result is

vacuously true for r ≥ 3. So, let n≥ 3. Let A ⊆J r(G) be an intersecting family

of maximum cardinality. Let the vertices of Gn = Ks be labeled from n1 to ns (let

n1 be the connecting vertex which also belongs to Gn−1). Define the compression

operation c on G and the clique Ks as before. Let the families B, {Ci}s
i=2, {Di}s

i=2,

{Ei}s
i=2 be defined as in Lemma 2.2.1.

Clearly, for G, Di = /0 for each 2≤ i≤ s. So, by Lemma 2.2.1,

A = B+
s

∑
i=2
|Ci|+

s

∑
i=2
|Ei|.
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Let Gn−1 = Kt . Let the vertices of Gn−1 be labeled from m1 to mt(t ≤ s), with

mt = n1. For every 1≤ i≤ t−1 and 2≤ j ≤ s define a set Hi j of families by

Hi j = {A ∈A : mi ∈ A,n j ∈ A}.

We note that
⋃t−1

i=1 Hi j = E j for each 2 ≤ j ≤ s, and since each of the Hi j’s are

also disjoint, we have
s

∑
i=2
|Ei|= ∑

1≤i≤t−1,2≤ j≤s
|Hi j|.

Now, consider a complete bipartite graph Kt−1,s−1. Label the vertices in part 1

from m1 to mt−1 and vertices in part 2 from n2 to ns.

Partition the edges of the bipartite graph Kt−1,s−1 into s−1 matchings, each of

size t−1. For each matching Mk (1≤ k ≤ s−1), define the family

FMk =
⋃

i, j,min j∈Mk

(Hi j−{n j}),

where a family H −{a} is obtained from H by removing a from all its sets. Then

of course

∑
1≤i≤t−1,2≤ j≤s

|Hi j|= ∑
1≤i≤s−1

|FMi|.

For each 1≤ k≤ s−1, FMk is a disjoint union and is intersecting. The intersect-

ing property is obvious if both sets are in the same Hi j−{n j} since they contain

mi. If in different such sets, adding distinct elements which were removed (during

the above operation) gives sets in the original family which are intersecting.

Finally, if we consider families Cni ∪FMi−1 ⊆J (r−1)(G−Gn) for 2 ≤ i ≤ s,

each such family is a disjoint union. It is also intersecting since for C ∈ Cni and

F ∈ FMi−1 , C∪{n1} and F ∪{n j} for some j 6= 1 gives us sets in A . So, we get
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|A | = |B|+
s

∑
i=2
|Cni|+ ∑

1≤i≤s−1,2≤ j≤s
|Hi j|

= |B|+
s

∑
i=2
|Cni|+ ∑

1≤i≤s−1
|FMi|

= |B|+
s

∑
i=2
|(Cni ∪FMi−1)|

≤ J r
1 (G/Gn)+(s−1)J (r−1)

1 (G−Gn)

= J r
1 (G).

The last inequality is obtained by partitioning the star based on whether or not

it contains one of {n2, . . . ,ns}.

We now proceed to a proof of Theorem 2.1.6.

Proof. We do induction on r. Since the case r = 1 is trivial, let r ≥ 2. Let G be a

disjoint union of 2 special chains G′ and G′′, with lengths n1 and n2 respectively.

We will do induction on n = n1 +n2. If n = 0, the result holds trivially if r = 2 and

vacuously if r ≥ 3. So, let n≥ 1. If n = 1 or if n1 = n2 = 1, then α(G) = 2. In this

case, G is vacuously r-EKR for r ≥ 3. Also, if r = 2, then we are done by Theorem

2.0.14. So, without loss of generality, we assume that G1 has length at least 2. We

can now proceed as in the proof of Theorem 2.1.5.

2.3 Bipartite graphs
Trees

In this section, we give a proof of Theorem 2.1.8, which states that for a given tree

T and r ≤ 4, there is a maximum star family centered at a leaf of T .

Proof. The statement is trivial for r = 1. If r = 2, we use the fact that for any vertex

v, |J 2
v (T )|= n−1−d(v), where d(v) is the degree of vertex v, and thus it will be

maximum when v is a leaf.
39



Let 3≤ r≤ 4. Let v be an internal vertex (d(v)≥ 2) and let A =J r
v (T ) be the

star centered at v. Consider T as a tree rooted at v. We find an injection f from A

to a star centered at some leaf. Let v1 and v2 be any two neighbors of v and let u be

a leaf with neighbor w. Let A ∈A .

1. If u ∈ A, then let f (A) = A.

2. If u /∈ A, then we consider two cases.

a) If w /∈ A, let f (A) = A\{v}∪{u}.

b) If w ∈ A, then B = A\{w}∪{u} ∈A . We consider the following two

cases separately.

• r = 3

Let A = {v,w,x}. We know that x cannot be connected to both v1

and v2 since that would result in a cycle. Without loss of generality,

suppose that xv1 /∈ E(T ). Then, let f (A) = A\{v,w}∪{u,v1}.

• r = 4

Let A = {v,w,w1,w2}. We first note that if there is a leaf at distance

two from v, then by using 1 and 2(a) above, we can show that the

size of the star at this leaf is at least as much as the given star. We

again consider two cases.

– Suppose that {v1,v2} 6⊆ N(w1)∪N(w2). By symmetry, sup-

pose v1 /∈ N(w1)∪N(w2). In this case, let f (A) = A\{w,v}∪

{u,v1}.

– Suppose that {v1,v2} ⊆ N(w1)∪N(w2). Label so that vi ∈

N(wi) for 1≤ i≤ 2 (in particular, vi is the parent of wi). Since

neither w1 nor w2 is a leaf, they have at least one child, say
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x1 and x2, respectively. In this case, let f (A) = {u,x1,x2,v1}.

For this case, injection is less obvious. We show it by contra-

diction as follows. Let f ({v,w,w1,w2}) = f ({v,w,y1,y2}) =

{u,x1,x2,v1}. We may assume that y1 6= w1 and let yi be the

child of vi and xi be the child of yi; then certainly v1w1x1y1v1

gives a cycle in T , a contradiction.

1, 10

2,3

4,11

3,2

6,65,12

8,9
7,1

9,13 10,13

Figure 2.1: Tree T on 10 vertices, r = 5.

We believe that Conjecture 2.1.7 holds true for all r. However, it is harder to

prove because it is not true that every leaf centered star is bigger than every non-leaf

centered star; an example is illustrated in Figure 2.1.

For each vertex, the first number denotes the label, while the second number

denotes the size of the star centered at that vertex. We note that J 5
8 (T ) = 9, while

J 5
1 (T ) = 10. However, we note that the maximum sized stars are still centered at

leaves 9 and 10.

We also point out that this example satisfies an interesting property, first ob-

served by Colbourn [13].
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Property 2.3.1. Let G be a bipartite graph with bipartition V = {V1,V2} and let

r ≥ 1. We say that G has the bipartite degree sort property if for all x,y ∈ Vi with

d(x)≤ d(y), J r
x (T )≥J r

y (T ).

Not all bipartite graphs satisfy this property. Neiman [53] constructed the fol-

lowing counterexample, with r = 3.

Fix positive integers t and k with t ≥ 2k≥ 4. Let G = Gt,k be the graph obtained

from the complete bipartite graph K2,t and P2k by identifying one endpoint of P2k to

be a vertex in K2,t lying in the bipartition of size 2. Let x be the other endpoint of

the path, and let y be a vertex in K2,t lying in the bipartition of size t, of degree 2.

An example is shown in Figure 2.2.

x

y

Figure 2.2: G4,2
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Let Y = J 3
y (G) and let X = J 3

x (G). We have, for t ≥ 2k,

Y −X = J 2(G ↓ y)−J 2(G ↓ x)

=

(
t +2k−2

2

)
−|E(G ↓ y)|−

(
t +2k−1

2

)
+ |E(G ↓ x)|

=

(
t +2k−2

2

)
−
(

t +2k−1
2

)
+2t−1

= (t +2k−2)(−1)+2t−1

= t−2k+1

> 0. (2.3)

We show that a similar construction acts as a counterexample for all r > 3.

Given r > 3, consider the graph G = Gt,2, t > r. Let x and y be as defined before,

with d(x) = 1 and d(y) = 2. Let Y =J r
y (G) and X =J r

x (G). We have X =
(t+1

r−1

)
and Y =

(t+1
r−1

)
+
(t−1

r−2

)
. It follows that, for t > r, Y > X .

If we consider trees, it can be seen that the tree in Figure 2.1 satisfies this prop-

erty. It is also not hard to show that the path Pn satisfies this property, since for all

r ≥ 1, J r
v1
(Pn) = J r

vn
(Pn)≥J r

vi
(Pn) holds for each 2≤ i≤ n−1.

Another infinite family of trees that satisfy the property are the depth-two stars

shown in Figure 2.3 below.

y

x

Figure 2.3: Tree T on 2n+1 vertices which satisfies Conjecture 2.3.1.
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Let Y =J r
y (T ) and let X =J r

x (T ). Then, we have Y =J r−1(T ↓ y) =
( n

r−1

)
and X =

(n−1
r−2

)
+2r−1(n−1

r−1

)
. It is then easy to note that when r ≥ 1, X−Y ≥ 0.

However, it turns out that not all trees satisfy this property. A counterexample,

for n = 10 and r = 5, is shown in Figure 2.4. Observe that the vertex labeled 8, with

10

98

7

6

5

4 3

2

1

Figure 2.4: Tree T1 which does not satisfy Property 2.3.1

degree 2, and the vertex labeled 4, with degree 3, lie in the same partite set, but we

have J 5
4 (T1) = {{2,3,4,8,9},{2,3,4,5,9}} and J 5

8 (T1) = {{2,3,4,8,9}}. Note

that, in this example, r = n
2 . Another counterexample, with n = 12 and r = 5, is

shown in Figure 2.5.

1211

10

8

1

29

7

6 5

4

3

Figure 2.5: Tree T2 which does not satisfy Property 2.3.1

We see that the vertices labeled 1 and 2, with degrees 3 and 2 respectively, lie

in the same partite set. It can be checked that |J 5
1 (T2)|= 32 and |J 5

2 (T2)|= 28.
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Ladder graphs

In this section, we give a proof of Theorem 2.1.11, which states that the ladder

graph Ln is 3-EKR for all n≥ 1. First, we state and prove a claim about maximum

star families in Ln.

Let G = Ln be a ladder with n rungs. Let the rung edges be xiyi(1≤ i≤ n). First,

we show that J r
x (G) is a maximum sized star for x ∈ {x1,y1,xn,yn}.

Claim 2.3.2. If G is a ladder with n rungs, J r
x (G) is a maximum sized star for

x ∈ {x1,y1,xn,yn}.

Proof. We prove the claim for x = xn. The claim is obvious if n ≤ 2, so suppose

n ≥ 3. Let A be a star centered at some x ∈ V (G). Without loss of generality, we

assume that x = xk for some 1 < k < n. We now construct an injection from A to

J r
xn
(G). Define functions f and g as follows.

f (x) =

 xi mod n +1 if x = xi, and

yi mod n +1 if x = yi.

g(x) =

 yi if x = xi, and

xi if x = yi.

Consider the function f n−k. For every A ∈A , define f n−k(A) = { f n−k(x) : x ∈ A}

and similarly for g. We define a function h : A →J r
xn
(G) as follows.

h(A) =


A if {x1,xn} ⊆ A,

g(A) if {y1,yn} ⊆ A, and

f n−k(A) otherwise.

