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ABSTRACT  
   

Reducing device dimensions, increasing transistor densities, and smaller timing 

windows, expose the vulnerability of processors to soft errors induced by charge carrying 

particles. Since these factors are inevitable in the advancement of processor technology, 

the industry has been forced to improve reliability on general purpose Chip 

Multiprocessors (CMPs). With the availability of increased hardware resources, 

redundancy based techniques are the most promising methods to eradicate soft error 

failures in CMP systems. This work proposes a novel customizable and redundant CMP 

architecture (UnSync) that utilizes hardware based detection mechanisms (most of which 

are readily available in the processor), to reduce overheads during error free executions. 

In the presence of errors (which are infrequent), the always forward execution enabled 

recovery mechanism provides for resilience in the system. The inherent nature of UnSync 

architecture framework supports customization of the redundancy, and thereby provides 

means to achieve possible performance-reliability trade-offs in many-core systems. This 

work designs a detailed RTL model of UnSync architecture and performs hardware 

synthesis to compare the hardware (power/area) overheads incurred. It then compares the 

same with those of the Reunion technique, a state-of-the-art redundant multi-core 

architecture. This work also performs cycle-accurate simulations over a wide range of 

SPEC2000, and MiBench benchmarks to evaluate the performance efficiency achieved 

over that of the Reunion architecture. Experimental results show that, UnSync 

architecture reduces power consumption by 34.5% and improves performance by up to 

20% with 13.3% less area overhead, when compared to Reunion architecture for the same 

level of reliability achieved. 
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1 INTRODUCTION

The boons of technology scaling come with several consequences. We can build chips that

have billions of transistors, but since we pack many of those transistors tightly together,

the increased power density, diminishing node capacitances, and reduced noise margins

make these transistors unreliable. To counter the power density problem, chip designers

have resorted to multi-core architectures; which provide a way to continue improving per-

formance, without commensurate increase in the power consumption. As a result, CMPs

have become popular, e.g., Intel core 2 duo, Intel core i7, AMD Opteron, IBM Cell pro-

cessor, etc. However, the reliability problem continues to grow. Transistors are becoming

so small and fragile that a stray charge or high energy particle can cause current pulses on

a transistor and toggle the logic value of the gate. This phenomenon, of radiation induced

transient error, is referred to as “Soft Error”. The problem is that while high energy neu-

trons (100KeV - 1GeV from cosmic background) have caused soft errors for a long time,

now low energy neutron particles (10meV - 1eV) also cause soft errors [29]. This effect is

multiplied with the fact that there are many more low-energy particles, than those at higher

energies [12]. Soft errors have already been attributed to cause large fiscal damages, e.g.,

Sun blamed soft errors for the crash of their million-dollar line SUN flagship servers in

November 2000 [18]. At the current technology node, a soft error may occur in a high-end

server once every 170 hours, but it is expected to increase exponentially with technology

scaling and reach alarming levels of once-per-day! [14]

Chip Multiprocessors or CMPs are inherently good for reliability due to the availabil-

ity of many cores, on which redundant computations can be performed for error detection,

and/or correction. Many redundancy based techniques, at various levels of design space

abstraction, based on Dual Modular Redundancy (DMR) [35], Triple Modular Redundancy

(TMR) [33], and checkpointing [7] have been proposed to enable error detection and cor-

rection in CMPs. Reunion [31] is one of the most promising redundancy based multi-core

architectures that achieves error resilience with low performance overhead. In Reunion, a

hash of a set of instructions called fingerprint is generated at regular intervals and compared

between redundant cores executing the same thread. The retired instructions are commit-
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ted to their respective ARF (Architectural Register File) or memory iff the fingerprints are

found to match; if not, the execution is resumed from the previous correct position. Though

efficient in its design to detect and recover from errors, the Reunion methodology suffers

from issues during implementation:

1. significant changes to the core design. Reunion implementation requires adding a

new pipeline stage in the processor, resulting in increased design complexity, and

high overheads of power and area.

2. performance overheads due to serializing instructions. Instructions that must finish

execution before the processor can start executing new instructions, such as traps,

memory barriers, and non-idempotent instructions; require the cores to synchro-

nize, and therefore cause performance degradation. Furthermore, increased ROB

(Re-order Buffer) occupancy during such scenarios, lead to significant performance

degradation.

3. ignorance of efficient hardware mechanisms for error detection. Error detection in

Reunion is implemented by comparing the results of the two cores, ignoring all the

advances and possibilities of efficient error detection schemes in hardware, e.g., par-

ity bits, DMR, etc.

In this thesis, we propose a novel redundancy based multi-core architecture for CMPs:

UnSync. In this, already existing and readily available power efficient hardware error-

detection mechanisms, to provide effective protection against infrequent soft errors, are

used. UnSync consists of two identical cores executing the same thread; each core is

modified with power/area efficient hardware only error-detection mechanisms, for every

sequential element in the processor core. In the event of an error detected in one of the

cores, execution in both the cores are stalled. The architectural state from the error-free

core is copied onto the erroneous core to resume correct execution on both the cores, en-

suring always forward execution, i.e., it does not go back for re-execution. Some popular

redundancy based techniques, involve loose/tight lock-stepped executions on the cores, or

synchronizing the execution on both the cores by memory accesses. On the contrary, our
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UnSync architecture disassociates the two redundant cores during error-free execution as

much as possible, thereby allowing for maximum possible performance in the absence of

errors. The main justification for synchronizing the redundant cores, is to ensure that recov-

ery overhead is minimized by re-execution when an error is detected; by copying the archi-

tectural state of the error-free core onto the erroneous core, both the cores resume execution

from the instruction last stopped on the error-free core. Neither of the cores are required

to re-execute instructions, and the amount of execution re-traced (on the erroneous core,

to which the architectural state was copied), only depends on the difference in execution

speeds of the two cores. Our recovery mechanism has a higher overhead, compared to pop-

ular redundancy based techniques for CMP. By reducing the performance overheads during

error free execution, and given the fact that errors are infrequent, UnSync achieves better

performance at lower power/area overheads and lesser design complexity. Unlike Reunion,

the performance of UnSync is not affected by serializing instructions, or increased pipeline

occupancy, since there is no inter-core communication. In addition, since every individual

core is identical in its hardware architecture, the number and pairs of redundant cores in

the multi-core system can be configured by the user, based on reliability and performance

requirements.

