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ABSTRACT

In the traditional setting of quantum mechanics, the Hamiltonian operator does not

depend on time. While some Schrödinger equations with time-dependent Hamiltonians have

been solved, explicitly solvable cases are typically scarce. This thesis is a collection of papers

in which this first author along with Suslov, Suazo, and Lopez, has worked on solving a series

of Schrödinger equations with a time-dependent quadratic Hamiltonian that has applications

in problems of quantum electrodynamics, lasers, quantum devices such as quantum dots, and

external varying fields.

In particular the author discusses a new completely integrable case of the time-dependent

Schrödinger equation in Rn with variable coefficients for a modified oscillator, which is dual

with respect to the time inversion to a model of the quantum oscillator considered by Meiler,

Cordero-Soto, and Suslov. A second pair of dual Hamiltonians is found in the momentum rep-

resentation. Our examples show that in mathematical physics and quantum mechanics a change

in the direction of time may require a total change of the system dynamics in order to return the

system back to its original quantum state.

The author also considers several models of the damped oscillators in nonrelativis-

tic quantum mechanics in a framework of a general approach to the dynamics of the time-

dependent Schrödinger equation with variable quadratic Hamiltonians. The Green functions

are explicitly found in terms of elementary functions and the corresponding gauge transforma-

tions are discussed. The factorization technique is applied to the case of a shifted harmonic

oscillator. The time-evolution of the expectation values of the energy related operators is de-

termined for two models of the quantum damped oscillators under consideration. The classical

equations of motion for the damped oscillations are derived for the corresponding expectation

values of the position operator.

Finally, the author constructs integrals of motion for several models of the quantum

damped oscillators in a framework of a general approach to the time-dependent Schrödinger

equation with variable quadratic Hamiltonians. An extension of the Lewis–Riesenfeld dynami-

cal invariant is given. The time-evolution of the expectation values of the energy related positive
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operators is determined for the oscillators under consideration. A proof of uniqueness of the

corresponding Cauchy initial value problem is discussed as an application.
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Chapter 1

INTRODUCTION

1.1 The Schrödinger Equation

For nearly two hundred years, the classical mechanics proposed by Isaac Newton proved to be

sufficient in understanding the physical wold that surrounds us. In fact, it was generally believed

among the scientific community that most of the answers to the deepest physical phenomenon

were to be understood through classical mechanics. However, towards the end of the 19th cen-

tury, experiments at the atomic level started to show discrepancies with the clasically-expected

results. It was then that scientists such as Planck, Bohr, and Einstein ushered in a new era that

would help understand these results. Eventually this movement was formalized into a field of

modern physics in its own right known as quantum mechanics. This field that seemingly defied

logic was able to accurately explain the rare occurrences related to very small particles such

as electrons and photons. The mathematical equation used to predict these quantum effects is

known as the Schrödinger Equation; a fundamental law of nature in its purest mathematical

form:

ih̄
∂Ψ

∂ t
=
−h̄2

2m
∇

2
Ψ+V (x)Ψ= HΨ (1.1)

Ψ0 = Ψ(0, t) ,

where H is the so-called Hamiltonian Operator (see [56]) and V is an arbitrary potential (energy)

function. It was derived by Erwin Schrödinger in 1925-1926, and its fidelity to reality earned

him the Nobel Prize. The so-called wave function (solution) represents the state of a particle,

where the particle has a wave-particle duality in its behavior. However, to use the wave function

Ψ for physical meaning, one must use |Ψ|2 as a probability density function as suggested by

Max Born. Thus, the probability of finding a particle between point a and b on an interval (or

space in 3 dimensions) is given by

P(a,b) =
∫ a

b

|Ψ(x, t)|2 dx. (1.2)
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Given this definition, the probability of finding the particle anywhere should be 1:∫
∞

−∞

|Ψ(x, t)|2 dx= 1. (1.3)

Ergo, (1.2) and (1.3) constitute Max Born’s so called statistical interpretation.

Time-Independent Hamiltonian

The Hamiltonian operator corresponds to the total energy of the system and its corresponding

spectrum yields the set of possible outcomes when one measures the total energy of a system

(see [89] and [56]). It is often expressed as the sum of operators that correspond to kinetic and

potential energy:

H = T +V (1.4)

where T is expressed as the formula of kinetic energy,

T =
p2

2m
(1.5)

by the following so-called canonical substitution

p−→−ih̄∇. (1.6)

Thus (1.4) is equivalent to our previous definition,

−h̄2

2m
∇

2+V (x) = H (1.7)

via (1.6), where the potential function V (x) is a multiplicative operator.

Different potential functions result in different models that pertain to certain physical

assumptions. For example, if V = 0 the assumption is that the modeled particle is unconstrained

or free. Nonetheless, we will focus on a particular case known as the quantum harmonic oscil-

lator. In classical mechanics, a harmonic oscillator is a system which when displaced from its

resting or equilibrium position, experiences a restoring force

F =−kx, k > 0. (1.8)

A good example of a harmonic oscillator is a mass attached to a spring. To derive the potential

energy for a harmonic oscillator, we calculate the work done:

V (x) =−
∫

F ·dx=
1

2
kx2. (1.9)
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While a harmonic oscillator in classical mechanics can be unrealistic without considering a

dampening effect, it turns out one can approximate any potential function with (1.9) by means

of a Taylor expansion around an equilibrium, hence its importance in quantum mechanics.

Quadratic Time-Dependent Hamiltonian

The Hamiltonian (1.7) does not depend on time. Despite the fact that time-dependent Hamilto-

nians have been studied in both a mathematical and physical context, the explicit solvability of

the corresponding Schrödinger equation is still a difficult task. Recently, this author along with

Suslov, Suazo, and Lopez, has worked on solving the time-dependent Schrödinger Equation

with a quadratic Hamiltonian of the form

H (t) =−a(t)
∂ 2

∂x2
+b(t)x2− i

(
c(t)x

∂

∂x
+d (t)

)
− f (t)x+ ig(t)

∂

∂x
(1.10)

(see [49] ). Here, the Hamiltonian operator (1.10) is applied as follows:

H (t)ψ =−a(t)
∂ 2ψ

∂x2
+b(t)x2

ψ− i

(
c(t)x

∂ψ

∂x
+d (t)ψ

)
− f (t)xψ+ ig(t)

∂ψ

∂x
(1.11)

Here a(t) , b(t) , c(t) , d (t) , f (t) , and g(t) are given real-valued functions of time t

only. We find the Green’s function by using the following substitution

ψ = AeiS = A(t)eiS(x,y,t), A= A(t) =
1√

2πiµ (t)
(1.12)

Adding a time dependence to the Hamiltonian is a natural way of incorporating an

acting external force that depends on time. Quadratic Hamiltonians for one, have attracted sub-

stantial attention over the years in view of their great importance to many advanced quantum

problems. Examples can be found in quantum and physical optics [58], [113], [161], [176],

physics of lasers and masers [182], [205], [186], [214], molecular spectroscopy [67], quan-

tum chemistry, and Hamiltonian cosmology [102], [161], [177], [178], [180]. They include

coherent states [140], [137], [138], [113] and Berry’s phase [15], [16], [38], [94], [125], [150],

asymptotic and numerical methods [88], [106], [118], [147], [152], charged particle traps [136]

and motion in uniform magnetic fields [49], [65], [121], [129], [130], [132], [138], polyatomic

molecules in varying external fields, crystals through which an electron is passing and exciting

the oscillator modes, and other interactions of the modes with external fields [81]. Quadratic

3



Hamiltonians have particular applications in quantum electrodynamics because the electromag-

netic field can be represented as a set of forced harmonic oscillators [19], [81], [65], [87], [103],

and [145]. Nonlinear oscillators play a central role in the novel theory of Bose–Einstein con-

densation [54] based on the nonlinear Schrödinger (or Gross–Pataevskii) equation [104], [105],

[112], [166].

1.2 Solution of a Cauchy Initial Value Problem

In theory, the time-dependent Schrödinger equation

i}
∂ψ

∂ t
= H (t)ψ (1.13)

can be solved using the time evolution operator given formally by

U (t, t0) = T

(
exp

(
− i

}

∫ t

t0

H
(
t ′
)

dt ′
))

, (1.14)

where T is the time ordering operator which orders operators with larger times to the left. This

unitary operator takes a state at time t0 to a state at time t, so that

ψ (x, t) =U (t, t0)ψ (x, t0) . (1.15)

However, an explicit construction of (1.14) is rarely possible. In [49], the authors are able to

construct the time evolution operator for a specific form of a quadratic Hamiltonian. The fun-

damental solution of the time-dependent Schrödinger equation with the quadratic Hamiltonian

of the form

i
∂ψ

∂ t
=−a(t)

∂ 2ψ

∂x2
+b(t)x2

ψ− i

(
c(t)x

∂ψ

∂x
+d (t)ψ

)
− f (t)xψ+ ig(t)

∂ψ

∂x
, (1.16)

where a(t) , b(t) , c(t) , d (t) , f (t) , and g(t) are given real-valued functions of time t only, can

be found with the help of a familiar substitution

ψ = AeiS = A(t)eiS(x,y,t), A= A(t) =
1√

2πiµ (t)
(1.17)

with

S= S (x,y, t) = α (t)x2+β (t)xy+ γ (t)y2+δ (t)x+ ε (t)y+κ (t) , (1.18)

where α (t) , β (t) , γ (t) , δ (t) , ε (t) , and κ (t) are differentiable real-valued functions of time t

only. Indeed,

∂S

∂ t
=−a

(
∂S

∂x

)2

−bx2+ f x+(g− cx)
∂S

∂x
(1.19)

4



by choosing

µ ′

2µ
= a

∂ 2S

∂x2
+d = 2α (t)a(t)+d (t) . (1.20)

Equating the coefficients of all admissible powers of xmyn with 0≤m+n≤ 2, gives the follow-

ing system of ordinary differential equations

dα

dt
+b(t)+2c(t)α+4a(t)α2 = 0, (1.21)

dβ

dt
+(c(t)+4a(t)α (t))β = 0, (1.22)

dγ

dt
+a(t)β 2 (t) = 0, (1.23)

dδ

dt
+(c(t)+4a(t)α (t))δ = f (t)+2α (t)g(t) , (1.24)

dε

dt
= (g(t)−2a(t)δ (t))β (t) , (1.25)

dκ

dt
= g(t)δ (t)−a(t)δ 2 (t) , (1.26)

where the first equation is the familiar Riccati nonlinear differential equation; see, for example,

[91], [171], [213] and references therein. Substitution of (1.20) into (1.21) results in the second

order linear equation

µ
′′− τ (t)µ

′+4σ (t)µ = 0 (1.27)

with

τ (t) =
a′

a
−2c+4d, σ (t) = ab− cd+d2+

d

2

(
a′

a
− d′

d

)
, (1.28)

which must be solved subject to the initial data

µ (0) = 0, µ
′ (0) = 2a(0) 6= 0 (1.29)

in order to satisfy the initial condition for the corresponding Green function; see the asymptotic

formula (1.37) below. The authors in ([49]) refer to equation (1.27) as the characteristic equa-

tion and its solution µ (t) , subject to (1.29), as the characteristic function. As the special case

(1.27) contains the generalized equation of hypergeometric type, whose solutions are studied in

detail in [158]; see also [2], [157], [197], and [213].

Thus, the Green function (fundamental solution or propagator) is explicitly given in

terms of the characteristic function

ψ = G(x,y, t) =
1√

2πiµ (t)
ei(α(t)x2+β (t)xy+γ(t)y2+δ (t)x+ε(t)y+κ(t)). (1.30)
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Here

α (t) =
1

4a(t)

µ ′ (t)

µ (t)
− d (t)

2a(t)
, (1.31)

β (t) =− 1

µ (t)
exp

(
−
∫ t

0
(c(τ)−2d (τ)) dτ

)
, (1.32)

γ (t) =
a(t)

µ (t)µ ′ (t)
exp

(
−2

∫ t

0
(c(τ)−2d (τ)) dτ

)
+

d (0)

2a(0)
(1.33)

−4

∫ t

0

a(τ)σ (τ)

(µ ′ (τ))2

(
exp

(
−2

∫
τ

0
(c(λ )−2d (λ )) dλ

))
dτ,

δ (t) =
1

µ (t)
exp

(
−
∫ t

0
(c(τ)−2d (τ)) dτ

)
(1.34)

×
∫ t

0
exp

(∫
τ

0
(c(λ )−2d (λ )) dλ

)
×
((

f (τ)− d (τ)

a(τ)
g(τ)

)
µ (τ)+

g(τ)

2a(τ)
µ
′ (τ)

)
dτ,

ε (t) = −2a(t)

µ ′ (t)
δ (t) exp

(
−
∫ t

0
(c(τ)−2d (τ)) dτ

)
(1.35)

+8

∫ t

0

a(τ)σ (τ)

(µ ′ (τ))2
exp

(
−
∫

τ

0
(c(λ )−2d (λ )) dλ

)
(µ (τ)δ (τ)) dτ

+2

∫ t

0

a(τ)

µ ′ (τ)
exp

(
−
∫

τ

0
(c(λ )−2d (λ )) dλ

)(
f (τ)− d (τ)

a(τ)
g(τ)

)
dτ,

κ (t) =
a(t)µ (t)

µ ′ (t)
δ

2 (t)−4

∫ t

0

a(τ)σ (τ)

(µ ′ (τ))2
(µ (τ)δ (τ))2 dτ (1.36)

−2

∫ t

0

a(τ)

µ ′ (τ)
(µ (τ)δ (τ))

(
f (τ)− d (τ)

a(τ)
g(τ)

)
dτ

with δ (0) = g(0)/(2a(0)) , ε (0) = −δ (0) , and κ (0) = 0. Integration by parts are used to

resolve the singularities of the initial data. Then the corresponding asymptotic formula is

G(x,y, t) =
eiS(x,y,t)√
2πiµ (t)

∼ 1√
2πia(0) t

exp

(
i
(x− y)2

4a(0) t

)
exp

(
i

g(0)

2a(0)
(x− y)

)
(1.37)

×exp

(
−i

c(0)

4a(0)

(
x2− y2

))
exp

(
−i

a′ (0)

8a2 (0)
(x− y)2

)
as t→ 0+. Notice that the first term on the right hand side is a familiar free particle propagator.

By the superposition principle, one obtain an explicit solution of the Cauchy initial

value problem

i
∂ψ

∂ t
= H (t)ψ, ψ (x, t)|t=0 = ψ0 (x) (1.38)
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on the infinite interval −∞ < x < ∞ with the general quadratic Hamiltonian as in (1.16) in the

form

ψ (x, t) =
∫

∞

−∞

G(x,y, t) ψ0 (y) dy. (1.39)

This yields the time evolution operator (1.14) explicitly as an integral operator. Properties of

similar oscillatory integrals are discussed in [191].

1.3 Organization of the Thesis

This thesis is a collection of papers first-authored by the author of the thesis. These papers

are a continued study of the mathematical properties and physical applications of the time-

dependent Schrödinger equation proposed in [49]. Mathematically we study conditions for

the time-invertibility of the proposed equation and Uniqueness results via Quadratic Invariants.

Physically, we propose several damped oscillator models and other models that may be used in

quantum optics, specifically applied to quantum devices such as quantum dots [71], [96].

In Chapter 2 we discuss a new completely integrable case of the time-dependent

Schrödinger equation in Rn with variable coefficients for a modified oscillator, which is dual

with respect to the time inversion to a model of the quantum oscillator considered by Meiler,

Cordero-Soto, and Suslov in [143]. A second pair of dual Hamiltonians is found in the momen-

tum representation. Our examples show that in mathematical physics and quantum mechanics

a change in the direction of time may require a total change of the system dynamics in order to

return the system back to its original quantum state. Particular solutions of the corresponding

nonlinear Schrödinger equations are obtained. A Hamiltonian structure of the classical inte-

grable problem and its quantization are also discussed.

In Chapter 3 we consider several models of the damped oscillators in nonrelativis-

tic quantum mechanics in a framework of a general approach to the dynamics of the time-

dependent Schrödinger equation with variable quadratic Hamiltonians. The Green functions

are explicitly found in terms of elementary functions and the corresponding gauge transforma-

tions are discussed. The factorization technique is applied to the case of a shifted harmonic

oscillator. The time-evolution of the expectation values of the energy related operators is de-

termined for two models of the quantum damped oscillators under consideration. The classical
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equations of motion for the damped oscillations are derived for the corresponding expectation

values of the position operator.

In Chapter 4 we construct integrals of motion for several models of the quantum

damped oscillators in a framework of a general approach to the time-dependent Schrödinger

equation with variable quadratic Hamiltonians. An extension of the Lewis–Riesenfeld dynami-

cal invariant is given. The time-evolution of the expectation values of the energy related positive

operators is determined for the oscillators under consideration. A proof of uniqueness of the

corresponding Cauchy initial value problem is discussed as an application.

In Chapter 5 We present some of the connections between a so-called reduced char-

acteristic equation and a quadratic invariant of Time-Dependent Schrödinger equation. The

solution of this equation previously obtained by the authors, presents practical difficulties since

the Green’s function of the equation requires solving a second-order differential equation with

time-dependent coefficients called the characteristic equation. In the present paper, the authors

use a gauge transformation lemma to generate a reduced characteristic equation. The transfor-

mation itself provides a simpler form of the general solution. The dynamical invariant of the

corresponding Hamiltonian is explicit up to the solution of the very same characteristic equa-

tion. We conclude by using the gauge transformation to obtain a uniqueness result for a general

quantum dot model by using dynamical invariants, and we state some of the possible future

projects.
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Chapter 2

THE TIME REVERSAL FOR MODIFIED OSCILLATORS

citation: R. Cordero-Soto and S. K. Suslov, Teoret. Mat. Fiz., 2010, Volume 162 (2010) # 3,

345-380.

2.1 Introduction

The Cauchy initial value problem for the Schrödinger equation

i
∂ψ

∂ t
= H (t)ψ (2.1)

for a certain modified oscillator is explicitly solved in Ref. [143] for the case of n dimensions in

Rn.When n= 1 the Hamiltonian considered by Meiler, Cordero-Soto, and Suslov has the form

H (t) =
1

2

(
aa†+a†a

)
+

1

2
e2ita2+

1

2
e−2it

(
a†
)2
, (2.2)

where the creation and annihilation operators are defined as in [85]:

a† =
1

i
√

2

(
∂

∂x
− x

)
, a=

1

i
√

2

(
∂

∂x
+ x

)
. (2.3)

The corresponding time evolution operator is found in [143] as an integral operator

ψ (x, t) =U (t)ψ (x,0) =
∫

∞

−∞

G(x,y, t) ψ (y,0) dy (2.4)

with the kernel (Green’s function or propagator) given in terms of trigonometric and hyperbolic

functions as follows

G(x,y, t) =
1√

2πi(cos t sinh t+ sin t cosh t)
(2.5)

×exp

((
x2− y2

)
sin t sinh t+2xy−

(
x2+ y2

)
cos t cosh t

2i(cos t sinh t+ sin t cosh t)

)
.

It is worth noting that the time evolution operator is known explicitly only in a few

special cases. An important example of this source is the forced harmonic oscillator originally

considered by Richard Feynman in his path integrals approach to the nonrelativistic quantum

mechanics [77], [78], [79], [80], and [81]; see also [134]. Since then this problem and its special

and limiting cases were discussed by many authors; see Refs. [14], [87], [99], [142], [145],
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[207] for the simple harmonic oscillator and Refs. [4], [21], [98], [154], [173] for the particle

in a constant external field and references therein. Furthermore, in Ref. [49] the time evolution

operator for the one-dimensional Schrödinger equation (2.1) has been constructed in a general

case when the Hamiltonian is an arbitrary quadratic form of the operator of coordinate and the

operator of linear momentum. In this approach, the above mentioned exactly solvable models,

including the modified oscillator of [143], are classified in terms of elementary solutions of a

certain characteristic equation related to the Riccati differential equation.

In the present paper we find the time evolution operator for a “dual” time-dependent

Schrödinger equation of the form

i
∂ψ

∂τ
= H (τ)ψ, τ =

1

2
sinh(2t) (2.6)

with another “exotic” Hamiltonian of a modified oscillator given by

H (τ) =
1

2

(
aa†+a†a

)
+

1

2
e−iarctan(2τ)a2+

1

2
eiarctan(2τ)

(
a†
)2
. (2.7)

We show that the corresponding propagator can be obtain from expression (2.5) by interchang-

ing the coordinates x↔ y. This implies that these two models are related to each other with

respect to the inversion of time, which is the main result of this article.

The paper is organized as follows. In section 2 we derive the propagators for the Hamil-

tonians (2.2) and (2.7) following the method of [49] — expression (2.5) was obtain in [143]

by a totally different approach using SU (1,1)-symmetry of the n-dimensional oscillator wave

functions and the Meixner–Pollaczek polynomials. Another pair of completely integrable dual

Hamiltonians is also discussed here. The “hidden” symmetry of quadratic propagators is re-

vealed in section 3. The next section is concerned with the complex form of the propagators,

which unifies Green’s functions for several classical models by geometric means. In section 5

we consider the inverses of the corresponding time evolution operators and its relation with the

inversion of time. A transition to the momentum representation in section 6 gives the reader a

new insight on the symmetries of the quadratic Hamiltonians under consideration together with

a set of identities for the corresponding time evolution operators. The n-dimensional case is

discussed in sections 7 and 8. Particular solutions of the corresponding nonlinear Schrödinger

equations are constructed in section 9. The last section is concerned with the ill-posedness of
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the Schrödinger equations. Three Appendixes at the end of the paper deal with required solu-

tions of a certain type of characteristic equations, a quantum Hamiltonian transformation, and

a Hamiltonian structure of the characteristic equations under consideration, respectively.

As in [49], [122], [143] and [194], we are dealing here with solutions of the time-

dependent Schrödinger equation with variable coefficients. The case of a corresponding diffusion-

type equation is investigated in [196]. These exactly solvable models are of interest in a general

treatment of the nonlinear evolution equations; see [24], [31], [36], [37], [76], [119], [144],

[203] and [10], [27], [28], [29], [30], [32], [33], [109], [153], [166], [174], [175], [184], [190]

and references therein. They facilitate, for instance, a detailed study of problems related to

global existence and uniqueness of solutions for the nonlinear Schrödinger equations with gen-

eral quadratic Hamiltonians. Moreover, these explicit solutions can also be useful when testing

numerical methods of solving the Schrödinger and diffusion-type equations with variable coef-

ficients.

2.2 Derivation of The Propagators

The fundamental solution of the time-dependent Schrödinger equation with the quadratic Hamil-

tonian of the form

i
∂ψ

∂ t
=−a(t)

∂ 2ψ

∂x2
+b(t)x2

ψ− i

(
c(t)x

∂ψ

∂x
+d (t)ψ

)
(2.8)

in two interesting special cases, namely,

a= cos2 t, b= sin2 t, c= 2d = sin(2t) (2.9)

and

a= cosh2 t, b= sinh2 t, c= 2d =−sinh(2t) , (2.10)

corresponding to the Hamiltonians (2.2) and (2.7), respectively, (we give details of the proof in

the Appendix B), can be found by the method proposed in [49] in the form

ψ = G(x,y, t) =
1√

2πiµ (t)
ei(α(t)x2+β (t)xy+γ(t)y2), (2.11)
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where

α (t) =
1

4a(t)

µ ′ (t)

µ (t)
− d (t)

2a(t)
, (2.12)

β (t) =− 1

µ (t)
,

dγ

dt
+

a(t)

µ (t)2
= 0, (2.13)

γ (t) =
a(t)

µ (t)µ ′ (t)
+

d (0)

2a(0)
−4

∫ t

0

a(τ)σ (τ)

(µ ′ (τ))2
dτ, (2.14)

and the function µ (t) satisfies the characteristic equation

µ
′′− τ (t)µ

′+4σ (t)µ = 0 (2.15)

with

τ (t) =
a′

a
−2c+4d, σ (t) = ab− cd+d2+

d

2

(
a′

a
− d′

d

)
(2.16)

subject to the initial data

µ (0) = 0, µ
′ (0) = 2a(0) 6= 0. (2.17)

Equation (2.12) (more details can be found in [49]) allows us to integrate the familiar Riccati

nonlinear differential equation emerging when one substitutes (2.11) into (2.8). See, for exam-

ple, [91], [148], [171], [172], [213] and references therein. A Hamiltonian structure of these

characteristic equations is discussed in Appendix C.

