
Classifying Lambda-Modules up to Isomorphism and Appliations toIwasawa TheorybyChase Franks
A Dissertation Presented in Partial Ful�llmentof the Requirements for the DegreeDotor of Philosophy

Approved April 2011 by theGraduate Supervisory Committee:Nany Childress, ChairHélène BareloAndrew BremnerJohn JonesJak Spielberg

ARIZONA STATE UNIVERSITYMay 2011



ABSTRACTIn Iwasawa theory, one studies how an arithmeti or geometri objetgrows as its �eld of de�nition varies over ertain sequenes of number �elds.For example, let F/Q be a �nite extension of �elds, and let E : y2 = x3 +

Ax + B with A,B ∈ F be an ellipti urve. If F = F0 ⊆ F1 ⊆ F2 ⊆

· · ·F∞ =
⋃∞
i=0 Fi, one may be interested in properties like the ranks and torsionsubgroups of the inreasing family of urves E(F0) ⊆ E(F1) ⊆ · · · ⊆ E(F∞).The main tehnique for studying this sequene of urves when Gal(F∞/F ) hasa p-adi analyti struture is to use the ation of Gal(Fn/F ) on E(Fn) and theGalois ohomology groups attahed to E, i.e. the Selmer and Tate-Shafarevihgroups. As n varies, these Galois ations �t into a oherent family, and takinga diret limit one obtains a short exat sequene of modules

0 −→ E(F∞) ⊗ (Qp/Zp) −→ SelE(F∞)p −→ XE(F∞)p −→ 0over the pro�nite group algebra Zp[[Gal(F∞/F )]]. When Gal(F∞/F ) ∼= Zp,this ring is isomorphi to Λ = Zp[[T ]], and the Λ-module struture of SelE(F∞)pand XE(F∞)p enode all the information about the urves E(Fn) as n varies.In this dissertation, it will be shown how one an lassify ertain �nitelygenerated Λ-modules with �xed harateristi polynomial f(T ) ∈ Zp[T ] up toisomorphism. The results yield expliit generators for eah module up to iso-morphism. As an appliation, it is shown how to identify the isomorphism lassof SelE(Q∞)p in this expliit form, where Q∞ is the ylotomi Zp-extensionof Q, and E is an ellipti urve over Q with good ordinary redution at p, andpossessing the property that E(Q) has no p-torsion.
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Chapter 1INTRODUCTIONLet F/Qp be a �nite extension, and let O be the ring of integers in F . Let
π ∈ O be a uniformizing parameter, so that the maximal ideal of O is (π). Let
Λ denote the power series ring O[[T ]] over O. This dissertation studies �nitelygenerated torsion Λ-modules whih possess no nonzero �nite Λ-submodules.To be more preise, for a �nitely generated torsion Λ-moduleM , one �rst hasthe well-knownTheorem 1.0.1 (Struture Theorem). There exists a Λ-homomorphism

M −→
n⊕

i=1

Λ/(fi(T )ei)with �nite kernel and okernel. Eah fi(T ) is either the uniformizer π oran irreduible distinguished polynomial fi(T ) ∈ O[T ]. The fi(T ) and the
ei ∈ N \ {0} are uniquely determined by M .

P (T ) = a0+a1T+· · ·+Tm ∈ O[T ] is distinguished when a0, a1, . . . , am−1are in (π). The harateristi polynomial of M is
charΛ(M) =

n∏

i=1

fi(T )eiwhih an be written as πµf(T ) with f(T ) distinguished. Let deg f = λ.Let Mf denote the set of isomorphism lasses of Λ-modules M suh that
charΛ(M) = f(T ) andM has no nontrivial Λ-submodules. In [13℄ the problemof determining Mf was introdued, and it was shown that Mf is �nite whenthe fi are distint, ei ≤ 1, and µ = 0. The assumption that M has no �nite
Λ-submodules implies that the map in the Struture theorem is injetive with�nite okernel. Hene M an be regarded as a Λ-submodule of Ef = ⊕Λ/(fi)with �nite quotient Ef/M . This dissertation gives a method for determining
Mf under these assumptions. 1



When eah fi(T ) = T −αi, then Ef =
⊕n

i Λ/(T −αi) an be identi�edwith the free O-module of rank n where T ats on the ith fator as multi-pliation by αi. The submodules M of Ef with �nite quotient Ef/M musthave maximal O-rank n. The strategy for determining Mf will be as follows.Theorem 2.0.4 will show that up to isomorphism, any submoduleM ⊆ Ef hasgenerators over O of a ertain upper triangular form
G =




1 1 1 1 · · · 1

πi ∗ ∗ · · · ∗

πj ∗ · · · ∗. . .
πk




,

i.e. M is generated over O by the rows of G. The valuations along the diagonalan be bounded, and using elementary row operations, the integral entries *an be redued modulo the power of π diretly below. There are then a �nitenumber of matries G1, G2, . . . , Gr to onsider, and representatives for thelasses in Mf an be found among the modules Mt, where Mt is generatedover O by the rows of Gt. In pratie, r an be quite large, and one seeksto �nd a distint set of representatives. The main task is to deide when
Ms

∼= Mt. 1.1 The Ring ΛIn this setion, some relevant fats about the ring Λ whih will be useful lateron will be disussed. A good referene for Λ-modules and Iwasawa theory is[16℄. The �rst fat is that Λ enjoys a division algorithm muh like for rings ofpolynomials over a �eld.Theorem 1.1.1. Let P (T ) be a distinguished polynomial of degree r, and
f(T ) ∈ Λ. Then there exist q(T ) ∈ Λ and r(T ) ∈ O[T ] suh that f(T ) =2



P (T )q(T ) + r(T ). The polynomial r(T ) is unique of degree less than or equalto r − 1.Let f(T ) =
∑∞
i=0 aiT

i ∈ Λ. Let µ = µ(f) = min{ordπ(ai)}
∞
i=0, sothat f(T ) = πµ

∑∞
i=1 biT

i with at least one of the bi a unit. De�ne λ(f) =

min{i|b0, b1, . . . , bi−1 ∈ (π), bi 6∈ (π)}.Theorem 1.1.2 (Weierstrauss Preparation). Let f(T ) =
∑∞
i=0 aiT

i ∈ Λ. Then
f(T ) fators uniquely as πµP (T )U(T ) with U(T ) a unit and P (T ) a distin-guished polynomial of degree λ(f).From this theorem, it follows that Λ is a unique fatorization domain.The irreduible elements are π, and distinguished irreduible polynomials
P (T ). Therefore the ideals (0), (π) and (P (T )) are prime. The idealm = (T, π)is learly maximal sine Λ/m ∼= O/(π) ∼= Fq for some �nite �eld Fq with q = pfelements. It turns out that these are the only prime ideals, and Λ is a regularloal ring of dimension 2 with unique maximal ideal m (see [16℄).The following result from [13℄ makes an expliit Weierstrauss Prepa-ration fatorization possible on any omputer that an perform polynomialfatorization modulo powers of π.Theorem 1.1.3 (Proposition 3). Let fi(T ) = Pi(T )Ui(T ) for i = 1, 2 be Weier-strauss fatorizations, where the Pi are distinguished polynomials, and the Uiare unit power series. Let m = (π, T ) be the unique maximal ideal of Λ. If
λ(f1) = λ = λ(f2), fi(T ) ∈ ml for l ≥ 1, and f1(T ) ≡ f2(T ) mod mλk+1, then

P1(T ) ≡ P2(T ) mod m
k+l.Sine πn, T n ∈ mn, to (partially) redue modulo mn one an redueoe�ient-wise by πn and then trunate the result by T n. As an example to3



see how this result is used, the program SAGE [10℄ returns the following forthe 3-adi L-series, L3(E, T ) of the ellipti urve E = 50a1 from Cremona'stables:
L = 3+32+2·34+2·35+2·36+37+O(39)+(3+2·32+35+O(36))·T+(2+32+2·

33+2·34 +O(36))·T 2+(33 +2·34+O(35))·T 3+(2·32 +35 +O(36))·T 4 +(2+3+

2·32+33+34+2·35+O(36))·T 5+(1+3+32+33+34+O(35))·T 6+(1+3+2·33+

34+2·35+O(36))·T 7+(2·3+2·32+33+34+2·35+O(36))·T 8+(3+33+O(34))·T 9Hene L3(E, T ) ∼= L mod m4, and both are in m. One an see that λ = 2,hene l = 1, k = 1 in the above theorem. Lifting L to a polynomial andfatoring gives
(1 + 32 +O(34)) · ((1 +O(34)) · T + (1 +O(34))) · ((1 +O(34)) · T 2 + (1 + 3 +

33 +O(34)) · T + (1 + 2 · 3 + 2 · 33 +O(34))) · ((1 +O(34)) · T 2 + (2 + 32 + 33 +

O(34)) · T + (2 + 32 + 33 +O(34))) · ((1 +O(34)) · T 2 + (2 · 3 +O(34)) · T + (2 ·

3 +O(34))) · ((3 +O(34)) · T 2 + (3 + 32 +O(34)) · T + (1 + 3 + 33 +O(34)))and sine anything with a unit onstant term is a unit, one an read o� thedistinguished polynomial part as the seond to last fator P (T ) = T 2 +6T +6,known to auray mk+l = m2. To inrease this auray, one inreases theauray of the approximation to L3(E, T ).
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Chapter 2GENERATORSIn this setion, it is shown that eah lass in Mf has a representative equal toa module generated over O by the rows of a matrix of type G. The followinglemma will be useful.Lemma 2.0.1. Let M ⊆ On be an O-submodule of rank n. Then M an begenerated by the rows of a matrix having the form



πa1 x1,2 x1,3 · · · x1,n

πa2 x2,3 · · · x2,n. . . ...
πan




,

where ai ∈ N and xi,j ∈ O.Proof. The proof will be by indution on n. Sine any rank 1 submodule of Ois an ideal (πa), the result is true for n = 1. Suppose that the result is true for
n− 1. Let proji : On −→ O denote projetion onto the ith fator. The image
proj1(M) must be a nonzero ideal in O sine otherwiseM ⊆ ker(proj1) ∼= On−1and M would then have rank n− 1 or less. Hene proj1(M) = (πa1) and thereis an element (πa1 , x1,2, x1,3, . . . , x1,n) ∈ M . Let (y1, y2, . . . , yn) ∈ M . Then
y1 = απa1 for some α ∈ O, so that (y1, y2, . . . , yn)−α(πa1 , x1,2, x1,3, . . . , x1,n) =

(0, z2, . . . , zn) ∈ ker(proj1) ∩ M . Sine proj1(M) has rank 1, ker(proj1) ∩ Mhas rank n− 1, and by the indutive hypothesis it is generated by
(0, πa2, x2,3, . . . , x2,n), . . . , (0, 0, . . . , πan)having the required form. The result follows.The next lemma shows that dividing the olumns of a matrix by ele-ments of O preserves the Λ-isomorphism lass of the Λ-module generated by5



its rows inside of Ef . The proof given below is slightly di�erent than the onein [14℄.Lemma 2.0.2. [Lemma 1 in [14℄℄ For any nonzero x1, x2, . . . , xn ∈ O, the map
φ : Ef −→ Ef given by (e1, e2, . . . , en) 7→ (x1e1, x2e2, . . . , xnen) is an injetivehomomorphism of Λ-modules, and hene indues a Λ-isomorphism M −→

φ(M) for any Λ-submodule M ⊂ Ef .Proof. Sine T ats diagonally on Ef , it is lear that the ation of T om-mutes with φ, hene φ is a Λ-homomorphism. Suppose φ(e1, e2, . . . , en) =

(x1e1, x2e2, . . . , xnen) = (0, 0, . . . , 0) in Ef . Then x1e1 = g(T )(T − α1) forsome power series g(T ) ∈ Λ. Sine α1 is a root of a distinguished polynomial,
|α1| < 1, and hene g(α1) is de�ned and onverges to an element in O. Then
x1e1 = g(α1)(α1 − α1) = 0, and sine O is a domain, this implies that e1 = 0.Similarly, e2 = e3 = · · · = en = 0.Let M have the O-basis given by the rows of the matrix from lemma2.0.1. The lemma just proved allows one to divide a olumn of M by anelement of O, and even though the submodule of Ef generated by the rowsof the resulting matrix is di�erent, the isomorphism lass is the same. Onemay also multiply rows by units, or add an integral multiple of one row toanother sine these operations just hange the basis used to desribe M as an
O-module. The generators for λ = 2 and 3 are produed below, and then anindutive proof is given for all λ.For λ = 2, let M ⊆ Ef be generated over O by the rows of

B =



πa1 x1,2

0 πa2


with a1, a2,∈ N and x1,2 ∈ O. One an redue x1,2 modulo πa2 by using rowoperations, and if x1,2 = 0, then one may replae row 1 with the sum of rows6



1 and 2 to make x1,2 6= 0. One may therefore assume that ordπ(x1,2) ≤ a2.By Lemma 2.0.2, one an divide olumn 1 by πa1 , and olumn 2 by x1,2 toprodue the matrix 


