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ABSTRACT

In Iwasawa theory, one studies how an arithmetic or geometric object
grows as its field of definition varies over certain sequences of number fields.
For example, let F'/Q be a finite extension of fields, and let £ : y* = 2° +
Ax + B with A,B € F be an elliptic curve. If ' = Fy C F} C F, C

- Foo = U2, F;, one may be interested in properties like the ranks and torsion
subgroups of the increasing family of curves E(Fy) C E(Fy) C --- C E(FL).
The main technique for studying this sequence of curves when Gal(F, /F) has
a p-adic analytic structure is to use the action of Gal(F,,/F') on E(F,,) and the
Galois cohomology groups attached to £, i.e. the Selmer and Tate-Shafarevich
groups. As n varies, these Galois actions fit into a coherent family, and taking

a direct limit one obtains a short exact sequence of modules
0 — E(Fs) ®(Qp/Z,) — Selg(Fx), — g(Fx), — 0

over the profinite group algebra Z,[[Gal(F/F)]]. When Gal(F/F) = Z,,
this ring is isomorphic to A = Z,[[T]], and the A-module structure of Selg(Fw),

and g (F), encode all the information about the curves E(F,,) as n varies.

In this dissertation, it will be shown how one can classify certain finitely
generated A-modules with fixed characteristic polynomial f(T') € Z,[T] up to
isomorphism. The results yield explicit generators for each module up to iso-
morphism. As an application, it is shown how to identify the isomorphism class
of Selg(Qw), in this explicit form, where Q4 is the cyclotomic Z,-extension
of @, and F is an elliptic curve over (Q with good ordinary reduction at p, and

possessing the property that £(Q) has no p-torsion.



To my wife Nina,

I dedicate all my results.

i



ACKNOWLEDGEMENTS

I would like to thank my kind and patient advisor Nancy Childress
for introducing me to Iwasawa theory and the non-archimedean world, and
allowing me to find my own voice as a researcher. I would also like to thank
Andrew Bremner for teaching me the subject of elliptic curves and Diophantine
equations, and John Jones for his fascinating course in modular forms. It was
Hiroki Sumida (Hiroshima) who informed me of the unpublished calculation
done by Hachimori, and suggested that I pursue the classification problem
which led to this dissertation. Valuable feedback and encouragement was given
by Mirela Ciperiani, Chris Wuthrich, William Stein, and Romyar Sharifi. I
especially thank my colleague Ahmed Matar for our countless discussions and
his sound advice. Lastly, I thank Arizona State University for supporting me
as a teaching assistant, and giving me many opportunities to grow as a teacher

of mathematics.

il



TABLE OF CONTENTS

Page
LIST OF FIGURES . . . . . . . ... . o . vi
Chapter
1 INTRODUCTION . . . ... o . 1
1.1 TheRing A . . . . . . .. 2
GENERATORS . . . . . . . . 5
2.1 A-Isomorphisms . . . . . . . ... Lo 11
A-MODULES WITH A=2 . .. .. ... .. . ... .. ...... 17
A-MODULES WITH A=3 . .. .. ... .. ... .. .. ..... 22
4.1 Bounding the Generators . . . . . .. . ... ... ... .... 22
4.2 A-Isomorphism and Integral Similarity . . . . ... ... ... 25
4.3 Examples . . . . ... 30
A-MODULES WITH A=4 . . ... ... ... ... ... ..... 35
5.1 Generators. . . . . . ... 36
5.2 A-Isomorphism . . . . . . ... .. 38
5.3 An Algorithm to Enumerate My . . ... ... .. ... ... 42
5.4 Elementary Types. . . . . . . . ... ... . 43
APPLICATIONS TO THE IWASAWA THEORY OF ELLIPTIC
CURVES . . . . 46
6.1 Selmer Groups . . . . . . . .. ... 46
6.2 The A-module Xg(Qoo) . -« - o o o o o oo 50
6.3 Some Known Results on Xg(Qx) . - - . . o o o o000 53
The Fundamental Diagram . . . . . . .. .. ... ... ... .. o4
Computing the local kernels . . . . . .. ... ... ... ... o7
6.4 Examples . .. ... ... L 60
VAdaoy=a3—2x -5 . ... 60
=23+ —160—32 ... 62



Chapter

Y= —a? =120 —40 ... ...

REFERENCES . . . . . ..
BIOGRAPHICAL SKETCH



LIST OF FIGURES

Figure

4.1 Parameter Domain For Module Closure

4.2  Parameter Domain For (I,m,n) = (2,2,2) . ... ... ... ...

vi



Chapter 1

INTRODUCTION

Let F'/Q, be a finite extension, and let O be the ring of integers in F'. Let
7 € O be a uniformizing parameter, so that the maximal ideal of O is (7). Let
A denote the power series ring O[[T]] over O. This dissertation studies finitely
generated torsion A-modules which possess no nonzero finite A-submodules.
To be more precise, for a finitely generated torsion A-module M, one first has

the well-known

Theorem 1.0.1 (Structure Theorem). There exists a A-homomorphism
M — @A/ (fi(T)7)
i=1

with finite kernel and cokernel. Each f;(7T) is either the uniformizer 7 or
an irreducible distinguished polynomial f;(T") € O|T]. The f;(T) and the

e; € N\ {0} are uniquely determined by M.

P(T) = ap+a, T+ - -+T™ € O[T is distinguished when ag, ay, . .., ay—1

are in (7). The characteristic polynomial of M is

n

chary (M) = [] fi(T)"

i=1
which can be written as «*f(T) with f(7T) distinguished. Let degf = A.
Let M; denote the set of isomorphism classes of A-modules M such that
chary (M) = f(T') and M has no nontrivial A-submodules. In [13] the problem
of determining M ; was introduced, and it was shown that M is finite when
the f; are distinct, e; < 1, and u = 0. The assumption that M has no finite
A-submodules implies that the map in the Structure theorem is injective with
finite cokernel. Hence M can be regarded as a A-submodule of Ey = @A /(f;)
with finite quotient E;/M. This dissertation gives a method for determining

M under these assumptions.



When each f;(T) =T — «;, then Ef = @ A/(T — ;) can be identified
with the free O-module of rank n where T acts on the ith factor as multi-
plication by ;. The submodules M of E; with finite quotient Ey/M must
have maximal O-rank n. The strategy for determining M ; will be as follows.
Theorem 2.0.4 will show that up to isomorphism, any submodule M C FE; has

generators over O of a certain upper triangular form

1 1 1 1 1
ok % *

G = % x|
-

i.e. M is generated over O by the rows of G. The valuations along the diagonal
can be bounded, and using elementary row operations, the integral entries *
can be reduced modulo the power of 7 directly below. There are then a finite
number of matrices G1,Gs, ..., G, to consider, and representatives for the
classes in My can be found among the modules M;, where M, is generated
over O by the rows of G;. In practice, r can be quite large, and one seeks

to find a distinct set of representatives. The main task is to decide when
M, = M,.
1.1 The Ring A

In this section, some relevant facts about the ring A which will be useful later
on will be discussed. A good reference for A-modules and Iwasawa theory is
[16]. The first fact is that A enjoys a division algorithm much like for rings of

polynomials over a field.

Theorem 1.1.1. Let P(T') be a distinguished polynomial of degree r, and
f(T) € A. Then there exist ¢(T) € A and r(T) € O[T] such that f(T) =



P(T)q(T)+ r(T). The polynomial r(T") is unique of degree less than or equal

tor —1.

Let f(T) = ¥2,a,T" € A. Let u = p(f) = min{ord,(a;)}52,, so
that f(T) = 7* X2, b;T" with at least one of the b; a unit. Define \(f) =
min{i\bo, bl, e bi—l € (7'('), bl ¢ (7'(')}

Theorem 1.1.2 (Weierstrauss Preparation). Let f(T) = 3%, a; 7" € A. Then
f(T) factors uniquely as ##P(T)U(T) with U(T) a unit and P(T) a distin-

guished polynomial of degree A(f).

From this theorem, it follows that A is a unique factorization domain.
The irreducible elements are 7w, and distinguished irreducible polynomials
P(T). Therefore the ideals (0), (7) and (P (7)) are prime. The ideal m = (7', 7)
is clearly maximal since A/m = O/(7) = F, for some finite field F, with ¢ = p/
elements. It turns out that these are the only prime ideals, and A is a regular

local ring of dimension 2 with unique maximal ideal m (see [16]).

The following result from [13] makes an explicit Weierstrauss Prepa-
ration factorization possible on any computer that can perform polynomial

factorization modulo powers of 7.

Theorem 1.1.3 (Proposition 3). Let f;(T) = Bi(T)U;(T) for i = 1,2 be Weier-
strauss factorizations, where the P; are distinguished polynomials, and the U;

are unit power series. Let m = (m,7T) be the unique maximal ideal of A. If

M) = A= Afo), fi(T) em! for I > 1, and fi(T) = fo(T) mod m*+1 then

P(T) = P,(T) mod m**'.

Since 7", T" € m"™, to (partially) reduce modulo m™ one can reduce

coefficient-wise by 7™ and then truncate the result by 7". As an example to
3



see how this result is used, the program SAGE [10] returns the following for
the 3-adic L-series, L3(E,T) of the elliptic curve E = 50al from Cremona’s

tables:

L =3+32+2-342-3°+2-354-3"+0(3%) + (3+2-32+3°+0(3%)) - T+ (2+3%+2-
3342-34+0(3%) -T2+ (334+2-3*+0(3%))- T3+ (2-32+3°+0(3%)) - T*+ (2+3+
2-32+3343442.3°+0(39)) - T°+ (14+3+32+33+3*+0(3°)) - TO+ (1+3+2-3+
314+2-3540(3%))- T7+(2-342-32+ 33+ 3*+2-:3°+0(3%)) - T+ (34+3°+0O(3*))- T?
Hence L3(E,T) = L mod m*, and both are in m. One can see that A\ = 2,
hence | = 1,k = 1 in the above theorem. Lifting L to a polynomial and

factoring gives

(1+3240(3Y)) - (1+03") - T+ (14+0(3)- (1+03Y) - T*+(1+3+
B+0BY) - T+H(1+2-3+2-334+003Y)-(1+03Y)-T?+(2+32+3+
OBY)-T+(2+32+33+0(3Y)- (1+0(3Y) -T2+ (2-3+03%)-T+ (2
3+0(3Y) - (B+03Y)-T?*+(34+32+0(3)) - T+ (1+3+3+0(3))

and since anything with a unit constant term is a unit, one can read off the

distinguished polynomial part as the second to last factor P(T) = T?+ 6T + 6,

l

known to accuracy m**' = m2. To increase this accuracy, one increases the

accuracy of the approximation to Ls(FE,T).



Chapter 2
GENERATORS
In this section, it is shown that each class in M has a representative equal to

a module generated over O by the rows of a matrix of type GG. The following

lemma will be useful.

Lemma 2.0.1. Let M C O™ be an O-submodule of rank n. Then M can be

generated by the rows of a matrix having the form

a
™ X1 XT13 o Ty,
T2 Tgg v Tog,
)
T

where a; € N and z;; € O.