In the case (2.9), the characteristic equation has a special form of Ince’s equation [135]

µ
′′+2tan t µ

′−2µ = 0. (2.18)

Two linearly independent solutions are found in [49]:

µ1 = cos t cosh t+ sin t sinh t =W (cos t,sinh t) , (2.19)

µ2 = cos t sinh t+ sin t cosh t =W (cos t,cosh t) (2.20)

with the Wronskian W (µ1,µ2) = 2cos2 t = 2a. Another method of integration of all character-

istic equations from this section is discussed in the Appendix A; see Table 1 at the end of the

paper for the sets of fundamental solutions. The second case (2.10) gives

µ
′′−2tanh t µ

′+2µ = 0 (2.21)
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and the two linearly independent solutions are [196]

µ2 = cos t sinh t+ sin t cosh t =W (cos t,cosh t) , (2.22)

µ3 = sin t sinh t− cos t cosh t =W (sin t,cosh t) (2.23)

with W (µ2,µ3) = 2cosh2 t = 2a. Equation (2.21) can be obtain from (2.18) as a result of the

substitution t → it. Also, W (µ1,µ3) = sin(2t)+ sinh(2t) . The common solution of the both

characteristic equations, namely,

µ (t) = µ2 = cos t sinh t+ sin t cosh t, (2.24)

satisfies the initial conditions (2.17).

From (2.11)–(2.14), as a result of elementary calculations, one arrives at the Green

function (2.5) in the case (2.9) and has to interchange there x↔ y in the second case (2.10). The

reader can see some calculation details in section 9, where more general solutions are found in

a similar way. The next section explains this unusual symmetry between two propagators from

a more general point of view.

Two more completely integrable cases of the dual quadratic Hamiltonians occur when

a= sin2 t, b= cos2 t, c= 2d =−sin(2t) (2.25)

and

a= sinh2 t, b= cosh2 t, c= 2d = sinh(2t) . (2.26)

The corresponding characteristic equations are

µ
′′−2cot t µ

′−2µ = 0 (2.27)

and

µ
′′−2coth t µ

′+2µ = 0, (2.28)

respectively, with a common solution

µ (t) = µ4 = sin t cosh t− cos t sinh t =W (sin t,sinh t) (2.29)
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such that µ (0) = µ ′ (0) = µ ′′ (0) = 0 and µ ′′′ (0) = 4. Once again, from (2.11)–(2.14) one

arrives at the Green function

G(x,y, t) =
1√

2πi(sin t cosh t− cos t sinh t)
(2.30)

×exp

((
x2+ y2

)
cos t cosh t−2xy+

(
x2− y2

)
sin t sinh t

2i(cos t sinh t− sin t cosh t)

)
in the case (2.25) and has to interchange there x↔ y in the second case (2.26). The correspond-

ing asymptotic formula takes the form

G(x,y, t) =
ei(α(t)x2+β (t)xy+γ(t)y2)√

2πiµ (t)
∼ 1√

4πiε
exp

(
i
(x− y)2

4ε

)
(2.31)

as ε = t3/3→ 0+. We will show in section 6, see Eqs. (2.84) and (2.91), that our cases (2.9)–

(2.10) and (2.25)–(2.26) are related to each other by means of the Fourier transform.

We have considered some elementary solutions of the characteristic equation (2.15),

which are of interest in this paper. Generalizations to the forced modified oscillators are ob-

vious; see Ref. [143]. More complicated cases may include special functions, like Bessel,

hypergeometric or elliptic functions [2], [49], [122], [158], [170], [197], and [213].

2.3 On A “Hidden” Symmetry of Quadratic Propagators

Here we shall elaborate on the symmetry of propagators with respect to the substitution x↔ y.

Lemma 1 Consider two time-dependent Schrödinger equations with quadratic Hamiltonians

i
∂ψ

∂ t
=−ak (t)

∂ 2ψ

∂x2
+bk (t)x

2
ψ− i

(
ck (t)x

∂ψ

∂x
+dk (t)ψ

)
(k = 1,2), (2.32)

where c1− 2d1 = c2− 2d2 = ε (t) and dk (0) = 0. Suppose that the initial value problems for

corresponding characteristic equations

µ
′′− τk (t)µ

′+4σ k (t)µ = 0, µ (0) = 0, µ
′ (0) = 2ak (0) 6= 0 (2.33)

with

τk (t) =
a′k
ak

−2ck+4dk, σ k (t) = akbk− ckdk+d2
k +

dk

2

(
a′k
ak

− d′k
dk

)
(2.34)

have a joint solution µ (t) and, in addition, the following relations hold

4
(
a1b1− c1d1+d2

1

)
=

4a1a2h2− (µ ′)2

µ2
−2ε

µ ′

µ
= 4

(
a2b2− c2d2+d2

2

)
, (2.35)
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where h(t) = exp

(
−
∫ t

0
ε (τ) dτ

)
. Then the corresponding fundamental solutions

ψk = Gk (x,y, t) =
1√

2πiµ (t)
ei(αk(t)x

2+β k(t)xy+γk(t)y
2) (2.36)

possess the following symmetry

α (t) = α1 (t) = γ2 (t) , γ (t) = γ1 (t) = α2 (t) , β (t) = β 1 (t) = β 2 (t) (2.37)

and

G1 (x,y, t) = G2 (y,x, t) . (2.38)

This property holds for a single Schrödinger equation under the single hypothesis (2.35).

Indeed, according to Ref. [49],

β (t) = β 1 (t) = β 2 (t) =−
h(t)

µ (t)
(2.39)

in the case of a joint solution µ (t) of two characteristic equations. In view of the structure of

propagators for general quadratic Hamiltonians found in [49], the symmetry under considera-

tion holds if we have

α =
1

4a1

µ ′

µ
− d1

2a1

,
dα

dt
+a2

h2

µ2
= 0 (2.40)

and

γ =
1

4a2

µ ′

µ
− d2

2a2

,
dγ

dt
+a1

h2

µ2
= 0, (2.41)

simultaneously. Excluding α from (2.40), one gets

µ
′′− a′1

a1

µ
′+2d1

(
a′1
a1

− d′1
d1

)
µ =

(µ ′)2−4a1a2h2

µ
. (2.42)

Comparison with the characteristic equation results in the first condition in (2.35). The case of

γ, which gives the second condition, is similar. This completes the proof.

A few examples are in order. When a = 1/2, b = c = d = 0, and µ ′′ = 0, µ = t, one

gets

G(x,y, t) =
1√
2πit

exp

(
i(x− y)2

2t

)
(2.43)

as the free particle propagator [81] with an obvious symmetry under consideration. Our criteria

(2.35), namely, 4a2 = (µ ′)2 , stands.
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The simple harmonic oscillator with a= b= 1/2, c= d = 0 and µ ′′+µ = 0, µ = sin t

has the familiar propagator of the form

G(x,y, t) =
1√

2πisin t
exp

(
i

2sin t

((
x2+ y2

)
cos t−2xy

))
, (2.44)

which is studied in detail at [14], [87], [99], [142], [145], [207]. (For an extension to the

case of the forced harmonic oscillator including an extra velocity-dependent term and a time-

dependent frequency, see [77], [78], [81] and [134].) Our condition (2.35) takes the form of the

trigonometric identity

4ab=
4a2− (µ ′)2

µ2
, (2.45)

which confirms the symmetry of the propagator.

For the quantum damped oscillator [50], a= b= ω0/2, c= d =−λ and

G(x,y, t) =

√
ωeλ t

2πiω0 sinωt
exp

(
iω

2ω0 sinωt

((
x2+ y2

)
cosωt−2xy

))
×exp

(
iλ

2ω0

(
x2− y2

))
(2.46)

with ω =
√

ω2
0−λ

2 > 0 and µ = (ω0/ω)e−λ t sinωt. The criterion

4ab=
4(ah)2− (µ ′)2

µ2
−2ε

µ ′

µ
, (2.47)

where ε = c− 2d = λ and h = e−λ t , holds. But here d (0) = −λ 6= 0 and a more detailed

analysis of asymptotics gives an extra antisymmetric term in the propagator above; see [50] for

more details.

The case of Hamiltonians (2.2) and (2.7) corresponds to

a1 = cos2 t, b1 = sin2 t, c1 = 2d1 = sin(2t) (2.48)

and

a2 = cosh2 t, b2 = sinh2 t, c2 = 2d2 =−sinh(2t) , (2.49)

respectively. Our criteria (2.35) are satisfied in view of an obvious identity

4a1a2 =
(
µ
′)2
. (2.50)
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The characteristic function is given by (2.24). This explains the propagator symmetry found in

the previous section.

Our last dual pair of quadratic Hamiltonians has the following coefficients

a1 = sin2 t, b1 = cos2 t, c1 = 2d1 =−sin(2t) (2.51)

and

a2 = sinh2 t, b2 = cosh2 t, c2 = 2d2 = sinh(2t) . (2.52)

The criteria (2.35) are satisfied in view of the identity (2.50) with the characteristic function

(2.29) and, therefore, the propagator (2.30) obeys the symmetry under the substitution x↔ y.

Remark 1 A simple relation

µ ′

µ
= 4

σ1−σ2

τ1− τ2

, (2.53)

which is valid for a joint solution of two characteristic equations, can be used in our criteria

(2.35).

Although we have formulated the hypotheses of our lemma for the Green functions

only, it can be applied to solutions with regular initial data. For instance, a pair of characteristic

equations (2.18) and (2.28) has a joint solution given by (2.19), which does not satisfy initial

conditions required for the Green functions. The coefficients of the corresponding quadratic

Hamiltonians are

a1 = cos2 t, b1 = sin2 t, c1 = 2d1 = sin(2t) (2.54)

and

a2 = sinh2 t, b2 = cosh2 t, c2 = 2d2 = sinh(2t) . (2.55)

The criteria (2.35) are satisfied in view of the identity (2.50) and the particular solution

ψ = K (x,y, t) =
1√

2π (cos t cosh t+ sin t sinh t)
(2.56)

×exp

((
x2+ y2

)
sin t cosh t−2xy−

(
x2− y2

)
cos t sinh t

2i(cos t cosh t+ sin t sinh t)

)
obeys the symmetry under the substitution x↔ y. The initial condition is the standing wave

K (x,y,0) = eixy/
√

2π.
17



In a similar fashion, the characteristic equations (2.27) and (2.21) have a common so-

lution

µ =−µ3 = cos t cosh t− sin t sinh t. (2.57)

The coefficients of the corresponding Hamiltonians are

a1 = sin2 t, b1 = cos2 t, c1 = 2d1 =−sin(2t) (2.58)

and

a2 = cosh2 t, b2 = sinh2 t, c2 = 2d2 =−sinh(2t) . (2.59)

The criteria (2.35) are satisfied once again and the particular solution is given by

ψ = K (x,y, t) =
1√

2π (cos t cosh t− sin t sinh t)
(2.60)

×exp

((
x2+ y2

)
sin t cosh t+2xy+

(
x2− y2

)
cos t sinh t

2i(cos t cosh t− sin t sinh t)

)

with K (x,y,0) = e−ixy/
√

2π. We shall discuss in section 6 how these solutions are related to

the corresponding time evolution operators.

2.4 Complex Form of The Propagators

It is worth noting that the propagator in (2.5) can be rewritten in terms of the Wronskians of

trigonometric and hypergeometric functions as

G(x,y, t) =
1√

2πiW (cos t,cosh t)
(2.61)

×exp

(
W (sin t,cosh t)x2+2xy−W (cos t,sinh t)y2

2iW (cos t,cosh t)

)
.

This simply means that our propagator has the following structure

G=

√
c2− c3

4πi
exp

(
c1x2+(c2− c3)xy− c4y2

2i

)
, (2.62)

where the coefficients are solutions of the system of linear equations

c1 cos t+ c2 cosh t = sin t, (2.63)

−c1 sin t+ c2 sinh t = cos t,

c3 cos t+ c4 cosh t = sinh t,

−c3 sin t+ c4 sinh t = cosh t
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obtained by Cramer’s rule. A complex form of this system is

c1z∗+ c2ζ = iz∗, c3z∗+ c4ζ = iζ
∗, (2.64)

where we introduce two complex variables

z= cos t+ isin t, ζ = cosh t+ isinh t (2.65)

and use the star for complex conjugate. Taking the complex conjugate of the system (2.64),

which has the real-valued solutions, and using Cramer’s rule once again, one gets

c1 =
zζ + z∗ζ ∗

i
(
zζ − z∗ζ ∗

) , c2 =
2i

zζ − z∗ζ ∗
, (2.66)

c3 =
2

i
(
zζ − z∗ζ ∗

) , c4 =−
zζ
∗+ z∗ζ

i
(
zζ − z∗ζ ∗

) .
As a result, we obtain a compact symmetric expression of the propagator (2.5) as a function of

two complex variables

G(x,y, t) = G(x,y,z,ζ ) =
1√

π
(
zζ − z∗ζ ∗

) (2.67)

×exp

((
zζ + z∗ζ ∗

)
x2−4xy+

(
zζ
∗+ z∗ζ

)
y2

2
(
z∗ζ ∗− zζ

) )
.

This function takes a familiar form

G=
1√

2πi(x1x4+ x2x3)
exp

((
x2− y2

)
x2x4+2xy−

(
x2+ y2

)
x1x3

2i(x1x4+ x2x3)

)
, (2.68)

in a real-valued four-dimensional vector space, if we set z = x1+ ix2 and ζ = x3+ ix4 with

x′1 =−x2, x′2 = x1, x′3 = x4, x′4 = x3, and solve the following initial value problem

x′′1+ x1 = 0, x1 (0) = 1, x′1 (0) = 0, (2.69)

x′′2+ x2 = 0, x2 (0) = 0, x′2 (0) = 1,

x′′3− x3 = 0, x3 (0) = 1, x′3 (0) = 0,

x′′4− x4 = 0, x4 (0) = 0, x′4 (0) = 1,

the solution of which can be interpreted as a trajectory of a classical “particle” moving in this

space; cf. (2.5).
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It is worth noting that our propagators expression (2.67), extended to a function of two

independent complex variables z and ζ , allows us to unify several exactly solvable quantum

mechanical models in geometrical terms, namely, by choosing different contours, with cer-

tain “synchronized” parametrization, in the pair of complex “time” planes under consideration.

Indeed, the free particle propagator (2.43) appears in this way when one chooses z = 1 and

ζ = 1+ it. The simple harmonic oscillator propagator (2.44) corresponds to the case z= 1 and

ζ = eit .As we have seen in this section, the propagator (2.5) is also a special case of (2.67). This

is why we may refer to the Hamiltonians under consideration as the ones of modified oscilla-

tors. By a vague analogy with the special theory of relativity, one may also say that in this case

there are two synchronized “clocks”, namely, the two contour parameterized by (2.65), one

in Euclidean and another one in the pseudo-Euclidean two dimensional spaces, respectively,

which geometrically describes a time evolution for the Hamiltonians of modified oscillators.

This idea of introducing a geometric structure of time in the problem under consideration may

be useful for other types of evolutionary equations.

In a similar fashion, our new propagator (2.30) can be rewritten in terms of the Wron-

skians as

G(x,y, t) =
1√

2πiW (sin t,sinh t)
(2.70)

×exp

(
W (cos t,sinh t)x2−2xy−W (sin t,cosh t)y2

2iW (sinh t,sin t)

)
.

The corresponding complex form is

G(x,y, t) = G(x,y,z,ζ ) =
1√

π
(
zζ
∗− z∗ζ

) (2.71)

×exp

((
zζ
∗+ z∗ζ

)
x2−4xy+

(
zζ + z∗ζ ∗

)
y2

2
(
z∗ζ − zζ

∗)
)
.

We leave the details to the reader.

2.5 The Inverse Operator and Time Reversal

We follow the method suggested in [194] for general quadratic Hamiltonians with somewhat

different details. The left inverse of the integral operator defined by (2.4)–(2.5), namely,

U (t)ψ (x) =
∫

∞

−∞

G(x,y, t) ψ (y) dy, (2.72)
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is

U−1 (t)χ (x) =
∫

∞

−∞

G(y,x,−t) χ (y) dy (2.73)

in view of U−1 =U†. Indeed, when s< t, by the Fubini theorem

U−1 (s)(U (t)ψ) = U−1 (s)χ =
∫

∞

−∞

G(z,x,−s) χ (z) dz (2.74)

=
∫

∞

−∞

G(z,x,−s)

(∫
∞

−∞

G(z,y, t) ψ (y) dy

)
dz

=
∫

∞

−∞

G(x,y,s, t) ψ (y) dy.

Here

G(x,y,s, t) =
∫

∞

−∞

G(z,x,−s)G(z,y, t) dz (2.75)

=
ei(γ(t)y2−γ(s)x2)

2π
√

µ (s)µ (t)

∫
∞

−∞

ei((α(t)−α(s))z2+(β (t)y−β (s)x)z) dz

=
1√

4πiµ (s)µ (t)(α (s)−α (t))

×exp

(
(β (t)y−β (s)x)2−4(α (t)−α (s))

(
γ (t)y2− γ (s)x2

)
4i(α (t)−α (s))

)

by the familiar Gaussian integral [19], [162] and [179]:

∫
∞

−∞

ei(az2+2bz) dz=

√
πi

a
e−ib2/a. (2.76)

In view of (2.13),

(β (t)y−β (s)x)2 =

(
x

µ (s)
− y

µ (t)

)2

=

(√
µ (t)

µ (s)
x−
√

µ (s)

µ (t)
y

)2

µ (s)µ (t)
, (2.77)

and a singular part of (2.75) becomes

1√
4πiµ (s)µ (t)(α (s)−α (t))

exp

(
(β (t)y−β (s)x)2

4i(α (t)−α (s))

)

=
1√

4πiµ (s)µ (t)(α (s)−α (t))
exp


(√

µ(t)
µ(s)x−

√
µ(s)
µ(t) y

)2

4iµ (s)µ (t)(α (t)−α (s))

 .
Thus, in the limit s→ t−, one can obtain formally the identity operator in the right hand side of

(2.74). The leave the details to the reader.
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On the other hand, the integral operator in (2.4)–(2.5), namely,

χ (x) =
1√

2πiµ (t)

∫
∞

−∞

ei(α(t)x2+β (t)xy+γ(t)y2) ψ (y) dy (2.78)

is essentially the Fourier transform and its inverse is given by

ψ (y) =
1√

−2πiµ (t)

∫
∞

−∞

e−i(α(t)x2+β (t)xy+γ(t)y2) χ (x) dx (2.79)

in correspondence with our definition (2.73) in view of (2.13).

The Schrödinger equation (2.1) retains the same form if we replace t in it by −t and,

at the same time, take complex conjugate provided that (H (−t)ϕ)∗ = H (t)ϕ∗. The last re-

lation holds for both Hamiltonians (2.2) and (2.7). Hence the function χ (x, t) = ψ∗ (x,−t)

does satisfy the same equation as the original wave function ψ (x, t) . This property is usually

known as the symmetry with respect to time inversion (time reversal) in quantum mechanics

[87], [121], [145], [216]. This fact is obvious from a general solution given by (2.4)–(2.5) for

our Hamiltonians.

On the other hand, by the definition, the (left) inverse U−1 (t) of the time evolution

operator U (t) returns the system to its initial quantum state:

ψ (x, t) =U (t)ψ (x,0) , (2.80)

U−1 (t)ψ (x, t) =U−1 (t)(U (t)ψ (x,0)) = ψ (x,0) . (2.81)

Our analysis of two oscillator models under consideration shows that this may be related to

the reversal of time in the following manner. The left inverse of the time evolution operator

(2.4) for the Schrödinger equation (2.1) with the original Hamiltonian of a modified oscillator

(2.2) can be obtained by the time inversion t →−t in the evolution operator corresponding to

the new “dual” Hamiltonian (2.7) (and vise versa). The same is true for the second pair of

dual Hamiltonians. More details will be given in section 6. This is an example of a situation

in mathematical physics and quantum mechanics when a change in the direction of time may

require a total change of the system dynamics in order to return the system back to its original

quantum state. Moreover, moving backward in time the system will repeat the same quantum

states only when

ψ (x, t− s) =U (t− s)ψ (x,0) =U−1 (s)U (t)ψ (x,0) , 0≤ s≤ t, (2.82)
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which is equivalent to the semi-group property

U (s)U (t− s) =U (t) (2.83)

for the time evolution operator. This seems not true for propagators (2.5) and (2.30).

2.6 The Momentum Representation

The time-dependent Schrödinger equation (2.8) can be rewritten in terms of the operator of

coordinate x and the operator of linear momentum px = i−1∂/∂x as follows

i
∂ψ

∂ t
=
(
a(t) p2

x+b(t)x2+d (t)(xpx+ pxx)
)

ψ (2.84)

with c= 2d. The corresponding quadratic Hamiltonian

H = a(t) p2
x+b(t)x2+d (t)(xpx+ pxx) (2.85)

obeys a special symmetry, namely, it formally preserves this structure under the permutation

x↔ px. This fact is well-known for the simple harmonic oscillator [87], [121], [145].

In order to interchange the coordinate and momentum operators in quantum mechanics

one switches between the coordinate and momentum representations by means of the Fourier

transform

ψ (x) =
1√
2π

∫
∞

−∞

eixy
χ (y) dy= F [χ] (2.86)

and its inverse

χ (y) =
1√
2π

∫
∞

−∞

e−ixy
ψ (x) dx= F−1 [ψ] . (2.87)

Indeed, the familiar properties

pxψ = pxF [χ] = F [yχ] , xψ = xF [χ] =−F [pyχ] (2.88)

imply

p2
xψ = F

[
y2

χ
]
, x2

ψ = F
[
p2

y χ
]

(2.89)

and

(xpx+ pxx)ψ =−F [(pyy+ ypy)χ] . (2.90)
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Therefore,

Hψ =
(
ap2

x+bx2+d (xpx+ pxx)
)

F [χ]

= F
[(

bp2
y+ay2−d (ypy+ pyy)

)
χ
]

by the linearity of the Fourier transform. In view of

∂ψ

∂ t
= F

[
∂ χ

∂ t

]
the Schrödinger equation (2.84) takes the form

i
∂ χ

∂ t
=
(
b(t) p2

y+a(t)y2−d (t)(ypy+ pyy)
)

χ (2.91)

with a↔ b and d→−d in the momentum representation.

This property finally reveals that our quadratic Hamiltonians (2.9) and (2.25), similarly

(2.10) and (2.26), corresponds to the same Schrödinger equation written in the coordinate and

momentum representations, respectively. Thus, in section 2, we have solved the Cauchy initial

value problem for modified oscillators both in the coordinate and momentum representations.

In this paper the creation and annihilation operators are defined by

a† =
px+ ix√

2
=

1

i
√

2

(
∂

∂x
− x

)
, (2.92)

a=
px− ix√

2
=

1

i
√

2

(
∂

∂x
+ x

)
(2.93)

with the familiar commutator
[
a,a†

]
= aa†−a†a= 1 [85]. One can see that

axψ = axF [χ] = F [iayχ] , (2.94)

a†
xψ = a†

xF [χ] = F
[
−ia†

y χ
]
,

or

ax→ iay, a†
x →−ia†

y (2.95)

under the Fourier transform. This observation will be important in the next section.
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Finally we summarize all results on solution of the Cauchy initial value problems for

the modified oscillator under consideration. We denote

U (t)ψ (x) =
∫

∞

−∞

GU (x,y, t) ψ (y) dy, (2.96)

K (t)ψ (x) =
∫

∞

−∞

KU (x,y, t) ψ (y) dy, (2.97)

V (t)ψ (x) =
∫

∞

−∞

GV (x,y, t) ψ (y) dy, (2.98)

L(t)ψ (x) =
∫

∞

−∞

KV (x,y, t) ψ (y) dy. (2.99)

The kernels of these integral operators are defined as follows. Here GU (x,y, t) and GV (x,y, t)

are the Green functions in (2.5) and (2.30), respectively. The kernels KU (x,y, t) and KV (x,y, t)

are given by (2.56) and (2.60), respectively. The following operator identities hold

U (t) = K (t)F−1 = FL(t) = FV (t)F−1, (2.100)

V (t) = L(t)F = F−1K (t) = F−1U (t)F, (2.101)

U−1 (t) = FK−1 (t) = L−1 (t)F−1 = FV−1 (t)F−1, (2.102)

V−1 (t) = F−1L−1 (t) = K−1 (t)F = F−1U−1 (t)F, (2.103)

K (t) = FL(t)F, L(t) = F−1K (t)F−1, (2.104)

K−1 (t) = F−1L−1 (t)F−1, L−1 (t) = FK−1 (t)F. (2.105)

Here F and F−1 are the operators of Fourier transform and its inverse, respectively, which relate

the wave functions in the coordinate and momentum representations

ψ = F [χ] , χ = F−1 [ψ]

at any given moment of time. The time evolution operators U (t) , V (t) and their inverses

U−1 (t) ,V−1 (t) obey the symmetry with respect to the time reversal, which has been discussed

in section 5.