To evaluate and compare the effectiveness of UnSync (compared to Reunion), we devel-

oped a multi-core power, performance and area estimation setup. We model the multi-core

architecture and estimate program cycle times using the M5 simulator [4]. To estimate the

power and area overhead of the core and pipeline architecture, we implemented changes

required for both the UnSync and Reunion in a 5 stage pipelined RTL implementation of

the MIPS [11] architecture. We synthesize and also place and route (PNR) the RTL models,

using the Cadence Encounter [5] to evaluate the on-chip hardware overheads. The L1 cache

area and power, is estimated using CACTI [22] models. Our experimental results show that

the UnSync architecture achieves up to 20% improved performance with 14.6% reduced

area and 34.5% lower power overhead as compared to the Reunion architecture.
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2 RELATED WORK

Error resilient redundant processor designs must solve two key problems: maintaining iden-

tical instruction streams and detecting divergent executions, on the redundant cores. Main-

frames, which have provided fault tolerance for decades, solve these problems by tightly

lock-stepping two executions [30]. Lock-step ensures both processors observe identical

load values, cache invalidations, and external interrupts. While conceptually simple, lock-

step becomes an increasing burden as device scaling continues [19]. As technology scaling

continues to concern the performance and power consumption overheads, multi-core de-

signs are being investigated to keep up with Moore’s Law [20]. The increase in the integra-

tion of a number of processor cores on a single chip makes the chip more dense in area and

hence making them more vulnerable to reliability threats such as soft errors. On the other

hand, CMPs inherently provide replicated hardware resources which can be exploited for

error detection and recovery. A number of proposals [1, 9, 31, 32] have attempted to take

advantage of the inherent replication of cores in CMPs to provide fault tolerance by pairing

cores and checking their execution results.

Redundant multi-threading (RMT) [27] is a modified and efficient SMT (Simultaneous

Multithreading) processor architecture where only store addresses and values are checked

to detect soft errors. It uses a Load Value Queue (LVQ) to provide consistent replication, on

redundant threads, of load values. Output comparison is performed by a store comparator

(SC) that buffers completed but not yet committed stores. Once a store has been success-

fully verified, it is eligible to commit in each thread, and a single instance of the store is

released to the memory hierarchy. The RMT technique was later extended to map redundant

threads onto separate processor cores in a CMP, rather than separate hardware threads in an

SMT. Chip-level redundant threading (CRT) [21] solved one source of resource contention

while exacerbating another. Execution on separate cores eliminated contention by providing

each thread its own private set of resources. In the work by Gomaa et.al [9], the compari-

son of load values is restricted to be based on the data-dependence chains in the executing

threads, to reduce on performance overheads in comparison. However, CMP cores are not

as tightly integrated as SMT threads, and the additional physical separation increases the
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round-trip store verification latency. This subsequently increases the average store execu-

tion time, which reduces any gains reaped from additional hardware resources, and results

in a net slowdown. Fingerprinting [32] is a checkpointing scheme designed to minimize

hardware changes to commodity hardware. Processor pairs identify errors by comparing

cryptographic signatures that summarize architecture state updates. Mismatches trigger a

rollback to a known good checkpoint; successful comparisons free prior checkpoints. Such

techniques can be implemented cheaply, however they rely on heavy-weight checkpointing

mechanisms that capture all of system states (including memory) and increase error detec-

tion latency. In this thesis, we adapt the benefits achieved from core-level redundancy, and

propose a method to reduce the hardware overheads (memory storage, comparators, etc.)

and also reduce inter-core communication (load values, fingerprint, etc.)to ensure resilience

in the system.

To increase the resource usage and flexibility of CMPs, Gupta et al. [10], develop a

redundancy based technique at a finer granularity. It connects the pipeline stages through

routers and enables sharing of resources across cores. In Dynamic Dual Modular Redun-

dancy (DDMR) [8], linking of cores for the purpose of redundant processing is dynam-

ically done. Dynamic linking achieves two main benefits: 1) reliability is unaffected by

defective cores; and 2) cores with similar throughput may be paired for the purpose of run-

ning redundant threads at similar speeds. Although having the benefit of flexibility and

better resource usage, these techniques suffer from increased design complexity and high

performance overhead. In addition, the larger hardware overheads and design complexity

involved, limit their applicability when the number of cores in the system increases beyond

hundreds.

Smolens et al. [31], in their work overcome the issues in design complexity and over-

heads in the load-value queue (LVQ) technique, and propose to relax strict input replication

by allowing the redundant thread to issue loads directly to the memory system. However,

to deal with input incoherence resulting from multiprocessor data races, it identifies cases

where redundant loads receive updated values from other processors in the system. Such

mismatches are essentially treated as transient errors – both threads re-issue their respective

load and re-check the load values. The mismatch in load values is handled by issuing the
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load a third time via synchronizing memory requests that eliminate input incoherence for

the requested cache line. Reunion [31] is one of the state-of-the-art CMP based redundant

techniques. In order to synchronize between redundant core pairs and reduce bandwidth of

comparison, Reunion proposes comparison of fingerprints between vocal and mute cores.

However, our intensive analysis and experiments show that Reunion incurs high overheads

in terms of area, performance, and power. In this thesis, we highlight in detail the design

issues and hardware overheads involved in the implementation of Reunion on a many-core

processor setup (at Section 4).

