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ABSTRACTIn Iwasawa theory, one studies how an arithmeti
 or geometri
 obje
tgrows as its �eld of de�nition varies over 
ertain sequen
es of number �elds.For example, let F/Q be a �nite extension of �elds, and let E : y2 = x3 +

Ax + B with A,B ∈ F be an ellipti
 
urve. If F = F0 ⊆ F1 ⊆ F2 ⊆

· · ·F∞ =
⋃∞
i=0 Fi, one may be interested in properties like the ranks and torsionsubgroups of the in
reasing family of 
urves E(F0) ⊆ E(F1) ⊆ · · · ⊆ E(F∞).The main te
hnique for studying this sequen
e of 
urves when Gal(F∞/F ) hasa p-adi
 analyti
 stru
ture is to use the a
tion of Gal(Fn/F ) on E(Fn) and theGalois 
ohomology groups atta
hed to E, i.e. the Selmer and Tate-Shafarevi
hgroups. As n varies, these Galois a
tions �t into a 
oherent family, and takinga dire
t limit one obtains a short exa
t sequen
e of modules

0 −→ E(F∞) ⊗ (Qp/Zp) −→ SelE(F∞)p −→ XE(F∞)p −→ 0over the pro�nite group algebra Zp[[Gal(F∞/F )]]. When Gal(F∞/F ) ∼= Zp,this ring is isomorphi
 to Λ = Zp[[T ]], and the Λ-module stru
ture of SelE(F∞)pand XE(F∞)p en
ode all the information about the 
urves E(Fn) as n varies.In this dissertation, it will be shown how one 
an 
lassify 
ertain �nitelygenerated Λ-modules with �xed 
hara
teristi
 polynomial f(T ) ∈ Zp[T ] up toisomorphism. The results yield expli
it generators for ea
h module up to iso-morphism. As an appli
ation, it is shown how to identify the isomorphism 
lassof SelE(Q∞)p in this expli
it form, where Q∞ is the 
y
lotomi
 Zp-extensionof Q, and E is an ellipti
 
urve over Q with good ordinary redu
tion at p, andpossessing the property that E(Q) has no p-torsion.
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Chapter 1INTRODUCTIONLet F/Qp be a �nite extension, and let O be the ring of integers in F . Let
π ∈ O be a uniformizing parameter, so that the maximal ideal of O is (π). Let
Λ denote the power series ring O[[T ]] over O. This dissertation studies �nitelygenerated torsion Λ-modules whi
h possess no nonzero �nite Λ-submodules.To be more pre
ise, for a �nitely generated torsion Λ-moduleM , one �rst hasthe well-knownTheorem 1.0.1 (Stru
ture Theorem). There exists a Λ-homomorphism

M −→
n⊕

i=1

Λ/(fi(T )ei)with �nite kernel and 
okernel. Ea
h fi(T ) is either the uniformizer π oran irredu
ible distinguished polynomial fi(T ) ∈ O[T ]. The fi(T ) and the
ei ∈ N \ {0} are uniquely determined by M .

P (T ) = a0+a1T+· · ·+Tm ∈ O[T ] is distinguished when a0, a1, . . . , am−1are in (π). The 
hara
teristi
 polynomial of M is
charΛ(M) =

n∏

i=1

fi(T )eiwhi
h 
an be written as πµf(T ) with f(T ) distinguished. Let deg f = λ.Let Mf denote the set of isomorphism 
lasses of Λ-modules M su
h that
charΛ(M) = f(T ) andM has no nontrivial Λ-submodules. In [13℄ the problemof determining Mf was introdu
ed, and it was shown that Mf is �nite whenthe fi are distin
t, ei ≤ 1, and µ = 0. The assumption that M has no �nite
Λ-submodules implies that the map in the Stru
ture theorem is inje
tive with�nite 
okernel. Hen
e M 
an be regarded as a Λ-submodule of Ef = ⊕Λ/(fi)with �nite quotient Ef/M . This dissertation gives a method for determining
Mf under these assumptions. 1



When ea
h fi(T ) = T −αi, then Ef =
⊕n

i Λ/(T −αi) 
an be identi�edwith the free O-module of rank n where T a
ts on the ith fa
tor as multi-pli
ation by αi. The submodules M of Ef with �nite quotient Ef/M musthave maximal O-rank n. The strategy for determining Mf will be as follows.Theorem 2.0.4 will show that up to isomorphism, any submoduleM ⊆ Ef hasgenerators over O of a 
ertain upper triangular form
G =




1 1 1 1 · · · 1

πi ∗ ∗ · · · ∗

πj ∗ · · · ∗. . .
πk




,

i.e. M is generated over O by the rows of G. The valuations along the diagonal
an be bounded, and using elementary row operations, the integral entries *
an be redu
ed modulo the power of π dire
tly below. There are then a �nitenumber of matri
es G1, G2, . . . , Gr to 
onsider, and representatives for the
lasses in Mf 
an be found among the modules Mt, where Mt is generatedover O by the rows of Gt. In pra
ti
e, r 
an be quite large, and one seeksto �nd a distin
t set of representatives. The main task is to de
ide when
Ms

∼= Mt. 1.1 The Ring ΛIn this se
tion, some relevant fa
ts about the ring Λ whi
h will be useful lateron will be dis
ussed. A good referen
e for Λ-modules and Iwasawa theory is[16℄. The �rst fa
t is that Λ enjoys a division algorithm mu
h like for rings ofpolynomials over a �eld.Theorem 1.1.1. Let P (T ) be a distinguished polynomial of degree r, and
f(T ) ∈ Λ. Then there exist q(T ) ∈ Λ and r(T ) ∈ O[T ] su
h that f(T ) =2



P (T )q(T ) + r(T ). The polynomial r(T ) is unique of degree less than or equalto r − 1.Let f(T ) =
∑∞
i=0 aiT

i ∈ Λ. Let µ = µ(f) = min{ordπ(ai)}
∞
i=0, sothat f(T ) = πµ

∑∞
i=1 biT

i with at least one of the bi a unit. De�ne λ(f) =

min{i|b0, b1, . . . , bi−1 ∈ (π), bi 6∈ (π)}.Theorem 1.1.2 (Weierstrauss Preparation). Let f(T ) =
∑∞
i=0 aiT

i ∈ Λ. Then
f(T ) fa
tors uniquely as πµP (T )U(T ) with U(T ) a unit and P (T ) a distin-guished polynomial of degree λ(f).From this theorem, it follows that Λ is a unique fa
torization domain.The irredu
ible elements are π, and distinguished irredu
ible polynomials
P (T ). Therefore the ideals (0), (π) and (P (T )) are prime. The idealm = (T, π)is 
learly maximal sin
e Λ/m ∼= O/(π) ∼= Fq for some �nite �eld Fq with q = pfelements. It turns out that these are the only prime ideals, and Λ is a regularlo
al ring of dimension 2 with unique maximal ideal m (see [16℄).The following result from [13℄ makes an expli
it Weierstrauss Prepa-ration fa
torization possible on any 
omputer that 
an perform polynomialfa
torization modulo powers of π.Theorem 1.1.3 (Proposition 3). Let fi(T ) = Pi(T )Ui(T ) for i = 1, 2 be Weier-strauss fa
torizations, where the Pi are distinguished polynomials, and the Uiare unit power series. Let m = (π, T ) be the unique maximal ideal of Λ. If
λ(f1) = λ = λ(f2), fi(T ) ∈ ml for l ≥ 1, and f1(T ) ≡ f2(T ) mod mλk+1, then

P1(T ) ≡ P2(T ) mod m
k+l.Sin
e πn, T n ∈ mn, to (partially) redu
e modulo mn one 
an redu
e
oe�
ient-wise by πn and then trun
ate the result by T n. As an example to3



see how this result is used, the program SAGE [10℄ returns the following forthe 3-adi
 L-series, L3(E, T ) of the ellipti
 
urve E = 50a1 from Cremona'stables:
L = 3+32+2·34+2·35+2·36+37+O(39)+(3+2·32+35+O(36))·T+(2+32+2·

33+2·34 +O(36))·T 2+(33 +2·34+O(35))·T 3+(2·32 +35 +O(36))·T 4 +(2+3+

2·32+33+34+2·35+O(36))·T 5+(1+3+32+33+34+O(35))·T 6+(1+3+2·33+

34+2·35+O(36))·T 7+(2·3+2·32+33+34+2·35+O(36))·T 8+(3+33+O(34))·T 9Hen
e L3(E, T ) ∼= L mod m4, and both are in m. One 
an see that λ = 2,hen
e l = 1, k = 1 in the above theorem. Lifting L to a polynomial andfa
toring gives
(1 + 32 +O(34)) · ((1 +O(34)) · T + (1 +O(34))) · ((1 +O(34)) · T 2 + (1 + 3 +

33 +O(34)) · T + (1 + 2 · 3 + 2 · 33 +O(34))) · ((1 +O(34)) · T 2 + (2 + 32 + 33 +

O(34)) · T + (2 + 32 + 33 +O(34))) · ((1 +O(34)) · T 2 + (2 · 3 +O(34)) · T + (2 ·

3 +O(34))) · ((3 +O(34)) · T 2 + (3 + 32 +O(34)) · T + (1 + 3 + 33 +O(34)))and sin
e anything with a unit 
onstant term is a unit, one 
an read o� thedistinguished polynomial part as the se
ond to last fa
tor P (T ) = T 2 +6T +6,known to a

ura
y mk+l = m2. To in
rease this a

ura
y, one in
reases thea

ura
y of the approximation to L3(E, T ).

4



Chapter 2GENERATORSIn this se
tion, it is shown that ea
h 
lass in Mf has a representative equal toa module generated over O by the rows of a matrix of type G. The followinglemma will be useful.Lemma 2.0.1. Let M ⊆ On be an O-submodule of rank n. Then M 
an begenerated by the rows of a matrix having the form



πa1 x1,2 x1,3 · · · x1,n

πa2 x2,3 · · · x2,n. . . ...
πan




,

where ai ∈ N and xi,j ∈ O.Proof. The proof will be by indu
tion on n. Sin
e any rank 1 submodule of Ois an ideal (πa), the result is true for n = 1. Suppose that the result is true for
n− 1. Let proji : On −→ O denote proje
tion onto the ith fa
tor. The image
proj1(M) must be a nonzero ideal in O sin
e otherwiseM ⊆ ker(proj1) ∼= On−1and M would then have rank n− 1 or less. Hen
e proj1(M) = (πa1) and thereis an element (πa1 , x1,2, x1,3, . . . , x1,n) ∈ M . Let (y1, y2, . . . , yn) ∈ M . Then
y1 = απa1 for some α ∈ O, so that (y1, y2, . . . , yn)−α(πa1 , x1,2, x1,3, . . . , x1,n) =

(0, z2, . . . , zn) ∈ ker(proj1) ∩ M . Sin
e proj1(M) has rank 1, ker(proj1) ∩ Mhas rank n− 1, and by the indu
tive hypothesis it is generated by
(0, πa2, x2,3, . . . , x2,n), . . . , (0, 0, . . . , πan)having the required form. The result follows.The next lemma shows that dividing the 
olumns of a matrix by ele-ments of O preserves the Λ-isomorphism 
lass of the Λ-module generated by5



its rows inside of Ef . The proof given below is slightly di�erent than the onein [14℄.Lemma 2.0.2. [Lemma 1 in [14℄℄ For any nonzero x1, x2, . . . , xn ∈ O, the map
φ : Ef −→ Ef given by (e1, e2, . . . , en) 7→ (x1e1, x2e2, . . . , xnen) is an inje
tivehomomorphism of Λ-modules, and hen
e indu
es a Λ-isomorphism M −→

φ(M) for any Λ-submodule M ⊂ Ef .Proof. Sin
e T a
ts diagonally on Ef , it is 
lear that the a
tion of T 
om-mutes with φ, hen
e φ is a Λ-homomorphism. Suppose φ(e1, e2, . . . , en) =

(x1e1, x2e2, . . . , xnen) = (0, 0, . . . , 0) in Ef . Then x1e1 = g(T )(T − α1) forsome power series g(T ) ∈ Λ. Sin
e α1 is a root of a distinguished polynomial,
|α1| < 1, and hen
e g(α1) is de�ned and 
onverges to an element in O. Then
x1e1 = g(α1)(α1 − α1) = 0, and sin
e O is a domain, this implies that e1 = 0.Similarly, e2 = e3 = · · · = en = 0.Let M have the O-basis given by the rows of the matrix from lemma2.0.1. The lemma just proved allows one to divide a 
olumn of M by anelement of O, and even though the submodule of Ef generated by the rowsof the resulting matrix is di�erent, the isomorphism 
lass is the same. Onemay also multiply rows by units, or add an integral multiple of one row toanother sin
e these operations just 
hange the basis used to des
ribe M as an
O-module. The generators for λ = 2 and 3 are produ
ed below, and then anindu
tive proof is given for all λ.For λ = 2, let M ⊆ Ef be generated over O by the rows of

B =



πa1 x1,2

0 πa2


with a1, a2,∈ N and x1,2 ∈ O. One 
an redu
e x1,2 modulo πa2 by using rowoperations, and if x1,2 = 0, then one may repla
e row 1 with the sum of rows6



1 and 2 to make x1,2 6= 0. One may therefore assume that ordπ(x1,2) ≤ a2.By Lemma 2.0.2, one 
an divide 
olumn 1 by πa1 , and 
olumn 2 by x1,2 toprodu
e the matrix 


1 1

0 uπi


 ,where uπk = πa2/x1,2. Dividing row 2 by u produ
es

G =




1 1

0 πi


 .The 
ase λ = 3 will illustrate the indu
tive step in the proof of theorem2.0.4 below. Let

B =




πa1 x1,2 x1,3

πa2 x2,3

πa3



.By the 
ase λ = 2 one 
an use row and 
olumn operations to produ
e a matrixin the form 