Consider the particular solution (2.56). A more general solution of the Schrödinger

equation (2.8)–(2.9) can be obtained by the superposition principle in the form

ψ (x, t) =
∫

∞

−∞

KU (x,y, t) χ (y,0) dy, (2.106)

where χ is a suitable arbitrary function, independent of time, such that the integral converges

and one can interchange the differentiation and integration. In view of the continuity of the

25



kernel at t = 0, we get

ψ (x,0) =
1√
2π

∫
∞

−∞

eixy
χ (y,0) dy, (2.107)

which simply relates the initial data in the coordinate and momentum representations. Then

solution of the initial value problem is given by the inverse of the Fourier transform

χ (y,0) =
1√
2π

∫
∞

−∞

e−ixy
ψ (x,0) dx (2.108)

followed by the back substitution of this expression into (2.106). This implies the above factor-

ization U (t) = K (t)F−1 of the corresponding time evolution operator; see (2.100). The Green

function (2.5) can be derived as

GU (x,y, t) =
1√
2π

∫
∞

−∞

KU (x,z, t) e−iyz dz (2.109)

with the help of the integral (2.76). The second equation, U (t) = FL(t) , is related to following

integral

GU (x,y, t) =
1√
2π

∫
∞

−∞

eixz KV (z,y, t) dz. (2.110)

The meaning of the operator L(t) , is established in a similar fashion. One can see that the

relation V (t) = L(t)F in (2.101) follows from the elementary integral

GV (x,y, t) =
1√
2π

∫
∞

−∞

KV (x,z, t) eiyz dz (2.111)

and K (t) = FV (t) corresponds to

KU (x,y, t) =
1√
2π

∫
∞

−∞

eixz GV (z,y, t) dz. (2.112)

This proves (2.100)–(2.101). The inverses K−1 (t) and L−1 (t) are found, for instance, by the

inverse of Fourier transform similar to (2.78)–(2.79). They are not directly related to the reversal

of time.

2.7 The Case of n-Dimensions

In the case of Rn with an arbitrary number of dimensions, the Schrödinger equation for a modi-

fied oscillator (2.1) with the original Hamiltonian

H (t) =
1

2

n

∑
s=1

(
asa

†
s +a†

s as

)
+

1

2
e2it

n

∑
s=1

(as)
2+

1

2
e−2it

n

∑
s=1

(
a†

s

)2
, (2.113)
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considered by Meiler, Cordero-Soto, and Suslov [143], has the Green function of the form

Gt

(
x,x′
)
=

n

∏
s=1

Gt

(
xs,x

′
s

)
(2.114)

=

(
1

2πi(cos t sinh t+ sin t cosh t)

)n/2

×exp

((
x2− x′2

)
sin t sinh t+2x · x′−

(
x2+ x′2

)
cos t cosh t

2i(cos t sinh t+ sin t cosh t)

)
.

Solution of the Cauchy initial value problem can be written as

ψ (x, t) =
∫

Rn
Gt

(
x,x′
)

ψ
(
x′,0
)

dx′, (2.115)

where dv′ = dx′ = dx′1 · ... ·dx′n. The propagator expansion in the hyperspherical harmonics is

given by

Gt

(
x,x′
)
=∑

Kν

YKν (Ω) Y ∗Kν

(
Ω
′) G K

t

(
r,r′
)

(2.116)

with

G K
t

(
r,r′
)
=

e−iπ(2K+n)/4

2K+n/2−1Γ(K+n/2)

(rr′)K

(cos t sinh t+ sin t cosh t)K+n/2
(2.117)

×exp

i

(
r2+(r′)2

)
cos t cosh t−

(
r2− (r′)2

)
sin t sinh t

2(cos t sinh t+ sin t cosh t)


× 0F1

 −

K+n/2

; − (rr′)2

4(cos t sinh t+ sin t cosh t)2

 .
Here YKν (Ω) are the hyperspherical harmonics constructed by the given tree T in the graphical

approach of Vilenkin, Kuznetsov and Smorodinskiı̆ [157], the integer K corresponds to the

constant of separation of the variables at the root of T (denoted by K due to the tradition of the

method of K-harmonics in nuclear physics [188]) and ν = {l1, l2, ... , lp} is the set of all other

subscripts corresponding to the remaining vertexes of the binary tree T. These formulas imply

the familiar expansion of a plane wave in Rn in terms of the hyperspherical harmonics

eix·x′ = rr′
(

2π

rr′

)n/2

∑
Kν

iK Y ∗Kν (Ω) YKν

(
Ω
′) JK+n/2−1

(
rr′
)
, (2.118)

where

Jµ (z) =
(z/2)µ

Γ(µ+1)
0F1

 −

µ+1

; −z2

4

 (2.119)

27



is the Bessel function. See [143] and references therein for more details. It is worth noting

that the Green function (2.5) was originally found by Meiler, Cordero-Soto, and Suslov as the

special case n = 1 of the expansion (2.116)–(2.117). The dynamical SU (1,1) symmetry of

the harmonic oscillator wave functions, Bargmann’s functions for the discrete positive series

of the irreducible representations of this group, the Fourier integral of a weighted product of

the Meixner–Pollaczek polynomials, a Hankel-type integral transform and the hyperspherical

harmonics were utilized in order to derive the n-dimensional Green function.

Our results show that the “dual” Schrödinger equation (2.6) with a new Hamiltonian of

the form

H (τ) =
1

2

n

∑
s=1

(
asa

†
s +a†

s as

)
+

1

2
e−iarctan(2τ)

n

∑
s=1

(as)
2+

1

2
eiarctan(2τ)

n

∑
s=1

(
a†

s

)2
(2.120)

has the propagator that is almost identical to (2.114) but with x↔ x′. Indeed, in the case of

n-dimensions one has

H (τ) =
n

∑
s=1

Hs (τ) , (2.121)

where we denote

Hs (τ) =
1

2

(
asa

†
s +a†

s as

)
+

1

2
e−iarctan(2τ) (as)

2+
1

2
eiarctan(2τ)

(
a†

s

)2
. (2.122)

If one chooses

ψs = ψs (xs, t) = Gt

(
x′s,xs

)
(2.123)

=

(
1

2πi(cos t sinh t+ sin t cosh t)

)1/2

×exp

((
x′2s − x2

s

)
sin t sinh t+2x′sxs−

(
x′2s + x2

s

)
cos t cosh t

2i(cos t sinh t+ sin t cosh t)

)

with

i
∂ψs

∂τ
= Hs (τ)ψs, t =

1

2
sinh(2τ) (2.124)

and denotes

ψ =
n

∏
k=1

ψk =
n

∏
k=1

Gt

(
x′k,xk

)
= Gt

(
x′,x
)
, (2.125)

then

i
∂ψ

∂τ
=

n

∑
s=1

(
i
∂ψs

∂τ

)
∏
k 6=s

ψk (2.126)

28



and

H (τ)ψ =
n

∑
s=1

(Hs (τ)ψs)∏
k 6=s

ψk. (2.127)

As a result, (
i

∂

∂τ
−H (τ)

)
ψ =

n

∑
s=1

(
i
∂ψs

∂τ
−Hs (τ)ψs

)
∏
k 6=s

ψk ≡ 0, (2.128)

and Eq. (2.6) for the n-dimensional propagator is satisfied. For the initial data, formally,

lim
t→0+

Gt

(
x′,x
)
=

n

∏
k=1

lim
t→0+

Gt

(
x′k,xk

)
=

n

∏
k=1

δ
(
x′k− xk

)
= δ

(
x− x′

)
, (2.129)

where δ (x) is the Dirac delta function in Rn. Further details are left to the reader.

The n-dimensional version of the Hamiltonian corresponding to the coefficients (2.25)

is given by

H (t) =
1

2

n

∑
s=1

(
asa

†
s +a†

s as

)
− 1

2
e2it

n

∑
s=1

(as)
2− 1

2
e−2it

n

∑
s=1

(
a†

s

)2
(2.130)

with the propagator

Gt

(
x,x′
)
=

(
1

2πi(sin t cosh t− cos t sinh t)

)n/2

(2.131)

×exp

((
x2+ x′2

)
cos t cosh t−2x · x′+

(
x2− x′2

)
sin t sinh t

2i(cos t sinh t− sin t cosh t)

)
.

The dual counterpart of this Hamiltonian with respect to time reversal has the form

H (τ) =
1

2

n

∑
s=1

(
asa

†
s +a†

s as

)
− 1

2
e−iarctan(2τ)

n

∑
s=1

(as)
2− 1

2
eiarctan(2τ)

n

∑
s=1

(
a†

s

)2
(2.132)

and one has to interchange x↔ x′ in (2.131) in order to obtain the corresponding Green function.

It is worth noting that the Hamiltonians (2.113) and (2.130) (respectively, (2.120) and (2.132))

are transforming into each other under the substitution as → ias, a†
s →−ia†

s , which preserves

the commutation relations of the creation and annihilation operators. As we have seen in the

previous section this property is related to solving the problem in the coordinate and momentum

representations.

Combining all four cases together, one may summarize that two Hamiltonians,

H± (t) =
1

2

n

∑
s=1

(
asa

†
s +a†

s as

)
± 1

2
e2it

n

∑
s=1

(as)
2± 1

2
e−2it

n

∑
s=1

(
a†

s

)2
, (2.133)

and their duals with respect to the time reversal,

H± (τ) =
1

2

n

∑
s=1

(
asa

†
s +a†

s as

)
± 1

2
e−iarctan(2τ)

n

∑
s=1

(as)
2± 1

2
eiarctan(2τ)

n

∑
s=1

(
a†

s

)2
(2.134)
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with τ = 1
2

sinh(2t) , have the following Green functions:

G±t
(
x,x′
)
=

(
1

2πi(sin t cosh t± cos t sinh t)

)n/2

(2.135)

×exp

(
±
(
x2− x′2

)
sin t sinh t+2x · x′−

(
x2+ x′2

)
cos t cosh t

2i(sin t cosh t± cos t sinh t)

)
.

This expression is valid for two Hamiltonians (2.133), respectively. One has to interchange

x↔ x′ for the case of the dual Hamiltonians (2.134).

In a similar fashion, the n-dimensional form of the kernels (2.56) and (2.60) is

K±t
(
x,x′
)
=

(
1

2π (cos t cosh t± sin t sinh t)

)n/2

(2.136)

×exp

((
x2+ x′2

)
sin t cosh t∓2x · x′∓

(
x2− x′2

)
cos t sinh t

2i(cos t cosh t± sin t sinh t)

)
and

G±t
(
x,x′
)
=

1

(2π)n/2

∫
Rn

K±t
(
x,x′′

)
e∓ix′·x′′ dx′′ (2.137)

=
1

(2π)n/2

∫
Rn

e±ix·x′′ K∓t
(
x′′,x′

)
dx′′.

We denote

U± (t)ψ (x) =
∫

Rn
G±t
(
x,x′
)

ψ
(
x′
)

dx′, (2.138)

K± (t)ψ (x) =
∫

Rn
K±t
(
x,x′
)

ψ
(
x′
)

dx′,

and

F±ψ (x) =
1

(2π)n/2

∫
Rn

e±ix·x′
ψ
(
x′
)

dx′. (2.139)

The corresponding relations are

U± (t) = K± (t)F∓ = F±K∓ (t) = F±U∓ (t)F∓, (2.140)

U−1
± (t) = F±K−1

± (t) = K−1
∓ (t)F∓ = F±U−1

∓ (t)F∓.

We leave further details to the reader.

A certain time-dependent Schrödinger equation with variable coefficients was con-

sidered in [143] in a pure algebraic manner in connection with representations of the group

SU (1,1) in an abstract Hilbert space. Our Hamiltonians (2.133) and (2.134) belong to the same

class thus providing new explicit realizations of this model in addition to several cases already

discussed by Meiler, Cordero-Soto, and Suslov.
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2.8 Eigenfunction Expansions

The normalized wave functions of the n-dimensional harmonic oscillator

H0Ψ= EΨ, H0 =
1

2

n

∑
s=1

(
− ∂ 2

∂x2
s

+ x2
s

)
(2.141)

have the form

Ψ(x) =ΨNKν (r,Ω) = YKν (Ω) RNK (r) , (2.142)

where YKν (Ω) are the hyperspherical harmonics associated with a binary tree T, the integer

number K corresponds to the constant of separation of the variables at the root of T and ν =

{l1, l2, ... , lp} is the set of all other subscripts corresponding to the remaining vertexes of the

binary tree T ; see [157], [188], [212] for a graphical approach of Vilenkin, Kuznetsov and

Smorodinskiı̆ to the theory of spherical harmonics. The radial functions are given by

RNK (r) =

√
2 [(N−K)/2]!

Γ [(N+K+n)/2]
exp
(
−r2/2

)
rK L

K+n/2−1

(N−K)/2

(
r2
)
, (2.143)

where Lα
k (ξ ) are the Laguerre polynomials. The corresponding energy levels are

E = EN = N+n/2, (N−K)/2= k = 0,1,2, ... (2.144)

and we can use the SU (1,1)-notation for the wave function as follows

ψ jm{ν} (x) =ΨNKν (r,Ω) = YKν (Ω) RNK (r) , (2.145)

where the new quantum numbers are given by j = K/2+ n/4− 1 and m = N/2+ n/4 with

m = j+ 1, j+ 2, ... . The inequality m ≥ j+ 1 holds because of the quantization rule (2.144),

which gives N = K, K+2, K+4, ... . See [143], [157] and [188] for more details on the group

theoretical properties of the n-dimensional harmonic oscillator wave functions.

The Cauchy initial value problem for the Schrödinger equation (2.1) with the Hamil-

tonian of a modified oscillator (2.113) has also the eigenfunction expansion form of the solution

[143]:

ψ (x, t) = ∑
j{ν}

∞

∑
m= j+1

cm (t) ψ jm{ν} (x) (2.146)
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with the time dependent coefficients

cm (t) = e−2imt
∞

∑
m′= j+1

im
′−mv

j

m′m (2t)
∫

Rn
ψ
∗
jm′{ν}

(
x′
)

ψ
(
x′,0
)

dv′ (2.147)

given in terms of the Bargmann functions [11], [157] and [212]

v
j

mm′ (µ) =
(−1)m− j−1

Γ(2 j+2)

√
(m+ j)!(m′+ j)!

(m− j−1)!(m′− j−1)!

(
sinh

µ

2

)−2 j−2(
tanh

µ

2

)m+m′

× 2F1

 −m+ j+1, −m′+ j+1

2 j+2

; − 1

sinh2 (µ/2)

 . (2.148)

Choosing the initial data in (2.115) and (2.146)–(2.147) as ψ (x,0) = δ (x− x′) , we arrive at the

eigenfunction expansion for the Green function

Gt

(
x,x′
)
= ∑

j{ν}

∞

∑
m,m′= j+1

e−2imt im
′−m v

j

m′m (2t) ψ jm{ν} (x)ψ
∗
jm′{ν}

(
x′
)
, (2.149)

where by (2.131) the following symmetry property holds

Gt

(
x,x′
)
= G∗−t

(
x,x′
)
. (2.150)

In this paper we have found solution of the Cauchy initial value problem for the new

Hamiltonian (2.120) in an integral form

ψ (x, t) =
∫

Rn
Gt

(
x′,x
)

ψ
(
x′,0
)

dx′. (2.151)

In view of (2.149)–(2.150), the eigenfunction expansion of this solution is given by

ψ (x, t) = ∑
j{ν}

∞

∑
m= j+1

cm (t) ψ jm{ν} (x) , (2.152)

where

cm (t) =
∞

∑
m′= j+1

(−i)m−m′
e−2im′t

(
v

j

m′m (−2t)
)∗ ∫

Rn
ψ
∗
jm′{ν}

(
x′
)

ψ
(
x′,0
)

dv′. (2.153)

This expansion is in agreement with the unitary infinite matrix of the inverse operator in the

basis of the harmonic oscillator wave functions; see section 5.

The cases of the Hamiltonian (2.130) and its dual (2.132) can be investigated by taking

the Fourier transform of the expansions (2.146)–(2.147) and (2.152)–(2.153), respectively. The

corresponding transformations of the oscillator wave functions are

i±N
ΨNKν (x) =

1

(2π)n/2

∫
Rn

e±ix·x′
ΨNKν

(
x′
)

dx′. (2.154)
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This can be evaluated in hyperspherical coordinates with the help of expansion (2.118)–(2.119),

or by adding the SU (1,1)-momenta according to the tree T [157], [188] and using linearity of

the Fourier transform. One can use

eix·x′ = (2π)n/2 ∑
Kν

iK Y ∗Kν (Ω) YKν

(
Ω
′) S−1

(
r,r′
)

(2.155)

with

S−1

(
r,r′
)
=

(rr′)K

2K+n/2−1Γ(K+n/2)
0F1

 −

K+n/2
; −(rr′)2

4

 (2.156)

and

(−1)(N−K)/2
RNK (r) =

∫
∞

0
S−1

(
r,r′
)

RNK

(
r′
)(

r′
)n−1

dr′ (2.157)

as a special case of Eqs. (7.3) and (7.6) of Ref. [143] together with the orthogonality property

of hyperspherical harmonics. We leave further details to the reader.

2.9 Particular Solutions of The Nonlinear Schrödinger Equations

The method of solving the equation (2.8) is extended in [49] to the nonlinear Schrödinger equa-

tion of the form

i
∂ψ

∂ t
=−a(t)

∂ 2ψ

∂x2
+b(t)x2

ψ− i

(
c(t)x

∂ψ

∂x
+d (t)ψ

)
+h(t) |ψ|2s

ψ, s≥ 0. (2.158)

We elaborate first on two cases (2.9) and (2.10). A particular solution takes the form

ψ = ψ (x, t) = Kh (x,y, t) =
eiφ√
µ (t)

ei(α(t)x2+β (t)xy+γ(t)y2+κ(t)), φ = constant, (2.159)

where equations (2.12)–(2.14) hold and, in addition,

dκ

dt
=− h(t)

µs (t)
, κ (t) = κ (0)−

∫ t

0

h(τ)

µs (τ)
dτ, (2.160)

provided that the integral converges.

In the first case (2.9), by the superposition principle, the general solution of the charac-

teristic equation (2.18) has the form

µ = c1µ1 (t)+ c2µ2 (t) (2.161)

= cos t (c1 cosh t+ c2 sinh t)+ sin t (c1 sinh t+ c2 cosh t)

=
c1+ c2√

2
et sin

(
t+

π

4

)
+

c1− c2√
2

e−t cos
(

t+
π

4

)
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with µ ′ = 2cos t (c1 sinh t+ c2 cosh t) and

µ (0) = c1, µ
′ (0) = 2c2. (2.162)

Then

α (t) =
cos t (c1 sinh t+ c2 cosh t)− sin t (c1 cosh t+ c2 sinh t)

2(cos t (c1 cosh t+ c2 sinh t)+ sin t (c1 sinh t+ c2 cosh t))
, (2.163)

β (t) =
c1β (0)

cos t (c1 cosh t+ c2 sinh t)+ sin t (c1 sinh t+ c2 cosh t)
, (2.164)

and

γ (t) = γ (0)− c1β
2 (0)(cos t sinh t+ sin t cosh t)

2(cos t (c1 cosh t+ c2 sinh t)+ sin t (c1 sinh t+ c2 cosh t))
(2.165)

as a result of elementary but somewhat tedious calculations. The first two equations follow

directly from (2.12) and a constant multiple of the first equation (2.13), respectively. One

should use

dγ

dt
+a(t)β 2 = 0, (2.166)

see [49], integration by parts as in (2.14), and an elementary integral∫
dt

(c1 sinh t+ c2 cosh t)2
=

sinh t

c2 (c1 sinh t+ c2 cosh t)
+C (2.167)

in order to derive (2.165).

Two special cases are as follows. The original propagator (2.5) appears in the limit

c1 → 0 when β (0) = −(c1)
−1

and γ (0) = (2c1c2)
−1 . The solution with the standing wave

initial data ψ (x,0) = eixy found in [49] corresponds to c1 = 1 and c2 = 0.

Equation (2.160) can be explicitly integrated in some special cases, say, when h(t) =

λ µ ′ (t) :

κ (t) =


κ (0)− λ

1− s

(
µ1−s (t)−µ1−s (0)

)
, when s 6= 1,

κ (0)−λ ln

(
µ (t)

µ (0)

)
, when s= 1.

(2.168)

Here µ (0) 6= 0; cf. [49]. One may treat the general particular solution of the form (2.159)

with the coefficients (2.163)–(2.165) and (2.168) as an example of application of yet unknown

“nonlinear” superposition principle for the Schrödinger equation under consideration for two

particular solutions of a similar form with c1 6= 0, c2 = 0 and c1 = 0, c2 6= 0.
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It is worth noting that function (2.159) with the coefficients given by (2.161)–(2.168)

does also satisfy the following linear Schrödinger equation

i
∂ψ

∂ t
=−a(t)

∂ 2ψ

∂x2
+b(t)x2

ψ− i

(
c(t)x

∂ψ

∂x
+d (t)ψ

)
+

h(t)

µs (t)
ψ, s≥ 0. (2.169)

Then a more general solution of this equation can be obtained by the superposition principle as

follows

ψ (x, t) =
∫

∞

−∞

Kh (x,y, t) χ (y) dy, (2.170)

where χ is an arbitrary function such that the integral converges and one can interchange dif-

ferentiation and integration. Solution of the Cauchy initial value problem simply requires an

inversion of the integral

ψ (x,0) =
∫

∞

−∞

Kh (x,y,0) χ (y) dy (2.171)

that is

χ (y) =
c1β (0)

2π

∫
∞

−∞

K∗h (x,y,0) ψ (x,0) dx, (2.172)

say, by the inverse of the Fourier transform. Thus our equations (2.170) and (2.172) solve the

initial value problem for the above linear Schrödinger equation (2.169) as a double integral with

the help of the kernel Kh (x,y, t) that is regular at t = 0, when µ (0) = c1 6= 0.

On the other hand,

Kh (x,y, t) =
∫

∞

−∞

Gh (x,z, t) Kh (z,y,0) dz, (2.173)

where Gh (x,y, t) is the Green function, which can be obtain from our solution (2.159) in the

limit c1 → 0 with a proper normalization as in the propagator (2.5). Therefore, substitution

of (2.172) into (2.171) gives the traditional single integral form of the solution in terms of the

Green function

ψ (x, t) =
∫

∞

−∞

Gh (x,y, t) ψ (y,0) dy (2.174)

by (2.173).

35



The case of the new Hamiltonian, corresponding to (2.10), is similar. The general

solution of characteristic equation (2.21) is given by

µ = c2µ2 (t)+ c3µ3 (t) (2.175)

= cos t (c2 sinh t− c3 cosh t)+ sin t (c2 cosh t+ c3 sinh t)

=
1√
2

et
(

c2 sin
(

t+
π

4

)
− c3 cos

(
t+

π

4

))
− 1√

2
e−t
(

c2 cos
(

t+
π

4

)
+ c3 sin

(
t+

π

4

))
and µ ′ = 2cosh t (c2 cos t+ c3 sin t) with µ (0) = −c3, µ ′ (0) = 2c2. The first three coefficients

of the quadratic form in the solution (2.159) are

α (t) =
cos t (c2 cosh t− c3 sinh t)+ sin t (c2 sinh t+ c3 cosh t)

2(cos t (c2 sinh t− c3 cosh t)+ sin t (c2 cosh t+ c3 sinh t))
, (2.176)

β (t) =
−c3β (0)

cos t (c2 sinh t− c3 cosh t)+ sin t (c2 cosh t+ c3 sinh t)
, (2.177)

γ (t) = γ (0)+
c3β

2 (0)(cos t sinh t+ sin t cosh t)

2(cos t (c2 sinh t− c3 cosh t)+ sin t (c2 cosh t+ c3 sinh t))
(2.178)

and one can use formula (2.168) for the last coefficient. The corresponding elementary integral

is ∫
dt

(Acos t+Bsin t)2
=

sin t

A(Acos t+Bsin t)
+C. (2.179)

The cases (2.25) and (2.26) can be considered in a similar fashion. The results are

µ = c3µ3 (t)+ c4µ4 (t) (2.180)

= sin t (c3 sinh t+ c4 cosh t)− cos t (c3 cosh t+ c4 sinh t) ,

α (t) =
sin t (c3 cosh t+ c4 sinh t)+ cos t (c3 sinh t+ c4 cosh t)

2(sin t (c3 sinh t+ c4 cosh t)− cos t (c3 cosh t+ c4 sinh t))
, (2.181)

β (t) =
−c3β (0)

sin t (c3 sinh t+ c4 cosh t)− cos t (c3 cosh t+ c4 sinh t)
, (2.182)

γ (t) = γ (0)+
c3β

2 (0)(sin t cosh t− cos t sinh t)

2(sin t (c3 sinh t+ c4 cosh t)− cos t (c3 cosh t+ c4 sinh t))
(2.183)

and

µ = c1µ1 (t)+ c4µ4 (t) (2.184)

= cos t (c1 cosh t− c4 sinh t)+ sin t (c1 sinh t+ c4 cosh t) ,
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α (t) = − sinh t (c1 cos t+ c4 sin t)+ cosh t (c1 sin t− c4 cos t)

2(sinh t (c1 sin t− c4 cos t)+ cosh t (c1 cos t+ c4 sin t))
, (2.185)

β (t) =
c1β (0)

sinh t (c1 sin t− c4 cos t)+ cosh t (c1 cos t+ c4 sin t)
, (2.186)

γ (t) = γ (0)+
c1β

2 (0)(cos t sinh t− sin t cosh t)

2(sinh t (c1 sin t− c4 cos t)+ cosh t (c1 cos t+ c4 sin t))
, (2.187)

respectively. One can use once again formula (2.168) for the last coefficient. We leave further

details to the reader.

