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ABSTRACT

Advances in electronics technology and innovative manufacturing processes have

driven the semiconductor industry towards extensive miniaturization & ever greater inte-

gration of chip design. One consequence of this sustained evolution has been the growing

relative cost of accessing off-chip components with external memory being one of the dom-

inant contributors. In embedded systems and applications, where power consumption and

cost are extremely crucial factors, the use of on chip Scratch Pad Memories (SPMs) has

proven to be a good alternative to caches. SPMs are more efficient than on-chip caches

in a wide variety of aspects including energy consumption, power dissipation, speed per-

formance, area, and timing predictability. However, at the same time, they entail explicit

software-level management. Specifically, the system performance depends upon overlay

scheme for mapping code and data onto the size-limited SPMs. It has been found that for

applications with large code sizes, the overlay overhead cost becomes significant. This work

aims to evaluate and implement pre-fetching as a performance improvement technique for

SPMs. It is implemented in code overlay manager, provided with the Cell Broadband En-

gine (CBE) Synergistic Processing Unit (SPU) compiler from IBM, spu-gcc. Four different

approaches proposed in this work use profiling information to predict pre-fetch calls. The

pre-fetching technique achieves considerable performance improvement by hiding some of

the code overlay cost behind active computations by fetching the required code segment in

advance into SPM. Experimental results supporting this claim are obtained using the IBM

Cell architecture platform with substantial gain of more than 30%.
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Chapter 1

INTRODUCTION
1.1 Overview

The first generation of embedded systems were limited to fixed, relatively simple, single

functionality devices like digital watches, calculators, coffee makers etc. Contemporary

embedded systems have, however, evolved over a period of time into highly complex,

programmable, intelligent, multi-functionality devices which include PDAs, GPS, cellu-

lar phones, and music players. Such systems have to satisfy stringent power, performance,

and cost constraints. Many of these devices are on portable platforms and hence operate

on battery, making power consumption a crucial design factor. For such mobile embed-

ded devices, reduced energy consumption translates to increased battery life or reduced

product dimensions, weight and cost or both. Consequently, the overall competitiveness of

the product is improved. It has been observed that memory subsystems contribute to the

consumption of 50% to 75% of the power budget of the entire system[14, 25].

Modern embedded systems improve their performance by using memory hierar-

chies consisting of caches or scratchpads or both. The memory subsystem, especially on-

chip caches using SRAM, consume a large portion of the total chip power. The advantage

of caches is the easy integration with the software of the system. The detection of a cache

hit or miss is done in hardware. If the accessed data is currently not available in the cache,

the hardware control automatically copies the data into the cache. This mechanism allows

the use of software without any adaption to the changed memory hierarchy. A disadvantage

of caches occurs in realtime embedded systems where a certain response time has to be

guaranteed. For the Worst Case Execution Time (WCET), a cache miss has to be assumed

[24].

Recently, Scratch Pad Memory (SPM) has been proposed as an alternative to caches

in order to reduce power and improve performance. While cache behavior is unpredictable

to programmers and transparent to applications, programmers can explicitly map the ad-
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dresses of external memory to the addresses of the SPM because the SPM is addressed

using an independent address space.

A SPM is a fast on-chip SRAM managed by software. Compared to hardware-

managed caches, SPMs offer a number of advantages. First, SPMs are more energy ef-

ficient and cost-effective than caches since they do not need complex tag-decoding logic.

Second, in embedded applications with regular data access patterns, an SPM can outper-

form a cache memory since software can better choreograph the data movements between

the SPM and off-chip memory. Finally, such a software managed data movement guar-

antees better timing predictability, which is critical in hard real-time embedded systems.

Given these advantages, SPMs are increasingly used as an alternative to caches in modern

embedded processors, such as the Motorola M-core MMC221, the TI TMS370Cx7x, and

the IBM Cell processor. In other embedded processors such as ARM10E and ColdFire

MCF5, both caches and SPMs are incorporated in order to obtain the best of both memory

architectures.

1.2 Statement of the Problem

For SPM-based systems, the programmer or compiler must schedule explicit data trans-

fers between the SPM and off-chip memory. The efficacy of SPM management critically

dictates the performance and energy cost of an application. Presently, this task is largely

accomplished manually. The programmer often spends a lot of time on partitioning data

and inserting explicit data transfers between the SPM and off-chip memory. Such a manual

approach is time-consuming and error-prone. In addition, data aggregates such as arrays in

large programs often exhibit cross-function data reuse. Obtaining satisfactory solutions for

large applications by hand can be challenging. Finally, hand-crafted code is not portable

since it is usually customized for one particular architecture.

To overcome these limitations, researchers have investigated a number of compiler

strategies for allocating data to a SPM automatically. SPM management techniques using

Memory Management Unit (MMU), cache aware techniques, code overlay schemes, and
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many more have been extensively researched. All these techniques involve better manage-

ment of available memory in the embedded system based on the application which runs on

it.

Although, the key problem of SPM management is addressd by other techniques,

the cost of management scheme can not be overlooked when it comes to large code sizes.

Overhead of using management scheme for large code bases is considerably high. This

work addresses this issue by reducing the overhead cost of one of the management scheme.

1.3 Contribution

This work optimizes the code overlay scheme to get performance improvement for multi-

core embedded architectures. The proposed technique is pre-fetching where the required

set of code segment is brought to the SPM via Direct Memory Access (DMA) in advance

by the overlay manager. This technique is implemented in spu-gcc to reduce the code over-

lay overhead cost. In order to evaluate the pre-fetch technique, this work proposes four

different approaches to predict code pre-fetch calls within large code bases. Out of four,

three approaches are fully automated such that they predict the pre-fetch calls, insert them

into the code, and execute them to check the reduced code overlay overhead. Only one pre-

diction technique involves human intervention for making pre-fetch calls prediction. This

work also evaluates the performance of the proposed stratergies on large code bases when

executing on commercial processors.

1.4 Organization

Chapter 2 describes the background study and literature. Chapter 3 discusses related work.

SPU code overlay is explained in Chapter 4. Actual implemetation is presented in Chapter

5, which explains different approaches followed by experimentation results of pre-fetching

compared to the normal execution without pre-fetching in Chapter 6. Chapter 7 summarizes

the research work.
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Chapter 2

BACKGROUND
2.1 Overview

Code mapping for SPM can be broadly classified into static and dynamic techniques, as

shown in Figure 2.1. Since it is managed by software, placing the correct code/data seg-

ments in SPM requires a meticulous and careful analysis of the memory access patterns of

the application. Allocating frequently accessed code or data to the SPM may benefit both

performance and energy consumption. SPM mapping can be done in either of the following

ways:

Static: Static allocation techniques select a fixed set of segments to reside in the SPM dur-

ing the entire execution of the application. In this case, SPM is loaded once during program

initialization and this content does not get altered further during program execution.

Dynamic: Dynamic allocation schemes modify the contents of the SPM during execution.

These techniques replenish the contents of the SPM with different code segments during

program execution by overlaying multiple code segments.

Figure 2.1: SPM utilization techniques

These traditional methods for SPM utilization break down the SPM mapping prob-

lem into two small challenges [18]:

(i) “what to map”: This involves partitioning the application code into SPM and main

memory. This segregation helps eliminate segments whose cost of transfer from mem-
4



ory to SPM is greater than that of executing from SPM. This memory management

problem is insignificant for architectures having DMA controller. With DMA, it is

always beneficial to execute code from the SPM rather than main memory.

(ii) “where to map” : This challenge, termed as address assignment, involves determin-

ing the addresses on the SPM where the code will be mapped. Appropriate address

assignment becomes essential for efficient utilization of available memory resource.

Static techniques do not always address issue (i) , but they do solve issue (ii).

The most efficient SPM management results from dynamic techniques. This comprises of

partitioning the SPM into different regions and mapping multiple code segments with non-

overlapping live ranges to these regions. Thus a dynamic technique for code mapping can

be broken down into the following two steps:

(I) Partitioning of SPM into a number of regions

(II) Overlaying the code objects/segments onto these regions

2.2 Introduction to SPM

SPM, also known as scratchpad, scratchpad RAM or local store in computer terminology,

is a high-speed internal memory used for temporary storage of calculations, data, and other

intermediate work. With reference to a microprocessor (“CPU”), scratchpad refers to a

special high-speed memory resource used to hold chunks of data for rapid retrieval.

SPM is comparable to the L1 cache in the system because it is the next closest

memory to the processor, after the internal registers. It often uses DMA-based data transfer

by explicitly issuing instructions to store and load data to and from the main memory.

Although analogous to cache, they are not equivalent. In direct contrast with a system

that uses caches, a system with scratchpads has Non-Uniform Memory Access (NUMA)

latencies. This is because the memory access latencies to the scratchpads and main memory

vary. Another important difference between the two systems is that a scratchpad normally

does not contain a copy of the data that is also stored in the main memory.
5



Scratchpads are typically employed for simplification of caching logic. In the con-

text of Multiprocessor System-on-Chip (MPSoC) embedded systems, they are used to guar-

antee that a unit can function without main memory contention, a phenomenon that is com-

mon for the multi-processor environment. They often act as a CPU stack storing temporary

results, which mostly does not need committing to main memory. In case of systems with

relatively slower main memory, they can also be utilized as a replacement for cache in or-

der to mirror the state of the main memory. Similar to cache, SPM also raises the issue

of locality of reference when it comes to its efficient use, although some systems do allow

strided DMA to access rectangular data sets. Another major difference is that scratchpads

are explicitly manipulated by applications, which is quite different to the cache function.