1 1

0 uπi


 ,where uπk = πa2/x1,2. Dividing row 2 by u produes

G =




1 1

0 πi


 .The ase λ = 3 will illustrate the indutive step in the proof of theorem2.0.4 below. Let

B =




πa1 x1,2 x1,3

πa2 x2,3

πa3



.By the ase λ = 2 one an use row and olumn operations to produe a matrixin the form 


1 1

πi1


as the priniple 2 by 2 submatrix of B, so that without loss of generality onemay assume that

B =




1 1 x1,3

πi1 x2,3

πa3



.By using row operations one may assume that both ordπ(x1,3) and ordπ(x2,3)are less than or equal to a3. Now after these initial redutions, one has twoases: ordπ(x1,3) ≤ ordπ(x2,3) or ordπ(x2,3) < ordπ(x1,3). If ordπ(x1,3) ≤

7



ordπ(x2,3) ≤ a3 then one an divide olumn 3 by x1,3, produing



1 1 1

πi1 b

vπi2


where v is a π-adi unit. Dividing row 3 by v gives generators of the requiredform. Now assume that ordπ(x2,3) < ordπ(x1,3) ≤ a3. Then dividing olumn 3by x2,3 gives the form 



1 1 c

πi1 1

wπi2


where w is a π-adi unit and c ∈ (π). If α ∈ O, applying the row operation

R1 = R1 + (α− c)R2 transforms the top row into
(1, 1 + (α − c)πi1 , α).Modulo π this row beomes (1, 1 + απi1, α), so that the entries along the toprow an be made into units if one an �nd α with both α and 1 + α unitsin O. This is possible as long as O/(π) 6∼= F2 sine one an then hoose anyelement α0 6= 0,−1 in the �nite �eld O/(π) and lift it to α ∈ O. Hene, theunits 1 + (α − c)πi1 and α an be divided from the olumns and multipliedfrom the rows to produe the desired form.For O the residue harateristi is the harateristi of its residue �eld

O/(π). If the residue harateristi is p, one has O/(π) ∼= Fq, where q = pf .Note that the proof for λ = 2 holds when O has any residue harateristi,and for λ = 3 it was neessary that q 6= 2.Theorem 2.0.4. Let O have residue �eld O/(π) ∼= Fq with q = pf . Assumethat λ ≤ q. Then Mf has representatives M , where M an be generated as8



an O-module inside of Ef by the rows of a matrix in the form
G =




1 1 1 1 · · · 1

πi1 b2,3 b2,4 · · · b2,n

πi2 b3,4 · · · b3,n. . .
πin−1




,

with ik ∈ N and the bi,j ∈ O.Proof. The proof is by indution along priniple submatries, the base asehaving already been established for λ = 2. Suppose one has obtained a prin-iple submatrix onsisting of the �rst k + 1 by k + 1 entries in the form
Bk =




1 1 1 · · · 1 x1

πi1 b2,3 · · · b2,k x2. . . ...
πik−1 xk+1

πak




,

where k + 1 ≤ λ. By using row redution if neessary, one may assume thatthe entries in the rightmost olumn have valuation less than or equal to akand are all nonzero. If x1 has smallest valuation among the entries in therightmost olumn, then dividing the olumn by x1 yields



1

b2...
bk+1

vπik




,

and dividing the k + 1st row by v transforms B into the desired form. Other-wise, among the entries x2, x3, x4, . . . , π
ak , one may hoose xj to have smallest9



valuation. Dividing the olumn by xj yields



c1...
cj−1

1

bj+1...
wπik




.

If c1 is already a unit, then one may divide this olumn by c1, and multiplythe k + 1st row by c1/w to yield a olumn in the desired form. In any event,one an divide row k + 1 by w, so one may assume that c1 ∈ (π) and w = 1.Now onsider the polynomial g(x) where
x(x+ 1)

k∏

t=j+1

(bj,tx+ 1) ≡ g(x) ∈ Fq[x].Note that g(x) has degree k− j+ 2 < λ ≤ q, so there is some α ∈ O suh that
α(α+ 1)

k∏

t=j+1

(bj,tα+ 1) 6≡ 0 mod (π).Applying the row operation R1 = R1 + (α − c1)Rj to the matrix transformsthe top row into the form
(1, . . . , 1, 1 + (α− c1)π

ij−1 , 1 + (α − c1)bj,j+1, . . . , 1 + (α − c1)bj,k, α).Reduing modulo π, this row beomes
(1, . . . , 1, 1 + απij−1, 1 + αbj,j+1, . . . , 1 + αbj,k, α)sine c1 ∈ (π). Sine none of these entries are 0 modulo π by the hoie of

α, the entries in row 1 are all units. Dividing eah unit from the olumn andthen multiplying it from the row below produes a matrix Bk+1 in the desiredform. Hene by indution the result holds.10



2.1 Λ-IsomorphismsThere are some interesting onsequenes of the existene of these upper trian-gular generators. The �rst of these is given in the next theorem.Theorem 2.1.1. The tuple (i1, i2, . . . , in−1) is a Λ-module invariant.For two matries A,B ∈ Matn×n(F ), write A ∼O B if A = XBX−1 forsome X in GLn(O), in whih ase one says that A and B are integrally similar.It is easy to hek that integral similarity de�nes an equivalene relation.Lemma 2.1.1. LetM1 andM2 be Λ-submodules of Ef with maximal O-rank n,and let [T ]1, [T ]2 be the matrix representations of the ation of T with respetto any O-bases hosen for M1 and M2. Then M1
∼= M2 as Λ-modules if andonly if [T ]1 ∼O [T ]2.Proof. Let φ : M1 −→ M2 be a Λ-isomorphism. Sine φ is an isomorphismof O-modules of rank n, φ has a matrix representation [φ] ∈ GLn(O) withrespet to the given O-bases. Sine φ is Λ-linear, one has φ ◦ T = T ◦ φ.Then [φ][T ]1 = [T ]2[φ] whih is equivalent to [φ][T ]1[φ]−1 = [T ]2. Hene

[T ]1 ∼O [T ]2.Conversely, any X ∈ GLn(O) suh that X[T ]1X
−1 = [T ]2 indues anisomorphism of O-modules whih ommutes with the ation of T . This learlyimplies that the isomorphism indued by X ommutes with polynomials in

O[T ], so the isomorphism of O-modules indued by X is O[T ]-linear. Anysuh isomorphism automatially extends to be Λ-linear.To see this, reall that Λ has the (π, T )-adi topology indued by itsmaximal ideal m = (π, T ). One requires the ation Λ × M −→ M to beontinuous for any Λ-module M , where M has some topology. Also, φ :11



M1 −→ M2 is required to be ontinuous. Now suppose φ : M1 −→ M2 isa ontinuous map of topologial O-modules with φ ◦ T = T ◦ φ. Then φommutes with any polynomial in O[T ]. Let g(T ) ∈ Λ and hoose a sequeneof polynomials (gn(T )) suh that gn(T ) → g(T ) as n → ∞, where the limit istaken in the (π, T )-adi sense (sine πn, T n ∈ (π, T )n, one an take the gn(T )to have oe�ients that onverge π-adially to the oe�ients of g(T ) alonghigher and higher powers of T ). Then for any α ∈ M1

φ(g(T )α) = φ((lim gn(T ))α)

= φ(lim gn(T )α)

= limφ(gn(T )α)

= lim gn(T )φ(α)

= (lim gn(T ))φ(α)

= g(T )φ(α).Hene φ is Λ-linear and is therefore a Λ-isomorphism from M1 to M2.
Now let [T ] be the matrix representation of the ation of T onM where

M has generators given by the rows of G. Let D(α1, . . . , αn) be the n by ndiagonal matrix with the roots of f , α1, . . . , αn, along the diagonal. Thenone has [T ] = GD(α1, . . . , αn)G
−1. Suppose M1,M2 ⊆ Ef with generatorsgiven by the matries G1, G2 respetively, in the form given in theorem 2.0.4,and let X = [ϕ] ∈ GLn(O) be the matrix representation of a Λ-isomorphism

12



ϕ : M1 → M2 in the given bases. Letting D = D(α1, . . . , αn), one has
X[T ]1 = [T ]2X

⇔XG1DG
−1
1 = G2DG

−1
2 X

⇔(G−1
2 XG1)D(G−1

1 X−1G2) = DThe last equality is equivalent to saying that the matrix G−1
2 XG1 is in thestabilizer of GLn(F ) ating on itself via onjugation. The following result iseasy to prove.Lemma 2.1.2. Let K be a �eld. If A stabilizes a diagonal matrix D in GLn(K)with distint entries along the diagonal, then A must be diagonal.Hene G−1

2 XG1 = A for some diagonal matrixA, say A = D(d1, . . . , dn)and one has
X = G2D(d1, . . . , dn)G

−1
1 ,so that X is upper triangular. Let the powers of π along the diagonal of G2 be

1, πi1, . . . , πin−1 , and similarly, let 1, πj1, . . . , πjn−1 be along the diagonal of G1.Sine X ∈ GLn(O), must be upper triangular with integral entries, it musthave the form
X =




u1 x1,2 · · · x1,n−1 x1,n

u2 . . . x2,n−1 x2,n. . . ... ...
un−1 xn−1,n

un


with units ui ∈ O× and integral entries xi,j , and one an solve for the diagonalentries d1, . . . , dn as D(d1, . . . , dn) = G−1

2 XG1. This gives
d1 = u1, d2 = u2π

∆1, d3 = u3π
∆2 , . . . , dn = unπ

∆n−1 ,where ∆k = jk − ik for k = 1, . . . , n − 1. Everything is in plae to provetheorem 2.1.1. 13



Proof. Consider the equation XG1 = G2D(d1, d2, . . . , dn). The left-hand sideis integral, and sine the top row of the right-hand side is d1, d2, . . . , dn, onehas 0 ≤ ∆k = jk − ik for k = 1, . . . , n− 1. Assume ∆k > 0 for some k, so that
0 ≤ ik < jk. Then π divides dk+1 so that π divides every entry in the k + 1stolumn of G2D(d1, . . . , dn). Therefore π must divide the k + 1st olumn of
XG1. Sine X and G1 are both upper triangular, the nonzero entries of the
k + 1st olumn of their produt is the produt of the k + 1 by k + 1 priniplesub-matrix of X with the nonzero part of the k + 1st olumn of G1, say




u1 x1,2 · · · x1,k+1

u2 · · · x2,k+1. . .
uk+1







1

b2...
bk

πjk




.

Now one works from the bottom up to yield the ontradition π | u1. Sine πdivides bkuk + xk,k+1π
jk , one has π|bk sine jk > 0 and uk is a unit. Similarly,sine π divides
uk−1bk−1 + xk−1,kbk + xk−1,k+1π

jkand π|bk, π must divide bk−1 sine uk−1 is a unit. Continuing in this manner,one has that π divides b2, b3, . . . , bk. Sine π divides the topmost entry
u1 + x1,2b2 + · · · + x1,kbk + x1,k+1π

jk ,and π divides the b's, this yields π|u1.The results obtained so far give a spei� form that any Λ-isomorphism
ϕ : M1 → M2 must take. Namely,

X = [ϕ] = G2D(u1, . . . , un)G
−1
114



for some units ui ∈ O×. Let IsomΛ(M1,M2) be the olletion of Λ-isomorphismsfrom M1 to M2, and AutΛ(M) = IsomΛ(M,M), a group under funtion om-position. One hasTheorem 2.1.2. For M1 and M2 generated by G1 and G2 respetively, de�nethe map of sets
ϕ1,2 : (O×)n → GLn(F )by ϕ1,2(u) = G2D(u)G−1

1 . ThenM1
∼= M2 if and only if imϕ1,2 ∩K 6= ∅, where

K = GLn(O). If X = ϕ1,2(u) ∈ K, then X is the matrix representation ofa Λ-isomorphism in the given O-bases. All Λ-isomorphisms are obtained thisway. Denote the n-dimensional integral torus over O by
Gn
m(O) = (O×)n.For a Λ-module M ⊆ Ef generated over O by the rows of G, the map ϕM :

Gn
m(O) → GLn(F ) given by

u = (u1, . . . , un) 7→ GD(u)G−1is easily seen to be an injetive group homomorphism, and one has
AutΛ(M) ∼= ϕ−1

M (K)where K = GLn(O), the maximal ompat subgroup of GLn(F ). Therefore
AutΛ(M) is realized as a subgroup of Gn

m(O). A onsequene of this isTheorem 2.1.3. AutΛ(M) is an abelian group.If M1
∼= M2 as Λ-modules, then one anonially has AutΛ(M1) ∼=

AutΛ(M2). Regarding the automorphism group as a subgroup of Gn
m(O), oneobtains the stronger result 15



Theorem 2.1.4. If M1
∼= M2 as Λ-modules, then AutΛ(M1) and AutΛ(M2)oinide as subgroups of Gn

m(O).Proof. Let ϕ1,2(u) = G2D(u)G−1
1 ∈ GLn(O) and suppose v ∈ AutΛ(M1) sothat ϕM1

(v) = G1D(v)G−1
1 ∈ GLn(O). Then

ϕ1,2(u)ϕM1
(v)ϕ1,2(u)−1 = G2D(u)G−1

1 (G1D(v)G−1
1 )G1D(u−1)G−1

2

= G2D(v)G−1
2

∈ GLn(O).whih shows AutΛ(M1) ⊆ AutΛ(M2). By symmetry one has AutΛ(M2) ⊆

AutΛ(M1).It is unknown whether or not two Λ-modules with the same auto-morphism group in Gn
m(O) are fored to be isomorphi. However, for non-isomorphi Λ-modules, one an onstrut examples where the automorphismgroups interset nontrivially.