1 1

πi1


as the prin
iple 2 by 2 submatrix of B, so that without loss of generality onemay assume that

B =




1 1 x1,3

πi1 x2,3

πa3



.By using row operations one may assume that both ordπ(x1,3) and ordπ(x2,3)are less than or equal to a3. Now after these initial redu
tions, one has two
ases: ordπ(x1,3) ≤ ordπ(x2,3) or ordπ(x2,3) < ordπ(x1,3). If ordπ(x1,3) ≤

7



ordπ(x2,3) ≤ a3 then one 
an divide 
olumn 3 by x1,3, produ
ing



1 1 1

πi1 b

vπi2


where v is a π-adi
 unit. Dividing row 3 by v gives generators of the requiredform. Now assume that ordπ(x2,3) < ordπ(x1,3) ≤ a3. Then dividing 
olumn 3by x2,3 gives the form 



1 1 c

πi1 1

wπi2


where w is a π-adi
 unit and c ∈ (π). If α ∈ O, applying the row operation

R1 = R1 + (α− c)R2 transforms the top row into
(1, 1 + (α − c)πi1 , α).Modulo π this row be
omes (1, 1 + απi1, α), so that the entries along the toprow 
an be made into units if one 
an �nd α with both α and 1 + α unitsin O. This is possible as long as O/(π) 6∼= F2 sin
e one 
an then 
hoose anyelement α0 6= 0,−1 in the �nite �eld O/(π) and lift it to α ∈ O. Hen
e, theunits 1 + (α − c)πi1 and α 
an be divided from the 
olumns and multipliedfrom the rows to produ
e the desired form.For O the residue 
hara
teristi
 is the 
hara
teristi
 of its residue �eld

O/(π). If the residue 
hara
teristi
 is p, one has O/(π) ∼= Fq, where q = pf .Note that the proof for λ = 2 holds when O has any residue 
hara
teristi
,and for λ = 3 it was ne
essary that q 6= 2.Theorem 2.0.4. Let O have residue �eld O/(π) ∼= Fq with q = pf . Assumethat λ ≤ q. Then Mf has representatives M , where M 
an be generated as8



an O-module inside of Ef by the rows of a matrix in the form
G =




1 1 1 1 · · · 1

πi1 b2,3 b2,4 · · · b2,n

πi2 b3,4 · · · b3,n. . .
πin−1




,

with ik ∈ N and the bi,j ∈ O.Proof. The proof is by indu
tion along prin
iple submatri
es, the base 
asehaving already been established for λ = 2. Suppose one has obtained a prin-
iple submatrix 
onsisting of the �rst k + 1 by k + 1 entries in the form
Bk =




1 1 1 · · · 1 x1

πi1 b2,3 · · · b2,k x2. . . ...
πik−1 xk+1

πak




,

where k + 1 ≤ λ. By using row redu
tion if ne
essary, one may assume thatthe entries in the rightmost 
olumn have valuation less than or equal to akand are all nonzero. If x1 has smallest valuation among the entries in therightmost 
olumn, then dividing the 
olumn by x1 yields



1

b2...
bk+1

vπik




,

and dividing the k + 1st row by v transforms B into the desired form. Other-wise, among the entries x2, x3, x4, . . . , π
ak , one may 
hoose xj to have smallest9



valuation. Dividing the 
olumn by xj yields



c1...
cj−1

1

bj+1...
wπik




.

If c1 is already a unit, then one may divide this 
olumn by c1, and multiplythe k + 1st row by c1/w to yield a 
olumn in the desired form. In any event,one 
an divide row k + 1 by w, so one may assume that c1 ∈ (π) and w = 1.Now 
onsider the polynomial g(x) where
x(x+ 1)

k∏

t=j+1

(bj,tx+ 1) ≡ g(x) ∈ Fq[x].Note that g(x) has degree k− j+ 2 < λ ≤ q, so there is some α ∈ O su
h that
α(α+ 1)

k∏

t=j+1

(bj,tα+ 1) 6≡ 0 mod (π).Applying the row operation R1 = R1 + (α − c1)Rj to the matrix transformsthe top row into the form
(1, . . . , 1, 1 + (α− c1)π

ij−1 , 1 + (α − c1)bj,j+1, . . . , 1 + (α − c1)bj,k, α).Redu
ing modulo π, this row be
omes
(1, . . . , 1, 1 + απij−1, 1 + αbj,j+1, . . . , 1 + αbj,k, α)sin
e c1 ∈ (π). Sin
e none of these entries are 0 modulo π by the 
hoi
e of

α, the entries in row 1 are all units. Dividing ea
h unit from the 
olumn andthen multiplying it from the row below produ
es a matrix Bk+1 in the desiredform. Hen
e by indu
tion the result holds.10



2.1 Λ-IsomorphismsThere are some interesting 
onsequen
es of the existen
e of these upper trian-gular generators. The �rst of these is given in the next theorem.Theorem 2.1.1. The tuple (i1, i2, . . . , in−1) is a Λ-module invariant.For two matri
es A,B ∈ Matn×n(F ), write A ∼O B if A = XBX−1 forsome X in GLn(O), in whi
h 
ase one says that A and B are integrally similar.It is easy to 
he
k that integral similarity de�nes an equivalen
e relation.Lemma 2.1.1. LetM1 andM2 be Λ-submodules of Ef with maximal O-rank n,and let [T ]1, [T ]2 be the matrix representations of the a
tion of T with respe
tto any O-bases 
hosen for M1 and M2. Then M1
∼= M2 as Λ-modules if andonly if [T ]1 ∼O [T ]2.Proof. Let φ : M1 −→ M2 be a Λ-isomorphism. Sin
e φ is an isomorphismof O-modules of rank n, φ has a matrix representation [φ] ∈ GLn(O) withrespe
t to the given O-bases. Sin
e φ is Λ-linear, one has φ ◦ T = T ◦ φ.Then [φ][T ]1 = [T ]2[φ] whi
h is equivalent to [φ][T ]1[φ]−1 = [T ]2. Hen
e

[T ]1 ∼O [T ]2.Conversely, any X ∈ GLn(O) su
h that X[T ]1X
−1 = [T ]2 indu
es anisomorphism of O-modules whi
h 
ommutes with the a
tion of T . This 
learlyimplies that the isomorphism indu
ed by X 
ommutes with polynomials in

O[T ], so the isomorphism of O-modules indu
ed by X is O[T ]-linear. Anysu
h isomorphism automati
ally extends to be Λ-linear.To see this, re
all that Λ has the (π, T )-adi
 topology indu
ed by itsmaximal ideal m = (π, T ). One requires the a
tion Λ × M −→ M to be
ontinuous for any Λ-module M , where M has some topology. Also, φ :11



M1 −→ M2 is required to be 
ontinuous. Now suppose φ : M1 −→ M2 isa 
ontinuous map of topologi
al O-modules with φ ◦ T = T ◦ φ. Then φ
ommutes with any polynomial in O[T ]. Let g(T ) ∈ Λ and 
hoose a sequen
eof polynomials (gn(T )) su
h that gn(T ) → g(T ) as n → ∞, where the limit istaken in the (π, T )-adi
 sense (sin
e πn, T n ∈ (π, T )n, one 
an take the gn(T )to have 
oe�
ients that 
onverge π-adi
ally to the 
oe�
ients of g(T ) alonghigher and higher powers of T ). Then for any α ∈ M1

φ(g(T )α) = φ((lim gn(T ))α)

= φ(lim gn(T )α)

= limφ(gn(T )α)

= lim gn(T )φ(α)

= (lim gn(T ))φ(α)

= g(T )φ(α).Hen
e φ is Λ-linear and is therefore a Λ-isomorphism from M1 to M2.
Now let [T ] be the matrix representation of the a
tion of T onM where

M has generators given by the rows of G. Let D(α1, . . . , αn) be the n by ndiagonal matrix with the roots of f , α1, . . . , αn, along the diagonal. Thenone has [T ] = GD(α1, . . . , αn)G
−1. Suppose M1,M2 ⊆ Ef with generatorsgiven by the matri
es G1, G2 respe
tively, in the form given in theorem 2.0.4,and let X = [ϕ] ∈ GLn(O) be the matrix representation of a Λ-isomorphism

12



ϕ : M1 → M2 in the given bases. Letting D = D(α1, . . . , αn), one has
X[T ]1 = [T ]2X

⇔XG1DG
−1
1 = G2DG

−1
2 X

⇔(G−1
2 XG1)D(G−1

1 X−1G2) = DThe last equality is equivalent to saying that the matrix G−1
2 XG1 is in thestabilizer of GLn(F ) a
ting on itself via 
onjugation. The following result iseasy to prove.Lemma 2.1.2. Let K be a �eld. If A stabilizes a diagonal matrix D in GLn(K)with distin
t entries along the diagonal, then A must be diagonal.Hen
e G−1

2 XG1 = A for some diagonal matrixA, say A = D(d1, . . . , dn)and one has
X = G2D(d1, . . . , dn)G

−1
1 ,so that X is upper triangular. Let the powers of π along the diagonal of G2 be

1, πi1, . . . , πin−1 , and similarly, let 1, πj1, . . . , πjn−1 be along the diagonal of G1.Sin
e X ∈ GLn(O), must be upper triangular with integral entries, it musthave the form
X =




u1 x1,2 · · · x1,n−1 x1,n

u2 . . . x2,n−1 x2,n. . . ... ...
un−1 xn−1,n

un


with units ui ∈ O× and integral entries xi,j , and one 
an solve for the diagonalentries d1, . . . , dn as D(d1, . . . , dn) = G−1

2 XG1. This gives
d1 = u1, d2 = u2π

∆1, d3 = u3π
∆2 , . . . , dn = unπ

∆n−1 ,where ∆k = jk − ik for k = 1, . . . , n − 1. Everything is in pla
e to provetheorem 2.1.1. 13



Proof. Consider the equation XG1 = G2D(d1, d2, . . . , dn). The left-hand sideis integral, and sin
e the top row of the right-hand side is d1, d2, . . . , dn, onehas 0 ≤ ∆k = jk − ik for k = 1, . . . , n− 1. Assume ∆k > 0 for some k, so that
0 ≤ ik < jk. Then π divides dk+1 so that π divides every entry in the k + 1st
olumn of G2D(d1, . . . , dn). Therefore π must divide the k + 1st 
olumn of
XG1. Sin
e X and G1 are both upper triangular, the nonzero entries of the
k + 1st 
olumn of their produ
t is the produ
t of the k + 1 by k + 1 prin
iplesub-matrix of X with the nonzero part of the k + 1st 
olumn of G1, say




u1 x1,2 · · · x1,k+1

u2 · · · x2,k+1. . .
uk+1







1

b2...
bk

πjk




.

Now one works from the bottom up to yield the 
ontradi
tion π | u1. Sin
e πdivides bkuk + xk,k+1π
jk , one has π|bk sin
e jk > 0 and uk is a unit. Similarly,sin
e π divides
uk−1bk−1 + xk−1,kbk + xk−1,k+1π

jkand π|bk, π must divide bk−1 sin
e uk−1 is a unit. Continuing in this manner,one has that π divides b2, b3, . . . , bk. Sin
e π divides the topmost entry
u1 + x1,2b2 + · · · + x1,kbk + x1,k+1π

jk ,and π divides the b's, this yields π|u1.The results obtained so far give a spe
i�
 form that any Λ-isomorphism
ϕ : M1 → M2 must take. Namely,

X = [ϕ] = G2D(u1, . . . , un)G
−1
114



for some units ui ∈ O×. Let IsomΛ(M1,M2) be the 
olle
tion of Λ-isomorphismsfrom M1 to M2, and AutΛ(M) = IsomΛ(M,M), a group under fun
tion 
om-position. One hasTheorem 2.1.2. For M1 and M2 generated by G1 and G2 respe
tively, de�nethe map of sets
ϕ1,2 : (O×)n → GLn(F )by ϕ1,2(u) = G2D(u)G−1

1 . ThenM1
∼= M2 if and only if imϕ1,2 ∩K 6= ∅, where

K = GLn(O). If X = ϕ1,2(u) ∈ K, then X is the matrix representation ofa Λ-isomorphism in the given O-bases. All Λ-isomorphisms are obtained thisway. Denote the n-dimensional integral torus over O by
Gn
m(O) = (O×)n.For a Λ-module M ⊆ Ef generated over O by the rows of G, the map ϕM :

Gn
m(O) → GLn(F ) given by

u = (u1, . . . , un) 7→ GD(u)G−1is easily seen to be an inje
tive group homomorphism, and one has
AutΛ(M) ∼= ϕ−1

M (K)where K = GLn(O), the maximal 
ompa
t subgroup of GLn(F ). Therefore
AutΛ(M) is realized as a subgroup of Gn

m(O). A 
onsequen
e of this isTheorem 2.1.3. AutΛ(M) is an abelian group.If M1
∼= M2 as Λ-modules, then one 
anoni
ally has AutΛ(M1) ∼=

AutΛ(M2). Regarding the automorphism group as a subgroup of Gn
m(O), oneobtains the stronger result 15



Theorem 2.1.4. If M1
∼= M2 as Λ-modules, then AutΛ(M1) and AutΛ(M2)
oin
ide as subgroups of Gn

m(O).Proof. Let ϕ1,2(u) = G2D(u)G−1
1 ∈ GLn(O) and suppose v ∈ AutΛ(M1) sothat ϕM1

(v) = G1D(v)G−1
1 ∈ GLn(O). Then

ϕ1,2(u)ϕM1
(v)ϕ1,2(u)−1 = G2D(u)G−1

1 (G1D(v)G−1
1 )G1D(u−1)G−1

2

= G2D(v)G−1
2

∈ GLn(O).whi
h shows AutΛ(M1) ⊆ AutΛ(M2). By symmetry one has AutΛ(M2) ⊆

AutΛ(M1).It is unknown whether or not two Λ-modules with the same auto-morphism group in Gn
m(O) are for
ed to be isomorphi
. However, for non-isomorphi
 Λ-modules, one 
an 
onstru
t examples where the automorphismgroups interse
t nontrivially.