2.10 A Note on The Ill-Posedness of The Schrödinger Equations

The same method shows that the joint solution of the both linear and nonlinear Schrödinger

equations (2.169) and (2.158), respectively, corresponding to the initial data

ψ|t=0 = δ ε (x− y) =
1√

2πiε
exp

(
i(x− y)2

2ε

)
, ε > 0, (2.188)

has the form

ψ = Gε (x,y, t) =
1√

iµε (t)
ei(αε (t)x

2+β ε (t)xy+γε (t)y
2+κε (t)) (2.189)

with the characteristic function µε (t) = 2π (εµ1 (t)+µ2 (t)) . The coefficients of the quadratic

form are given by

αε (t) =
cos t (ε sinh t+ cosh t)− sin t (ε cosh t+ sinh t)

2(cos t (ε cosh t+ sinh t)+ sin t (ε sinh t+ cosh t))
, (2.190)

β ε (t) = − 1

cos t (ε cosh t+ sinh t)+ sin t (ε sinh t+ cosh t)
, (2.191)

γε (t) =
cos t cosh t+ sin t sinh t

2(cos t (ε cosh t+ sinh t)+ sin t (ε sinh t+ cosh t))
. (2.192)

We simply choose c1 = 2πε > 0, c2 = 2π and eiϕ = 1/
√

i and the initial data α (0) = γ (0) =

−β (0)/2 = 1/(2ε) in a general solution (2.163)–(2.165). The case ε = 0, t > 0 corresponds

to the original propagator (2.5), while ε > 0, t = 0 gives the delta sequence (2.188).

If h= hε (t) = (λ/2π)µ ′ε = 2λ cos t (ε sinh t+ cosh t) , then

κε (t) =


− λ

(2π)s
(εµ1 (t)+µ2 (t))

1−s− ε1−s

1− s
, when 0≤ s< 1,

− λ

2π
ln

(
µ1 (t)+

µ2 (t)

ε

)
, when s= 1

(2.193)

with κε (0) = 0 provided ε > 0.
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In this example, the initial data ψ|t=0 = Gε (x,y,0) = δ ε (x− y) converge to the Dirac

delta function δ (x− y) as ε → 0+ in the distributional sense [34], [187], [203], [210]

lim
ε→0+

∫
∞

−∞

Gε (x,y,0) ϕ (y) dy= ϕ (x) . (2.194)

On the other hand,

lim
ε→0+

∫
∞

−∞

Gε (x,y, t) ϕ (y) dy (2.195)

= ei lim
ε→0+ κε (t)

∫
∞

−∞

G0 (x,y, t) ϕ (y) dy

with t > 0. When s = 1 the solution ψ = Gε (x,y, t) , t > 0 does not have a limit because of

divergence of the logarithmic phase factor κε (t) as ε → 0+. See also Refs. [10] and [109] on

the ill-posedness of some canonical dispersive equations.

The second case, corresponding to (2.10), is similar. One can choose µε (t)= 2π (µ2 (t)− εµ3 (t))

and obtain

αε (t) =
cos t (cosh t+ ε sinh t)+ sin t (sinh t− ε cosh t)

2(cos t (sinh t+ ε cosh t)+ sin t (cosh t− ε sinh t))
, (2.196)

β ε (t) = − 1

cos t (sinh t+ ε cosh t)+ sin t (cosh t− ε sinh t)
, (2.197)

γε (t) =
cos t cosh t− sin t sinh t

2(cos t (sinh t+ ε cosh t)+ sin t (cosh t− ε sinh t))
. (2.198)

If hε (t) = (λ/2π)µ ′ε = 2λ cosh t (cos t− ε sin t) , then

κε (t) =


− λ

(2π)s
(µ2 (t)− εµ3 (t))

1−s− ε1−s

1− s
, when 0≤ s< 1,

− λ

2π
ln

(
µ2 (t)

ε
−µ3 (t)

)
, when s= 1

(2.199)

and κε (0) = 0 when ε > 0. Formulas (2.189) and (2.196)–(2.199) describe actual (nonlinear)

evolution for initial data as in (2.188). One can observe once again a discontinuity with respect

to these initial data as ε → 0+.

The cases (2.25) and (2.26) are as follows. One gets µε (t) = 2π (µ4 (t)− εµ3 (t)) ,

αε (t) =
sin t (sinh t− ε cosh t)+ cos t (cosh t− ε sinh t)

2(sin t (cosh t− ε sinh t)− cos t (sinh t− ε cosh t))
, (2.200)

β ε (t) = − 1

sin t (cosh t− ε sinh t)− cos t (sinh t− ε cosh t)
, (2.201)

γε (t) =
cos t cosh t− sin t sinh t

2(sin t (cosh t− ε sinh t)− cos t (sinh t− ε cosh t))
(2.202)
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and hε (t) = (λ/2π)µ ′ε = 2λ sin t (sinh t− ε cosh t) ,

κε (t) =


− λ

(2π)s
(µ4 (t)− εµ3 (t))

1−s− ε1−s

1− s
, when 0≤ s< 1,

− λ

2π
ln

(
µ4 (t)

ε
−µ3 (t)

)
, when s= 1

(2.203)

with κε (0) = 0, ε > 0 in the case (2.25). Also µε (t) = 2π (µ4 (t)+ εµ1 (t)) ,

αε (t) =
sinh t (sin t+ ε cos t)− cosh t (cos t− ε sin t)

2(sinh t (cos t− ε sin t)− cosh t (sin t+ ε cos t))
, (2.204)

β ε (t) =
1

sinh t (cos t− ε sin t)− cosh t (sin t+ ε cos t)
, (2.205)

γε (t) = − cos t cosh t+ sin t sinh t

2(sinh t (cos t− ε sin t)− cosh t (sin t+ ε cos t))
(2.206)

and hε (t) = (λ/2π)µ ′ε = 2λ sinh t (sin t+ ε cos t) ,

κε (t) =


− λ

(2π)s
(µ4 (t)+ εµ1 (t))

1−s− ε1−s

1− s
, when 0≤ s< 1,

− λ

2π
ln

(
µ4 (t)

ε
+µ1 (t)

)
, when s= 1

(2.207)

with κε (0) = 0, ε > 0 in the case (2.26). We leave the details to the reader.
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2.11 Appendix A. Fundamental Solutions of The Characteristic Equations

We denote

u1 = cos t, u2 = sin t, v1 = cosh t, v2 = sinh t (2.208)

such that u′1 = −u2, u′2 = u1, v′1 = v2, v′2 = v1 and study differential equations satisfied by the

following set of the Wronskians of trigonometric and hyperbolic functions

{
W
(
uα ,vβ

)}
α,β=1,2

= {W (u1,v1) , W (u1,v2) , W (u2,v1) , W (u2,v2)} . (2.209)

Let us take, for example,

y=W (u1,v1) = u1v2+u2v1. (2.210)

Then

y′ = 2u1v1, y′′ = 2u1v2−2u2v1 (2.211)

and

y′′− τy′+4σy= (4σ +2)u1v2+(4σ −2)u2v1−2τu1v1 = 0. (2.212)

The last equation is satisfied when σ = 1/2, τ = 2v2/v1 and σ =−1/2, τ =−2u2/u1.All other

cases are similar and the results are presented in Table 1.

Our calculations reveal the following identities

W ′′ (u1,v1) =−2W (u2,v2) , W ′′ (u1,v2) =−2W (u2,v1) , (2.213)

W ′′ (u2,v1) = 2W (u1,v2) , W ′′ (u2,v2) = 2W (u1,v1) ,

for the Wronskians under consideration. This implies that the set of Wronskians (2.209) pro-

vides the fundamental solutions of the fourth order differential equation

W (4)+4W = 0 (2.214)

with constant coefficients. The corresponding characteristic equation, λ
4+ 4 = 0, has four

roots, λ 1 = 1+ i, λ 2 = 1− i, λ 3 = −1+ i, λ 4 = −1− i, and the fundamental solution set is

given by {
uαvβ

}
α,β=1,2

= {u1v1, u1v2, u2v1, u2v2} . (2.215)
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These solutions of the bi-harmonic equation (2.214) are even or odd functions of time. They do

not satisfy our second order characteristic equations. For example, let w1 = u1v2 = cos t sinh t

and w1 = u2v1 = sin t cosh t. Then, by a direct calculation,

L(w1) = w′′1+2tan t w′1−2w1 =−2
sinh t

cos t
, (2.216)

L(w2) = w′′2+2tan t w′2−2w2 = 2
sinh t

cos t
.

Thus, separately, these solutions of (2.214) satisfy nonhomogeneous characteristic equations.

But together,

L(y1) = L(w1+w2) = L(w1)+L(w2) =−2
sinh t

cos t
+2

sinh t

cos t
= 0. (2.217)

A similar property holds for all other solutions of the characteristic equations from Table 1.
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Characteristic equation y′′− τy′+4σy= 0 Fundamental solution set {yi,yk}i<k

u′′+u= 0

(σ = 1/4, τ = 0)
u1 = cos t, u2 = sin t

(u′1 =−u2, u′2 = u1)

v′′− v= 0

(σ =−1/4, τ = 0)
v1 = cosh t, v2 = sinh t

(v′1 = v2, v′2 = v1)

y′′+2tan t y′−2y= 0

(σ =−1/2, τ =−2u2/u1)
y1 =W (u1,v1) = u1v2+u2v1

y2 =W (u1,v2) = u1v1+u2v2

y′′−2cot t y′−2y= 0

(σ =−1/2, τ = 2u2/u1)
y3 =W (u2,v2) = u2v1−u1v2

y4 =W (u2,v1) = u2v2−u1v1

y′′−2tanh t y′+2y= 0

(σ = 1/2, τ = 2v2/v1)
y1 =W (u1,v1) = u1v2+u2v1

y4 =W (u2,v1) = u2v2−u1v1

y′′−2coth t y′+2y= 0

(σ = 1/2, τ = 2v1/v2)
y2 =W (u1,v2) = u1v1+u2v2

y3 =W (u2,v2) = u2v1−u1v2

Table 2.1: Fundamental solutions of the characteristic equations.

Linear operators u1v1 u1v2 u2v1 u2v2

d

dt
u1v2−u2v1 u1v1−u2v2 u1v1+u2v2 u1v2+u2v1

d2

dt2
−2u2v2 −2u2v1 2u1v2 2u1v1

L1 −2
v1

u1

−2
v2

u1

2
v2

u1

2
v1

u1

L2 −2
v2

u2

−2
v1

u2

−2
v1

u2

−2
v2

u2

L3 2
u1

v1

−2
u2

v1

2
u2

v1

2
u1

v1

L4 2
u2

v2

−2
u1

v2

−2
u1

v2

−2
u2

v2

Table 2.2: Construction of the fundamental solutions.

In order to obtain the fundamental solutions in an algebraic manner, we denote

L1 =
d2

dt2
+2

u2

u1

d

dt
−2, L2 =

d2

dt2
−2

u1

u2

d

dt
−2, (2.218)

L3 =
d2

dt2
−2

v2

v1

d

dt
+2, L4 =

d2

dt2
−2

v1

v2

d

dt
+2

and compute the actions of these second order linear differential operators Lk on the four basis

vectors
{

uαvβ

}
α,β=1,2

, namely, Lk

(
uαvβ

)
. The results are presented in Table 2.
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Therefore

L1 (u1v1+u2v2) = L1 (u1v2+u2v1) (2.219)

= L2 (u2v2−u1v1) = L2 (u2v1−u1v2)

= L3 (u1v2+u2v1) = L3 (u2v2−u1v1)

= L4 (u1v1+u2v2) = L4 (u2v1−u1v2) = 0

as has been stated in Table 1.

All our characteristic equations in this paper obey certain periodicity properties. For

instance, equations

y′′+2tan t y′−2y= 0 (2.220)

and

y′′−2cot t y′−2y= 0 (2.221)

are invariant under the shifts t→ t±π and interchange one into another when t→ t±π/2. Since

only two solutions of a linear second order differential equation may be linearly independent,

the corresponding fundamental solutions satisfy the following relations y1 (t±π)

y2 (t±π)

=−
 coshπ ±sinhπ

±sinhπ coshπ


 y1 (t)

y2 (t)

 (2.222)

and  y1 (t±π/2)

y2 (t±π/2)

=−
 sinh(π/2) ±cosh(π/2)

±cosh(π/2) sinh(π/2)


 y3 (t)

y4 (t)

 , (2.223)

respectively. Two other characteristic equations have pure imaginary periods. We leave the

details to the reader.

2.12 Appendix B. On A Transformation of The Quantum Hamiltonians

Our definition of the creation and annihilation operators given by (2.3) implies the following

operator identities

x2 =
1

2

(
aa†+a†a

)
− 1

2

(
a2+

(
a†
)2
)
, (2.224)

∂ 2

∂x2
=−1

2

(
aa†+a†a

)
− 1

2

(
a2+

(
a†
)2
)
, (2.225)
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2x
∂

∂x
+1=−a2+

(
a†
)2

(2.226)

(and vise versa), which allows us to transform the time-dependent Schrödinger equation (2.8)

into a Hamiltonian form (2.1), where the Hamiltonian is written in terms of the creation and

annihilation operators as follows

H =
1

2
(a(t)+b(t))

(
aa†+a†a

)
(2.227)

+
1

2
(a(t)−b(t)+2id(t))a2+

1

2
(a(t)−b(t)−2id(t))

(
a†
)2
,

when c= 2d. This helps to transform the Hamiltonians of modified oscillators under consider-

ation into different equivalent forms, which are used in the paper.

The trigonometric cases (2.9) and (2.25) results in the Hamiltonians (2.2) and (2.130)

with n= 1, respectively. In the first hyperbolic case (2.10) one gets

H =
1

2
cosh(2t)

(
aa†+a†a

)
+

1

2
(1− isinh(2t))a2+

1

2
(1+ isinh(2t))

(
a†
)2
, (2.228)

where

1± isinh(2t) = cosh(2t)e±iarctan(2τ), τ =
1

2
sinh(2t) , (2.229)

which implies the Schrödinger equation (2.6)–(2.7). The second hyperbolic case (2.26) is sim-

ilar. We leave the details to the reader.

2.13 Appendix C. On A Hamiltonian Structure of The Characteristic Equations

The Hamilton equations of classical mechanics [120],

.
q=

∂H

∂ p
,

.
p=−∂H

∂q
, (2.230)

with a general quadratic Hamiltonian

H = a(t) p2+b(t)q2+2d (t) pq (2.231)

are

.
q= 2ap+2dq,

.
p=−2bq−2d p. (2.232)

We denote, as is customary, differentiation with respect to time by placing a dot above the

canonical variables p and q. Elimination of the generalized momentum p from this system
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results in the second order equation with respect to the generalized coordinate

..
q−

.
a

a

.
q+4

(
ab−d2+

d

2

(
.
a

a
−

.
d

d

))
q= 0. (2.233)

It coincides with the characteristic equation (2.15)–(2.16) with c= 2d. Our choice of the coef-

ficients (2.9)–(2.10) and (2.25)–(2.26) in the classical Hamiltonian (2.231) corresponds to the

following models of modified classical oscillators

..
q+2tan t

.
q−2q = 0, (2.234)

..
q−2tanh t

.
q+2q = 0, (2.235)

..
q−2cot t

.
q−2q = 0, (2.236)

..
q−2coth t

.
q+2q = 0, (2.237)

respectively; see Appendix A for their fundamental solutions.

The standard quantization of the classical integrable systems under consideration, namely,

q→ x, p→ i−1 ∂

∂x
, [x, p] = xp− px= i (2.238)

and

H→ ap2+bx2+d (px+ xp) , i
∂ψ

∂ t
= Hψ, (2.239)

leads to the quantum exactly solvable models of modified oscillators discussed in this paper.

Another example is a damped oscillator with the variable coefficients a= (ω0/2)e
−2λ t ,

b= (ω0/2)e2λ t and c= d = 0 [50]. The classical equation

..
q+2λ

.
q+ω

2
0 q= 0 (2.240)

describes damped oscillations [120]. The corresponding quantum propagator has the form

(2.11) with

µ =
ω0

ω
e−λ t sinωt, ω

2 = ω
2
0−λ

2 > 0 (2.241)

and

α (t) =
ω cosωt−λ sinωt

2ω0 sinωt
e2λ t , (2.242)

β (t) = − ω

ω0 sinωt
eλ t , (2.243)

γ (t) =
ω cosωt+λ sinωt

2ω0 sinωt
. (2.244)
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The Schrödinger equation

i
∂ψ

∂ t
=

ω0

2

(
−e−2λ t ∂ 2ψ

∂x2
+ e2λ tx2

ψ

)
(2.245)

describes the linear oscillator with a variable unit of length x→ xeλ t . See [50] for more details.
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Chapter 3

MODELS OF DAMPED OSCILLATORS IN QUANTUM MECHANICS

citation: R. Cordero-Soto, Erwin Suazo and S. K. Suslov, Journal of Physical Mathematics, 1

(2009), S090603.

3.1 An Introduction

We continue an investigation of the one-dimensional Schrödinger equations with variable quadratic

Hamiltonians of the form

i
∂ψ

∂ t
=−a(t)

∂ 2ψ

∂x2
+b(t)x2

ψ− i

(
c(t)x

∂ψ

∂x
+d (t)ψ

)
, (3.1)

where a(t) , b(t) , c(t) , and d (t) are real-valued functions of time t only; see Refs. [49], [52],

[122], [134], [143], [194], [195], and [196] for a general approach and currently known explicit

solutions. Here we discuss elementary cases related to the models of damped oscillators. The

corresponding Green functions, or Feynman’s propagators, can be found as follows [49], [195]:

ψ = G(x,y, t) =
1√

2πiµ (t)
ei(α(t)x2+β (t)xy+γ(t)y2), (3.2)

where

α (t) =
1

4a(t)

µ ′ (t)

µ (t)
− d (t)

2a(t)
, (3.3)

β (t) =− h(t)

µ (t)
, h(t) = exp

(
−
∫ t

0
(c(τ)−2d (τ)) dτ

)
, (3.4)

γ (t) =
a(t)h2 (t)

µ (t)µ ′ (t)
+

d (0)

2a(0)
−4

∫ t

0

a(τ)σ (τ)h2 (τ)

(µ ′ (τ))2
dτ, (3.5)

and the function µ (t) satisfies the characteristic equation

µ
′′− τ (t)µ

′+4σ (t)µ = 0 (3.6)

with

τ (t) =
a′

a
−2c+4d, σ (t) = ab− cd+d2+

d

2

(
a′

a
− d′

d

)
(3.7)

subject to the initial data

µ (0) = 0, µ
′ (0) = 2a(0) 6= 0. (3.8)
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More details can be found in Refs. [49] and [195]. The corresponding Hamiltonian structure is

discussed in Ref. [52].

The simple harmonic oscillator is of interest in many advanced quantum problems [81],

[121], [145], and [183]. The forced harmonic oscillator was originally considered by Richard

Feynman in his path integrals approach to the nonrelativistic quantum mechanics [77], [78],

[79], [80], and [81]; see also [134]. Its special and limiting cases were discussed by many

authors; see Refs. [14], [87], [99], [142], [145], [207] for the simple harmonic oscillator and

Refs. [4], [21], [98], [154], [173] for the particle in a constant external field and references

therein.

The damped oscillations have been analyzed to a great extent in classical mechanics;

see, for example, Refs. [13] and [120]. In the present paper we consider the time-dependent

Schrödinger equation

i
∂ψ

∂ t
= Hψ (3.9)

with the following nonself-adjoint Hamiltonians

H = H1 =
ω0

2

(
p2+ x2

)
−λ px (3.10)

and

H = H2 =
ω0

2

(
p2+ x2

)
−λxp, (3.11)

where p=−i∂/∂x, as quantum analogs of the damped oscillator. A related self-adjoint Hamil-

tonian

H = H0 =
ω0

2

(
p2+ x2

)
− λ

2
(px+ xp) (3.12)

is also analyzed. Although discussion of a quantum damped oscillator is usually missing in the

standard classical textbooks [121], [145], and [183] among others, we believe that the models

presented here have a significant value from the pedagogical and mathematical points of view.

For instance, one of these models was crucial for our understanding of a “hidden” symmetry

of the quadratic propagators in Ref. [52]. Moreover, our models show that fundamentals of

quantum mechanics, such as evolution of the expectation values of operators and Ehrenfest’s

theorem, can be extended to the case of nonself-adjoint Hamiltonians. This provides, in our

48



opinion, a somewhat better understanding of the mathematical foundations of quantum me-

chanics and can be used in the classroom.

The paper is organized as follows. In section 2 we derive the propagators for the models

of the damped oscillator (3.10) and (3.11) following the method of Ref. [49]. The correspond-

ing gauge transformations are discussed in section 3. The next section is concerned with the

separation of the variables for related model of a “shifted” linear harmonic oscillator (3.12).

The factorization technique is applied to this oscillator in section 5. The time evolution of the

expectation values of the energy related operators is determined for these quantum damped os-

cillators in section 6. The classical equations for the damped oscillations are derived for the

expectation values of the position operator in the next section. One more model of the damped

oscillator with a variable quadratic Hamiltonian is introduced in section 8. The last section

contains some remarks on the momentum representation.

3.2 The First Two Models

For the time-dependent Schrödinger equation:

i
∂ψ

∂ t
=

ω0

2

(
−∂ 2ψ

∂x2
+ x2

ψ

)
+ iλ

(
x

∂ψ

∂x
+ψ

)
(3.13)

with a = b = ω0/2 and c = d = −λ , the characteristic equation (3.6) takes the form of the

classical equation of motion for the damped oscillator [13], [120]:

µ
′′+2λ µ

′+ω
2
0µ = 0, (3.14)

whose suitable solution is as follows

µ =
ω0

ω
e−λ t sinωt, ω =

√
ω2

0−λ
2 > 0. (3.15)

The corresponding propagator is given by

G(x,y, t) =

√
ωeλ t

2πiω0 sinωt
exp

(
iω

2ω0 sinωt

((
x2+ y2

)
cosωt−2xy

))
×exp

(
iλ

2ω0

(
x2− y2

))
. (3.16)

Indeed, directly from (3.3)–(3.4):

α (t) =
ω cosωt+λ sinωt

2ω0 sinωt
, β (t) =− ω

ω0 sinωt
. (3.17)
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The integral in (3.5) can be evaluated with the help of a familiar antiderivative∫
dt

(Acos t+Bsin t)2
=

sin t

A(Acos t+Bsin t)
+C. (3.18)

It gives

γ (t) =
ω cosωt−λ sinωt

2ω0 sinωt
(3.19)

with the help of the following identity

ω
2−ω

2
0 sin2

ωt = ω
2 cos2

ωt−λ
2

sin2
ωt (3.20)

and the propagator (3.16) is verified. A “hidden” symmetry of this propagator is discussed in

Ref. [52].

The time-evolution of the squared norm of the wave function is given by

‖ψ (x, t)‖2 =
∫

∞

−∞

|ψ (x, t)|2 dx= eλ t ‖ψ (x,0)‖2 . (3.21)

It is derived in section 6 among other things. We have discussed here the case ω2
0 > λ

2. Two

more cases, when ω2
0 = λ

2
and ω2

0 < λ
2, are similar and the details are left to the reader.