Clearly, xn ∈ h(A) for every A ∈ A . We will show that h is an injection. Suppose

A,B ∈ A and A 6= B. We show that h(A) 6= h(B). If both A and B are in the same
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category(out of the three mentioned in the definition of h), then it is obvious. So,

suppose not. If {x1,xn} ⊆ A and {y1,yn} ⊆ B, then xk ∈ h(A), but xk /∈ h(B). Then,

let A be in either of the first two categories, and let B be in the third category. Then,

{x1,xn} ⊆ h(A), but {x1,xn} 6⊆ h(B). This holds because otherwise, we would have

{xk,xk+1} ⊆ B, a contradiction.

We give a proof of Theorem 2.1.11.

Proof. We do induction on the number of rungs. If n = 1, we have G = P2, which

is trivially r-EKR for r = 1 and vacuously true for r = 2 and r = 3. Similarly,

for n = 2, G = C4, so it is trivially r-EKR for each 1 ≤ r ≤ 2 and vacuously true

for r = 3. So, let n ≥ 3. The case r = 1 is trivial. If r = 2, since δ (G) = 2 and

|G| ≥ 6, we can use Theorem 2.0.14 to conclude that G is 2-EKR. So consider G

such that n≥ 3 and r = 3. If n = 3, the maximum size of an intersecting family of

independent sets of size 3 is 1, so 3-EKR again holds trivially. So, suppose n ≥ 4.

Let G′ = Ln−1, G′′ = Ln−2. Also, let Z = {xn−2,yn−2,xn−1,yn−1,xn,yn}. Define a

function c as follows.

c(x) =


xn−1 if x = xn,

yn−1 if x = yn, and

x otherwise.

Let A ⊆J r(G) be intersecting.

Define the following families.

B = {c(A) : A ∈A and c(A) ∈J r(G′)}

C1 = {A\{xn} : xn ∈ A ∈A and A\{xn}∪{xn−1} ∈A }

C2 = {A\{yn} : yn ∈ A ∈A and A\{yn}∪{yn−1} ∈A }
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D1 = {A ∈A : A∩Z = {xn−2,xn}}

D2 = {A ∈A : A∩Z = {yn−2,yn}}

D3 = {A ∈A : A∩Z = {xn−1,yn}}

D4 = {A ∈A : A∩Z = {yn−1,xn}}

D5 = {{xn−2,yn−1,xn}}

D6 = {{yn−2,xn−1,yn}}

Define the families E = C1 ∪ (D1−{xn}) and F = C2 ∪ (D2−{yn}). Then

both E ⊆J r−1(G′′) and F ⊆J r−1(G′′).

Proposition 2.3.3. The family E ( F ) is a disjoint union of C1 and D1−{xn}(C2

and D2−{yn}) and is intersecting.

Proof. We prove the proposition for E . The proof for F follows similarly. Each

D∈D1−{xn} contains xn−2. However, no member in C1 contains xn−2. Thus, E is

a disjoint union. To show that it is intersecting, observe that C1 is intersecting since

for any C1,C2 ∈ C1, C1 ∪{xn−1} and C2 ∪{xn} are intersecting. Also, D1−{xn}

is intersecting since each member of the family contains xn−2. So, suppose C ∈ C1

and D ∈D1−{xn}. Then, C∪{xn−1} and D∪{xn} are intersecting.

Proposition 2.3.4. If G = Ln, where n≥ 4, then we have

|J 3
x1
(G)| ≥ |J 3

x1
(G′)|+2|J 2

x1
(G′′)|+2.

Proof. Each A ∈J 3
x1
(G′) is also a member of J 3

x1
(G), containing neither xn nor

yn. Each A∈J 3
x1
(G′′) contributes two members to J 3

x1
(G), A∪{xn} and A∪{yn}.

Also, {x1,xn−1,yn},{x1,yn−1,xn} ∈J 3
x1
(G). This completes the argument.
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We have

|A | = |B|+
2

∑
i=1
|Ci|+

6

∑
i=1
|Di|

= |B|+ |E |+ |F |+
6

∑
i=3
|Di|. (2.4)

We consider two cases.

• D3 6= /0 and D4 6= /0.

In this case, we must have D3 = {{a,xn−1,yn}} and D4 = {{a,yn−1,xn}} for

some a /∈ {yn−2,xn−2} and hence, |D3| = |D4| = 1. Also D5 = D6 = /0. So,

using Equation 2.4, Propositions 2.3.3 and 2.3.4 and the induction hypothesis,

we have

|A | = |B|+ |E |+ |F |+
6

∑
i=3
|Di|

≤ |J r
x1
(G′)|+2|J r−1

x1
(G′′)|+2

≤ |J r
x1
(G)|.

• Without loss of generality, we suppose that D4 = /0. If D3 = /0, then ∑
6
i=3 |Di| ≤

1, so we are done by Proposition 2.3.4. So, suppose |D4|> 0. We again con-

sider two cases.

1. Suppose C1 = /0 and D1 = /0.

We note that at most one out of D5 and D6 can be nonempty. We also

note that |D3| ≤ 2(n−3) and J 2
x1
(G′′) = 2(n−3)−1. So, using Propo-

sition 2.3.4

|A | = |B|+ |F |+ |D3|+1

≤ |J r
x1
(G′)|+ |J r−1

x1
(G′′)|+2(n−3)+1

≤ |J r
x1
(G)|.
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2. Suppose that either C1 6= /0 or D1 6= /0. Let C = {a,b} ∈ C1 and D ∈D3.

We have C∪{xn}∩D 6= /0. So, we have D \ {yn,xn−1} = {a} or D \

{yn,xn−1}= {b}. So, |D3| ≤ 2. If |D3|= 2, then yn−2 /∈ {a,b}, so D6 =

/0. Also, D5 = /0 since D3 is nonempty. If |D3| ≤ 1, then |D6| ≤ 1. Thus,

in either case, ∑
6
i=3 |Di| ≤ 2. Thus, using Equation 2.4 and Proposition

2.3.4, we are done. A similar argument works if D1 is nonempty.
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Chapter 3

k-WISE INTERSECTION THEOREMS

A family F ⊆
([n]

r

)
is called intersecting if for any A,B ∈F , A∩B 6= /0. Similarly,

call F ⊆
([n]

r

)
k-wise intersecting if for any F1, . . . ,Fk ∈F ,

⋂k
i=1 Fi 6= /0. Frankl [28]

proved the following theorem for k-wise intersecting families.

Theorem 1.4.1. Let F ⊆
([n]

r

)
be k-wise intersecting. If r ≤ (k−1)n

k
, then |F | ≤(n−1

r−1

)
.

We generalize Frankl’s theorem in two directions. First, we formulate and prove

a stability version, which shows that every k-wise intersecting family contains an ar-

bitrarily large star, provided that its size is sufficiently close to the extremal number(n−1
r−1

)
. Next, we will formulate a graph-theoretic generalization of Frankl’s theorem

and prove an analog of the theorem for k-wise intersecting families of vertex sets of

a perfect matching graph which are either independent or contain a maximum-sized

independent set.

3.1 Structure and Stability of k-wise Intersecting Families

The classical extremal problem is to determine the maximum size and structure of a

family on a given ground set of size n which avoids a given forbidden configuration

F . For example, the Erdős-Ko-Rado theorem finds the maximum size of a set

system on the set [n], which does not have a pair of disjoint subsets. Often only a

few trivial structures attain this extremal number. In case of the EKR theorem, the

only extremal structure when r < n
2 is that of a star in

([n]
r

)
. A natural further step is

to ask whether non-extremal families which have size close to the extremal number

also have structure similar to any of the extremal structures. This approach was

first pioneered by Simonovits [56] to answer a question in extremal graph theory



and a similar notion for set systems was recently formulated by Mubayi [50]. We

will adopt the definition of stability from Mubayi [50] to formulate the notions

of weak stability and strong stability for the properties of intersection and k-wise

intersection for set systems. We state the definitions for the intersection property

below.

Definition 3.1.1 (Weak Stability). Let r ≥ 2. Then for every ε > 0, there exists

n0 = n0(ε,r) and δ > 0 such that the following holds for all n > n0: if F ⊆
([n]

r

)
is intersecting and |F |> (1−δ )

(n−1
r−1

)
then there exists a v ∈ [n] such that |Fv|>

(1− ε)
(n−1

r−1

)
.

Definition 3.1.2 (Strong Stability). Let 1 < r < n/2. Then for every ε > 0, there

exists δ > 0 such that if F ⊆
([n]

r

)
has the intersecting property and |F | ≥ (1−

δ )
(n−1

r−1

)
, then there exists a v ∈ [n] such that |Fv| ≥ (1− ε)

(n−1
r−1

)
.

Typically, we ask questions of this nature for monotone properties of set sys-

tems. Informally, a property P is said to be monotone if for any A , if A has

property P and B ⊆A , then B has property P as well. Weak stability is true for

a monotone property of set systems if it can be proved for set systems where the

uniformity is a constant and the number of vertices is comparatively much larger.

Strong stability on the other hand holds for a property if it can be proved when the

uniformity of a set system/hypergraph is comparable to the size of ground set, and

results of this type are harder to prove.

For the k-wise intersection property, the definition of weak stability remains

unchanged. In fact, it is sufficient to prove weak stability for intersecting families,

as k-wise intersecting implies intersecting. For strong stability, the range of values r

can take is bigger for k-wise intersection, in particular we have 1 < r < (k−1)n/k.

It turns out that proving weak stability for intersecting families (and as a result,
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k-intersecting families) is fairly easy. One possible approach involves invoking the

Hilton-Milner theorem, but we present an even simpler proof below.

Theorem 3.1.3. Let r ≥ 2. Then there exists a n0 = n0(r) and δ > 0 such that the

following holds for all n > n0: if F ⊆
([n]

r

)
is intersecting and |F |> (1−δ )

(n−1
r−1

)
then F is a star.

Proof. Let r≥ 2. Choose n0 and δ > 0 such that
1
r3 >>

1
n0

>> δ . Now suppose F

is a non-star intersecting family. We will show that |F | ≤ (1−δ )
(n−1

r−1

)
. Since there

is no element which lies in all sets of F , there exist three sets A,B,C ∈F which

are pairwise intersecting but with A∩B∩C = /0. This gives |A∪B∪C| ≤ 3r− 3.

Now any other set in F intersects A∪B∪C in at least 2 elements, since there is no

element which lies in all 3 sets. This gives us the following upper bound on the size

of F : |F | ≤ 3+
(3r−3

2

)(n−2
r−2

)
. It can be verified that since

1
r3 >>

1
n0

>> δ , we get

3+
(3r−3

2

)(n−2
r−2

)
≤ (1−δ )

(n−1
r−1

)
, which completes the proof of the theorem.

Strong stability results for the Erdős-Ko-Rado theorem are considerably harder

to prove, but results of this nature for intersecting families have recently appeared,

due to Dinur-Friedgut [17], Keevash [40], Keevash-Mubayi [41] and others. We

will prove the following strong stability result for k-wise intersecting families.

Theorem 1.5.2 For some k≥ 2, let 1≤ r < (k−1)n
k , and let F ⊆

([n]
r

)
be a k-wise in-

tersecting family. Then for any 0≤ ε < 1, there exists a 0≤ δ < 1 such that if |F | ≥

(1−δ )
(n−1

r−1

)
, then there is an element v ∈ [n] such that |F (v)| ≥ (1− ε)

(n−1
r−1

)
.

We note that for k ≥ 2, F is k-wise intersecting implies that it is intersecting.

Hence if r < n/2, the results obtained in the papers mentioned above suffice as sta-

bility results for Theorem 1.4.1. Consequently, the main interest of our theorem is
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in the structural information about large k-wise intersecting families that it provides

when r is much closer to n, more specifically when n/2≤ r < (k−1)n/k.