16



Chapter 3
Λ-MODULES WITH λ = 2The Λ-modules with λ = 2 and µ = 0 were 
lassi�ed in [13℄ and [8℄. Theseresults will be used later in Chapter 5 for the appli
ations to ellipti
 
urves.Let F/Qp be a �nite extension, and let O be the ring of integers of Fwith uniformizer π. Let f(T ) ∈ O[T ] be a distinguished polynomial of degree

λ = 2. As before Mf denotes the set of isomorphism 
lasses of Λ-modules Msatisfying:
• charΛ(M) = f(T ), and
• M has no nontrivial �nite Λ-submodulesThere are two 
ases to 
onsider. First, suppose that f(T ) is redu
ibleover O, in whi
h 
ase f(T ) = (T − α1)(T − α2). The 
onditions above implythat M may be regarded as a submodule of Ef = Λ/(T − α1) ⊕ Λ/(T − α2)with �nite quotient C = Ef/M . Write elements of M as (x, y) ∈ O2, where Ta
ts as T (x, y) = (α1x, α2y). The following result is proved in [13℄.Theorem 3.0.5. Assume the roots α1 and α2 are distin
t, and set e = ordπ(α2−

α1). Then |Mf | = e+ 1, and the modules
Ni = 〈(1, 1), (0, πi)〉Ofor 0 ≤ i ≤ e are a 
omplete set of representives for the isomorphism 
lassesin Mf .The notation 〈g1, g2〉O means the submodule of Ef generated over Oby g1, g2. 17



Proof. Let Ni be generated over O by the rows of G =




1 1

πi


. By theorem2.1.1, the powers of π along the diagonal are a Λ-module invariant of M ,hen
e the Ni represent distin
t 
lasses in Mf . Sin
e every 
lass in Mf 
anbe represented by Ni by theorem 2.0.4, this shows that the modules Ni are aa distin
t set of representatives. To bound i, one uses module 
losure. Sin
e

T (1, 1) = (α, β) must be in Ni, one must have (α, β) = x(1, 1) + y(0, πi) for
x, y ∈ O. This for
es x = α, and y = (β − α)/πi, hen
e i ≤ e.Now 
onsider the 
ase where f(T ) = T 2+bT+c ∈ Zp[T ] is distinguishedand irredu
ible, with distin
t roots α, β lying in a quadrati
 extension of F/Qp.Let M ⊆ Λ/(T 2 + aT + b) be a Λ-submodule with maximal O-rank 2. Usingthe Division algorithm in Λ, elements of M 
an be represented in the form
xT + y for some x, y ∈ Zp. The following result is proved in [8℄.Theorem 3.0.6. Let p be an odd prime. The Λ-modules Nk = 〈T + b

2
, pk〉Zp

for
0 ≤ k ≤ ordp(b2−4c)

2
form a 
omplete set of representatives for the isomorphism
lasses in Mf .This result a
tually applies when Zp is repla
ed by the ring of integersin any �nite extension of Qp, but the result is stated here for Zp be
ause it issu�
ient for our appli
ations in Chapter 6. The proof of this result is givenbelow. Koike's idea is to extend s
alars to the the ring of integers of F , where

f(T ) splits. One 
an then apply Theorem 3.0.5. The proof is in
luded herefor the sake of 
ompleteness, and to illustrate the relationship between Mffor redu
ible and irredu
ible f(T ).Proof. First, observe that lemma 2.0.1 implies that any submodule N ⊆

Λ/(f(T )) with rankZp
N = 2 has the form 〈πa1T + x1,2, π

a2〉Zp
. It is easy18



to see that module 
losure implies a1 ≤ ordp(x1,2) and a1 ≤ a2, and sin
emultipli
ation by πa1 is a Λ-isomorphism, one may assume without loss ofgenerality that N = 〈T − a, πk〉Zp
for some a ∈ Zp.Let F/Qp be the splitting �eld for f(T ), with ring of integers denotedby O. Let π be a uniformizer for O, so that (π) is the unique maximal idealof O. Let ΛO = O[[T ]]. Sin
e O ∼= Z2

p as a Zp-algebra, one has ΛO
∼= Λ2as a Λ-module. Hen
e if M is a Λ-module, extending the s
alars to ΛO gives

M ⊗Λ ΛO
∼= M ⊕ M . The fun
tor M 7→ M ⊗Λ ΛO is therefore faithfully �atfrom the 
ategory of Λ�modules to the 
ategory of ΛO-modules, and therefore

M1
∼= M2 over Λ if and only if M1 ⊗ ΛO

∼= M2 ⊗ ΛO over ΛO. Let MO
f denotethe isomorphism 
lasses of ΛO-modules with 
hara
teristi
 polynomial f(T )and having no nontrivial �nite ΛO-submodules. The fun
tor _⊗ ΛO thereforeindu
es an inje
tion

Mf −→ MO
f .The result for the redu
ible 
ase gives the e+ 1 representives: 〈(1, 1), (0, πi)〉Ofor the 
lasses in MO

f , where e = ordπ(β − α).Now 
onsider the image of _ ⊗ ΛO. Applying _ ⊗ ΛO to the exa
tsequen
e
0 −→ Nk −→ Λ/(f(T )) −→ C −→ 0gives

0 −→ Nk ⊗ ΛO −→ ΛO/(f(T )) −→ C ⊗ ΛO −→ 0,and one hasNk⊗ΛO
∼= 〈T+b/2, pk〉O. Under the 
anoni
al pseudo-isomorphism

ΛO/(f(T )) → ΛO/(T − α) ⊕ ΛO/(T − β), the generators T + b/2, pk be
ome
T + b/2 7→ ((α − β)/2, (β − α)/2)

pk 7→ (pk, pk)19



Therefore Nk⊗ΛO is identi�ed with the submodule of ΛO/(T−α)⊕ΛO/(T−β)generated over O by the rows of the matrix
B =



α−β

2
β−α

2

pk pk


 .Suppose that F/Qp is unrami�ed. Using the row and 
olumn operationsallowed in the proof of Theorem 2.0.4, one 
an bring B to the form




1 1

πe−k


 .It only remains to see that as k ranges over 0, 1, . . . , ordp(b

2 − 4c)/2, theexponent e − k ranges over 0, 1, . . . , e, so that Mf maps surje
tively, hen
ebije
tively, to MO
f . But

ordp(b
2 − 4c) = ordπ(b2 − 4c)

= ordπ((β − α)2)

= 2e.and the result follows in this 
ase.Otherwise F/Qp is totally rami�ed, so that p = uπ2 for some u ∈ O×.The matrix B be
omes 

πe −πe

π2k π2k


after dividing the units from the rows. If 2k ≤ e, one ex
hanges row 1 and 2 of

B and performs the same row and 
olumn operations used above to produ
ethe matrix 


1 1

πe−2k


 ,while if e < 2k, similar row and 
olumn operations yield




1 1

π2k−e


 .20



Note that sin
e one knows before hand that Nk⊗ΛO is a ΛO-module, one musthave 2k−e ≤ e, whi
h implies k ≤ e. Therefore, as k ranges over 0, 1, 2, · · · , e,the modules Nk are identi�ed into 
lasses as Nk
∼= Ne−k, so the Nk represent

⌊e/2⌋ = ⌊ordp(b
2 − 4c)/2⌋ distin
t 
lasses. If one has a di�erent T − a as the�rst generator instead of T + b/2, it is 
an be shown by a similar argument(see [8℄) that the resulting 
lasses are identi�ed in the same way. Thereforethe Nk as k ranges over 0, 1, 2, . . . , ⌊ordp(b

2 − 4c)/2⌋ form a set of distin
t andexhaustive representatives for the 
lasses in Mf .
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Chapter 4
Λ-MODULES WITH λ = 3Let f(T ) = (T − α1)(T − α2)(T − α3) ∈ O[T ], with roots αi ∈ (π) su
h that

αi 6= αj for i 6= j. As before Mf denote the set of Λ-isomorphism 
lasses ofmodules M su
h that charΛM = f(T ), and su
h that M has no nontrivial�nite Λ-submodules. By theorem 2.0.4, ea
h isomorphism 
lass in Mf 
an berepresented by a module M generated over O by the rows of a matrix
G =




1 1 1

πi a

πj


when 3 ≤ q = |O/(π)|. As in [14℄, [i, j, a] denotes the Λ-isomorphism 
lass
orresponding to G. In this 
hapter, it will be shown that there are only a�nite number of possible G. The proof of this is essentially to use Λ-module
losure to bound the i, j, and on
e this is a

omplished, using row operationsone may redu
e a mod πj so that the parameter a may be taken in the �nitering O/(πj). Then, an if and only if 
ondition is given for when two 
lasses

[i, j, at] for t = 1, 2 are equal.4.1 Bounding the GeneratorsBounding the parameters i, j su�
es to illustrate a spe
ial 
ase of the funda-mental �niteness result from [13℄:Theorem 4.1.1. [Sumida's theorem℄ If f(T ) ∈ Λ \ (π), then Mf is �nite if andonly if f(T ) is square-free, i.e. f(T ) 
annot be written as g(T )2h(T ) for powerseries g(T ) ∈ Λ \ Λ×, h(T ) ∈ Λ.First 
onsider the elementary Λ-moduleEann = Λ/(f(T )). Sin
e (f(T )) ⊆

(T − αi), one has natural surje
tions Eann −→ Λ/(T − αi) given by g(T ) mod

(f(T )) 7→ g(T ) mod (T − αi), and their sum indu
es a map ψ : Eann −→ Ef22



given by ψ(g(T )) = (g(α1), g(α2), g(α3)). By lemma 13.8 in [16℄, this map isinje
tive with �nite 
okernel, so by theorem 2.0.4 one 
an �nd an isomorphi

opy of ψ(Eann) in Ef with generators given by G. To see this expli
itly, usingthe Division Algorithm in Λ, Eann has an O-basis given by {1, T, T 2} whi
hmaps to the O-basis
(1, 1, 1), (α1, α2, α3), (α

2
1, α

2
2, α

2
3)for the image ψ(Eann). One 
an apply row operations to the Vandermondematrix 



1 1 1

α1 α2 α3

α2
1 α2

2 α2
3


to rewrite the generators of ψ(Eann) in upper triangular form. Sin
e this is a
ommon exer
ise in linear algebra, the details will not be shown, but simplywrite the result as




1 1 1

α2 − α1 α3 − α1

(α3 − α1)(α3 − α2)



.Write α2 − α1 = uπl, α3 − α1 = vπm, and α3 − α2 = wπn for units u, v, w.Dividing row 2 of the above matrix by u and row 3 by vw gives the matrix




1 1 1

πl ufπ
m

πm+n


with uf = v

u
, a unit determined by f . Therefore Eann falls into the 
lass

[l,m+n, ufp
m]. It is easy to see that anyM with generators equal to the rowsof the matrix G must 
ontain Eann. Sin
e (1, 1, 1) ∈ M , and sin
e TM ⊆ M ,one must have T (1, 1, 1) = (α1, α2, α3) ∈ M and T 2(1, 1, 1) = (α2

1, α
2
2, α

2
3) ∈ M .23



Hen
e M 
ontains a 
opy of Eann. Hen
e the rows of the matrix



1 1 1

πl ufπ
m

πm+n


must be in M , and one must be able to write ea
h row as an O-linear 
om-bination of the generators of M . This automati
ally gives 0 ≤ i ≤ l, and

0 ≤ j ≤ m + n so the parameters i, j, a are bounded. One must also have
(0, πl, ufπ

m) ∈ M so that
x(0, πi, a) + y(0, 0, πj) = (0, πl, ufπ

m),whi
h after solving for x and re-substituting implies πl−ia ≡ ufπ
m mod πj . Aslong as these 
onditions are met, the module 
losure relation T (1, 1, 1) ∈ M issatis�ed. The only other nontrivial 
losure 
ondition needed is T (0, πi, a) ∈ M .Hen
e for some x, y ∈ O,

T (0, πi, a) = (0, α2π
i, α3a)

= x(0, πi, a) + y(0, 0, πj)

so that x = α2 and one must be able to write α2a+yπj = α3a. This is possibleif and only if j ≤ n+ordπ(a). If the 
onvention is made that the roots of f(T )are labeled to make l ≤ m, then for j ≤ l − i, the above 
ongruen
e imposesno restri
tion on a, while for j > l−i one must have a ≡ ufπ
m−l+i mod πj−l+i.In this 
ase ordπ(a) is for
ed to be m− l+ i, so the inequality j ≤ n+ ordπ(a)implies j ≤ n+m− l + i.To summarize what has been shown so far, for the prime powers of

πi, πj in the matrix G, one must have 0 ≤ i ≤ l and 0 ≤ j ≤ m + n. Inaddition, for a �xed j, one 
an take a ∈ O/(πj). If i + j ≤ l, then one 
an24



take any a mod πj. Otherwise, if l < i + j, then the 
ongruen
e uniquelydetermines a modulo πi+j−l. Lastly, j ≤ n + m− l + i. These 
onditions areimplied by module 
losure TM ⊂ M . Conversely, anyM generated over O bythe rows of G with i, j, a satisfying these 
onditions is 
losed under the a
tionof T and is therefore a Λ-module.Module Closure Relations:MC1 (i, j) ∈ [0..l] × [0..n+m] with j ≤ n+m− l + iMC2 If i+ j ≤ l, any a ∈ O/(πj) is allowed.MC3 If l < i+ j, then a ≡ πm−(l−i)uf mod πi+j−l.These 
onditions are illustrated in �gure 4.1 below.4.2 Λ-Isomorphism and Integral SimilarityNow 
onsider the problem of determining when two Λ-modules generated over
O by the rows of G in Ef are isomorphi
. If M is generated over O by thematrix G, then it has already been shown in se
tion 2.1 that the powers of πalong the diagonal of G are an invariant of M . In the notation from [14℄, thequestion is: for a1, a2 in O/(πj), when is [i, j, a1] = [i, j, a2]? Let G(i, j, a) bethe matrix