Error free execution, minimal error detection overhead (hardware or software) and pos-

sible customization of redundancy, are the three ideal expectations of a reliable many-core

system. Our proposal, UnSync, satisfies these three ideal expectations: i) UnSync re-

duces error detection overheads in terms of area, performance, and power by exploiting

readily-available hardware based error detection mechanisms; especially during error free

executions. ii) UnSync further has simple and easy provisions to implement customizable

redundancy and realize performance-reliability trade-offs in scalable many-core systems.
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3 OUR APPROACH: UNSYNC

3.1 Architecture Overview

Figure 1: UnSync Architecture: The L1 of each redundant core writes into a CB, that
acts as a secondary write buffer. Only one of the redundant copies, from the CB-
pair (a, b), is written into the L2 cache. An error detected in any of the cores signals
”RECOVERY” through the EIH, to the corresponding core-pair and the CB.

Figure 1 describes an overview of the UnSync architecture. It shows two core-pairs of

our two-way redundant UnSync architecture with their inter-core and intra-core communi-

cation links. Each core in this architecture, is configured with an on-core write-through L1

cache, and off-core shared ECC protected L2 cache. As part of the hardware based error-

detection machinery, the L1 cache contains a parity-bit on each cache line to detect 1-bit

errors. Similarly, the core architecture blocks are fitted with error-detection circuitry, de-

tails of which will be discussed in detail later in this section. The hardware error-detection

blocks are connected to an Error Interrupt Handler(EIH) for each core-pair, to signal re-

covery in the even an error is detected. Data committed into the L1 cache, from each core

of a core-pair executing identical threads of the program, is first written into a Communi-
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cation Buffer (CB). From here, one copy of the data is passed on, to be written-back in the

protected L2 cache.

The working of the UnSync architecture can be best studied by observing its phases of

operation:

(a) Error-free Mode: The two identical cores in a core-pair execute the same thread of

the application, where each core performs memory accesses on the shared L2 cache as

independent cores. Data written into the L1-cache of a core, as it leaves the core (as in a

write-through cache), is written into a non-coalescing CB, one for each core in the core-pair;

as described in Figure 1. In the CB, each updated entry is tagged with its corresponding

instruction address. As and when the L1-L2 data bus is free (available for data transfer),

the latest entry, that has completed execution on both the CB is selected; and one copy of

all the CB entries, earlier to this, are written into the L2 cache. This process ensures that,

when processed data leaves the cores to be updated into the lower-level memory, both the

cores have completed a particular state in the execution; and that since no error was detected

during this time, the two copies are correct.

(b) Error-detection: Error detection in each core of the UnSync architecture, is enforced

by the use of hardware-only error-detection blocks. The L1 cache, register file and the

queuing structures are enabled with 1-bit parity based detection; owing to the fact that

data write (parity generation) and read (parity verification) have a minimum of 1 cycle

time difference. On the other hand, for the architecture blocks like the program counter

and pipeline registers, where data is read/written on every cycle, parity-based detection

cannot be employed; therefore Dual Mode Redundancy (DMR) based error detection is

enabled. If any of these detection blocks determine an error in the data, on either core, an

interrupt is transmitted to the EIH for that core-pair; which then performs error recovery.

The interconnect between the core and the EIH is described by the dotted arrows in Figure 1.

(c) Recovery Mode: Once the EIH, receives an error interrupt, it signals “RECOVERY” to

both the cores and CB of the corresponding core-pair. In this mode, the following procedure

implements our “always forward execution” recovery mechanism:

1. Program execution on both the cores of the core-pair is stopped.
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2. The pipeline of the erroneous core is flushed, so as to reset the pipeline registers.

3. The architectural state (register file, PC, etc.), and the content of the L1 cache, of the

error-free core is copied onto that of the erroneous core (the core in which error was

detected). This operation is performed by specific subroutines using the shared L2

cache.

4. Data transfer from the CB to the L2 cache is stopped. Only the transfers currently in

flight are completed.

5. The content of the CB, corresponding to the erroneous core, is overwritten by data

from the error-free core.

6. Once the architectural state, program counter, L1 cache contents and the CB content

of both the erroneous core has been overwritten, both the cores resume execution

of the program from the same program counter state as that was copied from the

error-free core.

3.2 Features of the UnSync Architecture

Here we discuss some of the important features of UnSync that ensure its novel efficient

error resilience.

3.2.1 Power-Efficient Error Detection in Hardware

The power and chip-area benefits of the UnSync architecture, hinges on the use of hardware

based error-detection mechanisms in each of the cores, in a redundant multi-core setup.

Single Error Correction and Double Error Detection (SECDED) a cache detection and cor-

rection mechanism incurs an overhead of 22% cache area, owing to tree of XOR gates, the

depth of which increases super-linear to the number of bits covered by the ECC [26]. In

addition, the ECC generation and verification logic requires more than one cycle to com-

plete, which also has an impact on the cycle time of the processor. On the other hand, 1-bit

parity based error detection mechanism requires only a negligible (< 1%) power and area

overhead [26]. In addition, the series of XOR gates don’t impose a significant delay in its
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processing, and therefore can complete its operation in one cycle. It should be noted that,

though the probability of an energy particle strike is uniform throughout the processor core,

sequential elements which store data (even if it is for one cycle) are the most vulnerable

architectural blocks [23]. TMR based detection and correction techniques for sequential

elements, incur an overhead of 200% in power, while DMR based detection only technique

requires only around 6% power overheads [8, 24].

Having identified that error detection on sequential elements and storage elements, can

ensure error resilience in processors, an efficient choice of the right detection mechanism

has to be made for each architecture block. In UnSync we choose either parity-bit or DMR

based error detection methods. Owing to, the time latency requirements of the parity-bit

generation and verification, data storage elements like: Load Store Queue (LSQ), Transla-

tion Lookaside Buffer (TLB), register file and the L1 cache data are enabled with parity-bit

error detection. All the other sequential elements (e.g., pipeline register, PC) which have

accesses on every cycle of processor execution; the 1 cycle latency of parity-bit technique

is unacceptable, and therefore DMR based error-detection is employed. The use of DMR is

reduced as much as possible, because of the hardware area and power overheads involved

in every access.