Proof of Stability

Suppose F ⊆
([n]

r

)
is a k-wise intersecting family, with r < (k−1)n

k . For any 0≤ ε <

1, let δ = ε

2rn(n3+1) and suppose |F | ≥ (1−δ )
(n−1

r−1

)
. We will show that F contains

a large star.

Katona-type Lemmas for k-wise Intersecting Families

In this section, we will prove some Katona-type lemmas which we will employ

later in the proof of the main theorem. We introduce some notation first. Consider a

permutation σ ∈ Sn as a sequence (σ(1), . . . ,σ(n)). We say that two permutations

µ and π are equivalent if there is some i ∈ [n] such that π(x) = µ(x+ i) for all

x ∈ [n]. Note that addition is carried out modulo n; more precisely, x+ i is either

x+ i or x+ i− n, depending on which lies in [n]. Let Pn be the set of equivalence

classes, called cyclic orders on [n]. For a cyclic order σ and some x∈ [n], call the set

{σ(x), . . . ,σ(x+ r− 1)} a σ -interval of length r starting at x, ending in x+ r− 1,

and containing the points (x,x+ 1, . . . ,x+ r− 1) (addition again mod n). Denote

this interval by Iσ ,r(x). The following lemma is due to Frankl [26]. We include the

short proof below as we will build on these ideas in the proofs of the other lemmas.

Lemma 3.1.4 (Frankl). Let σ ∈ Pn be a cyclic order on [n], and F be a k-wise

intersecting family of σ -intervals of length r ≤ (k−1)n/k. Then, |F | ≤ r.

Proof. Let F c = {[n] \F : F ∈ F}. Let |F | = |F c| = m. We will prove that

m ≤ r. Since r ≤ (k− 1)n/k, we have n ≤ k(n− r). Suppose G1, . . . ,Gk ∈ F c.

Clearly ∪k
i=1Gi 6= [n]; otherwise ∩k

i=1([n] \Gi) = /0, which is a contradiction. Let

G ∈F c. Without loss of generality, suppose G ends in n. We now assign indices
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from [1,k(n− r)] to sets in F c. For every set G′ ∈F c \ {G}, assign the index x

to G′ if G′ ends in x. Assign all indices in [n,k(n− r)] for G. Consider the set of

indices [k(n− r)] and partition them into equivalence classes mod n− r. Suppose

there is an equivalence class such that all k indices in that class are assigned. Let

{Hi}i∈[k] be the k sets in F c which end at the k indices in the equivalence class. It

is easy to note that ∪k
i=1Hi = [n], which is a contradiction. So for every equivalence

class, there exists an index which has not been assigned to any set in F c. This

implies that there are at least n− r indices in [k(n− r)] which are unassigned. Each

set in F c \ {G} has one index assigned to it, and G has k(n− r)− n+ 1 indices

assigned to it. This gives us m− 1+ k(n− r)− n+ 1+ n− r ≤ k(n− r), which

simplifies to m≤ r, completing the proof.

�

We will now characterize the case when |F |= r, in the following lemma.

Lemma 3.1.5. Let σ ∈ Pn be a cyclic order on [n], and let F be a k-wise intersect-

ing family of intervals of length r < (k−1)n/k. If |F | = r, then F consists of all

intervals which contain a point x.

Proof. As in the proof of Lemma 3.1.4, we consider F c and assume (without loss

of generality) that there exists F ∈F c which ends in n. It is clear from the proof of

Lemma 3.1.4 that if |F |= r, there are exactly n− r indices in [k(n− r)], one from

each equivalence class, which are not assigned to any set in F c. Since F ends in n,

all indices in [n,k(n− r)] (and there will be at least 2) will be assigned. It will be

sufficient to show that the set of unassigned indices is Iσ ,n−r(x) for some x ∈ [r], as

this would imply that every set in F contains x.

Let x be the smallest unassigned index in [n− 1]. Clearly x ≤ r. Let x ≡

j mod n− r. We will show that x + i is unassigned for each 0 ≤ i ≤ n− r− 1.
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We argue by induction on i, with the base case being i = 0. Let y = x+ i for some

1 ≤ i ≤ n− r−1. Suppose y is assigned and Y is the set in F c that ends in y. We

know by the induction hypothesis that y−1 is unassigned, so every other index in

the same equivalence class as y− 1 is assigned. Call this equivalence class Ey−1.

Consider all indices in Ey−1 which lie in (y− 1,n] and let I1 be the set of these

indices, all assigned. Similarly, consider all indices in Ey−1 which lie in [1,y− 1)

and call this set I2. Let I′2 = { j+1 : j ∈ I2}. I′2 contains indices in the same equiv-

alence class as y, and are assigned (as they are all less than x and x is the smallest

unassigned index). Let J = I1∪ I′2, and since J contains only assigned indices, let

H be the subfamily of F c to which indices in J are assigned. Let p be the largest

index in I1 and let q be the smallest index in I′2. Since n < k(n− r), the set which

ends in q contains p+1. The family H ∪{Y} has at most k sets, and the union of

all sets in this family is [n]. This is a contradiction. Thus y is unassigned.

�

Now let F ⊆
([n]

r

)
be a k-wise intersecting family for some r <

(k−1)n
k

. For

each cyclic order σ ∈ Pn, let Fσ be the subfamily of sets in F that are intervals in

σ . We say that σ is saturated if |Fσ |= r; otherwise call it unsaturated. By Lemma

3.1.5, if σ is saturated, all sets in Fσ contain a common point, say v, so call σ

v-saturated to identify the common point.

For i≤ n, define an adjacent transposition Ai on a cyclic order σ as an operation

that swaps the elements in positions i and i+1 (i+1 = 1 if i = n) of σ . We are now

ready to prove our next lemma.

Lemma 3.1.6. For a k-wise intersecting family F ⊆
([n]

r

)
with r <

(k−1)n
k

, let

σ ∈ Pn be a v-saturated cyclic order. Let µ be the cyclic order obtained from σ by
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an adjacent transposition Ai, i∈ [n]\{v,v−1} (v−1= n if v= 1). If µ is saturated,

then it is v-saturated.

Proof. Without loss of generality (relabeling if necessary), assume σ is n-saturated,

so 1≤ i≤ n−2. Let µ be saturated. As before, we consider the family of comple-

ments F c and observe that the interval Iσ ,n−r(n) contains all the n− r unassigned

indices.

• Suppose i ∈ (n− r− 1,n− 1). Let A = Iµ,n−r(i+ 1) and let A end in index

j = i+n−r. Clearly, j 6= n−r−1. Suppose first that j ∈ (n−r−1,n). Then

all indices in the interval Iµ,n−r(n) are still unassigned, so µ is n-saturated.

Next we argue that if j ∈ [1,n− r−1), j cannot be an assigned index. This is

because all the indices in the set {n}∪ [1, j)∪ ( j,n− r−1] are unassigned in

µ , and by Lemma 3.1.5, all the unassigned indices in a saturated order occur

in an interval of length n− r. So assume j = n and suppose j is assigned.

By Lemma 3.1.5, the index n− r will be unassigned, which is only possible

if i = n− r (otherwise Iµ,n−r(1) = Iσ ,n−r(1)). This implies that n = 2(n− r)

and hence k ≥ 3. Now consider the following intervals, all of which are sets

in F c: Iσ ,n−r(1), Iσ ,n−r(n−r) and Iµ,n−r(n−r+1). The union of these three

sets is [n], a contradiction.

• Suppose i = n− r−1. As before, the only possibilities to consider are when

either n or n− r− 1 are assigned indices in µ . Suppose n is assigned in µ .

This means that i+1 = n− r is unassigned in µ , by Lemma 3.1.5. However

this is not possible since Iµ,n−r(1) = Iσ ,n−r(1). So suppose n− r− 1 is as-

signed in µ . By Lemma 3.1.5, n−1 is unassigned in µ . This is only possible

if the interval ending in n−1 starts at i+1. This means n = 2(n− r) and an

argument identical to Case 1 suffices.
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• Suppose i ∈ [1,n− r− 1). Now Iσ ,n−r(n) = Iµ,n−r(n), so n− r− 1 is unas-

signed in µ . Hence assume n is assigned in µ . Then the interval Iµ,n−r(i+1)

ends in n and is a set in F c. Clearly, the union of this set with Iσ ,n−r(1),

which is also a set in F c, is [n], a contradiction.

�

Cayley Graphs

In this small section, we gather some facts about expansion properties of a specific

Cayley graph of the symmetric group. We will consider the Cayley graph G on

Sn−1 generated by the set of adjacent transpositions A = {(12), . . . ,(n−2 n−1)}.

In particular, the vertex set of G is Sn−1 and two permutations σ and µ are adjacent

if µ = σ ◦a, for some a ∈ A. We note that the transposition operates by exchanging

adjacent positions (as opposed to consecutive values). G is an n−2-regular graph.

It was shown by Keevash [40], using a result of Bacher [3], that G is an α-expander

for some α > 1
n3 , i.e. for any H ⊆V (G) with |H| ≤ |V (G)|

2 , we have N(H)≥ α|H|>
|H|
n3 , where N(H) is the set of all vertices in V (G) \H which are adjacent to some

vertex in H.

Proof of Main Theorem

Proof of Theorem 1.5.2. We will finish the proof of Theorem 1.5.2 in this section.

We can identify every cyclic order in Pn with a permutation σ ∈ Sn having σ(n) = n.

Restricting σ to [n−1] gives a bijection between Pn and Sn−1. Let U be the set of

unsaturated cyclic orders in Pn. We have

r!(n− r)!|F | = ∑
σ∈Pn

|Fσ |

≤ ∑
σ∈Pn

r−|U |

= r(n−1)!−|U |.
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This gives us |U | ≤ r(n−1)!− r!(n− r)!(1−δ )
(n−1

r−1

)
= rδ (n−1)!, implying that

there are at least (1− rδ )(n−1)! saturated orders in Pn.

We now consider the Cayley graph G defined above, with the vertex set being Pn

and the generating set being the set of adjacent transpositions A = {(12), . . . ,(n−

2 n−1)}. Suppose S is a subset of saturated cyclic orders. We can use the expansion

property of G to conclude that if n3rδ ≤ |S|
(n−1)! ≤

1
2 , we get N(S)> |S|/n3 ≥ rδ (n−

1)!. This means that there is a saturated cyclic order in N(S). We will use this

observation to show that the subgraph of G induced by the set of all saturated cyclic

orders, say H, has a large component. Consider the set of all components in H.

Now a component in H can be either small, i.e. have size at most n3rδ (n− 1)! or

be large, i.e. have size bigger than (n−1)!/2. Clearly there can be at most one large

component. We argue that the total size of all small components is at most n3rδ (n−

1)!. Suppose not. Let S′ be the union of (at least 2) small components such that

n3rδ (n−1)!≤ |S′| ≤ 2n3rδ (n−1)!≤ (n−1)!/2. Now using the above observation,

NH(S′) is non-empty, a contradiction. Thus there is a large component of size

at least (1− n3rδ )(n− 1)!. Call this component H ′. Suppose σ is a v-saturated

cyclic order in H ′. By Lemma 3.1.6, every cyclic order in H ′ is v-saturated. Thus,

r!(n− r)!|F (v)| ≥ ∑σ∈H ′ |Fσ | ≥ r(1− rδ −n3rδ )(n−1)!, which gives |F (v)| ≥

(1− ε

2n)
(n−1

r−1

)
, since δ = ε

2rn(n3+1) .

Remark: The proof of Theorem 1.5.2 also contains a proof of the structural

uniqueness of the extremal configurations for Theorem 1.4.1 when r < (k−1)n/k.