In a similar fashion, the time-dependent Schrödinger equation of the form

i
∂ψ

∂ t
=

ω0

2

(
−∂ 2ψ

∂x2
+ x2

ψ

)
+ iλx

∂ψ

∂x
(3.22)

with a= b= ω0/2 and c=−λ , d = 0, has the characteristic equation

µ
′′−2λ µ

′+ω
2
0µ = 0 (3.23)

with the solution

µ =
ω0

ω
eλ t sinωt, ω =

√
ω2

0−λ
2 > 0. (3.24)

The corresponding propagator is given by

G(x,y, t) =

√
ωe−λ t

2πiω0 sinωt
exp

(
iω

2ω0 sinωt

((
x2+ y2

)
cosωt−2xy

))
×exp

(
iλ

2ω0

(
x2− y2

))
(3.25)

and the evolution of the squared norm is as follows

‖ψ (x, t)‖2 = e−λ t ‖ψ (x,0)‖2 . (3.26)
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The solution of the Cauchy initial value problem

i
∂ψ

∂ t
= Hψ, ψ (x,0) = χ (x) (3.27)

for our models (3.13) and (3.22) is given by the superposition principle in an integral form

ψ (x, t) =
∫

∞

−∞

G(x,y, t) χ (y) dy (3.28)

for a suitable initial function χ on R; a rigorous proof is given in Ref. [195].

3.3 The Gauge Transformations

The time-dependent Schrödinger equation

i
∂ψ

∂ t
=
(

ω0

2
(p−A)2+U+(p−A)V +W (p−A)

)
ψ, (3.29)

where p= i−1∂/∂x is the linear momentum operator and A=A(x, t) ,U =U (x, t) ,V =V (x, t) ,

W =W (x, t) are real-valued functions, with the help of the gauge transformation

ψ = e−i f (x,t)
ψ̃ (3.30)

can be transformed into a similar form

i
∂ψ̃

∂ t
=

(
ω0

2

(
p− Ã

)2

+Ũ+
(

p− Ã

)
Ṽ +W̃

(
p− Ã

))
ψ̃ (3.31)

with the new vector and scalar potentials given by

Ã= A+
∂ f

∂x
, Ũ =U− ∂ f

∂ t
, Ṽ =V, W̃ =W. (3.32)

Here we consider the one-dimensional case only and may think of f as being an arbitrary

complex-valued differentiable function. Also, the Hamiltonian in the right hand side of equa-

tion (3.29) is not assumed to be self-adjoint. See Refs. [121] and [145] for discussion of the

traditional case, when V =W ≡ 0.

An interesting special case of the gauge transformation related to this paper is given by

A= 0, U =
ω0

2
x2, V =−λx, W = 0, f =

iλ t

2
, (3.33)

Ã= 0, Ũ =
ω0

2
x2− iλ

2
, Ṽ =−λx, W̃ = 0, (3.34)
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when the new Hamiltonian is

H̃ =
ω0

2

(
p− Ã

)2

+Ũ+ pṼ (3.35)

=
ω0

2

(
− ∂ 2

∂x2
+ x2

)
+ i

λ

2

(
2x

∂

∂x
+1

)
,

and equation (3.13) takes the form

i
∂ψ

∂ t
=

ω0

2

(
−∂ 2ψ

∂x2
+ x2

ψ

)
+ i

λ

2

(
2x

∂ψ

∂x
+ψ

)
. (3.36)

The corresponding Green function is given by

G(x,y, t) =

√
ω

2πiω0 sinωt
exp

(
iω

2ω0 sinωt

((
x2+ y2

)
cosωt−2xy

))
×exp

(
iλ

2ω0

(
x2− y2

))
, ω =

√
ω2

0−λ
2 > 0 (3.37)

and the norm of the wave function is conserved with time. This can be established once again di-

rectly from our equations (3.2)–(3.8). We leave the details to the reader. A traditional method of

separation of the variables and using the Mehler formula for Hermite polynomials is discussed

in the next section. The factorization technique is applied to this Hamiltonian in section 5.

Equation (3.36), in turn, admits another local gauge transformation:

A= 0, U =
ω0

2
x2, V =W =−λx

2
, f =− λx2

2ω0

, (3.38)

Ã=−λx

ω0

, Ũ =
ω0

2
x2, Ṽ = W̃ =−λx

2
(3.39)

and the Hamiltonian becomes

H̃ =
ω0

2

(
p− Ã

)2

+Ũ+
(

p− Ã

)
Ṽ +W̃

(
p− Ã

)
=

ω0

2

(
p+

λx

ω0

)2

+
ω0

2
x2

+

(
p+

λx

ω0

)(
−λx

ω0

)
+

(
−λx

ω0

)(
p+

λx

ω0

)
=

ω0

2
p2+

ω2
0−λ

2

2ω0

x2. (3.40)

As a result, equation (3.36) takes the form of equation for the harmonic oscillator:

i
∂ψ

∂ t
=

ω0

2

(
−∂ 2ψ

∂x2
+

ω2

ω2
0

x2
ψ

)
, ω

2 = ω
2
0−λ

2 > 0 (3.41)

and can be solved, once again, by the traditional method of separation of the variables or by the

factorization technique.
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3.4 Separation of Variables for a Shifted Harmonic Oscillator

We shall refer to the case (3.36) as one of a shifted linear harmonic oscillator. The Ansatz

ψ (x, t) = e−iEt
ϕ (x) (3.42)

in the time-dependent Schrödinger equation results in the stationary Schrödinger equation

Hϕ = Eϕ (3.43)

with the Hamiltonian (3.35). The last equation, namely,

−ϕ
′′+ x2

ϕ+
iλ

ω0

(
2xϕ

′+ϕ
)
=

2E

ω0

ϕ, (3.44)

with the help of the substitution

ϕ = exp

(
iλx2

2ω0

)
u(x) (3.45)

is reduced to the following equation

−u′′+
ω2

ω2
0

x2u=
2E

ω0

u. (3.46)

The change of the variable

u(x) = v(ξ ) , x= ξ

√
ω0

ω
(3.47)

gives us the stationary Schrödinger equation for the simple harmonic oscillator [121], [145],

[158], [183]:

v′′+
(

2ε−ξ
2
)

v= 0 (3.48)

with ε = E/ω, whose eigenfunctions are given in terms of the Hermite polynomials as follows

vn =Cne−ξ
2/2Hn (ξ ) , (3.49)

and the corresponding eigenvalues are

εn = n+
1

2
, En = ω

(
n+

1

2

)
(n= 0,1,2, ...) . (3.50)

Thus the normalized wave functions of our shifted oscillator (3.36) are given by

ψn (x, t) = e−iω(n+1/2)t
ϕn (x) , (3.51)
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where

ϕn (x) =Cn exp

(
iλx2

2ω0

)
e−ξ

2/2Hn (ξ ) , ξ = x

√
ω

ω0

(3.52)

and

|Cn|2 =
√

ω

ω0

1√
π2nn!

(3.53)

in view of the orthogonality relation

∫
∞

−∞

ϕ
∗
n (x)ϕm (x) dx= δ nm. (3.54)

We use the star for complex conjugate.

Solution of the initial value problem (3.27) can be found by the superposition principle

in the form

ψ (x, t) =
∞

∑
n=0

cn ψn (x, t) , (3.55)

where

ψ (x,0) = χ (x) =
∞

∑
n=0

cn ϕn (x) (3.56)

and

cn =
∫

∞

−∞

ϕ
∗
n (y)χ (y) dy (3.57)

in view of the orthogonality property (3.54). Substituting (3.57) into (3.55) and changing the

order of the summation and integration, one gets

ψ (x, t) =
∫

∞

−∞

G(x,y, t)χ (y) dy, (3.58)

where the Green function is given as the eigenfunction expansion:

G(x,y, t) =
∞

∑
n=0

e−iω(n+1/2)t
ϕn (x)ϕ

∗
n (y) . (3.59)

This infinite series is summable with the help of the Poisson kernel for the Hermite polynomials

(Mehler’s formula) [170]:

∞

∑
n=0

Hn (x)Hn (y)

2nn!
rn =

1√
1− r2

exp

(
2xyr−

(
x2+ y2

)
r2

1− r2

)
, |r|< 1. (3.60)

The result is given, of course, by equation (3.37).
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3.5 The Factorization Method for Shifted Harmonic Oscillator

It is worth applying the well-known factorization technique (see, for example, [6], [7], [9], [68]

and [145]) to the Hamiltonian (3.35). The corresponding ladder operators can be found in the

forms

a = (α+ iβ )x+ γ
∂

∂x
, (3.61)

a† = (α− iβ )x− γ
∂

∂x
, (3.62)

where α, β and γ are real numbers to be determined as follows. One gets

aa†
ψ =

(
α

2+β
2
)

x2
ψ+(α− iβ )γψ−2iβγx

∂ψ

∂x
− γ

2 ∂ 2ψ

∂x2
, (3.63)

a†aψ =
(

α
2+β

2
)

x2
ψ− (α+ iβ )γψ−2iβγx

∂ψ

∂x
− γ

2 ∂ 2ψ

∂x2
, (3.64)

whence (
aa†−a†a

)
ψ = 2αγψ (3.65)

and

1

2

(
aa†+a†a

)
ψ =−γ

2 ∂ 2ψ

∂x2
+
(

α
2+β

2
)

x2
ψ− iβγ

(
2x

∂ψ

∂x
+ψ

)
. (3.66)

The canonical commutation relation occurs and the Hamiltonian (3.35) takes the standard form:

H =
ω

2

(
aa†+a†a

)
, (3.67)

if

2αγ = 1, ω

(
α

2+β
2
)
= ωγ

2 =
1

2
ω0, ωβγ =−1

2
λ . (3.68)

The relation ω2
0 = ω2+λ

2, which defines the new oscillator frequency, holds. As a result, the

explicit form of the annihilation and creation operators is given by

√
2a =

(√
ω

ω0

− iλ√
ω0ω

)
x+

√
ω0

ω

∂

∂x
, (3.69)

√
2a† =

(√
ω

ω0

+
iλ√
ω0ω

)
x−
√

ω0

ω

∂

∂x
. (3.70)

The special case λ = 0 and ω = ω0 gives a traditional form of these operators.

The oscillator spectrum (3.50) and the corresponding stationary wave functions (3.52)

can be obtain now in a standard way by using the Heisenberg–Weyl algebra of the rasing and
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lowering operators. In addition, the n-dimensional oscillator wave functions form a basis of

the irreducible unitary representation of the Lie algebra of the noncompact group SU (1,1)

corresponding to the discrete positive series D j
+; see [143], [157] and [188]. Our operators

(3.69)–(3.70) allow us to extend these group-theoretical properties for the case of the shifted

oscillators. We leave the details to the reader.

3.6 Dynamics of Energy Related Expectation Values

The expectation value of an operator A in quantum mechanics is given by the formula

〈A〉=
∫

∞

−∞

ψ
∗ (x, t) A(t)ψ (x, t) dx, (3.71)

where the wave function satisfies the time-dependent Schrödinger equation

i
∂ψ

∂ t
= Hψ. (3.72)

The time derivative of this expectation value can be written as

i
d

dt
〈A〉= i

〈
∂A

∂ t

〉
+
〈
AH−H†A

〉
, (3.73)

where H† is the Hermitian adjoint of the Hamiltonian operator H. Our formula is a simple

extension of the well-known expression [121], [145], [183] to the case of a nonself-adjoint

Hamiltonian.

We apply formula (3.73) to the Hamiltonian

H =
ω0

2

(
p2+ x2

)
−λ px, p=−i

∂

∂x
(3.74)

in equation (3.13). A few examples will follow. In the case of the identity operator A= 1, one

gets

AH−H†A= λ (xp− px) = iλ (3.75)

by the Heisenberg commutation relation

[x, p] = xp− px= i. (3.76)

As a result,

d

dt
‖ψ‖2 = λ ‖ψ‖2 , (3.77)
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and time-evolution of the squared norm of the wave function for our model of the damped

quantum oscillator is given by equation (3.21).

In a similar fashion, if A= H, then

H2−H†H =
(
H−H†

)
H = iλH, (3.78)

and

d

dt
〈H〉= λ 〈H〉 , 〈H〉= 〈H〉0 eλ t . (3.79)

Moreover,

d

dt
〈Hn〉= λ 〈Hn〉 , 〈Hn〉= 〈Hn〉0 eλ t (n= 0,1,2, ...) , (3.80)

which unifies the both of the previous cases.

Now we choose A = p2, A = x2 and A = px+ xp, respectively, in order to obtain the

following system:

d

dt

〈
p2
〉
= 3λ

〈
p2
〉
−ω0 〈px+ xp〉 ,

d

dt

〈
x2
〉
=−λ

〈
x2
〉
+ω0 〈px+ xp〉 , (3.81)

d

dt
〈px+ xp〉= 2ω0

(〈
p2
〉
−
〈
x2
〉)
+λ 〈px+ xp〉 .

Indeed,

p2H−H† p2 =
ω0

2

[
p2,x2

]
+λ

[
x, p3

]
(3.82)

= 3iλ p2− iω0 (px+ xp) ,

x2H−H†x2 =
ω0

2

[
x2, p2

]
−λx [x, p]x (3.83)

= iω0 (px+ xp)− iλx2,

and

(px+ xp)H−H† (px+ xp) (3.84)

=
ω0

2

([
p,x3

]
+
[
x, p3

])
+

ω0

2
(p [x, p] p− x [x, p]x)

+λ

(
(xp)2− (px)2

)
= 2iω0

(
p2− x2

)
+ iλ (px+ xp) ,
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which results in (3.81).

The system can be solved explicitly, thus providing the complete dynamics of these

expectation values. The eigenvalues are given by r0 = λ , r± = λ ±2iω and the corresponding

linearly independent eigenvectors are

x0 =


ω0

ω0

2λ

 , x± =


(λ ± iω)2

ω2
0

2ω0 (λ ± iω)

 (3.85)

with the determinant∣∣∣∣∣∣∣∣∣∣
ω0 (λ + iω)2 (λ − iω)2

ω0 ω2
0 ω2

0

2λ 2ω0 (λ + iω) 2ω0 (λ − iω)

∣∣∣∣∣∣∣∣∣∣
=−8iω2

0ω
3 6= 0. (3.86)

The general solution of the system (3.81) can be obtain in a complex form as follows
〈

p2
〉

〈
x2
〉

〈px+ xp〉

=C0eλ t


ω0

ω0

2λ

 (3.87)

+C+e(λ+2iω)t


(λ + iω)2

ω2
0

2ω0 (λ + iω)

+C−e(λ−2iω)t


(λ − iω)2

ω2
0

2ω0 (λ − iω)

 ,

where C0 and C± are constants. The corresponding solution of the initial value problem is given
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by 
〈

p2
〉

〈
x2
〉

〈px+ xp〉

 =
1

2ω2

(
ω0

(〈
p2
〉

0
+
〈
x2
〉

0

)
−λ 〈px+ xp〉0

)
eλ t


ω0

ω0

2λ

 (3.88)

+
1

2ω2

(
λ

ω0

〈px+ xp〉0+
ω2−λ

2

ω2
0

〈
x2
〉

0
−
〈

p2
〉

0

)

×eλ t


(

λ
2−ω2

)
cos2ωt−2λω sin2ωt

ω2
0 cos2ωt

2λω0 cos2ωt−2ω0ω sin2ωt


+

1

2ω0ω

(
〈px+ xp〉0−

2λ

ω0

〈
x2
〉

0

)

×eλ t


2λω cos2ωt+

(
λ

2−ω2
)

sin2ωt

ω2
0 sin2ωt

2ω0ω cos2ωt+2λω0 sin2ωt

 .

The mechanical energy operator E can be conveniently introduced as the Hamiltonian

of our shifted linear harmonic oscillator (3.35):

E = H0 =
ω0

2

(
p2+ x2

)
− λ

2
(px+ xp) , (3.89)

so that

H = H0+ i
λ

2
. (3.90)

Then

d

dt
〈E〉 =

ω0

2

(
d

dt

〈
p2
〉
+

d

dt

〈
x2
〉)

(3.91)

−λ

2

d

dt
〈px+ xp〉

= λ

〈
ω0

2

(
p2+ x2

)
− λ

2
(px+ xp)

〉
with the help of our system (3.81). Therefore,

d

dt
〈E〉= λ 〈E〉 , 〈E〉= 〈E〉0 eλ t (3.92)

for the expectation value of the mechanical energy of the damped oscillator under consideration.
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The case of the second Hamiltonian:

H =
ω0

2

(
p2+ x2

)
−λxp= H0− i

λ

2
, (3.93)

which is the Hermitian adjoint of the Hamiltonian (3.74), is similar. Here

Hn+1−H†Hn =
(
H−H†

)
Hn = λ [p,x]Hn =−iλHn

and

d

dt
〈Hn〉=−λ 〈Hn〉 , 〈Hn〉= 〈Hn〉0 e−λ t (n= 0,1,2, ...) . (3.94)

Moreover,

p2H−H† p2 =
ω0

2

[
p2,x2

]
+λ p [x, p] p (3.95)

= iλ p2− iω0 (px+ xp) ,

x2H−H†x2 =
ω0

2

[
x2, p2

]
+λ

[
p,x3

]
(3.96)

= −3iλx2+ iω0 (px+ xp) ,

(px+ xp)H−H† (px+ xp) (3.97)

=
ω0

2

([
p,x3

]
+
[
x, p3

])
+

ω0

2
(p [x, p] p− x [x, p]x)

−λ

(
(xp)2− (px)2

)
= 2iω0

(
p2− x2

)
− iλ (px+ xp) ,

and the corresponding system has the form

d

dt

〈
p2
〉
= λ

〈
p2
〉
−ω0 〈px+ xp〉 ,

d

dt

〈
x2
〉
=−3λ

〈
x2
〉
+ω0 〈px+ xp〉 , (3.98)

d

dt
〈px+ xp〉= 2ω0

(〈
p2
〉
−
〈
x2
〉)
−λ 〈px+ xp〉 .

The change p↔ x, λ →−λ , ω0→−ω0 transforms formally this system back into (3.81). This

observation allows us to obtain solution of the initial value problem from the previous solution

given by (3.88). For the mechanical energy operator E introduced by equation (3.89) one gets

d

dt
〈E〉=−λ 〈E〉 , 〈E〉= 〈E〉0 e−λ t (3.99)
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with the help of (3.98).

The case of a general variable quadratic Hamiltonian of the form

H = a(t) p2+b(t)x2+ c(t) px+d (t)xp, (3.100)

where a(t) , b(t) , c(t) , d (t) are real-valued functions of time only, is considered in a similar

fashion. One gets

Hn+1−H†Hn =
(
H−H†

)
Hn = (c−d) [p,x]Hn = i(d− c)Hn (3.101)

and

d

dt
〈Hn〉=

〈
∂Hn

∂ t

〉
+(d (t)− c(t))〈Hn〉 . (3.102)

The cases n= 0 and n= 1 result in

〈1〉= 〈1〉0 exp

(∫ t

0
(d (τ)− c(τ)) dτ

)
(3.103)

and

d

dt
〈H〉=

〈
∂H

∂ t

〉
+(d (t)− c(t))〈H〉 , (3.104)

respectively.

Moreover,

p2H−H† p2 = b
[
p2,x2

]
+ c
[
p3,x

]
+d p [p,x] p (3.105)

= −i(3c+d) p2−2ib(px+ xp) ,

x2H−H†x2 = a
[
x2, p2

]
+ cx [x, p]x+d

[
x3, p

]
(3.106)

= i(3d+ c)x2+2ia(px+ xp) ,

(px+ xp)H−H† (px+ xp) (3.107)

= a
([

x, p3
]
+ p [x, p] p

)
+b
([

p,x3
]
+ x [p,x]x

)
+(c−d)

(
(px)2− (xp)2

)
= 4iap2−4ibx2− i(c−d)(px+ xp) ,
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and the corresponding system has the form

d

dt

〈
p2
〉
=−(3c+d)

〈
p2
〉
−2b〈px+ xp〉 ,

d

dt

〈
x2
〉
= (c+3d)

〈
x2
〉
+2a〈px+ xp〉 , (3.108)

d

dt
〈px+ xp〉= 4a

〈
p2
〉
−4b

〈
x2
〉
+(d− c)〈px+ xp〉 .

We have used the familiar identities

[x, p] = i, (xp)2− (px)2 = i(px+ xp) , (3.109)

[
x2, p2

]
= 2i(px+ xp) ,

[
x, p3

]
= 3ip2,

[
x3, p

]
= 3ix2 (3.110)

once again.

3.7 A Relation with the Classical Damped Oscillations

Application of formula (3.71) to the position x and momentum p operators allows to modify the

Ehrenfest theorem [69], [145], [183] for the models of damped oscillators under consideration.

For the Hamiltonian (3.74) one gets

xH−H†x =
ω0

2

[
x, p2

]
= iω0 p, (3.111)

pH−H† p =
ω0

2

[
p,x2

]
+λ

[
x, p2

]
=−iω0x+2iλ p (3.112)

and

d

dt
〈x〉= ω0 〈p〉 ,

d

dt
〈p〉=−ω0 〈x〉+2λ 〈p〉 . (3.113)

Elimination of the expectation value 〈p〉 from this system results in

d2

dt2
〈x〉−2λ

d

dt
〈x〉+ω

2
0 〈x〉= 0, (3.114)

which is a classical equation of motion for a damped oscillator [13], [120].

For the second Hamiltonian (3.93) we obtain

d

dt
〈x〉= ω0 〈p〉−2λ 〈x〉 , d

dt
〈p〉=−ω0 〈x〉 , (3.115)

which gives

d2

dt2
〈x〉+2λ

d

dt
〈x〉+ω

2
0 〈x〉= 0 (3.116)

62



in a similar fashion.

Finally, our model of the shifted harmonic oscillator (3.36), when the Hamiltonian is

given by (3.89), results in

d2

dt2
〈x〉+

(
ω

2
0−λ

2
)
〈x〉= 0. (3.117)

We leave the details to the reader.

3.8 The Third Model

For the time-dependent Schrödinger equation with variable quadratic Hamiltonian:

i
∂ψ

∂ t
=

ω0

2

(
−e−2λ t ∂ 2ψ

∂x2
+ e2λ tx2

ψ

)
, (3.118)

where a = (ω0/2)e−2λ t , b = (ω0/2)e2λ t and c = d = 0, the characteristic equation takes the

form (3.14) with the same solution (3.15). The corresponding propagator has the form (3.2)

with

α (t) =
ω cosωt−λ sinωt

2ω0 sinωt
e2λ t , (3.119)

β (t) = − ω

ω0 sinωt
eλ t , (3.120)

γ (t) =
ω cosωt+λ sinωt

2ω0 sinωt
. (3.121)

This can be derived directly from equations (3.2)–(3.8) with the help of identity (3.20). We leave

the details to the reader. It is worth noting that equation (3.118) can be obtain by introducing a

variable unit of length x→ xeλ t in the Hamiltonian of the linear oscillator.

3.9 Momentum Representation

The time-dependent Schrödinger equations for the damped oscillators are also solved in the

momentum representation. One can easily verify that under the Fourier transform our first

Hamiltonian (3.74) takes the form of the second Hamiltonian (3.93) with λ → −λ and visa

versa (see, for example, Ref. [52] for more details). Moreover, the inverses of the correspond-

ing time evolution operators are obtained by the time reversal. Therefore, all identities of the

commutative evolution diagram introduced in Ref. [52] for the modified oscillators are also

valid for the quantum damped oscillators under consideration. We leave further details to the

reader.
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Chapter 4

QUANTUM INTEGRALS OF MOTION FOR VARIABLE QUADRATIC HAMILTONIANS

citation: R. Cordero-Soto, E. Suazo and S. K. Suslov, Annals of Physics 325 (2010) 1884—

1912.

4.1 An Introduction

Evolution of a nonrelativistic quantum system from a given initial state to the final state is gov-

erned by the (time-dependent) Schrödinger equation. Unfortunately, its explicit solutions are

available only for the simplest Hamiltonians and, in general, one has to rely on a variety of

approximation, asymptotic and numerical methods. Luckily among the integrable cases are the

so-called quadratic Hamiltonians that attracted substantial attention over the years in view of

their great importance to many advanced quantum problems. Examples can be found in quan-

tum and physical optics [58], [113], [161], [176], physics of lasers and masers [182], [205],

[186], [214], molecular spectroscopy [67], quantum chemistry, quantization of mechanical sys-

tems [57], [75], [77], [78], [81], [114], [116] and Hamiltonian cosmology [17], [83], [84],

[95], [102], [161], [177], [178], [180]. They include coherent states [140], [137], [138], [113]

and Berry’s phase [15], [16], [38], [94], [125], [150], asymptotic and numerical methods [88],

[106], [118], [147], [152], charged particle traps [136] and motion in uniform magnetic fields

[49], [48], [65], [121], [129], [130], [132], [138], polyatomic molecules in varying external

fields, crystals through which an electron is passing and exciting the oscillator modes and other

interactions of the modes with external fields [81]. Quadratic Hamiltonians have particular ap-

plications in quantum electrodynamics because the electromagnetic field can be represented as

a set of forced harmonic oscillators [19], [81], [65], [87], [103] and [145]. Nonlinear oscilla-

tors play a central role in the novel theory of Bose–Einstein condensation [54] based on the

nonlinear Schrödinger (or Gross–Pitaevskii) equation [104], [105], [112], [166].