Since only error-detection methods are employed within the core, to ensure error re-

silience, the redundancy of CMPs is used. By introducing a novel hardware only error re-

porting scheme, through the use of the EIH network in the UnSync architecture, area/power-

efficient error resilience is achieved

3.2.2 Need for Synchronization Among the Cores is Eliminated

In popular redundancy based techniques for error resilience, the execution on the cores

(or within a core) is synchronized by either lock-stepping [30] or through memory ac-

cesses [27], because: i) error detection is implemented by comparing the execution outputs

or by comparing the memory accessed among the redundant threads (on the same or dif-

ferent cores), and ii) when an error is detected, both the cores can be directed to re-execute

a set of instructions from a previously identified error-free position (e.g., checkpoint [32]).

However, as suggested by the name of our architecture - UnSync, the need to synchronize
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execution among the redundant cores is eliminated. This is made possible by, i) hardware

based error detection mechanisms that eliminate the need to compare redundant executions,

and ii) the “always forward execution” based recovery mechanism ensures that the cores

resume from the last executed position of the correct core and no re-execution is required

in either cores.

When an error is detected on a core, execution on both the cores is stopped and archi-

tectural state from the error-free core is copied onto the erroneous core. While resuming the

processor, the execution sequence is altered on only the erroneous core (since PC is copied

from error-free core). The error-free core resumes from where it was stopped. Another as-

pect of this technique is that the amount of instructions re-traced (if any), by the erroneous

core depends on the difference in the execution speeds between the two cores. In the case

that the erroneous core was executing at a slower speed, during recovery, execution on this

core is forwarded. The absence of re-executions in the recovery mechanism, provides some

compensation to the overhead involved in the architectural state and L1 cache content copy

from one core to the other.

3.2.3 Customizable Resilience and Redundancy

As the number of cores on a many-core architecture are scaled, the availability of cores and

the requirement for soft error tolerance grow simultaneously. The Cisco Metro chip with

188 cores and 4 redundant cores per die, pose as an ideal example of defect tolerance in a

many core architecture with core level redundancy. The overall system throughput is thus

given by the maximum number of non-redundant tasks that can be executed (36 in the case

of the Cisco Metro chip) on the processor. However, if the level of redundant cores execut-

ing a thread on the processor can be customized dynamically, it is possible to increase or

decrease the system throughput in accordance with the reliability requirements and the cur-

rent Soft Error Rate (SER). With the rapid increase in the number of cores on even general

purpose processors, the need for user-configurable means to realize performance-reliability

trade-offs become evident. In UnSync, no synchronization or data comparison exists be-

tween the two redundant cores; only an instruction completion check is performed at the

CB, to write a single copy of data from the CB to the L2, when the data bus is available.
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Since there does not exist any hardwired synchronization between the two cores, the CB

and EIH are the only architecture blocks creating a virtual paring of the tow adjacent cores.

This architecture thus provides easy means to configure the CB and EIH to decouple the

two adjacent cores, thereby allowing the two cores to execute independent threads without

error resilience on each. As a result, UnSync can be easily customized for non-redundant

execution (statically or dynamically), and therefore a trade-off between reliability and per-

formance can be achieved.

3.3 Implementation Details of UnSync

3.3.1 Need for Write-through L1 Cache configuration

Figure 2: Once an error is detected in a core, non-zero cycles are incurred in the com-
munication to the EIH and subsequent RECOVERY signaling to stall the processor
and perform cache copy. In write-back cache configuration, corrupt data (if any) in
core B could be written into the memory or copied over to core A during recovery.

Most architectures used in high reliability applications, use the L1 cache in write-

through mode. This is because in the write-through configuration, a copy of the updated

cache data always exists in the lower-level memory. Therefore, if an error is detected during

read operation on a cache-line, the cache-line can be invalidated, and the correct updated

cache line can be loaded from the memory. Here, we discuss the need for the write-through

cache configuration and its importance in the UnSync architecture. If the UnSync core was
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configured using a write-back cache, an error on a cache-line may leave us in a irrecover-

able state. Figure 2 describes such a scenario and thereby demonstrates the importance of

the write-through cache in UnSync. Figure 2 shows two redundant cores with write-back

caches, running an identical thread, and the events in the caches. At time t0, a data cache

block is written (on both cores) and therefore the cache-line is deemed dirty. At time t1,

an error is detected in core A, the error is reported to EIH. The EIH, on receipt of the error

signal, transmits processor stall signals (RECOVERY) to both the cores, which requires a

non-zero number of cycles for both the processor pipelines to stall. Based on information

received by the EIH, core A is known to be erroneous, and has to be replaced with contents

from core B. Meanwhile, an error may strike on a dirty cache block in core B, which would

be detected only when read during the recovery process. Since the cache is a write-back

cache, and the erroneous cache-line in core B is dirty it does not have an updated copy

anywhere else in the system. This scenario thus makes it impossible to recover from errors

on the cores. On the other hand, if the cache configuration was a write-through cache, as

and when the block was updated, a copy is written into the L2 cache (or memory). On a

similar situation as in Figure 2, it is possible to simply invalidate both the cache lines and

treat the same as cache-misses as the correct updated copy of the cache blocks are available

in the ECC protected L2 cache.
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4 REUNION ANALYSIS

4.1 Issues with Reunion Architecture Implementation

Figure 3: The core pipeline architecture in Reunion is described, and the internal com-
ponents of the additional pipeline stage (CHECK) is shown in detail.

The Reunion paper is sketchy in the details of its hardware implementation. The au-

thors, focus on the technique and architecture, without careful consideration to the increase

in hardware complexity when implemented on a many-core system. Our meticulous anal-

ysis here, shows that Reunion implementation incurs significant hardware power, area and

performance overheads.