Scratchpads are not used in mainstream desktop processors. A major reason for

this is the generality requirement necessary for legacy software to run from generation to

generation, in which case the available on-chip memory size may change. They are better

implemented in embedded systems, special-purpose processors and gaming consoles. In

these cases, the chips are generally manufactured as MPSoC, and the software is often

tuned to a single hardware configuration. e.g. Sony PlayStation 3 (PS3), XBOX 360.

Code Overlay

Code overlay is a technique for mapping instruction code onto available memory in which

the code would not otherwise fit. In designing an overlay mapping scheme, available mem-

ory is partitioned into one or more fixed regions to which one or more code segments may

be assigned. Every segment assigned to a given region is mapped to the same address in

the SPM. The size of a region in memory is precisely that of its largest mapped segment.

Code may be stacked into segments so as to ensure that the end address of the first element

is followed by the start address of the second code element and so on.

Normally instructions may be assigned to segments at object file, function, or basic

block resolution. In addition, any number of elements may be assigned to one segment.

When the code overlay scheme is implemented and the code is executed, each region of

6



memory always contains exactly one code segment at any given time during execution.

When instructions are requested which are not currently present in the SPM, the appropriate

segment is loaded from the main memory into its assigned region by overwriting the current

segment. This is referred to as an overlay miss. Each miss has an associated overhead which

is defined as the amount of time expended to load the missing segment. This overhead is

proportional to the size of the code segment. The cumulative overhead in terms of time

associated with execution of a program using a specific overlay mapping is the mapping’s

total cost. Chapter 4 talks in detail about SPU code overlay to give a more comprehensive

idea.

2.3 Sony IBM Cell

The Cell architecture grew from a challenge posed by Sony Computer Entertainment,

Toshiba, and IBM, an alliance commonly know as “STI”, to provide a cost-effective,

power-efficient, and high-performance processing unit for a wide range of applications,

including the most demanding consumer appliance - gaming consoles. Cell is shorthand

for Cell Broadband Engine Architecture, often referred to as Cell BE. This architecture is

a state-of-the-art design, which is based on the analysis of a broad range of workloads, in

a variety of application areas such as cryptography, graphics transforms, image processing,

video encoding/decoding, computational physics, Fast-Fourier Transforms (FFT), matrix

operations, and scientific workloads. Cell combines a general-purpose Power PC Archi-

tecture core having modest performance with streamlined co-processing elements, which

greatly accelerate multimedia, vector processing functions, and other dedicated computation-

intensive tasks.

Cell Architecture

Cell is a heterogeneous, multiprocessor chip [1] that consists of an IBM 64-bit Power

ArchitectureT M core, often called as the Power Processing Unit (PPU). This PPU core,

which acts as a master, is supplemented by eight specialized co-processors based on a

novel Single-Instruction Multiple-Data (SIMD) architecture called Synergistic Processor
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Unit (SPU). The SPU architecture is used for data-intensive processing, like that found in

cryptography, media, and scientific applications. The entire system is integrated by a coher-

ent on-chip bus. It actually bridges the gap between conventional desktop processors (such

as the Athlon 64, and Core 2 families) and more specialized high-performance processors,

such as NVIDIA and ATI graphics processors.

The performance of single core processors steadily improves as the frequency is

increased. They also fulfill the current industry trends of small die area, extensive integra-

tion of large function sets, and cost-effectiveness. However, this increase in frequency and

decreasing die area has raised the issue of increased power dissipation. This is because the

power densities across the chip escalate due to increased technology scaling and switching

activity. Consequently, the single core processor has hit the power wall, where frequency

can no longer be increased without additional power handling costs. As a result, the best

approach to achieving high performance and reduced power targets is to exploit parallelism

through a large number of cores working in tandem on a single chip. A heterogeneous

configuration with a SIMD-centered architecture further achieves reduction in power. This

configuration combines the flexibility of the PPU with the functionality and performance

optimizations of the SPU SIMD cores.

Synergistic Processing Elements (SPE) is comprised of SPU along with Memory

Flow Controller (MFC) and some small memory. Each SPU consists of a 256 KB embedded

SRAM for instruction and data, called as “Local Storage” (LS). This LS is referred to as

SPM and it is the only memory directly addressable by the SPU.

The SPU architecture has the following characteristics:

• provides a large register file

• simplifies code generation

• reduces the system size and power consumption by unifying resources, and

• simplifies decode and dispatch.
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Figure 2.2: IBM CELL Architecture

While the SPU Instruction Set Architecture (ISA) is a novel architecture, the SPU

operations are closely aligned with the functionality of the PowerT M VMX unit. This form

of closely-associated functionality enables code portability between the PPU processor and

the SPU SIMD cores. However, for most computation formats, the supported data type

range has been reduced. VMX supports a number of densely packed saturating integer data

types. However, such data types lead to loss of dynamic range, which produces degraded

computation results. Hence, it is preferable to widen the integer data types and perform

the intermediate computations without saturation. Memory bandwidth and footprint may

be reduced and at the same time, high data integrity can be achieved by performing unpack

and saturating pack operations.

Floating point data types do not require additional data conditioning since they, by
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default, support a wide dynamic data range and saturation. So as to ensure that the area and

power constraints are met, floating point arithmetic is limited to the most basic modes in

the SPU. In addition, a single rounding mode is supported. Single precision floating point

is supported so as to achieve improved performance for multilmedia and three-dimensional

graphics rendering applications. Real time gaming applications work extremely well with

this architecture.

The PPU has the capability to run conventional operating system on it. It controls

all 8 SPUs and can start, stop, interrupt, and schedule processes running on each of them. In

order to control SPUs, the PPU has been designed to support additional instructions. Unlike

SPUs, the PPU can read from and write to the main memory and the local stores of the

SPEs through the standard load/store instructions. Despite having complete architectures,

the SPUs are not fully autonomous and require the PPU to prime them before they can do

any useful work. Although most of the computational work is done by the SPEs, the use of

DMA as a data transfer method and the limited local memory footprint of 256KB in each

SPU pose a major challenge to software developers who wish to make the most of this. This

scenario necessitates meticulous hand-tuning of programs to extract maximum performance

from the SPU. To achieve the high performance necessary for computation-intensive tasks

such as decoding/encoding MPEG streams, generating or transforming three-dimensional

data, or undertaking Fourier analysis of data, software developers are required to come up

with the best overlay schemes that do justice to this heterogenous architecture.

The Element Interconnect Bus (EIB) is a communication bus internal to the Cell

processor, which connects the various on-chip system components - PPU processor, Mem-

ory and I/O Controller (MIC), eight SPU co-processors, and two off-chip I/O interfaces.

The EIB also includes an arbitration unit that actively determines and mediates which unit

has current bus control. The data transfer between a SPU and PPU or between two SPUs

is performed over EIB via the cache coherent DMA mechanism. The PPU and bus archi-

tecture includes various modes of operation giving different levels of memory protection,

allowing areas of memory to be protected from access by specific processes running on the

10



SPUs or the PPU.

Figure 2.3: IBM CELL die

The SPU is an in-order, dual-issue, statically scheduled architecture. It can issue

two SIMD instructions per cycle - one compute instruction and one memory operation. Un-

like x86 architecture, the SPU architecture does not include dynamic branch prediction. In-

stead, it relies on compiler-generated branch prediction using “prepare-to-branch” instruc-

tions to redirect instruction prefetch to branch targets. The SPU was originally designed

with compiled code being the main focus. Early availability of SIMD-optimized compilers

also allowed development of high-performance graphics and media libraries entirely in the

C programming language. The subsequent advancement in SPU compiler technology led

to the development of an advanced parallelizing compiler with auto-SIMDization features

based on IBM XL compiler technology.

Although IBM Cell was earlier designed and built for custom gaming consoles,

the past few years have seen the contribution of Cell well beyond the realm of the gaming

industry. The Cell-based blade gives better performance as compared to a single IBM Cell.

Other prospective application areas may include HDTV sets, home servers, game servers
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Table 2.1: Important CELL statistics

Observed clock speed > 4GHZ
Peak performance (single precision) > 256 GFlops
Peak performance (double precision) > 26 GFlops
Local storage size per SPU: 256KB
Area 221 mm2

Technology 90nm SOI
Total number of transistors 234M

and supercomputers. Cell has evolved from being a single chip in the past to being a fully

scalable system today. The number of SPUs in the Cell can be easily varied to achieve

different power/performance and price/performance tradeoffs. The Cell architecture was

conceived as a modular, extendible system where multiple Cell subsystems can form a

symmetric multiprocessor system.
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Chapter 3

PREVIOUS WORK

Extensive literature is available on the broad topic of SPM management. Existing work

on SPM allocation can be divided roughly into two broad categories - statically allocated

and dynamically managed scratchpad memories. In statically allocated SPM allocation, the

scratchpad memory is initialized with the designated program segments at load time and

its contents do not change during run time. In contrast, dynamically managed SPM, as the

name suggests, is characterized by change in the contents of the SPM while the program

executes. The program points where code and/or data are moved back and forth from the

SPM to the main memory are usually predetermined locations, generally immediately be-

fore a substantial change in program behavior (e.g., before loops). Both statically-allocated

and dynamically-managed SPM can be further sub-classified into techniques that consider

only code (instructions), or only data, or both.