16



Chapter 3
Λ-MODULES WITH λ = 2The Λ-modules with λ = 2 and µ = 0 were lassi�ed in [13℄ and [8℄. Theseresults will be used later in Chapter 5 for the appliations to ellipti urves.Let F/Qp be a �nite extension, and let O be the ring of integers of Fwith uniformizer π. Let f(T ) ∈ O[T ] be a distinguished polynomial of degree

λ = 2. As before Mf denotes the set of isomorphism lasses of Λ-modules Msatisfying:
• charΛ(M) = f(T ), and
• M has no nontrivial �nite Λ-submodulesThere are two ases to onsider. First, suppose that f(T ) is reduibleover O, in whih ase f(T ) = (T − α1)(T − α2). The onditions above implythat M may be regarded as a submodule of Ef = Λ/(T − α1) ⊕ Λ/(T − α2)with �nite quotient C = Ef/M . Write elements of M as (x, y) ∈ O2, where Tats as T (x, y) = (α1x, α2y). The following result is proved in [13℄.Theorem 3.0.5. Assume the roots α1 and α2 are distint, and set e = ordπ(α2−

α1). Then |Mf | = e+ 1, and the modules
Ni = 〈(1, 1), (0, πi)〉Ofor 0 ≤ i ≤ e are a omplete set of representives for the isomorphism lassesin Mf .The notation 〈g1, g2〉O means the submodule of Ef generated over Oby g1, g2. 17



Proof. Let Ni be generated over O by the rows of G =




1 1

πi


. By theorem2.1.1, the powers of π along the diagonal are a Λ-module invariant of M ,hene the Ni represent distint lasses in Mf . Sine every lass in Mf anbe represented by Ni by theorem 2.0.4, this shows that the modules Ni are aa distint set of representatives. To bound i, one uses module losure. Sine

T (1, 1) = (α, β) must be in Ni, one must have (α, β) = x(1, 1) + y(0, πi) for
x, y ∈ O. This fores x = α, and y = (β − α)/πi, hene i ≤ e.Now onsider the ase where f(T ) = T 2+bT+c ∈ Zp[T ] is distinguishedand irreduible, with distint roots α, β lying in a quadrati extension of F/Qp.Let M ⊆ Λ/(T 2 + aT + b) be a Λ-submodule with maximal O-rank 2. Usingthe Division algorithm in Λ, elements of M an be represented in the form
xT + y for some x, y ∈ Zp. The following result is proved in [8℄.Theorem 3.0.6. Let p be an odd prime. The Λ-modules Nk = 〈T + b

2
, pk〉Zp

for
0 ≤ k ≤ ordp(b2−4c)

2
form a omplete set of representatives for the isomorphismlasses in Mf .This result atually applies when Zp is replaed by the ring of integersin any �nite extension of Qp, but the result is stated here for Zp beause it issu�ient for our appliations in Chapter 6. The proof of this result is givenbelow. Koike's idea is to extend salars to the the ring of integers of F , where

f(T ) splits. One an then apply Theorem 3.0.5. The proof is inluded herefor the sake of ompleteness, and to illustrate the relationship between Mffor reduible and irreduible f(T ).Proof. First, observe that lemma 2.0.1 implies that any submodule N ⊆

Λ/(f(T )) with rankZp
N = 2 has the form 〈πa1T + x1,2, π

a2〉Zp
. It is easy18



to see that module losure implies a1 ≤ ordp(x1,2) and a1 ≤ a2, and sinemultipliation by πa1 is a Λ-isomorphism, one may assume without loss ofgenerality that N = 〈T − a, πk〉Zp
for some a ∈ Zp.Let F/Qp be the splitting �eld for f(T ), with ring of integers denotedby O. Let π be a uniformizer for O, so that (π) is the unique maximal idealof O. Let ΛO = O[[T ]]. Sine O ∼= Z2

p as a Zp-algebra, one has ΛO
∼= Λ2as a Λ-module. Hene if M is a Λ-module, extending the salars to ΛO gives

M ⊗Λ ΛO
∼= M ⊕ M . The funtor M 7→ M ⊗Λ ΛO is therefore faithfully �atfrom the ategory of Λ�modules to the ategory of ΛO-modules, and therefore

M1
∼= M2 over Λ if and only if M1 ⊗ ΛO

∼= M2 ⊗ ΛO over ΛO. Let MO
f denotethe isomorphism lasses of ΛO-modules with harateristi polynomial f(T )and having no nontrivial �nite ΛO-submodules. The funtor _⊗ ΛO thereforeindues an injetion

Mf −→ MO
f .The result for the reduible ase gives the e+ 1 representives: 〈(1, 1), (0, πi)〉Ofor the lasses in MO

f , where e = ordπ(β − α).Now onsider the image of _ ⊗ ΛO. Applying _ ⊗ ΛO to the exatsequene
0 −→ Nk −→ Λ/(f(T )) −→ C −→ 0gives

0 −→ Nk ⊗ ΛO −→ ΛO/(f(T )) −→ C ⊗ ΛO −→ 0,and one hasNk⊗ΛO
∼= 〈T+b/2, pk〉O. Under the anonial pseudo-isomorphism

ΛO/(f(T )) → ΛO/(T − α) ⊕ ΛO/(T − β), the generators T + b/2, pk beome
T + b/2 7→ ((α − β)/2, (β − α)/2)

pk 7→ (pk, pk)19



Therefore Nk⊗ΛO is identi�ed with the submodule of ΛO/(T−α)⊕ΛO/(T−β)generated over O by the rows of the matrix
B =



α−β

2
β−α

2

pk pk


 .Suppose that F/Qp is unrami�ed. Using the row and olumn operationsallowed in the proof of Theorem 2.0.4, one an bring B to the form




1 1

πe−k


 .It only remains to see that as k ranges over 0, 1, . . . , ordp(b

2 − 4c)/2, theexponent e − k ranges over 0, 1, . . . , e, so that Mf maps surjetively, henebijetively, to MO
f . But

ordp(b
2 − 4c) = ordπ(b2 − 4c)

= ordπ((β − α)2)

= 2e.and the result follows in this ase.Otherwise F/Qp is totally rami�ed, so that p = uπ2 for some u ∈ O×.The matrix B beomes 

πe −πe

π2k π2k


after dividing the units from the rows. If 2k ≤ e, one exhanges row 1 and 2 of

B and performs the same row and olumn operations used above to produethe matrix 


1 1

πe−2k


 ,while if e < 2k, similar row and olumn operations yield




1 1

π2k−e


 .20



Note that sine one knows before hand that Nk⊗ΛO is a ΛO-module, one musthave 2k−e ≤ e, whih implies k ≤ e. Therefore, as k ranges over 0, 1, 2, · · · , e,the modules Nk are identi�ed into lasses as Nk
∼= Ne−k, so the Nk represent

⌊e/2⌋ = ⌊ordp(b
2 − 4c)/2⌋ distint lasses. If one has a di�erent T − a as the�rst generator instead of T + b/2, it is an be shown by a similar argument(see [8℄) that the resulting lasses are identi�ed in the same way. Thereforethe Nk as k ranges over 0, 1, 2, . . . , ⌊ordp(b

2 − 4c)/2⌋ form a set of distint andexhaustive representatives for the lasses in Mf .
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Chapter 4
Λ-MODULES WITH λ = 3Let f(T ) = (T − α1)(T − α2)(T − α3) ∈ O[T ], with roots αi ∈ (π) suh that

αi 6= αj for i 6= j. As before Mf denote the set of Λ-isomorphism lasses ofmodules M suh that charΛM = f(T ), and suh that M has no nontrivial�nite Λ-submodules. By theorem 2.0.4, eah isomorphism lass in Mf an berepresented by a module M generated over O by the rows of a matrix
G =




1 1 1

πi a

πj


when 3 ≤ q = |O/(π)|. As in [14℄, [i, j, a] denotes the Λ-isomorphism lassorresponding to G. In this hapter, it will be shown that there are only a�nite number of possible G. The proof of this is essentially to use Λ-modulelosure to bound the i, j, and one this is aomplished, using row operationsone may redue a mod πj so that the parameter a may be taken in the �nitering O/(πj). Then, an if and only if ondition is given for when two lasses

[i, j, at] for t = 1, 2 are equal.4.1 Bounding the GeneratorsBounding the parameters i, j su�es to illustrate a speial ase of the funda-mental �niteness result from [13℄:Theorem 4.1.1. [Sumida's theorem℄ If f(T ) ∈ Λ \ (π), then Mf is �nite if andonly if f(T ) is square-free, i.e. f(T ) annot be written as g(T )2h(T ) for powerseries g(T ) ∈ Λ \ Λ×, h(T ) ∈ Λ.First onsider the elementary Λ-moduleEann = Λ/(f(T )). Sine (f(T )) ⊆

(T − αi), one has natural surjetions Eann −→ Λ/(T − αi) given by g(T ) mod

(f(T )) 7→ g(T ) mod (T − αi), and their sum indues a map ψ : Eann −→ Ef22



given by ψ(g(T )) = (g(α1), g(α2), g(α3)). By lemma 13.8 in [16℄, this map isinjetive with �nite okernel, so by theorem 2.0.4 one an �nd an isomorphiopy of ψ(Eann) in Ef with generators given by G. To see this expliitly, usingthe Division Algorithm in Λ, Eann has an O-basis given by {1, T, T 2} whihmaps to the O-basis
(1, 1, 1), (α1, α2, α3), (α

2
1, α

2
2, α

2
3)for the image ψ(Eann). One an apply row operations to the Vandermondematrix 



1 1 1

α1 α2 α3

α2
1 α2

2 α2
3


to rewrite the generators of ψ(Eann) in upper triangular form. Sine this is aommon exerise in linear algebra, the details will not be shown, but simplywrite the result as




1 1 1

α2 − α1 α3 − α1

(α3 − α1)(α3 − α2)



.Write α2 − α1 = uπl, α3 − α1 = vπm, and α3 − α2 = wπn for units u, v, w.Dividing row 2 of the above matrix by u and row 3 by vw gives the matrix




1 1 1

πl ufπ
m

πm+n


with uf = v

u
, a unit determined by f . Therefore Eann falls into the lass

[l,m+n, ufp
m]. It is easy to see that anyM with generators equal to the rowsof the matrix G must ontain Eann. Sine (1, 1, 1) ∈ M , and sine TM ⊆ M ,one must have T (1, 1, 1) = (α1, α2, α3) ∈ M and T 2(1, 1, 1) = (α2

1, α
2
2, α

2
3) ∈ M .23



Hene M ontains a opy of Eann. Hene the rows of the matrix



1 1 1

πl ufπ
m

πm+n


must be in M , and one must be able to write eah row as an O-linear om-bination of the generators of M . This automatially gives 0 ≤ i ≤ l, and

0 ≤ j ≤ m + n so the parameters i, j, a are bounded. One must also have
(0, πl, ufπ

m) ∈ M so that
x(0, πi, a) + y(0, 0, πj) = (0, πl, ufπ

m),whih after solving for x and re-substituting implies πl−ia ≡ ufπ
m mod πj . Aslong as these onditions are met, the module losure relation T (1, 1, 1) ∈ M issatis�ed. The only other nontrivial losure ondition needed is T (0, πi, a) ∈ M .Hene for some x, y ∈ O,

T (0, πi, a) = (0, α2π
i, α3a)

= x(0, πi, a) + y(0, 0, πj)

so that x = α2 and one must be able to write α2a+yπj = α3a. This is possibleif and only if j ≤ n+ordπ(a). If the onvention is made that the roots of f(T )are labeled to make l ≤ m, then for j ≤ l − i, the above ongruene imposesno restrition on a, while for j > l−i one must have a ≡ ufπ
m−l+i mod πj−l+i.In this ase ordπ(a) is fored to be m− l+ i, so the inequality j ≤ n+ ordπ(a)implies j ≤ n+m− l + i.To summarize what has been shown so far, for the prime powers of

πi, πj in the matrix G, one must have 0 ≤ i ≤ l and 0 ≤ j ≤ m + n. Inaddition, for a �xed j, one an take a ∈ O/(πj). If i + j ≤ l, then one an24



take any a mod πj. Otherwise, if l < i + j, then the ongruene uniquelydetermines a modulo πi+j−l. Lastly, j ≤ n + m− l + i. These onditions areimplied by module losure TM ⊂ M . Conversely, anyM generated over O bythe rows of G with i, j, a satisfying these onditions is losed under the ationof T and is therefore a Λ-module.Module Closure Relations:MC1 (i, j) ∈ [0..l] × [0..n+m] with j ≤ n+m− l + iMC2 If i+ j ≤ l, any a ∈ O/(πj) is allowed.MC3 If l < i+ j, then a ≡ πm−(l−i)uf mod πi+j−l.These onditions are illustrated in �gure 4.1 below.4.2 Λ-Isomorphism and Integral SimilarityNow onsider the problem of determining when two Λ-modules generated over
O by the rows of G in Ef are isomorphi. If M is generated over O by thematrix G, then it has already been shown in setion 2.1 that the powers of πalong the diagonal of G are an invariant of M . In the notation from [14℄, thequestion is: for a1, a2 in O/(πj), when is [i, j, a1] = [i, j, a2]? Let G(i, j, a) bethe matrix