Proof. The proof will be by induction on n. Since any rank 1 submodule of O
is an ideal (7%), the result is true for n = 1. Suppose that the result is true for
n — 1. Let proj, : O™ — O denote projection onto the ith factor. The image
proj; (M) must be a nonzero ideal in O since otherwise M C ker(proj;) = O™ !
and M would then have rank n — 1 or less. Hence proj, (M) = (7®) and there
is an element (7%, 219,213,...,%1,) € M. Let (y1,%2,...,yn) € M. Then
y1 = am® for some o € O, so that (y1,y2, ..., Yn) —(T, T12,213,...,T1n) =
(0,29, ...,2,) € ker(proj;) N M. Since proj, (M) has rank 1, ker(proj,) N M

has rank n — 1, and by the inductive hypothesis it is generated by
(Oa ﬂ-aza L2,3,- - 7x2,n)a SRR (07 Oa SRR Wan)
having the required form. The result follows. O

The next lemma shows that dividing the columns of a matrix by ele-

ments of O preserves the A-isomorphism class of the A-module generated by
5



its rows inside of Ey. The proof given below is slightly different than the one

in [14].
Lemma 2.0.2. |[Lemma 1 in [14|] For any nonzero x4, zs, ..., z, € O, the map
¢ : Ey — Ey given by (e, ez,...,€,) — (T1€1, 2269, ..., Tye,) is an injective

homomorphism of A-modules, and hence induces a A-isomorphism M —

¢(M) for any A-submodule M C Ej.

Proof. Since T' acts diagonally on Ey, it is clear that the action of T' com-
mutes with ¢, hence ¢ is a A-homomorphism. Suppose ¢(e,es,...,6,) =
(z1€1, T2€2, ..., Tpen) = (0,0,...,0) in Ey. Then z1e; = g(T)(T — ay) for
some power series g(T') € A. Since o is a root of a distinguished polynomial,
lay| < 1, and hence g(aq) is defined and converges to an element in O. Then
zr1e1 = g(aq)(a1 — a1) = 0, and since O is a domain, this implies that e; = 0.

Similarly, eg =e3=---=¢, = 0. ]

Let M have the O-basis given by the rows of the matrix from lemma
2.0.1. The lemma just proved allows one to divide a column of M by an
element of O, and even though the submodule of Fy generated by the rows
of the resulting matrix is different, the isomorphism class is the same. One
may also multiply rows by units, or add an integral multiple of one row to
another since these operations just change the basis used to describe M as an
O-module. The generators for A = 2 and 3 are produced below, and then an

inductive proof is given for all \.

For A = 2, let M C Ey be generated over O by the rows of

TN

T1,2
B =

0 7™
with a1,as, € N and 215 € O. One can reduce z; 2 modulo 72 by using row

operations, and if z; 9 = 0, then one may replace row 1 with the sum of rows
6



1 and 2 to make 15 # 0. One may therefore assume that ord,(z12) < as.
By Lemma 2.0.2, one can divide column 1 by 7%, and column 2 by z; 9 to

produce the matrix

1 1
0 un
where ur® = 7192 /z; 5. Dividing row 2 by u produces

G =

The case A = 3 will illustrate the inductive step in the proof of theorem

2.0.4 below. Let

al

7T T12 X133
B = T2 I3
T

By the case A = 2 one can use row and column operations to produce a matrix

in the form

i
as the principle 2 by 2 submatrix of B, so that without loss of generality one

may assume that

1 1 x1,3
B = T X3
T

By using row operations one may assume that both ord,(z;3) and ord,(z23)
are less than or equal to as. Now after these initial reductions, one has two

cases: ord,(z;3) < ord;(za3) or ord(xe3) < ordg(x;s). If ord;(z13) <



ord,(z23) < ag then one can divide column 3 by x; 3, producing

1 1 1
i b
vm'2

where v is a m-adic unit. Dividing row 3 by v gives generators of the required
form. Now assume that ord,(z23) < ord;(x13) < as. Then dividing column 3

by x5 3 gives the form

1 1 c
i 1
w2

where w is a m-adic unit and ¢ € (7). If @ € O, applying the row operation

Ry = Ry + (o — ¢) Ry transforms the top row into
(1,14 (o — )7, ).

Modulo 7 this row becomes (1,1 + am®, @), so that the entries along the top
row can be made into units if one can find o with both o and 1 + « units
in O. This is possible as long as O/(m) % s since one can then choose any
element oy # 0, —1 in the finite field O/(7) and lift it to « € O. Hence, the
units 1 + (o — ¢)7 and « can be divided from the columns and multiplied

from the rows to produce the desired form.

For O the residue characteristic is the characteristic of its residue field
O/(w). If the residue characteristic is p, one has O/(w) = F,, where ¢ = p/.
Note that the proof for A = 2 holds when O has any residue characteristic,

and for A = 3 it was necessary that ¢ # 2.

Theorem 2.0.4. Let O have residue field O/(7) = F, with ¢ = p/. Assume

that A < ¢. Then M has representatives M, where M can be generated as



an O-module inside of Ef by the rows of a matrix in the form

1 1 1 1 - 1
mh 52,3 5274 T bz,n
G = Y S
7-(-7;77,71

with 7 € N and the b, ; € O.

Proof. The proof is by induction along principle submatrices, the base case
having already been established for A\ = 2. Suppose one has obtained a prin-

ciple submatrix consisting of the first £ + 1 by k£ 4 1 entries in the form

1 1 1 - 1 Ty
T bas 0 bap  To

T

Tk

where k£ + 1 < A\. By using row reduction if necessary, one may assume that
the entries in the rightmost column have valuation less than or equal to a
and are all nonzero. If x; has smallest valuation among the entries in the

rightmost column, then dividing the column by z; yields

bit1

vk
and dividing the k£ + 1st row by v transforms B into the desired form. Other-

wise, among the entries xo, x3, x4, ..., 7, one may choose z; to have smallest

9



valuation. Dividing the column by xz; yields

&1

wm'k
If ¢, is already a unit, then one may divide this column by ¢;, and multiply
the k + 1st row by ¢;/w to yield a column in the desired form. In any event,
one can divide row k + 1 by w, so one may assume that ¢; € (7) and w = 1.

Now consider the polynomial g(z) where

k
e(@+1) [ (e +1) = gla) € Fyfa].
t=j+1
Note that g(z) has degree k — j+2 < A < ¢, so there is some a € O such that

k
ala+1) J] (bjra+1) # 0mod ().
t=j+1
Applying the row operation Ry = Ry + (o — ¢1)R; to the matrix transforms

the top row into the form
(1,0, L, 1+ (@ —e)m 1+ (= c1)bjjaty - -5 L+ (@ — ¢1)bjg, @).
Reducing modulo 7, this row becomes
(1,...,L,1+ar ' 1+abj1,...,1+ abj, )

since ¢; € (m). Since none of these entries are 0 modulo 7 by the choice of
a, the entries in row 1 are all units. Dividing each unit from the column and
then multiplying it from the row below produces a matrix By, in the desired

form. Hence by induction the result holds. O
10



2.1  A-Isomorphisms

There are some interesting consequences of the existence of these upper trian-

gular generators. The first of these is given in the next theorem:.

Theorem 2.1.1. The tuple (41,72, ...,7,-1) is a A-module invariant.

For two matrices A, B € Mat,,«,(F), write A ~p B if A= XBX ™! for
some X in GL,(O), in which case one says that A and B are integrally similar.

It is easy to check that integral similarity defines an equivalence relation.

Lemma 2.1.1. Let M; and M, be A-submodules of E; with maximal O-rank n,
and let [Ty, [T]2 be the matrix representations of the action of 7" with respect
to any O-bases chosen for M; and Ms. Then M; = M, as A-modules if and
ouly if [T]; ~o [T

Proof. Let ¢ : My — Ms be a A-isomorphism. Since ¢ is an isomorphism
of O-modules of rank n, ¢ has a matrix representation [¢] € GL,(O) with
respect to the given O-bases. Since ¢ is A-linear, one has ¢ o T = T o ¢.
Then [¢][T]; = [T]2[¢] which is equivalent to [¢][T]1[¢]! = [T]o. Hence
[T ~o [T]a.

Conversely, any X € GL,(O) such that X[T]; X! = [Ty induces an
isomorphism of O-modules which commutes with the action of 7. This clearly
implies that the isomorphism induced by X commutes with polynomials in
O[T}, so the isomorphism of O-modules induced by X is O[T]-linear. Any

such isomorphism automatically extends to be A-linear.

To see this, recall that A has the (7, T)-adic topology induced by its
maximal ideal m = (7,7"). One requires the action A x M — M to be
continuous for any A-module M, where M has some topology. Also, ¢ :

11



My, — Ms is required to be continuous. Now suppose ¢ : M; — My is
a continuous map of topological O-modules with ¢ o T" = T o ¢. Then ¢
commutes with any polynomial in O[T]. Let g(7') € A and choose a sequence
of polynomials (g, (7)) such that g,(7) — ¢g(T') as n — oo, where the limit is
taken in the (7, T")-adic sense (since 7", 7™ € (m,T)", one can take the g,(T)
to have coefficients that converge m-adically to the coefficients of ¢g(7") along

higher and higher powers of T'). Then for any o € M,

Hence ¢ is A-linear and is therefore a A-isomorphism from M; to M,.

O

Now let [T] be the matrix representation of the action of 7" on M where
M has generators given by the rows of G. Let D(ay,...,a,) be the n by n
diagonal matrix with the roots of f, ay,...,q,, along the diagonal. Then
one has [T] = GD(ay,...,a,)G™'. Suppose My, My C E; with generators
given by the matrices G1, G respectively, in the form given in theorem 2.0.4,

and let X = [p] € GL,(O) be the matrix representation of a A-isomorphism

12



¢ : My — M, in the given bases. Letting D = D(ay, ..., a,), one has
X[Th = [T)X
&XG DG = GyDGY' X
(G XG)D(GTPX'Gy) =D
The last equality is equivalent to saying that the matrix G5'XG; is in the

stabilizer of GL, (F) acting on itself via conjugation. The following result is

easy to prove.

Lemma 2.1.2. Let K be a field. If A stabilizes a diagonal matrix D in GL,,(K)

with distinct entries along the diagonal, then A must be diagonal.

Hence G5 ' X G, = A for some diagonal matrix A, say A = D(dy, ..., d,)
and one has
X =GyD(dy, ..., d,)GTY,
so that X is upper triangular. Let the powers of 7 along the diagonal of G5 be
1,7, ..., w1 and similarly, let 1,77, ... 7/»—* be along the diagonal of G;.
Since X € GL,(O), must be upper triangular with integral entries, it must

have the form

Uy T12 -+ Tipn—1 Tin

U ... Toapn-1 T2n

Up—1 xn—l,n

Un,
with units u; € O* and integral entries x; j, and one can solve for the diagonal

entries dy,...,d, as D(dy,...,d,) = GQ_IXGl. This gives

Ao Ap—1
A )

d1 :Ul,dQZUQWAl,d3:U37T .,dn:unﬂ'

where A, = jp — i, for k. = 1,...,n — 1. Everything is in place to prove

theorem 2.1.1.
13



Proof. Consider the equation XGy = GoD(dy,ds, ..., d,). The left-hand side
is integral, and since the top row of the right-hand side is dy,ds, ..., d,, one
has 0 < Ay =g —ip for k=1,...,n— 1. Assume A, > 0 for some k, so that
0 < < Jk. Then 7 divides diyq so that 7 divides every entry in the k + 1st
column of GyD(ds,...,d,). Therefore m must divide the k + 1st column of
XGy. Since X and G are both upper triangular, the nonzero entries of the
k + 1st column of their product is the product of the k£ + 1 by k + 1 principle

sub-matrix of X with the nonzero part of the k + 1st column of G, say

1
Uy T12 - T1k+1
ba
Ug -+ T2k+1
by
Uk+1 .
7T]k

Now one works from the bottom up to yield the contradiction 7 | u;. Since ©
divides byug + g4 177%, one has 7|y since j, > 0 and uy, is a unit. Similarly,
since 7 divides

Up—1bg—1 + 1 kbi + Tp—1 1"

and 7|bg, m must divide by_; since uj_; is a unit. Continuing in this manner,

one has that 7 divides by, b3, ..., bx. Since 7 divides the topmost entry
Uy 4 T19by + -+ - + 21 kbg + Ty,

and 7 divides the b’s, this yields 7|u;. O

The results obtained so far give a specific form that any A-isomorphism

@ : My — M, must take. Namely,
X = [QO] = GgD(Ul, Ce ,un)Gl_l

14



for some units u; € O*. Let Isomy (M;, Ms) be the collection of A-isomorphisms
from M; to My, and Auty (M) = Isomy (M, M), a group under function com-

position. One has

Theorem 2.1.2. For M; and M, generated by G; and G, respectively, define

the map of sets

PY1,2: (Ox)n — GLn(F)

by ¢12(u) = GoD(u)Gy'. Then M; = M, if and only if im¢; N K # (), where
K = GL,(O). If X = ¢19(u) € K, then X is the matrix representation of
a A-isomorphism in the given O-bases. All A-isomorphisms are obtained this

way.