Static SPM allocation techniques have been extensively explained in [3, 4, 7, 20, 17,

23]. Most of these approaches require prior knowledge of the SPM size at the compile time

itself, except [17]. In [3, 4], dynamic programming approach for SPM allocation is done in

order to select code blocks, which subsequently leads to higher energy savings. While [3]

requires special hardware support to split the SPM into several partitions, [4] uses a post-

pass optimizer to modify the necessary instructions so that the application runs on a unified

SPM. Another method [7] solves the static assignment with a Knapsack algorithm, both for

code and data blocks. In [23], memory objects are selected based on a cache conflict graph

obtained through cache hit/miss statistics. The optimal set of memory objects is selected

using an Integer Linear Program (ILP), which is a variant of the Knapsack algorithm. Yet

another technique [17] is a profile-based approach where some profiling information has

to be embedded into the application binary. The decision of which blocks should go to

the SPM is delayed until the application is loaded, making it independent of the actual

scratchpad memory size. The work in both [10] and [22] aims at multi-tasking systems.

While [10] proposes an Application Program Interface (API) that helps the programmer
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move blocks back and forth between the SPM and the main memory, [22] deals with an

automatic approach. The work in [12] presents three sharing strategies - non-saving, saving,

and hybrid. In the non-saving approach, the scratchpad memory is completely allocated to

the currently active task. The saving approach divides the scratchpad evenly between the

applications. The hybrid approach is a combination of the saving and non-saving method.

Since [22] presents a static allocation method, both the SPM size as well as the sharing

strategy must be decided at compile time.

The second category of techniques i.e dynamically allocated SPM algorithm are

explained in depth in [9, 12, 14, 15, 16, 19, 21]. These approaches address code as well

as data allocation issues to memory. The methodologies in [14, 15] consider data arrays

from well-structured loop kernels. In such techniques, the arrays of data are split into tiles

in order to allow only part of an array to be copied into SPM. This allows arrays that are

bigger in size to the SPM to still be allocated to SPM since only part of the array is actually

present at any given point in time. Along similar lines, data arrays are also utilized in

[16] to assign to SPM. In order to determine the most beneficial data array, registers are

first assigned to so-called register classes based on their size. Each register class gets a

fixed size of the SPM. Using a conflict graph of live ranges, a graph coloring algorithm

determines which array is to be allocated to the SPM at what program points.

Performance optimization and consideration for local and global data are the focal

points of [21]. This work examines the relationship graph among the data, called as the

Data Program Relationship Graph (DPRG). This is generated with the help of the program

control flow graph, annotated with timestamp. Using greedy heuristics on DPRG, the most

beneficial sets are copied to and from the SPM with the help of pre-defined copy points.

The most promising set of loops for SPM are determined in [9] using the ILP approach.

Code allocation to SPM by using concomittance metric is discussed in [12]. This metric is

a representation of the correlation of execution time of different code blocks. In [19], code

blocks are directly copied into memory just before the loop. To find the optimal solution,

ILP is used instead of graph colouring algorithm. Work in [18], introduces the SPM code
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mapping as a binary integer linear programming problem and also proposes a heuristic,

determining simultaneously the region along with the function-to-region mapping.

Finally, in [8], an SPM allocation scheme for heap data is proposed. Promising

candidates are assigned a fixed-size bin that can hold n elements of a dynamically allocated

variable. At runtime, only the first n objects are allocated to the SPM. While the bins

are fixed in size, their memory location may change during program execution, making

this allocation technique a dynamic one. A dynamic approach which uses a binary integer

programming to find region sizes and function-to-region mapping is discussed in [18]. The

extension to this work is proposed in [13] which capture the temporal ordering of functions.

It uses a conservative estimate of the interference cost between functions to generate a

overlay mapping.

In practical applications, the code size is generally very large as compared to the

available scratch pad memory. In such a small available memory, both code and data need

to be appropriately managed. Code overlay can be used to do this successfully and effi-

ciently. In code overlay, the required code is uploaded and offloaded into and from the

scratch pad memory. This must be done using some software and it should be efficient

enough to give good performance. This work focuses on the code overlay approach pro-

posed in [6] along with new proposed overlay mapping technique for the analysis of pre-

fetch mechanism. Implemented pre-fetch technique optimizes the code overlay scheme to

reduce overlay overhead cost.
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Chapter 4

SPU CODE OVERLAY

Within the purview of general computing, overlaying means “replacement of a block of

stored instructions or data with another”. Overlaying is a programming technique that al-

lows programs to be larger than the processing unit’s available memory. An embedded

system would normally use overlays because of limited available physical memory (which

is the internal memory for a system-on-chip or SoC) and lack of virtual memory facili-

ties. This is because most SOCs have high performance computation units with restricted

memory resource.

4.1 Introduction

Most of the application programs running on desktops with general purpose processing

units load the complete program into the main memory and execute it. This is the most op-

timal and efficient way to perform the operation. However, in case of embedded systems,

the main memory of the processing unit is limited. In the IBM Cell, each SPU unit has

its own LS memory of size 256KB. Loading the complete program onto the LS before its

execution does not work for SPU due to its memory constraints, unless the program is a

small computation task such as a limited dimension matrix multiplication, which requires

relatively low memory for both code and data. The programs that are run on these units

are most definitely of the order of a few hundreds of KB, without taking data into consid-

eration. When the sum of the code and data lengths of the program exceeds the LS size,

it is necessary to use overlays. Overlays may also be used in certain other circumstances;

for example, performance improvement may be achieved if the size of data areas can be

increased by moving rarely used functions to overlays.

Overlay mapping consists of assigning memory regions with more than one seg-

ment mapped onto it. A segment is the smallest unit which can be loaded as a single logical

entity during execution. It contains program sections such as functions and data areas. A

region may contain more than one overlay segment, but a segment will never cross a region
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boundary. The size of a region is the largest segment size among its assigned segments.

Regions with only single segment mapping are not considered as overlay regions.

The overlay feature is supported for Cell SPU programming but not for PPU pro-

gramming. This is because the PPU has cache which can hold large sized programs for

execution. The overlaid program segments are not loaded onto the SPU LS before the

main program begins its execution. They actually reside in the Cell main storage until that

segment is required to be executed. When the SPU program invokes code in one of the

overlay segments, and this segment is not currently present in the local store, then it is first

transferred to the LS using DMA, from where it can be executed. This transfer will usually

overwrite another overlay segment in the LS. This overwritten segment will most likely be

from that part of the memory region which is not immediately required by the execution

program.

In an overlay structure, the LS is divided into a root segment, which is always

in storage, one or more overlay regions, where overlay segments are loaded as and when

needed, and at times, regions with only one segment assigned to them. The root segment

is loaded to the LS before program execution. Similarly, regions with unique segment as-

signments are also initially loaded since these regions do not undergo segment loading and

offloading. Any given overlay segment will always be loaded onto the same region. This

is governed by the overlay manager with the help of overlay mapping schemes provided in

the linker script.

4.2 Overlay Working

The challenge of fitting large codes into the limited LS can be addressed through the gen-

eration of overlays by the linker or by providing one’s own overlay scheme. Two or more

code segments can be mapped to the same physical address in the LS. The linker plays an

important role of generating call stubs for each segment, for all the regions, and the asso-

ciated tables, which has all the tags stored for the reference of the overlay manager. These

stubs and tables, both reside in the root segment. Instructions to call functions in the overlay
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segments are replaced by branches to these call stubs, which load the function code to be

invoked, if necessary, and then branch to the function.

In most cases, all that is needed to convert an ordinary program into an overlay

program is the addition of a linker script to structure the module. The script specifies which

segments of the program can be overlaid in which region. The linker then prepares the

required segments so that they may be loaded when needed during program execution. It

also adds supporting code from the overlay manager library.

Once a particular function call is made by the currenty executing program segment,

the overlay manager uses the table to check whether the requested segment containing the

called function is already in the LS. If it is already present, the program sequence jumps to

the starting address of the target segment and begins execution from there. If it is not present

in the LS, the segment is loaded into the appropriate memory region, to its specific memory

address during run-time, by performing DMA operation. This loading process overwrites

the existing segment present in that location. The DMA command is issued, controlled and

executed by the overlay manager. Before jumping to the target address once the segment

has been loaded, the overlay manager also checks to ensure successful completion of the

DMA process to avoid any unwanted behaviour in the program execution.

4.3 Overlay Limitations

Overlay can be of both, code and data. However, in general, when using overlays, the scope

of the data restricts the freedom of managing code overlay. Conventional practice dictates

that code sections must be grouped along with the data segments used by them. Due to such

an efficient grouping, the data segments are used only by the segment which is currently

loaded in a region and executing. This data is swapped out or written back to main storage

only when a new segment is loaded, which also loads its own data to operate. Ideally all

data sections are kept in the root segment which is never overlaid, provided that the data

segments are not too large in size, which is a quite rare for present-day embedded systems

applications. To address the issue of data size, sections for transient data may be included
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in the overlay regions, which is also swapped in and out as per requirement. However,

the subsequent implications for this should be carefully considered. Most of the time, it is

advisible for the user to analyze and handle the data segments to have error free results.