This can be easily observed by putting ε = 0 in the statement of the theorem, or by

just using Lemmas 3.1.4, 3.1.5 and 3.1.6. We note that the original proof by Frankl

in [28] did not include this structural information. However in [26], Frankl gave

another proof of Theorem 1.4.1 using the Kruskal-Katona theorem, which includes
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the characterization of the extremal structures for r ≤ (k− 1)n/k when k ≥ 3 and

r < (k−1)n/k when k = 2. An alternate proof of this characterization is also given

by Mubayi and Verstraete [52].

3.2 k-wise Intersecting Vertex Families in Graphs

Next, we consider a graph-theoretic generalization of Theorem 1.4.1. For a graph

G (with vertex set and edge set denoted by V (G) and E(G) respectively) and

r ≥ 1, let J r(G) denote the set of all independent vertex sets of size r. Let

M r(G) denote the family of all vertex sets of size r containing a maximum in-

dependent set and let H r(G) = J r(G)∪M r(G). For a vertex x ∈ V (G), let

H r
x (G) = {A ∈H r(G) : x ∈ A}. Define J r

x (G) and M r
x (G) in a similar man-

ner. Henceforth we will consider the perfect matching graph on 2n vertices (and

n edges), and denote it by Mn. Note that |H r
x (Mn)| = 2r−1(n−1

r−1

)
when r ≤ n and

|H r
x (Mn)| = 22n−r( n−1

r−n−1

)
+ 22n−r−1(n−1

r−n

)
, when r > n. We will consider k-wise

intersecting families in H r(Mn), and prove the following analog of Frankl’s theo-

rem.

Theorem 1.4.3 For k ≥ 2, let r ≤ (k−1)(2n)
k

, and let F ⊆H r(Mn) be k-wise

intersecting. Then,

|F | ≤

 2r−1(n−1
r−1

)
if r ≤ n, and

22n−r( n−1
r−n−1

)
+22n−r−1(n−1

r−n

)
otherwise.

If r <
(k−1)(2n)

k
, then equality holds if and only if F = H r

x (Mn) for some x ∈

V (Mn).

It is not hard to observe that the k = 2 case of Theorem 1.4.3 is Theorem 1.4.4

of Bollobás and Leader [6].

Theorem 1.4.4 Let 1 ≤ r ≤ n, and let F ⊆J r(Mn) be an intersecting family.
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Then, |F | ≤ 2r−1(n−1
r−1

)
. If r < n, equality holds if and only if F = J r

x (Mn) for

some x ∈V (Mn).

Note that if r < n, then H r(Mn) =J r(Mn) and M r(Mn) = /0. Similarly if r >

n, H r(Mn) = M r(Mn) and J r(Mn) = /0. In the case r = n, we have H r(Mn) =

J r(Mn) =M r(Mn). We also observe that the main interest of our theorem is in the

case r > n for the bound and r≥ n for the characterization of the extremal structures.

This is because of the previously fact that if a family F is k-wise intersecting

(k ≥ 2), it is also intersecting.

A k-wise Intersection Theorem for Perfect Matchings

Let V (Mn) = {1,2, . . . ,2n}, and let E(Mn) = {{1,n+ 1},{2,n+ 2}, . . . ,{n,2n}}.

Call two vertices which share an edge as partners. We consider cyclic orderings

of the set V (G), i.e. a bijection between V (G) and [2n] with certain properties. In

particular, call a cyclic ordering of V (G) good if all partners are exactly n apart

in the cyclic order. More formally, if c is a bijection from V (G) to [2n], c is a

good cyclic ordering if for any i ∈ [n], c(i+n) = c(i)+n (modulo 2n, so c(i+n) =

c(i)−n if c(i) > n). It is fairly simple to note that the total number of good cyclic

orderings, regarding cyclically equivalent orderings as identical, is 2n−1(n− 1)!.

Every interval in a good cyclic ordering will be either an independent set in Mn (if

r ≤ n) or contain a maximum independent set (if r > n). Now let F ⊆H r(G) be

k-wise intersecting for r ≤ (k−1)(2n)
k . Using an argument identical to the proof of

Lemma 3.1.4, we can conclude that for any good cyclic ordering c, there can be

at most r sets in F that are intervals in c. For a given set F ∈F , in how many

good cyclic orderings is it an interval? The answer depends on the value of r.

Suppose r≤ n. In this case, F is an interval in r!(n−r)!2n−r good cyclic orderings.

Thus we have |F |r!(n− r)!2n−r ≤ r(n− 1)!2n−1, giving |F | ≤
(n−1

r−1

)
2r−1. Note
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that this bound also follows directly from Theorem 1.4.4, since r ≤ n implies that

H r(Mn) =J r(G). Now suppose r > n. Then J r(G) = /0 and H r(G) =M r(G).

We can think of each set in F as containing both vertices from r− n edges, and

exactly 1 vertex each from the remaining 2n− r edges. Hence the number of good

cyclic orders in which a set F ∈F is contained is (2n− r)!(r−n)!2r−n. This gives

us the following inequality.

|F | ≤ r(n−1)!2n−1

(2n− r)!(r−n)!2r−n

=
n(n−1)!22n−r−1

(2n− r)!(r−n)!
+

(r−n)(n−1)!22n−r−1

(2n− r)!(r−n)!

=

(
n

r−n

)
22n−r−1 +

(
n−1

r−n−1

)
22n−r−1

=

(
n−1

r−n−1

)
22n−r−1 +

(
n−1
r−n

)
22n−r−1 +

(
n−1

r−n−1

)
22n−r−1

= 22n−r
(

n−1
r−n−1

)
+22n−r−1

(
n−1
r−n

)
.

This completes the proof of the bound. We will now prove that the extremal families

are essentially unique. Suppose that r <
(k−1)(2n)

k
and |F | = 22n−r( n−1

r−n−1

)
+

22n−r−1(n−1
r−n

)
. Then for each good cyclic ordering c, there are exactly r sets from

F that are intervals in c. Using Lemma 3.1.5, we can conclude that each good

cyclic ordering is saturated. To simplify the argument, and because Theorem 1.4.4

suffices when r < n, we henceforth assume r ≥ n so k ≥ 3 and 2n− r ≤ n.

Consider the good cyclic ordering π defined by π(i) = i for 1 ≤ i ≤ 2n and

assume without loss of generality that it is 2n-saturated. Since the number of good

cyclic orderings are 2n−1(n− 1)!, we will identify all good cyclic orderings with

bijections σ from [2n] to itself that satisfy σ(n) = n and σ(2n) = 2n.

For each permutation p ∈ Sn−1, define the following good cyclic ordering σ

on [2n]: for 1 ≤ i ≤ n− 1, let σ(i) = p(i) and for n+ 1 ≤ i ≤ 2n− 1, let σ(i) =

p(i− n)+ n. Also let σ(i) = i if i ∈ {n,2n}. Denote the set of good cyclic orders
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obtained from permutations in Sn−1 in this manner by Cn−1. Now for 1≤ i≤ n−2,

define an analogous adjacent transposition Ti for any good cyclic ordering σ as an

operation that swaps the elements in positions i and i+ 1 and also the elements in

positions i+ n and i+ n+ 1 of σ , so the resulting cyclic ordering, say µ , is also a

good cyclic ordering. Note also that if σ ∈ Cn−1, then µ ∈ Cn−1. We now prove

a lemma that is similar to Lemma 3.1.6. The proof will be very similar to that of

Lemma 3.1.6, so we will omit many of the details. As before, for x, l ∈ [2n], let

Iσ ,l(x) be the interval of length l in the good cyclic ordering σ that begins in x, ends

in x+ l−1 and contains the elements σ(x), . . . ,σ(x+ l−1).

Lemma 3.2.1. For a k-wise intersecting family F ⊆H r(Mn), with r <
(k−1)(2n)

k
,

let σ be a 2n-saturated good cyclic ordering. Let µ be the good cyclic order ob-

tained from σ by an adjacent transposition Ti, i ∈ [n−2]. If µ is saturated, then it

is 2n-saturated.

Proof. As in Lemmas 3.1.4, 3.1.5 and 3.1.6, we again consider the family of com-

pliments of sets in F , denoted by F c, that are intervals in σ . By Lemma 3.1.5,

we know that Iσ ,2n−r(2n) (which ends in 2n− r−1) contains all of the 2n− r unas-

signed indices. Now let Ti be an adjacent transposition for 1≤ i≤ n−2. Recall that

Ti swaps elements in position i and i+ 1, and also the elements in positions i+ n

and i+n+1. Suppose µ , obtained from σ by Ti is saturated, but not 2n-saturated.

We consider the following cases.

• Suppose i= 2n−r−1. In this case, 2n cannot be an assigned index in µ since

that would mean 2n− r is unassigned in µ . This would be a contradiction

because Iσ ,2n−r(1) = Iµ,2n−r(1). So suppose 2n− r−1 is assigned, implying

that 2n− 1 is unassigned in µ . This means that the interval Iσ ,2n−r(3n− r)

ends in 2n− 1, giving 3n = 2r (and hence, 2n− r = n/2). This yields k ≥
62



5. Now consider the following sets: Iµ,n/2(2n), Iσ ,n/2(1), Iσ ,n/2(n/2+ 1),

Iσ ,n/2(n+1) and Iσ ,n/2(3n/2). All of these are sets in F c and their union is

[2n], a contradiction.

• Suppose i∈ [1,2n−r−1). In this case we have Iσ ,2n−r(2n) = Iµ,2n−r(2n) and

Iσ ,2n−r(1) = Iµ,2n−r(1), so 2n− r−1 is an unassigned index in µ and 2n− r

is assigned. This implies by Lemma 3.1.5 that the interval of unassigned

indices remains unchanged in µ , as required.

• Suppose i ∈ (2n− r− 1,n− 1). Here Iσ ,2n−r(2n) = Iµ,2n−r(2n), so suppose

2n is assigned in µ . This means that 2n− r is unassigned in µ , implying

i = 2n− r. Since 2n is assigned in µ , we have (i+n+1)+(2n− r−1) = 2n,

which yields i = r−n. Hence 3n = 2r and k ≥ 5. Now consider the follow-

ing 5 intervals, all sets in F c: Iµ,n/2(3n/2+ 1), Iσ ,n/2(1), Iσ ,n/2(n/2+ 1),

Iσ ,n/2(n+ 1) and Iσ ,n/2(3n/2). The union of the 5 sets is [2n], a contradic-

tion.

�

Now for 1≤ i≤ n, define a swap operation Wi on a good cyclic ordering σ as an

operation that exchanges the elements in positions i and n+ i of σ , so the resulting

cyclic order is also good. We will now prove the following lemma about the swap

operation.

Lemma 3.2.2. For a k-wise intersecting family F ⊆H r(Mn) with n< r <
(k−1)(2n)

k
,

let σ be a 2n-saturated good cyclic ordering. Let µ be the good cyclic order ob-

tained from σ by the swap Wn−1. If µ is saturated, then it is 2n-saturated.

Proof. We first observe that n < r implies k ≥ 3. We consider two cases for the

proof. As before, Iσ ,2n−r(2n) contains all the unassigned indices.
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• Suppose r = n+ 1, so 2n− r = n− 1. Now Iσ ,2n−r(2n) = Iµ,2n−r(2n), so

2n− r−1 is still unassigned in µ . This implies that 2n is assigned in µ and

2n− r = n− 1 is unassigned. Now consider the following three intervals:

Iσ ,n−1(1), Iµ,n−1(3) and Iµ,n−1(n+2). All 3 sets lie in F c, and their union is

[2n], a contradiction. We note here that the argument assumes n≥ 4. If n≤ 3

and r = n+1, we have k ≥ 4 and a trivial ad hoc argument suffices.