Denote the n-dimensional integral torus over O by
G, (0) = (07)".

For a A-module M C E; generated over O by the rows of G, the map ¢y, :
G (O) — GL,(F) given by

= (uy,...,up) = GD(u)G™!
is easily seen to be an injective group homomorphism, and one has
Auty (M) = ¢y (K)

where K = GL,(0O), the maximal compact subgroup of GL,(F'). Therefore

Auty (M) is realized as a subgroup of G7,(O). A consequence of this is

Theorem 2.1.3. Auta (M) is an abelian group.

If My = My as A-modules, then one canonically has Auty(M;) =
Auty (Ms). Regarding the automorphism group as a subgroup of G, (O), one

obtains the stronger result
15



Theorem 2.1.4. If M; = M,y as A-modules, then Auty(M;) and Auty(Ms)

coincide as subgroups of G (O).

Proof. Let ¢;2(u) = GoD(u)G7' € GL,(O) and suppose v € Auty(M;) so
that ¢, (v) = G1D(v)GT' € GL,(O). Then

p12(w)or (V)12(u) ™" = GoD(u)Gy(G1D(v)Gy ) GLD(u™ )Gy !
= GQD(U)G;I

€ GL,(0).

which shows Auty(M;) C Auty(Ms). By symmetry one has Auty(M;) C
AutA(M1>. O

It is unknown whether or not two A-modules with the same auto-
morphism group in G (O) are forced to be isomorphic. However, for non-
isomorphic A-modules, one can construct examples where the automorphism

groups intersect nontrivially.

16



Chapter 3
A-MODULES WITH A\ =2

The A-modules with A = 2 and p = 0 were classified in [13| and [8]. These

results will be used later in Chapter 5 for the applications to elliptic curves.

Let F//Q, be a finite extension, and let O be the ring of integers of F
with uniformizer 7. Let f(7') € O[T] be a distinguished polynomial of degree
A = 2. As before M denotes the set of isomorphism classes of A-modules M

satisfying:
e chary(M) = f(T), and
e M has no nontrivial finite A-submodules
There are two cases to consider. First, suppose that f(T') is reducible
over O, in which case f(7') = (T'— a1)(T — az). The conditions above imply
that M may be regarded as a submodule of By = A/(T — o) ® A/(T — an)

with finite quotient C' = E;/M. Write elements of M as (z,y) € O?, where T

acts as T'(z,y) = (a1, agy). The following result is proved in [13].

Theorem 3.0.5. Assume the roots a and s are distinct, and set e = ord, (s —

a1). Then |My| = e+ 1, and the modules
Ni = <(17 1)7 (Ovﬂ-i»o

for 0 < ¢ < e are a complete set of representives for the isomorphism classes

n Mf.

The notation (g1, g2)0 means the submodule of Ef generated over O

by g1, go.

17



Proof. Let N; be generated over O by the rows of G = b . By theorem
i

2.1.1, the powers of 7 along the diagonal are a A-module invariant of M,

hence the N; represent distinct classes in M. Since every class in My can

be represented by N; by theorem 2.0.4, this shows that the modules NV; are a

a distinct set of representatives. To bound ¢, one uses module closure. Since

T(1,1) = (o, 8) must be in N;, one must have (o, 3) = z(1,1) + y(0, 7?) for

z,y € O. This forces * = o, and y = (8 — ) /7, hence i < e. a

Now consider the case where f(T') = T*+bT+c € Z,[T) is distinguished
and irreducible, with distinct roots «, § lying in a quadratic extension of F'/Q,,.
Let M C A/(T* + aT + b) be a A-submodule with maximal O-rank 2. Using
the Division algorithm in A, elements of M can be represented in the form

xT + y for some z,y € Z,. The following result is proved in [8].

Theorem 3.0.6. Let p be an odd prime. The A-modules Ny, = (T + £, p¥); for
0<Ek< %2_46) form a complete set of representatives for the isomorphism

classes in M.

This result actually applies when Z, is replaced by the ring of integers
in any finite extension of @Q,, but the result is stated here for Z, because it is
sufficient for our applications in Chapter 6. The proof of this result is given
below. Koike’s idea is to extend scalars to the the ring of integers of F', where
f(T) splits. One can then apply Theorem 3.0.5. The proof is included here
for the sake of completeness, and to illustrate the relationship between M

for reducible and irreducible f(T).

Proof. First, observe that lemma 2.0.1 implies that any submodule N C

A/(f(T)) with rank; N = 2 has the form (7T 4 x1,,7%)z, . It is easy
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to see that module closure implies a; < ord,(z12) and a; < as, and since
multiplication by 7' is a A-isomorphism, one may assume without loss of

generality that N = (T' — a, "), for some a € Z,.

Let F'/Q, be the splitting field for f(7'), with ring of integers denoted
by O. Let m be a uniformizer for O, so that () is the unique maximal ideal
of O. Let Ap = O[[T]]. Since O = Z2 as a Z,-algebra, one has Ap = A
as a A-module. Hence if M is a A-module, extending the scalars to Ap gives
M @, Ao = M & M. The functor M — M ®, A is therefore faithfully flat
from the category of A—modules to the category of Ap-modules, and therefore
My = Mj over A if and only if M7 ® Ao = My ® Ap over Ap. Let MJ(? denote
the isomorphism classes of Ap-modules with characteristic polynomial f(7")
and having no nontrivial finite Ap-submodules. The functor ~ ® Ap therefore

induces an injection

Mf — MJ(?

The result for the reducible case gives the e+ 1 representives: ((1,1), (0,7))o

for the classes in M, where e = ord, (3 — ).

Now consider the image of ® Ap. Applying & Ap to the exact
sequence

0— Ny — A/(f(T)) —C —0

gives

00— Ne®@Ao — Ao/(f(T)) — C Ao — 0,

and one has N,@Aop = (T+b/2, p*)o. Under the canonical pseudo-isomorphism
Ao/(f(T)) = Ao/(T — a) ® Ao /(T — f3), the generators T + b/2, p* become

T+b/2 ((a—5)/2,(8—-a)/2)
pk — (pk’pk)
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Therefore N, ®Ap is identified with the submodule of Ao /(T —a)®Ao/(T—)

generated over O by the rows of the matrix

a—fB f-a

Suppose that F'/Q, is unramified. Using the row and column operations

allowed in the proof of Theorem 2.0.4, one can bring B to the form

1 1
,ﬂ.e—k
It only remains to see that as k ranges over 0,1,...,ord,(b* — 4c)/2, the
exponent e — k ranges over 0,1,..., e, so that My maps surjectively, hence

bijectively, to M$. But
ord,(b*> — 4c) = ord, (b* — 4c)
— ord,((B — a)?)
= 2Ze.

and the result follows in this case.

Otherwise F'/Q, is totally ramified, so that p = un? for some u € O*.

The matrix B becomes

after dividing the units from the rows. If 2k < e, one exchanges row 1 and 2 of
B and performs the same row and column operations used above to produce

the matrix



Note that since one knows before hand that N, ® Ay is a Ap-module, one must
have 2k —e < e, which implies £ < e. Therefore, as k ranges over 0,1,2,--- e,
the modules N, are identified into classes as N = N,._i, so the N, represent
le/2] = |ord,(b* — 4c)/2] distinct classes. If one has a different 7' — a as the
first generator instead of 7'+ b/2, it is can be shown by a similar argument
(see |8]) that the resulting classes are identified in the same way. Therefore
the Ny as k ranges over 0,1,2, ..., |ord,(b* —4c)/2| form a set of distinct and

exhaustive representatives for the classes in M. O
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Chapter 4

A-MODULES WITH A =3

Let f(T) = (T — aq)(T — ao)(T — a3) € O[T, with roots o; € () such that
a; # o for i # j. As before My denote the set of A-isomorphism classes of
modules M such that charaM = f(7T), and such that M has no nontrivial
finite A-submodules. By theorem 2.0.4, each isomorphism class in M can be

represented by a module M generated over O by the rows of a matrix

1 1 1
G = ™ a
e

when 3 < ¢ = |O/(n)|. As in [14], [i,],a] denotes the A-isomorphism class
corresponding to G. In this chapter, it will be shown that there are only a
finite number of possible GG. The proof of this is essentially to use A-module
closure to bound the ¢, 7, and once this is accomplished, using row operations
one may reduce a mod 7/ so that the parameter a may be taken in the finite
ring O/(n?). Then, an if and only if condition is given for when two classes
[i, 7, a4 for t = 1,2 are equal.
4.1 Bounding the Generators

Bounding the parameters ¢, j suffices to illustrate a special case of the funda-

mental finiteness result from [13]:

Theorem 4.1.1. [Sumida’s theorem| If f(7') € A\ (7), then M is finite if and
only if f(T) is square-free, i.e. f(7T) cannot be written as g(T)?h(T') for power
series g(T') € A\ A, h(T) € A.

First consider the elementary A-module E,,, = A/(f(T)). Since (f(T')) C
(T — «;), one has natural surjections F,,, — A/(T — «;) given by ¢(T') mod

(f(T)) = ¢g(T) mod (T — ), and their sum induces a map ¢ : E,ny — Ey
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given by ¥(g(T)) = (9(a1), g(a2), g(as)). By lemma 13.8 in [16], this map is
injective with finite cokernel, so by theorem 2.0.4 one can find an isomorphic
copy of ¥(Eunn) in Ef with generators given by G. To see this explicitly, using
the Division Algorithm in A, F,,, has an O-basis given by {1,T,T?} which

maps to the O-basis
(1a ]-7 1)a (a1> Qg, Oég), (O{%, 0437 ag)

for the image 1)(Eau,). One can apply row operations to the Vandermonde

matrix
1 1 1

a1 Qo2 O3
af o3 of
to rewrite the generators of ¢(FE,n,) in upper triangular form. Since this is a

common exercise in linear algebra, the details will not be shown, but simply

write the result as

1 1 1
g — (1 Q3 — O
(a3 — 1) (a3 — az)

l

Write ap — ay; = un’, ag — a; = vn™, and ag — as = wn™ for units u, v, w.

Dividing row 2 of the above matrix by v and row 3 by vw gives the matrix

1 1 1
t upm™
7I_m—i-n
with uy = 2, a unit determined by f. Therefore E,,, falls into the class

[[,m~+n,usp™]. It is easy to see that any M with generators equal to the rows
of the matrix G must contain E,,,. Since (1,1,1) € M, and since TM C M,

one must have T'(1,1,1) = (o, a9, a3) € M and T%(1,1,1) = (a?,a2,a2) € M.
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Hence M contains a copy of F,,,. Hence the rows of the matrix

11 1
mloumm
7I_m—i—n

must be in M, and one must be able to write each row as an O-linear com-
bination of the generators of M. This automatically gives 0 < ¢ < [, and
0 <7 < m+n so the parameters ¢, j,a are bounded. One must also have

(0, 7!, upm™) € M so that
z(0, 7, a) + y(0,0,77) = (0, 7", uym™),

which after solving for 2 and re-substituting implies 7'~'a = u ;7™ mod 7. As
long as these conditions are met, the module closure relation 7(1,1,1) € M is
satisfied. The only other nontrivial closure condition needed is T'(0, 7%, a) € M.