4.1.1 Additional pipeline stage: “CHECK”

A key architecture block in the implementation of Reunion, is the additional pipeline stage:

CHECK, highlighted in Figure 3. The function of this additional stage is to, 1) generate

the fingerprint – hash of the instruction and output-data of a set of instructions (fingerprint

interval (FI)), 2) send and receive the fingerprints to compare the same between the vocal

and mute cores, 3) temporarily store instruction and output data, before committing to the

architectural register file and memory, in a buffer – CHECK Stage Buffer(CSB). From our

hardware synthesis experiments (at the 65nm technology node, and details of setup in Sec-

tion 5), we observe that the CHECK stage alone contributes significantly to the overall hard-

ware overhead in the Reunion implementation: compared to the “Execute” pipeline stage,

of the baseline MIPS core, it occupies 75% of chip-area and consumes 40% of per-access
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energy. The micro-architecture components that constitute the CHECK stage, described in

Figure 3 are: the hashing circuitry – Fingerprint Generator, CHECK Stage Buffer, and their

allied circuitry.

4.1.2 Fingerprint Generator

According to the authors in [31], the fingerprint generator logic is composed of a two stage,

parallel, 16-bit Cyclic Redundancy Checking (CRC) logic [3,6,32]. On each The fingerprint

is generated in parallel to the mechanism that stores instruction and data to the buffers. The

Fingerprint Generator is composed of 238 gates [3], and this combinational logic cone is

on the critical path during timing analysis of the CHECK stage. This adds to the complexity

of its design and also the power-performance trade-offs realized in its implementation.

4.1.3 CHECK Stage Buffer

At the end of the “Memory” stage, in the Reunion pipeline, the data to be written to the

memory is not written but stored temporarily along with the instruction in the CSB; as the

corresponding fingerprint has to be verified before being Committed. Similarly, the data to

be committed to the register files is also stored in the buffer. Considering the data bus speeds

in [28], we observe that a minimum of 6 cycles is required to communicate the fingerprint,

comparing the values, and deriving a result. While the fingerprint is being compared, the

pipeline continues to executes instructions that will form the next fingerprint, and thus

these instructions and output-data also have to be stored in the buffer. Since at any point in

time, two fingerprints exist (one in the process of comparison, and the other due to parallel

pipeline execution), an additional fingerprint buffer is required (described in Figure 3). For

a FI of 10 (the minimum indicated in [31]), a total of 17 buffer entries are required, each of

size 66-bits; forming a total of 17× 66 = 1122 bits buffer.

In the buffer, each entry requires one exclusive write port and three exclusive read ports

to allow buffering and parallel instructions commit, before and after fingerprint compar-

isons. During hardware implementation (at the 65nm technology node), we observe that

the cell that forms each bit of the CSB is 10.40µm2 which is 1.3× the size of a register file

cell (7.80µm2); because of the additional read port in the buffer. The chip-area occupied
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by the CSB is thus 1.46× that of a 32 entry register file (32× 32-bits). The authors in [31]

indicate the possibility of increasing the FI (around 1 50) to reduce the communication

overhead, without any discernible difference in system performance. An increase in the FI

involves an increase in the size of the CSB and the allied circuitry. We observe through

synthesis, that for a FI of 50, the CSB alone occupies a chip-area of 39125µm2, which is

91% the size of the MIPS core without the cache (42818µm2).

4.1.4 Register Forwarding Logic

Another consequence of buffering instructions and their output data before committing to

their respective architectural states, is the possible pipeline stalls due to data starvation

while executing data-dependent instructions. For example, if a register is updated by an

instruction that is part of the fingerprint generated and currently under comparison; and

a succeeding instruction reads from that register, the (W-R) data-dependency realized re-

quires the pipeline to stall until the register file is committed. Since the output data is

buffered in the CSB, a Register Forwarding logic can be employed to forward the stored

updated register data to the instruction in the execution pipeline. In the Reunion imple-

mentation, such a forwarding mechanism is essential to maintain the minimal performance

loss incurred in parallelizing the fingerprint based error detection process. On analysis of

the hardware implementation (after place and route of synthesized blocks, as described in

Section 5), we observe the forwarding logic and the datapaths between the buffer and the

processor pipeline, adds to the overall hardware overhead [2].

In this, the forwarding logic datapaths add to the total wiring length of the Reunion

implementation; which is 34% more than that of the baseline MIPS core. In addition, it

should be noted here that these datapaths add to the total load capacitance of the connected

blocks and thereby increase the energy consumed per access. Since the blocks attached

to these datapaths (“ALU” and “CSB” blocks) are accessed on every cycle, this causes an

overall increase in the power consumption of the processor. The observed phenomenon will

only multiply with the increase in the issue-width of the processor. As discussed above,

an increase in the FI will cause an increase in the size of the CSB. As a consequence to

the increased buffer size, the number of datapaths is also increased, which would further
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increase area and power overhead estimated earlier.

4.1.5 Performance overheads

The fingerprint based error detection mechanism realizes two kinds of indirect hardware

overheads. Firstly, pipeline occupancy increases from instructions in CHECK stage, occu-

pying additional Reorder Buffer (ROB) capacity in the speculative window. For workloads

that benefit from large instruction windows, this decreases opportunity to exploit memory

level parallelism or perform speculative execution. Secondly, the serializing instructions

(i.e., traps, memory barriers, etc.) cause the entire pipeline to stall in the event of dependent

instruction executions, till the fingerprint including the serializing instruction is verified.