• Suppose n− 1 > 2n− r. Now the intervals of length 2n− r ending at the

points in the interval [2n− r− 1,n− 1) (which has length at least 2) are the

same in both σ and µ . In other words, 2n− r− 1 is unassigned in µ and

all the other indices in the interval are assigned. This means that the set of

unassigned indices remains unchanged in µ , as required.

�

We are now ready to finish the proof of Theorem 1.4.3. We consider two cases,

r = n and r > n, since the proofs are slightly different. Suppose first that r > n.

Since every good cyclic ordering is saturated (and since we have assumed that π is

2n-saturated), we can use Lemmas 3.2.1 and 3.2.2 to infer that every good cyclic

ordering is 2n-saturated. To finish the proof of this case, we will show that each set

in H r
2n(Mn) is an interval in some such good cyclic ordering. Let A ∈H r

2n(Mn).

Then A contains r−n edges (i.e. both vertices in r−n edges) and 2n− r other ver-

tices, one each from the other 2n− r edges. Suppose first that n ∈ A, so A contains

the edge {n,2n}. Let the other r−n−1 edges be {{x1,y1}, . . . ,{xr−n−1,yr−n−1}},

with each xi ∈ [n− 1] and each yi ∈ [n+ 1,2n− 1]. Let L = {l1, . . . , l2n−r} be the

set of the remaining 2n− r vertices in A. We now construct a good cyclic ordering

σ in which A is an interval. To define σ , it clearly suffices to define values of σ(i)

for 1≤ i≤ n−1. So for 1≤ i≤ r−n−1, let σ(i) = xi, and for 1≤ i≤ 2n− r, let
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σ(i+ r−n−1) = li. Here the σ -interval of length r, ending at index r−1, is pre-

cisely A. Now suppose that n /∈A. Let the r−n edges be {{x1,y1}, . . . ,{xr−n,yr−n}}

and let L = {l1, . . . , l2n−r−1} be the other 2n− r− 1 vertices (excluding 2n). A

good cyclic ordering σ in which A is an interval can be constructed as follows: for

1 ≤ i ≤ 2n− r−1, let σ(i) = li and for 2n− r ≤ i ≤ n−1, let σ(i) = xi−(2n−r−1).

In this case, the σ -interval of length r ending at index n−1, is A.

For r = n, we observe by Lemma 3.2.1 that every good cyclic ordering in Cn−1

is 2n-saturated. Again, we will show that every set in H r
2n(Mn) is an interval in

some σ ∈Cn−1. Let A ∈H r
2n(Mn). Note that A is a maximum independent set in

Mn and contains no edges. Let V = A∩ [n− 1], |V | = s, for some s ≤ r and let

W = A\{V ∪{2n}}. Let V = {v1, . . . ,vs} and W = {w1, . . . ,wr−1−s}. Construct a

good cyclic ordering σ ∈Cn−1 as follows: for 1 ≤ i ≤ s, define σ(i) = vi, and for

s+1≤ i≤ r−1, set σ(i) = wi−s−n. Then the σ -interval of length r, ending at s,

is A. This completes the proof of the theorem.
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Chapter 4

CROSS-INTERSECTION THEOREMS FOR GRAPHS

Consider a collection of k subfamilies of 2[n], say A1, . . . ,Ak. Call this collec-

tion cross-intersecting if for any i, j ∈ [k] with i 6= j, A ∈ Ai and B ∈ A j implies

A∩B 6= /0. Note that the individual families themselves do not need to be either non-

empty or intersecting, and a subset can lie in more than one family in the collection.

We will be interested in uniform cross-intersecting families, i.e. cross-intersecting

subfamilies of
([n]

r

)
for suitable values of r. There are two main kinds of prob-

lems concerning uniform cross-intersecting families that have been investigated, the

maximum product problem and the maximum sum problem. One of the main results

for the maximum product problem due to Matsumoto and Tokushige [45] states that

for r ≤ n/2 and k ≥ 2, the product of the cardinalities of k cross-intersecting sub-

families {A1, . . . ,Ak} of
([n]

r

)
is maximum if A1 = · · · = Ak = {A ⊆

([n]
r

)
: x ∈ A}

for some x ∈ [n].

We will be more interested in the maximum sum problem, particularly the fol-

lowing theorem of Hilton [31], which establishes a best possible upper bound on

the sum of cardinalities of cross-intersecting families and also characterizes the ex-

tremal structures.

Theorem 1.6.1. Let r ≤ n/2 and k ≥ 2. Let A1, . . . ,Ak be cross-intersecting sub-

families of
([n]

r

)
, with A1 6= /0. Then,

k

∑
i=1
|Ai| ≤


(n

r

)
if k ≤ n/r, and

k
(n−1

r−1

)
if k ≥ n/r.

If equality holds, then

1. A1 =
([n]

r

)
and Ai = /0, for each 2≤ i≤ k, if k <

n
r

,



2. |Ai|=
(n−1

r−1

)
for each i ∈ [k] if k >

n
r

, and

3. A1, . . . ,Ak are as in case 1 or 2 if k =
n
r
> 2.

It is simple to observe that Theorem 1.6.1 is a generalization of the Erdős-Ko-

Rado theorem [21] in the following manner: put k > n/r and let A1 = · · ·= Ak

There have been a few generalizations of Hilton’s cross-intersection theorem,

most recently for permutations by Borg ([8] and [9]) and for uniform cross-intersecting

subfamilies of independent sets in graph Mn which is the perfect matching on 2n

vertices, by Borg and Leader [11]. Borg and Leader proved an extension of Hilton’s

theorem for signed sets, which we will state in the language of graphs as we are

interested in formulating a graph-theoretic analogue of Theorem 1.6.1 similar to

the one developed in [34] for Theorem 1.1.1. For graph G, let J (r)(G) be the

family of all independent sets of size r in G. Also for any vertex x ∈ V (G), let

J r
x (G) = {A ∈J r(G) : x ∈ A}.

Theorem 1.6.2 Let r≤ n and k≥ 2. Let A1, . . . ,Ak⊆J r(Mn) be cross-intersecting.

Then
k

∑
i=1
|Ai| ≤


(n

r

)
2r if k ≤ 2n/r, and

k
(n−1

r−1

)
2r−1 if k ≥ 2n/r.

Suppose equality holds and A1 6= /0. Then,

1. If k ≤ 2n/r, then A1 = J r(Mn) and A2 = · · ·= Ak = /0,

2. If k ≥ 2n/r, then for some x ∈V (Mn), A1 = · · ·= Ak = J r
x (Mn), and

3. If k = 2n/r > 2, then A1, . . . ,Ak are as in either of the first two cases.

In fact, Borg and Leader proved a slightly more general result with the same

argument, for a disjoint union of complete graphs, all having the same number of

vertices s, for some s ≥ 2. We consider extensions of this result to any disjoint
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union of complete graphs. Let G be a disjoint union of complete graphs, with each

component containing at least 2 vertices. We first prove a theorem which bounds

the sum of the cardinalities of cross-intersecting subfamilies A1, . . . ,Ak of J r(G)

when k is sufficiently small.

Theorem 4.0.3. Let G1, . . . ,Gn be n complete graphs with |Gi| ≥ 2 for each 1 ≤

i≤ n. Let G be the disjoint union of these n graphs and let r≤ n. For some 2≤ k≤

minn
i=1{|Gi|}, let A1, . . . ,Ak ⊆J r(G) be cross-intersecting families. Then,

k

∑
i=1
|Ai| ≤ |J (r)(G)|.

This bound is best possible, and can be obtained by letting A1 =J r(G) and A2 =

· · ·= Ak = /0.

Cross-intersecting pairs

We now restrict our attention to cross-intersecting pairs in J r(G), i.e. we fix

k = 2. The following Corollary of Theorem 1.6.2 is immediately apparent.

Corollary 4.0.4. Let r ≤ n. Let (A ,B) be a cross-intersecting pair in J r(Mn).

Then,

|A |+ |B| ≤ 2r
(

n
r

)
.

If r < n, then equality holds if and only if A =J r(Mn) and B = /0 (or vice-versa).

We give an alternate proof of Corollary 4.0.4. The bound in the statement of

Corollary 4.0.4 will follow immediately from Theorem 4.0.3, while the Theorem

1.4.4 of Bollobás and Leader [6] is used to characterize the extremal structures. The

following corollary can also be directly obtained from Theorem 4.0.3.

Corollary 4.0.5. Let r ≤ n and suppose (A ,B) is a cross-intersecting pair in

J r(G), where G is a disjoint union of n complete graphs, each having at least
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2 vertices. Then |A |+ |B| ≤ |J r(G)|. This bound is best possible, and can be

attained by letting A = J r(G) and B = /0.

We now consider this problem for a larger class of graphs, namely chordal

graphs, but with a slightly stronger restriction on r. As defined before, let µ = µ(G)

be the minimum size of a maximal independent set in G. We prove the following

theorem for chordal graphs.

Theorem 4.0.6. Let G be a chordal graph and let r≤ µ(G)/2. Then for any cross-

intersecting pair (A ,B) in J r(G), |A |+ |B| ≤ |J r(G)|.

We conjecture that the statement of Theorem 4.0.6 should hold for all graphs.

Conjecture 4.0.7. Let G be a graph and r ≤ µ(G)/2. If (A ,B) is a cross-

intersecting pair in J r(G), then |A |+ |B| ≤ |J r(G)|.

We end by proving Conjecture 4.0.7 when G =Cn, the cycle on n ≥ 2 vertices

(defining Cn to be a solitary edge when n = 2), which is non-chordal when n ≥ 4.

In fact we prove the following stronger statement.

Theorem 4.0.8. For r≥ 1, n≥ 2, and any cross-intersecting pair (A ,B) in J r(Cn),

|A |+ |B| ≤ |J r(G)|.

The main tool we use to prove Theorems 4.0.6 and 4.0.8 is the shifting tech-

nique, appropriately modified for the respective graphs.

4.1 Disjoint union of complete graphs

We start by giving a proof of Theorem 4.0.3. We will use a strategy of Borg [8] in

conjunction with Theorem 2.0.8. The strategy is to construct an intersecting family

from a collection of cross-intersecting families and obtain the cross-intersection

result by invoking Theorem 2.0.8, the full statement of which we recall below. We
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require Theorem 2.0.8 by Holroyd, Spencer and Talbot [34], the full statement of

which we recall below.

Theorem 2.0.8. Let G be a disjoint union of n ≥ r complete graphs, each on at

least 2 vertices. If A ⊆J r(G) is intersecting, then |A | ≤maxx∈V (G)|J r
x (G)|.

Proof of Theorem 4.0.3. Let G be a disjoint union of n complete graphs G1, . . . ,Gn

with |Gi| ≥ 2 for each i ∈ [n]. Let A1, . . . ,Ak be cross-intersecting subfamilies of

J r(G), with r ≤ n and 2≤ k ≤minn
i=1{|Gi|}.

We create an auxiliary graph G′ = G∪Gn+1 where Gn+1 = Kk, the complete

graph on k vertices and V (Gn+1) = {v1, . . . ,vk}. Let V (G′) =V (G)∪V (Gn+1) and

E(G′) = E(G)∪E(Gn+1). For each 1 ≤ i ≤ k, let A ′
i = {A∪{vi} : A ∈ Ai}. Let

A ′ =
⋃k

i=1 A ′
i . Clearly, |A ′| = ∑

k
i=1 |A ′

i | = ∑
k
i=1 |Ai| and A ′ ⊆J r+1(G′). We

now prove that A ′ is intersecting.