G(i, j, a) =




1 1 1

πi a

πj



,and let M1,M2 be generated over O by the rows of G(i, j, a1) and G(i, j, a2)respe
tively. In se
tion 2.1, it was already shown that any Λ-isomorphism

φ : M1 −→ M2 must have a matrix representation of the form
X = [ϕ] = G2D(u1, u2, u3)G

−1
125



Figure 4.1: Parameter Domain For Module Closurewith respe
t to the given O-bases, where u1, u2, u3 ∈ O×. Let
X =




u1 x y

u2 z

u3



,and note that the only 
ondition that prevents X from being in GL3(O) isthe integrality of x, y, z. Write the last equation as XG1 = G2D(u1, u2, u3).Equating the o�-diagonal entries of the left and right-hand sides gives the

26



system
u1 + xπi = u2 (4.1a)

u1 + xa1 + yπj = u3 (4.1b)
u2a1 + zπj = a2u3, (4.1
)and viewing the last equation as a 
ongruen
e modulo πj , one sees that

[i, j, a1] = [i, j, a2] implies ordπ(a1) = ordπ(a2). Viewing (4.1a)-(4.1
) as asystem in the unknowns u1, u2, u3, and x, y, z, one 
an solve for the ui in termsof x, y, and z. The system 4.1 in matrix form is



1 −1 0 πi 0 0

1 0 −1 a1 πj 0

0 a1 −a2 0 0 πj



,and viewing this as a system of equations over F , one 
an bring this matrixinto the form (I3×3|B(a1, a2)) with

B(a1, a2) =
1

a1 − a2




a1(πi − a2) −a2π
j πj

a2(πi − a1) −a2π
j πj

a1(πi − a1) −a1π
j πj



.Note that a1 − a2 6= 0 sin
e one may assume without loss of generality that

a1 6≡ a2 mod πj . Therefore one has [i, j, a1] = [i, j, a2] if and only if there exist
x, y, z ∈ O with

B(a1, a2)




x

y

z




∈ (O×)3.To test this 
ondition, one 
an ignore the last two 
olumns in B(a1, a2) sin
eone 
an assume k′ = ordπ(a1 − a2) < j (a is taken modπj). For example, the�rst entry of a linear 
ombination of the 
olumns of B(a1, a2) is
x
a1(πi − a2)

a1 − a2
− y

a2π
j

a1 − a2
+ z

πj

a1 − a2
,27



and sin
e the last two terms are always divisible by π, the sum will be a unitif and only if xa1(πi − a2)/(a1 − a2) is a unit for some x ∈ O. This is possibleif and only if ordπ(a1) + ordπ(πi − a2) ≤ ordπ(a1 − a2). The same argumentapplies to the other two rows of B(a1, a2). One now has the following useful
riterion for when two isomorphism 
lasses [i, j, a1] and [i, j, a2] are the same.Theorem 4.2.1. For a1, a2 ∈ O/(πj), [i, j, a1] = [i, j, a2] if and only if ordπ(a1) =

ordπ(a2), ordπ(πi−a1) = ordπ(πi−a2) and ordπ(a1)+ordπ(πi−a2) ≤ ordπ(a1−

a2). Letting k = ordπ(as), as = vsπ
k for vs ∈ O×, s = 1, 2, and k′ = ordπ(a1 −

a2), this 
ondition is equivalent to:1. If k < i, then 2k ≤ k′.2. If k = i, then ordπ(1 − v1) = ordπ(1 − v2) and 2k + ordπ(1 − vs) ≤ k′.3. If i < k, then k + i ≤ k′.Proof. First suppose that k < i. By the Isos
eles Triangle Property, ordπ(πi−

a2) = k, and similarly all entries in the �rst 
olumn of (a1 − a2)B(a1, a2) havevaluation 2k, so the 
ondition be
omes 2k ≤ k′. If i < k, the Isos
eles TriangleProperty gives ordπ(πi − a2) = i, and a similar argument gives k + i ≤ k′. If
k = i, then ordπ(πi − a2) = ordπ(πk(1 − u2)) = k + ordπ(1 − u2) and similarly
ordπ(πi − a1) = k + ordπ(1 − u1). Now the 
ondition is that there exists an
x ∈ O so that

ordπ(xa1(πi − a2)) = ordπ(x) + 2k + ordπ(1 − v2) = k′

ordπ(xa2(πi − a1)) = ordπ(x) + 2k + ordπ(1 − v1) = k′

ordπ(xa1(πi − a1)) = ordπ(x) + 2k + ordπ(1 − v1) = k′.Therefore, one must have ordπ(1 − v1) = ordp(1 − v2) and 2k+ ordπ(1 − vs) =

k′ − ordπ(x) ≤ k′. Conversely, if these inequalities are met in ea
h 
ase, then28



x 
an be 
hosen to be the unique power of π whi
h multiplies the �rst 
olumnof B(a1, a2) into (O×)3.Although the proof and the dis
ussion pre
eeding it were somewhatad ho
 sin
e there were exa
tly the same number of units u1, u2, u3 as o�-diagonal entries of the matrix X, the quantities i, j, ordπ(a) were dis
overedto be invariants of the O-submodule generated by the rows of G(i, j, a). One
an use lo
alization to explain these invariants, and the quantity ordπ(πi − a)appearing in theorem 4.2.1. For example, lo
alizing M at f3(T ) = (T − α3),gives the Λf3
-submoduleMf3

= 〈(1/1, 1/1, 1/1), (0, πi/1, a/1), (0, 0, πj/1)〉O of
(Ef)f3

. Here the fa
t that lo
alization distributes over dire
t sums is beingused to form the fra
tions over ea
h 
omponent. Sin
e f3 is a unit in Λf3
,

Mf3
= f3Mf3

=

〈(
α1 − α3

1
,
α2 − α3

1
, 0
)
,

(
0,
πi(α2 − α3)

1
, 0

)
, (0, 0, 0)

〉

O

,where the last 
oordinates have been made 0 by multiplying by f3. Assemblingthese into a matrix and dividing 
olumns 1 and 2 by α1−α3 and α2−α3 implies
Mf3

∼= 〈(1/1, 1/1, 0), (0, πi/1, 0)〉Oby theorem 2.0.2. For the 
ase λ = 2 it was already shown that the power of
π o

uring along the diagonal of G is an invariant. Repeating this argumentat f2(T ) = T −α2 and suppressing the se
ond 
oordinate,Mf2

is generated by
(1, 1), (0, a), (0, πj) whi
h falls into the 
lass 〈(1, 1), (0, πmin{j,ordπ(a)})〉O whi
hgives the degree 2 invariant min{j, ordπ(a)}. At f1(T ) = T − α1, Mf1

∼=

〈(1, 1), (πi, a), (0, πj)〉O = 〈(1, 1), (0, a−πi), (0, πj)〉O whi
h similarly gives thedegree 2 invariant min{j, ordπ(πi−a)}. These lo
al invariants are being addedon the left side of the inequality in theorem 4.2.1.Two examples will now be given to see how theorem 4.2.1 allows one to
al
ulate Mf . These two examples have been 
al
ulated previously by Sumida29



and Ha
himori, respe
tively. Our method di�ers 
onsiderably from that in [14℄sin
e all possibilities for l,m, n are being handled at on
e.4.3 ExamplesExample: (l,m, n) = (1, 1, 1)The module 
losure 
onditions imply (i, j) ∈ [0..1]×[0..2] with j ≤ i+1.Hen
e (i, j) = (0, 0), (0, 1), (1, 0), (1, 1), (1, 2). For j = 0, there is only the 
lassgiven by a = 0, so one has the 
lasses Ef = [0, 0, 0] and [1, 0, 0]. For (0, 1), onemust have a ∈ O/(π), and the invariant ordπ(a) 
an be 0 or ∞. If a is a unit,then k = 0 = i and by theorem 4.2.1 a = 1 is in a 
lass by itself. Otherwise
a 6= 1, and ordπ(1 − a) = 0. Substituting into the 
ase k = i of theorem 4.2.1gives 0 ≤ k′ whi
h is always true. This gives the 
lasses [0, 1, 1] and [0, 1, 2].For ordπ(a) = ∞ there is only the 
lass [0, 1, 0]. For (i, j) = (1, 1), one is abovethe line i+ j = l, so the 
ongruen
e in the module 
losure relation MC3 mustbe taken into a

ount. Hen
e a ≡ πuf ≡ 0 mod π yielding the 
lass [1, 1, 0].Similarly for the remaining 
ase (i, j) = (1, 2), one has a ≡ πuf mod π2 givingthe 
lass Eann = [1, 2, πuf ]. These are pre
isely the 7 
lasses found by Sumidain [14℄ for this 
ase.Example: (l,m, n) = (2, 2, 2)The parameter domain is [0..2] × [0..4] with j ≤ i + 2. This gives the12 possibilities for i, j shown in �gure 4.2:As in the previous example, for j = 0 one has the three 
lasses [0, 0, 0], [1, 0, 0],and [2, 0, 0]. The same 
al
ulations as in the previous example also give thethree 
lasses [0, 1, 0], [0, 1, 1], and [0, 1, 2] for (i, j) = (0, 1). For i = 2, MC3implies a ≡ π2uf mod πj giving the four 
lasses [2, j, π2uf ] for j = 1, 2, 3, 4.For (i, j) = (0, 2) the possibilities for ordπ(a) are 0,1, and ∞. If a is aunit, then one is in 
ase i = k = 0 of theorem 4.2.1, and the 
ondition is that30



Figure 4.2: Parameter Domain For (l,m, n) = (2, 2, 2)

ordπ(1 − vs) ≤ k′, i.e. one 
an identify two 
lasses 
orresponding to a1, a2 ifthey agree up to at least as many π-adi
 digits as their depth in the 1-unit�ltration of O×. If ordπ(1−vs) = 0, then one 
an identify all su
h a to the 
lass
orresponding to 2 sin
e one only needs 0 ≤ k′. If ordπ(1 − vs) = 1, then one
an identify all su
h a1, a2 with 1 ≤ k′. But for any two units at level 1 in the1-unit �ltration, say a1 = 1 + α1π, a2 = 1 + β1π with α1, β1 6= 0, they alreadyagree in the �rst digit so they all identify to 1 + π. At level 2, a ≡ 1 mod π2.This gives the 
lasses [0, 2, 2], [0, 2, 1+π], [0, 2, 1]. If ordπ(a) = 1, then one is in
ase i < k of theorem 4.2.1 and require 2 ≤ k′, therefore one 
an only identifytwo 
lasses if a1 ≡ a2 mod π2. This gives the 
lass [0, 2, π]. Lastly there is the
lass [0, 2, 0] for a total of 5 
lasses in this 
ase.For (i, j) = (1, 1), ordπ(a) = 0,∞. If a is a unit modπ, then one 
anidentify two units if and only if 0 ≤ k′, so all units identify to the 
lass given31



by a = 1. Hen
e there are two 
lasses for this 
ase given by [1, 1, 1], [1, 1, 0].For (i, j) = (1, 2) above the line i + j = 2, module 
losure 
ondition 3requires a ≡ πuf ≡ 0 mod π. Hen
e k = 1 = i, and the 
ondition in theorem4.2.1 gives 2 ≤ 2 + ordπ(1 − vs) ≤ k′ so one 
an identify a1 and a2 if andonly if a1 ≡ a2 mod π2. Sin
e there are |O/(π)| integers modπ2 satisfying
a ≡ 0 mod π, one has q = pf distin
t 
lasses [1, 2, απ] for α ∈ Fq.For (i, j) = (1, 3) above the line i+j = 2, MC3 for
es a ≡ πuf mod π2.Then a has a π-adi
 expansion

a = α1π + α2π
2with α1 ≡ uf mod π, and α2 ∈ Fq. The 
ondition for identifying two 
lassesbe
omes 2+ordπ(1−vs) ≤ k′. If a2 = β1π+β2π

2 is a similar π-adi
 expansion,then v1 = α1 + α2π and v2 = β1 + β2π with β1 ≡ α1 ≡ uf mod π. Sin
e
uf 6≡ 1 mod π, one has ordπ(1 − vs) = 0 for s = 1, 2. Therefore one 
anidentify two 
lasses if 2 ≤ k′. Sin
e the �rst two π-adi
 digits are alreadyequal, this 
ondition is always true and the possible a 
ollapse to one 
lass
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given by [1, 3, ufπ]. Hen
e, there are a total of q + 18 
lasses given by:
[0, 0, 0],

[0, 1, 0], [0, 1, 1], [0, 1, 2],

[0, 2, 0], [0, 2, 1], [0, 2, 2], [0, 2, 1 + π], [0, 2, π],

[1, 0, 0],

[1, 1, 0], [1, 1, 1],

[1, 2, απ] for α ∈ Fq,

[1, 3, ufπ],

[2, 0, 0],

[2, j, π2uf ] for j = 1, 2, 3, 4,

where q = pf for f the residue �eld degree of F/Qp.The elementary types:Let P be a partition of {1, 2, 3}, and 
onsider the elementary Λ-modules
E =

⊕

B∈P

Λ/
∏

i∈B

(T − αi).There are 5 partitions of {1, 2, 3} 
orresponding to the elementary types
Λ/(T − α1) ⊕ Λ/(T − α2)(T − α3)

Λ/(T − α3) ⊕ Λ/(T − α1)(T − α2)

Λ/(T − α2) ⊕ Λ/(T − α1)(T − α3)