4.4 How to use Overlays

The process of overlay structuring involves performing code size estimation for a given

application program. Some knowledge of data segment requirements also helps to get a

better insight into the problem. Based on the available code and data requirements of a

particular application, the first few things to be considered are as follows:

1. number of overlay regions that are required

2. number of segments which will be overlaid into each region

3. number of functions within each segment

At this stage of overlay structuring, it is better to overestimate the number of segments to

produce conservative deductions. This is because it is easier to combine segments later

rather than break up oversize segments after they are coded. The best practice may be

function level resolution for segments.

Overview

The structure of a SPU overlay program completely depends on the relationships between

the segments within the program code. Two segments which do not have to be in LS at the

same time can be overlaid in the same region where they share an address range. These

segments are assigned with the same load addresses, which is the starting address of the

region. This does not create a problem, as they are loaded only when called. For example,

code segment which reads the data from some input and writes back after the computation,

need not be loaded into the memory at the same time.

Some program sections are required to be present in the LS at all times of the

program execution. These sections are grouped together and placed in a special segment
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called the root segment. This segment remains in storage throughout the execution of the

program. Some overlay segments may be called by several other overlay segments. This

can be optimized by placing the called and calling segments in separate regions. In other

words, such segments are not overlaid. Designing an overlay mapping scheme requires

a comprehensive scrutiny of the program code. This facilitates in deciding which code

sections need to be kept in the root segment for continuous availability and which code

segments need to be overlaid such that they occupy the same LS locations at different times

during execution.

While making decisions for overlay mapping, the finest resolution is at the function

level. For any region, its minimum size is the size of the largest overlaid function mapped

onto it. Linker checks for size constraints and throws an error if the function does not fit into

the LS. This can be easily handled by splitting the function into multiple smaller functions

without changing it’s functional behaviour on the whole.

Another important factor to be considered is the total size of the SPE executable.

Overlays cannot use complete available LS memory to implement the mapping scheme.

Overlay manager code, tables and stubs for segments all need to be in the LS at all times

during the execution of program code. Overlay manager does the job of loading and of-

floading segments, as and when needed. It uses the table entries for these operations. The

stubs act as the starting point for the segments which are overlaid. Basically, stubs are

called when a segment is called by the program. For a program with s overlay segments

in r regions, making cross-segment calls to f functions, this infrastructure requires the fol-

lowing amounts of local storage:

manager: about 400 bytes ,

tables : s ∗ 16 + r ∗ 4 bytes ,

stubs : f ∗ 8 + s ∗ 8 bytes .

The numbers shown above indicate the absolute minimum requirement for the LS.
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Leaving this memory aside, the rest of the LS can be used for code overlay and data. Besides

these, the design of overlay schemes does not have any restrictions on the number of overlay

segments or regions supported.

Overlay Structure Example

Consider the following example to illustrate overlay structuring, having eight functions

including a main function which acts as the source point. Functions are labelled as func A

through func G. The individual functions size are shown in the Table 4.1. The sizes of the

functions are selected in such a way that the total code size exceeds the size of the LS.

To find the best available overlay mapping scheme, the relation between functions needs

to be understood. Figure 4.1 shows the tree structure or call graph of the code, which

highlights the relations between different functions. The functions are assigned to five

different segments as shown in Figure 4.1. It also helps in understanding how the segments

use the LS at different times.

main 

func_A 

func_B func_C 

func_G 

func_F func_E 

func_D Segment 1 

Segment 0 

Segment 4 

Segment 3 

Segment 5 

Segment 2 

Figure 4.1: Overlay structure

Some of the questions that need mention are - What if the code is not overlayed?
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How much total LS is required in that case? If the program did not use overlay mechanism,

it would require 330KB of total storage, which is the sum of all sections. In order to fit the

330KB size of code in less than 256KB of LS, overlays are used. Segments which do not

require simultaneous presence in the memory can be assigned to one region. As shown in

the Figure 4.2, segments are assigned to each region. Segment 0 is the largest segment in

region 0, and similarly, segment 2 in region 1 and segment 4 in region 2.

The position of the segments in the mapping scheme does not determine the order

in which they will be called. Any segment may get called at any time during program

execution and this completely depends upon the program code logic along with the input

data. The same segment may get called, and consequently get loaded, into the LS multiple

times due to the change in the sample input.

main 

func_A 

func_B func_C 

func_G 

func_F func_E 

func_D Segment 1 

Segment 0 

Segment 4 

Segment 3 

Segment 5 

Segment 2 

Region 0 

Region 1 

Region 2 

Figure 4.2: Overlay structure with region assignment

Load Point for Segments

Conventionally, the root segment is the initial segment assigned by the linker, which has

0x80 as the starting address. The rest of the regions and corresponding segments get load
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Table 4.1: Sample program lengths

Section Length (in bytes)

main 15,000
func A 25,000
func B 40,000
func C 70,000
func D 50,000
func E 85,000
func F 30,000
func G 15,000

Table 4.2: Segment load points

Segment Load point

0 0x80 + 0
1 0x80 + 40,000
2 0x80 + 40,000
3 0x80 + 40,000
4 0x80 + 110,000
5 0x80 + 110,000

addresses relative to the previous load addresses, along with this 0x80 offset. Segments

belonging to the same region have the same load address. For example, segments 1, 2 and 3

mapped to region 1 will have the same address. This segment origin is also called the load

point, because it is the relative location where the segment is loaded. Table 4.2 indicates

the load points for each segment in the sample program.

Overlay Manager

When a program execution begins, it may invoke code from a particular segment. If that

segment is not present in the LS, then it needs to be brought in via DMA from the main

memory. The controller which controls the overlay operations is called overlay manager.

The overlay manager checks to see whether the segment is already loaded due to previous
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calls. If not, then it initiates the DMA transfer of the segment from main memory to the

appropriate load point. No overlay occurs if one section calls another section which is in a

segment already in the LS.

The overlay manager uses special stubs and tables. These stubs and tables are

generated by the linker automatically and are part of the output program module. Special

stubs are used for each inter-segment call. The tables generated are the overlay segment

table and the overlay region table. With the help of these tables, the overlay manager

decides which segment is currently loaded in a particular region. These tables also give

information about where to load the segment along with its size. Figure 4.3 shows the

location of the call stubs and the segment and region tables in the root segment of the

sample program. These table sizes need to be considered when planning the resource usage

of the LS.

main 

func_A 

func_B func_C 

func_G 

func_F func_E 

func_D Segment 1 

Segment 0 

Segment 4 

Segment 3 

Segment 5 

Segment 2 

Region 0 

Region 1 

Region 2 

Overlay manager, 

stubs and tables 

Figure 4.3: Overlay structure with overlay manager, stubs and tables

Figure 4.4 shows code overlay mapping with addresses labeled across the bottom.
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Figure 4.4: Memory layout for given code example

Call Stubs

There is one call stub for each function in an overlay segment, which is called from a

different segment. No call stub is needed if the function is called from within the same

segment. All call stubs are in the root segment. During execution, the call stub specifies

the specific segment to be loaded and also the segment offset to the overlay manager, to

transfer control to invoke the function to be accessed.

Segment and Region Tables

Each overlay program contains one overlay segment table and one overlay region table,

located in the root segment. Section 4.6 talks about it in detail. The segment table contains

static (read-only) information about the relationship of the segments and regions in the pro-

gram. During execution, the region table contains dynamic (read-write) control information
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such as which segments are loaded into each region. Unlike segment table, region table is

dynamic because it updates the segment number which is currently loaded.

4.5 Linker Script for SPU Overlay Program

Once the overlay structure is designed, the program should be arranged into the structure.

The complier compiles the code to generate the object files which the linker uses to make

the executable. For this, the linker needs to know the sections in each segment, and the

mapping of segments to specific regions. This can be done by providing a linker script file

which contains OVERLAY statements. The specifications given in the linker file are as under.

Regions are defined by each OVERLAY statement. Each OVERLAY statement begins a new

region.

Segments are defined within an OVERLAY statement. Each segment statement within an

overlay statement defines a new segment. Additionally, it provides a means to equate each

load point with a unique symbolic name.

Sections are positioned in the segment specified by the segment statement with which they

are associated.

The origin of every region is specified with an OVERLAY statement. Each OVERLAY

statement defines a load point at the end of the previous region. The load point is logically

assigned a relative address that follows the last byte of the largest segment in the preceding

region. Subsequent segments defined in the same region have the same load point as their

origin.

In the sample tree overlay program, two load points are assigned to the origins of

the two OVERLAY statements and their regions, as shown in Figure 4.2. Segments 1, 2 and

3 are at the first load point whereas segments 4 and 5 are at the second load point.

The following sequence of linker script statements results in a structure as shown

in Figure 4.1
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OVERLAY {

. segment1 {./ func B.o (. text )}

. segment2 {./ func C.o (. text )}

. segment3 {./ func D.o (. text )}

}

OVERLAY {

. segment4 {./ func E.o (. text )

./ func G.o (. text )}

. segment5 {./ func F.o (. text )}

}

Note: main and func A are not specified in the OVERLAY statements because they are a part

of root segment. In other words, the segments not specified in the linker file, automati-

cally become a part of the root segment. They also do not have entries in the tables since

the overlay manager does not have to load or offload them. Regions with single segment

mapping also have similar features.