Claim 4.1.1. A ′ is intersecting.

Proof. Let A,B ∈ A ′. If A,B ∈ A ′
i for some i ∈ [k], then vi ∈ A∩B, so assume

A ∈ A ′
i and B ∈ A ′

j for some i 6= j. For A′ = A \ {vi} and B′ = B \ {v j}, we have

A′ ∈Ai and B′ ∈A j, which implies A′∩B′ 6= /0. This gives A∩B 6= /0 as required.

�

Using Theorem 2.0.8 and Claim 4.1.1, we get |A ′| ≤ |J r+1
x (G′)|, where x is

any vertex in a component with the smallest number of vertices. In particular we

can let x∈V (Gn+1), since k≤minn
i=1{|Gi|}. This gives us |J r+1

x (G′)|= |J r(G)|,

completing the proof of the theorem.

We can now use Theorem 4.0.3 to give the following short alternate proof of

Corollary 4.0.4. As mentioned before we require Theorem 1.4.4 to characterize the

extremal structures.
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Theorem 1.4.4 Let r ≤ n and suppose A ⊆J r(Mn) is intersecting. Then |A | ≤

2r−1(n−1
r−1

)
. If r < n, then equality holds if and only if A = J r

x (Mn) for some

x ∈V (Mn).

Proof of Corollary 4.0.4. It is clear that when k = 2, the bound in Corollary 4.0.4

follows immediately from Theorem 4.0.3. So suppose that r < n and |A |+ |B|=

2r(n
r

)
. Assume A ′ is defined as in the proof of Theorem 4.0.3, so A ′⊆J r+1(Mn+1)

is intersecting. Let v1v2 be the edge added to Mn to obtain Mn+1. Now |A ′| =

|A |+ |B| = 2r(n
r

)
. By using the characterization of equality in Theorem 1.4.4,

we get A ′ = J r+1
x (Mn+1) for some x ∈V (Mn+1). But by the construction of A ′,

every set in A ′ contains either v1 or v2, so x ∈ {v1,v2}. Without loss of generality,

let x = v1. This implies that no set in A ′ contains v2. Thus we get A = J r(Mn)

and B = /0. �

4.2 Chordal graphs

In this section, we prove Theorem 4.0.6. We begin by fixing some notation. For a

graph G and a vertex v∈V (G), let G−v be the graph obtained from G by removing

vertex v. Also let G ↓ v denote the graph obtained by removing v and its set of

neighbors from G. We now recall the characterization of chordal graphs, due to

Dirac [19].

Definition 4.2.1. A vertex v is called simplicial in a graph G if its neighborhood is

a clique in G.

Consider a graph G on n vertices, and let σ = [v1, . . . ,vn] be an ordering of the

vertices of G. Let the graph Gi be the subgraph obtained by removing the vertex

set {v1, . . . ,vi−1} from G. Then σ is called a simplicial elimination ordering if vi is
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simplicial in the graph Gi, for each 1≤ i≤ n.

Theorem 2.1.3. A graph G is a chordal graph if and only if it has a simplicial

elimination ordering.

We state a lemma regarding the graph parameter µ . Note that the proof of this

fact appears in Chapter 2, so we present it here without proof.

Lemma 2.1.13. Let G be a graph, and let v1,v2 ∈ G be vertices such that N[v1] ⊆

N[v2]. Then the following inequalities hold:

1. µ(G− v2)≥ µ(G);

2. µ(G ↓ v2)+1≥ µ(G).

The following corollary is an easy consequence of Lemma 2.1.13.

Corollary 2.1.14 Let G be a graph, and let v1,v2 ∈G be vertices such that N[v1]⊆

N[v2]. Then the following statements hold:

1. If r ≤ 1
2 µ(G), then r ≤ 1

2 µ(G− v2);

2. If r ≤ 1
2 µ(G), then r−1≤ 1

2 µ(G ↓ v2).

We now proceed with the proof of Theorem 4.0.6. We do induction on r, the

base case being r = 1. Since µ(G) ≥ 2, G has at least two vertices so the bound

follows trivially. Let r ≥ 2 and let G be a chordal graph with µ(G) ≥ 2r. We now

do induction on |V (G)|. If |V (G)|= µ(G), G is the empty graph on |V (G)| vertices,

and we are done by Theorem 1.6.1. So let |V (G)| > µ(G) ≥ 2r. This implies that

there is a component of G, say H on at least 2 vertices. We know from the definition

of chordal graphs that any induced subgraph of a chordal graph is also chordal. So

by using Theorem 2.1.3 for H, we can find a simplicial elimination ordering in H.

Let this ordering be [v1, . . . ,vm] where m = |V (H)| and let v1vi ∈ E(H) for some

2≤ i≤ m. Let A and B be a cross-intersecting pair in J r(G).
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We define two compression operations f1,i and g1,i for sets in the families A

and B respectively. Before we give the definitions, we note that N[v1]⊆ N[vi] and

that if A is an independent set with vi ∈ A, then A\{vi}∪{v1} is also independent.

f1,i(A) =

 A\{vi}∪{v1} if vi ∈ A,A\{vi}∪{v1} /∈A , and

A otherwise.

g1,i(B) =

 B\{vi}∪{v1} if vi ∈ B,B\{vi}∪{v1} /∈B, and

B otherwise.

We define A ′ = f1,i(A ) = { f1,i(A) : A ∈ A }. Also define B′ in an analogous

manner. Next, we define the following families for A ′ (the families for B′ are also

defined in an identical manner).

A ′
i = {A ∈A ′ : vi ∈ A},

Ā ′
i = A ′ \A ′

i , and

A ′′
i = {A\{vi} : A ∈A ′

i }.

It is not hard to observe that |A | = |A ′| = |A ′′
i |+ |Ā ′

i | and |B| = |B′| =

|B′′i |+ |B̄′i|. Consider the pair (A ′′
i ,B′′i ) and the pair (Ā ′

i ,B̄
′
i). We will prove the

following lemma about these pairs.

Lemma 4.2.2. 1. (A ′′
i ,B′′i ) is a cross-intersecting pair in J r−1(G ↓ vi).

2. (Ā ′
i ,B̄

′
i) is a cross-intersecting pair in J r(G− vi).

Proof. 1. Let A∈A ′′
i and B∈B′′i . Then A1 =A∪{vi}∈A and B1 =B∪{vi}∈

B. Also, A2 = A∪{v1} ∈A , otherwise A1 could have been shifted to A2 by

f1,i. Since B1∩A2 6= /0, we get A∩B 6= /0 as required.
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2. Let A ∈ Ā ′
i and B ∈ B̄′i . If A ∈ A and B ∈ B, we are done, so suppose

A /∈A . Then we must have v1 ∈A . Assuming v1 /∈ B, we get B ∈B. Since

(A\{v1}∪{vi}) ∈A , we have (A\{v1}∪{vi})∩B 6= /0, implying A∩B 6= /0

as required.

�

We are now in a position to complete the proof of Theorem 4.0.6 as follows,

using Lemma 4.2.2. We can use Corollary 2.1.14 to infer that G− vi satisfies the

induction hypothesis for r and G ↓ vi satisfies the induction hypothesis for r−1.

|A |+ |B| = (|Ā ′
i |+ |B̄′i|)+(|A ′′

i |+ |B′′i |)

≤ |J r(G− vi)|+ |J r−1(G ↓ vi)|

= |J r(G)|.

The last equality can be explained by a simple partitioning of the family J r(G)

based on whether or not a set in the family contains vi. There are exactly |J r−1(G ↓

vi)| sets which contain vi and |J r(G− vi)| sets which do not contain vi.

4.3 Cycles

Proof of Theorem 4.0.8. As mentioned earlier, the main tool we use to prove Theo-

rem 4.0.8 is a shifting operation first employed by Talbot [60] to prove an EKR theo-

rem for the cycle. Proceeding by induction on r as before with r = 1 being the trivial

base case, we suppose r≥ 2 and do induction on n. The statement is vacuously true

when n∈ {2,3}, so suppose n≥ 4. Let V (Cn) = {1, . . . ,n} and E(Cn) = {{i, i+1} :

1≤ i≤ n−1}∪{{1,n}}. Suppose (A ,B) is a cross-intersecting pair in J r(Cn).

Consider the graph obtained by contracting the edge e1 = {n−1,n} in Cn. We will

identify this contraction by the function c : [n]→ [n− 1] defined by c(n) = n− 1

(and c(x) = x elsewhere), so the resulting graph is Cn−1. Similarly identify the
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graph obtained from Cn−1 by contracting the edge e2 = {n−2,n−1} as Cn−2. We

define the following two subfamilies for A . Let A1 = {A−{n} : n−2,n∈ A∈A }

and A2 = {A−{n−1} : n−1,1 ∈ A ∈A }. Define B1 and B2 similarly. Now no

set in either A1 or B1 contains 1. Similarly no set in either A2 or B2 contains n−2.

Moreover, no set in any of the families A1,A2,B1,B2 contains either n or n− 1.

This implies that A1,A2,B1,B2 ⊆J r−1(Cn−2). Let A ′
1 = {A∈A : n−2,n∈ A}

and A ′
2 = {A ∈A : 1,n−1 ∈ A}, with B′1 and B′2 defined similarly. We consider

the families A ∗ = A \ (A ′
1 ∪A ′

2) and B∗ = B \ (B′1∪B′2). Note that (A ∗,B∗)

is a cross-intersecting pair in J r(Cn). We will now define two shifting operations,

one for A ∗ and one for B∗ with respect to the vertices n and n−1.

f (A) =

 A\{n}∪{n−1} if n ∈ A,A\{n}∪{n−1} /∈A ∗, and

A otherwise.

g(B) =

 B\{n}∪{n−1} if n ∈ B,B\{n}∪{n−1} /∈B∗, and

B otherwise.

Let f (A ∗) = { f (A) : A ∈ A ∗} and f (B∗) = { f (B) : B ∈ B∗}. As before, we

partition f (A ∗) (and similarly, f (B∗)) into two parts as follows. Let A ′ = {A ∈

f (A ∗) : n /∈ A} and let A3 = {A−{n} : A ∈ f (A ∗) \A ′}. We have A ′,B′ ⊆

J r(Cn−1). Also A3,B3 ⊆J r−1(Cn−2) because for any set S ∈ A3 ∪B3, S∩

{1,n− 1,n} = /0. Let ˜A =
⋃

i∈[3]Ai and B̃ =
⋃

i∈[3]Bi. We consider the pair

(A ′,B′) in J r(Cn−1) and the pair ( ˜A ,B̃) in J r−1(Cn−2). We first state and

prove some claims about these families.

Claim 4.3.1. 1. Let A ∈A3. Then A∪{n−1} ∈A ∗.

2. Let B ∈B3. Then B∪{n−1} ∈B∗.
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Proof. It suffices to prove the claim for A3. We know that A∪{n} ∈ f (A ∗). This

means that A∪{n} ∈A ∗ and A∪{n} was not shifted to A∪{n−1} by f , implying

A∪{n−1} ∈A ∗. �

The next claim will show that ˜A =
⋃

i∈[3]Ai and B̃ =
⋃

i∈[3]Bi are disjoint

unions.

Claim 4.3.2. 1. For any i, j ∈ [3] with i 6= j, Ai∩A j = /0.

2. For any i, j ∈ [3] with i 6= j, Bi∩B j = /0.

Proof. As before, it suffices to prove the claim for the Ai’s. It is clear from the

definitions of A1 and A2 that A1∩A2 = /0. Since every (r−1)-set in A3 is obtained

by removing n from an r-set, no set in A3 contains 1. So it remains to prove that

no set in A3 contains n− 2. By the previous claim we know that for any A ∈ A3,

A∪{n−1} ∈A ∗. This gives n−2 /∈ A as required. �

Claim 4.3.3. 1. (A ′,B′) is a cross-intersecting pair in J r(Cn−1).