Eann = Λ/f

Ef = Λ/(T − α1) ⊕ Λ/(T − α2) ⊕ Λ/(T − α3).33



In the notation [i, j, a] these are given as [0, n, 1], [l, 0, 0], [0, m, 0], [0, 0, 0],and [l,m+ n, ufπ
m], respe
tively.
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Chapter 5
Λ-MODULES WITH λ = 4As before, O denotes the ring of integers in a �nite extension F/Qp, and let

π be a generator of the maximal ideal of O. Let f(T ) =
∏4
i=1(T − αi). Asbefore, Mf denotes the set of isomorphism 
lasses of Λ = O[[T ]]-submodules

M ⊆ Ef =
⊕4
i=1 Λ/(T − αi), with �nite quotient Ef/M . By theorem 2.0.4,up to isomorphism, M is generated over O by the rows of some

G =




1 1 1 1

πi a b

πj c

πk


when 4 ≤ q. Denote the isomorphism 
lass of M by [i, j, k, a, b, c], where

a ∈ O/(πj) and b, c ∈ O/(πk). The tuple (i, j, k) is a Λ-module invariant ofMby theorem 2.1.1. As before, module 
losure TM ⊆ M bounds the parameters,and one has redu
ed Mf to a �nite list {[i, j, k, a, b, c]}. For ea
h tuple (i, j, k)in the list, the task is then to de
ide when two 
lasses, [i, j, k, at, bt, ct] for
t = 1, 2 are the same.In general the te
hnique in 
hapter 4 whi
h produ
ed theorem 4.2.1does not work well for λ > 3. The system of equations resulting from thematrix equation

XG1 = G2Dwas simple enough that one 
ould solve for the unit entries u along the diagonalin in terms of the o�-diagonal entries of X. For larger λ, the equations be
omemu
h too 
umbersome to solve. In this se
tion, an algorithm will be given,based on the approa
h at the end of se
tion 2.1, to de
ide when two 
lassesare the same. For Λ-modules M1,M2, a map ϕ1,2 : (O×)4 → GLn(F ) was35



de�ned, and it was shown that M1
∼= M2 if and only if imϕ1,2 ∩K 6= ∅, where

K = GLn(O). This enables one to sear
h for an isomorphism by �nding a
u ∈ (O×)n with ϕ1,2(u) ∈ K. One problem with this is that (O×)n is in�nite,so the �rst task is to show that one only needs to sear
h over u ∈ ((O/(πm))×)nfor some m. This is still in general a large set. The idea for further redu
ingthe size is to "divide" out the nontrivial automorphisms of M1 and M2 from
(O×)n. At the same time, one 
an use theorem 2.1.4 to de
ide that M1 6∼= M2.5.1 GeneratorsThe �rst goal is to translate the module 
losure 
ondition into restri
tions onthe parameters i, j, k, a, b, c. The module Eann = Λ/(f(T )) will again play afundamental role, and should be viewed as a lower bound in the latti
e of
Λ-submodules of Ef up to isomorphism. First, 
onsider the 
anoni
al map
ψ : Eann → Ef given by

ψ(g(T ) mod (f(T ))) = (g(α1), g(α2), g(α3), g(α4)).Lemma 13.8 in [16℄ implies that ψ is inje
tive with �nite 
o-kernel. The Di-vision Algorithm for Λ implies that Eann has an O-basis {1, T, T 2, T 3} whi
hmaps to the O-basis {(1, 1, 1, 1), (α1, α2, α3, α4), (α2
1, α

2
2, α

2
3, α

2
4), (α3

1, α
3
2, α

3
3, α

3
4)}for the image ψ(Eann). Assemble this basis into the Vandermonde matrix




1 1 1 1

α1 α2 α3 α4

α2
1 α2

2 α2
3 α2

4

α3
1 α3

2 α3
3 α3

4




,

and use row operations to produ
e the upper triangular form



1 1 1 1

α1 − α2 α1 − α3 α1 − α4

(α1 − α3)(α2 − α3) (α1 − α4)(α2 − α4)

(α1 − α4)(α2 − α4)(α3 − α4)




.36



Note that these row operations preserve the image (not just the isomorphism
lass) of Eann inside of Ef . Sin
e theorem 2.0.4 shows that any submodule
M ⊆ Ef up to isomorphism 
ontains (1, 1, 1, 1), module 
losure implies thatMmust 
ontain the T -
y
li
 basis generated by (1, 1, 1, 1), whi
h is the basis for
ψ(Eann) given by the rows of the Vandermonde matrix above. Hen
e ψ(Eann) ⊆

M ⊆ Ef .To bound the i, j, k, write αm − αn = um,nπ
vm,n for 1 ≤ m < n ≤ 4,where ea
h um,n ∈ O×. Sin
e ψ(Eann) ⊆ M for any Λ-submodule of Ef upto isomorphism, one must be able to express the rows of the above matrixas an O-linear 
ombination of the generators given by the rows of G. Thisimmediately gives 0 ≤ i ≤ v1,2, 0 ≤ j ≤ v1,3 +v2,3, and 0 ≤ k ≤ v1,4 +v2,4 +v3,4,hen
e the parameters a ∈ O/(πj), b, c ∈ O/(πk) are bounded. Therefore, Mfis �nite. As before, not all 
hoi
es of i, j, k, a, b, c will yield an O-module 
losedunder the a
tion of T .To derive 
onditions for module 
losure, one 
an express the a
tion of

T as a matrix with respe
t to the free O-module basis g1 = (1, 1, 1, 1), g2 =

(0, πi, a, b), g3 = (0, 0, πj, c), g4 = (0, 0, 0, πk). Letting M = 〈g1, g2, g3, g4〉O,one has TM ⊆ M if and only if the matrix representation of T has all entriesin O. Then for
G =




1 1 1 1

πi a b

πj c

πk




,
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the entries of



α1 x1,2 x1,3 x1,4

α2 x2,3 x2,4

α3 x3,4

α4




= GD(α1, α2, α3, α4)G
−1

must be in O. One 
an easily 
al
ulate the right-hand side formally in GL4(F ),and the integrality 
onditions are summarized below.Lemma 5.1.1. Let uf = u1,3

u1,2
, vf = u1,4

u1,2
, and wf = u2,4

u2,3
. Then TM ⊆ M if andonly if 0 ≤ i ≤ v1,2, 0 ≤ j ≤ v1,3 + v2,3, and 0 ≤ k ≤ v1,4 + v2,4 + v3,4, and thequantities1. x1,3 = ufπ

v1,3−j − aπv1,2−(i+j)2. x2,3 = aπv2,3−j3. x1,4 = vfπ
v1,4−k − bπv1,2−(i+k) − ufcπ

v1,3−(j+k) + acπv1,2−(i+j+k)4. x2,4 = wfbπ
v2,4−k − acπv2,3−(j+k)5. x3,4 = cπv3,4−kare in O. 5.2 Λ-IsomorphismFor a �xed (i, j, k), one only needs to sort the 
lasses [i, j, k, a, b, c] for theallowable a ∈ O/(πj) and b, c ∈ O/(πk) whi
h satisfy the module 
losure
onditions in lemma 5.1.1. When there is a �xed (i, j, k) in mind, one 
ansuppress i, j and k from the notation and write [a, b, c] for the isomorphism
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lass [i, j, k, a, b, c] ∈ Mf . Let
G(i, j, k, a, b, c) =




1 1 1 1

πi a b

πj c

πk




.

Set Gt = G(i, j, k, at, bt, ct), and let Mt be generated over O by the rows of Gtinside Ef for t = 1, 2.Consider the fun
tion
(O×)4 ϕ1,2

−→ GL4(F )given by
u 7→ X = G2D(u)G−1

1 .By theorem 2.1.2, one has a Λ-isomorphism M1 → M2 whose matrix repre-sentation with respe
t to the given generators is X = ϕ1,2(u1, u2, u3, u4), ifand only if imϕ1,2 ∩ GL4(O) 6= ∅. For this to be a useful 
riterion, one has toredu
e this to 
he
king whether ϕ1,2(S) ∩ GL4(O) 6= ∅ for some �nite subset
S ⊂ (O×)4. The next result shows that this 
an be a

omplished with S equalto the 
anoni
al lift of ((O/(πi+j+k))×)4 to (O×)4.Theorem 5.2.1. Let u, v ∈ (O×)4, and suppose that v ≡ u mod πi+j+k and
ϕ1,2(v) ∈ GL4(O). Then ϕ1,2(u) ∈ GL4(O).Proof. Write u = v+xπi+j+k for some x ∈ O4, and observe that ϕ1,2 (extendedto F 4) is a linear map of ve
tor spa
es F 4 → Mat4×4(F ). Hen
e ϕ1,2 has amatrix representation, say A, and by expli
it 
omputation one 
an observethat the entries of this matrix are linear 
ombinations of integral elements(the a, b, c′s) with powers of π in the denominator. The largest power of πin the denominator is πi+j+k, hen
e πi+j+kA has integral entries. Therefore39



ϕ1,2(u) = ϕ1,2(v + xπi+j+k) = A(v + xπi+j+k) = Av + πi+j+kAx, and sin
e Avand πi+j+kAx have integral entries, so does ϕ1,2(u). Sin
e ϕ1,2(u) (or anythingin the image of ϕ1,2) is upper triangular with units along the diagonal, thisshows that ϕ1,2(u) ∈ GL4(O).Let IsomΛ(M1,M2) denote the set of Λ-isomorphisms from M1 to M2as before. Then the above result shows that IsomΛ(M1,M2) 
an be 
omputedas
H + (πi+j+k)4,where H = {u ∈ S|ϕ1,2(u) ∈ GL4(O)} is a �nite subset of S. In parti
ular,when M1 = M = M2, then ϕ1,2 = ϕM : G4

m(O) → GL4(F ) is a grouphomomorphism. One 
an 
ompute
AutΛ(M) = ϕ−1

M (imϕM ∩ GL4(O)),whi
h 
an be represented as H + (πi+j+k)4, where H = {u ∈ S|ϕM(u) ∈

GL4(O)}. The redu
tion of H modulo πi+j+k, H ⊆ G4
m(O)/(πi+j+k)4 is asubgroup.To de
ide when [a1, b1, c1] = [a2, b2, c2], one 
an in prin
iple test everypossible u ∈ S for whether ϕ1,2(u) ∈ GL4(O). In pra
ti
e, when [a1, b1, c1] =

[a2, b2, c2], an element u ∈ S is found qui
kly. Unfortunately, S 
an be verylarge and if two 
lasses are distin
t, one is for
ed to iterate through all pos-sibilities for u. For example, if O = Zp and one is sorting 
lasses along thetuple (i, j, k) = (1, 1, 3), then S = ((Z/(p5))×)4 has order (p− 1)4p16. One 
anredu
e the number of iterations by dividing nontrivial automorphisms of M1and M2 from S.More pre
isely, IsomΛ(M1,M2) possesses an a
tion of AutΛ(M1) de�nedby
AutΛ(M1) × IsomΛ(M1,M2) −→ IsomΛ(M1,M2)40



(ϕ, ψ) 7→ ψ ◦ ϕ−1.This a
tion is simply transitive sin
e ψ◦ϕ−1 = ψ′ if and only if ϕ = (ψ′)−1 ◦ψ.Hen
e IsomΛ(M1,M2) is a single orbit under the a
tion of AutΛ(M1). Sin
eall possible isomorphisms are parameterized by the torus T = G4
m(O) viatheorem 2.1.2, it is natural to extend the a
tion of AutΛ(M1) to imϕ1,2. Also,

AutΛ(M1) 
an be identi�ed with the subgroup H + (πi+j+k)4 of T , and hen
ea
ts on T via translation.Lemma 5.2.1. The map ϕ1,2 : T → imϕ1,2 is a bije
tion of AutΛ(M1)-sets. Theorbits of imϕ1,2 under the a
tion of AutΛ(M1) are in bije
tive 
orresponden
ewith T/AutΛ(M1).Proof. Let ϕ(u) = G1D(u)G−1
1 ∈ AutΛ(M1), so that u ∈ H×(πi+j+k)4, and let

ϕ1,2(v) = G2D(v)G−1
1 ∈ imϕ1,2. By the de�nition of the a
tion of AutΛ(M1)on IsomΛ(M1,M2), the extension of the a
tion to imϕ1,2 is given by

(ϕ(u), ϕ1,2(v)) 7→ ϕ1,2(v)ϕ(u)−1

= G2D(v)G−1
1 G1D(u−1)G−1

1

= G2D(vu−1)G−1
1

= ϕ1,2(vu
−1).This proves the result.One has similarly an a
tion of AutΛ(M2) on IsomΛ(M1,M2), and thequotient

imϕ1,2/AutΛ(M1)AutΛ(M2)is bije
tive with T/AutΛ(M1)AutΛ(M2), so that the size of T is redu
ed evenfurther. 41



By the above result, if IsomΛ(M1,M2) is nonempty, it will be the onlyorbit in imϕ1,2 
ontained in GL4(O). Therefore, one only needs to sear
h foran element in GL4(O) among representatives for imϕ1,2 modulo the a
tion of
AutΛ(M1) = H1+(πi+j+k)4 and AutΛ(M2) = H2+(πi+j+k)4. This is equivalentto 
al
ulating representatives v for the 
osets in T/(H1H2 + (πi+j+k)4), and
he
king if ϕ1,2(v) ∈ GL4(O). By theorem 5.2.1, one only needs to 
he
krepresentatives for the 
osets in T/H1H2 where the bar denotes redu
tionmodulo (πi+j+k). In general, one expe
ts the quotient T/H1H2 to be mu
hsmaller than T . For example, it is easy to observe that the diagonal elements
(u, u, u, u) ∈ T are always in the automorphism group regarded in T , hen
e Tis redu
ed by at least one dimension by passage to T/H1H2.5.3 An Algorithm to Enumerate MfThe previous se
tion suggests the following algorithm to de
ide if two mod-ules M1 and M2, are Λ-isomorphi
. Ideally, one wants distin
t representa-tives u1, u2, . . . uk for the 
osets in T/H1H2. Sin
e testing whether u ∈ Tis in H1 or H2 is easy and fast, one 
an qui
kly �nd a small number ofexhaustive but not ne
essarily distin
t representatives using the followingpro
edure. Let g1, . . . , gn be generators for the abelian group T , and let
φMt