These pipeline stalls cause a cascading effect on the ROB occupancy and thereby affect the

performance of the system.
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5 EXPERIMENTAL SETUP

Parameter Configuration
Processor Cores 4 logical cores, Alpha 21264

2GHz, 5-stage pipeline; out-of-order
4-wide fetch/issue/commit

Issue Queue 64
L1 Cache 32KB split I/D, 2-way, 10 MSHRs

2 cycle access latency, 64-byte/line
Shared L2 Cache 4MB, 8-way, 64-byte/line

20-cycle access latency, 20 MSHRs
I-TLB 48 entries, 2-way
D-TLB 64 entries, 2-way
Memory 3GB, 64-bit wide, 400 cycles access latency

Table 1: Simulated Baseline CMP Parameters

To evaluate and compare the effectiveness of UnSync, in comparison with Reunion, we

develop a multi-core setup to estimate power, performance and area. The cycle-accurate

M5 multi-core simulator [4] is modified to model the UnSync and Reunion implementation

on a 4 core processor. The specifications of each core is tabulated in Table 1. The simulator

is instrumented to obtain application statistics of cycle-time and the cycle-delays of each

architecture block. We model accurately, 1) the faster core’s delay due to stalls during the

execution of serializing instructions and increased ROB occupancy in the Reunion architec-

ture, and 2) the stalls caused when the CB is full and the bus is busy. We experiment over

benchmarks from SPEC2000 and MiBench.

To estimate the power and area overheads incurred, we perform hardware synthesis (us-

ing the Cadence Encounter [5]) on an RTL implementation of the the MIPS [11] processor.

We implement both the UnSync and Reunion architecture on the baseline MIPS core. In

our analysis since each core is identical and executes redundantly, we compare and contrast

the area and power of only a single core in three configurations. The hardware components

added to the MIPS core, for the Reunion implementation are: fingerprint size=16bits, fin-

gerprint interval=10 instructions and the CHECK Stage Buffer=17entries each of 66bits.

In the case of UnSync, the L1 cache is in Write-through configuration with 10 entries in the

Communication Buffer, for each core. We synthesize the three core models for the same
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frequency of 300MHz at 65nm technology. In order to accurately evaluate the impact of

datapaths and interconnects in the processor implementations, we perform place-and-route

(PNR) at the nominal density of 0.49. For an accurate analysis of cache area and power,

we estimate the parameters using CACTI cache simulator [22]. We scale cache line size

(and total cache-size accordingly) to derive power and area values for the cache including

parity-bit and SECDED [16] error protection mechanisms.
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6 EXPERIMENTAL EVALUATION

6.1 Lower Area and Power Overheads in UnSync

6.1.1 Error detection mechanisms incur lower overheads

Here, we summarize the area and power overheads, of the two redundant processor architec-

ture implementations (UnSync and Reunion), in comparison with the baseline MIPS core.

The hardware parameters discussed here are that of a single core after PNR and therefore

demonstrate with greater accuracy the actual power and area specifications of the chip, in

each configuration, after fabrication.

Parameter Basic MIPS Reunion UnSync
Chip-Area Overhead

Core (µm2) 98558 144005 115945
L1 Cache (mm2) 0.1934 0.2086 0.1939
CB (mm2) N/A N/A 0.00387
Total Area (µm2) 291958 352605 313715
Overhead (%) N/A 20.77 7.45

Power Overhead
Core (W) 1.153 2.038 1.635
L1 Cache (mW) 38.35 42.15 38.45
CB (mW) N/A N/A 0.77258
Total Power (W) 1.19 2.08 1.67
Overhead (%) N/A 74.79 40.34

Table 2: Hardware Overhead Comparison

In Table 2, we observe that the UnSync architecture core has a hardware area overhead

of only 7.45% (compared to the MIPS core) and occupies 13.32% lesser chip-area when

compared to the Reunion implementation. Two significant architectural blocks constitute

the area overhead of the Reunion: i) the additional CHECK stage (46% in core area) –

which is composed of Fingerprint Generator, CHECK Stage Buffer and the datapath in the

register forwarding logic, and the SECDED protected L1 cache (7.85% in cache area) –

which is composed of additional storage bits (8 check bits for every 64 bit data chunk), and

ECC generation and verification circuitry, when compared to the MIPS baseline proces-

sor. On the other hand, the UnSync implementation is composed of only 17.6% increased
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core-area and 0.2% increased cache area (1 parity bit for a 256 bit cache-line). In UnSync,

the hardware detection blocks added to all the sequential elements in the core, are mostly

composed of combinational logic, which can be synthesized optimally for tighter chip-area

by the default configurations of the design compiler. On the other hand, the hardware com-

ponents that contribute to the Reunion area overhead are composed of storage elements,

which are mostly regular array structures, that demonstrate lesser flexibility in circuit opti-

mization, for area and power. It should be noted here that, the only additional storage block

added to the UnSync architecture is the CB, which has a negligible area overhead.

On similar lines, we observe in Table 2, that the power consumption of the Reunion im-

plementation is a staggering 75% more than the baseline MIPS core. This is mostly due to

accesses to the power consuming CHECK stage components (hashing logic and buffer array

structure), which consumes 76.8% more core power compared to the MIPS core. In addi-

tion, the SECDED generation and verification on every cache access, constitutes around

10% more cache power consumption than the baseline MIPS cache. On the other hand, the

hardware detection blocks added to the processor core, only cause around 42% increased

power consumption; while the parity bit protection technique employed, does incurs an

insignificant power overhead (0.2%). It should be noted here that, the only additional stor-

age structure in UnSync (CB), adds negligible power consumption overheads. We thus

demonstrate here through accurate hardware synthesis experiments that the UnSync imple-

mentation is of significantly reduced chip-area and low power consumption. Currently the

above discussion, is based on worst case analysis with basic design optimizations at the

design compiler and power analysis tools. Any circuit level optimization on the detection

techniques, or circuit implementations, will only further reduce the overheads incurred.