The one-dimensional Schrödinger equation with variable quadratic Hamiltonians of the

form

i
∂ψ

∂ t
=−a(t)

∂ 2ψ

∂x2
+b(t)x2

ψ− i

(
c(t)x

∂ψ

∂x
+d (t)ψ

)
, (4.1)
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where a(t) , b(t) , c(t) , and d (t) are real-valued functions of time t only, can be integrated in

the following manner (see, for example, [49], [50], [52], [62], [122], [134], [143], [193], [194],

[195], [196], [218], and [219] for a general approach and some elementary solutions). The

Green functions, or Feynman’s propagators, are given by [49], [195]:

ψ = G(x,y, t) =
1√

2πiµ (t)
ei(α(t)x2+β (t)xy+γ(t)y2), (4.2)

where

α (t) =
1

4a(t)

µ ′ (t)

µ (t)
− d (t)

2a(t)
, (4.3)

β (t) =− h(t)

µ (t)
, h(t) = exp

(
−
∫ t

0
(c(τ)−2d (τ)) dτ

)
, (4.4)

γ (t) =
a(t)h2 (t)

µ (t)µ ′ (t)
+

d (0)

2a(0)
−4

∫ t

0

a(τ)σ (τ)h2 (τ)

(µ ′ (τ))2
dτ (4.5)

and the function µ (t) satisfies the so-called characteristic equation

µ
′′− τ (t)µ

′+4σ (t)µ = 0 (4.6)

with

τ (t) =
a′

a
−2c+4d, σ (t) = ab− cd+d2+

d

2

(
a′

a
− d′

d

)
(4.7)

subject to the initial data

µ (0) = 0, µ
′ (0) = 2a(0) 6= 0. (4.8)

(More details can be found in Refs. [49], [195] and a Hamiltonian structure is considered in

Refs. [15], [52].) Then, by the superposition principle, solution of the Cauchy initial value

problem can be presented in an integral form

ψ (x, t) =
∫

∞

−∞

G(x,y, t) ϕ (y) dy, lim
t→0+

ψ (x, t) = ϕ (x) (4.9)

for a suitable initial function ϕ on R (a rigorous proof is given in Ref. [195] and uniqueness is

analyzed in this paper).

We discuss integrals of motion for several particular models of the damped and gener-

alized quantum oscillators. The simple harmonic oscillator is of interest in many quantum prob-

lems [81], [121], [145], and [183]. The forced harmonic oscillator was originally considered

by Richard Feynman in his path integrals approach to the nonrelativistic quantum mechanics
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[77], [78], [79], [80], and [81]; see also [134]. Its special and limiting cases were discussed in

Refs. [14], [87], [99], [142], [145], [207] for the simple harmonic oscillator and in Refs. [4],

[21], [98], [154], [173] for the particle in a constant external field; see also references therein.

The damped oscillations have been studied to a great extent in classical mechanics [12], [13]

and [120]. Their quantum analogs are introduced and analyzed from different viewpoints by

many authors; see, for example, [22], [39], [44], [45], [46], [50], [59], [60], [61], [63], [66],

[123], [124], [107], [149], [156], [199], [200], [204], [209], and references therein. The quan-

tum parametric oscillator with variable frequency is also largely studied in view of its physical

importance; see, for example, [42], [65], [100], [101], [122], [140], [138], [164], [165], [168],

[169], [185], and [189]; a detailed bibliography is given in [23].

In the present paper we revisit a familiar topic of the quantum integrals of motion for

the time-dependent Schrödinger equation

i
∂ψ

∂ t
= H (t)ψ (4.10)

with variable quadratic Hamiltonians of the form

H = a(t) p2+b(t)x2+d (t)(px+ xp) , (4.11)

where p=−i∂/∂x, }= 1 and a(t) , b(t) , c(t) = 2d (t) are some real-valued functions of time

only (see, for example, [62], [125], [132], [138], [139], [218], [219] and references therein). A

related energy operator E is defined in a traditional way as a quadratic in p and x operator that

has constant expectation values [65]:

d

dt
〈E〉= d

dt

∫
∞

−∞

ψ
∗Eψ dx= 0. (4.12)

It is well-known that such quadratic invariants are not unique. Although an elegant general

solution is known, say, for the parametric oscillator, it involves an integration of nonlinear

Ermakov’s equation [132]. Here the simplest energy operators are constructed for several in-

tegrable models of the damped and modified quantum oscillators. Then an extension of the

familiar Lewis–Riesenfeld quadratic invariant is given to the most general case of the variable

non-self-adjoint quadratic Hamiltonian (see also [125], [218], [219], we do not use canonical

transformations and deal only with real-valued solutions of the corresponding generalized Er-

makov system), which seems to be missing in the available literature and may be considered
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as the main result of this paper. (An attempt to collect relevant references is made1.) Group-

theoretical aspects will be discussed elsewhere, we only provide the factorization of the general

quadratic invariant (see also [198]).

In general the average 〈E〉 is not positive. A complete dynamics of the expectation

values of some energy-related positive operators is found instead for each model, which is a

somewhat interesting result on its own. In addition to other works [15], [65], [62], [94], [132],

[140], [139], [218], [219] these advances allow us to discuss uniqueness of the corresponding

Cauchy initial value problem for the special models and for the general quadratic Hamiltonian

under consideration as a modest contribution to this well-developed area of quantum mechanics

and partial differential equations. Further relations of the quadratic invariants with the solution

of the initial value problem are discussed in the forthcoming paper [198].

The paper is organized as follows. In Section 2 we review several exactly solvable mod-

els of the damped and generalized oscillators in quantum mechanics. Some of these “exotic”

oscillators with variable quadratic Hamiltonians appear to be missing, and/or are just recently

introduced, in the available literature. The corresponding Green functions are found in terms

of elementary functions. The dynamical invariants and quadratic energy-related operators are

discussed in Sections 3 and 4. The last section is concerned with an application to the Cauchy

initial value problems. The classical equations of motion for the expectation values of the po-

sition operator for the quantum oscillators under consideration are derived in Appendix A. The

Heisenberg uncertainty relation and linear dynamic invariants are revisited, respectively, in Ap-

pendices B and C. Solutions of a required differential equation are given in Appendix D to make

our presentation is as self-contained as possible.

4.2 Some Integrable Quadratic Hamiltonians

Quantum systems with the Hamiltonians (4.11) are called the generalized harmonic oscillators

[15], [62], [94], [125], [218], [219]. In this paper we concentrate, among others, on the follow-

ing variable Hamiltonians: the Caldirola-Kanai Hamiltonian of the quantum damped oscillator

1A complete bibliography on classical and quantum generalized harmonic oscillators, their invariants, group-

theoretical methods and applications is very extensive. Only case of the damped oscillators in [60] includes about

600 references!
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[22], [60], [107], [209] and some of its natural modifications, a modified oscillator introduced

by Meiler, Cordero-Soto and Suslov [143], [52], the quantum damped oscillator of Chruściński

and Jurkowski [46] in the coordinate and momentum representations and a quantum-modified

parametric oscillator which is believed to be new. The Green functions are derived in a united

way.

The Caldirola-Kanai Hamiltonian

A model of the quantum damped oscillator with a variable Hamiltonian of the form

H =
ω0

2

(
e−2λ t p2+ e2λ t x2

)
(4.13)

is called the Caldirola-Kanai model [12], [22], [60], [107], [209]. Nowadays it is a standard

way of adding friction to the quantum harmonic oscillator. The Green function is given by

G(x,y, t) =

√
ωeλ t

2πiω0 sinωt
ei(α(t)x2+β (t)xy+γ(t)y2), ω =

√
ω2

0−λ
2 > 0, (4.14)

where

α (t) =
ω cosωt−λ sinωt

2ω0 sinωt
e2λ t , (4.15)

β (t) = − ω

ω0 sinωt
eλ t , (4.16)

γ (t) =
ω cosωt+λ sinωt

2ω0 sinωt
. (4.17)

This popular model had been studied in detail by many authors from different viewpoints;

see, for example, [3], [20], [25], [26], [35], [40], [41], [63], [108], [110], [111], [114], [116],

[123], [156], [159], [163], [181], [199], [200], [208], [220] and references therein, a detailed

bibliography can be found in [60], [209].

A Modified Caldirola-Kanai Hamiltonian

In this paper, we would like to consider another version of the quantum damped oscillator with

variable Hamiltonian of the form

H =
ω0

2

(
e−2λ t p2+ e2λ t x2

)
−λ (px+ xp) . (4.18)
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The Green functions in (4.14) has

α (t) =
ω cosωt+λ sinωt

2ω0 sinωt
e2λ t , (4.19)

β (t) = − ω

ω0 sinωt
eλ t , (4.20)

γ (t) =
ω cosωt−λ sinωt

2ω0 sinωt
. (4.21)

This can be derived directly from equations (4.2)–(4.8) following Refs. [49] and [50].

The Ehrenfest theorem for both Caldirola-Kanai models has the same form

d2

dt2
〈x〉+2λ

d

dt
〈x〉+ω

2
0 〈x〉= 0, (4.22)

which coincides with the classical equation of motion for a damped oscillator [13], [120]. De-

tails are provided in Appendix A.

The United Model

The following non-self-adjoint Hamiltonian:

H =
ω0

2

(
e−2λ t p2+ e2λ t x2

)
−µxp (4.23)

coincides with the original Caldirola-Kanai model when µ = 0 and the Hamiltonian is self-

adjoint. Another special case λ = 0 corresponds to the quantum damped oscillator discussed in

[50] as an example of a simple quantum system with the non-self-adjoint Hamiltonian. (This

is an alternative way to introduce dissipation of energy to the quantum harmonic oscillator.)

Combining both cases we refer to (4.23) as the united Hamiltonian.

The Green function is given by

G(x,y, t) =

√
ωe(λ−µ)t

2πiω0 sinωt
ei(α(t)x2+β (t)xy+γ(t)y2), (4.24)

where

α (t) =
ω cosωt+(µ−λ )sinωt

2ω0 sinωt
e2λ t , (4.25)

β (t) = − ω

ω0 sinωt
eλ t , (4.26)

γ (t) =
ω cosωt+(λ −µ)sinωt

2ω0 sinωt
(4.27)
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with ω =
√

ω2
0− (λ −µ)2 > 0.

In this case the Ehrenfest theorem takes the form:

d2

dt2
〈x〉+ 2(λ +µ)

d

dt
〈x〉+

(
ω

2
0+4λ µ

)
〈x〉= 0. (4.28)

It is derived in Appendix A and the Heisenberg uncertainty relation is discussed in Appendix B.

A Modified Oscillator

The one-dimensional Hamiltonian of a modified oscillator introduced by Meiler, Cordero-Soto

and Suslov [143], [52] has the form

H = (cos t p+ sin t x)2 (4.29)

= cos2 t p2+ sin2 t x2+ sin t cos t (px+ xp)

=
1

2

(
p2+ x2

)
+

1

2
cos2t

(
p2− x2

)
+

1

2
sin2t (px+ xp) .

(A physical interpretation of this Hamiltonian from the viewpoint of quantum dynamical invari-

ants will be discussed in Section 4.) The Green function is given in terms of trigonometric and

hyperbolic functions as follows

G(x,y, t) =
1√

2πi(cos t sinh t+ sin t cosh t)
(4.30)

×exp

((
x2− y2

)
sin t sinh t+2xy−

(
x2+ y2

)
cos t cosh t

2i(cos t sinh t+ sin t cosh t)

)
.

More details can be found in [143], [52]. The corresponding Ehrenfest theorem, namely,

d2

dt2
〈x〉+ 2tan t

d

dt
〈x〉−2〈x〉= 0, (4.31)

is derived in Appendix A.

The Modified Damped Oscillator

The time-dependent Schrödinger equation

i}
∂ψ

∂ t
= H (t)ψ (4.32)
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with the variable quadratic Hamiltonian of the form

H =
p2

2mcosh2 (λ t)
+

mω2
0

2
cosh2 (λ t) x2, p=

}
i

∂

∂x
(4.33)

has been recently considered by Chruściński and Jurkowski [46] as a model of the quantum

damped oscillator; see also [151].

In this case the characteristic equation (4.6) takes the form

µ
′′+2λ tanh(λ t)µ

′+ω
2
0µ = 0. (4.34)

The particular solution is given by

µ (t) =
}

mω

sin(ωt)

cosh(λ t)
, ω =

√
ω2

0−λ
2 > 0 (4.35)

and the corresponding propagator can be presented as follows

G(x,y, t) =

√
mω cosh(λ t)

2πi}sin(ωt)
ei(α(t)x2+β (t)xy+γ(t)y2), (4.36)

where

α (t) =
mcosh(λ t)

2}sin(ωt)
(ω cos(ωt)cosh(λ t)−λ sin(ωt)sinh(λ t)) , (4.37)

β (t) =−mω cosh(λ t)

2}sin(ωt)
, (4.38)

γ (t) =
mω cos(ωt)

2}sin(ωt)
. (4.39)

(We somewhat simplify the original propagator found in [46]; see also [115].) This Green func-

tion can be independently derived from our equations (4.3)–(4.5) with the help of the following

elementary antiderivative:(
λ cos(ωt+δ )sinh(λ t)+ω sin(ωt+δ )cosh(λ t)

ω cos(ωt+δ )cosh(λ t)−λ sin(ωt+δ )sinh(λ t)

)′
(4.40)

=
ωω2

0 cosh2 (λ t)

(ω cos(ωt+δ )cosh(λ t)−λ sin(ωt+δ )sinh(λ t))2
.

Further details are left to the reader.

Special cases are as follows: when λ = 0, one recovers the standard propagator for the

linear harmonic oscillator [81], and ω0 = 0 gives a pure damping case [115]:

G(x,y, t) =

√
mλ

2πi} tanh(ωt)
exp

(
imλ (x− y)2

2} tanh(ωt)

)
. (4.41)
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In the limit λ → 0 formula (4.41) reproduces the propagator for a free particle [81].

The Ehrenfest theorem for the quantum damped oscillator of Chruściński and Jurkowski

coincides with our characteristic equation (4.34); see Appendix A for more details.

It is worth adding that in the momentum representation, when p↔ x, a rescaled Hamil-

tonian (4.33) (}= mω0 = 1) takes the form

H =
ω0

2

(
cosh2 (λ t) p2+

x2

cosh2 (λ t)

)
. (4.42)

The corresponding characteristic equation

µ
′′−2λ tanh(λ t)µ

′+ω
2
0µ = 0 (4.43)

has a required elementary solution

µ =
1

ω0

(λ cos(ωt)sinh(λ t)+ω sin(ωt)cosh(λ t)) (4.44)

with µ ′ (0) = 2a(0) = ω0 and

µ → 1

2ω0

eλ t (λ cos(ωt)+ω sin(ωt)) (4.45)

as t→ ∞. The Green function is given by formula (4.2) with the following coefficients:

α (t) =
ω0 cos(ωt)

2cosh(λ t)(λ cos(ωt)sinh(λ t)+ω sin(ωt)cosh(λ t))
, (4.46)

β (t) = − ω0

λ cos(ωt)sinh(λ t)+ω sin(ωt)cosh(λ t)
, (4.47)

γ (t) =
ω0 (ω cos(ωt)cosh(λ t)−λ sin(ωt)sinh(λ t))

2ω (λ cos(ωt)sinh(λ t)+ω sin(ωt)cosh(λ t))
. (4.48)

The details are left to the reader.

A Modified Parametric Oscillator

In a similar fashion we consider the following Hamiltonian:

H =
ω

2

(
tanh2 (λ t+δ ) p2+ coth2 (λ t+δ ) x2

)
(4.49)

+
λ

sinh(2λ t+2δ )
(px+ xp) (δ 6= 0) ,
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which seems to be missing in the available literature. The corresponding characteristic equation:

µ
′′− 4λ

sinh(2λ t+2δ )
µ
′+

(
ω

2+
2λ

2

sinh2 (λ t+δ )

)
µ = 0 (4.50)

has an elementary solution of the form:

µ = sin(ωt)
tanh(λ t+δ )

cothδ
. (4.51)

In the limit t→ ∞, µ → sin(ωt) tanhδ .

The Green function can be found as follows

G(x,y, t) =

√
cothδ

2πisin(ωt) tanh(λ t+δ )
ei(α(t)x2+β (t)xy+γ(t)y2), (4.52)

where

α (t) =
1

2
cot(ωt)coth2 (λ t+δ ) , (4.53)

β (t) =− cothδ

sin(ωt)
coth(λ t+δ ) , (4.54)

γ (t) =
1

2
cot(ωt)coth2

δ . (4.55)

The Ehrenfest theorem coincides with the characteristic equation (4.50). One should inter-

change a↔ b and d→−d in the momentum representation [52]. The corresponding solutions

can be found with the help of the substitution δ → δ + iπ/2. The trigonometric cases, when

λ → iλ , δ → iδ and ω →−ω, are left to the reader.

Parametric Oscillators

In conclusion a somewhat related quantum parametric oscillator:

H =
1

2

(
p2+

(
ω

2+
2λ

2

cosh2 (λ t)

)
x2

)
, (4.56)

when

µ
′′+

(
ω

2+
2λ

2

cosh2 (λ t)

)
µ = 0 (4.57)

and

µ =
λ cos(ωt)sinh(λ t)+ω sin(ωt)cosh(λ t)(

ω2+λ
2
)

cosh(λ t)
, (4.58)
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has the Green function (4.2) with the following coefficients:

α (t) =

(
ω2+λ

2
cosh−2 (λ t)

)
cos(ωt)−λω tanh(λ t)sin(ωt)

2(ω sin(ωt)+λ tanh(λ t)cos(ωt))
, (4.59)

β (t) = − ω2+λ
2

ω sin(ωt)+λ tanh(λ t)cos(ωt)
, (4.60)

γ (t) =

(
ω2+λ

2
)
(ω cos(ωt)−λ tanh(λ t)sin(ωt))

2ω (ω sin(ωt)+λ tanh(λ t)cos(ωt))
. (4.61)

The Green function for the parametric oscillator in general:

H =
1

2

(
p2+ω

2 (t)x2
)

(4.62)

can be found, for example, in Ref. [122]. (The time-dependent quantum oscillator was thor-

oughly examined by Husimi [100], [101] and later many authors had treated different aspects

of the problem; see [65], [140], [138], [139], [164], [165], [168], [169], [185] and [189]; a

detailed bibliography is given in Ref. [23].)

4.3 Expectation Values of Quadratic Operators

We start from a convenient differentiation formula.

Lemma 2 Let

H = a(t) p2+b(t)x2+d (t)(px+ xp) , (4.63)

O= A(t) p2+B(t)x2+C (t)(px+ xp) (4.64)

and

〈O〉= 〈ψ,Oψ〉=
∫

∞

−∞

ψ
∗Oψ dx, i

∂ψ

∂ t
= Hψ (4.65)

(we use the star for complex conjugate). Then

d

dt
〈O〉 =

(
dA

dt
+4(aC−dA)

)〈
p2
〉

(4.66)

+

(
dB

dt
+4(dB−bC)

)〈
x2
〉

+

(
dC

dt
+2(aB−bA)

)
〈px+ xp〉 .
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Proof. The time derivative of the expectation value can be written as [121], [145], [183]:

d

dt
〈O〉=

〈
∂O

∂ t

〉
+

1

i
〈[O,H]〉 , (4.67)

where [O,H] =OH−HO (we freely interchange differentiation and integration throughout the

paper, it can be justified for certain classes of solutions [133], [160], [166], [211]). One should

make use of the standard commutator properties, including familiar identities

[
x2, p2

]
= 2i(px+ xp) ,

[
x, p2

]
= 2ip,

[
x2, p

]
= 2ix, (4.68)[

px+ xp, p2
]
= 4ip2,

[
x2, px+ xp

]
= 4ix2,

in order to complete the proof.

Quantum systems with the self-adjoint Hamiltonians (4.63) are called the generalized

harmonic oscillators [15], [62], [94], [125], [218], [219]. At the same time one has to deal with

non-self-adjoint Hamiltonians in the theory of dissipative quantum systems (see, for example,

[50], [60], [116], [204], [209] and references therein) or when using separation of variables in

an accelerating frame of reference for a charged particle moving in an uniform time-dependent

magnetic field [49]. An extension to the case of non-self-adjoint Hamiltonians is as follows.

Lemma 3 If

H = a(t) p2+b(t)x2+ c(t) px+d (t)xp, (4.69)

O= A(t) p2+B(t)x2+C (t) px+D(t)xp, (4.70)

then

d

dt
〈O〉 =

(
dA

dt
+2a(C+D)− (3c+d)A

)〈
p2
〉

(4.71)

+

(
dB

dt
−2b(C+D)+(c+3d)B

)〈
x2
〉

+

(
dC

dt
+2(aB−bA)− (c−d)C

)
〈px〉

+

(
dD

dt
+2(aB−bA)− (c−d)D

)
〈xp〉 .

Proof. One should use

d

dt
〈O〉=

〈
∂O

∂ t

〉
+

1

i

〈
OH−H†O

〉
, (4.72)

76



where H† is the Hermitian adjoint of the Hamiltonian operator H. Our formula is a simple

extension of the well-known expression [121], [145], [183] to the case of a non-self-adjoint

Hamiltonian [50]. Standard commutator evaluations complete the proof.

Polynomial operators of the higher orders in x and p can be differentiated in a similar

fashion. An analog of the product rule is given in [198]. The details are left to the reader.

4.4 Energy Operators and Quadratic Invariants

In the case of the time-independent Hamiltonian, one gets

d

dt
〈H〉= 0 (4.73)

by (4.67). The law of conservation of energy states that

E = 〈H〉= constant. (4.74)

In general one has to construct quantum integrals of motion, or dynamical invariants, that are

different from the variable Hamiltonian (see, for example, [132], [218], [219]; linear case is

dealt with in [63], [65], [140], [139] and Appendix C).

Energy Operators

A familiar definition is in order (see, for example, [65], [140]).

Definition 1 We call the quadratic operator (4.64) an energy operator E, or a quadratic (dy-

namical) invariant, if

d

dt
〈E〉= 0 (4.75)

for the corresponding variable Hamiltonian (4.63).

By Lemma 2 the coefficients of an energy operator,

E = A(t) p2+B(t)x2+C (t)(px+ xp) , (4.76)
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must satisfy the system of ordinary differential equations:

dA

dt
+4(a(t)C−d (t)A) = 0, (4.77)

dB

dt
+4(d (t)B−b(t)C) = 0, (4.78)

dC

dt
+2(a(t)B−b(t)A) = 0. (4.79)

In general a unique solution of this system with respect to arbitrary initial conditions A0=A(0) ,

B0 = B(0) , C0 = C (0) [97] determines a three-parameter family of the quadratic invariants

(4.76). Special cases, when solutions can be found explicitly, are of the most practical impor-

tance.

In this section we find the simplest energy operators for all quadratic models under

consideration as follows:

E =
ω0

2

(
e−2λ t p2+ e2λ t x2

)
+

λ

2
(px+ xp) , (4.80)

E =
ω0

2

(
e−2λ t p2+ e2λ t x2

)
− λ

2
(px+ xp) , (4.81)

E =
1

2
cos2t

(
p2− x2

)
+

1

2
sin2t (px+ px) , (4.82)

E = tanh2 (λ t+δ ) p2+ coth2 (λ t+δ ) x2 (4.83)

for the Caldirola-Kanai Hamiltonian (4.13) [199], the modified Caldirola-Kanai Hamiltonian

(4.18), the modified oscillator of Meiler, Cordero-Soto and Suslov (4.29) and for the modified

parametric oscillator (4.49), respectively. Their coefficients solve the corresponding systems

(4.77)–(4.79) for special initial data.