: T −→ GL4(F ) be the homomorphism φMt
(u) = GtD(u)G−1

t for t = 1, 2.For ea
h generator gi one 
an 
al
ulate a bound for the order of gi in T/H1H2as ki = min{k|φM1
(gki ) or φM2

(gki ) ∈ GL4(O)}. Then one has a surje
tion
n⊕

i=1

Z/(ki) −→ T/H1H2so that |T/H1H2| ≤
∏n
i=1 ki. As an example, one may think of O = Zp. In this
ase T = ((Z/(pi+j+k))×)4 and in pra
ti
e the generators g1 = (r, r, r, r), g2 =

(r, r, r, 1), g3 = (r, r, 1, 1), and g4 = (r, 1, 1, 1) with r a primitive root of unitymodulo pi+j+k seem to produ
e small orders ki. One then iterates over allprodu
ts u =
∏n
i=1 g

βi

i for 0 ≤ βi < ki and 
he
ks if φ1,2(u) ∈ GL4(O).42



Algorithm to de
ide if M1
∼= M2:Input: Mt = [i, j, k, at, bt, ct] for t = 1, 2Output: True or False1. Set Bt = G(i, j, k, at, bt, ct) for t = 1, 2.2. Choose generators g1, . . . , gn for T .3. For ea
h generator 
ompute ki = min{k|φM1

(gki ) or φM2
(gki ) ∈ GL4(O)}.If a ki is a
hieved with φM1

(gki
i ) ∈ GL4(O) but φM2

(gki
i ) 6∈ GL4(O) (orvi
e versa), the modules are not isomorphi
 by theorem 2.1.4 and outputFalse.4. For ea
h produ
t u =

∏n
i=1 g

βi

i where 0 ≤ βi < ki, 
he
k if ϕ1,2(u) ∈

GL4(O), and if so output True and break. Otherwise, output False.5.4 Elementary TypesOne 
an form the obvious elements of Mf by grouping the fa
tors of f(T ) andtaking dire
t sums. For example Λ/(T−α1)⊕Λ/(T−α2)⊕Λ/(T−α3)(T−α4)inje
ts into E 
anoni
ally with �nite 
okernel. Let P = {Bk} be a partitionof {1, 2, 3, 4} with blo
ks Bk, and asso
iate to P the elementary type
EP :=

⊕

Bk∈P

Λ/
∏

i∈Bk

(T − αi),e.g. the example above 
orresponds to the partition {{1}, {2}, {3, 4}}. Hen
ethere are 15 = B4 elementary types, where Bn is the nth Bell number. Thenext result is well known, but the proof is given here for la
k of a referen
e.Theorem 5.4.1. The elementary types are distin
t up to isomorphism.Proof. Suppose φ : EP1
−→ EP2

is a Λ-isomorphism. In parti
ular, it is anisomorphism of free O-modules of rank 4 and hen
e has a matrix representation43



in GL4(O) with respe
t to bases whi
h will be 
hoosen now. For ea
h blo
k
Bk, the fa
tor Λ/

∏
i∈Bk

(T − αi) has O-basis {1, T, T 2, . . . , T |Bk|−1} by theDivision algorithm for Λ. With respe
t to this basis, T a
ts as the |Bk| × |Bk|
ompanion matrix CBk
, of the polynomial ∏i∈Bk

(T − αi). Choosing this basisfor ea
h fa
tor of EP and taking their union to get a basis for the whole of EP ,
T is then represented as the matrix blo
k sum [T ]P = CB1

⊕CB2
⊕ · · · ⊕CB|P |

.Let [φ] ∈ GL4(O) be the matrix representation of φ with respe
t to the powerbases 
onstru
ted above. The additional requirement that φ be a Λ-morphismimplies that one must have
[φ][T ]P1

= [T ]P2
[φ],whi
h holds if and only if [T ]P1

∼O [T ]P2
. Sin
e the matri
es [T ]P1

and [T ]P2are already in rational 
anoni
al form, they must have the same blo
k sub-matri
es up to order. Sin
e di�erent blo
ks in a partition will yield di�erent
ompanion matri
es, the partitions P1 and P2 must be equal.Using the results for degrees 2 and 3, one 
an express the elementarytypes in the notation [i, j, k, a, b, c].Theorem 5.4.2. The elementary types expressed in the notation [i, j, k, a, b, c]are:
• 4|123 ∈ [v1,2, v1,3 + v2,3, 0,

u1,3

u1,2
πv1,3 , 0, 0]

• 4|12|3 ∈ [v1,2, 0, 0, 0, 0, 0]

• 4|2|13 ∈ [0, v1,3, 0, 0, 0, 0]

• 4|1|23 ∈ [0, v2,3, 0, 1, 0, 0]

• Ef = 4|1|2|3 ∈ [0, 0, 0, 0, 0, 0] 44



• 12|34 ∈ [v1,2, 0, v3,4, 0, 0, 1]

• 14|23 ∈ [0, v2,3, v1,4, 1, 0, 0]

• 14|2|3 ∈ [0, 0, v1,4, 0, 0, 0]

• 24|1|3 ∈ [0, 0, v2,4, 0, 1, 0]

• 24|13 ∈ [0, v1,3, v2,4, 0, 1, 0]

• 34|1|2 ∈ [0, 0, v3,4, 0, 0, 1]

• 124|3 ∈ [v1,2, 0, v1,4 + v2,4, 0,
u1,4

u1,2
πv1,4 , 0]

• 134|2 ∈ [0, v1,3, v1,4 + v3,4, 0, 0,
u1,4

u1,3
πv1,4 ]

• 234|1 ∈ [0, v2,3, v2,4 + v3,4, 1, 1,
u2,4

u2,3
πv2,4 ]

• 1234 ∈ [v1,2, v1,3 + v2,3, v1,4 + v2,4 + v3,4, ufπ
v1,3 , vfπ

v1,4 ,
vfwf

uf
πv1,4+v2,4 ]where for all 1 ≤ m < n ≤ 4, write αm − αn = um,nπ

vm,n for um,n ∈ O× and
uf = u1,3

u1,2
, vf = u1,4

u1,2
, wf = u2,4

u2,3
.Proof. This is just an exer
ise in taking the 
anoni
al maps from ea
h ele-mentary type to Ef , and using the matrix operations used in the proof of2.0.4 to write the image of a power basis in the form G. One 
an also use theexpression of the degree 3 elementary types in the notation [i, j, a] to help seethe result.
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Chapter 6APPLICATIONS TO THE IWASAWA THEORY OF ELLIPTIC CURVESThe results given for the 
ase λ = 2 
an be used to determine the isomorphism
lass of the p-Selmer group of some ellipti
 
urves over the 
y
lotomi
 Zp-extension. First some main de�nitions and results from [3℄ are dis
ussed.Several examples are given at the end to illustrate how SelE(Q∞)p 
an bedetermined when µ = 0. 6.1 Selmer GroupsLet E be an ellipti
 
urve over Q with good, ordinary redu
tion at a prime
p ≥ 3. Let Q∞ denote the 
y
lotomi
 Zp extension. First, re
all the de�nitionof the p-primary Selmer group of E over Q∞ as in [3℄. One would like to knowabout E(Q∞), the points of E de�ned over Q∞, whi
h are 
ontained in E(Q)as the points �xed under the a
tion of GQ∞ = Gal(Q/Q∞). If one �xes aprime power pk, one 
an 
onsider the short exa
t sequen
e of GQ-modules

0 // E(Q)[pk] // E(Q)
[pk] // E(Q) // 0 ,and taking GQ∞-
ohomology gives the (usual) long exa
t sequen
e

0 // E(Q∞)[pk] // E(Q∞)
[pk] // E(Q∞)

δ //H1(Q∞, E[pk]) // · · · .The inje
tion indu
ed by δ, denoted by κ : E(Q∞)/[pk]E(Q∞) → H1(Q∞, E[pk]),is 
alled the Kummer homomorphism. If P ∈ E(Q∞), then δ(P ) is the 1-
o
y
le de�ned by σ 7→ Qσ −Q where Q ∈ E(Q) is 
hosen so that [pk]Q = P .One has the following lemma.Lemma 6.1.1. Let 1
pk denote 1

pk + Z ∈ Q/Z. Then E(Q∞)/[pk]E(Q∞) ∼=

E(Q∞) ⊗ 〈 1
pk 〉. 46



Now 
onsider the dire
ted system of abelian groups {〈1/pk〉|k ∈ N}indexed by in
lusion maps given by
a

pk
7→

pa

pk+1
.Tensoring with E(Q∞) gives the dire
t system {E(Q∞)/[pk]E(Q∞)}k∈N wherethe maps E(Q∞)/[pk]E(Q∞) −→ E(Q∞)/[pk+1]E(Q∞) are given by P 7→

[p]P . The dire
t limit of this system is then
lim−→E(Q∞)/[pk]E(Q∞) = lim−→E(Q∞) ⊗ 〈1/pk〉

= E(Q∞) ⊗ lim−→〈1/pk〉

= E(Q∞) ⊗ (Qp/Zp).One also hasLemma 6.1.2. The diagram
E(Q∞)/[pk+1]E(Q∞)

κ // H1(Q∞, E[pk+1])

E(Q∞)/[pk]E(Q∞)

OO

κ // H1(Q∞, E[pk])

OO

is 
ommutative, and the dire
t limit gives an inje
tion E(Q∞) ⊗ Qp/Zp
κ

→

H1(Q∞, E[p∞]).The p-Selmer group is de�ned in [3℄ as a 
ertain subgroup ofH1(Q∞, E[p∞])
ontaining the image of the Kummer homomorphism κ. The idea is to �rstrealize that ea
h global point in E(Q∞), say P ∈ E(Qn) at some layer Qnin the 
y
lotomi
 Zp-extension, gives rise to a lo
al point P ∈ E((Qn)p) forevery prime p of Qn, via a 
hosen embedding Qn → (Qn)p. One 
an say this inan equivalent way by de�ning (Q∞)η to be the union ⋃n(Qn)pn
for the prime

η =
⋃
n pn of Q∞. Here, the prime ideals pn are 
hosen so that pn is a primeideal of the ring of integers of Qn and pn ⊂ pn+1. Then ea
h global point47



E(Q∞) gives rise to a lo
al point of E((Q∞)η), and this indu
es a map
E(Q∞) ⊗ (Qp/Zp) → E((Q∞)η) ⊗ (Qp/Zp).Now realize what this map means in terms of the Kummer embedding.For a prime η of Q∞ given in terms of the primes pn as above, one has 
hosenembeddings Qn →֒ (Qn)pn

, and this 
hoi
e �xes an embedding Q∞ →֒ (Q∞)η.Let (ℓ) = η ∩ Z where ℓ is a prime in Z. Sin
e ea
h 
ompletion (Qn)pn
is a�nite extension of Qℓ, one has (Q∞)η ⊂ Qℓ. Choose an embedding Q

ı
→֒ Qℓextending the 
hosen embedding Q∞ →֒ (Q∞)η, and this 
hoi
e identi�es GQℓwith a subgroup of GQ whi
h is the de
omposition group for a prime η̃|η in

Q. De�ne the lo
al Kummer homomorphism
E((Q∞)η) ⊗ (Qp/Zp)

κη
−→ H1((Q∞)η, E[p∞]),in the same way as the global Kummer homomorphism above. Sin
e Gal(Qℓ/(Q∞)η)is identi�ed with a subgroup of Gal(Q/Q∞) via the de
omposition group of η̃,one has the restri
tion map

H1(Q∞, E[p∞])
res

−→ H1((Q∞)η, E[p∞])where E[p∞] ⊆ E(Qℓ) via the embedding ı.Lemma 6.1.3. The diagram
E((Q∞)η) ⊗ (Qp/Zp)

κη // H1((Q∞)η, E[p∞])

E(Q∞) ⊗ (Qp/Zp)

OO

κ // H1(Q∞, E[p∞])

res

OO

is 
ommutative.Proof. This is essentially a version of the diagram (∗∗) from pg. 297 of [12℄for the dire
t limit of the maps E(Q∞)/[pk]E(Q∞) → H1(Q∞, E[pk]) and48



E((Q∞)η)/[p
k]E((Q∞)η) → H1((Q∞)η, E[pk]). One 
an see this dire
tly asfollows. Let P ⊗ r/pk ∈ E(Q∞) ⊗ (Qp/Zp). Then κ(P ⊗ r/pk) is the 
lass ofthe 1-
o
y
le given by ψ 7→ ı(Qψ −Q) = ı(Q)ψ − ı(Q) for all ψ ∈ Gal(Q/Q∞),where Q ∈ E(Q) is 
hosen su
h that [pk]Q = [r]P . The left verti
al mapsends P ⊗ r/pk to ı(P ) ⊗ r/pk ∈ E((Q∞)η) ⊗ (Qp/Zp), and κη(ı(P ) ⊗ r/pk)
an be given as the 
lass of the 1-
o
y
le σ 7→ ı(Q)σ − ı(Q) for all σ ∈

Gal(Qℓ/(Q∞)η), sin
e [pk]Q = [r]P implies that [pk]ı(Q) = [r]ı(P ). This isexa
tly the restri
tion of the 
o
y
le de�ning κ(P ⊗ r/pk) to the subgroup
Gal(Qℓ/(Q∞)η) ≤ Gal(Q/Q∞).From this diagram, one 
an see that for every prime η ofQ∞, res(imκ) ⊆

imκη and hen
e,
imκ ⊆ ker(H1(Q∞, E[p∞]) −→ H1((Q∞)η, E[p∞])/imκη).Letting η vary over all primes of Q∞, one makes the following de�nition as in[3℄:De�nition 1. The p-primary Selmer group of E over Q∞ is the subgroup of