6.1.2 Projected Scaling of Area and Power Overheads to Many Core Processors

In order to facilitate the design choice of an error-resilience methodology in a many-core

system, we compare the die size projections of Reunion and UnSync implementations. For

this, the per-core overhead parameters are scaled to existing many-core processors (Ta-

ble 3), where the original die sizes are obtained from [15]. The overall chip area scales up

linearly as the number of cores increase, but the same under the error-resilient architecture
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Intel [13] Tilera [34] NVIDIA [25]
Parameters Polaris Tile64 GeForce
Technology node 65nm 90nm 90nm
No. of Cores:n 80 64 128
Per-core Area (mm2) 2.5 3.6 3
Original Die Area (mm2) 275 330 470
Reunion Die Area (mm2) 316.54 377.85 549.76
UnSync Die Area (mm2) 289.9 347.16 498.61
Relative difference (mm2) 26.64 30.69 51.15
DAReunion −DAUnSync

Table 3: Comparison of Projected Die Sizes (DS) of existing many-core processors, in
two error-resilient implementations (Reunion and Unsync). While choosing an error-
resilient many-core implementation, the last row indicates the difference in die-area
between the two choices: UnSync and Reunion.

implementations does not follow the same trend. To project the die size parameters, we ex-

tract the Core Area Overhead–CAO (per core), for each configuration, from Table 2. Since

the area overhead of each implementation is observed at the per core level, the increase in

area per core (CAinc), is given by CAinc = n × CA × CAO; where CA is original area

of a single core, and n the number of cores, in the processor. The projected Die Area–DA

of the processor, in an implementation, is thus given by:

DA = CAinc +DAorig; denoted by DAReunion for Reunion and DAUnSync for UnSync

implementations.

The last row of Table 3 denotes the difference in the die areas (DAReunion−DAUnSync)

between the two error-resilient implementations of the many-core processor. We use this

parameter during design, to determine the right redundancy based mechanism to employ

in the many core processor architecture considered. From the projections in Table 3, we

observe that:

1. with the increase in the number of cores in the processor, the difference between the

die areas of the two implementations increases in a non-linear fashion. In the case

of the Intel polaris and NVIDIA GeForce processors, for only around 50% increase

in the number of cores, the difference in the die-areas increases by around 2×. The

higher per-core area overhead of the Reunion implementation (0.2077), as compared
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to that of UnSync (0.0745), is the reason for this behavior.

2. the original per-core area is another key factor that governs the total Die Area param-

eters. In the case of the Tilera processor with 64 cores the per-core area is 3.6mm2;

which is larger than that of the NVIDIA processor with 128 cores, in the same tech-

nology node. In Tilera, the difference between the die areas of the two implementa-

tions, is relatively large, when compared to that of the NVIDIA processor.

From the two observations made above, we can deduce that in the design of many-core pro-

cessors with large number of cores, or when the per-core area is reduced, the UnSync im-

plementation demonstrates reduced power overheads, lower overall die-area, and improved

performance.

6.2 Negligible Performance Overhead in UnSync

6.2.1 No Performance Penalty from Serialization

Figure 4: Reunion is affected by serializing instructions, while UnSync is not. The set
of smaller bars on the left, demonstrate performance overheads incurred.

To show the impact of serializing instructions, we analyze the performance variation
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on benchmarks which have serializing instructions. The FI in the Reunion implementa-

tion determines the granularity or frequency of synchronization and therefore we consider

the baseline value for the interval as 10 instructions (smaller the better for Reunion). As we

demonstrate here, the UnSync implementation is not affected by serializing instructions, we

consider the baseline architecture as described in Section 5. We observe from the results

in Figure 4 that, the Reunion implementation incurs an average of 8% performance over-

head due to serializing instructions. Applications: bzip2, ammp and galgel suffers from

more than 10% overhead because they have more serializing instructions, which are 2%,

1.7% and 1% of total instructions respectively. However, galgel also suffers from increased

ROB occupancy, and therefore has the maximum overhead. On the other hand, UnSync

demonstrates a consistently negligible variation (around 2%) in performance.

6.2.2 No Performance Impact due to ROB occupancy

Figure 5: Reunion suffers from increased ROB occupancy due to the CHECK stage,
and varies with the fingerprint interval and comparison latency parameters.

In Figure 5 we show how the FI and comparison latency can affect the performance

of Reunion. Fingerprint interval is the granularity of checking, determined by the number
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of instructions included in a generated fingerprint; while the comparison latency is defined

as the total time required to generate, transfer, and compare the fingerprint. Larger FI has

the benefit of less frequent communication and thus less power overhead, but at the cost of

increased ROB occupancy; and therefore longer comparison latency since there are more

instructions staying longer in the CHECK pipeline stage. Figure 5 shows the performance

of Reunion at different comparison latencies and FIs. We start at the FI of 1 instruction

and comparison latency of 10 cycles, and then continuously increase them. We can see that

ammp and galgel are greatly affected by the length of the FI and comparison latencies, be-

cause the program quickly saturates the ROB. At the FI of 30 instructions and comparison

latency of 40 cycles, on an average, the performance decreased by 27% and 41% respec-

tively. In contrast, in UnSync with no synchronization or inter-core comparisons, it is not

affected by the increased ROB occupancy since instructions are not held in ROB for an

additional time.

6.2.3 Larger CB Size Eliminates Performance Bottleneck

In UnSync, a core with a full CB has to stall and wait for the latest instruction to complete

execution on the other CB for comparison and thereby eviction to L2. Therefore, if an

application has a large number of write operations, it will affect the performance of system

by stalling the cores when the CB is full. Figure 6 shows the performance of UnSync across

different CB sizes. We can see that when the CB size is small, the performance decreases;

whereas larger CB sizes (2KB and 4KB) completely eliminates the resource occupancy

bottleneck, and UnSync has almost identical performance with that of the baseline CMP

architecture.