G(i, j, a) =




1 1 1

πi a

πj



,and let M1,M2 be generated over O by the rows of G(i, j, a1) and G(i, j, a2)respetively. In setion 2.1, it was already shown that any Λ-isomorphism

φ : M1 −→ M2 must have a matrix representation of the form
X = [ϕ] = G2D(u1, u2, u3)G

−1
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Figure 4.1: Parameter Domain For Module Closurewith respet to the given O-bases, where u1, u2, u3 ∈ O×. Let
X =




u1 x y

u2 z

u3



,and note that the only ondition that prevents X from being in GL3(O) isthe integrality of x, y, z. Write the last equation as XG1 = G2D(u1, u2, u3).Equating the o�-diagonal entries of the left and right-hand sides gives the

26



system
u1 + xπi = u2 (4.1a)

u1 + xa1 + yπj = u3 (4.1b)
u2a1 + zπj = a2u3, (4.1)and viewing the last equation as a ongruene modulo πj , one sees that

[i, j, a1] = [i, j, a2] implies ordπ(a1) = ordπ(a2). Viewing (4.1a)-(4.1) as asystem in the unknowns u1, u2, u3, and x, y, z, one an solve for the ui in termsof x, y, and z. The system 4.1 in matrix form is



1 −1 0 πi 0 0

1 0 −1 a1 πj 0

0 a1 −a2 0 0 πj



,and viewing this as a system of equations over F , one an bring this matrixinto the form (I3×3|B(a1, a2)) with

B(a1, a2) =
1

a1 − a2




a1(πi − a2) −a2π
j πj

a2(πi − a1) −a2π
j πj

a1(πi − a1) −a1π
j πj



.Note that a1 − a2 6= 0 sine one may assume without loss of generality that

a1 6≡ a2 mod πj . Therefore one has [i, j, a1] = [i, j, a2] if and only if there exist
x, y, z ∈ O with

B(a1, a2)




x

y

z




∈ (O×)3.To test this ondition, one an ignore the last two olumns in B(a1, a2) sineone an assume k′ = ordπ(a1 − a2) < j (a is taken modπj). For example, the�rst entry of a linear ombination of the olumns of B(a1, a2) is
x
a1(πi − a2)

a1 − a2
− y

a2π
j

a1 − a2
+ z

πj

a1 − a2
,27



and sine the last two terms are always divisible by π, the sum will be a unitif and only if xa1(πi − a2)/(a1 − a2) is a unit for some x ∈ O. This is possibleif and only if ordπ(a1) + ordπ(πi − a2) ≤ ordπ(a1 − a2). The same argumentapplies to the other two rows of B(a1, a2). One now has the following usefulriterion for when two isomorphism lasses [i, j, a1] and [i, j, a2] are the same.Theorem 4.2.1. For a1, a2 ∈ O/(πj), [i, j, a1] = [i, j, a2] if and only if ordπ(a1) =

ordπ(a2), ordπ(πi−a1) = ordπ(πi−a2) and ordπ(a1)+ordπ(πi−a2) ≤ ordπ(a1−

a2). Letting k = ordπ(as), as = vsπ
k for vs ∈ O×, s = 1, 2, and k′ = ordπ(a1 −

a2), this ondition is equivalent to:1. If k < i, then 2k ≤ k′.2. If k = i, then ordπ(1 − v1) = ordπ(1 − v2) and 2k + ordπ(1 − vs) ≤ k′.3. If i < k, then k + i ≤ k′.Proof. First suppose that k < i. By the Isoseles Triangle Property, ordπ(πi−

a2) = k, and similarly all entries in the �rst olumn of (a1 − a2)B(a1, a2) havevaluation 2k, so the ondition beomes 2k ≤ k′. If i < k, the Isoseles TriangleProperty gives ordπ(πi − a2) = i, and a similar argument gives k + i ≤ k′. If
k = i, then ordπ(πi − a2) = ordπ(πk(1 − u2)) = k + ordπ(1 − u2) and similarly
ordπ(πi − a1) = k + ordπ(1 − u1). Now the ondition is that there exists an
x ∈ O so that

ordπ(xa1(πi − a2)) = ordπ(x) + 2k + ordπ(1 − v2) = k′

ordπ(xa2(πi − a1)) = ordπ(x) + 2k + ordπ(1 − v1) = k′

ordπ(xa1(πi − a1)) = ordπ(x) + 2k + ordπ(1 − v1) = k′.Therefore, one must have ordπ(1 − v1) = ordp(1 − v2) and 2k+ ordπ(1 − vs) =

k′ − ordπ(x) ≤ k′. Conversely, if these inequalities are met in eah ase, then28



x an be hosen to be the unique power of π whih multiplies the �rst olumnof B(a1, a2) into (O×)3.Although the proof and the disussion preeeding it were somewhatad ho sine there were exatly the same number of units u1, u2, u3 as o�-diagonal entries of the matrix X, the quantities i, j, ordπ(a) were disoveredto be invariants of the O-submodule generated by the rows of G(i, j, a). Onean use loalization to explain these invariants, and the quantity ordπ(πi − a)appearing in theorem 4.2.1. For example, loalizing M at f3(T ) = (T − α3),gives the Λf3
-submoduleMf3

= 〈(1/1, 1/1, 1/1), (0, πi/1, a/1), (0, 0, πj/1)〉O of
(Ef)f3

. Here the fat that loalization distributes over diret sums is beingused to form the frations over eah omponent. Sine f3 is a unit in Λf3
,

Mf3
= f3Mf3

=

〈(
α1 − α3

1
,
α2 − α3

1
, 0
)
,

(
0,
πi(α2 − α3)

1
, 0

)
, (0, 0, 0)

〉

O

,where the last oordinates have been made 0 by multiplying by f3. Assemblingthese into a matrix and dividing olumns 1 and 2 by α1−α3 and α2−α3 implies
Mf3

∼= 〈(1/1, 1/1, 0), (0, πi/1, 0)〉Oby theorem 2.0.2. For the ase λ = 2 it was already shown that the power of
π ouring along the diagonal of G is an invariant. Repeating this argumentat f2(T ) = T −α2 and suppressing the seond oordinate,Mf2

is generated by
(1, 1), (0, a), (0, πj) whih falls into the lass 〈(1, 1), (0, πmin{j,ordπ(a)})〉O whihgives the degree 2 invariant min{j, ordπ(a)}. At f1(T ) = T − α1, Mf1

∼=

〈(1, 1), (πi, a), (0, πj)〉O = 〈(1, 1), (0, a−πi), (0, πj)〉O whih similarly gives thedegree 2 invariant min{j, ordπ(πi−a)}. These loal invariants are being addedon the left side of the inequality in theorem 4.2.1.Two examples will now be given to see how theorem 4.2.1 allows one toalulate Mf . These two examples have been alulated previously by Sumida29



and Hahimori, respetively. Our method di�ers onsiderably from that in [14℄sine all possibilities for l,m, n are being handled at one.4.3 ExamplesExample: (l,m, n) = (1, 1, 1)The module losure onditions imply (i, j) ∈ [0..1]×[0..2] with j ≤ i+1.Hene (i, j) = (0, 0), (0, 1), (1, 0), (1, 1), (1, 2). For j = 0, there is only the lassgiven by a = 0, so one has the lasses Ef = [0, 0, 0] and [1, 0, 0]. For (0, 1), onemust have a ∈ O/(π), and the invariant ordπ(a) an be 0 or ∞. If a is a unit,then k = 0 = i and by theorem 4.2.1 a = 1 is in a lass by itself. Otherwise
a 6= 1, and ordπ(1 − a) = 0. Substituting into the ase k = i of theorem 4.2.1gives 0 ≤ k′ whih is always true. This gives the lasses [0, 1, 1] and [0, 1, 2].For ordπ(a) = ∞ there is only the lass [0, 1, 0]. For (i, j) = (1, 1), one is abovethe line i+ j = l, so the ongruene in the module losure relation MC3 mustbe taken into aount. Hene a ≡ πuf ≡ 0 mod π yielding the lass [1, 1, 0].Similarly for the remaining ase (i, j) = (1, 2), one has a ≡ πuf mod π2 givingthe lass Eann = [1, 2, πuf ]. These are preisely the 7 lasses found by Sumidain [14℄ for this ase.Example: (l,m, n) = (2, 2, 2)The parameter domain is [0..2] × [0..4] with j ≤ i + 2. This gives the12 possibilities for i, j shown in �gure 4.2:As in the previous example, for j = 0 one has the three lasses [0, 0, 0], [1, 0, 0],and [2, 0, 0]. The same alulations as in the previous example also give thethree lasses [0, 1, 0], [0, 1, 1], and [0, 1, 2] for (i, j) = (0, 1). For i = 2, MC3implies a ≡ π2uf mod πj giving the four lasses [2, j, π2uf ] for j = 1, 2, 3, 4.For (i, j) = (0, 2) the possibilities for ordπ(a) are 0,1, and ∞. If a is aunit, then one is in ase i = k = 0 of theorem 4.2.1, and the ondition is that30



Figure 4.2: Parameter Domain For (l,m, n) = (2, 2, 2)

ordπ(1 − vs) ≤ k′, i.e. one an identify two lasses orresponding to a1, a2 ifthey agree up to at least as many π-adi digits as their depth in the 1-unit�ltration of O×. If ordπ(1−vs) = 0, then one an identify all suh a to the lassorresponding to 2 sine one only needs 0 ≤ k′. If ordπ(1 − vs) = 1, then onean identify all suh a1, a2 with 1 ≤ k′. But for any two units at level 1 in the1-unit �ltration, say a1 = 1 + α1π, a2 = 1 + β1π with α1, β1 6= 0, they alreadyagree in the �rst digit so they all identify to 1 + π. At level 2, a ≡ 1 mod π2.This gives the lasses [0, 2, 2], [0, 2, 1+π], [0, 2, 1]. If ordπ(a) = 1, then one is inase i < k of theorem 4.2.1 and require 2 ≤ k′, therefore one an only identifytwo lasses if a1 ≡ a2 mod π2. This gives the lass [0, 2, π]. Lastly there is thelass [0, 2, 0] for a total of 5 lasses in this ase.For (i, j) = (1, 1), ordπ(a) = 0,∞. If a is a unit modπ, then one anidentify two units if and only if 0 ≤ k′, so all units identify to the lass given31



by a = 1. Hene there are two lasses for this ase given by [1, 1, 1], [1, 1, 0].For (i, j) = (1, 2) above the line i + j = 2, module losure ondition 3requires a ≡ πuf ≡ 0 mod π. Hene k = 1 = i, and the ondition in theorem4.2.1 gives 2 ≤ 2 + ordπ(1 − vs) ≤ k′ so one an identify a1 and a2 if andonly if a1 ≡ a2 mod π2. Sine there are |O/(π)| integers modπ2 satisfying
a ≡ 0 mod π, one has q = pf distint lasses [1, 2, απ] for α ∈ Fq.For (i, j) = (1, 3) above the line i+j = 2, MC3 fores a ≡ πuf mod π2.Then a has a π-adi expansion

a = α1π + α2π
2with α1 ≡ uf mod π, and α2 ∈ Fq. The ondition for identifying two lassesbeomes 2+ordπ(1−vs) ≤ k′. If a2 = β1π+β2π

2 is a similar π-adi expansion,then v1 = α1 + α2π and v2 = β1 + β2π with β1 ≡ α1 ≡ uf mod π. Sine
uf 6≡ 1 mod π, one has ordπ(1 − vs) = 0 for s = 1, 2. Therefore one anidentify two lasses if 2 ≤ k′. Sine the �rst two π-adi digits are alreadyequal, this ondition is always true and the possible a ollapse to one lass
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given by [1, 3, ufπ]. Hene, there are a total of q + 18 lasses given by:
[0, 0, 0],

[0, 1, 0], [0, 1, 1], [0, 1, 2],

[0, 2, 0], [0, 2, 1], [0, 2, 2], [0, 2, 1 + π], [0, 2, π],

[1, 0, 0],

[1, 1, 0], [1, 1, 1],

[1, 2, απ] for α ∈ Fq,

[1, 3, ufπ],

[2, 0, 0],

[2, j, π2uf ] for j = 1, 2, 3, 4,

where q = pf for f the residue �eld degree of F/Qp.The elementary types:Let P be a partition of {1, 2, 3}, and onsider the elementary Λ-modules
E =

⊕

B∈P

Λ/
∏

i∈B

(T − αi).There are 5 partitions of {1, 2, 3} orresponding to the elementary types
Λ/(T − α1) ⊕ Λ/(T − α2)(T − α3)