Hence for some =,y € O,

T(0, m, a) = (0, aom, aza)

so that = ap and one must be able to write apa+ym? = aza. This is possible
if and only if j < n+ord,;(a). If the convention is made that the roots of f(7')
are labeled to make [ < m, then for 5 <[ — i, the above congruence imposes
no restriction on a, while for j > [ —4 one must have a = u 7™ mod 7=+,
In this case ord,(a) is forced to be m — [+, so the inequality j < n+ord,(a)

implies j <n+m — [ +1.

To summarize what has been shown so far, for the prime powers of
7', w7 in the matrix G, one must have 0 < i < land 0 < j < m+n. In

addition, for a fixed j, one can take a € O/(w?). If i + j < I, then one can
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take any a mod m7. Otherwise, if [ < i + j, then the congruence uniquely
determines a modulo 7+~ Lastly, j < n +m — [ + 4. These conditions are
implied by module closure TM C M. Conversely, any M generated over O by
the rows of G with 4, j, a satisfying these conditions is closed under the action

of T and is therefore a A-module.

Module Closure Relations:

MCL (4,7) € [0..1] x [0.n+m] with j <n+m —1+1
MC2 If i +j <, any a € O/(n?) is allowed.

MC3 If I < i+ j, then a = 7™ "Dy mod 7+~

These conditions are illustrated in figure 4.1 below.

4.2 A-Isomorphism and Integral Similarity
Now consider the problem of determining when two A-modules generated over
O by the rows of G in E; are isomorphic. If M is generated over O by the

matrix GG, then it has already been shown in section 2.1 that the powers of 7

along the diagonal of G are an invariant of M. In the notation from [14], the

question is: for a;,as in O/(7?), when is [i, j,a1] = [i, j, as]? Let G(i,j,a) be
the matrix
11 1
G(i,j,a) = ™ a |,
J

and let My, My be generated over O by the rows of G(i,j,a;) and G(i, 7, as)
respectively. In section 2.1, it was already shown that any A-isomorphism

¢ : My — M; must have a matrix representation of the form
X = [SO] = GQD(uh Usg, ug)Gl_l
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Figure 4.1: Parameter Domain For Module Closure

with respect to the given O-bases, where uy, us, us € O*. Let

U Ty
X = Ug < )
Uus

and note that the only condition that prevents X from being in GL3(O) is
the integrality of x,y, z. Write the last equation as XG; = GoD(uq, ug, us).

Equating the off-diagonal entries of the left and right-hand sides gives the
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system

up + o7t = uy (4.1a)
g 4 zag + yml = ug (4.1b)
Usay + 21 = asus, (4.1c)

and viewing the last equation as a congruence modulo 7/, one sees that
[i,7,a1] = [i,J,as] implies ord,(a;) = ord,(az). Viewing (4.1a)-(4.1c¢) as a
system in the unknowns wy, us, ug, and x, y, z, one can solve for the u; in terms

of z,y, and z. The system 4.1 in matrix form is

1 -1 0 =« 0 0
1 0 -1 a 7 0],
0 ag —ay 0 0 77
and viewing this as a system of equations over F', one can bring this matrix

into the form (I3.3|B(ay,as)) with

CL1(7Ti — CLQ) —CL27Tj 7Tj
1

ay — G2

B(ay,az) = as(mt —ay) —agm W
ay (' —ay) —ayw 7
Note that a; — as # 0 since one may assume without loss of generality that

a; # as mod 7. Therefore one has [i, j, a1] = [i, j, as] if and only if there exist

x,y,z € O with

x
B(aj, as) | y | € (0%)°.
z
To test this condition, one can ignore the last two columns in B(aq, ay) since
one can assume k' = ord,(a; — az) < j (a is taken modn’). For example, the
first entry of a linear combination of the columns of B(a,as) is

ay (7% — as aym! visd
T ( ) — + z ,
a1 — Az a1 — az a1 — Az
2




and since the last two terms are always divisible by 7, the sum will be a unit
if and only if za; (7" — as) /(a1 — az) is a unit for some x € O. This is possible
if and only if ord,(a;) + ord, (7" — as) < ord;(a; — ay). The same argument
applies to the other two rows of B(aj,as). One now has the following useful

criterion for when two isomorphism classes [i, 7, a;| and [i, j, as] are the same.

Theorem 4.2.1. For a1, ay € O/(77), [i, j, a1] = [i, J, as] if and only if ord,(a;) =
ord,(as),ord, (7 —a;) = ord, (7 —ay) and ord, (a;)+ord, (7" —as) < ord,(a; —
as). Letting k = ord,(a,), as = v, for v, € 0%, s = 1,2, and k' = ord,(a; —

asy), this condition is equivalent to:

1. If k < i, then 2k < k.
2. If k =i, then ord,(1 — vy) = ord, (1 — vg) and 2k + ord, (1 — v,) < k.

3. If i < k, then k +1i <k’

Proof. First suppose that k < i. By the Isosceles Triangle Property, ord, (7% —
ay) = k, and similarly all entries in the first column of (a; — as)B(aq, as) have
valuation 2k, so the condition becomes 2k < k. If i < k, the Isosceles Triangle
Property gives ord, (7" — az) = 7, and a similar argument gives k + ¢ < k. If
k =i, then ord, (7! — ay) = ord, (7*(1 — uy)) = k + ord,(1 — uy) and similarly
ord, (7" — a;) = k + ord,(1 — u;). Now the condition is that there exists an

z € O so that

ord, (ray (7" — as)) = ord.(z) + 2k + ord, (1 — vy) = K’
ord, (zas(m’ — ay)) = ord,(z) + 2k + ord, (1 — vy) = ¥/

ord, (za; (7" — a1)) = ord, (x) + 2k + ord, (1 — v;) = K.

Therefore, one must have ord,(1 —v;) = ord,(1 — v2) and 2k 4 ord, (1 —vs) =

k' — ord,(z) < k’. Conversely, if these inequalities are met in each case, then
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x can be chosen to be the unique power of m which multiplies the first column

of B(ay,az) into (O*)3. O

Although the proof and the discussion preceeding it were somewhat
ad hoc since there were exactly the same number of units uq, us, u3 as off-
diagonal entries of the matrix X, the quantities i, j, ord,(a) were discovered
to be invariants of the O-submodule generated by the rows of G(i, j,a). One
can use localization to explain these invariants, and the quantity ord,(7* — a)
appearing in theorem 4.2.1. For example, localizing M at f3(T) = (T — a3),
gives the Ay,-submodule My, = ((1/1,1/1,1/1),(0,7"/1,a/1),(0,0,77/1))o of
(Ef)s,. Here the fact that localization distributes over direct sums is being
used to form the fractions over each component. Since f3 is a unit in Ay,

Mg, = fsMy, = <<a1;a37a21a370> : (O’M’()) ’(070’0)> ’
o

where the last coordinates have been made 0 by multiplying by f3. Assembling

these into a matrix and dividing columns 1 and 2 by a; —a3 and as —ag implies
My, = ((1/1,1/1,0),(0,7°/1,0))0

by theorem 2.0.2. For the case A = 2 it was already shown that the power of
7 occuring along the diagonal of G is an invariant. Repeating this argument
at fo(T) = T — ay and suppressing the second coordinate, My, is generated by
(1,1),(0,a), (0,77) which falls into the class {(1, 1), (0, 7™in{ierd=(@h)) , which
gives the degree 2 invariant min{j,ord.(a)}. At fi(T) = T — ay, My, =
(1,1), (7% a), (0,7))o = {(1,1),(0,a—7*), (0,77)) o which similarly gives the
degree 2 invariant min{j, ord,(7*—a)}. These local invariants are being added

on the left side of the inequality in theorem 4.2.1.

Two examples will now be given to see how theorem 4.2.1 allows one to

calculate M. These two examples have been calculated previously by Sumida
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and Hachimori, respectively. Our method differs considerably from that in [14]

since all possibilities for [, m,n are being handled at once.
4.3 Examples

Example: (I,m,n) = (1,1,1)

The module closure conditions imply (7, j) € [0..1]x[0..2] with j < i+1.
Hence (i, 7) = (0,0),(0,1),(1,0),(1,1),(1,2). For j = 0, there is only the class
given by a = 0, so one has the classes Ey = [0,0, 0] and [1, 0, 0]. For (0, 1), one
must have a € O/(7), and the invariant ord,(a) can be 0 or co. If @ is a unit,
then £k = 0 = ¢ and by theorem 4.2.1 a = 1 is in a class by itself. Otherwise
a # 1, and ord;(1 — a) = 0. Substituting into the case k = i of theorem 4.2.1
gives 0 < £k’ which is always true. This gives the classes [0, 1,1] and [0, 1, 2].
For ord,(a) = oo there is only the class [0, 1,0]. For (i, 7) = (1, 1), one is above
the line ¢ + j = [, so the congruence in the module closure relation MC3 must
be taken into account. Hence a = muy = 0 mod 7 yielding the class [1, 1, 0].
Similarly for the remaining case (i,7) = (1,2), one has a = mu; mod 72 giving
the class Eann = [1,2, mug]. These are precisely the 7 classes found by Sumida

in [14] for this case.
Example: (I,m,n) = (2,2,2)

The parameter domain is [0..2] x [0..4] with j < ¢+ 2. This gives the

12 possibilities for 7, 7 shown in figure 4.2:

As in the previous example, for j = 0 one has the three classes [0, 0, 0], [1, 0, 0],
and [2,0,0]. The same calculations as in the previous example also give the
three classes [0, 1,0],[0,1,1], and [0,1,2] for (,j) = (0,1). For i = 2, MC3

implies a = 72u; mod 77 giving the four classes [2, j, 7%uy] for j = 1,2,3,4.

For (i,7) = (0,2) the possibilities for ord,(a) are 0,1, and co. If a is a

unit, then one is in case © = k = 0 of theorem 4.2.1, and the condition is that
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Figure 4.2: Parameter Domain For (I, m,n) = (2,2,2)

ord,(1 —vs) < K, i.e. one can identify two classes corresponding to ag,as if
they agree up to at least as many m-adic digits as their depth in the 1-unit
filtration of O*. If ord,(1—v,) = 0, then one can identify all such a to the class
corresponding to 2 since one only needs 0 < k'. If ord, (1 — vs) = 1, then one
can identify all such aq, as with 1 < k’. But for any two units at level 1 in the
1-unit filtration, say a; = 1+ aym,as = 1 + fim with aq, 51 # 0, they already
agree in the first digit so they all identify to 1 + 7. At level 2, a = 1 mod 7.
This gives the classes [0, 2,2],[0,2,1+],[0,2,1]. If ord;(a) = 1, then one is in
case i < k of theorem 4.2.1 and require 2 < £/, therefore one can only identify
two classes if a; = ay mod 72. This gives the class [0,2, 7]. Lastly there is the

class [0, 2, 0] for a total of 5 classes in this case.

For (i,j) = (1,1), ord(a) = 0,00. If a is a unit modm, then one can

identify two units if and only if 0 < £/, so all units identify to the class given
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by a = 1. Hence there are two classes for this case given by [1,1,1],[1,1,0].

For (¢,7) = (1,2) above the line i + j = 2, module closure condition 3
requires a = muy = 0 mod 7. Hence £ = 1 = ¢, and the condition in theorem
4.2.1 gives 2 < 2 4+ ord,(1 — vs) < k' so one can identify a; and ay if and
only if a; = ap mod 7%, Since there are |O/(r)| integers modn? satisfying

a =0 mod 7, one has ¢ = p/ distinct classes [1,2, ar| for a € F,.