2. ( ˜A ,B̃) is a cross-intersecting pair in J r−1(Cn−2).

Proof. 1. Suppose A ∈A ′ and B ∈B′. If A ∈A ∗ and B ∈B∗, then A∩B 6= /0

so suppose A /∈A ∗. This gives n−1∈A. Assume n−1 /∈B so B∈B∗. Since

A1 = (A\{n−1}∪{n}) ∈A ∗, we have A1∩B 6= /0, which gives A∩B 6= /0.

2. Let A ∈ ˜A and B ∈ B̃. So A ∈ Ai and B ∈ B j for some i, j ∈ [3]. First

consider the case when i = j. Each set in A1 and B1 has n− 2, while each

set in A2 and B2 has 1, so let A ∈A3 and B ∈B3. We have A∪{n} ∈A ∗.

Also, B∪{n− 1} ∈B∗ by Claim 4.3.1, so (A∪{n})∩ (B∪{n− 1}) 6= /0,

giving A∩B 6= /0 as required. Next, let i 6= j. We only consider cases when

i < j, since the other cases follow identically. Suppose i = 1 and j = 2. In
76



this case we have (A∪{n}) ∈A , (B∪{n−1}) ∈B, which gives A∩B 6= /0.

If i = 1 and j = 3, we again have A∪{n} ∈ A while Claim 4.3.1 implies

B∪{n− 1} ∈B, giving A∩B 6= /0. Similarly for i = 2 and j = 3 we have

A∪{n−1} ∈A and B∪{n} ∈B.

�

The final claim we prove is regarding the size of J r(Cn).

Claim 4.3.4. |J r(Cn)|= |J r(Cn−1)|+ |J r−1(Cn−2)|.

Proof. Consider all sets in J r(Cn) which contain neither n nor both n− 1 and

1. The number of these sets is clearly J r(Cn−1). Now consider the subfamily

containing the remaining sets, i.e. those which either have n or both 1 and n− 1.

Call it F . We define the following correspondence between F and J r−1(Cn−2).

For A ∈F , define f (A) = A−{n} if n ∈ A and f (A) = A−{n−1} if 1,n−1 ∈ A.

Clearly f (A) ∈J r−1(Cn−2) and f is bijective, giving |F | = |J r−1(Cn−2)| as

required. �

We can now finish the proof of Theorem 4.0.8 as follows, using Claim 4.3.3 and

the inductive hypothesis. The final equality follows from Claim 4.3.4.

|A |+ |B| = |A ∗|+ |B∗|+
2

∑
i=1

(|Ai|+ |Bi|)

= (|A ′|+ |B′|)+
3

∑
i=1

(|Ai|+ |Bi|)

= (|A ′|+ |B′|)+(| ˜A |+ |B̃|)

≤ |J r(Cn−1)|+ |J r−1(Cn−2)|

= |J r(Cn)|. (4.1)
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Chapter 5

NEW DIRECTIONS AND GENERALIZATIONS

The Erdős–Ko–Rado theorem and its many generalizations continue to inspire a

tremendous amount of research in extremal set theory. In addition to the conjectures

and scope for strengthening the main theorems mentioned in the preceding sections,

there are other avenues for future research. A few of them are outlined in this

section.

5.1 Chvátal’s conjecture for hereditary families of small rank

As we mentioned in the introduction, Chvátal’s conjecture is one of the long-

standing open problems in the field. We recollect some definitions, before recall-

ing the conjecture itself. A family F ⊆ 2[n] is called hereditary if A ∈ F and

B ⊆ A imply that B ∈F . We say that a family F ⊆ 2[n] is EKR is the set of all

maximum-sized intersecting subfamilies of F contains a star, i.e. a subfamily S

with ∩S∈S S 6= /0. We’ve seen that 2[n] is EKR, as is
([n]

r

)
, if r ≤ n/2. Chvátal’s

conjecture can now be stated as follows.

Conjecture 1.2.1 If F ⊆ 2[n] is hereditary, then F is EKR.

There are a few results which verify the conjecture for specific hereditary fam-

ilies. Among the most important ones is a result of Chvátal himself [12]. Let F

be a hereditary family on a set X , which has a total ordering of its elements de-

fined by a relation �. Chvátal proved the conjecture when F is compressed, i.e. if

{x1, . . . ,xr} ∈F and yi � xi for each 1≤ i≤ r, then {y1, . . . ,yr} ∈F . Snevily [57]

further extended Chvátal’s theorem and proved the conjecture when the family is

compressed with respect to a specific element x, i.e. if F ∈F such that y ∈ F but

x /∈ F , then F \{y}∪{x} ∈F . There have been other results, which have involved



the maximal members of a hereditary family F .

We begin this section by mentioning an important lemma of Kleitman [42], on

hereditary families. We call G a reverse hereditary family if A ∈ G and A ⊆ B

implies that B ∈ G . Kleitman’s lemma can be now stated as follows:

Lemma 5.1.1 (Kleitman [42]). If F is a hereditary family, and G is a reverse

hereditary family on [n], then |G ||F | ≥ 2n|G ∩F |.

An important consequence of Kleitman’s lemma is the following corollary. The

corollary appears as an exercise in Anderson [2] and can be proved as follows. Let

I(F ) denote the size of the maximum intersecting family in F .

Corollary 5.1.2. If F is a hereditary family on [n], then I(F )≤ 1
2
|F |.

Proof. For a hereditary family F , suppose I is a maximum intersecting family

in F , with |I | = I(F ). Suppose A ∈ I , and let A ⊆ B ∈ F . We must have

B ∈I , otherwise by maximality, there exists some C ∈I with B∩C = /0, giving

A∩C = /0, a contradiction. Now, define a family G as follows: let G = I ∪{A :

B⊆ A for some B ∈I }. It is easy to note that G is a reverse hereditary family, and

I = F ∩G . Moreover, G is intersecting, giving |G | ≤ 2n−1. Using Kleitman’s

lemma, we get the required bound as follows:

|I |= |G ∩F | ≤ |G ||F |
2n ≤ |F |

2
.

Corollary 5.1.2 is an important observation that leads to further partial results

regarding Chvátal’s conjecture. Many of the partial results concerning the conjec-

ture have involved the maximum elements of a given hereditary family. We define

the maximal elements of a hereditary family in the obvious manner as follows.
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Definition 5.1.3. For any hereditary family F ⊆ 2[n], F ∈F is a maximal element

if F ⊆ G and G ∈F implies that F = G.

Schönheim [55] proved that if the maximal elements of a hereditary family

satisfy additional conditions, then equality holds in the conclusion of Corollary

5.1.2.

Theorem 5.1.4 (Schönheim [55]). If the maximal elements of a hereditary fam-

ily F have non-empty intersection, then Chvátal’s conjecture is true for F , and

I(F ) =
1
2
|F |.

Further results have also been obtained in this direction by Stein [58] and Miklós

[48], among others. We will be interested in proving results for hereditary families

where the maximal elements have small cardinality, and all maximum intersecting

families are sufficiently large. Let
( [n]
≤k

)
= {A ⊆ [n] : |A| ≤ k}. In our proof, we

will make use of the Sunflower Lemma of Erdős and Rado [23]. We first define

sunflowers, then state the lemma, before proceeding to a statement and proof of the

theorem.

Definition 5.1.5. A sunflower, with k petals and a core X is a family of k sets

S1, . . . ,Sk such that for any i, j ∈ [k] with i 6= j, we have Si ∩ S j = X. Also, the

sets Si \X, called the petals, should be nonempty.

We can now state the Sunflower Lemma as follows.

Lemma 5.1.6 (Erdős–Rado [23]). Let F be a family of sets, each of cardinality s.

If |F |> s!(k−1)s, then F contains a sunflower with k petals.

We now state and prove the following theorem for hereditary families in
( [n]
≤3

)
.
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Theorem 5.1.7 (Hurlbert–Kamat–Mubayi [38]). Let F ⊆
( [n]
≤3

)
be a hereditary

family, and let I ⊆ F be a maximum intersecting family. If |I | ≥ 166, then

I is a star.

Proof. Let Ii = I ∩
([n]

i

)
, for i = 1,2,3. We can assume I1 = /0, since otherwise,

I is a star. Similarly, we can assume |I2| ≤ 3. Thus, we have |I3| ≥ 163. Since

163= 3!(4−1)3+1, we can use the Sunflower Lemma to conclude that I contains

a sunflower with at least 4 petals. Let S be a sunflower with the maximum number

of petals, and let C be the core of S. If |C|= 1, we can conclude that I is a star, since

I is intersecting, so suppose |C| = 2. Let C = {a,b}. Let A = {A ∈I3 : A∩C =

{a}}, and let B = {B ∈I3 : B∩C = {b}}. We have |I3| = |S|+ |A |+ |B|. Let

A ′= {A−{a} : A∈A }, and B′= {B−{b} : B∈B}. If A ′= /0 or B′= /0, we can

conclude that I3, and hence, I is a star (centered at either a or b), so suppose both

are non-empty. Since I is intersecting, A ′ and B′ are cross-intersecting families,

i.e. for any A ∈A ′ and B ∈B′, A∩B 6= /0. Let V (A ′) and V (B′) be the vertex sets

of A ′ and B′ respectively, and let n(X ) = |V (X )| for X ∈ {A ′,B′}. We first

prove the following claims.

Claim 5.1.8. If both A ′ and B′ are intersecting, or |A ′| ≥ 2 and |B′| ≥ 2, then,

|X | ≤ 2+n(X ) for X ∈ {A ′,B′}.

Proof. If A ′ is intersecting, it is either a triangle, or a star. In either case, the

bound follows trivially. A similar argument works for B′, so suppose, without loss

of generality that A ′ has two disjoint edges, say {xy,x′y′}. B′ ⊆ {xy′,y′y,yx′,x′x},

giving the required bound for B′. Now, if B′ has two disjoint edges, we can use a

similar argument for A ′, so suppose B′ is intersecting. Without loss of generality,

suppose B′ = {xy′,y′y}. Then A ′ ⊆ {xy,x′y′} ∪ {A ∈
([n]

2

)
: y′ ∈ A}, giving the

bound |n(A ′)| ≥ |A ′|. This completes the proof of the claim. �
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Claim 5.1.9. If A ′ has a pair of disjoint edges, and |B′|= 1, then n(A ′)−|A ′| ≥

−(|S|+1).

Proof. Let {xy,x′y′} be a pair of disjoint edges in A ′, and, wlog, let B′ = {xx′}.

Let A ′
x = {A ∈ A ′ : x ∈ A}, and let A ′

x′ = {A ∈ A ′ : x′ ∈ A}. Let X = {v ∈ [n] :

v 6= x′,xv ∈ Ax}, X ′ = {v ∈ [n] : v 6= x,x′v ∈ Ax′} and R = X ∩X ′. Now, |A ′| ≤

2|R|+ |X \R|+ |X ′ \R|+1, and n(A ′) = 2+ |R|+ |X \R|+ |X ′ \R|. So, n(A ′)−

|A ′| ≥ −(|R|+1). Since |R| ≤ |S| (otherwise, R would be a bigger sunflower with

core {a,x} (or {a,x′}), contradicting the choice of S), we have n(A ′)− |A ′| ≥

−(|S|+1). �

In the next claim, we give lower bounds on the sizes of Fa and Fb.