Λ/(T − α3) ⊕ Λ/(T − α1)(T − α2)

Λ/(T − α2) ⊕ Λ/(T − α1)(T − α3)

Eann = Λ/f

Ef = Λ/(T − α1) ⊕ Λ/(T − α2) ⊕ Λ/(T − α3).33



In the notation [i, j, a] these are given as [0, n, 1], [l, 0, 0], [0, m, 0], [0, 0, 0],and [l,m+ n, ufπ
m], respetively.
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Chapter 5
Λ-MODULES WITH λ = 4As before, O denotes the ring of integers in a �nite extension F/Qp, and let

π be a generator of the maximal ideal of O. Let f(T ) =
∏4
i=1(T − αi). Asbefore, Mf denotes the set of isomorphism lasses of Λ = O[[T ]]-submodules

M ⊆ Ef =
⊕4
i=1 Λ/(T − αi), with �nite quotient Ef/M . By theorem 2.0.4,up to isomorphism, M is generated over O by the rows of some

G =




1 1 1 1

πi a b

πj c

πk


when 4 ≤ q. Denote the isomorphism lass of M by [i, j, k, a, b, c], where

a ∈ O/(πj) and b, c ∈ O/(πk). The tuple (i, j, k) is a Λ-module invariant ofMby theorem 2.1.1. As before, module losure TM ⊆ M bounds the parameters,and one has redued Mf to a �nite list {[i, j, k, a, b, c]}. For eah tuple (i, j, k)in the list, the task is then to deide when two lasses, [i, j, k, at, bt, ct] for
t = 1, 2 are the same.In general the tehnique in hapter 4 whih produed theorem 4.2.1does not work well for λ > 3. The system of equations resulting from thematrix equation

XG1 = G2Dwas simple enough that one ould solve for the unit entries u along the diagonalin in terms of the o�-diagonal entries of X. For larger λ, the equations beomemuh too umbersome to solve. In this setion, an algorithm will be given,based on the approah at the end of setion 2.1, to deide when two lassesare the same. For Λ-modules M1,M2, a map ϕ1,2 : (O×)4 → GLn(F ) was35



de�ned, and it was shown that M1
∼= M2 if and only if imϕ1,2 ∩K 6= ∅, where

K = GLn(O). This enables one to searh for an isomorphism by �nding a
u ∈ (O×)n with ϕ1,2(u) ∈ K. One problem with this is that (O×)n is in�nite,so the �rst task is to show that one only needs to searh over u ∈ ((O/(πm))×)nfor some m. This is still in general a large set. The idea for further reduingthe size is to "divide" out the nontrivial automorphisms of M1 and M2 from
(O×)n. At the same time, one an use theorem 2.1.4 to deide that M1 6∼= M2.5.1 GeneratorsThe �rst goal is to translate the module losure ondition into restritions onthe parameters i, j, k, a, b, c. The module Eann = Λ/(f(T )) will again play afundamental role, and should be viewed as a lower bound in the lattie of
Λ-submodules of Ef up to isomorphism. First, onsider the anonial map
ψ : Eann → Ef given by

ψ(g(T ) mod (f(T ))) = (g(α1), g(α2), g(α3), g(α4)).Lemma 13.8 in [16℄ implies that ψ is injetive with �nite o-kernel. The Di-vision Algorithm for Λ implies that Eann has an O-basis {1, T, T 2, T 3} whihmaps to the O-basis {(1, 1, 1, 1), (α1, α2, α3, α4), (α2
1, α

2
2, α

2
3, α

2
4), (α3

1, α
3
2, α

3
3, α

3
4)}for the image ψ(Eann). Assemble this basis into the Vandermonde matrix




1 1 1 1

α1 α2 α3 α4

α2
1 α2

2 α2
3 α2

4

α3
1 α3

2 α3
3 α3

4




,

and use row operations to produe the upper triangular form



1 1 1 1

α1 − α2 α1 − α3 α1 − α4

(α1 − α3)(α2 − α3) (α1 − α4)(α2 − α4)

(α1 − α4)(α2 − α4)(α3 − α4)




.36



Note that these row operations preserve the image (not just the isomorphismlass) of Eann inside of Ef . Sine theorem 2.0.4 shows that any submodule
M ⊆ Ef up to isomorphism ontains (1, 1, 1, 1), module losure implies thatMmust ontain the T -yli basis generated by (1, 1, 1, 1), whih is the basis for
ψ(Eann) given by the rows of the Vandermonde matrix above. Hene ψ(Eann) ⊆

M ⊆ Ef .To bound the i, j, k, write αm − αn = um,nπ
vm,n for 1 ≤ m < n ≤ 4,where eah um,n ∈ O×. Sine ψ(Eann) ⊆ M for any Λ-submodule of Ef upto isomorphism, one must be able to express the rows of the above matrixas an O-linear ombination of the generators given by the rows of G. Thisimmediately gives 0 ≤ i ≤ v1,2, 0 ≤ j ≤ v1,3 +v2,3, and 0 ≤ k ≤ v1,4 +v2,4 +v3,4,hene the parameters a ∈ O/(πj), b, c ∈ O/(πk) are bounded. Therefore, Mfis �nite. As before, not all hoies of i, j, k, a, b, c will yield an O-module losedunder the ation of T .To derive onditions for module losure, one an express the ation of

T as a matrix with respet to the free O-module basis g1 = (1, 1, 1, 1), g2 =

(0, πi, a, b), g3 = (0, 0, πj, c), g4 = (0, 0, 0, πk). Letting M = 〈g1, g2, g3, g4〉O,one has TM ⊆ M if and only if the matrix representation of T has all entriesin O. Then for
G =




1 1 1 1

πi a b

πj c

πk




,
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the entries of



α1 x1,2 x1,3 x1,4

α2 x2,3 x2,4

α3 x3,4

α4




= GD(α1, α2, α3, α4)G
−1

must be in O. One an easily alulate the right-hand side formally in GL4(F ),and the integrality onditions are summarized below.Lemma 5.1.1. Let uf = u1,3

u1,2
, vf = u1,4

u1,2
, and wf = u2,4

u2,3
. Then TM ⊆ M if andonly if 0 ≤ i ≤ v1,2, 0 ≤ j ≤ v1,3 + v2,3, and 0 ≤ k ≤ v1,4 + v2,4 + v3,4, and thequantities1. x1,3 = ufπ

v1,3−j − aπv1,2−(i+j)2. x2,3 = aπv2,3−j3. x1,4 = vfπ
v1,4−k − bπv1,2−(i+k) − ufcπ

v1,3−(j+k) + acπv1,2−(i+j+k)4. x2,4 = wfbπ
v2,4−k − acπv2,3−(j+k)5. x3,4 = cπv3,4−kare in O. 5.2 Λ-IsomorphismFor a �xed (i, j, k), one only needs to sort the lasses [i, j, k, a, b, c] for theallowable a ∈ O/(πj) and b, c ∈ O/(πk) whih satisfy the module losureonditions in lemma 5.1.1. When there is a �xed (i, j, k) in mind, one ansuppress i, j and k from the notation and write [a, b, c] for the isomorphism

38



lass [i, j, k, a, b, c] ∈ Mf . Let
G(i, j, k, a, b, c) =




1 1 1 1

πi a b

πj c

πk




.

Set Gt = G(i, j, k, at, bt, ct), and let Mt be generated over O by the rows of Gtinside Ef for t = 1, 2.Consider the funtion
(O×)4 ϕ1,2

−→ GL4(F )given by
u 7→ X = G2D(u)G−1

1 .By theorem 2.1.2, one has a Λ-isomorphism M1 → M2 whose matrix repre-sentation with respet to the given generators is X = ϕ1,2(u1, u2, u3, u4), ifand only if imϕ1,2 ∩ GL4(O) 6= ∅. For this to be a useful riterion, one has toredue this to heking whether ϕ1,2(S) ∩ GL4(O) 6= ∅ for some �nite subset
S ⊂ (O×)4. The next result shows that this an be aomplished with S equalto the anonial lift of ((O/(πi+j+k))×)4 to (O×)4.Theorem 5.2.1. Let u, v ∈ (O×)4, and suppose that v ≡ u mod πi+j+k and
ϕ1,2(v) ∈ GL4(O). Then ϕ1,2(u) ∈ GL4(O).Proof. Write u = v+xπi+j+k for some x ∈ O4, and observe that ϕ1,2 (extendedto F 4) is a linear map of vetor spaes F 4 → Mat4×4(F ). Hene ϕ1,2 has amatrix representation, say A, and by expliit omputation one an observethat the entries of this matrix are linear ombinations of integral elements(the a, b, c′s) with powers of π in the denominator. The largest power of πin the denominator is πi+j+k, hene πi+j+kA has integral entries. Therefore39



ϕ1,2(u) = ϕ1,2(v + xπi+j+k) = A(v + xπi+j+k) = Av + πi+j+kAx, and sine Avand πi+j+kAx have integral entries, so does ϕ1,2(u). Sine ϕ1,2(u) (or anythingin the image of ϕ1,2) is upper triangular with units along the diagonal, thisshows that ϕ1,2(u) ∈ GL4(O).Let IsomΛ(M1,M2) denote the set of Λ-isomorphisms from M1 to M2as before. Then the above result shows that IsomΛ(M1,M2) an be omputedas
H + (πi+j+k)4,where H = {u ∈ S|ϕ1,2(u) ∈ GL4(O)} is a �nite subset of S. In partiular,when M1 = M = M2, then ϕ1,2 = ϕM : G4

m(O) → GL4(F ) is a grouphomomorphism. One an ompute
AutΛ(M) = ϕ−1

M (imϕM ∩ GL4(O)),whih an be represented as H + (πi+j+k)4, where H = {u ∈ S|ϕM(u) ∈

GL4(O)}. The redution of H modulo πi+j+k, H ⊆ G4
m(O)/(πi+j+k)4 is asubgroup.To deide when [a1, b1, c1] = [a2, b2, c2], one an in priniple test everypossible u ∈ S for whether ϕ1,2(u) ∈ GL4(O). In pratie, when [a1, b1, c1] =

[a2, b2, c2], an element u ∈ S is found quikly. Unfortunately, S an be verylarge and if two lasses are distint, one is fored to iterate through all pos-sibilities for u. For example, if O = Zp and one is sorting lasses along thetuple (i, j, k) = (1, 1, 3), then S = ((Z/(p5))×)4 has order (p− 1)4p16. One anredue the number of iterations by dividing nontrivial automorphisms of M1and M2 from S.More preisely, IsomΛ(M1,M2) possesses an ation of AutΛ(M1) de�nedby
AutΛ(M1) × IsomΛ(M1,M2) −→ IsomΛ(M1,M2)40



(ϕ, ψ) 7→ ψ ◦ ϕ−1.This ation is simply transitive sine ψ◦ϕ−1 = ψ′ if and only if ϕ = (ψ′)−1 ◦ψ.Hene IsomΛ(M1,M2) is a single orbit under the ation of AutΛ(M1). Sineall possible isomorphisms are parameterized by the torus T = G4
m(O) viatheorem 2.1.2, it is natural to extend the ation of AutΛ(M1) to imϕ1,2. Also,

AutΛ(M1) an be identi�ed with the subgroup H + (πi+j+k)4 of T , and heneats on T via translation.Lemma 5.2.1. The map ϕ1,2 : T → imϕ1,2 is a bijetion of AutΛ(M1)-sets. Theorbits of imϕ1,2 under the ation of AutΛ(M1) are in bijetive orrespondenewith T/AutΛ(M1).Proof. Let ϕ(u) = G1D(u)G−1
1 ∈ AutΛ(M1), so that u ∈ H×(πi+j+k)4, and let

ϕ1,2(v) = G2D(v)G−1
1 ∈ imϕ1,2. By the de�nition of the ation of AutΛ(M1)on IsomΛ(M1,M2), the extension of the ation to imϕ1,2 is given by

(ϕ(u), ϕ1,2(v)) 7→ ϕ1,2(v)ϕ(u)−1

= G2D(v)G−1
1 G1D(u−1)G−1

1

= G2D(vu−1)G−1
1

= ϕ1,2(vu
−1).This proves the result.One has similarly an ation of AutΛ(M2) on IsomΛ(M1,M2), and thequotient

imϕ1,2/AutΛ(M1)AutΛ(M2)is bijetive with T/AutΛ(M1)AutΛ(M2), so that the size of T is redued evenfurther. 41