For (i, 7) = (1, 3) above the line i+j = 2, MC3 forces a = mu; mod 72.

Then a has a m-adic expansion
_ 2
a= Q1T + QoT

with a3 = uy mod 7, and oy € F,. The condition for identifying two classes
becomes 2+ord, (1—v,) < k'. If ay = By + Bom? is a similar m-adic expansion,
then v; = oy + agm and vy, = B; + fomm with 81 = oy = uy mod 7. Since
ur # 1mod 7, one has ord.(1 —vs) = 0 for s = 1,2. Therefore one can
identify two classes if 2 < £’. Since the first two m-adic digits are already

equal, this condition is always true and the possible a collapse to one class
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given by [1,3, usm]. Hence, there are a total of ¢ + 18 classes given by:

[0,0,0],
[0,1,0],[0,1,1],[0,1, 2],
0,2,0],10,2,1],[0,2,2],[0,2,1+ 7], [0, 2, 7],
[1,0,0],
1,1,0],[1,1,1],

11,2, ar] for a € F,

1,3, usn],

(2,0,0],

2, 7, 7ug] for j =1,2,3,4,

where ¢ = p/ for f the residue field degree of F/Q,.
The elementary types:

Let P be a partition of {1, 2,3}, and consider the elementary A-modules

E=@N][T -

BeP 1€B

There are 5 partitions of {1, 2,3} corresponding to the elementary types

AT —a1) ®AN/(T — a2)(T — ag)

AT —az) ®AN/(T — ar)(T — az)

AT —ag) ®AN/(T — ar)(T — ag)
B = A/ f

By =A/(T — 1) ® A/(T — az) & A (T — a3).
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In the notation [4, j, a] these are given as [0, n, 1], [{, 0, 0], [0, m, 0], [0, 0, 0],

and [I,m + n,usm™|, respectively.
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Chapter 5

A-MODULES WITH A =4

As before, O denotes the ring of integers in a finite extension F//Q,, and let
7 be a generator of the maximal ideal of O. Let f(T) = [I,(T — ;). As
before, M denotes the set of isomorphism classes of A = O[[T]]-submodules
M C E; = @, A/(T — «;), with finite quotient E¢/M. By theorem 2.0.4,

up to isomorphism, M is generated over O by the rows of some

1 1 1 1
™ a b
G = ‘
™ ¢
ok

when 4 < ¢. Denote the isomorphism class of M by [i, ], k,a,b,c|, where
a € O/(r7) and b,c € O/(x*). The tuple (i, j, k) is a A-module invariant of M
by theorem 2.1.1. As before, module closure 7'M C M bounds the parameters,
and one has reduced M to a finite list {[4, j, k, a, b, c|}. For each tuple (i, j, k)
in the list, the task is then to decide when two classes, [i,j, k,a, by, ¢;] for

t = 1,2 are the same.

In general the technique in chapter 4 which produced theorem 4.2.1
does not work well for A > 3. The system of equations resulting from the

matrix equation

XG1 == GQD

was simple enough that one could solve for the unit entries u along the diagonal
in in terms of the off-diagonal entries of X. For larger )\, the equations become
much too cumbersome to solve. In this section, an algorithm will be given,
based on the approach at the end of section 2.1, to decide when two classes

are the same. For A-modules M, M, a map @15 : (O*)* — GL,(F) was
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defined, and it was shown that M; = M, if and only if imp; o N K # ), where
K = GL,(0O). This enables one to search for an isomorphism by finding a
u € (O*)" with ¢y 9(u) € K. One problem with this is that (O*)" is infinite,
so the first task is to show that one only needs to search over w € ((O/(n™))* )"
for some m. This is still in general a large set. The idea for further reducing
the size is to "divide" out the nontrivial automorphisms of M; and M, from

(O*)™. At the same time, one can use theorem 2.1.4 to decide that M; 2 M.
5.1 Generators

The first goal is to translate the module closure condition into restrictions on
the parameters i, j, k, a,b,c. The module E,,, = A/(f(T)) will again play a
fundamental role, and should be viewed as a lower bound in the lattice of
A-submodules of Ey up to isomorphism. First, consider the canonical map

Y+ Eann — B given by

Y(g(T) mod (f(T))) = (9(an), g(az), g(as), g(au)).

Lemma 13.8 in [16] implies that 1 is injective with finite co-kernel. The Di-
vision Algorithm for A implies that F,,, has an O-basis {1,7,72, T3} which
maps to the O-basis {(1,1,1,1), (a1, ag, az, aq), (a3, a3, a3, i), (a3, a3, a3, af) }
for the image ¥(E,u,). Assemble this basis into the Vandermonde matrix

11 1 1
ap ay az Qg

2 9
a; Gy Q3 Oy

3 3 3 3

and use row operations to produce the upper triangular form

1 1 1 1
a1 — Q9 a1 — Q3 Q] — Oy
(Oél - 043)(042 - Oé?,) (041 - 044)(042 - Oé4)
(a1 — ay)(og — ou) (o — o)

36



Note that these row operations preserve the image (not just the isomorphism
class) of E,,, inside of Ey. Since theorem 2.0.4 shows that any submodule
M C Ey up to isomorphism contains (1, 1,1, 1), module closure implies that M
must contain the T-cyclic basis generated by (1,1, 1, 1), which is the basis for
Y(Eann) given by the rows of the Vandermonde matrix above. Hence 1)( Eyapny) C

M C E;.

To bound the i, j, k, write oy, — @, = Upy, ™" for 1 < m < n < 4,
where each u,,, € O*. Since Y(Eun) € M for any A-submodule of E; up
to isomorphism, one must be able to express the rows of the above matrix
as an O-linear combination of the generators given by the rows of G. This
immediately gives 0 <7 < v;9,0 < j < wvy3+ve3,and 0 < k < vy 4+v24 4034,
hence the parameters a € O/(n?), b,c € O/(w*) are bounded. Therefore, M
is finite. As before, not all choices of ¢, j, k, a, b, ¢ will yield an O-module closed

under the action of 7.

To derive conditions for module closure, one can express the action of
T as a matrix with respect to the free O-module basis g; = (1,1,1,1), g2 =
(0,7, a,b), 95 = (0,0,77,¢), 94 = (0,0,0,7%). Letting M = (g1, 92, 93, 94)0,
one has T'M C M if and only if the matrix representation of 7" has all entries

in @. Then for

1 1 1 1
™ a b
G = ‘ )
™ ¢
ok
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the entries of

Q1 T12 T1,3 Ti14

Qo  T23 T24

—1
= GD(a17 Q, (g, O{4>G
Q3 T34

Qg
must be in O. One can easily calculate the right-hand side formally in GL4(F),

and the integrality conditions are summarized below.

Lemma 5.1.1. Let uy = ;22 vy = 224 and wy = %; Then TM C M if and

uy,2’

only if 0 <7 <019, 0<j <wyg+ w3, and 0 <k <wyy + voy + v34, and the

quantities

1. 213 = upme™d — qrv12~(+9)
2. ZL’273 = CL7TU2’3_j
3. @4 = vtk — prora= (k) gy eqvra=UHh) 4 gegure=(Hith)

4. @94 = wybm2A7F — acrv23—U+k)

5. T34 = crvsa—k

are in O.
5.2 A-Isomorphism

For a fixed (4,7, k), one only needs to sort the classes [i, 7], k,a,b,c] for the
allowable a € O/(n?) and b,c € O/(x*) which satisfy the module closure
conditions in lemma 5.1.1. When there is a fixed (7,7, k) in mind, one can

suppress i,j and k from the notation and write [a, b, ¢| for the isomorphism
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class [i,7,k,a,b,c] € M. Let

1 1 1 1
™ a b
G(i,7,k,a,b,c) = ’
™ ¢
ok

Set Gy = G (i, j, k, as, by, ¢;), and let M, be generated over O by the rows of G,

inside Ey for t =1, 2.
Counsider the function
(0)* 23 GLy(F)

given by
u— X = GyD(u)Gyt

By theorem 2.1.2, one has a A-isomorphism M; — M, whose matrix repre-
sentation with respect to the given generators is X = g o(uy, ug, us, ug), if
and only if imy; o N GL4(O) # 0. For this to be a useful criterion, one has to
reduce this to checking whether ¢ 2(S) N GL4(O) # 0 for some finite subset
S C (O*)%. The next result shows that this can be accomplished with S equal

to the canonical lift of ((O/(77+k))*)* to (O*)*.

Theorem 5.2.1. Let u,v € (O*)*, and suppose that v = w mod 7+ and

90172(1)) € GL4(O) Then @172('&) c GL4(O)

Proof. Write u = v+ for some z € O*, and observe that ¢ 5 (extended
to F'*) is a linear map of vector spaces F* — Matyx4(F). Hence ;2 has a
matrix representation, say A, and by explicit computation one can observe
that the entries of this matrix are linear combinations of integral elements
(the a,b,c's) with powers of 7 in the denominator. The largest power of m

itk hence 7 T*A has integral entries. Therefore
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012(u) = 12(v + 27T = A(v 4+ 2t TF) = Av + 7R Az and since Av
and T T* Az have integral entries, so does ¢ o(u). Since o1 9(u) (or anything
in the image of ;) is upper triangular with units along the diagonal, this

shows that ¢ 2(u) € GL4(O). O

Let Isomy (M, Ms) denote the set of A-isomorphisms from M; to M,
as before. Then the above result shows that Isomy(M;, Ms) can be computed
as

H 4 (ri+ithyd,
where H = {u € S|pi2(u) € GL4(O)} is a finite subset of S. In particular,
when M; = M = M, then @15 = ¢y : G} (O) — GL4(F) is a group

homomorphism. One can compute
AU_tA(M) = QOJT/}(IIIIQOM N GL4(O)),

which can be represented as H + (7"+*)4 where H = {u € S|pup(u) €
GL4(O)}. The reduction of H modulo n'**t* H C G (0)/(x+tF)1 is a

subgroup.

To decide when [ay, by, ¢1] = [ag, ba, ¢2], one can in principle test every
possible u € S for whether ¢ 2(u) € GL4(O). In practice, when [a1, b1, ¢1] =
[ag, by, c2], an element u € S is found quickly. Unfortunately, S can be very
large and if two classes are distinct, one is forced to iterate through all pos-
sibilities for u. For example, if O = Z, and one is sorting classes along the
tuple (4,5, k) = (1,1,3), then S = ((Z/(p®))*)* has order (p—1)*p'%. One can
reduce the number of iterations by dividing nontrivial automorphisms of M

and M, from S.

More precisely, Isomy (M, Ms) possesses an action of Auty (M;) defined

Auty (M) x Isomy (M, My) — Isomp (M, Ms)
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(o, ) » Yo

This action is simply transitive since o~ =+’ if and only if p = (¢/') o).
Hence Isomy (M7, Ms) is a single orbit under the action of Auty(M;7). Since
all possible isomorphisms are parameterized by the torus T = G (O) via
theorem 2.1.2, it is natural to extend the action of Auty (M) to imy; 2. Also,
Aut (M) can be identified with the subgroup H + (77*%)% of T, and hence

acts on 7' via translation.

Lemma 5.2.1. The map ¢12 : T'— imp; 5 is a bijection of Aut,(M;)-sets. The
orbits of imep; » under the action of Auty (M) are in bijective correspondence

with T'/Aut, (M;).

Proof. Let p(u) = G1D(u)Gy* € Auty (M), so that u € H x (77+77%)4 and let
©12(v) = GoD(v)GT' € imyp; 5. By the definition of the action of Auty (M)
on Isomp (M, Ms), the extension of the action to ime; o is given by

((u), p12(v)) = ra(v)p(u) ™
= GoD(v)GT G D(u™ G
= GoD(vu ™ HGT!