H1(Q∞, E[p∞]) de�ned by
SelE(Q∞)p = ker(H1(Q∞, E[p∞]) −→

∏

η

H1((Q∞)η, E[p∞])/imκη).From the dis
ussion, it is 
lear that imκ ⊆ SelE(Q∞)p. The de�nitionof the p-Selmer group in [3℄ holds for any algebrai
 extension K/Q. Thereforeat any �nite layer Qn, one 
an de�ne SelE(Qn)p in the same way. If p is aprime of the ring of integers in Qn, one has the lo
al Kummer embedding
κp : E((Qn)p) ⊗ (Qp/Zp) −→ H1((Qn)p, E[p∞]),so de�ne

SelE(Qn)p = ker(H1(Qn, E[p∞]) −→
∏

p

H1((Qn)p, E[p∞])/imκp),49



where the produ
t runs over all primes p of Qn. The fundamental diagramfrom [3℄, whi
h is dis
ussed in se
tion 6.3, relates the Λ-modules SelE(Q∞)pand SelE(Qn)p. 6.2 The Λ-module XE(Q∞)The abelian group SelE(Q∞)p is p-primary, and is therefore a module over Zp.There is also an a
tion of the Galois group Γ = Gal(Q∞/Q) on SelE(Q∞)pwhi
h is 
ompatible with the Kummer embedding κ : E(Q∞) ⊗ (Qp/Zp) →

SelE(Q∞)p. To see what this a
tion should be, let γ ∈ Γ. Let P ⊗ (n/pk) ∈

E(Q∞) ⊗ (Qp/Zp). Then re
all κ(P ⊗ (n/pk)) is the 
lass of the 1-
o
y
lewhi
h sends σ ∈ Gal(Q/Q∞) to
Qσ −Q ∈ E[p∞],where Q is a point 
hosen in E(Q) su
h that [pk]Q = [n]P . Γ a
ts on E(Q∞)⊗

(Qp/Zp) in the usual way
γ · (P ⊗ (n/pk)) = P γ ⊗ (n/pk),and one expe
ts γ to a
t on 1-
o
y
les in a way that is geometri
ally 
ompat-ible, so that κ(γ · (P ⊗ (n/pk))) = γ ·κ(P ⊗ (n/pk)). Let γ̃ ∈ Gal(Q/Q) denoteany extension of the automorphism γ to Q. Sin
e Q satis�es [pk]Q = [n]P ,applying γ̃ to both sides of this equation shows Qγ̃ satis�es [pk]Qγ̃ = [n]P γ,using the fa
t that addition on E is de�ned over Q. Hen
e, a 1-
ohomology
lass asso
iated to P γ ⊗ (n/pk) 
an be given by the 1-
o
y
le
σ 7→ (Qγ̃)σ −Qγ̃ = (Qγ̃σγ̃−1

−Q)γ̃.If [ξ] ∈ H1(Q∞, E[p∞]) is a 
ohomology 
lass represented by a 1-
o
y
le ξ,then the a
tion of Γ on 1-
o
y
les should then be (γ · ξ)(σ) = ξ(γ̃σγ̃−1)γ̃.Now the idea for turning H1(Q∞, E[p∞]) into a module over the powerseries ring Λ is based on the following fa
ts. Set A = H1(Q∞, E[p∞]).50



1. The a
tion of Γ des
ribed above is 
ontinuous, where Γ has its usualtopology and A is dis
rete and p-primary. This is equivalent to showing
A =

⋃
AΓn where Γn = Γp

n.2. Letting T a
t as γ− 1 where γ is a topologi
al generator of Γ, the 
onti-nuity result above implies that the a
tion of T is topologi
ally nilpotent,i.e. for a ∈ A, there is an n ≫ 0 so that T na = 0. This makes the a
tionof a power series f(T ) ∈ Λ well-de�ned.To see the se
ond fa
t, suppose a ∈ AΓn0 , so that (γp
n0 −1)a = 0. Sin
e

Γn ⊂ Γn0
for n0 ≤ n, one has (γp

n

− 1)a = 0 for n0 ≤ n. Also, sin
e A is
p-primary, pma = 0 for some m ≥ 0. Expressing the a
tion of γ in terms of T ,one has ((T + 1)p

n

− 1)a = 0 for n ≥ n0. This be
omes
T p

n

a+
pn−1∑

i=1

(
pn

i

)
T ia = 0.By 
ontinuity of the polynomial fun
tion P (X) =

(
X

i

) on Zp, one 
an 
hoose
n large enough so that n ≥ n0 and pm |

(
pn

i

) for i = 1, 2, . . . pn − 1, and hen
e
T p

n

a = 0. A proof of the �rst fa
t is given below.Lemma 6.2.1. The a
tion of Γ on A is 
ontinuous.Proof. Let ξ : GQ∞ → E[p∞] be a 
ontinuous 1-
o
y
le whose 
lass is denoted
a ∈ A. ForQn, the nth layer inQ∞/Q, GQ∞ ≤ GQn

, and one has the restri
tionmap
H1(Qn, E[p∞])

hn−→ H1(Q∞, E[p∞]).The �rst task is to show that ξ is in the image of hn for some n. Sin
e GQ∞is 
ompa
t in its pro�nite topology, ξ(GQ∞) is 
ompa
t in E[p∞], and sin
e
E[p∞] is dis
rete, ξ(GQ∞) must be �nite. This implies that ξ fa
tors through
GQ∞/H for some open normal subgroup H . Let F be the �xed �eld of H , so51



that F/Q∞ is a �nite Galois extension. By lemma 6 in 
hapter 5.4 of [11℄,there is a �nite extension Fn of Qn for some n, so that Gal(F/Q∞) 
an beidenti�ed isomorphi
ally with Gal(Fn/Qn) by restri
ting automorphisms of Fto Fn. Then Fn 
orresponds to a subgroup H ′ of GQn
and one has

GQ∞/H
∼= Gal(F/Q∞) ∼= Gal(Fn/Qn) ∼= GQn

/H ′.Using this isomorphism, identify ξ with a 1-
o
y
le on GQn
/H ′, and pre-
omposing with the 
anoni
al surje
tion GQn

→ GQn
/H ′ gives a 1-
o
y
le,on GQn

lifting ξ.The 
laim is that a is �xed by the subgroup Γn. This is just a 
om-putation. Denote the lift of ξ by ξ̃ : GQn
→ E[p∞]. Let σ ∈ GQ∞ and let

γn ∈ Γn. Sin
e γ̃n is in GQn

ξ(γ̃nσγ̃n
−1)γn = ξ̃(γ̃nσγ̃n

−1)γ̃n

= (ξ̃(γ̃nσ)γ̃n
−1

+ ξ̃(γ̃n
−1))γ̃n

= ξ̃(γ̃nσ) + ξ̃(γ̃n
−1)γ̃n

= ξ̃(γ̃n)
σ + ξ̃(σ) − ξ̃(γ̃n)

= ξ(σ) + {1 − coboundary}.Hen
e γn · ξ is 
ohomologous to ξ and therefore γn · a = a.The following de�nition is from [3℄.De�nition 2. Set XE(Q∞) = Homcts(SelE(Q∞)p,Qp/Zp), the Pontryagin dualof the p-primary Selmer group of E over Q∞.The a
tion of Λ on XE(Q∞) is given in the usual way. More generally,if A is a dis
rete p-primary or 
ompa
t pro-p abelian group with a 
ontinuousa
tion of Γ, then for f : A → Qp/Zp in Â, γf is de�ned by (γf)(a) = f(γ−1a).52



6.3 Some Known Results on XE(Q∞)For ease of notation, set X = XE(Q∞). Sin
e X is a module over Λ = Zp[[T ]],one 
an ask whether it is �nitely generated over Λ and whether it is Λ-torsion.One 
an also ask what these 
onditions imply for the sequen
e of 
urves E(Qn).It is well known that X is always �nitely generated over Λ, and the proofinvolves the usual Mordell Weil theorem 
ombined with Nakayama's lemma(see [3℄). By Kato's theorem [5℄, X is also Λ-torsion. Even though only the
ase where p is a good ordinary prime for E/Q is 
onsidered, Kato's resultholds for E/F where F is a number �eld, and the primes above p in F are ofgood ordinary, or multipli
ative type for E. One 
an now apply the stru
turetheorem for Λ-modules. There is a short exa
t sequen
e of Λ-modules
0 −→ K −→ X −→

⊕

i

Λ/(fi(T )ei) −→ C −→ 0,with |K|, |C| < ∞, and ea
h fi(T ) ∈ Λ is either p or a distinguished irredu
iblepolynomial. The 
hara
teristi
 polynomial of X is fX(T ) = charΛ(X) =

∏
fi(T )ei, whi
h one 
an write as pµP (T ), where P (T ) is a distinguished poly-nomial. Call the degree of P (T ) the λ-invariant of X, and denote it λX .Similarly, µ = µX is 
alled the µ-invariant. Even though the example givenlater only 
on
erns the 
ase µ = 0, many examples are given in [3℄ where µ > 0.The Main Conje
ture of Iwasawa theory for ellipti
 
urves relates fX(T ) tothe p-adi
 L-series of E, Lp(E, T ) ∈ O[[T ]] for a �nite extension of O of Zp.The Main Conje
ture of Iwasawa theory says that up to a unit multiple in

O[[T ]], fX is equal to Lp(E, T ). In [17℄, it is shown that Lp(E, T ) ∈ Zp[[T ]],and one 
an 
ompute Lp(E, T ) and fa
tor it into a unit power series and adistinguished polynomial P (T ), as in the example given in se
tion 1.1. Hen
e,the Main Conje
ture implies that fX 
an be 
al
ulated expli
itly as P (T ).Theorem 1.9 in [3℄ implies that when X is Λ-torsion, the sequen
e of53



ranks rankE(Qn) is bounded by λX . The proof is re
alled here be
ause it usesideas frequently en
ountered in Iwasawa theory. By the Mordell-Weil theorem,
E(Qn) ∼= Zrn ⊕ Tn as abelian groups, where rn is the rank and Tn is the �nitetorsion subgroup. Re
all that one has the short exa
t sequen
e

0 −→ E(Qn) ⊗ (Qp/Zp) −→ SelE(Qn)p −→ XE(Qn)p −→ 0.One loses the �nite torsion part in this sequen
e sin
e
E(Qn) ⊗ (Qp/Zp) ∼= (Zrn ⊕ Tn) ⊗ (Qp/Zp) ∼= (Qp/Zp)

rn ,but the p-primary abelian group SelE(Qn)p 
ontains the 
opy of (Qp/Zp)rn .By a well-known 
onje
ture for ellipti
 
urves, one expe
ts XE(Qn)p to be�nite, and this will be assumed from now on. Taking the dual of the shortexa
t sequen
e then gives
0 −→ X̂E(Qn)p −→ XE(Qn) −→ Zrn

p −→ 0where XE(Qn) := ̂SelE(Qn)p. Sin
e �nite groups are self dual, X̂E(Qn)p ∼=

XE(Qn)p, and is hen
e �nite. Therefore one has rn = rankZp
XE(Qn). Inother words, the Zp-
orank of SelE(Qn)p is rn, the rank of the ellipti
 
urve

E(Qn). The next step is to relate X, whi
h is de�ned over Q∞, to XE(Qn).The Fundamental DiagramThe 
ru
ial ingredient for relating X to the "�nite levels" XE(Qn) is Mazur'sControl Theorem [9℄. Re
all that Γn = Γp
n is isomorphi
 to Gal(Q∞/Qn).The restri
tion map H1(Qn, E[p∞]) → H1(Q∞, E[p∞])Γn indu
es the map

SelE(Qn)p
sn−→ SelE(Q∞)Γn

p .The Control theorem asserts that ker(sn) and coker(sn) are �nite with boundedorder as n → ∞. Then taking the Pontryagin dual of the sequen
e
0 → ker(sn) → SelE(Qn)p → SelE(Q∞)Γn

p → coker(sn) → 054



gives
0 → ̂coker(sn) → X/(ωn(T ))X

ŝn→ XE(Qn) → k̂er(sn) → 0where ωn(T ) = (1 + T )p
n

− 1. Sin
e the kernel and 
okernel in this sequen
eare �nite, one obtains
rankZp

X/(ωn(T ))X = rankZp
XE(Qn) = rn.Now using the stru
ture theorem for �nitely generated Λ-modules,X is pseudo-isomorphi
 to Λ/(f(T )) where charΛ(X) has degree λX , hen
e X has Zp-rank

λX , and therefore rn ≤ λX . Therefore the ranks of the ellipti
 
urves E(Qn)are bounded by λX , whi
h is the result from theorem 1.9 in [3℄. One sets
λM−W = max{rn}∞

n=0 ≤ λX , whi
h is equal to the rank of E(Q∞). In [3℄, aproof of the Control theorem is given whi
h is based on the fundamental dia-gram whi
h is re
alled below. This diagram will be the basis of the te
hniquefor determining X up to isomorphism.Fix a level n in the Zp-tower, and re
all that the p-Selmer group is thekernel of H1(Qn, E[p∞]) →
∏

pH
1((Qn)p, E[p∞])/im(κp). The image of thismap is denoted GE(Qn) so one has the short exa
t sequen
e

0 → SelE(Qn)p → H1(Qn, E[p∞]) → GE(Qn) → 0.One similarly has
0 → SelE(Q∞)p → H1(Q∞, E[p∞]) → GE(Q∞) → 0.Taking Γn-invariants of the latter and 
onne
ting them with the verti
al re-stri
tions maps gives