An energy operator for the united model (4.23) is given by

E =
ω0

2
eµt
(

e−2λ t p2+ e2λ t x2
)
+

1

2
(λ −µ)eµt (px+ xp) . (4.84)

One should use Lemma 3; verification is left to the reader. Finally an energy operator for the

quantum damped oscillator of Chruściński and Jurkowski with a rescaled Hamiltonian (4.179) is

given by expression (4.180). A general case of the variable quadratic Hamiltonian is discussed

in Theorem 1.
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The Lewis–Riesenfeld Invariant

Classical Hamiltonian of the generalized harmonic oscillator can be transformed into the Hamil-

tonian of a parametric oscillator [15], [94], [161], [219]. All quadratic invariants of the quantum

parametric oscillator (4.62) can be found as follows [129], [130], [131], [132]. The correspond-

ing system,

A′+2C = 0, (4.85)

B′−2ω
2 (t)C = 0, (4.86)

C′+B−ω
2 (t)A= 0, (4.87)

is integrated by the substitution A = κ2. Then C = −κκ ′, B = κκ ′′+ (κ ′)2+ω2 (t)κ2 and

equation (4.86) becomes

(
κκ
′′+
(
κ
′)2
+ω

2 (t)κ2
)′
+2ω

2 (t)κκ
′ = 0,

κ
(
κ
′′+ω

2 (t)κ
)′
+3κ

′ (
κ
′′+ω

2 (t)κ
)
= 0

or with an integrating factor:

d

dt

(
κ

3
(
κ
′′+ω

2 (t)κ
))
= 0 (4.88)

(see [132] and [127]). Thus

κ
′′+ω

2 (t)κ =
c0

κ3
(c0 = 0,1) (4.89)

and a general solution of the system (4.85)–(4.87) is given by

A= κ
2, B=

(
κ
′)2
+

c0

κ2
, C =−κκ

′ (4.90)

in terms of solutions of the nonlinear equation (4.89), which is called Ermakov’s equation, when

c0 = 1 [72] (see also, [126], [131], [167] and [185]). Thus the quadratic integrals of motion can

be presented in the form [132]:

E =
(
κ p−κ

′x
)2
+

c0

κ2
x2 (4.91)
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for any given solution of the Ermakov equation (4.89). This quantum invariant is an analog of

the Ermakov–Lewis integral of motion for the classical parametric oscillator [72], [129], [130],

[131], [201].

In general if two linearly independent solutions of the classical parametric oscillator

equation are available:

u′′+ω
2 (t)u= 0, v′′+ω

2 (t)v= 0, (4.92)

then solutions of the nonlinear Ermakov equation:

κ
′′+ω

2 (t)κ =
1

κ3
(4.93)

are given by

κ =
(
Au2+2Buv+Cv2

)1/2
(4.94)

(so-called Pinney’s solution [167], [70], [126], [131], [161]), where the constants A, B and C are

related according to AC−B2 = 1/W 2 with W being the constant Wronskian of the two linearly

independent solutions.

For example, in the case of the simple harmonic oscillator with ω (t) = 1, there are two

elementary solutions:

κ = 1 (c0 = 1) , κ = cos t (c0 = 0) (4.95)

and the energy operators are given by

H =
1

2

(
p2+ x2

)
, (4.96)

E = (cos t p+ sin t x)2 . (4.97)

It provides a somewhat better understanding of the nature of the Hamiltonian discussed by

Meiler, Cordero-Soto and Suslov [143] — this operator plays a role of the simplest time-

dependent quadratic integral of motion for the linear harmonic oscillator.
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In a similar fashion the dynamical invariants of the parametric oscillator (4.56) are

given by the expression (4.91) with c0 6= 0. In the Pinney solution (4.94) one can choose

u =
ω cos(ωt)cosh(λ t)−λ sin(ωt)sinh(λ t)

cosh(λ t)
, (4.98)

v =
ω sin(ωt)cosh(λ t)+λ cos(ωt)sinh(λ t)

cosh(λ t)
(4.99)

as two linearly independent solutions of the classical equation of motion (4.57) with W (u,v) =

ω

(
ω2+λ

2
)
. If A=C and B= 0, then

κ =
(

ω
2+λ

2
tanh2 (λ t)

)1/2
(4.100)

is a particular solution of the corresponding Ermakov equation:

κ
′′+

(
ω

2+
2λ

2

cosh2 (λ t)

)
κ =

ω2
(

λ
2+ω2

)2

κ3
. (4.101)

The simplest positive energy integral for our parametric oscillator (4.56) is given by

E =
(

ω
2+λ

2
tanh2 (λ t)

)
p2+λ

3 sinh(λ t)

cosh3 (λ t)
(px+ xp) (4.102)

+
λ

6
sinh2 (λ t)+ω2

(
λ

2+ω2
)2

cosh6 (λ t)

cosh6 (λ t)
(

ω2+λ
2

tanh2 (λ t)
) x2.

Another possibility is to take a general solution of (4.57) with c0 = 0.

An Extension to General Quadratic Hamiltonians

We consider the following generalization of the Lewis–Riesenfeld invariant (4.91) (see also

[125], [219]).

Theorem 4 The dynamical invariants for the general quadratic Hamiltonian (4.69) are given

by

E =
1

µ1

(
κ p− 1

2a

dκ

dt
x

)2

+
C0

µ2κ2
x2, (4.103)

where C0 is a constant,

µ1 = exp

(
−
∫ t

0
(3c+d) ds

)
, µ2 = exp

(∫ t

0
(c+3d) ds

)
, (4.104)
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and κ satisfies the auxiliary nonlinear equation:

k
d

dt

(
k

dκ

dt

)
+4abk2

κ =
C0

κ3
, (4.105)

where

k =
1

2a
exp

(
2

∫ t

0
(c+d) ds

)
. (4.106)

(For the self-adjoint Hamiltonians c= d.)

The case, a = 1/2, b = ω2 (t)/2 and c = d = 0, corresponds to the original invariant

(4.91).

Proof. By Lemma 3 in order to find quadratic invariants of the form

E = Ap2+Bx2+Cpx+Dxp (4.107)

we have to solve the following system of ordinary differential equations:

dA

dt
+2a(C+D)− (3c+d)A = 0, (4.108)

dB

dt
−2b(C+D)+(c+3d)B = 0, (4.109)

dC

dt
+2(aB−bA)− (c−d)C = 0, (4.110)

dD

dt
+2(aB−bA)− (c−d)D = 0, (4.111)

say, for arbitrary analytic coefficients a(t) , b(t) , c(t) and d (t) . The substitution C =C1+D1,

D=C1−D1 allows one to transform the last two equations:

dC1

dt
+2(aB−bA)− (c−d)C1 = 0, (4.112)

dD1

dt
= (c−d)D1, D1 = constant exp

(∫ t

0
(c−d) ds

)
. (4.113)

Then

Cpx+Dxp=C1 (px+ xp)+D1 (px− xp)

and, in view of the canonical commutation relation, the coefficient D1 can be eliminated from

the consideration as belonging to the linear invariants (see appendix C).
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Introducing integrating factors into (4.108), (4.109) and (4.112), we get

d

dt
(µ1A)+4aµ1C1 = 0,

µ ′1
µ1

=−3c−d, (4.114)

d

dt
(µ2B)−4bµ2C1 = 0,

µ ′2
µ2

= c+3d, (4.115)

d

dt
(µ3C1)+2µ3 (aB−bA) = 0,

µ ′3
µ3

=−c+d (4.116)

with µ2
3 = µ1µ2. After the substitution

Ã= µ1A, B̃= µ2B, C̃ = µ3C1, (4.117)

the system takes the form

dÃ

dt
+4a

√
µ1

µ2

C̃ = 0, (4.118)

dB̃

dt
−4b

√
µ2

µ1

C̃ = 0, (4.119)

dC̃

dt
+2

(
a

√
µ1

µ2

B̃−b

√
µ2

µ1

Ã

)
= 0. (4.120)

Introducing a “proper time”:

τ =
∫ t

0
2a

√
µ1

µ2

ds, (4.121)

we finally obtain:

dÃ

dτ
+2C̃ = 0, (4.122)

dB̃

dτ
−2ω

2 (τ)C̃ = 0, (4.123)

dC̃

dτ
+ B̃−ω

2 (τ) Ã= 0, ω
2 (τ) =

bµ2

aµ1

, (4.124)

which is identical to the original Lewis–Riesenfeld system (4.85)–(4.87) (positivity of ω2 is not

required). The solution is given by

Ã= κ
2, B̃=

(
dκ

dτ

)2

+
C0

κ2
, C̃ =−κ

dκ

dτ
, (4.125)

where κ satisfies the Ermakov equation:

d2κ

dτ2
+ω

2 (τ)κ =
C0

κ3
, ω

2 (τ) =
bµ2

aµ1

, (4.126)
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with respect to the new time (4.121). In view of

d

dτ
= k

d

dt
, k =

1

2a
exp

(
2

∫ t

0
(c+d) ds

)
, (4.127)

the Ermakov equation (4.126) is transformed into our auxiliary equation (4.105). A back sub-

stitution results in the dynamical invariant (4.103) when the square is completed.

Lemma 5 The dynamical invariant (4.103) can be represented in more symmetric form

E =

((
µ p− 1

2a

(
dµ

dt
− (c+d)µ

)
x

)2

+
C0

µ2
x2

)
(4.128)

×exp

(∫ t

0
(c−d) ds

)
,

where C0 is a constant and µ is a solution of the following auxiliary equation:

µ
′′− a′

a
µ
′+

(
4ab+

(
a′

a
− c−d

)
(c+d)− c′−d′

)
µ =C0

(2a)2

µ3
. (4.129)

Proof. Use the substitution

κ = µ exp

(
−
∫ t

0
(c+d) ds

)
(4.130)

in (4.103) and (4.105). A somewhat different proof is given in [198].

The corresponding classical invariant is discussed, for example, in Refs. [201] and

[219]. (Compare also our expression (4.128) with the one given in the last paper for the self-

adjoint case; we give a detailed proof for the non-self-adjoint Hamiltonians and emphasize

connection with the Ermakov equation.)

It is worth noting, in conclusion, that, if µ1 and µ2 are two linearly independent solu-

tions of the linear equation:

µ
′′− a′

a
µ
′+

(
4ab+

(
a′

a
− c−d

)
(c+d)− c′−d′

)
µ = 0, (4.131)

the general solution of the nonlinear auxiliary equation (4.129) is given by

µ =
(
Aµ

2
1+2Bµ1µ2+Cµ

2
2

)1/2
, (4.132)

where the constants A, B and C are related according to

AC−B2 =C0

(2a)2

W 2 (µ1,µ2)
(4.133)
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with W (µ1,µ2) = µ1µ ′2− µ ′1µ2 = constant (2a) being the Wronskian of the two linearly in-

dependent solutions. This is a simple extension of Pinney’s solution (4.94); our equations

(4.129) and (4.131) form the generalized Ermakov system [70], [161]. Further generaliza-

tion of the superposition formula (4.132)–(4.133) is discussed in Ref. [198]. (If C0 6= 0, the

substitution µ → C
1/4
0 µ reduces equation (4.129) to a similar form with C0 = 1.) Special

case of the time-dependent damped harmonic oscillator, when a= e−F(t)/2, b= ω2 (t)eF(t)/2,

F (t) =
∫ t

0 f (s) ds and c= d = 0, is discussed in [123], [124].

An Example

The simplest energy operators have been already discussed in section 4.1 for all models of

quantum oscillators under consideration. In order to demonstrate how the general approach

works we discuss the united Hamiltonian (4.23), when a = (ω0/2)e
−2λ t , b = (ω0/2)e2λ t and

c= 0, d =−µ. A direct calculation shows that the function

κ =

√
ω0

2
e−λ t (4.134)

satisfies the following equation

κ
′′+2λκ

′+ω
2
0κ =

(
ω0ω

2

)2 e−4λ t

κ3
, ω

2 = ω
2
0− (λ −µ)2 > 0, (4.135)

which corresponds to the nonlinear auxiliary equation (4.129) with C0 = ω2/4. The quadratic

invariant (4.128) simplifies to the previously found expression (4.84). Solution (4.132) can be

used for the most general case. Details are left to the reader.

Factorization of the Dynamical Invariant

Following Ref. [50] the energy operator (4.128) can be presented in the standard harmonic

oscillator form:

E =
ω (t)

2

(
â(t) â† (t)+ â† (t) â(t)

)
, (4.136)

where

ω (t) = ω0 exp

(∫ t

0
(c−d) ds

)
, ω0 = 2

√
C0 > 0, (4.137)

â(t) =

(√
ω0

2µ
− i

µ ′− (c+d)µ

2a
√

ω0

)
x+

µ√
ω0

∂

∂x
, (4.138)

â† (t) =

(√
ω0

2µ
+ i

µ ′− (c+d)µ

2a
√

ω0

)
x− µ√

ω0

∂

∂x
, (4.139)
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and µ is a solution of the nonlinear auxiliary equation (4.129). Here the time-dependent anni-

hilation â(t) and creation â† (t) operators satisfy the usual commutation relation:

â(t) â† (t)− â† (t) â(t) = 1. (4.140)

The oscillator-type spectrum and the corresponding time-dependent eigenfunctions of the dy-

namical invariant E can be obtain now in a standard way by using the Heisenberg–Weyl algebra

of the rasing and lowering operators (a “second quantization” [132], the Fock states). Explicit

solution of the Cauchy initial value problem in terms of the quadratic invariant eigenfunction

expansion is found in Ref. [198]. In addition the n-dimensional oscillator wave functions form

a basis of the irreducible unitary representation of the Lie algebra of the noncompact group

SU (1,1) corresponding to the discrete positive series D j
+ (see [143], [157] and [188]). Our

operators (4.138)–(4.139) allow one to extend these group-theoretical properties to the general

dynamical invariant (4.136). We shall further elaborate on these connections elsewhere.

4.5 Application to the Cauchy Initial Value Problems

Explicit solution of the initial value problem in terms of eigenfunctions of the general quadratic

invariant is given in Ref. [198]. Here we formulate the following uniqueness result.

Lemma 6 Suppose that the expectation value

〈H0〉= 〈ψ,H0ψ〉 ≥ 0 (4.141)

for a positive quadratic operator

H0 = f (t)(α (t) p+β (t)x)2+g(t)x2 ( f (t)≥ 0, g(t)> 0) (4.142)

(α (t) and β (t) are real-valued functions) vanishes for all t ∈ [0,T ) :

〈H0〉= 〈H0〉(t) = 〈H0〉(0) = 0, (4.143)

when ψ (x,0) = 0 almost everywhere. Then the corresponding Cauchy initial value problem

i
∂ψ

∂ t
= Hψ, ψ (x,0) = ϕ (x) (4.144)

may have only one solution, when xψ (x, t) ∈ L2 (R) (if H0 = g(t) I, where I = id is the identity

operator, ψ ∈ L2 (R)).
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Here it is not assumed that H0 is the quantum integral of motion when d
dt
〈H0〉 ≡ 0.

Proof. If there are two solutions:

i
∂ψ1

∂ t
= Hψ1, i

∂ψ2

∂ t
= Hψ2

with the same initial condition ψ1 (x,0) =ψ2 (x,0) = ϕ (x) , then by the superposition principle

the function ψ = ψ1 −ψ2 is also a solution with respect to the zero initial data ψ (x,0) =

ϕ (x)−ϕ (x) = 0. By the hypothesis of the lemma

〈ψ,H0ψ〉= f (t)〈(α p+βx)ψ,(α p+βx)ψ〉+g(t)〈xψ,xψ〉= 0

for all t ∈ [0,T ). Therefore xψ (x, t)= x(ψ1 (x, t)−ψ2 (x, t))= 0 and ψ1 (x, t)=ψ2 (x, t) almost

everywhere for all t > 0 by the axiom of the inner product in L2 (R) .

In order to apply this lemma to the variable Hamiltonians one has to identify the cor-

responding positive operators H0 and establish their required uniqueness dynamics properties

with respect to the zero initial data. In addition to the simplest available dynamical invariant

(4.219), it is worth exploring other (quadratic) possibilities. The authors believe that it is in-

teresting and may be important on its own. For example, our approach gives an opportunity to

determine a complete time-evolution of the standard deviations (4.227)–(4.228) for each of the

generalized harmonic oscillators under consideration. The details will be discussed elsewhere.

The Caldirola-Kanai Hamiltonian

The required operators are given by

H = H0 =
ω0

2

(
e−2λ t p2+ e2λ t x2

)
, (4.145)

L=
∂H

∂ t
= λω0

(
−e−2λ t p2+ e2λ t x2

)
, (4.146)

E =
ω0

2

(
e−2λ t p2+ e2λ t x2

)
+

λ

2
(px+ xp) ,

d

dt
〈E〉= 0. (4.147)

By (4.67)

d

dt
〈H〉=

〈
∂H

∂ t

〉
= 〈L〉 . (4.148)

Applying formula (4.66) one gets

d

dt
〈L〉 = 2λ

2
ω0

(
e−2λ t

〈
p2
〉
+ e2λ t

〈
x2
〉)

(4.149)

+2λω
2
0 〈px+ xp〉
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and

d

dt
〈L〉+4ω

2 〈H〉= 4ω
2
0 〈E〉0 (4.150)

with the help of (4.145) and (4.147).

In view of (4.148) and (4.150) the dynamics of the Hamiltonian expectation value 〈H〉

is governed by the following second-order differential equation

d2

dt2
〈H〉+4ω

2 〈H〉= 4ω
2
0 〈E〉0 (4.151)

with the unique solution given by

〈H〉= ω2 〈H〉0−ω2
0 〈E〉0

ω2
cos(2ωt)+

1

2ω

〈
∂H

∂ t

〉
0

sin(2ωt)+
ω2

0

ω2
〈E〉0 . (4.152)

The hypotheses of Lemma 6 are satisfied. Our solution allows to determine a complete time-

evolution of the expectation values of the operators p2, x2 and px+ xp. Further details are left

to the reader.

The Modified Caldirola-Kanai Hamiltonian

The required operators are

H =
ω0

2

(
e−2λ t p2+ e2λ t x2

)
−λ (px+ xp) , (4.153)

L=
∂H

∂ t
= λω0

(
−e−2λ t p2+ e2λ t x2

)
=

∂H0

∂ t
, (4.154)

E =
ω0

2

(
e−2λ t p2+ e2λ t x2

)
− λ

2
(px+ xp) . (4.155)

We consider the expectation value 〈H0〉 of the positive operator

H0 =
ω0

2

(
e−2λ t p2+ e2λ t x2

)
. (4.156)

In this case H = 2E−H0, and

d

dt
〈H〉 =

〈
∂H

∂ t

〉
= 〈L〉=− d

dt
〈H0〉 , (4.157)

d

dt
〈L〉 = 4ω

2 〈H0〉−4ω
2
0 〈E〉0 , (4.158)

which results in the differential equation (4.151) with the explicit solution

〈H0〉=
ω2 〈H0〉0−ω2

0 〈E〉0
ω2

cos(2ωt)− 1

2ω

〈
∂H0

∂ t

〉
0

sin(2ωt)+
ω2

0

ω2
〈E〉0 (4.159)

of the initial value problem. The hypotheses of the lemma are satisfied.
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The United Model

The related operators can be conveniently extended as follows

H0 =
ω0

2
eµt
(

e−2λ t p2+ e2λ t x2
)
, (4.160)

L= eµt
(
−e−2λ t p2+ e2λ t x2

)
, (4.161)

M = eµt (px+ xp) (4.162)

and

E = H0 (t)+
1

2
(λ −µ)M (t) (4.163)

=
ω0

2
eµt
(

e−2λ t p2+ e2λ t x2
)
+

1

2
(λ −µ)eµt (px+ xp) .

Then by Lemma 3

d

dt
〈M〉=−2ω0 〈L〉 , (4.164)

d

dt
〈H0〉= ω0 (λ −µ)〈L〉 , (4.165)

d

dt
〈E〉= 0 (4.166)

and

d

dt
〈L〉= 4

λ −µ

ω0

〈H0〉+2ω0 〈M〉 . (4.167)

In terms of the energy operator

d

dt
〈L〉+ 4ω2

(λ −µ)ω0

〈H0〉=
4ω0

λ −µ
〈E〉 (4.168)

and as a result

d2

dt2
〈H0〉+4ω

2 〈H0〉= 4ω
2
0 〈E〉0 , ω =

√
ω2

0− (λ −µ)2 > 0 (4.169)

with the unique solution of the initial value problem given by

〈H0〉 =
ω2 〈H0〉0−ω2

0 〈E〉0
ω2

cos(2ωt) (4.170)

+
1

2
(λ −µ)

ω0

ω
〈L〉0 sin(2ωt)+

ω2
0

ω2
〈E〉0 .

The hypotheses of Lemma 6 are satisfied.
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The Modified Oscillator

The required operators are

H = (cos t p+ sin t x)2 (4.171)

= cos2 t p2+ sin2 t x2+ sin t cos t (px+ xp)

=
1

2

(
p2+ x2

)
+

1

2
cos2t

(
p2− x2

)
+

1

2
sin2t (px+ px)

= H0+E (t) ,

where

H0 =
1

2

(
p2+ x2

)
, (4.172)

E = E (t) =
1

2
cos2t

(
p2− x2

)
+

1

2
sin2t (px+ px) (4.173)

and

L=
∂H

∂ t
=

∂E

∂ t
=−sin2t

(
p2− x2

)
+ cos2t (px+ px) . (4.174)

Here

d

dt
〈H0〉=

d

dt
〈H〉=

〈
∂H

∂ t

〉
=

〈
∂E

∂ t

〉
= 〈L〉 (4.175)

and

d

dt
〈L〉= 4〈H0〉 . (4.176)

The expectation value 〈H0〉 satisfies the following differential equation

d2

dt2
〈H0〉= 4〈H0〉 (4.177)

with the explicit solution

〈H0〉= 〈H0〉0 cosh(2t)+
1

2
〈L〉0 sinh(2t) . (4.178)

The hypotheses of Lemma 6 are satisfied.

The Modified Damped Oscillator

Let }= mω0 = 1 in the Hamiltonian (4.33):

H =
ω0

2

(
p2

cosh2 (λ t)
+ cosh2 (λ t) x2

)
(4.179)
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without loss of generality. The corresponding energy operator can be found as follows

E =
ω0

2cosh2 (λ t)
p2+

ω2
0 sinh2 (λ t)+ω2

2ω0

x2 (4.180)

+
λ

2
tanh(λ t)(px+ xp) ,

d

dt
〈E〉= 0,

in view of (4.77)–(4.79) (one should replace A↔ B,C→−C in the momentum representation).

Introducing the following complementary operators

H0 =
p2

cosh2 (λ t)
+ cosh2 (λ t) x2, (4.181)

L =
p2

cosh2 (λ t)
− cosh2 (λ t) x2, (4.182)

M = px+ xp, (4.183)

we get

d

dt
〈H0〉 = −2λ tanh(λ t)〈L〉 , (4.184)

d

dt
〈L〉 = −2λ tanh(λ t)〈H0〉−2ω0 〈M〉 , (4.185)

d

dt
〈M〉 = 2ω0 〈L〉 . (4.186)

Then

E =
ω0

2

(
1− λ

2

2ω2
0 cosh2 (λ t)

)
H0+

λ
2

4ω0 cosh2 (λ t)
L (4.187)

+
λ

2
tanh(λ t)M

and, eliminating 〈M〉 and 〈L〉 from the system, one gets:

d2

dt2
〈H0〉−

4λ

sinh(2λ t)

d

dt
〈H0〉+2

(
2ω

2+
λ

2

cosh2 (λ t)

)
〈H0〉= 8ω0 〈E〉0 . (4.188)

The required initial conditions:(
d

dt
〈H0〉

)
0

= 0,

(
coth(λ t)

d

dt
〈H0〉

)
0

=−2λ 〈L〉0 (4.189)

follow from (4.184). The unique explicit solution is given by

〈H0〉 = −λ
λ

2 〈E〉0+ω0ω2 〈L〉0
ω0ω2

(
2ω2+λ

2
) (4.190)

×
(
2ω tanh(λ t)sin(2ωt)+λ

(
1+ tanh2 (λ t)

)
cos(2ωt)

)
+2〈E〉0

ω0

ω2

(
1− λ

2

2ω2
0 cosh2 (λ t)

)
(see appendix D). The hypotheses of Lemma 6 are satisfied.
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The Modified Parametric Oscillator

In the case (4.49), the energy operator (4.83) is a positive operator:

〈E〉= tanh2 (λ t+δ )
〈

p2
〉
+ coth2 (λ t+δ )

〈
x2
〉
= 〈E〉0 > 0. (4.191)

The related operators are

L = tanh2 (λ t+δ ) p2− coth2 (λ t+δ ) x2, (4.192)

M = px+ xp, (4.193)

H =
ω

2
E+

λ

sinh(2λ t+2δ )
M (4.194)

with

d

dt
〈L〉=−2ω 〈M〉 , d

dt
〈M〉=−2ω 〈L〉 . (4.195)

From here

d2

dt2
〈L〉+4ω

2 〈L〉= 0,
d2

dt2
〈M〉+4ω

2 〈M〉= 0, (4.196)

which determines the time-evolution of the expectation values.