= @172(vu_1).
This proves the result. O
One has similarly an action of Auty (M) on Isomy (M, Ms), and the

quotient

img0172/AU_tA(M1)AutA(M2)

is bijective with T'/Auty(M;)Auty(M,), so that the size of T is reduced even

further.
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By the above result, if Isom (M;, Ms) is nonempty, it will be the only
orbit in ime, 5 contained in GL4(O). Therefore, one only needs to search for
an element in GL,(O) among representatives for imy, » modulo the action of
Autpy (M) = Hy+ (784 and Autp (M) = Hy+ (7 %)% This is equivalent
to calculating representatives v for the cosets in T'/(H,Hy + (7't9+%)%) and
checking if ¢;9(v) € GL4(O). By theorem 5.2.1, one only needs to check
representatives for the cosets in T /H,H, where the bar denotes reduction
modulo (7#*9+*). In general, one expects the quotient T'/H,H, to be much
smaller than T. For example, it is easy to observe that the diagonal elements
(u,u,u,u) € T are always in the automorphism group regarded in 7', hence T

is reduced by at least one dimension by passage to 1/ Hy Ho.
5.3 An Algorithm to Enumerate M

The previous section suggests the following algorithm to decide if two mod-
ules M; and M,, are A-isomorphic. Ideally, one wants distinct representa-
tives uy, us, ... ug for the cosets in T/H,H,. Since testing whether u € T
is in Hy; or Hy is easy and fast, one can quickly find a small number of
exhaustive but not necessarily distinct representatives using the following
procedure. Let gi,...,g, be generators for the abelian group T, and let
¢nr, : T — GL4(F) be the homomorphism ¢y, (v) = G, D(u)G; " for t = 1,2.
For each generator g; one can calculate a bound for the order of g; in T'/H, Hy

as k; = min{k|oas (gF) or ¢ar, (gF) € GLy(O)}. Then one has a surjection

i=1
so that |T/Hy Hy| < [I%, k;. As an example, one may think of O = Z,. In this
case T = ((Z/(p"*t+%))*)* and in practice the generators g, = (r,7,7,7),go =
(ryr,r,1),93 = (r,r,1,1), and g4 = (r,1,1,1) with r a primitive root of unity

modulo p'™7** seem to produce small orders k;. One then iterates over all

products u = [[™, g7 for 0 < ; < k; and checks if ¢y o(u) € GL4(O).
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Algorithm to decide if M; = M,:
Input: My = [i, 5, k,as, by, ¢] for t = 1,2

Output: True or False

1. Set Bt = G(Z,j, ]{?, ag, bt, Ct) for t = 1, 2.
2. Choose generators g, ..., g, for T.

3. For each generator compute k; = min{k|pur, (gF) or dar, (9F) € GL4(O)}.
If a k; is achieved with ¢py, (¢F) € GL4(O) but ¢us,(gF) & GL4(O) (or
vice versa), the modules are not isomorphic by theorem 2.1.4 and output

False.

4. For each product v = []-, gfi where 0 < 3; < k;, check if ¢12(u) €

GL4(0O), and if so output True and break. Otherwise, output False.
5.4 Elementary Types

One can form the obvious elements of My by grouping the factors of f(7") and
taking direct sums. For example A/(T'—oq)BA/ (T —a2) BN/ (T —oa3) (T —ov)
injects into E canonically with finite cokernel. Let P = { By} be a partition
of {1,2,3,4} with blocks By, and associate to P the elementary type
Ep:= P A [[ (T - ),
BL,eP  i€By
e.g. the example above corresponds to the partition {{1},{2},{3,4}}. Hence
there are 15 = B, elementary types, where B, is the nth Bell number. The

next result is well known, but the proof is given here for lack of a reference.

Theorem 5.4.1. The elementary types are distinct up to isomorphism.

Proof. Suppose ¢ : Ep, — Ep, is a A-isomorphism. In particular, it is an

isomorphism of free O-modules of rank 4 and hence has a matrix representation
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in GL4(O) with respect to bases which will be choosen now. For each block
By, the factor A/[liep, (T — a;) has O-basis {1,7,T? ..., T15/=1} by the
Division algorithm for A. With respect to this basis, T acts as the | Bg| x | By
companion matrix Cg,, of the polynomial [[;cp, (7" — ;). Choosing this basis
for each factor of Ep and taking their union to get a basis for the whole of Ep,
T is then represented as the matrix block sum [T']p = Cp, & Cp, G-+ - & Cpp-
Let [¢] € GL4(O) be the matrix representation of ¢ with respect to the power
bases constructed above. The additional requirement that ¢ be a A-morphism

implies that one must have

[¢] [T] P = [T] Py [¢] )

which holds if and only if [T]p, ~o [T]p,. Since the matrices [T]p, and [T]p,
are already in rational canonical form, they must have the same block sub-
matrices up to order. Since different blocks in a partition will yield different

companion matrices, the partitions P, and P, must be equal. O

Using the results for degrees 2 and 3, one can express the elementary

types in the notation [i, 7, k, a, b, c].

Theorem 5.4.2. The elementary types expressed in the notation [i, j, k, a, b, c|

are:
o 4[123 € [v12,v13 + 23,0, Zi_zzﬂvl,a’ 0,0]
o 4|12|3 € [v1,2,0,0,0,0,0]
e 4]2|13 € 0,v1.3,0,0,0,0]
o 41|23 € [0,v23,0,1,0,0]
o E;=4[1]2|3 € ]0,0,0,0,0,0]
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e 12[34 € [v12,0,v34,0,0,1]

o 14|23 € [0, 03,014, 1,0, 0]

e 14[23 € [0,0,v14,0,0,0]

e 24[1]3 € (0,0, v24,0,1,0]

o 24|13 € [0,v1,3,v2,4,0,1,0]

e 34|12 € [0,0,v34,0,0,1]

o 124[3 € [v12,0,v1,4 + 24,0, 2714, 0]
o 134]2 € [0,v13,v1,4 + v34,0,0, 4]

° 234|1 S [O V3,V24 + V34,1,1 Y24 v24]

) ug 3

vrw
1234 € [v1,2, 013 + V23, Vg + Vo4 + Vg, upTS, vpmthe, SRt

where for all 1 < m < n <4, write a,;, — @, = Uy, ™" for up,, € O and

u1,3 ul 4 u2 4

uf = urg’ T m’wf: u2,3"

Proof. This is just an exercise in taking the canonical maps from each ele-
mentary type to Ef, and using the matrix operations used in the proof of
2.0.4 to write the image of a power basis in the form G. One can also use the
expression of the degree 3 elementary types in the notation [, 7, a] to help see

the result. O
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Chapter 6

APPLICATIONS TO THE IWASAWA THEORY OF ELLIPTIC CURVES

The results given for the case A = 2 can be used to determine the isomorphism
class of the p-Selmer group of some elliptic curves over the cyclotomic Z,-
extension. First some main definitions and results from [3] are discussed.
Several examples are given at the end to illustrate how Selp(Qs), can be

determined when p = 0.
6.1 Selmer Groups

Let E be an elliptic curve over Q with good, ordinary reduction at a prime
p > 3. Let Qo denote the cyclotomic Z, extension. First, recall the definition
of the p-primary Selmer group of E over Q. as in [3]. One would like to know
about E(Qs), the points of E defined over Q.,, which are contained in E(Q)
as the points fixed under the action of Go,, = Gal(Q/Q.). If one fixes a

prime power p*, one can consider the short exact sequence of Gg-modules
ok —. [P —
0—EQp"] — £(@Q) — E£(Q) —0,
and taking Gg_-cohomology gives the (usual) long exact sequence
[p*]
0 — E(Qu)[p] —> E(Q) = E(Quw) —= H'(Qus, E[p"])) —> -+~

The injection induced by §, denoted by & : E(Qu)/[P"| F(Qs) — H'(Qu, E[p*]),
is called the Kummer homomorphism. If P € E(Q), then 6(P) is the 1-
cocycle defined by o — Q7 — @ where Q € E(Q) is chosen so that [p*]Q = P.

One has the following lemma.

Lemma 6.1.1. Let z% denote # +7Z € Q/Z. Then E(Qu.)/[p"|F(Qu) =
E(Qu) ® (55)-
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Now consider the directed system of abelian groups {(1/p*)|k € N}

indexed by inclusion maps given by

pa

= —.
pk—i-l

a
P
Tensoring with £(Q,,) gives the direct system {F(Qu)/[p*] E(Qoo) }ren Where

the maps E(Qu)/[p*]E(Qx) — E(Qu)/[P*']E(Qx) are given by P —

[p]P. The direct limit of this system is then

lim E(Qu)/[p"]E(Que) = lim E(Qu) ® (1/p")
= B(Qu) ® lin(1/p)
= E(QOO) ® (Qp/zp)-

One also has

Lemma 6.1.2. The diagram

E(Qo)/ [P E(Qx) = H'(Qu;, E[p**1)

| T

E(Qs)/ " E(Qe) —— H'(Qx, E[p"])
is commutative, and the direct limit gives an injection F(Qu) ® Q,/Z, —

H'(Qx, E[p™]).

The p-Selmer group is defined in [3] as a certain subgroup of H!(Q,, E[p™])
containing the image of the Kummer homomorphism x. The idea is to first
realize that each global point in E(Q.,), say P € E(Q,) at some layer Q,
in the cyclotomic Z,-extension, gives rise to a local point P € E((Q,),) for
every prime p of Q,,, via a chosen embedding Q,, — (Q,,),. One can say this in
an equivalent way by defining (Q), to be the union U, (Q,),, for the prime
17 = U, Pn of Q. Here, the prime ideals p,, are chosen so that p,, is a prime

ideal of the ring of integers of Q,, and p,, C p,y1. Then each global point
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E(Qs) gives rise to a local point of E((Q«),), and this induces a map

E(Qx) @ (Qp/Zy) = E((Qoo)y) @ (Qp/Zy)-

Now realize what this map means in terms of the Kummer embedding.
For a prime 7 of Q. given in terms of the primes p,, as above, one has chosen
embeddings Q,, <= (Qy),,, and this choice fixes an embedding Qs — (Quo)y-
Let (¢) = n N Z where / is a prime in Z. Since each completion (Q,),, is a
finite extension of Qy, one has (Q), C Q. Choose an embedding Q < Q
extending the chosen embedding Qs — (Qu),, and this choice identifies G,
with a subgroup of Gg which is the decomposition group for a prime 7|7 in

Q. Define the local Kummer homomorphism

E((@w>n> ® (Qp/Zy) — Hl((@oo)m E[p™]),

in the same way as the global Kummer homomorphism above. Since Gal(Q,/(Qx)y)
is identified with a subgroup of Gal(Q/Q..) via the decomposition group of 7,

one has the restriction map
HY(Qoe, E[p™]) = H'((Qwc )y, E[p™])
where E[p®] C E(Q,) via the embedding 1.

Lemma 6.1.3. The diagram

E((Qwo)y) ® (Qp/Zp) —— H'((Qoo)ys E[p™])

| -

E(Qx) ® (Qp/Zy) —— H'(Qw, E[p>])

1S commutative.