6.3 UnSync Performs better across SER rates

In order to evaluate the two multi-core architectures for their reliability, we extrapolated

the average IPC (over the set of benchmarks experimented) for a range of SER rates. For

this, we used the exponential ratio of SERs between the technology nodes 180nm (1000

FIT) and 130nm (100, 000 FIT), and extrapolated the same to obtain the SER for 90nm

technology. From experiments performed by iRoc technologies, we observe that the SER
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Figure 6: Larger CB size eliminates the resource occupancy bottleneck and demon-
strates better performance.

rate for technology nodes from 65nm and beyond are more or less saturated and don’t

follow the same exponential ratio trend. For our analysis, we consider the SER at the 90nm

node (2.89× 10−17 per instruction) [17]. Our projected results of IPC for both the Reunion

and UnSync processor architectures does not vary with change in the SER rate from 10−7

to 10−17 (or lower), thereby demonstrating that the UnSync processor architecture even in

the presence of soft errors performs better than the Reunion architecture. A hypothetical

analysis, to determine the “break-even” SER that equates the two processors’ performance

numbers, reveals that when the SER reaches 1.29× 10−3, the two processor’s will perform

alike. Therefore, for all practical purposes, we can safely say that our UnSync technique,

performs with 20% better performance with or without soft errors as compared to Reunion.

6.4 Customizable Redundancy with less complexity and larger ROEC

6.4.1 UnSync provides customizable redundancy

To show the performance of our customizable UnSync implementation, over different re-

dundancy configurations, we choose eight benchmarks from SPEC2000 and MiBench. We

26



Group 0 sha, gsm encode, gsm decode,
(Reliability critical) adpcm endode, adpcm decode

Group 1 facerec, ammp, art,
(Reliability non-critical) galgel, apsi

Number of cores in Number of cores in
redundant execution non-redundant execution

setting 0 2 6
setting 1 4 4
setting 2 6 2
setting 3 8 0

Table 4: UPPER: Benchmarks with different reliability requirements are categorized
as group 0, group 1.
LOWER: Settings for different number of cores used in redundant and non-redundant
execution.

divide them into two groups according to our reliability requirement (upper table in Table 4).

For example, we require reliable execution for security benchmarks (sha) and telecommuni-

cation benchmarks (gsm and adpcm). For the other benchmarks a few errors will not change

the results significantly (facerec, ammp, galgel and apsi), and we can use non-redundant ex-

ecution for those benchmarks to get higher throughput. Here, we note that there is no strict

rule that decides if a workload is reliability critical or not. Choosing the application for

reliable redundant execution is user dependent. The lower table in Table 4 describes the

different configurations in which the 8 core processor can be set, with varying degrees of

redundancy (or error resilience). If the number of cores available for redundant execution

are not enough for executing the reliability critical benchmarks in parallel, we run those

benchmarks in a round robin fashion.

We measure the performance of different settings using aggregate IPC. Figure 7 shows

the system throughput for different settings. For example, in setting 0, 2 cores are used

to redundantly execute 4 reliability critical benchmarks in a round robin manner; while

4 out of the remaining 6 cores are used for non-redundant execution of the remaining 4

non-critical applications. Here, two cores that are configured to be used in non-redundant

mode are idle and not fully utilized. In Figure 7, we observe that the throughput increases

in setting 1 (when 4 cores are used in redundant execution). In setting 2, we use 6 cores

for redundant execution, and 2 cores for non-redundantly executing the remaining 4 non-
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critical benchmarks. A drop in throughput is observed here in Figure 7. When we use

all the cores for redundant execution in setting 3, those reliability non-critical benchmarks

also run in the redundant mode, and therefore we have the lowest throughput. Setting 3 is

similar to the Reunion technique, since all the cores are used for redundant execution.

The design of the UnSync architecture, ensures that all the cores are identical and that

pairing of redundant cores is at the conceptual level and only the CB. Only the CBs of

adjacent cores can communicate between each other, to only determine completion of an

instruction and then perform L2 write. Such a design also allows for quick and easy dis-

association of the two cores dynamically through means of BIOS instructions or processor

configuration settings. The UnSync architecture, possesses the flexibility to allow dynamic

customization of the number and nature of core-level redundancy employed.

Figure 7: Performance of customizable UnSync-Arch with different redundancy. We
run benchmarks in group 0 in redundant model and group 1 in non-redundant model.
Setting 0 does not fully use the cores. Setting 3 uses all cores for redundant execution
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6.4.2 Reunion has lower Region of Error Coverage

Through simulations of the multi-core system in the two configurations, we verify that both

UnSync and Reunion architectures execute programs correctly in the presence of errors;

though the error detection and recovery mechanisms vary in both techniques. However, the

region of error coverage (ROEC) for the Reunion core is limited to the processor pipeline

before the “Commit” stage, as the fingerprint verifies only the output data of the instructions

after the “Execute” stage. The L1 cache in the Reunion architecture is assumed to have

ECC protection and therefore not included in the ROEC. On the other hand, the UnSync

architecture includes all the sequential blocks within the processor IP-core and also the

L1 cache in its ROEC. We observe that the UnSync architecture achieves same level of

reliability, with a larger ROEC, and at lesser hardware overheads of power and chip-area.
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7 CONCLUSION

Growing technology scaling expose modern and future processors to soft error failures

caused due to charge carrying particles. In this thesis, we propose UnSync– a customiz-

able, error resilient and power efficient multi-core architecture based on core-level redun-

dancy. Our always forward execution enabled recovery mechanism coupled with an effi-

cient choice of hardware only detection techniques, reduce performance overheads in re-

dundant designs, while also ensuring error resilience. We, compare our architecture imple-

mentation on a multi-core environment, with that of Reunion (a state-of-the-art redundant

error resilient technique. Experimental results show that the UnSync achieves upto 20%

improvement in performance, with 13.32% reduced area and 34.5% less power overhead

when compared to that of Reunion architecture.

With the increasing parallelism in application software, and the drastic increase in the

number of cores available in the CMP, our architecture opens doors to varied level of cus-

tomization and programmability both at the compiler and application level to facilitate de-

velopment of soft error resilient applications. Since our architecture framework is indepen-

dent of the underlying architecture within the core, more efficient hardware detection tech-

niques (multi-bit correction for cache blocks, hardened pipeline registers, efficient register

file protection, etc.) can be implemented. Our architecture and its working are unaffected

by such modifications.
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