4.6 GNU SPU Linker

The GNU SPU linker makes use of object files, object libraries, linker scripts, and command

line options to generate a fully or partially linked object file. The linker script is used to

control the generation of overlays as this allows maximum flexibility in specifying overlay

regions and in mapping input files and functions to overlay segments. One or more overlay

regions can be easily created by inserting multiple OVERLAY statements in a standard script

as described in Section 4.5. No further modification of the output section specifications,

setting the load address for example, is necessary. In addition, by defining loadable output

sections with overlapping virtual memory address (VMA) ranges, it is possible to generate

overlay regions without using OVERLAY statements.
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Once the linker detects overlays, it automatically generates the data structures used

to manage them. It also scans all non-debug relocations for calls to addresses which map to

overlay segments. The linker generates an overlay call stub for such called addresses and

remaps the call to branch to that stub in response to such calls. This is for calls that are

apart from those used in branch instructions within the same section. At execution time,

these stubs call an overlay manager function which loads the overlay segment into storage,

if necessary, before branching to the final destination.

If the following linker command option is specified: -extra-overlay-stubs,

then the linker generates call stubs for all calls within an overlay segment, even if the target

does not lie within an overlay segment (for example, if it is in the root segment). Note that

a non-branch instruction, referencing a function symbol in the same section will also cause

a stub to be generated. This ensures that function addresses which escape via pointers are

always remapped to a stub as well.

The overlay management data structures that are generated include two overlay ta-

bles in the .ovtab section.

ovly table:

This table has only one entry per overlay segment. The overlay manager has only read

permission for this table. This table should never change during execution of the program.

It has the format:

struct {

u32 vma; // SPU local store address that the section is loaded to

u32 size ; // Size of the overlay in bytes

u32 offset ; // Offset in SPE executable where the section

// can be found

u32 buf // One−origin index into the ovly buf table

} ovly table [];
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ovly buf table:

This table has only one entry per overlay region. The overlay manager has only read-write

permissions for this table. It changes to reflect the current overlay mapping state. The

format is:

struct {

u32 mapped; // One−origin index into ovly table for the

// currently loaded overlay . 0 if none

} ovly buf table [];

Note: These tables, all stubs, and the overlay manager itself must reside in the root (non-

overlay) segment as shown in the Figure 4.3.

Whenever the overlay manager loads a segment into a region, it updates the ovly buf table

with the corresponding segment number. The overlay manager may be provided by the user

as a library that contains the routines ovly load and ovly debug event. If these rou-

tines are not provided, the linker will use a built-in overlay manager which contains these

symbols in the .stub section [25].

Figure 4.5 shows contents of ovly table and ovly buf table for given ex-

ample. In ovly table coulmn vma indicates the spu local address where correspond-

ing segment is loaded which can be verified with the memory layout shown in Figure 4.4.

Coulmn buf shows to which region corresponding segment is mapped. In ovly buf table

column mapped shows which segment is currently loaded into the region.

Segment vma size offset buf 

1 0x9CC0 0x9C40 0xXXXX 01 

2 0x9CC0 0x11170 0xXXXX 01 

3 0x9CC0 0xC350 0xXXXX 01 

4 0x1AE30 0x186A0 0xXXXX 02 

5 0x1AE30 0x7530 0xXXXX 02 

Region mapped 

1 02 

2 05 

Figure 4.5: Contents of ovly table and ovly buf table for given example
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Chapter 5

IMPLEMENTATION
5.1 Problem Statement

Previously proposed algorithms for code overlay have been found to perform well, however,

there is much scope for improvement. Loading and offloading operations are performed for

every function call, which is fetched according to the code overlay scheme. Hence, there is

a fair amount of overhead cost involved due to the overlay manager being invoked numerous

times. Consider the example of an application which has hundreds of functions and where,

each function is being called a number of times. For every function call, program execution

must stall for the code to be loaded into the size-limited SPM from main memory. In such

a case, the overlay manager overhead becomes significant.

5.2 Proposed Solution

In order to reduce this overhead, we may perform function pre-fetching where functions

are fetched to the memory regions even before they have been called. The overlay manager

will be notified in advance to fetch the function to the SPM, while the application code

is performing some other computational work or DMA. In the normal scenario, overlay

manager performs DMA to get that function when it is called. Additionally, the overlay

manager must wait until the DMA operation is completed. With pre-fetching, DMA is

launched in parallel along with some other DMA or computational work.

The technique proposed here for pre-fetching is a manual approach, where the

programmer has to add pre-fetch calls to initiate DMA. Automatic version of pre-fetch

may also be used, which does not require programmer intervention. This can be done by

modifying the existing overlay manager which comes with the compiler. Overlay manager

does the work of loading the required code to the SPM. This work intends to add extra

functionality to the overlay manager so that the programmer can ask the overlay manager

to pre-fetch the code to the SPM. The added functionality does the job of fetching the next

expected section of code to the SPM. While doing this, the overlay manager must ensure
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that it is not overwriting the same overlay region from which it was called. With the help

of the code snippet shown in the Figure 5.1, the pre-fetching technique is illustrated along

with the performance gain possible with this mechanism.

Figure 5.1: Pseudo code example

Main starts running and it calls function F1(). If that function is not in the required

region, then the manager will initiate DMA. Once DMA is finished, it will start executing

the function. Now when function F1() is running, we can check to see which function is

called next . Function F2() is called next, and so, a check is performed first to see if it

is present in the region or not. If not, DMA is initiated for F2(). Here, the advantage is

that the manager will not wait for this DMA to finish because it is doing computations of

function F1(). The manager only initiates the DMA, which runs in the background, while

other work can be performed. This is with respect to a very small example code. Embedded

systems have a large number of functions and data. We need to manage these functions in

the overlay. In order to achieve the best out of the architecture, effective overlay schemes

are required and we can use the pre-fetching concept in order to add more performance.

Sections 5.3 and 5.4 discuss code overlay schemes followed by details of pre-fetching al-
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gorithm in Section 5.5.

5.3 Random Code Overlay Mapping for Generating Overlay Regions

Random Code Overlay Mapping (RCOM), is used to generate overlay mapping for avail-

able SPM size. RCOM is a relatively simple mapping technique. It works better than the

IBM Cell SPU complier, spu-gcc because it generates overlay mapping with multiple re-

gions if possible. It uses the function sizes to generate the mapping. As the name suggests,

it involves random segment mapping to the region, without crossing the memory constraint.

The RCOM algorithm creates overlays using function or object file resolution, where an ob-

ject file may contain one or more functions. The level of resolution it uses is limited by the

GNU linker ld. This linker takes a script (a .script file) which describes the regions mapped

with the code segments, where these segments are nothing but the object files. Overlay

mapping has one or multiple regions depending upon the available size, with one or more

segments mapped to each region.

RCOM algorithm is presented in Algorithm 5.1. For each function, f , to be as-

signed from the set of functions that have been sorted by their sizes, RCOM checks whether

remaining mem of SPM is sufficient to create a new region and assign function f to it. A

new region is created only when memory size is not overflowing. Otherwise function f

is assigned randomly to any region R from the current overlay mapping. Worst overlay

performance occurs when available memory restricts overlay mappings to a single region

that is the size of the largest function in the program, or the smallest possible size for a

valid mapping. With one function per segment, interference overhead occurs between ev-

ery function switch, during every function call and return. The computational complexity

of this simplistic algorithm is O(n).

5.4 Code Overlay Generator for Generating Overlay Regions

In order to perform pre-fetching, an overlay scheme first needs to be generated. The al-

gorithm used is “Code Overlay Generator” (COG), used for producing high performance

dynamic SPM code mappings [6]. These SPM mappings have regions specified with the
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Algorithm 5.1 RCOM algorithm
1: remaining mem = unused instruction memory
2: OV L {set of r empty overlay regions}
3: R {an overlay region in OV L}
4: ~F {functions sorted from largest to smallest function sizes}
5: for ∀ f : f ∈ ~F from largest to smallest function sizes do
6: if size( f )< remaining mem then
7: create a new region and add f
8: else
9: add f to R, any region form exiting mapping randomly

10: end if
11: end for
12: return OV L

segments assigned to them. The high performance overlay mapping generated using this

algorithm minimizes the overall overhead. It has couple of extensions for the purpose of

achieving extra optimization as compared to the original one, by considering some more

constraints. These extensions are called as “COG Expansion” and “COG compression”.

These optimized algorithms perform better than the automatic overlay mapping generator

in the IBM Cell SPU compiler, spu-gcc.

The COG algorithm is designed to produce overlays which result in the smallest

possible number of misses. This algorithm generates high performance overlays by ana-

lyzing the interference costs calculated to minimize the overall cost of the overlays. The

algorithm starts with fixed number of regions and generates mapping with minimum misses

without considering the function sizes. So, the generated mapping may be bigger than the

available size. To account for this, the algorithm does multiple iterations, each of which

starts with lower bound of regions and generates mappings with increasing region num-

ber without overflowing memory limitations. The overlay mapping with the best result is

considered after every iteration.

In the worst case the algorithm runs n times for overlay mappings i.e. 1 to n re-

gions. For each run, n functions are allocated and at most n comparisons are made for each

function to find the best region. This gives rise to a computational complexity of O(n3).

The algorithm is explained in [6].
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5.5 Pre-fetching Algorithm

The pre-fetching algorithm is an extension or plug-in to the existing SPM mapping al-

gorithm. This can be run for any mappings available for a specific size of SPM. This

is basically implemented in the overlay manager which is provided by the IBM Cell SPU

compiler, spu-gcc. Overlay manager works as a subset of the spu-gcc compiler to do all seg-

ment loading and off-loading, whenever necessary. The implemented pre-fetching works

along similar lines, except that it loads the content to the regions well in advance of the

actual invocation.