By the above result, if IsomΛ(M1,M2) is nonempty, it will be the onlyorbit in imϕ1,2 ontained in GL4(O). Therefore, one only needs to searh foran element in GL4(O) among representatives for imϕ1,2 modulo the ation of
AutΛ(M1) = H1+(πi+j+k)4 and AutΛ(M2) = H2+(πi+j+k)4. This is equivalentto alulating representatives v for the osets in T/(H1H2 + (πi+j+k)4), andheking if ϕ1,2(v) ∈ GL4(O). By theorem 5.2.1, one only needs to hekrepresentatives for the osets in T/H1H2 where the bar denotes redutionmodulo (πi+j+k). In general, one expets the quotient T/H1H2 to be muhsmaller than T . For example, it is easy to observe that the diagonal elements
(u, u, u, u) ∈ T are always in the automorphism group regarded in T , hene Tis redued by at least one dimension by passage to T/H1H2.5.3 An Algorithm to Enumerate MfThe previous setion suggests the following algorithm to deide if two mod-ules M1 and M2, are Λ-isomorphi. Ideally, one wants distint representa-tives u1, u2, . . . uk for the osets in T/H1H2. Sine testing whether u ∈ Tis in H1 or H2 is easy and fast, one an quikly �nd a small number ofexhaustive but not neessarily distint representatives using the followingproedure. Let g1, . . . , gn be generators for the abelian group T , and let
φMt

: T −→ GL4(F ) be the homomorphism φMt
(u) = GtD(u)G−1

t for t = 1, 2.For eah generator gi one an alulate a bound for the order of gi in T/H1H2as ki = min{k|φM1
(gki ) or φM2

(gki ) ∈ GL4(O)}. Then one has a surjetion
n⊕

i=1

Z/(ki) −→ T/H1H2so that |T/H1H2| ≤
∏n
i=1 ki. As an example, one may think of O = Zp. In thisase T = ((Z/(pi+j+k))×)4 and in pratie the generators g1 = (r, r, r, r), g2 =

(r, r, r, 1), g3 = (r, r, 1, 1), and g4 = (r, 1, 1, 1) with r a primitive root of unitymodulo pi+j+k seem to produe small orders ki. One then iterates over allproduts u =
∏n
i=1 g

βi

i for 0 ≤ βi < ki and heks if φ1,2(u) ∈ GL4(O).42



Algorithm to deide if M1
∼= M2:Input: Mt = [i, j, k, at, bt, ct] for t = 1, 2Output: True or False1. Set Bt = G(i, j, k, at, bt, ct) for t = 1, 2.2. Choose generators g1, . . . , gn for T .3. For eah generator ompute ki = min{k|φM1

(gki ) or φM2
(gki ) ∈ GL4(O)}.If a ki is ahieved with φM1

(gki
i ) ∈ GL4(O) but φM2

(gki
i ) 6∈ GL4(O) (orvie versa), the modules are not isomorphi by theorem 2.1.4 and outputFalse.4. For eah produt u =

∏n
i=1 g

βi

i where 0 ≤ βi < ki, hek if ϕ1,2(u) ∈

GL4(O), and if so output True and break. Otherwise, output False.5.4 Elementary TypesOne an form the obvious elements of Mf by grouping the fators of f(T ) andtaking diret sums. For example Λ/(T−α1)⊕Λ/(T−α2)⊕Λ/(T−α3)(T−α4)injets into E anonially with �nite okernel. Let P = {Bk} be a partitionof {1, 2, 3, 4} with bloks Bk, and assoiate to P the elementary type
EP :=

⊕

Bk∈P

Λ/
∏

i∈Bk

(T − αi),e.g. the example above orresponds to the partition {{1}, {2}, {3, 4}}. Henethere are 15 = B4 elementary types, where Bn is the nth Bell number. Thenext result is well known, but the proof is given here for lak of a referene.Theorem 5.4.1. The elementary types are distint up to isomorphism.Proof. Suppose φ : EP1
−→ EP2

is a Λ-isomorphism. In partiular, it is anisomorphism of free O-modules of rank 4 and hene has a matrix representation43



in GL4(O) with respet to bases whih will be hoosen now. For eah blok
Bk, the fator Λ/

∏
i∈Bk

(T − αi) has O-basis {1, T, T 2, . . . , T |Bk|−1} by theDivision algorithm for Λ. With respet to this basis, T ats as the |Bk| × |Bk|ompanion matrix CBk
, of the polynomial ∏i∈Bk

(T − αi). Choosing this basisfor eah fator of EP and taking their union to get a basis for the whole of EP ,
T is then represented as the matrix blok sum [T ]P = CB1

⊕CB2
⊕ · · · ⊕CB|P |

.Let [φ] ∈ GL4(O) be the matrix representation of φ with respet to the powerbases onstruted above. The additional requirement that φ be a Λ-morphismimplies that one must have
[φ][T ]P1

= [T ]P2
[φ],whih holds if and only if [T ]P1

∼O [T ]P2
. Sine the matries [T ]P1

and [T ]P2are already in rational anonial form, they must have the same blok sub-matries up to order. Sine di�erent bloks in a partition will yield di�erentompanion matries, the partitions P1 and P2 must be equal.Using the results for degrees 2 and 3, one an express the elementarytypes in the notation [i, j, k, a, b, c].Theorem 5.4.2. The elementary types expressed in the notation [i, j, k, a, b, c]are:
• 4|123 ∈ [v1,2, v1,3 + v2,3, 0,

u1,3

u1,2
πv1,3 , 0, 0]

• 4|12|3 ∈ [v1,2, 0, 0, 0, 0, 0]

• 4|2|13 ∈ [0, v1,3, 0, 0, 0, 0]

• 4|1|23 ∈ [0, v2,3, 0, 1, 0, 0]

• Ef = 4|1|2|3 ∈ [0, 0, 0, 0, 0, 0] 44



• 12|34 ∈ [v1,2, 0, v3,4, 0, 0, 1]

• 14|23 ∈ [0, v2,3, v1,4, 1, 0, 0]

• 14|2|3 ∈ [0, 0, v1,4, 0, 0, 0]

• 24|1|3 ∈ [0, 0, v2,4, 0, 1, 0]

• 24|13 ∈ [0, v1,3, v2,4, 0, 1, 0]

• 34|1|2 ∈ [0, 0, v3,4, 0, 0, 1]

• 124|3 ∈ [v1,2, 0, v1,4 + v2,4, 0,
u1,4

u1,2
πv1,4 , 0]

• 134|2 ∈ [0, v1,3, v1,4 + v3,4, 0, 0,
u1,4

u1,3
πv1,4 ]

• 234|1 ∈ [0, v2,3, v2,4 + v3,4, 1, 1,
u2,4

u2,3
πv2,4 ]

• 1234 ∈ [v1,2, v1,3 + v2,3, v1,4 + v2,4 + v3,4, ufπ
v1,3 , vfπ

v1,4 ,
vfwf

uf
πv1,4+v2,4 ]where for all 1 ≤ m < n ≤ 4, write αm − αn = um,nπ

vm,n for um,n ∈ O× and
uf = u1,3

u1,2
, vf = u1,4

u1,2
, wf = u2,4

u2,3
.Proof. This is just an exerise in taking the anonial maps from eah ele-mentary type to Ef , and using the matrix operations used in the proof of2.0.4 to write the image of a power basis in the form G. One an also use theexpression of the degree 3 elementary types in the notation [i, j, a] to help seethe result.
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Chapter 6APPLICATIONS TO THE IWASAWA THEORY OF ELLIPTIC CURVESThe results given for the ase λ = 2 an be used to determine the isomorphismlass of the p-Selmer group of some ellipti urves over the ylotomi Zp-extension. First some main de�nitions and results from [3℄ are disussed.Several examples are given at the end to illustrate how SelE(Q∞)p an bedetermined when µ = 0. 6.1 Selmer GroupsLet E be an ellipti urve over Q with good, ordinary redution at a prime
p ≥ 3. Let Q∞ denote the ylotomi Zp extension. First, reall the de�nitionof the p-primary Selmer group of E over Q∞ as in [3℄. One would like to knowabout E(Q∞), the points of E de�ned over Q∞, whih are ontained in E(Q)as the points �xed under the ation of GQ∞ = Gal(Q/Q∞). If one �xes aprime power pk, one an onsider the short exat sequene of GQ-modules

0 // E(Q)[pk] // E(Q)
[pk] // E(Q) // 0 ,and taking GQ∞-ohomology gives the (usual) long exat sequene

0 // E(Q∞)[pk] // E(Q∞)
[pk] // E(Q∞)

δ //H1(Q∞, E[pk]) // · · · .The injetion indued by δ, denoted by κ : E(Q∞)/[pk]E(Q∞) → H1(Q∞, E[pk]),is alled the Kummer homomorphism. If P ∈ E(Q∞), then δ(P ) is the 1-oyle de�ned by σ 7→ Qσ −Q where Q ∈ E(Q) is hosen so that [pk]Q = P .One has the following lemma.Lemma 6.1.1. Let 1
pk denote 1

pk + Z ∈ Q/Z. Then E(Q∞)/[pk]E(Q∞) ∼=

E(Q∞) ⊗ 〈 1
pk 〉. 46



Now onsider the direted system of abelian groups {〈1/pk〉|k ∈ N}indexed by inlusion maps given by
a

pk
7→

pa

pk+1
.Tensoring with E(Q∞) gives the diret system {E(Q∞)/[pk]E(Q∞)}k∈N wherethe maps E(Q∞)/[pk]E(Q∞) −→ E(Q∞)/[pk+1]E(Q∞) are given by P 7→

[p]P . The diret limit of this system is then
lim−→E(Q∞)/[pk]E(Q∞) = lim−→E(Q∞) ⊗ 〈1/pk〉

= E(Q∞) ⊗ lim−→〈1/pk〉

= E(Q∞) ⊗ (Qp/Zp).One also hasLemma 6.1.2. The diagram
E(Q∞)/[pk+1]E(Q∞)

κ // H1(Q∞, E[pk+1])

E(Q∞)/[pk]E(Q∞)

OO

κ // H1(Q∞, E[pk])

OO

is ommutative, and the diret limit gives an injetion E(Q∞) ⊗ Qp/Zp
κ

→

H1(Q∞, E[p∞]).The p-Selmer group is de�ned in [3℄ as a ertain subgroup ofH1(Q∞, E[p∞])ontaining the image of the Kummer homomorphism κ. The idea is to �rstrealize that eah global point in E(Q∞), say P ∈ E(Qn) at some layer Qnin the ylotomi Zp-extension, gives rise to a loal point P ∈ E((Qn)p) forevery prime p of Qn, via a hosen embedding Qn → (Qn)p. One an say this inan equivalent way by de�ning (Q∞)η to be the union ⋃n(Qn)pn
for the prime

η =
⋃
n pn of Q∞. Here, the prime ideals pn are hosen so that pn is a primeideal of the ring of integers of Qn and pn ⊂ pn+1. Then eah global point47



E(Q∞) gives rise to a loal point of E((Q∞)η), and this indues a map
E(Q∞) ⊗ (Qp/Zp) → E((Q∞)η) ⊗ (Qp/Zp).Now realize what this map means in terms of the Kummer embedding.For a prime η of Q∞ given in terms of the primes pn as above, one has hosenembeddings Qn →֒ (Qn)pn

, and this hoie �xes an embedding Q∞ →֒ (Q∞)η.Let (ℓ) = η ∩ Z where ℓ is a prime in Z. Sine eah ompletion (Qn)pn
is a�nite extension of Qℓ, one has (Q∞)η ⊂ Qℓ. Choose an embedding Q

ı
→֒ Qℓextending the hosen embedding Q∞ →֒ (Q∞)η, and this hoie identi�es GQℓwith a subgroup of GQ whih is the deomposition group for a prime η̃|η in

Q. De�ne the loal Kummer homomorphism
E((Q∞)η) ⊗ (Qp/Zp)

κη
−→ H1((Q∞)η, E[p∞]),in the same way as the global Kummer homomorphism above. Sine Gal(Qℓ/(Q∞)η)is identi�ed with a subgroup of Gal(Q/Q∞) via the deomposition group of η̃,one has the restrition map

H1(Q∞, E[p∞])
res

−→ H1((Q∞)η, E[p∞])where E[p∞] ⊆ E(Qℓ) via the embedding ı.Lemma 6.1.3. The diagram
E((Q∞)η) ⊗ (Qp/Zp)

κη // H1((Q∞)η, E[p∞])

E(Q∞) ⊗ (Qp/Zp)

OO

κ // H1(Q∞, E[p∞])

res

OO

is ommutative.Proof. This is essentially a version of the diagram (∗∗) from pg. 297 of [12℄for the diret limit of the maps E(Q∞)/[pk]E(Q∞) → H1(Q∞, E[pk]) and48



E((Q∞)η)/[p
k]E((Q∞)η) → H1((Q∞)η, E[pk]). One an see this diretly asfollows. Let P ⊗ r/pk ∈ E(Q∞) ⊗ (Qp/Zp). Then κ(P ⊗ r/pk) is the lass ofthe 1-oyle given by ψ 7→ ı(Qψ −Q) = ı(Q)ψ − ı(Q) for all ψ ∈ Gal(Q/Q∞),where Q ∈ E(Q) is hosen suh that [pk]Q = [r]P . The left vertial mapsends P ⊗ r/pk to ı(P ) ⊗ r/pk ∈ E((Q∞)η) ⊗ (Qp/Zp), and κη(ı(P ) ⊗ r/pk)an be given as the lass of the 1-oyle σ 7→ ı(Q)σ − ı(Q) for all σ ∈