0 // SelE(Qn)p //

sn

��

H1(Qn, E[p∞]) //

hn

��

GE(Qn) //

gn

��

0

0 // SelE(Q∞)Γn
p

// H1(Q∞, E[p∞])Γn // GE(Q∞)Γn

.55



By the Snake lemma,
0 → ker(sn) → ker(hn) → ker(gn) → coker(sn) → coker(hn) → coker(gn).Some fa
ts about these kernels and 
okernels proven in [3℄ will be usefullater on, and based on these fa
ts some key assumptions will be made. Forthe appli
ations later, one 
an restri
t to the level n = 0. First, lemmas 3.1and 3.2 in [3℄ imply that1. | ker(hn)| = |E(Qn)p| and2. coker(hn) = 0 for all n.Our �rst assumption is that E(Q)p = 0, so that at level 0 one has ker(h0) = 0and hen
e ker(s0) = 0. Substituting this into the Snake lemma long exa
tsequen
e gives

ker(g0) ∼= coker(s0).Next one needs that SelE(Q)p = 0. This 
ombined with the fa
t that ker(s0) =

0 gives
ker(g0) ∼= SelE(Q∞)Γ

p ,and hen
e
k̂er(g0) ∼= ̂SelE(Q∞)Γ

p
∼= X/(ω0(T ))X = X/TX.If one knows ker(g0) for the 
urve E and prime p, and all possibilities for the

Λ-module stru
ture of X, then X 
an be determined by 
omparing ker(g0)to ea
h possible quotient X/TX. To apply the module theory developed sofar, a 
ondition is needed on the ellipti
 
urve E to guarantee that X has nonontrivial �nite Λ-submodules. By proposition 4.8 in [3℄, this is guaranteedby the assumptions that E(Q)p = 0 and SelE(Q)p = 0.56



Computing the lo
al kernelsThe fo
us in this se
tion will be to show how to 
al
ulate ker(g0) based on thefa
ts dis
ussed in se
tion 3 of [3℄. By de�nition
GE(Q) = im(H1(Q, E[p∞]) −→

∏

ℓ

H1(Qℓ, E[p∞])/im(κℓ))where the produ
t runs over all primes ℓ in Z. Note that one 
an ignore theimage of κℓ when ℓ 6= p sin
e the theory of the formal group gives E(Qℓ) ∼=

Zℓ×T where T is the �nite torsion part, and hen
e E(Qℓ)⊗(Qp/Zp) = 0. One
an de�ne the map g0 on a single lo
al fa
tor in the above produ
t as follows.If η is any prime of Q∞ dividing ℓ, then the restri
tion map H1(Qℓ, E[p∞]) →

H1((Q∞)η, E[p∞]) indu
es a map
H1(Qℓ, E[p∞])/im(κℓ)

rℓ→
∏

η|ℓ

H1((Q∞)η, E[p∞])/im(κη),whi
h is well-de�ned sin
e the Kummer embedding 
ommutes with the restri
-tion map. The map g0 is then given by ∏ℓ rℓ. To see that this map is de�nedfrom GE(Q) to GE(Q∞), one only needs to observe that the diagram
H1(Q, E) //

��

∏
ℓH

1(Qℓ, E)

��
H1(Q∞, E) // ∏

ηH
1((Q∞)η, E)
onsisting of restri
tion maps throughout, is 
ommutative. To simplify themap rℓ, one observes that all primes η of Q∞ lying over a �xed ℓ are Galois
onjugate due to a basi
 fa
t from algebrai
 number theory. This impliesthat the subgroups Gal(Qℓ/(Q∞)η) are all 
onjugate, and a fa
t from group
ohomology ([12℄ Ex. B.6) extended to 
ontinuous 
ohomology of pro�nitegroups shows that the restri
tion maps to 
onjugate subgroups have the samekernel. Hen
e, for the purpose of 
al
ulating ker(g0), one may 
hoose a prime57



η above ℓ and assume
rℓ : H1(Qℓ, E[p∞])/im(κℓ) → H1((Q∞)η, E[p∞])/im(κη).Then ker(g0) =

∏
ℓ ker(rℓ) ∩ GE(Q).For E/Q, set Σ = {ℓ|ℓ | ∆} ∪ {p}, the set of primes where E has badredu
tion along with p. By lemma 3.3 in [3℄, ker(rℓ) = 0 for ℓ 6∈ Σ, therefore

ker(g0) =
∏
ℓ∈Σ ker(rℓ)∩GE(Q) and one has only a �nite number of lo
al kernelsto 
ompute. It also turns out that under the assumption that E(Q)p = 0, atheorem of Cassels implies that interse
ting with the global 1-
o
y
les GE(Q)is unne
essary (see pg. 87 in [3℄). Hen
e ker(g0) =

∏
ℓ∈Σ ker(rℓ). Now thefo
us will be on determining the algebrai
 stru
ture of ker(rℓ) for ea
h typeof prime ℓ ∈ Σ. In [3℄, Greenberg proves Mazur's 
ontrol theorem by showingthat ea
h one of these lo
al kernels is �nite.If ℓ is a prime of bad redu
tion, let cℓ denote the Tamagawa numberof E(Q) at ℓ. This is the order of the group E(Qℓ)/E

0(Qℓ) where E0(Qℓ) isthe subgroup of lo
al points whi
h redu
e to nonsingular points modulo ℓ. Bythe dis
ussion on pg. 74 in [3℄, ker rℓ is a 
y
li
 group of order c(p)
ℓ , the exa
tpower of p dividing cℓ.For the good ordinary prime p, lemma 3.4 in [3℄ implies that | ker rp| =

|Ẽ(Fp)p|
2, the order of the p-torsion in the redu
tion Ẽ(Fp) squared, but doesnot give its stru
ture as a �nite abelian group. If Ẽ(Fp)p 6= 0, p is said to beanomalous for E. For p anomalous, the result is thatTheorem 6.3.1 (Lemma 6.3(b) in [7℄). ker rp ∼= Z/pZ ⊕ Z/pZ.The proof given below is in [7℄, where slightly more is proved. Oneessentially needs to know the stru
ture ofE(Qp) modulo the subgroup of pointswhi
h are norms from above in the lo
al Zp-extension (Q∞)η/Qp, whi
h turns58



out to be dual to ker rp. [7℄ 
ites the proof of the stru
ture of this group from[9℄ whi
h uses the ma
hinery of pro-algebrai
 groups. The paper [6℄ 
ited inthe proof below gives a more a

essible proof of this result whi
h uses Tate
ohomology and formal groups.Proof. By Tate lo
al duality [15℄, there is a non-degenerate perfe
t pairing
E(Qp) ×H1(Qp, E) → Q/Z.Taking the dis
rete p-primary part on the right gives

E(Qp) ×H1(Qp, E)(p) → Qp/Zp.Also, for a �nite extension L/Qp, the kernel of restri
tion H1(Qp, E)
rL→

H1(L,E) is dual under the above pairing to the image of the norm map
E(L)

NL→ E(Qp), and hen
e k̂er rL ∼= E(Qp)/NL(E(L)). Letting L rangeover the intermediate sub�elds (Qn)p in (Q∞)η, one 
an identify k̂er rp with
E(Qp)/N where N denotes the subgroup of universal norms

N =
⋂

L=(Qn)p

NL(E(L))from above in the Zp-extension (Q∞)η/Qp. The Kummer sequen
e for E(Qp)implies that
H1(Qp, E[p∞])/imκp ∼= H1(Qp, E)(p),and similarly

H1((Q∞)η, E[p∞])/imκη ∼= H1((Q∞)η, E)(p),hen
e k̂er rp ∼= E(Qp)/N .By proposition 4.42 in [9℄, the stru
ture of E(Qp)/N is given by thesplit exa
t sequen
e
0 −→ Zp/(1 − u)Zp −→ E(Qp)/N −→ Ẽ(Fp)p −→ 0,59



where u is the unit root of the 
hara
teristi
 polynomial of Frobenius h(x) =

x2 − apx + p. Writing h(x) = (x − u)(x − p/u), one has h(1) = |Ẽ(Fp)| =

(1 −u)(1 −p/u). Sin
e p is anomalous, h(1) = p for p > 5 by the Hasse bound([12℄ pg. 131), but for p = 3, 5 one has h(1) = 6, 10 respe
tively. In any event,
ordp(1 − u) = 1. From [6℄ whi
h gives a di�erent proof of the above shortexa
t sequen
e, u a
ts on Zp by multipli
ation, and sin
e Ẽ(Fp)p is 
y
li
 oforder p, one 
on
ludes that E(Qp)/N ∼= Z/pZ ⊕ Z/pZ.6.4 ExamplesOne 
an now apply the results from 
hapter 3 to determine the isomorphism
lass ofX. By the Main Conje
ture of Iwasawa theory, one expe
ts the 
hara
-teristi
 polynomial fX(T ) to be equal up to a unit to the p-adi
 L-series of E,
Lp(E, T ) ∈ Zp[[T ]]. The p-adi
 L-series for E 
an be 
omputed using SAGE[10℄ up to any desired pre
ision modulo m = (p, T ). Assuming the Main Con-je
ture, the Weierstrauss preparation theorem gives Lp(E, T ) = fX(T )U(T )for a unit U(T ) ∈ Λ, and by the expli
it version of the Weierstrauss prepara-tion theorem 1.1.3, one 
an �nd fX(T ) up to any desired pre
ision by fa
tor-ing the trun
ated output Lp(E, T ) mod mk. The examples given below are for
λ = 2, λM−W = 0, and µ = 0.

y2 + xy = x3 − 2x− 5Let E be the ellipti
 
urve y2 +xy = x3 −2x−5, whi
h is the 
urve 869
1 fromCremona's tables [2℄. E has good ordinary redu
tion at 3. The Tamagawanumbers are c11 = 2, c79 = 1, with E having split multipli
ative redu
tion at11, and non-split multipli
ative redu
tion at 79. Sin
e E(Q)3 = 0, X has nonontrivial �nite Λ-submodules. The rank is 0, but the torsion subgroup is
y
li
 of order 2 generated by the point (2,−1). The 
urve redu
ed mod 3 is
Ẽ : y2 +xy = x3 +x+1 with Ẽ(F3)3 
onsisting of the 3 points ∞, (0, 1), (0, 2),hen
e 3 is an anomalous prime. By prop 5.3 (ii) in [3℄, SelE(Q∞)3 is in�nite.60



One 
omputes the 3-adi
 L-series mod (3, T )4 as
L3(E, T ) ≡ (T − α)(T − β)where α ≡ 2 · 3 + 2 · 32 + 2 · 33 + O(34) and β = 3 + 32 + 33 + O(34), and bythe Main Conje
ture
X →֒ Λ/(T − α) ⊕ Λ/(T − β)with �nite 
okernel. Sin
e the dis
riminant of (T − α)(T − β) has 3-adi
order 2, the degree 2 results from 
hapter 3 give two possibilities for X up to

Λ-isomorphism: X ∈ [N0] or X ∈ [N1] where
N0 = 〈(1, 1), (0, 1)〉

N1 = 〈(1, 1), (0, 3)〉.To de
ide whi
h module X is isomorphi
 to, one 
al
ulates the abelian p-group stru
ture of the quotients Ni/ωn(T )Ni, whi
h just involves linear alge-bra. These turn out to be
N1/TN1

∼= Z/9Z,

N0/TN0 ≡ Z/3Z ⊕ Z/3Z.Then Ni
∼= X implies that

Ni/ωn(T )Ni
∼= X/ωn(T )X ∼= SelE(Q∞)Γn

3by Pontryagin duality (here one is using the fa
t that the dual of a �nite abelian
p-group is itself). Using Cremona's tables, one 
an verify that SelE(Q)3 = 0,so at level 0 ker g0

∼= cokers0 = SelE(Q∞)Γ
3 . Sin
e p is anomalous and theTamagawa numbers are prime to p, ker g0

∼= ker r3
∼= Z/3Z⊕Z/3Z by se
tion6.3. Hen
e X/TX ∼= Z/3Z ⊕ Z/3Z, and one 
on
ludes that X ∼= N0

∼= Ef .61



y2 = x3 + x2 − 16x− 32This is the 
urve 104a1 from Cremona's tables . One has ∆ = −21113 withTamagawa numbers c2 = 1, c13 = 1. The Weierstrauss fa
torization of the
3-adi
 L-series is L3(E, T ) = f(T )U(T ) with

f(T ) = T 2 + (32 + 2 · 33 + 2 · 34 + · · · )T + (32 + 2 · 33 + 2 · 34 · · · ),whi
h is irredu
ible with dis
riminant 2 · 32 + 2 · 33 + 34 + · · · . Hen
e
Mf = {Nk = 〈T + b/2, 3k〉Zp

|k = 0, 1},by theorem 3.0.6 where b is the linear 
oe�
ient of f . The quotients at level
0 are N0/TN0

∼= Z/9Z and N1/TN1
∼= Z/3Z ⊕ Z/3Z. As in the last example,3 is an anomalous prime for E, hen
e ker g0

∼= ker r3
∼= Z/3Z ⊕ Z/3Z. Sin
e

SelE(Q)3 = 0, one has X/TX ∼= ker g0, hen
e X ∼= N1.
y2 = x3 − x2 − 12x− 40This is E = 212b1 from Cremona's tables. One has ∆ = −28532, with Tama-gawa numbers c2 = 3, c53 = 2. The prime p = 3 is not anomalous for E. TheWeierstrauss Fa
torization is L3(E, T ) = U(T )f(T ) with

f(T ) = T 2 + (2 · 3 + 33 +O(35))T + (2 · 3 + 33 +O(35)with ord3(disc(f)) = 1. Hen
e Mf 
onsists of the single 
lass given by
Λ/(f(T )), and X ∼= Λ/(f(T )). Note that in this example, if one just as-sumes SelE(Q)3 is �nite, the Euler 
hara
teristi
 result (theorem 4.1 in [3℄)gives

|SelE(Q∞)Γ
3 |

|SelE(Q)3|
= 3.Sin
e the top is already 3 by our result, SelE(Q)3 is for
ed to be trivial.62
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