Implementation includes the code to pre-fetch the code segment into the memory,

whenever the user adds explicit call to do the pre-fetch operation. It is implemented as a

simple function call in C, which acutally invokes the assembly code to perform DMA. The

function is prefetch load(int); where, the only parameter is the index number of the

segment which is to be pre-fetched. This number is the segment number in the overlay

mapping specified in the provided linker script. As discussed in Chapter 4, the overlay

manager has the table ovly table which has one entry for each segment. This number

is used to refer to the details of the segment from the ovly table. This table stores the

SPU LS address that the segment is loaded onto. By performing the indexing to the table,

the SPU address is obtained to initiate DMA from the main memory. The table entry also

indicates the size of the segment to be loaded from starting address.

This DMA process is performed concurrently along with the current execution of

the function. Since this DMA operation overlaps with the computation work or/and with

other DMA operation, the communication overhead is reduced.

Process of Pre-fetching

1. The pre-fetch process checks with the ovly buf table, which has one entry for

each region with the number of currently loaded segment in that region. It also checks

the lower bit of the .size parameter of the ovly table which indicates segment
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size. If the segment is already loaded into the region, the DMA initiation operation

is skipped. Otherwise, it retrieves the segment details from the table ovly table

with the help of new overlay segment number.

2. Once it has the starting address and the size of the segment to be loaded, it initiates

DMA by issuing the MFC Cmd command. Before executing this command, the pre-

fetch code sets some other parameters such as transfer size to control the execution

of the DMA.

3. While DMA runs in the background, the lower bit of .size needs to be cleared in

the ovly table entry corresponding to the evicted segment, and set at the entry for

the newly loaded overlay segment.

4. Since, it is just pre-fetching and not loading the content at the function call, it will

not branch to the target address as it does in case of normal segment loading.

Pre-fetch Approaches Implemented

In order to verify and analyze the overlay overhead cost reduction obtained by the use

of pre-fetch code, the user has to insert the pre-fetch call into the code where the pre-

fetch operation is to be performed. This work analyzes the performance gain due to pre-

fetch for the given overlay mapping scheme, which is generated by existing SPM mapping

algorithms COG [6] and the proposed RCOM as discussed in Section 5.3. These pre-

fetch approaches either based on data obtained by gprof tool or profile data generated from

Overlay Miss Count Model (OMCM) explained later.

Gprof Tool

Gprof [11] is GNU profile used to analyze the given source code. Profiler uses information

collected during the actual execution of the program. In order to get profile data, first pro-

gram needs to be compiled and linked with profile enabled. Secondly, execute the program

to generate profile data file and last step is run gprof to analyze the profile data. The result

of the analysis is a file containing two tables, the flat profile and the call graph. The flat
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profile in gprof shows the total amount of time the source code has spent executing each

function and how many times that function was called. During interpretation, functions

with no apparent time spent in them, and no apparent calls to them, are not mentioned in

the gprof analysis, unless the ‘-z’ option is given. The call graph shows how much time was

spent in each function and its descendants. It also has the count for the function calls for

each function. This work uses the function call count for pre-fetch prediction appraoches.

Overlay Miss Count Model

Overlay Miss Count Model (OMCM) is profiling tool proposed to find overlay misses for

the overlay mapping scheme. This tool is implemented in overlay manager. To get the

miss counts for all the functions, program needs to be run with input data. The profile data

is generated and written into a separate file with function names and their corresponing

overlay misses. The advantage of this tool is it’s 100% accuracy. Since, it is implemented

in overlay manager, tool takes care of all the misses for a function. Overlay miss occurs

for any function during either function call or at function return. OMCM accounts for both

these misses.

Algorithm 5.2 GAP algorithm
1: PREFETCH CALL {set of n empty pre-fetch predictions }
2: OV L {set of r overlay regions mapping}
3: ~F {all the functions from the source code}
4: FUNCT ION CALL {set of function calls for each function in ~F}
5: for ∀ f : f ∈ ~F do
6: pre f etch pred = null {pre-fetch prediction for f }
7: for ∀ f c : f c ∈ FUNCT ION CALL[ f ] do
8: if count(pre f etch pred)< count( f c) && region num( f )! = region num( f c) then
9: pre f etch pred = f c

10: end if
11: end for
12: end for
13: return PREFETCH CALL

The following four approaches have been considered in this work for the pre-fetch

prediction analysis.

(I) Gprof data Analyzed Pre-fetch (GAP) : This approach uses gprof data to predict

the best suited pre-fetch function for almost all possible functions. Profiling with

gprof has been done for the given source code to obtain gprof analysis. This data is
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analyzed for the total number of times the function is called and the total count of

function calls made by one function to another. To predict the pre-fetch call, consider

the function which is called the most. This is based on the data provided by the gprof

tool. The code detects the pre-fetch function calls with the help of gprof analysis and

overlay mapping scheme.

The algorithm for GAP prediction is shown in the Algorithm 5.2. In the worst case

condition, the algorithm runs n times for all functions i.e. 1 to n functions. Each

function can have maximum n− 1 function calls. For each run, function calls are

compared and at most n−1 comparisons are made for each function to find the best

pre-fetch call. This gives rise to a computational complexity of O(n2).

a 

b c d e 

Count : 100 Count : 200 Count : 500 Count : 1000 

Function call count is maximum for  

function d. Hence GAP algorithm predicts  

function d  pre-fetch call for function a 

 

Pre-fetch call example :  

 

function a (parameter list) 

{ 

    __prefetch_load(d); 

    ….. 

    ….. 

} 

Figure 5.2: GAP prediction exmaple

Figure 5.2 explains GAP algorithm with small exmaple. Function a calls functions

b, c, d, and e. Each function is marked with function call count, indicates how many

times the particular function is being called by function a. This count is obtained

form gprof tool. GAP finds out the function with maximum function call count,

function d in this case and code automatically inserts pre-fetch call as very first line

inside function a as shown in Figure 5.2. While predicting it also checks that func-

tion d is not in the same overlay region as function a.

Limitation: The timing analysis given by gprof cannot be considered for the pre-

diction. This is because it estimates them by making an assumption about the code

that may or may not be true. It also does not consider the size of the function which

contributes to the actaul DMA overhead. GAP might end up predicting a function
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with less DMA overhead as opposed to a function with more DMA overhead, simply

because the former has been called more often. This indicates that DMA cost must

be considered as a factor when predicting the pre-fetch calls.

Algorithm 5.3 CAP algorithm
1: PREFETCH CALL {set of n empty pre-fetch predictions }
2: OV L {set of r overlay regions mapping}
3: ~F {all the functions from the source code}
4: FUNCT ION CALL {set of function calls for each function in ~F}
5: DMA COST {DMA cost for each function in ~F}
6: for ∀ f : f ∈ ~F do
7: pre f etch pred = null {pre-fetch prediction for f }
8: for ∀ f c : f c ∈ FUNCT ION CALL[ f ] do
9: if count(pre f etch pred) ·DMA COST [pre f etch pred] < count( f c) ·DMA COST [ f ] && region num( f )! =

region num( f c) then
10: pre f etch pred = f c
11: end if
12: end for
13: end for
14: return PREFETCH CALL

(II) Count Analyzed Pre-fetch (CAP) : CAP is a fully automated approach. It is also

based on gprof call graph data. To overcome the limitation described in (I), CAP

incorporates DMA cost consideration for predicting pre-fetch calls. DMA overhead

cost of a function, f, is calculated as a function of the segment size according to real

DMA overhead measurements taken on the IBM Cell. This cost can be modeled to

within an average error of 0.4% using the following equation:

DMA cost( f ) =

 3.9E-5 · size( f )+0.17 ·µs :size( f ) ≤ 2kB

7.3E-5 · size( f )+0.1 ·µs :size( f ) > 2kB

While predicting a pre-fetch call, the overall code overlay cost is considered by using

the above analysis along with function call counts, ultimately giving rise to better

predictions. This approach definitely tries to minimize the code overlay cost further

as compared to GAP.

The CAP algorithm is explained in the Algorithm 5.3. In the worst case condition,

the algorithm runs n times for all functions i.e. 1 to n functions. Each function can

have maximum n− 1 function calls. For each run, function calls are compared and

at most n−1 comparisons are made for each function to find the best pre-fetch call.

This gives rise to a computational complexity of O(n2).
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Figure 5.3: CAP prediction exmaple

Figure 5.3 shows how CAP algorithm predicts the pre-fetch call for a praticular func-

tion with the same example used in (I). It uses additional information of DMA cost

require to load the function into SPM. Overhead cost for function b is maximum,

hence CAP algorithm predicts function b as pre-fetch call for function a.

Limitation: gprof data gives only function call counts. But in case of code overlay,

misses happen for both function calls as well as call returns. The counts given by

gprof does not address the return miss counts. Hence, it is imperative to take this

factor also into account for prediction.