Gal(Qℓ/(Q∞)η), sine [pk]Q = [r]P implies that [pk]ı(Q) = [r]ı(P ). This isexatly the restrition of the oyle de�ning κ(P ⊗ r/pk) to the subgroup
Gal(Qℓ/(Q∞)η) ≤ Gal(Q/Q∞).From this diagram, one an see that for every prime η ofQ∞, res(imκ) ⊆

imκη and hene,
imκ ⊆ ker(H1(Q∞, E[p∞]) −→ H1((Q∞)η, E[p∞])/imκη).Letting η vary over all primes of Q∞, one makes the following de�nition as in[3℄:De�nition 1. The p-primary Selmer group of E over Q∞ is the subgroup of

H1(Q∞, E[p∞]) de�ned by
SelE(Q∞)p = ker(H1(Q∞, E[p∞]) −→

∏

η

H1((Q∞)η, E[p∞])/imκη).From the disussion, it is lear that imκ ⊆ SelE(Q∞)p. The de�nitionof the p-Selmer group in [3℄ holds for any algebrai extension K/Q. Thereforeat any �nite layer Qn, one an de�ne SelE(Qn)p in the same way. If p is aprime of the ring of integers in Qn, one has the loal Kummer embedding
κp : E((Qn)p) ⊗ (Qp/Zp) −→ H1((Qn)p, E[p∞]),so de�ne

SelE(Qn)p = ker(H1(Qn, E[p∞]) −→
∏

p

H1((Qn)p, E[p∞])/imκp),49



where the produt runs over all primes p of Qn. The fundamental diagramfrom [3℄, whih is disussed in setion 6.3, relates the Λ-modules SelE(Q∞)pand SelE(Qn)p. 6.2 The Λ-module XE(Q∞)The abelian group SelE(Q∞)p is p-primary, and is therefore a module over Zp.There is also an ation of the Galois group Γ = Gal(Q∞/Q) on SelE(Q∞)pwhih is ompatible with the Kummer embedding κ : E(Q∞) ⊗ (Qp/Zp) →

SelE(Q∞)p. To see what this ation should be, let γ ∈ Γ. Let P ⊗ (n/pk) ∈

E(Q∞) ⊗ (Qp/Zp). Then reall κ(P ⊗ (n/pk)) is the lass of the 1-oylewhih sends σ ∈ Gal(Q/Q∞) to
Qσ −Q ∈ E[p∞],where Q is a point hosen in E(Q) suh that [pk]Q = [n]P . Γ ats on E(Q∞)⊗

(Qp/Zp) in the usual way
γ · (P ⊗ (n/pk)) = P γ ⊗ (n/pk),and one expets γ to at on 1-oyles in a way that is geometrially ompat-ible, so that κ(γ · (P ⊗ (n/pk))) = γ ·κ(P ⊗ (n/pk)). Let γ̃ ∈ Gal(Q/Q) denoteany extension of the automorphism γ to Q. Sine Q satis�es [pk]Q = [n]P ,applying γ̃ to both sides of this equation shows Qγ̃ satis�es [pk]Qγ̃ = [n]P γ,using the fat that addition on E is de�ned over Q. Hene, a 1-ohomologylass assoiated to P γ ⊗ (n/pk) an be given by the 1-oyle
σ 7→ (Qγ̃)σ −Qγ̃ = (Qγ̃σγ̃−1

−Q)γ̃.If [ξ] ∈ H1(Q∞, E[p∞]) is a ohomology lass represented by a 1-oyle ξ,then the ation of Γ on 1-oyles should then be (γ · ξ)(σ) = ξ(γ̃σγ̃−1)γ̃.Now the idea for turning H1(Q∞, E[p∞]) into a module over the powerseries ring Λ is based on the following fats. Set A = H1(Q∞, E[p∞]).50



1. The ation of Γ desribed above is ontinuous, where Γ has its usualtopology and A is disrete and p-primary. This is equivalent to showing
A =

⋃
AΓn where Γn = Γp

n.2. Letting T at as γ− 1 where γ is a topologial generator of Γ, the onti-nuity result above implies that the ation of T is topologially nilpotent,i.e. for a ∈ A, there is an n ≫ 0 so that T na = 0. This makes the ationof a power series f(T ) ∈ Λ well-de�ned.To see the seond fat, suppose a ∈ AΓn0 , so that (γp
n0 −1)a = 0. Sine

Γn ⊂ Γn0
for n0 ≤ n, one has (γp

n

− 1)a = 0 for n0 ≤ n. Also, sine A is
p-primary, pma = 0 for some m ≥ 0. Expressing the ation of γ in terms of T ,one has ((T + 1)p

n

− 1)a = 0 for n ≥ n0. This beomes
T p

n

a+
pn−1∑

i=1

(
pn

i

)
T ia = 0.By ontinuity of the polynomial funtion P (X) =

(
X

i

) on Zp, one an hoose
n large enough so that n ≥ n0 and pm |

(
pn

i

) for i = 1, 2, . . . pn − 1, and hene
T p

n

a = 0. A proof of the �rst fat is given below.Lemma 6.2.1. The ation of Γ on A is ontinuous.Proof. Let ξ : GQ∞ → E[p∞] be a ontinuous 1-oyle whose lass is denoted
a ∈ A. ForQn, the nth layer inQ∞/Q, GQ∞ ≤ GQn

, and one has the restritionmap
H1(Qn, E[p∞])

hn−→ H1(Q∞, E[p∞]).The �rst task is to show that ξ is in the image of hn for some n. Sine GQ∞is ompat in its pro�nite topology, ξ(GQ∞) is ompat in E[p∞], and sine
E[p∞] is disrete, ξ(GQ∞) must be �nite. This implies that ξ fators through
GQ∞/H for some open normal subgroup H . Let F be the �xed �eld of H , so51



that F/Q∞ is a �nite Galois extension. By lemma 6 in hapter 5.4 of [11℄,there is a �nite extension Fn of Qn for some n, so that Gal(F/Q∞) an beidenti�ed isomorphially with Gal(Fn/Qn) by restriting automorphisms of Fto Fn. Then Fn orresponds to a subgroup H ′ of GQn
and one has

GQ∞/H
∼= Gal(F/Q∞) ∼= Gal(Fn/Qn) ∼= GQn

/H ′.Using this isomorphism, identify ξ with a 1-oyle on GQn
/H ′, and pre-omposing with the anonial surjetion GQn

→ GQn
/H ′ gives a 1-oyle,on GQn

lifting ξ.The laim is that a is �xed by the subgroup Γn. This is just a om-putation. Denote the lift of ξ by ξ̃ : GQn
→ E[p∞]. Let σ ∈ GQ∞ and let

γn ∈ Γn. Sine γ̃n is in GQn

ξ(γ̃nσγ̃n
−1)γn = ξ̃(γ̃nσγ̃n

−1)γ̃n

= (ξ̃(γ̃nσ)γ̃n
−1

+ ξ̃(γ̃n
−1))γ̃n

= ξ̃(γ̃nσ) + ξ̃(γ̃n
−1)γ̃n

= ξ̃(γ̃n)
σ + ξ̃(σ) − ξ̃(γ̃n)

= ξ(σ) + {1 − coboundary}.Hene γn · ξ is ohomologous to ξ and therefore γn · a = a.The following de�nition is from [3℄.De�nition 2. Set XE(Q∞) = Homcts(SelE(Q∞)p,Qp/Zp), the Pontryagin dualof the p-primary Selmer group of E over Q∞.The ation of Λ on XE(Q∞) is given in the usual way. More generally,if A is a disrete p-primary or ompat pro-p abelian group with a ontinuousation of Γ, then for f : A → Qp/Zp in Â, γf is de�ned by (γf)(a) = f(γ−1a).52



6.3 Some Known Results on XE(Q∞)For ease of notation, set X = XE(Q∞). Sine X is a module over Λ = Zp[[T ]],one an ask whether it is �nitely generated over Λ and whether it is Λ-torsion.One an also ask what these onditions imply for the sequene of urves E(Qn).It is well known that X is always �nitely generated over Λ, and the proofinvolves the usual Mordell Weil theorem ombined with Nakayama's lemma(see [3℄). By Kato's theorem [5℄, X is also Λ-torsion. Even though only thease where p is a good ordinary prime for E/Q is onsidered, Kato's resultholds for E/F where F is a number �eld, and the primes above p in F are ofgood ordinary, or multipliative type for E. One an now apply the struturetheorem for Λ-modules. There is a short exat sequene of Λ-modules
0 −→ K −→ X −→

⊕

i

Λ/(fi(T )ei) −→ C −→ 0,with |K|, |C| < ∞, and eah fi(T ) ∈ Λ is either p or a distinguished irreduiblepolynomial. The harateristi polynomial of X is fX(T ) = charΛ(X) =

∏
fi(T )ei, whih one an write as pµP (T ), where P (T ) is a distinguished poly-nomial. Call the degree of P (T ) the λ-invariant of X, and denote it λX .Similarly, µ = µX is alled the µ-invariant. Even though the example givenlater only onerns the ase µ = 0, many examples are given in [3℄ where µ > 0.The Main Conjeture of Iwasawa theory for ellipti urves relates fX(T ) tothe p-adi L-series of E, Lp(E, T ) ∈ O[[T ]] for a �nite extension of O of Zp.The Main Conjeture of Iwasawa theory says that up to a unit multiple in

O[[T ]], fX is equal to Lp(E, T ). In [17℄, it is shown that Lp(E, T ) ∈ Zp[[T ]],and one an ompute Lp(E, T ) and fator it into a unit power series and adistinguished polynomial P (T ), as in the example given in setion 1.1. Hene,the Main Conjeture implies that fX an be alulated expliitly as P (T ).Theorem 1.9 in [3℄ implies that when X is Λ-torsion, the sequene of53



ranks rankE(Qn) is bounded by λX . The proof is realled here beause it usesideas frequently enountered in Iwasawa theory. By the Mordell-Weil theorem,
E(Qn) ∼= Zrn ⊕ Tn as abelian groups, where rn is the rank and Tn is the �nitetorsion subgroup. Reall that one has the short exat sequene

0 −→ E(Qn) ⊗ (Qp/Zp) −→ SelE(Qn)p −→ XE(Qn)p −→ 0.One loses the �nite torsion part in this sequene sine
E(Qn) ⊗ (Qp/Zp) ∼= (Zrn ⊕ Tn) ⊗ (Qp/Zp) ∼= (Qp/Zp)

rn ,but the p-primary abelian group SelE(Qn)p ontains the opy of (Qp/Zp)rn .By a well-known onjeture for ellipti urves, one expets XE(Qn)p to be�nite, and this will be assumed from now on. Taking the dual of the shortexat sequene then gives
0 −→ X̂E(Qn)p −→ XE(Qn) −→ Zrn

p −→ 0where XE(Qn) := ̂SelE(Qn)p. Sine �nite groups are self dual, X̂E(Qn)p ∼=

XE(Qn)p, and is hene �nite. Therefore one has rn = rankZp
XE(Qn). Inother words, the Zp-orank of SelE(Qn)p is rn, the rank of the ellipti urve

E(Qn). The next step is to relate X, whih is de�ned over Q∞, to XE(Qn).The Fundamental DiagramThe ruial ingredient for relating X to the "�nite levels" XE(Qn) is Mazur'sControl Theorem [9℄. Reall that Γn = Γp
n is isomorphi to Gal(Q∞/Qn).The restrition map H1(Qn, E[p∞]) → H1(Q∞, E[p∞])Γn indues the map

SelE(Qn)p
sn−→ SelE(Q∞)Γn

p .The Control theorem asserts that ker(sn) and coker(sn) are �nite with boundedorder as n → ∞. Then taking the Pontryagin dual of the sequene
0 → ker(sn) → SelE(Qn)p → SelE(Q∞)Γn

p → coker(sn) → 054



gives
0 → ̂coker(sn) → X/(ωn(T ))X

ŝn→ XE(Qn) → k̂er(sn) → 0where ωn(T ) = (1 + T )p
n

− 1. Sine the kernel and okernel in this sequeneare �nite, one obtains
rankZp

X/(ωn(T ))X = rankZp
XE(Qn) = rn.Now using the struture theorem for �nitely generated Λ-modules,X is pseudo-isomorphi to Λ/(f(T )) where charΛ(X) has degree λX , hene X has Zp-rank

λX , and therefore rn ≤ λX . Therefore the ranks of the ellipti urves E(Qn)are bounded by λX , whih is the result from theorem 1.9 in [3℄. One sets
λM−W = max{rn}∞

n=0 ≤ λX , whih is equal to the rank of E(Q∞). In [3℄, aproof of the Control theorem is given whih is based on the fundamental dia-gram whih is realled below. This diagram will be the basis of the tehniquefor determining X up to isomorphism.Fix a level n in the Zp-tower, and reall that the p-Selmer group is thekernel of H1(Qn, E[p∞]) →
∏

pH
1((Qn)p, E[p∞])/im(κp). The image of thismap is denoted GE(Qn) so one has the short exat sequene

0 → SelE(Qn)p → H1(Qn, E[p∞]) → GE(Qn) → 0.One similarly has
0 → SelE(Q∞)p → H1(Q∞, E[p∞]) → GE(Q∞) → 0.Taking Γn-invariants of the latter and onneting them with the vertial re-stritions maps gives