Proof. This is essentially a version of the diagram (xx*) from pg. 297 of [12]

for the direct limit of the maps F(Q)/[P"|E(Qx) — H'(Qu, E[p*]) and
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E((Qx)n)/IPF1E((Qu)y) = H((Quo)y, E[p*]). One can see this directly as
follows. Let P @ r/p* € E(Qu) ® (Q,/Z,). Then k(P @ r/p*) is the class of

the 1-cocycle given by 1 +— 1(Q¥ — Q) = 2(Q)¥ —1(Q) for all ¥ € Gal(Q/Q4),
where Q € E(Q) is chosen such that [p*]Q = [r]P. The left vertical map

sends P @ r/p* to o«(P) @ r/p* € E((Quw),) ® (Q,/Z,), and k,(1(P) @ r/pF)
can be given as the class of the 1-cocycle o — (Q)7 — (Q) for all o €
Gal(Q//(Qw)y), since [p¥]Q = [r]P implies that [p*o(Q) = [r]o(P). This is
exactly the restriction of the cocycle defining x(P ® r/p*) to the subgroup
Gal(@,/(Qn)y) < Gal(T/Que). =

From this diagram, one can see that for every prime 1 of Q, res(imx) C

imk, and hence,

i C ker(H' (Que, E[p™]) — H'((Qu)s Ep™])/imr,).
Letting n vary over all primes of Q.,, one makes the following definition as in
[3]:

Definition 1. The p-primary Selmer group of E over QQ,, is the subgroup of
H'(Qu, E[p™]) defined by

Sel(Quo)p = ker (H'(Quo, Bp™]) — [T H'((Qu0), E[p™])/imry).

From the discussion, it is clear that imsx C Selg(Q),. The definition
of the p-Selmer group in |3] holds for any algebraic extension K/Q. Therefore
at any finite layer Q,, one can define Selg(Q,), in the same way. If p is a

prime of the ring of integers in Q,,, one has the local Kummer embedding

ki + B((Qu)p) ® (Qp/Zp) —> H'((Qu)y, Elp™]).

so define

Sel(Qu)y = ker (' (@, Elp]) — T (@u)y, Bl fimry),
P
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where the product runs over all primes p of Q,. The fundamental diagram
from [3], which is discussed in section 6.3, relates the A-modules Selg(Qx),

and Selg(Qy,),-
6.2 The A-module X5(Q)

The abelian group Selg(Qw), is p-primary, and is therefore a module over Z,.
There is also an action of the Galois group I' = Gal(Qw/Q) on Selg(Qx),
which is compatible with the Kummer embedding  : E(Qy) ® (Q,/Z,) —
Selp(Qw),p- To see what this action should be, let v € T'. Let P ® (n/pF) €
E(Qs) ® (Q,/Z,). Then recall x(P ® (n/p*)) is the class of the 1-cocycle
which sends o € Gal(Q/Qx) to

Q7 —Q € E[p™],

where @ is a point chosen in E(Q) such that [p¥]Q = [n]P. T acts on F(Qu)®

(Qp/Z,) in the usual way
v (P® (n/p*)) = P @ (n/p"),

and one expects v to act on 1-cocycles in a way that is geometrically compat-
ible, so that x(y- (P® (n/p*))) = v-k(P®(n/p*)). Let ¥ € Gal(Q/Q) denote
any extension of the automorphism v to Q. Since Q satisfies [p*]Q = [n]P,
applying 4 to both sides of this equation shows Q" satisfies [pk]Q; = [n]P7,
using the fact that addition on E is defined over Q. Hence, a 1-cohomology
class associated to PY ® (n/p*) can be given by the 1-cocycle

1 ~

o Q) —Q = (Q7 Q).

If [¢] € HY(Qu, E[p™]) is a cohomology class represented by a 1-cocycle &,

then the action of I' on 1-cocycles should then be (7 - £)(0) = (507 1).

Now the idea for turning H'(Q., E[p™]) into a module over the power

series ring A is based on the following facts. Set A = H'(Qu, E[p™]).
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1. The action of I'" described above is continuous, where I' has its usual

topology and A is discrete and p-primary. This is equivalent to showing

A =A™ where I'), = I'?".

2. Letting T" act as v — 1 where 7 is a topological generator of I', the conti-
nuity result above implies that the action of T" is topologically nilpotent,
i.e. for a € A, there is an n > 0 so that T"a = 0. This makes the action

of a power series f(7T') € A well-defined.

To see the second fact, suppose a € AT, so that (77" —1)a = 0. Since
I, C Ty, for ng < n, one has (v*" — 1)a = 0 for ny < n. Also, since A is
p-primary, pa = 0 for some m > 0. Expressing the action of v in terms of 7T,
one has ((T'+ 1)?" — 1)a = 0 for n > ny. This becomes

pt—1 pn )
T a4 + Z ( ,)Tzazo.
i—1

1

By continuity of the polynomial function P(X) = ()Z() on Z,, one can choose

n large enough so that n > ng and p™ | (pl) fori=1,2,...p" — 1, and hence

TP"a = 0. A proof of the first fact is given below.

Lemma 6.2.1. The action of I on A is continuous.

Proof. Let £ : Gg., — E[p™] be a continuous 1-cocycle whose class is denoted
a € A. For Q,, the nth layer in Q.. /Q, Gg., < Gg,, and one has the restriction
map

HY(Qu, E[p™]) % HY(Quo, E[p™)).

The first task is to show that & is in the image of h,, for some n. Since Gg,_,
is compact in its profinite topology, £(Gg..) is compact in E[p>], and since
E[p™] is discrete, {(Gg,.) must be finite. This implies that £ factors through

Gq.,/H for some open normal subgroup H. Let F be the fixed field of H, so
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that F//Qs is a finite Galois extension. By lemma 6 in chapter 5.4 of [11],
there is a finite extension F,, of Q, for some n, so that Gal(#/Q.) can be
identified isomorphically with Gal(F,,/Q,,) by restricting automorphisms of F'

to F,. Then F,, corresponds to a subgroup H' of Gg, and one has
Go../H = Gal(F/Qx) = Gal(F,/Q,) = Go, /H'.

Using this isomorphism, identify ¢ with a 1l-cocycle on Gg,/H’, and pre-
composing with the canonical surjection G, — Gg,/H’ gives a l-cocycle,

on G, lifting &.

The claim is that a is fixed by the subgroup I',,. This is just a com-
putation. Denote the lift of £ by 5: Go, — E[p>]. Let 0 € Gg,, and let

Yn € I'y. Since 7, is in Go,,

EFno T )" = EFnoTn )"

= EFo)™ +EFH)™
E(no) + £ )™
E(n)” +E(0) — E()
3

(0) + {1 — coboundary}.

Hence 7, - € is cohomologous to ¢ and therefore v, - a = a. O

The following definition is from [3].

Definition 2. Set Xg(Qo) = Homs(Selp(Quo)p, Qp/Z,), the Pontryagin dual

of the p-primary Selmer group of E over Q.

The action of A on Xg(Q) is given in the usual way. More generally,

if A is a discrete p-primary or compact pro-p abelian group with a continuous
action of T', then for f : A — Q,/Z, in A, vf is defined by (vf)(a) = f(y 'a).
52



6.3 Some Known Results on Xz(Q)

For ease of notation, set X = Xp(Qu). Since X is a module over A = Z,[[T7],
one can ask whether it is finitely generated over A and whether it is A-torsion.
One can also ask what these conditions imply for the sequence of curves E(Q,,).
It is well known that X is always finitely generated over A, and the proof
involves the usual Mordell Weil theorem combined with Nakayama’s lemma
(see [3]). By Kato’s theorem [5], X is also A-torsion. Even though only the
case where p is a good ordinary prime for £/Q is considered, Kato’s result
holds for E/F where F is a number field, and the primes above p in F' are of
good ordinary, or multiplicative type for E. One can now apply the structure

theorem for A-modules. There is a short exact sequence of A-modules
0—K-—X—PA/(fi(1)) — C—0,

with | K|, |C| < oo, and each f;(T') € A is either p or a distinguished irreducible
polynomial. The characteristic polynomial of X is fx(7') = chary(X) =
[T f:(T)¢, which one can write as p*P(T'), where P(T) is a distinguished poly-
nomial. Call the degree of P(T) the A-invariant of X, and denote it Ax.
Similarly, © = pux is called the p-invariant. Even though the example given
later only concerns the case y = 0, many examples are given in [3] where 1 > 0.
The Main Conjecture of Iwasawa theory for elliptic curves relates fx(7T') to
the p-adic L-series of E, L,(E,T) € O[[T]] for a finite extension of O of Z,.
The Main Conjecture of Iwasawa theory says that up to a unit multiple in
O[[T]], fx is equal to L,(E,T). In [17|, it is shown that L,(E,T) € Z,[[T]],
and one can compute L,(E,T) and factor it into a unit power series and a
distinguished polynomial P(T'), as in the example given in section 1.1. Hence,

the Main Conjecture implies that fx can be calculated explicitly as P(T).

Theorem 1.9 in [3] implies that when X is A-torsion, the sequence of
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ranks rank F(Q,,) is bounded by Ax. The proof is recalled here because it uses
ideas frequently encountered in Iwasawa theory. By the Mordell-Weil theorem,
E(Q,) 2 Z & 1T, as abelian groups, where 7, is the rank and 7, is the finite

torsion subgroup. Recall that one has the short exact sequence

0— E(Q,) ®(Q,/Z,) — Selg(Q,), — Mx(Q,), — 0.

One loses the finite torsion part in this sequence since

EQn) ® (Q/Z,) = (Z & T,) @ (Qp/Zy) = (Qp/Zy)™,

but the p-primary abelian group Selg(Q,), contains the copy of (Q,/Z,)™.
By a well-known conjecture for elliptic curves, one expects II5(Q,,), to be
finite, and this will be assumed from now on. Taking the dual of the short

exact sequence then gives
0— ﬁIE(@n)p — Xp(Q,) — Z;" — 0

where Xg(Q,) = Se@)p. Since finite groups are self dual, fﬁE(@n)p =
HI5(Qr)p, and is hence finite. Therefore one has r, = rankz, Xp(Q,). In
other words, the Z,-corank of Selg(Q,), is r,, the rank of the elliptic curve

E(Q,). The next step is to relate X, which is defined over Qu., to Xg(Q,).

The Fundamental Diagram

The crucial ingredient for relating X to the "finite levels" Xg(Q,) is Mazur’s
Control Theorem [9]. Recall that T, = T'?" is isomorphic to Gal(Qu/Qy).

The restriction map H'(Q,, E[p>]) = H'(Q, E[p>°])'™ induces the map

Selp(Qn), Sny SelE(@oo)g".

The Control theorem asserts that ker(s,, ) and coker(s,,) are finite with bounded

order as n — oo. Then taking the Pontryagin dual of the sequence

0 — ker(s,) — Selg(Q,), — SelE(@oo)g" — coker(s,) — 0
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gives

—

0 — coker(s,) — X/(wn(T)X 2 Xp(Q,) — ker(sy) — 0

where w,(T) = (1 +T)?" — 1. Since the kernel and cokernel in this sequence

are finite, one obtains
ranky, X/(w,(T))X = ranky, Xg(Q,) = ry.

Now using the structure theorem for finitely generated A-modules, X is pseudo-
isomorphic to A/(f(7")) where chary(X) has degree Ax, hence X has Z,-rank
Ax, and therefore r, < Ax. Therefore the ranks of the elliptic curves E(Q,,)
are bounded by Ay, which is the result from theorem 1.9 in [3]. One sets
MW= max{r,}°2, < \x, which is equal to the rank of £(Q.). In [3], a
proof of the Control theorem is given which is based on the fundamental dia-
gram which is recalled below. This diagram will be the basis of the technique

for determining X up to isomorphism.

Fix a level n in the Z,-tower, and recall that the p-Selmer group is the
kernel of H'(Q,, E[p>]) — I1, H'((Qn)y, E[p*])/im(k,). The image of this

map is denoted Gg(Q,,) so one has the short exact sequence
0 = Selp(Qn)y = H'(Qu, E[p™]) = Gr(Qn) — 0.
One similarly has
0 — Selp(Qu)p — H (Quo, E[p™]) = Gr(Qs) — 0.