Algorithm 5.4 PAP algorithm
1: PREFETCH CALL {set of n empty pre-fetch predictions }
2: OV L {set of r overlay regions mapping}
3: ~F {all the functions from the source code}
4: FUNCT ION CALL {set of function calls for each function in ~F}
5: DMA COST {DMA cost for each function in ~F}
6: PROFILE COUNT {profile miss count obtained by using OMCM}
7: for ∀ f : f ∈ ~F do
8: pre f etch pred = null {pre-fetch prediction for f }
9: for ∀ f c : f c ∈ FUNCT ION CALL[ f ] do

10: if PROFILE COUNT [pre f etch pred] · DMA COST [pre f etch pred] < PROFILE COUNT [ f c] ·
DMA COST [ f ] && region num( f )! = region num( f c) then

11: pre f etch pred = f c
12: end if
13: end for
14: end for
15: return PREFETCH CALL

(III) Profile overlay manager Analyzed Pre-fetch (PAP) : In order to address the is-

sue raised in (II), the PAP approach first runs the given overlay scheme and gen-

erates miss count for both function calls and returns. This count is obtained from

the OMCM explanined in Section 5.5. The code then analyzes the miss count data
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for each function and decides which function should be pre-fetched so as to ensure

low overlay overhead. The DMA cost is calculated from equation used in (II). This

analysis actually deals with overlay misses at the system level. To get these over-

lay misses, OMCM tool is used, with added switch capability that allows run-time

control. The overlay misses are counted for every segment loading when DMA is

initiated, for both ovly load and ovly return. These stubs are called for ev-

ery function call and return. This approach works better than GAP and CAP types

of pre-fetch. PAP is explained in Algorithm 5.4. Computational complexity of PAP

algorithm is also O(n2) as explained for GAP and CAP.

PAP algorithm prediction is explained in Figure 5.4 with the same example used in

(I) and (II). The count shown for each function is obtained from OMCM tool. As

shown in the Figure 5.4 overhead cost is mamximum for function c as comapre to all

other functions, hence algorithm predicts function c as pre-fetch call for fucntion a.

a 

b c d e 

Count : 160 

DMA :  1200 

Overhead : 192000 

Count : 800 

DMA : 300 

Overhead : 240000 

Count : 600 

DMA :  200 

Overhead : 120000 

Count : 1000 

DMA : 10 

Overhead : 10000 

Overhead cost (profile count 

* DMA) is maximum in case 

of function c. Hence PAP 

algorithm predicts function c 

as pre-fetch call for function 

a. 

Figure 5.4: PAP prediction exmaple

(IV) Hand Optimized Pre-fetch (HOP) : HOP is proposed to extract improved perfor-

mance out of pre-fetching. With HOP, user provides a .prefetch file which has

pre-fetch calls specified, for example, if the user wants to pre-fetch function C when

the program execution is in function A, the file will have entry saying function A−>

function C. This is called hand-optimized pre-fetch since user has to manually ana-

lyze the code for its branch and jump control flow, along with loops in the code. In

addition, the number of times a particular function calls the other function may also
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be considered. Sometimes, the actual execution time of a function helps add more

granularity for prediction. Same application for a given overlay mapping scheme

can end up having different pre-fetch calls due to different input data on which it

operates. This is because code behavior varies with input data. HOP should give

the best possible results since it is meticulously performed by the user and manual

verification is also performed.

All the four approaches discussed above are automated as far as pre-fetch call ex-

ection is concerned. HOP has user involvement of providing the pre-fetch calls. Due to

human involvement, if the prediction is error-free, then the expected performance gain is

maximum, since human analysis will take care of all the possible constraints. The ex-

perimental results for both algorithms, COG and RCOM, with the above four pre-fetch

prediction approaches are presented in Chapter 6.
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Chapter 6

RESULTS
6.1 Experimentation Setup

Benchmarks and Memory Setup

The pre-fetch scheme has been implemented on the CBE. Results were collected for three

benchmarks described in in Table 6.1. These three benchmarks, ffmpeg, cjpeg and gsm untoast,

were executed on the IBM Cell processor. The ffmpeg is a powerful and versatile video

transcoder. The ffmpeg benchmark has been configured for H.264 decoding and modified

to run on the CBE. In this work, a parallelized version of one of the popular codecs, H.264,

from ffmpeg is used to run on IBM Cell [5]. H.264 decoder parallelized code has large

number of functions as indicated in Table 6.1. The function call graph for the source code

shows the tree is wide, but it is relatively shallow. It supports a large number of inter pre-

dictions modes for different block sizes such as 4x4, 8x8, 16x16 etc, along with number

of intra prediction modes. The wide range of modes give better compression at the encod-

ing depending upon the macroblock characteristics. The variety of inter prediction modes

gives rise to a larger number of functions to chose from at runtime. The function calls in

the decoder at runtime are depending on mode selected in the encoder and can vary widely

from video to video or even macroblock to macroblock.

Cjpeg is the reference JPEG encoder/decoder, whereas gsm untoast is audio en-

coder/decoder. These benchmarks were modified to a function-level resolution, so that they

can be run on the Cell architecture with code overlay.

Table 6.1 also specifies the minimum and maximum code overlay sizes selected

to run these benchmarks. For each benchmark, select memory sizes needed to test per-

formance across a meaningful SPM instruction memory. To get these overlay operating

boundaries, a simple methodology was employed :

1. This analysis starts with the largest function in the program which defines the mini-

mum overlay size. This can be justified by the argument that even if there is only one
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Table 6.1: Benchmarks

benchmarks functions code size (B) min overlay (B) max overlay (B)

cjpeg 210 129,320 3,736 129,320
ffmpeg 106 100,012 7072 100,012
gsm untoast 41 12,504 2,172 12,504

overlay region, it must be large enough to accommodate the largest function.

2. The upper operating boundary is defined by the total size of the program, such that

no overlay is needed.

3. The SPU LS memory sweep is performed in ten steps for an ascending order of

progression, for each benchmark.

These selected benchmarks are comprised of a large number of functions, and con-

sequently a large code size, are indicated in Table 6.1.

Overlay Memory Requirement Estimation

The chosen memory resources, as shown in Table 6.1, can be justified by considering the

following instance of ffmpeg similar to [5]. The 256KB SPU Local Store SPM is partitioned

and shared among the program instructions, program data, the execution stack, and heap

for any dynamically allocated structures. The stack size is constrained by the tree depth

of the function call graph. Stack memory requirements for this code are well bounded as

there are no recursive function calls. Although the tree is wide, it is also relatively shallow.

The experiments performed for ffmpeg code on IBM Cell helped determine that the stack

may approach 100KB, which must be reserved in the LS memory map to prevent a stack

overflow. The implementation includes just under 100 functions, totaling approximately

160KB in the overall LS memory requirements. Additionally, while minimizing memory

requirements wherever possible, it requires at least 50KB in data memory, with 100KB

necessary for stack/execution memory, which means that 100KB of the available 256KB
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LS must accommodate the 160KB of code. This 60KB memory shortage is overcome

using the code overlay technique. Thus, 100KB is the upper bound of code overlay size for

ffmpeg, with the lower bound being the largest function size in the code. This methodology

of choosing the memory bounds was applied for the other benchmarks as well to obtain

minimum and maximum overlay sizes.

IBM Cell Implementation

The Cell architecture, as mentioned before, is comprised of eight SPUs, each having a local

store of 256KB. For the experiments Sony PlayStation 3(PS3) is used which limits the use

of SPUs. Of these eight available resources, six SPUs can be used due to PS3 hypervisor.

User-defined overlay mapping is provided for each run. The SPU complier, spu-gcc maps

the source code onto the LS according to the provided overlay scheme [2]. The overlay

mapping file (linker.script), has function assignments to segments and segment assignments

to regions as discussed in Section 4.5. Code objects must be stated in the script as individual

object files. Accordingly, in order to implement and evaluate any code overlay mappings at

the function level resolution, due to GNU Linker limitation, each function must be placed

in a separate source file, so that post-compilation, each function in the source code has an

object file for the linker.

The experimental runs for all three benchmarks were performed using the following

steps:

1. Linker scripts describing overlay solutions for each algorithm, at each specified mem-

ory size are generated.

2. Each benchmark is compiled for a given linker script, without performing pre-fetch

operation for any function. It is then run on IBM Cell to produce overlay results

without pre-fetch.

3. The same linker script, with the four different pre-fetch prediction approaches, as

explained in Section 5.5, is compiled again and run on IBM Cell for overlay results
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with pre-fetch calls. The code automatically inserts the pre-fetch calls and executes

the benchmarks.

4. Overlay misses are obtained by using miss count model explained in Section 5.5.

This is used to calculate code overlay overhead.

These benchmarks are executed multiple times and the resulting overhead data is averaged

to obtain the results presented below. The cjpeg and gsm untoast benchmarks are run for

the same input data, whereas ffmpeg is run for three different videos. The choice of ffmpeg

for additonal testing is owing to its properties of large code and data size, and is also very

input sensitive.

6.2 Implementation Results

The implementation results discussed in this section compare the reduction in code over-

lay overhead by calculating the overlay overhead for the different pre-fetch methodologies

considered as described in Section 5.5:

• GAP (Gprof data Analyzed Pre-fetch) - performs gprof function call count analysis.

• CAP (Count Analyzed Pre-fetch) - uses gprof function call counts along with the

DMA overhead cost.

• PAP (Profile overlay manager Analyzed Pre-fetch) - uses function miss counts, caused

due to the selected overlay mapping scheme, in addition to the DMA overhead cost.

• HOP (Hand Optimized Pre-fetch) - optimized version manually created by the end

user.

Code overlay scheme with minimum code overlay size has only one region due to which

it does not give any reduction in code overlay overhead cost. Overhead is maximum in

this case, as each function call is miss. Result graphs does not include maximum overlay
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Figure 6.1: Effect of Available Memory on Code Overlay Overhead Cost for COG and
RCOM algorithms on ffmpeg using The Magic of Flight video

size possible, because for higher memory range overall overlay overhead is reduced signif-

icantly. Comparison excludes such minimum overlay size and some of larger overlay size

readings.