0 // SelE(Qn)p //

sn

��

H1(Qn, E[p∞]) //

hn

��

GE(Qn) //

gn

��

0

0 // SelE(Q∞)Γn
p

// H1(Q∞, E[p∞])Γn // GE(Q∞)Γn

.55



By the Snake lemma,
0 → ker(sn) → ker(hn) → ker(gn) → coker(sn) → coker(hn) → coker(gn).Some fats about these kernels and okernels proven in [3℄ will be usefullater on, and based on these fats some key assumptions will be made. Forthe appliations later, one an restrit to the level n = 0. First, lemmas 3.1and 3.2 in [3℄ imply that1. | ker(hn)| = |E(Qn)p| and2. coker(hn) = 0 for all n.Our �rst assumption is that E(Q)p = 0, so that at level 0 one has ker(h0) = 0and hene ker(s0) = 0. Substituting this into the Snake lemma long exatsequene gives

ker(g0) ∼= coker(s0).Next one needs that SelE(Q)p = 0. This ombined with the fat that ker(s0) =

0 gives
ker(g0) ∼= SelE(Q∞)Γ

p ,and hene
k̂er(g0) ∼= ̂SelE(Q∞)Γ

p
∼= X/(ω0(T ))X = X/TX.If one knows ker(g0) for the urve E and prime p, and all possibilities for the

Λ-module struture of X, then X an be determined by omparing ker(g0)to eah possible quotient X/TX. To apply the module theory developed sofar, a ondition is needed on the ellipti urve E to guarantee that X has nonontrivial �nite Λ-submodules. By proposition 4.8 in [3℄, this is guaranteedby the assumptions that E(Q)p = 0 and SelE(Q)p = 0.56



Computing the loal kernelsThe fous in this setion will be to show how to alulate ker(g0) based on thefats disussed in setion 3 of [3℄. By de�nition
GE(Q) = im(H1(Q, E[p∞]) −→

∏

ℓ

H1(Qℓ, E[p∞])/im(κℓ))where the produt runs over all primes ℓ in Z. Note that one an ignore theimage of κℓ when ℓ 6= p sine the theory of the formal group gives E(Qℓ) ∼=

Zℓ×T where T is the �nite torsion part, and hene E(Qℓ)⊗(Qp/Zp) = 0. Onean de�ne the map g0 on a single loal fator in the above produt as follows.If η is any prime of Q∞ dividing ℓ, then the restrition map H1(Qℓ, E[p∞]) →

H1((Q∞)η, E[p∞]) indues a map
H1(Qℓ, E[p∞])/im(κℓ)

rℓ→
∏

η|ℓ

H1((Q∞)η, E[p∞])/im(κη),whih is well-de�ned sine the Kummer embedding ommutes with the restri-tion map. The map g0 is then given by ∏ℓ rℓ. To see that this map is de�nedfrom GE(Q) to GE(Q∞), one only needs to observe that the diagram
H1(Q, E) //

��

∏
ℓH

1(Qℓ, E)

��
H1(Q∞, E) // ∏

ηH
1((Q∞)η, E)onsisting of restrition maps throughout, is ommutative. To simplify themap rℓ, one observes that all primes η of Q∞ lying over a �xed ℓ are Galoisonjugate due to a basi fat from algebrai number theory. This impliesthat the subgroups Gal(Qℓ/(Q∞)η) are all onjugate, and a fat from groupohomology ([12℄ Ex. B.6) extended to ontinuous ohomology of pro�nitegroups shows that the restrition maps to onjugate subgroups have the samekernel. Hene, for the purpose of alulating ker(g0), one may hoose a prime57



η above ℓ and assume
rℓ : H1(Qℓ, E[p∞])/im(κℓ) → H1((Q∞)η, E[p∞])/im(κη).Then ker(g0) =

∏
ℓ ker(rℓ) ∩ GE(Q).For E/Q, set Σ = {ℓ|ℓ | ∆} ∪ {p}, the set of primes where E has badredution along with p. By lemma 3.3 in [3℄, ker(rℓ) = 0 for ℓ 6∈ Σ, therefore

ker(g0) =
∏
ℓ∈Σ ker(rℓ)∩GE(Q) and one has only a �nite number of loal kernelsto ompute. It also turns out that under the assumption that E(Q)p = 0, atheorem of Cassels implies that interseting with the global 1-oyles GE(Q)is unneessary (see pg. 87 in [3℄). Hene ker(g0) =

∏
ℓ∈Σ ker(rℓ). Now thefous will be on determining the algebrai struture of ker(rℓ) for eah typeof prime ℓ ∈ Σ. In [3℄, Greenberg proves Mazur's ontrol theorem by showingthat eah one of these loal kernels is �nite.If ℓ is a prime of bad redution, let cℓ denote the Tamagawa numberof E(Q) at ℓ. This is the order of the group E(Qℓ)/E

0(Qℓ) where E0(Qℓ) isthe subgroup of loal points whih redue to nonsingular points modulo ℓ. Bythe disussion on pg. 74 in [3℄, ker rℓ is a yli group of order c(p)
ℓ , the exatpower of p dividing cℓ.For the good ordinary prime p, lemma 3.4 in [3℄ implies that | ker rp| =

|Ẽ(Fp)p|
2, the order of the p-torsion in the redution Ẽ(Fp) squared, but doesnot give its struture as a �nite abelian group. If Ẽ(Fp)p 6= 0, p is said to beanomalous for E. For p anomalous, the result is thatTheorem 6.3.1 (Lemma 6.3(b) in [7℄). ker rp ∼= Z/pZ ⊕ Z/pZ.The proof given below is in [7℄, where slightly more is proved. Oneessentially needs to know the struture ofE(Qp) modulo the subgroup of pointswhih are norms from above in the loal Zp-extension (Q∞)η/Qp, whih turns58



out to be dual to ker rp. [7℄ ites the proof of the struture of this group from[9℄ whih uses the mahinery of pro-algebrai groups. The paper [6℄ ited inthe proof below gives a more aessible proof of this result whih uses Tateohomology and formal groups.Proof. By Tate loal duality [15℄, there is a non-degenerate perfet pairing
E(Qp) ×H1(Qp, E) → Q/Z.Taking the disrete p-primary part on the right gives

E(Qp) ×H1(Qp, E)(p) → Qp/Zp.Also, for a �nite extension L/Qp, the kernel of restrition H1(Qp, E)
rL→

H1(L,E) is dual under the above pairing to the image of the norm map
E(L)

NL→ E(Qp), and hene k̂er rL ∼= E(Qp)/NL(E(L)). Letting L rangeover the intermediate sub�elds (Qn)p in (Q∞)η, one an identify k̂er rp with
E(Qp)/N where N denotes the subgroup of universal norms

N =
⋂

L=(Qn)p

NL(E(L))from above in the Zp-extension (Q∞)η/Qp. The Kummer sequene for E(Qp)implies that
H1(Qp, E[p∞])/imκp ∼= H1(Qp, E)(p),and similarly

H1((Q∞)η, E[p∞])/imκη ∼= H1((Q∞)η, E)(p),hene k̂er rp ∼= E(Qp)/N .By proposition 4.42 in [9℄, the struture of E(Qp)/N is given by thesplit exat sequene
0 −→ Zp/(1 − u)Zp −→ E(Qp)/N −→ Ẽ(Fp)p −→ 0,59



where u is the unit root of the harateristi polynomial of Frobenius h(x) =

x2 − apx + p. Writing h(x) = (x − u)(x − p/u), one has h(1) = |Ẽ(Fp)| =

(1 −u)(1 −p/u). Sine p is anomalous, h(1) = p for p > 5 by the Hasse bound([12℄ pg. 131), but for p = 3, 5 one has h(1) = 6, 10 respetively. In any event,
ordp(1 − u) = 1. From [6℄ whih gives a di�erent proof of the above shortexat sequene, u ats on Zp by multipliation, and sine Ẽ(Fp)p is yli oforder p, one onludes that E(Qp)/N ∼= Z/pZ ⊕ Z/pZ.6.4 ExamplesOne an now apply the results from hapter 3 to determine the isomorphismlass ofX. By the Main Conjeture of Iwasawa theory, one expets the hara-teristi polynomial fX(T ) to be equal up to a unit to the p-adi L-series of E,
Lp(E, T ) ∈ Zp[[T ]]. The p-adi L-series for E an be omputed using SAGE[10℄ up to any desired preision modulo m = (p, T ). Assuming the Main Con-jeture, the Weierstrauss preparation theorem gives Lp(E, T ) = fX(T )U(T )for a unit U(T ) ∈ Λ, and by the expliit version of the Weierstrauss prepara-tion theorem 1.1.3, one an �nd fX(T ) up to any desired preision by fator-ing the trunated output Lp(E, T ) mod mk. The examples given below are for
λ = 2, λM−W = 0, and µ = 0.

y2 + xy = x3 − 2x− 5Let E be the ellipti urve y2 +xy = x3 −2x−5, whih is the urve 8691 fromCremona's tables [2℄. E has good ordinary redution at 3. The Tamagawanumbers are c11 = 2, c79 = 1, with E having split multipliative redution at11, and non-split multipliative redution at 79. Sine E(Q)3 = 0, X has nonontrivial �nite Λ-submodules. The rank is 0, but the torsion subgroup isyli of order 2 generated by the point (2,−1). The urve redued mod 3 is
Ẽ : y2 +xy = x3 +x+1 with Ẽ(F3)3 onsisting of the 3 points ∞, (0, 1), (0, 2),hene 3 is an anomalous prime. By prop 5.3 (ii) in [3℄, SelE(Q∞)3 is in�nite.60



One omputes the 3-adi L-series mod (3, T )4 as
L3(E, T ) ≡ (T − α)(T − β)where α ≡ 2 · 3 + 2 · 32 + 2 · 33 + O(34) and β = 3 + 32 + 33 + O(34), and bythe Main Conjeture
X →֒ Λ/(T − α) ⊕ Λ/(T − β)with �nite okernel. Sine the disriminant of (T − α)(T − β) has 3-adiorder 2, the degree 2 results from hapter 3 give two possibilities for X up to

Λ-isomorphism: X ∈ [N0] or X ∈ [N1] where
N0 = 〈(1, 1), (0, 1)〉

N1 = 〈(1, 1), (0, 3)〉.To deide whih module X is isomorphi to, one alulates the abelian p-group struture of the quotients Ni/ωn(T )Ni, whih just involves linear alge-bra. These turn out to be
N1/TN1

∼= Z/9Z,

N0/TN0 ≡ Z/3Z ⊕ Z/3Z.Then Ni
∼= X implies that

Ni/ωn(T )Ni
∼= X/ωn(T )X ∼= SelE(Q∞)Γn

3by Pontryagin duality (here one is using the fat that the dual of a �nite abelian
p-group is itself). Using Cremona's tables, one an verify that SelE(Q)3 = 0,so at level 0 ker g0

∼= cokers0 = SelE(Q∞)Γ
3 . Sine p is anomalous and theTamagawa numbers are prime to p, ker g0

∼= ker r3
∼= Z/3Z⊕Z/3Z by setion6.3. Hene X/TX ∼= Z/3Z ⊕ Z/3Z, and one onludes that X ∼= N0

∼= Ef .61



y2 = x3 + x2 − 16x− 32This is the urve 104a1 from Cremona's tables . One has ∆ = −21113 withTamagawa numbers c2 = 1, c13 = 1. The Weierstrauss fatorization of the
3-adi L-series is L3(E, T ) = f(T )U(T ) with

f(T ) = T 2 + (32 + 2 · 33 + 2 · 34 + · · · )T + (32 + 2 · 33 + 2 · 34 · · · ),whih is irreduible with disriminant 2 · 32 + 2 · 33 + 34 + · · · . Hene
Mf = {Nk = 〈T + b/2, 3k〉Zp

|k = 0, 1},by theorem 3.0.6 where b is the linear oe�ient of f . The quotients at level
0 are N0/TN0

∼= Z/9Z and N1/TN1
∼= Z/3Z ⊕ Z/3Z. As in the last example,3 is an anomalous prime for E, hene ker g0

∼= ker r3
∼= Z/3Z ⊕ Z/3Z. Sine

SelE(Q)3 = 0, one has X/TX ∼= ker g0, hene X ∼= N1.
y2 = x3 − x2 − 12x− 40This is E = 212b1 from Cremona's tables. One has ∆ = −28532, with Tama-gawa numbers c2 = 3, c53 = 2. The prime p = 3 is not anomalous for E. TheWeierstrauss Fatorization is L3(E, T ) = U(T )f(T ) with

f(T ) = T 2 + (2 · 3 + 33 +O(35))T + (2 · 3 + 33 +O(35)with ord3(disc(f)) = 1. Hene Mf onsists of the single lass given by
Λ/(f(T )), and X ∼= Λ/(f(T )). Note that in this example, if one just as-sumes SelE(Q)3 is �nite, the Euler harateristi result (theorem 4.1 in [3℄)gives

|SelE(Q∞)Γ
3 |

|SelE(Q)3|
= 3.Sine the top is already 3 by our result, SelE(Q)3 is fored to be trivial.62
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