Taking I',,-invariants of the latter and connecting them with the vertical re-

strictions maps gives

0 ——= Selp(Qn), — H'(Qu, E[p™]) G5(Qn) ——0.

lsn lhn lgn
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By the Snake lemma,

0 — ker(s,) — ker(h,) — ker(g,) — coker(s,) — coker(h,) — coker(gy).

Some facts about these kernels and cokernels proven in |3] will be useful
later on, and based on these facts some key assumptions will be made. For
the applications later, one can restrict to the level n = 0. First, lemmas 3.1

and 3.2 in [3| imply that

1. |ker(h,)| = |E(Qy),| and

2. coker(h,) = 0 for all n.

Our first assumption is that £(Q), = 0, so that at level 0 one has ker(hy) =0
and hence ker(sp) = 0. Substituting this into the Snake lemma long exact
sequence gives

ker(go) = coker(sg).

Next one needs that Selp(Q), = 0. This combined with the fact that ker(sy) =
0 gives

ker(go) = SelE(@oo)gv

and hence

—

ker(go) = Selp (@)l 22 X/ (wo(T)) X = X/TX.

If one knows ker(gg) for the curve E and prime p, and all possibilities for the
A-module structure of X, then X can be determined by comparing ker(go)
to each possible quotient X/TX. To apply the module theory developed so
far, a condition is needed on the elliptic curve E to guarantee that X has no
nontrivial finite A-submodules. By proposition 4.8 in [3|, this is guaranteed

by the assumptions that E(Q), = 0 and Selg(Q), = 0.
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Computing the local kernels

The focus in this section will be to show how to calculate ker(gg) based on the

facts discussed in section 3 of [3]. By definition
Gp(Q) = im(H'(Q, E[p™]) — [[ H'(Qe. E[p*™])/im(ky))
‘

where the product runs over all primes ¢ in Z. Note that one can ignore the
image of k, when ¢ # p since the theory of the formal group gives E(Q,) =
Zy x T where T is the finite torsion part, and hence E£(Q,) ® (Q,/Z,) = 0. One
can define the map go on a single local factor in the above product as follows.
If n is any prime of Q,, dividing ¢, then the restriction map H'(Q,, E[p>]) —
H'((Quo)y, E[p™]) induces a map
H'(Qe, E[p])/im(re) =5 [T H'((Qec)y, E[p™])/im(r),
nl¢
which is well-defined since the Kummer embedding commutes with the restric-

tion map. The map gq is then given by [[,r,. To see that this map is defined

from Gr(Q) to Gg(Qu ), one only needs to observe that the diagram

HY(Q,E) [, H(Q, E)

| |

H'(Qu, E) —= 11, H((Qx)y, E)

consisting of restriction maps throughout, is commutative. To simplify the
map 1y, one observes that all primes 7 of Q. lying over a fixed ¢ are Galois
conjugate due to a basic fact from algebraic number theory. This implies
that the subgroups Gal(Q,/(Qx),) are all conjugate, and a fact from group
cohomology (|12] Ex. B.6) extended to continuous cohomology of profinite
groups shows that the restriction maps to conjugate subgroups have the same

kernel. Hence, for the purpose of calculating ker(gg), one may choose a prime
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1 above ¢ and assume
re: HY(Qe, B[p™]) /im(ke) — H'((Quoo)y, E[p™]) /im(sy).

Then ker(go) = [, ker(ry) N Gr(Q).

For E/Q, set ¥ = {{|¢ | A} U {p}, the set of primes where E has bad
reduction along with p. By lemma 3.3 in [3|, ker(r,) = 0 for ¢ ¢ 3, therefore
ker(go) = [Tpex ker(r,)NGE(Q) and one has only a finite number of local kernels
to compute. It also turns out that under the assumption that £(Q), = 0, a
theorem of Cassels implies that intersecting with the global 1-cocycles Gg(Q)
is unnecessary (see pg. 87 in [3]). Hence ker(go) = [lsex ker(r,). Now the
focus will be on determining the algebraic structure of ker(r,) for each type
of prime ¢ € ¥. In [3], Greenberg proves Mazur’s control theorem by showing

that each one of these local kernels is finite.

If 7 is a prime of bad reduction, let ¢, denote the Tamagawa number
of E(Q) at £. This is the order of the group E(Q)/E°(Q,) where E°(Q,) is
the subgroup of local points which reduce to nonsingular points modulo ¢. By
the discussion on pg. 74 in [3], ker 7, is a cyclic group of order cy’ ), the exact

power of p dividing ¢,.

For the good ordinary prime p, lemma 3.4 in [3] implies that |kerr,| =
|E(F,),|?, the order of the p-torsion in the reduction E(F,) squared, but does
not give its structure as a finite abelian group. If E(Fp)p # 0, p is said to be

anomalous for £. For p anomalous, the result is that

Theorem 6.3.1 (Lemma 6.3(b) in |7]). kerr, = Z/pZ & Z/pZ.

The proof given below is in |7], where slightly more is proved. One
essentially needs to know the structure of £(Q,) modulo the subgroup of points

which are norms from above in the local Z,-extension (Qx),/Qp, which turns
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out to be dual to kerr,. [7] cites the proof of the structure of this group from
[9] which uses the machinery of pro-algebraic groups. The paper [6] cited in
the proof below gives a more accessible proof of this result which uses Tate

cohomology and formal groups.

Proof. By Tate local duality |15], there is a non-degenerate perfect pairing

E(Q,) x HY(Q,,E) — Q/Z.

Taking the discrete p-primary part on the right gives

E(Q,) x Hl(@va)(p) — Qu/Zy.

Also, for a finite extension L/Q,, the kernel of restriction H'(Q,, E) %
HY(L,E) is dual under the above pairing to the image of the norm map
E(L) Y% E(Q,), and hence kerr; & E(Q,)/N.(E(L)). Letting L range
over the intermediate subfields (Q,), in (Qx),, one can identify k/er7p with

E(Qp)/N where N denotes the subgroup of universal norms

N= (] NL(E(L))
L=(Qn)yp

from above in the Z,-extension (Qu),/Q,. The Kummer sequence for E(Q,)
implies that

H\(Qy, Ep™]) /imk, = HY(Q,, E)(p),

and similarly
H' ((Quo)ys Elp™)) /iy = H'((Quo)y, E)(p),
hence lgr?p ~ E(Q,)/N.

By proposition 4.42 in 9], the structure of E(Q,)/N is given by the

split exact sequence

0 — Zy/(1 = u)Zy — E(Q,)/N — E(F,), — 0,
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where u is the unit root of the characteristic polynomial of Frobenius h(z) =
2? — ayx + p. Writing h(z) = (z — u)(x — p/u), one has h(1) = |E(F,)| =
(1 —u)(1—p/u). Since p is anomalous, h(1) = p for p > 5 by the Hasse bound
(]12] pg. 131), but for p = 3,5 one has h(1) = 6, 10 respectively. In any event,
ord,(1 —u) = 1. From [6] which gives a different proof of the above short
exact sequence, u acts on Z, by multiplication, and since E (F,), is cyclic of

order p, one concludes that E(Q,)/N = Z/pZ & Z/pZ. O
6.4 Examples

One can now apply the results from chapter 3 to determine the isomorphism
class of X. By the Main Conjecture of Iwasawa theory, one expects the charac-
teristic polynomial fx(T") to be equal up to a unit to the p-adic L-series of E,
L,(E.T) € Z,[[T]]. The p-adic L-series for £ can be computed using SAGE
[10] up to any desired precision modulo m = (p,T"). Assuming the Main Con-
jecture, the Weierstrauss preparation theorem gives L,(E,T) = fx(T)U(T)
for a unit U(T') € A, and by the explicit version of the Weierstrauss prepara-
tion theorem 1.1.3, one can find fx(7") up to any desired precision by factor-
ing the truncated output L,(E,T) mod m*. The examples given below are for
A=2 MW =0 and p = 0.

y?+ay=2a%—2x -5

Let E be the elliptic curve 4?2+ 2y = 2® — 22 — 5, which is the curve 869c1 from
Cremona’s tables [2|. E has good ordinary reduction at 3. The Tamagawa
numbers are c1; = 2,c79 = 1, with E having split multiplicative reduction at
11, and non-split multiplicative reduction at 79. Since F(Q)3 = 0, X has no
nontrivial finite A-submodules. The rank is 0, but the torsion subgroup is
cyclic of order 2 generated by the point (2, —1). The curve reduced mod 3 is
E:y?+xy = 23 +x+1 with E(Fs); consisting of the 3 points oo, (0,1), (0,2),

hence 3 is an anomalous prime. By prop 5.3 (ii) in 3], Selg(Q )3 is infinite.
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One computes the 3-adic L-series mod (3,T)* as
Ly(E,T) = (T — o) (T = )

where a =2-3+2-32+2-334+0(3%) and 8 = 3 + 3% + 3% + O(3%), and by

the Main Conjecture
X —>A/(T—-a)®dAN/(T-0)

with finite cokernel. Since the discriminant of (T" — «)(7" — §) has 3-adic
order 2, the degree 2 results from chapter 3 give two possibilities for X up to

A-isomorphism: X € [Ny] or X € [V;] where
Ny = <(1> 1)a (07 1))

Ny = <(17 1)7 (073»

To decide which module X is isomorphic to, one calculates the abelian p-
group structure of the quotients N;/w,(T)N;, which just involves linear alge-

bra. These turn out to be
N1 /TN, = 7Z/9Z,

Then N; = X implies that
NiJwn(T)N; & X /w,(T)X = Selp(Quo )"

by Pontryagin duality (here one is using the fact that the dual of a finite abelian

p-group is itself). Using Cremona’s tables, one can verify that Selgp(Q)s = 0,

so at level 0 ker gy = cokersy = SelE(Qoo)g. Since p is anomalous and the

Tamagawa numbers are prime to p, ker gg = kerr3 = Z/37 @ Z/3Z by section

6.3. Hence X/TX = Z/3Z & Z/37Z, and one concludes that X = Ny = Ey.
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y? = 2% + 2% — 162 — 32

This is the curve 104al from Cremona’s tables . One has A = —2'113 with
Tamagawa numbers co = 1,c13 = 1. The Weierstrauss factorization of the

3-adic L-series is L3(E,T) = f(T)U(T) with
f(T)=T*+(3*4+2-33+2.3"+.. )T+ (3> +2-3+2-3*..),
which is irreducible with discriminant 2 - 3% +2-3% + 3* + .. .. Hence
My ={Ny = (T +b/2,3%) |k = 0,1},

by theorem 3.0.6 where b is the linear coefficient of f. The quotients at level
0 are No/T Ny = Z/9Z and N, /TN, = Z/3Z & Z/37Z. As in the last example,
3 is an anomalous prime for E, hence ker gy = kerry = Z /37 & Z/37Z. Since
Selg(Q)3 = 0, one has X/TX = ker g, hence X = Nj.

y? =23 — 2% — 122 — 40

This is £ = 212b1 from Cremona’s tables. One has A = —28532, with Tama-
gawa numbers ¢y = 3, c53 = 2. The prime p = 3 is not anomalous for £. The

Weierstrauss Factorization is L3(E,T) = U(T) f(T) with
FT)=T*+(2:3+3+0B3°)T+ (2-3+3°+ 0(3)

with ords(disc(f)) = 1. Hence M/ consists of the single class given by
A/(f(T)), and X = A/(f(T)). Note that in this example, if one just as-
sumes Selg(Q)s is finite, the Euler characteristic result (theorem 4.1 in [3])

gives
|Selz(Q)s]

Since the top is already 3 by our result, Selg(Q)s is forced to be trivial.

= 3.
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