Parametric Oscillators

In general the Lewis–Riesenfeld quadratic invariant (4.91) for the parametric oscillator (4.62)

is obviously a positive operator for real-valued solutions of the Ermakov equation (4.89) that

satisfies the conditions of our lemma.

General Quadratic Hamiltonian

In the case of Hamiltonian (4.69) applying formula (4.71) to the operators, O=
{

p2,x2, px+ xp
}
,

one obtains [50]:

d

dt


〈

p2
〉

〈
x2
〉

〈px+ xp〉

=

−3c(t)−d (t) 0 −2b(t)

0 c(t)+3d (t) 2a(t)

4a(t) −4b(t) −c(t)+d (t)




〈

p2
〉

〈
x2
〉

〈px+ xp〉

 .
(4.197)
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This system has a unique solution for suitable coefficients [97], which allows one to apply

Lemma 6, say, for the positive operator x2. Our Theorem 1 provides another choice of positive

operators. On the second thought a positive integral (4.221) determines time-evolution of the

squared norm and guarantees uniqueness in L2 (R) . Details are left to the reader.
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4.6 Appendix A: The Ehrenfest Theorems

Application of formula (4.67) to the position x and momentum p operators allows one to derive

the Ehrenfest theorem [69], [145], [183] for the models of oscillators under consideration.

For the Caldirola-Kanai Hamiltonian (4.13) one gets

d

dt
〈x〉= ω0e−2λ t 〈p〉 , d

dt
〈p〉=−ω0e2λ t 〈x〉 . (4.198)

Elimination of the expectation value 〈p〉 from this system results in the classical equation of

motion for a damped oscillator [13], [120]:

d2

dt2
〈x〉+2λ

d

dt
〈x〉+ω

2
0 〈x〉= 0. (4.199)

For the modified Caldirola-Kanai Hamiltonian (4.18) the system

d

dt
〈x〉= ω0e−2λ t 〈p〉−2λ 〈x〉 , d

dt
〈p〉=−ω0e2λ t 〈x〉+2λ 〈p〉 (4.200)

gives the same classical equation.
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In the case of the united model (4.23) one should use the differentiation formula (4.72).

Then

d

dt
〈x〉= ω0e−2λ t 〈p〉−2µ 〈x〉 , d

dt
〈p〉=−ω0e2λ t 〈x〉 (4.201)

and the second order equations are given by

d2

dt2
〈x〉+ 2(λ +µ)

d

dt
〈x〉+

(
ω

2
0+4λ µ

)
〈x〉= 0, (4.202)

d2

dt2
〈p〉+ 2(µ−λ )

d

dt
〈p〉+ω

2
0 〈p〉= 0. (4.203)

The general solutions are

〈x〉 = Ae−(λ+µ)t sin(ωt+δ ) , (4.204)

〈p〉 = Be(λ−µ)t sin(ωt+ γ) , (4.205)

where ω =
√

ω2
0− (λ −µ)2 > 0.

In a similar fashion for a modified oscillator with the Hamiltonian (4.29) we obtain

d

dt
〈x〉 = 2cos2 t 〈p〉+2sin t cos t 〈x〉 , (4.206)

d

dt
〈p〉 = −2sin2 t 〈x〉−2sin t cos t 〈p〉 . (4.207)

Then

d2

dt2
〈x〉+ 2tan t

d

dt
〈x〉−2〈x〉= 0, (4.208)

which coincides with the characteristic equation (4.6) in this case [52].

In the case of the damped oscillator of Chruściński and Jurkowski one obtains

d

dt
〈x〉 =

〈p〉
mcosh2 (λ t)

, (4.209)

d

dt
〈p〉 = −mω

2
0 cosh2 (λ t)〈x〉 . (4.210)

The Ehrenfest theorems coincide with the Newtonian equations of motion [46]:

d2

dt2
〈x〉+ 2λ tanh(λ t)

d

dt
〈x〉+ω

2
0 〈x〉 = 0, (4.211)

d2

dt2
〈p〉− 2λ tanh(λ t)

d

dt
〈p〉+ω

2
0 〈p〉 = 0 (4.212)
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with the general solutions given by

〈x〉= A
sin(ωt+δ )

cosh(λ t)
, ω =

√
ω2

0−λ
2 > 0, (4.213)

〈p〉= B(λ cos(ωt+δ )sinh(λ t)+ω sin(ωt+δ )cosh(λ t)) , (4.214)

respectively. It is worth noting that both equations (4.199) and (4.211) give the same frequency

of oscillations for the damped motion; see [46] for more details.

Combining all models together for the general quadratic Hamiltonian (4.69):

d

dt
〈x〉= 2a(t) 〈p〉+2d (t) 〈x〉 , d

dt
〈p〉=−2b(t) 〈x〉−2c(t) 〈p〉 (4.215)

with the help of (4.72). The Newtonian-type equation of motion for the expectation values has

the form

d2

dt2
〈x〉− τ (t)

d

dt
〈x〉+4σ (t)〈x〉= 0 (4.216)

with

τ (t) =
a′

a
−2c+2d, σ (t) = ab− cd+

d

2

(
a′

a
− d′

d

)
. (4.217)

In order to explain a connection with the characteristic equation (4.6)–(4.7) we temporarily

replace c→ c0 and d → d0 in the original Hamiltonian (4.1). Then it takes the standard form

(4.69), if c0 = c+d and d0 = c. Using the new notations in (4.6)–(4.7) we find

τ− τ0 = 4(d− c) , σ −σ0 =
a

2

(
c−d

a

)′
. (4.218)

Therefore our characteristic equation (4.6) coincides with the corresponding Ehrenfest theorem

(4.216) only in the case of self-adjoint Hamiltonians, when c = d (or c0 = 2d0). The united

model shows that these equations are different otherwise.

4.7 Appendix B: The Heisenberg Uncertainty Relation Revisited

A detailed review with an extensive list of references is given in Refs. [64] and [155] (see also

[141]). We only discuss the Heisenberg uncertainty relation for the position x and momentum

p=−i∂/∂x operators (in the units of }) in the case of the general quadratic Hamiltonian (4.69).

By our Lemma 3 the simplest integral of motion is given by

E0 = exp

(∫ t

0
(c(τ)−d (τ)) dτ

)
(px− xp) (4.219)

95



with

[x, p] = xp− px= i. (4.220)

This implies the following time evolution:

〈ψ,ψ〉= exp

(∫ t

0
(d (τ)− c(τ)) dτ

)
〈ψ,ψ〉0 (4.221)

of the squared norm of the wave functions.

With the expectation values

x=
〈x〉
〈1〉 =

〈ψ,xψ〉
〈ψ,ψ〉 , p=

〈p〉
〈1〉 =

〈ψ, pψ〉
〈ψ,ψ〉 (4.222)

and the operators

∆x= x− x, ∆p= p− p (4.223)

let us consider

0 ≤ 〈(∆x+ iλ∆p)ψ,(∆x+ iλ∆p)ψ〉 (4.224)

= 〈ψ,(∆x− iλ∆p)(∆x+ iλ∆p)ψ〉

=
〈
(∆x)2

〉
−λ 〈1〉+λ

2
〈
(∆p)2

〉
for a real parameter λ . Here we have used the operator identity

(∆x− iλ∆p)(∆x+ iλ∆p) = (∆x)2−λ +λ
2 (∆p)2 . (4.225)

Then one gets 〈
(∆p)2

〉〈
(∆x)2

〉
≥ 1

4
〈1〉2 = 1

4
exp

(
2

∫ t

0
(d (τ)− c(τ)) dτ

)
, (4.226)

if 〈1〉0 = 〈ψ,ψ〉0 = 1. For the standard deviations:

(δ p)2 =

〈
(∆p)2

〉
〈1〉 = (p2)− (p)2 , (4.227)

(δx)2 =

〈
(∆x)2

〉
〈1〉 = (x2)− (x)2 , (4.228)

we finally obtain

δ p δx≥ 1

2
(4.229)
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in the units of }. It is worth noting that Eq. (4.229) is derived, in fact, for any operators x and

p with the commutator (4.220) — the structure of the quadratic Hamiltonian (4.69) has only

been used in the norm (4.221). Time-evolution of the standard deviations (4.227)–(4.228) will

be discussed elsewhere.

4.8 Appendix C: Linear Integrals of Motion: The Dodonov–Malkin–Man’ko–Trifonov

Invariants

All invariants of the form

P= A(t) p+B(t)x+C (t) (4.230)

for the general quadratic Hamiltonian (4.69) can be found as follows (see, for example, [63],

[65], [140], [139] and references therein). Use of the differentiation formula (4.72) results in

the following system:

dA

dt
= 2c(t)A−2a(t)B, (4.231)

dB

dt
= 2b(t)A−2d (t)B, (4.232)

dC

dt
= (c(t)−d (t))C. (4.233)

The last equation is explicitly integrated and elimination of B and A from (4.231) and (4.232),

respectively, gives the second-order equations:

A′′−
(

a′

a
+2c−2d

)
A′+4

(
ab− cd+

c

2

(
a′

a
− c′

c

))
A = 0, (4.234)

B′′−
(

b′

b
+2c−2d

)
B′+4

(
ab− cd− d

2

(
b′

b
− d′

d

))
B = 0. (4.235)

The first is equivalent to our characteristic equation (4.6)–(4.7) and coincides with the Ehrenfest

theorem (4.216)–(4.217) when c↔ d.

Thus the linear quantum invariants are given by

P= A(t) p+
2c(t)A(t)−A′ (t)

2a(t)
x+C0 exp

(∫ t

0
(c(τ)−d (τ)) dτ

)
, (4.236)

where A(t) is a general solution of equation (4.234) depending upon two parameters and C0 is

the third constant. Our Theorem 1 gives a similar description of the quadratic invariants in terms

of solutions of the auxiliary equation (4.105). Relations between linear and quadratic invariants
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are analyzed in [198]. Group-theoretical applications are discussed in [42], [62], [65], [140],

[63], [132], [139] and elsewhere.

4.9 Appendix D: An Elementary Differential Equation

The nonhomogeneous differential equation of the form

y′′− 4λ

sinh(2λ t+2γ)
y′+

(
ω

2+
2λ

2

cosh2 (λ t+ γ)

)
y= 1 (4.237)

(ω, λ and γ are some parameters) has the following general solution:

y=C1y1 (t)+C2y2 (t)+Y (t) , (4.238)

where C1 and C2 are constants,

y1 = ω tanh(λ t+ γ)cos(ωt)−λ
(
1+ tanh2 (λ t+ γ)

)
sin(ωt) , (4.239)

y2 = ω tanh(λ t+ γ)sin(ωt)+λ
(
1+ tanh2 (λ t+ γ)

)
cos(ωt) (4.240)

are the fundamental solutions of the corresponding homogeneous equation with the Wronskian

given by

W (y1,y2) = ω

(
ω

2+4λ
2
)

tanh2 (λ t+ γ) , (4.241)

and

Y =
1

ω2

1− 2λ
2(

ω2+4λ
2
)

cosh2 (λ t+ γ)

 (4.242)

is a particular solution of the nonhomogeneous equation.

One can also verify that functions:

z1 = ω cos(ωt)−λ coth(λ t+ γ)sin(ωt) , (4.243)

z2 = ω sin(ωt)+λ coth(λ t+ γ)cos(ωt) (4.244)

with W (z1,z2) = ω

(
ω2+λ

2
)

are fundamental solutions of the following equation:

z′′+

(
ω

2− 2λ
2

sinh2 (λ t+ γ)

)
z= 0 (4.245)

and then carry out the substitution y= z tanh(λ t+ γ) .Details are left to the reader. The particu-

lar solution of the nonhomogeneous equation can be found by the variation of parameters and/or
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verified by the substitution. Review of other integrable second-order differential equations is

given in [72].
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Chapter 5

Characteristic Equation and the Gauge Transformation

citation: R. Cordero-Soto, The Gauge Transformation and Reduced Characteristic Equation of

a Quadratic Time-Dependent Schrödinger Equation, under preparation.

5.1 Introduction

In [49], the authors study and solve the time-dependent Schrödinger equation

i
∂ψ

∂ t
= H (t)ψ (5.1)

where

H =−a(t)
∂ 2

∂x2
+b(t)x2− i

(
c(t)x

∂

∂x
+d (t)

)
(5.2)

and where a(t) , b(t) , c(t) , and d (t) are real-valued functions of time t only; see Refs. [49],

[52], [50],[122], [134], [143], [194], [195], and [196] for a general approach and currently

known explicit solutions. The solution is given by

ψ (x, t) =
∫

∞

−∞

G(x,y, t) ψ0 (y) dy (5.3)

where the Green’s function, or particular solution is given by

G(x,y, t) =
1√

2πiµ (t)
ei(α(t)x2+β (t)xy+γ(t)y2). (5.4)

The time-dependent functions are found via a substitution method that reduces (5.2)

to a system of differential equations (see [49]). This system is explicitly integrable up to the

function µ (t) which satisfies the following so-called characteristic equation

µ
′′− τ (t)µ

′+4σ (t)µ = 0 (5.5)

with

τ (t) =
a′

a
−2c+4d, σ (t) = ab− cd+d2+

d

2

(
a′

a
− d′

d

)
. (5.6)

This equation must be solved subject to the initial data

µ (0) = 0, µ
′ (0) = 2a(0) 6= 0 (5.7)
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in order to satisfy the initial condition for the corresponding Green’s function. While the

Green’s function (5.4) is explicit up to integration, explicit solutions of the characteristic equa-

tion (5.5) are rare. In this paper we find the solution of (5.1) by solving a reduced characteristic

equation. The reduced characteristic equation is obtained by using a gauge-like transformation

lemma following the work of [50]. The gauge transformation itself provides a simplified form

of the Green’s function. Furthermore, we use a similar transformation to generate a general

quadratic dynamical invariant (see [51] ) of (5.2) that is explicit up the solution of the very

same reduced characteristic equation. We conclude by using use the gauge transformation to

obtain a uniqueness result for the solution in Schwartz Space of a general quantum dot model

or damped model in a simple fashion.

5.2 Transformation Lemmas

Lemma 7 Let ψ̃ (x, t), with ψ̃ (x,0) in Schwartz space, solve the following time-dependent

Schrödinger equation:

i
∂ψ̃

∂ t
= H̃ψ̃, (5.8)

where

H̃ =−a(t)
∂ 2

∂x2
+b(t)x2− ic(t)x

∂

∂x
. (5.9)

Then

ψ (x, t) = ψ̃ (x, t)exp

(
−
∫ t

0
d (s) ds

)
(5.10)

solves (5.1)-(5.2) for

ψ (x,0) = ψ̃ (x,0) . (5.11)

Proof. Let ψ (x, t) = ψ̃ (x, t)exp
(
−
∫ t

0 d (s) ds
)

and assume ψ̃ (x, t) solves (5.8)-(5.9), where

ψ̃ (x,0) is in Schwartz space. We differentiate ψ (x, t) with respect to time:

i
∂ψ

∂ t
= i

∂ψ̃

∂ t
exp

(
−
∫ t

0
d (s) ds

)
− id (t) ψ̃ (x, t)exp

(
−
∫ t

0
d (s) ds

)
. (5.12)

For H given by (5.2) and H̃ given by (5.9), we have

H = H̃− id (t) , (5.13)
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and

i
∂ψ

∂ t
= H̃ [ψ̃]exp

(
−
∫ t

0
d (s) ds

)
− id (t)ψ. (5.14)

Since

H̃ [ψ̃]exp

(
−
∫ t

0
d (s) ds

)
= H̃

[
ψ̃ exp

(
−
∫ t

0
d (s) ds

)]
= H̃ [ψ] , (5.15)

we have that

i
∂ψ

∂ t
= H̃ [ψ]− id (t)ψ = Hψ. (5.16)

By the method of [49] for d = 0 we can find ψ̃ (x, t): We simply generate the Green’s

function for ψ̃ (x, t) by substituting d = 0 in (5.3). It is worth noting that we now have a reduced

characteristic equation given by

µ
′′− τ̃ (t)µ

′+4σ̃ (t)µ = 0, (5.17)

where

τ̃ (t) =
a′

a
−2c, (5.18)

σ̃ (t) = ab (5.19)

and initial conditions are given by (5.7).

The Schwartz requirement on the initial condition is necessary to show that (5.3) is in

fact the solution of (5.1)-(5.2) since we can justify the interchanging of the time-derivative and

integral operators. In particular, we note that∣∣∣∣ ∂

∂ t
G(x,y, t)ψ0 (y)

∣∣∣∣= ∣∣∣∣ ∂

∂ t

[
A(t) ei(α(t)x2+β (t)xy+γ(t)y2)ψ0 (y)

]∣∣∣∣ . (5.20)

Here,

A(t) =
1√

2πiµ (t)
. (5.21)

Thus, (5.20) reduces to ∣∣∣∣(∂A

∂ t
+Ai

∂S

∂ t

)
ψ0 (y)

∣∣∣∣ , (5.22)

where

S (x,y, t) = α (t)x2+β (t)xy+ γ (t)y2. (5.23)
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Since ψ0 (y) is in Schwartz space, (5.22) is also in Schwartz space. It follows that the time-

derivative operator can be exchanged with the integral (see [1]).

We state the following extension Corollary:

Corollary 8 Let ψ̃ (x, t), with ψ̃ (x,0) uniquely solve (5.8)-(5.9). Then 5.10 uniquely solves

(5.1)-(5.2) for (5.11).

5.3 Quantum Integrals

We say that a quadratic operator

E = A(t) p2+B(t)x2+C (t)(px+ xp) (5.24)

is a quadratic dynamical invariant of (5.2) if

d 〈E〉
dt

= 0 (5.25)

for (5.2). In [51] it is shown that

E1 =

[
up− (u

′− cu)x

2a

]2

exp

(∫ t

0
−c(s)ds

)
(5.26)

is an invariant for

H1 = a(t) p2+b(t)x2+ c(t)xp (5.27)

where u(t) satisfies the following second-order differential equation:

u′′− a′

a
u′+

[
4ab+

(
a′

a
− c

)
c− c′

]
u= 0. (5.28)

But (5.28) can be simplified by using the substitution u = µ exp
(∫ t

0 c(s)ds
)
. In doing so, we

find that (5.26) can be rewritten as

E1 =

[
µ p− µ ′x

2a

]2

exp

(∫ t

0
c(s)ds

)
(5.29)

where µ is given by the reduced characteristic equation (5.17). We thus obtain the invariant for

(5.2)

Lemma 9 Let

E =

[
µ p− µ ′x

2a

]2

exp

(∫ t

0
[2d (s)+ c(s)]ds

)
. (5.30)
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Then (5.30) is a dynamical invariant of (5.2).

Proof. We note that (5.2) and (5.30) can be rewritten as

E = exp

(∫ t

0
2d (s)ds

)
E1 (5.31)

and

H = H1− id (5.32)

where E1 and H1 are given by (5.29) and (5.27) respectively. The reader should note that here

〈Q〉 =
∫

ψ∗Qψdx where ψ solves the Schrödinger equation for (5.2). Furthermore, by the

transformation lemma, we have that ψ = ψ̃ exp
(
−
∫ t

0 d (s) ds
)

where ψ̃ solves the Schrödinger

equation for H1. Thus, we have that〈
exp

(∫ t

0
2d (s)ds

)
Q

〉
=
∫

ψ
∗
[

exp

(∫ t

0
2d (s)ds

)
Q

]
ψdx=

∫
ψ̃
∗
Qψ̃dx. (5.33)

This then shows that

d 〈E〉
dt

=
d

dt

[∫
ψ̃
∗
E1ψ̃dx

]
= 0 (5.34)

since E1 is an invariant of H1.

5.4 Quantum Dot Model

Essentially, a quantum dot is a small box that contains electrons. The box is coupled via tunnel

barriers to a source and drain reservoir (see [96], [71]) with which particles can be exchanged.

When the size of this so-called box is comparable to the wavelength of the electrons that occupy

it, the energy spectrum is discrete, resembling atoms. This is why quantum dots are artificial

atoms in a sense. Vladimiro Mujica has suggested that the following model is of use to the

theory of Semiconductor quantum dots:

H = a(t) p2+b(t)x2− id (t) (5.35)

Uniqueness

We wish to obtain uniqueness of solutions of (5.1) for (5.35) in Schwartz Space. We follow the

approach of quantum integrals in ([51]) to first prove the uniqueness for the following Hamil-

tonian:

H0 = a(t) p2+b(t)x2. (5.36)
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In particular, we will show that for (5.36),

〈H0〉= 0 when ψ (x,0) = 0. (5.37)

We first recall that

〈Q〉=
∫

∞

−∞

ψ
∗ (x, t) Q [ψ (x, t)] dx (5.38)

Since, we have that ψ is in Schwartz space (see the Fourier Transform on R in [192]), it follows

that

〈H0〉= a(t)
〈

p2
〉
+b(t)

〈
x2
〉
< ∞. (5.39)

Thus, to prove (5.37) , we will show that

〈
p2
〉
=
〈
x2
〉
= 0 when ψ (x,0) = 0. (5.40)

Again, since ψ is in Schwartz space, we have that

d

dt
〈Q〉=

∫
∞

−∞

∂

∂ t
(ψ∗ (x, t) Q [ψ (x, t)] )dx=

1

i

〈
QH−H†Q

〉
(5.41)

for Q= p,x, px,xp, p2and x2.

Given (5.41) we have the following ODE system:

d

dt

〈
p2
〉
= −2b(t)〈px+ xp〉 (5.42)

d

dt

〈
x2
〉
= 2a(t)〈px+ xp〉

d

dt
〈px+ xp〉 = 4a(t)

〈
p2
〉
−4b(t)

〈
x2
〉
.

If ψ (x,0) = 0, then

〈
p2
〉

0
= 0 (5.43)〈

x2
〉

0
= 0

〈px+ xp〉0 = 0.

According to the general theory of homogeneous linear systems of ODE’s, we have that

〈
p2
〉
= 0 (5.44)〈

x2
〉
= 0

〈px+ xp〉 = 0.
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Thus, we have shown that (5.40) holds, thereby proving (5.37). We then use the following (see

[51]) lemma:

Lemma 10 Suppose that the expectation value

〈H0〉= 〈ψ,H0ψ〉 ≥ 0 (5.45)

for a positive quadratic operator

H0 = f (t)(α (t) p+β (t)x)2+g(t)x2 ( f (t)≥ 0, g(t)> 0) (5.46)

(α (t) and β (t) are real-valued functions) vanishes for all t ∈ [0,T ) :

〈H0〉= 〈H0〉(t) = 〈H0〉(0) = 0, (5.47)

when ψ (x,0) = 0 almost everywhere. Then the corresponding Cauchy initial value problem

i
∂ψ

∂ t
= Hψ, ψ (x,0) = ϕ (x) (5.48)

may have only one solution in Schwartz space.

Since we have proven (5.37), we have that H0 satisfies this lemma. Thus we use Corol-

lary 8 to extend the uniqueness in Schwartz space to Hamiltonian (5.35).

5.5 Future Work

Almost Self-Adjoint or Almost Symmetric

In this report, the author has often studied Hamiltonians that are not Self-adjoint ( by self-

adjoint we formally mean symmetric). While some of these are not self-adjoint, they seem

to be "almost self-adjoint" in the sense that they lack a term that would enable the symmetry.

For example, the Hamiltonians (3.10) and (3.11) only require an extra term to be symmetric.

Specifically, H1 and H2 are not symmetric but

H1−λxp (5.49)

and

H2−λ px (5.50)
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are symmetric. While this does not necessarily shed light into what an appropriate and useful

definition of "almost symmetric" would be, it seems that it would be helpful to use Hamiltonians

that can be written as a linear shift of a symmetric one, for example (3.93):

H =
ω0

2

(
p2+ x2

)
−λxp= H0− i

λ

2
.

More on Dynamical Invariants

The author is currently working on finding a dynamical invariant for the following Hamiltonian:

H = a(t) p2+b(t)x2+ c(t) px+d (t)xp+ f (t)x+g(t) p. (5.51)

It is the author’s belief that the invariant will be related to the invariant of

H = a(t) p2+b(t)x2+ c(t) px+d (t)xp (5.52)

in a fashion similar to that of (5.2 )and (5.27).

Nonlinear Mimicking

It has been suggested by Dr. Carlos Castillo-Chávez that the Hamiltonian (1.10) can be used

to study Nonlinear problems by using time-dependent coefficients as "mimic" functions, in the

sense that such functions should mimic the mathematical, and more importantly, the physical

behavior of the nonlinear term. The author has reason to believe that existence of appropriate

mimic functions would depend solely on the physical scenario that is to be modeled. The author

is currently looking into the literature to find any papers that have attempted similar ideas.
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