Claim 5.1.10. • |Fa| ≥ 1+(|S|+n(A ′)+1)+(|S|+ |A ′|).

• |Fb| ≥ 1+(|S|+n(B′)+1)+(|S|+ |B′|).

Proof. We will only give the proof for Fa, as the proof for Fb follows identically.

We know that |Fa|= ∑
3
i=1 |F i

a|, where F i
a =Fa∩

([n]
i

)
for i ∈ {1,2,3}. It is trivial

to note that |F 1
a | = 1. Now, consider F 2

a . First, {a,b} ∈ F 2
a . Also, for every

{a,b,s} ∈ S, {a,s} ∈ F 2
a , as F is a downset. Similarly, for every s ∈ V (A ′),

there exists a t ∈ V (A ′) such that {a,s, t} ∈ I3, and hence, {a,s} ∈ F 2
a . Thus,

|F 2
a | ≥ |S|+ n(A ′)+ 1. Also, it is not hard to see that |F 3

a | ≥ |S|+ |A ′|. This

completes the proof of the claim. �

We will now prove that either Fa or Fb is bigger than I , which will complete

the proof of the theorem. It will be sufficient to prove the following claim.

Claim 5.1.11. |Fa|+ |Fb|> 2(|I3|+3).
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Proof. We will consider two cases, depending on whether or not the hypothesis

of Claim 5.1.8 is true. Suppose the hypothesis of Claim 5.1.8 holds, so we have

n(X )−|X | ≥ −2, for X ∈ {A ′,B′}. Thus, since |S|> 3, we have

|Fa|+ |Fb| ≥ 4+4|S|+ |A ′|+ |B′|+n(A ′)+n(B′)

= (2|S|+2|A ′|+2|B′|+6)+(n(A ′)−|A ′|)+(n(B′)−|B′|)+2|S|−2

≥ 2(|I3|+3)+(2|S|−6)

> 2(|I3|+3).

Now, assume the hypothesis of Claim 5.1.8 is false, so, without loss of general-

ity, suppose A ′ has a pair of disjoint edges, and |B′|= 1. Clearly, n(B′)−|B′|= 1

and we can use Claim 5.1.9 to conclude that n(A ′)−|A ′| ≥ −(|S|+1). Thus, we

have

|Fa|+ |Fb| ≥ 4+4|S|+ |A ′|+ |B′|+n(A ′)+n(B′)

≥ (2|S|+2|A ′|+2|B′|+6)− (|S|+1)+1+2|S|−2

≥ 2(|I3|+3)+ |S|−2

> 2(|I3|+3).

�

It would be nice to be able to prove a more general version of this theorem, for

any k, with sufficiently large n, along the following lines.

Conjecture 5.1.12 (Hurlbert–Kamat–Mubayi). Let F ⊆
( [n]
≤k

)
be a hereditary fam-

ily, and let I ⊆F be a maximum intersecting family. Then, there exists an c0(k)

such that if |I |> c0(k), then I is a star.
83



It is clear, though, that the mostly ad-hoc methods used in the proof of Theorem

5.1.7 would most likely not work for the general case, and some new ideas would

be needed.

5.2 Families of Cycle-Free Subsets of Graphs

Next, we aim to continue our investigation of the Erdős–Ko–Rado properties of

hereditary families of vertex sets of certain graphs, along the lines of Chapter 2.

In Chapter 2, we considered the families of independent vertex sets of graphs, and

proved EKR-type theorems for certain classes. In this section, we consider a similar

problem, but for different types of vertex sets of a graph G, namely sets which

induce a forest in G; in other words, cycle-free vertex subsets of graph G. We begin

with some notation and definitions.

Let AG = {A⊆V (G) : A induces a forest }, A r
G = {A ∈AG : |A|= r}, and for

any x ∈V (G), let A r
G(x) = {A∈A r

G : x ∈ A}, called a star of A r
G, centered at vertex

x. We say that A r
G is EKR if no intersecting subfamily of A r

G is larger than the

largest star of A r
G.

In this preliminary work, we will prove a theorem which states that A r
G is EKR

when G is disjoint union of complete graphs satisfying some additional conditions.

Call a complete graph Ks trivial if s ∈ {1,2}. If H is subgraph of G, we let G−H

denote the graph obtained by removing the vertex set V (H) from V (G). Finally, if

A is a family of sets such that there is a set S which is a subset of every set in A ,

let A −S = {A\S : A ∈A }. We are now ready to state and prove our result.

Theorem 5.2.1. Let G be a disjoint union of n complete graphs such that there is

at least one trivial component and each non-trivial component has order at least 5.

If r ≤ n/2, then A r
G is EKR.

Before we proceed further, we note for the graphs G in Theorem 5.2.1, each
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A ∈ A r
G contains at most 2 vertices from each component of G; in other words, A

can be represented as a union of an independent set and a matching. This is a key

property that we will exploit in the proof.

Proof. We do induction on r and |V (G)|. The statement is trivial when r = 1, so

assume r≥ 2. Suppose that r = 2. If G is a disjoint union of n complete graphs, with

n ≥ 4, then |V (G)| ≥ 4 = 2r, and every vertex subset of size 2 in G will induce a

forest, so we are done by the Erdős–Ko–Rado theorem. Consequently, we’ll assume

r ≥ 3, and suppose G is a disjoint union of at least n≥ 2r ≥ 6 complete graphs. If

G is the disjoint union of n trivial graphs, every vertex subset of size r will be a

member of A r
G, so by the assumption n≥ 2r, we are again done by the Erdős–Ko–

Rado theorem. So suppose there exists some non-trivial component Ks, with s≥ 5,

with V (Ks) = [s]. Let A ⊆A r
G be an intersecting family. Finally, choose a vertex

x ∈V (G) from any trivial component of G. Note that |A r
G(x)| will be the same for

any choice of x, since every trivial component is acyclic.

For 1≤ i < j ≤ n, we define the shift operator fi, j as follows.

fi, j(A) =

 A\{ j}∪{i} if j ∈ A, i /∈ A,A\{ j}∪{i} /∈A , and

A otherwise.

Let fi, j(A ) = { fi, j(A) : A∈A }. Note that | fi, j(A )|= |A |. We also know from the

properties of shifting that if A is r-uniform and intersecting, then fi, j(A ) is also

r-uniform and intersecting. Moreover, since we do shifting only on the vertices of

Ks, fi, j(A ) ⊆ A r
G. Hence we may assume that A is shifted, i.e. for any i < j,

fi, j(A ) = A . We now partition A as follows. Let A0 = {A ∈ A : A∩ [s] = /0},

and for each 1≤ i≤ s, Ai = {A ∈A : A∩ [s] = {i}}. Also, for each 1≤ i < j ≤ s,

let Ai, j = {A ∈ A : A∩ [s] = {i, j}}. It is clear that the disjoint union A0∪A1 ⊆

A r
G−[2,s], and is intersecting.
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Now, we consider the families A1,4 and A2,3 (recall that s ≥ 5), and define the

following double shifting operation, with respect to these two families.

g(A) =

 A\{2,3}∪{1,4} if A ∈A2,3,A\{2,3}∪{1,4} /∈A , and

A otherwise.

Let g(A2,3) = {g(A) : A ∈A2,3}, and let F = A1,4∪g(A2,3). We now partition F

into F1,4 = {A∈F : {1,4} ∈ A} and F2,3 =F \F1,4. Clearly, F2,3 ⊆A2,3 and is

an intersecting family. Consider D2,3 = F2,3−{2,3}. D2,3 is also an intersecting

family, since for D1,D2 ∈ D2,3, (D1 ∪{1,4})∩ (D2 ∪{2,3}) 6= /0. Hence D2,3 ⊆

A r−2
G−[s].

For each 2≤ j≤ s−1, j 6= 4, let C j = (A1, j−{ j})∪(A j+1−{ j+1}). If j = s,

let Cs = (A1,s−{s})∪(A2−{2}). If j = 4, we let C4 = (F1,4−{4})∪(A5−{5}).

It is clear that for each i, Ci is a union of two disjoint families, and Ci ⊆ A r−1
G−[2,s].

We also claim that each Ci is intersecting.

Claim 5.2.2. For each 2≤ i≤ s, Ci is an intersecting family.

Proof. First consider the case when i 6= 4. The family A1,i−{i} is intersecting,

since 1 lies in every set of the family. Consider the family Ai+1−{i+1} (Replace

i+1 by 2 if i= s). Since A is a shifted family, for any A∈Ai+1−{i+1}, A∪{1} ∈

A . Thus, for A,B∈Ai+1−{i+1}, A∪{i+1},B∪{1}∈A , so A∩B 6= /0, as i+1 6=

1. So suppose A∈A1,i−{i} and B∈Ai+1−{i+1}. Then A∪{i},B∪{i+1} ∈A ,

giving A∩B 6= /0.

We now turn our attention to the case i = 4. As before, the family F1,4−{4}

is intersecting, so consider A5−{5}. Since A is shifted, for any A ∈ A5−{5},

A∪{1} ∈ A . Consequently, for A,B ∈ A5−{5}, A∪{5},B∪{1} ∈ A , giving

A∩ B 6= /0. So assume A ∈ F14 −{4}, and B ∈ A5 −{5}. If A ∈ A1,4 −{4},

then A∪{4},B∪{5} ∈ A , implying A∩B 6= /0. So suppose not. Then we have
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A′ = A \ {1} ∪ {2,3} ∈ A2,3. Thus A′ ∩ (B∪ {5}) 6= /0, giving A′ ∩B 6= /0, since

5 /∈ A′. This implies A∩B 6= /0, as B∩ [s] = /0. �

We now consider the remaining Ai, j’s, for i 6= 1. For any i < j, i 6= 1, and

{i, j} 6= {2,3}, consider the families Di, j =Ai, j−{i, j}. Clearly, Di, j ⊆A r−2
G−[s], for

every i, j pair. We now show that all these families are also intersecting.

Claim 5.2.3. Di, j is intersecting, for all i < j, i 6= 1 and {i, j} 6= {2,3}.

Proof. Suppose A,B ∈Di, j. Since {i, j} 6= {2,3} and i 6= 1, there is some i′ < i and

j′ < j and {i, j}∩ {i′, j′} 6= /0 = /0. Since A is a shifted family, A∪{i′, j′} ∈ A .

Thus, since (A∪{i′, j′}),(B∪{i, j}) ∈A , A∩B 6= /0. �

Using the two claims, and the two induction hypotheses, we can complete the

argument as follows. Recall that we have fixed x ∈ V (G) to be some vertex in a

trivial component of G.

|A | =
s

∑
i=0
|Ai|+ ∑

i, j∈[s],i< j
|Ai, j|

= |A0∪A1|+
s

∑
i=2
|Ci|+ ∑

i, j∈[2,s],i< j
|Di, j|

≤ |A r
G−[2,s](x)|+(s−1)|A r−1

G−[2,s](x)|+
(

s−1
2

)
|A r−2

G−[s](x)|

= |A r
G(x)|.

The last equality can be explained by partitioning A r
G(x) into three parts: all sets

containing no elements from [2,s], all sets containing exactly one element from

[2,s], and all sets containing exactly 2 elements from [2,s].
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quences, J. Combin. Theory Ser. A 35 (1983) 279 – 288.

[31] A.J.W. Hilton, An intersection theorem for a collection of families of subsets
of a finite set, J. London. Math. Soc. (2) 15 (1977), 369 – 376.

[32] A. J. W. Hilton, E. C. Milner, Some intersection theorems for systems of finite
sets, Quart. J. Math. Oxford 18 (1967) 369 – 384.

[33] A.J.W. Hilton, C. L. Spencer, A graph-theoretical generalization of Berge’s
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