Effect of Available Memory on Code Overlay Overhead Cost

Figures 6.1a and 6.1b show the effect of available instruction memory on code overlay

overhead cost for ffmpeg. As instruction memory increases, the overhead cost decreases. It

also indicates for a particular memory size, overhead time is decreasing from GAP to HOP

appraoch. Overhead cost decreases, as memory size increases because generated overlay

mapping schemes have more regions to assign the functions. As functions are distributed
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Figure 6.2: Code Overlay Overhead Cost reduction for COG and RCOM algorithms on all
three benchmarks.
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in different regions, overlay misses are reduced. Smallest memory available for overlay

mapping shows no overlay overhead reduction as it has only one region with all functions

mapped to that region. The overlay overhead is maximum in this case as each function call

is an overlay miss. For higher memory sizes the overhead becomes negligible, becoming

zero if complete code is mapped to the memory.

Pre-fetch Code Overlay Performance Comparison for COG and RCOM

Figure 6.2a presents the code overlay performance analysis results for the COG algorithm,

for all four pre-fetch prediction approaches. Similarly, Figure 6.2b shows the implementa-

tion results for the RCOM algorithm. Both plots show reduction in code overlay overhead

cost for the benchmarks. In each plot, the HOP performance is found to be consistently

better than the other three pre-fetch prediction approaches. The code overlay performance

is intuitively expected from HOP as it is a fully hand optimized version, where the user has

performed adequate profiling before finalizing all the pre-fetch calls. Additionally, the code

overlay performance gain is found to be the highest in case of the ffmpeg benchmark.
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Figure 6.3: Code Overlay Overhead Cost Reduction

Figure 6.2c compares the implementation results for the COG and RCOM algo-

rithms. It is evident from the plots in Figures 6.2a, 6.2b and 6.2c that the reduction in

overlay overhead cost is better for the RCOM algorithm for all the prediction approaches,

for all benchmarks, except PAP approach. This is because RCOM mapping has more scope
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Figure 6.4: Code Overlay Overhead Cost reduction for COG algorithm using four pre-fetch
prediction appraoches on (a) ffmpeg, (b) cjpeg and (c) gsm untoast.
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for pre-fetch calls as compared to the optimized COG overlay mapping.

Figure 6.3 summarizes the overall code overlay performance for all four approaches.

When compared to overlay without pre-fetch, it is apparent that the HOP approach gives

the best results followed by PAP, CAP and GAP. A minimum reduction of overhead cost of

15% for GAP and a maximum of 32% for HOP is observed.

COG Analysis for Benchmarks

COG performance anlaysis plots are shown in the Figures 6.4a, 6.4b and 6.4c for ffmpeg,

cjpeg and gsm untoast respectively. In these graphs, code overlay overhead reduction cost

is plotted as a function of instruction memory in bytes. For ffmpeg, the trend begins with

lower reduction in overhead for lower memory sizes. This is because of the limited number

of regions available, which in turn limits the pre-fetch calls that can be made. As memory

size increases, the number of regions increase, which gives more option to add pre-fetch

calls for all other regions available. Hence, as seen from the plots, the reduction in overhead

cost improves. However, as memory size increases further, for very large memory, the

performance gain begins to saturate. For other two benchmarks shown in Figures 6.4b and

6.4c HOP performs better than all other three pre-fetch approaches as expected.

RCOM Analysis for Benchmarks

RCOM performance analysis results are presented in the Figures 6.5a, 6.5b and 6.5c for

all the benchmarks. Here, the reduction in overlay cost is again plotted as a function of

instruction memory in bytes. RCOM algorithm gains are relatively higher as compared to

COG. The rationale behind this is that the highly optimized COG overlays leave very little

scope for further improvement. Figure 6.5a shows increase in reduction in overhead cost

with increasing memory size, until the memory size becomes large enough so that further

overhead reduction enhancement is difficult to achieve. Figures 6.5b and 6.5c varifies that

HOP performs better than GAP, CAP and PAP.
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Figure 6.5: Code Overlay Overhead Cost reduction for RCOM algorithm using four pre-
fetch prediction appraoches on (a) ffmpeg, (b) cjpeg and (c) gsm untoast.
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Figure 6.6: Code Overlay Overhead Cost reduction for COG algorithm using four pre-fetch
prediction appraoches on (a) sts117, (b) The Magic of Flight and (c) Nvidia videos.
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Analysis of ffmpeg for Different Videos

The ffmpeg code was used to carry out additional experimental runs. The reasons for choos-

ing ffmpeg code for more analysis include large code size, greater number of functions,

higher data size (heap/stack) and it is also highly sensitive to input data. These experiments

were carried out using three different videos - sts117 (space shuttle launch video), Nvidia

and The Magic of Flight. Figures 6.6a to 6.6c and 6.7a to 6.7c depict the reduction in code

overlay overhead plotted with respect to the available instruction memory for these three

videos. Selection of these three video variants gives wider range of data to analyze the code

overlay overhead reduction due to pre-fetch. These videos show different coding charac-

teristics due to motion vector and inter/intra prediction used for encoding/decoding, since

each video contents are different, and consequently show different behavior in the analysis.

Figure 6.6a shows limited performance gain due to highly optimized COG algo-

rithm as compare to Figure 6.7a which is RCOM algorithm. Figures 6.6b and 6.6c show

more gain due to different function calls to decode the video. Similar trends can be seen for

RCOM algorithm plots as shown in Figures 6.7a, 6.7b and 6.7c. Less reduction in overhead

cost for sts117 video by using pre-fetch suggests that most of the decoding involves func-

tion calls which does not cause high numbers of overlay misses, left with fewer options for

pre-fetch calls. For same overlay scheme, sts117 shows less reduction in overhead compare

to Nvidia and The Magic of Flight because of sts117 video might be encoded with limited

modes of inter prediction. Large range of modes of inter prediction for input data causes

different function calls which might result into overlay misses according to overlay scheme.

This overlay misses are avoided by using pre-fetch for Nvidia and The Magic of Flight.

Framewise Analysis for Different Videos

The ffmpeg code is executed for sts117 and Nvidia video for obtaining code overlay over-

head at different number of frames decode run. The Figure 6.8 show the frame level analysis

for code overlay overhead for memory sizes of 11586B and 34156B for different pre-fetch
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Figure 6.7: Code Overlay Overhead Cost reduction for RCOM algorithm using four pre-
fetch prediction appraoches on (a) sts117, (b) The Magic of Flight and (c) Nvidia videos.
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Figure 6.8: Frame level Analysis

approaches. The plots indicate that the code overlay overhead time goes on decreasing as

memory size increases from 11586B to 34156B for different frame numbers. The graphs

plotted in Figures 6.8a and 6.8c should ideally have linear distribution of time over the

frame range, but the sts117 video does not follow this trend. The sts117 video has static

image for initial few frames due to which it decodes the subsequent image with the help of

initial I - frame using the same prediction blocks. This reduces the different function calls

results into fewer overlay misses. As video progresses, it has continuously changing images

which are possibly encoded with different modes of inter prediction for compression. To

decode such frames with diversified inter prediction modes, varies from macroblok to mac-

roblock and frame to frame, requires different function calls. This leads to overlay misses.

This might be the reason for having more overahed in later frames of sts117 video. The

Nvidia video has equal distribution of the overlay time over the frame range as shown in

the Figures 6.8b and 6.8d. This can be justified by the same argument of the video contents

and the encoded technique.
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Chapter 7

CONCLUSION & FUTURE WORK

Code overlay performance for size-limited SPMs used in embedded systems was exper-

imentally verified on the IBM Cell. The proposed pre-fetch mechanism for memory-

restricted SPM code overlay is found to perform significantly better on COG, which is

an existing SPM mapping algorithm and the newly presented RCOM algorithm. The pro-

posed pre-fetch prediction techniques show a performance improvement of 32% in case of

HOP, 24% for PAP, 22% for CAP and 15% in case of GAP for given code overlay map-

ping. The performance gain numbers for all these techniques support the argument that

hand optimized approach is better over the gprof raw data analysis. The pre-fetch on any

overlay mapping scheme gives better results as compared to the IBM Cell Broadband En-

gine compiler spu-gcc. Spu-gcc is not capable of using pre-fetch technique because it has

only one overlay region. So, it has no scope for pre-fetching mechanism to be embedded

in it. The overlay miss count modeling used in this work can be incorporated as a profiling

tool with spu-gcc to get real-time overlay misses for any application. A detailed analysis of

misses along with overlay overhead cost can also be achieved by using such a profiling tool.

This information can further be used for performing extensive study on overlay mapping

schemes.

All the proposed pre-fetch prediction techniques for code overlay are automated

except for HOP, where user needs to provide the pre-fetch calls. The pre-fetch insertion

mechanism is also automated which inserts pre-fetch calls according to the predictions,

compiles the code, executes it and reverts the additions made to the code. Potential exten-

sions to this work can be dynamically predicting pre-fetch calls for individual functions.

To enable this feature, the overlay manager needs to be modified such that it dynamically

predicts the next suitable pre-fetch calls, by maintaing an active history of previous func-

tion calls made. This feature would be similar to the branch prediction algorithms does in

computer architecture. The developed tool chain for overlay miss count modeling along

with estimation of overlay overhead can be made available for research purposes.
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